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Early fault diagnosis of
transformer winding based on
leakage magnetic field and DSAN
learning method

Xiangli Deng*, Zhan Zhang, Hongye Zhu and Kang Yan

School of Electric Power Engineering, Shanghai University of Electric Power, Shanghai, China

Aiming at the problem of lack of training samples and low accuracy in

transformer early winding fault diagnosis, this paper proposes a transformer

early faults diagnosis method based on transfer learning and leakage magnetic

field characteristic quantity. The method uses the leakage magnetic field

waveform on the measuring point of the simulated transformer winding to

draw the Lissajous figure to calculate the characteristic quantity. The

characteristic quantity of the simulation model is used to train the

convolutional neural network (CNN) faults classification model. The CNN

fault classification model is transferred to the actual transformer fault

detection through the improved deep subdomain adaptive network (DSAN),

so as to realize the fault diagnosis of the actual transformer by the classification

model trained by the simulation data. The test examples of the actual

transformer early fault experimental platform and the leakage magnetic field

measurement platform are established, and the feasibility of the transfer

learning method based on the leakage magnetic field feature quantity

proposed in this paper is verified.

KEYWORDS

transformer early fault, leakage magnetic field, CNN-convolutional neural network,
transfer learning (TL), self-attention mechanism

1 Introduction

The power transformer is one of the most important electrical equipment in the power

network. When the transformer is impacted by the external force or repeatedly impacted

by the short-circuit fault current outside the region, it is easy to cause the deformation of

the transformer winding (Hang and Butler, 2002). The long-term operation of the

transformer under overload condition and insulation aging will cause the decrease of

the insulation performance of the transformer winding, which further leads to the inter-

turn short-circuit faults (Liu et al., 2003). The transformer internal winding fault occurs

above and does not have huge impact, we call this fault for the transformer early fault.

Early faults of transformers are often difficult to detect. The cumulative effect of long-term

operation of transformers under potential early faults will eventually lead to serious
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accidents. Therefore, the accurate detection of transformer early

faults is of great significance to ensure the stable operation of

power system (Naseri et al., 2018).

At present, the detection methods for transformer faults are

mainly divided into offline detection methods and online

monitoring methods. Off-line detection commonly used oil

chromatography (Gao and He, 2010; Alshehawy, et al., 2021;

Emara et al., 2021; Wu et al., 2021), frequency response method

(Shamlou et al., 2021), the technology is relatively mature, but the

maintenance is limited by the operation cycle cannot be real-time

monitoring and timely detection of faults. The method of real-

time online monitoring is the main research direction at present.

Transformer winding deformation fault can be diagnosed online

by using leakage inductance parameters of transformer winding

(Deng et al., 2014). The inter-turn short-circuit fault of

transformer can be identified by constructing the fitness

function of resistance and leakage inductance parameters

(Wang and Zeng, 2021). An article paper proposes an online

fault detection method for transformers based on an IoT

platform (Elsis et al., 2022). All of the above studies have

achieved some results. However, one parameter can only

detect a single fault and has the disadvantages of low

parameter calculation accuracy and unclear fault relationship

(Chen et al., 2019). Therefore, it is necessary to find a leakage

magnetic field characteristic which can not only reflect the

internal winding deformation of the transformer but also

identifies the inter-turn short circuit and reflect more quickly

as the early fault monitoring of the transformer. Using leakage

magnetic field to monitor early faults of the transformer is a

feasible online monitoring scheme.

The leakage magnetic field data of the transformer can directly

reflect the operation state of the transformer (Wang andHan, 2021).

When the transformer winding is deformed, the leakage magnetic

field around the winding is asymmetrically distributed in space.

When inter-turn short circuit occurs in the transformer, the iron

coremay be partially saturated, which increases the leakagemagnetic

field around thewinding (Zhang, 2019). Thewinding deformation of

the transformer can be monitored based on the asymmetry of the

distribution of the leakage magnetic field (Zhou and Wang, 2017;

Pan et al., 2020; Zhang et al., 2021). At the same time, themutation of

the leakage magnetic field can be used to diagnose the inter-turn

short circuit faults (Cabanas et al., 2007). However, when the leakage

magnetic field data are used to segment the fault types of

transformers, there are problems such as small differences

between different fault characteristics and difficult to distinguish

manually.

In recent years, with the development of artificial intelligence

technology, data-driven transformer fault classification methods

have been widely employed because they can effectively identify

small data differences. Machine learning can effectively classify

transformer faults and identify early faults in transformers

(Haghjoo et al., 2017; Li et al., 2022). Recent studies have shown

that the distribution of the magnetic field leakage changes when the

transformer has an early fault. Onlinemonitoring of the early fault of

the transformer can be realized by using the magnetic field leakage

data and artificial intelligence methods. However, there are several

problems worthy to solve.

(1) When using magnetic field leakage data to diagnose

transformer faults, the change in transformer load has a

greater impact on fault classification, and the fault

classification accuracy is low.

(2) Is difficult to obtain actual transformer fault data in field

applications, and there is a lack of labeled training data.

Based on the deficiencies in the existing literature, this study

proposes the following innovations:

(1) The Faraday magneto-optical effect was used to measure the

leakage magnetic field of the transformer, and current

information was used to normalize the leakage magnetic

field waveform to eliminate the influence of load changes on

fault classification. The leakage magnetic field waveform was

used to draw Lissajous figures and extract the characteristic

quantities for the early fault classification of transformer

windings, which enhances the classification accuracy.

(2) Through the improved DSAN, the transfer learning can reduce

the difference between the actual transformer and the simulation

model data, so as to realize the fault diagnosis of the actual

transformer using the neural network trained by the simulation

data, and solve the problem of insufficient training data.

In this study, a fault diagnosis test was performed on the

measured data of an actual transformer. The results reveal that

the proposed method can effectively transfer the transformer

fault classification model and has high classification accuracy.

2 Transformer fault classification
method based on deep subdomain
adaptive network

For a new transformer we cannot obtain data on early

winding faults, but we can use simulation software to simulate

different fault types and obtain a large amount of fault data, but

there are deviations between the simulation data and the actual

data before. We first use the simulation data to train a CNN fault

classification model, and then use the DSAN transfer learning

method to achieve early fault diagnosis of the actual transformer.

2.1 Convolutional neural network
classification model

The convolutional perceptual features of CNN can fully

extract various features of the input image and have strong
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transferability. In this study, the classic LeNet-5 in CNNwas used

for the feature extraction of images. The parameters for each

layer of the designed CNN are presented in Supplementary

Appendix A1. The convolution layer in a CNN is composed

of several convolution kernels. Different convolution kernels can

extract different image features. Convolution operations can

extract low-level to complex features from the input image

data. The mathematical expression of the convolution layer is

expressed in Eq. 1 (Lecun et al., 1998):

gl(γ) � ACT⎡⎢⎢⎣∑G
i�1
∑H
j�1
W l

i,j*γ
l
i,j + El

i,j
⎤⎥⎥⎦ (1)

In the formula, l indicates the number of layers, ACT indicates

the activation function, G,H denotes the size of the current layer

node matrix, γ indicates the number of nodes in the node matrix,

W l
i,j corresponds to the weight matrix of the convolution kernel,

γli,j indicates the input value of the convolution layer, and El
i,j

denotes the bias of the current node.

Using a nonlinear Rectified Linear Activation Function

(ReLU) activation function can solve the problem of low

expression ability of linear models (Wang et al., 2019). Using

the maximum pooling layer to scale and map the convolution

image can simplify the parameters and reduce the data

dimensions. The mathematical expression is as follows Eq. 2

(Wang et al., 2019):

gl+1(γ) � MP{gl(γ)} (2)

MP indicates the maximum pooling function, gl(γ) represents
convolution computes the eigenvalues of the output. After the

convolution-pooling network, the transformer fault classification

stage is composed of a full connection layer, and the last fully

connected layer is used as the classifier. The transformer winding

is divided into different states using one-hot coding form to

calculate the classification probability of one sample for each

state and take the state with the maximum probability as the

classification result. Cross-entropy loss is used as the loss

function of the classifier, as expressed in the following Eq. 3

(Jang et al., 2017):

J(θ(xi), yi) � −∑C
c�1
{yi |� c}log θ(xi) (3)

In the formula, J(·, ·) denotes the cross-entropy loss function, C �
{1, 2,/, c} indicates the type of classification, and θ(xi) represents
the probability that the network attaches the current type label yi to
the sample xi. The empirical error of the CNN classificationmodel is

given by the Eq. 4 (Jang et al., 2017):

min
θ

1
n
∑n
i�1
J(θ(xi), yi) (4)

In the formula, n represents the total number of samples. In

the form represents a collection of parameters for each layer

of CNN.

2.2 Transfer learning

Based on the theory of transfer learning (Ghifary et al.,

2014), this study applies the knowledge learned in one field to

another similar field. More specifically, a machine learning

algorithm is utilized to transfer the transformer fault

classification model trained by the simulation model from

the fault diagnosis of the simulation transformer to the fault

diagnosis of the actual transformer. In field applications,

actual transformer fault data are often difficult to obtain

and the fault process causes irreversible damage to the

transformer. Actual transformers take the initiative to

produce fault data at a high cost. For an actual

transformer that needs to be diagnosed, there is almost no

available labeled data. Although a large amount of sample

data can be generated using the transformer simulation

model, there are still some differences between the

simulation data and actual data. The classification model

trained using simulation data cannot be directly applied to

the fault diagnosis of an actual transformer.

Owing to the lack of actual transformer data with labels, this

study adopted the method of model transfer. We define the

dataset generated by the transformer simulation model as the

source domain data, which is a labeled system

DS � {(xS1, yS1),/, (xSs , ySs )}, the actual transformer data set as

target domain data, and the target domain data as unlabeled

system DT � {(xT1 ),/, (xTt )}. The simulation data and the actual

data are mapped from the original feature space to the new

feature space. In the new feature space, the data distribution of

the simulated data and the actual data are similar, so that the

existing labeled data samples of the simulated data can be better

used in the new space for classification testing of the actual

transformer data. We place the description of transfer learning

schematic in Supplementary Appendix B1. The probability

distributions p and q are obtained by sampling the

transformer simulation data DS and the actual transformer

data DT. The goal of using transfer learning in this study is to

design a neural network to eliminate the difference between

simulated transformer data and real data by learning the

transferable characteristics of distribution p and q to

minimize the target risk.

2.3 Deep subdomain adaptive network
based onmulti-core local maximummean
difference

To minimize the distance between the source domain data

DS and target domain data DT, and align the edge distribution

of the simulation and actual transformer data, a multiple

kernel variant of the maximum mean discrepancy (MK-

MMD) is used to measure the distance between the source

domain data and the target domain data (Long and Wang,
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2015). MK-MMD is an extension of MMD and is a non-

parametric method used to measure the distribution

differences between datasets in different domains. MMD

uses a single kernel for transformation, and it is difficult to

determine an optimal kernel for different datasets. The

optimal kernel of the MK-MMD is obtained by a linear

combination of several kernels, which can be adapted to

different datasets. MK-MMD is defined to map the source

domain data distributed and the target domain data

distributed as to the reproducing kernel Hilbert space

(RKHS) and calculate the mean distance as follows Eq. 5

(Ghifary et al., 2014):

M2
k(p, q) ≜ ����ExS ~ p[ϕ(xS)] − ExT ~ q[ϕ(xT)]����2Z (5)

In the formula, ‖ · ‖2- represents the two norms of RKHS, ExS~p[·],
and ExT~q[·] represents the mathematical expectation of

distribution p and q, ϕ(·): x → - denotes the infinite order

nonlinear feature map of vector x in -.

Assuming that a characteristic kernel in RKHS is k, and the

mean value of distribution p in kernel space - is an element

μk(p), all the key statistical features in distribution p are coded

into μk(p), so that all the mapping functions satisfying f ∈ -

satisfy the expectation Ex~pf(x) � 〈f(x), μk(p)〉-, so we can

learn through μk(p) rather than distribution p, so as to eliminate

the incalculable density estimation in distribution p. The

empirical estimation of the MK-MMD is given by the

following Eq. 6 (Long and Wang, 2015):

M2
K(DS,DT) ≜
1

n2s
∑ns
i�1
∑ns
j�1
k(xSi , xSj) + 1

n2t
∑nt
i�1
∑nt
j�1
k(xTi , xTj )

− 2
nsnt

∑ns
i�1
∑nt
j�1
k(xSi , xTj )

(6)

In the above formula, ns, nt denote the sample size of DS,DT.

k(x, x′) � 〈ϕ(x), ϕ(x′)〉 is considered as the correlation between

vectors x and x′, and the kernel function k(x, x′) is a convex

combination of k Gaussian kernels. The composition of kernel is

as follows Eq. 7 (Long and Wang, 2015):

⎧⎨⎩k � ∑K
i�1
βiki: ∑K

i�1
βi � 1, βiP0,∀U

⎫⎬⎭ (7)

Constraints are imposed on coefficient β to ensure that each

core k combination has unique characteristics. K denotes the

total number of the kernel. Using kernel k with different

bandwidths to obtain the mean value of the distribution at

different scales can give distribution p and q an optimal kernel.

The regularization based on MK-MMD can effectively align

the probability distribution of the sample; however, DSAN

considers the fine-grained information of the label of the

sample and defines the label weight wi,c as shown in Eq. 8

(Zhu et al., 2021):

wi,c � yi,c∑
yj.c∈{DS,DT}

yj,c
(8)

yi,c denotes the probability that sample xi belongs to category

c, and yj,c denote the category of the current sample label.

The source domain data uses the actual annotation to

calculate the wS
i,c, the target domain samples data uses the

CNN prediction probability calculate wT
j,c. The regularization

formula (8) of MK-LMMD use the activation vectors {zSi }nsi�1
and {zTj }ntj�1 of the full connection layer as features to calculate

the distance, as follows Eq. 9 (Zhu et al., 2021):

M2
KL(DS,DT) ≜

1
C
∑C
c�1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑ns
i�1
∑ns
j�1
wS

i,cw
S
j,ck(zSi , zSj)+

∑nt
i�1
∑nt
j�1
wT

i,cw
T
j,ck(zTi , zTj )

−2∑nt
i�1
∑nt
j�1
wS

i,cw
T
j,ck(zSi , zTj )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

In the expression zSi , z
T
j represent the activation vectors of the

source domain and target domain samples.

Convolutional layers in a CNN are transferable; therefore,

there is no need to add MK-LMMD regularizers to these

layers. When migrating, we freeze the convolution and

pooling layers to maintain the effectiveness of collaborative

adaptation. In a CNN, the deep features transition from

general to specific features in the last layer of the network.

The transferability of the neural network decreases with an

increase in the difference between the source and target

domains, and the transferability of data between different

domains decreases through the full connection layer.

Therefore, we only compute the distance difference

between the source and target domains in the full

connection layer, and the transfer learning loss function as

follows Eq. 10:

min
θ

1
n
∑n
i�1
J(θ(xSi ), yS

i ) + λ∑l2
l�l1

M2
KL(Dl

s, D
l
t) (10)

λ symbolizes a penalty factor, l1 and l2 denote the number of

layers based on MK-LMMD regularization, M2
kL(Dl

s, D
l
t)

represents the local maximum mean difference value of the

current layer.

2.4 Improvement of deep subdomain
adaptive network

Considering the different correlations between the

simulation data and the actual measurement data, to

further improve the generalization ability of the DSAN, it

is proposed to add the self-attention mechanism to the
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traditional DSAN (Bo et al., 2021). Based on the regional

characteristics, the full connection layer and sigmoid are used

to estimate the importance of the sample and provide the

weight value. The input sample is divided into several features,

and the full connection layer data obtained by the convolution

of each sample is input into a sigmoid function to obtain

different weights. The correlation between the simulation data

and actual measurement data is too large to obtain higher

weights, and vice versa. This allows the neural network to

automatically focus on samples with significant weights. The

sigmoid function is shown in the following Eq. 11 (Bo et al.,

2021):

τ i � SIG(xSi , cov(xSi )) (11)

cov(xsi ) represents the parameter feature of the full connection

layer after the convolution layer. τi corresponds to the

importance weight parameter of i − th, SIG represents the

sigmoid function. The improved DSAN loss function is given

by Eq. 12:

min
θ

1
n
∑n
i�1
J(θ(xSi ), τiySi ) + λ∑l2

l�l1
M2

KL(Dl
s, D

l
t) (12)

The DSAN model, based on the self-attention

mechanism, is presented in Figure 1. From the perspective

of the construction process of the transfer model, although

feature extraction is not necessarily able to completely

eliminate the difference between the actual transformer

simulation model and the actual transformer data

distribution, according to the statistical principle, MK-

LMMD regularization can reduce this difference as much

as possible and can obtain a better classification effect in

theory. Simultaneously, a DSAN with a self-attention

mechanism can weight the sample data, which can further

improve the accuracy of classification.

3 Transformer fault diagnosis based
on magnetic field leakage
characteristic

3.1 Load normalization of magnetic flux
leakage

In this study, leakage magnetic field information is used to

diagnose transformer faults. Because the load change of the

transformer affects the current of the secondary winding and

subsequently affects the amplitude and phase angle of the leakage

magnetic field waveform, it will adversely affect the accuracy of

fault classification. Previous papers have selected several different

load conditions to analysis of leakage fields for different load

conditions. In this paper, we propose a method based on real-

time load normalization of the current on the first and second

sides of the transformer.

To eliminate the influence of load changes on fault diagnosis,

in this study, the amplitude and phase angle of the leakage

magnetic field waveform are normalized using the currents at

the primary and secondary windings of the transformer. The

magnetic line of the leakage flux of the primary and secondary

windings is closed along the nonferromagnetic material and is

FIGURE 1
DSAN model based on self-attentive mechanism.
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linear with the primary and secondary side currents (Gu, 2010).

The resistive inductive load is the common load of a transformer.

The change in load simultaneously affects the waveform of the

leakage magnetic field amplitude and phase angle. The linear

function between the leakage magnetic field and the response of

the transformer primary and secondary side currents is as Eq. 13

(Gu, 2010):

_BL � _p _I1 + _q _I2 (13)
_BL Indicates leakage magnetic field. _p, _q is constant coefficient,
_I1, _I2 is the primary and secondary side current. When the

transformer operates in any two different load states, the Eq.

14 shows:

_B
*

a � _p _Ia1
* + _q _Ia2

*

_B
*

b � _p _Ib1
* + _q _Ib2

*
(14)

_B
*
a, _B

*
b indicates the leakage magnetic field under two different

loads. _Ia1*, _Ia2*, _Ib1*, _Ib2* is the primary and secondary side current

under two different loads. When the transformer operates

under the rated load, as shown in the Eq. 15:

_B
*

f � _p _If1
* + _q _If2

* (15)
_B
*
f Indicates leakage magnetic field under the rated load. _If1* , _If2*

is the primary and secondary side current under the rated load.

Eq. 16 can be obtained from Eq. 14, 15:

_B
*

f � [ _If1
* _If2

* ][ _Ia1* _Ia2*

_Ib1* _Ib2*
]−1[ _B

*

a

_B
*

b

] (16)

Eq. 16 shows that under any two load conditions, the leakage

magnetic field intensity of any measuring point can be

normalized to the rated load condition, which avoids the

interference of load fluctuation on the fault classification.

3.2 Extraction of Lissajous figure feature
quantity of magnetic field leakage

The transformer used in this experiment was a toroidal core

transformer, which is widely used in electronic equipment with

high technical requirements, and it primarily serves as a power

transformer. From the perspective of straightening the iron core,

the radial magnetic field leakage is equivalent to the axial

direction of the core transformer, and the tangential direction

is equivalent to the radial direction of the core transformer. This

is called the radial direction and the tangential direction is called

the axial direction. In this study, the primary and secondary-side

windings of the A-phase Y/Y connection of the three-phase

transformer are used as an example for testing.

When an early fault occurs in the transformer, it can be found

by analyzing the waveform of the leakage magnetic field that the

change in the leakage magnetic field at the end and central

positions of the transformer is the most evident, and there are

distinct differences in different fault types. To distinguish the

different fault types of the winding, it is proposed set a measuring

point at the two ends and central positions of the winding to

measure the axial and radial leakage magnetic fields. The

measurement point position of the transformer leakage

magnetic field is illustrated in Figure 2.

Previous studies have only used the amplitude and phase

angle of the leakage field at individual measurement points, but

for transformer faults it is the internal leakage field balance that

changes. The relationship of the leakage field between the

measurement points is also important information. We

propose a method that uses the Lissajous image of the leakage

field signal to better integrate the information between these

measurement points. The transformer leakage magnetic field

waveform is a harmonic signal and the Lissajous figure is

widely used in harmonic signal processing (Zhao et al., 2019).

When the transformer fails, the symmetry of the magnetic field

leakage at both ends of the winding changes. The Lissajous figure

drawn by the leakage magnetic field waveform at measuring

points 1, 3 and 4, 6 can reflect the change in the symmetry of the

winding at the time. The leakage magnetic field in the middle of

the fault winding changes; however, that of the non-fault winding

remains unchanged. The Lissajous figure drawn by the leakage

magnetic field waveform at 2, 5 measuring points can reflect this

mutation. To make the fault characteristics more intuitive, this

work deduces the length, swing angle, area, least square radius,

and roundness of the long and short axes of the Lissajous figure as

characteristic parameters that reflect the change in the leakage

magnetic field amplitude and phase angle. Considering the

leakage magnetic field waveform of 1, 3 measuring points as

an example, the characteristic quantity of the leakage magnetic

field is calculated. Assuming that the leakage magnetic field

waveform of measuring points 1, 3 is as shown in Eq. 17:

FIGURE 2
Schematic diagram of transformer measurement points.
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{B1 � M cos(ωt + ψ1)
B3 � N cos(ωt + ψ3) (17)

M,N indicate the amplitude of the magnetic field leakage, and ξ �
ψ1 − ψ3 is defined as the phase angle difference between points 1,

3 measuring points. Solve the equation, we obtain the length of the

long- and short-axis a、b of the Lissajous figure, as follows Eq. 18:

a2orb2 �
(M2 +N2) ∓

                       (M2 +N2)2 − 4M2N2sin 2 ξ
√

2

(18)

According to the elliptic area formula, the area of the

Lissajous figure is calculated using S � πab.

The coordinates are rotated to calculate the swing angle of the

Lissajous figure as follows Eq. 19:

θQ � 1
2
arctan

2MN cos ξ
N2 −M2

, N ≠ M (19)

It is evident from the above formulas that the long-short axis,

area, and swing angle of the leakage magnetic field Lissajous

figure are functions of the amplitude and phase difference of

measuring points 1, 3, and the fault information of the leakage

magnetic field represented by it is more abundant, which is

conducive to improving the accuracy of classification.

Assuming that u、v is divided into m points of

ui、vi(i � 1, 2, . . . , m) following sampling, then the center

coordinate of the least square circle is (u0 � 2
m∑m

i
ui;

v0 � 2
m∑m

i
vi). The radius of the least square circle of Lissajous

figure is r0 � 1
m∑m

i�1
        
(u2i + v2i )

√
, and the distance between the first

point and the least square center is as follows Eq. 20:

ri �
                  
(ui − u0)2 + (vi − v0)2

√
(20)

The circularity of the Lissajous graph is e � max(ri) −min(ri).
The change in the least square radius of the Lissajous figure

reflects the change in the amplitude of the leakage magnetic field

waveform, and the change in the roundness reflects the change in

the phase difference of the leakage magnetic field waveform. It

can also be used as a characteristic quantity of the magnetic field

leakage for transformer fault diagnosis.

3.3 Transformer early fault diagnosis
process

First, the CNN classification model was constructed by

offline learning the fault leakage magnetic field characteristics

of the simulation transformer model. Second, the actual

transformer fault is diagnosed by online measurement and

extraction of the magnetic field leakage characteristics of the

actual transformer. The early fault diagnosis process of the

transformer is as follows.

3.3.1 Simulation model construction and actual
transformer experimental platform construction
1) Measured actual transformer structure data and electrical

parameters on the nameplate to establish a 1: 1 actual

transformer simulation model.

FIGURE 3
System operation flowchart.

FIGURE 4
Transformer leakage magnetic field measurement.
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2) Develop the actual transformer fault simulation and magnetic

field leakage measurement platform.

3.3.2 Data generation
1) An actual transformer simulation model was used to simulate

the possible faults in the transformer under different load

conditions. The current on the primary and secondary

windings of the transformer and the waveform data of the

leakage magnetic field at each measuring point were recorded.

The measured current data are normalized by the formula in

Section 3.1, and the characteristic quantity of the magnetic

field leakage is calculated. The gray image formed by the

characteristic quantity of the magnetic field leakage is

considered as the sample data xs, and the label ys is added
according to the fault type to generate the training sampleDS.

Part of the data was randomly divided into training dataset

Dtrain, and another part of the data was randomly divided into

validation dataset Dvalid.

2) Normal operation, inter-turn short circuit, and winding

deformation experiments of the actual transformer

experimental platform were performed, and the data were

recorded. The measured data from the actual transformer are

used to constitute the test sample. DT.

3.3.3 Network structure and acceleration
algorithm

Because the input image is small, to fully extract its feature

information, the kernel functions of the convolution and

pooling layers in the CNN are both large. The momentum-

updating stochastic gradient descent (SGD) acceleration

algorithm was used to improve the network training speed.

Offline model training was terminated when the error was less

than the set value. The online detection model inherits the

convolution layer parameters completed by offline training,

and its full connection layer parameters are randomly

initialized.

3.3.4 Parameter update and stop
1) The loss function of the offline CNN model is calculated

according to the actual label data and label output

predicted by the classifier and stops after the error

reaches the set value.

2) The online model uses direct transfer learning. After

calculating the transfer loss and classification loss by MK-

LMMD regularization, the full connection layer parameters in

the CNN model were retrained until the set number of

training was reached.

FIGURE 5
Transformer leakage magnetic field measurement device and installation schematic. (A) Schematic diagram of fiber optic leakage magnetic
field sensor. (B) Optical signal transmitter and receiver Instrument. (C) Leakage magnetic field measurement sensor installation. (D) Field
measurement device for leakage magnetic field.
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FIGURE 6
Measured waveform of transformer leakagemagnetic field. (A)Measured waveform of normal Operation leakagemagnetic field. (B) Simulation
waveform of normal operation leakage magnetic field. (C)Measurement Waveform of Interturn Short Circuit leakage magnetic field. (D) Simulation
waveform of interturn short circuit leakagemagnetic field. (E) TheMeasured waveform of winding deformation leakagemagnetic field. (F) Simulation
waveform of winding deformation leakage magnetic field.

Frontiers in Energy Research frontiersin.org09

Deng et al. 10.3389/fenrg.2022.1058378

13

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1058378


3) Online model parameter updating refers to online model

updating by re-labelling the monitored fault data following

manual verification after each running period of online detection.

The overall flowchart of the transformer early fault diagnosis

model based on CNN transfer learning is illustrated in Figure 3.

4 Example analysis

4.1 The establishment of simulation model
and actual transformer experimental
platform

4.1.1 Transformer simulation model
The ANSYS MAXWELL software used in this study

simulated an actual transformer. In the actual

measurement, the sensor only measure the axial and radial

leakage magnetic field waveforms in the transformer section.

To reduce the generation time of the simulation data, only the

two-dimensional (2D) section model of the ring core

transformer is established. The solution area of the model

was set according to the actual box size, and the primary and

secondary windings were connected using a star connection.

The 2D model of the transformer was set up, as shown in

Supplementary Appendix B2, and the grid value was set

according to the empirical value.

4.1.2 The construction of the actual transformer
early fault experimental platform

A wiring diagram of the actual experimental platform system is

shown in the Figure 4. Infinite power E � 380V, with no internal

resistance, passes through the high-voltage bus via the boost

transformer. The test transformer was a three-phase, three-

winding transformer. Primary and secondary windings with a

Y-shaped connection were used for the experiment. Secondary

windings with angular connections were unloaded. The structural

and electrical parameters of the transformer are listed in

Supplementary Appendix A2. The rated load parameter is

ZL � 159.98 + j1.35Ω. The load adjustment ranges were

ZLmin � 107.89 + j0.858Ω, ZLmax � 212.08 + j2.02.Ω.

4.1.3 Transformer leakage magnetic field
measurement platform

Wedeveloped a fiber optic leakagemagnetic field sensor based on

a magneto-optical crystal to collect the actual transformer magnetic

field leakage waveform according to the Faraday magneto-optical

effect. A sensor probe was installed on the transformer winding. The

laser emitter emitted a light signal through the optical signal polarizer

and Faraday rotator, and the other end detected the deflection angle of

the optical signal through the optical signal receiver and converted it to

leakage magnetic field intensity. A leakage magnetic field

measurement platform was built on an actual transformer

experimental platform, as displayed in Figure 5.

4.2 Generation and processing of leakage
magnetic field experimental data

4.2.1 Training sample generation
During the normal operation of the transformer, several

groups of normal operation state data of the transformer were

generated according to the different load values, and several

groups of data were generated by changing the number of turns,

the position, and the load of the primary and secondary side

winding short circuits, respectively. The minimum number of

short-circuit turns is two, and the maximum is 40 turns. In the

simulation of the winding axial deformation fault, the axial

deformation degree of the upper or double ends of the

primary and secondary side windings were changed, the axial

FIGURE 7
Lissajous figure before and after load normalization. (A) Before normalization. (B) After normalization.
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compression ratio ranged from 1% to 40%, and several groups of

data were generated by changing the load. In the fault simulation

of the radial deformation of the winding, the proportion of the

radial deformation of the primary- and secondary-side windings

changes from 3% to 25%. Different training data were generated

according to different radial deformation ratios, the position of

the radial deformation line cake, and the load. Each state type of

the simulation model generated 125 groups of sample data and a

total of 1,125 groups of training sample data.

4.2.2 Test sample generation
The test samples were generated by the actual transformer,

and several groups of data for normal operation under

different loads were generated by the actual transformer. In

the inter-turn short-circuit test of the primary and secondary

windings, the minimum is 6 turns and the maximum is

24 turns, and several groups of data were obtained under

different loads. Winding deformation test on transformer to

change the degree of axial and radial deformation of the

primary and secondary windings to form training samples.

Each state type generated 20 groups of sample data with

180 groups of test-data waveforms.

4.2.3 Comparison between simulation model
and actual transformer normal operation and
inter-turn short circuit

A sampling frequency of 1 kHz was used for all samples in

this study. Except for the actual measured waveforms, the data

were filtered. A comparison of the measured and simulated

waveforms of the transformer leakage field is shown in Figure 6.

It can be observed from Figure 6, the amplitude and phase

angle of the leakage field at our selected measurement points

change to different degrees when the transformer is in normal

condition and a fault occurs. We use the Lissajous curve

proposed in Section 3.2 to extract the changes in the

characteristic quantities at the time of the fault as input to the

CNN and use artificial intelligence techniques to analyze the

differences for transformer winding fault classification.

Meanwhile, there is still a gap between the simulation

waveform and the actual waveform difference. DSAN realizes

domain adaptation by aligning its distribution difference and

FIGURE 8
Effect of different number of simulation sample data and load
normalized on detection accuracy.

TABLE 1 Effect of different characteristic quantity on detection
accuracy.

Number of features Rm/% F1/% Ac/%

0 92.19 91.79 92.22

1 93.24 88.12 90.00

2 91.59 91.15 91.11

3 92.60 92.59 92.78

4 94.37 94.30 94.44

5 96.84 96.59 96.67

6 98.94 98.87 98.89

TABLE 2 Effect of different regularizer layers on accuracy.

Add MK-MMD regularizer layers Rm/% F1/% Ac/%

CNN only 89.78 84.93 85.56

A layer of MK-LMMD regularizer 94.92 94.91 95.00

Two layer MK-LMMD regularizer 96.28 96.03 96.11

Three layer MK-LMMD regularizer 98.94 98.87 98.89

FIGURE 9
Transfer learning training correct rate curve.
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achieves the ability to diagnose actual transformer faults using

simulation data.

4.2.4 Lissajous figure comparison before and
after load normalization

The measured radial leakage magnetic fields at 1, 3 are

plotted as Lissajous figures under the rated load, respectively,

as shown in Figure 7A. It is evident that the Lissajous figures

change with the change in load, which adversely affects the

classification accuracy. Figure 7B illustrates the Lissajous

figures of measuring points 1, 3 after load normalization. It is

evident that after load normalization, the change of Lissajous

figure caused by the change of transformer load is eliminated,

and the characteristic quantity of leakage magnetic field is not

affected by the load.

4.2.5 Lissajous figure feature extraction and gray
image generation

The characteristic quantity of the Lissajous figure formed by

the leakage magnetic field was extracted, and the data were

transformed into gray image data of 6 × 6. The gray image

formed by the characteristic quantity of the transformer winding

is shown in Supplementary Appendix B3, B4.

4.3 Example analysis

The transfer neural network prepared in this study is based

on Python 3.6 version and Pytorch version 1.2.0. CPU training

was then performed. The CPU of the computer was an AMD

Ryzen 7 4800 H, and the main frequency was 2.90 GHz. A batch

FIGURE 10
Comparison of T-SNE scatter plots under different training models. (A) CNN T-SNE dimension. (B) A layer of MK-LMMD regularizer T-SNE
dimension. (C) Tow layer of MK-LMMD regularizer T-SNE dimension. (D) Three layer of MK-LMMD regularizer T-SNE dimension.
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of 10 sets of data, initial learning rate 0.4, training 100 Epohs,

MK-LMMD regularizer penalty factor initial value λ � 1. The

transformer states in this paper are divided into normal

operation, winding deformation and inter-turn short circuit.

The inter-turn short circuit is subdivided into primary

winding inter-turn short circuit and secondary winding inter-

turn short circuit. The winding deformation is subdivided into

nine states, namely, the axial deformation at the upper end of

primary and secondary side winding, the axial deformation at the

two ends of primary and secondary side winding, and the radial

deformation of primary and secondary side winding. The

operation state of the transformer is coded as shown in

Supplementary Appendix A3.

4.3.1 Load normalization and simulation sample
number experiments

To test the influence of load balances and the number of

simulation samples participating in training on transformer fault

diagnosis, we also generated gray images for training and testing

the data without load normalization. Simultaneously, to detect

the influence of the number of simulation samples on the

detection effect, different numbers of simulation samples were

selected for offline training. To ensure that the data of the offline

training test set were unchanged, a certain number of simulation

samples were randomly selected as the training set, and samples

without and after load normalization were tested. The accuracy

results are presented in Figure 8.

It is evident from the above diagram that load

normalization has a significant impact on overall accuracy.

Load normalization can significantly improve the transformer

detection accuracy. Compared with the unnormalized load

data, the highest accuracy increased by 28.33%.

Simultaneously, the number of training sets also affects the

detection accuracy. Increasing the number of simulation

samples did not always improve the accuracy of the test.

When the number of simulation samples is too large,

the model focuses on the detection of simulation samples,

which reduces the accuracy of the actual transformer

FIGURE 11
DSAN error curve of self-attentive mechanism.

TABLE 3 Identification accuracy of different transfer methods in case
of transformer faults.

Transfer method Rm/% F1/% Ac/%

DAN 91.34 91.06 91.11

Deep-CORAL 95.62 95.55 95.56

GAN 96.21 96.12 96.11

DSAN 96.84 96.66 96.67

Model in this paper 98.94 98.87 98.89
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FIGURE 12
Comparison of diagnostic results of four different transfer models. (A) DAN transfer learning model diagnosis result graph. (B) CORAL transfer
learning model diagnosis result graph. (C) GAN transfer learning model diagnosis result graph. (D) DSAN transfer learning model diagnosis result
graph. (E) Diagram of the diagnostic results of the model in this paper.
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detection. When the number of simulation samples was 80 in

each state, the accuracy was the highest, and the accuracy did

not increase again when the number of training samples

increased.

4.3.2 Experiment on the quantity of
characteristic quantities of magnetic field
leakages

To test the influence of the leakage magnetic field

characteristics on the accuracy of the transformer fault

diagnosis, different quantities of characteristics were selected

for training and testing, and the accuracy of classification was

compared. For the experimental group without feature

parameters, we directly used the amplitude and phase angle

data of the six measuring points to load balance and convert

them into gray images for testing. Recall rate Rm, stability

comprehensive index F1, and accuracy Ac were used as

evaluation indexes. Table 1 presents the results.

It can be observed from Table 1 that the method of using the

characteristic quantity has a positive effect on enhancing the

accuracy of transformer diagnosis. Compared with the method of

using only the amplitude and phase angle of the leakage magnetic

field to diagnose faults, the accuracy of this method was

improved by 6.67%.

4.3.3 MK-LMMD regularizer layer experiment
The data of the 80 simulation groups for each fault state

were used as training samples, and the measured waveform

was used as the test sample. To test the effect of adding

different numbers of MK-LMMD regularizers on the test

results, the training results of adding MK-LMMD

regularizers in the last layer, last two layers, and three

layers of the full connection layer were tested and

compared with the results of the CNN classification

model without transfer learning. The results are as follows.

Table 2 presents that the accuracy curve of the classification

model with different numbers of MK-LMMD regularizer

layers increases with the number of iterations, as shown in

Figure 9.

Table 2 indicates that the difference between the simulation

data and the actual transformer data cannot be overcome when

the non-transfer CNN fault classification model is directly used

for actual transformer detection, resulting in unsatisfactory

accuracy of the actual transformer fault classification. As

shown in Figure 9, the classification model with three-layer

MK-LMMD regularization has the highest accuracy and

fastest convergence rate, which is 13.33% higher than that

with only CNN.

The transformer fault features extracted from the model with

MK-LMMD regularizers of different layers were reduced to 2D

visualization by T-SNE, as shown in Figure 10.

In high-dimensional spatial data, the points with closer

distances remain close when they are projected to 2D by

T-SNE dimension reduction. The farther the distance of

each cluster, the greater the difference and the better the

classification effect. The results in Figure 10 reveal that the

transfer learning model using three-layer MK-LMMD

regularization has a better discrimination for different fault

types of the actual transformer, indicating that increasing the

adaptability of the high-order feature layer can effectively

improve the transfer effect.

4.3.4 Self-attention mechanism deep
subdomain adaptive network experiment

To verify the effect of the DSAN network with the self-

attention mechanism, the data from 80 simulation groups for

each fault state were used as training samples, and the

measured waveform was used as the test sample. The error

iteration curve obtained using training is illustrated in

Figure 11.

Figure 11 shows that in the training process without

giving training samples self-attention weights, some

samples deviate too much from the test sample, resulting

in large transfer error of MK-LMMD regularization,

resulting in oscillation of error curve. The self-attention

DSAN proposed in this paper can speed up the network

training speed, reduce the error level, has good stability and

reduce the training loss.

4.4 Comparative experiments with other
transfer networks

To compare the proposed method with other transfer

neural networks, the existing DAN transfer learning (Long

and Wang, 2015), CORAL transfer learning (Sun and Saenko,

2016), GAN transfer learning (Hu et al., 2021), and traditional

DSAN models are used for comparison (Zhu et al., 2021). In

the experiments, the data of 80 simulation groups for each

fault state were used as the simulation samples. The test results

for the 20 groups of experimental samples in each group are

listed in Table 3. The classification of the test samples is

depicted in Figure 12. In Figure 12, the black solid line

represents the true value of the fault type and the red circle

represents the diagnostic value of the model for the fault.

When the red circle coincides with the black line, it indicates

that the diagnosis is correct; otherwise, the diagnosis is

incorrect.

Figure 12 illustrates that the method used in this study has

the best classification effect. In addition to the misjudgment of

the upper end winding deformation of the secondary side, the

classification effect of the fault is superior. Compared with the

other three transfer models, the MK-LMMD regularization and

self-attention mechanism used in the proposed transfer model

effectively reduced the distribution distance between the

simulated transformer data and the actual transformer data,
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and realized the transfer from the simulated transformer to the

actual transformer with high accuracy.

5 Conclusion

This paper eliminates the effect of transformer load variations

on leakage field measurements by negative normalization and

improves the utilization rate of the leakage magnetic field

information. Meanwhile, transfer learning to reduce the

difference between the simulation model and the actual

transformer data and realizes the fault classification model

trained by the simulation data to early diagnosis of actual

transformer faults. The influence of load change in transformer

leakage magnetic field detection is eliminated, and the characteristic

quantity of the leakage magnetic field is extracted to diagnose

transformer faults, which improves the utilization rate of the

leakage magnetic field information. The accuracy of the method

proposed in this paper reaches 98.89%, which is suitable for

detecting and diagnosing the internal faults of transformer

windings promptly via real-time acquisition of transformer faults

and provides a reference for reasonable periodic shutdown

maintenance of transformers. However, only one structure of

transformer transfer learning ability is studied in this paper, for

other structures of transformer simulation and transfer learning

between actual transformers and mutual transfer between the

different structure of transformers is our next research direction.

Data availability statement

The original contributions presented in

the study are included in the article/Supplementary Material,

further inquiries can be directed to the corresponding author.

Author contributions

The XD wrote the original draft. ZZ, KY, and HZ

provided the supervision, review, and editing of the draft.

All authors contributed to theatrical and approved the

submitted version.

Funding

Funded by the National Nature Fund (51777119).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fenrg.2022.

1058378/full#supplementary-material

References

Alshehawy, A. M., Mansour, D. E. A., Ghali, M., Lehtonen, M., and Darwish, M. M. F.
(2021). Photoluminescence spectroscopy measurements for effective condition
assessment of transformer insulating oil. Processes 9 (5), 732. doi:10.3390/pr9050732

Bo, Z., Xza, B., Zza, B., and Wu, Q. (2021). Deep multi-scale separable
convolutional network with triple attention mechanism: A novel multi-task
domain adaptation method for intelligent fault diagnosis. Expert Syst. Appl.
2021, 115087. doi:10.1016/j.eswa.2021.115087

Cabanas, M. F., Melero, M. G., Pedrayes, F., Rojas, C. H., Orcajo, G. A., Cano,
J. M., et al. (2007). A new online method based on leakage flux analysis for the early
detection and location of insulating failures in power transformers: Application to
remote condition monitoring. IEEE Trans. Power Deliv. 22 (3), 1591–1602. doi:10.
1109/TPWRD.2006.881620

Chen, Y.M., Liang, J., and Zhang, J.W. (2019).Method of online statusmonitoring for
windings of three-winding transformer based on improved parameter identification.
High. Volt. Eng. 45 (5), 1567–1575. doi:10.13336/j.1003-6520.hve.20190430029

Deng, X. l., Xiong, X. F., and Gao, L. (2014). On line monitoring method of
transformer winding deformation based on parameter identification CSEE. Proc.34
(28), 4950–4958. doi:10.13334/j.0258-8013.pcsee.2014.28.023

Elsis, M., Minh, Q. T., Karar, M., Diaa-Eldin, A. M., Matti, L., and Darwish, M. M.
F. (2022). Effective IoT-based deep learning platform for online fault diagnosis of

power transformers against cyberattacks and data uncertainties. Meas. (. Mahwah.
N. J). 2022, 110686. doi:10.1016/j.measurement.2021.110686

Emara, M. M., Peppas, G. D., and Gonos, I. F. (2021). Two graphical shapes based
on DGA for power transformer fault types discrimination. IEEE Trans. Dielectr.
Electr. Insul. 28 (3), 981–987. doi:10.1109/TDEI.2021.009415

Gao, J., and He, J. J. (2010). Application of quantum genetic ANNs in transformer
dissolved gas-in-oil analysis. Proc. CSEE 30 (30), 121–127. doi:10.13334/j.0258-
8013.pcsee.2010.30.020

Ghifary, M., Kleijn, W. B., and Zhang, M. (2014). “Domain adaptive neural
networks for object recognition,” in Pacific rim international conference on artificial
intelligence (Cham: Springer), 898–904. doi:10.1007/978-3-319-13560-1_76

Gu, C. L. (2010). Electrical engineering. Wuhan: Huazhong University of Science
and Technology.

Haghjoo, F., Mostafaei, M., and Mohammadi, H. (2017). A new leakage flux-
based technique for turn-to-turn fault protection and faulty region identification in
transformers. IEEE Trans. Power Deliv. 33, 671–679. doi:10.1109/TPWRD.2017.
2688419

Hang, W., and Butler, K. L. (2002). Modeling transformers with internal incipient
faults. IEEE Trans. Power Deliv. 17 (2), 500–509. doi:10.1109/61.997926

Frontiers in Energy Research frontiersin.org16

Deng et al. 10.3389/fenrg.2022.1058378

20

https://www.frontiersin.org/articles/10.3389/fenrg.2022.1058378/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2022.1058378/full#supplementary-material
https://doi.org/10.3390/pr9050732
https://doi.org/10.1016/j.eswa.2021.115087
https://doi.org/10.1109/TPWRD.2006.881620
https://doi.org/10.1109/TPWRD.2006.881620
https://doi.org/10.13336/j.1003-6520.hve.20190430029
https://doi.org/10.13334/j.0258-8013.pcsee.2014.28.023
https://doi.org/10.1016/j.measurement.2021.110686
https://doi.org/10.1109/TDEI.2021.009415
https://doi.org/10.13334/j.0258-8013.pcsee.2010.30.020
https://doi.org/10.13334/j.0258-8013.pcsee.2010.30.020
https://doi.org/10.1007/978-3-319-13560-1_76
https://doi.org/10.1109/TPWRD.2017.2688419
https://doi.org/10.1109/TPWRD.2017.2688419
https://doi.org/10.1109/61.997926
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1058378


Hu, X., Zhang, H., Ma, D., and Wang, R. (2021). A tnGAN-based leak detection
method for pipeline network considering incomplete sensor data. IEEE Trans.
Instrum. Meas. 70, 1–10. doi:10.1109/TIM.2020.3045843

Jang, E., Gu, S. S., and Poole, B. (2017). Categorical reparameterization with
gumbel-softmax. Available at: http//:ArXiv.org/abs/1611.01144. doi:10.48550/
arXiv.1611.01144

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86 (11), 2278–2324. doi:10.1109/5.726791

Li, H., Huang, Z. Y., and Tian, Y. (2022). Research on transformer fault diagnosis
method based on deep neural network. Transformer 59 (04), 35–40. doi:10.19487/j.
cnki.1001-8425.2022.04.014

Liu, N., Liang, G. D., Wang, L. F., Gao, W. S., and Tan, K. X. (2003). Construction
and analysis of fault tree for large-scalepower transformer. Electr. Power 36 (11),
33–36. doi:10.13336/j.1003-6520.hve.2003.02.002

Long, M., and Wang, J. (2015). “Learning transferable features with deep
adaptation networks,” in International conference on machine learning. PMLR
2015, 97–105. doi:10.1109/TPAMI.2018.2868685

Naseri, F., Kazemi, Z., Arefi, M. M., and Farjah, E. (2018). Fast discrimination of
transformer magnetizing current from internal faults: An extended kalman filter-
based approach. IEEE Trans. Power Deliv. 33 (1), 110–118. doi:10.1109/TPWRD.
2017.2695568

Pan, C., Shi, W. X., and Meng, T. (2020). Study on electromagnetic characteristics
of interturn short circuit of single-phase transformer. High. Volt. Eng. 46 (05),
1839–1856. doi:10.13336/j.1003-6520.hve.20200515040

Shamlou, A., Feyzi,M. R., and Behjat, V. (2021).Winding deformation classification in
a power transformer based on the time-frequency image of frequency response analysis
using Hilbert-Huang transform and evidence theory. Int. J. Electr. Power & Energy Syst.
129 (5), 106854. doi:10.1016/j.ijepes.2021.106854

Sun, B., and Saenko, K. (2016). Deep CORAL: Correlation alignment for deep
domain adaptation. Berlin, Germany: Springer International Publishing.

Wang, G., Giannakis, G. B., and Chen, J. (2019). Learning ReLU networks on
linearly separable data: Algorithm, optimality, and generalization. IEEE Trans.
Signal Process. 67 (9), 2357–2370. doi:10.1109/TSP.2019.2904921

Wang, K., and Zeng, J. L. (2021). Simulation study of leakage field of power
transformer under different operation modes based on field-path coupling.
J. Harbin Inst. Technol. 26 (04), 28–37. doi:10.15938/j.jhust.2021.04.005

Wang, X., and Han, T. (2021). Transformer fault diagnosis based on Bayesian
optimized random forest. Electr. Meas. Instrum. 58 (6), 167–173.

Wu, Z. H ., Zhou, M. B., Lin, Z. H., Chen, X. J., and Huang, Y. H. (2021).
Improved genetic algorithm and XGBoost classifier for power transformer fault
diagnosis. Front. Energy Res. 2021, 9. doi:10.3389/fenrg.2021.745744

Zhang, B. Q., Xian, R., and Yu, Y. (2021). Analysis of physical characteristics of
power transformer windings UnderInter-turn short circuit fault.High. Volt. Eng. 47
(06), 2177–2185. doi:10.13336/j.1003-6520.hve.20201178

Zhang, J. C. (2019). Analysis of transformer winding leakage field and short-circuit
electromotive force. Shenyang, China: Shenyang University of Technology.

Zhao, X., Yao, C., Zhou, Z., Li, C., Abu-Siada, A., Zhu, T., et al. (2019).
Experimental evaluation of transformer internal fault detection based on V–I
characteristics. IEEE Trans. Ind. Electron. 67, 4108–4119. doi:10.1109/TIE.2019.
2917368

Zhou, Y. C., andWang, X. (2017). The on-line monitoring method of transformer winding
deformation based on magnetic field measurement. Electr. Meas. Instrum. 54 (17), 58–63.

Zhu, Y. C., Zhuang, F. Z., Wang, J. D., Ke, G., Chen, J., Bian, J., et al. (2021). Deep
subdomain adaptation network for image classification. IEEE Trans. Neural Netw.
Learn. Syst. 32 (4), 1713–1722. doi:10.1109/TNNLS.2020.2988928

Frontiers in Energy Research frontiersin.org17

Deng et al. 10.3389/fenrg.2022.1058378

21

https://doi.org/10.1109/TIM.2020.3045843
http//:ArXiv.org/abs/1611
https://doi.org/10.48550/arXiv.1611.01144
https://doi.org/10.48550/arXiv.1611.01144
https://doi.org/10.1109/5.726791
https://doi.org/10.19487/j.cnki.1001-8425.2022.04.014
https://doi.org/10.19487/j.cnki.1001-8425.2022.04.014
https://doi.org/10.13336/j.1003-6520.hve.2003.02.002
https://doi.org/10.1109/TPAMI.2018.2868685
https://doi.org/10.1109/TPWRD.2017.2695568
https://doi.org/10.1109/TPWRD.2017.2695568
https://doi.org/10.13336/j.1003-6520.hve.20200515040
https://doi.org/10.1016/j.ijepes.2021.106854
https://doi.org/10.1109/TSP.2019.2904921
https://doi.org/10.15938/j.jhust.2021.04.005
https://doi.org/10.3389/fenrg.2021.745744
https://doi.org/10.13336/j.1003-6520.hve.20201178
https://doi.org/10.1109/TIE.2019.2917368
https://doi.org/10.1109/TIE.2019.2917368
https://doi.org/10.1109/TNNLS.2020.2988928
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1058378


Radar echo simulation of
dynamically rotating wind turbine
blades based on 3D scattering
center

Bo Tang, Huanghai Xie*, Gang Liu, Longbin Zhang and Zhiyu Shang

College of Electrical Engineering and New Energy, Three Gorges University, Yichang, China

Introduction: High-fidelity simulation of the radar echo from the wind turbine (WT)
for accurate acquisition of Doppler features, is the key issue in addressing radiation
interference from the wind farm on the nearby radar station. In view of the limitation
of the conventional scattering center-based equivalent model to reflect the complex
surface of blades, it is difficult to simulate the rotating blades’echo accurately with
the existing algorithm. Therefore, we proposed a simulation method based on a 3D
scattering center extraction to deal with it.

Methods: Therefore, we proposed a simulation method based on a 3D scattering
center extraction to deal with it. First, themethod of scattering center equivalence to
blade scattering is used in order to reduce the modelling as well as the solution of
electromagnetic scattering from the multi-space attitude of the blade, which is
different from the existing algorithm. Since the geometry affects the parameters of
the scattering center, an orthogonal matching pursuit greedy algorithm is used to
extract the parameter of the 3D scattering center model.

Results: Therefore, the temporal correspondence between the scattering center and
the blade motion characteristics is established, resulting in a reconstruction of the
scattered field data of the rotating blades. Consequently, the real-time simulation
and Doppler characteristic of blades echoes are achieved using the Short Time
Fourier Transform (STFT).

Discussion: A comparison of the results with the data obtained from the GTD
scattering center model verififies the accuracy of the proposed method.

KEYWORDS

wind turbine, wind farm, short-time Fourier transform, radar echo, three-dimensional
scattering center

1 Introduction

With the large-scale construction of wind farms in China, the interference from wind farms
on adjacent radar stations are becoming more and more serious (He et al., 2017b; Steven et al.,
2017). Engineering practice shows that with the stimulation of radar incident electromagnetic
waves, the radar echoes scattered by WT blades possess micro-Doppler characteristics, quite
different from static targets. Accordingly, the accurate acquisition of WT radar echoes to
identify the wind farm targets for radar filtering is the key problem to calculate the interference
on radar stations from wind farms.

The current methods for obtaining WT Doppler echoes can be divided into two categories,
namely the experimental measurement and the numerical simulation (Pooria et al., 2017; He
et al., 2021). Experimental measurement which is the most reliable is difficult to perform widely
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due to its high cost and rather complicated procedures (Chen, 2011;
Crespo-Ballesteros et al., 2017). In consequence, increasing efforts
have been devoted to the numerical simulation of WT Doppler echoes
(Chen et al., 2017; He et al., 2017a).

The earliest numerical method adopt the scattering point model
(Tang et al., 2019a; Tang et al., 2019b). However, as the discreteness of
scattering point spacing is neglected, the obtained echo is too ideal to
represent the real echo (Sun et al., 2016). The method of moments
(MoM) can accurately calculate the echo by means of an accurate and
intricate geometric model, but the calculation time and resources of
MoM increase dramatically with frequency, which is unacceptable in
the high-frequency band (Dunoon and Brown, 2013). With the aim of
improving calculation efficiency, high-frequency electromagnetic
algorithms (Tang et al., 2011; Yan et al., 2011) have been used to
calculate the echo, such as the physical optics method (PO) (Zheng
et al., 2020a), geometrical theory of diffraction (GTD) (Dai et al.,
2020), and others that allow for very fast calculations. However, these.
methods neglect the contribution of the edge’s diffraction field of the
WT during the calculation. So the calculation results are in a poor
accuracy, when solving such electromagnetic scattering problems of
complex shaped surface like the WT blade.

From the present point of view, scattering centers are used in radar
echo analysis of rotating targets such as missiles, which are introduced
into the electromagnetic scattering solution of WT blades. In (Zheng
et al., 2020b), the scattering center model was used to calculate the
scattered electric field of WT blades, laying the groundwork for the
solution of the echo. Then Tang et al. (Tang et al., 2019c) combined
the GTD scattering center model with the radar echo equation to
calculate the echo. Although the introduction of the scattering center
provides new ideas for calculating the echo simulation, the calculation
accuracy was still relatively low. That’s because the existing scattering
center models are based on a two-dimensional plane for equivalent
model reconstruction, so the existing equivalent models neglect the
scattering center occultation and anisotropy caused by the geometric
properties of WT blades (Gao et al., 2016). Therefore, the equivalent
model built from the current scattering center model is too rough to

represent the scattering properties from the actual shape of blades. As
a result, the simulation results are quite different from the real echo,
and the echo cannot be accurately obtained.

To address the problem that the conventional method is difficult
to obtain accurate WT radar echoes, a new simulation method using
scattering center parameters is proposed which could be considers the
influence on the variation of from the blades’ three-dimensional
geometric configuration. And then an echo simulation method
based on 3D scattering center extraction is proposed to solve the
anisotropy problem of the traditional scattering center model and
finally achieve a high-fidelity echo simulation.

2 WT radar echoes and scattering center

2.1 Radar echoes of WT

The WT is mainly composed of three parts: tower, nacelle, and
blades. The tower and nacelle are stationary parts and their echoes are
zero-frequency components that can be easily filtered out using the
high-pass filter. On the contrary, the rotating blades will generate
complex electromagnetic scattering problems.

As shown in Figure 1, this is the process of the Doppler effect
caused by WT blades, where dS is the scattering face element on the
blades and v is the radial velocity vector. At a time of t1, wave
1 reaches the surface of the blades, at the same time the radar emits
wave 2; at a time of t2, the radar receives an echo of wave 1, at which
time wave 2 arrives the surface of the blades. Due to the rotation of
the blades with the velocity of ω, there is a difference between the
time when the radar receives the wave 1 and wave 2 echoes, making
it possible to change the number of blade echoes received by the
radar per unit time, thereby changing the frequency of the blades
echoes. Therefore, the rotating blades will modulate the echo signal
(Bo et al., 2016).

The modulated echo signal is affected by the radar observation point
position, the complex heterogeneous surface of the blades, and the dynamic

FIGURE 1
Schematic diagram of passive interference of WT to radar signal.
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blade speed (Ding et al., 2017; Tang et al., 2017). So accurately obtaining the
echoes of blades is a prerequisite for filtering out WT clutter.

2.2 Existing blades echoes simulation
methods

At present, the numerical simulation algorithms of WT blades
radar echoes mainly include integral algorithm based on scattering
point model, scattering field algorithm based on precise geometry
model, and integral algorithm based on scattering center. According to
the results of echo simulation, the scattering point integration
algorithm is simple to calculate. Yet, owing to the theoretical
defects of the algorithm, the simulated echo lacks precision, and
can only be used for qualitative analysis. The scattered field
algorithm, although computationally accurate, relies on complex
electrical large size models and a large number of calculations.

The integral algorithm based on scattering center is a new
algorithm proposed in the literature (Zheng et al., 2020b) to
overcome the defects of the above 2 algorithms. The mathematical
model used in this algorithm is shown in Figure 2. The blade is rotated
on the z-axis, the rotation plane lies in the xoy plane, the radar is
located at point R, and the included angle between the radar incident
wave and the blades rotation plane is φ = 0°. Considering that the
blades of WT are electrode large size electromagnetic scatter, a
scattering center model based on GTD was used.

The method equates the entire blades’ scattering entity as a series
of scattering point sources by using the scattering field of the blades.
And these scattering point sources are represented by the set of
scattering center parameters. After the blades scattering center is
obtained, the point target radar echo equation is introduced in
literature (Zheng et al., 2020b) to simulate the blades radar echoes.
Considering that the echo equation contains the position coordinates
of the target point and the scattering intensity coefficient, only the
position coordinates and the scattering intensity factor are applied to
the echo equation.

In terms of the echo simulation process, the integral algorithm
based on GTD scattering center discarded the scattering center type

parameter αi when using the radar echo equation for echo simulation.
Equivalence of complex curved blade to isotropic scattering center (Li
and Du, 2017). Meanwhile, it is considered that the scattering center
exists only in the xoy plane, ignoring the anisotropy of the scattering
center caused by the 3D complex surface of the blades. Subsequently,
the scattering center-based integration algorithm still lacks accuracy in
the simulated echo signal.

2.3 Key steps to achieve accurate simulation
of blades echoes

Starting from Section 1, it can be concluded that to accurately
simulate the high-fidelity echo signal of dynamic blades, the
following two 2 key problems need to be solved: firstly, the
selection of a more accurate scattering center to accurately
describe the scattering characteristics of a complex blade; and
secondly, how to simulate a dynamic blade echo based on the
dynamic scattering center.

Following electromagnetic scattering center theory, a complete
scattering center dataset is required when the scattering center is
used to equate a target scattering entity with a complex special
shape structure (Li and Du, 2017). As a result, a length parameter L
and type parameter αi will be introduced in this paper as
quantitative indicators of the 3D geometry of WT blades
compared to the traditional GTD scattering center model.
Moreover, the 3D scattering center model based on physical
optics and geometric diffraction theory is used to distinguish the
various scattering structures of the blades, to realize the accurate
characterization of the scattering characteristics of the blades.

On this basis, considering that the scattering center parameters
of dynamic blades are closely related to the radar aspect, the
rotation angle of the blade throughout its motion cycle is
divided into multiple aspects, under which the 3D scattering
center parameters of each aspect are solved. In addition,
according to the idea of accurately solving the echo based on the
scattered electric field, the obtained blades scattering centers are
used to reconstruct the scattered electric field distribution

FIGURE 2
Diagram of integral algorithm based on scattering center.
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corresponding to the real-time dynamic rotation of the blades, and
the short-time Fourier transform is performed on the obtained
scattered electric field vector. Finally, the real-time and fidelity
simulation of blades echoes is achieved.

3 Simulation of WT blades radar echoes
based on 3D scattering center

3.1 3D scattering center mode

According to the 3D scattering center model and the scattering
characteristics of the blades, the total scattered electric field of the
blades E(f, θ,φ;Ψ) can be represented by a coherent superposition
oif the P scattering center responses Ei(f, θ,φ;Ψ i) (Xie et al., 2019).

E f, θ,φ;Ψ( ) � ∑P
i�1
Ei f, θ,φ;Ψ i( )

� ∑P
i�1
Ai · j

f

fc
( )αi

· exp −j 4πf
c

ri[ ]
· sinc 2πf

c
Li sin θ − �θi( )( ) · exp −2πfγi sin θ( ) (1)

where: fc is the central frequency of the radar electromagnetic wave; Li
is the length of the scattering center, where is the localized scattering
center when Li = 0 and the distributed scattering center when Li ≠ 0; γi
is the orientation-dependent term of the scattering center, of order
10–10, which can be approximated to 0;ΨT � [ΨT

1 ,Ψ
T
2 ,/,ΨT

i ,/ΨT
P]

is the attribute scattering center is the parameter matrix of the p
attribute scattering centers, complete with information on the
scattering properties of the target entity, where Ψi is the scattering
center parameter set xi, yi, zi, αi, Li, �θi, Ai{ }, (·)T denoting the
transpose; c is the velocity of light; position relation between the
blades and radar is shown in Figure 2, ri is the distance from the ith
scattering center to the scene origin, assuming that radar is in the far-
field, the range ri can be obtained by

ri � xi cos θ cosφ + yi sin θ cosφ + zi sin θ (2)

3.2 Extraction of 3D scattering center of WT
blades

It is necessary to build a large parametric dictionary to estimate
those parameters simultaneously. As the 3D scattering center includes
eight target parameters and three radar parameters, the dimension of
the parameterized dictionary is very high, which greatly increases the
cost of computation and storage.

According to Eq. 1, the total scattering from blades in the
frequency domain is a vector superposition of the electromagnetic
scattering from multiple attribute scattering centers, so by creating
an over-complete dictionary and dividing each column of the
dictionary into an atom (a parameter set representing a
scattering center), the total scattering from solid blades is a
linear combination of these atoms. Firstly, let the dictionary D
be given by the following equation.

D f, θ,φ;Θi( ) � dx,y,z · dL,�θ (3)

where: D(Θi) is the Θi |xi, yi, zi, Li, �θi{ } dictionary of partial
parameter sets for the ith scattering center; dx,y,z is the scattering
center position information term exp[−j 4πfc ri]; dL,�θ is the scattering
center orientation information term sinc(2πfc Li sin(θ − �θi)).

Due to D(Θ) the high spatial dimensionality, a direct solution
would lead to a sharp increase in the number of atoms in the
dictionary. Therefore, to reduce the dimensionality of the
dictionary processing, dictionary scaling and alternate optimization
methods are used to Θ | x, y, z, L, �θ{ } decompose the high-
dimensional joint dictionary into two sub-dictionaries Γ | x, y, z{ },
Η |L, �θ{ }, containing the scattering center coordinates and orientation
information, i.e., we have

D Γ( )T � Γ1, Γ2,/, Γj,/, Γn[ ]T
D Η( )T � H1,H2,/,Hj,/,Hn[ ]T
Γpq � vec dx,y,z( )/vec dx,y,z

���� ����2( )
Hpq � vec dL,�θ( )/vec dL,�θ

���� ����2( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(4)

where: n, j is the number of parameters quantized xi, yi, zi, Li, �θi{ },
respectively; vec(·) denotes the vector straightened into columns; ‖ · ‖
denotes the vector parametrization.

According to the principles of the OMP algorithm, after
constructing the atomic dictionary, the problem of estimating the
scattering center parameters is transformed into an optimal solution of
the sparse representation, as follows.

Ψ � argmin
Ψ

s − DA‖ ‖0
s.t. A‖ ‖2 ≤ n‖ ‖2

{ (5)

where: Ψ is the estimated sparse vector of scattering center
parameters; s is the column vectorisation of the observed data
E(f, θ,φ); A is the amplitude of the observed data in the
dictionary; n is the noise level.

For the acquisition of the observed data E(f, θ,φ), a well-
established high-frequency hybrid algorithm can be used to
calculate it, as described in the literature (Xie et al., 2019), and will
not be repeated here.

In the process of estimating the scattering center parameters using
the OMP algorithm, it is considered that the performance of the OMP
algorithm is disturbed by the scattering centers of neighboring WT
blades. For this reason, the RELAX algorithm is introduced to correct
the scattering center parameters calculated by the OMP algorithm for
each iteration and to determine the termination conditions that satisfy
the iterative process, then Eq. 5 is transformed into

Ψ i � argmin
Ψ i

si − AiDi‖ ‖22 (6)

The procedure for the joint solution using the OMP and RELAX
algorithms can be found in the literature (Xie et al., 2019). Once the
parameter set is obtained xi, yi, zi, Li, �θi{ }, the type parameter αi can be
determined from the length parameter Li of the scattering center, thus
giving a complete estimate of the set of parameters Ψ of the attribute
scattering center of the WT.

3.3 Simulation process of WT echoes

After obtaining the scattering centers of all the blades, the
scattering center parameters derived from the above steps Ψβ are
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used as local data, and according to the sub-aspect range of the blades
rotation angle at different time t, the scattering center parameter of the
corresponding sub-aspect is substituted into the 3D scattering center
model. According to the relationship between the blades motion
characteristics and the 3D scattering center in each aspect, the
scattering electric field distribution corresponding to the rotation of
the blades can be reconstructed, as follows Eq.

E f,ωt( ) � ∑P
i�1
Aji · j

f

fc
( )αji

· exp −j 4πf
c

xji cos θ cosφ + yji sin θ cosφ + zji sin θ( )[ ]
(7)

Where: ω is the angular velocity of the WT blades rotation; j is the jth
sub-angle domain to which the rotating WT blades belong at moment
t, where j � [M·ωt

2π ] + 1, [·] denotes rounding.
On this basis, in order to achieve the time-frequency characteristics of

the dynamic blade echo and Doppler characteristic analysis, the scattered
electric field vector obtained needs to be processed by Short Time Fourier
Transform (STFT), that is, there are

rect(t, f)∣∣∣∣∣t�m△t,f� r
MNΔt

� STFT(E(ωt, f))
� ∑MN−1

k�0
E(kΔt)w*(kΔt −mΔt)e−j2rkπ/MN (8)

where: Δt is the sampling interval associated with the amount of time,
i.e. the scattered electric field under the reconstructed continuous time
series is taken after each interval of Δt time to facilitate time-frequency
characterization; m, k, r = 0,1,2,3,..., (t/Δt-1), where t/Δt is the number
of angular sampling points for the entire rotation period of the blades;
E(k) is the reconstructed scattered electric field data. w(t) is the
window function; “*” denotes the complex conjugate.

4 Verification of echo simulationmethod
for 3D scattering center

The algorithm proposed in Section 2.1 for parameter estimation in
terms of the scattering center of blade properties was compared with
existing algorithms and the actual measurement experiments given in
reference (Tang et al., 2019c) in order to verify the accuracy of the
equivalent modelling of the blade 3D scattering center. Due to the fact
that the actual measured wind turbine model and parameters are
missing in the literature (Tang et al., 2019c), the typical Goldwind
GW82/1,500 wind motor is taken as an example.

The full-size model of the blades and their position in relation to
the radar is shown in Figure 3. To compare with the research results in
the literature (Tang et al., 2019c), the incident Angle of radar
electromagnetic wave is adopted by literature (Tang et al., 2019c),
that is, the incident wave is set parallel to the blades rotation plane, the
incident point is set on the y-axis, and the included Angle φ is 0°

between the incident wave and blades rotation plane xoy. The initial
frequency of electromagnetic wave f0 is 2.5 ghz, the center frequency fc
is 3 GHz, the step frequency is 10 MHz, the bandwidth is 1 GHz, and
the intensity is 1 V/m. The incidence direction of electromagnetic
waves of radar is fixed and unchanged. Given the single blade length L
of Goldwind GW82/1,500 wind motor is 41 m.

The electromagnetic scattering source data E(f, θ,φ) of static
blades were obtained using FEKO. The 3D scattering center extraction
method described in Section 2.1 was adopted to process the original
simulation data E(f, θ,φ) and obtain the scattering center distribution
of blades, as shown in Figure 4.

The 3D scattering centers of the blades are point-like or lamellar,
including local scattering centers and distributed scattering centers.
The uneven distribution of the scattering center is mainly related to
the shape and structure of the blades, being densely distributed at the
front and rear edges, axes and tips of the WT.

FIGURE 3
Geometry model of Goldwind82/1500 WT blades.
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FIGURE 4
Equivalent model of the 3-D scattering center.

FIGURE 5
The distribution of the scattered electric field of the blade.

FIGURE 6
Distribution of scattered electric field error results.
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It is evident from Figure 4 that the estimated scattering center is
consistent with the appearance profile of the body of the blades.
However, as a further step towards a more accurate quantitative
analysis of the equivalent modelling of the three-dimensional
scattering centers of the blade, the GTD scattering center and 3D
scattering center obtained were reconstructed respectively to obtain
the scattering electric field distribution of the blades, using the FEKO
simulation data as standard data. Figure 5 shows the error distribution
of the scattering electric field reconstructed by the two scattering
centers and the standard data.

It can be seen from Figure 5 that the distribution of the
scattering electric field reconstructed by the attribute scattering
center is in good agreement with the original scattering electric field
data simulated by the FEKO. While the distribution of the
scattering electric field reconstructed by the GTD scattering
center algorithm is in bad agreement with the original scattering
electric field.

As can be seen from Figure 6, out of a total of 401 data, only
5 scattered electric field data reconstructed by attribute scattering
center have an error of more than 3dB, while 144 scattered electric
field data reconstructed by GTD scattering center have an error of
more than 3dB, with a precision difference of 34.7%.

It can be seen from Figure 6 that among the total 12,001 sampling
points, there are 9,751 points with a difference less than 3 dB V/m, that
is, the rotating WT scattering electric field reconstructed by the
attribute scattering center method is 81.26% similar to the original
data. The average error between the electric field data obtained by the
algorithm proposed in this paper and the original electric field data
obtained by Feko is 3.16 dB V/m. For the convenience of calculation
while retaining the calculation accuracy, the value of 3 dB V/m is taken
as the criterion for the accuracy of the algorithm. It shows that the
extracted 3D scattering center can better replace the scattering
characteristics of the real rotating WT, which verifies the
correctness and accuracy of the equivalent modeling of the WT
based on the 3D scattering centers.

The 3D scattering centers of the blades are point-like or lamellar,
including local scattering centers and distributed scattering centers. Non-
uniform distribution of scattering centers is mainly related to the shape
and structure of the blade, with scattering centers of the blade densely
distributed at the front and back. As described in Section 1.2 of the paper,
the blades GTD scattering center is equivalent to the point-like scattering
center shown in Figure 2 for the blades of a complex profiled surface,
ignoring a large number of dihedral Angle reflections and straight edge
reflections of the front and rear edges of the blades. And 3D scattering

FIGURE 7
Comparison of time and frequency domain echo of blades obtained by differentmethods. (A)Integral algorithm based on scattering center, (B) proposed
method, (C) measured data.

FIGURE 8
Comparison of time-frequency echoes of blades at a different speed. (A)Time-frequency domain of echoes with a frequency of 1 GHz and the speed of
π/3 rad/s, (B) Time-frequency domain of echoes with a frequency of 1 GHz and the speed of π/6 rad/s, (C) Time-frequency domain of echoes with a
frequency of 1 GHz and the speed of π/12 rad/s.
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center model of leaf blades length, the curvature of the scattering entities
such as quantitative three-dimensional structure, thus distinguishing the
various scattering structures of the blade and allowing a more accurate
description of the scattering effects of straight blades, so that the accuracy
of the scattering field strength calculation using the three-dimensional
scattering center method is much higher than that of the GTD scattering
center.

5WT blades radar echoes simulation and
analysis

5.1 Echo simulation of WT blades

On this basis, the same blade model and its specific parameters
as in Section 3.1 are used to obtain the corresponding scattered
electric field data. We also set the rotation of the blades angular
velocity for 2π/3 rad/s, the pulse repetition frequency PRF for
4000 Hz and the observation time t for 3 s, by using Equation
7 to process the scattered electric field data obtained via the method
proposed in this paper and the traditional single-view scattering
center method respectively, which can obtain the time-frequency
characteristics. The radar echo with time-frequency characteristics
are obtained and compared with the blades radar time-frequency
echo maps obtained from experimental measurements, as shown in
Figure 6.

Comparing Figures 7A,B, it is observed that the maximum
Doppler frequency appears at the same time in the blade time-
frequency echogram, and both appear in the zero frequency band
with stronger energy. According to the literature (Zheng et al.,
2020b), the maximum Doppler frequency of the simulated blade
can be found to be consistent with the calculated value fdmax =
2fcωl/c = 1717.36 Hz.

Meanwhile, the measured results in Figure 7C show that the
time-frequency echo of the actual wind motor blades should also
have the following characteristics: 1) positive and negative time-
frequency flicker with energy difference; 2) time-frequency
scintillation with bending phenomenon (Zheng et al., 2020b).
These features are not shown in Figure 7A, but the simulation
results of the proposed method are in complete agreement with the
measured features.

The proposed algorithm uses a desktop computer, the CPU
model is Intel(R) Core(TM) i5-9,500, the CPU frequency is
3.00GHz, the memory is 8GB, and the simulation software is
matlab 2020B. The algorithm needs to complete the calculation
of the scattering center for about 660 s. This algorithm can
guarantee the calculation accuracy and simulate the radar echo
of wind turbines without consuming a lot of computing time and
computer memory.

5.2 Echo simulation analysis

An in-depth analysis of the Doppler characteristics shown in
Figure 6B shows that for the Doppler characteristic of positive and
negative time-frequency scintillation with energy difference
appearing alternately in Figure 7B, combined with the analysis
of the initial position of WT and the incident radar wave in
Figure 3, it can be seen that when WT and the incident wave

direction it is vertical, the effective irradiation range of the received
electromagnetic wave will reach the maximum. In one rotation
period, each blade will be vertically irradiated by electromagnetic
waves twice, and the WT will have larger energy. As a result, the
time-frequency echo of WT appears six times with energy
difference in a single rotation period. The positive and negative
alternating flicker is caused by the blades approaching or away
from the incident electromagnetic wave.

The bending flash appears in Figure 7B and is due to the complex
heterogeneous curved surface of the blade, considering the three-
dimensional structure of the blade, so that the scattering energy
provided by the blade surface is different when the electromagnetic
wave is directed vertically at the front and rear edges of the blade.
Combined with the 3D scattering center model, when the values of the
scattering center parameter α and the length parameter L are different,
the scattering forms of different structures can be characterized.
Consequently, the time-frequency echoes obtained by the method
in this paper shows the phenomenon of bending and flashing (Tang
et al., 2021).

According to the above analysis, the proposed method in this
paper can be seen to be superior to the traditional scattering center-
based integration algorithm.

5.3 Analysis of generalizability

In engineering practice making full use of wind energy, the
rotational plane of the WT blades will change accordingly with the
wind direction of the natural wind, while the electromagnetic wave
parallel to the blade rotational plane in Section 3.2 above belongs to a
very special state, in most cases, there will be a certain angle between
the radar incident electromagnetic wave and the blade rotational
plane. Therefore, it is necessary to carry out echoes simulations of
WT blades at different incidence angles β of the electromagnetic waves
to further illustrate the universality of the method proposed in this
paper.

Using the same bladesmodel and radar parameters in Section 3.2, and
setting the speed of the WT as π/3 rad/s,π/6 rad/s, π/12 rad/s, the radar
echoes of theWT blades simulated by themethod in this paper are shown
in Figure 8.

The maximum value of Doppler frequency in the blade time-
frequency echo is 250 Hz, 125 Hz and 50 Hz respectively when the
speed v is π/3 rad/s,π/6 rad/s, π/12 rad/s, as can be seen from
Figure 8, and the sub-flash phenomenon gradually disappears.
The reason for the above phenomenon is that, as the angle
between the radar incident electromagnetic wave and the blades
rotating plane increases, the incident electromagnetic wave in the
blades rotating plane irradiation component gradually decreases,
making the effective modulation effect of the blades on the incident
wave decreases, thus finally leading to the blades’ maximum
Doppler frequency of the time-frequency echoes is presented as
a zero frequency band.

Conclusion

(1) Considering the hidden and anisotropic nature of the scattering
center caused by geometric properties and rotation angle, an
equivalent calculation model for the WT blades based on 3D
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scattering centers is proposed, which solves the problem that
exists algorithms cannot accurately simulate echoes.

(2) Taking the GW82/1,500 as an example, the equivalent modelling
accuracy of the blade scattering center is improved by 34.7%
compared with the scattering center-based integration algorithm,
achieving an accurate echo simulation and providing a theoretical
reference for the next research on wind turbine array echoes.
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With the rapid expansion of power system scale, demand response business is
promoted to develop. More and more demand response terminals are connected to
the smart grid, smart grid is an intelligent system that allows the grid to effectively
perform its functions. Its data can be used in intelligent decision-making during grid
operation, which may be attacked by hackers in practical applications, causing
security problems of demand response terminals of the power network. The
security feedback trust model establishes trust relationship through trust
mechanism, which can effectively ensure the security of interaction between
nodes and demand response terminals of the smart grid. Therefore, a security
feedback trust model of power network demand response terminal triggered by
hacker attacks is proposed. Analyze the role of smart grid in power grid, and use
convolutional neural network in artificial intelligence technology to enhance the
flexibility of smart grid. Aiming at the security problem of the demand response
terminal of the power network being attacked by hackers, based on the trust theory,
the security feedback trust model of the demand response terminal of the power
network is designed through the main services provided by the security feedback
trust model, the trust information storage of the power network nodes and the
summary of the main work. Establish the identity trust relationship, adopt the
distributed verifiable signature scheme, update the power grid node certificate,
update the identity trust relationship, and revoke the identity trust relationship
based on the trust evaluation and threshold value to prevent hackers from
attacking the power grid demand response terminal. Based on information
theory, trust is established and measured. Entropy is used to represent the trust
value. Behavior trust evaluation and compositionmechanism are introduced into the
security feedback trust model of power network demand response terminals to
achieve the credibility of identity and behavior among power network nodes. The
experimental results show that the proposed method can judge the hacker attacks,
reduce the impact of hacker attacks on the trust of power grid nodes, and improve
the interaction security between power grid demand response terminals and power
grid nodes.
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1 Introduction

At present, the energy revolution is further integrated with the
digital revolution, vigorously promoting the innovative development
of the energy industry and the Internet. The power system is an
important part of the energy network. With the continuous
improvement of the intelligent degree of the power system, the
coupling degree between the power network and the information
network is constantly improving. They are interdependent and
interact with each other. The normal operation of the information
network cannot be separated from the power support of the power
network. The switching and adjustment operations of each node in the
power network need to be realized through the information network
(Li et al., 2021a; Zhang et al., 2021a; Sun et al., 2022). Considering that
the demand for interactive regulation responds to the increase in the
number of service deployed terminals, which is different from the
previous terminals, which are mostly accessed by dedicated lines or
deployed sporadically through pilot projects. Without the security test
of the external network, a large number of demand response terminals
are connected to the power network. At the same time, according to
the protection requirements, the data, and control information
transmitted by the terminal connected to the power network are
blurred in the horizontal isolation boundary of the security zone,
which may be attacked by hackers in practical applications, resulting
in a large area of power failure and interruption of communication
between devices. The security feedback trust model is to establish the
trust prediction value of external entities through a reasonable trust
system model, and correctly judge the trust degree of the other entity,
so as to promote the safe, high-speed and harmonious development of
the entire power network demand response terminal, which can
effectively solve the security problems of the power network
demand response terminal attacked by hackers (Jiang et al., 2019;
Liu et al., 2020). Therefore, it is of great significance to establish the
security feedback trust model of power network demand response
terminal.

At present, scholars in related fields have studied the power trust
model. Zhang et al. (2019a) proposed amaster-slave chain architecture
model for cross domain trusted authentication of power services. With
the gradual complexity of China’s electricity information, the current
power business is diversified, and multi business integration is
increasingly becoming the direction of power business
development. However, the integration of commercial trust and
mutual trust has not been effectively solved, which will bring huge
economic losses to the power grid. Therefore, while effectively
isolating multiple services, how to ensure the integration and
reliability of multiple services is an urgent security issue. This
paper introduces a master-slave chain architecture based on
blockchain, which is used for cross domain trusted authentication
of power services. Use slave chains to isolate multiple services. The
trunk ensures the trust of the business and minimizes the untrusted
security risks. Alagappan et al. (2022) proposed a zero trust network
architecture to enhance the security of virtual power plants. In order to
prevent and contain network threats or network crimes, considering
the ability of the architecture, a single damaged endpoint in a zero trust
network is unlikely to spread horizontally, thus infecting the entire
network. This provides the ability to adopt the architecture in the
energy sector. The popularity of distributed generators enables
consumers to supply power to the grid. These small generators
form a virtual power plant. Through this arrangement, its network

also faces security challenges and needs to protect these physical
systems, data protection and information privacy. However, the above
methods still have the problem of low security of power network
demand response terminals. In order to establish the trust relationship
between power grid nodes and improve the security of interaction
between power grid nodes and demand response terminals, a
comprehensive zero trust security architecture needs to be built to
help power grid reduce system risk and protect data privacy under
hacker attacks.

In order to improve the security of power network node
interaction and demand response terminal, a security feedback
trust model of power network demand response terminal triggered
by hacker attacks is proposed. Based on the definition of trust theory,
the security feedback trust model of power network demand response
terminal is designed. By establishing, updating and revoking the
identity trust relationship, the trust is established and measured
based on information theory, and the trust value is expressed by
entropy. The behavior trust evaluation and composition mechanism is
introduced into the security feedback trust model of power network
demand response terminals to achieve the identity trust and behavior
trust between power network nodes. The security feedback trust model
of power grid demand response terminal is constructed by trust
theory, and the behavioral trust evaluation and synthesis
mechanism are input into the model, can judge the hacker attacks,
reduce the impact of hacker attacks on the trust of power grid nodes,
and improve the interaction security between power grid demand
response terminals and nodes.

2 Literature review

Cherukuri et al. (2022) designed Raspberry Pi to develop a family
safety framework. After the intruder is identified, the intrusion
detection system will pay attention to the image of the intruder.
After the intrusion is identified, the mobile owner/administrator will
be sent an alarm email with the recognizable and visible images of the
attacker (facial view). The owner can also watch the real-time
monitoring through the camera head on the intelligent device in
the settings used to view the surrounding environment of the house.

Karthik et al. (2022a) uses visual encryption technology to hide
original information such as images and texts. In VC, the basic
principle is to segment the image and recreate it. According to the
size, quality, pixel expansion, and nature of the image, the image is
encrypted and improved to an 8-bit key.

Karthik et al. (2022b) used the deep transfer learning strategy to
find network attacks in a simple way, and with the help of Analytics,
collected information from IOT devices to be obtained. The nine
current data sets of IOT are comprehensively tested, and the output
results show that the proposed model significantly improves the
accuracy of identifying IOT attacks.

Das and Mukherjee, (2022) analyzed the spying and security
vulnerability cases that endanger user privacy and proposed
blockchain technology. Blockchain distributed ledger is a new
technology system, which can easily solve the security vulnerability
problem with the help of the Internet of Things system. It can be used
in energy, health, entrepreneurship, finance, and other fields. It has
huge benefits and innovation potential.

Gunjan et al., (2014) studies data protection based on digital and
cloud computing systems. Data protection is to build a data security
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system covering the whole life cycle of data from the perspective of
assets, intrusion and risk under the guidance of zero trust architecture.
In order to improve the work efficiency more accurately, it requires
not only technical expertise to crack it, but also to improve the security
of users. Through this study, we will check the level of consciousness of
cyber crime and security profession, and propose the necessary
methods that really help to make the cyber environment safe,
stable and credible.

Prasad et al., (2022) proposed a blockchain based medical image
privacy access control mechanism and collaborative analysis. Image
privacy refers to the process of protecting the information that
involves individuals or organizations and should not be disclosed
in the image during data collection, data storage, data query and
analysis, and data distribution. Build a system model based on two
stages of data cleaning and disease classification, write the model
obtained after training into the blockchain, use the model with the best
performance on the chain to identify the image quality when cleaning
data, and transfer high-quality images to the disease classification
model for use.

3 Security feedback trust model of
power network demand response
terminal

As the power network demand response terminal is connected to
the external network, it may be attacked by hackers in the process of
information transmission. Hacker attack is an unauthorized illegal
access. The malicious acts of hackers attacking the internal nodes of
the power grid will cause catastrophic damage to them (Wang et al.,
2021; Group, 2022; Xu and Hong, 2022). It is mainly through the
occupation of power network bandwidth, CPU, memory, and other
resources, resulting in network performance degradation, or even
failure, thus affecting the normal access of users. Therefore,
establish a unified trust management model based on trust theory
to form a formal description and measurement method of trust and
privacy (Ren et al., 2020), improve the overall operation ability and
anti attack ability of the power grid, then, the security feedback trust
model of power network demand response terminal is designed.

3.1 Overall design of model

Convolution neural network is a feedforward neural network with
convolution calculation and depth structure, which is one of the
representative algorithms of depth learning (Li et al., 2021b; She
et al., 2021). Convolutional neural network has the ability of
representation learning. It can translate and classify the input
information according to its hierarchical structure, and effectively
identify hacker attacks in the power network.

The original members who participate in the establishment of a
social group have the highest power and are called managers. New
members need their approval to join, which is called general members.
Managers can enjoy the benefits and services of members of other
social groups preferentially. Under this incentive, each member works
hard to serve the group to improve the trust of other members.
Members who are unwilling to cooperate with other members will
not be trusted by other members and will eventually be abandoned by
the group. By referring to the level of trust, management members can

develop general members into managers, or can exclude
untrustworthy managers from the group.

According to the characteristics of open network computing
environment and networked software applications, trust theory
systematically studies its requirements for trust management
models and technologies. Based on the unified formal model of
trust management, it breaks through two core technologies: trust
can be established and privacy can be protected. By establishing a
unified trust management model, the formal description and
measurement methods of trust and privacy are formed, the
dynamic construction algorithm of distributed trust chain, the
collusion boycott protocol of malicious entities, the privacy
protection policy and disclosure protocol, and the anonymous
communication mechanism are studied. Finally, the security of the
power network is analyzed based on the overall structure of the
established power network demand response terminal security
feedback trust model. Based on the research on trust theory
(Zhang et al., 2019b; Moelker, 2021), trust is divided into identity
trust and behavior trust. The security feedback trust model of power
grid demand response terminal is also constructed according to this
principle (Charis et al., 2021), which is divided into two main parts:
identity trust relationship management module and evidence
collection and trust evaluation module. The overall structure is
shown in Figure 1.

These two parts are also the focus of this paper. Among them,
identity trust is the basis of confidentiality and integrity services, and
confidentiality and integrity services provide security for behavioral
trust assessment and confidential communication. At the same time,
the updating and revoking of trust relationship are all based on
behavioral trust evaluation.

(1) The main services provided by the security feedback trust model
of power grid demand response terminals: the main services
provided by the two modules of the security feedback trust
model of power grid demand response terminals: identity trust

FIGURE 1
Overall structure of security feedback trust model of power
network demand response terminal.
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relationship management and evidence collection and trust
evaluation include: power grid certificate service, CA
maintenance and behavior trust evaluation (Tung et al., 2021).
The main services of the security feedback trust model of power
grid demand response terminals are shown in Figure 2.

Power gridcertificate service is responsible for establishing,
updating and revoking the identity trust relationship between
power grid nodes. The specific operations can be expressed as
certificate issuing, updating and revoking. CA maintenance mainly
includes the distribution of master and private key components in the
initialization phase of the power grid (Hu et al., 2021), approving the
upgrading of trusted general nodes to CA nodes, allocating master and
private components to them, periodically updating the master and
private key components of CA nodes, and depriving untrusted CA
nodes of the authority to issue certificates. The services provided by
behavior trust evaluation are mainly based on direct observation and
trust recommendation of other nodes. The CA node’s certificate
service behavior and routing forwarding behavior of all nodes are
evaluated. The trust value obtained is used as the basis for certificate
revocation, master private key component update, routing, and other
decisions.

(2) Storage method of power grid node trust information: In order to
ensure the normal operation of power grid demand response
terminal security feedback trust model, each power grid node
needs to store three information bases: local information base,
trust information base and certificate base.

The local information base mainly stores the node’s own identity
IDci, public/private key pair PKi/SKi and the corresponding certificate
version number mi, the demand response terminal’s primary public
key PSK, the local time Ti, the demand response terminal’s primary
private key component Si and the corresponding primary private key
component version number. The local time is used as the standard for
power grid nodes to determine whether the certificates of other nodes
are expired. Therefore, after node ci certificate is updated, other nodes

will not immediately obtain ci latest certificate, and may still use ci old
public key to communicate with it. ci only when other nodes are aware
that they are still using their old public key, will they notify the other
party of their latest certificate. To ensure that ci can decrypt the
information encrypted by the old public key, ci still retains the
certificate information of the previous version after the certificate is
updated.

The trust information base mainly stores some data related to
identity trust and behavior trust as the basis for trust evaluation and
certificate decision (Liu et al., 2019; Goyat et al., 2021). In theory, the
local trust information base needs to store the information of all nodes
in the power network, so it does not store large bit data information.
After the power grid node interacts with a new node, the identity ID of
the new node will be added to the local trust information base, and the
corresponding information will be refreshed continuously according
to the status and behavior of the new node.

The certificate store mainly stores the public key, session key and
other information of other power network nodes that communicate
with the local node. The certificate store mechanism reduces the
number of certificate exchanges and communication between
nodes. Because the storage space of nodes is limited, the certificate
library does not store the information of all nodes in the power grid,
but refreshes the certificate library according to the policy cycle.

(3) The main work of the security feedback trust model (Zhang et al.,
2021b) of power network demand response terminal can be
summarized as: providing three services: power network
certificate management, CA maintenance and behavior trust
evaluation.

The whole life cycle of power network can be divided into two
stages (Huang et al., 2022): initialization and normal operation. In
order to establish a secure communication environment in the power
network, the first step is to realize the identity trust between
communication nodes, that is, to conduct identity authentication.
The process of authentication is also the process of establishing the
initial trust relationship between nodes. In the initialization phase of

FIGURE 2
Main services of security feedback trust model of power network demand response terminal.
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the power network, the trusted management center randomly
generates the master public/private key pair of the demand
response terminal, decomposes the master private key, distributes it
to all CA nodes in the power network, and then publishes the master
public key and master private key verification parameters of the
demand response terminal to exit the power network. Each power
grid node needs to apply to a trusted management center offline to
obtain a signature certificate binding identity and public key before it
can successfully enter the power grid. After the initialization phase of
the power network is completed, the power network can enter the
normal operation phase.

In the normal operation stage of power network, the main work of
the security feedback trust model of power network demand response
terminal is as follows: CA nodes cooperate to periodically update
public key certificates for each node; Revoke the certificate of the illegal
node, that is, remove the trust relationship with the illegal node; CA
nodes cooperate to approve the trusted general node to be upgraded to
CA node, and calculate and allocate the master private key component
of the demand response terminal for the node that approved the
upgrade; Periodically update the master and private key components
of the demand response terminal mastered by each CA node; Evaluate
the behavior trust of other nodes.

Power grid nodes establish identity trust relationship with other
nodes by using signature certificates bound by identity and public key.
Public key encryption is computationally complex and expensive.
Therefore, after the nodes of the power network mutually authenticate
their identities by exchanging public key certificates, they negotiate a
session key each session, and use symmetric cryptographic algorithm
for secure communication. In this way, the confidentiality of
communication between power grid nodes is realized, which
fundamentally prevents malicious acts such as eavesdropping,
impersonation and tampering from hackers, and also provides
basic security guarantees for trust evaluation.

During the validity period, the certificate of a power grid node may
become invalid for various reasons, such as the node is damaged or the
private key of the node is obtained by hackers. Therefore, certificate
revocation mechanism must be provided for certificate service of
power grid. The trust based command and control mechanism is
used to revoke the node certificate of power network. After the power
grid node discovers the malicious behavior of node ci, it broadcasts an
accusation against ci certificate to the power grid. After node ci
receives an accusation about ci, it first judges whether the node
issuing the accusation is credible. If so, it accepts the accusation.
When cj receives a valid accusation about ci that reaches the threshold
value, cj marks ci certificate as invalid in the local trust repository, that
is, revokes ci certificate locally.

The main work of CA maintenance of power network demand
response terminal security feedback trust model is to approve trusted
general power network nodes to be upgraded to nodes, and regularly
update the master and private key components of CA nodes. This is
also the two main mechanisms to realize the dynamic change of CA
node set based on trust. A general power network node can apply to
CA node for upgrading after it has survived in the power network for a
period of time. Each CA node determines whether to generate amaster
private key sub component for it according to the trust value of this
node. The threshold number of master private key sub components
can be combined to generate a new master private key component.

The above certificate service and CA maintenance of power grid
are guaranteed by behavior trust evaluation mechanism. At the same

time, the behavior trust evaluation mechanism can also solve the
routing security problems from within the power network. The
method of probability theory is used to realize behavior trust
evaluation mechanism. Power network nodes can evaluate the
credibility of CA node’s certificate service behavior and all node’s
routing and forwarding behavior. The nodes of power network
dynamically select routing and certificate services based on
behavior trust value.

3.2 Establishing, updating and revoking
identity trust relationships

The establishment of identity trust relationship and the
confidential transmission of information in the security feedback
trust model of power network demand response terminals enhance
the security and credibility of the trust evaluation process (Hongal and
Shettar, 2020; Zhang et al., 2021c). Behavioral trust evaluation can not
only achieve secure routing and improve power network performance,
but also further improve the security and reliability of the verification
process.

The security feedback trust model of power network demand
response terminal is mainly divided into two stages in the entire life
cycle of the power network: the initialization stage of the power
network and the normal operation stage of the power network, as
shown in Figure 3.

The demand response terminal of the whole power network has a
master public/private key pair (PSK, SSK), which is generated by the
offline trusted management center and provides the binding service of
power network node identity ID and public key signature. The master
private key SSK is shared by CA nodes in the (z, x) threshold mode.
Any node smaller than z cannot recover any information of the master
private key. Each node generates a user public/private key pair
PKi/SKi, which is used for authentication and secure exchange of
session keys between power grid nodes. The power grid node ci can
successfully join the power grid only after obtaining the signature
certificate bound by ID and PKi offline, and the certificate update is
completed by the CA node in the power grid. The node adds a serial
number to the communication message to prevent hacker attacks in
the power network.

3.2.1 Establishment of identity trust relationship
The power grid node generates public/private key pair (PKi, SKi) by

itself, obtains the binding certificate of identity and public key through the
offline management center, and joins the power grid with the legal
certificate. The trusted management center G assigns a globally unique
ID to the new node ci of the power network, issues a certificate with the
master private keys SSK and ci of the demand response terminal, and
finally transmits the latest set of power network nodes ID to ci.

Power grid nodes can enter the power grid by carrying the binding
certificate of identity ID and public key issued by the master private
key of the demand response terminal. They can obtain each other’s
public key and establish the identity trust relationship by exchanging
signature certificates with other nodes. At the same time, the power
network node identity ID is distributed by the trusted management
center and signed by the master private key of the demand response
terminal, which ensures the uniqueness of ID in the power network
and effectively prevents hackers from impersonating the power
network node identity and denying the identity of the node.
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3.2.2 Update of identity trust relationship
It is insecure for power network nodes to use a certificate

throughout the life of the power network, that is, the public/private
key pair of power network nodes will not change all the time (Sui et al.,
2020; Li et al., 2021c; Moorthy et al., 2021). The longer a node uses the
same certificate, the greater the probability of hacker attack. Therefore,
the security feedback trust model of power network demand response
terminal must have the mechanism of node certificate update.

The distributed verifiable signature scheme (Han et al., 2019) is
adopted to update the certificate of power grid nodes. The specific
steps are as follows:

Step 1: Power grid node ci applying for certificate update sends a
certificate update request to its trusted CA node cj. The content of the
new certificate is signed with SK(T)

i to verify the identity of ci, and
ensure that ci really owns the CERT(T)

ci
it claims. All contents are

encrypted with PK(T)
j , which is to authenticate the identity of CA node

and prevent other hackers from damaging the contents of the new
certificate.

Step 2: CA node cj receiving the certificate application first retrieves
the local trust information table. If it is determined that ci certificate
has not been revoked and ci behavior trust value is greater than the
threshold value, it will sign the certificate using its master private key
component Sj, and the resulting signature certificate component is:

certij � SSjLj 0( ) IDci, PK
T+1( )

i , CM T+1( )
i( ) (1)

Then send SPK(T+1)
i

(certij, H(certij, JSj )) to ci. At the same time,
broadcast the primary private key verification parameters J andV. The
certificate components are transmitted with PK(T+1)

i , preventing
hackers from damaging the certificate components.

Step 3: After power grid node ci receives the (certij,H(certij, JSj ))
sent by CA node Sj, it needs to verify the correctness of certij. ci is
calculated by using the mastered verification parameters J and V:

JSj � JSSK+a1cj+/+ak−1ck−1j ≡ JSSK · Ja1( )cj/ Jak−1( )ck−1j mod c( ) (2)

ci is obtained by calculating JSj from certij provided by cj and himself,
and then validatei � H(certij, JSj ) is obtained. If validatei is equal to
H(certij + JSj ) sent by Sj, certij is accepted, and the trust degree of
power grid nodes is improved; Otherwise, discard certij and reduce
the trust of Sj.

Step 4: Power grid node ci combines k verified signature certificate
components collected to finally obtain the certificate issued by SSK:

CERT T+1( )
i � ∏k

j�1certij � IDci, PK
T+1( )

i , CM T+1( )
i( )SSK (3)

3.2.3 Revocation of identity trust relationship
The certificate of a power network node may become invalid

during its validity period for various reasons. Therefore, the security
feedback trust model of power network demand response terminals
must have a certificate revocation mechanism. The security feedback
trust model of power grid demand response terminal mostly adopts
the distributed storage of CRL list, that is, each power grid node
maintains its own CRL list. However, this method takes up a lot of
storage resources of power grid nodes. Therefore, the revoked
certificate is marked with the certificate revocation identifier.

If the power grid node finds the hacker attack of node ci, it marks ci
certificate as revoked in the local trust information base, clears ci
revocation count, and broadcasts a charge against node ci certificate to
the power grid. The revocation of identity trust relationship based on
trust evaluation and threshold value can effectively prevent malicious
accusations of hackers attacking nodes.

3.3 Behavior trust evaluation and synthesis

In the security feedback trust model of power network demand
response terminal, the establishment, update, and revocation of identity
trust relationship and the security routing of power network are all
based on behavior trust evaluation. The accuracy and rationality of trust
evaluation will directly affect the security and efficiency of the security
feedback trust model of power network demand response terminals.

FIGURE 3
(A) Initialization stage and (B) normal operation stage of power network.
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3.3.1 Behavior trust measurement
It can be seen from the definition of trust that it is an uncertain

measurement standard. Therefore, it lacks theoretical support to
directly express trust with probability value or mathematical
expectation. On the basis of information theory, trust is established
and measured, and the value of trust is expressed by entropy.

Trust is the relationship established between two entities (power
grid nodes) to perform a specific behavior. Suppose ci: cj, action{ }
represents entity ci, trust entity cj will perform behavior action, and
T ci: cj, action{ } represents trust degree, that is, trust
degree.p � P ci: cj, action{ } represents the probability that ci
believes cj will perform action action. According to the concept of
entropy in information theory, there are:

T ci : cj, action{ } � 1 −W p( ), 0.5≤p≤ 1
W p( ) − 1, 0≤p< 0.5

{ (4)

In Formula (4), W(p) � −plog2(p) − (1 − p)log2(1 − p). The
value of T ci: cj, action{ } is shown in Figure 4.

It can be seen that the trust degree is a continuous real value
between [−1, 1] and increases with the increase of a posteriori
probability p.

3.3.2 Behavior trust evaluation and synthesis
The overall trust TT of power grid node ci to cj mainly comes from

the direct trust DT established through the observation of cj behavior
and the recommendation of other entities to cj, that is, the indirect
trust RT to cj. In essence, trust recommendation is a process of trust
transmission, and trust recommendation between different power grid
nodes also realizes trust transmission.

(1) Direct trust value calculated according to observation: establish a
direct mutual trust relationship with neighboring nodes through
observation, and the goal is to obtain the direct trust value for the
node according to the previously observed behavior of
neighboring nodes.

Use a posteriori probability to calculate the direct trust. Suppose ci
has requested cj to execute action action for Nu times and cj has
executed action action for Ku times during the u observation, then:

P ci : cj, action{ } � 1 + αTc−TmKm

2 + αTc−TmNm
(5)

In Formula (5), α ∈ [0, 1] is a forgetting factor determined by the
speed of cj behavior change. The worse the stability of cj, the lower the
value of α. Tc represents the current time point, while Tm represents
the time of each observation.

(2) Indirect trust value is calculated based on trust transfer and
composition (Ding et al., 2020; Xu, 2021): when a power grid
node just joins the power grid or changes its location, in order
to establish trust with the target node without interactive
experience with the target node, the recommendation of
other nodes is mainly used to obtain the trust value of the
target entity. Recommendation is essentially a process of trust
transmission.

Let Rcicc � T ci: cc, recommendation{ } � TTcicc and TTcccj be the
overall trust value of cc to cj. Among them, trust transfer includes:

RTcicccj � RciccTTcccj (6)

Trust composition is the process of synthesizing the
recommended trust values from two or more channels to the target
node into indirect trust values to the target node according to certain
rules. On this basis, using the weight maximization algorithm (Yang
et al., 2022), the trust value of the intermediate node on each
recommended path is taken as the trust weight, and the trust
composition is performed. Then we can use Formula (7) to
calculate ci indirect trust value of cj obtained through cC and cD
recommendation:

RTcicj �
RcicC RcicCTTcCcj( ) + RcicD RcicDTTcDcj( )

RcicC + RcicD

(7)

When there are more than two trust recommendation paths,
expand Formula (7) to comprehensively recommend the trust value
from multiple trust recommendation paths as follows:

RTcicj � ∑K

L�1RTcicLcj �
∑K

L�1R
2
cicL

TTcLcj∑K
L�1RcicL

(8)

In Formula (8), CL represents the different nodes that provide ci
with the recommended value of cj, and K represents the number of
recommended paths. When ci just joined the power grid or changed
its location, it did not establish behavioral trust relationship with
other nodes. In this case, to obtain the indirect trust value of the
target node of the power grid, it can only request the neighbor node
of the power grid to provide it. When ci gradually establishes trust
relationship with other power network nodes in the power network,
it can obtain the recommended trust value of the target node
through the most trusted node, and finally obtain the indirect
trust of the target node.

(3) Overall trust evaluation: the overall trust TTcicj of power grid node
ci to cj, the recommended trust of other nodes to cj, and the direct
trust, the indirect trust value is as follows:

FIGURE 4
Value of T ci: cj, action{ }
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TTcicj � βDTcicj + 1 − β( )RTcicj (9)

In Formula (9), β ∈ [0, 1) is the confidence coefficient. Confidence
coefficient controls the proportion of direct trust and indirect trust in
the overall trust. If ci is newly added to the power grid or its location
has just changed, and there is no direct interaction experience with cj,
then ci trust in cj mainly comes from the trust recommendation of
other nodes to T, and Y is very small at this time. With the continuous
interaction between ci and cj, direct trust accounts for more and more
of the overall trust, and β also increases until it reaches a value less
than 1.

Through the above steps, the security feedback trust model of
power network demand response terminal triggered by hacker attacks
is realized.

3.4 Simulation experiment and analysis

3.4.1 Setting the simulation experiment environment
In order to verify the validity of the security feedback trust

model of power network demand response terminal triggered by
hacker attacks, this paper uses PeerSim1.0.5 simulation software to
simulate it. On this basis, it is assumed that the total number of
nodes in the power network is 100 and the trust degree of each node

is 0.5. Each node in the power grid has 50 files in total, and each
node selectively downloads 30 times from other nodes. Each group
of experiments is simulated for 10 times, and each simulation cycle
is 30 times. The results of simulation experiments are average
results. The simulation experiment parameter settings are shown in
Table 1.

3.4.2 Analysis of the impact of hacker attacks on the
trust of power grid nodes

In order to verify the validity of the security feedback trust model
of power network demand response terminals, the impact of hacker
attacks on the trust of power network nodes is analyzed. It is assumed
that 50% of the power network has transacted with the target node,
and two conditions are set under whether there is a hacker attack event
triggered. The influence results on the trust level of the power network
node are shown in Figure 5.

According to Figure 5, as the number of iterations increases, the
impact of hacker attacks on the indirect trust of power grid nodes
decreases. The reason is that the more iterations, the more similar the
hacker attack ID is, and the trust given by nodes with similar IDs is
roughly the same. Therefore, the security feedback trust model of
power network demand response terminals can judge the hacker
attacks, thereby reducing the impact of hacker attacks on the trust
of power network nodes.

3.4.3 Security analysis of power network demand
response terminal

On this basis, the security of the power network demand response
terminal of the proposed method is verified, and the packet ratio of
malicious nodes triggered by hacker attacks is taken as the evaluation
index. The lower the packet ratio, the higher the security of the power
network demand response terminal of the method. The calculation
formula is as follows:

γ � κ

μ
× 100% (10)

In Formula (10), κ is the number of malicious node packets
triggered by hacker attacks, and μ is the total number of packets

TABLE 1 Parameter setting of simulation experiment.

Project Parameter

Tm 50/s

J 0.02

V 0.01

α 0.8

β 0.5

FIGURE 5
Impact of hacker attacks on power network node trust.

FIGURE 6
Packet ratio of malicious nodes triggered by hacker attack events in
different methods.
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transmitted by the power network. By comparing the methods of
literature (Zhang et al., 2019a), the methods of literature (Alagappan
et al., 2022) and the proposed methods, we can get the packet ratio of
malicious nodes triggered by hacker attacks in different methods, as
shown in Figure 6.

According to Figure 6, when there is a malicious node triggered
by a hacker attack event in the power grid using the methods of
literature (Zhang et al., 2019a), the methods of literature
(Alagappan et al., 2022) in the power grid demand response
terminal, the packet rate of the malicious node triggered by the
hacker attack event will increase from 16% to 40%. With the
increase of the number of malicious nodes triggered by hacker
attacks in the power grid, the packet ratio of malicious nodes
triggered by hacker attacks will also rise rapidly. However, in the
power network demand response terminal, using the proposed
method, the trust of malicious nodes triggered by hacker attacks
drops rapidly, and normal nodes will bypass these malicious nodes
triggered by hacker attacks when routing. Therefore, the packet
rate of malicious nodes triggered by hacker attacks will decrease. It
can be seen that the proposed method has a high security of power
network demand response terminal.

3.4.4 Mutual security analysis between power grid
nodes

Further verify the interaction security between power grid nodes of
the proposed method, and take packet loss rate as the evaluation index.
The lower the packet loss rate, the higher the interaction security
between power grid nodes of the method. The calculation formula is as
follows:

τ � λ

μ
× 100% (11)

In Formula (11), λ is the total number of packets dropped by
power grid nodes. The methods of literature (Zhang et al., 2019a),
the methods of literature (Alagappan et al., 2022) and the proposed
methods are compared, and the comparison results of packet loss
rates of different methods are shown in Table 2.

According to Table 2, the packet loss rate of different methods
increases with the increase of observation time. When the
observation time reaches 50 s, the packet loss rate of the
methods of literature (Zhang et al., 2019a) is 6.1%, and that of
the methods of literature (Alagappan et al., 2022) is 8.9%. The
packet loss rate of the proposed method is only 4.4%. It can be seen
that the packet loss rate of the proposed method is low, indicating
that the interaction security between nodes of the power network of
the proposed method is high.

4 Discussion

In the experimental test, the proposed method can judge the hacker
attacks, reduce the impact of hacker attacks on the trust of power grid
nodes, and improve the interaction security between power grid nodes.
Reference (Zhang et al., 2019a) method and Reference (Alagappan et al.,
2022) method are based on the master-slave chain architecture of the
blockchain and the zero trust network architecture to enhance the security
of virtual power plants, respectively, to reduce security risks. No identity
trust relationship has been established, resulting in low security between
power grid nodes. But the proposed method uses convolutional neural
networkmethod in artificial intelligence technology to effectively improve
the flexibility of smart grid and effectively enhance the overall anti-
interference capability of power grid.

5 Conclusion

This paper proposes a security feedback trustmodel of power network
demand response terminals triggered by hacker attacks. By analyzing the
role of smart grid in power grid, the flexibility of smart grid is enhanced
based on convolutional neural network in artificial intelligence
technology. Aiming at the security problem of demand response
terminal of power network being attacked by hackers, a security
feedback trust model of demand response terminal of power network
is designed based on trust theory. The distributed verifiable signature
scheme is adopted to update the certificate of power network nodes. Based
on information theory, trust is established and measured. The behavior
trust evaluation and composition mechanism is introduced into the
security feedback trust model of power network demand response
terminals to achieve the credibility of power network node identity
and behavior. The following conclusions are drawn:

(1) As the number of iterations increases, the impact of hacker attacks
on the indirect trust of power grid nodes decreases, which
indicates that the proposed method can judge the hacker
attacks, thereby reducing the impact of hacker attacks on the
trust of power grid nodes.

(2) The proposed method can improve the security of power network
demand response terminals because of the low packet rate of
malicious nodes triggered by hacker attacks.

(3) The low packet loss rate of the proposed method indicates that the
interaction security between nodes of the power network is high.

The subsequent research will deeply study the storage mode and
hash mapping mode of trust information on the device access network

TABLE 2 Comparison results of packet loss rates of different methods.

Tm/s The proposed method/% Reference (Zhang et al., 2019a) method/% Reference (Alagappan et al., 2022) method/%

10 0.6 1.5 2.6

20 1.2 2.7 4.7

30 2.4 3.9 5.6

40 3.7 5.2 7.4

50 4.4 6.1 8.9
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to improve the search efficiency of resources and reduce the cost of
proxy servers.
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Due to its fast learning speed, the extreme learning machine (ELM) plays a very
important role in the real-time monitoring of electric power. However, the initial
weights and thresholds of the ELM are randomly selected, therefore it is difficult to
achieve an optimal network performance; in addition, there is a lack of distance
selection when detecting faults using artificial intelligence algorithms. To solve the
abovementioned problem, we present a fault diagnosis method for microgrids on
the basis of the whale algorithm optimization–extreme learning machine (WOA-
ELM). First, the wavelet packet decomposition is used to analyze the three-phase
fault voltage, and the energy entropy of the wavelet packet is calculated to form
the eigenvector as the data sample; then, we use the original ELM model coupled
with the theory of distance selection to locate faults and compared it with the SVM
method; finally, the whale algorithm is used to optimize the input weight and
hidden layer neuron threshold of the ELM, i.e., the WOA-ELMmodel, which solves
the problem of the random initialization of the input weight and hidden layer
neuron threshold that easily affects the network performance, further improves
the learning speed and generalization ability of the network, and is conducive to
the overall optimization. The results show that 1) the accuracy of selecting the data
according to the fault distance is twice that of not selecting data according to it; 2)
compared with the BP neural network, RBF neural network, and ELM, the fault
diagnosis model based on the WOA-ELM has a faster learning speed, stronger
generalization ability, and higher recognition accuracy; and 3) after optimization of
the WOA, the WOA-ELM can improve 22.5% accuracy in fault detection when
compared to the traditional ELM method. Our results are of great significance in
improving the security of smart grid.

KEYWORDS

smart grid, ELM, fault diagnosis, support vector machine, wavelet transform, WOA-ELM

1 Introduction

With the rapid development of modern economy, the consumption of energy is
increasing high (Zhang et al., 2023). The direct consumption and waste of non-
renewable energy are particularly serious. The direct consumption and waste of non-
renewable energy are particularly serious. People’s demand for the energy, power
quality, and power company services are growing (Chang et al., 2023). For the
traditional power grid, with the continuous extension of transmission lines, the
occurrence rate of faults is also constantly improving (Lei et al., 2022). There are many
reasons for the large-scale blackout of the power grid due to fault in transmission, for
example, extreme weather events and aggravating anthropogenic activities (Lei et al., 2022;
Liu et al., 2022). However, faults cannot be completely avoided, as they are not only affected
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by human factors, but also by nature. Therefore, it is very
meaningful to detect, classify, and locate faults in smart grid (Liu
et al., 2022; Waldrigues et al., 2022).

Unified power fault detection methods bring huge costs (Chen
et al., 2022a; Wang, 2022; Yan et al., 2022), so now, many works use
artificial intelligence methods to detect, classify, and locate power
faults (Hou et al., 2022; Li et al., 2022; Ma et al., 2022). For example,
Yuvaraja et al. (2022) examined the effect of smart grid systems by
implementing the artificial intelligence technique with application of
renewable energy sources (Yuvaraja et al., 2022). Chen et al. (2022a)
used the CNN-LSTM model to solve the problem of the slow
transmission rate of high-frequency information in smart grid
and improve the efficiency of information transmission (Xin,
2022). Because the distance of the transmission line is relatively
long, the probability of failure of the transmission line is increased
(Ayushi et al., 2022; Xin, 2022; Yuvaraja et al., 2022). Some scholars
use neural networks to detect whether there is a current that is
directly grounded (Xin, 2022). In their results, the decision tree and
neural network have a good effect in the fault classification and
location of electric wires (Ayushi et al., 2022). Moreover, some
studies have used the neural network coupled with wavelet
transforms to detect faults—specifically, some signals of the layer
are extracted through wavelet transforms to judge whether there is a
fault and then the neural network or regression decision tree is used
to judge what the fault is (Ayushi et al., 2022; Singhal et al., 2022;
Xin, 2022). Generally, the collected data are trained and located by
simulating the fault type and fault location of the wire (Chen et al.,
2022b; Singhal et al., 2022). Furthermore, a complex neural network
is specially designed for the complex of power grid data.

The data used in fault detection are divided into two categories:
one, the data that are collected at only one end and the other, the
data that are collected at both ends (Chen et al., 2022b). If data from
only one end is used, it will be easier to collect than when collecting
data from both the ends at the same time. However, data from only
one end usually show either poor accuracy or incomplete detection.
Some researchers have suggested using the K-nearest neighbor
(KNN) to solve the above problem (Fang et al., 2022). For KNN,
Euclidean distance was calculated, and the smaller one as the similar
standard. Also, the KNNwhen combined with the wavelet transform
can classify and locate wire faults more efficiently, with the data at
one end being used to calculate the wavelet transform before
classification and location. In the past, some scholars have
compared the data only used at one end with that from both
ends (Shafiullah et al., 2022). In these two cases, the accuracy of
fault location estimation is similar. However, since it is more difficult
to collect data to measure the data at both ends, it has been
recommended to use only the data at one end (Fang et al., 2022;
Jia et al., 2022; Shafiullah et al., 2022). Data collection at both ends
has certain requirements for data collection instruments. Because
the data at both ends have to be synchronized, GPS satellites are now
used for synchronization (Jia et al., 2022). However, there are also
some researchers who have recommended using the data at both
ends that can to some extent obtain good performance in fault
detection (You et al., 2021; Dac and Trung, 2023; Ma et al., 2023).

The ELM is the new type of neural network proposed by Professor
Huang Guangbin of NanyangUniversity of Technology in Singapore in
2004. It has been widely used in many fields in recent years. The limit
learning machine randomly selects hidden node parameters (such as

input weights and deviations) and analyzes and judges the output
weights of the single hidden layer feedforward neural network (SLFN).
In this way, when the minimum training error is reached, the training
burden can be significantly reduced. It is a simple and effective SLFN
learning algorithm. It not only has the characteristics of a simple
mathematical model and fast learning speed but also a good
generalization performance. At present, it is being successfully
applied to handwritten font recognition, weather prediction, voice
and image recognition, and other fields. However, since the initial
weights and thresholds of the traditional ELM are randomly selected,
the best network performance is difficult to achieve. Furthermore, the
fault location would be affected by the compensation equipment, but
due to the uncertainty of these models, there would be some deviation
when estimating the error. These shortcomings have currently not been
solved by researchers.

In this article, therefore, a method is proposed to roughly judge
whether the fault may be in the first half or second half with regard
to the data at both ends and then locate the fault with the data at the
end close to the fault. We also use the learning method of artificial
intelligence (the extreme learning machine, ELM) to locate the fault
location. Then, a smart grid fault diagnosis method based on the
whale optimization algorithm (WOA) and extreme learning
machine (ELM) is proposed to improve the ELM method in fault
detection. If the data at the far end is used, the artificial intelligence
method cannot locate the fault location well. This is because the data
collected at the detection data end must pass through more power
components at the end farther from the fault location. These
components have an impact on the transmission of electrical
signals. In order to reduce the unnecessary effects, the data
collected at the nearest end can be selected as the input feature
of the classifier. Themethodology in this article is to first use the data
at both ends of the classifier to determine the end at which the fault is
likely to occur and then select the data at the nearest end to locate
fault. Furthermore, because the initial weights and thresholds of the
ELM are randomly selected, it is difficult to reach the optimum
network performance. In order to overcome the abovementioned
shortcomings, a fault diagnosis model is established by using the
whale algorithm optimized–extreme learning machine (WOA-
ELM). The whale algorithm has the characteristics of a simple
parameter setting, fast learning speed, high optimization
accuracy, and strong global optimization ability. It can solve the
problem of manually setting the initial weights and hidden layer
thresholds of the limit learning machine and is conducive to further
improve the recognition accuracy.

Therefore, we 1) first use the ELM to define the fault line and
then analyze its results. At the same time, the support vector
machine classifier and wavelet transforms are used to process the
signal for location; 2) analyze the three-phase fault voltage by
wavelet packet decomposition, and the energy entropy of wavelet
packet is calculated to form the eigenvector as the data sample; 3)
finally, use the whale algorithm to optimize the input weight and
hidden neuron threshold of the ELM, which solves the problem of
random initialization of the input weights and hidden neuron
thresholds that easily affect network performance, which can
further improve the learning speed and generalization ability of
the network and is conducive to global optimization. Some data of
these simulated wire faults are obtained as samples for experimental
learning.
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This study is organized as follows. We summarize the related
works in Section 2; then, we introduce the ELMmethodology, WOA
approach, and data process in Section 3; in Section 4, a model of the
high-voltage transmission system is established; and in the Results
section, the ELM, WOA-ELM, and SVM are used to locate the fault
line, and the results are analyzed.

2 Related works

Compared with the traditional fault diagnosis method, the fault
diagnosis method based on AI technology has a higher diagnosis
accuracy and faster diagnosis speed. Many experts and scholars have
proposed a large number of fault diagnosis methods on the basis of
the AI algorithm, such as the expert system method, method based
on the optimization model, method based on the graph theory
model (such as the Petri net, Bayesian network, spike neural network
(SNP) system, and artificial neural network (ANN).

The method based on the expert system is the earliest AI
method to be applied for power grid fault diagnosis. This method
establishes an expert rule base by simulating the logical
experience of experts when dealing with faults. During
diagnosis, the current fault information is compared with the
rules of the expert base, and the diagnosis results are obtained
according to the matching situation. Due to its good reasoning
ability and fault interpretation ability, this method has become
the most widely adopted and applied method in the field of power
grid fault diagnosis in the early stages. Fukui and Kawakami
(1986) proposed for the first time applying the expert system to
the field of power grid fault diagnosis, using concepts and
simplified information to estimate fault components and
realizing smart grid fault diagnosis. However, due to the
simple rule base, it can deal only with simple fault situations.
The essence of this method based on the analytical model is a
mathematical model built according to the power grid protection
configuration and the action rules of protection and circuit
breaker in case of faults. This method represents the fault
diagnosis problem as a 0-1 integer programming problem and
then uses the intelligent optimization algorithm to find out the

fault hypothesis that can best explain the fault information.
Because the theoretical basis is rigorous and has a
mathematical basis, and the diagnosis process has explanatory
power and is concise and clear, a large number of optimization
algorithms are applied for power grid fault diagnosis. Xiong et al.
(2018) proposed a brainstorming algorithm for binary coding
optimization, established a fast fault diagnosis for large power
grids, and solved the 0-1 integer programming problem using
binary vector coding instead of the algorithm, thus improving the
efficiency of the diagnosis model. The power grid fault diagnosis
method based on the graph theory has strong explanatory power.
The general process of such algorithms is to first establish a causal
model, directly representing the causal relationship between
protection and the circuit breaker through a clear and intuitive
graphical process and then use their respective reasoning
methods to diagnose the fault components. The graphical
process makes it unnecessary to extract the representative fault
samples, while the “transparent” diagnosis process (the diagnosis
process conforms to logical reasoning) enables dispatchers to
understand the whole fault diagnosis process in a very short time,
which is conducive to the subsequent power recovery. The
method based on Petri net is the most widely studied
graphical fault diagnosis model. This method uses the
repository/transition of weighted directed network to clearly
restore the knowledge logic in fault diagnosis. The reverse
reasoning process is simple and clear and the speed is fast, but
the ability to deal with complex problems is low. Since then,
researches in terms of diagnosis detection are mainly
concentrated in high level high-level Petri net (Lcfcbvre, 2014).
The method is based on the Bayesian network and conditional
probability reasoning to realize power grid fault diagnosis. The
diagnosis model is intuitive and can diagnose effectively even
when the alarm information is wrong, but it is difficult to obtain
the prior probability of component fault in a complex power grid
(Ji et al., 2022). The SNP system is essentially a directed graph
composed of multiple neurons and synapses connecting the
neurons, in which the neurons are the nodes and synapses are
the directed arcs of the graph (Wang et al., 2011). In the SNP
system, the transmission of data information is realized through

FIGURE 1
Structure of extreme learning machine. W is input weight, β is output weight.
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the excitation of pulse potentials in the neurons. All pulses are
represented by characters and considered undifferentiated. The
data information in the SNP system can be transferred from the
presynaptic neurons to postsynaptic neurons according to
specific excitation rules. According to the excitation rules, new
pulses are generated after the consumption of a part of the pulses.
These new pulses are transmitted to all the neurons connected
after the synapse. The fault diagnosis method based on the neural
network has the characteristics of distributed storage, adaptive
learning, high fault tolerance rate, and fast diagnosis speed and a
certain development prospect in the field of power grid fault
diagnosis (Luo et al., 2014). At present, there are three types of
fault diagnosis methods based on the neural network: one is the
centralized diagnosis method that takes the whole power grid as a
whole and directly diagnoses; the second is the partition diagnosis
method which divides the large-scale power grid into several
regions for diagnosis; and the third is the component-oriented
diagnosis method of establishing diagnosis network for faults of
various power grid components (lines, buses, and transformers).

Chang et al. (2023) proposed a fault identificationmethod on the
basis of a unified inverse-time characteristic equation to aim at the
problems of large setting workload and easy mis-operation of the
inverse-time overcurrent relay after distributed generation access
(Chang et al., 2023); Lei et al. (2022) proposed the multi-population
particle swarm optimization algorithm and compared it with single-
population particle swarm algorithm on the IEEE 69-node model,
they proved that the new algorithm can find fault locations faster;
meanwhile, they verified the effectiveness of the algorithm in a
variety of distribution network fault location scenarios (Lei et al.,
2022). Liu et al. (2022) considered the randomness and uncertainty
of the output of the solar and wind power, as well as the bidirectional
characteristic of current flow and because the faults in the
microgrids being difficult to identify using the traditional fault
detection methods, they proposed a machine learning–based fault
identification method for microgrids. Waldrigues et al. (2022)
proposed an improved method after Brazil (2020) to verify the
feasibility of using time-series forecasting models for fault
prediction; they also evaluated the long short-term memory

(LSTM) model to obtain a forecast result that an electric power
utility can use to organize maintenance teams. Wang (2022)
presented a fault line selection approach on the basis of the
modified artificial bee colony optimization–deep neural network
(ACB-DNN) to address the difficulties in choosing a fault line in
electric current grounding systems for small electric currents. Chen
et al. (2022a) put forward a novel fault recovery method for
Automatic driving network (ADN) on the basis of an improved
binary particle swarm optimization (BPSO) algorithm, and the
topology constraints were specially considered to accelerate the
recovery operation.

The extreme learning machine (ELM) is a single implicit
feedforward network learning method derived from the neural
network (NN). Because the weight value between the input and
hidden layer and the hidden layer threshold of the algorithm are
randomly generated without adjustments and training and the
output can be obtained only by setting the number of hidden
layer neurons, the algorithm has a good learning efficiency and
high generalization (Luo et al., 2017). However, the ELM has the
following shortcomings: the ELM uses the least squares method to
learn, only considers the empirical risk of the model, and is prone to
over-fitting. Especially, when the training data cannot express the
characteristics of the learning data set, the over-fitting phenomenon
is particularly serious. The accuracy of the ELM is significantly
affected by the number of neurons in the hidden layer. The
calculation error of the ELM depends heavily on the large
number of hidden layers and easily causes dimension disaster,
seriously affecting the practical application of the ELM (Kasun
et al., 2013).

In order to overcome the abovementioned shortcomings, a fault
diagnosis model is established by using the whale algorithm
optimized–extreme learning machine (WOA-ELM). The whale
algorithm has the characteristics of simple parameter setting, fast
learning speed, high optimization accuracy, and strong global
optimization ability. It can solve the problem of manually setting
the initial weight and hidden layer threshold of the limit learning
machine and is conducive to further improve the recognition
accuracy.

FIGURE 2
Structure of microgrid system. L1, L2, and L3 are filter inductances; C1, C2, and C3 are filter capacitors; Load1, Load2, Load3, and Load4 are electrical
loads; r is line resistance; x is line reactance.
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3 Methods and data

3.1 ELM and WOA-ELM

In the single hidden layer feedforward networks (SLFNs),
many parameters have to be adjusted because the weights of the
neurons in the different layers are interdependent. In the past few
decades, the gradient-based learning algorithm has been
generally used in feedforward neural networks. The method is
slow and easy to fall into the local minimum. Different from the
traditional feedforward neural network, the extreme learning
machine (ELM) has to adjust all the parameters of the
feedforward neural network (for the structure of the ELM, see
Figure 1). This method randomly gives the input weight and
threshold value of the neuron weight and then calculates the
output weight by solving the generalized inverse (Dac and Trung,
2023). It has been proved that random selection of the node
parameters of the feedforward neural network of a single hidden
layer does not affect the convergence ability of the neural
network, which makes the network training speed of the ELM
thousands of times higher than that of the traditional network
(Ma et al., 2023). Therefore, we first let SLFN have one hidden
node. For the feedforward neural network with a single hidden
layer, its standard model is

∑
i�1
~N g(wi · xj + bi)βi � oj, j � 1, 2, 3, . . . , N, (1)

where wi · xj is the inner product of vector wiandxj, N is the
training sample, ~N is the number of hidden layer units, oj is the
actual input value. g(x) is the activation function. Using sigmoid
function as the activation function, if let Eq. 2 is the infinite
approximation at 0 with existing W, β, b:

min∑N

j�1‖ oj − tj ‖, (2)
∑

i�1
~N g(wi · xj + bi)βi � tj, j � 1, 2, 3, . . . , N. (3)

Eq. 3 can be written compactly as

Hβ � T, (4)
where T ∈ RN×m and β ∈ RN×m.

H � W, b( ) � hij( )
N× ~N

(5)

where hij � g(wi · xj + bi), andH is the output matrix of the hidden
layer of the neural network. When the number of hidden layer
elements is the same as the total number of training samples, and the
matrix is invertible, Eq. 4 has a unique solution. That is, Eq. 2 is
satisfied. However, in many cases, when the number of hidden layer
elements is far less than the total number of training samples, H is a
rectangular matrix at this time andW, β, b does not necessarily exist
and makes Eq. 2 hold, so it can be equivalent to finding the
minimum value of Eq. 5 as the solution of Eq. 2.

E � ∑N

j�1‖ ∑ i�1
~N g wi · xj + bi( )βi − tj ‖2. (6)

If Eq. 5 is solved by the gradient learning method, it can be used
to represent all parameters, and the iteration can be written as given
in Eq. 7.

θk � θk−1 − η
zE θ( )
zθ

, (7)

where η is the learning efficiency. For feedforward neural networks,
back-propagation neural networks are generally used. The neural
network is a multilayer feedforward network trained according to
error (You et al., 2021). The neural network includes input layer
nodes, output layer nodes, and one or more hidden layer nodes.
First, the input signal reaches the hidden layer node, where it passes
through the excitation function and the output signal of the hidden
layer node is then transmitted to the output node to finally get the
output result. (Fukui and Kawakami, 1986). The learning process is
that the neural network constantly changes the connection weight of
its own network in the case of external input samples, so as to make
the output result of the network closest to the expected output value
(Xiong et al., 2018). If the output results differ greatly from the
expected values, backpropagation can be carried out, and then the
weights of each neuron can be modified again, and finally, a good
classifier can be trained through continuous iteration. If the learning
rate is too small, the learning speed is very slow. If the selection is too
large, it is difficult to obtain network convergence. If Eq. 6 is a non-
convex function, it is easy to fall into a local minimum by
continuously iterating and adjusting parameters. Repeated
iteration is not only time consuming but also easily falls into the
situation of learning and fitting (Lcfcbvre, 2014).

In SLFNs, W and b are given at the beginning of the algorithm
and can be arbitrarily specified. Then,H is calculated, while the value
remains unchanged. In this way, only the parameter β that can be
changed is left, and this shows that the given W and b do not affect
the results.

When W and b are fixed, Eq. 4 is solved by replacing it with
Eq. 8:

‖ Hβ̂ − T ‖� min ‖ Hβ − T ‖ . (8)
The least squares solution can be obtained by solving the Eq. 8.
In some large-scale projects, the learning process usually uses all

the data and these learning times are very long. If new samples are
added at this time, they have to learn together with the original data.

TABLE 1 Test error in the experiments (%).

Number B1 B2 B1B2 Present study

1 3.96 1.85 6.83 0.59

2 4.76 0.95 1.78 0.31

3 4.73 1.20 1.61 0.50

4 4.99 1.68 4.06 0.36

5 4.74 1.39 2.53 0.67

6 4.46 1.38 2.28 0.27

7 4.73 1.98 8.17 0.59

8 4.77 1.60 1.76 0.66

9 4.65 1.44 4.18 0.51

10 4.11 1.30 6.78 0.29

Average 4.59 1.48 4.01 0.48
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In this way, it is a waste of time to relearn all the data. The online
sequential learning neural network (OS-LNN) does not have to learn
the previous data, but only has to add the new data to the learned
network. However, the OS-LNN has to set network weights, and the
training speed is also very slow. Although the training is completed,
the online sequential learning–extreme learning machine (OS-ELM)
can not only learn data one by one but also learn them batch by
batch. The least squares solution of Hβ − T is β̂ � H*T, and we
considered that Rank (H) � ~N is the number of hidden layer units,
and H* is the left pseudo inverse of H, H*H � IN.

H* � H( TH)−1H. (9)

By substituting equation (9) into equation (8), we get

β̂ � (HTH)−1HT. (10)

According to previous studies (Dac and Trung, 2023; Ma et al.,
2023), the least square root is β(0) � K−1

0 H0T, where K0 � HT
0H0.

When adding the new data (k + 1),
Nk+1 � xi, ti{ }∑k+1

j�0Nj

i�(∑k

j�0Nj)+1
,

k≥ 0, Nk+1 is (k+1)
th

data,
Kk+1 � Kk +HT

k+1Hk+1, and
β k+1( ) � β k( ) + K−1

k+1H
T
k+1 Tk+1 −Hk+1β

k( )( ). (11)

With the help of the Sherman-Morrison-Woodbury (SMW)
equation, β(k+1) can be calculated by

β k+1( ) � β k( ) + Pk+1HT
k+1 Tk+1 −Hk+1β

k( )( ). (12)

where Pk+1 � K−1
k+1 � Pk − PkHT

k+1(I +Hk+1PkHT
k+1)−1 × Hk+1Pk.

FIGURE 3
Comparison between actual values and predictive value.

FIGURE 4
Comparison of experimental values with B1 and B2 data when fault is close to B1 end.
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When the OS-ELM faces the new data, it does not have to relearn
the old data, which makes it faster than the other neural network
methods. When selecting the network parameters, it becomes only
necessary to determine the number of neural units in the hidden layer,
which also reduces the dependence on the network layers.

The whale optimization algorithm is mainly divided into three
steps: surround prey, spiral bubble net attack method, and randomly
search for prey.

Surround prey: because the location of the target prey is
unknown a priori, the WOA algorithm treats the location of the
best candidate in the current whale group as the location of the target
prey, and the other individuals in the whale group update the
location according to the location of the best candidate:

D � C ·X* t( ) −X t( )| |, (13)
X t + 1( ) � X* t( ) − A ·D, (14)

A � 2ar − a, (15)
C � 2r, (16)

where X is the position vector of the current solution; t is the number
of iterations;A and C are coefficient vectors;X* is the position vector
of the optimal solution in the current whale population. a decreases
linearly from 2 to 0 as the number of iterations increases; r is an
arbitrary vector between 0 and 1.

Spiral bubble net attack method: the WOA algorithm first
calculates the distance between the individual whale and the
target prey, and then simulates the spiral movement of
humpback whales for hunting behavior:

D′ � X* t( ) −X t( )| |, (17)
X t + 1( ) � D′ebl cos 2πl( ) +X* t( ), (18)

where b is the constant coefficient defining the spiral shape, and l is a
random number in the interval [−1, 1].

Randomly search for prey: in the process of predation, when A is
greater than 1 or less than −1, the individuals in the whale group
randomly select a prey with reference to each other’s position to
improve the global search ability of the algorithm, namely,

D � CXrand −X| |, (19)
X t + 1( ) � Xrand − AD, (20)

where Xrand is a randomly selected position vector for the current
whale group.

The steps for WOA to optimize the ELM are as follows:

(1) Parameter initialization. Set the WOA parameters, namely, the
number of whales, maximum iterations, variable dimensions,
and upper and lower limits of variables;

(2) Population initialization. Randomly initialize the position
values of each dimension of all whale individuals, and the
position values of each dimension of each whale individual
representing the input weights or thresholds;

(3) Calculate the fitness value. Select the objective function to
calculate the fitness value of each whale individual;

(4) Update the optimal solution. According to the fitness value of
each whale individual, find the position of the optimal
solution in all solutions and update the position of each
whale individual according to the position of the optimal
solution;

(5) The position of each individual whale is updated. When the
probability p < 0.5 and | A |<1, the location is updated according
to Equation 16. If | A | ≥ 1, a location vector Xrand is randomly
selected and the location is updated according to Equation 19.
when the probability p ≥ 0.5, the location is updated through
Equation 20.

3.2 Wavelet packet energy entropy
extraction

The structure of the wind solar storage microgrid system is
shown in Figure 2.

The internal line faults of the microgrid can be divided into
single-phase ground short circuit (AG, BG, and CG), two-phase
short circuit (AB, AC, and BC), two-phase ground short circuit
(ABG, ACG, and BCG), three-phase short circuit (ABC), and three-
phase ground short circuit (ABCG) faults.

When processing the signal, wavelet packet decomposition
can decompose the low-frequency component and high-
frequency component of the signal at the same time; higher
the resolution, more detailed the decomposition and better the
effect. The square-integrable function f(t) can be decomposed
into a scaling function ϕ(t) and wavelet function φ(t); ϕ(t) is low
frequency of f(t), φ(t) is high frequency of f(t), and their
relationship includes

δ2n t( ) � �
2

√ ∑
k∈z

h k( )δn 2t − k( )
δ2n+1 t( ) � �

2
√ ∑

k∈z
g k( )δn 2t − k( )

⎧⎨⎩ , (21)

where h(k) is low pass filter coefficient, and g(k) is high pass filter
coefficient.

When n � 0, δ0(t) � ϕ(t), δ1(t) � φ(t), the set of functions
defined above {δn(t)} (n = 0,1,2,...) is determined by δ0(t) � ϕ(t)
determined wavelet packet. According to the fast algorithm of
orthogonal wavelet transform, the recursive formula of wavelet
packet coefficients can be obtained as follows:

λ2ii+1 � ∑
k∈z

h k − 2t( )λji k( )
λ2i+1i+1 � ∑

k∈z
g k − 2t( )λji k( )

⎧⎨⎩ , (22)

TABLE 2 Distance interval testing error through B1 data.

Experiment 0%–33% 33%–66% 66%–100%

1 0.0021 0.0046 0.045

2 0.0027 0.0072 0.039

3 0.0021 0.0173 0.042

4 0.0002 0.0173 0.035

5 0.0006 0.0042 0.039

6 0.0017 0.0144 0.032

7 0.0007 0.0081 0.0344

8 0.0025 0.0088 0.0356

9 0.0017 0.0094 0.0401

10 0.0017 0.0103 0.0395
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where λji (k) is the kth coefficient corresponding to the jth node of
layer i after wavelet packet decomposition.

Wavelet packet energy entropy is a description of signal
uncertainty, which can reflect the degree of random change of
signals. When a fault occurs in the internal lines of the
microgrid, because the voltage signal contains non-stationary
signal components, the wavelet packet voltage reconstruction
signal waveform will immediately fluctuate at the time of the
fault. The wavelet packet decomposition and reconstruction
technology can make accurate and rapid localization analysis of
the voltage signal, which is reflected in the wavelet packet energy
entropy, so the wavelet packet energy entropy can well reflect the
fault characteristics of the voltage signal. According to information
entropy theory, wavelet packet energy entropy can be defined as

WPEE � −∑L

i�1P Xi,j( )log2 P Xi,j( ), (23)

where L is the original signal length; Xi, j is the jth decomposition
signal of layer i; P (Xi, j) is the frequency band energy probability
density, and the mathematical expression is

P Xi,j( ) � Ei,j∑2i

j�1Ei,j

, (24)

where Ei,j is the energy of the jth decomposed signal of the ith layer,
defined as

Ei,j � ∑N

k�1 λ
j
i k( )∣∣∣∣ ∣∣∣∣2, (25)

where N is the length of the jth frequency band.

3.3 Data

According to Figure 2, a microgrid model that includes wind
turbine (10 kW), photovoltaic cell (10 kW), and battery (10 Ah) is
built in the MATLAB simulink environment. The filter inductances
L1, L2, and L3 are 3.6e

−3 H; the filter capacitors C1, C2, and C3 are
200e−6 F; the electrical loads Load1, Load2, Load3, and Load4 are
10 kVA, 10 kVA, 5 kVA, and 15 kVA, respectively; the line
resistance r is 0.175Ω/km; and the line reactance x is 0.070Ω/
km. Simulate each type of line fault at 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, and 90% of the lines between P1 and P2 on the
microgrid side. The db6 wavelet is selected as the wavelet base, and
the simulated A-phase fault voltage is analyzed by three-layer
wavelet packets to obtain 23 sub signals in different frequency
bands, which are reordered from low frequency to high
frequency. The wavelet packet signal reconstruction is carried out
for each frequency band, and a total of eight wavelet packet
reconstruction signals are obtained. The energy entropy of the
reconstructed signal of each wavelet packet is calculated, and a
set of eigenvectors are constructed from the energy entropy of eight
wavelet packets. By the same processing of phase B and phase C
voltage signals, a eigenvector containing 24 wavelet packet energy
entropy can be obtained X � [x1, x2, . . . , x24]T. Taking X �
[x1, x2, . . . , x24]T as the input sample of the network, and the
output sample of the network is T � [t1, t2, . . . , t4]T, t1, t2 and t3,
respectively, representing the line status of phase A, phase B, and
phase C, and t4 representing whether the fault phase is groundedTA
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when the line fails. When it is 0, it means there is no fault or the fault
phase is not grounded at this time; when the output is 1, it means the
fault phase is grounded.

The data samples at 10%, 20%, 40%, 60%, 80%, and 90% of the
line positions are taken as training samples, and the data samples at
30%, 50%, and 70% are taken as test samples. The number of
neurons in the input layer of ELM is 24, the number of neurons
in the output layer is 4, the number of neurons in the hidden layer is
determined to be 35 according to the trial and error method, the
number of whales inWOA is 30, the maximum number of iterations
is 200, and the variable dimension is 875.

4 Results and discussion

4.1 Fault detection based on original ELM
coupled with distance selection

As shown in Table 1, the method proposed in this article is
nearly twice (mean error is 0.47%) as good as the method using
B2 data only (mean error is 1.48%). The performance based on
B2 only is better than that based on B1 (4.58%), it should be noted
that the performance using combined B1B2 data (4.0%) is the
poorest among the all methods.

FIGURE 5
Data are located by ELM after wavelet transform.

FIGURE 6
Data are located by SVM, RF, and RNN after wavelet transform.
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We compared the results between actual and predictive in
Figure 3, a total of samples of 209 are used for testing. Only
21 samples is not completely positioned accurately, that is, 10%
samples have positioning errors, and the predicted values of the
remaining test samples are identical to the actual values. The
maximum error is that the actual value is 85% of the fault point
that away from B1 and the predicted value is 92% of the fault point,
with 7% error.

We did a comparative experiment, and the results are presented
in Figure 4, when the B1 fault occurs, the data of B1 and B2 are used
to locate the fault location. Through comparison, it can be found
that the data on the B1 side should be accurate to the data on the
B2 side. Table 2 divides the fault distance into three sections: 0%–
33%, 33%–66%, and 66%–100%, respectively. Then, only the data of
B1 is used to locate the fault, and it is found that the farther away
from B1, the greater the test error. We demonstrated that it is more
effective to use data close to the fault point. From the experimental
results, it is shown that using the data points at the near end has
better results. The farther the signal is transmitted, the greater is the
resistance affected by various electrical components.

The experiment in Table 3 uses the SVM classifier, random
forest (RF), and recurrent neural network (RNN) to test the
method proposed in this article. Moreover, we choose to use
libsvm and genetic the algorithm to optimize C and gamma

parameters. The range of C is 0–1,000, the range of gamma is
0–1,000, the maximum evolutionary algebra is 200, and the
maximum data of the population is 20. We can see that, in
our methods, the selection of data based on the fault distance
coupled with SVM can improve the accuracy of detection of fault
in smart grids, with an average error of 0.86%, followed by RF
with a mean error of 0.91% and B1B2-SVM with a mean error of
0.98%. Keeping the results of Figure 4 in mind when coupling
with the SVM algorithm, the B1B2 method can obtain substantial
accuracy with an average error of 0.98%, B1+SVM has the poorest
performance with a mean error of 3.87%, B2+SVM has a
moderate performance with a mean error of 1.61% (ranking of
performance in Figure 4 is B2 > B1B2 > B1), which means that the
artificial intelligence algorithm (SVM here) can substantially
improve the detection of fault in the smart grid. the SVM can
improve accuracy of fault detection more robustly than RF and
RNN, for example, B1+RF has an error of 4.3%, followed by
B1+RNN with 3.8%, and 1.9% and 2.0% for B2+RF and B2+RNN,
respectively; 1.4% and 1.1% for B1B2+RF and B1B2+RNN,
respectively. Fault distance–based data selection can
substantially improve accuracy of fault detection on the basis
of not only SVM but also RF and RNN, for example, 0.8%, 0.9%,
and 1.2% for SVM, RF, and RNN, respectively, which means the
fault distance–based data selection is useful for fault diagnoses.

FIGURE 7
Comparative results of WOA-ELM, PSO-ELM, and traditional ELM models.

TABLE 4 Error between ELM and WOA-ELM methods in training and testing data sets.

Training set Testing set

Error ELM WOA-ELM PSO-ELM ELM WOA-ELM PSO-ELM

MSE 6.374 × 10−6 7.615 × 10−9 8.96 × 10−8 4.215 × 10−5 8.759 × 10−8 9.65 × 10−7

RMSE 0.0052 0.00210 0.0039 0.0079 0.0035 0.0045

MAE 0.0096 0.0017 0.0041 0.017 0.021 0.036
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After processing the data with Daubechies wavelet, the data
output of the first layer is selected as the feature of the input
classifier. The results obtained after positioning with ELM and
with SVM, RF, and RNN are shown in Figures 5, 6, respectively.
It can be seen that the method proposed in this article still has a good
effect, with an average error of 0.66%. The method of B1+ELM after
wavelet transform is the poorest with a mean error of 5.12%,
followed by B1B2+ELM with of mean error of 4.93% and
B2+ELM with a mean error of 3.72. Performance of the SVM,
RF, and RNN methods after wavelet transform is better than that of
the ELMmethod, and the SVM has the best performance. As we can
see in Figure 6, B1+SVM, B2+SVM, or B1B2+SVM has smaller
errors in fault detection, specifically, B1+SVM has the poorest
performance with a mean error of 4.7%, followed by B2+SVM
(1.98%), B1B2+SVM (1.14%), and our method, i.e., fault
distance–based data selection + SVM (0.96%), which means that
our fault distance–based method to detect faults is robust. The
methods of both RF and RNN are poorer than SVM; B1+RF and
B1+RNN are the poorest with a mean 5.04% and 3.9%, respectively.
However, RF and RNN substantially improve the accuracy of fault
detection, which is still poorer than SVM, for example, a mean error
of 1.099% and 1.26% for the fault distance–based data selection +
RNN and fault distance–based data selection + RF, respectively,
while the mean error was 0.959% for our method, which means that
improvement of SVM is robust.

4.2 Fault detection based on WOA-ELM
method

In order to verify the superiority of the WOA-ELM diagnostic
model and improve the recognition accuracy, the WOA-ELM
diagnostic model is compared with the traditional ELM diagnostic
model and optimized ELM by Quantum PSO, i.e., PSO-ELM. The
results are shown in Figure 7. The error ofWOA-ELM andWOA-ELM
diagnostic faults are nearly 8.5% and 8.9%; separately, they are higher
than the traditional ELM model with an error of 11%. We further
compared the results of the three models using the mean square error
(MSE), root mean square error (RMSE), and mean absolute error
(MAE) (Table 4). TheWOA-ELMmodel is largely better than the PSO-
ELM and ELMmodels both in the training and testing data sets in fault
detection. TheWOA-ELMmodel usesWOA algorithm to optimize the
input weight and hidden layer node threshold of the ELM, overcomes
the shortcomings of random initialization of the input weight and
hidden layer node threshold of the ELM, improves the global search
ability of the network, and makes the network have better recognition
accuracy.

Compared with the research results of others, the literature (Ji
et al., 2022) proposes a basic network architecture design, using a
simplified residual connection technology, using focal loss as the
objective function for supervised training, adding a
BatchNormalization layer to the network for optimization,
reducing parameters based on ShuffleNet network, and
improving accuracy on the basis of the attention mechanism, a
process that can automatically determine the appropriate CNN
architecture for fault diagnosis problems. Wang et al. (2011)
proposed a new method for fault identification on the basis of
parameter optimized variational mode decomposition (VMD) and
convolutional neural network (CNN). Luo et al. (2014) proposed a
real-time deep learning algorithm to classify and localize the faults
that occurred in the system based on measured data. Luo et al.
(2017) presented a method on the basis of gated graph neural
network for automatic fault localization on distribution networks.
The method aggregates problem data in a graph where the feeder
topology is represented by the graph links and nodes attributes that
can encapsulate any selected information such as operated devices,
electrical characteristics, and measurements at the point. Kasun et al.
(2013), Zhibin et al. (2019), and Xue and Dola (2022) proposed a
multi-fault diagnosis model of distribution network on the basis of
the fuzzy optimal convolutional neural network. In order to
compare their results with ours, we used the RBF neural network
and BP neural network to detect fault location in the smart grid and
used indicators of MSE, RMSE, and MAE to evaluate accuracy; the
results are provided in Table 5.

The three training errors of theWOA-ELMmodel are about one
order of magnitude smaller than those of the BP neural network
model and ELM model, while the three training errors of the RBF
neural network model are 6–13 orders of magnitude smaller than
those of the WOA-ELM model. The training effect of RBF neural
network is the best. However, it can be seen from Table 6 that the
three test errors of the WOA-ELM model are significantly smaller
than those of the RBF neural network model. It shows that the RBF
neural network model has a phenomenon of over-fitting, and its
generalization ability is weak and cannot accurately identify the
untrained fault types.

4.3 WOA-ELM performance in microgrid
fault diagnoses

In substituting the data samples into the WOA-ELM fault
diagnosis model for training and testing, the line fault diagnosis
results of the test samples at 50% of the line position are shown in
Table 6.

It can be seen from Table 6 that the absolute value of the error
between the expected output and the actual output of the WOA-
ELM fault diagnosis model does not exceed 0.015 at the most. The
error is small, the accuracy is high, and the approximation ability is
strong. It can accurately identify the fault types of microgrid lines.

In order to verify that WOA-ELM diagnostic model has better
performance and higher recognition accuracy than the other
models, the BP neural network, RBF neural network, and ELM
were selected to establish the diagnostic models for comparative
analysis. The expected output and actual output results of all
training samples (72) are shown in Figure 8A. It can be seen

TABLE 5 Error between BP and RBF methods in training and testing data sets.

Training set Testing set

Error BP RBF BP RBF

MSE 9.110 × 10−4 4.392 × 10−17 7.889 × 10−4 0.0321

RMSE 0.0302 2.001 × 10−9 0.0285 0.0512

MAE 0.0181 1.401 × 10−9 0.0190 0.021
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from Figure 8A that the training error of the BP neural network
model is large; the training results of the other three models can well
approximate the expected output; the error between the actual value
and expected value is small; and the training accuracy is high.

The expected output and actual output results of all test samples
(36) are shown in Figure 8B. It can be seen from Figure 8B that the
test results of the BP neural network model, RBF neural network
model, and the non-optimized ELM model have large errors, while
the test accuracy of the WOA-ELM model is the highest.

5 Conclusion

In this article, a microgrid fault diagnosis method based on the
whale algorithm optimization limit learning machine was proposed.
The whale algorithm has the characteristics of fast convergence
speed and strong global optimization ability. It optimizes the input

weights and hidden layer neuron threshold of the ELM, effectively
avoids the shortage of random initialization of network input
weights and hidden layer threshold, enhances the approximation
ability of the model, and significantly improves the recognition
accuracy of the network. The results show that the selection of data
based on the fault distance is twice as effective as the useless real
data. The ELMmethod was proved to have a good location result by
using the support vector machine classifier and wavelet transform to
process the signal. After the ELM is improved by the WOA
algorithm, the accuracy of fault detection is improved by nearly
22.5%. The simulation results show that theWOA-ELMmodel has a
higher recognition accuracy than the BP neural network model, RBF
neural network model, and ELM model and can more accurately
identify the fault types of internal lines in the microgrid, which
verifies the effectiveness and reliability of the WOA-ELM model.

The power system simulated in this article may be different from
the complex power grid in reality. The actual power system wires are

TABLE 6 Fault diagnosis results of test samples at 50% of line.

Types of faults Expected output Actual output

Normal (0,0,0,0) (−0.001 1, 0.008 6, −0.000 5, 0.001 1)

AG (1,0,0,1) (0.995 6, −0.002 5, 0.002 0, 0.987 4)

BG (0,1,0,1) (−0.001 0, 0.997 5, −0.002 6, 0.998 0)

CG (0,0,1,1) (−0.002 1, 0.001 5, 0.998 3, 0.996 5)

AB (1,1,0,0) (1.004 2, 0.995 7, 0.002 3, 0.009 1)

AC (1,0,1,0) (1.002 5, −0.007 9, 0.995 7, 0.002 3)

BC (0,1,1,0) (0.001 7, 0.988 4, 0.993 8, −0.003 6)

ABG (1,1,0,1) (1.000 2, 0.995 9, −0.010 7, 0.989 4)

ACG (1,0,1,1) (1.004 6, 0.000 4, 0.992 4, 1.001 3)

BCG (0,1,1,1) (−0.006 6, 0.994 9, 1.010 3, 1.004 8)

ABC (1,1,1,0) (1.004 8, 1.004 5, 0.999 1, 0.000 1)

ABCG (1,1,1,1) (1.014 8, 1.012 5, 0.994 2, 1.004 4)

FIGURE 8
Desired output and actual output of 72 training samples (A) and testing samples (B).
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more complex, and the accuracy of the detection data may not be as
high. Now, the method proposed in this article is to choose which
end of the data to use on the basis of the distance. In fact, in the
power system model, the information of the power components on
both sides is not equal, which leads to a worse situation when using
only the B1 end data than when using only the B2 end data. In this
article, we use distance 1:1 to select data. Next, we can select data at
B1 or B2 on the basis of a certain proportion, such that the effect of
adding distance to power components is equivalent to 1:1. In fault
location, many articles use wavelet transform to analyze because
when a fault just occurs, the power system will produce transient
signals, which is also one of the directions of future research. How to
select data for fault location? Is it a half cycle or one cycle after fault?
How long to choose is also something that can be further studied in
the future.
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The non-intrusive load decomposition method helps users understand the
current situation of electricity consumption and reduce energy consumption.
Traditional methods based on deep learning are difficult to identify low
usage appliances, and are prone to model degradation leading to insufficient
classification capacity. To solve this problem, this paper proposes a dilated
residual aggregation network to achieve non-intrusive load decomposition. First,
the original power data is processed by difference to enhance the data expression
ability. Secondly, the residual structure and dilated convolution are combined
to realize the cross layer transmission of load characteristic information, and
capture more long sequence content. Then, the feature enhancement module
is proposed to recalibrate the local feature mapping, so as to enhance the
learning ability of its own network for subtle features. Compared to traditional
network models, the null-residual aggregated convolutional network model has
the advantages of strong learning capability for fine load features and good
generalisation performance, improving the accuracy of load decomposition. The
experimental results on several datasets show that the network model has good
generalization performance and improves the recognition accuracy of low usage
appliances.

KEYWORDS

non-intrusive, load disaggregation, deep learning, feature extraction, energy efficiency,
residential electricity

1 Introduction

With the development trend of smart grid, the traditional intrusive load monitoring
method has many problems, such as high construction cost and difficult application, which
makes the non-invasive load monitoring method a unique way to solve these problems.
Non-intrusive load decomposition can help power companies more easily obtain the
power consumption of users and understand the power consumption of various electrical
appliances. Non-intrusive load decomposition can more accurately predict the distribution
of residential power consumption and the total amount of residential load by providing the
power consumption of each electrical appliance of users, reduce planning investment, save
budget, and avoid unnecessary waste of power resources. It is also conducive to the scientific
formulation of relevant policies for dynamic demand response by power companies, the
adjustment of electricity prices, the evaluation of relevant projects and the more reasonable
allocation of power resources, and the formation of a more benign and friendly interaction
between users and power companies, so as to achieve the results of peak shaving and valley
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filling, mutual benefit and win-win results. On the other hand, if
a family can know more details about electricity consumption, it
will consciously reduce energy waste. For example, most American
and British families install smart meters in their homes to facilitate
users to learn about the low peak electricity price information
in time, promote users to use electricity at night or at low
prices, alleviate the pressure of peak electricity consumption,
avoid power loss, and indirectly improve the economic benefits
of power sources (Zhao et al., 2019). In 1992, Hart proposed
non-invasive load monitoring (NILM). Its essence is non-invasive
load decomposition NILD (Hart, 1992), that is, the total energy
consumption is decomposed into a single device to analyze the
electricity consumption behavior of residential users. This provides
effective feedback on residential electricity consumption, helping
users save energy and reduce electricity charges (Paterakis et al.,
2017). Hart’s method is mainly to extract steady-state features for
power decomposition. Based on Hart’s algorithm, a simple non-
invasive charge load monitoring system can be designed. However,
this algorithm can only be used for a small number of electrical
appliances, and the number of types of features extracted is small.
When there are many types and numbers of electrical appliances,
the decomposition accuracy of this algorithm decreases significantly
(Dash and Sahoo, 2022).

In view of the problems in the above non-invasive load
decomposition, Inagaki et al. (2011) and others used the integer
programming method to monitor the load of household power
equipment, but it is only applicable to equipment in discrete
operationmode. Kolter et al. (2010) studied sparse coding algorithm
to improve decomposition performance, but this method is only
applicable to data sets containing low resolution data types. Lin Y.
and Tsai (2014) and Chang et al. (2013) used particle swarm
optimization algorithm to carry out non-invasive charge load
decomposition experiments for a small number of several electrical
appliances. This algorithm can decompose the total power data
to each electrical equipment at the same time, but the error of
the decomposition results is still large. The optimization method
is based on load characteristic analysis. First, the static and
dynamic characteristics of the load should be modeled. The total
load curve is the superposition of multiple loads. The objective
of optimization is to obtain the optimal load coefficient (i.e.,
the contribution of each load), so as to minimize the residual
between the superimposed total load and the actual load. Piga et al.
(2016) proposed a sparse optimization algorithm for non-invasive
charge load decomposition, which reduced the decomposition
error to a certain extent. Ahmadi and Marti (2015) proposed
a non-invasive charge load decomposition experiment based
on feature matching (also called load information matching),
which effectively solved the problem of high similarity between
load features. Johnson and Willsky (2013); Luan et al. (2022);
Xia et al. (2021) used the Hidden Markov Model to perform non-
invasive charge load decomposition. Similar to the combination
optimization algorithm, these algorithms first obtain the state
power of electrical appliances through clustering. Its encoding
and decoding process is the process of optimizing the power
values obtained by these clustering, and the decomposition results
are also the combination of power values obtained by clustering,
which cannot obtain more accurate electrical power consumption
values (Himeur et al., 2020a; Fan et al., 2021). Compared with

hidden Markov algorithm, Tsai and Lin (2012) proposed a method
achieves more accurate non-invasive load decomposition through
K-nearest neighbor regression algorithm. However, when the power
consumption difference between appliances is large, this algorithm
cannot achieve accurate decomposition. Other researches, such
as algorithms based on Adaboost algorithm (Hassan et al., 2014),
2D phase encoding algorithm (Himeur et al., 2020b; Himeur et al.,
2021a), fuzzy algorithm (Lin Y. H and Tsai, 2014), bagging
tree algorithm (Himeur et al., 2020c), histogramming descriptor
algorithm (Himeur et al., 2021b) and neural network algorithm,
have made certain achievements in non-invasive charge load
decomposition tasks. For the machine learning model, non-
intrusive load decomposition is to take the total power time
series data as the input, take the power data of each electrical
appliance as the output (fitting method) or take the electrical
appliance category as the output (classification). These two tasks
are consistent in nature, although it is more difficult to take the
power data of each electrical appliance as the output. For machine
learning methods, a large number of sample data are needed for
training. Non-intrusive load decomposition based on machine
learning is to fit the machine learning model through training of
a large number of samples, so as to obtain the power distribution
of various loads under different total power conditions, which has
no essential difference from traditional machine learning fitting
and classification. For 1/60 Hz sampling data, it can meet the needs
of non-intrusive load decomposition very well. In Lin’s work, the
fuzzy C-means algorithm based on particle swarm optimization is
combined with the fuzzy neural algorithm for non-invasive charge
load decomposition experiments. This algorithm can identify the
state of an electrical appliance at a certain time, and also solve
the problem of high similarity between the power consumption
characteristics of electrical appliances. Park et al. (2019) proposed
an equipment status recognition algorithmbased onneural network,
which is simple and fast in decomposition. Welikala et al. (2019)
proposed a NILD method, which combines the application usage
patterns (AUPs) of equipment to improve the state recognition
performance of high-frequency appliances. Himeur et al. (2021c)
proposed a histogrampost-processing of 2D local binary patterns for
smart grid applications. Guo et al. (2021) proposed a multi-model
combination model for non-intrusive load disaggregation, which It
can integrate the advantages of various methods and improve the
accuracy of decomposition. The traditional methods mainly use
artificial features to realize the identification of electrical appliances
by optimizing methods, but it is difficult to extract effective artificial
features. The algorithm is highly sensitive to noise and has low
decomposition accuracy.

Traditional load feature extraction needs manual design, so it
is difficult to extract effective features, and it is difficult to analyze
the features of time series. Recently, deep learning technology has
been widely used in various fields (Qu et al., 2021; Chen et al.,
2022; Gao et al., 2022; Song et al., 2023). The application of deep
learning in non-invasive load decomposition has gradually attracted
researchers’ attention. So far, there are a large number of load record
data for model training. For model training, we need to record
the power data of a household user and each load. At present,
there are many data sets, such as UK-DALE public data set and
WikiEnergy data set, which provides a data basis for the application
of deep learning. Different from traditional pattern recognition,

Frontiers in Energy Research 02 frontiersin.org57

https://doi.org/10.3389/fenrg.2023.1140685
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yu et al. 10.3389/fenrg.2023.1140685

deep learning can automatically extract features without manual
extraction. In Kelly’s experiment (Kelly and Knottenbelt, 2015),
it is proved that AutoEncoder method has the best effect in
sequence pair sequence method. Singh and Majumdar (2018),
Singh and Majumdar (2019) proposed deep sparse coding for
non-intrusive load monitoring, improved decomposition efficiency.
Xia et al. (2019) constructed a deep dilated residual network for
load feature extraction, it can improve feature utilization. Jia et al.
(2021) used bidirectional dilated residual network to realize the
sequence to point non-intrusive load decomposition. At present,
there are two main load decomposition methods: sequence to
sequence and sequence to point. Sequence-to-sequence refers to
the direct decomposition of the input sequence into different load
sequences. Instead of training a network to predict a window,
the sequence to point method is only to predict the midpoint
element of input window. The idea is that the input of the
network is a mains window, the output is the power at one
point of various electrical devices. Zhang et al. (2016) realized
sequence to sequence and sequence to point non-invasive charge
load decomposition using convolutional neural network. In Zhang’s
experiment, sequence to point decomposition method has achieved
good results in the decomposition of most electrical equipment.
Compared with other deep learning methods, convolutional neural
network has been proved to be more effective in the application
of non-invasive load decomposition. However, Zhang’s experiment
uses a relatively shallow convolutional neural network, which
is prone to the phenomenon of gradient disappearance, and
cannot extract the deep level charge load characteristics. It is
difficult to capture the relationship between long time series data.
Xia et al. (2020) constructed a deep LSTM model to realize the
decomposition of sequences into multiple sequences, and improved
the decomposition accuracy through depth feature extraction.
However, the current deep learning model is prone to model
degradation and other problems, resulting in insufficient fitting
ability. In addition, because it is difficult to extract the features of low
usage appliances, theweight of low usage appliances in deep learning
training is too small.Therefore, the existing deep learningmodel has
poor decomposition effect on low utilization rate appliances.

To solve above problem, a dilated-residual aggregation network
(DRA-Net) is constructed and applied to non-invasive load
disaggregation. The network model increases the receptive field

of convolution kernel through hole convolution to capture more
features. In addition, a feature enhancement module is proposed
to improve the learning ability of the model to fine load features,
and further improve the generalization performance of non-invasive
load decomposition. In conclusion, our contributions are as follows:
1) The differential processing of raw power data enhances the ability
of data expression. 2) A structure combining residual structure and
dilated convolution is proposed to realize cross-layer transmission
of load characteristic information and capture more long sequence
content. 3) A feature enhancementmodule is proposed to recalibrate
the local feature mapping to enhance the learning ability of network
for fine features.

2 Dilated-residual aggregation
convolutional neural network

Since different load devices in residential houses have different
electrical characteristics and some other influencing factors such
as interference noise, this work realizes the optimization and
improvement of the common convolutional network structure,
and proposes a new network model, Dilated-residual Aggregation
Convolutional Neural Network (DRAnet) to realize Non-intrusive
power load disaggregation, whose overall structure is shown in
Figure 1.

As shown in Figure 1, the network model includes the ordinary
convolutional layer, the Dilated Resblock, Feature Enhancement
Module (FEM), Information Fusion Module (IFM), and Fully
Connected Layer (FC). There are a total of three void residual
modules, namely, Dilated Resblock1, Dilated Resblock2, andDilated
Resblock3. There are a total of three feature enhancement modules,
namely, FEM1, FEM2, and FEM3. The total load power is
differentially processed and then recombined with the original
data as the input side, which enriches the edge information of
residential power data. The convolutional layer of the Dilated-
residual Aggregation Convolutional Neural Network enhances the
extraction of load features of different residential electrical devices
by combining multiple convolutional kernels to retain the basic
load characteristic information. The initial convolutional layer for
load disaggregation feature mapping is followed by three void
residual modules. The non-intrusive power load disaggregation

FIGURE 1
Structure of the dilated-residual aggregation convolutional neural network.
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task enhances the model’s ability to fit the load features without
increasing the number of parameters through these three cavity
residual modules. At the same time, it ensures that the signal passed
layer by layer in the network will not be lost when back propagation
is performed. The dilated residual module is based on the idea of
“cross-layer connection” and uses the residual connection to further
extract features from the low-order load features Hu et al. (2022).
The higher-order residential load feature mapping contains more
abstract load characteristics and timing information.

To enhance the disaggregation performance of the network for
load, a feature enhancement module is proposed to process the
output mapping of different stages in the network to obtain the
attention weight matrix. This matrix is multiplied and summed with
the corresponding vectors with the output of the dilated residual
module. This module facilitates the integration and strengthening
of the base load characteristics extracted by the first three void
residual modules, and fully utilizes the load characteristics and
timing information of each network stage, which makes the fitting
ability of the whole network structure enhanced, especially for
the load devices with low usage frequency like washing machines
and dishwashers, and has a great disaggregation improvement
effect. The output dilated residual convolutional feature mapping
and the feature-enhanced load feature mapping both contain a
large amount of different higher-order load information. Using
the dimensional splicing in the information fusion module and
conventional convolutional operation processing, these two parts
are then integrated, and finally the power prediction results
of the electrical equipment are output by the full-connected
operation. Dilated-residual Aggregation Convolutional Neural
Network constructed in this section is mainly designed to make
up for the defects of insufficient utilization of residential load
characteristics, poor disaggregation of low-use appliances and
disappearance of gradients, reflecting the more excellent feature
extraction capability and learning ability of the dilated residual
aggregation convolutional network.

2.1 Dilated resblock

The dilated convolution uses the parameter Dilated Factor
(DF) to adjust the size of the dilated convolution (Miao et al.,
2022). Since loads like washing machines and dishwashers are used
less frequently and have sparse temporal features, the proposed
dilated convolution allows resampling of the underlying load feature
mapping. Pooling and down-sampling operations cause the loss of
temporal information of the load, while the advantage of the dilated
convolution is that it can both replace the pooling effect and increase
the field of sensation exponentially (field of sensation refers to the
corresponding size of the convolution kernel, that is, the range of the
convolution for the load series.), allowing each convolution output
to capture a larger range of feature information, which has a good
feature extraction effect for load appliances like washing machines
without adding extra redundant number of parameters.

The dilated convolution kernel in the Dilated-residual
Aggregation Convolutional Neural Network is shown in Figure 2B.
Figure 2A shows the ordinary convolutional kernel convolution,
where xl and xl+1 are the input and output of l+ 1 layer respectively.
Assuming that the convolutional kernel size kernel is a and the

FIGURE 2
Comparison of ordinary convolution and dilated convolution. (A)
Normal convolution. (B) Dilated convolution.

step stride is 1, when the hole rate d is 1, i.e., the number of filled
“0” weights is 0. From the calculation of Eq. 1, we can see that the
mapping range length of layer l+ 1 (Ll+1) and layer l (Ll) is the same.

Ll+1 =
[Ll + 2× padding− kernel− (kernel− 1) × (d− 1)]

stride
+ 1, (1)

where padding is the number of padding zeros. The dilated rate
d is 2 in Figure 2B, and the perceptual field is expanded to 5× 1.
So, the advantage of the dilated convolution lies in the ability to
increase the local receptive field during the convolution operation
and capturemore information about the load characteristics without
introducing additional parameters. For load feature extraction,
dilated convolution can control the receptive field without changing
the size of the feature map, so as to extract multi-scale information
and effectively improve the accuracy of load decomposition. The
combination of the three-layer dilated convolution and the residual
connection constitutes a dilated residual module, as shown in
Figure 3.

The feature mapping is performed sequentially using the dilated
convolution kernel with convolution of the dilated rate of 1, 2,
and 3, including Leaky-Relu (Leaky ReLU is the commonly used
activation function of convolution neural network at present), Batch
Normalization (Similar to common data standardization, it is a
way to unify scattered data and a common method to optimize
neural network at present.), and other operations for processing,
and the reason why Relu is not used as a non-linear activation
function is that when the input value of the convolution layer
is negative, the learning speed of Relu will be slow (Wang et al.,
2022), even deactivating the neurons and preventing them from
updating weights, resulting in the disappearance of the network
gradient. Leaky-Relu activation function can correct the distribution
of load data and retain the negative values in the gradient
calculation process (Lu et al., 2022), which indirectly improves the
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FIGURE 3
Structure of dilated resblock.

retention of power load timing information in the network. The
residual connection also solves the problem of network degradation
caused by the gradual disappearance of information in the reverse
transmission of network layers, so the dilated residual module
enhances the fitting ability of the network itself to the load samples
and improves the disaggregation accuracy of the model.

2.2 Feature enhancement module

The structure of the feature enhancement module proposed
in this work is shown in Figure 4. The two input mappings of
the internal structure of the null residual aggregated convolutional
network are used as the input side of the feature reinforcement
module, which are feature map1 and feature map2. Where feature
map1 is the output feature map of the current null residual module,
while feature map2 is the output feature map of the previous stage.
As known from Figure 4, there are two optimization branches
of the feature reinforcement module, the first branch includes
operations such as Convolution, GlobalAvgPooling (GAP), FC,
Sigmoid, Reshape, etc. The second branch contains operations such
as tensor multiplication of feature maps, i.e., feature rescaling.
Feature map1 and feature map2 are processed by the feature
reinforcement module to obtain the output mapping feature map3.

The specific process of the enhancement module in loading
information is shown in Figure 5. In Figure 5, feature map2 is the
previous stage feature mapping, so it is not consistent with the
dimensionality of the output mapping feature map1 of the null
residual module, and the dimensionality of feature map2 is C.
The number of convolution kernels of the convolution is 1× 1×C.
The convolution operation of this 1× 1 convolution makes the
two dimensions consistent, which is convenient for subsequent
processing. The weight vector1 (weight vector1 in the figure)
is obtained after the GlobalAvgPooling layer operation, which
compresses the pre-multi-dimensional load feature map to a one-
dimensional feature map. Weight vector1 is essentially a one-
dimensional vector containing low-order load feature information,
which characterizes the global information on the feature layer, and
its dimension is 1×C. weight vector1 is then processed by FC layer,
Relu non-linear activation function to obtain weight vector2 (weight

vector2 in the figure), weight vector2 is a high-dimensional vector of
higher-order global features obtained on the basis of weight vector1,
whose dimension is also 1×C. Through this series of operations,
the weight vector2 further represents the change in dimensional
response of residential housing load characteristics as described as
follows:

W1 = GAP (conv (F1)) , (2)

W2 = FC (Relu (W1)) , (3)

Where F1 is the feature mapping of feature map1, GAP(⋅) is
global average pooling, FC(⋅) is fully connection. W1 and W2 is the
weight vector 1 and weight vector 2, respectively.

Sigmoid non-linear activation processing is similar to a gated
filtering mechanism to achieve a filtering function on load
information. Sigmoid processes each feature of the weight vector2
to generate a different weight variable. When the load feature of a
channel is more effective, its corresponding weight variable is closer
to 1; when the load feature of a channel is invalid, its corresponding
weight variable is closer to 0. In this way the feature reinforcement
module filters the useless information effectively.Then after Reshape
operation to complete the dimensional change, the weight vector2
processed by the above operation is multiplied with feature map2
to complete the feature rescaling of feature map2, and finally the
reinforced output mapping feature map3 is obtained, the specific
calculation is as Eq. 4.

F3 = F2 ⋅ Sigmoid (W2) , (4)

Where F3 is the feature mapping of feature map3, Sigmoid(⋅)
is the Sigmoid fuction. The main role of the feature enhancement
module is to integrate and optimize the features of the output
mapping feature map1 of the dilated residual module and the
output load feature mapping feature map2 of the previous part
to complete the rescaling of the weights. This module makes use
of the feature maps obtained at different stages of the network
model, thus enabling the discrimination of the importance of the
load features. The feature reinforcement module of the null residual
aggregated convolutional network learns the dependencies of load
timing information through the weight vector weight vector1 and
weight vector weight vector2 and learns the importance of each
load feature in the network accurately. Feature mappings that are
favorable to the load decomposition task are given biased weight
vectors, which serve to improve the decomposition accuracy, and
conversely are given biased weight vectors that are small, which
suppress irrelevant load features and achieve filtering of invalid
information.

In summary, the null residual aggregated convolutional network
model improves the decomposition accuracy of low-use appliances
by completing the rescaling operation of load features through the
feature reinforcement module.

2.3 Information fusion module

The structure of the information fusion module proposed in
this work is shown in Figure 6. In total, it is composed of Add
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FIGURE 4
Structure diagram of feature enhancement module.

FIGURE 5
Schematic diagram of the process of the feature enhancement module.

FIGURE 6
Information fusion module structure diagram.

operation, 3× 1 Conv, Leaky-Relu non-linear activation function,
and Batch Normalization. The output feature mapping of the null
residual module is different from the output feature mapping of
the feature reinforcement module, so the two parts are fused using
the information fusion module. The dimensionality of feature map1
and feature map2 of Figure 6 is made consistent using the base
convolution, and the dual input feature mappings are fused by
Add operation, and feature re-extraction is performed using 3×
1 convolution. After that, the load feature mapping is further
adjusted and optimized using Leaky-Relu activation function, Batch
Normalization and other operations. Finally the output feature
mapping of the information fusion module is a one-dimensional
vector, and then the prediction results of residential load devices are
obtained by the full join operation.

The null residual aggregated convolutional network uses
multiple null residual blocks to extract the electric load features
of residential houses, which improves the network model’s ability
to encode and decode load information, and also uses residual
connections to transfer feature information to further ensure the
effectiveness of load transfer between layers and avoid problems

such as gradient disappearance of the network model. The non-
intrusive load decomposition based on DRAnet uses the combined
power data X as input samples and the power data Y of individual
load devices as output labels to train and tune the network model.
When tested on the test set, the decomposition results will be
predicted based on the mapping relationship between X and Y
during the training of the network.Themodel’s feature enhancement
module and information fusion module achieve optimal integration
of load features extracted at different stages, thus improving the
accuracy of the networkmodel for load decomposition applications,
especially improving the decomposition and identification of low-
use appliances.

3 Simulation and analysis

3.1 Data sets

In this paper, two datasets [UK-DALE public data set and
WikiEnergy data set (Kelly and Knottenbelt, 2015)] are used to
verify the algorithm. WikiEnergy data set is a research power
data set released by Pecan Street, and it is the most abundant
residential power energy database in the world to study power
load decomposition. It contains power data collected by nearly 600
household users over a period of time, including single load and
total household power consumption. The active power of all loads
and residential buildings is obtained at the sampling frequency of
1/60 Hz. The collection of power data began in 2011, but it has
not stopped. The database is still expanding, providing a good data
support for the research of non-intrusive load decomposition. The
UK-DALE public data mainly contains the information of single
load and total household power consumption of five household
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TABLE 1 Load decomposition evaluationmetrics comparison onWikiEnergy data sets.

Index Method Air condition Fridge Microwave Washing machine Dish washer

MAE KNN 38.484 43.014 26.928 16.677 30.630

DAE 36.964 39.520 17.015 12.081 25.107

FHMM 40.212 22.898 12.787 12.787 19.782

CNN s-p 39.635 13.760 13.155 11.959 11.624

CNN s-s 61.129 38.413 9.973 18.497 19.084

CD-LSTM 39.921 19.989 7.898 10.989 9.989

D-ResNet 38.881 16.787 8.878 12.762 9.727

DRAnet 36.388 10.841 4.879 1.894 1.948

SAE KNN 0.0006 0.096 2.160 2.323 1.121

DAE 0.0001 0.071 2.317 2.835 1.405

FHMM 0.004 0.076 0.452 1.002 0.926

CNN s-p 0.006 0.074 0.319 2.467 0.098

CNN s-s 0.013 0.051 0.060 3.925 0.886

CD-LSTM 0.065 0.045 0.172 1.190 0.158

D-ResNet 0.011 0.021 0.182 1.022 0.152

DRAnet 0.011 0.019 0.133 0.08 0.084

Bold indicates the best result.

users. The number of load devices in each household is up to
9, but the sampling period of each household is different. In the
experimental, 70% of the sequences are used for training and 30%
for testing.

In deep learning, artificially adding some noisy “dummy
samples” combined with real data is beneficial to improve the
robustness of the model and the generalization performance of
the model. In this work, differential processing is performed on
the raw power data. The load power signal is essentially a set of
time-varying data, similar to a set of linear time-series information,
and the total power samples are subjected to first-order differential
processing, where the differential signal is a representation of the
difference between two data. After the processing, the performance
state of each non-zero-valued load device in the time dimension
changes. Main purposes: 1) Each non-zero value power is changed
to eliminate data fluctuation of load power signal and make the data
tend to smoothness. 2) Combining raw data and differential data
as the data input side enhances the data expression capability. The
equation for differential processing is shown as follow Equation.

ΔXt = Xt −Xt−1, (5)

whereXt represents the instantaneous total power data at the current
moment t, Xt−1 represents the instantaneous total power data at the
moment point t− 1, ΔXt is the result of differential processing.

3.2 Analysis of experimental results for the
WikiEnergy dataset

For the network model proposed in this work, experimental
simulations and analyses are performed using several load devices,

namely, air conditioner, refrigerator, microwave oven, washing
machine, and dishwasher in WikiEnergy data set. DRAnet conducts
non-invasive load decomposition experiments on the corresponding
load devices on the WikiEnergy dataset, and compares K-
Nearest Neighbor (KNN) algorithm, factorial hidden Markov
model (FHMM), Denoising AutoEncoder (DAE) algorithm, CNN
Sequence to Sequence (CNN s-s) algorithm, and CNN Sequence
to Point (CNN s-p) algorithm, composite deep long short-term
memory network (CD-LSTM) (Xia et al., 2020), and deep dilated
residual network (D-ResNet). In this work, the input size of the
network is 100. For the sequence-to-sequence method, the output
size is 100. For the sequence to point method, the output size
is 1. The average absolute error (MAE) and the comprehensive
absolute error (SAE) are used to evaluate the performance of the
algorithm. Table 1 and Figure 8 shows the comparison between the
load decomposition effects of the above algorithms and the real
power data on the WikiEnergy dataset.

The experimental results show that the KNN algorithm has
the worst load decomposition effect on the following loads, such
as microwave oven, washing machine and dishwasher. Because
these loads have the characteristics of low frequency use, the KNN
algorithm cannot effectively identify and decompose the sudden
change point of load power due to its own algorithm structure. All
algorithms can effectively decompose the air conditioning load with
periodic laws. From the decomposition results of refrigerators, it
can be found that D-Resnet algorithm and DRAnet network model
proposed in this paper can be decomposed better, mainly because
they can accurately identify the peak area of load power. In fact,
for load decomposition, the most important thing is to improve the
decomposition ability at high power consumption. For the moment
of very low power, although all methods are different, they have little
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TABLE 2 Load operating state index comparison onWikiEnergy data sets.

Index Method Air condition Fridge Microwave Washing machine Dish washer

Recall KNN 0.998 0.996 0.759 0.290 0.561

DAE 0.999 0.996 1 0.451 0.833

FHMM 0.999 0.996 0.912 0.174 0.674

CNN s-p 0.999 1 0.987 0.129 0.596

CNN s-s 0.999 0.990 0.949 0.290 0.868

CD-LSTM 0.999 0.994 0.957 0.453 0.856

D-ResNet 1 0.997 0.947 0.675 0.887

DRAnet 1 1 0.988 0.880 0.982

Precision KNN 0.987 0.870 0.198 0.236 0.336

DAE 0.987 0.853 0.050 0.229 0.281

FHMM 0.991 0.966 0.061 0.132 0.421

CNN s-p 0.995 0.996 0.050 0.047 0.414

CNN s-s 0.939 0.847 0.033 0.428 0.391

CD-LSTM 0.976 0.902 0.213 0.562 0.415

D-ResNet 0.986 0.976 0.453 0.612 0.568

DRAnet 0.999 0.997 0.712 0.758 0.823

Accuracy KNN 0.991 0.889 0.967 0.993 0.978

DAE 0.991 0.872 0.812 0.992 0.967

FHMM 0.987 0.877 0.854 0.993 0.971

CNN s-p 0.997 0.980 0.816 0.986 0.982

CNN s-s 0.958 0.864 0.729 0.995 0.978

CD-LSTM 0.976 0.978 0.821 0.995 0.968

D-ResNet 0.975 0.981 0.942 0.987 0.971

DRAnet 0.999 0.986 0.979 0.996 0.996

Bold indicates the best result.

impact on practical applications. Therefore, effective decomposition
of load peaks is particularly important. The experiment shows
that the DAE algorithm has certain advantages in identifying
and decomposing regions with zero power consumption. For low
frequency load equipment such as microwave ovens, washing
machines and dishwashers, CNN s-s and CNN s-p convolutional
neural networks can not accurately realize power decomposition. In
terms of MAE and SAE, decomposition errors are relatively large.
The main reason is that the number of layers of these two network
models is small, and the load feature extraction is insufficient. D-
ResNet’s performance is better than CNN s-s and CNN s-p, but it
still cannot accurately realize the decomposition. That is because,
although the residual structure makes the network deeper and
improves the feature extraction ability, the feature extraction of
electrical appliances with less frequency of use is still insufficient.
Due to the structural advantages of the model, DRAnet uses dilated
convolution to deepen the receptive field of convolution kernel,
capture more time series information of fine load characteristics,
and improve the decomposition effect. Compared with the existing
decomposition algorithms, the DRAnet network model has better
decomposition effect and better decomposition performance. In

particular, the load decomposition curve is closer to the real
power consumption curve on the load of microwave oven, washing
machine, dishwasher and other low-frequency use.

After the load is decomposed, the start and stop status of the
electrical appliances can be distinguished by the threshold value.
The threshold values of five kinds of appliances are: air conditioner
100 W, refrigerator 50 W, washing machine 20 W, microwave oven
200 W, dishwasher 100 W. Table 2 shows the comparison of the
evaluation indexes of load operation status after load decomposition
by each algorithm. In Precision and Accuracy indexs, the DRAnet
network model achieves the best decomposition performance in
each appliance. In Recall metrics, good metrics performance was
also achieved on Air Wither, Refrigerator, Washing Machine and
Dishwasher. ForCNNs-s, CNNs-p,DAE,CD-LSTMandD-ResNet,
combining the decomposition results of microwave oven, washing
machine and dishwasher in Figure 7 with the load operation state
metrics Recall and Precision analysis, the actual power consumption
of these three loads is significantly less in the proportion of samples
in the on state compared to the other two loads. Therefore, from
the indexes, for these low-frequency use load devices, none of them
can accurately identify the operating state of the load switch. The
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FIGURE 7
Partial view of load decomposition for WikiEnergy dataset.

FIGURE 8
Partial view of load decomposition for UK-DALE dataset.

Frontiers in Energy Research 09 frontiersin.org64

https://doi.org/10.3389/fenrg.2023.1140685
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yu et al. 10.3389/fenrg.2023.1140685

TABLE 3 Load Decomposition EvaluationMetrics Comparison on UK-DALE data sets.

Index Method Kettle Fridge Microwave Washing machine Dish washer

MAE KNN 1.413 2.407 1.078 4.032 3.274

DAE 8.867 8.218 1.226 14.920 12.756

FHMM 9.432 6.432 1.123 15.773 12.722

CNN s-p 4.002 4.517 1.159 23.881 9.747

CNN s-s 8.829 3.866 1.125 20.696 9.101

CD-LSTM 3.139 3.762 1.021 17.622 7.653

D-ResNet 3.028 2.862 0.972 14.526 6.525

DRAnet 0.703 2.133 0.811 3.618 2.403

SAE KNN 0.076 0.015 0.054 0.018 0.001

DAE 0.377 0.021 0.748 0.006 0.340

FHMM 0.004 0.076 0.452 1.002 0.926

CNN s-p 0.242 0.024 0.845 0.302 0.154

CNN s-s 0.522 0.032 0.880 0.315 0.213

CD-LSTM 0.271 0.020 0.421 0.102 0.061

D-ResNet 0.121 0.014 0.226 0.081 0.052

DRAnet 0.002 0.011 0.237 0.0007 0.020

Bold indicates the best result.

best load identification is the network model proposed in this work,
which is most capable of accurately predicting the operating state
of such load switches. In general, the power of the refrigerator is
relatively regular, that is, it will stay at a relatively high power position
for a period of time after starting. Although there is a power peak
during the period, this does not affect the judgment of the start and
stop of the electric appliance.

3.3 Analysis of experimental results for the
UK-DALE dataset

In order to verify the generalization performance of the
networkmodel in this paper, relevant comparative experiments were
carried out in UK-DALE. In the electric power data, five typical
loads of kettle, refrigerator, microwave oven, washing machine
and dishwasher are selected for experiment and analysis. As
shown in Table 3, the above five algorithms can achieve effective
power decomposition for frequently used load equipment such
as air conditioners and refrigerators. For loads such as washing
machines, microwave ovens and dishwashers, KNN algorithm,
FHMM algorithm, CNN s-s algorithm and CNN s-p algorithm are
far less effective thanCD-LSTMalgorithm,D-ResNet algorithm and
DRAnet network model. This is mainly due to the advantages of the
proposed network structure, which can better detect the peak state
of power consumption and the operating state change of load switch.

Figure 8 shows the local load decomposition of UK-DALE data
samples. Observe the decomposition curves of other methods. It is
not well represented in the peak area of load power consumption,

and the curve has some burrs. But it performs well in the range
of power close to zero. To sum up the four local decomposition
renderings, the load decomposition result of DRAnet network
model is the closest to the real power consumption compared
with other algorithms, indicating that DRAnet decomposition
performance is superior to other algorithms.

The decomposition performance of the algorithm is further
evaluated by using the evaluation indexes of load start and stop
operation states such as recall, accuracy and precision. As shown
in Table 4, it is the comparison of load switch operation status
indicators of five algorithms in UK-DALE data set. From the index
point of view, DRAnet network model achieves the best numerical
performance on these types of loads, and can accurately identify
the operation status of load startup and shutdown. From the Recall
index and Precision index, other algorithms perform well on kettles,
dishwashers and refrigerators, and can also judge the start and stop
status of electrical appliances, but they do not perform very well on
othermicrowave ovens andwashingmachines.The accuracy of non-
invasive load decomposition based onDRAnet is obviously superior
to other methods.

On the two experimental results of WikiEnergy dataset and
UK-DALE dataset, the dilated residual aggregated convolutional
network based on its own structural advantages, the proposed
dilated residual module enhances the network’s ability to extract
low-frequency load features, rescale the features using the
feature enhancement module, filter the useless information,
and reinforce the useful load features, thus to be have better
decomposition effect and generalization performance than other
methods.
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TABLE 4 Load operating state index comparison on UK-DALE data sets.

Index Method Air condition Fridge Microwave Washing machine Dish washer

Recall KNN 0.987 0.988 0.254 0.911 0.968

DAE 0.985 0.944 0.345 0.921 0.938

FHMM 0.992 0.937 0.362 0.931 0.941

CNN s-p 0.993 0.923 0.425 0.838 0.928

CNN s-s 0.969 0.990 0.463 0.857 0.904

CD-LSTM 0.964 0.978 0.429 0.862 0.914

D-ResNet 0.973 0.992 0.653 0.902 0.934

DRAnet 1 0.996 0.947 0.926 0.969

Precision KNN 0.998 0.974 0.933 0.617 0.799

DAE 0.650 0.932 0.421 0.471 0.813

FHMM 0.991 0.966 0.061 0.132 0.421

CNN s-p 1 0.968 0.435 0.701 0.829

CNN s-s 0.946 0.944 0.632 0.663 0.835

CD-LSTM 0.964 0.964 0.643 0.673 0.801

D-ResNet 0.973 0.976 0.732 0.701 0.823

DRAnet 1 0.996 0.989 0.771 0.850

Accuracy KNN 0.982 0.954 0.956 0.981 0.934

DAE 0.997 0.955 0.949 0.967 0.976

FHMM 0.972 0.954 0.954 0.943 0.965

CNN s-p 0.987 0.981 0.967 0.936 0.967

CNN s-s 0.988 0.987 0.966 0.955 0.974

CD-LSTM 0.987 0.977 0.964 0.954 0.971

D-ResNet 0.988 0.985 0.952 0.962 0.976

DRAnet 0.999 0.986 0.979 0.985 0.998

Bold indicates the best result.

4 Summary

This work firstly introduces the overall structure of the dilated
residual aggregated convolutional network, which mainly has the
differential processing of data, the dilated residual module, the
feature enhancement module, and the information fusion module.
The differential data enhances the expressiveness of the data and
improves the robustness of the network model, and then the null
residual module, feature reinforcement module, and information
fusion module are proposed for the characteristics of sparse
features of low-usage load devices. In this work, the dilated
residual aggregated convolutional network is trained and tested on
the WikiEnergy dataset and UK-DALE dataset samples. Through
experimental simulations and result analysis, the proposed method
is significantly better than other methods. In terms of load sequence
decomposition, the method proposed in this paper has significantly
improved on MAE and SAE indicators compared with the existing
deep learning decomposition method, and in terms of electrical
start and stop judgment, the method in this paper is superior to
the existing method in three indicators. The fundamental reason is

mainly that the dilated residual aggregated convolutional network
model has a stronger extraction capability for higher order load
features, and therefore has better decomposition results for low
usage appliances. However, there are still many problems in non-
intrusive load decomposition that need further study. 1) In order
to improve the decomposition accuracy of load equipment, it is
often to train the corresponding model for each load equipment.
The process is complex and the time cost is high. Therefore, we can
further study the deep neural network model with adaptive learning
ability, such as the confrontation network model, which can be
transplanted to the application of non-invasive load decomposition.
2) The decomposition of low power electrical appliances is more
susceptible to noise interference and is not easy to decompose. The
decomposition of low power loads needs further research. 3) The
non-intrusive load decomposition algorithmbased on deep learning
in this paper has certain requirements for computing resources,
and cannot be integrated with smart meters at present. In the
future research work, we can consider further improvement of the
algorithm, so that the algorithm can be directly used on embedded
platforms and other hardware devices.
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Research on electrical load
distribution using an improved
bacterial foraging algorithm

Yi Zhang* and Yang Lv

Jilin Jianzhu University, Changchun, China

This paper proposes an improved bacterial foraging algorithm for electrical load
distribution to impro-ve power plants’ efficiency and reduce energy
consumption costs. In the chemotaxis stage, the adaptive step size is
introduced to accelerate the random search speed compared with the
traditional algorithm. In the replication stage, a hybrid crisscross operator is
proposed to replace the traditional binary replication method in the algorithm to
ensure the diversity of the population and improve the efficiency of the
algorithm. The adaptive dynamic probability is used instead of the initial fixed
probability to improve the global search performance of the algorithm. The
mathematical model of electrical load distribution in a natural power plant is
established, and the improved bacterial foraging algorithm is used to solve the
model. Through comparative analysis of two power plant unit experiments, it is
proved that the results of the improved algorithm can reduce 3.671% and 1.06%
respectively compared with the particle swarm optimization algorithm, and
7.26% and 1.37% respectively compared with the traditional bacterial foraging
algorithm, which can significantly reduce the coal consumption of the power
plant.

KEYWORDS

bacterial foraging algorithm, crisscross operator, electrical load distribution, economic
benefits of power plant, self-adaption

1 Introduction

The adjustment of electric power and energy structure is a hot topic. Germany
proposes to realize the energy structure adjustment in 2035 so that the proportion of
renewable energy generation can reach or even exceed half (Kopiske et al., 2017).
Although the optimization of the power energy structure in China started late, it is
also being optimized and adjusted constantly. With the integration of more and more
distributed new energy into the power grid, the stability of the power grid faces many
challenges due to the uncertainty brought by power generation methods such as wind
photovoltaic power. As the main output method of my country’s power resources, thermal
power generation is of great significance to the stable operation of the power grid. The
energy consumption problem caused by thermal power generation gradually becomes
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prominent with the increasing demand for power resources in
recent years. Some achievements have been made in reducing the
energy consumption of thermal power generation by upgrading
traditional industrial equipment (Wu et al., 2019). However, it
also faces a bottleneck period. It is essential to reduce energy
consumption through electrical load distribution (ELD) among
thermal power units. Therefore, optimizing coal consumption can
not only improve the competitiveness of thermal power resources
but also contribute significantly to the goal of “carbon neutrality”
while ensuring the stability of the power production process and
reducing the cost of thermal power.

Meta heuristic algorithms, such as [sine cosine algorithm (Aye
et al., 2019) (Yildiz et al., 2020), seagull algorithm (Panagant et al.,
2020), grasshopper algorithm (Yildiz et al., 2022a; Yildiz et al.,
2022b) (Yildiz et al., 2021a; Yildiz et al., 2021b)], are widely used to
solve various problems depending on their excellent convergence
effects. In recent years, the optimization of heuristic algorithms has
also become increasingly mature and improved. The efficiency of
heuristic algorithms and their vulnerability to local optima are
gradually improving with the optimization process. Ref
(Premkumar et al., 2021) proposed a new multi-objective
arithmetic optimization algorithm (MOAOA), which uses
distance mechanism and elite sorting to optimize and upgrade
the single objective arithmetic optimization algorithm, and can be
applied to multiple scenarios in reality. Ref (Yildiz et al., 2021a;
Yildiz et al., 2021b) proposed a political optimization algorithm
(POA), which has better search ability and computational efficiency
than other algorithms. In Ref (Yildiz et al., 2021c), an EBO
algorithm is proposed. Compared with the slime mold
algorithm, marine predator algorithm and other novel
algorithms, this algorithm is not only simpler, but also more
robust and has better design results. Ref (Yildiz et al., 2022a;
Yildiz et al., 2022b) applies the idea of chaotic mapping to
HGSO algorithm, which can effectively improve the convergence
speed and robustness of the algorithm. In Ref (Yildiz and Erdas
2021), a new hybrid algorithm HTSSA is proposed, which can
better jump out of the local optimum. Compared with some new
algorithms, this algorithm has more advantages. In Ref (Yildiz et al.,
2022c), chaotic map is used to mix Levy flight, which effectively
improves the convergence speed of the algorithm. A new algorithm
HSSA-NM is proposed in Ref (Yildiz 2020), which can effectively
optimize engineering design problems through the hybrid salp
swarm algorithm.

Meta heuristic algorithm is widely used in the power field (Chi
et al., 2022). Used COOA algorithm to apply to the distribution
network with photovoltaic generators. Compared with other
algorithms, it proved that this method can not only effectively
reduce the active power loss, but also significantly reduce the
solution time. In Ref (Nguyen et al., 2022), an IEO algorithm is
proposed to select the location and scale of photovoltaic power
generation in the distribution network. The algorithm is improved
by updating the concentration. Compared with a large number of
meta heuristic algorithms, the improved method can effectively
reduce the loss. In Ref (Pham et al., 2022), ECSA is used to solve
the generation cost of integrated power system. Compared with
equilibrium optimizer and marine predator algorithm, this
method has the lowest cost. The ELD refers to achieving
maximum economic benefits under the conditions of meeting
production needs and power constraints from the perspective

of an electric power producer. The methods of Unit
Commitment (UC) can be divided into four categories: Mixed
Integer Linear Programming (MILP), dynamic programming,
decomposition method, and heuristic method. In the past, the
optimization of thermal power units was usually done by mixed
integer linear programming or dynamic programming. However,
with the development of swarm intelligence algorithms in recent
years, more and more swarm intelligence algorithms have been
applied to ELD. (Jianjun et al., 2021) proposed an improved
invasive weed algorithm for the non-linear programming model
of thermal power units. Traditional swarm intelligence
algorithms, represented by particle swarm optimization (PSO),
cuckoo algorithm (CS) and genetic algorithm (GA), are widely
used in ELD problems because of their stability and simplicity.
However, they are all faced with problems such as easy to fall into
local optimal solution, slow convergence, high iteration number
requirements, and low efficiency, which are also some defects of
swarm intelligence algorithms themselves. With the deepening of
research, the application of swarm intelligence algorithm in ELD
mainly focuses on solving the above problem. (Zou et al., 2019)
improves and optimizes the selection, crossover, and mutation of
the GA algorithm and applies it to the economic dispatch model of
cogeneration. The results show that the improved method can
improve the convergence speed and result from accuracy. In
(Mahdi et al., 2018), a quantum-inspired particle swarm
optimization algorithm is used to improve the robustness and
efficiency of ELD processing. (Al-Bahrani and Patra 2018)
proposes a multi-gradient PSO, which solves the problem that
global particle swarm optimization with inertia weight (GPSO-w)
is not efficient in the optimization process of large-scale thermal
power units. It is found that the performance of this method is
better than several improved PSO algorithms through
experimental comparison. The other group of intelligent
algorithms is also gradually being developed is applied to the
ELD problems. (Hatata and Hafez 2019) is optimized by the ant
lion algorithm (ALO) compared with the PSO algorithm and
artificial immune system (AIS). The results found that the ALO
in dealing with ELD has higher efficiency and convergence
precision. In addition, (Kumar et al., 2021) also uses the
improved Slap Swarm algorithm to optimize the load problem
of large-scale power plants, and the experimental results confirm
the high efficiency of its solving process. (Carmen et al., 2021)
compares the advantages and disadvantages of various methods
used in current UC optimization for the Italian power market
application scenarios.

Bacterial Foraging Optimization (BFO) (de et al., 2022), (Chen
et al., 2021) and (Farshi and Orujpour 2021) has been an emerging
swarm intelligence algorithm in recent years. BFO is a bionic
algorithm to simulate the foraging behavior of Escherichia coli.
Bacterial foraging algorithms are widely used, such as image
segmentation, path planning, power system, parameter
optimization and identification. The improvement of bacterial
foraging in the existing research mainly focuses on the
chemotaxis and dispersion of bacteria, as shown in the reference
(Hu et al., 2020), (Chen et al., 2017), (Wang et al., 2019),
(Ramaporselvi and Geetha 2021) and (Devi and Srinivasan
2021). The contributions of this paper mainly focus on the
improvement of the three key steps of the algorithm. The
improvements are aimed at the characteristics of the bacterial
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foraging algorithm, such as slow convergence speed, low efficiency,
and easily falling into local optimum.

(1) The adaptive modified step is used instead of the traditional fixed
step to solve the problem of slow solution speed in the chemotaxis
stage.

(2) The traditional fitness value ranking dichotomous replication
optimization method was improved by using a crisscross
algorithm mixture in the process of bacterial replication.

(3) Adaptive dynamic probability is used to replace the traditional
fixed dispersal probability to avoid the optimal result elimination
problem and ensure the algorithm’s efficiency in the dispersal
stage.

Through two case studies and comparison of different algorithms,
it is proved that the improved hybrid bacteria foraging algorithm
proposed in this paper has better results.

This paper consists of five sections. The first section establishes the
mathematical model of ELD. Section 2 describes the improvement of
chemotaxis, replication and dispersal of the bacterial foraging
algorithm. In Section 3, an improved hybrid bacterial foraging
algorithm is used to solve the ELD problem, and the pseudo-code
is given. The fourth section is the experimental part, which analyzes
the case of 10 units of a medium power plant and 3 units of a small
power plant and proves that the improved algorithm can significantly
reduce coal consumption. The fifth section is the summary of this
paper.

2 Mathematical model of ELD

Coal consumption characteristics and valve-point effect of
generating units are taken as objective functions, and unit output
and load balance are taken as mathematical models with constraints in
the model of ELD.

2.1 Objective function

The characteristic of coal consumption refers to the curve of
coal consumption of a thermal power unit changing with the
load. It is the critical basis for analyzing energy consumption
and load optimization scheduling of a thermal power plant.
When a load of a single unit decreases with the generation
condition, its coal consumption rate will increase, and the
formula is as follows:

F Pg x( )( ) � a x( ) + b x( ) p Pg x( ) + c x( ) p Pg x( )2 (1)

In Eq. 1, F(Pg(x)) represents the coal consumption of the thermal
power unit; a(x), b(x), c(x) represents the coal consumption
characteristic parameters of the x unit; and Pg(x) represents the x
unit’s power.

The influence of the valve-point effect on UC should be considered
in the unit operation process. The leakage of steam causes the valve-
point effect at the opening moment of the regulating valve of the steam
turbine, which is reflected as the pulsation influence at high load in the
coal consumption characteristic curve of the unit. The formula is as
follows:

G P x( )( ) � d x( ) p sin e x( ) p P min x( ) − P x( )( )( )| | (2)
In Eq. 2, d(x), and e(x) represent the valve-point coefficient

P min(x) represents the lowest power value of the x unit.
The mathematical model of the objective function can be

expressed as the compound superposition function in summary. In
the model, the quadratic function and the sine function of the valve-
point effect are set for solving the minimum coal consumption
characteristic. It can be expressed as follows:

minf P x( )( ) � ∑N
x�1

F P x( )( ) + G P x( )( )( ) (3)

2.2 Constraint function

Capacity constraint function is the prerequisite for the standard
and safe operation of the thermal power unit. Its formula is as follows:

P min x( )≤P x( )≤P max x( ) (4)
Where Pmax(x) denotes the upper limit of capacity constraint and
Pmin(x) the lower limit of capacity constraint. This paper ignores
power flow loss and assumes that only thermal power units
participate in power generation in the network. Load balance
constraint means that the sum of the power of each unit needs
to be consistent with the total load, and its formula is as follows:

∑N
x�1

P x( ) � Load (5)

In Eq. 5, Load represents the total load of the system.

2.3 Penalty function

The purpose of adding a penalty function is to consider some other
constraints or ignored losses, and its formula is as follows:

h P x( )( ) � ε p ∑N
x�1

P x( ) − Load

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ (6)

In Eq. 6, ε represents the penalty coefficient which can be fixed or
changed to an adaptive value according to the characteristics of the
algorithm. Thus, the mathematical model of ELD can be expressed as
follows:

minF � f P x( )( ) + h P x( )( ) (7)

3 Improved crisscross algorithm mixed
bacterial foraging optimization (ICSBFO)

3.1 The improve the chemotactic processwith
adaptive modification of step size

Chemotaxis is to simulate the motion part of E. coli foraging
behavior. The process includes forward and reverses in two parts.
E. coli runs along the vector direction with a random vector until
the fitness value cannot continue to be smaller. In (Long et al.,
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2020), the cost function of the Ap algorithm is used to improve the
chemotaxis process to solve the path planning problem under
different working conditions effectively. In the process of
chemotaxis, the step length C is an essential factor affecting the
movement process of E. coli. The step length C of chemotaxis is a
fixed value in the traditional BFO algorithm. It will bring some
disadvantages. The minor C value can improve the search accuracy,
but it will reduce the search efficiency of the algorithm and easy to
fall into the local optimal. The larger value of C can improve the
search speed of the algorithm, but it will reduce the accuracy of the
search results and lead to search misjudgment. Therefore, the value
of step size dramatically affects the excellence of the algorithm.
Inspired by the fish swarm algorithm, (Yufang and Jianwen 2021)
uses an exponential function to modify the step size. Adaptive
modified step size is used to replace the traditional fixed value in
this paper.

C x( ) � exp − Nc p Nre p Ned − τ

j + k − 1( ) p Nc l − 1( ) p Nre p Ned
( ) 1

α( )pC
(8)

In Eq. 8, Nc, Nre, Ned respectively represent the number of
chemotactic restrictions, replication restrictions, and dispersal
restrictions in BFO algorithm. α denoted as the step coefficient. j, k
and l represent the current times of chemotaxis, replication and
dispersion respectively. τ is a dynamic change. The BFO algorithm
can search for optimization with giant steps in the early stage of the
search to accelerate the algorithm’s convergence through the adaptive
step correction exponential formula. And search for optimization with
a small step in the late stage of search to improve the accuracy of the
algorithm.

3.2 The replication process of the hybrid
crisscross algorithm to optimize

The replication process is a process that simulates biological
evolution and survival of the fittest. The E. coli are arranged in
ascending order according to the cumulative fitness value. The first
half of the high-quality E. coli is copied instead of the second half of the
poor E. coli. The total number is unchanged in this process. Although
this method reduces the algorithm’s complexity, it also brings some
disadvantages. The diversity of the population is greatly decreased to
ensure the diversity of the population and ensure that high-quality
bacteria individuals are not lost. (Jufeng et al., 2020) used single
individual ranking and crossover operations to replace the cumulative
health ranking method. In this paper, the Crisscross Algorithm
(Xiongmin et al., 2022), (Shaowei et al., 2021) and (Anbo et al.,
2022) is a novel population random search algorithm that is
proposed to improve the replication process. The Crisscross
Algorithm includes two parts, horizontal crisscross, and
longitudinal crisscross. Compared with the previous generation, the
method achieves the optimal effect through each iteration of the
crisscross process. Horizontal crossover is like the crossover
process in GA, but it also has a comparison process with the
previous generation.

MShc x, d( ) � r1 p X x, d( ) + 1 − r1( ) p X y, d( )
+ c1 p X x, d( ) −X y, d( )( ) (9)

MShc y, d( ) � r1 p X y, d( ) + 1 − r1( ) p X x, d( )
+ c1 p X y, d( ) −X x, d( )( ) (10)

The parameters x and y in Eqs. 9, 10 represent individual
bacteria, d represents dimension solved by the algorithm, and r1c1
both represent random numbers. The former is between 0 and 1,
and the latter is between −1 and 1. This formula represents the
offspring of bacteria x and y after horizontal crossing in the d
dimension. Longitudinal crossover is similar to the mutation
process in a genetic algorithm, and longitudinal crossover is the
crossover of different dimensions of the same bacterium. After
each crossover, a progeny with different dimensions from the
previous generation is produced. The progeny produced each
time should be compared with the previous generation to retain
the optimal value.

MSvc x, d1( ) � r p X x, d1( ) + 1 − r( ) p X x, d2( ) (11)
According to Eq. 11, bacteria x can produce a progeny by

crossing dimensions d1d2. The crisscross algorithm was used to
cross-optimize the chemotactic population. Compared with the
traditional sequencing and replication method, the optimization
and replication process of the crisscross algorithm not only
retained high-quality bacterial individuals but also ensured the
diversity of the population.

3.3 Adaptive dispersal probability to improve
dispersal process

The random dispersal optimization of E. coli individuals was
carried out according to a fixed dispersal probability. In this
process, certain high-quality individuals were also dispersed to
random areas. Although the global search performance of the
algorithm was ensured in principle, the fitness value of the
algorithm would also deteriorate, which would decrease the
efficiency of the algorithm. In this paper, we use the adaptive
dispersal probability instead of the traditional fixed value to avoid
falling into the local optimum and ensure the global search
performance of the algorithm.

P x( ) � Ped p
Jworst − Jx
Jworst − Jbest

(12)

In Eq. 12, Jworst represents the worst fitness value, Jbest
represents the optimal fitness, and Jx is the real-time
fitness value of the xth bacterium. The dispersal probability of
E. coli was modified adaptively by this fraction. The fitness
value of bacteria individuals with good fitness was small,
and the dispersal probability was reduced while the
dispersal probability of individuals with poor fitness was
increased. In this way, the loss of high-quality individuals is
avoided and the efficiency and performance of the algorithm are
guaranteed.

3.4 Flowchart of ICSBFO

The parameters need to be initialized first in the algorithm. It
includes the number of iterations maxgen, the dimension p of the
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search range, the number of bacteria s, the maximum number of
chemotaxis Nc, the maximum number of steps of one-way
movement in chemotaxis operation Ns, the maximum number
of replication Nre, the maximum number of dispersal Ned, and
the fixed probability of bacterial dispersal Ped, the number of
attractive factors and the release speed d_attract, ommiga_attract,
the number of repellant factors and the release speed h_repellant,
ommiga_repellant. Then the population is initialized. The
population of this algorithm is generated according to the
lower limit of unit load plus the difference between the upper
and lower limits of unit load multiplied by a random number.
Initialize the population as a high-dimensional array. After the
population initialization is completed, the cycle is carried out. The
maximum number of dispersals, replication, and chemotaxis, are
determined first, and the chemotaxis operation is carried out after
the requirements are met. In the chemotaxis process in this
paper, Nc is 60; Ns is 4. After determining the adaptive
correction step and the repulsive attraction between the
bacteria, the fitness value was calculated. The bacteria turn
over and then proceed with dynamic steps in the direction of
the randomly generated vector until the maximum swimming
limit is reached or the fitness value is updated to the optimal
value. During this period, the bacterial constraint should be
considered, namely the upper and lower limits of the unit
output constraint. After the chemotactic process, the fitness
value is updated to enter the replication stage. During
replication, bacteria are sorted according to their cumulative
fitness values, and new populations are formed in ascending
order. Replicate 2 times in total. The longitudinal and
horizontal crossover operators were used to update the fitness
value, retain the perfect result and eliminate the wrong result.
Finally, the bacteria were dispersed according to the adaptive
dispersal probability when it came to the dispersal stage. The
dispersal probability of the perfect result was tiny, while the
dispersal probability of the impaired result was extensive. After
the dispersal, the bacteria died out, and the new bacteria re-
determined the random position. The algorithm ends when the
maximum number of dispels reaches 4, and the algorithm iterates
480 times in total. The flow chart of bacterial foraging algorithm is
shown in Figure 1.

4 ICSBFO addresses ELD issues

4.1 ELD based on ICSBFO

In the process of solving the ELD problem by ICSBFO, the
control variable is the initial population of E. coli, and the
dependent variable is the coal consumption of the unit. Use the
algorithm to solve Eq. 7, first, it is necessary to tune the relevant
parameters of the ICSBFO algorithm in solving the ELD problem.
The initial population of E. coli is generated with the upper and
lower limits of the power load, and the number of units is set as the
solution dimension. Then we need to determine the load and solve
the ELD model. The fitness value in the solving process is the
objective function proposed above after considering the penalty
coefficient. If there is no new load command or percentage load
requirement, each unit’s optimal load distribution and optimal coal
consumption can be output.

4.2 ICSBFO solves ELD model pseudo code

5 Analysis of two cases

This paper uses the case of 10-unit medium-sized and 3-unit
small-scale power plants, respectively, to prove the feasibility of
the ICSBFO algorithm. The experimental environment is
Windows7, Intel Core i5 quad-core 1.70 GHz processor, 8 GB
physical memory, and Matlab 2018a simulation platform. Case
1 Using the ICSBFO, CSO, BFO, and PSO to solve the ELD
problem of the 10-unit model, the experimental results show
that the ICSBFO algorithm has the smallest coal consumption.
Experiments are carried out with different load conditions, and
the ICSBFO and BFO algorithms are compared. We find that the
lower the load, the more pronounced the optimization effect of
ICSBFO. Case 2 Using ICSBFO, BFO, and PSO to solve the ELD
problem of the 3-unit model, the experimental results
demonstrate that ICSBFO has the best optimization results and
point out the limitations of bacterial foraging algorithms when
dealing with small-scale unit data.

5.1 Case of 10 units

In Case 1, taking 10 units in a power plant (Basu 2016) as an
example, the coal consumption characteristic parameters of the unit
and the upper and lower limits of the unit load are shown in the
following Table 1:

In the case of a 10-unit medium-sized power plant, this paper
uses the improved crisscross hybrid bacterial foraging algorithm
(ICSBFO), the crisscross algorithm (CSO) (Meng et al., 2015), the
bacterial foraging algorithm (BFO), and the particle swarm
algorithm (PSO) (Hatata and Hafez 2019) to solve the 10-unit
load optimization distribution model of a medium-sized power
plant. Since different unit parameters and valve point effect
parameters greatly influence the results of unit load economic
dispatch, this paper uses the methods proposed by them in their
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respective articles to simulate the unit parameters of the same
case. In the process of PSO testing, a mutation strategy is
introduced to improve the problem that PSO is easy to fall into
the local optimum. Since the test algorithms all contain a random
search mechanism, each group is tested 30 times in this
experiment, and the experimental results are taken as the
average value of the tests. During the test, the population size
was 50, the dimension was 10, the load was 2,700 MW, and the
total number of iterations of various algorithms is 480.

In the process of dealing with ELD problems, PSO is widely
used because of its fast convergence speed, but its disadvantage is
poor robustness. CSO shows good convergence efficiency and
accuracy in the ELD process due to its independent update
iterations in the horizontal and vertical directions, and a
simplified algorithm process characterizes it. It can be seen
from Figure 2 that the improved bacterial foraging algorithm
has faster convergence speed and convergence results than the
previous two, which is due to the improvement of the convergence
speed by the adaptive correction step size and the mixing in the
replication process. Compared with traditional BFO,
improvement optimization is more significant. In taking the
average value of multiple experiments, we also found
that ICSBFO has better robustness and the smallest variance
of its optimal coal consumption. Research on the high-
quality robustness of ICSBFO is expected to be carried out in
the future.

It can be seen from the above Table 2 that the optimal coal
consumption of ICSBFO is the smallest. Compared with the CSO,
the coal consumption reduced by the ICSBFO algorithm is
4.6317 g · kW−1 · h−1. The percentage reduction is 0.707%.
Compared with the PSO, the coal consumption optimization
results are more prominent, decreasing 24.0534 g · kW−1 · h−1.
The percentage reduction is 3.671%. Compared with the
unimproved traditional BFO algorithm, the effect is more
prominent, ICSBFO reduces coal consumption by
47.5621 g · kW−1 · h−1. The percentage reduction is 7.26%. The
resulting significant reduction in coal consumption can improve
the efficiency of the power plant, reduce the economic cost of the
power plant and reduce the pollution to the environment. (From

the load distribution of each unit solved by the ICSBFO algorithm,
since the upper and lower limits of a load of units 9 and 10 are both
high, the outputs of units 9 and 10 are the most, which are 413 and
479 MW respectively.)

To test the influence of different loads on the performance and
solution quality of the algorithm, this paper uses 90%, 80%, and
70% of the rated load to solve the load optimization distribution
model of the 10-unit case of the medium-sized power plant. This
experiment compares the ICSBFO and unimproved
traditional BFO.

Affected by the valve-point effect, traditional methods often
perform poorly in low-load optimization of processing units. For
example, in the traditional BFO algorithm, it can be seen from the
above Figure 3 that the optimization of coal consumption by BFO
in reducing the load is not very obvious. In this process, the coal
consumption at 70% load is higher than 80% load, which shows
that BFO can no longer effectively optimize the ELD problem at
low load. However, ICSBFO can solve the problem of adapting to
low-load optimization. As seen from the above Figure 3, as the
load rate decreases, the convergence speed of ICSBFO gradually
slows down, but the optimization result of ICSBFO is still
significantly better than that of BFO. It can be seen from
Table 3 that under the condition of 90% load rate, under the
load of 2430 MW, the optimized reduction is
66.2689 g · kW−1 · h−1. The percentage reduction is 12.624%.
Under the load rate of 80%, the load of 2160MW, the coal
consumption is saved by 90.4748 g · kW−1 · h−1.The percentage
reduction is 21.183%. Under the load rate of 70% and the load
capacity of 1890MW, the optimized amount is
220.1997 g · kW−1 · h−1. The percentage reduction is 65.357%.
From the analysis of the load optimization distribution of
different units, the ICSBFO algorithm can give full play to the
output advantages of different units. In this case, the two units
G9 and G10, with higher upper and lower load limits, have the
most output under different load ratios. From this, it can also be
concluded that ICSBFO has an excellent performance in
optimizing the load of 10 units. By comparing different load
rates, it can be found that under high load rates, the optimized
amount of ICSBFO is small, and as the load rate decreases, the

TABLE 1 Coal consumption characteristic parameters of a 10-unit power plant and upper and lower limits of unit load.

ai bi ci di ei Pmin/MW Pmax/MW

G1 26.97 −0.3975 0.002176 0.02697 −3.975 100 250

G2 118.4 −1.269 0.004194 0.1184 −12.69 50 230

G3 −95.14 0.4864 0.00001176 −0.05914 4.864 200 500

G4 266.8 −2.338 0.005935 0.2668 −23.38 99 265

G5 −53.99 0.4462 0.0001498 −0.05399 4.462 190 490

G6 266.8 −2.338 0.005935 0.2668 −23.38 85 265

G7 −43.35 0.3559 0.0002454 −0.04335 3.559 200 500

G8 266.8 −2.338 0.005935 0.2668 −23.38 99 265

G9 14.23 −0.0182 0.0006121 0.01423 −0.1817 130 440

G10 −61.13 0.5084 0.0000416 −0.06113 5.084 200 490
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optimized coal consumption gradually increases. The traditional
BFO algorithm has a poor unit optimization effect in the case of
low load, but ICSBFO still has an excellent optimization effect in

the case of low load rate. Therefore, the algorithm is expected to
have good application scenarios during the low-peak electricity
consumption period in spring and autumn.

FIGURE 1
Flowchart of ICSBFO.
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FIGURE 2
Convergence curve of unit economic dispatch of case 1.

TABLE 2 Load optimization results of units under 2700 MW load with different algorithms.

Algorithms Load distribution of each unit/MW (integer is reserved for the result) Optimal coal consumption g · kW−1 · h−1

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

ICSBFO 193 199 227 235 191 233 280 228 413 479 655.0957

CSO 205 209 240 228 255 223 308 231 402 357 659.7274

PSO 211 215 200 254 401 212 200 247 291 468 679.1500

BFO 184 170 238 255 476 196 298 209 326 269 702.6578

TABLE 3 Comparison results of ICSBFO and BFO under different loads.

Load (%) Algorithm Load distribution of each unit/MW (integer is reserved for the
result)

Optimal coal consumption g · kW−1 · h−1

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

90 ICSBFO 219 205 238 241 194 236 224 240 422 208 524.9383

90 BFO 207 146 215 216 315 209 358 203 210 357 591.2072

80 ICSBFO 160 195 196 223 204 212 211 229 342 207 427.1072

80 BFO 228 150 202 250 202 212 205 132 181 206 517.5820

70 ICSBFO 110 146 200 211 196 221 202 222 184 200 336.8949

70 BFO 122 63 334 173 227 156 205 234 262 226 557.0746
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5.2 Case of 3 units

In case 2, taking 3 units of a miniature thermal power plant as
an example, the coal consumption characteristic parameters of the
units and the upper and lower limits of unit load are shown in the
following Table 4:

In the case of a small power plant with 3 units, this paper
uses ICSBFO, BFO and PSO to solve and compare the
load distribution optimization model of the same unit data. In
this experiment, each group was tested 30 times, and the average
was taken. The population size was 50, the dimension was 3, the
load was 900 MW, and the total number of iterations of various
algorithms is 480.

This experiment sets the number of units as the solution
dimension. The crisscross algorithm used in this paper in the
replication process, its horizontal crossover operator is the
crossover of dimensions, while the dimension of this
experimental case is 3, and the crossover dimension is too small,
resulting in The offspring after crossover are highly similar to the
previous generation, so the horizontal crossover operator is omitted

in this experiment, and only the vertical crossover operator is used
to improve the replication process, so as to ensure the diversity of
the population. Although the energy consumption coefficients of
the three units in this experiment are different, the upper and lower
limits of the unit load are the same. It can be seen from Figure 4 that
the result of ICSBFO is significantly better than that of PSO and
BFO, but the convergence rate will be slightly lower. Under the
condition of 900 MW load, the optimal coal consumption of
ICSBFO is 975.23 g · kW−1 · h−1, which is 1.37% lower than that
of BFO algorithm and 1.06% lower than that of PSO. Combining
the low load rate in the 10-unit case and the 3-unit case, it can be
concluded that the traditional bacterial foraging algorithm
generally performs in processing the optimization data of small-
scale units, and the solution time is slightly longer. However, the
improved bacterial foraging algorithm can overcome such
problems. Given this characteristic, follow-up research will be
carried out on the case of large-scale power plant units. In
addition, in the future work, we will also study the dynamic
ELD problem with multiple constraints, not limited to the valve-
point effect constraint.

FIGURE 3
Comparison of ICSBFO and BFO under different load factors in Case 1.

TABLE 4 Coal consumption characteristic parameters and upper and lower limits of unit load in a particular 3-unit power plant.

ai bi ci di ei Pmin/MW Pmax/MW

G1 358.0643 −0.1438 0.0001 0.1716 0.9776 170 350

G2 420.4021 −0.5391 0.0008 0.9610 1.0080 170 350

G3 196.7672 1.1705 −0.0024 5.1336 1.0314 170 350
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6 Conclusion

In this paper, we improve the three main steps of bacterial foraging in
dealing with slow speed problems in the ELD process. The step size is a key
factor affecting the speed of the BFO algorithm. Therefore, in this paper, an
improved adaptive correction step size is used to replace the fixed step size
in the chemotaxis process to speed up the convergence speed of ICSBFO.
Given the excellent hybridization of the CSO algorithm, we propose to use
the CSO operator to hybridize the population in the replication process to
ensure the diversity of the population; in the dispersal part, the adaptive
dynamic dispersal probability is used instead of thefixed probability to solve
the problem that the traditional BFO algorithm easily leads to the loss of the
optimal solution, and the algorithm efficiency is guaranteed. The
mathematical model of the ELD problem is established. By comparing
with other algorithms, it is proved that the ICSBFO proposed in this paper
has excellent performance, which can significantly reduce coal
consumption and improve the economic benefits of the power plant. At
the same time, through the case study of small-scale units, it is found that
ICSBFO can also solve the problem that BFO is not good at processing the
scheduling data of small-scale units. In the follow-up research, we will try to
apply ICSBFO to the problems of multi-objective microgrid scheduling
optimization andmulti-region joint dynamic economic scheduling and add
disturbances to the population initialization and dispersal stage of ICSBFO
to test the performance of the algorithm.
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FIGURE 4
Economic dispatch curve of units in case 2.
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Nomenclature

S The number of bacteria

Nc Maximum number of chemotaxis

Ns Maximumnumber of steps of one–waymovement in
chemotaxis operation

Nre Number of replication

Ned Maximumnumber of dispersal

Ped The f ixed probability of bacterial dispersal

d_attract, ommiga_attract The number of attractive factors and the
release speed

h_repellant, ommiga_repellant The number of repellant factors and
the release speed

P Population

C Step size

J Fitness value
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In order to overcome the difficulty of fault diagnosis in the high-voltage direct
current (HVDC) transmission system, a fault diagnosis method based on the
categorical boosting (CatBoost) algorithm is proposed in this work. To make
the research conform to the actual situation, three kinds of measured fault data in
the HVDC system of the Southern Power Grid are selected as the original data set.
First, the core role and significance of fault diagnosis in knowledge graphs (KGs)
are given, and the characteristics and specific causes of the four fault types are
explained in detail. Second, the fault dates are preprocessed and divided into the
training data set and the test data set, and the CatBoost algorithm is employed to
train and test fault data to realize fault diagnosis. Finally, to verify the
progressiveness and effectiveness of the proposed method, the diagnostic
results obtained by CatBoost are compared with those obtained by the BP
neural network algorithm. The results show that the diagnostic accuracy of the
CatBoost algorithm in the three test sets is always higher than that of the BP neural
network algorithm; the accuracy rates in the three case studies of the CatBoost
algorithm are 94.74%, 100.00%, and 98.21%, respectively, which fully proves that
theCatBoost algorithmhas a very good fault diagnosis effect on theHVDC system.

KEYWORDS

HVDC, CatBoost, fault diagnosis, knowledge graph, BP

1 Introduction

With the development of the human society, the issues of environmental pollution and
resource shortage are becoming more and more serious (Mohamed et al., 2020; Tanmay
et al., 2020). Energy conservation and emission reduction, and recycling of resources have
widely attracted the attention of all countries in the world (Yang et al., 2017; Mehdi and
Mehdi, 2020). The emergence of electric energy has greatly changed the way of energy
consumption; using electric energy to replace bulk coal, fuel oil, and other energy sources can
effectively alleviate the energy crisis and reduce environmental pollution (Yang et al., 2019).
In particular, the development and utilization of renewable energy sources, such as wind and
solar energy, have greatly improved the energy structure and promoted the development of
contemporary new power systems (Yang et al., 2018; Li R. S et al., 2020; Wang et al., 2021;
Wang et al., 2022). In recent years, in the process of social and economic development, many
advanced technologies have been applied to further improve the quality and efficiency of
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power transmission, thus promoting the growth of social economy.
At present, there are three main transmission methods in the power
system: high-voltage direct current (HVDC), high-voltage
alternating current (HVAC), and low-frequency alternating
current (LFAC) transmissions (Reed et al., 2013; Zhang et al.,
2013; Yao et al., 2015; Meng et al., 2021). Among them, the
application of HVDC technology has not only effectively
improved the quality of power resource transmission to meet the
requirements of people’s daily life but also further optimized the
operation performance of the power grid system (Li, 2010; Ma et al.,
2022). In order to accelerate the transformation of the development
mode of electric power and enhance the ability of the grid to
optimize the allocation of resources on a large scale, the State
Grid Corporation has proposed the strategic goal of building a
strong smart grid with an ultra-high vacuum grid as the backbone.

HVDC has a large transmission capacity, fast and flexible power
regulation, and is widely used in long-distance high-capacity
transmission projects. However, with the increase in voltage
levels, the problem of commutation failure in the transmission
system is becoming increasingly prominent (Zeng et al., 2016; Li
G et al., 2020). As shown in Figure 1, the HVDC system is composed
of three parts, namely, the rectifier station, inverter station, and
direct current (DC) line, which can convert three-phase AC power
into DC power through rectification of the converter station and
then send it to another converter station through the DC
transmission line to reverse into three-phase AC power.
Structurally, it is a power electronic rectifier circuit in the form
of alternating current (AC)–DC–AC. In HVDC systems, AC-side
faults, lightning faults, short-circuit faults, and inverter phase
change failures bring great challenges to the normal operation of
the transmission system.

The converter station is often compared to the heart of the DC
system. As the most important component in the DC transmission
system, its controllability and the characteristics of single
conduction also constitute as important features of the fault
behavior of the DC transmission system. These characteristics are
mainly expressed in the triggering, conduction, and shutdown of the
converter valve (Zheng and Peng, 2019; Li G et al., 2020). The
converter failure can be divided into main circuit failure and control
system failure. The converter main circuit failure is divided into the

short circuit of the converter valve, DC-side outlet short circuit, DC-
side ground short circuit, AC-side phase short circuit, and AC-side
ground short circuit (Chen et al., 2022). The control system fault
refers to whether the converter valve is opening or not opening
(Zhou et al., 2022). Furthermore, commutation failure is the most
common system fault in HVDC systems, which can lead to DC
voltage drop and DC increase for a short period of time, and may
lead to system shutdown in serious cases. Commutation failure is
very similar to the transient process of DC and DC voltage during
the DC line short circuit, and if the type of fault cannot be accurately
distinguished, it will cause the protection device to operate
incorrectly. Therefore, after a fault occurs on a high-voltage DC
transmission line, it is critical to make a quick and accurate diagnosis
of the fault, isolate the faulty element after the accident, and adopt an
appropriate control and protection strategy (Torres-Olguin and
Garces, 2017; Zhang et al., 2021).

At present, the main methods used for phase change failure fault
diagnosis include the minimum voltage drop method and the phase
comparison method. An improved morphological filter used to
decompose the DC signal in different faults is proposed in the
literature (Vidlak et al., 2021), which can extract accurately the
morphological spectrum under each scale and calculate the energy
entropy and singular entropy of the decomposed morphological
spectrum. Meanwhile, wavelet scale energy statistics and wavelet
scale energy entropy can be utilized to correctly identify the
commutation failure of the HVDC system (Xiong et al., 2019). In
the issue of current sharing/voltage regulation, Wang et al. (2022)
proposed an adaptive dynamic programming approach based on the
Bellman principle, which facilitates the analysis and treatment of AC
and DC faults in the system. Furthermore, in order to overcome the
small-signal instability problem in the power system, Wang et al.
(2021) proposed a droop coefficient stability region analysis
approach based on the generalized incidence matrix, which can
help in information extraction from the fault diagnosis model in the
system. Faced with the massive transmission system equipment
alarm information, the maintenance personnel cannot expressly and
accurately locate the cause of the fault that generates the alarm,
which leads to the inefficiency of fault handling and, in turn, cannot
meet the growing demand for intelligent management of the power
grid. In the past, the main power system fault reasoning and

FIGURE 1
Block diagram of the HVDC system.
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diagnosis included expert systems (Xiao et al., 2021), configurable
rules (Trondoli et al., 2022), fuzzy reasoning (Lokanadham and
Subbaiah, 2021), and neural network (Giljum et al., 2021). The
research ideas of fault diagnosis are mainly used to sort, train,
classify, and identify the historical fault data, and themost important
idea is to train the diagnosis model according to the data set so that it
can use the data features as much as possible for classification.
Górski (2022) proposed a smart contract testing pattern for the
symmetric array, which can significantly limit the needed number of
test cases and save the calculation cost. However, in the actual power
system, most of the fault data are asymmetric, so the follow-up
research work is mainly based on the fault data on the asymmetric
array. Wang et al. (2023) proposed a robust diagnosis method of
photovoltaic (PV) array faults considering label errors in training
data, which can effectively improve the efficiency of fault diagnosis.
Both of these methods can effectively train the original data set,
which is highly important for regression testing. The difference is
that the training data set used by Górski (2022) is symmetric, and
research focused on reducing the calculation cost, while the data set
used by Wang et al. (2023) simulated the actual PV array data and
focused on improving the accuracy of fault diagnosis.

In this context, the development and utilization of the HVDC
system knowledge graph (KG) (Li et al., 2021) enable data collection,
data processing, problem analysis, application services, and data
analysis functions for the entire HVDC system. With the rapid
development of artificial intelligence, KG has become one of the
core driving technologies to drive the development of cognitive
intelligence, while the widespread application of deep learning
techniques and distributed word vector representation of natural
language words provide a new basis for the in-depth application of
different artificial intelligence methods in natural language processing.

Almost all traditional intelligent fault identification methods use
shallow learning models, which are difficult to represent the
complex relationships that exist between transmission system
faults and the signals to be detected, making it difficult to deal
with complex pattern recognition problems. Therefore, there is an
urgent need to develop new methods that can automatically extract
features. In this work, a fault diagnosis of the HVDC system based
on the categorical boosting (CatBoost) algorithm is proposed, which
can effectively extract fault data features for accurate identification
of various types of HVDC faults based on fault data knowledge
mapping. Compared with the existing studies, the fault diagnosis
model proposed in this paper combines the mechanism of the
knowledge map, and the results can be visually designed. At the
same time, the transmission network and data set are from the actual
framework and fault data on the Southern Power Grid, which have
certain authenticity and reliability. Moreover, this study uses the
backpropagation (BP) neural network as a comparison method to
diagnose HVDC system faults. The test results show that the
proposed method shows good performance and high accuracy in
fault diagnosis of the HVDC system. The main contributions and
innovations of this work are listed as follows:

(1) According to the application of the knowledge atlas in the power
system, based on the transmission system of a power grid in
southwest China, a fault diagnosis model of the HVDC system
based on the CatBoost algorithm is proposed, and the accuracy
of fault diagnosis can be up to 94%.

(2) The fault types mainly include the AC fault, DC fault, converter
valve fault, and commutation failure. The causes of these four
types of faults are specifically analyzed in this paper. The fault
data mainly come from the measured data on a power grid in
southwest China, which has certain authenticity and reliability.

(3) In order to verify the progressiveness and effectiveness of the
proposedmethod, BP is used as the comparison algorithm in the
case of the same data set. The experimental results show that the
CatBoost algorithm fault diagnosis accuracy is higher than BP in
the three data sets.

(4) To improve the readability of this paper and the reference value
of power system fault diagnosis, three constructive prospects for
future research studies are presented.

The rest of this work is structured as follows: the HVDC system
KG is established in Section 2. Section 3 introduces the four
common faults of HVDC, namely, the AC fault, DC fault,
converter valve fault, and commutation failure. The principle,
framework, and execution process of CatBoost are provided in
Section 4 and Section 5. In Section 6, case studies and statistical
analysis are carried out. The main discussion and limitations to this
study are discussed in Section 7. Finally, conclusions and future
developments are given in Section 8.

2 HVDC system knowledge graph

Knowledge mapping relational reasoning is an effective means
to solve knowledge verification, prediction, and inference. By
combining KG with text, entities and relations can be mapped to
a specific vector space to establish logical relationships between
entities and relations, thus realizing knowledge reasoning and
meeting the needs of intelligent diagnosis and decision-making
for complex relational scenarios in grid fault diagnosis. The
construction of the HVDC system KG mainly includes six steps,
as shown in Figure 2. It mainly includes knowledge acquisition,
knowledge analysis, knowledge base establishment, graph
construction, knowledge service, and knowledge application. It
mainly includes three parts, namely, the knowledge system
construction layer, knowledge service layer, and knowledge
application layer (Wu et al., 2022). In the face of massive data,
including images, text, and electrical signals, it is necessary to
establish a knowledge map of fault diagnosis of the HVDC
transmission system. Through the sorting and classification of
historical fault data sets, the type and time of fault occurrence
can effectively be predicted, thus reducing the losses caused by faults
in the power system.

2.1 Knowledge acquisition

In the HVDC system, the knowledge sources are extremely
complex. Some data included are the operation and maintenance
data on the HVDC system, as well as some engineering data or
technical breakthrough data. Due to the diversity of knowledge
source paths, it is necessary to classify various knowledge sources in
the process of building the graph. In addition, there are various ways
to carry data. In the HVDC system, some data are in the text format
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(Chen et al., 2020), such as various technical research materials,
while some data are in the excel format, such as the temperature and
humidity of some equipment, and some data are in some picture
types, such as the fault waveform obtained using the fault recorder.
Due to the diverse ways of carrying data, it is necessary to establish a
corresponding knowledge base for storage; this can improve the
efficiency of the whole KG.

2.2 Knowledge graph reasoning

The inference of the KGmainly refers to relational inference, the
core of which is to infer unknown entities or relations based on
existing entities or relations and can help achieve the
complementation of the KG and the prediction of entities and
relations. The core idea of the KG relational inference is to find a
mapping function that graphs symbolic representations to vector
spaces for numerical representations, extracts implicit associations
between entities and relations, and uses associative knowledge for
inference. TransE is inspired by the translation invariance in word
vectors and represents both entities and relations as vectors, and for
a specific relation. The TransE model performs well for simple entity
relationships but does not perform well for mappings of multiple
relationships (Zeng et al., 2022).

The training process of the KG relies on a collection of triples
derived from existing data, each of which is a training sample of the
KG containing the relationships between the head and tail entities,

to build a semantic network of the KG for high-voltage DC
transmission systems using a translation-based model.

2.3 Knowledge base establishment

In order to realize the fault diagnosis of the HVDC system with
limited fault feature data available, this paper proposes a method based
on knowledge mapping CatBoost decision tree technology to construct
fault diagnosis of the HVDC system, using theoretical analysis and
experimental research to realize the safety state assessment and fault
analysis and prediction of the HVDC system. By sending requests to the
knowledge base of the HVDC system, fault record data are obtained;
then, data are extracted from the key record segments, and the
processed fault data are inputed into the risk analysis model of the
HVDC system for fault classification. Figure 3 shows the fault handling
and risk analysis framework of the KG-based HVDC system. Finally,
the effectiveness and accuracy of the proposed method are verified by
the real historical data set of an actual operation of a substation in the
Southern Power Grid.

3 Fault classifications

There are many common faults in the HVDC system, such as the
AC fault, DC fault, inverter commutation fault (Nanayakkara et al.,
2012), converter valve fault (Narendra et al., 1998), single-phase

FIGURE 2
HVDC system KG construction diagram.
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fault (Vidal et al., 2015), interphase fault, and lightning stroke fault
(Pauli et al., 1988). According to the statistics of a substation in the
Southwest China Power Grid, since the converter station was put
into operation in 2010, the average number of annual occurrences of
the AC fault, DC fault, converter valve fault, and commutation
failure is 11.6, 16.2, 14.2, and 16.8, respectively, which caused a
hidden danger to the safe and stable operation of the system.
Therefore, this paper mainly studies these four types of faults,
and the fault diagnosis model based on the CatBoost algorithm is
constructed by taking the measured data on a substation in the
Southwest China Power Grid as the original data set.

3.1 AC fault

The power regulation of DC transmission is fast and flexible. It
does not have the stability problem of synchronous operation.
Therefore, it is considered an ideal ultra-high voltage and long-
distance transmission mode (Li et al., 2007; Zheng et al., 2020).
However, the failure rate of the DC system is relatively high, and AC
and DC parallel operations also have the problem of interaction
between AC and DC. In particular, the main grid of the power
transmission from the west to the east of the China Southern Power
Grid presents the characteristics of strong DC and weak AC: the
proportion of DC transmission is large, while the AC system
running in parallel with it is relatively weak. When DC system
fails, the power angle may be stable due to a large range of power
transfer voltage stability failure, which, to a certain extent, affects the
safety and stability of the system and the performance of the
transmission channel capacity (Guo et al., 2018). Similarly, for
the multi-infeed DC system, if the AC fault cannot be removed
in time, it may also lead to the simultaneous locking of multiple DC
lines, resulting in system stability failure. The schematic diagram of
the AC fault in the HVDC system is shown in Figure 4A.

3.2 DC fault

The HVDC transmission system is often considered in long-
distance transmission projects, but long lines also bring many safety

problems, and the probability of failure caused by long distance is
high. The probability of short circuit to ground is the largest in the
DC transmission system, accounting for more than 80% of the DC
transmission system line faults, most of which is flashover discharge.
Generally, the ground flashover of the DC transmission system is
mainly caused by damage to the insulation between the transmission
line and the ground. The common causes are the breakdown of the
air caused by lightning, the reduction of the insulation level caused
by pollution, and the ground flashover caused by the shortening of
the insulation distance caused by tree branches. The schematic
diagram of the DC fault in the HVDC system is shown in
Figure 4B. The DC line fault includes the grounding fault on a
single pole, broken wire fault, and short-circuit fault caused by an
abnormal connection between two poles. The permanent fault of the
DC transmission system is generally believed to exist for a long time.
In practical engineering, the fault should be prevented from further
expanding and endangering the power supply reliability of the
system (Guo et al., 2018).

3.3 Converter valve fault

During the commutation of the inverter-side converter valve,
the single valve of the converter valve appears to be turned off when
the positive voltage is too high or has a certain positive voltage when
the thyristor is not fully turned off, and the gate is applied with a
trigger pulse; the thyristor will be turned on again, causing the
converter valve that is turned on to fail to conduct, and the
commutation of the converter valve fails (Liu et al., 2015). The
turn-off time of the thyristor is usually slightly less than 1 ms. When
the converter valve is in inverse operation, the forward voltage will
appear after the thyristor bears approximately 1 ms of reverse
voltage after the turn-off. When the AC system voltage
disturbance or other factors make the thyristor in commutation
again, commutation failure may occur. The schematic diagram of
the converter valve fault in the HVDC system is shown in Figure 4C.
When the converter valve operates at the rectifier side of the DC
transmission project, the thyristor bears a continuous reverse
voltage greater than 5 ms after it is turned off, and the thyristor
can be turned off reliably. Therefore, the converter valve will not

FIGURE 3
Flow chart of KG-based DC transmission system fault handling and the risk analysis module.
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have a commutation failure fault when it operates at the
rectifier side.

3.4 Commutation failure

In the converter, the valve that is out of conduction fails to
recover its blocking capacity within a period of time under the action
of reverse voltage, or the commutation process is not completed

during the reverse voltage, resulting in the valve voltage becoming
positive; the commutation valve will reverse the phase of the valve
that was originally scheduled to be out of conduction, which is called
commutation failure. The schematic diagram of commutation
failure in the HVDC system is shown in Figure 4D. The
commutation failure is due to a short circuit on the DC side and
the open circuit on the AC side of the converter valve that should be
turned off but is not turned off, resulting in power fluctuations. In
essence, commutation failure is caused by the characteristic that the

FIGURE 4
Four fault diagrams of the HVDC system. (A) AC fault. (B) DC fault. (C) Converter valve fault. (D) Commutation failure.
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thyristor is a semi-controlled device, which cannot be completely
ignored under the existing technical conditions (Wei et al., 2006).

The commutation failure is essentially caused by external or
internal factors that lead to the inverter turn-off angle to be γ. If the
voltage is too small, the thyristor will be completely turned off when
the online voltage changes from negative to positive, and there will
be phase reversal.

The calculation formula of the turn-off angle γ is as follows:

γ � arccos

�
2

√
IdXc

UL
+ cos β( ), (1)

where UL is the AC system line voltage at the inverter side; Id is the
DC system current; β and γ are the lead trigger angle and the turn-off
angle of the inverter, respectively; Xc is the equivalent reactance
from the power supply to the converter, particularly composed of
the converter leakage reactance, which is a fixed value.

4 Principle of the CatBoost algorithm

The handling of category features is a key feature of the CatBoost
algorithm, hence its name. The CatBoost algorithm improves the
regular target variable statistics method by adding priors to it. In
addition, the CatBoost algorithm considers using different
combinations of category features to expand the data set feature
dimension.

In a set of samples D � (Xk, yk){ }k�1,...,n, including
Xk � (x1k, . . . , xm

k ), there are m characteristics of random vectors
and yk ∈ R as the target; this can be a binary or digital response. For
example, (Xk, yk) is independent and follows some unknown
distribution P. The goal of the learning task is to train a function
F: Rm → R to minimize the expected loss L(F) � EL(y, F(X)).
Here, L () is a smoothing loss function, and (X, y) is a test example
sampled from P independent of the training set D.

The gradient enhancement procedure iteratively builds an
approximate sequence Ft: Rm → R, t � 1, 2, . . . in an insatiable
manner. Ft is approximately additive to the previous Ft−1: Ft =
Ft−1 + αht, where a is the step size, and the function ht: Rm → R is
selected from the family of functions h to minimize the expected loss:

ht � argmin
h ∈ H

L Ft−1 + h( ) � argmin
h ∈ H

EL y, Ft−1 X( ) + h X( )( ). (2)

The minimization problem is usually treated by Newton’s
method using the quadratic approximation of L(Ft−1 + h) at Ft−1

or by using the (negative) gradient step. Both of these methods are
functional gradient descent. In particular, the choice of the gradient
step ht makes ht(X) akin to −gt(X, y). The gt(X, y) and least
squares approximation are usually used.

gt X, y( ) � zL y, s( )
zs

∣∣∣∣s�Ft−1 X( ), (3)

ht � argmin
h ∈ H

E −gt X, y( ) − h X( )( )2. (4)

The CatBoost algorithm is a gradient-enhanced implementation
that uses a binary decision tree as a basic predictor. The decision tree
is based on the values of some split attribute a. The model is built by
recursively dividing the feature space Rm into several disjoint regions

(tree nodes). Properties are typically binary variables that identify a
feature that exceeds some threshold t, that is, a � |xk > t|, where xk is
either a numerical feature or a binary feature, the latter being t = 0.5.
The decision tree h is as follows:

h X( ) � ∑J
j�1
bj X ∈ Rj[ ], (5)

where Rj is the disjoint region corresponding to the leaves of
the tree.

4.1 Target statistics

Using target statistics as a new numerical feature seems to be the
most efficient way to deal with class features with minimal
information loss. Target statistics is widely used and plays a
crucial role in classifying features.

One of the biggest purposes of the CatBoost algorithm design is
to better handle the category features of GBDT features. The most
direct approach of the conventional TS method is to replace the
average value of the label corresponding to the category. In the
process of GBDT constructing the decision tree, the average value of
the replaced category labels is used as the standard for node splitting,
which is also known as greedy target-based statistics (Greedy TS),
and the calculation formula can be expressed as follows:

xi
k �

∑n
j�1 xi

j � xi
k[ ] · yj∑n

j�1 xi
j � xi

k[ ] . (6)

The aforementioned method has an obvious defect. If the
average value of the label is used to represent the feature, the
condition deviation problem will occur when the data structure
and distribution of the training data set and the test data set are
different.

One way to improve greedy target-based statistics is to add a
prior distribution so as to reduce the impact of noise and low-
frequency category data on data distribution. The formula is as
follows:

xi
k �

∑n
j�1 xi

j � xi
k[ ] · yj + a · p

∑n
j�1 xi

j � xi
k[ ] + a

, (7a)

where p is the added prior term and a is usually a weight coefficient
greater than 0.

4.2 Combination features

Another innovation in CatBoost’s treatment of category features is
that any combination of any number of category features can be built
into a new feature. The CatBoost algorithm considers combining these
two classification features to form a new classification feature.

Therefore, the CatBoost algorithm uses a greedy strategy to
consider the combination of features when building new split nodes.
The CatBoost algorithm combines all combination and category-
type features of the current tree with all category-type features in the
data set and dynamically converts new category-combined features
into numerical features.
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4.3 Prediction shift and ordered boosting

4.3.1 Prediction shift
The so-called prediction shift is the deviation between the

distribution of training samples and the distribution of test samples.
CatBoost first reveals the problem of prediction deviation in the

gradient lift. It is considered that the predicted deviation, like the TS
treatment method, is caused by a special characteristic of target
leakage and gradient deviation.

As in the case of TS, the prediction shift is caused by a particular
kind of target leak. An ordered enhancement similar to the ordered
TS approach is used to solve this problem. The following formula is
used:

ht � argmin
h ∈ H

1
n
∑n
k�1

−gt Xk, yk( ) − h Xk( )( )2. (7b)

4.3.2 Ordered boosting
CatBoost adopted an ordered boostingmethod based on ordered

TS to deal with predicted migration. The sorting promotion
algorithm flow is shown in the following figure.

For the training data, ordered boosting first becomes a random
arrangement and the random collocation column is used for the
subsequent model training. However, the practice of training
individual models will greatly increase memory consumption and
time complexity; the operability is not strong. Therefore, CatBoost
improves this sort of lifting algorithm based on the gradient lifting
algorithm based on decision tree learning.

CatBoost offers two boosting modes, ordered and plain. The
plain mode simply has to sort the TS operation built into the
standard GBDT algorithm, while the ordered mode improved the
sorting promotion algorithm.

The complete ordered mode is described as follows: CatBoost
generates an independent random sequence of the training set to
define and evaluate the splitting of the tree structure and to
calculate the value of the leaf node, resulting from the splitting.
CatBoost uses a symmetric tree as a base learner, meaning that
the splitting criteria are the same at the same level of the tree. A
symmetric tree is balanced, not easy to over-fit, and can greatly
reduce the test time.

The pseudocode of the CatBoost algorithm is shown in Table 1.
It is not difficult to see that when the original data set is input,
CatBoost can output the trained data set after training. CatBoost has
two enhancement modes, ordered and normal. The latter mode is a
standard GBDT algorithm with built-in ordered TS, and the former
mode is an effective improvement of Table 1.

CatBoost generates a random arrangement of s + 1 independent
training data sets. The permutation σ1, . . . , σs is used to evaluate the
splitting of the defined tree structure (i.e., the internal nodes), while
σ0 serves for choosing the leaf values σj of the obtained tree.

TABLE 1 Ordered boosting calculation.

Algorithm: Ordered boosting

Input: (Xk, yk){ }nk�1 , I;
σ ← random permutation of [1, n];

Mi ← 0 for i = 1. . .n; for t ← 1to I do

for i ← 1 to n do

ri ← yi −Mσ(i)−1(Xi)

for i ← 1 to n do

ΔM ← LearnModel ((Xj, rj): σ(j)≤ i);

Mi ← Mi + ΔM

return Mn

FIGURE 5
Fault type diagram corresponding to fault points of the HVDC system.
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5 Fault diagnosis model

In this section, according to the four types of fault data measured
in the substations of the Southwest Power Grid, the electrical
diagram of the transmission system and the corresponding fault
types of the fault points are shown in Figure 5. There are 20 fault
points in the electrical wiring diagram, and the type represented by
each fault point is clearly explained in the right figure. In the original
data set, the recorded data on 15 cycles before and after the fault is
extracted; the extraction duration of the recorded data is 0.5 s, as
shown in Figure 6. Also, the specific meaning of each channel can be
referred to from Table 2. It is easy to observe that the 15 channel data
mainly record the current and voltage signals of the fault points, and
the 15 channel waveforms of the four types of faults are intuitively
different, so the characteristics of the data can be used for fault
classification and identification. Furthermore, the elements in the
data samples of the AC fault, DC fault, converter valve fault, and

commutation failure are N1 = 10, N2 = 14, N3 = 14, and N4 = 18,
respectively.

After determining the original data, the CatBoost algorithm is
used to process and train the four types of fault data, and finally, the
fault is diagnosed and the accuracy is calculated. The specific steps
are as follows:

First, 15 channel data on each sample in each type of fault data
are connected in series to conduct data preprocessing and then
stacked according to the number of samples to form a full fault
data set. Then, 70% of the total fault data set is randomly selected
as training data and 30% as test data. Second, integrated learning
is used to extract the features of fault data, and 70% of the data is
intensively trained. After determining the number of data
classifiers and training data, finally, the remaining 30% of data
will be used as test samples for fault diagnosis and classification.
The CatBoost classifier is used to train and recognize the training
data set, and the accuracy of various fault diagnosis results is

FIGURE 6
Waveforms of the HVDC system four types of faults. (A) AC fault data. (B) DC fault data. (C) Converter valve fault data. (D) Commutation failure fault
data.
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counted. The flow chart of the CatBoost-based fault diagnosis
model is shown in Figure 7.

6 Case study

First, the training samples from the fault data are input into the
model, and then, the test samples are input. In this paper, in order to
reflect the scientific nature of fault diagnosis, the test data are divided
into three groups to verify the model. The first group of test data is
Y1 (n1 = 3, n2 = 5, n3 = 5, and n4 = 6), and the second group of test
data is the training data itself Y2 (n1 = 7, n2 = 9, n3 = 9, and n4 = 12).

After training the model, the training data itself are substituted into
the model for verification. The third group of test data is all the fault
data Y3 (n1 = 10, n2 = 14, n3 = 14, and n4 = 18). In this paper, in order
to reflect the effectiveness, diagnostic accuracy, and effectiveness of
the CatBoost algorithm in small sample fault diagnosis, the BP
neural network algorithm is used for comparison, and the fault
diagnosis accuracy of the two methods is compared under the same
training set and test set. Finally, in order to intuitively reflect the fault
diagnosis accuracy of the twomethods for the test set, this paper uses
the confusion matrix to visually express the fault diagnosis accuracy.

After the two methods have trained their respective fault
diagnosis models, the confusion matrix of fault diagnosis results

TABLE 2 Channel name and meaning.

Signal Description meaning Signal Description meaning

UACA(V) A-phase AC voltage IACD_L3(A) C-phase AC current of the D-bridge valve side

UACB(V) B-phase AC voltage UDL(V) DC line voltage

UACC(V) C-phase AC voltage UDN(V) Neutral bus voltage

IACY_L1(A) A-phase AC of the Y-bridge valve side IDN(A) Neutral bus current

IACY_L2(A) B-phase AC of the Y-bridge valve side IDE(A) Grounding pole bus current

IACY_L3(A) C-phase AC of the Y-bridge valve side IDH(A) High-voltage bus current

IACD_L1(A) A-phase AC of the D-bridge valve side IDL(A) DC line current

IACD_L2(A) B-phase AC of the D-bridge valve side

FIGURE 7
CatBoost algorithm fault diagnosis flow chart.
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of the Y1 test set is shown in Figure 8. It is easy to see that when
the test set is Y1, in the diagnosis result of the CatBoost algorithm,
a date group of commutation failure faults are misdiagnosed as
converter valve faults, and the fault diagnosis rate of the CatBoost
algorithm is as high as 94.74%. However, in BP’s diagnosis
results, four groups of DC faults are misdiagnosed as AC
faults and commutation failures, respectively. At the same
time, two groups of commutation failures are also
misdiagnosed as DC faults. BP’s overall fault diagnosis
accuracy cannot reach a satisfactory level, only reaching
68.42%. The CatBoost algorithm has the highest classification

accuracy of the two methods, although it has diagnostic errors
when diagnosing converter valve faults.

The confusion matrix of fault diagnosis results for the Y2 test set
is shown in Figure 9. It is easy to see that under the condition that the
test set is Y1, the four types of faults can be accurately identified
through the CatBoost algorithm and the accuracy rate of fault
diagnosis of the CatBoost algorithm is as high as 100%, which
proves that the CatBoost algorithm can effectively extract fault data
and accurately identify according to the characteristics. However, it

FIGURE 8
Confusion matrix of experimental results for the test set Y1. (A)
CatBoost model test result diagram. (B) BP model test result diagram. FIGURE 9

Confusion matrix of experimental results for the test set Y2. (A)
CatBoost model test result diagram. (B) BP model test result diagram.
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is not difficult to find from the BP diagnosis results that one of the
commutation failure faults was misdiagnosed as a valve fault, and its
accuracy reached 97.3%.

The results of the two algorithms under the Y3 test set are shown
in Figure 10. It is obvious that CatBoost has the highest diagnostic
accuracy, although a group of inverter commutation failure is
misdiagnosed as converter valve fault in the CatBoost fault
diagnosis model. However, in the fault diagnosis model of the BP
neural network algorithm, four groups of DC faults are
misdiagnosed as AC faults and commutation failures,
respectively, and four groups of commutation failure data are
misdiagnosed as a DC fault. According to the confusion matrix,

the accuracy of fault diagnosis of CatBoost and BP neural network
algorithms can be calculated to be 98.21% and 85.71%, respectively.
Furthermore, the fault diagnosis iteration curve of the two
algorithms for Y3 is shown in Figure 11. It can be seen that the
CatBoost algorithm converges after 30 iterations, while algorithm B
converges after 41 iterations, which indicates that CatBoost has a
faster diagnosis speed.

Finally, according to the confusion matrix, the accuracy rates of
three groups of fault diagnosis experiments are obtained, as shown
in Table 3. In test sets Y1, Y2, and Y3, the number of negative data on
the CatBoost fault diagnosis model is 1, 0, and 1, respectively, and
the BP neural network fault diagnosis model is 6, 1, and 8,
respectively. Also, in the CatBoost fault diagnosis model, the DC
fault and AC fault can be accurately identified, and misdiagnosis
mainly occurs in commutation failure and the converter valve fault.
In addition, it is obvious that the CatBoost algorithm has the highest
accuracy rate of fault diagnosis in the three groups of data, which can
be guaranteed between 94% and 100%, which reflects that CatBoost
is applicable to data classification in small sample data sets.
However, the accuracy rate of the BP neural network can reach
64% at the lowest. To sum up the aforementioned analysis, it can be
seen that algorithm B is superior to algorithm A in terms of
convergence speed and fault diagnosis accuracy, which verifies
the effectiveness and progressiveness of the method proposed in
this paper.

7 Discussion and limitations

7.1 Discussion

Fault diagnosis of the HVDC transmission system is important
research to ensure the reliable power supply of the whole power
system. In the past, the fault diagnosis and inspection of the power
system mainly depended on image recognition or acoustic theory,
but this kind of method has a huge workload and cannot get timely
feedback and maintenance when the system fails. In recent years,

FIGURE 10
Confusion matrix of experimental results for the test set Y3. (A)
CatBoost model test result diagram. (B) BP model test result diagram.

FIGURE 11
Accuracy curve of experimental results for the test set Y3.
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with the development of artificial intelligence technology, such as
machine learning, reinforcement learning, and KG, these
technologies have been applied in fault diagnosis technology of
the power system to further improve the speed and accuracy of fault
diagnosis. The CatBoost fault diagnosis method proposed in this
paper belongs to this kind of technology. On the basis of obtaining
historical fault data, the data features are extracted and recognized,
and the accuracy is better. The BP neural network algorithm is
relatively common in many studies, but it does not show good
results in this data set.

7.2 Limitations

The fault diagnosis model of the HVDC transmission system
proposed in this paper only contains four types of faults in the
data set, so the data set does not cover all faults in the HVDC
transmission system to a certain extent, such as the transformer
fault and generator fault. In addition, the current work is mainly
carried out under small samples, and the number of data sets is
not large. Therefore, the data sets need to be improved and
enriched. Since fault diagnosis is based on historical fault data to
predict the system, the method proposed in this paper has certain
limitations for fault prediction in some special cases.

8 Conclusion

In this paper, a novel fault diagnosis method for the HVDC
system is proposed, and the significance of fault diagnosis for the
later fault analysis and processing of the HVDC system is described
by combining with the KG of the HVDC system. In this paper, the
CatBoost algorithm is fully proven to be very effective, accurate,
and fast in fault diagnosis of the HVDC system through relevant
data validation and analysis. Four common faults of the HVDC
system are introduced and analyzed in this work: the AC fault, DC
fault, converter valve fault, and commutation failure, and the fault
data are sorted out. The representative 15 channel data in the fault
recording system are selected, and then, the data are summarized
and sorted as the experimental data on this study. Furthermore, a
fault diagnosis model of the HVDC system based on the CatBoost
algorithm is proposed. Three test sets are used in the experiment to
verify the model. The final structure proves that the method can
effectively, quickly, and accurately realize the fault diagnosis of the
HVDC system. Then, the fault diagnosis effect is compared with
the BP neural network algorithm. Finally, the obtained results are

visualized and the algorithm convergence curve and confusion
matrix are drawn. From the figure, it can be seen that the CatBoost
algorithm has a short diagnosis time and high fault diagnosis
accuracy. Under the three test sets, its diagnosis accuracy is
94.74%, 100%, and 98.21%, respectively. However, the
diagnostic accuracy of the BP neural network algorithm under
three test sets is low, which is 68.42%, 97.30%, and 85.71%,
respectively.

In the application of new generation AI in the power system, the
method proposed in this paper has a certain reference value for the
stable operation of the power system. Future studies might focus on
the following three aspects:

(1) At present, the proposed fault diagnosis model is mainly applied
to the HVDC transmission system. In the future research work,
the effectiveness and progressiveness of the proposed method
will be tested using the AC/DC hybrid system;

(2) The data set will be further enriched and improved, and more
types of HVDC transmission fault data will be considered in the
data set, such as the transformer fault, lightning fault, and noise
impact on the system;

(3) The proposed algorithm will be further improved and
integrated into more effective mechanisms in the KG. At
the same time, more algorithms will be tested to analyze the
speed and accuracy of system fault diagnosis under a large
data set.
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Modern smart grids already consist of various components that interleave
classical Operational Technology (OT) with Information and Communication
Technology (ICT), which, in turn, have opened the power grid to advanced
approaches using distributed software systems and even Artificial Intelligence
(AI) applications. This IT/OT integration increases complexity, however, without
argument, this advance is necessary to accommodate the rising numbers
of prosumers, Distributed Energy Resources (DERs), to enable new market
concepts, and to tackle world-wide CO2 emission goals. But the increasing
complexity of the Critical National Infrastructure (CNI) power grid gives way to
numerous new attack vectors such that a priori robustness cannot be guaranteed
anymore and run-time resilience, especially against the “unknown unknowns”, is
the focus of current research. In this article, we present a novel combination of so
called misuse-case modelling and an approach based on Deep Reinforcement
Learning (DRL) to analyze a power grid for new attack vectors. Our approach
enables learning from domain knowledge (offline learning), while expanding on
that knowledge through learning agents that eventually uncover new attack
vectors.

KEYWORDS

misuse case, smart grids, smart grid cyber security, deep reinforcement learning (deep
RL), offline learning, adversarial resilience learning

1 Introduction

Undoubtedly, the climate catastrophe is an unparalleled challenge for society. The urge
to reduce CO2 emissions directly leads to the imperative of reducing energy consumption, a
more efficient usage of energy, and to increase the emount of renewable energy resources.
This change is nowhere as apparent as in the power grid, which has undergone a rapid
transformation in recent years (Bush, 2014; IEA, 2019).

Future power grids will have a much higher degree of digitalization as present
ones. New approaches to balancing services management that include major prosumers
(Holly et al., 2020) or multi-purpose battery storage (Tiemann et al., 2022). Multi-Agent
System (MAS) are employed to facilitate real power management of DERs or solve unit-
commitment problems (Roche et al., 2013; Veith, 2017; Nair et al., 2018; Frost et al., 2020;
Mahela et al., 2022), while ever smaller generators are included into the grid management
duties of the operator (Woltmann and Kittel, 2022). In addition, the convergence between
Information Technology (IT) and OT is further emphasized by the amount of Internet
of Things (IoT) technologies deployed, which have—for the better or worse—a huge
impact on the power grid (Soltan et al., 2018; Huang et al., 2019; Mathas et al., 2021).
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Indeed, power grids have become valuable targets for cyber
attacks. The attacks on the Ukrainian power grid in 2015 and
2016 are well known (Styczynski and Beach-Westmoreland, 2016),
but researchers know a multitude of attack vectors, such as
message spoofing in IEC 61805 (Hong et al., 2014), false data
injection (Liu et al., 2011; Hu et al., 2018), direct damage caused by
nodes compromised by an attacker (Ju and Lin, 2018), or market
exploitation (Wolgast et al., 2021). There are already comprehensive
reviews available that consider the cyber-security of power grids; we
refer the interested reader to the review article by Sun et al. (2018)
for a comprehensive survey.

Researchers have not only considered each incident in isolation,
but used and extended existing methodologies to document,
classify, and analyze these incidents on a more general level.
Structured Threat Information Expression (STIX) and Trusted
Automated Exchange of Indicator Information (TAXII) are well-
known documentation formats and methodologies for Cyber
Threat Intelligence (CTI) (Barnum, 2012; Connolly et al., 2014;
Apoorva et al., 2017; Briliyant et al., 2021). They are, of course, far
from being the silver bullet; another, high-level approach is that of
the Misuse-Case (MUC), introduced by Sindre and Opdahl (2005).

However, any approach in modelling cyber threats works based
on already known attack vectors. They require humans to map
them to actual actions—e. g, commands to be executed—on a given
system, and it is also humans who devise and execute new attack
vectors, which are then documented and analyzed post hoc.

There exists a stark contrast to more recent approaches coming
from the domain of AI, specifically DRL: Learning agents that
use trial-and-error approaches to probe simulated Cyber-Physical
Systems (CPSs) for weaknesses (Fischer et al., 2019; Veith et al.,
2019, 2020).

DRL—initially without the “Deep” prefix—introduced the
notion of an agent that learns by interacting with its environment.
The agent possesses sensors with which it perceives its environment,
actuators to interact with it, and it receives a reward signal that
indicates to the agent how well it fars with regards to its goal or
utility function. Learning in the context of DRL means creating a
policy such that, in any given state, the agent’s actions maximize its
cumulative reward. The modern breakthrough in DRL was the end-
to-end learning of Atari games by Mnih et al. (2013). Since their
publications of Deep Q Network (DQN), many other algorithms
have followed, including the well-known modern DRL algorithms
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016),
Twin-DelayedDDPG (TD3) (Fujimoto et al., 2018), Proximal Policy
Gradient (PPO) (Schulman et al., 2017), and SoftActor Critic (SAC)
(Haarnoja et al., 2018).

However, “vanilla” DRL is called model-free, meaning that the
agents do not carry an explicit knowledge about their environment.
The policy they learn includes this implicitly, because in mapping
sensor readings to actions in order to maximize the (cumulative)
reward, they obviously need to build a concept of their environment’s
inherent dynamics. But the agents learn from scratch; the interaction
with their environment is the only way the have to explore it.
In order to build a policy, the agents have to amass trajectories
(triplets of state, action, and reward) that contain “fresh” data to
learn upon.The trade-off between acting based on the current policy
and exploring the environment withmore-or-less random actions in

order to potentially find more rewarding trajectories is expressed by
the exploration-exploitation dilemma.Howwell an algorithm learns
is often discussed in terms of its sample efficiency.

Obviously, it seems beneficial to give agents access to a
repository of trajectories to learn from without the need of
interacting from scratch. There are a lot of situations where data
is also scarce or expensive to come by; real-world applications in
the domain of robotics or medicine are such cases. Learning from
preexisting data, called Offline Learning (Prudencio et al., 2022),
poses a problem of its own, which stems from the fact that agents
cannot interact with the environment during offline learning and,
thus, might be biased to sub-optimal policies.

Still, if one can ascertain the quality of the dataset, offline
learning provides a huge benefit: It introduces the agent to proven
domain knowledge and reduces the training time significantly. Also,
an agent initially trained from an offline learning data set can still
be trained online with the usual algorithms, but it still does not start
from scratch.

There exists a clear motivation in combining modelling
approaches like MUCs with learning agents: A MUC is
understandable by domain experts, who play an important role
in drafting a MUC in the first place. MUC—along other CTI
description formats—are an accessible and comprehensive way to
describe post hoc incident knowledge. The shortcoming is, that
MUCs, being a data format, contain few points (if any) to uncover
variants of a known attack, or even uncover new ones that make
use of existing knowledge. On the other hand, learning agents
that employ, e. g, DRL, are known to develop completely new
strategies—AlphaZero is a prime example for this—, but when
starting with no knowledge, they require extensive training: I. e, a
comprehensive simulation environment and the ability to gather
enough data from a distribution resembling the real world so that
the training is successful, which is computationally extensive.

The technical as well as research gap lies in the combination
of the two: Learning from domain knowledge, which is offline
data, would provide the learning agent with a headstart and cut
the expensive initial exploration phase. But in addition, the agent
would still benefit from a later online learning phase and be able to
uncover new strategies. That way, agents would learn from known
incidents, and then develop variants based thereof or entirely new
attack vectors connected to the known ones. However, for this, the
task of MUC modelling must be connected to the offline learning
domain, and later than to extensive online learning, which entails
careful design of experiments.

In this paper, wewill combine domain knowledge fromCTIwith
successful approaches at CPS system analysis. Namely, we present
a methodology to define experiments from MUCs, paving the way
towards offline learning for DRL agents for cyber-security in CNIs.
Our main contribution is threefold.

• We describe a pipeline from MUC modelling to DRL-based
experiments that allow to extend existing, known MUCs by
having learning agents discovers new attack vectors based on
a given MUC.
• We present an offline learning approach where specific agents,

stemming from the MUC modelling, are imitiation learners (or
adversarial imitation learners) for DRL agents.
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• We outline a research direction on how to create offline
learning datasets from MUCs by analyzing embedded Unified
Modelling Language (UML) diagrams, based on specific
anotations.

Technically, the novelty of our contribution exists in the
complete software stack, from MUC to experiment definition,
to Design of Experiments (DoE), to reproducible experiment
execution with offline and online learning.

The remainder of this paper is structured as follows: In
Section 2, we review related work and present the state of the
art. Section 3 outlines our approach in broad terms as a high-
level overview. We then present the MUC modelling format in
detail in Section 4. Afterwards, Section 5 turns towards our DoE
approach. Section 6 presents our execution software stack and the
data storage and analysis backend. We follow the theoretical part
with an experimental validation in Section 7. We present initial
results in Section 8, which we discuss in Section 9. We conclude in
Section 10 with an outlook towards future work.

2 Related work

2.1 Cyber Threat Intelligence

The term Cyber Threat Intelligence (CTI) describes the process
of knowledge acquisition for cyber threat data and also the
data itself. As there are known attack pattern and vulnerabilities
in systems, sharing and maintaining this data sets becomes
important.

2.1.1 Structured Threat Information eXpression
(STIX™)

With Structured Threat Information eXpression (STIX™) the
Organization for the Advancement of Structured Information
Standards (OASIS) Cyber Threat Intelligence Technical Committee
developed a standardized language. Data in form of Structured
Threat Information eXpressions (short: STIX data) gives structured
information about cyber attacks (Barnum, 2012). STIX data is
stored in an graph based information model and OASIS defines
eighteen such called STIX Domain Objects for entity nodes,
which are connected via two defined STIX Relationship Objects
(OASIS Open Cyber Threat Intelligence Committee, 2022). Some of
these entity node types are referred to as TTPs, which can
be traced back to the military origin of this abbreviation. The
types thereby belong to the category of tactics, techniques, and
procedures.

2.1.2 Trusted Automated Exchange of
Intelligence Information (TAXII™)

The Trusted Automated Exchange of Intelligence Information
(TAXII™), which is also developed by the OASIS Cyber Threat
Intelligence Technical Committee, describes the way, STIX data is
meant to be exchanged. Therefore TAXII is an application layer
protocol with an RESTful API. OASIS also provides requirements
for TAXII clients and servers. By development TAXII is meant to be
simple and scalable to make sharing STIX data as easy as possible
(Connolly et al., 2014).

2.1.3 MITRE ATT&CK R© STIX data
The MITRE Adversarial Tactics, Techniques, and Common

Knowledge (MITRE ATT&CK) collects and provides cyber attack
data. It targets the missing communication between communities
dealing with the same attacks (The MITRE Corporation, 2022).

2.2 (Mis-)Use case methodology

The misuse case methodology used in this paper is based on
the use case methodology from the IEC 62559 standards family.
This standard describes a systematic approach for eliciting use cases.
IEC 62559-2 also provides a template for the use cases according
to this standard. In this template the use case data is noted in a
structured form and contains the description of the use case with
its name and identifier as well as scope, objectives, conditions and
narrative in natural language, further information like the relations
to other use cases or its prioritization and a set of related KPIs. In
the second section of the use case template, the associated diagrams
of the use case are depicted. This is followed by an overview about
the technical details where every acting component is listed as well
as a step-by-step analysis for every scenario belonging to this use
case. Linked to these steps are lists of exchanged information and
requirements, which are also part of the template. Finally common
terms and custom information are placed.

As shown by Gottschalk et al. (2017), the IEC 62559 is a family
of standards that is used in many areas. Trefke et al. (2013) show the
application of the use case methodology in a large European smart
grid project, while Clausen et al. (2018) show a similar approach
in the German research project enera. In the DISCERN project,
Santodomingo et al. (2014) present approaches of an analysis based
on the use case standard, while Schütz et al. (2021) take up these
approaches as well as the related approaches from Neureiter et al.
(2014), van Amelsvoort et al. (2015), and van Amelsvoort (2016)
and continue them.

The here used misuse case methodology is based on the use
case methodology taken from the IEC 62559. This standard is then
combined with the concept of misuse cases. In general a misuse
case is a description of a scenario which is known but explicitly
unwanted. This contains, among others, unwanted behaviour of a
system as well as cyber (-physical) attacks. The need of misuse
cases was described by Sindre and Opdahl (2005) and applied to
a template based on a use case template by Cockburn (2001)1 in
the work of Sindre and Opdahl (2001). Concepts and notation of
misuse cases as well as textual specification and examples for the
work with misuse cases are part of the paper of Sindre and Opdahl
(2005). In addition to the general template according to IEC 62559-
2 the misuse case template contains information about misactors,
which are placed in the same section as the actors in the standard.
The section containing the scenarios is adapted to failure scenarios,
which need additional information like the worst case threat or the
likelihood of occurrence.

This leads to a set of tables in the following structure2.

1 This template is not the same as the template from the IEC 62559-2 standard.

2 For a detailed view on the MUC template see: https://gitlab.com/arl2/
muclearner.
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1 Description of the Misuse Case
2 Diagrams of the Misuse Case
3 Technical Details
4 Step-by-Step analysis of the Misuse Case
5 Requirements
6 Common Terms and Definitions
7 Custom Information (optional)

Considering the nature of a misuse case and the given
information in misuse case template used here, a link to a
representation of the information in the form of STIX data (cf.
Section 2.1.1) is natural.Therefore data in STIX format shall be used
in the presented approach as an expedient addition to the misuse
case template.

2.3 Deep reinforcement learning and its
application in smart grid cyber security

Undoubtedly, research in the domain of AI has yielded many
noteworthy results in the last years. One of the most spectacular,
the “superhuman” performance in the game of Go, can be
largely attributed to DRL. From the resurrection of (model-free)
reinforcement learningwith the 2013 hallmark paper to the publicly-
noted achievements of AlphaGo, AlphaGo Zero, AlphaZero, and
(model-based) MuZero (Mnih et al., 2013; Lillicrap et al., 2016;
Hessel et al., 2018; Silver et al., 2016a; b, 2017; Schrittwieser et al.,
2019), DRL has attracted much attention outside of the AI domain.
Much of the attention it has gained comes from the fact that,
especially for Go, DRL has found strategies better than what any
human player had been able to, and this without human teaching
or domain knowledge.

DRL is based on the Markov Decision Process (MDP), which is
a quintruplet (S,A,T,R,γ).

• S, the set of states, e. g, the voltage magnitudes at all buses at
time t, St = {V1(t),V2(t),…,Vn(t)}
• A, the set of actions, e. g, the reactive power generation (positive

value) or consumption (negative value), at t, of a particular node
the agent controls, At = {q1(t),q2(t),…,qn(t)}
• T, the set of conditional transition probabilities, i. e, the

probability that, given an action at ∈ At by the agent, the
environment transitions to state st+1. T (st+1‖st ,at) is observed
and learned by the agent
• R, the reward function of the agent R:S×A→ℝ
• γ, the discount factor, which is a hyperparameter designating

how much future rewards will be considered in calculating the
absolute Gain of an episode: G = ∑tγ

trt ,γ ∈ [0; 1).

Basically, an agent observes a state st at time t, executes action
at , and receives reward rt . The transition to the following state
st+1 can be deterministic or probabilistic, according to T. The
Markov property states that, for any state st , given an action at ,
only the previous state st−1 is relevant in evaluating the transition.
We consider many problems in CNIs to be properly modelled
by a Partially-Observable Markov Decision Process (POMDP). A
POMDP is a 7-tuple (S,A,T,R,Ω,O,γ), where, in addition to the
MDP.

• Ω, the set of observations, being a subset of the total state
information st : For each time t, the agent does observe the
environment through its sensors, but this may not cover the
complete state information. E. g, the agent might not obseve all
buses, but only a limited number.
• O, the set of conditional observation properties determines

whether an observation by the agent might be influenced by
external factors, such as noise.

The goal of reinforcement learning in general is to learn a
policy, such that at ∼ πθ(⋅|st). Finding the optimal policy π*

θ is the
optimization problem at the heart of all reinforcement learning
algorithms.

Mnih et al. (2013) introduced DRL with their DQNs. Of
course, Reinforcement Learning itself is older than this particular
publication (Sutton and Barto, 2018). However, Mnih et al. were
able to introduce deep neural networks as estimators for Q-values,
providing stable training. Their end-to-end learning approach, in
which the agent is fed raw pixels from Atari 2,600 games and
successfully plays the respective game, is still one of the standard
benchmarks in DRL. The DQN approach has seen extensions until
the Rainbow DQN (Hessel et al., 2018). DQN are only applicable
for environments with discrete actions; the algorithm has been
superseeded by others.

DDPG (Lillicrap et al., 2016) also builds on the policy gradient
methodology: It concurrently learns a Q-function as well as a policy.
It is an off-policy algorithm that uses the Q-function estimator
to train the policy. DDPG allows for contiuous control; it can be
seen as DQN for continuous action spaces. DDPG suffers from
overestimating Q-values over time; TD3 has been introduced to fix
this behavior (Fujimoto et al., 2018).

PPO (Schulman et al., 2017) is an on-policy policy gradient
algorithm that can be used for both discrete and continuous
action spaces. It is a development parallel to DDPG and TD3
and not an immediate successor. PPO is more robust towards
hyperparamter settings than DDPG and TD3 are, but as an on-
policy algorithm, it requires more interaction with the environment
train, making it unsuitable for computationally expensive
simulations.

SAC, having been published close to concurrently with TD3,
targets the exploration-exploitation dilemma by being based on
entropy regularization (Haarnoja et al., 2018). It is an off-policy
algorithm that was originally focused on continuous action
spaces, but has been extended to also support discrete action
spaces.

PPO, TD3, and SAC are the most commonly used model-free
DRL algorithms today.

With the promise of finding novel strategies, DRL has long since
entered the smart grid cyber security research domain. Adawadkar
and Kulkarni (2022) and Inayat et al. (2022) provide a recent survey
in this regard; in the following paragraphs, we will take note of
publications not listed in the survey or those which are especially
interesting in the context of this article.

However, we note that the majority of publications, even recent
ones, focus on a particular scenario, which is well known from
the electrical engineering perspective. The authors then reproduce
this scenario, using DRL algorithms to show the discoverability and
feasibility of the attack, to learn a strategy of attack for changing grid
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models, or to provide a defense against a particular, specific type
of attack, leveraging DRL to provide dynamic response. Thus, the
goal is mostly to automate a specific attack with DRL, which can
be deduced from the formulation of rewards. Using the versatility
of DRL to discover any weakness in a power grid, regardless of a
specific attack vector (i. e, letting the agent find the attack vector), is
a clear research gap.

Wang et al. (2021) apply DRL to coordinated topology attacks,
having the agent learn to trip transmission lines and manipulate
digital circuit breaker data. Surprisingly, the authors still employ
DQNs for this (rather recent) publication. Wolgast et al. (2021) have
used DRL to attack local energy markets, in which the attacker aims
to achieve local market dominance. Wan et al. (2021) consider a
DRL agent that implements demand response as the victim, using
particle swarm optimization to pertubate the DRL agent’s input to
cause erroneous behavior.

Roberts et al. (2020) provide a defender against attacks from
malicious DERs that target the voltage band. They consider
the DER inverters’ P/Q plane, but disregard grid codes as well
as other actions, such as line trippings. They use PPO and
are explicitly agnostic to the concrete attack, but their agent
also trains without prior knowledge. Roberts et al. (2021) work
from a similar premise (compromised DERs), paying special
attention to non-DRL controllers, but otherwise achieving similar
results.

2.4 Offline reinforcement learning for deep
reinforcement learning

The core of reinforcement learning is the interaction with the
environment. Only when the agent explores the environment,
creating trajectories and receiving rewards, can it optimize its
policy. However, many of the more realistic environments, like
robotics or the simulation of large power grids, are computationally
expensive. Obviously, training from already existing data would
be beneficial. For example, an agent could learn from an
already existing simulation run for optimal voltage control
before being trained to tackle more complex scenarios. Learning
from existing data without interaction with an environment
is called offline reinforcement learning (Prudencio et al.,
2022).

The field of offline reinforcement learning can roughly
be subdivided into policy constraints, importance sampling,
regularization, model-based offline reinforcement learning, one-
step learning, imitation learning, and trajectory optimization. For
thesemethods, wewill give only a very short overview as relevant for
this article, since Levine et al. (2020)3 and Prudencio et al. (2022)
have published extensive tutorial and review papers, to which we
refer the interested reader instead of providing a poor replication of
their work here.

3 The tutorial by Levine et al. (2020) is available only as preprint. However, to
our knowledge, it constitutes one of the best introductionary seminal works
so far. Since it is a tutorial/survey, and not original research, we cite it despite
its nature as a preprint and present it alongside the peer-reviewed publication
by Prudencio et al. (2022), which cites the former, too.

Policy constraints modify the learned policy: They modify the
unconstrained objective to a constrained objective by introducing
a devergence metric between the learned policy, πθ(⋅|s), and the
behavioral policy created from offline data, πβ(⋅|s). Given π̂β(⋅|s) as
an estimate of the behavioral policy, maximizing the objective J(θ)
becomes subject toD(πθ(⋅|s), π̂β(⋅|s) < ε). Peng et al. (2019) describe
a different approach that eschews estimating πβ, needing only to
estimate the advantage Âpi(s,a). Since the advantage describes the
relative improvement of an action, not the absolute one, it is easier
to derive from a dataset.

Importance sampling introduces weights for the samples in the
offline learning dataset. Reducing the variance of the important
weights is crucial, since the produce of important weights, w0:H , is
exponential in H.

Regularization adds a regularization term, R(θ), to J(θ). It makes
the estimates of the value function learned by the agent more
conservative, preventing over-estimation of the value objective,
thus preventing the agent to take Out-Of-Distribution (OOD)
actions.

An optimization of this approach is uncertainty estimation,
which allows to switch between conservative and naive off-policy
DRL methods. By estimating the uncertainty of the policy or
value function over their distribution, the penalty term added
to the objective, J(θ), is dynamically adjusted based on this
uncertainty.

Model-based methods estimate transition dynamics
T (st+1|st ,at) and the reward function r (st ,at) from a dataset
D, often learned through supervised regression. E.g., a world
model can be a surrogate model for a power grid, learned
from a number of power flow calculations during a simulation.
However, world models cannot be corrected by querying the
environment as this would normally be done in online DRL.
Thus, world models in offline DRL need to be combined with
uncertainty estimation in order to avoid transitioning to OOD
states.

One-step methods collect multiple states to estimate Q (s,a)
from offline data; afterwards, a single policy improvement step is
done. This is in contrast to iterative actor-critic methods (e.g, SAC),
which alternate between policy evaluation and policy improvement.
Since the latter is not possible, the single-step approach ensures that
the estimate for Q (s,a) represents the distribution, i.e, evaluation is
never done outside the distribution of D.

Trajectory optimization aims to learn a state-action model over
trajectories, i.e, a model of the trajectory distribution introduced by
the policy from the dataset. Given any initial state s0, this model
can then output an optimal set of actions. Querying for whole
trajectories makes selecting OOD actions less likely.

Finally, imitation learning aims to reduce the distance between
the policy out of the dataset D and the agent’s policy, such that the
optimization goal is expressed by J(θ) = D (πβ(⋅|s),πθ(⋅|s)). This so-
called Behavior Cloning requires an expert behavior policy, which
can be hard to come by, but is readily available in some power-grid-
related use cases, such as voltage control, where a simple voltage
controller could be queried as expert.

To our knowledge, there is currently no notion of employing
offline learning for DRL in the context of smart grid cyber security
(Adawadkar and Kulkarni, 2022; Berghout et al., 2022; Inayat et al.,
2022).
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2.5 Software frameworks for deep
reinforcement learning in complex cyber
physical system simulations

During the last years, numerous frameworks for DRL have
emerged. The smallest common denominator for all these
frameworks is their usage of the Application Programming Interface
(API) offered by OpenAI’s Gym plattform (Brockman et al., 2016),
which offers standard benchmark environments, such as cartpole.
Gym has been superseeded by Gymnasium,4 which retains a
comptabile API.

Several libraries exist or have existed that implement
DRL algorithms, such as Stable Baselines (SB3) (Raffin et al.,
2021), Tensorforce (Kuhnle et al., 2017), or Google Dopamine
(Castro et al., 2018). These focus almost exclusively on a Gym-like
API—SB3 enforces it by providing a code checker—, having the goal
of providing well-tested implementations, but nothing beyond it.
Their distinctive feature is the code style or approach on framework
design. In the same vein, Facebook’s ReAgent framework (formerly
known has Horizon, Gauci et al. (2018)5 provides a smaller subset
of algorithms and relies on a complex preprocessing and dataflow
pipeline that uses libraries from Python as well as Java. ReAgent
relies on theGymAPI,making inverted control flow as it is necessary
for CPS simulations almost impossible. d3rlpy (Seno and Imai,
2022) focuses on offline learning, but shares otherwise many design
decisions of the aforementioned libraries.

rllib (Liang et al., 2018), which is part of the ray project,
has emerged as one of the most comprehensive frameworks for
DRL, covering the most common algorithms (model-free and
model-based), offline DRL, and supports several environment
APIs, including external environments with inverted control flow
(i.e, the environment queries the agent instead of the agent
stepping the environment). This makes it suitable for co-simulation
approaches, which are commonly applied in CPS simulations.
However, rllib does not have the goal of providing a comprehensive
scientific simulation platform, and as such lacks facilities for DoE,
interfaces to commonly used simulators, or results data storage and
analysis.

To date, there is no comprehensive framework that takes
an experimentation process as a whole into account, i.e, DoE,
executions, results storage, and results analysis. Furthermore,
the most actively developed libraries referenced in the previous
paragraphs have—with the exception of rllib—committed
themselves to enforcing an Gym-style flow of execution, in
which the agent “steps,” i.e, controls the environment. This design
decision makes them unsuitable for more complex simulation
setups, such as complex co-simulation (Veith et al., 2020), in
which the co-simulation framework has to synchronize all parties
and, therefore, reverses control flow by querying the agent for
actions instead of allowing the DRL agent to control the flow of
execution.

4 https://github.com/Farama-Foundation/Gymnasium, retrieved: 2022-01-03.

5 The technical report for Horizon is available only as preprint. We treat it the
same way as a website reference and provide the bibliography entry here
for easier reference.

3 High-level approach

The available CTI and descriptions from MUCs already contain
domain expert knowledge that describes how a system’s vulnerability
is being exploited. The MUC template format contains an extended
tablespace to describe actors, their behavior, and systems; it also
allows for modelling of this through diagrams—mostly sequence
diagrams—in the UML. UML allows to annotate diagram elements
through stereotypes and parameters. UML modelling tools, such as
VisualParadigm, usually allow to export diagrams as XML Metadata
Interchange (XMI) (OMG Group, 2005) files. This then makes the
MUC a twofold datasource, first through its table format—a specific
notation can be easily enforced as well as exportet to a XML file —,
second through the UML sequence diagrams.

On the other hand, DRL-based software suites allow to connect
learning agents and environments so that the agents, giving the
corresponding objective function, can learn to exploit a (simulated)
system. However, the agent starts training with zero knowledge,
effectively “wasting” iterations before the informed trail-and-error
style training that DRL yields first successes. In order to converge
faster to a successful policy, we describe a pipeline that connects
these two domains. Its main connecting point is an experiment
definition with agents that serve as experts (via imitation learning)
to the DRL agents. It consists of five steps (cf. Figure 1).

1 Gathering expert knowledge
2 Formulating the MUC
3 Creating an UML diagram
4 Exporting and reading the XMI/XML file(s)
5 Generating the experiment definition from the XMI/XML file(s)

The first step of this process is knowledge gathering and, in
stage 2, filling out the misuse case templates. These have to be
very specific and well reviewed to be able to process the domain
knowledge further. An error in this stage might lead to severe
misunderstanding or wrong defined information and therefore
wrong processes learned by the agent. This step is done by domain
experts who are able to describe the domain knowledge in a
sufficiently precise form. Since the MUC will be machine-read,
enforcing certain syntactic elements is important (cf. Section 4 for
details).

Afterwards, a STIX model of the misuse case scenario can be
build for later usage.

The next step (stage 3) is the generation and annotation
of an UML diagram that shows the relevant information to
build an experiment file. MUCs will most likely contain at least
one sequence diagram in any case. UML allows to introduce
archetypes and parameters, building a model repository. We define
custom stereotypes, like agent and environment, along with their
parameters, which are then used to derive experiments definitions.
Agents are of particular interest here, since our framework does not
just employ DRL algorithms, but can use any agent. We define and
implement simple agents with scripted behavior that reflects actors
in theMUCs.These agents with hard-coded behavior are the experts
that are necessary for imitation learning6.

6 At a later stage, we also plan to directly derive trajectories by parsing sequence
diagrams, but this is currently future work.
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FIGURE 1
From expert knowledge to an experiment file for the ARL toolchain.

The UML diagrams are exported to XMI; along with the MUC,
they serve as a data source to derive experiment definitions (stage
4).

Stage 5 entails generating the experiment defintion file. We
provide details about this file in Section 5. In general, an experiment
file is the basis for a sound DoE, used for experimentation and
training and evaluation of DRL agents. The experiments employ
several agents in different experimentation phases. DRL agents can
learn from the “scripted” agents. One methodology that commonly
finds application in this setup is that of Adversarial Resilience
Learning (ARL). In ARL, two (or possibly more) agents work
as adversaries against each other. Agents do not have knowledge
of each other or their respective actions, instead, they observe a
systemunder influence by their adversary.This adversarial condition
modifies the distribution of observed sensor inputs to encourage
agents to sample more extreme regions, and also to learn more
robust strategies.When two learning agents compete, they push each
other to learn faster than an agent alonewould normally do; learning
agents working against a scripted agent also adapt counterstrategies
faster in comparison to training solo. Sections 7 and 8 showcase
such a competition setup.

After running the experiment, the STIX data can be updated
with the found vulnerabilities as well as possible mitigation or attack
differentiation.

4 Misuse case modelling and data
transfer method

As mentioned in Section 2.2, the misuse-case method is used
to precisely describe originally unintended behavior of a system.
Therefore, all information from a mostyl regular IEC 62559-based
use case template is included as well as the additional knowledge,
which is distinctively used to document unintended behaviour.

The overall idea of this approach is to solve an existing semantic
gap between two important aspects for the topic. In order to
learn form proper attack libraries with real world incidents, a large
amount of information for training is needed. Usually, in knowledge
management, things are structures to refrain from being anecdotal.
This leads to structures documents based on meta models making
sure that all important aspects and attributes are covered and, thus,

the information is self-contained and useful in a different context.
This often involves eliciting the knowledge and experience of
domain experts and stakeholders who are not experts in modeling.
Structuring this knowledge into a standardized document leads
to re-useable, useful knowledge. Often, this process is done in
the context of systems engineering or development. However, it is
apparent that the scope and detail as well as format for a learning
AI is different. There is no fixed suitable API to re-use the use cases
as of now. However, the large knowlwdge base both for use cases as
well as misuse cases, documenting observable behaviour which is
non-intended is large. Security incidents mostly are non-intended
behaviour, so re-using the knowledge gathered in a structured
manner is the aim discussed in detail in this contribution.

For this paper we do not consider misbehaviour of the system
in terms of a faulty implementation but respective stakeholders, e.g,
people acting maliciously. Therefore, the actors (and especially the
misactors, called “crooks”) are in focus of the high-level modeling
at first. Hence, these areas of the template must be filled out with
particular care.

Two methods are conceivable for the proposed approach in this
contribution: Use case supported elicitation of the templates and
domain knowledge supported elicitation of the templates. In the first
method, a completed use case template is examined to determine
the undesired (system) behavior (or, in this case, the attacks) that
could affect this use case. This can be done, e.g, by systematically
checking the data within the MITRE ATT&CK data set identified to
be suitable.

The second method is based on known attacks (in general
terms: known undesired behavior) without an underlying use case
in particular. Here, the misuse case template is filled in based on the
known attack information and, thus, known mitigations.

By following one of these approaches, an domain expert is able
to create amisuse case for the desired scenario. Afterwards, checking
for consistencywith other domain experts and by reviewing different
modelling formats like the Smart Grid Architecture Model (SGAM)
from the IECSRD63200 standard for the energy domain or the STIX
data is recommended to rule out possible ambiguity and vagueness
resulting from natural language usage.

For the approach presented in this paper, a nearly completed
misuse case template is important as a base for the next steps since
errors at this level are very likely to propagate to the next steps, thus,

Frontiers in Energy Research 07 frontiersin.org102

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Veith et al. 10.3389/fenrg.2023.1138446

Open XML input file ⊳ MUC XML and/or diagram

XML export

  name_list = empty list

  objective_list = empty list

  for actor in MUC do ⊳ either from UML actor

definition or by scanning the actor tables in

the MUC

   Add name of agent to name_list

   Add objective to objective_list

  end for

  Close XML input file

  Open YAML output file

 Write experiment setup data to the output

file ⊳ This is simplified for a first

presentation of this approach

 for agent_name in name_list do

  Write agent description to the output file ⊳

This data is a mixture of already created

experiment definitions and the agent

description from the input.

  Map agent objective from objective_list

  Write mapped objective to the output file

 end for⊳ The following is as well simplified

for a first presentation of this approach

 Write sensor and actor information to the

output file

 Define phases according to actor information

in the output file

 Close YAML output file

 Output the generated YAML file

Algorithm 1. Pseudocode: Simplified Generation of a Experiment File from XML

Data.

lowering the data quality and validity of the final conclusions to be
drawn form the method.

After theMUC template is filled out, the diagrams and the tables
of the MUC are exported as serialized and standardized XMI/XML
files based on IEC 62559-3. Therefore, the diagrams are exported
as a XMI from a tool like visual paradigm, while the MUC DOCX
file is exported as a XML file via Microsoft Word. These files are
then read into a script that generates an experiment file based on
the information from the MUC and commonly known information
such as the structure. The simplified version of this algorithm is
presented as pseudocode in Algorithm 1. For the presentation of
this approach only a limited set of information is taken from the
MUC. The remaining needed information like, e.g. the environment
and the mapped, distinct sensors in this environment are derived
from a previous created experiment file.

For receiving the agent data the exported diagram is scanned for
entitieswith the agent stereotype, if aMUCexport is used to generate
the experiment file, the XML is scanned for the actor table. From
these sources the agent name and its objectives are taken. Afterwards
the YAML output file is generated. Therefore the setup information

from a already created experiment are taken (cf. Section 5 for a
description of needed information). The information taken from
the input is then merged with the additional information and put
together to a complete experiment file.

5 Design of experiments with arsenAI

In order to tackle the problem outlined in Sections 1,2, namely,
that currently, there exists no software stack that allows for sound,
systematic, and reproducible experimentation of learning agents in
CPSs (co-) simulation environments, we have created the palaestrAI
software stack7. Part of the palaestrAI suite is a tool named arsenAI,
whose focus is to read experiment definitions in YAML format.
This experiment definition file contains environments, agents and
their objective and defines parameters and factors to vary upon. An
arsenAI run outputs a number of experiment run definitions, which
contain concrete instantiations of the factors.

An experiment definition start with a unique, user-defined
identifier (a unique name for the experiment), a seed value
(for reproducibility), a version string to ensure software API
compatibility, the number of repetitions and how many experiment
runs should be generated from it. It also consists of a number of sub-
definitions for agents, environments, sensor sets and actuator sets,
and phase configurations.

An agent consists of a learner (nicknamed brain), an inference
rollout worker (nicknamed muscle), as well as an objective.
Objectives are agent-specific and based upon the reward definition
of an environment, as well as the agent’s internal state. An
environment has a reward definition: While the reward describes
the states of the environment (e.g, bus voltages), the agent’s objective
qualitatively describes the agent’s goal with regards to the current
state/reward (e.g, the deviation from 1.0 pu).

Sensor and actuator sets connect environments to agents. A
sensor is a particular input to an agent (e.g, a bus voltage), an actuator
is a setpoint (e.g, reactive power generation).

An experiment is subdivided into phases, each phase describing
a stage of the experiment. Therefore, an experiment also contains
phase configuration definitions. A phase configuration describes
whether agents learn (training mode) or only exploit their policy
(testing mode), and how many episodes a phase consists of.

Within phases, factors are defined. Possible factors are the
combination of agents, environments, phase configurations, and
sensor/actuator-set-to-agent mappings. The environments and
agents factors have two levels, since agents and environments can
be combined.

After computing the design of the experiment, arsenAI decides
on the sampling strategy. If the computed number of runs for a
full factorial design from the factors (considering all levels) is less
or equal than the user-defined maximum number of runs, a full
factorial design is indeed generated. Otherwise, the full factorial
design is optimized (i.e, sampled) according to the maximin metric
(Pronzato and Walter, 1988).

Figure 2 shows a schema of the experiment definition.

7 https://gitlab.com/arl2, retrieved: 2023-01-03.
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FIGURE 2
Experiment definition schema.

For each sample—and the number of desired repetitions—,
arsenAI creates an experiment run definition, which is then picked
up by palaestrAI to execute. We detail palaestrAI, along with agent
designs and learning algorithms, in the next section, Section 6.

6 The palaestrAI execution framework

palaestrAI8 is the execution framework. It offers packages to
implement or interface to agents, environments, and simulators.
The main concern of palaestrAI is the orderly and reproducible
execution of experiment runs, orchestrating the different parts of the
experiment run, and storing results for later analysis.

palaestrAI’s Executor class acts as overseer for a series of
experiment runs. Each experiment run is a definition in YAML
format. Experiment run definitions are, in most cases, produced
by running arsenAI on an experiment definition. An experiment
defines parameters and factors; arsenAI them samples from a space
filling design and outputs experiment run definitions, which are
concrente instanciations of the experiment’s factors.

ExperimentRun objects represent such an experiment run
definition as is executed. The class acts as a factory, instanciating
agents alongwith their objectives, environmentswith corresponding
rewards, and the simulator. For each experiment run, the Executor
creates a RunGovernor, which is responsible for governing the run.

8 https://gitlab.com/arl2/palaestrai, retrieved: 2023-01-03.

It takes care of the different stages: For each phase, setup, execution,
and shutdown or reset, and error handling.

The core design decision that was made for palaestrAI is to favor
loose coupling of the parts in order to allow for any control flow.
Most libraries9 enforce anOpenAI-Gym-styleAPI,meaning that the
agent controls the execution: The agent can reset() the environment,
call step(actions) to advance execution, and only has to react to the
step(⋅) method returning done. Complex simulations for CPSs are
often realized as co-simulations, meaning that they couple domain
specific simulators. Through co-simulation software packages like
mosaik (Ofenloch et al., 2022), these simulators can exchange data;
the co-simulation software synchronizes these simulators and takes
care of proper time keeping. This, however, means that palaestrAI’s
agents act just like another simulator from the perspective of the
co-simulation software. The flow of execution is controlled by the
co-simulator.

palaestrAI’s loose coupling is realized using ZeroMQ (Hintjens,
2023), which is a messaging system that allows for a reliable
request-reply patterns, such as the majordomo pattern (Górski,
2022; Hintjens, 2023). palaestrAI starts a message broker
(MajorDomoBroker) before executing any other command; the
modules then either employ amajordomo client (sends a request and
waits for the reply), or the corresponding worker (receives requests,
executes a task, returns a reply). Clients and workers subscribe to
topics, which are automatically created on first usage. This loose

9 cf. Section 2.
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FIGURE 3
The palaestrAI core framework.

coupling through a messaging bus enables the co-simulation with
any control flow.

In palaestrAI, the agent is split into a learner (Brain) and a
rollout worker (Muscle). The muscle acts within the environment.
It uses a worker, subscribed to the muscle’s identifier as topic
name. During simulation, the muscle receives requests to act with
the current state and reward information. Each muscle then first
contacts the corresponding brain (acting as a client), supplying state
and reward, requesting an update to its policy. Only then does the
muscle infer actions, which constitute the reply to the request to act.
In case of DRL brains, the algorithm trains when experiences are
delivered by the muscle. As many algorithms simply train based on
the size of a replay buffer or a batch of experiences, there is no need
for the algorithm to control the simulation.

But even for more complex agent designs, this inverse control
flow works perfectly fine. The reason stems directly from the MDP:
Agents act in a state, st . Their action at triggers a transition to the
state st+1. I. e, a trajectory is always given by a state, followed by an
action, which then results in the follow-up state. Thus, it is the state
that triggers the agent’s action; the state transition is the result of
applying an agent’s action to the environment. A trajectory always
starts with an initial state, not an initial action, i. e, τ = (s0,a0,…).
Thus, the control flow as it is realized by palaestrAI is actually closer
to the scientific formulation of DRL than the Gym-based control
flow.

In palaestrAI, the SimulationController represents the control
flow. It synchronizes data from the environment with setpoints
from the agents, and different derived classes of the simulation
controller implement data distribution/execution strategies (e.g,
scatter-gather with all agents acting at once, or turn-taking,
etc.)

Finally, palaestrAI provides results storage facilities. Currently,
SQLite for smaller and PostgreSQL for larger simulation projects
are supported, through SQLalchemy10. There is no need to provide
a special interface, and agents, etc. do not need to take care of results
storage. This is thanks to the messaging bus: Since all relevant data is
shared via message passing (e.g, sensor readings, actions, rewards,
objective values, etc.), the majordomo broker simply forwards a
copy of each message to the results storage. This way, the database
contains all relevant data, from the experiment run file through
the traces of all phases to the “brain dumps,” i.e, the saved agent
policies.

Figure 3 shows an excerpt of the palaestrAI software stack with
the packages and classes mentioned until now.

arsenAI’s and palaestrAI’s concept of experiment run phases
allow for flexibility in offline learning or adversarial learning
through autocurricula (Baker et al., 2020). Within a phase, agents

10 https://www.sqlalchemy.org/, retrieved: 2023-01-04.
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can be employed in any combination and any sensor/actuator
mapping. Moreover, agents—specifically, brains—can load “brain
dumps” from other, compatible agents. This enables both offline
learning and autocurricula within an experiment run in distinct
phases.

7 Experimental concept validation

7.1 (Mis-) use cases considered

For initial validation of our approach, we describe two MUCs in
the power grid domain that constitute clear attacks on normal grid
operation. For both scenarios, we generate experiment definitions
from the MUC; we execute the experiment runs and showcase
the results in Section 8. We believe that this validates the initial
feasibility of our approach. Since we focus on the software part of the
approach, we do not provide extensive analysis of agents that have
learned in an autocurriculumor offline learning scenario versus pure
(single) DRL agent learning scenarios, as we regard this as future
work.

The MUCs considered in this paper are.

• Inducing of artificial congestion as a fascailly motivated attack
on local energy markets
• attacking reactive power controllers by learning oscillating

behavior.

While the first MUC describes an internal misbehaviour
in which the participating actors have the rights to
control their components, while in the second MUC, the
components controlled by the attacking agent have been
corrupted.

7.1.1 Market exploitation misuse case

The first scenario, which is shown in Figure 4, can be described
as a loophole in the operation of local energy markets. Local
energy markets exist to allow operation of a (sub-) grid in a
more efficient manner without needing grid expansion: They
incentivize load shifting or feed-in adjustment to resolve congestion
situation. Whenever the grid operator forecasts a congestion, it
will place an offer on the local energy market for consumption
reduction. Participants can bid on this offer, and if they adjust their
consumption, they will receive compensation according to their
bid.

The loophole exists in market participants artificially creating
the congestion. A group of participants can “game” the market by
creating a bottleneck in their energy community (e.g., by charging
electric vehicles). The grid operator will react by incentivizing load
shifting. Since this load was created without a real need, it is easy for
the crooks to place bids and, once won, follow the new load schedule
in order to receive compensation. This can be repeated easily. The
grid operator, however, is not able to distinguish this from legitimate
demand, since consumers use the appliance they have access to in
any normal case.

7.1.2 Voltage band violation attack through
oscillating reactive power
feed-in/consumption

The second considered scenario describes a different kind
of attack. It is assumed that a attacker already claimed some
components in the energy grid and is able to control them (e.g.,
photovoltaic panels). One of the main tasks in distribution grids is
voltage control. DERs can be used for this through their inverters.

FIGURE 4
Misuse case actor diagram depicting energy market exploitation through artificially created congestions.
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Since the distribution grids have been carrying most of the DER
installations, incorporating these into the voltage control scheme is
an obvious strategy.

DERs also turn voltage control into a distributed task. We do
not propose a new voltage control scheme; instead, we employ
a distributed control scheme that has also been proposed and
used by other authors. Namely, Zhu and Liu (2016) proposed
a distributed voltage control scheme where the reactive power
injection/consumption at a time t at each node is governed by:

q (t+ 1) = [q (t) −D (V (t) − 1)]+, (1)

where the notation [⋅]+ denotes a projection of invalid values to the
range [qg,qg], i.e., to the feasible range of setpoints for q (t+ 1) of
each inverter. D is a diagonal matrix of step sizes.

We denote the attack strategy described by Ju and Lin (2018)
as “hard-coded oscillating attacker behavior.” It can be described
by a simple Mealy automaton with the internal state t, which is a
time-step counter that represents the time the agent remains in a
particular state. We note two states,

Q = {low,high}. (2)

This attacker remains in a particular state until a hold-off time Th
is reached. The hold-off time allows the benign voltage controller to
adjust their reactive power feed-in/consumption, q(t). The attacker
then suddenly inverts its own reactive power control, i. e, switches
between qg and qg.

δ (low, t) =
{{
{{
{

high if t = Th,

low else,
(3)

δ (high, t) =
{{
{{
{

low if t = Th,

high else.
(4)

Thus, q(t, low) = qg and q(t,high) = qg.
In this scenario, the attackerwants to exploit the behavior (=AE)

of the defending agent. Therefore, the attacking agent controls the
assets taken over by him in a way that the voltage level is dropped or
increased. In the next step the voltage band defending agent controls
its assets to compensate the changes applied by the attacking agent.
The attacking agent then operates contrary to his previous action.
Therefore the compensation of the defender leads to an even higher
outcome for the attacker.

In the next iteration the defending agent would again
compensate by an even higher value also contrary to his previous
action. The attacker would repeat his behaviour. These repeated
behaviours then would lead into a pendulum movement of the
voltage band and eventually lead to a loss of function as the deviation
becomes to high to keep the energy grid stable.

For the simulation, we define the reward as a vectorized function
of all bus voltage magnitudes observable by an agent, after all agent
actions are applied:

rs,a (t) = [V1 (t) ,V2 (t) ,…,Vk (t) ,…,Vn (t)]
⊤, ∀Vk (t) :Vk (t) = o ∈Ω

(5)

As the agent’s objective expresses the desired state (i. e, goal)
of the agent, we formulate pΛ(rs,a(t)) such that it induces an
oscillating behavior, where the agent switches between full reactive
power injection and full reactive power consumption within the
boundaries of what the connected inverter is able to yield. Since
we are not bound to formulate the objective in a specific way, we
described this desired behavior by a functionmodeled after a normal
distribution’s probability density function:

g(x,A,μ,C,σ) = A ⋅ exp(−
(x− μ)2

2σ2 −C). (6)

In order to encourage the agent to make use of the oscillating
behavior, we formulate the attacker’s objective by using the reward
machine device (Icarte et al., 2018). That is, we introduce three
states, modeled as a Mealy state machine:

Q = {low,nominal,high}. (7)

The state machines alphabet Σ consists of the reward,

Σ = {r∼s,a =median(rs,a)∀rs,a}. (8)

We transition between the three states based on the current reward
as well as the time the reward machine’s initial state remains the
same. This holdoff time Th is chosen deliberately to give the benign
voltage controllers time to adjust, i. e, to find equilibrium in the
current extreme state the attacker agent has introduced. The state
transition functions are thus.

δ (nominal, t) =

{{{{{{{{{{
{{{{{{{{{{
{

low if r∼s,a ≥ 1.05∧ t = Th,

high if r∼s,a ≤ 0.95∧ t = Th,

nominal else,

(9)

δ (low, t) =
{{{{
{{{{
{

nominal if r∼s,a ≤ 0.88∧ t = Th,

low else,

(10)

δ (high, t) =
{{{{
{{{{
{

nominal if r∼s,a ≥ 1.12∧ t = Th,

high else.

(11)

For each state, we define an objective function based on Eq. 6.

pΛ,nominal (rs,a) = g(r
∼
s,a,−12,1,−10,−0.05), (12)

pΛ,low (rs,a) = g(r
∼
s,a,−14,0.84,−12,−0.08), (13)

pΛ,high (rs,a) = g(r
∼
s,a,−14,1.16,−12,−0.08). (14)

Thevalues forA, μ,C, and σ are chosen by us deliberately to create the
desired effect. Visual inspection of the resulting objective function,
plotted over the voltage band in Figure 5, where the state transitions
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FIGURE 5
Attacker objective as a function of the voltage magnitude, with state transition boundaries.

aremarked by the vertical dashed lines, shows the desired shape that
urges the agent to apply an oscillating behavior to foil simple reactive
power controllers. Essentially, the attacker starts in the state fitting
to the current reward r∼s,a, which will most likely be q = nominal.
As it then works towards over- or under-voltage. If attained, the
agent remains in the state until the holdoff time is reached, all the
while receiving positive objective value for keeping the extreme state.
Note that the objective value will diminish due to the benign voltage
controllers’ actions. Then, q ∈ {low,high} is chosen according to r∼s,a.
With the changed state, the agent receives a lowobjective value and is
subsequently forced to act towards the other extreme voltage region.
The state changes back to q = nominal, the agent’s momentum as
well as the actions by the benign voltage controllers will yield the
transition to the opposite extreme state. Note that δ(⋅) implements a
hysteresis with regards to r∼s,a.

7.2 Experiment setup

To validate the described method, an experimental setup was
build. Therefore the needed information of the misuse cases
described in chapter 7.1 were transferred to the misuse case
template11 described in Section 4. Afterwards this template (written

11 These templates can be found here: https://gitlab.com/arl2/muclearner.

in DOCX format) is exported to a XML-file. The next step is to
then export the required information from this format and paste it
into the YAML experiment description presented in chapter 5. The
considered information in the experimental setup is the objective
as well as the name of the agents. To achieve the correct syntax,
the agents entered objectives are mapped to the syntax of the file
in YAML format. In this experimental setup, the exact input is used.
Therefore, a strict restriction is given.

For our experiment, we additionally employ the MIDAS12

software suite that provides the simulation environment setup:
It incorporates the PySimMods13 software package that contains
numerous models for power grid units, such as batteries,
Photovoltaic (PV) or Combined Heat and Power (CHP) power
plants. The grid model is a CIGRÉ Medium Voltage (MV) grid
model (Rudion et al., 2006).

Each node has a constant load of 342+ j320 kVA attached to;
the loads are not subject to time series, but remain constant in all
experiment scenarios.This constant load accounts for the real power
feed-in that occurs naturally because of the inverter model. The goal
is to maintain an average voltage magnitude close to 1.0 pu on every
bus if no action is taken. This way, the reactive power controllers
suffer no handicap in their ability to feed or consume reactive

12 https://gitlab.com/midas-mosaik/midas, retrieved: 2023-01-04.

13 https://gitlab.com/midas-mosaik/pysimmods, retrieved: 2023-01-04.
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FIGURE 6
The CIGRÉ MV grid used for the simulation, with attacker nodes marked.

FIGURE 7
STIX visualization of the energy market exploitation through artificial congestion misuse case.
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FIGURE 8
STIX visualization of the voltage band violation attack misuse case.

FIGURE 9
Voltage magnitudes for each experiment phase in the voltage band violation scenario.

power when the attack starts. The power grid has 9 PV power plants
attached at buses 3 to 9, 11, and 13. The PV plants’ output is
dependent on the solar irridation, which is governed by amulti-year
weather dataset from Bremen, Germany14.The PV installations vary
between Ppeak = 8.2 kW to 16.9 kW, with cosφ = 0.9. This represents
smaller PV plants in rural areas as a realistic setup. The individual
values in this range have been chosen so that the reactive power
control scheme can maintain 1.0 pu on all relevant buses without
using the full capability range of the inverters. We have deliberately
chosen not to include any consumers governed by load profiles
in order to make the effect of the controlled inverters visible in
isolation; we rely on the aforementioned constant load to provide
a balanced grid without tap changers or other measures.

The attacker controls the buses 3, 4, and 8, as depicted in
Figure 6. Buses 5, 7, 9, and 11 are governed by the distributed voltage
control scheme. To each attacker and defender bus, a PV plant is
connected. The other buses are not governed by any controller. Each

14 Publicly available from https://opendata.dwd.de/climate_environment/CDC/
observations_germany/climate_urban/hourly/, last accessed on 2022-12-21.

benign voltage controller applies the distributed control law (Zhu
and Liu, 2016) as described in Eq. 1. We have chosenD = 10J for all
experiments as this provides stable operation in all normal cases and
allows the voltage controllers to converge at 1.0 pu quickly.

8 Initial results

After completing theMUC templates, a STIX 2.1 file was created
for both scenarios.The STIX visualization for the local marketMUC
and the oscillating attackMUC is shown inFigures 7, 8, respectively.

From the oscillation MUC, we have derived 10 distinct
simulation phases: Two baseline phases, in which only the
voltage controller acted (with and without time series). Then,
two reproduction phases implementing the voltage controller and
the “hard-coded” oscillating attacker. Three phases then pitched
learning agents as attackers against the voltage controller without
time series for solar irradiation (using DDPG, PPO, and TD3).
Finally, three phases with learning agents against the voltage
controller with time series for PV feed-in (again, using DDPG,
PPO, and TD3). For a more concise naming, we attribute all phases
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TABLE 1 Bus voltage statistics per phase.

Voltage magnitude (V) Voltage change (ΔV) |ΔV|

Baseline (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 0.999872 0.057361 0.090698

std 0.062668 0.097921 0.068207

min 0.811263 −0.433200 0.000000

25% 0.999930 0.010224 0.050958

50% 1.000047 0.082429 0.092514

75% 1.004542 0.109869 0.110435

max 1.108212 0.299196 0.433200

Baseline (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 0.999981 0.072921 0.110966

std 0.001362 0.096093 0.047298

min 0.959793 −0.433243 0.000000

25% 1.000000 0.106728 0.106728

50% 1.000000 0.110000 0.110459

75% 1.000000 0.111117 0.116616

max 1.028069 0.146148 0.433243

DDPG Attacker Test (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 0.995789 0.063267 0.101744

std 0.152639 0.143687 0.119567

min 0.566757 −0.353225 0.000000

25% 0.945417 −0.029111 0.031682

50% 1.022739 0.037074 0.056725

75% 1.115075 0.114114 0.139078

max 1.146148 0.543701 0.543701

DDPG Attacker Test (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 1.107688 −0.072166 0.078247

std 0.014004 0.104255 0.099771

min 0.966473 −0.543701 0.000000

25% 1.106728 −0.110459 0.010518

50% 1.110000 −0.033108 0.034676

75% 1.110459 −0.000402 0.110459

max 1.111117 0.093318 0.543701

Oscillating Attacker Test (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 1.014041 0.023748 0.078241

std 0.187259 0.148614 0.128561

min 0.566757 −0.365138 0.000000

25% 0.943205 −0.032850 0.000048

50% 1.110759 0.000000 0.022270

75% 1.128298 0.000259 0.110939

max 1.146148 0.543701 0.543701

(Continued on the following page)
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TABLE 1 (Continued) Bus voltage statistics per phase.

Voltage magnitude (V) Voltage change (ΔV) |ΔV|

Oscillating Attacker Test (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 1.107784 −0.061371 0.069888

std 0.013851 0.102469 0.096860

min 0.966473 −0.543701 0.000000

25% 1.106728 −0.110459 0.000000

50% 1.110000 −0.000025 0.027149

75% 1.110459 0.000000 0.110459

max 1.111117 0.111526 0.543701

PPO Attacker Test (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 1.040090 0.011982 0.071037

std 0.093043 0.102387 0.074700

min 0.769513 −0.365138 0.000000

25% 0.932489 −0.036045 0.015108

50% 1.089641 0.003176 0.039290

75% 1.113058 0.044599 0.105719

max 1.146148 0.326380 0.365138

PPO Attacker Test (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 1.092604 −0.053452 0.074535

std 0.019241 0.108056 0.094750

min 0.916199 −0.543701 0.000000

25% 1.085396 −0.101075 0.014728

50% 1.096973 −0.004827 0.040984

75% 1.105993 0.016971 0.101154

max 1.111117 0.125942 0.543701

TD3 Attacker Test (Dynamic Environment) count 11516.000000 11516.000000 11516.000000

mean 1.043524 0.018580 0.081877

std 0.113429 0.118515 0.087673

min 0.865940 −0.299182 0.000000

25% 0.878356 −0.032807 0.002785

50% 1.110759 −0.000204 0.034394

75% 1.128298 0.105044 0.133033

max 1.146148 0.244519 0.299182

TD3 Attacker Test (Static Environment) count 11516.000000 11516.000000 11516.000000

mean 1.107784 −0.060843 0.069028

std 0.013851 0.101105 0.095703

min 0.966473 −0.543701 0.000000

25% 1.106728 −0.110459 0.000000

50% 1.110000 −0.000144 0.025354

75% 1.110459 0.000000 0.110459

max 1.111117 0.109631 0.543701
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TABLE 2 Number of voltage band violations.

V < 0.96p.u. V > 1.04p.u. Total violations

Phase

DDPG Attacker Test (Dynamic Environment) 4554 5397 9951

DDPG Attacker Test (Static Environment) 0 11333 11333

Oscillating Attacker Test (Dynamic Environment) 3519 7780 11299

Oscillating Attacker Test (Static Environment) 0 11333 11333

PPO Attacker Test (Dynamic Environment) 3360 7263 10623

PPO Attacker Test (Static Environment) 15 11277 11292

TD3 Attacker Test (Dynamic Environment) 3248 7454 10702

TD3 Attacker Test (Static Environment) 0 11333 11333

without time series as “static” and those with time series data as
“dynamic.”

Figure 9 shows a box plot of the voltagemagnitudes at the victim
buses for each phase. The boxplot is based on the raw data available
in Table 1. Additionally, Table 2 counts the voltage band violations
for each phase.

The baseline phases verify that the reactive power controller
works, because apart from some outliers that are due to initial swing-
in behavior of the controller (cf. also the baseline in Figure 10),
voltage median is at 1.0 pu.

All “attacker” boxes in Figure 9 show deviation from 1.0 pu.The
hard-coded oscillating attacker sets the Voltage Magnitude (VM)
median value to ≈ 1.1 pu in the “static” as well as in the “dynamic”
environment phase. From this, we infer that the attack was indeed
effective. The maximum VM in terms of voltage is 1.11 pu for the
static, and 1.146 pu in the dynamic case. As the only difference
between the two phases the introduction of time series, we believe
that, in general, the hard-coded oscillating behavior amplifies the
effect of change in solar irradiation over the day. However, due to the
hard-codednature of the simple attacker, finding the “right”moment
to leverage, e. g, sunrise happens most probably by coincidence,
since Th is static.

The Oscillating Attacker phases in Figures 9, 10 serve as an
additional baseline in order to reproduce and ascertain the attack
documented by Ju and Lin (2018). As the effects of this kind of attack
have already been published, these phases serve as a validation of our
simulation set-up and baseline for comparison.Thus, we believe that
the effectiveness of the original attack has been reproduced, and the
relationship (Ju and Lin, 2018) holds:

lim
Th→∞
[Vb (Th + 1)] = −2 [X] q̄, (15)

where Th is the hold-off time of the attacker (usually until the victim
buses have reached equilibrium), X is the reactance of the subgrid
with the attackers as root nodes, and q̄ represents the extreme
reactive power value of the attacker (either feed-in or consumption).

Through Figure 9, we can compare these baselines to the phases
in which the learning agents are employed. All algorithms also
obtain a maximum VM of 1.1 pu and 1.146 pu (static and dynamic
environment, respectively), which seems to be the maximum

attainable VM for our simulation setup. Considering the VM ranges
obtained by the learning agents, the highmediumVM, which are on
par with the hard-coded oscillating attacker (with the exception of
DDPG in the dynamic environment), the simulation results indicate
that the learning agents have discovered an attack.

As scenario 2 enables time series for solar irradiation, we observe
that good timing of the oscillation increases the deviating effect on
the voltage band, most probably owing to the real-power feed-in
happens in addition to the effect of the reactive power curve on
voltage levels.

Scenarios 3 and 4 replace the simple oscillating attacker with
an DRL-based agent. The phases are, in accordance, labeled from
the algorithm that was employed: DDPG, PPO, or TD3. Again,
Figure 9 establishes that each agent was able to generate an effect
that can be seen as an attack to the power grid. Each produced the
same maximum voltage level, with DDPG obtaining the exact same
under-voltage level and in general similar values—albeit with a lower
median, close to 1.0 pu—as the simple oscillating attacker. Notably,
PPO- and TD3-based attackers did not produce any outliers while
maintaining a high median in the dynamic environment. The box
plot of the TD3-based attacker suggests that this is the deadliest
attacker, obtaining a high voltage band deviation (median VM, no
outliers) throughout the simulation runs.

In order to verify our imitation learning hypothesis, we must
establish whether the agents have actually learned to attack. The
most commonly used method to infer whether an agent has learned
to reach a certain objective is to analyze its objective function, which
is the agent-specific reward for a state transition, considering its
goal. We have already described the employed attacker objective in
Eq. 12. Figure 11 plots the objective function (raw objective as well
as moving average) for all four attacker phases for the “dynamic”
grid, i. e, with time series for solar irradiation.

The objective plot of the simple oscillating attacker is
straightforward, showing the oscillation clearly during the night,
when the PV inverters’ capabilities directly influence the grid.
During the day, the real power feed-in leads to over-voltage, no
longer making the oscillating behavior effective or even visible.

DRL essentially solves the optimization problem, that each
algorithm ultimately attempts to find an optimal policy π* by
maximizing the agent’s objective function. We can therefore
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FIGURE 10
Setpoints of the attackers’ actuators as well as the obtained objective value. Note that the graphs contain an intentional time gap between 00:50 and
03:15.

infer the attacker agents’ policy from the objective function
plots.

Both the DDPG-based as well as the PPO-based agent have
derived a policy that incorporates an oscillating behavior. Although
theDDPG-based agentwas not able to yield behavior that came close
to the original attack, with only mediocre average objective values.

The PPO-trained agent, on the other hand, obtained higher
average objective values while still showing the oscillating behavior
of the original attack. It obtained reliable over- and undervoltages.
From the shape of the objective function (cf. Figure 5), we know
that residing in extreme values is discouraged by the objective (and
values close to 1.0 pu are penalized). PPO takes advantage of daytime
solar irradiation but maintains the oscillating behavior even during
midday.

TD3 shows to be the most interesting of all attackers. The
TD3-based attacker has learned no oscillating behavior at all.

However, the policy obtained by training with TD3 manages to
yield consistently high objective values. By simple deduction, we can
therefore infer that the oscillating behavior of malicious inverters is
not necessary to yield appropriate damage to victim buses.

Investigating actual agent behavior during two timeframes in
Figure 10 in combination with data displayed in Figures 9, 11
gives rise to the hypothesis that (1) damaging the power grid
does not need oscillating behavior, (2) can have an equally high
impact, and (3) is potentially more dangerous as it does need several
oscillating steps, thus making it more surprising for benign buses
and the grid operator. None of the learning agents possessed any
domain knowledge or had access to sensors apart from its own,
node-local ones. While the TD3-based agent has simply learned
a vector of setpoints that will eventually prove to be fatal, the
DDPG-based attacker’s slight oscillations cause the benign reactive
power controller to yield stark oscillating behavior, too.
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FIGURE 11
Attacker objective function, plotted over simulation time. Light colors depict absolute values, bold lines the moving avarage with a window of 100 steps.

9 Discussion

Our approach creates a bridge between informal modelling
of domain expert knowledge in terms of scenarios to rigorous
experimentation with learning agents. The second MUC—the one
that shows the oscillation attack—is a simple, yet comprehensive
scenario that allows to verify the general hypothesis, that MUCs can
be part of a immediate pipeline allowing to train agents in an offline
learning or autocurriculum.

Our initial approach outlined in this article uses an expert
through the objective as a simple form of imitation learning,
specifically, behavior cloning. The objective we presented in the
experimental validation is a very focused one, based on the behavior
we model in the MUC. It is based on an already known behavior,
specifically created to teach the agent an exact strategy. However, the
DRL agents have discovered another behavior that led to the same
goal, but exhibited a different behavior, even though the objective
was not changed between phases.While PPO immitated the original
strategy quite well, did TD3 resort to fixed setpoints that maximized
reward without oscillating. Considering a “following the goal by
intention,” this makes the TD3-based agent the potentially most
destructive one, as it avoids steep gradients, which would quickly
alert the grid operator, because they violate grid codes. Therefore,
we assume that using the agent’s objective as expert for behavior
cloning is not only effective, but also does not hinder the agent in
devision new attack vectors when it has the chance to interact with
the environment.

Nevertheless, it is not known whether an agent would have
learned a different strategy to achieve the goal without the
specified behavior. Therefore, running additional experiments

without predefined trajectories might be beneficial in cases where a
general approach without specified behaviour is wanted. Regardless
of this, the approach presented here can still be useful in such a
situation because general concepts can be passed as trajectories that
do not describe a direct, goal-directed action. An example is bidding
on a local market, which does not yet describe misbehavior, but
conveys the basic concepts for dealing with the market to the agent.

The most cumbersome part of our approach is the fact that the
domain expert still needs a MUC modelling expert familiar with
our approach to apply the correct stereotypes and to ensure that
the correct XML/XMI file is created. Otherwise, depending on the
severity of the syntax and semantic errors, our approach might lead
to wrong learned behaviour or not executable experiments. Still, this
technical breakthrough allows extension now that baseline scenarios
have been established. For example, a direction of research could
employ text recognition in the way ChatGPT was trained to arrive
at properly formatted MUCs from non-precise wording.

10 Conclusion and future work

In this article, we have demonstrated a software framework
that enables sound experimentation from MUC descriptions and
embedded diagrams. Our approach enables domain experts to
model scenarios, which are then analyzed by using learning agents.
Moreover, our approach enables autocurricula and a limited form
of offline learning by imitation learning with experts through the
agents’ objectives. We have furthermore shown two MUCs, which
have been converted into experiment definitions; one scenario has
been extensively simulated and analyzed.

Frontiers in Energy Research 20 frontiersin.org115

https://doi.org/10.3389/fenrg.2023.1138446
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Veith et al. 10.3389/fenrg.2023.1138446

For future work, we will construct trajectories from sequence
diagrams, extending the offline learning approach significantly. It
might also be interesting to examine whether agents learn different
strategies in the same environment when provided with knowledge
through this approach, or whether, given sufficient training time,
both procedures lead to the same behavior. As such, we plan to
extend the MIDAS benchmark environment further, adding more
domains, such as ICT. We will then build a repository of MUCs, and
likewise, agents trained on there MUCs.

We expect to open the domain of online learning, or, more
specifically, lifelong learning at this point. Agents can learn from
multiple MUCs (not just one MUC per agent). However, this will
surely lead the agents to encounter the plasticity-stability dilemma,
where agents need to retrain learned behavior while learning
new tasks. We will verify and analyze this, and propose a more
complex agent that is able to incorporate knowledge from multiple
MUCs.
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The power Internet of Things generates a large amount of data at any time, which
can be transformed into precise decisions with the help of artificial intelligence
approaches. However, the owners of electricity data with boundaries are often
concerned with data leakage. Therefore, when building models that feed big data
into deep learning artificial intelligence approaches for precise decision-making
within the power Internet of Things, it is essential to ensure the data’s security. This
paper proposes a framework for model training and decision making system
applied to the field of power IoT, which consists of two parts: data security sharing
and hierarchical decision making. The proposed framework utilizes a
homomorphic encryption-based federated learning approach to protect
private data from leakage. In addition, data augmentation and transfer learning
are used to address the issue of insufficient local training data. Moreover, the
framework attempts to incorporate the specialized nature of traditional manual
decision-making in the power field by fusing expert and model values after
stratifying the requirements. Experiments are conducted to simulate the
decision requirements in the field of power Internet of Things (e.g., electrical
material identification), using image recognition as an example. The experimental
results show that the proposed models can achieve high accuracy rates and the
fusion approach is feasible.

KEYWORDS

smart grid, power internet of things, data security sharing, federated learning, deep
learning

Introduction

In recent years, the rapid development of science and technology has facilitated the
gradual integration of Internet of Things (IoT) technology into various aspects of people’s
daily lives, making it an integral and closely connected part of modern life. IoT technology
has an important role in public services (Wu and Xiao, 2022), smart homes (Choi et al.,
2021), medical security (Wu et al., 2020), labour free farms (Ratnaparkhi et al., 2020) and
smart grids (Alhariry et al., 2021), which brings a lot of convenience to people’s lives. Power
IoT constitutes a crucial component of IoT development, which can provide important
support for the intelligence, digitalization and transparency of the electricity grid through the
collection and transmission of electricity grid data to cloud platform for processing and
analysis (Zhang et al., 2022a).

Modern society is highly dependent on electric energy, which is related to the people’s
lives and the stability of the country, and is a strategic energy source for the country (Li et al.,
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2020). A smart grid is the integration of a traditional power grid with
a communication system and network (Mashal, 2022), which is also
one of the most important applications of IoT (Gunduz and Das,
2020). The application of IoT in the smart grid is called power IoT.
Power IoT generates a large amount of data under the edge cloud
architecture, and the way these data are processed is very critical
(Jiang et al., 2020). Effectively utilizing such data through advanced
methods like machine learning can help power companies make
accurate and informed decisions, leading to a significant
improvement in economic efficiency (Gilanifar et al., 2020).

However, the current power IoT still in need of effective
solutions for data security sharing and decision-making. The
direct collection of electricity consumption data from customers
for efficient energy management is insecure from an information
point of view (Wang et al., 2021). For example, users regularly report
electricity consumption data to the power company through smart
meters, thereby rendering their privacy exceedingly vulnerable (Xia
et al., 2022). Consequently, the privacy, security and trustworthiness
of data remain unconsidered in the current power IoT. The research
of user information security for power data has become a hot
research topic (Yan et al., 2020).

With the continued promotion of information technology in
today’s society, data has become increasingly valuable to humans
(Corallo et al., 2022) and fine-grained security management in the
IoT requires effective access control (Pal et al, 2022). However, the
data collected in power IoT is often diverse and data-intensive. A
large scale of data makes old supporting parsing systems and
decision-making systems seem overwhelming in their presence,
leading to a situation where it is challenging to tap into the total
value of more data in the field.

Figure 1 shows a simple schematic of smart grids in the area of
the Internet of Things for electricity. A smart grid with a well-
arranged IoT path can be used to rationalize the deployment of
power resources or to efficiently identify the level of wear and tear of

power equipment by obtaining data from smart city devices (e.g.,
smart meters, smart monitors and high-performance IoT sensors). It
is worth noting that most electricity data is private data, and for
entities with boundaries, a secure way of sharing data is required,
e.g., data masking and federated learning. However, potential
security threats, such as reconstruction attacks, membership
inference and model inversion, may arise in this scenario.

With the introduction of emerging concepts such as Industry 4.0
(Hong et al., 2021; Priya et al., 2021), the industrial and power IoT
sector has put forward new requirements for mining and utilizing
various electricity data. The industry is eager to obtain sufficient data
from smart meters (Ahammed and Khan, 2022) or other intelligent
power devices for decision-making purposes, such as using power
consumption data for rational allocation of power resources, using
power equipment implementation images for equipment wear and
tear identification and early warning, using images data to ensure
physical security of IoT devices (Yang et al., 2022) and using cross-
regional electricity data to develop top-level strategies with solid
generalization.

Data such as customer usage information, regional distribution
lines, and internal electricity equipment is often identified as private
data that needs protection. However, there exists a scarcity of
credible data that can be controlled by the decision-making
entities themselves on a national or even global basis. Such
entities may include many electricity companies, regions, or even
countries with boundaries. The difficulty in aggregating data across
regions to derive practical benefits while ensuring data privacy
protection poses significant challenges for these decision-making
entities. Furthermore, existing machine learning methods that rely
on data suffer from issues related to accuracy and reliability. With
the development of the smart grid, the safety of electric power
materials has attracted widespread attention, and the safety of
electric power equipment is a key part of it. Since power
equipment may cause some safety accidents due to overheating,

FIGURE 1
Entities with data boundaries.
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effective identification and temperature detection of power
equipment is extremely important, which can guarantee the
safety of the energy supply (Ni, 2020).

Traditional power IoT business decision-making relies on
experts’ professional experience and knowledge, with layers of
feedback and modifications before making decisions. This
approach relies heavily on expert authoritative knowledge, and
requires reconstructing the expert knowledge base if the structure
of the power IoT changes. At the same time, the accuracy of the
decisions made using this approach gradually decrease over time
due to the accumulation of obsolete knowledge. Spending a lot of
cost to update the knowledge base is often not a good choice. To
address these challenges, more and more companies are building
their automated decision-making solutions, hoping to fully exploit
the value of power IoT data with the assistance of computers.
However, these decision-making systems are typically based on
traditional data analysis methods, and many aspects require
manual intervention, which is time-consuming and low
resource utilization. Traditional decision-making systems for
the power IoT are often based on a small data level of model
training, which may have problems with effectiveness and
generalization. It is worth noting that traditional electricity
decision-making systems have difficulty ensuring the secure
sharing of data across regions. Private data cannot be secured,
significantly impacting the power IoT if the data is compromised.
Fortunately, research for artificial intelligence decision-making
systems has also been in order at recent stages (Kaur et al., 2022).
Many teams are studying the decision task of introducing artificial
intelligence methods into the field of power Internet of Things,
which is also the place to explore in this field. It is still a challenge
to transfer the task from the traditional decision-making method
to the application of artificial intelligence. For the traditional
machine learning method, a large number of available features
are required, while for the deep learning method, a large number of
standard available data sets are required.

To address the limitations of the existing decision-making
system in the field of power Internet of Things, and maximize
the adaptation of new industrial equipment such as smart grid in
popularity, the work of this paper integrates traditional expert
decision-making and in-depth learning methods. Furthermore, in
order to reduce the risk of privacy data leakage, which accounts for a
large proportion of data in the field of power Internet of Things, this
work also focuses on integrating a new data security sharing method.
The proposed data security sharing and decision-making approach
for the power IoT consist of two main parts: data security sharing
and the decision-making approach. The data security sharing
scheme for the power IoT is based on federated learning and
homomorphic encryption, which integrates data within each
region after determining the boundaries of a specific scenario.
The model’s performance at small data levels is further improved
by using data augmentation and transfer learning. The proposed
decision-making approach is a hierarchical model that integrates an
expert knowledge base and machine learning (ML) decision-
making. The scenario-specific requirements are hierarchically fed
into the decision-making system. The machine learning model
generates plausible values with expert knowledge base values to
produce a decision score. The weighted fusion of models and
decisions can reduce the possible effects caused by federated

learning features, such as intermediate data being recovered by
attackers and leading to leakage (Zhang et al., 2022b).

In summary, the main contributions of this paper are as follows.

• A security-driven decision model is proposed for the power
IoT that enables deep learning-based big data analysis and
decision-making for the power IoT under high security.
Machine learning tools and expert knowledge bases are also
integrated into the decision-making process to produce a
comprehensive decision result.

• Federated learning is used to ensure the secure sharing of
power IoT data by unifying different entities for collaborative
training and unified management by a trusted third party
without revealing sensitive data. This approach enables
reasonable exploitation of data value while ensuring data
security.

• Homomorphic encryption is used to prevent malicious
activities, such as inference attacks, that may occur in
federation learning. Homomorphic encryption processes the
data without decryption, thus securing the intermediate data
in the power IoT.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the related work. Section 3

focuses on design details and a description of the methods for the
power IoT. Section 4 shows the experimental data and analysis of an
example scenario, along with a discussion of the results. Section 5
makes a summary of the paper and future perspective.

Related work

In this section, some work similar to the topic of this paper will
be presented, mainly covering decision systems and privacy
protection elements.

Decision-making methods

Most decision-making methods in the field of power IoT are
based on traditional manual analysis or single-user machine
learning. Al Metrik and Musleh (2022) proposed a medium-term
prediction model that can predict electricity consumption for a
given location. Predicting energy use ensures the stability of the
power supply. Wang et al. (2022) have constructed a structured
LSTM based on a prediction-guided autoencoder. A single model
enables the accurate prediction of short-term loans for all types of
users. Guang et al. (2021) proposed a decision-making approach.
Power communication resource data features are analyzed and
combined with data mining algorithms to design and propose
intelligent application scenarios geared towards grid and
communication network collaboration and assisted decision-
making. Tian and Dong (2021) proposed a long-term investment
decision model for transmission grid frames containing flexible
transmission devices. Due to the nature of the power IoT
domain, specific tasks are targeted.

Most decision-making approaches in the power IoT field are
based on a single independent machine learning model or other
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methods. These methods may work well for specific tasks but are not
highly generalizable and will be challenging to extend to other tasks.
There is also a risk of privacy breaches in handling sensitive data,
which is often not shared securely with the power data.

Data security sharing

Friha et al. (2022) proposed a federated learning-based intrusion
detection system. They used federated learning for a specific task
(i.e., intrusion detection) to protect the infrastructure of the Internet
of agriculture. Their experiments demonstrate the excellence of
federated learning in the Internet of agriculture. Image
recognition is the main task theme in the IoT for electricity, for
example, identifying wear and tear on electrical equipment. Tanwar
et al. (2021) proposed a privacy-preserving image recognition model
for encrypted data over the cloud. Their proposed block-based
image encryption scheme can be effective in securing private
images. Bhansali et al. (2022) presented a system with secure
data collection and transmission for IoMT architecture integrated
with federated learning and illustrated the value of this system in the
medical field. The same type of federated learning is used in the
medical field, Xu et al. (2021) proposed a general multi-view
federated learning approach using multisource data, and it can
extend the traditional machine learning model to support
federated learning across different institutions or parties. To
address the issue of user privacy protection in federated learning,
Mugunthan et al. (2020) proposed PrivacyFL, a scalable, easily
configurable and extensible simulator for federated learning
environments. Miao et al. (2021) proposed a federated learning-
based secure data sharing mechanism for IoT called FL2S, which
improves data security and data quality. Li et al. (2021) proposed a
novel privacy-preserving FL framework based on an innovative
chained secure multi-party computing technology called chain-
PPFL to address the leakage of participants’ sensitive information
due to exchanging model data in federated learning.

It is worth noting that the amount of data available for each local
user may be very small after applying federal learning, resulting in a
certain degree of overfitting and poor accuracy. Therefore, this paper
uses federated learning, transfer learning, data augmentation
methods, and model weighting fusion methods to improve the
model’s accuracy.

Materials and methods

In this section, the data security sharing and decision-making
approach for the power IoT is introduced.

Problem formulation

This part focuses on abstract modeling of data security sharing
and decision-making within the field of power IoT and illustrates the
main processes and specific details of the approach proposed in this
paper.

Problem description
Consider the set ENV � env1, env2,/, envn{ } of requirements

that may need to be decided within the power IoT, and for each
env ∈ ENV, determine the region boundary LOC �
loc1, loc2,/, locm{ } for collaborative training while dividing the
env hierarchically into sub-requirements eij, where n and m are
the total number of requirements and the total number of region
boundaries, respectively. i and j are the jth division of the ith layer,
respectively.

For the decision approach, the hierarchical output of the
plausible decision values Sugi of the expert knowledge base,
combined with the possible values mValue given by the
collaboratively trained completed machine learning model
Model, and results in the corresponding solution set
Solution � sol1, sol2,/, solv{ }, where i is the division of the
hierarchy and v is the number of solutions.

For the model to be run so that it can be trained efficiently and
give credible decision recommendations, a complete description of
the scenario is as follows:

• Input: i) The basic set of requirements ENV �
env1, env2,/, envn{ } for which decision information may
need to be obtained and the region boundaries LOC �
loc1, loc2,/, locm{ } for collaborative training. ii) A trusted
central server CServer for federated learning and a
hierarchical algorithm for partitioning requirements. iii)
Homomorphic encryption algorithms, models for migration
learning, and an expert knowledge base.

• Output: A set of solutions Solution � sol1, sol2,/, solv{ }
corresponding to each actual requirement.

• Objective: Maximize machine learning model accuracy ACC′
and complete data security sharing and decision making.

The overall flow of the proposed approach
This paper proposes a data security sharing and decision-

making model to solve the problem described in the above
scenario. The overall process is shown in Figure 2. The model is
divided into three parts: data preparation, regional collaborative
training, and output of decision making. Data preparation is mainly
responsible for collecting, cleaning, and data augmentation.
According to the overall training standard, these parts are mainly
carried out in the local area.

The regional collaborative training component is responsible for
securely sharing power IoT data. The use of federated learning and
homomorphic encryption ensures private data security. The use of
migration learning reduces costs and improves training effectiveness
on small volumes of data. All methods are carried out under the
integration of a trusted central server. The decision output part is
mainly responsible for outputting credible decision values given by
the decision hierarchy algorithm to give plausible suggested values
by the expert knowledge base. The plausible suggested values are
weighted and combined with the reasonable discounts offered by the
model in the previous session to provide reference values that can be
used for decision-making. The first and second of these parts are
described in the following sub-section. The detailed step-by-step
description is shown below:
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• STAGE Ⅰ: Data preparation

Step 1.Using smart electricity devices, such as smart meters, collect
local data. Data collection, in this case, is a locally trusted operation;

Step 2. The regions pre-process private data. The primary check is for
data consistency, followed by processing invalid and missing values;

Step 3. Due to the specific features of some of the data in the power
IoT, local areas with boundaries often do not share private data with
others. The methods of data augmentation vary for different tasks,
e.g., for the task of identifying and warning about the wear and tear
of power equipment, the main focus is on enhancing the picture data
of power equipment;

• STAGE ⅠⅠ: Collaborative training

Step 4. The model proposed in this paper evaluates the possibility
of applying migration learning in actual experiments for different
power IoT decision tasks;

Step 5a. Local model training. Each local model training is done by
trusted operations and data;

Step 5b. Use homomorphic encryption to ensure secure sharing of
data. Here the intermediate data of the local model training process
is encrypted and transmitted to the central server;

Step 5c. The central server averages the local intermediate data and
then distributes it to all local models;

Step 6. Output information about the completed training model.
There is not necessarily only one model used for transfer in a

decision process, and therefore not necessarily only one model
information is output;

• STAGE ⅠⅠⅠ: Decision making

Step 7. The expert knowledge base is used to support the decision
from the other side and is set to 0 if no matching decision
information is found.

Step 8. The expert experience is packaged according to a
hierarchical approach to electricity demand, all of which is
provided to the subsequent decision model;

Step 9a. If multiple models are used in the co-training section, then
all models are weighted and fused here;

Step 9b. If multiple sub-requirements are used in the co-training
section, then all sub-requirements are weighted and fused here;

Step 9c. Weighted fusion of data from Step 9a and Step 9b.

The data security sharing approach

This part focuses on the first part of the model proposed in this
paper, i.e., the data security sharing approach for the power IoT,
mainly consisting of data preparation and collaborative training.

Data collection and cleaning
Data is collected by uniform standards for all smart power

devices in areas with boundaries. For example, for electricity
consumption data, from a uniformly deployed smart meter
platform, the data is collected and stored by category number,

FIGURE 2
Overall flow of model.
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with different regions lending themselves to a uniform standard for
implementation between them.

As described in Figure 3A, the regions pre-process the privacy
data. The data is first checked for consistency, starting from a
prepared rule set and screens for data that does not match the
characteristics of the power IoT. For example, the existing electricity
theft may influence the data from smart meters (Xia et al., 2021).
Then the processing of invalid and missing values is carried out, and
the method used in this paper is to use sample means instead of
invalid and missing values.

The third step carries out the processing of duplicate values, and
the same data are deleted to reduce the model training cost.

Due to the small amount of data in this region, there may be
cases where the amount of data is below the standard training
threshold set after cleaning. Suppose the training requirements are
still not met after data augmentation. In that case, the model
proposed in this paper uniformly flags all data in this region
with boundaries, and some parameters will be modified in the
subsequent training process to reduce overfitting.

Local training data augmentation
Due to the unique data features in the power IoT, local areas

with boundaries tend not to share private data with other regions. A
possible direct result is that the dataset for local training is extremely
limited, and for many machine learning models, the quality of the
trainedmodel is largely influenced by the amount of data. This paper
uses data augmentation to expand the datasets in the local areas.

As described in Figure 3B, the data augmentation methods vary
for different tasks. For example, for the task of identifying and
warning about the wear and tear of electrical equipment, the main
focus is on augmenting the picture data of electrical equipment. In
this paper, the data augmentation methods for tasks involving
image recognition include random cropping, image rotation, and
flipping.

For random cropping, use the transformation as shown in
Formula 1.

li, wi( ) ← αli, βwi( ) (1)

where li is the length of the ith image, wi is the width of the ith image,
α and β are the parameters in the transformation. Here a tuple is
used to store its length and width attributes. Adjust the image to a
uniform aspect ratio after cropping:

image′i � resize imagei( ) (2)
Where imagei and image′i are the i

th image before and after the
random crop is completed, respectively, and resize(·) is a
conversion function to maintain the aspect ratio.

For image rotation and flipping, use the transformations shown
in Formulas 3, 4:

x′
y′[ ] � cos θ −sin θ

sin θ cos θ
[ ] x

y
[ ] (3)

x′
y′[ ] � −1

0
0
1
w
0

[ ] x
y

[ ] (4)

where, y and x′, y′ are the position of pixel points in length and
width before and after rotation and flip, respectively. θ is the rotation
angle and w is the width of the image.

For other tasks within the power IoT, such as text processing,
this paper uses random removal and disruption methods commonly
used in the field for text data augmentation.

Transfer learning based on practical assessment
Considering a power IoT decision-making task where a local

area with boundaries has only a small amount of controllable data,
this paper incorporates the transfer learning method in the proposed
model.

Transfer learning transposes a well-established model trained on
the source domain with a large amount of data to the target domain
with a small amount of local data so that the target model can also
achieve excellent results. The model proposed in this paper evaluates
the possibility of applying transfer learning in practical experiments
for different power IoT decision-making tasks. For example, in the
task of identifying and warning about the wear and tear of power
equipment, this paper uses a model-based transfer learning
algorithm. At the model level, the source and target domains can

FIGURE 3
Pre-processing stage. (A) Data collection and data cleaning (B) Data augmentation.
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share some of the parameters and then be trained with fine-tuning in
the local domain to obtain a usable target model with stronger
generalization performance.

Iterate through local area information to generate LOC;

for rd in range (Round) do

for loci in LOC do

if loci meet the requirement then

Vi
c � doEnc(Ci, PK)

end if

end for

Vc ← Transmits intermediate data and integrated into the

central server

Vp � UD(V′
p, Vc)

V � doDec(Vp, SK)
for loci in LOC do

C′
i � UDLoc(V,Ci)

end for

end for

return model

Algorithm 1. The model with federated learning.
The details of the experiments on the image task are described in

the next section.

Federated learning based on homomorphic
encryption

Federated learning is a typical example of a small data scale
model training approach, where distributed learning can effectively
break down the problems caused by “data silos.” At the same time,
much of the private data that is not expected to be shared can be
securely trained in a local bounded area, which is greatly protected
by the inclusion of homomorphic encryption.

Simple homomorphic encryption-based federated learning can
be easily described. As in Figure 4, suppose there are n local-area
data holders L � l1, l2,/, ln{ }, each of whom has private data

Di(i ∈ [1, n]) that is not shared. A trusted central server CServer
is set up, and multiple local-area clients are coordinated by it for
collaborative training.

It is further described that each local client freezes the
parameters of the first k layers and initializes the remaining
layers randomly after determining the original model. The local
area client performs a training round and encrypts the intermediate
data upon completion:

Vi
c � doEnc Ci, PK( ) (5)

where doEnc(·) is the encryption function, Vi
c is the information of

the ith local area client after encrypting the intermediate data, PK is
the public key of the encryption process, and Ci is the actual
intermediate data of the ith local area client.

The trusted central server receives the encrypted
intermediate data from the local area client and performs the
parameter update:

Vp � UD V′
p, Vc( ) (6)

where V′
p is the encrypted intermediate data received by the central

server from local clients in the previous round, Vc is the total set of
intermediate data received from all local geographical clients
(Vc � V1

c , V
2
c ,/, V3

c{ }), UD(·) is the data processing function of
the central server, and in this paper, the averaging method is used,
which means that the average of each intermediate data is taken, and
after the calculation is completed the central server issues a new
round of parameters Vp.

Each local client obtains the latest parameters from the central
server, decrypts them with the private key, and receives the actual
data in plaintext:

V � doDec Vp, SK( ) (7)

whereV is the latest round’s parameters from the central server after
decryption, doDec(·) is the decryption function and SK is the
private key. The local area client performs the update of the

FIGURE 4
Federated learning based on homomorphic encryption.
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parameters in the local model based on the data obtained in this
round:

C′
i � UDLoc V, Ci( ) (8)

where C′
i is the actual update of the parameters of the model for the

ith local area client for this round,UDLoc(·) is the parameter update
function for this local area client,V is the decrypted parameters from
the central server for the latest round, andCi is the intermediate data
for the ith local area client. The update here generally replaces the
parameters with the new decrypted parameters, or a weighted
average method can be used. For a more precise description of
the algorithm, see Algorithm 1. It has a time complexity ofO (rd×n).

The above homomorphic encryption-based federated learning
approach for the power IoT also requires a comparison with
traditional training methods, assuming that the model’s accuracy
obtained from the above process is ACC and considering traditional
training:

Model � Train ⋃ n
i�1Di( ) (9)

where Model is the trained model, Train(·) is the abstract process
representation of the training process, and the accuracy obtained
fromModel is represented as ACC′. The following comparisons are
generally considered:

ΔA � ACC′ − ACC
∣∣∣∣ ∣∣∣∣< δ (10)

where δ is a very small non-negative actual number, which has also
become one of the criteria for measuring federated learning.

The hierarchical fusion decision model

This sub-section focuses on the second part of the model
proposed in this paper, a hierarchical fusion decision model for
the power IoT, consisting of two main parts, demand hierarchy, and
decision credible value fusion.

Hierarchical power IoT demand
The delineation model is central to this subsection, considering

that the actual requirements of the power IoT are often complex and
diverse and usually consist of multiple sub-requirements, where
individual sub-requirements can clearly unambiguously express the
decisional boundaries.

Due to the complex features of the power IoT, existing
segmentation methods may not reach the goal. A better solution
is to cross natural language processing domain knowledge for
automatic delineation or to be supported by an expert knowledge
base for delineation. The hierarchical model proposed in this paper
focuses on using expert knowledge base support for the delineation.
The model subscribes to a single requirement (vectorized when
necessary) and retrieves the expert knowledge base to delineate
several linked sub-requirements. It is worth mentioning that the
hierarchical results are not always optimal.

Decision credible value fusion
This paper introduces a weighted fusion strategy at the decision

level, referring to various existing model fusion strategies. It can be
shown in Figure 5. The weighted fusion strategy can reduce the

impact of errors from the model. Considering the sources of
plausible decision values: the data obtained after the completion
of federated learning of multiple models and the data provided by
the expert knowledge base, the weights of each fusion term should be
given after lightweight testing or dynamically adjusted during the
iterative training process, and the weighted fusion is given by
Formula (11):

V � 1
2m

∑m

j�1
Zj

ML

n
∑n

i�1w
j
i · vji + Zj

KL

k
∑p

k�1c
j
k · xj

k( ) (11)

Where m, n, and p are the number of decisions, the number of
fused models in federated learning, and the number of sub-
requirements divided by the expert knowledge base, respectively.
Zj
ML is the weight on the model side at the jth decision round, and

Zj
KL is the weight on the model knowledge base side at the jth

training round. wj
i is the weight of the i

th model fused in federated
learning at the jth decision round, and vji is the result of the i

th model
fused in federated learning at the jth decision round vector. cjk is the
weight of the kth sub-requirement divided at the expert knowledge
base level at the jth decision round, and xj

k is the result vector of the
kth sub-requirement divided at the expert knowledge base level at the
jth decision round. It has a time complexity of O (m×max{n,p}).

Results and discussion

In this section, several experiments are conducted to evaluate
the model proposed in this paper. In this paper, the proposed
model is implemented by PyTorch code framework in Python
language and tested on personal computers (PCs) such as i5-
7300HQ CPU, GTX1050Ti graphics card and 8 GB RAM. There
are many decision-making tasks in the field of power IoT that are
worth exploring (e.g., electrical material identification). To better
represent the fusion and decision-making approach proposed in
this paper, the experimental part will use the power equipment
wear and tear assessment task as the primary requirement. Due to
the high privacy of power data, the team could not obtain sufficient
data, so the experiments mainly used Caltech-256 dataset as an
example and attached the data collected by our team. The approach
proposed in this paper is fully extensible to specific tasks in the
power domain.

Model transfer learning with (Non-)
Federated learning

For the image task, this paper uses the VGG-19 and ResNet-50
models for federated learning. Using the transfer learning training
dataset, the parameters used in transfer learning are shown in
Table 1. For the training process, the transformation formula for
the learning rate is shown in Formula (12):

θe � θ min + 1
2

θinit − θ min( )(1 + cos(Ecur

Einit
)) (12)

where θinit is the initial learning rate, θ min is the minimum value of
learning rate and is set as 0 in this paper, Ecur is the current train
epoch.
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The models after adding federated learning were evaluated on
the server-side for model performance after the intermediate data
had gone through FedAvg. It is worth noting that the models used in
the experiments in this paper were pre-trained on ImageNet and

then downloaded during the first round of training. The
experiments used two clients to simulate.

The federated learning scenario, and the transfer learning used
the same two models mentioned above, with some specific
parameter settings in Table 2.

The effective range of the simulated federation learning used for
the experiments in this paper is within a local area network, using
homomorphic encryption to ensure secure data transmission. For
the security of cross-domain information transmission, it is not
considered in this paper for the time being. Also, due to transfer
learning, most neural network layers do not need to be updated with
parameters, dramatically reducing network communication’s
burden.

The model training results for the four combinations are shown in
Table 3. Excellent accuracy can be achieved for all the mature models
selected for training under transfer learning. The two models using
federal learning were generally better in terms of accuracy, with the time
spent on a single training session varying between models due to the fact
that the VGG-19 model used had far more parameters than ResNet-50.

Model fusion

The image task selected as an example in the experiments in this
paper is a simple stand-alone task, so fusing sub-requirements will not be
considered for use. This part focuses on model fusion. Model fusion
allows for better generalization performance of the completed training
model and can compensate for possible accuracy problems associated
with federated learning. This paper used the model-weighted fusion,
which reduces the impact on the overall model due to errors in one

FIGURE 5
Decision confidence value fusion process.

TABLE 1 The parameters used in transfer learning.

Parameters Value

Batch size 32

Initial learning rate 0.001

Optimizer SGD

Loss function Cross entropy

TABLE 2 The parameters used in federated and transfer learning.

Parameters Value

Batch size 32

Initial learning rate 0.001

Optimizer SGD

Loss function Cross entropy

Number of global iterations 30

Local training rounds 2

Regularization parameter 0.5
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model. When there is a significant difference in structure and
performance between the models to be fused, the better performing
models are given more substantial weight, and the average performing
models are given a lower weight, as shown in Formula (11).

As seen from the experimental results, ResNet-50
outperformed the VGG-19 model in front of the multi-
classification task in both experiments with and without
federated learning. Therefore, in the model-weighted fusion

experiments in this subsection, greater weight was given to
ResNet-50. A comparison of the experimental results is
shown in Table 4. It can be seen that the best results for
model fusion are obtained when the ratio is 2.33, with an
optimal accuracy of 95.2%. However, it is worth noting that
better than VGG-19 converges faster, and the convergence
speed of the fusion model is also affected in the case of its
low weights.

TABLE 3 Transfer learning effects of the two models with (non-)federated learning.

Model Epoch Training time (%) ACC-OPT (%) ΔA Security strategy

non-federated transfer learning & VGG-19 30 100 93.6 0.6% False

non-federated transfer learning & ResNet-50 30 275.07 94.4 ≈0% False

federated transfer learning & VGG-19 60 414.33 94.2 0.6% True

federated transfer learning & ReNet-50 60 334.96 94.4 ≈0% True

Average 281.09 94.15 0.3%

Bold values are highlighted for the average of the data in this column.

TABLE 4 Experimental results of model-weighted fusion.

ResNet-50: VGG-19 ACC-OPT (%) ΔA (VGG-19) (%) ΔA (ResNet-50) (%) Security strategy

1.5 94.3 0.7 0.1 True

2.33 95.2 1.6 0.8 True

4 93.1 0.5 1.3 True

9 94.2 0.6 0.2 True

Average 94.2 0.85 0.6

Bold values are highlighted for the average of the data in this column.

FIGURE 6
The specific experimental comparison data.
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Overall analysis

The experimental results for the two parts of the model are
obtained in the first and second part. At the same time, the
corresponding data are also available for the other model fusion
method, as shown in Figure 6 for the specific experimental
comparison data.

In comparing the best results for this task, model fusion can be
optimal, with the weighted fusion method obtaining the first place at
95.2%. However, its convergence is slower in the actual training
process. The fusion model is more generalizable than a single model
and gives better results.

The weighted calculated result vectors are not listed in the
experiments tables, as all experimental results are already
expressed in accuracy. As the expert knowledge base requires
a certain base reserve, the weight of this part is set to 0 in many
tasks of the experiments in this paper, but this is still very scalable
for tasks in the field of power IoT. In addition, the experiments in
this paper focus on the security protection of electricity data, and
the model is more interested in applying a secure method of
secure data sharing in the power IoT domain than accuracy.
From the data in Tables 3, 4, it can be seen that the experimental
group considering the security strategy and the experimental
group without incorporating federated learning have less than
1.7% bias in the experimental effect. The decision framework
proposed in the text for federated security policies for power IoT
can protect independent private data while ensuring accuracy. It
improves the confidence level of decision making compared to
traditional manual decision making, and it effectively and
securely partitions the training data for secure sharing for
privacy protection compared to the overall trained model. In
addition, the use of models as well as decision-level fusion can be

extended to a wide range of power decision tasks in the context of
smart grid. It is worth noting that although the proposed
approach in this paper is effective in the power IoT domain to
ensure that the privacy data used in power tasks are shared
securely, its convergence speed is slower than traditional training
methods (Figure 7) and requires additional communication time.
To test the extensibility of the framework in this paper, we also
tested the electricity price forecasting task under smart grid, and
the results were similar to this set of experiments, and the secure
sharing of private data was ensured from various aspects.

Conclusion and future work

To address the complexity of traditional decision-making
methods in the field of power IoT and the privacy protection of
power data, this paper introduces homomorphic cryptography-
based federated learning to the task of power IoT. Also, transfer
learning and model fusion are used to improve the performance
of the overall model. This paper also proposes a hierarchical
decision model that integrates traditional expert decision making
in the power IoT domain and deep learning decision making
under new industrial devices, combining machine learning
models and plausible values from expert knowledge bases to
obtain integrated decisions with excellent results.

Future research will focus on designing new machine learning
models for the data characteristics of the power IoT in order to
reduce the reliance on transfer models. In addition, we hope to
conduct targeted research on data types in the power IoT space to
incorporate more advanced security strategies and further adapt
to emerging industrial devices such as smart grids.

FIGURE 7
Comparison of convergence speed between different combinations.
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Intelligent control system for the
electric vehicle heat pump air
conditioner based on machine
learning

Zehua Miao*

School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou,
China

In order to break through the existing battery technology of electric vehicles, this
paper proposes to use heat pump air conditioning instead of the original PTC
heating system potential. First, the advantages and disadvantages of different heat
pump models for new energy vehicles are analyzed and compared. Second, a
fuzzy inference system is constructed based on the machine learning model to
observe the temperature of the passenger compartment using the temperature
sensor inside the tram and to determine the need for the air conditioning system
to be turned on in the heating/cooling mode by comparing it with the set
temperature. Finally, the results show that the machine learning algorithm is
able to monitor and adaptively adjust the interior temperature to further
enhance the adaptability of the system with low volatility and high accuracy.
The proposed research study can lay the foundation for further optimizing the
design of heat pump air conditioners for electric vehicles.

KEYWORDS

machine learning, electric vehicle, heat pump air conditioning, control system, defrost

1 Introduction

Automotive air conditioning technology has been developed for nearly 70 years since the
1950s, when General Motors first designed and installed the first integrated heating and
cooling air conditioner in a car in the United States (Sharif et al., 2017; Bentrcia et al., 2018;
Wang et al., 2020). During this period, although the components within the automotive air
conditioning system have been continuously updated, its entire system based on mechanical
compression for cooling and the use of waste heat from fuel vehicles for heating has
remained almost unchanged (Ahn et al., 2016; Kalinichenko et al., 2018; Lee et al., 2022).
With the rising awareness of environmental protection in various countries and the rapid
development of technology in the new energy vehicle industry, it is the trend for vehicles to
develop from traditional fuel vehicles to new energy. Therefore, the automotive air
conditioning industry is facing a shift and challenge from a single indicator of comfort
to comprehensive energy saving and emission reduction. Under the pressure of energy crisis
and environmental pollution, new energy vehicles came into being. Among them, pure
electric vehicles, with their characteristics of no pollution, low noise, and high efficiency,
have received wide attention from automobile manufacturers and consumers and have
gradually become an important research direction for the transformation and upgrading of
the automobile industry (Wang et al., 2016; Li et al., 2019). Although electric vehicles have
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great potential for development, shortcomings such as short range
and long charging time limit the popularity of pure electric vehicles.

Both new energy vehicles and conventional vehicles require a
comfortable driving environment. Air conditioning systems can
provide a comfortable interior environment for the driver and
occupants under complex and changing driving conditions
(Sharif et al., 2016). Pure electric vehicles have limited battery
capacity and short range, so there are strict requirements for the
energy consumption and efficiency of the air conditioning system.
Among them, in the design of the whole vehicle thermal
management system, the cooling system medium of electric drive
and accessory thermal management is the coolant, and the structure
is basically independent. The interior thermal management and
battery thermal management are realized by the coupling of air
conditioning system, and the cooling medium is an R134a
refrigerant. The interior thermal management mainly includes
interior cooling, interior heating, and remote control of air
conditioning. The strongest coupling between the battery thermal
management and air conditioning system is battery cooling, and
battery heating is generally realized independently through the
battery heater, which is basically not coupled with the air
conditioning system.

Recently, artificial intelligence has become a socially
recognized future development trend (Athey, 2018; Bi et al.,
2019). By mining the implied laws from a large amount of
historical data and applying them to the prediction of the
system, machine learning improves the accuracy and precision
of the system. With decades of research and development,
automotive air conditioners have accumulated a sufficient
amount of historical data and are a representative applicable
object for machine learning. Most of the air conditioning
systems of electric vehicles currently in circulation are used for
winter heating through PTC, but according to the relevant electric
vehicle regulations, if the car is to have the function of heating and
defrosting, then the PTC electric heating power needs to be more
than 3000 W (Park and Kim, 2017; Park and Kim, 2019). The PTC
electric heating method of heating consumes a lot of power and has
a large impact on the battery, and the coefficient of performance of
the system is maximum 1, there is certain of energy waste. The heat
cannot be propagated in the reverse direction without the
interference of external forces, and heat can only be radiated
from high temperature to low temperature. The working
principle of the heat pump is to consume less energy and
realize the propagation of heat from the low-temperature object
to high-temperature object by reversing the cycle, so as to obtain a
larger amount of heat. This way of consuming less energy and
obtaining more heat can achieve the purpose of energy saving.

Heat pumps have a proven product history of over 20 years as a
solution for home and commercial air conditioning. Although, their
use of electrical energy can achieve 2–3 times of heat output.
However, limited by cost and technical maturity, they have been
slow to develop in the automotive air conditioning industry.
However, with the imperative to address the range of electric
vehicles, heat pump systems are the most promising and efficient
solution available. At present, a lot of research studies have been
performed by scholars in various countries on the design and
application of heat pump air conditioning control systems in the
context of machine learning. In this paper, we will systematically

review the current research status of the electric vehicle heat pump
air conditioning control system based on machine learning,
summarize and conclude the technical principles of heat pump
air conditioning, types of heat pumps, environmental protection
work material substitution, and compressor control strategy and
electric vehicle heat pump defrost system based on machine
learning, and analyze the current difficulties in electric vehicle
heat pump air conditioning on this basis.

2 Principle and status of electric vehicle
heat pump air conditioning

2.1 Working principle of the electric vehicle
heat pump air conditioning system

The working principle of the electric vehicle heat pump air
conditioning system is shown in Figure 1, which mainly consists of
an electric compressor, a four-way reversing valve, an external heat
exchanger, a liquid storage dryer, a capillary tube, an internal heat
exchanger, and a fan (Zhou et al., 2017; Peng et al., 2021; Ning et al.,
2023). The cooling cycle is similar to the heating cycle in that the
direction of the mass flow can be changed simply by a four-way
reversing valve.

T and P denote pressure and temperature, respectively. As can
be seen from Figure 1, the electric air conditioning compressor will
be a high-temperature and low-pressure gaseous refrigerant,
compressed into a high-temperature and high-pressure liquid
refrigerant; through the car heat exchanger condensation, heat
exchanges with the air inside the car, the air temperature inside
the car rises, and the refrigerant temperature drops, becoming a low-
temperature and high-pressure liquid refrigerant; and then, through
the electronic expansion valve, it becomes a low-temperature and
low-pressure gaseous refrigerant; through the car heat exchanger,
heat exchanges with the gas outside the car, the air temperature
outside the car drops, and the refrigerant temperature rises,
becoming a high-temperature and low-pressure gaseous
refrigerant, into the next round of the refrigeration cycle. In this
way, the heat exchange between the inside and outside of the car can
be realized, so as to achieve the effect of heating the inside of the car.

FIGURE 1
Working principle of the electric vehicle heat pump air
conditioning system.
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2.2 Different types of heat pump systems

2.2.1 Direct heat pump
Automotive air conditioning systems with heat pump functions

are more complex than conventional automotive air conditioning
systems, and the functionality and reliability of the components are
correspondingly higher. Junqi et al. (2021) pointed out that the
existing four-way reversing valve design is a copper reversing valve
for domestic air conditioners, and an aluminum reversing valve for
automotive air conditioners has poor solderability, low reliability,
and vibration resistance and, thus, has the disadvantage of being
unsuitable for frequent switching and leakage between high and low
pressures. Therefore, major automotive companies and system
suppliers can now arrange a dual heat exchanger on the indoor
side to take care of the cooling and heating needs (Han et al., 2021;
Wang et al., 2022a). For the direct heat pump system, an internal
condenser is arranged directly on the rear side of the evaporator
inside the air conditioning box to replace the conventional warm air
core. At the same time, since the outdoor heat exchanger has to take
on additional heat absorption demand in winter, it is necessary to
add an additional heat making valve set or throttling short pipe valve
set at its inlet in the heat pump mode. The function is to realize the
fine adjustment of the flow rate of outdoor heat exchanger to
maintain the stable operation and heat output of the system in
the heating mode. At the same time, the battery cooler and indoor
evaporator also need to use solenoid valve set to cut off and bypass to
the gas–liquid separator.

2.2.2 Indirect heat pump
Unlike the direct heat pump, the indirect heat pump system uses

a plate heat exchanger to realize the heat exchange between the
compressor high-pressure high-temperature refrigerant gas and the
coolant of the cooling circuit, and the heat exchanged high-
temperature coolant then flows through the warm air core in the
air conditioning box via the secondary circuit, so as to conduct
secondary heat exchange with the circulating air in the air
conditioning box again. After the secondary heat exchange, the
air temperature of the warm air core reaches the set target air
temperature (Zhou et al., 2022). It can be seen that the arrangement
inside the air conditioning box is still the same as that of the
conventional air conditioning box, with the evaporator and the
warm air core. The air conditioning box does not need to be
redesigned again, which can reduce most of the design and
verification and tooling costs and save the development cycle.
Meanwhile, the indirect heat pump with secondary loop design
can realize the coupling relationship between the coolant system and
the heat pump system through the plate water-cooled condenser
(Malinowski et al., 2017). The high-pressure water PTC of the
cooling system can achieve rapid warming of the battery system
in winter and can also be used as a supplementary heat source to
compensate for the risk of heat deficiency of the heat pump system
under severe low-temperature conditions. It also reduces the risk
and cost of the high-pressure PTC in the air conditioning box. The
use of electrical energy regulation not only keeps the structure design
simple but also controls the current size and heat and the use of
temperature models, reduces the heat loss during the operation of
the air conditioning system, and increases the speed of the car’s
internal temperature.

2.2.3 Heat pump system with waste heat recovery
Although the heat pump system can output 2 to 3 times the

electrical power of the heat and the energy efficiency is high, it
relies on the external heat exchanger at low-temperature air and
refrigerant heat transfer. When the external heat exchanger is in
evaporating condition and the surface temperature is lower than
the dew point temperature of the incoming air, the heat
exchanger surface is in wet condition and the heat exchanger
surface will condense or even frost. Therefore, the traditional air
source heat pump, in the low-temperature and high-humidity
environment will quickly frost and, thus, affect the stable output
of system heat and system pressure loss. For this reason, many
scholars have considered dual heat source heat pump systems
that operate by using the waste heat from the coolant of electrical
components such as motors.

A new heat pump system for electric vehicles is proposed in
the literature (Singh and Sharif, 2019; Wang et al., 2021a), which
takes the form of an additional external heat source in the system.
A special device, called a bi-directional reservoir, was also
designed. This device performs the filtering and drying
function of the reservoir inside a conventional vehicle air
conditioner and can be used in the cooling or heating mode.
This replaces the original need for two expansion valves, two
check valves, and two liquid storage electric compressor control
tanks. The results of the improved heat pump bench test show
that at an ambient temperature of −10°C, the air side absorbs
2.5 kW of heat exchange and the battery and motor recover
0.5 kW of heat. In comparison with the PTC system, the
whole vehicle saves 15% of electricity consumption. It also
improves the stability of the system for external heat
exchanger frost.

Rajbongshi and Saikia (2018) proposed a thermal management
method called the thermal link system, in which the waste heat
recovery heat exchanger is connected in series with the outdoor heat
exchanger. In the heating mode, the power consumption can be
reduced to 580 W and a heating capacity of more than 2000 W can
be obtained. As a result, the COP of the heat pump system
exceeds 3.3.

In the study of Liu et al. (2019), a waste heat recovery heat
pump system connected in parallel with an external heat
exchanger was investigated. The performance of the winter EV
thermal management system was enhanced by recovering the
automotive waste heat, and the heating COP was improved by
about 25.5% when the ambient temperature was −7°C and the
waste heat was boosted from 0 W to 1000 w. At the same time, the
waste heat generated by the circuit helps to increase the
compressor suction pressure and outlet pressure, which in
turn increases the outlet air temperature. In comparison with
the PTC heating system, the remaining power of the whole
vehicle is improved by about 53%.

Karnik et al (2016) noted in an SAE workshop that the I-pace
heat pump system can recover 2.5 kW of heat from the motor circuit
at an ambient temperature of 0°C. At the same time, only 0.3 kW of
compressor power consumption is required to deliver an overall
2.8 kW of heat to the passenger compartment. Menken et al (2018)
evaluated that the Audi Q7 e-tron heat pump can deliver 3.4 kW of
heat with 2.5 kW of power in the waste heat recovery heat pump
mode at an ambient temperature of 5°C.
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2.3 Environment-friendly work substitution
for heat pump air conditioners

Currently, R134a is the main working fluid in automotive air
conditioning systems, while R407C, R410A, R1234yf, and CO2 are
also used in a few automotive air conditioning systems.

R134a is non-toxic, non-combustible, and has good heat transfer
performance, but its boiling point is relatively low (−26.5°C) and the
amount of refrigerant vaporization decreases significantly when the
ambient temperature decreases, resulting in a decrease in heating
efficiency, insufficient low-temperature heat production, and high
energy consumption, which cannot meet the load requirements of
automotive air conditioners at low ambient temperatures; its GWP
(1600) value is high, and it is a restricted process in the EU and the
Kyoto Protocol. R407C is a ternary non-azeotropic blend of R32,
R125, and R134a, with a GWP value of 1980. R134a, R407C, and
R410A are three mainstream automotive air conditioning process
agents whose use has been restricted due to their high GWP values.
R1234yf (ODP = 0, GWP = 4) is an environment-friendly process
agent for automotive air conditioners jointly introduced by
Honeywell and DuPont, which can meet the requirements of EU
regulations and has similar thermodynamic and heat transfer
characteristics to R134a. It is one of the best alternatives to
R134a for automotive air conditioners because of its low cost
(Altinkaynak et al., 2019; Pabon et al., 2020; Adrian et al., 2021;
Yadav et al., 2022). However, there is a 10% decrease in performance
compared with R134a systems, and the performance decrease is
more prominent at low-temperature heating. Meng et al. (2018) and
Yang et al. (2019) applied R1234yf/R134a hybrid work gases with
different mixing ratios in automotive heat pump air conditioning
systems, and the COP is slightly lower than that of R134a systems,
but the difference does not exceed 7%, which is feasible.

The natural work gas CO2 (ODP = 0 and GWP = 1) has the
advantages of good low-temperature heating performance and high
cooling capacity per unit and is considered as one of the best choices
for the new generation of work gas for automotive air conditioning
(Lee et al., 2014). Mercedes-Benz of Germany was the first to launch
a vehicle equipped with a CO2 air conditioning system in 2017, and
Toyota and others have started to apply it on a large scale. The
CO2 heat pump system developed by Valeo can increase the driving
range by 15% at −15°C and 30% at 20°C. The CO2 transcritical
automotive heat pump air conditioning system proposed in the
literature (Zheng et al., 2020; Wang et al., 2022b) can achieve an
outlet air temperature of 40.4°C and a COP of 1.8 at −20°C in a fully

fresh air environment, with obvious advantages of low-temperature
heating effect. However, the critical temperature of CO2 work
material is low (31°C), and the system must work in the
transcritical cycle (pressure >7.4 MPa), and the operating
pressure is much higher than that of the R134 a automotive air
conditioning system, and the existing components cannot meet the
requirements of system reliability and safety.

3 Machine learning-based compressor
control strategy for heat pump air
conditioners

A temperature sensor in the passenger compartment of the
electric vehicle observes the temperature of the passenger
compartment and determines that the air conditioning system
needs to be turned on in the heating/cooling mode by comparing
it with the set temperature. The automatically controlled air
conditioning system features low volatility and high accuracy,
avoiding the driving safety hazards for drivers caused by manually
adjusting the air conditioning knob. Scholars at home and abroad
have found that the compressor is a key part of the air conditioning
control system through research on air conditioning systems. Scroll
compressors can even reduce the power of the air conditioning system
by avoiding the compressor to always run at very high speed.

The scroll compressor is driven by a DC motor. By adjusting the
duty cycle of the voltage applied to the DC motor, the speed of the
compressor can be effectively controlled to achieve effective and precise
control of the occupant compartment temperature. At the same time, it
can reduce the power of the air conditioning system by avoiding the
compressor from running at very high speed all the time. By
introducing machine learning (Agarwal et al., 2020) and combining
neural networks with fuzzy control, researchers designed a fuzzy neural
network compressor controller and compared it with the control effects
of PID and fuzzy control to derive the best compressor control system.

In this paper, the control strategy of the heat pump air
conditioning system is studied from the power of the air
conditioning system by combining the heat transfer mechanism
of the heat pump air conditioning system and components and
relevant algorithms in machine learning with current popular
control methods as the starting point. Based on the
thermodynamic principle, the remaining components of the heat
pump air conditioning system are modeled, and the coupling of each
component is proposed to build a heat pump air conditioning

TABLE 1 Overview of machine learning methods and classical applications.

Machine learning
methods

Overview Classical
applications

Supervised learning Learning to map new data to known types by a given set of manually labeled sample data. The twomain types
of supervised learning are classification and regression

Spam filter

Unsupervised learning The purpose of unsupervised learning is to find correlations between data through data compression,
visualization, and noise reduction, which are important skills for data analysis. There are two main types of
unsupervised learning: dimensionality reduction and clustering. The use is generally combined and not

limited to one

Targeted marketing
programs

Intensive learning Learning how to get reward maximization by receiving information about the environment. Reinforcement
learning is primarily concerned with the performance of the system

Play games, such as Go
games
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system construction strategy. The deficiency of fuzzy control which
relies heavily on expert experience is remedied.

3.1 Inverter compressor PID control

PID control as a linear controller is widely used in the field of
mechanical control due to its excellent robustness, high reliability,
simple principle, and easy implementation (Xie et al., 2022). PID
achieves the control of the control target by establishing an accurate
mathematical model. However, for the automotive air conditioning
system, the dynamic changes of its driving state and environment
make it a non-linear and time-varying strong controlled object.
Therefore, it is difficult to meet the precise control of the air
conditioning system by using the PID controller, a classical
control algorithm that regulates by linear superposition of three
items: proportional, differential, and integral. At the same time,
there are also applications for the actual control object, after
simplifying the PID controller, such as the PI controller.

The PID control system for the automatic air conditioning
compressor was determined based on the principle of the PID
control system combined with the compressor control system.
The researchers found that if the set temperature of the
passenger compartment is 25 °C, the compressors all run at the
highest speed when the temperature difference exceeds the upper
and lower limits to ensure that the set temperature is reached as soon
as possible (Chunyue, 2017).

3.2 Fuzzy control of the variable-frequency
compressor

Fuzzy control based on fuzzy sets, fuzzy logic, and fuzzy
language is a popular research topic in the field of artificial
intelligence control in recent years and has been widely used in
various fields of industry. The automotive heat pump air
conditioning system is easily limited by the driving status of the
car and the changing heat load. Also, fuzzy control, as an important
part of intelligent control, uses set fuzzy rules for effective control of
the control target without the need for precise mathematical models
(Nguyen et al., 2019). Yordanova et al. (2014) argued that the
introduction of fuzzy control into the field of air conditioning
control avoids most of the ineffective control and allows the
power of the air conditioning system to be reduced.

The EV obtains the exact value of the controlled quantity by
interrupt sampling and then compares this quantity with the given
quantity to obtain the error signal e, error rate of change Δe, fuzzy
control of the exact quantities of error signals E and Δe into fuzzy
quantity E, and error rate of change Δe; then, the fuzzy decisions are
made by E, ΔE, and the optimized fuzzy control rules R (fuzzy
relations) based on the inferred synthetic rules. The fuzzy control
quantity A is obtained as

U � E ×ΔE( )+R. (1)
In order to exert precise control on the controlled object, it is

also necessary to convert the fuzzy quantity U into the precise
quantity, i.e., non-fuzzy processing, and after getting the precise
digital control quantity, it is converted into the precise analog

quantity by digital-to-analog conversion and sent to the actuator
for the first step control of the controlled object. The frequency of
the control quantity, the rate of change of the control quantity
frequency and the temperature deviation are sent back to the indoor
microcontroller system for genetic evaluation and optimization,
obtaining new control rules and genus functions, and then
interrupting and waiting for the second sampling for the second
step control. Going on in this way, the self-learning optimal control
of the controlled object is achieved.

3.3 Machine learning-based inverter
compressor fuzzy neural network control

Machine learning is centered on parsing data and finding
patterns, learning by writing algorithms, and making decisions
and predictions of relevant events based on the learned
algorithms. In contrast to the traditional idea of explicitly writing
programs to perform a solidified task, machine learning enables
computers to perform tasks by developing learning algorithms
(Durur and Yokuş, 2021). Depending on the learning method,
there are three categories: supervised learning, unsupervised
learning, and reinforcement learning. Different types of machine
learning methods have specific advantages, disadvantages, and
applications. An overview of current machine learning methods
and classical applications is shown in Table 1.

Machine learning is a method of giving machines and humans
the same level of intelligence (artificial intelligence). Machine
learning contains a variety of algorithms that are applicable
indifferent situations such as clustering and classification.
Artificial neural networks are the current research hotspot and
focus in machine learning. Artificial neural networks are based
on the structure of biological neural networks. One or more
outputs are produced by many inputs that pass through several
implicit layers. These connections form specific loops that mimic the
way the human brain processes information and logical connections.
As the algorithm continues, the hidden layers tend to be smaller and
more subtle. By using the generalized multi-feature subspace
framework to learn the structural features of noisy and
anomalous pixels, a unique approximate solution is computed by
using the L1 sphere theory, and the complex computation of large-
scale data is avoided by using the filtering technique, thus reducing
the time and space complexity. Finally, machine learning provides
better recognition results compared to other sparse coding methods.

Fuzzy systems and artificial neural networks belong to the same
characteristic-free mathematical models and non-linear systems,
and both are important tools for dealing with uncertainty
problems, uncertainty, and non-linearity. Salleh et al. (2017)
studied that the inference rules of fuzzy systems rely on expert
experience or skilled operators to write them, and they do not have
adaptive and self-learning capabilities themselves, which makes
fuzzy systems have certain limitations. Moreover, the reliability of
expert experience determines the reliability of fuzzy systems. Neural
networks have the ability of adaptive learning, fault tolerance,
parallelizable computation, and distributed information storage.
However, Alashkar et al. (2017) pointed out that neural networks
themselves do not make good use of empirical knowledge and are
often assigned initial values and weights in the form of 0 or random
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numbers, which makes neural networks show poor performance
when applied to express rule-based knowledge. Also, it makes the
neural network prone to fall into local extremes and increases the
training time of the neural network. In conclusion, fuzzy systems are
suitable for dealing with structured knowledge, while neural
networks are more effective for unstructured knowledge. Fuzzy
neural network systems are modeled according to their fuzzy
systems and given physical meaning to the corresponding
network nodes. In contrast to neural networks, fuzzy neural
networks can determine the initial values of the system. Also,
compared to fuzzy systems, fuzzy neural networks have high
adaptive and learning capabilities due to their neural network
structure (Marín et al., 2019; Zheng et al., 2021).

Fuzzy neural networks are essentially conventional neural
networks that are given fuzzy input signals and fuzzy weights,
and their learning algorithms are usually neural network learning
algorithms or generalization algorithms. The inference rules of
Mamdani-type fuzzy neural networks conform to the normal
human thinking habits and, therefore, can represent human
knowledge more accurately (Yucel et al., 2017; Zhang et al.,
2018a; Lucchese et al., 2021; Mohammed and Hussain, 2021).
However, their computations are generally complex and are not
conducive to mathematical analysis.

4 Electric vehicle heat pump air
conditioning defrost research

4.1 Frost suppression structure design

The frost suppression design ismainly designed to reduce the frost
rate and frost volume by changing the geometrical structure
parameters and surface interface properties of the heat exchanger.
The literature (Hu et al., 2020) analyzed the characteristics of frost
growth in a four-process heat exchanger: the ratio of gas–liquid
refrigerant differs in different processes and is influenced by
gravity, the frost layer is uniformly distributed in the first process,
while it is non-uniformly distributed in the second, third and fourth
processes, and there is a linkage between surface frost growth and
surface temperature drop. There is a lack of research on the
optimization of frost suppression for this phenomenon, but in the
study of improving the air inlet conditions of electric vehicle heat
exchangers (Zhang et al., 2018b), the four processes were improved to
six processes withmore uniform air inlet, and the study provided ideas
for heat exchanger frost suppression. Combining these two studies, it
can be foreseen that improving the refrigerant side process has some
potential in the design of heat exchanger frost suppression.

The outdoor heat exchanger of the heat pump system has two
spatial arrangements, horizontal and vertical, and the conventional

fuel car heat pump system mostly uses the horizontal arrangement
with the reservoir function, while the electric car microchannel heat
exchanger mostly uses the vertical arrangement that helps drainage.
Gillet et al. (2018) studied the heat production and air outlet
temperature variation of horizontal and vertical arrangement
methods under evaporator conditions in high cold, high
humidity, and cold and wet conditions. The performance of the
horizontal arrangement is better than that of the vertical
arrangement under frost conditions, mainly because the vertical
arrangement leads to uneven refrigerant distribution and severe
frosting at local locations, while defrosting will not be complete. This
shows that the vertical arrangement of the heat exchanger, although
conducive to frost water drainage, but not conducive to frost
suppression. In the work of Mahvi et al. (2021), a
superhydrophobic heat exchanger was studied, which was able to
significantly reduce the amount of frost and keep the thermal
conductivity above 50% of the maximum value and reduce the
time and energy required for defrosting.

Surface treatment can reduce the amount and speed of frosting,
but the high cost of the surface treatment and the complexity of the
process make it difficult to spread, so reducing costs and simplifying
the process are the key points of whether this type of technology can
be applied. Considering the long-time operation of the electric
vehicle heat exchanger, surface treatment cannot fundamentally
solve the frosting problem, and we still need to rely on the
defrosting equipment and system, but surface treatment has a
positive effect in extending the defrosting cycle and reducing
defrosting energy consumption, as shown in Table 2.

In order to reduce the energy consumption, the air conditioning
system works at the optimal working condition and achieves the
economic performance index; the machine learns and makes
calculations based on the input command and operation status
and adjusts the action of relevant actuators, especially the speed of
electric compressor, in time. To achieve the aforementioned control
objectives, the air conditioning controller needs to collect information
on the operating status of the air conditioning system and the
environment, including the temperature inside and outside the
vehicle, sunlight intensity, cooling water temperature, and
compressor speed, and then output the corresponding control
signals through the microprocessor to adjust the corresponding
actuators to meet the requirements of the occupants. Based on the
aforementioned conditions, unnecessary calculations are reduced.

4.2 Electric vehicle heat pump defrost
technology

The common defrosting methods of heat pump systems include
manual defrosting, water flushing, compressed air defrosting,

TABLE 2 Comparison of the traditional solution and the proposed solution.

Traditional solutions The proposed program

The study mostly focuses on a single mode of cooling or heating without considering
whether the same control strategy meets the demand in both heating and cooling

Meet the purpose of passenger cabin comfort and energy saving at the same time

Mainly focused on PID control, fuzzy control, and other control methods, not combined
with artificial intelligence-related algorithms

Compensates for the fact that fuzzy control relies heavily on expert experience and has
insufficient control accuracy due to errors in expert experience
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electric defrosting, and hot air defrosting. For electric vehicles,
hot air defrosts is valued because it does not require auxiliary
equipment and has high energy efficiency. The following is the
main introduction of hot air defrost technology; there are two
forms of hot air defrost: the hot air bypass method and reverse
cycle method:

1) The hot gas bypass method refers to the direct introduction of
high-pressure high-temperature exhaust from the compressor
into the heat exchanger to melt the frost, which has the
advantages of short bypass piping, low resistance, and small
temperature fluctuations inside the vehicle during defrosting (Xi
et al., 2021). The defrosting time and energy consumption of the
four defrosting modes are shown in Table 3. Among them, the
thawing performance of the high-pressure hot gas bypass is the
most satisfactory.

Hu et al. (2014) systematically studied the hot gas bypass
method and obtained the optimal opening of the bypass valve
and the optimal defrost cycle for the studied heat pump system.
The optimal defrost cycle is based on the basic complete defrost,
while the residual frost at the edges where the heat exchange is small
can be neglected. In addition, Wang et al. (2018) introduced the
method of refrigerant subcooling defrosting, which is similar to the
hot gas bypass method and uses the refrigerant liquid just coming
out from the condenser to the evaporator for defrosting; the
characteristics of this method are similar to those of the hot gas
bypass method, which does not affect the heating, but requires a long
operation time and is suitable for defrosting out the frost in the case
of microfrost to prevent further frost generation. The condenser has
the following advantages over conventional hot air corps: First, it has
low system operating costs. Condensing temperatures within 8.3°C
of the wet bulb design temperature are very practical and
economical, with the result that compressor power saves at least
10% of the power consumption of other cooling tower/condenser
systems and saves 30% of the power consumed by the fan, which is
comparable to the power consumed by the fan of a cooling tower/
condenser system and is approximately 1/3 of the power of an air-
cooled condenser fan of the same size. Second, the condenser
requires only approximately 50% of the windward area of the
same size.

2) Circular method

The advantage of reverse cycle defrosting is fast defrosting
and low energy consumption, but the disadvantage is that the

heating stops when defrosting, which has a greater impact on the
vehicle temperature. Minglu et al (2020) pointed out the
mechanism by which reverse cycle reduces the circulation
efficiency of the system. In the work of Wang et al. (2021b), a
reverse cycle defrost system with CO2 as the working fluid was
investigated, the parameters in the defrost process were
optimized, and a reverse cycle defrost model with
CO2 working fluid was established, and the optimal time point
and duration of defrost were studied on this basis. Zhou
Guanghui et al. proposed a combined reverse cycle defrost-
based defrost technology, the core of which is to enhance the
temperature and enthalpy of airflow during defrosting, to achieve
rapid defrosting by controlling the external air speed, controlling
the compressor speed, and enhancing the interior temperature,
and to reduce the impact on the interior temperature during
reverse cycle defrosting. Li et al. (2022) built a platform for frost
defrosting the heat exchanger outside the real vehicle and
concluded that the degree of heat exchanger frosting can be
indirectly characterized by the change of suction temperature
or suction pressure relative to the frost-free state, and the large-
diameter electronic expansion valve combined with intelligent
control can achieve effective defrosting. The continuous
frosting–defrosting experiment was studied by frost time
recording and real-time shooting of the frost layer, and the
results showed that after continuous operation of frosting for
150 min, the heating capacity decreased by 22.6% and 15.6%
respectively, and the second frosting time was only 28.5% of the
first frosting time, and the reverse cycle defrosting effect was
obvious.

4.3 Electric vehicle heat pump defrost
system control

In the defrost system control, the timing control method only
needs to confirm the defrost cycle and defrost duration based on
experience or experiment, but this defrost method is more suitable
for areas with relatively high ambient humidity, while in areas with
low ambient humidity, there will be no frost and defrost
phenomenon. When the timing module in the air conditioner
controller detects that the heat pump air conditioning system is
running continuously for a certain value, the heat pump air
conditioning system automatically enters defrost mode, which
outputs the speed of the compressor and the time for the defrost
function to run. In the actual experimental process, the control
strategy is verified, when the ambient humidity is above 50%, the air

TABLE 3 Four defrost modes and performance parameters.

Defrost modes Defrost time/min Compressor energy consumption/kJ Advantages and disadvantages

High-pressure hot gas 2.1 86.79 Short time, high energy consumption, and high comfort level

Reverse cycle 3.1 140.61 Large temperature fluctuations in the car and low comfort

Low-pressure hot gas-S 11.9 457.68 Long time and high energy consumption

Low-pressure hot gas-M 12.6 505.86
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conditioning system continuous heating for a certain period of time,
the outdoor heat exchanger will appear frost phenomenon, and the
control strategy can complete the defrost function. However, when
the ambient humidity is lower than 50%, the heat pump air
conditioning system does not have frost in the continuous
heating for a certain period of time, but the control strategy will
still perform defrosting action, so there will be an unnecessary
defrosting process, thus increasing the energy consumption.

The time–temperature control method is a common method
in which the air conditioning system defrosts for a certain period
of time when the ambient temperature and ambient humidity are
relatively high (Liang et al., 2019). When the air conditioning
controller detects that the ambient temperature reaches the
ambient temperature value set in the defrost control strategy,
the CCMwill control the air conditioning system to automatically
enter the defrost function and then control the corresponding
components to complete the corresponding action, i.e., output
the speed of the electric compressor and the time for which the
defrost function runs. In the actual experimental process, when
the ambient temperature reaches below 3°C and the ambient
humidity is above 50%, the outdoor heat exchanger will frost for a
certain period of time when the air conditioning system is heating
continuously, and the control strategy can achieve the defrost
function. However, when the ambient temperature is higher than
3°C and the ambient humidity is lower than 50%, the outdoor heat
exchanger will be frosted when the air conditioning system heats
up continuously for a certain period of time, and at this time, the
air conditioning controller will not defrost by judging that the
ambient temperature has not reached the condition, so there will
be no defrosting action when defrosting is needed.

The air and heat exchanger surface temperature difference
control method uses the difference between the heat exchanger
outlet temperature and the ambient temperature for defrost
control (Nilpueng et al., 2019; Su et al., 2021; Yi, 2021). It
can be said that assuming that the ambient temperature
remains unchanged and the heat exchanger surface does not
reach the condition of frost, the heat exchanger surface
temperature is basically unchanged at this time, so the
difference with the ambient temperature is unchanged, but
when the heat exchanger surface reaches the condition of
frost, that is, when it starts to frost, the difference between
the two will show significant changes (Juárez et al., 2021; Singh
and y Sora, 2021). So, you only need to determine the
appropriate temperature difference value; it is good to
determine whether the outdoor heat exchanger surface has
been frosted and a certain defrost time can be, but the defrost
method is only suitable for specific situations because different
systems need to determine other temperature difference values
and different defrost time, and the heat pump air conditioning
system is more sensitive to changes in load, such as changes in
ambient temperature will cause excess defrost action. When the
air conditioner controller detects the ambient temperature and
the heat exchanger surface temperature and determines that the
difference between the two changes, the air conditioner
controller will control the heat pump air conditioning system
to automatically enter the defrost function and output the
corresponding electric compressor speed and defrost function
running time. In the actual experimental verification process,

because the ambient temperature will be affected by the speed of
the vehicle and other factors, when using this control strategy at
this time, due to changes in ambient temperature, there will be
defrost action when the defrost should be carried out, or when
there is no need to carry out defrost, there is a redundant defrost
action (Mohammed et al., 2022).

5 Outlook

In a comprehensive view, researchers in various countries
have explored a lot in compressor control strategy optimization
and heat pump defrost technology, but the combination
with emerging technologies such as machine learning is not
close enough. As the application of new energy technology,
some basic work and key technologies of heat pump
air conditioning for electric vehicles still need to be broken
through.

1) Development of heat pump air conditioners toward
environmental protection, full-scene energy saving, and
extreme environmental applicability: Research and
development of new alternative masses, high-efficiency heat
pump air conditioning systems and their components, such as
supercritical CO2 heat pump air conditioners, new high-
efficiency make-up gas compressors, and high-efficiency
microchannel heat exchangers should be carried out to
solve the problems of high energy consumption and
insufficient capacity for heat production. Research and
development of new heat pump air conditioners for
extreme environments (extreme cold, extreme heat, high
humidity, and high salt) and other areas should be carried
out to improve the applicability of the whole vehicle.

2) The heat pump system has great potential and advantages in
solving the heat and cold management of the passenger
compartment, and further research on the enthalpy charge
technology, new defrosting method, multiple heat sources for
heating at low temperature, and new alternative refrigerants can
allow the heat pump system to be applied and promoted in a low-
temperature environment.

3) In the optimization of the compressor control strategy, the
existing algorithm can be further improved to accelerate the
global convergence rate by combining techniques such as small
habitats under machine learning models (classifying individuals
of each generation and selecting individuals with high fitness
from the classification to form a population and re-hybridize).

4) Most of the studies on the defrosting of EV heat pumps only
consider that the frosting of the heat exchanger affects its
effective area for heat exchange. At present, further research is
needed on the actual frost area of the heat exchanger and the
extent of the effect of heat exchange.

5) Based on machine learning models, the heat pump air
conditioner monitors and adaptively adjusts ambient
temperature and humidity, indoor temperature and
humidity, air outlet temperature, battery temperature, water
temperature, mass temperature and pressure, indoor
CO2 concentration, and PM2.5 to further enhance the
system’s adaptability.
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6 Conclusion

Good progress has been made in the research of the heat pump
air conditioning control system for electric vehicles in the context of
machine learning. Although the heat pump air conditioning system
has many advantages and is one of the ideal solutions for electric
vehicle air conditioning systems, the system also has defects such as
low heating efficiency under low-temperature conditions, slow
heating speed, and frosting of the heat exchanger outside the
vehicle. In this paper, the advantages and disadvantages of
various new energy vehicle heat pump systems are first described
separately, and the system performance under different heat pumps
is compared and analyzed. Second, in terms of electric vehicle
design, the focus of attention is elaborated on the system cooling
and heating under the charge volume, compressor oil return, winter
frosting, and different electronic expansion valve control. In the
future, a commercial CO2 vehicle heat pump air conditioning
system can be used to make the performance of the new energy
vehicle heat pump system more superior, thus solving the problem
of electric vehicle range.
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Multi-interval settlement system
of rolling-horizon scheduling for
electricity spot market
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Multi-interval settlement is conducive to meeting the needs of growing
renewable energy resources with great intermittency and volatility and
managing the effective operation in the electricity spot market. However,
the insufficient incentive of market price inaccurately reflecting the total
cost of the electricity spot market caused by the inaccuracy of generation
and load prediction in the current multi-interval settlement will lead to
inefficient market scheduling, causing the market participants to deviate
from dispatch instructions. Based on the problem above, a new multi-
interval settlement system of rolling-horizon scheduling including the
period selection of look-ahead schedules and enhanced settlement
mechanism is proposed to improve the price incentive for the electricity
spot market. The proposed multi-interval settlement system can produce a
better look-ahead period and a more economically efficient dispatch solution
inducing dispatch-following incentives. A numerical example shows that the
proposed multi-interval settlement system outperforms the traditional
settlement mechanism regarding economic efficiency.

KEYWORDS

multi-interval settlement, rolling-horizon scheduling, period selection, electricity spot
market, settlement priority

1 Introduction

1.1 Background and motivation

According to the plan vision of carbon peak and carbon neutrality, Chinese
renewable energy will enter a new stage of high-quality leapfrog development, and a
high proportion of renewable energy grid connection will become the basic new feature
of the power system in the future. In order to adapt to the development of renewable
energy, the demand for power system flexibility has increased significantly, the role of
cross-time constraints of spot market optimization has been significantly strengthened,
and the coupling between optimization periods has become closer. How to design a real-
time prospective and optimized settlement mechanism with universal practicality for the
spot market of electricity to meet the construction and development needs of the
electricity market adapting to the characteristics of the new power system is a practical
problem that needs to be solved urgently in the construction of Chinese electricity
market. On the basis of the current operation mechanism, this paper improves and
designs a set of new real-time prospective optimization settlement mechanism for the
spot market of electricity, which can provide reference for the construction of the spot
market of electricity in China.
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1.2 Literature survey

According to the plan vision of “30 carbon peak, 60 carbon
neutral,” Chinese renewable energy will enter a new stage of high-
quality leapfrog development, and a high proportion of renewable
energy grid connection will become the basic new feature of the
power system in the future (Jiang et al., 2020; Chen et al., 2021). In
order to adapt to the development of renewable energy, the demand
for flexibility of the power system has increased significantly, and the
role of cross-time constraints in the optimization of the spot market
has been significantly strengthened, and the coupling between the
optimization periods has become closer (CAISO, 2014;
Massachusetts gov, 2016). Therefore, in order to better adapt to
the characteristics of flexible resources operating across time
periods, the mature spot power markets at home and abroad
have adopted the look-ahead optimization method (CAISO, 2019;
NYISO, 2020).

Compared with single-period optimization, look-ahead
optimization can more effectively improve the success rate of
solving the mathematical model by expanding the time range,
reduce inefficient scheduling by pre-regulating resources (Xie and
Ilic, 2009), avoid peak electricity prices due to insufficient power
supply capacity, and give the clearing price cross-period economic
significance (Ela and O’Malley, 2016).

However, there is still a problem of insufficient price incentives
in forward-looking optimization. In typical practice, look-ahead
optimization is based on short-term load forecasting to optimize
the scheduling of resources in future multi-periods, but only the
optimization results of the current period are settled (single
settlement mechanism) (Bakirtzis et al., 2014; CAISO, 2019;
NYISO, 2020). When the current outlook optimization is applied
to the real-time market rolling clearing scenario, the supporting
single settlement mechanism will regard the historical clearing

results as “sunk costs,” directly ignoring the components that
affect the current or future optimization results, and implicitly
“burying” the economic value of cross-time constraints. Even if
the day-ahead market has made a perfect load forecast, the forward
order settlement mechanism will still lead to the lack of market price
incentives, and the power generation companies cannot recover
costs through the market price, but choose to deviate from the
dispatching order (Wilson, 2002). Literature (Peng et al., 2013)
pointed out the motivation of market members to deviate from
scheduling in look-ahead optimization, but only gave qualitative
solutions.

The academic solutions can be divided into two categories: one is
to improve the mathematical optimization model, and introduce the
time series correlation quantity of historical real-time optimization
into the model (Schiro, 2017; Zhou et al., 2017). However, how to
select the appropriate time series correlation quantity has become
the problem faced by this method. Selecting the inappropriate
correlation quantity may cause new incentive problems. There is
no definite result of this research idea at present. The second is to
increase the number of settlement rounds, bridge the gap between
the clearing results before and after the settlement rounds, eliminate
the motivation of market users to speculate, reduce compensation
costs, and improve the incentive of market participants to follow the
schedule. This article adopts the second train of thought. Based on
this idea, the literature (Yao et al., 2020) proposed a real-time multi-
settlement mechanism based on look-ahead optimization. The
prices of all periods in the optimization cycle need to be settled.
This settlement method alleviates the problem of market incentives,
but will increase the complexity of settlement. Therefore, it is
necessary to redesign the look-ahead and optimized settlement
mechanism to alleviate the problem of insufficient settlement
price. The overviews of the literature survey can be seen in
Figure 1.

FIGURE 1
Overview of the survey.
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The fairness and rationality of the electricity spot market
settlement mechanism plays an important role in the sound
operation of the entire power system and the optimal allocation
of power market resources (Huang et al., 2019). Due to the
particularity of electricity commodities, electricity trading needs
to establish a centralized electricity spot market, and support the
corresponding deviation electricity settlement mechanism. At
present, most mature electricity spot markets adopt a double
settlement mechanism.

On the basis of the current double settlement mechanism in the
spot electricity market, this paper focuses on the analysis of the
factors that affect the prospective optimization incentive, and selects
a quantifiable priority standard for this purpose, and innovatively
designs a new real-time prospective optimization settlement
mechanism in the spot electricity market. This mechanism can
effectively improve the incentive of the settlement price, and will
not cause excessive settlement burden, It can better meet the
demand of real-time prospective optimization of power in the
new era.

2 Prior work

Unlike ordinary commodities, electric power commodities
have obvious particularity: 1) Physical electric power
commodities are almost conducted at the same time in the
four links of power generation, transmission, distribution and
utilization. The electricity market transactions need to be
consistent with the actual operation of the power system as
much as possible, and the execution of the electricity trading
contract needs to simulate the real-time balance scenario of the
power generation and consumption of the power system as much
as possible; 2) With the access of centralized and distributed
renewable energy to the grid, there will inevitably be prediction
errors on both sides of the power system’s power generation and
consumption, which will cause the actual power generation and
consumption curve to deviate from the market transaction curve,

which is inconsistent with the real-time balance of the power
system, and the market subject is required to bear the costs of
real-time power balance according to the transaction agreement;
3) There is a strong homogeneity of power commodities, and the
power commodities delivered by each market transaction cannot
be measured separately. It is necessary to formulate unified
measurement and settlement rules to deal with the deviation
between the actual electricity generated and the electricity traded
in the market, so as to realize the decoupling of the power
transaction contract and the actual electricity consumption at
the level of settlement time sequence, so that the two can be
settled separately (Xiao et al., 2021). Therefore, it is necessary to
establish a centralized electricity spot market and set up a
corresponding offset electricity settlement mechanism.

Most of the world’s centralized electricity spot markets use the
double settlement system to settle between the day-ahead market
and the real-time market. Some scholars also call it multi-settlement
systems. In the field of electric power, the double settlement
mechanism refers to the power transaction settlement
mechanism that divides the power transaction settlement into
pre-settlement and post-settlement according to the contract
behavior and default deviation behavior. Among them, prior
settlement refers to the prior settlement of the signed contract
according to the contract agreement before the physical delivery
of electric power to ensure the full implementation of the electric
power contract; After the physical delivery of electricity, the
settlement refers to the settlement according to the agreed
deviation price according to whether there is any deviation
between the behavior of the market subject and the agreement
and the extent of the deviation, and the negative incentive for
breach of contract is given economically. The double-settlement
mechanism in the spot electricity market means that the day-
ahead market is based on the day-ahead price to settle the bid-
winning electricity quantity in the day-ahead market, while the
real-time market is based on the real-time price to settle the
deviation between the real-time bid-winning electricity quantity
and the day-ahead bid-winning electricity quantity.

FIGURE 2
Single-interval settlement.
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The spot market of PJM and ERCOT in the United States
adopts the double settlement system to realize the settlement of
the day-ahead market and the real-time market. The real-time
price of PJM is calculated every 5 min, but the weighted average
price within 1 h of each node is taken as the settlement price of
the real-time market; The time granularity of ERCOT’s day-
ahead market clearing is 1 h, while that of real-time market is
5 min. The real-time market is settled according to the weighted
average price within 15 min, and the settlement price does not
include the network loss component.

The centralized power real-time market model can be divided
into single-period optimization model and look-ahead
optimization model according to the optimization cycle, and
the corresponding real-time settlement mechanism can be
divided into real-time single settlement and real-time multi-
settlement.

2.1 The myopic approach

This optimization model does not take into account the
future predicted power grid operation, and only optimizes the
current period in each round when the real-time market rolls out.
Each round of clearing only generates the market price and
clearing electricity quantity of the current period, and the
market will use the price and electricity quantity as the basis
for single period settlement.

Real-time single settlement mechanism is a real-time single
settlement mechanism connected with single-period optimization.
It is applicable to single-period optimization. The operation mode is
shown in Figure 2.

The mathematical model corresponding to single-period
optimization has a small solution scale, is easy to search for
optimization in a short time, and is easy to meet the calculation

FIGURE 3
Look-ahead single-interval settlement.

FIGURE 4
Look-ahead multi-interval settlement.
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speed requirements of the real-time market; In addition, real-
time single settlement is relatively simple and intuitive, easy for
market participants to understand, and the workload of
settlement is also less. Therefore, the single-period price
model has been adopted by many market operators in the
United States, such as ISO New England, MISO, PJM and
SPP. However, the single-period optimization model has
obvious defects in the economy and reliability of market
clearing. In terms of economy, compared with multi-period
optimization, if the current single period is successfully
cleared, because it only considers the load situation of the
current period for optimization, and ignores the economic
value of the cross-period constraints before and after, the
result is not necessarily the global optimal solution, but only
the sub-optimal solution, and there is still large optimization
space in general; In terms of reliability, if the clearing of the
current period fails, the market members will not be able to
actively respond to the regulation instructions because they
cannot obtain real-time market information, and the system
stability will be affected. The market operating agencies may
need to take measures outside the market to regulate resources.

2.2 The multi-period approach

The look-ahead optimization model takes into account the
forecast situation of the future power grid. When the real-time
market is rolling out, each round will carry out look-ahead
optimization for the current and future periods, and obtain the
market price and clearing electricity of all periods in the look-ahead
period.

2.2.1 Single-period settlement
Look-ahead single settlement mechanism is a real-time single

settlement mechanism connected with look-ahead optimization. It is
applicable to forward-looking optimization. See Figure 3 for its
operation mode.

Under normal circumstances, only the price and energy of the
current period have the basis for settlement; The market
information in the other look-ahead periods is only instructive,
which can provide the basis for market members to make future
decisions, and can also be used as the “backup” basis for the
settlement of subsequent clearing rounds. When the clearing fails
in the current period, the market cannot form the current settlement
scheme. The “standby” basis of the previous round of settlement
corresponding to the current period can be used to ensure the
reliability of settlement. Therefore, the power market operators in
New York (NYISO) and California (CAISO) have adopted the look-
ahead single settlement mechanism. However, the current look-
ahead optimization still has some defects, because the look-ahead
order settlement mechanism needs to introduce real-time look-
ahead optimization, and taking the clearing result as the basis for
settlement may lead to inefficient scheduling, insufficient system
compensation, incentive incompatibility and increased price
volatility.

2.2.2 Multi-period settlement
Look-ahead multi-settlement mechanism is also a real-time

multi-settlement mechanism connected with look-ahead
optimization. It is also applicable to forward-looking
optimization. See Figure 4 for its operation mode.

Similar to the nature of the look-ahead single settlement
mechanism, the look-ahead multiple settlement mechanism also
needs to carry out real-time rolling look-ahead optimization to
obtain the clearing information of all periods in the look-ahead
period. However, the look-ahead multi-settlement mechanism will
take the clearing information of the whole period as the settlement
basis, without distinguishing between the current period or the look-
ahead period.

Due to the increase of settlement frequency, look-ahead multi-
settlement can better adapt to the problem of increased real-time
volatility of the power system, promote the price response of flexible
resources, and to some extent alleviate the problems of insufficient
compensation and incentive incompatibility caused by forward-

FIGURE 5
New settlement mechanism.
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looking optimization. Compared with the forward single settlement
mechanism, forward multiple settlement relies more on the
reliability of market solution. Once the market clearing fails, it
will lead to the loss of settlement data, which is not conducive to the
settlement work. In addition, look-ahead multi-settlement requires
several times of real-time clearing data, which greatly increases the
settlement complexity of the real-time market, and also puts forward
higher requirements for the storage space, accuracy and security of
market data. At present, the settlement mechanism is still only the
proposed scheme (Schiro, 2017), and has not been applied in the
actual market.

3 The proposed multi-interval
settlement system

Cross-period constraint is an important factor affecting the
incentive of forward-looking optimization settlement. Cross-
period constraints couple the optimization results of different
periods in the electricity spot market, and the clearing prices of
each period are intertwined. Therefore, look-ahead optimization
is not suitable for the optimization and pricing of resources by
simply cutting the period. However, due to the lack of incentives
for the price of the look-ahead single settlement mechanism,

power generation companies may not be able to recover costs
through the market price and choose to deviate from the
dispatching order. Therefore, when necessary, they should
appropriately and flexibly increase the number of settlement
rounds to make the settlement price highlight the real value of
the actual resources as much as possible, thus increasing the
incentive of the settlement price. In general, the longer the
optimization period is considered, the more the clearing
results can reflect the real economic signals, and the more
incentive. Therefore, in the case of perfect forecast or low
forecast deviation, compared with real-time look-ahead
optimization, the day-ahead market takes into account the 24-
h load situation, and the economic signals expressed by the
clearing result are more comprehensive and more incentive,
which can be regarded as the best clearing result. The problem
to be solved by the new settlement mechanism is to minimize the
deviation of clearing results between day-ahead and real-time
settlement rounds, and improve the incentive of market
participants to follow the schedule.

The look-ahead optimization cycle is 3–5 h, and the day-ahead
optimization cycle is 24 h. Under the same load, the essential
difference between the two is the optimization cycle. Therefore, it
is necessary to analyze the influencing factors closely related to the
look-ahead cycle. The constraint of ramp rate has a cross-time

TABLE 1 Technical parameters and cost quotation.

unit Minimum output/MW Maximum output/MW Ramping rate/MW Cost quotation/$

1 0 800 80 10

2 0 500 75 50

3 0 500 200 100

FIGURE 6
Load parameters.
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nature, and its shadow price reflects the economic value of the cross-
time component, which has a great relationship with the look-ahead
cycle.

3.1 Settlement design

When the real-time market adopts the forward optimization
with a forward period of T, T electricity prices will be calculated for
each period. The forward single settlement only selects the electricity
prices of the current period as the basis for settlement, while the
forward multiple settlement will include all electricity prices in the
settlement system. The former is too mechanical and lacks
motivation; The latter is too complex and lacks flexibility.
Therefore, it is necessary to choose a balance between them,
which can not only increase the incentive of settlement, but also
limit the settlement complexity to a reasonable range.

For this reason, this paper designs a new mechanism of two
settlements in the real-time market, and adds another settlement
process on the basis of prospective single settlement, in order to

increase the incentive of settlement without excessively increasing
the complexity of settlement. In connection with the day-ahead
market settlement, real-time one-time settlement can form the
original double settlement mechanism with the day-ahead
settlement combination. This content is the same as the existing
double settlement mechanism, which will not be repeated in this
article.

Real-time secondary settlement is based on the current target
period’s settlement electricity price and clearing electricity quantity,
and the deviation electricity quantity between secondary settlement
and primary settlement is settled according to the target period’s
settlement electricity price. The new settlement mechanism design
can be seen in Figure 5.

3.2 Settlement priority

It is known that when the real-time market adopts the
forward optimization with a forward period of T, T
electricity prices will be calculated in each time period, and

FIGURE 7
Settlement priority.

TABLE 2 The selection result of first-settlement in the first 18 intervals.

Interval Selection period of first real-
time settlement

Interval Selection period of first real-
time settlement

Interval Selection period of first real-
time settlement

1 1–4 7 4–7 13 10–13

2 2–5 8 5–8 14 11–14

3 3–6 9 6–9 15 15–18

4 3–6 10 7–10 16 16–19

5 3–6 11 8–11 17 17–20

6 3–6 12 9–12 18 17–20
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the calculated electricity prices need to be prioritized.
Therefore, it is necessary to explore the economic value of
the cross-time components in the look-ahead optimization of
electricity prices. See Eq. 1 for the mathematical model of real-
time prospective optimization.

min∑
i

∑
t

ci pi,t( )
βt: ∑

i

pi,t � ∑
j

dj,t

ξ i,t
max: pi,t ≤pi

max

ξ i,t
min: pi,t ≥pi

min

σupi,t : pi,t − pi,t−1 ≤Δpi

σdowni,t : pi,t−1 − pi,t ≤Δpi

μl
max: pc

l,t ≤p
max ,c
l

μl
min: pc

l,t ≥pmin ,c
l

(1)

Where: ci(·) is the operation cost function of generator i; pi,t is
the active output of generator set i in time period t; dj,t is the load of
load j period t; pi

min and pi
max are the minimum and maximum

output limits of unit i;Δpi is the ramping constraint for unit i in each
period. pc

l,t, p
min ,c
l and pmax ,c

l are the power flow power, power lower
limit and power upper limit of line l respectively; βt is the shadow
price of the reference node; ξi,t

max and ξi,t
min is the shadow price

constrained by the upper limit and lower limit of unit power
respectively; σupi,t and σdowni,t the shadow price of the unit ramping
constraint and the landslide constraint respectively; μl

max and μl
min

the shadow price constrained by the upper power limit and lower
power limit of line l.

By constructing the Lagrange function and according to the
Karush-Kuhn-Tucker (KKT) condition, it can be concluded that:

zL

zpi,t
� zci pi,t( )

zpi,t
+ βt + ξ i,t

max − ξ i,t
min( ) + σupi,t − σupi,t+1( )+

σdowni,t+1 − σdowni,t( ) +∑
l

μl
max − μl

min( ) zpc
l,t

zpi,t
� 0

(2)

Where: L is the Lagrange function of optimization
problem Eq. 1.

According to the definition of locational marginal price, spot
market electricity price has two expressions:

λn,t � −βt +∑
l

μl
max − μl

min( ) zpc
l,t

zdj,t

� zci pi,t( )
zpi,t

+ ξ i,t
max − ξi,t

min( )
+ σupi,t − σupi,t+1( ) + σdowni,t+1 − σdowni,t( )

(3)

Where: λn,t is spot market electricity price.
Eq. 3 explains the connotation of spot market electricity price

from the perspective of system and generator respectively (Shi et al.,
2019). It can be seen from Formula 3 that the economic value of the
cross-time component in the electricity price is mainly reflected in
the Lagrangianmultiplier constrained by the ramp rate, which is also
a key factor affecting the incentive of look-ahead optimization (Hua
et al., 2019; Zhao et al., 2020). There is a significant price deviation
from the day-ahead optimization model using the traditional
forward optimization rolling clearing electricity price, because it
cannot reflect the value of cross-time constraints. All clearing results
in history are regarded as “sunk costs” without distinction, which
will make the unit have the impulse to deviate from scheduling
(Schiro et al., 2016).

Among them, the willingness of the unit to deviate from the
dispatching can be measured by the opportunity cost (LOC)
compensation cost. The LOC compensation cost of units in the
real-time market is defined as the difference between the maximum
revenue of unit self-dispatch under the determined market clearing
price and the actual revenue of units following the dispatching order.
The calculation formula is shown in Formula 4:

RLOC � max∑
t

∑
i

λi,t − ci,t( )pi,t − λi,t − ci,t( )pi,t
*( ) (4)

FIGURE 8
Settlement price.
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Where: RRT
i,t is the total opportunity cost of the unit; pi,t is the

output of unit self-dispatch; pi,t
* is the output of the unit following the

dispatching instructions; λi,t is the market electricity price.
At the real-time one-time settlement meeting, the settlement

electricity price with the highest priority of prospective
optimization and the clearing electricity quantity will be
selected as the basis for settlement. Among them, the
determination of settlement priority needs to select
quantifiable criteria. The standard needs to reflect the
deviation of clearing results between the day-ahead and real-
time settlement rounds, and highlight the incentive of following
the schedule. There are two types of quantifiable criteria that
meet the requirements, namely, the Lagrange multiplier that
reflects the economic value of cross-time components, or the
LOC compensation that reflects the incentive to follow the
scheduling.

Because the calculation of LOC compensation cost is relatively
complex, it does not meet the time requirement of real-time rolling
calculation. The Lagrange multiplier of the ramping constraint is the
companion variable of the real-time prospective optimization result,

which can be directly extracted, greatly simplifying the calculation
process of settlement priority. Therefore, this paper selects the
Lagrangian multiplier with ramping constraints as the key factor
to quantify the deviation between the real-time prospective
optimization results and the day-ahead optimization results, in
order to maximize the incentive of cross-cycle prospective
optimization. In this paper, LOC compensation cost of real-time
one-time settlement price is taken as one of the incentive evaluation
indicators.

3.3 Settlement process

1) Calculation of settlement priority. The look-ahead period has a
periodicity, and the factors affected by the optimization period in
the optimization model are mainly cross-time components.
According to Formula 3, the cross-time component in the
electricity price is mainly the ramping constraint, and the
formula is expressed as (σupi,t − σupi,t+1) + (σdowni,t+1 − σdowni,t ). It is
necessary to extract the cross-time component value of a

FIGURE 9
Proposed multi-interval settlement system.

TABLE 3 The incentive of first-settlement price.

Item New settlement mechanism Current settlement mechanism

Average value of electricity price deviation rate/% 41.8 45.3

Change amplitude/% −7.8 0

Opportunity cost compensation fee/$ 25,750 36,650

Change amplitude/% −29.7 0

Calculation complexity/s 5.82 5.43

Change amplitude/% +7.2 0
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single time period, that is, the cross-time components of each
unit are superimposed, as shown in Formula 5. Because the
deviation of day-ahead load forecasting is low and the number of
time periods considered in day-ahead optimization is more
comprehensive, the Lagrange multiplier with cross-time
constraints can be taken from the day-ahead clearing results.

σsumt � ∑
i

σupi,t − σupi,t+1( ) + σdowni,t+1 − σdowni,t( )∣∣∣∣∣ ∣∣∣∣∣ (5)

Where: σsumt is the cross-time component value of interval t in
the day-ahead clearing result.

Summarize the cross-time component values of all time periods in
the look-ahead optimization cycle to form a qualitative settlement
priority. The formula is shown in Formula 6. By summing the
Lagrange multipliers with cross-time constraints in the T cycle, the
economic value of the cross-time components in the T cycle can be
comprehensively obtained. The larger the sum, the more real the
economic value can be reflected by selecting this cycle. Taking this
as the basis for settlement can better reduce the deviation from the day-
ahead settlement, more truly reflect the scarce value of the system’s
cross-era resources, and improve the incentive of the settlement price.

σsum
t,t+TL

� ∑t+TL

t

σsumt (6)

Where: TL is the number of intervals extended by the forward
looking optimization. The forward looking period described above is
T=(TL+1); σsumt,t+TL

is the settlement priority of the optimized round
when the corresponding current interval is t.

To make a settlement selection for time period t, it is necessary
to compare the settlement priority of each optimization cycle
including time period t. Select the clearing result of the
optimized round with the highest priority as the basis for real-
time one-time settlement.

σsettlet � max σsumt−TL,t
, σsum

t−TL+1,t+1, ..., σ
sum
t,t+TL

( ) (7)

Assuming that the result of Formula 7 is σsettlet � σsumt−TL,t
, the

electricity price and electricity quantity of the optimized round with
the optimization period from interval (t-TL) to interval t are selected
as the clearing basis.

2) Day-ahead settlement. The day-ahead settlement is consistent
with the current market model, and the day-ahead electricity
price and the day-ahead clearing electricity quantity are used for
settlement. The formula can be seen in Formula 8.

RDA
i,t � λDAi,t p

DA
i,t (8)

Where: RDA
i,t is the day-ahead settlement fund of unit i in time

period t; λDAi,t and pDA
i,t are the day-ahead settlement electricity price

and settlement electricity quantity of the corresponding period t of
unit i.

3) Real-time settlement. Real-time settlement adopts the mode of
deviation power settlement. The real-time first settlement will
select the settlement electricity price with the highest priority of
prospective optimization and the settled electricity as the
settlement basis. Real-time secondary settlement is based on

the settlement electricity price and clearing electricity quantity of
the current target period. The deviation electricity quantity
between secondary settlement and primary settlement is
settled according to the settlement electricity price of the
target period. The formula can be seen in Formula 9.

RRT
i,t � λfsti,t pf st

i,t − pDA
i,t( ) + λseci,t psec

i,t − pf st
i,t( ) (9)

Where: RRT
i,t is the real-time settlement fund of unit i in interval t;

λf sti,t and pf st
i,t are the real-time first settlement electricity price and

settlement electricity quantity of the corresponding interval t of unit
i; λseci,t and psec

i,t are the real-time secondary settlement electricity price
and settlement electricity quantity of unit i corresponding to time
period t.

4 Numerical experiments

4.1 Case data

The calculation example uses IEEE 9- node-3-units system to
demonstrate the incentive of the new mechanism of prospective
optimization settlement. The example sets 48 time periods, and the
period of real-time prospective optimization is 4. See Table 1 for the
technical parameters and cost quotation of the unit and Figure 6 for
the load parameters. It can be seen from the price characteristics that
unit 1 has the lowest cost and the largest capacity, and is suitable for
serving as the base load unit. Unit 3 has the highest climbing speed
and is suitable for being a flexible unit. In period 3, period 20, period
27 and period 44, the electricity price drops sharply, which proves
that the economic effect of cross-period constraints in the model is
more obvious and can better verify the incentive of the new
settlement mechanism in this paper.

4.2 Case analysis

The settlement priority is shown in Figure 7. See Table 1 for the
selection results of partial time periods for real-time one-time
settlement. When the settlement priority of all optimization
rounds is completely consistent, the earliest optimization round
is generally selected as the basis for a settlement.

According to Figure 7; Table 2, the time period with high
settlement limit is easier to be selected as the optimal time
period for first real-time settlement.

The situation of real-time one-time settlement electricity price is
shown in Figure 8. It can be seen that compared with the secondary
settlement electricity price (the real-time settlement electricity price
of the original mode), the one-time settlement electricity price is
closer to the day-ahead electricity price.

According to Table 2, the shadow price of cross-time
constraints corresponding to optimization periods 3–6 and
17–20 is higher, and the settlement priority is also higher.
Corresponding to the change rule of the settlement electricity
price in Figure 8, periods 3–6 and 17–20 are periods of violent
fluctuations in electricity price. The system needs more flexible
resources for cross-time scheduling, and the flexible resources
have cross-time economic value in this situation.
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Assuming zero error in real-time load forecasting, that is, there
is no deviation between day-ahead load and real-time load, it can be
seen from Table 3 that the electricity price selected for one-time
settlement can better connect the results of day-ahead market, and
the deviation is relatively low, and the average deviation rate of
electricity price is reduced by 7.8%. In addition, through calculation,
the opportunity cost (LOC) compensation cost of the real-time one-
time settlement electricity price is reduced by about 30% compared
with the original look-ahead settlement and only increased 7.2% of
the calculation burden. If the updated research (Changshuo et al.,
2022; Liping et al., 2022; Ning et al., 2022) methods are applied, the
computational burden can be further reduced.

It should be noted that the biggest difference between the new
settlement mechanism and the original settlement mechanism is to
add real-time primary settlement. The real-time secondary
settlement in the new settlement mechanism is the real-time
settlement in the original settlement mechanism. The example
deeply analyzes the most direct difference, that is, the incentive
of one-time settlement electricity price, which can eliminate
unnecessary interference, and is more conducive to directly and
objectively highlight the differences between different mechanisms,
reflecting the incentive effect of the new mechanism.

The calculation example shows that the new mechanism of look-
ahead optimization settlement designed in this paper and the
introduction of real-time one-time settlement electricity price can
effectively reduce the deviation rate of real-time market electricity
price, and can significantly reduce the opportunity cost
compensation costs of power generation companies, and greatly
improve the incentive of market members to follow the dispatching
instructions. Figure 9 summarizes the effect of the calculation example.

5 Conclusion

Prospective optimization plays an important role in adapting to
the development needs of renewable energy and ensuring the good
operation of the electricity spot market. However, the current look-
ahead optimization model has the problem of insufficient electricity
price incentives, which brings challenges to market construction.
For this reason, this paper introduces the settlement priority. By
appropriately and flexibly increasing the settlement rounds, it will
not cause excessive settlement burden, but also enable the settlement
price to highlight the real value of actual resources as much as
possible, effectively improve the incentive of the settlement price,
better adapt to the demand of real-time prospective optimization of
the new era, and provide reference for the construction of Chinese
electricity spot market. (Peng and Chatterjee, 2013).

In view of the above conclusions, the following conclusions are
drawn:

1. Increase the incentive of real-time optimization. Under the current
look-ahead optimization model, the value of cross-time constraints
is only reflected in the day-ahead market clearing results, but not in
the real-timemarket rolling optimization. Therefore, the price factor
of cross-time constraints in the spot market can be introduced into
the objective function of the mathematical optimization model, so
that the price of real-time optimization covers the value of cross-time
constraints and increases the incentive of real-time optimization.

2. Select an appropriate look-ahead settlement period. The current
look-ahead optimization model always has differences between the
day-ahead and real-time settlement due to the forecast deviation, and
the selection of different look-ahead settlement periods will affect this
deviation. Therefore, on the premise of not reducing the real-time
incentive, select the most efficient look-ahead settlement cycle, try to
reduce the settlement difference between the day-ahead market and
the real-time market, and ensure the stability of the market.

3. Flexibly increase the number of settlement rounds and improve the
settlement mechanism. Under the current look-ahead settlement
mode, the settlement basis is relatively mechanical, and the market
entities may deliver at the settlement price with insufficient
incentive. Therefore, the incentive of settlement price can be
increased by flexibly increasing the number of settlement rounds
at the cost of increasing the amount of calculation, or the most
efficient settlement price can be selected by the priority of settlement
incentive, and the incentive of real-time optimization can be
increased at the cost of increasing the complexity of settlement
process, so as to improve the settlement mechanism.

4. Improve the calculation efficiency of settlement and increase the
adaptability of practical engineering applications. Under the current
forward-looking settlementmode, there is an obvious lack of incentive,
and increasing the number of settlement rounds is a relatively feasible
solution. Increasing the number of settlement rounds will inevitably
increase the computational burden, so applying the latest research
results to improve the computational efficiency of the actual settlement
operation is the future development direction.
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Wind power prediction based on
WT-BiGRU-attention-TCN model

Dianwei Chi1* and Chaozhi Yang2

1School of Artificial Intelligence, Yantai Institute of Technology, Yantai, China, 2College of Computer
Science and Technology, China University of Petroleum (East China), Qingdao, China

Accurate wind power prediction is crucial for the safe and stable operation of the
power grid. However, wind power generation has large random volatility and
intermittency, which increases the difficulty of prediction. In order to construct an
effective prediction model based on wind power generation power and achieve
stable grid dispatch after wind power is connected to the grid, a wind power
generation prediction model based on WT-BiGRU-Attention-TCN is proposed.
First, wavelet transform (WT) is used to reduce noises of the sample data. Then, the
temporal attention mechanism is incorporated into the bi-directional gated
recurrent unit (BiGRU) model to highlight the impact of key time steps on the
prediction results while fully extracting the temporal features of the context.
Finally, the model performance is enhanced by further extracting more high-level
temporal features through a temporal convolutional neural network (TCN). The
results show that our proposed model outperforms other baseline models,
achieving a root mean square error of 0.066 MW, a mean absolute percentage
error of 18.876%, and the coefficient of determination (R2) reaches 0.976. It
indicates that the noise-reduction WT technique can significantly improve the
model performance, and also shows that using the temporal attentionmechanism
and TCN can further improve the prediction accuracy.

KEYWORDS

power grid, wind power, wavelet transform, gated recurrent unit, attention mechanism,
temporal convolutional neural network, prediction

1 Introduction

Wind power is a form of clean and renewable energy. Wind power generation alleviates
environmental pollution and the dependence of power generation on traditional energies
(Han et al., 2019a; Ma et al., 2019a). At present, there are many large-capacity wind farms in
the world, which have accumulated a large amount of wind power operation data. Wind
power prediction data, as one of the functional data modules of wind power big data, can be
used to make wind power prediction. However, the instability of wind power generation
affects the performance of the power grid, so it is necessary to accurately predict the wind
power. Therefore, an effective model needs to be developed to accurately forecast the wind
power (Wang et al., 2018; Ma et al., 2019b). Non-etheless, accurate prediction of wind power
generation is hardly attainable because of the randomness and non-linearity of wind energy.
In this study, a new wind power prediction model is proposed to solve this problem, improve
the accuracy and generalization ability of the model, and thereby ensure safe and reliable
operation of the microgrid.

Recent works on wind power prediction principally employ statistical analysis
approaches or deep learning methods. Statistical analysis approaches include single-
model prediction and combined-model prediction. Typical single-model prediction
methods are support vector machine (SVM) (Dang et al., 2019), autoregressive moving
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average (ARMA), autoregressive integrated moving average
(ARIMA), autoregression model (Shao et al., 2015), fuzzy model
(Zhao and Guo, 2016), wavelet-based model (Liu et al., 2015a), and
artificial neural network (ANN) (Wu et al., 2018). Among them,
ARIMA is suitable for scenarios where the volume of training
samples is small. The ARMA is suitable for the occasions where
the wind power forecast is short and the fluctuation is large (Torres
et al., 2005; Li and Ye, 2010; Liu et al., 2015b; Haigesa et al., 2017;
Korprasertsak and Leephakpreeda, 2019; Lu et al., 2020; Sun et al.,
2020; Lu et al., 2021). Given the unsatisfactory prediction of single-
model methods, combined-model prediction, therefore, is proposed
as a solution to wind power prediction. Wang et al. (Wang et al.,
2021) put forward a wind power signal forecasting method based on
the improved empirical mode decomposition (EMD) and SVM,
which was proved to have high accuracy and strong stability of the
model in experiments. Zhao and Ding (Zhao and Ding, 2020)
proposed a wind power forecasting model termed MEEMD-
KELM and found that their model has good forecasting
performance. Huang et al. (Huang et al., 2020) optimized the
SVM model by the particle swarm optimization-genetic
algorithm (PSO-GA), and achieved good performance in
forecasting. However, statistical methods have limited ability in
extracting time-series features and cannot adapt well to the non-
linear and unstable characteristics of wind power. Deep learning
methods, especially recurrent neural networks (RNN) and their
variants, are increasingly used in wind power prediction. LSTM and
GRU, as RNN variants, can solve the long-term dependence
problem of RNN itself, and are suitable for applications such as
wind power forecasting and power grid dispatching (Liu and Zhang,
2022; Liu et al., 2022a; Niu et al., 2018; Liu et al., 2021; Yu et al., 2018;
Shahid et al., 2021; Han et al., 2019b; Duan et al., 2021; Ding et al.,
2019; Zn et al., 1016). Liu et al. (Liu and Zhang, 2022) proposed a
novel bilateral branch learning-based WPP modeling framework,
and through a comprehensive computational study, they verified
that their proposed framework achieves the state-of-the art
performance as it beats a large set of classical data-driven and
recent deep learning-based WPP methods considered in their
study. Liu et al. 2(2022a) proposed a novel LSTM-AODEN
network architecture combining a long short-term memory
(LSTM) network with an attention-assisted ordinary differential
equation network (AODEN), and showed by experiments the
superior ability of their proposed method in generating higher
resolution probabilistic wind power prediction results. Niu et al.
(2018) put forward a model that combines CNN and GRU, where
the CNN reduces the dimension of features, and the GRU captures
relations between data in the time sequence, and the model was
found to have a high accuracy in forecasting. Li and Li, 2021
proposed a short-term wind power forecasting model based on
deep learning and error correction, which uses the BiGRUmodel for
forecasting, the random forest algorithm for construction of the
error model, and continuously corrects the error; their model was
proved to be effective and applicable by experiments. Liu et al.
(2022b) proposed a hybrid deep learning model based on wavelet
transform, temporal convolutional neural network and LSTM, and
experiments proved that their model has good prediction
performance. Liao et al. (2022) proposed a short-term wind
power prediction model based on a two-stage attention
mechanism and an encoding-decoding LSTM model; in their

model, the two-stage attention mechanism can select key
information, where the first stage focuses on important feature
dimensions, and the second stage focuses on important time
steps in the time series; the model was proved to have good
prediction performance.

In summary, the single-model method has poor sensitivity to the
sample data, so it cannot achieve high accuracy in predicting wind
power which comes with large fluctuations. In contrast, the
combined-model method has better performance in this regard.
However, the combined-model method has poor capacity in
grasping the dependence of time series, and it cannot adapt well
to the characteristics of non-linearity and instability of wind power.
With the extensive use of deep neural networks (Dong et al., 2023;
Ning et al., 2023), deep learning methods, especially models such as
LSTM and GRU, can effectively grasp the non-linear relationship
between wind power, wind speed and other features while effectively
mining the time-dimensional features of the data and dealing with
complex time series. Its combination with techniques such as
dimensionality reduction, feature extraction, and attention
mechanism can improve the prediction effect of the models to
varied degrees.

Given analyses above, deep learning provides a better solution to
short-term wind power forecasting than other methods because
wind power is characterized by fluctuations and uncertainties. Some
studies (Han et al., 2019b; Liu et al., 2022a; Liu et al., 2022b; Liao
et al., 2022; Liu and Zhang, 2022) used LSTM as the basic prediction
model with complex model parameters and high expressiveness, but
did not show high operational efficiency. Although some others (Niu
et al., 2018; Li and Li, 2021) used GRU as the basic model, which
simplified the model parameters, but the time-series data features
were not sufficiently extracted, which affected the accuracy of
prediction. Therefore, to obtain better operational efficiency and
prediction results, this study integrates three aspects: data denoising
and smoothing, simplification of the base model parameters, and
adequate extraction of data features, which is innovative in
construction of prediction models. The wavelet transform is used
for data denoising, and suitable wavelet functions are selected for
different sample features to reduce the impact of abnormal data on
the accuracy of prediction. Meanwhile, the GRU model, which has a
simpler structure than the LSTMmodel, is chosen as the base model,
which is conducive to improving the operational efficiency, and the
GRU model can be applied to larger-scale wind power data
forecasting. Moreover, a bi-directional GRU is used for more
adequate extraction of timing features, while an attention
mechanism is introduced to enhance the weights of key time
steps in order to highlight the degree of influence of different
time-series nodes on wind power, and further extracts more
high-level temporal features by a temporal convolutional network
(TCN) layer. Based on the combination of several aspects, the
operational efficiency, stability, and accuracy of the model are
significantly improved. The model is expected to help control the
performance of wind turbines and provide statistical support for safe
operation of wind power stations (Yang and Zhou, 2019).

The remainder of the paper is organized as follows. First, Section
2 introduces the concepts and theories related to the WT-BiGRU-
Attention-TCN model, and then discusses the structure and
workflow of the model. Then, Section 3 elaborates on the
experiments we have made and the discussions, detailing the
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source of the data sample set and various descriptive statistical
metrics, data denoising and model evaluation; four models (LSTM,
GRU, WT-GRU,WT-BiGRU-Attention) are compared with our
model to illustrate the effectiveness of our model, and the
performance of each model is discussed through the
experimental results. Finally, in Section 4, conclusions are made
based on the experiment result.

2 Model construction

2.1 Data denoising based on wavelet
transform

There are noises in the sample data of wind power, which need
to be cleansed before model training.

In the denoising process, effective signals and noises are
separated. The wavelet transform (WT) technique, which can
achieve the separation based on the difference between signals
and noises in their time domain and frequency domain, provides
a good solution to data denoising. In the present work, the WT
method is employed to reduce the noises in the wind power sample
data while maintaining effective data (Li, 2007) to ensure the
complete time sequence and reliability of the sample data. WT
can decompose the time sequence, decomposing the original signals
into child signals, so that the time sequence and other details can be
observed. There are two types of WT methods: continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). The latter
can discretize the scale and time, keep the construction error at a low
level, and reduce the time cost and computing overheads. Therefore,
DWT is employed in our work to decompose the time sequences.

The specific steps to reduce noise by using wavelet transform
method are as follows.

(1) Selection of wavelet functions: proper wavelet functions are
selected as per the features of the samples to decompose the
signals. In the present work, three common discrete wavelets are
used: Daubechies wavelet (db), Coiflet wavelet (coif) and Symlet
wavelet (sym).

(2) Thresholding: one threshold is selected for each layer to perform
soft-thresholding of high-frequency coefficients to smoothen
the reconstructed signals. The soft threshold is to solve the local
jitter and wavelet domain mutation of the denoising results
brought by the unified threshold of the hard threshold function.
The significance of the threshold is not only for signal denoising,
but also for data compression to improve data transmission
efficiency.

(3) Wavelet reconstruction: the wavelet reconstruction of the signal
is calculated from the high frequency coefficients of each layer
and the low frequency coefficients of the last layer.

(4) Identification of the best wavelet function: two indicators, root
mean square error (RMSE) and signal-to-noise ratio (SNR), are
used to evaluate the noise reduction effect of each wavelet
transform function so as to determine the wavelet function
with the best noise reduction effect for each feature of the
sample.

2.2 Attention mechanism

Despite the good performance of GRU in processing long time
series, it does not discriminate the information of different time
steps of long time series, and hence it can possibly overlook
information in some key nodes of the time sequence that may
affect the forecasting result. Therefore, the time sequence-based
attention mechanism can highlight the impact of different nodes on
the wind power and hence improve the model’s performance.

The attentionmechanism in the time sequence is the summation
of weights of hidden-layer vectors output from the GRU network,
where the weight reflects the impact of each time node on the
forecast result. Figure 1 shows the attention mechanism, where there
are N time steps,H1, H2, . . . , HN represent the hidden state value of
each time step, and q is assumed to be the output of the last hidden
layer HN.

The similarity score ei between HN and the output of hidden
layer of each time step Hi is calculated:

ei � Dot Hi,HN]( ). (1)
The importance of each time series node to the prediction result

is different. Therefore, the state value of the hidden layer at the i-th
time step and the state value of the final N-th time step are used to
perform the dot product operation. A larger the result of the dot
product operation indicates a stronger association between the time
series node and the final predicted value.

Then, the Softmax function is employed for normalization to
calculate the focus probability bi of the input sequence at the i-th
time step:

FIGURE 1
Attention mechanism based on the time sequence.
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bi � ei/ ∑N

j�1ej( ). (2)

Last, the attention weight bi is multiplied by the corresponding
hidden state value to obtain the output vector O of the attention
layer:

C � ∑N

j�1bj pHj. (3)

The vector O is transferred to the fully-connected layer of the
model to reach the final forecasting result.

2.3 BiGRU model

2.3.1 GRU model
The recurrent neural network (RNN) can create connections,

i.e., short-term memories, between adjacent samples in a time
sequence. When the input sequence is long, however, the
problem of the vanishing gradient emerges, the long-distance
dependence relations cannot be learned.

As a variant of RNN, the long short-term memory (LSTM)
model improves the RNN by introducing selective memory and unit
gates. LSTM solves the problem of the vanishing gradient that
haunts RNNs and can learn long-term dependence relations in
the sample data. Non-etheless, the LSTM network has complex
structures and lots of parameters.

The GRU model is an improved variant of LSTM, with update
gates and reset gates. Compared with LSTM, the GRU has less
parameters and a more simplistic structure, which allows the
parameters to converge quicklier and reduces the risks of overfitting.

Figure 2 shows the GRU neuron structure model.
The update gate in the GRU is defined as follows:

zt � σ Wz p xt, ht−1[ ]( ), (4)
where xt is the input vector of the t-th time step; Wz is the weight
matrix of the update gate; and ht−1 is the output of the previous time

step. The gated signal of the update gate is within 0 and 1, and a value
closer to 1 indicates more past information being memorized.

The reset gate is defined as follows:

rt � σ Wr p xt, ht−1[ ]( ), (5)
whereWr is the reset weight matrix. The reset gate is used to control
the neglect of information in the previous time point. The obtained
information after resetting is ht−1′ :

ht−1′ � ht−1 ⊗ rt. (6)
Then, the current cell state h̃t is calculated. The current cell state

means selective memorization of the screened information and the
current input, where ⊗ means multiplying the corresponding
positions in two matrices or vectors, tanh is the activation
function, and W is the weight:

h̃t � tanh (W p xt, h′t−1[ ]. (7)
The current output is ht, and the vector will retain the current

cell information and transfer it to the next cell:

ht � 1 − zt( ) ⊗ ht−1 + zt ⊗h̃t. (8)
The final output of the current cell is:

yt � σ(W0 p ht), (9)
where W0 is the weight matrix.

2.3.2 BiGRU model
In a conventional GRU, information in the time sequence is

transferred in a forward direction, the information far away from the
current sequence suffers substantial attenuation, and the time-series
information in the context is not considered. In a BiGRUmodel, two
GRU running in opposite directions are trained (Lu and Duan,
2017). A BiGRU model combines two single-directional GRU, and
the model output is determined by these two GRU. If the output of
the forward GRU is ht

→
, and the output of the backward GRU is ht

←
,

then the output of the BiGRU is as follows:

ht � ht
→
⊕ht
←

(10)
Figure 3 shows the structure of a BiGRU model, in which

h1 → h2 → . . .→ hn{ } represents the hidden state sequence
produced by the forward GRU, whereas hn → . . . h2 →→ h1{ } is
the hidden state sequence generated by the backward GRU.

2.4 Temporal convolutional neural networks

Bai et al. (Bai et al., 2018) proposed the temporal convolutional
network (TCN) adding causal convolution and dilated convolution
and using residual connections between each network layer to
extract sequence features while avoiding gradient disappearance
or explosion. A temporal convolutional network is essentially a
deformation of one-dimensional convolution, which can be used for
prediction of both temporal and textual data, and can achieve better
results than recurrent neural networks for some tasks. Its layered
structure of TCN is shown in Figure 4.

FIGURE 2
GRU neuron structure model.
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In Figure 4, xt indicates the input temporal data, yt indicates the
predicted values, and d indicates the size of the voids for the dilated
convolution of each layer. The temporal convolutional network has two
new operations compared with the ordinary 1-D convolutional network.

2.4.1 Causal convolution
The causal convolution strictly requires that only the

information before the current moment to be predicted can be
used to predict the current value, i.e., the information of the current

moment is calculated based on x1. . . xt−1 and the current moment
input xt, which is calculated as follows.

P x( ) � ∏T

t�1p xt|x1, x2, ...xt−1( ). (11)

This ensures that information after the current moment is not
involved in the calculation, and the historical information is not
missed as in traditional CNN networks. Thus, the prediction of the
temporal data is improved.

FIGURE 3
Structure of a BiGRU model.

FIGURE 4
TCN network structure.
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2.4.2 Dilated convolution
Dilated convolution is also called null convolution. In order to

increase the perceptual field of convolution, it is necessary to
increase the number of layers or the size of a very large filter,
which is also a problem of causal convolution. Dilated convolution,
on the other hand, expands the field of perception by skipping some
of the inputs, which is equivalent to adding d zeros (d is the number
of holes) between the elements of the convolution kernel, disguisedly
expanding the size of the convolution kernel. The size of the
convolution kernel after adding the dilation convolution is:

fk d � d − l( ) p fk − l( ) + fk, (12)
where fk denotes the convolutional kernel size of the current
layer. Since it can be computed in parallel, the computational

efficiency of the model is lower than that of an ordinary
convolutional network.

In addition, in order to make the sensory field increase and learn
text features of larger lengths, the number of network layers is
increased by expanding the convolution. However, an excessive
increase in the number of network layers may incur the problem of
gradient disappearance, and to solve this problem, residual links are
introduced in the network structure.

2.5 WT-BiGRU-Attention-TCN model

Figure 5 shows the workflow of theWT-BiGRU-Attention-TCN
model proposed in the present work.

FIGURE 5
Workflow of our WT-BiGRU-Attention-TCN model.

Frontiers in Energy Research frontiersin.org06

Chi and Yang 10.3389/fenrg.2023.1156007

159

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1156007


The proposed model is applied to wind power forecasting. The
four methods (WT, BiGRU, Attention, TCN) in the model are used
to solve problems at different stages of prediction: the wavelet
transform is mainly used for data denoising at the data cleaning
stage, while the other three methods are related to temporal feature
extraction, including contextual feature extraction, feature weight
calculation, and higher-level feature capturing. The methods are
related by the data flow to form the framework of our model. The
specific working process of the model is described below. First, the
WT method is employed to denoise the dataset, and all sample
features are normalized. Second, the BiGRUmodel is used to extract
forward and backward features of the time-sequence data. Third, the
weight of output information at each historical time sequence node
is calculated by the time-sequence attention layer. Then, the hidden
state output of the current state after adjustment is calculated based
on the weight. Then, the TCN is used to obtain higher-level temporal
features through causal and dilation convolution. Finally, the hidden
state outputs by the TCN layer are input to the fully connected layer
to obtain the forecasting result. The hierarchical structure and
parameters of the model are shown in Table 1.

The input layer of the proposed model has a data dimension of
(8,3) for each batch, i.e., the time step is 8 and the number of sample
features is 3. The input data are combined by the GRU in both
forward and backward propagation directions of the bidirectional
layer, and the features learned by the two one-way GRU are stitched
together to generate the set of vectors as the input of the attention
layer. The attention layer calculates the generated weight vector for
each time step and obtains the output of the attention layer by

multiplying the weight vector with the output vector of the BiGRU
layer. The vector generated by the attention layer is input to the TCN
layer, and the field-of-perception size of the convolution is expanded
to extract higher-level features by setting multiple expansion and
causal convolution layers. The TCN output vector is subjected to the
flatten operation to obtain the vector C. The vector C is then passed
through the fully connected layer to obtain the value of the predicted
wind power.

3 Experiment and analysis

3.1 Sample data

The wind power data used here are from the Galicia Wind
Power Plant in northwestern Spain. A total of 52,123 pieces of valid
data (from 1 January 2016 to 31 December 2016) were collected,
with a sampling interval of 10 min. The features include
meteorological indicators like wind speed and wind direction.
Table 2 shows the specifics of the collected data, where WS
represents the wind speed, DIR represents the wind direction,
POWER represents the wind power, which is the target
forecasting feature (the same applies to other tables and figures
throughout this article).

As Table 2 shows, the sample data consists of three features. As
these features have different dimensions and are substantially
different from each other, normalization is required in the data
preprocessing stage. The coefficient of variation of the feature
“POWER” reaches 128.26%, which means large fluctuations of
the wind power with time.

3.2 Data preprocessing

Data preprocessing mainly includes normalization of sample
data and data denoising based on wavelet transform.

3.2.1 Data normalization
As the features of the data, including wind speed, wind direction

and power, have different dimensions and show considerable

TABLE 1 The hierarchical structure and parameter information of our proposed model.

Layer (type) Output shape Param Connected to

input_1 (InputLayer) [(None, 8, 3)] 0

bidirectional(Bidirectional) (None, 8, 128) 26,496 input_1[0][0]

Attention Layer permute (Permute) (None, 128, 8) 0 bidirectional[0][0]

dense (Dense) (None, 128, 8) 72 permute[0][0]

permute_1 (Permute) (None, 8, 128) 0 dense[0][0]

multiply (Multiply) (None, 8, 128) 0 bidirectional[0][0],permute_1[0][0]

tcn (TCN) (None, 8, 32) 35,232 multiply[0][0]

flatten (Flatten) (None, 256) 0 tcn[0][0]

dense_1 (Dense) (None, 1) 257 flatten[0][0]

TABLE 2 Descriptive indicators for sample data.

DIR (degree) WS (m/s) POWER (MW)

Mean 169.13 7.02 0.46

Maximum 360.00 31.88 17.23

Minimum 0.00 0.35 0.00

Standard deviation 99.87 3.12 0.59

Coefficient of variation 44.51% 59.05% 128.26%
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differences in their range of value, normalization was performed to
preclude the impact of the differences on the forecast result.
Specifically, the values of the features were adjusted to a given
range by min-max normalization, and the feature values were
converted into a range of [0, 1]. The equation for min-max
normalization is as follows:

x′
t �

xt − x min( )
x max − x min( ), (13)

where xmax and xmin represent the maximum and the minimum of
the same feature; xt represents the sample input data and x′

t

represents the data after normalization.

3.2.2 Data denoising
There are inevitably noises in the sample data of wind power

because of system error, random error, or human error, making it is
imperative to perform data denoising. In the present work, the
wavelet soft-thresholding method was employed. Specifically, with

TABLE 3 Denoising effects of the three feature variables by different wavelet functions.

Feature variables Evaluation indicators coif5 sym10 db8

WS SNR/db 27.085 27.304 25.126

RMSE 0.15 0.146 0.187

DIR SNR/db 24.852 23.573 23.344

RMSE 4.466 5.162 5.285

POWER SNR/db 27.215 29.263 26.976

RMSE 28.345 22.419 28.982

FIGURE 6
Comparison of the three feature variables before and after denoising.
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the valid information in the sample maintained, the wavelet
decomposition was performed on the sample dataset, and
thresholding was used to process the decomposed wavelet
coefficient; then, wavelet reconstruction of the signals was
performed to reduce the noise. The layers of the wavelet
decomposition were set at 3, the global soft-thresholding was
adopted, with a threshold set at 0.004. Three wavelet functions
were employed to denoise the sample data. Table 3 shows denoising
effects of the three feature variables by different wavelet functions.

By the two evaluation indicators—SNR and RMSE, the most
suitable denoising wavelet function for each feature variable was
identified. Specifically, the function that reaches a higher SNR and a
smaller RMSE would be selected. Finally, the appropriate wavelet
function was selected for each feature: the sym10 function for WS
and POWER, and the coif5 function for DIR.

Each feature variable was denoised by the selected wavelet
functions. Figure 6 compares the curves of the three features
before and after denoising.

As Figure 6 shows, the curves of denoised features have a high
fitting precision with the curves of the original signals, which
manifests the good smoothing effect of WT-based denoising. The
denoising worked particularly well on the two features, “wind speed”
and “power, which showed substantial fluctuations before denoising.
Denoising has improved the SNR and reduced the noises of these
two features, achieving a good smoothing effect on their curves,
which alleviated the impact of abnormal values on the forecasting
accuracy.

3.3 Model evaluation indicators

The sample data after data processing were transferred to the
attention-based BiGRU network for model training. The GRU
model was optimized based on the Adam algorithm (Kingma
and Ba, 2014) by using an adaptive learning rate to effectively
update the network weights. The Adam algorithm combines the
advantages of Adagrad in dealing with sparse gradients and
RMSProp in dealing with non-stationary targets, and calculates
different adaptive learning rates for different parameters.

To measure the deviation between the predicted value and the
actual value, we used root mean square error (RMSE) as the
performance evaluation index of wind power forecasting. The
root mean square error is the arithmetic square root of the mean
square error (MSE). The calculation formula of the RMSE is shown
in Eq. 14, where yi is the true value, and pi is the predicted value.

RMSE �
��������������
1
N

∑N

i�1 yi − pi( )2√
. (14)

Two evaluation indicators, the mean absolute percentage error
(MAPE) and R2, were employed to assess the model’s forecast
precision and fitting effect. MAPE indicates the absolute
percentage errors of forecasts, and the closer the MAPE is to 0,
the more accurate the model is. MAPE can be obtained by Eq. 15:

MAPE � 1
N

∑N

i�1
yi − ŷi

∣∣∣∣ ∣∣∣∣
yi

∣∣∣∣ ∣∣∣∣ , (15)

where ŷi is the predicted value, and yi is the actual value.

R2, which is known as the goodness of fit, indicates the
percentage of variations in the dependent variables caused by the
changes in the independent variable. It describes the fitting effect of
the model, and is within a range of [0, 1]. A larger R2 indicates a
better fitting effect. The coefficient of determination can be
calculated by Eq. 16:

R2 � 1 − ∑N
i�1 yi − ŷi( )2∑N
i�1 yi − �yi( )2, (16)

where ŷi is the predicted value, and yi is the actual value.

3.4 Comparative experiments and
discussions

Our proposed model was compared with LSTM, GRU, WT-
GRU, WT-BiGRU-Attention models to verify its superiority. The
settings of the experiment are as follows: the time step of GRU and
LSTM was set to 8 and the number of hidden units was 64. The
convolutional kernel size of the TCN network was 3, the number of
convolutional layers was 6, the list of expansion coefficients was (Liu
et al., 2015a; Liu et al., 2015b;Wang et al., 2018; Han et al., 2019a; Ma
et al., 2019a; Liu et al., 2022b), the number of filters used in the
convolutional layers was 32, and relu was used as the activation
function. The batch size of the prediction model was set to 100 and
the epoch time was set to 50. Eighty percent of the total sample data
was used as the training set and the remaining 20% was used as the
test set. Table 3 shows the experiment result.

As Table 4 shows, the difference between the GRU model and
the LSTM model in the two evaluation metrics of RMSE and R2 is
very small, which indicates that the prediction accuracy and the
fitting effect of both are comparable. The prediction time used for
the two models in the test set in the experiments is 1.37 s and 1.57 s,
respectively, which means that the GRU operation efficiency is
improved by 12.74% compared to LSTM. The reason is that the
GRU model is more simplified and has fewer parameters than the
LSTM model, and the model runs more efficiently. Therefore, the
GRU model is considered as the base model in the combined model
of our work, which can be applied to larger-scale data prediction.

The comparison between WT-GRU and the conventional GRU
model clearly shows that the model with a denoising module (WT-
GRU) achieves a higher precision and accuracy than the one
without. Specifically, WT-GRU reduces the RMSE by 0.019,
which means it improves the forecasting precision by 16.52%; it
achieves a significantly lower MAPE (29.49% lower than that

TABLE 4 Comparative experimental results of each model.

Models RMSE MAPE (%) R2 Time (s)

LSTM 0.111 41.299 0.938 1.57

GRU 0.115 40.374 0.935 1.37

WT-GRU 0.096 28.469 0.949 1.33

WT-BiGRU-Attention 0.069 20.838 0.973 2.38

WT-BiGRU-Attention-TCN 0.066 18.876 0.976 2.56
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achieved by the conventional GRU), which suggests the WT-GRU
model has substantially improved the forecasting accuracy. The
WT-GRU model has also increased the R2 from 0.935 to 0.949,
suggesting that it has improved the fitting effect by 1.5%. Figure 7
displays the fitting effect of the two models.

As Figure 7 shows, after denoising, the curve of predicted power
has a better fitting effect with the measured power curve, indicating
that denoising can significantly improve the model’s forecasting
performance. Experiments show that there is a certain amount of
noise data in the wind power generation data samples, which will
affect the effect of the prediction model. It is necessary to de-noise
the data through wavelet transform.

Compared with WT-GRU, the WT-BiGRU-Attention model
achieves an RMSE that is 0.027 lower, which means a 28.13%
increase in the precision of prediction. Moreover, it achieves an
MAPE that is 7.63% smaller and reaches an R2 of 0.973, which
means it has also improved the fitting effect. Although the WT-
BiGRU-Attention model takes 1.01 s more prediction time than the

GRUmodel on the full test set, its overall performance and efficiency
is better. Figure 8 shows the fitting effect of the curve of predicted
power achieved by WT-GRU and WT-BiGRU-Attention with the
curve of the measured power.

As shown in Figure 8, the WT-BiGRU-Attention achieves a
better fitting effect than the WT-GRU. And according to the
indicators in Table 4, we can find that the use of bi-directional
GRU combined with temporal attention can improve the
prediction accuracy of the traditional GRU model because bi-
directional GRU is able to extract the forward and backward
features of the sample data, and the attention mechanism
enables the model to capture the features of key nodes in the
time series and assign higher weights to these nodes, thus
improving the prediction accuracy and the fitting effect of the
model.

Figure 9 shows the fitting effect of forecasting power curves
achieved by WT-BiGRU-Attention and our model with the
measured power curve.

FIGURE 7
Fitting curves of true and predicted values of WT-GRU model and conventional GRU model.

FIGURE 8
Fitting curves of measured and predicted power by WT-GRU model and WT-BiGRU-Attention model.
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Figure 9 shows our model has further improved the fitting effect
of the WT-BiGRU-Attention model. According to Table 4, though
our model shares similar time for prediction to the WT-BiGRU-
Attention model, it has reduced the RMSE by 4.35% and the MAPE
by 9.42%, and improves the R2 from 0.973 to 0.976. These statistics
indicate that the TCN layer has further improved the accuracy of
prediction. The TCN can make fullest of causal convolution and
dilation convolution to obtain more higher-level temporal features,
thus improving the model’s performance. As Table 4 shows, our
model has the best performance overall.

4 Conclusion

Wind power is characterized by random fluctuations and is
susceptible to impacts from various factors. Based on these
characteristics, a new method termed WT-BiGRU-Attention-
TCN model is proposed in the present work for wind power
prediction. Experiments were made to compare its performance
with other models, and the following conclusions were reached.

(1) The GRUmodel shows little difference from the LSTMmodel in
terms of the fitting effect and forecasting precision, and the
prediction performance of LSTM is slightly higher. However,
they are considerably different in the model training and
forecasting efficiency: the GRU model reduces the running
time by 15.45%, suggesting that the GRU model is more
suitable to forecasting tasks with large quantities of data.
Thus, the GRU model is used as the fundamental model in
the combination of models in our proposed method.

(2) The model that incorporates the wavelet transform-based
denoising technique (WT-GRU) achieves higher forecasting
accuracy than the traditional GRU model. WT-GRU also
reaches a higher coefficient of determination (R2), indicating
that introduction of the denoising module can significantly
improve the model’s forecasting performance.

(3) The bidirectional GRU can extract both forward and backward
features in the time sequence, thus outperforming the

conventional GRU model. Moreover, by incorporating the
attention mechanism, the model can capture the information
of key nodes in the historical time steps and hence achieve
higher precision.

(4) The temporal convolutional network (TCN) is used to obtainmore
higher-level temporal features through causal and dilation
convolution. At the same time, its residual link structure is used
to avoid the problem of gradient disappearance that may be caused
by the excessive increase in the number of network layers. Thus, the
TCN network can further improve the accuracy of the model.

In conclusion, with all evaluation indicators considered, our
WT-BiGRU-Attention-TCNmodel performs best among all models
compared in the present work. Themodel provides a new solution to
high-precision forecasting of wind power generation.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

Conceptualization, DC; Methodology, DC; Software, DC;
Validation, DC; Investigation, DC; Writing—original draft
preparation, DC; Writing—review and editing, DC; Visualization,
CY; Supervision, DC. All authors have read and agreed to the
published version of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

FIGURE 9
Fitting curves of measured and predicted power by WT-BiGRU-Attention and our model.

Frontiers in Energy Research frontiersin.org11

Chi and Yang 10.3389/fenrg.2023.1156007

164

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1156007


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. https://arxiv.org/abs/
1803.01271, arXiv preprint arXiv: 1803. 01271.

Dang, D., Zhang, S., Ge, P., and Tian, X. (2019). Transformer fault diagnosis method
based on improved quantum particle swarm optimization support vector machine.
J. Electr. Power Sci. Technol. 34 (3), 6. CNKI:SUN:CSDL.0.2019-03-012.

Ding, M., Zhou, H., Xie, H., Wu, M., Nakanishi, Y., and Yokoyama, R. (2019). A gated
recurrent unit neural networks based wind speed error correction model for short-term
wind power forecasting. Neurocomputing 365 (Nov.6), 54–61. doi:10.1016/j.neucom.
2019.07.058

Dong, X., Ning, X., Xu, J., Yu, L., Li, W., and Zhang, L. (2023). PFAS contamination:
Pathway from communication to behavioral outcomes. IEEE Trans. Comput. Soc. Syst.,
1–13. doi:10.1080/10810730.2023.2193144

Duan, J., Wang, P., Ma, W., Tian, X., Liu, H., Cheng, Y., et al. (2021). Short-term wind
power forecasting using the hybrid model of improved variational mode decomposition
and correntropy long short -term memory neural network. Energy 214, 118980. doi:10.
1016/j.energy.2020.118980

Haigesa, R., Wanga, Y. D., Ghoshrayb, A., and Roskillya, A. P. (2017).
Forecasting electricity generation capacity in Malaysia: An auto regressive
integrated moving average approach. Energy Procedia 105, 3471–3478. doi:10.
1016/j.egypro.2017.03.795

Han, L., Jing, H., Zhang, R., and Gao, Z. (2019). Wind power forecast based on
improved long short term memory network. Energy 189, 116300. doi:10.1016/j.energy.
2019.116300

Han, Z., Jing, G., Zhang, Y., Bai, R., Guo, K., and Zhang, Y. (2019). A review of wind
power forecasting methods and new trends. Power Syst. Prot. Control 47 (24), 10. CNKI:
SUN:JDQW.0.2019-24-023.

Huang, X., Yu, H., Gong, X., and Liu, A. (2020). Wind power short-term prediction
based on pso-ga-svm. Electr. Eng. 2020 (6), 4. CNKI:SUN:DGJY.0.2020-06-014.

Kingma, D., and Ba, J. (2014). Adam: a method for stochastic optimization. Comput.
Sci. [Preprint]. doi:10.48550/arXiv.1412.6980

Korprasertsak, N., and Leephakpreeda, T. (2019). Robust short-term prediction
of wind power generation under uncertainty via statistical interpretation of
multiple forecasting models. Energy 180 (AUG.1), 387–397. doi:10.1016/j.
energy.2019.05.101

Li, D., and Li, Y. (2021). Ultra short term wind power prediction based on Deep
learning and error correction. J. Sol. Energy 42 (12), 200–205. doi:10.19912/j.0254-0096.
tynxb.2019-1464

Li, L. (2007). The generation, development and application of wavelet analysis. China
Water Transp. Theor. Ed. 5 (3), 96–98. CNKI:SUN:ZYUN.0.2007-03-044.

Li, L., and Ye, L. (2010). Short-term wind power prediction based on improved
persistence method. Trans. Chin. Soc. Agric. Eng. 26 (012), 182–187. doi:10.3969/j.issn.
1002-6819.2010.12.031

Liao, X., Wu, J., and Chen, C. (2022). Short-term wind power prediction model
combining attention mechanism and lstm. Comput. Eng. 9, 048. doi:10.19678/j.issn.
1000-3428.0062059

Liu, D., Wang, J., and Wang, H. (2015). Short-term wind speed forecasting based on
spectral clustering and optimised echo state networks. Renew. Energy 78, 599–608.
doi:10.1016/j.renene.2015.01.022

Liu, H., Tian, H. Q., and Li, Y. F. (2015). An emd-recursive arima method to predict
wind speed for railway strong wind warning system. J. Wind Eng. Industrial
Aerodynamics 141, 27–38. doi:10.1016/j.jweia.2015.02.004

Liu, H., and Zhang, Z. (2022). A bilateral branch learning paradigm for short term
wind power prediction with data of multiple sampling resolutions. J. Clean. Prod. 380
(1). 134977. doi:10.1016/j.jclepro.2022.134977

Liu, X., Mo, Y., Wu, Z., and Yan, K. (2022). Hybrid deep learning model for ultra -
short - term wind power prediction. J. Overseas Chin. Univ. Nat. Sci. Ed. 43 (5), 043.

Liu, X., Yang, L., and Zhang, Z. (2022). The attention-assisted ordinary differential
equation networks for short-term probabilistic wind power predictions. Appl. Energy
324, 119794. doi:10.1016/j.apenergy.2022.119794

Liu, X., Zhou, J., and Qian, H. (2021). Short-term wind power forecasting by stacked
recurrent neural networks with parametric sine activation function. Electr. Power Syst.
Res. 192 (4), 107011. doi:10.1016/j.epsr.2020.107011

Lu, P., Ye, L., Pei, M., He, B., Tang, Y., Zhai, B., et al. (2021). Optimization of GRACE
risk stratification by N-terminal pro-B-type natriuretic peptide combined with D-dimer
in patients with non-ST-elevation myocardial infarction. Proc. CSEE 41 (17), 13–19.
doi:10.1016/j.amjcard.2020.10.050

Lu, P., Ye, L., Zhong, W., Qu, Y., Zhai, B., Tang, Y., et al. (2020). A novel spatio-
temporal wind power forecasting framework based on multi-output support vector
machine and optimization strategy. J. Clean. Prod. 254, 119993. doi:10.1016/j.jclepro.
2020.119993

Lu, R., and Duan, Z. (2017). “Bidirectional GRU for sound event detection,” in
Detection and Classification of Acoustic Scenes and Events (DCASE), 1–3.

Ma, T., Wang, C., Peng, L., Guo, X., and Fu, Ming. (2019). Short term load forecasting
of power system including demand response and deep structure multitasking learning.
Electr. Meas. Instrum. 56 (16), 11. doi:10.19753/j.issn1001-1390.2019.016.009

Ma, W., Cheng, R., Shi, J., Hua, Dong., Sun, G., and Zhang, C. (2019). Affine interval
power flow calculation considering wind farm model. Guangdong Electr. Power 32 (11),
10. doi:10.3969/j.issn.1007-290X.2019.011.004

Ning, X., Tian, W., He, F., Bai, X., Sun, L., and Li, W. (2023). Hyper-sausage coverage
function neuron model and learning algorithm for image classification. Pattern
Recognit. 136, 109216. doi:10.1016/j.patcog.2022.109216

Niu, Z., Yu, Z., Li, B., and Tang, W. (2018). Short-term wind power prediction model
based on depth-gated circulation unit neural network. Electr. Power Autom. Equip. 38
(5), 7. doi:10.16081/j.issn.1006-6047.2018.05.005

Shahid, F., Zameer, A., and Muneeb, M. (2021). A novel genetic lstm model for wind
power forecast. Energy 1, 120069. doi:10.1016/j.energy.2021.120069

Shao, Z., Gao, F., Zhang, Q., and Yang, S. (2015). Multivariate statistical and
similarity measure based semiparametric modeling of the probability distribution:
A novel approach to the case study of mid-long term electricity consumption
forecasting in China. Appl. Energy 156 (OCT.15), 502–518. doi:10.1016/j.apenergy.
2015.07.037

Sun, Y., Li, Z., Yu, X., Li, B., and Yang, M. (2020). Research on ultra-short-term wind
power prediction considering source relevance. IEEE Access 8 (99), 147703–147710.
doi:10.1109/ACCESS.2020.3012306

Torres, J. L., Garcia, A., Blas, M. D., and Francisco, A. D. (2005). Forecast of hourly
average wind speed with arma models in navarre (Spain). Sol. Energy 79 (1), 65–77.
doi:10.1016/j.solener.2004.09.013

Wang, T., Gao, J., Wang, Y., Shi, Z., Liu, T., Yang, B., et al. (2021). Research on wind power
prediction based on improved empirical mode decomposition and support vector machine.
Electr. Meas. Instrum. 58 (6), 6. doi:10.19753/j.issn1001-1390.2021.06.007

Wang, Y., Wang, Y.,Wang, L., and Chang, Q. (2018). Optimization of short-term load
prediction model of neural network based on improved Drosophila algorithm. Electr.
Meas. Instrum. 55 (22), 7. doi:10.3969/j.issn.1001-1390.2018.22.003

Wu, J., Ding, M., and Zhang, J. (2018). Optimal allocation of wind farm energy storage
capacity based on cloud model and k-means clustering. Automation Electr. Power Syst.
42 (24), 7. doi:10.7500/AEPS20180725007

Yang, M., and Zhou, Y. (2019). Ultra-short-term prediction of wind power
accounting for wind farm states. Chin. J. Electr. Eng. 39 (5), 10. CNKI:SUN:
ZGDC.0.2019-05-001.

Yu, R., Gao, J., Yu, M., Lu, W., Xu, T., Zhao, M., et al. (2018). Lstm-efg for wind power
forecasting based on sequential correlation features. Future Gener. Comput. Syst. 93,
33–42. doi:10.1016/j.future.2018.09.054

Zhao, H., and Guo, S. (2016). An optimized grey model for annual power load
forecasting. Energy 107 (jul.15), 272–286. doi:10.1016/j.energy.2016.04.009

Zhao, R., and Ding, Y. (2020). Short-term wind power prediction based on meemd-
kelm. Electr. Meas. Instrum 57 (21), 7. doi:10.19753/j.issn1001-1390.2020.21.013

Zn, A., Zy, A., Wt, A., Qw, A., and Mrb, C. Wind power forecasting using attention-
based gated recurrent unit network. Energy 196. 117081. doi:10.1016/j.energy.2020.
117081

Frontiers in Energy Research frontiersin.org12

Chi and Yang 10.3389/fenrg.2023.1156007

165

https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1803.01271
https://doi.org/10.1016/j.neucom.2019.07.058
https://doi.org/10.1016/j.neucom.2019.07.058
https://doi.org/10.1080/10810730.2023.2193144
https://doi.org/10.1016/j.energy.2020.118980
https://doi.org/10.1016/j.energy.2020.118980
https://doi.org/10.1016/j.egypro.2017.03.795
https://doi.org/10.1016/j.egypro.2017.03.795
https://doi.org/10.1016/j.energy.2019.116300
https://doi.org/10.1016/j.energy.2019.116300
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.energy.2019.05.101
https://doi.org/10.1016/j.energy.2019.05.101
https://doi.org/10.19912/j.0254-0096.tynxb.2019-1464
https://doi.org/10.19912/j.0254-0096.tynxb.2019-1464
https://doi.org/10.3969/j.issn.1002-6819.2010.12.031
https://doi.org/10.3969/j.issn.1002-6819.2010.12.031
https://doi.org/10.19678/j.issn.1000-3428.0062059
https://doi.org/10.19678/j.issn.1000-3428.0062059
https://doi.org/10.1016/j.renene.2015.01.022
https://doi.org/10.1016/j.jweia.2015.02.004
https://doi.org/10.1016/j.jclepro.2022.134977
https://doi.org/10.1016/j.apenergy.2022.119794
https://doi.org/10.1016/j.epsr.2020.107011
https://doi.org/10.1016/j.amjcard.2020.10.050
https://doi.org/10.1016/j.jclepro.2020.119993
https://doi.org/10.1016/j.jclepro.2020.119993
https://doi.org/10.19753/j.issn1001-1390.2019.016.009
https://doi.org/10.3969/j.issn.1007-290X.2019.011.004
https://doi.org/10.1016/j.patcog.2022.109216
https://doi.org/10.16081/j.issn.1006-6047.2018.05.005
https://doi.org/10.1016/j.energy.2021.120069
https://doi.org/10.1016/j.apenergy.2015.07.037
https://doi.org/10.1016/j.apenergy.2015.07.037
https://doi.org/10.1109/ACCESS.2020.3012306
https://doi.org/10.1016/j.solener.2004.09.013
https://doi.org/10.19753/j.issn1001-1390.2021.06.007
https://doi.org/10.3969/j.issn.1001-1390.2018.22.003
https://doi.org/10.7500/AEPS20180725007
https://doi.org/10.1016/j.future.2018.09.054
https://doi.org/10.1016/j.energy.2016.04.009
https://doi.org/10.19753/j.issn1001-1390.2020.21.013
https://doi.org/10.1016/j.energy.2020.117081
https://doi.org/10.1016/j.energy.2020.117081
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1156007


Study on the characteristic of the
grounding fault on the cascaded
midpoint side of the hybrid
cascaded HVDC system
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The hybrid cascaded high-voltage direct current (HVDC) system combines the
system support capabilities of the modular multilevel converter (MMC) with the
capacity of the line-mutated converter’s (LCC’s) advantage of high-power
transmission. The HVDC system is among the key elements of a smart grid
where artificial intelligence is applied extensively. However, the characteristics
of a grounding fault on the cascaded midpoint side of a hybrid cascaded HVDC
system remain unclear. This study analyzes fault characteristics and the impact of
faults using analytical methods. First, the topology and basic control strategy are
presented. The fault response process is then analyzed by dividing systems into
the MMC and LCC parts at the inverter side. A separate theoretical analysis is also
conducted. In addition, the impacts of faults on HVDC and alternating current (AC)
networks are analyzed. Therefore, even after the HVDC system is disabled, the AC
network can supply fault currents using an antiparallel diode. The simulation
results show that the proposed analysis method is feasible, and the theoretical
analysis is correct. The proposed method can provide a theoretical basis for the
selection of equipment for HVDC systems and smart grid construction.

KEYWORDS

smart grid, artificial intelligence, hybrid cascaded HVDC system, cascadedmidpoint fault,
fault characteristics, Ac low voltage, fault response

1 Introduction

By examining and interpreting power grid data, artificial intelligence (AI) technology can
enhance the intelligent management of power grids, thus reducing energy consumption and
environmental pollution (Cai et al., 2022; Tang et al., 2022; Wu et al., 2023). The hybrid-
cascaded high-voltage direct current (HVDC) transmission technique can effectively reduce
power transmission losses, and a combination of the two can boost further the energy
utilization efficiency and intelligence of the power grid (Tang et al., 2021; Dong et al., 2023;
Liang et al., 2023). In China, the energy distribution is opposite with respect to the center,
with bounteous renewable energy sources in the west and developed economies and high-
energy demand in the east, and HVDC has numerous potential applications as an important
means of large-scale energy transfer. Using the Yangtze Delta area in eastern China as an
example, 12-circuit line-mutated converter-based HVDC (LCC-HVDC) landings are
located in this area (Zhang et al., 2007). With the commissioning of multiple new LCC-
HVDCs, the power grid strength in the Yangtze Delta area of China will be reduced further,
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thus leading to an increased risk of commutation failure in LCC-
HVDC and a gradual reduction in grid voltage stability, which in
turn limits the scale of LCC-HVDC development (Shao and Tang,
2017). Following the rapid development of modular multilevel
converter-based HVDC (MMC-HVDC) in recent years, the
requirements for the recipient grid strength are low, and they
have a certain fault ride-through capability; however, its rated
voltage and transmission power are not as good as LCC-HVDC,
and MMC-HVDC construction costs are higher compared with
LCC-HVDC, thus limiting its application scale (Zhu et al., 2021;
Saeedifard and Iravani, 2010; Swedesford et al., 2010). Therefore,
hybrid HVDC technology, which considers the scale of the AC
network as well as the system characteristics and combines the
respective benefits of LCC-HVDC and MMC-HVDC, has become a
novel technology used to solve the aforementioned problems and a
major research focus in the field of HVDC.

The hybrid cascaded HVDC system forms a hybrid transport
unit by the series–parallel connection of the LCC and MMCs. The
various series–parallel connections of LCCs and MMCs and the
location of the hybrid transport unit constitute different topologies
of hybrid cascaded HVDC systems, which can be adapted for
different applications (Zhao and Iravani, 1994; Torres-Olguin
et al., 2012; Haleem et al., 2018). An HVDC system (with an
LCC at the rectifier side) and multiple MMCs in parallel (with
the LCC in series topology at the inverter side, which has superior
DC fault ride-through capability), has been proposed, while the
MMCs at the inverter side can provide a certain voltage support
capability (Liu et al., 2018; Meng et al., 2021; Qahraman and Gole,
2005). The topology proposed above was used in the ±800 kV
Baihetan–Jiangsu HVDC project in China, and the hybrid
cascaded HVDC system based on this topology was also
evaluated in this study. Related scholars have studied hybrid
cascaded HVDC systems using this topology. A coordinated
control strategy based on the dynamic limiter, diodes and LCC-
MMC active orders is proposed was suggested to improve the AC
side voltage stability (Zhao and Tao, 2021). A supplementary
coupling mitigation control strategy was suggested to enhance
the stability of a hybrid cascaded HVDC system connected to a
weak grid (He et al., 2021). A suppression strategy based on fuzzy
clustering and an identificationmethod were proposed to repress the
DC overcurrent caused by LCC commutation failure at the inverter
side (Guo et al., 2021). When an alternating current (AC) short-line
fault occurs in the MMC of the hybrid cascaded HVDC system, the
imbalanced power between the AC and DC sides of the MMCs will
cause capacitor charging of the submodule, which may lead to the
blocking of the MMCs. To address the above problems, (Niu et al.,
2020), analyzed the mechanism of the MMC submodule’s
overvoltage caused by an AC fault and proposed a fault-ride-
through strategy based on the fast response of the DC current on
the rectifier side. In addition, (Kang et al., 2022), presented a novel
method to control the decrease of the adaptive DC voltage that can
fully absorb imbalanced power. In the Baihetan–Jiangsu HVDC
project in China, a controllable and adaptive energy absorption
device was used to absorb surplus power from the DC side to
increase the system transient stability (Liu et al., 2021). In addition,
considering the MMC overcurrent in DC fault conditions, (Yang
et al., 2019), proposed a recovery control strategy for the power
regulation of a fixed-active-power MMC. Related studies that have

been conducted for hybrid cascaded HVDC systems focused on the
solution of the operational characteristics and fault ride-through
problems when AC short-line faults occur.

Most previous studies on internal HVDC system faults were
conducted on MMC-HVDC: when a short-circuit fault occurs in its
DC line, the submodule capacitor discharge and other circumstances
will cause a rapid fault-surge current; thus, a reasonable solution for
the fault current is needed to provide a basis for the electric design of
submodule components in MMC-HVDC (Wang et al., 2011; Wang
et al., 2011). When a fault occurs in the DC line of a hybrid cascaded
HVDC system, the inverter-side LCC uses its back-blocking
characteristics to isolate the fault current fed from the inverter
side to the fault point, thus greatly reducing the impact on the
HVDC system (Li et al., 2022; Xu et al., 2022). The Comparison of
existing contributions and this paper is shown in Table 1. Related
studies that have been conducted for hybrid cascaded HVDC
systems focused on the solution of the operational characteristics
and fault ride-through problems when AC and DC line faults occur.

The topology of the hybrid cascaded HVDC system shows that the
high- and low-end connection line parts of the cascaded side include an
area with a negative outlet for the DC filter, a negative outlet for the
bypass switch of the high-voltage valve, and a positive outlet for the
parallel bus and bypass switch of the low-voltage valve. This area is
unique to hybrid cascaded HVDC system by its topology and does not
exist in LCC-HVDC andMMC-HVDC. Although the length of the line
in this area is shorter than that of the DC line, there are numerous
connection parts and the structure is more complex. The lines in this
area are mostly arranged in the valve hall, and a general fault occurs,
which is a permanent grounding fault. Therefore, it is necessary to carry
out a detailed theoretical analysis of fault in this area. Based on the fault
section and mode mentioned above, this study proposes a detailed
theoretical analysis of the fault responses of the cascaded-side MMC
and LCC, divides the fault current evolution process into two steps
before and after blocking, and proposes a mathematical calculation
method for the fault current. Using an advanced digital power system
simulator (ADPSS) as a base, an electromechanical–electromagnetic
transient hybrid simulation with a hybrid cascaded HVDC system
model was constructed (Tian et al., 2016), and the precision of the
theoretical calculation was confirmed based on simulation experiments.
Based on the simulation results, the dynamic characteristics of the
receiving-end system in fault conditions were analyzed to provide a
theoretical basis for equipment selection and power system planning of
the hybrid cascaded HVDC system. The conclusions of this study
provide important support for the construction of smart grids.

2 Hybrid cascaded HVDC system
topology and steady-state control
strategy

2.1 System topology

The hybrid cascaded HVDC system adopts a symmetrical wiring
form for the positive and negative poles with symmetrical positive and
negative structures and consistent parameters; the monopole topology
is shown in Figure 1. In Figure 1, Udr and Udi are the rectifier- and
inverter-side DC voltages,UdiL andUdiM are the high- and low-end DC
voltages of the high- and low-end voltages at the inverter side,
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respectively; and L0 is the smoothing reactor. The rectifier side is
composed of two groups of 12-pulse LCCs in series, and the
inverter side is composed of LCC and MMCs in series, where the
high-voltage valve comprises one group of 12-pulse LCC and the low-
voltage valve three parallel MMCs; these three parallel MMCs all adopt
half-bridge structures, and the inverter side LCC and each parallel
MMCs are associated with different buses of the equal AC network.

Meanwhile, to reduce the discharge current induced by a DC line
short-circuit defect and to reduce the system’s harmonic current, the
HVDC system adopts the symmetrical arrangement principle of the
pole and neutral lines and sets L0 on the rectifier and inverter sides,
respectively. Table 2 lists the primary parameters of the HVDC system.

2.2 System control strategy

The methods for both the positive and negative controls were
the same in the hybrid cascaded HVDC system. A voltage-
dependent current-order limiter (VDCOL), minimum trigger

angle control, and constant DC current control were configured
on the LCC at the rectifier side (Mao et al., 2021). Based on constant
DC voltage control, the LCC on the inverter side is configured with a
VDCOL, and it uses constant extinction angle and constant current
control as standby controls. The corresponding control structure
and switching principle are illustrated in Figure 2A. In Figure 2A,
UdiLref and UdiL are the reference and instruction values of the DC
voltage at the inverter side, respectively, Idcref and Idcf are the
reference and instruction values of the DC current of the HVDC
system, respectively, and γmin and γ are the reference and
instruction values of the extinction angle at the inverter side,
respectively.

The parallel MMCs on the inverter side use a DQ axis-based
DC vector control approach, which has two control dimensions:
one for active control, similar to controlling the active power or
DC voltage, and the other for reactive control, similar to
controlling the AC bus voltage or reactive power (Saeedifard
and Iravani, 2010; Debnath et al., 2014). To guarantee the
system’s voltage stability, one of the three parallel MMCs
which cooperates with the MMC at the inverter side is
selected to adopt constant DC voltage control mode, the other
MMCs adopt the control mode of constant active power, and
Figure 2B displays the equivalent control block diagram. After
determining the control strategies for the rectifier and inverter
sides of the hybrid cascaded HVDC system, the static I–V
characteristic curve can be obtained, as illustrated in Figure 3.
The characteristics of the rectifier side consist of 1, 2, and
3 segments; among these, segment 1 is the minimum trigger
angle control characteristic; usually, the minimum value of
trigger angle α is taken as 5°; segment 2 is the constant DC
current control characteristic, which is also the normal
operational characteristic; and segment 3 is the control
characteristic of the VDCOL because the low end of the
inverter side is the MMC converter, its DC voltage retention

FIGURE 1
Single-pole structure of the hybrid-cascaded high-voltage direct current (HVDC) system.

TABLE 1 Comparison of existing contributions.

Object AC fault DC line fault Cascaded side
fault

Guo et al. (2021) √

Zhao and Tao (2021) √

Kang et al. (2022) √

Yang et al. (2019) √

Xu et al. (2022) √

Li et al. (2021) √

This paper √
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characteristics are better, which limits the reduction of the
rectifier side voltage. The characteristics of the inverter side
are composed of four, five, six, and seven segments; among
these, four segments are constant extinction angle control
characteristics, with γ set to 15°; five segments are constant
DC voltage control characteristics, which are also normal
operating characteristics; and six segments are constant DC

current control characteristics. To ensure that the DC current
control on the inverter side is inoperative during steady-state
operation, its current setting value should be lower than
the rectifier-side control setting value. Segment 7 is the
control characteristic of the VDCOL. In normal conditions,
the HVDC system operates at the black point as shown in
Figure 3.

TABLE 2 Main parameters of the hybrid-cascaded high-voltage direct current (HVDC) system.

Object Parameters Values

HVDC system DC voltage 800 kV

DC Current 5 kA

DC power (bipolar) 8000 MW

Flat wave reactor 150 mH

Grounding pole line resistance 2.17 Ω

Grounding pole line inductance 68.5 mH

Line-mutated converter (LCC) converter transformer at rectifier side Variable ratio 525 kV/172.3 kV

Rated capacity 1218 MVA

Short circuit voltage percentage 23%

LCC converter transformer at the inverter side Variable ratio 510 kV/161.4 kV

Rated capacity 1141 MVA

Short circuit voltage percentage 18%

Modular multilevel converter (MMCs) at the inverter side Rated DC power 1000 MW

Number of sub-modules 200 + 24

Bridge Arm Inductors 50 mH

Sub-module capacitance 18 mF

MMCs converter transformer at the inverter side Variable ratio 510 kV/182.6 kV

Rated capacity 1125 MVA

Short circuit voltage percentage 15%

FIGURE 2
Control block diagram. (A) Line-mutated converter (LCC) at the inverter side; (B) modular multilevel converter (MMC) at the inverter side.
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3 Failure mechanism

The fault area in the fault conditions described above is
shown in Figure 1, and is mostly arranged in the valve hall;
therefore, the general occurrence tends to be a permanent ground
fault.

In this study, we built a hybrid simulation model containing a
hybrid cascaded HVDC system, including an actual control
protection program of the HVDC system. The fault current was
obtained, as illustrated in Figure 4, and was based on the model used
to simulate the fault in this area.

Among them, the actions that play a major role in the
transformation of the fault current evolution process include the
following.

• Occurrence of failure
• Approximately 10 ms after the failure occurs, MMCs at the
inverter side are blocked

• Approximately 40 ms after the failure occurs, the LCC at the
rectifier side is forced to undergo a phase shift

From the topology of the hybrid cascaded HVDC system, it is
known that after a permanent ground fault occurs in this area, the

fault currents originate from the LCC and each parallel MMCs on
the inverter side, and are defined as IdcL and IdcM, respectively.
When the system operates in the steady state, IdcL and IdcM are
equal. Owing to the manufacturing level, the insulated-gate
bipolar transistor (IGBT) and capacitor, which are important
components of the MMC submodule, have high costs and weak
overcurrent capabilities. Before the MMC is blocked, the IGBT
and capacitor have to withstand overcurrents at specific levels;
once the IGBT or capacitor are damaged by the overcurrent
problem, it will affect the equipment’s life and may endanger the
system’s ability to run securely and consistently (Ni et al., 2020).
Meanwhile, although the thyristor used in LCC has enhanced
overvoltage and overcurrent capabilities, the contact between the
HVDC system and the receiving-end system changes
significantly during the transient process after a failure occurs
(Aik and Andersson, 2018). A theoretical examination of the fault
current and system impact in this fault situation is necessary
because the power flow of the receiving-end system after a failure
differs significantly from that before the failure.

4 Fault current theory analysis of MMCs
side

Each parallel MMCs on the inverter side is in normal
operation, and there are 2N submodules in the upper and
lower bridge arms among which a total of N submodules are
in the bypass state, whereas N more submodules are in the input
state. It is essentially a time-varying circuit, but during the
transient process after a failure occurs, the DC voltage of the
MMCs does not increase suddenly; therefore, it can be assumed
that each phase’s input of the submodules will always have the
same number, that is, the equivalent capacitance of any phase is
constant. MMCs can be considered linear circuits during this
time and can be analyzed using the superposition theorem.

4.1 State before MMCs are blocked

During fault response analysis, the fault current is the sum of
three parallel MMC fault currents. The MMCs have the same
primary parameters on both sides and are connected to different
nodes in the same AC network. The voltage amplitude and phase
angle of each MMC are approximately the same. To facilitate the
calculations, we assumed that the voltage amplitudes and phase
angles of the three parallel MMCs were identical. Taking
MMC1 as an example to begin the analysis, the time-domain
model is shown in Figure 5.

The complicated frequency-domain model of MMC1, shown in
Figure 5, transforms the time-domain model into an arithmetic
circuit model, as shown in Figure 6A, where the impedances of the
grounding electrode line and smoothing reactor L0 were unified and
combined as Rg + jwLg. The excitation sources are shown in
Figure 6A were separated as follows.

• DC side excitation source
• AC side excitation source

FIGURE 3
Static I–V characteristic of HVDC system.

FIGURE 4
Fault current of HVDC system.

Frontiers in Energy Research frontiersin.org05

Ren et al. 10.3389/fenrg.2023.1187620

170

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1187620


The fault current on the MMC1 side is the outcome of the
synergistic work of the two types of excitation sources described
above. Therefore, the two types of excitation sources above were
decomposed, the response of each group of excitation sources
(acting separately) was calculated according to the principle of
the superposition theorem, and the total response of the MMC1

circuit was obtained by summing them.

4.1.1 Response of DC side excitation source
The excitation source for this part of the response circuit consists

of three parts: all-submodule capacitors, the excitation source
matching the initial value of Idc in the bridge arm reactor, and
the source of excitation for the starting value of the current in the
smoothing reactor. The DC-side excitation-source response circuit
is shown in Figure 6B.

FIGURE 5
Time domain model of MMC1.

FIGURE 6
(A) Complex frequency domain model of MMC1; (B) response circuit of DC excitation source.
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To solve this part of the excitation source response, the following
simplifications were made.

• In this part of the response, there is no excitation source in the
three-phase symmetric AC network. Therefore, the role of the
AC network can be disregarded when analyzing the DC line’s
current

• Each submodule can be considered to have the same
capacitance voltage Uc based on the principle of constant-
capacitance storage in each submodule. The equivalent
capacitance of each phase bridge arm Ceq is expressed as
follows,

1
2
CeqU

2
dim � 2Nc

1
2
C0U

2
c (1)

Additionally, considering that UdiM = NcUc, it is obtained that

Ceq � 2
Nc

C0 (2)

Based on the simplification principle above, the DC-side
excitation source circuit of MMC1 can be simplified as follows,

As the major part of the circuit is a parallel connection of nine
phase units and the lower end of the inverter side is linked in parallel
with three groups of MMCs, the circuit of this part may be
simplified, as shown in Figure 7B. By solving this simplified
circuit, the fault current of the MMCs subject to the response of
the excitation source in the complex frequency domain is obtained
as follows,

IdcM s( ) � s Lg + 2Larm/9( )Idc 0( ) + Udim

s2 Lg + 2Larm/9( ) + sRg +Nc/18C0

(3)

The fault current Idcm(t) is obtained by substituting the
specific parameters of the HVDC system and the system state
quantities into the IdcM(s) expression and performing the inverse
Laplace transform. In addition, because of the symmetry of each
phase unit, Idcm(t) is spread equally throughout the phase units,
and the current flowing in each bridge arm is Idcm(t)/9.

IdcM t( ) � − 1
sin θ1

idc 0( )e− t
τ1 sin ω1t − θ1( ) + Udc

R1
e−

t
τ1 sin ω1t( ) (4)

where τ1 is the time constant of the current decay, ω1 is the resonant
frequency, and θ1 is the initial phase angle. These parameters are
determined by the system parameters.

τ1 � 4Larm + 18Lg

9Rg
,ω1 �

����������������������
2N 2Larm + 9Lg( ) − 81C0R2

g

C0 4Larm + 18Lg( )2
√√

(5)

R1 �
����������������������
2N 2Larm + 9Lg( ) − 81C0R2

g

324C0

√
, θ1 � arctan τ1ω1( ) (6)

4.1.2 Response of AC side excitation source
The excitation source for this section of the response circuit

consisted of an AC network equivalent power supply, an excitation
source allied with the initial value of the inductor current, and an
excitation source allied with the initial value of the AC current in the
bridge arm reactor. The response circuit is shown in Figure 8A.

Because the equivalent power supply of the AC network and the
entire circuit configuration are three-phase symmetric, no current
enters the DC line from the AC side. The response circuit was
simplified according to this principle, as shown in Figure 8B.

Each bridge arm in each phase carries half of the current on the
AC side. When phase A of the upper bridge arm ofMMC1 is used for
analysis, the expression of the equivalent source of phase A is
assumed to be usa(t) = E sin (ω0 t). The upper bridge arm’s
response expression is,

ipa2 t( ) � 1
2
Im2 sin ω0t − φ2( ) + 1

2
isa 0( )e− t

τ2 (7)

Among them

Im2 � E�������������������
Rs

2 + ω2 Ls + Larm/2( )2√ ,φ2 � arctan
ω Ls + Larm/2( )

Rs
,

τ2 � Ls + Larm/2
Rs

(8)

In summary, the total response process of the MMCs before
blockage can be obtained. It is evident from the above study that the
fault current on the MMCs side is related only to the DC-side
excitation source response. The response process is described in (4),
(5), (6). From the calculation of ω1, it is evident that the fault current

FIGURE 7
Simplified circuit of the DC side excitation source. (A) MMC1; (B) three parallel MMCs.
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reaches a peak approximately 17 ms after a failure occurs. However,
the MMCs were prompted to block approximately 10 ms after
failure; therefore, the fault current before blocking increased
monotonically. The fault current calculated by (4) was 11.7 kA at
10 ms after failure occurred and matches the simulation results in
Figure 4.

4.2 State after MMCs are blocked

In a hybrid cascaded HVDC system, three parallel MMCs
transmit power to the DC side. Using the present direction of
Figure 5 as an illustration, there exists a DC bias with a value of
1/9 IdcM for each phase of the upper bridge arm current ipj and a DC
bias with a value of −1/9 IdcM for each phase of the lower bridge arm
current inj. Before the MMC is triggered to block, the fault current at
the MMCs and the bridge arm current of each phase mainly
originate from the DC-side excitation source response. The rate
of change of this current is extremely fast, which makes the IdcM
change from negative to positive within milliseconds, while the
reversal process of IdcM also delays the time for the fault current to
reach its peak to a certain extent. After the MMCs were blocked, the
flow path and pattern of the fault current changed. It is also an
important part of the complete response of the HVDC system after
the failure occurs. The following is an example of MMC1 for fault
current change characteristic analysis after blocking.

As shown from the topology, each submodule of MMC1 uses the
half-bridge topology. After the blocking command is issued, each
submodule is in a blocking state, and there are two operation modes
in this state due to the renewal of the antiparallel diodes D1 and D2 in
each submodule. In the first operation mode, D1 is on and current
passes through D1 to charge the capacitor. In the second mode of
operation, D2 is turned on, and the current passes through D2 to
bypass the capacitor.

Because the sum voltage of the capacitors on each bridge arm in
MMC1 is greater than the AC voltage amplitude, each submodule

operates as illustrated in Figure 9B. Before the bridge-arm current
reaches zero, the antiparallel diodes of the upper and lower bridge
arms operate in the conducting state, and the single-phase
conductivity of the antiparallel diodes is not considered.

FIGURE 8
Circuit of the AC excitation source. (A) Response circuit and (B) simplified circuit.

FIGURE 9
Operation mode of MMCs in the blocking state. (A) Charging and
(B) bypassing the capacitor.

FIGURE 10
Bridge arm current of MMC1.
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Compared with MMC1 before blocking, the DC-side excitation
source response changed into a persistent current circuit in the
bridge arm reactor. The remaining two excitation source circuits
remained unchanged, and the three excitation source responses were
superimposed to produce the bridge arm current. Figure 10.

After this part of the current decays to zero for the first time,
the antiparallel diode cannot operate. The upper and lower
bridge arm currents are switched from a two-way flow to a one-
way flow limited by the antiparallel diode; at this time, the three-
phase uncontrolled rectifier circuit begins its steady-state
operation phase.

In a three-phase uncontrolled rectifier circuit, the conduction
instant of the antiparallel diode on each phase bridge arm is the
intersection of the phase voltage of that phase with that of the
adjacent phase (i.e., the natural phase-change point). In the steady-
state operation phase after MMC1 is blocked, any phase bridge arm
midpoint voltage is greater than zero because of the MMC1 fault
ground at the high-tension side, and the phase on the bridge arm’s
antiparallel diode meets the conduction conditions; thus, the upper
bridge arm conducts. In addition, if the midway voltage of the bridge
arm of the phase changes from positive to negative, the antiparallel
diode will not immediately arc out owing to the current-continuing
bridge arm reactor but will continue to conduct for a while and then
turn off.

Define θarm as the angle of continuous conduction of each bridge
arm. Based on the above analysis, θarm > π; additionally, define the sum
of the inductance of each phase bridge arm in the uncontrolled rectifier
as Lsum. It is known from Figure 11 that Lsum = Larm + Ls. Owing to the
different ratios ofRg to Larm, the θarm values are different (Li et al., 2016);
this leads to different operating response characteristics. When Rg/
Lsum > 100, π ≤ θarm < 4π/3, and the operating response is alternating
between three and four bridge arm conduction. When Rg/Lsum ≤ 100,
θarm ≥ 4π/3, and the operating response is alternating between four and
five bridge arms conduction. According to the calculation of the
parameters of the HVDC system, Rg/Lsum is much less than 100;
therefore, the steady-state operating response characteristics of
MMC1 after blocking are based on alternate switch-on operations of
four and five bridge arms, and the angle of continuous conduction of
each bridge arm can be found as follows,

θarm � arcsin
3ω0Lsum����������������������������������

5.2ω0Lsum + 27.3Rg( )2 + 3ω0Lsum + 28.2Rg

√⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
− arctan

3ω0Lsum + 28.2Rg

5.2ω0Lsum + 27.3Rg
( ) + 5π

3
(9)

Utilizing the antiparallel diode D1’s conduction as the
starting point, the analytic expression for the current in one
power frequency period was analyzed. The steady-state circuit
after the MMC is blocked, as shown in the figure, and always
conducts and opens according to the conduction sequence D1-
D2-D3-D4-D5-D6-D1. Before D1 was set, D3, D4, D5 and D6 were
tested. According to the circuit analysis, this period satisfies the
following expression,

udc t( ) � usa − Lsum
dipa
dt

− usb + Lsum
dinb
dt

� Lsum
dipa
dt

+ Lsum
dina
dt

� usb − Lsum
dipb
dt

− usa + Lsum
dina
dt

� Lsum
dipb
dt

+ Lsum
dinb
dt

� usc − L0
dipc
dt

− usa + L0
dina
dt

� usc − L0
dipc
dt

− usb + L0
dinb
dt

(10)

Meanwhile, according to Kirchhoff’s current law, it is obtained
that

d ipa + ipb + ipc( )
dt

� −d ina + inb( )
dt

� didc
dt

� 0 (11)

Substitution of (11) into (10) yields,

Lsum
dipa
dt

� usb − usc

Lsum
dipb
dt

� usc − usa

Lsum
dipc
dt

� usa − usb

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

LLet the phase A equivalent source expression be usa(t) = E sin
(ω0 t). Then, when ω0 t = 0, it satisfies ipa = 0. By substituting this
initial condition, the phase-A upper bridge arm current under this
conduction condition can be obtained as follows,

ipa t( ) � E

ω0Lsum
− E

ω0Lsum
cos ω0t( ) (13)

Thereafter, the operating response of the bridge arm current
is defined by the alternative operation of the four- and five-bridge
arm conductions; thus, the above analysis method can be used to
solve all conduction conditions to obtain an analytical expression
for the current in one power frequency period as follows,

ipa t( ) �

− E

ω0Lsum
cos ω0t( ) + E

ω0Lsum
0 ≤ω0t≤ θ − 4π

3

−0.866E
ω0Lsum

cos ω0t − π

6
( ) + E

ω0Lsum
− E

2ω0Lsum
sin θ − π

2
( ) θ − 4π

3
≤ω0t≤ θ − π

− 1.732E
2ω0Lsum

sin ω0t( ) + E

ω0Lsum
+

�
7

√
E

2ω0Lsum
sin θ − 25π

18
( ) θ − π ≤ω0t≤

2π
3

− E

ω0Lsum
cos ω0t( ) − E

4ω0Lsum
+

�
7

√
E

2ω0Lsum
sin θ − 25π

18
( ) 2π

3
≤ω0t ≤ θ − 2π

3

−
�
3

√
E

2ω0Lsum
cos ω0t + π

6
( ) − E

4ω0Lsum
+ 1.803E
ω0Lsum

sin θ − 4.468( ) θ − 2π
3
≤ω0t≤

4π
3

− E

ω0Lsum
cos ω0t( ) − 3E

4ω0Lsum
+ 1.803E
ω0Lsum

sin θ − 4.468( ) 4π
3
≤ω0t≤ θ

0 θ ≤ω0t≤ 2π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

FIGURE 11
Response circuit after MMC1 is blocked.
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Based on the operating response characteristics of the different
stages after MMC1 is blocked and the conduction of each bridge
arm, the fault current of MMC1 can be determined as follows,

IdcMMC1 � 3.12E
ω0Lsum

sin θ − 4.64( ) (15)

In conclusion, it was possible to determine MMC1’s steady-state
operational response properties. The angle of continuous
conduction of each bridge arm was calculated to be equal to 280°

by (9), MMC1 fault current was calculated to be 7.87 kA using (15),
and the fault current IdcM provided by each parallel MMCs was
23.6 kA, which coincides with the simulation results in Figure 5.

5 Fault current theory analysis of LCC
side

From the topology of the HVDC system, the LCC fault current
IdcL is equal to Idc and is expressed as

RlineIdc + Lline
dIdc
dt

� Udr − Udi � ΔUd t( ) (16)

where Udr and Udi are the DC voltages within L0 on the rectifier and
inverter sides, and Rline and Lline are the DC line impedances,
respectively. The differential term in (16) is zero during the
steady-state operation; therefore, Idc is related only to the
difference between Udr and Udi. The differential term is not zero
after a failure occurs, and its solution is obtained as follows,

Idc � e−
t
τL ∫ ΔUd t( )

L
e

t
τLdt + C[ ] (17)

where τL = Ldc/Rdc. Expanding for Udi, we obtain

Udi � L0
dIdc
dt

+ UdiL + UdiM

� L0
dIdc
dt

+Ni 1.35
UsL

kL
cos β + 3

π
XsLIdc( ) + UdiM (18)

where Ni is the number of 6-pulse LCC converters in each pole, UsL

is the LCC bus line voltage at the inverter side, krL and XsL are the
LCC converter transformer ratio and leakage resistance at the
inverter side, respectively, and β is the advanced LCC trigger
angle of the inverter side.

After a failure occurs, the system’s triggers a blocking fault-pole
strategy. Meanwhile, the pole control system sends a blocking
command to each valve control system running the LCC after
receiving the pole-blocking command from the station or the
opposite station. During this process, the LCC on the rectifier
side is forced to shift the phase to accelerate the fault current
decay. Therefore, the LCC-side fault response is also discussed in
two phases: before and after the forced phase shift of the LCC on the
rectifier side.

5.1 State before forced phase shift

When the AC voltage at the inverter side is lowered, a
constant extinction angle control is utilized to lower the

possibility of commutation failure. Constant current control is
employed to keep the Idc flowing when the rectifier side
experiences a defect and to speed up power recovery after a
failure has occurred. During steady-state operation, UdiL and
UdiM were both 400 kV, Udi was approximately 800 kV, and γiL
was greater than 15°. The output signal of the constant extinction
angle control was negative, and the output signal of the constant
DC voltage control was zero; therefore, the constant extinction
angle control did not operate.

After the fault occurred, Udi decreased to ~400 kV. Eq. 17 shows
that a significant decrease in Udi after a failure leads to an increase in
Idc. From the commutation principle of the LCC, it is known that
there is a relationship between μiL, γiL, and βiL,

μiL � arccos cos γiL −
6XsLIdc

1.35πUsL/kL[ ] − γiL, γiL

� arccos
UdiL + 3XsLIdc/π

1.35UsL
[ ], βiL � γiL + μiL (19)

The increase in Idc causes μiL to increase and γiL to decrease,
thus resulting in a) the output <0 in the constant DC voltage
control side, b) an output signal of the constant extinction angle
control side <0, and c) the LCC at the inverter side moving to
constant extinction angle control. Simultaneously, when γiL <
γmin, the LCC on the inverter side induces a commutation failure.
The LCC extinction angle on the inverter side during a fault is
shown in Figure 12A.

Unlike general AC system faults at the inverter side, which cause
commutation failure induced by voltage dips at the commutation
bus, the same problem of commutation failure is induced at the
internal fault conditions of the HVDC system. However, the essence
is that the increase of Idc causes the increase of the μiL and the
decrease of t γiL, thus resulting in γiL values < γmin.

5.2 State after the forced phase shift

After receiving the pole blocking command, the LCC system
adopts the forced phase shift strategy to reduce Udr to a negative
value so that the HVDC system’s energy can be promptly
transferred back to the AC system. This helps IdcL decay to
zero quickly. During the initial stage, after the forced phase
shift of the LCC at the rectifier side, the trigger angle
increased to 120° instead of 165° to avoid commutation failure
induced by small phase-change angles after entering the inverted
state. When Idc was detected to be lower than 0.05 p. u., after a
time delay, the LCC triggered phase-shift locking.

6 Characterization of the AC network at
the receiving end

After failure occurs, it is clear from the above analysis that Udr

reduces to a negative value during the blocking process through a
forced phase-shift strategy, which helps IdcL decay to zero quickly,
thus ensuring that the LCCs on the rectifier and inverter sides are
reliably blocked and have no power interaction with the AC side
after blocking. Figure 13.
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On the inverter side, each parallel MMC uses a constant reactive
power regulation method, and the reactive power interaction
between the MMCs and the AC network is nearly zero before
failure occurs. After the MMCs are blocked, the submodule
capacitor no longer provides fault currents to the fault point.
However, the AC network can still provide fault currents, and
the converter leakage resistance and bridge arm reactance of the
MMC consume a significant amount of reactive power.

From the receiving-end grid VQ curve of the reactive power
supply and load, the load reactive power suddenly increases
significantly, and the load VQ curve shifts upward (Liu et al.,
2016). If the reactive power supply capacity is insufficient, the

voltage at the new intersection of the VQ curves of the reactive
power supply and the load decreases, thus forcing the reactive
power supplier to increase the output of Q and the load side to
decrease consumption. Thus, the receiving-end grid reaches a
new stable balance state at a low-voltage level, and the AC bus
voltage of each parallel MMC side is shown in Figure 14B.

Therefore, because of the slow opening and shutting times of the
AC switch, the MMC approximates a three-phase uncontrolled
rectifier, and its converter leakage resistance and bridge arm
reactance must consume a large amount of Q. If the reactive
power capacity is insufficient, the voltage at each node is
reduced. The simulation results show that if the responses of the

FIGURE 12
(A) LCC extinction angle at the inverter side; (B) LCC trigger angle at the rectifier side.

FIGURE 13
(A) Total power and (B) LCC power responses.

FIGURE 14
(A) Reactive power response of MMCs; (B) busbar voltage responses of MMCs.
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long-term dynamic components and parts are not considered, the
AC network does not meet the relevant long-term voltage stability
evaluation criteria.

7 Conclusion

This study used a hybrid cascaded HVDC system as the research
object and simulated a permanent ground fault in high- and low-end
connecting lines on the cascaded side. It then conducted a thorough
theoretical analysis of the fault responses of MMCs and LCCs as well as
the impact of the AC network. The relevant conclusions are as follows:

The fault current on the MMC1 side was the result of the
combined action of the aforementioned two types of excitation
sources. Therefore, the two types of excitation sources were
decomposed, the response of each group of excitation sources
acting separately was calculated according to the principle of the
superposition theorem, and the total response of the MMC1 circuit
was obtained by adding them together.

• Because of the reliable blocking of the MMCs and the reverse
process of Idcm, there was no need to consider the IGBT
overcurrent of each submodule before the MMCs were
blocked

• The LCC on the inverter side may lead to commutation failure
owing to the increase in Idc in the fault conditions described
above

• During the steady-state process, after theMMCs were blocked,
the HVDC system consumed a significant amount of reactive
power; this resulted in a reduction in the AC voltage at the
receiving grid. This does not satisfy the relevant long-term
voltage stability evaluation criteria.

From the calculation and simulation results, the theoretical
analysis presented above yielded results that were consistent with
the actual response, thus providing a theoretical basis and
calculation method for the design, testing, and performance
evaluation of HVDC systems. In addition, the HVDC system is a
significant part of smart grids in the broad range of applications of
AI and there is a close connection between the two. The theoretical
analysis presented above can also realize intelligent management
and control of power systems, improve the energy utilization
efficiency and stability of the power grid, and provide strong

support for energy transformation. In the future, further research
will be conducted in terms of reducing the overcurrent peak of the
bridge arm after the failure occurs.
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A smart grid is a new type of power system based on modern information
technology, which utilises advanced communication, computing and control
technologies and employs advanced sensors, measurement, communication
and control devices that can monitor the status and operation of various devices
in the power system in real-time and optimise the dispatch of the power
system through intelligent algorithms to achieve efficient operation of the power
system. However, due to its complexity and uncertainty, how to effectively
perform real-time prediction is an important challenge. This paper proposes
a smart grid real-time prediction model based on the attention mechanism
of convolutional neural network (CNN) combined with bi-directional long and
short-term memory BiLSTM.The model has stronger spatiotemporal feature
extraction capability, more accurate prediction capability and better adaptability
than ARMA and decision trees. The traditional prediction models ARMA and
decision tree can often only use simple statistical methods for prediction, which
cannot meet the requirements of high accuracy and efficiency of real-time
load prediction, so the CNN-BiLSTM model based on Bayesian optimisation
has the following advantages and is more suitable for smart grid real-time
load prediction compared with ARMA and decision tree. CNN is a hierarchical
neural network structure containing several layers such as a convolutional layer,
pooling layer and fully connected layer. The convolutional layer is mainly used
for extracting features from data such as images, the pooling layer is used for the
dimensionality reduction of features, and the fully connected layer is used for
classification and recognition. The core of CNN is the convolutional operation,
a locally weighted summation operation on the input data that can effectively
extract features from the data. In the convolution operation, different features
can be extracted by setting different convolution kernels to achieve feature
extraction and classification of data. BiLSTM can capture semantic dependencies
in both directions. The BiLSTM structure consists of two LSTM layers that
process the input sequence in the forward and backward directions to combine
the information in both directions to obtain more comprehensive contextual
information. BiLSTM can access both the front and back inputs at each time
step to obtain more accurate prediction results. It effectively prevents gradient
explosion and gradient disappearance while better capturing longer-distance
dependencies. The CNN-BiLSTM extracts features of the data and then optimises
them by Bayes. By collecting real-time data from the power system, including
power, load, weather and other factors, our model uses the features of CNN-
BiLSTM to deeply learn real-time load data from smart grids and extract key
features to achieve future load prediction. Meanwhile, the Bayesian optimisation
algorithm based on the model can optimise the model’s hyperparameters, thus
improving themodel’s prediction performance. Themodel can achieve accurate
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prediction of a real-time power system load, provide an important reference for
the dispatch and operation of the power system, and help optimise the operation
efficiency and energy utilisation efficiency of the power system.

KEYWORDS

CNN, BiLSTM, bayesian optimization, smart grid, load forecast

1 Introduction

Smart grid real-time load forecasting refers tomachine learning,
data mining, statistics, and other methods to forecast the power
load in the grid system in real time (Aravind et al., 2019). This
can help grid operators to better dispatch power resources and
improve the reliability and efficiency of the grid (Luo et al., 2022).
The main challenge of real-time electric load forecasting for smart
grids is the diversity and complexity of data. The load data in the
grid system involves multiple dimensions, such as time, location,
and load type, as well as various noises and anomalies. Therefore,
suitable data pre-processing and feature extraction methods are
needed to improve the accuracy and reliability of the prediction
(Liu et al., 2013).Therefore, our research is motivated by the fact
that the power system requires more accurate and real-time load
forecasting with the development of smart grids. Traditional load
forecasting methods often fail to meet these requirements, so a
more accurate and real-time load forecasting method needs to be
investigated. Deep learning models can handle large amounts of
data. They can automatically learn features and patterns from the
data, so they are widely used for load forecasting in power systems.
The hyperparametric algorithm based on Bayesian optimisation
can further improve the prediction performance of deep learning
models, so it has been introduced into power system load
forecasting. This study aims to explore an efficient and accurate
load forecastingmethod to support smart grids’ reliability, efficiency
and security. Smart grid real-time load forecasting can be applied
in the power market, power dispatch, and energy trading, and
it has a wide range of application prospects (Xiang et al., 2019).
Common methods used to predict real-time load in smart grids are
traditional time-series modeling, machine learning, and recurrent
neural network methods.

Traditional time seriesmodelingmethod: Traditional time series
modeling mainly includes ARMA and ARIMA, which are simple
models requiring only endogenous variables without the help of
other exogenous variables, but can only capture linear relationships
but not non-linear relationships in essence because they need stable
time series data or are stable after differencing (He and Ye, 2022).
Based on the characteristics of smart grid real-time load, it is difficult
for the traditional time series modeling method to make accurate
forecasts, and it is difficult to ensure the long time validity of the
model in the environment of the constantly changing real-time load
of the smart grid because the traditional time series forecasting
model is not adjusted once it is trained (Li et al., 2023).

Machine learning method: This model uses machine learning
algorithms, such as support vector machine (SVM) (Cabán et al.,
2022), Bayesian Optimization (BO) (Wu et al., 2022), logistic
regression, etc. Predict changes in financial time series data by
processing and testing data sets. The advantage of this model is that

it is easy to understand and fast enough to handle the interaction
of non-linear features (Estrella et al., 2019). Still, the disadvantage
is that the smart grid real-time load is affected by many different
factors, so the performance of machine learning methods is not
sufficient to meet people’s need (Chen B.-R. et al., 2022).

Recurrent neural network method: This model uses deep
learning algorithms such as recurrent gating units (GRU) (Li et al.,
2018), deep recurrent neural networks (RNN) (Papadaki et al.,
2022), generative adversarial networks (GAN) (Song et al., 2020),
etc., to learn from large amounts of data by automatically extracting
data. The advantages of this model are powerful learning ability and
the more significant the amount of data, the better the performance
and portability. However, the disadvantages are high hardware
requirements and poor portability, too dependent on data, and not
very interpretable.

Based on the advantages and disadvantages of the above
models, this paper proposes a prediction model combining an
attention-basedmechanismof convolutional neural network (CNN)
(Niu et al., 2022)and bi-directional-long short-term memory neural
network (BiLSTM) (Song et al., 2021). The output results are then
passed through the BiLSTM network, which can be more accurate
than the LSTM model. Finally, they are subjected to Bayesian
optimization to achieve adaptive optimization of smart grid real-
time load data by adjusting the parameter values in real time with
Bayes. Finally, the CNN-BiLSTM-BO model is composed. The main
holdings of this paper include Model design: 1. based on CNN-
BiLSTM structure, a deep learning model for power system load
forecasting is designed. The model can extract the spatial features
of load data using CNN and the time series features of load data
using BiLSTM to predict future loads accurately. 2. Hyperparameter
optimisation: Bayesian optimisation algorithm is used to optimise
the hyperparameters of the model to improve the prediction
performance of the model. The Bayesian optimisation algorithm
can find the optimal combination of hyperparameters quickly by
adaptively adjusting the parameter search space to improve the
generalisation ability and stability of the model. 3. Real-time load
forecasting: The model is applied to real-time load forecasting,
and the forecasting performance of the model is verified by actual
data. Real-time load prediction is an important part of smart grid
dispatching and operation. Accurately predicting load change trends
can improve the efficiency and security of the power systems. The
contribution points of this paper are as follows.

• The ability to handle non-linear relationships that cannot be
taken by traditional timing modeling and its applicability is
broader than that of conventional timing modeling.
• It is more capable of learning and interpretable than machine

learning models such as decision trees and support vector
machines.

Frontiers in Energy Research 02 frontiersin.org180

https://doi.org/10.3389/fenrg.2023.1193662
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2023.1193662

• Compared with deep learning models such as
FNN(Zhang et al., 2023), GAN, and GRU models, using
BiLSTM models instead of RNN models can process
sequence data more efficiently, preserve long-term data more
permanently, and addBayesian optimizationmodels to improve
its prediction accuracy further.

The rest of the paper presents recent related work in Section II.
Section III offers our proposed methods: overview, convolutional
neural network (CNN); bidirectional-long short-term memory
neural network (bidirectional-LSTM, BiLSTM); Bayesian
optimization; The fourth part presents the experimental part,
including practical details and comparative experiments. The fifth
part is the summary.

2 Related work

2.1 ARMA model

ARMA (Chen et al., 2022a) model is an important model for
studying time series, which is based on a mixture of autoregressive
model (AR) (Xu et al., 2020) and moving average model (MA
(Zhang et al., 2019)), and is often used in market research for
forecasting market size and long-term tracking studies. It differs
the non-stationary data by judging whether the time series data is
smooth or not, then judges the model suitable for the time series
as well as performs model sizing, and finally performs parameter
estimation to generate themodel and uses themodel for forecasting.

The advantage of ARMA model is that it can be applied to many
time series, and it can be used to evaluate the goodness of the model
in the diagnosis of the model, which is very useful for forecasting.
However, when the ARMA model is used to forecast the data, the
prediction error becomes larger and largerwith the extension of time
compared to the short-term prediction results.

2.2 Decision tree model

A decision Tree (Ning et al., 2020) is a machine learning model
for solving classification and prediction problems and belongs to a
supervised learning algorithm.The decision tree starts from the root
node, analyzes each feature of the training data, selects an optimal
solution, and then splits the training data set into subsets so that
the training data set has the best classification under the current
conditions and if it does, then constructs leaf nodes, and if it is still
not well classified, then continues to split it, and so on recursively
until all training data sets are correctly classified, or there are no
convenient features. After the above operation, the decision treemay
have a good classification ability for the training dataset. Still, it
may not have the same effect on the unknown dataset. To avoid the
overfitting phenomenon, the generated tree needs to be pruned to
simplify the tree and achieve better generalization ability.

Decision tree models are risk-based decision-making methods,
so in the context that decision trees are nowadays more mature,
they are also used in various fields such as artificial intelligence,
medical diagnosis, planning theory, cognitive science, engineering,
data mining, etc.

2.3 GRU model

GRU (Gate Recurrent Unit) is a Recurrent Neural Network
(RNN) type. Like LSTM (Long-Short Term Memory), GRU is
a variant of LSTM, which has a more straightforward network
structure than LSTM and is more effective than LSTM. In LSTM,
three gate functions are introduced: input gate, fo, getting gate, and
output gate. The GRU model has one less “gate” than the LSTM, but
the functions are comparable and more practical.

GRU is widely used in speech processing, natural language
processing, and other fields such as language modeling, machine
translation, and text generation because they are suitable for
processing sequential data (Ning et al., 2023).

3 Methodology

3.1 Overview of our network

The CNN-BiLSTM model based on Bayesian optimization
is proposed in this paper to predict smart grid real-time load
data, which can effectively prevent the problems of gradient
explosion and gradient disappearance. The model combines the
advantages of convolutional neural network (CNN) and bi-
directional long and short-term memory network (BiLSTM) and
uses a Bayesian optimisation algorithm to automatically tune the
hyperparameters to improve the prediction performance of the
model. We will briefly describe each model and its relationship;
CNN: CNN is a deep learning model commonly used in image
processing and computer vision. It can extract different levels of
feature representations from the original image through multi-
layer convolution and pooling operations, thus enabling task the
classification and recognition of images. In theCNN-BiLSTMmodel
based on Bayesian optimisation, CNN is mainly used to extract
the spatiotemporal features of the load data. BiLSTM: BiLSTM is
a deep learning model commonly used in sequence modelling and
natural language processing. It can capture long-term dependencies
in time-series data and achieve accurate prediction of future data by
combining forward and reverse LSTM units. In the CNN-BiLSTM
model based on Bayesian optimisation, the BiLSTM is mainly
used to model spatiotemporal features and achieve prediction
of real-time load. Bayesian optimization: Bayesian optimization
is an optimisation algorithm which describes the uncertainty of
the objective function by building a Gaussian process model and
updating the hyperparameters of the model according to Bayes’
theorem to achieve the optimisation of the objective function.
In the CNN-BiLSTM model based on Bayesian optimisation, the
Bayesian optimisation algorithm is mainly used to adjust the
model’s hyperparameters, including the learning rate and batch size,
improving the prediction performance and generalisation ability
of the model. Interaction relationship of the three: the CNN-
BiLSTM model based on Bayesian optimisation achieves efficient
and accurate modelling for real-time load forecasting of the smart
grids by combining the advantages of CNN and BiLSTM and
using Bayesian optimisation algorithm to tune the hyperparameters
automatically. CNN is mainly used to extract the spatiotemporal
features of load data. Bilstm is mainly used.The CNN is mainly used
to extract the spatiotemporal features of load data, the BiLSTM is
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FIGURE 1
Schematic diagram of real-time charge model of smart grid based on
CNN-BiLSTM under Bayesian optimization.

mainly used to model the spatiotemporal features and realise the
prediction of future load, and the Bayesian optimisation algorithm
is used to automatically adjust the hyperparameters of the model
to improve the accuracy and practicality of the prediction model.
The flow chart of the model is shown in Figure 1. First, the smart
grid real-time load data is input, and the data is preprocessed and
normalized in the data input layer. Then the dataset is put into
the CNN unit for feature extraction. To better extract the dataset’s
features, the convolutional layer with a one-dimensional structure
is chosen here to reduce the dataset’s dimensionality. The feature
sequence is finally output after pooling, sampling, merging, and
reorganizing by the fully connected layer. After that, the feature data
are entered into the BiLSTM layer for smart grid real-time load data
feature learning, and then Bayesian optimization is performed to
obtain the optimal parameters of themodel, improve the accuracy of
prediction, optimize the CNN-BiLSTM structure, and finally output
the prediction results.

The CNN-BiLSTM-BO model includes three parts: CNN
module, BiLSTM module, and Bayesian optimization. The three
parts complete the prediction of smart grid real-time load data
through their advantages, and the model’s overall structure is shown
in Figure 2.

3.2 CNN model

Convolutional Neural Network (CNN) is a deep feed-forward
neural network with local connectivity and weight sharing. As one
of the deep learning algorithms, it can capture the local features
and spatial structure of images, so CNN is widely used in image
classification, target detection, etc. It is one of the most commonly
used models at present (Zhibin et al., 2019). The primary role of
the convolution layer is feature extraction. The convolution layer
convolves the input image with convolution kernels, and multiple
convolution kernels can be convolved separately to extract more
features. The feature map obtained by convolution is then pooled in
the pooling layer, which can significantly reduce the amount of data
to discard useless information and consolidate operations without

reducing the most significant features. The CNN can be divided into
one-dimensional CNN(Cai et al., 2021) andmultidimensional CNN
according to the dimensionality. One-dimensional CNN has a more
vital feature extraction ability in time series data processing, so this
paper uses one-dimensional CNN to process smart grid real-time
load data. Its model structure diagram is shown in Figure 3.

Considering the complexity of financial time-series data, we
introduce a one-dimensional CNN based on its more robust feature
extraction capability so that it can improve the performance of
the overall prediction model. The structure of the one-dimensional
CNN is shown in Figure 3, where the data are put into the
convolution layer, where the convolution kernel ϕ acts on the input
data Xa ∈ Y

l×f at the ath time step to extract the feature matrixPa =
{Pa,1,Pa,2,…,Pa,l−1} ∈ Y

t×d l denotes the length of the time step; f
denotes the feature dimension; t denotes the length of the output
feature; and d denotes the dimension of the output feature, whose
size is set by the filter.

Assuming that the inputXa ∈ Y
B×lin× f in , and output isZa ∈

YB×lout× fout , then we can obtain the mathematical expression of the
1D convolution layer as follows

Z [i, j, :] = β [j] +
lin−1

∑
k=0

ϕ [j,k, :] ⋆X [i,k, :] (1)

In Eq. 1, the symbol ⋆ is the mutual correlation operation, B
is the size of a training data set, lin and lout are the numbers of
channels of input data and output data, respectively, fin and fout are
the lengths of input data and output data, andN represents the size of
the convolution kernel thought.ϕ ∈ Ylout×lin×N is the one-dimensional
convolution kernel of the layer, β ∈ Ylout is the bias layer for this layer.

3.3 BiLSTM model

The LSTM only inputs information from the forward sequence
into the neural network prediction results, and it is difficult to
perceive the backward data content when training the model, so
it is prone to problems such as gradient inflation or gradient
disappearance when dealing with connections betweenmore distant
node links, while the BiLSTM can better retain the information
provided by more distant nodes. The BiLSTM layer is a combination
of forward LSTM and backward LSTM. The BiLSTM model uses
sequential and inverse order calculations for each sentence to obtain
two sets of hidden layer representations. Then the final confidential
layer representation is obtained by vector stitching, which improves
the performance on more comprehensive time-series data. In the
BiLSTM structure, each LSTM cell has three gating structures,
forgetting gate, input gate, and output gate, as shown in Figure 4.

Compared with LSTM, which can only input the information of
forward sequence into the neural network for prediction, BiLSTM
contains a forward LSTM unit and a backward LSTM unit; each
LSTMunit is consistent with the structure of LSTM, and the forward
and backward units are independent of each other, and according to
the existing studies, BiLSTM is better than LSTM in the prediction
of time series data.

We can see that the computational process of the forward LSTM
structure in the BiLSTM network is similar to that of a single LSTM.
By combining the forward hidden layer state and the reverse hidden
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FIGURE 2
The overall detailed flow chart of the smart grid real-time charge model based on CNN-BiLSTM under Bayesian optimization.

FIGURE 3
Operation process of one-dimensional CNN model in real-time load forecasting of smart grid.

layer state, we can obtain the hidden layer state of the BiLSTM
network as shown in (2)

h⃗t = LSTM(ht−1,xt) ,

h⃗t = LSTM(ht+1,xt) ,

ht = αh⃗+ βh⃗t,

(2)

In (2), χt ,h⃗t, h⃗t are the input datas, the output of the forward LSTM
implicit layer and the output of the reverse LSTM implicit layer at

time t, respectively; α and β are constant coefficients, denoting the
weights of h⃗t and h⃗t.

3.4 Bayesian Optimization

Bayesian Optimization is a method that uses the information
from previously searched points to determine the next search
point for solving black-box optimization problems with low
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FIGURE 4
Calculation process of BiLSTM unit in real-time load forecasting
process of smart grid.

dimensionality. It is a model-based sequential optimization method
that can obtain a near-optimal solution to a model with little
evaluation cost (Chen Z. et al., 2022). Bayesian optimization is
commonly used in text classification, multi-category real-time
prediction, and sentiment discrimination. Meanwhile, Bayesian
optimization is alsomore widely used for sequential data prediction.
Its structure diagram is shown in Figure 5.

3.4.1 Bayesian optimization
The model under the optimal hyperparameter combination can

significantly improve the model’s prediction accuracy, so we need to
optimise the hyperparameters of the model. Bayesian optimization,
whose parameter optimisation function expression is shown in (3)

χ* ∈ argmaxx∈χ f (x) (3)

In (3), x is the value of the hyper value parameter to be optimized;
f(x) is the performance function.

Gaussian Process (Song et al., 2020).
The probabilistic agent model for the Bayesian optimization

process uses a Gaussian model, given a specific objective function
f, input space is x ∈ R.

Dataset D = {(x1,y1) , (x2,y2,)⋯(xn,yn)}, there are n samples,
where yi = f (xi).Then the Gaussian probability model can be
expressed as follows

f ∼ GP[μ (x) ,k(x,x′)] (4)

FIGURE 5
Flow chart of Bayesian module for optimizing CNN-BiLSTM
computing model.

μ (x) denotes the mean value function, and μ (x) = E[f(x)]. The
mean value function is usually set to 0. k(x,x′) denotes a covariance
function, for any variable x,x′ there is k(x,x′) = Cov[f(x),f (x′)].

3.4.2 Acquisition functions
The acquisition function used in this paper is GP-UCB(Gui-

xiang et al., 2018). The expression of the function is as follows

λ = argmax{μ (λ) + β1/2σ (λ)} (5)

This function finds the point that maximises the confidence
interval of the Gaussian process by taking a weighted sum of
the mean and covariance of the posterior distribution. Where
μ(λ) stands for the mean value,σ(λ) represents the covariance, β1/2

represents the weight value (Table 1).

4 Experiment

4.1 Datasets

Thispaper uses the data from ISO-NE, Elia, Singapore Electricity
Load, and NREL databases as raw data.

ISO-NE: ISO-NE is the name given to New England’s electricity
and energy sector, which manages the electricity system and market
operations in New England (Derbentsev et al., 2020). ISO-NE’s
primary responsibilities include its responsibility for producing,
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processing, and delivering electricity to end-users in the
process, retail and industrial sectors (Shen et al., 2017); ensuring
the safe, reliable, and economic operation of the electricity
system; and managing the electricity market; facilitating cross-
border electricity transactions and energy market ISO-NE’s
service area includes Connecticut, Maine, Massachusetts, New
Hampshire, Rhode Island, and Vermont. ISO-NE provides
a wide range of data, including load, cost, production, and
supply.

Elia: Elia is Belgium’s electricity high-voltage transmission
grid and is responsible for managing the country’s high-
voltage transmission network to ensure the security and
stability of Belgium’s electricity supply (Peng et al., 2022).
Celia’s main responsibilities include planning, building,
operating, and maintaining Belgium’s high-voltage transmission
grid and managing the transmission network’s market
operations and electricity trading. Elia is also responsible
for interconnecting with the transmission grids of other
European countries to facilitate cross-border electricity
trading. El aims to achieve a secure and reliable sustainable
energy supply and support Belgium’s economic and social
development.

NREL: NREL (National Renewable Energy Laboratory) is
a national United States. Department of Energy laboratory
dedicated to advancing the research and development of renewable
energy and energy efficiency technologies. NREL’s mission is to
promote the development and commercialization of renewable
energy technologies through innovation and scientific and
technological breakthroughs that support United States. energy
security and environmental sustainability (Zou et al., 2022b).
NREL’s research areas cover various renewable energy technologies
such as solar, wind, biomass, and geothermal energy, energy
storage, energy system integration, building energy efficiency, and
other related areas. NREL also collaborates with other research
institutions, industry, and government on several international
collaborative projects to advance the development of renewable
energy technologies worldwide. NREL has run Laboratory
facilities and technology platforms, including a solar photovoltaic
laboratory, wind energy laboratory, bioenergy laboratory, energy
system integration center, etc., provides important support and
guarantee for the research and development of renewable energy
technologies, and also provides a large amount of data for
analysis.

The electricity load in Singapore refers to the nationwide
demand for electricity in various sectors, including industrial,
commercial, and residential. As Singapore’s economy and
population continue to grow, the electricity load is also increasing
rapidly (Zou et al., 2022a). Singapore’s electricity load is mainly
supplied by oil-fired, natural gas, and imported electric city. To
meet future electricity demand and environmental requirements,
the Singapore government is actively promoting the development
of renewable energy and energy efficiency technologies to reduce
dependence on fossil fuels and promote sustainable energy
development.

Here we use four selected data sets as the original
data and put them into the model for prediction by
calculating their maximum and minimum values and standard
deviations (Table 2).

FIGURE 6
Comparison of different models for complex data inference time.

4.2 Experimental setup and details

To demonstrate the performance of our model, we designed
several experiments to validate it. First, we compared our model
with several other models in terms of inference time for complex
data, and to prevent experimental chance, we further demonstrated
the superiority of our model by comparing the training time of the
model with other models and the performance of different models
at different levels of complexity. We also designed experiments
on its AUC and number of parameters, and finally, we compared
the computation time and accuracy of the four data sets under
different models, and we can see that the computation rate, the
number of parameters required, and the experimental results of
the CNN-BiLSTM-BO model are significantly better than those of
othermodels.Therefore, ourmodel can better predict the smart grid
real-time load data.

4.3 Experimental results and analysis

In Figure 6, it is easy to see that in the performance for complex
data, the other three models are inferior to ours regarding inference
time for the same complex data. CEEMDAN and CNN-LSTM
perform almost the same for a large amount of complex data, but
inevitably, they both take longer inference time than our model for
the same amount of complex data, and our model has faster speed.

Figure 7 compares the training time of the different models
on the data. We compare the training time with the three models.
We can see that there is almost no difference in the time required
to train SVM and BP Network for a small amount of data with
a slightly medium and large amount of data, and in the case of a
medium amount of data, SVM almost catches up with our model.
The training time of our model is shorter than the other three
experimental models for both small and large amounts of data, so it
can significantly reduce the time consumed to train the model and
enable the model to make more contributions simultaneously.

In this set of experiments (Figure 8), we use three models to
compare the performance of different levels of difficulty data8. It
is evident from the experiments that the version of each model
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FIGURE 7
Comparison of data training time under different models.

FIGURE 8
Performance at different levels of model complexity.

FIGURE 9
The number of flops required for different models.

decreases as the complexity of the data increases. Still, our model
reduces the least, so our model can cope with data of various
difficulty levels.

In this set of experiments (Figure 9), we test the computational
flops of each model. The experimental results show that the

FIGURE 10
Comparison of AUC under different models with several groups of
data.

FIGURE 11
Number of parameters required for different models.

most significant computational rollover required is the ARIMA
model. The minor computational flops required is the BP Network,
followed by our experimental model. Although our model is not
the best-performing one in this group of experiments, our model
outperformsCNN-LSTM,which proves that the performance of our
model is substantially improved after Bayesian optimization, thus
providing solid experimental results to demonstrate the feasibility
of our model.

In this set of experiments (Figure 10), we selected several
groups of panel data. By comparing the AUC of our model when
computing with the AUC of the chosen locations of panel data when
computing with the GNN model, we can verify the performance of
the AUC of different models when calculating with other panels.
All experimental results of our model after several sets of data
comparisons show that the performance of the AUC of our model
when facing panel data is more robust than GNN.

This set of experiments (Figure 11) compares the size of the
number of parameters required by different models11. After a series
of experiments, we can find that, among the selected models, GNN
operation requires the most parameters, CEEMDAN operation
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FIGURE 12
Comparison of computing time of different models.

FIGURE 13
Comparison of the accuracy of different models on the dataset.

requires slightly fewer parameters than GNN, LSTM operation
requires significantly fewer parameters, and our model is lower
than LSTM. Our model also has a very brilliant performance
regarding the number of parameters necessary for the operation;
fewer parameters can reduce the burden of the model and related
work and make the model better at calculating the data.

This is the flow chart of the Algorithm 1 of the model; firstly,
the smart grid real-time load data is input, the data is pre-processed
and normalized in the data input layer, then the data set is put
into the one-dimensional CNN unit for feature extraction, the
data set is processed for dimensionality reduction, and the feature
sequence is finally output after pooling sampling and merging and
reorganization in the fully connected layer, then the feature data is
entered into the BiLSTM layer for smart grid real-time load feature
learning, and then Bayesian optimization is performed to get the
optimal parameters of the model to improve the accuracy of the
prediction, and the final output of the forecast is superior.

In this set of experiments (Figure 12), we trained our four
selected data sets in multiple models, and it is not difficult to find
that the results of the experiments on all four data sets show that
GNN takes the longest computing time, while our model has the
shortest computing time in the face of the remaining four models,
and the time required is even close to half of that of GNN. This set of
experiments powerfully demonstrates the superiority of our model’s
computing speed and significantly reduces the time required for our
work, but also provides experimental data to prove the feasibility of
choosing our model.

In the last group of experiments (Figure 13), we used four
models to conduct experiments on the four data sets we selected to
compare the accuracy of the experiments. From the experimental

Algorithm 1. Algorithmic representation of the training process in this paper.

TABLE 1 Formula parameter meaning table.

Parameter name The meaning represented by the parameter

⋆ The mutual correlation operation

B The size of a training data set

lin The numbers of channels of input data

lout The numbers of channels of output data

fin The lengths of input data

fout The lengths of output data

N The size of the convolution kernel thought

ϕ ∈ Ylout×lin×N The one-dimensional convolution kernel of the layer

β ∈ Ylout The bias layer for this layer

results, we can find that SEEMDAN, LSTM, and BPNetwork have
different performances in dealing with other data sets, i.e., the
accuracy of the three models selected in this group, except our
model, varies significantly in the face of different data. This is fatal
to the accuracy and precision of the experiments. If the models do
not have stable experimental stability in the face of other data, the
testing results are not convincing. Then our model, in the f of the
performance of the four data sets we have selected, accuracy does not
vary significantly and can be said to be the same, so it can guarantee
the accuracy of the experimental results, which canmake our testing
results have better accuracy and persuasive power.

Table 3 compares the accuracy, computation, and parameter size
of the models mentioned in the paper with our model. The table
shows that our model has significant advantages in these aspects.
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TABLE 2 Data sets from different databases.

Database Count Mean Max Min Standard deviation

ISO-NE Ayub et al. (2020) 2580 1781.42 2760.59 655.36 486.35

Elia Jia et al. (2020) 2466 21,135.44 31,371.25 13,127.29 3141.62

Singapore electricity 2535 3200.64 5628.43 1834.41 563.01

NREL Mohamed et al. (2020) 2632 1813.41 2804.92 731.52 501.43

TABLE 3 A comparison of different models.

Model Accuracy ↑ Flops(G) ↓ Parameters(M) ↓ AUC ↑

CEEMDAN Cao et al. (2019) 0.921 126.53 168.13 0.831

GNN Cheng et al. (2022) 0.880 175.67 159.99 0.835

SVM Khalid et al. (2019) 0.823 112.50 113.43 0.838

BP Network Qian and Gao (2017) 0.8432 87.34 127.15 0.841

ARIMA Siami-Namini and Namin (2018) 0.894 150.66 168.27 0.846

LSTM Yan and Ouyang (2018) 0.931 112.43 97.86 0.848

CNN-LSTM Livieris et al. (2020) 0.945 122.23 98.21 0.852

Albogamy et al. (2021) 0.885 121.36 98.73 0.862

Aslam et al. (2021) 0.895 102.33 98.61 0.878

Yao et al. (2021) 0.945 110.13 94.61 0.893

Ours 0.963 95.32 91.45 0.951

5 Conclusion and discussion

In this paper, a smart grid real-time load prediction model
based on Bayesian optimization of CNN-BiLSTM is proposed,
which effectively solves the problem of gradient disappearance and
gradient explosion while improving the accuracy and practicality
of the model, the more vital feature extraction ability of the one-
dimensional CNN, first, the smart grid real-time load data is first
input into the one-dimensional CNNnetwork, and after convolution
for feature extraction into the pooling Simplify the feature data.
Then the simplified feature data is input into the BiLSTM network;
BiLSTM is based on a kind of LSTM extension, which can better
retain the information provided by the nodes at a longer distance;
BiLSTM memory network has two directions of transmission layer
compared to the LSTM network can handle more data volume at
the same time. It has a more efficient exploration efficiency for
predicting smart grid real-time load.

Nevertheless, our model still has some shortcomings, as the
BiLSTM network is used instead of the LSTM network. Hence,
the operation speed is more complicated, which may impact the
operation rate, and the number of parameters required will increase
year-on-year because of the complexity of deep learning and the
degree of model combination.

Smart grid real-time load forecasting is an important technology
that has many functions (Aslam et al., 2020).The following are

the roles of conducting smart grid real-time load forecasting:
1. Optimize power system operation: Smart grid real-time load
forecasting can help power system managers to rationally deploy
power resources according to load demand to ensure stable and
reliable power system operation. 2. Improve the efficiency of the
power system: Through smart grid real-time load forecasting,
power system managers can better understand the demand of
power loads, thus optimizing the operation efficiency of the
power system and reducing energy waste and cost. 3. Promote
the application of renewable energy: Smart grid real-time load
forecasting can help power system managers more accurately
predict the production and supply of renewable energy, thus better
planning and managing the application of renewable energy and
promoting the development and utilization of renewable energy.
4. Improve the operation of energy markets: Smart grid real-
time load forecasting can provide energy market participants with
more accurate electricity load forecasts and market information,
facilitating the efficient process and development of energy
markets.

Therefore, smart grid real-time load forecasting is indispensable
for both power system managers and the whole grid system.
Our smart grid real-time load forecasting model can help power
system managers to forecast the demand of power load more
accurately for better planning and management of power system
operation.
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The integration of a high proportion of wind power has brought disorderly impacts
on the stability of the power system. Accurate wind power forecasting technology
is the foundation for achieving wind power dispatchability. To improve the stability
of the power system after the high proportion of wind power integration, this
paper proposes a steady-state deduction method for the power system based on
large-scale wind power cluster power forecasting. First, a wind power cluster
reorganization method based on an improved DBSCAN algorithm is designed to
fully use the spatial correlation of wind resources in small-scale wind power
groups. Second, to extract the temporal evolution characteristics of wind power
data, the traditional GRU network is improved based on the Huber loss function,
and a wind power cluster power prediction model based on the improved GRU
network is constructed to output ultra-short-term power prediction results for
each wind sub-cluster. Finally, the wind power integration stability index is defined
to evaluate the reliability of the prediction results and further realize the steady-
state deduction of the power system after wind power integration. Experimental
analysis is conducted on 18 wind power farms in a province of China, and the
simulation results show that the RMSE of the proposedmethod is only 0.0869 and
the probability of extreme error events is low, which has an important reference
value for the stability evaluation of large-scale wind power cluster integration.

KEYWORDS

large-scale wind power cluster, stability assessment, steady deduction, cluster division,
ultra-short-term power cluster forecasting, improved GRU

1 Introduction

With the proposal of the “carbon peaking and carbon neutrality” goal, the utilization of
new energy for power generation has been elevated to a crucial strategic position (Wang
et al., 2021). Wind power utilization has a dual nature: on the one hand, its lack of pollution
and renewable nature make it more economically efficient from the perspective of generation
cost. On the other hand, the inherent intermittency, randomness, and uncertainty of wind
power make it difficult for power systems to schedule and affect the stable operation of the
power system (Kazari et al., 2018; Mostafaeipour et al., 2022). The high penetration of wind
power, in particular, significantly increases the uncertainty of power grid operation. If wind
power is not accurately grasped and reasonably used, it will reduce the economy and safety of
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power grid operation. Wind power forecasting technology is one of
the key technologies for realizing wind power utilization. The ultra-
short-term wind power cluster forecasting method provides wind
power forecasting results for the subsequent 4 h, which provide
technical reference for dispatchers to arrange unit combinations and
formulate power generation plans. For large-scale wind power
clusters, accurate wind power forecasting technology can improve
the absorption of wind power, increase the power system’s grasping
ability for wind power, and thereby enhance the stability of the
power system after wind power is connected to the grid (Ju et al.,
2019).

The current main ultra-short-term wind power cluster
forecasting methods are divided into two categories: physical
model and data-driven (Wu et al., 2020). The physical model
method is highly dependent on atmospheric physical
characteristics and requires support from a large amount of
meteorological observation data. If the mathematical description
of the wind power farm is accurate enough, the prediction accuracy
is often high. However, the performance of the prediction will be
seriously affected when the wind power farm is expanded or the
mechanical characteristics change (Dolatabadi et al., 2021). Data-
driven methods include support vector machines (Li et al., 2020),
extreme learning machines (ELMs) (Wan et al., 2020), and neural
networks (Nazir et al., 2020; Tang et al., 2022), which have made
significant breakthroughs in prediction accuracy compared with
physical prediction methods.

With the application of new generations of artificial intelligence
algorithms and the proposals of improvement methods such as
combined models and switching mechanisms, the prediction
accuracy of a single power prediction algorithm has gradually
improved (Carneiro et al., 2022). However, China’s wind power
development is transitioning from decentralized to centralized and
large-scale, and wind power farms are mostly connected to the grid
in a centralized manner. It is beneficial to improve wind power
prediction accuracy by using the smoothing effect presented by the
aggregation of wind power farms and promoting wind power
consumption. Therefore, wind power cluster prediction has
become extremely important (Mu et al., 2022).

For wind power cluster prediction methods, the principle of
superposition is relatively simple, which obtains the cluster power
prediction result by adding single-site power predictions and is
suitable for sparsely distributed and small-scale wind power farms
(Zong and Porté-Agel, 2020). The time-series extrapolation method
analyzes historical power data to predict future trends in time series.
As meteorological data are not sufficiently introduced, they are
significantly affected by the quality of power data. The statistical
upscaling method only needs to linearly upscale the predicted
output of the reference wind power farm to obtain the cluster
prediction result. This method can offset potential correlation
factors between different wind power farms’ data and has good
dynamic adaptability, but the selection criteria for the reference
wind power farms are difficult to determine (Yang et al., 2022). The
cluster division method divides the wind power farms in the region
into several wind sub-clusters according to the fluctuation patterns
of power and meteorological data and establishes a separate
prediction model for each sub-cluster.

The division of wind power clusters is generally based on the
spatio-temporal characteristics of meteorological and power data as

inputs, which are partitioned into finite cluster units through
clustering or other similarity measures. Predictive models are
established for each cluster unit separately. Wang et al. (2022)
used wind power as the input for a fuzzy clustering algorithm to
achieve cluster division. Zhao et al. (2021) clustered the fluctuations
of wind power and considered numerical weather prediction (NWP)
meteorological features for short-term wind power forecasting.
Abedinia et al. (2020) divided clusters by determining the
correlation of output features through empirical orthogonal
functions. Fan et al. (2020) proposed using NWP information of
the predicted period as input for cluster division. These references
used wind power, wind speed, and their constructed attributes as
features for clustering, but a single feature’s input may not guarantee
the rationality of cluster division when there are quality issues in
the data.

The current research on power prediction for large-scale wind
power clusters lacks consideration for the stability of wind power
integration. Under the condition of a high frequency of extreme
errors and inflated overall prediction accuracy, the rationality of the
application of prediction results cannot be guaranteed. Additionally,
the rationality of cluster division also has a major impact on
prediction accuracy. Based on the previously mentioned analysis,
a wind power cluster ultra-short-term power prediction method is
proposed to consider the stability of wind power integration. Based
on the stability evaluation results, further implementation of the
power system steady-state deduction is recommended after the wind
power grid connection is achieved. A multi-dimensional input
feature construction and an improved DBSCAN (density-based
spatial clustering of applications with noise) algorithm-based
wind power cluster division scheme are proposed, which divide
the wind power farms in the region into several subsets. Then, the
gated neural unit is improved to extract the temporal features of the
wind power cluster and provide the cluster power prediction results.
Finally, a stability evaluation index is constructed to assess the
reliability of the wind power prediction model, and the
effectiveness of the proposed method is verified in 18 wind farms
in a province in northeast China.

This paper is organized as follows: Section 2 improves the
DBSCAN algorithm and its clustering of wind farm groups. The
wind power cluster forecasting model based on the improved GRU
network is introduced in detail in Section 3. Section 4 describes the
framework for steady-state power system analysis based on large-
scale wind power clusters. The effectiveness of the proposed method
is verified in Section 5 based on actual wind farm data. Finally,
conclusions and future recommendations are presented in Section 6.

2 Wind power subset cluster division
based on the improved DBSCAN
algorithm

2.1 Improved DBSCAN algorithm

DBSCAN is one of the most typical density-based spatial
clustering algorithms, which clusters samples with high similarity
in the form of partitioning clusters, and clusters are defined as the
largest set of density-connected points (Mao et al., 2021). Therefore,
the DBSCAN algorithm can divide regions with sufficient data
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density into clusters and is less sensitive to noisy data. The
partitioning idea of wind power clusters based on the DBSCAN
algorithm is as follows. Input indicates that the status of all input
samples is marked as unclustered, an input sample is read, and then
the sample is judged as a core sample point according to the
neighborhood ε and threshold min Lns. If yes, a new cluster is
formed in the neighborhood of the sample, and then all points in the
neighborhood ε are added to the cluster. The cluster C is judged by
the black core sample in the neighborhood ε extending outward
continuously until the cluster C is no longer growing. The DBSCAN
algorithm is defined as follows:

Definition 1: The neighborhood Li is defined as shown in Eq. 1:

Nε Li( ) � Lj ∈ D
∣∣∣∣Ddist Li, Lj( )≤ ε{ }, (1)

where ε represents the density radius of the sample point, D
represents the data space of Li and Lj, and Li, Lj ∈ D. All sample
points whose spatial distance from Li does not exceed ε constitute
the neighborhood Li.

Definition 2: For Li ∈ D, the condition that Li is the core sample is
as follows: the neighborhood Li must meet the following conditions:

Nε Li( )| |≥min Lns. (2)

Definition 3: Given data space D(Li ∈ D), the conditions of direct
density reachability of Li and Lj are as follows:

Li ∈ Nε Lj( ), (3)
Nε Lj( )∣∣∣∣∣ ∣∣∣∣∣≥minLns, (4)

where, Eq. 3 presents that Li is within the ε neighborhood of Lj and
Eq. 4 presents that Lj is the core sample point.

Definition 4: Given data space D(Li ∈ D), the reachable densities
of Ln and L1 are as follows: existing L1, L2, L3, . . ., Li, . . .,
Ln (1≤ i≤ n), Li+1 starts from L1, there is a direct density
accessibility relation for ε and min Lns.

Definition 5: Given data space D(Li, Lj ∈ D), Li and Lj are
density-related condition as follows: any sample point
Lk(Lk ∈ D) exists, such that Li and Lj are both starting from Lk,
and there is a direct density accessibility relation for ε and min Lns.

Figure 1 shows the flow based on the improved DBSCAN
algorithm.

Through the aforementioned algorithm process, we can see
that all sample points must be traversed in order to
finally determine the cluster C. Figure 2 is a schematic
diagram of the core sample point segment search area. As
can be seen from the figure, the region for searching the core
track segment is an outsourcing ellipse with radius ε and density
threshold min Lns, and all samples in the ellipse region form the
final cluster.

FIGURE 1
Flowchart of the improved DBSCAN algorithm.

FIGURE 2
Diagram of the core sample search area.

FIGURE 3
GRU neural network structure.
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2.2 Clustering of wind power cluster sub-
regions based on the DBSCAN algorithm

The input features are a key factor affecting the output of cluster
algorithms. Since cluster algorithms generally perform feature

engineering separately, the paper characterizes the meteorological
and power fluctuation characteristics of each wind power farm by
manually constructing features. Salazar et al. (2022) pointed out that
hub-height wind speed and power fluctuations in NWP are far more
correlated than other meteorological attributes; so, wind speed is one

FIGURE 4
Spatio-temporal feature data structure.

FIGURE 5
Power system stability assessment framework.
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of the key constructed features. Using a 1-h observation window, the
variance between the wind speed and the average wind speed in the
observation window is extracted to describe the wind speed
fluctuations, as shown in Eq. 5.

F1 � 1
4

WS1 −WS( )2 + WS2 −WS( )2 + WS3 −WS( )2 + WS4 −WS( )2[ ],
(5)

whereWS1,WS2,WS3, andWS4, respectively, represent the wind speed
at 15 min, 30 min, 45 min, and 1 h within the observation window, . F1

represents the scatter of each wind speed point from the mean wind
speed in the observation window, which is the first constructed feature.

Similarly, the power variability within the 1-h observation
window is calculated using Eq. 5 as the second constructed
feature. The trend of wind speed quantification within the 1-h
observation window is shown in Eq. 6.

F3 � sign WS2 −WS1( ) + sign WS3 −WS2( ) + sign WS4 −WS3( )
+ sign WS5 −WS4( ),

(6)
where sign represents the sign function; P1, P2, P3, andP4,

respectively, represent the change trends of wind speed at 15 min,
30 min, 45 min and 1 h;WS5 represents the 15-min wind speed in the
next observation window; and F3 represents the change trend of wind
speed in the observation window, which is the third structural feature.

Similarly, the power change trend within the 1-h observation
window is obtained by Eq. 5 as the fourth structural feature. Finally,
a structural feature set is formed by F1, F2, F3, andF4, which are
used as the input of the improved DBSCAN algorithm to realize the
division of wind electronic clusters.

3 Wind power cluster prediction model
based on the improved GRU network

GRU is a simplified variation of the LSTM network, which is a
kind of gate recurrent unit network and is widely used in extracting

time-series features of time series. The update gate in the GRU is a
combination of the forget gate and the input gate in the LSTM
network, but the GRU model structure is simpler, which effectively
reduces the training time while ensuring the model prediction
accuracy (Qu et al., 2021; Xiao et al., 2023). The internal
structure of the GRU is shown in Figure 3.

Each GRU includes an u(t) and an r(t). At the time of t, the
GRU accepts the current x(t), the hidden state of the previous
h(t − 1), and the update gate performs two steps of forgetting and
remembering at the same time. The calculation determines how
much information to choose to input into the network and how
much to remember from past information; the reset gate determines
the amount of past forgotten information; the output h(t) of the
GRU network is finally formed by the dynamic control of the update
gate and the reset gate. The calculation method for each variable is as
follows:

u t( ) � ψ Wuh t − 1( ) + Uux t( )( ), (7)
r t( ) � ψ Wuh t − 1( ) + U rx t( )( ), (8)

�h t( ) � φ Wc r t( ) ⊗ h t − 1( )( ) + U cx t( )( ), (9)
h t( ) � u t( ) ⊗ h t − 1( ) + 1 − u t( )( ) ⊗ �h t( ), (10)

where Wu,Wr, andWc are the parameter matrices connecting the
output signal of the hidden layer; Uu, Ur, andUc are the parameter
matrices connecting the input signal; ψ(.) is a non-linear function;
and �h(t) is the intermediate memory state that mixes the cell state
and the hidden state. ⊗ is a logical operator that multiplies
corresponding elements in a matrix.

During the training stage, in order to reduce the sensitivity of the
model to abnormal data, the gradient update of the deep neural
network decreases with the decrease of the error, which is conducive
to speeding up the convergence speed, and the Huber loss function is
used as the measurement rule of the GRU network training loss
(Tang et al., 2021). The principle is as follows.

L y, f x( )( ) �
1
2
y − f x( )( )2 for y − f x( )∣∣∣∣ ∣∣∣∣≤ δ

δ y − f x( )∣∣∣∣ ∣∣∣∣ − 1
2
δ2 otherwise

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

where y represents the actual value and f(x) represents the
predicted value. δ is a hyperparameter, which is introduced by
the loss function, and it determines how to treat outliers. If the
residual is greater than δ, we can use L1 to minimize the loss. If the
residual is less than δ, then we can use L2 to minimize the loss. In
this paper, the setting of δ is 0.1. The GRU model improved by the
loss function is less sensitive to the outliers of meteorological and
power input data, increasing the convergence speed, and it can
improve the accuracy of wind power prediction to some extent.

According to the wind power cluster division results, the wind
power farm data in each sub-cluster are fused with spatial data.
Taking a cluster containingm wind power as an example, the model
data structure with characteristic k steps as input is shown in
Figure 4. The characteristics of each wind power cluster are
combined and then processed into a 3-dimensional tensor whose
time series lags behind one time-point in turn. The first dimension
of the data is the current moment t, which represents the forecast
time. The second dimension is the characteristics of each wind farm,
which represent the spatial characteristics. The third dimension is

FIGURE 6
Loss curve.
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the temporal characteristics with sequential lags in time series. The
improved GRU network is used as the predictor to extract temporal
features from the fused data of spatial features to realize the power
prediction of sub-clusters. Finally, the ultra-short-term power
prediction of large-scale wind power clusters is realized by
superimposing the prediction results of each sub-cluster.

4 Framework for steady-state power
system analysis based on large-scale
wind power cluster forecasting

The traditional modeling approach for wind power cluster
forecasting is to first predict the power of each individual wind
power farm and then add up the predicted results to obtain the
forecasted power of the entire wind power cluster (Wu et al., 2021;
Ning et al., 2023). The rationale for this approach is that the
prediction units for individual wind power farms are relatively
small, and each wind power farm has relatively complete
historical data. Achieving high prediction accuracy for each wind
power farm will lead to higher accuracy for the regional wind power
cluster forecast. Based on this advantage, all the current provincial-
level wind power cluster power forecasts use this modeling method.

However, historical power analysis of individual wind power
farms shows that the high-frequency components of wind power
fluctuate more violently, reducing the predictability of wind power.
The randomness and volatility caused by such local effects are
difficult to reflect in NWP, making it difficult for prediction
models to extract such fluctuation characteristics. However,
within a certain spatial range, wind power farms with similar
output can smooth out this random fluctuation to some extent,
resulting in a smoother aggregated power curve and improved
predictability.

Based on the aforementioned analysis, dividing wind power
farms in a region into several clusters and modeling them separately
can improve the prediction accuracy for each cluster, thereby
improving wind power forecasting accuracy and enhancing the
stability of power system operation after wind power integration.
The steady-state extrapolation framework for power systems based
on the forecast results of large-scale wind power clusters is shown in
Figure 5.

The establishment of this framework involves the following
three steps:

i) Partitioning wind power sub-clusters: the DBSCAN algorithm
was improved based on Eqs 1–4, features were constructed
representing the fluctuation characteristics of wind power speed
and wind power according to Eqs 5, 6, they were used as inputs
for the improved DBSCAN algorithm, and the wind power
farms in the region were partitioned into several clusters.

ii) Ultra-short-term power prediction for wind power clusters: the
data were merged within the same wind power cluster, spatial
data tensors were constructed, the improved GRU neural
network was used to extract the temporal characteristics of
the wind power cluster, and the wind power cluster forecast was
output.

iii) Steady-state deduction of power systems: stability evaluation
indicators for wind power prediction were constructed, the

stability and accuracy of the wind power prediction model
were evaluated comprehensively based on traditional wind
power error indicators, and the steady-state deduction of
power systems was further realized.

5 Experimental analysis

5.1 Dataset and prediction metrics

The data used in this study consist of 6 months (January to July)
of actual power generation data and corresponding NWP data with
15-min resolutions from 18 wind power farms located in northeast
China with a total installed capacity of 2,564.81 MW. The
meteorological variables included in the NWP dataset are wind
speed, temperature, humidity, and pressure. Wind direction was not
included as a feature in this study. The first 6 months of data were
used as the training set, and the last month data were used as the
testing set. To ensure fairness in evaluating the correlation between
each feature variable and power, both the NWP features and power
were normalized to the [0, 1] range using the normalization
algorithm shown in Eq. 12.

x′ � x − x min

x max − x min
, (12)

where x and x′, respectively, represent the normalized and original
feature or power values; xmin and xmax, respectively, represent the
minimum and maximum values of the feature or power. After
prediction, the resulting values are denormalized to zero, the
maximum output range, to restore their physical meaning. The
denormalization principle is shown in Eq. 13.

x � x′ x max − x min( ) + x min. (13)
To reduce the impact of abnormal data on prediction accuracy

(Dong et al., 2023), the following pre-processing steps were taken:

1) Power values exceeding the installed capacity were reassigned to
the installed capacity;

2) Negative power values were set to zero;
3) For time points where the power is zero, the corresponding wind

speed value was set to zero.

The deep learning network designed in this paper consists of
three GRU network layers with 16, 32, and 16 neurons, respectively.
The last GRU layer is connected with a fully connected layer, and the
16-step wind power prediction results are directly output. The
training parameters are as follows: {epoch:50, batch_size: 128,
droup_out:0.2}. This paper uses a CPU for training, and the
parameters of the computer are as follows: {CPU: Intel(R)
Core(TM) i5-7300HQ CPU @ 2.50 GHz 2.50 GHz, RAM: 16.0 GB}.

The loss curve modeled by Cluster 1 is shown in Figure 6. MSE
loss declines slowly, with oscillations occurring in the middle of the
process, while Huber loss declines faster and has a more stable
downward trend.

In the past, the index for ultra-short-term wind power
prediction often selected the average forecast value within 4 h.
However, in the “Technical Regulation for Wind Power
Prediction,” the assessment has been modified to the fourth hour,
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namely, the results of the 16th step of the prediction (Demolli et al.,
2019). Therefore, in this study, the normalized root mean square
error (RMSE) and normalized maximum absolute error (MAE) were
used as the final evaluation criteria to evaluate the performance of
the 16th-step prediction (Zhao et al., 2022).

The calculation of normalized RMSE is shown in Eq. 14:

RMSE � 1
Cap

�������������
1
N

∑n
i�1

xi − yi( )2,
√

(14)

where Cap represents the rated capacity of the wind power cluster,
xi represents the actual wind power generation, yi represents the
predicted wind power generation, and n is the number of samples in
the testing set.

The calculation of normalized MAE is shown in Eq. 15:

MAE � 1
nCap

∑n
i�1

xi − yi

∣∣∣∣ ∣∣∣∣. (15)

In addition, the extreme error frequency (SA) index was
established to evaluate the stability of the wind power prediction
model, using 40% of the installed capacity as the threshold for
extreme errors. The calculation is shown in Eq. 16:

IDi �
1, yi − ŷi

∣∣∣∣ ∣∣∣∣/Cap≤ 0.4

0, yi − ŷi

∣∣∣∣ ∣∣∣∣/Cap> 0.4
⎧⎨⎩

SA � num IDi � 0( )
n

(16)

where IDi is the criterion for determining whether a sample is an
extreme error. If the absolute error value is greater than 40% of the
installed capacity, it is considered an extreme error.

The calculation of the extreme error bandwidth ratio (EWR) of
wind power prediction results is shown in Eq. 17:

EWR � max yi − ŷi( )∣∣∣∣ ∣∣∣∣ + min yi − ŷi( )∣∣∣∣ ∣∣∣∣
2*Cap

. (17)

During the assessment period, if the extreme error frequency is
less than 4% and the normalized RMSE is less than 15% of the
installed capacity, it is considered that the power system meets the
static stability requirements during long-term operation. If the
extreme error bandwidth gradually increases in the 1–16 step
prediction results for the next 1–4 h and remains below 40% of
the error bandwidth, then it is considered that the power system is in
dynamic stability within the next 4 h from the forecast time. It
should be noted that the perspective of the power system steady-
state deduction in this study starts from the perspective of the power
grid and evaluates its impact on the power system after being
connected to the grid based on the comprehensive indicators of
wind power prediction. High prediction accuracy and stable model
performance are required to ensure the stable operation of the power
system after connection. If the model performance is unstable,
regardless of the overall accuracy during the assessment period,
stable operation of the power system cannot be guaranteed.

5.2 Analysis of cluster results

The iteration number of the clustering algorithm was set to
50 times, with a cluster quantity of 3. The final clustering results of
each cluster and the relative positions of each wind power farm are
shown in Figure 7:

Cluster 1: including 7 wind power farms, namely, Wind Power
Farms 2, 5, 8, 13, 16, 17, and 18.

Cluster 2: including 8 wind power farms, namely, Wind Power
Farms 3, 4, 6, 9, 10, 12, 14, and 15.

Cluster 3: including 3 wind power farms, namely, Wind Power
Farms 1, 7, and 11.

The cluster results show that the improved DBSCAN algorithm
can effectively identify spatially adjacent wind power farm and
group them into the same cluster. This indicates the rationality
of using the improved DBSCAN algorithm for cluster analysis.

FIGURE 7
Cluster partitioning results.
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To further verify the rationality of the clusters’ division, a
visualization analysis was conducted on the normalized power and
wind speed of the wind power farms in Cluster 1. The correlation
coefficient matrix of the power output of each wind power farm is also
provided, as shown in Figure 8. (Note: Wind Power Farms 1, 7, and
11 are close to each other and share the same NWP data). The
correlation coefficient (I) is calculated as shown in Eq. 18.

I � cov x1, x2( )�������������
D x1( ) × D x2( )√ . (18)

Based on the analysis of the previous figure, after cluster
division, the power outputs of various wind power farms within
the same cluster have certain similarities. Strictly speaking, wind
power farms’ output values that are close in distance should
exhibit highly similar states. However, during the wind turbine
climbing phase between sampling points 192 and 384, there are
also differences in power output curves between different wind
power farms. Due to factors such as unit maintenance,
malfunctions, and power limitations, the relationship between
wind power farms’ output and single-unit output is not strictly

linearly proportional. Therefore, from the correlation coefficient
matrix perspective, the correlation coefficients among the power
outputs of various wind power farms within the same wind power
cluster do not uniformly maintain high values. For example, the
power correlation coefficient between wind power farm 13 and
wind power farm 18 is only 0.56. From the analysis of wind speed
curves, wind speed trends among the various clusters of wind
power farms are relatively similar. Thus, introducing wind speed
fluctuation characteristics in clustering features can reduce errors
caused by using pure power features.

The normalized power and wind speed, and the correlation
coefficient matrix of the normalized power output, for each wind
power farm in Clusters 2 and 3 are presented in Figure 9.

5.3 Analysis of wind power cluster prediction
results

The normalized RMSE andMAE indicators of the three clusters’
power predictions are shown in Figure 10. The normalized RMSE

FIGURE 8
Visualization of Cluster 1 partitioning results. (A) Power output curve of Cluster 1. (B)Wind speed curve of Cluster 1. (C)Correlation coefficientmatrix
of power output for each wind farm.
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and MAE indicators for Cluster 1 are 0.1018 and 0.0796,
respectively; for Cluster 2, they are 0.0602 and 0.1050,
respectively; and for Cluster 3, they are 0.0272 and 0.0914,
respectively. The prediction RMSE and MAE indicators for all
three clusters do not exceed 10% of the installed capacity,

indicating that the wind power cluster prediction model
proposed in this paper has high prediction accuracy.

To further verify the performance of wind power cluster power
prediction, the test set prediction results for each of the three clusters
were visualized. Figure 11 shows the results of the 16th step of ultra-

FIGURE 9
Visualization of division results of Clusters 2 and 3. (A) Power output curve of Cluster 2. (B)Wind speed curve of Cluster 2. (C) Power output curve of
Cluster 3. (D) Wind speed curve of Cluster 3. (E) Correlation coefficient matrix of Cluster 2. (F) Correlation coefficient matrix of Cluster 3.
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short-term prediction, where the predicted curve is still able to track
the actual power curve very well. It should be noted that predicting
wind power at the cluster level cannot overcome the time delay
problem that exists in single-farm prediction. That is, there is a
notable time delay between the predicted power sequence and the
actual power sequence on the waveform. By shifting the predicted
sequence forward according to the prediction step, its fluctuation
trend almost coincides with the actual power. Due to the presence of
the time delay problem, the prediction results for high-power points

tend to be lower, while those for low-power points tend to be higher
in the overall prediction results. Cluster 1 has a lower installed
capacity and thus more high-frequency noise signals in its power,
making it difficult to weaken fluctuations through convergence
effects. In contrast, Clusters 2 and 3 have higher installed
capacities, resulting in better tracking of the actual power curves
and higher prediction accuracy than Cluster 1.

The prediction results for the entire region are shown in
Figure 12, where the prediction results for the three wind power

FIGURE 10
Prediction indicators of Clusters 1, 2, and 3.

FIGURE 11
Visualization of cluster prediction results. (A) Prediction results for Cluster 1. (B) Prediction results for Cluster 2. (C) Prediction results for Cluster 3.

FIGURE 12
Visualization of regional prediction results.
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clusters are combined to obtain the prediction results for the entire
region’s wind power farms. The RMSE is 0.0869, and the MAE is
0.094. The mean absolute error is approximately equal to 10% of the
installed capacity, indicating that the model’s performance accuracy
can be guaranteed.

We offer a comparison of several different prediction models,
including DBSCAN_LSTM(D_LSTM), DBSCAN_CNN(D_CNN),
KMeans_LSTM(K_LSTM), KMeans_GRU(K_GRU), and the
persistence method. The comparison index is the normalized
RMSE of wind power forecast in the future 4 h. The comparison
results are shown in Figure 13. For the prediction of the future 4 h,
the error of the model proposed in this paper is the lowest. Among
them, the KMeans algorithm has a poor effect on cluster division,
and LSTM has poor performance in predicting cluster wind power
compared with GRUs; baseline persistence method of time series
prediction has the worst predictive performance.

In addition, we compared the other two prediction patterns.
Pattern 1: power prediction is carried out separately for all wind
farms, and the final results are added to get the regional power
forecast sum. Pattern 2: the total power of the region is taken as the
prediction target, and the power prediction results of 4 h are directly
output. The performance of the comparison is RMSE in the 4 h; the
comparison results are shown in Figure 14. Compared with the other
two patterns, the prediction model proposed in this paper has the
lowest prediction error.

5.4 Analysis of steady-state power system
analysis results for a regional grid

During the 1-month assessment period, a total of 59 extreme
errors occurred in the wind power clusters in the region, with a
frequency of 2.048%, which is not higher than the required 4%.
Thus, the large-scale wind power cluster ultra-short-term wind
power prediction method proposed in this paper can satisfy the
static stability requirements of the power system.

The extreme error bandwidth ratio and the percentage of
extreme errors at each prediction step to the extreme error
bandwidth for 16-step wind power prediction during the
assessment period are shown in Figure 15. The extreme error
bandwidth for 16-step prediction gradually increases, but the
upward trend is not significant for future steps 7, 8, and 9,
indicating that the model proposed in this paper can suppress
extreme errors as the prediction step increases. At the 16th
prediction step, the proportion of extreme errors is 34.0546%.
This result suggests that, under the stable evaluation system
proposed in this paper, the wind power prediction accuracy of
the wind power cluster in the region can meet the requirements,
ensuring stable operation of the power system after grid connection.

6 Conclusion

The proposed power system steady-state deduction method,
based on the reliability of large-scale wind power cluster power
prediction, has improved the stability of power system operation
after mass wind power grid connection. The conclusions are as
follows:

FIGURE 13
Performance comparison of different algorithms.

FIGURE 14
Performance comparison of different prediction patterns.

FIGURE 15
Extreme error bandwidth ratio for 16-step prediction.
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(1) The improved DBSCAN algorithm can effectively divide wind
power clusters based on the constructed wind speed and wind
power fluctuation characteristics. The divided wind power
clusters have relatively similar actual distances and similar
actual power outputs.

(2) The ultra-short-termwind power cluster power predictionmethod
based on the improvedGRUalgorithm can achieve high prediction
accuracy with an RMSE for the fourth hour prediction below 10%
of the installed capacity and stable model performance.

(3) Under the power system stability evaluation system constructed in
this paper, the proposed ultra-short-term wind power prediction
model can effectively improve the operation stability of the power
system after a wind power grid connection, with a narrow extreme
error bandwidth and a low frequency of extreme errors during the
assessment period occurring below 4%.

The next step of this work will further improve the power system
stability evaluation indicators and comprehensively evaluate the
performance of wind power prediction models from both the
grid and generation sides, analyzing their impact on the stable
operation of power systems after the wind power grid connection.
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Assessment method of
distribution network health level
based on multivariate information

Lin Zhu*, Zilong Wu and Shiyu Huang

School of Electric Power Engineering, South China University of Technology, Guangzhou, China

In order to enhance self-monitoring and self-diagnosis capabilities in smart
distribution networks, this paper proposes a method for assessing the health
level of the network based on multivariate information. First, we construct an
evaluation indicator system for the health of the smart distribution network by
integrating the smart distribution network information system. Next, we utilize the
improved back propagation (BP) neural network and multivariate indicator
information to calculate the health indexes of both the grid layer and
equipment. We then solve the health index of the equipment layer based on
network topology and goal-oriented methodology. Furthermore, by utilizing the
health information of both the equipment and grid layer, we apply fuzzy evaluation
and Dempster-Shafer (D-S) evidence theory to obtain the health level of the
distribution network. We provide a comprehensive evaluation of the overall health
status of the smart distribution network. Finally, the proposed method is validated
using data from a regional distribution network. The results demonstrate its
effectiveness in improving the smart distribution networks’ overall health and
stability by enabling more effective self-monitoring and self-diagnosis.

KEYWORDS

smart distribution network, health index, neural network, GO methodology, fuzzy
evaluation, D-S evidence theory

1 Introduction

The distribution network plays a crucial role in modern power systems, as it ensures that
customers receive a reliable and high-quality power supply. With the integration of
distributed energy, new requirements have emerged for the operation level of
equipment, grid economy, and environmental sustainability (Trentini et al., 2021). This
has also increased the demands on network planning, management, and maintenance
(Gumpu et al., 2019). However, the distribution network operates in a complex environment,
with many pieces of equipment and a complex grid, leading to a high frequency of failures.
According to historical data, more than 85% of failures occur on the distribution network (Li
et al., 2015). Therefore, a comprehensive and accurate evaluation of the distribution
network’s health is essential to optimize its operation and enhance maintenance efficiency.

Most existing operational risk assessment methods for distribution networks are based
on reliability theory, which uses equipment failure rate and outage time as indicators (Su
et al., 2014; Chen et al., 2020). While useful, these approaches have certain limitations and
more comprehensive and refined methods are required to evaluate the conditions of the
distribution network. One such approach that has gained prominence is the concept of a
power equipment health index. It was first proposed by British scholar D. Hughes in
2003 Hughes et al. (2008) and has been expanded to various fields, such as power supply
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reliability. It can characterize the equipment’s health status and
overall performance (Ashkezari et al., 2013; Zhao et al., 2016).

The determination of the equipment health index relies on an
indicator system. Researchers have considered real-time monitoring
data such as the current, voltage, winding temperature, gas content
of distribution transformers, and contact temperature of breakers
(Khoddam et al., 2016; Yong-Xiang, 2019; Zhang et al., 2022). The
equipment health index can be calculated with these data. However,
it is essential to consider not only the current state of equipment but
also its lifetime in general, as the health condition of transformers
degrades over time (Sibuea and Suwarno, 2022). Moreover, different
equipment may exhibit varying susceptibility to failure under similar
conditions. Therefore, integrating data from various information
systems, facilitated by advancements in smart grid and artificial
intelligence technology, can lead to a more comprehensive indicator
system. Establishing such a system makes it possible to develop a
rational assessment method that quantitatively calculates the
equipment health index.

In the field of smart distribution networks, assessing the health
level of equipment and the overall network is essential for ensuring a
reliable power supply to customers. A critical tool for this is the
equipment health index, which can reflect the performance of
individual components and the network. While much research
has been done to determine the relationship between equipment
health index and distribution network operation risk, some studies
have not considered the equipment’s location (Zhao et al., 2016). To
address this issue, researchers utilize Goal-Oriented (GO)
methodology to analyze the outages caused by equipment failures
at different locations in a distribution network containing
distributed generators (DGs) (Gong et al., 2012). This allows for
a more comprehensive understanding of the network’s performance
and the potential impact of equipment failures on customers. In
addition, fuzzy evaluation has been introduced to assess the health
status of the equipment layer and grid layer (Sun et al., 2016). This
approach recognizes health level assessment’s uncertain and
imprecise nature and can provide a more nuanced
understanding. By integrating these methods and approaches, it
is possible to develop a more comprehensive and accurate
assessment of smart distribution network health.

Furthermore, with the increasing emphasis on the economy and
environmental sustainability of distribution networks, traditional
methods that only consider reliability are no longer sufficient. To
address this, researchers have attempted to integrate smart grid
information technology into assessing distribution network health.
For instance (Sun et al., 2022), integrated the grid and equipment
health indexes to evaluate the health level of distribution networks.
However, this approach may lose some key information that is
critical to accurately reflecting changes in the health status of
equipment or grid.

Therefore, to achieve a more accurate assessment of the health
status of a smart distribution network, a comprehensive approach is
needed that integrates both short-term and long-term equipment
indicators, as well as the overall reliability, economy, and
environmental sustainability of the grid. However, directly
combining the equipment and grid health indexes may not be
appropriate. Meanwhile, the location of the equipment in the
network topology affects the outage range, and there are
significant differences in the indicators’ meaning and the optimal

values range. Thus, a novel method is required to effectively
integrate the above multiple sources of heterogeneous
information and accurately reflect changes in the health
conditions of equipment and the grid.

The main contributions of this paper are as follows:

1. The paper proposes a more comprehensive health assessment
indicator system for smart distribution networks, which
considers multiple aspects such as real-time equipment
monitoring data, equipment ledger data, and grid economics
level. By integrating these different sources of information, a
more accurate and comprehensive picture of the health of the
distribution network can be obtained.

2. To integrate multiple indicator information with different
meanings and optimal ranges, an improved BP neural
network is proposed to calculate the health index of the grid
layer and individual equipment. It provides a more nuanced
understanding of the health status of the distribution network.

3. The paper analyzes the impact of equipment failure on load
outage by combining network topology with the goal-oriented
methodology. The relationship between the health of individual
equipment and the power supply probability of the overall load
in a distribution network containing distributed generations is
also analyzed, providing essential insights into the network’s
overall performance.

4. Fuzzy evaluation is introduced to evaluate the health level of the
equipment and grid layers. The information from both layers is
fused by D-S evidence theory to assess the distribution network
health level based on multiple information. This approach
considers the uncertainty and imprecision of health level
assessment and provides a more accurate and comprehensive
assessment of the health status of the distribution network.

The rest of the paper is structured as follows: Section 2 presents
the proposed indicator system for the health assessment of smart
distribution networks. Section 3 constructs a comprehensive health
index calculation method for the equipment and grid layers. Section
4 assesses the distribution network health level by combining the
equipment layer health index and grid layer health index. Section 5
validates the proposed assessment method through case study,
demonstrating its effectiveness in accurately reflecting the
changes in equipment and grid health conditions. Finally, in
Section 6, we draw conclusions and suggest potential areas for
future research.

2 Indicator system for smart
distribution network health assessment

In order to ensure an accurate assessment of a smart distribution
network’s health, it is crucial to gather and combine information at
both the equipment and grid levels. In this paper, a hierarchical
indicator system for health assessment is constructed. The indicator
system divides the health indicators of a smart distribution network
in terms of power equipment and grid, respectively.

The determination of power equipment health indexes is
considered from two different points. It is necessary to consider
the condition of the equipment from both a short-term and long-
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term perspective. In terms of equipment operation status, the real-
time monitoring data can reflect the short-term health condition of
the power equipment. In contrast, information such as equipment
ledger can reflect the health condition from a long-term perspective.
According to the above two perspectives, 11 indicators are selected
as the indicator system to calculate the health indexes for power
equipment, as shown in Table 1 below.

It is not easy to fully reflect the overall health level of the smart
distribution network by only assessing the health of the equipment.
There is also a demand to take the grid health status into the
assessment system to evaluate whether non-faulty grid need to be
upgraded and renovated. By considering the indicators closely
related to the health level of the smart distribution network, the
health assessment indicator system of the network is constructed
from 4 dimensions: grid operation level, grid economic efficiency
level, grid security level, and grid environmental sustainability
level, as shown in Table 2. It is worth mentioning that as a business,
economic efficiency is of great importance to power companies. If
the distribution network does not meet economic requirements, it
may lead to a decline in profits, then it is necessary to upgrade and
renovate the distribution network to ensure that it is in a better
state. Therefore, this article comprehensively selects economic

efficiency indicators to calculate the health index of the
distribution network.

3 The health indexes calculation of the
equipment layer and grid layer

Since the indicators are functionally related to the health index,
this paper proposes the BP neural network. BP neural network, well-
suited for approximating complex nonlinear relationships, has
strong robustness and fault tolerance. Additionally, it can provide
fast output results without requiring human involvement after
model training. Thus, it can be utilized to calculate the health
index of power equipment and the grid.

The above equipment and grid information is mainly stored
in the smart distribution network information system, such as the
ledger management system, equipment status online monitoring
system, voltage monitoring system, operation monitoring
system, and grid planning assistance system. Moreover, due to
differences in the meaning and optimal intervals of indicators, it
is not appropriate to preprocess the data directly using traditional
data normalization methods. Therefore, the BP neural network is

TABLE 1 Equipment health assessment indicators.

Equipment category Indicator Indicator implications

Circuit Breaker Temperature Switch temperature can reflect poor contact and mismatch of drop-out currents

Coil Current Coil Current exceeding the limit may result in equipment damage

Mechanical switching on time A long switch-on time is likely to cause arcing and contact ablation

Contact travel A short contact travel is not conducive to breaking, while a long one is not conducive to closing

Operating years To measure equipment aging

Unreliable action times To assess the status of the equipment by the number of historical equipment failures

Distribution Transformer Total hydrocarbon content To reflect faults such as transformer overheating or partial discharge

Tank temperature difference To reflect transformer insulation damage and other faults

Historical failures times To assess the status of the equipment by the number of historical equipment failures

Operating years To measure equipment aging

Maximum load rate A low load rate is uneconomical, while high load rates can easily lead to insulation damage to the equipment

TABLE 2 Grid health evaluation indicators.

Category Indicator Indicator implications

Grid operation level Maximum line loading rate Maximum load rate among all distribution network lines

Maximum transformer loading rate Maximum load rate among all distribution transformers

Grid economic efficiency level Capacity load ratio of network Ratio of total capacity of main transformer to maximum load in substation

Rate of high loss distribution transformer The proportion of high loss distribution transformers to all distribution transformers

Grid security level Line insulation rate The proportion of the insulation length to the total length of the line

Automation Coverage Coverage ratio of automation intelligent equipment

Grid environmental sustainability level Distributed power penetration The proportion of distributed energy output to total power output
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improved in this paper to extract multivariate heterogeneous
indicators effectively.

3.1 Health indexes calculation of grid layer
and single power equipment based on
improved BP neural network

Grid indicators have their respective optimal value ranges. In
addition, the indicator values of the equipment will gradually
deteriorate from the ideal value to the warning value of the fault
state when the health status decreases. Therefore, the problem of
heterogeneity of multivariate information can be solved by
uniformly evaluating indicators accordingly. For this purpose,
in this paper, the input layer neurons of the traditional BP neural
network are replaced by indicator-scoring neurons. The
improved BP neural network is constructed for the circuit
breaker, distribution transformer, and grid, respectively, as
shown in Figure 1 below.

Based on the relationship between indicator values and health
status, the following three types of indicator-scoring neurons
are proposed: 1) Higher indicator values indicate better health
status using inverse type indicator-scoring neuron, whose output
function is E1(x); 2) intermediate-range indicator values indicate
better health status uses an intermediate type indicator-scoring
neuron with the output function E2(x); 3) lower indicator
values indicate better health status using positive type indicator-
scoring neuron, whose output function is E3(x). The specific
output functions of each indicator-scoring neuron type are
shown below.

E1 x( ) �
1, x≤x1

x − x2

x1 − x2
, x1 < x< x2

0, x2 ≤x

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

E2 x( ) �

1, x≤x1

x − x2

x1 − x2
, x1 < x< x2

0, x2 ≤x≤x2
′

x − x2
′

x1
′ − x2

′, x2
′ <x< x1

′

1, x1
′ ≤ x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

E3 x( ) �

0, x≤ x2
′

x − x2
′

x1
′ − x2

′, x2
′ < x< x1

′

1, x1
′ ≤ x

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

where Ei(x)(i � 1, 2, 3) is the output of the indicator-scoring
neuron, x is the input indicator value, x1, x1′ are the preset alert
values for this indicator, and x2, x2′ are the preset ideal values of this
indicator.

The indicator-scoring neuron types, preset ideal, and alarm
values for each indicator can be determined using equipment
manuals, existing planning standards, and expert opinions.
Tables 3, 4 showcase the indicator-scoring neuron types and
corresponding thresholds employed in this paper for the power
equipment and grid indicators, respectively.

In addition, the output fnctions of the neurons in the hidden
layer and the output layer, respectively, are

hj � f ∑n
i�0
wijei − θj⎛⎝ ⎞⎠, j � 0, 1, . . . , m

yk � f ∑m
j�0
wjk

′ ej − θ′k⎛⎝ ⎞⎠, k � 0, 1

H � y1

y0 + y1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

FIGURE 1
Improved BP neural network and its input diagram.

Frontiers in Energy Research frontiersin.org04

Zhu et al. 10.3389/fenrg.2023.1178631

207

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1178631


where hj is the output of the jth neuron of the hidden layer, yk is the
output of the kth neuron of the output layer neuron,H is the health
index; ei is the output of the ith indicator-scoring neuron,wij andwjk

′

are the weights from the indicator-scoring neurons to the hidden
layer neuron and the hidden layer neuron to the output layer
neuron, respectively; θj and θk′ are the threshold values; and
activation function f(x) is:

f x( ) � 1
1 + e−x

(5)

The loss function employed in this study is cross-entropy. It is
defined mathematically as follows:

loss � ∑1
i�0
yi*log yi( ) + 1 − yi*( )log 1 − yi( ) (6)

In order to effectively balance the step size and momentum to
optimize the weight vector of the neural network, here we adopt the
adaptive moment estimation (Adam) algorithm. It dynamically
adjusts the learning rate in the training process and accelerates
convergence toward the optimal solution in the early stage while
preventing oscillations caused by high learning rates later.

The training set input for the neural network model includes
historical data of circuit breakers, distribution transformers, etc.,
comprising normal and failure data samples. The sample labels
[y0,y1] with outage faults are set to [0,1], and the sample labels for
normal operation are set to [1,0]. The neural network model is trained
using this dataset. The model training is completed when the output
error meets the requirement, or the number of iterations is reached.

3.2 Equipment layer health index calculation
based on GO methodology

The range of equipment outages depends on the equipment’s
location in the network topology. Therefore, it is not appropriate to
add up the health of individual equipment to evaluate the overall
health index of the power equipment layer. It is necessary to
consider the network topology information comprehensively. At
present, GO methodology is able to find the relationship between
equipment failure and load outage based on the network topology.
Thus, this paper seeks the relationship between single power
equipment health index and equipment layer health index based
on GO methodology.

TABLE 3 Equipment health indicator-scoring neuron type, preset ideal value, and alarm value.

Equipment category Indicator Indicator-scoring neuron type x1 x2 x2′ x1′

Circuit breaker Temperature Positive type - - 35°C 80°C

Coil current Intermediate type 0.8 A 1.15 A 1.25 A 1.6 A

Mechanical switching on time Intermediate type 190 ms 195 ms 208 ms 213 ms

Contact travel Intermediate type 19 mm 21 mm 23 mm 25 mm

Operating years Positive type - - 0 30

Unreliable action times Positive type - - 0 10

Distribution transformer Total hydrocarbon content Positive type - - 0 150 μL/L

Tank temperature difference Positive type - - 85°C 105°C

Historical failures times Positive type - - 0 10

Operating years Positive type - - 0 30

Maximum load rate Intermediate type 0 20 80 100

TABLE 4 Grid health indicator-scoring neuron type, preset ideal value, and alarm value.

Category Indicator Indicator-scoring neuron type x1 x2 x2′ x1′

Grid operation level Maximum line loading rate Intermediate type 0 20 80 100

Maximum transformer loading rate Intermediate type 0 20 80 100

Grid economic efficiency level Capacity load ratio of network Positive type - - 1.8 2.2

Rate of high loss distribution transformer Positive type - - 0 5

Grid security level Line insulation rate Inverse type 0 100 - -

Automation Coverage Inverse type 0 100 - -

Grid environmental sustainability level Distributed power penetration Positive type - - 10 20
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The following distribution network in Figure 2 is used to
illustrate the methodological steps for obtaining the health index
of the equipment layer using the Goal-Oriented (GO) methodology.
This approach involves analyzing the impact of equipment failure
on load outage by combining network topology with goal-oriented
techniques. It provides a more nuanced understanding of the health
status of the distribution network, allowing for a more
comprehensive and accurate assessment.

(1) Referring to (Shi et al., 2018), the relationship between the level
of equipment health and the probability of successful operation
of the equipment is

Pi � 1 − e−
Hi−1
Hi

( )2

(7)

(2) When only a single-side power supply exists at L1, the normal
power supply of P3 is equivalent to the successful operation of
CB1, S1 and T3, which is shown in the following equation:

PP3 � PL1·P3 � PCB1 · PS1 · PT3 (8)
where PP3 is the probability that P3 load is supplied normally, PL1·P3
is the probability that P3 load is successfully supplied by L1, PCB1,
PS1, PT3 are the probability of successful operation of CB1, S1, and
T3, respectively.

(3) When feeder 1 and feeder 2 are available, the power supply of
P3 is equivalent to the successful operation of CB1, S1 and T3 or
CB2, S2 and T3, which is shown in the following equation:

PP3 � 1 − 1 − PL1·P3( ) 1 − PL2·P3( ) (9)
where PL2·P3 is the probability that P3 load is successfully supplied
by L2.

(4) To calculate the probability of successful operation of other loads,
we can obtain the probability of successful operation of all loads by
using the proportion of each load and its corresponding probability
of successful operation, as shown in the following equation:

P � ∑n
i�1

ai × Pi( )

∑n
i�1
ai � 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (10)

where P is the probability of successful operation of all loads, Pi is
the probability of successful operation of the ith load, ai is the ratio
of the corresponding load to the total load.

(5) Subsequently, based on the overall probability of successful load
operation, the inverse function of Eq. 7 is applied to determine
the health index of the power equipment layer, which can be
expressed as the following equation:

Hequip � 1

1 + ���������−ln 1 − P( )√ (11)

4 Distribution network health level
assessment

The assessment of health status levels is commonly
accomplished through the use of health index. However, the
transition process between different health levels is often unclear,
making the concept of fuzzy sets from fuzzy mathematics
particularly relevant. Consequently, applying fuzzy
mathematical theory and membership functions to assess
health levels is appropriate. The core concept of the fuzzy
theory is the fuzzy set, which allows for the inclusion of
elements with different degrees of belonging. The membership
function is the key tool used to describe the degree to which an
object belongs to a fuzzy set. It maps each object to a real number
between 0 and 1, representing the object’s degree of membership
in the set. When the value is closer to 1, the object belongs more
strongly to the set, while a value closer to 0 indicates a weaker
membership. Referring to the literature (Sun et al., 2016), health
status can be classified into four levels: “Excellent,” “good,”
“moderate,” and “bad.” Eqs 12–15; Figure 3 depict the
membership function of the health level.

M L1( ) �
1 − 3H, 0≤H≤

1
3

0,
1
3
<H

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

FIGURE 2
The network topology with dual power sources.

FIGURE 3
Membership function of health level.
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M L2( ) �

3H, H< 1
3

−3H + 2,
1
3
≤H≤

2
3

0,
2
3
<H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

M L3( ) �

0, H< 1
3

3H − 1,
1
3
≤H< 2

3

−3H + 3,
2
3
≤H≤ 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

M L4( ) �
0, H< 2

3

3H − 2,
2
3
≤H≤ 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

Where H is the health index, M(L1),M(L2),M(L3),M(L4) are
themembership degree of “Excellent”, “Good”, “Moderate” and “Bad”
of health level.

The vector representing health levels is defined as:

V � M L1( ),M L2( ),M L3( ),M L4( )[ ] (16)

When the health index changes gradually within the range of
[0,1], the corresponding health level vector also changes
gradually, reflecting a more nuanced and accurate evaluation
of the health status. The vector ranges from “excellent” to “bad”,
allowing for a more accurate assessment of the health level.

The health levels of equipment and the grid layers obtained
through the methods above can provide a valuable perspective on
distribution network health by integrating various indicator
information and network topology. However, relying on either of
these levels alone may not provide a complete and accurate
assessment of the overall distribution network’s health. Instead,
they provide fuzzy criteria and independent sources of uncertainty
evidence for distribution network health status. In order to obtain a
more comprehensive and accurate distribution network health level,
uncertainty inference and information fusion techniques can be
applied based on the information provided by both the equipment
and grid layer health levels.

D-S evidence theory can handle uncertain information, enabling
the fusion of information among multiple bodies of evidence, which
has also been used in information fusion in the electrical field
(Shafer, 1978; Li et al., 2015). In this paper, we introduce an
improved D-S evidence theory to establish an information fusion

FIGURE 4
Topology diagram of 10 kV distribution network.

TABLE 5 Neural network parameter setting.

Parameter Distribution transformer neural
network

Circuit breaker neural
network

Grid neural
network

Learning rate 0.05 0.05 0.05

Number of iterations 200,000 200,000 200,000

Minimum error threshold 0.0001 0.0001 0.0001

Number of neurons in the input layer 5 6 9

Number of neurons in the first hidden layer 10 12 20

Number of neurons in the second hidden layer 15 15 20

Number of neurons in the output layer 2 2 2
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model for the health level of the equipment layer and the grid layer
to assess the overall health level of the distribution network
comprehensively.

In this paper, an enhanced D-S evidence theory is proposed to
develop an information fusion model for the health level of both
equipment and grid layers, thereby achieving a comprehensive
evaluation of the overall health level of the distribution network.
The implementation process of the improved D-S evidence theory is
outlined below.

Assume thatΘ is a hypothetical space containing all health levels
of the distribution network, in whichM(L1),M(L2),M(L3),M(L4)
are the levels of “excellent,” “good,” “moderate,” and “bad” of the
distribution network health level according to the equipment layer
health index. According to the definition of D-S evidence theory,
Mequip satisfies the following two equations.

Mequip ϕ( ) � 0 (17)
∑
L⊆Θ

Mequip L( ) � 1 (18)

Then the function Mequip is a mass function on this hypothesis
space. Similarly, another mass functionMgrid can be obtained based
on the construction of the grid layer health index.

In Θ, the mass functions Mequip and Mgrid are independent of
each other. According to the definition of D-S evidence theory, they
can be informationally fused to obtain the new mass function
Mnet � Mequip ⊕ Mgrid. The improved synthesis rule is as follows.

Mnet Lk( ) � Mequip Lk( ) × Mgrid Lk( ) + K ×
Mequip Lk( ) +Mgrid Lk( )

2
where k � 1, 2, 3, 4;K � ∑

i≠j
Mequip Li( )Mgrid Lj( ) (19)

The functionMnet can effectively integrate the health assessment
information contained in both the equipment and the power grid
mass functions to obtain the assessment result of distribution
network health levels, presented as a vector Vnet:

Vnet � Mnet L1( ),Mnet L2( ),Mnet L3( ),Mnet L4( )[ ] (20)
This vector reflects the level of the distribution network in terms

of “Excellent,” “Good,” “Moderate,” and “Bad” by integrating
multiple information such as equipment indicators, grid
indicators, and network topology through D-S theory. It realizes
a comprehensive assessment of the smart distribution network’s
health level, which enables self-monitoring and self-diagnosis of the
smart distribution network.

5 Study cases

A 10 kV distribution network is selected for calculation example
analysis, with its network topology shown in Figure 4. The network
comprises 3 circuit breakers and 17 distribution transformers and is
connected to two distributed power sources.

The historical data of this distribution network is exported from
the network information system to train the improved BP neural
network model. 562 sets of transformer historical data, 378 sets of
circuit breaker data, and 124 sets of grid data are divided into
training sets, and testing sets at a ratio of 8:2, respectively. The
parameters of the model are set, as shown in Table 5.

Take the distribution transformer neural network model as an
example to illustrate the model training process. The change
between the loss function and the number of iterations in the
model training process is shown in Figure 5.

It can be seen that the model has good stability and convergence
in the training process, and the training loss tends to be stable when
the iteration reaches 200,000 times.

The higher the health level of the device, the more likely it is to
have equipment failure. When a health index threshold is set, any
equipment with a health index surpassing this threshold is
considered at risk for failure. On the contrary, those below the
threshold are deemed to be functioning normally. In this paper, the
threshold is trained as 0.75. Comparing this criterion with the actual
failure status of the equipment in the test set, we obtain a confusion
matrix, as shown in Table 6.

As seen from Table 6, the accuracy of this judgment method
reaches 91.96%, which means that the health index of the equipment
evaluated by the model can accurately and effectively reflect the
failure potential of the equipment.

Afterward, the real-time values of the grid indicators are
obtained from the operation and information system, as shown
in Table 7.

The grid health neural network model calculates the grid health
index as 0.235647.

Taking the T5 transformer as an example, the corresponding
indicator values of the indicators are extracted from the smart grid
information system, as shown in Table 8.

The health index of this distribution transformer is
0.506836 obtained by the distribution transformer health neural
network model. The equipments models and equipments health
indexes are shown in Table 9 and Figure 6.

FIGURE 5
Training loss curve.

TABLE 6 Confusion matrix.

Judgment as fault Judged as normal

Actually normal 46 4

Actual fault 5 57
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It can be observed from Figure 6 that T13, T5, and CB3 have a
higher health index, indicating that they do not have any
abnormalities, but in poor health. This enables the smart grid to
perform self-diagnosis based on equipment self-monitoring. The
health index of the device layer obtained by the method in this paper
is 0.363,152. According to the membership function, the mass
functions of the equipment and grid layers are obtained, as
shown in the following table.

Table 10 presents the classification of equipment layer health
level, which predominantly falls under the “Good” category.
Meanwhile, the grid layer health level ranges from “Good” to
“Moderate”, with a majority being classified as “Good”. This
highlights the efficacy of utilizing fuzzy evaluation in accurately
reflecting the differences in health level, in contrast to employing

health index interval segmentation. By integrating the fuzzy criteria
derived from both the equipment and grid layers’ health index, the
health level of the distribution network can be determined using an
improved D-S evidence theory model for uncertainty inference and
information fusion, as demonstrated in Table 11.

The distribution network health level vector Vnet is [0.052208,
0.931855, 0.015937, 0]. This vector is a self-diagnosis of the current
health status of the distribution network, reflecting that the overall
health level of the distribution network is mainly at the “Good” level.
Therefore, a maintenance plan could be proposed to enhance the
health level.

The distribution network’s health level can be enhanced by
implementing various improvement options, such as repairing or
replacing equipment and improving the grid condition. For
example, this paper considers three options: repairing CB3,
replacing CB3, and increasing the distributed power penetration
rate from 11.2% to 13.2%. After implementing the first two schemes,
the equipment layer’s health index decreases from 0.363152 to
0.303145 and 0.301278, respectively, while the grid health index
remains unchanged. After implementing the third scheme, the grid
health index decreases from 0.235647 to 0.187692, and the
equipment layer’s health index remains unchanged. Using the
method proposed in this paper, the distribution network’s health
level is calculated after the implementation of each scheme and
presented in Table 12.

TABLE 7 Real-time value of grid indicators.

Category Indicator Real-time value

Grid operation level Maximum line loading rate 63

Maximum transformer loading rate 98

Grid economic efficiency level Capacity load ratio of network 1.9

Rate of high loss distribution transformer 0.03

Grid security level Line insulation rate 25

Automation coverage 86

Grid environmental sustainability level Distributed power penetration 11.2

TABLE 8 Real-time value of distribution transformer indicators.

Indicator Real-time value

Total hydrocarbon content 98 μL/L

Tank temperature difference 92°C

Historical failures times 4

Operating years 13

Maximum load rate 95

TABLE 9 Equipments models.

Equipment no. Equipment model Equipment no. Equipment model

T1 S13-M.RL-315/10 T11 S11-M-50/10

T2 S11-M-250/10 T12 S11-M-30/10

T3 S13-M-200/10 T13 SBH10-100/10

T4 S11-M.RL-200/10 T14 S11-M-160/10

T5 S11-M-200/10 T15 S13-M-200/10

T6 S13-M.RL-315/10 T16 S13-M-100/10

T7 SH15-M-100/10 T17 S11-M.R-250/10

T8 S11-M-80/10 CB1 ZW32-12

T9 S11-M.R-500/10 CB2 ZW8-12

T10 S11-M-250/10 CB3 ZW8-12
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As shown in Table 12, after the implementation of the three
options, the degree of the distribution network health belonging to
the “Excellent” level has increased, and the abnormal state of the
network can be eliminated when CB3 is repaired. Increasing the
penetration rate of distributed power can improve the health level of
the network through the grid layer but cannot eliminate the
abnormalities caused by the equipment layer. It can be seen that an
accurate evaluation of the health level of the distribution network has
been achieved through the proposed method.

From a long and short-term perspective, the indicator system
constructed in this paper can better reflect the impact of different
schemes on the health of the distribution network. If the indicators
related to long-term statistical information of equipment are not
considered, repairing or replacing CB3 can result in the monitoring
data returning to an optimal state. In this case, after implementing both
schemes, the neural network inputs are completely identical, leading to
the same health index, thus failing to reflect the differences between the
two schemes.

In contrast to the interval partitioning method, our proposed
approach in this paper offers a more precise and comprehensive
evaluation of the health status of the distribution network. For
instance, a previous study (Sun et al., 2022) uses four equally sized
intervals to represent four distinct health levels. In cases where the
health levels of the equipment and the grid layers do not match, the
lower of the two levels is deemed as the health level of the distribution

FIGURE 6
Health index of each equipment.

TABLE 10 Mass functions of equipment layer and grid layer.

Health level Excellent Good Moderate Bad

Mequip 0 0.910 544 0.089 456 0

Mgrid 0.293 059 0.706 941 0 0

TABLE 11 Assessment of distribution network health level.

Distribution network health level Excellent Good Moderate Bad

Mnet 0.052 208 0.931 855 0.015 937 0

TABLE 12 Comparison of the effects of different schemes.

Schemes Distribution network health level

Excellent Good Moderate Bad

Primary health level of the distribution network 0.052208 0.931855 0.015937 0

Repairing CB3 0.058231 0.941769 0 0

Replacing CB3 0.092961 0.907039 0 0

Increasing the distributed power penetration rate from 11.2% to 13.2% 0.106455 0.871749 0.021796 0
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network. However, this method fails to reflect the effectiveness of
different improvement schemes, particularly when the health
levels of the two layers are inconsistent. When applied to our
health index results, this approach fails to differentiate the benefits
of our three proposed schemes. Interestingly, we found that the
health levels of the equipment layer were all classified as “Good”
and the health levels of the grid layer were rated as “Excellent”
before and after implementing the three schemes. The health levels
of the distribution network after the original state, repairing CB3,
replacing CB3, and increasing the distributed power penetration
rate from 11.2% to 13.2% are 0.363152, 0.303145, 0.301,278, and
0.363152, respectively, and the health levels are all “Good”. It can
be seen that the ratings method used by SUN et al. (2022) fails to
accurately capture the differences in the effectiveness of the
schemes. To better illustrate the changes in the risk level of the
distribution network after implementing different schemes, we
provide a comparative analysis in Figure 7.

The method presented in this paper allows smart grids to
achieve more accurate self-diagnosis than other methods. This
method provides practical guidance for further self-healing of the
smart grid, helping staff propose and evaluate maintenance and
planning plans. In this way, the method effectively reduces the
fault risk of the smart distribution network and improves the
reliability of the power supply.

6 Conclusion

This paper proposes a novel approach to evaluate the health
level of smart distribution networks based on multivariate
information. Specifically, we construct a comprehensive
indicator system to assess the health of both equipment and
grid layers. We adopt an improved neural network model to
achieve a precise and comprehensive quantitative evaluation of
the individual health status of equipment and grid based on
multiple indicators. Furthermore, we utilize the GO
methodology to determine the likelihood of all loads operating
normally by integrating the single equipment health index with the

network topology, which allows us to obtain the health index of the
equipment layer. Based on the health index of both equipment and
grid layers, we employ fuzzy theory and D-S evidence theory to
present a method for self-diagnosing the health status of smart
distribution networks by evaluating the health level.

The findings of this study can provide valuable theoretical
guidance for the self-healing, operation, and planning of smart
distribution networks. Our proposed approach can be of great
practical significance for maintaining the reliability and stability
of power systems.
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Introduction: Smart grid financial market forecasting is an important topic
in deep learning. The traditional LSTM network is widely used in time series
forecasting because of its ability tomodel and forecast time series data. However,
in long-term time series forecasting, the lack of historical data may lead to a
decline in forecasting performance. This is a difficult problem for traditional LSTM
networks to overcome.

Methods: In this paper, we propose a new deep-learning model to address
this problem. This WOA-CNN-BiLSTMmodel combines bidirectional long short-
term memory network BiLSTM and convolution Advantages of Neural Network
CNN. We replace the traditional LSTM network with a bidirectional long short-
term memory network, BiLSTM, to exploit its ability in capturing long-term
dependencies. It can capture long-term dependencies in time series and is
bidirectional modelling. At the same time, we use a convolutional neural network
(CNN) to extract features of time series data to better represent and capture
patterns and regularity in the data. This method combining BiLSTM and CNN
can learn the characteristics of time series data more comprehensively, thus
improving the accuracy of prediction. Then,to further improve the performance
of the CNN-BiLSTM model, we optimize the model using the whale algorithm
WOA. This algorithm is a new optimization algorithm, which has good global
search ability and convergence speed, and can complete the optimization of the
model in a short time.

Results: Optimizing the CNN-BiLSTM model through the WOA algorithm can
reduce its calculation and training speed, improve the prediction accuracy of
the smart grid financial market, and improve the prediction ability of the smart
grid financial market. Experimental results show that our proposed CNN-BiLSTM
model has better prediction accuracy than other models and can effectively deal
with the problem of missing historical data in long-term sequence forecasting.

Discussion: This provides necessary help for the development of smart
grid financial markets and risk management services, and can promote the
development and growth of the smart grid industry. Our research results
are of great significance in deep learning, and provide an effective method
and idea for solving the financial market forecasting problem of smart grid.
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1 Introduction

Smart grid financial market refers to the market that provides
financial support and risk management services for smart grid
construction and operation through financial means and financial
tools, with smart grid construction and function as the core and
the financial market as the support (Ning et al., 2020). The main
participants of the smart grid financial market include financial
institutions, smart grid enterprises, investors, and government
departments (Ning et al., 2023). The development of a smart grid
financial market can promote the diversification of funding sources
for smart grid construction and operation, reduce the financing cost
of smart grid construction and operation, improve the operational
efficiency and safety of smart grid, promote the deep integration
of smart grid and financial market, and promote the development
and growth of smart grid industry (Xiang et al., 2019). The main
business of the smart grid financial market includes: Smart grid
project financing. Smart grid asset securitization. Smart grid
risk management. Smart grid investment. Smart grid financial
innovation. Among them, smart grid asset securitization is one
of the important businesses of the smart grid financial market.
Packaging smart grid assets into securitized products attracts more
investors to participate in smart grid construction and operation to
improve the smart grid’s financing and capital utilization efficiency.
In short, developing a smart grid financial market will provide
more comprehensive and diversified funding sources and risk
management services for smart grid construction and operation and
promote the development and growth of the smart grid industry.
There is a wide variety of smart grid financial market forecasting
models, mainly using this model for time series forecasting (Li et al.,
2017). The following is a brief overview of some of the models
commonly used for smart grid financial market forecasting:

Time series models: ARIMA (Huang et al., 2023), SARIMA
(Song et al., 2020), VAR model Cai et al. (2021), etc. These
traditional time series models are better for modelling linear
relationships, but for modelling nonlinear relationships These
traditional time series models are better for modelling linear
relations but weaker for modelling nonlinear relations. They need to
rely on the assumptions of smoothness and periodicity of time series
data, and if these assumptions do not hold, the prediction effect of
the models may be affected.

Next, there are neural network models Song et al. (2021):
BP neural network Zahid et al. (2019), RBF neural network
Hammami et al. (2020) and CNN neural network Zhang et al.
(2019), etc.; neural network models can model nonlinear
relationships but require a large amount of data for training, and
the model is poorly interpretable, making it difficult to explain the
decision-making process of themodel, while neural networkmodels
are prone to the problem of overfitting and require hyperparameter
adjustment and regularization, etc.;

Models of machine learning: decision trees Fan et al. (2023),
random forests Lin et al. (2020), support vector machines Dai
and Zhao (2020), etc. Machine learning models can model
nonlinear relationships but require feature engineering to extract

useful features. Also, require processing such as hyperparameter
adjustment and regularization, and the models are poorly
interpretable, making it difficult to explain the decision-making
process of the models;

Deep learning-based models: recurrent neural networks Lu
and Hong (2019) and long and short-term memory networks
Wu et al. (2022), etc. Deep learning-based models can model
nonlinear relationships while automatically extracting features, but
they require a large amount of data for training, and the models
are poorly interpretable, making it difficult to explain the decision
process of the model and also prone to overfitting problems;

Bayesian network model Bessani et al. (2020):Bayesian network
model can model nonlinear relationships and simultaneously
deal with uncertainty. Still, it requires learning Bayesian network
structure and estimating parameters, which is more difficult. At the
same time, the interpretability of the model could be better, and it is
difficult to explain the model’s decision-making process.

At this stage, the widely used and effective temporal prediction
model is the long short-term memory network LSTM Chen et al.
(2022). Long short-term memory network (LSTM) is a commonly
used time-series forecasting model, which can capture important
features and trends in a sequence by modelling the long-term
dependence of sequence data. However, LSTM models have
problems, such as poor processing for long series and poor
interpretability.This paper proposes a temporal sequence prediction
model based on a bi-directional long and short-term memory
network (BiLSTM) to solve these problems. The BiLSTM model
adds a reverse layer to the LSTM model, which can better handle
contextual information. The bi-directional model can consider past
and future information when processing sequence data, making
the model capture features and trends in the sequence more
accurately. At the same time, the BiLSTM model also has better
interpretability, which can help users better understand the model’s
decision process. To further improve the model prediction accuracy
and reduce the training time and computation, this paper adopts the
Whale Algorithm (WOA) to optimize the CNN-BiLSTM network.
The WOA algorithm is an emerging optimization algorithm
that finds the optimal solution by simulating whales’ foraging
behaviour. The WOA algorithm has a faster convergence speed
and stronger global search capability than traditional optimization
algorithms. In this paper, the WOA algorithm is applied to the
optimization of the CNN-BiLSTM network to optimize the model’s
prediction effect by adjusting the network’s weights and biases.
The experimental results show that the CNN-BiLSTM model
optimized with the BiLSTM model and WOA algorithm achieves
better performance in temporal sequence prediction. The model
can accurately capture the features and trends in the sequences
and has better interpretability and higher prediction accuracy. At
the same time, the training time and computational effort of the
optimized model using the WOA algorithm are effectively reduced,
which helps to improve the practicality and application value of the
model.

In the rest of this paper, we present recent related work
in Section 2. Section 1 offers our proposed methods: overview,
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convolutional neural network, bi-directional long and short-term
memory network BiLSTM, and WOA whale algorithm. Section 4
presents the experimental part, including practical details and
comparative experiments. Section 5 concludes.

2 Related work

2.1 VAR model

The VAR model is a Vector Autoregression Model (VAR). It
is a widely used method for time series analysis to explore the
dynamics between a set of correlated variables. The VAR model
assumes that the current value of each variable is correlated with
the past matters and the current values of the other variables He
and Ye (2022). In the VAR model, each variable is modeled as a
linear combination of the other variables.The core idea of themodel
is to predict the values of multiple variables at the current point
in time from the importance of various variables at the past point
in time. Zhang et al. (2023) proposed an enterprise supply chain
management system based on deep learning and game theory, and
achieved good results, further reducing the financial risk and carbon
emissions of enterprises.Thus, theVARmodel can be used to predict
future values of one variable andmultiple variables. VARmodels can
be applied in various fields, such as economics, finance,meteorology,
etc., to analyze the relationship between variables and future
trends.

2.2 BP neural network

BP neural network is a common artificial neural network called
back propagation neural network, which is usually used to solve
classification and regression problems. BP neural network is a
directed graph that consists of an input layer, an output layer, and at
least one hidden layer. In the network, each neuron is connected to
all neurons in the previous layer, and each connection has a weight.
The BP algorithm adjusts the weights by backpropagation error to
make the network output results closer to the actual results Li et al.
(2023).

The training process of the BP neural network is usually divided
into two stages: forward propagation and backward propagation. In
the forward propagation process, the input signal reaches the output
layer from the input layer through the hidden layer and generates
the network output result. The error between the network output
result and the actual result is calculated in the backpropagation
process. The error is propagated backward from the output layer to
the input layer. Finally, the weight of each connection is adjusted
to reduce the error. BP neural networks have many applications,
such as image recognition, natural language processing, speech
recognition, financial prediction, and other fields. However, the
training process of BP neural networks usually requires a lot
of computational resources and time and is prone to overfitting
problems. In recent years, significant breakthroughs have been
made in developing deep learning technology, and deep neural
networks have become important tools for various application
areas.

2.3 Bayesian Network

Bayesian Network (BN) is a probabilistic graphical model
for representing probabilistic dependencies between variables. It
usually uses directed acyclic graphs (DAGs) to define conditional
dependencies between variables. Each node represents a variable,
and each edge represents a conditional probability.The combination
of nodes and edges forms a directed acyclic graph Bessani et al.
(2020). Bayesian network models have two types of nodes: random
variable nodes and parameter nodes. The random variable nodes
represent the variables in the model, and the parameter nodes
represent the parameters in the model, such as the mean and
variance. Each random variable node has a conditional probability
distribution that represents the probability distribution of that node
given its parent node. In Bayesian networks, we can use Bayes’
theorem to compute the posterior probabilities. Suppose we want
to calculate the probability distribution of a variable given certain
conditions of evidence; we can use Bayes’ formula to do so.

Bayesian networks can be used in various applications such
as risk assessment, medical diagnosis, financial analysis, natural
language processing, etc. It has the advantages of simple modeling,
good interpretability, and good generalization ability.

3 Methodology

In this paper, we use the WOA-CNN-BiLSTM model to predict
changes in the financial market of smart grids, first combining the
advantages of the CNN and BiLSTM models to incorporate into the
CNN-BiLSTM model. Using the WOA whale algorithm to optimize
the model and finally integrating it into the WOA-CNN-BiLSTM
model, after training, the model is used to predict the financial
market of the smart grid; the overall flow of the model is shown in
Figure 1:

After the data input in Figure 1 enters the CNN module,
extracting the text’s key features with the help of the CNN network
elements, then passes through the Dropout layer to avoid overfitting
the neural network. The obtained characteristics are fed into the
bidirectional long and short-term memory network to get the
temporal information of the text for the prediction of the smart grid
financial market. Then it is processed by the fully connected layer
and normalization, optimized by the WOA layer, and finally, the
prediction results are output.

3.1 CNN model

Convolutional Neural Network (CNN) is a deep learning
algorithm commonly used in image recognition, computer vision,
natural language processing, etc Yang et al. (2023).Themain features
of CNN are its ability to automatically extract features from data and
its parameter sharing and sparse connectivity. It consists of several
convolutional, pooling, and fully connected layers (Cheng et al.,
2023). In the convolutional layer, CNN extracts the features of an
image by convolving the input data using a convolutional kernel.
In the pooling layer, the CNN improves the features’ robustness
by reducing the feature map’s size. Finally, in the fully connected
layer, CNN classifies the pooled feature maps by feeding them into a
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FIGURE 1
Overall flow chart of WOA-CNN-BiLSTM network.

fully connected neural network. A flowchart of the CNN network is
shown in Figure 2:

CNNcan effectively reduce the number of parameters in a neural
network and avoid the phenomenon of overfitting, thus improving
themodel’s generalization ability. In addition, CNNs can also quickly
build models with powerful recognition capabilities through pre-
training techniques andmigration learning. One-dimensional CNN
has the same structure and processing method as multidimensional
CNN. Still, the difference lies in the number of dimensions of the
input data and the way the convolution kernel slides over the data.

Y (i) =
m

∑
n=1
(xn ×ω

i
n) + c

i (1)

where: i is the serial number of the convolution kernel, c is the bias
of the convolution kernel, Y(i) is the result of the ith convolution
operation, x is the input data, ω is the corresponding weight, n is the
dimension of the input data.

3.2 BiLSTM model

BiLSTM (Bidirectional Long Short-Term Memory) is a bi-
directional recurrent neural network model that combines the
advantages of LSTM (Long Short-Term Memory) and a bi-
directional recurrent neural network. BiLSTM model can consider
both forward and backward contextual information, thus better
capturing the long-term dependencies in the sequence. The flow
chart of the BiLSTM model is shown in Figure 3:

The input to the BiLSTM model is a sequence, and each element
is a vector. Each piece is fed into an LSTM cell for processing
in the model. The LSTM cell can remember the previous state
and update the state and output based on the current and last
input. In the BiLSTM model, each element is fed into two LSTM
units: a forward LSTM unit and a backward LSTM unit. The bold
LSTM cell starts processing from the first element of the sequence
Munawar et al. (2022), and the back LSTM cell starts processing
from the last part. Ultimately, the output of the BiLSTM model is
a stitching of the results of the forward and backward LSTM units.
The BiLSTM model performs well in natural language processing
tasks like sentiment analysis, named entity recognition, machine
translation, etc.

BiLSTM is used to extract periodic features from the load data,
and the BiLSTM network is used to calculate the forward and
backward propagation states, respectively, as follows:

h⃗ f = LSTM(xt, h⃗ f−1) (2)

h⃖b = LSTM(xt, h⃖b−1) (3)

ht =W f h⃗t +Wbh̄t +Ct (4)

Where: h⃗ f is the hidden layer state of the tth cell of forward
propagation;Xt is the input at the currentmoment; h⃗ f−1 is the hidden
layer state of the last cell of forward propagation; h⃖b is the hidden
layer state of the t th cell of backward propagation; h⃖b−1 is the hidden
layer state of the previous cell of back propagation;Wf is the hidden
layer output weight matrix of the forward propagation cell;Wb is the
hidden layer output weight matrix of the backward propagation cell;
Ct is the current moment hidden layer bias optimization parameter.

3.3 WOA whale algorithm

The WOA (Whale Optimization Algorithm) whale algorithm
is an optimization algorithm based on the behavior of whale
populations, proposed by Mirjalili et al., in 2016. The algorithm
simulates the food-seeking behavior of a whale population and
searches for the optimal solution through continuous search and
iterationAdetunji et al. (2020).The basic idea of theWOAalgorithm
is to divide thewhale population into three categories: leader whales,
follower whales, and peripheral whales. The leader whales are the
individuals with the optimal solution in the whole group, and
their positions and fitness values play a decisive role in the search
direction of the entire group. The follower whales update their posts
by imitating the behavior of the leader whales, while the peripheral
whales search for a better solution by random search (Zhu et al.,
2020).

First, for the whale to surround the prey before spitting bubbles,
swimming in a straight line, the individual whale tends to the
optimal personal position, a certain range of space for the roundup;
the formula is as follows:

D⃗ = ‖C ⋅XP (t) −X (t)‖ , (5)
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FIGURE 2
CNN network operation flow chart (This article uses one-dimensional convolution, after two convolutions and pooling, and finally output through the
fully connected layer).

FIGURE 3
Flow chart of two-way long and short-term memory network (This article uses a two-way structure, which can better identify past and future texts and
improve prediction accuracy).

X (t+ 1) = XP (t) −A ⋅ D⃗, (6)

A = a (2r) − 1, (7)

a = 2− 2(t/tmax) , (8)

C = 2r, r ∈ (0,1) , (9)

Where: D⃗ is the distance between the individual X(t) and the
optimal individual XP(t) within the population at time t; A,C is a
vector of random coefficients, showing the difference in perceived
distance between whale individuals within the population, and this
search A ∈ [−1,1], which limits the search space; a is the iteration
factor of the algorithm as a whole, through the algorithm global.

Another whale predation model is bubble spitting predation, an
optimization algorithm based on the behavior of whale populations.
First, the distance between each individual within the people and the
optimal individual is calculated and then constrained according to
the mathematical modeling formula of spitting bubbles. Then, the
search space is restricted to the helix according to the idea of local

search to find the optimal solution. The bubble helix modeling is
shown in Figure 4:

The search formula for this mechanism is as follows:

D⃗′ = |XP (t) −X (t)| , (10)

X (t+ 1) = D⃗rebl cos (2πl) +XP (t) (11)

D⃗′ determines the shape of the spiral curve, where I is a random
number in the range of [-1, 1].The above two predation and foraging
strategies occur asynchronously among individual whales, eachwith
a probability of 0.5. When the perceived distance control parameter
|A| is greater than 1, the whales will randomly search for each
other based on their positions using the same formulation used
for bubble net hunting. The WOA algorithm has the advantage of
high convergence speed and global search capability and is suitable
for solving various optimization problems. However, the algorithm
also has some disadvantages, such as the tendency to fall into
local optimal solutions and high parameter sensitivity (Nazari et al.,
2020).
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FIGURE 4
WOA helix position search range.

4 Experiment

4.1 Datasets

Based on the characteristics of the smart grid financial market,
this paper selected four datasets Smart grid control systems (SGCSs)
datasets, National Renewable Energy Laboratory (NREL), Dow
Jones and S&P 500, one directly from the smart grid financial
market, one from the energy market and two from the financial
market.

Smart Grid Control Systems (SGCS) are advanced computer-
based systems that helpmanage and control the gridmore efficiently
Ben Youssef (2022). They use modern communication technologies
and advanced analytics to monitor the grid’s performance and
make real-time adjustments to optimize energy delivery. SGCSs
are designed to provide a range of features, including: Monitoring
and controlling tides: SGCSs are equipped with sensors and smart
meters that allow them to monitor energy flows in real-time.
They can detect interruptions or anomalies and adjust the power
flow to minimize consumer impact. Demand Response: SGCS can
help manage peak demand by encouraging consumers to shift
their usage to off-peak hours. They can also prioritize certain
areas of the grid to prevent outages or power drops. Renewable
energy grid integration: SGCS can manage renewable energy grid
integration. This allows for more efficient use of renewable energy
sources and reduces reliance on traditional power sources. Fault
detection and isolation: SGCS can detect faults in the grid and
isolate affected areas to prevent cascading faults and widespread

outages. AssetManagement: SGCSmonitors the health of grid assets
and predicts maintenance needs to reduce downtime and improve
reliability.

Overall, SGCSs play a key role in ensuring the reliability and
efficiency of the modern grid. They are important for managing the
transition to a more sustainable renewable energy future.

The National Renewable Energy Laboratory (NREL) is a
research laboratory in Golden, Colorado, United States, dedicated
to developing and disseminating renewable energy and energy
efficiency technologies Singh and Mahajan (2021). It is part of the
U.S. Department of Energy’s (DOE) National Laboratory Network.
NREL’s research activities cover a wide range of renewable energy
and energy efficiency areas, including solar, wind, geothermal,
hydrogen, fuel cells, energy storage, bioenergy, and advanced
manufacturing. The laboratory conducts research in materials
science, engineering, and technology development, as well as
analysis and modeling of renewable energy systems and markets.
NREL also operates several test and evaluation facilities, including
the National Wind Energy Technology Center, the National
BioenergyCenter, and the Energy Systems Integration Facility.These
facilities enable researchers and industry partners to test and validate
new renewable energy technologies under realistic conditions.
In addition to its research activities, NREL provides technical
assistance and information to help individuals, businesses, and
government agencies adopt renewable energy and energy efficiency
technologies. This includes training and workshops, developing
tools and resources, and providing technical support for renewable
energy projects.
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TABLE 1 Key indicators of smart grid investment.

Index Code Variable Categories

Index 1 X1 Smart Grid Market Scale Growth Trend Financial Indicators

Index 2 X2 Smart Grid Company Revenue Financial Indicators

Index 3 X3 Smart Grid Company Profit Financial Indicators

Index 4 X4 Policy Changes Policy Environment

Index 5 X5 Technology Innovation Progress Competitive Landscape

Index 6 X6 Competitive Landscape Competitive Landscape

Index 7 X7 Consumer Demand Consumer Demand

Index 8 X8 Market Share Consumer Demand

Index 9 X9 User Feedback Consumer Demand

Index 10 X10 Energy Price Volatility Energy Prices

Index 11 X11 Global Economic Situation International Market

Index 12 X12 International Trade Policy International Market

Overall, NREL is a key player in developing and diffusing
renewable energy and energy efficiency technologies in the United
States and worldwide.

The Dow Jones Index, also known as the Dow Jones Industrial
Average (Dow Jones), is a stock market index created by Dow Jones
& Company in 1896 Metlek (2022). It is one of the indices used to
reflect the overall situation of the U.S. stock market and is one of
the world’s most famous stock market indices. The Dow Jones Index
consists of 30 stocks of publicly traded companies representing the
major sectors of the U.S. economy. These companies cover various
industries, such as finance, retail, manufacturing, and energy, and
include large, well-known U.S. companies such as Apple, Microsoft,
and Coca-Cola. At the end of each trading day, the gains and losses
of the Dow Jones are widely reported and become one of the key
indicators of market conditions. It is important to note that the Dow
Jones does not represent the entire U.S. stock market, as it only
selects 30 stocks and is based on a price-weighted index, meaning
that companies with higher stock prices have a greater impact on the
index. Therefore, some believe that the S&P 500 is a better reflection
of the overall U.S. stock market.

The S&P 500 Index (S&P 500 Index) is a stock market index
compiled by Standard & Poor’s, which selects a sample of 500 large
U.S. companies, including companies in various industries from
NASDAQ to NYSE, to reflect the overall U.S Bera et al. (2020). stock
market. The S&P 500 is a market capitalization-weighted index
calculated by adding up the market capitalization of each company
and then assigning index weights proportionally. This calculation
method allows companies with larger market capitalizations to have
a greater impact on the index, while companies with smaller market
capitalizations have a smaller effect on the index.The S&P 500 is one
of the most representative indices of the U.S. stock market and one
of the world’s most famous stock market indices. It is widely used in
investmentmanagement, stockmarket analysis, and asset allocation.
The S&P 500 is also the reference index for many funds, exchange-
traded funds (ETFs), and financial derivatives, and investors can
track the index’s performance by purchasing funds or ETFs.

Smart grid financial market forecast indicators can involve
several aspects: such as smart grid market size, policy environment,
technological innovation, competitive landscape, consumer
demand, energy prices, global economic situation, and seven
categories of primary indicators, which can be divided into several
secondary hands, in Table 1, this paper selects the indicators of
which, as the input variables of the model.

4.2 Experimental setup and details

To test the running effectiveness of our models, we choose
three baseline models, LSTM, CNN-LSTM, CNN-BiLSTM, and five
innovative models Bit et al., Dia et al. Then we also test the accuracy
and recall (Precision & Recall) of different models; the model’s
prediction accuracy is one of the important indicators of the model,
which can be a good measure of the model’s performance. Secondly,
we will also compare the lift value and the amount of operations
Flops (G) of different models; the larger the lift (lift index), the
better the model. The smaller the value of Flops(G), the less the
number of text processed by the model, and the faster the training
and computing speed. Finally, we compare differentmodels’ stability
index (population stability index), PSI, on other datasets.

4.3 Experimental results and analysis

In Figure 5, we compare the inference speed of different models
in two simple datasets, Dow Jones for dataset 1 and S&P 500 for
dataset 2. In Figure 5, we compare the inference speed of LSTM
Stryczek and Natkaniec (2023) and CNN-LSTM Kuyumani et al.
(2023): CNN-BiLSTM Yanmei et al. (2023) and our model for
different amounts of historical data. Similarly, in Fig. b, we compare
the inference speed of Bitirgen and Filik (2023), Diaba and Elmusrati
(2023), BiLSTM, CNN-LSTM, Bit et al., and our model for a total of
six models, and the results show that our model outperforms the
other models in terms of inference speed, both in dataset 1 and in
dataset 2.

Figure 6 compares the inference speed of different models in
more complex datasets. The ability to handle complex datasets is
one of the important metrics of time series forecasting models,
where Figure 6A compares the number of inferences of fourmodels,
LSTM, CNN-LSTM, Bit et al., and ourmodel in dataset 3, Figure 6B
compares the number of assumptions of three models, LSTM,
CNN-LSTM, CNN-BiLSTM and our model in dataset 3, Figure 6C
compares the number of inferences of three models, Bit et al. CNN-
BiLSTM and our model for different historical data on dataset 3.
Figure 6C reaches the inference speed of Bit et al., Dia et al., and
Dairi et al. (2023). The results show that the inference speed of our
model is still faster than other models in complex datasets, showing
good generalization.

In Figure 7, we compare the accuracy and Recall of different
models for different data, where accuracy is the ratio of the number
of relevant documents retrieved to the total number of records
retrieved, which measures the accuracy of the retrieval system. The
Recall is the ratio of the number of relevant documents retrieved
to the total number of relevant documents in the document library,
which measures the completeness of the retrieval system. Both
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FIGURE 5
Comparison of inference speed of different models in different datasets (Dataset 1 is the Dow Jones index (Dow Jones), and dataset 2 is the S & P 500
index (S & P 500), both of which are simpler datasets because they have only financial variables, (A,B) are from data set 1, (C,D) from Dataset 2).

values are between 0 and 1; the closer the matter is to 1, the
higher the accuracy or completeness rate. In Figure 7A, we compare
the Precision and Recall (Precision & Recall) of LSTM, CNN-
LSTM, CNN-BiLSTM, Bit et al., and in Figure 7B, we compare the
Precision and Recall (Precision & Recall) of LSTM, CNN-LSTM,
CNN-BiLSTM, Bit et al., Dia et al., Dairi et al., Shanmugapriya and
Baskaran (2023), Nazir et al. (2023) and our models on Dataset 3
andDataset 4. Recall).The results show that the Precision and Recall
(Precision&Recall) of ourmodel, in all four datasets, are better than
the other models, showing strong generalization and accuracy.

In Figure 8, we compare the amount of operations Flops (G)
of different models; the size of the functions of a model is one
of the important indicators of model performance. Therefore,
we compare the LSTM, CNN-LSTM, CNN-BiLSTM, Bit et al.,
and Dia et al. The results show that after the feature extraction
of CNN and the optimization of the WOA whale algorithm,
our model’s operations are significantly reduced compared with
other models, which means that our model’s training time and
prediction time can be shorter. The performance of our model
is This means that our model’s training time and forecast time

can be faster, and the version of our model is better than other
models.

In Figure 9, we compare the Lift values of different models,
and the lift metric is more intuitive and easy to understand in
practical applications. It can be used to measure the effectiveness
of a model for a specific group of a certain size based on business
requirements. In a given scenario, the binary classification model
has a random rate, representing the probability of an unexpectedly
positive response or the proportion of actual positive samples to
the entire piece (equivalent to empirical data). With a classification
model, the population can be effectively targeted. ”Valid” means
that the proportion of positive observations in the top ranking
(e.g., top 0.1) is higher than the random rate when all words are
ranked in descending order of predicted probability. Boosting can
be calculated as the proportion of positive observations among the
top comments to the random rate.The numerator is the capture rate.
The higher the lift value, the better the performance of themodel.X-
axis numbers 1 to 9 represent thismodel LSTM, CNN-LSTM, CNN-
BiLSTM, Bit et al., Dia et al., Dairi et al., Sha et al., Nazet al., and our
model, respectively. The results show that the lift value of our model
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FIGURE 6
Comparison of inference speed of different models in different datasets (dataset 3 is Smart grid control systems (SGCSs) datasets, and dataset 4 is
National Renewable Energy Laboratory (NREL) datasets, because these two datasets contain indicators of the policy environment, technological
innovation, competitive landscape, consumer demand, energy prices, etc., and are therefore more complex datasets, (A,B) are from data set 3, (C,D)
from Dataset 4).

FIGURE 7
Comparison of Recall Precision values for different models in different datasets (Dataset 1 is Dow Jones, Dataset 2 is S & P 500, Dataset 3 is Smart grid
control systems (SGCSs) datasets, Dataset 4 is National Renewable Energy Laboratory (NREL) datasets, (A) are from data set 1 and 2, (B) from Dataset 3
and 4).
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FIGURE 8
Comparison of different models in different datasets (Dataset 1 is Dow Jones, Dataset 2 is S&P 500, Dataset 3 is Smart grid control systems (SGCSs)
datasets, Dataset 4 is National Renewable Energy Laboratory (NREL) datasets).

is significantly higher in four different data sets. The results show
that our model has substantially higher Lift values in four different
data sets than the othermodels, whichmeans that ourmodel has the
”better” predictive power and the model best runs.

This is the flow chart of the model Algorithm 1; first input the
historical data of the smart grid financial market, preprocess and
normalize the data at the data input layer, and then put the data set
into a one-dimensional CNNunit for feature Extract and process the
data set to reduce the dimensionality, and then input the feature data

into the BiLSTM layer to learn the historical data of the smart grid
financial market, and then optimize the WOA whale algorithm to
obtain the optimal parameters of the model, improve the accuracy
of prediction, and increase the reasoning time, and finally output the
predicted value.

In Figure 10, we use a scatter plot to more visually compare
the PSI values of our model when the number of inferences varies.
The sample stability index (PSI) is commonly used to measure the
stability of a sample. For example, if the model is stable between
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FIGURE 9
Comparison of Lift values for different models (The lift curve measures how much ”better” the model is at predicting compared to not using the model;
the larger the lift, the better the model runs.

FIGURE 10
Comparison of population stability index, PSI for different models on different datasets (dataset 1 is Dow Jones, dataset 2 is S&P 500, dataset 3 is Smart
grid control systems (SGCSs) datasets, and National Renewable Energy Laboratory (NREL) datasets for dataset 4).
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TABLE 2 A comparison of different models.

Model Time (Second) ↓ Flops(G) ↑ Recal ↑ Precision ↑ Lift ↑ PSI ↓

LSTM Stryczek and Natkaniec (2023) 0.31 144.5 0.875 0.892 1 0.42

CNN-LSTM Kuyumani et al. (2023) 0.24 119.1 0.902 0.921 2.1 0.33

CNN-BiLSTM Yanmei et al. (2023) 0.14 112.3 0.951 0.966 3.4 0.28

Bitirgen and Filik (2023) 0.32 168.1 0.934 0.945 3.5 0.34

Diaba and Elmusrati (2023) 0.23 99.5 0.892 0.923 2.9 0.24

Dairi et al. (2023) 0.22 136.1 0.832 0.854 4.4 0.21

Shanmugapriya and Baskaran (2023) 0.20 156.4 0.841 0.862 3.2 0.23

Nazet al. Nazir et al. (2023) 0.15 176.2 0.881 0.911 1.4 0.12

Ours 0.12 95.32 0.964 0.984 5.6 0.10

Algorithm 1. Algorithmic representation of the training process in this paper.

2 months, a PSI value of less than 0.1 for a variable indicates
that the change is less significant. If the PSI value is between
0.1 and 0.25, it means a more substantial change. If the PSI
value is greater than 0.25, the variable changes more dramatically
and requires special attention. As can be seen from the figure,
even with a higher number of inferences, the stability of our
model’s operation still has a better performance compared to other
models, and the strength of our model has a good performance
in different data sets, which is due to the high convergence speed
and global search capability of the Whale Algorithm (WOA),
and after optimization using the Whale Algorithm (WOA), the
operation of our model’s stability is significantly better than other
models.

Table 2 compares the accuracy, computation, and parameter
size of the models mentioned in the paper with our model. The
table shows that our model has significant advantages in these
aspects.

5 Conclusion and discussion

This paper uses a WOA-based CNN-BiLSTM model to predict
the smart grid financial market. Firstly, it is determined that
the long short-term memory network model (LSTM), which

performs better in long-term prediction, is used. Then, the bi-
directional long short-term memory network model (BiLSTM)
to consider both forward and backward contextual information
is more applicable for the smart grid financial market, and then
the one-dimensional CNN network is selected by combining the
feature selection characteristics of convolutional neural network
(CNN) for historical data filtering, optimizing the input data of
BiLSTM for shorter training time, faster prediction, and higher
accuracy of prophecy, and finally the Whale Algorithm (WOA)
with higher convergence speed and global search capability,
which is suitable for solving a variety of optimization problems.
Combining it with the CNN- BiLSTM model, the advantages
of WOA can effectively solve the problem of missing historical
data that may occur in the BiLSTM network in the prediction
of long time series, which leads to the reduction of prediction
accuracy, and also has the advantages of speeding up the model
operation, improving the AUC value and reducing the operation
volume.

The contribution points of this paper are as follows.

• Compared with traditional time series models, our model has
improved the prediction accuracy of the smart grid financial
market due to the inherent advantages of deep learning models
and the optimization of other models.

• Compared with neural network models such as BP neural
network, RBF neural network, and CNN neural network, our
model is much more interpretable. With the dimensionality
reduction of the CNN network, our model is much less
computationally intensive than neural network models.

• Compared with deep learning models, including recurrent
neural networks and long and short-term memory
networks, etc., our model can avoid the problem of
missing historical data when dealing with a large amount
of historical data, thus improving the model’s prediction
accuracy.

At the same time, the method in this paper still has some
limitations; compared with other deep learning algorithms, its
training speed is greatly accelerated, but the reduction of computing
is not very obvious at the same time because this paper combines
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threemodels, the overall structure of themodel framework has some
complex, for the above problems, our sub-module test comparison,
continue to optimize each module, compared with other deep
learning algorithms. Based on the LSTMmodel, we look formodules
that are more suitable for solving the smart grid financial market
prediction.

Smart grid financial market prediction also helps to promote
the rapid development of smart grid-related industries. With the
rapid changes in the energy industry, smart grid technologies and
solutions have become the focus of many companies Li et al. (2020);
? The rapid development of this technology has brought a lot of
investment opportunities and business opportunities, but there are
also certain investment risks. By forecasting the smart grid financial
market, investors can better understand the risks and opportunities
of the market and develop investment strategies accordingly. For
example, predicting future market demand and supply conditions
can help investors decide which areas are more promising and
which should be avoided. Policymakers can use financial market
forecasts to facilitate the rapid development of smart grids. Policy-
making requires understanding market demand and conditions and
forecasting future market trends to develop appropriate policies and
measures. By predicting the direction of the smart grid financial
market, policymakers can better plan future policies to promote
industry development. Entrepreneurs can use financial market
forecasts to adjust their strategies and investments to adapt to future
market changes. For example, based on market forecasts, companies
can decide whether to enter a new market, adopt a new marketing
strategy, or adjust their product lines.

In summary, smart grid financial market forecasting is
important for promoting the sustainable development of smart
grids. Ourwork can help investors, policymakers, and entrepreneurs
better understandmarket trends and future directions tomakemore
informed decisions and promote the rapid development of the smart
grid industry.
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In a distribution system, sparse reliable samples and inconsistent fault
characteristics always appear in the dataset of neural network fault detection
models because of high impedance fault (HIF) and system structural changes.
In this paper, we present an algorithm called Generative Adversarial Networks
(GAN) based on the Reptile Algorithm (GANRA) for generating fault data and
propose an evolution strategy based on GANRA to assist the fault detection of
neural networks. First, theGANRA generates enough high-quality analogous fault
data to solve a shortage of realistic fault data for the fault detection model’s
training. Second, an evolution strategy is proposed to help the GANRA improve
the fault detection neural network’s accuracy and generalization by searching
for GAN’s initial parameters. Finally, Convolutional Neural Network (CNN) is
considered as the identification fault model in simulation experiments to verify
the validity of the evolution strategy and the GANRA under the HIF environment.
The results show that the GANRA can optimize the initial parameters of
GAN and effectively reduce the calculation time, the sample size, and the
number of learning iterations needed for dataset generation in the new grid
structures.

KEYWORDS

generative adversarial networks, few sample, Reptile algorithm, meta learning, high
impedance fault, evolution strategy

1 Introduction

The pole-to-ground faults are the most likely short-circuit faults in distribution
systems, which are mainly caused by insulation degradation. The pole-to-ground faults
can be either low impedance faults or high impedance faults (HIFs) depending on the
grounding impedance (Xi et al., 2021). The pole-to-pole faults are generally low impedance
faults and more easily to be found (Salomonsson et al., 2007). Under the HIFs, the
fault current is not sufficient to trip the overcurrent relays due to high grounding
impedance. The typical zero-sequence voltage waveforms of high impedance fault and low
impedance fault is shown in Figure 1A. Therefore, a better way to prompt HIFs should
be proposed. Recently, the applications of neural networks in a HIF detection model,
especially in the distribution system, are widely reported. Flauzino et al. (2006) propose
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a model for discriminating HIF by combining artificial neural
networks (ANN) with several statistical techniques. But it mainly
focuses on designing practical applications, and the details of
ANN are ignored. Ye et al. (2016) discuss a distribution system
faults’ classification by combining a traditional BP neural network
with wavelet packet technology. However, this conventional neural
network is used less due to the low training speed and complex
connection. Considering these shortcomings of traditional BP
neural networks; Zhang (2018) uses Convolutional Neural Network
(CNN) as the HIF detection model and exploits the hidden
characteristics from the decomposition of the HIF waveform
to develop CNN’s classification capability. CNN is considered
to be promising as the identification fault model because of
its good performance in reducing training time and connection
complexity.

Applying neural networks in distribution system fault detection
provides new possibilities for improving fault detection accuracy
and even detecting faults with obscure characteristics (such asminor
current faults). However, the particularity of small probability faults
and frequent changes in the distribution system grid structure
(Geng et al., 2013) directly lead to a shortage of reliable training
data, which limits the practical application scope of neural networks.
In recent literature, some solutions have been proposed for the
above defects. In emphasizing hidden fault features, Wan and Zhao
(2018) use Hilbert-Huang transform with wavelet packet transform
preprocessing (WPT-HHT) to process the transient zero-sequence
current. In solving the problem of rare realistic data, Xie (2019)
restores a relatively accurate PSCAD customized model based on
the summer real grid operation mode to increase the number
of reliable samples. Nevertheless, the simulation samples cannot
always fit a frequently changed system. Usually, the regular updating
of the simulation model is hard to keep up with the positive
changes in the natural system; Wang (2020) proposes a virtual fault
sample generation method based on a multiple up-down sampling
procedure to expand the dataset and avoid the above problems.
However, this method can analyze a few types of faults, and its
generalizability remains to be verified. It is uncertain whether
a fault with unprecedented characteristics can be generated. In
addition;Wang (2020) ignores that such generationmethods require
a large amount of data for data feature extraction, which is contrary
to practical engineering situations. Hence; Zhang and Su (2022)
propose an algorithm that applies Knowledge Graph Variational
Auto-encoders (KG-VAE) to create samples from unknown data
tags. And (Goodfellow et al., 2014) propose Generative Adversarial
Networks (GAN) to extract data features from a small dataset. The
generative model is pitted against an adversary in the proposed
adversarial nets framework.

The above solutions try to expand the training dataset’s size and
improve the generated data’s quality. But these solutions consider less
in terms of generalization, and lots of their neural networks choose
initial parameters randomly instead of finding how to optimize the
initial parameters of the neural networks. Admittedly, randomizing
the initial parameters has advantages, for it ensures that the model
under various initial parameter settings is considered. However,
optimizing the initial parameters of the neural networks can improve
the speed and quality of sample generation.

Optimizing the initial parameters of GAN is similar to
determining a valuable search space before the gradient descent

search. It means that when the application scenario changes, the
model can quickly learn a new task based on the “knowledge” it
already has. These methods of optimizing the initial parameters
are often called meta-learning (ML). The meta-learning methods
that have been mentioned in the studies so far mainly involve
Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017), First-
order MAML (FOMAML) (Wang et al., 2021) and Reptile (Amir
and Gandomi, 2022). Many applications in this direction appear.
Like Li et al. (2020) use ML to determine voting weights for load
forecasting, Wang et al. (2022) combine misjudged samples with
ML to find initial parameters of detection models and Xu et al.
(2022) retrofit a model-free ML with Bayesian function. These
applications of ML bring us inspiration. When it comes to the
efficiency of ML, compared with MAML, FOMAML, and other
ML methods, the algorithm of Reptile is faster. This is because, as
a population-based and gradient-free method, Reptile can address
complicated or straightforward optimization problems subject to
specific constraints (Amir and Gandomi, 2022). Its weight update
of the meta-network does not directly use gradient or Hesse matrix
(Nichol et al., 2018). Itmakes the Reptile algorithmmore suitable for
an online power system with multi parameters.

In this paper, our research discusses the influence of a shortage
of HIF training samples and the grid structure changes on the neural
network fault detection model. Then, regarding unsatisfactory
fault data samples in terms of quantity and quality, we present
an algorithm structure called Generative Adversarial Networks
(Goodfellow et al., 2014) based on Reptile Algorithm (GANRA),
which generates samples with few-shot HIF samples. At the same
time, we propose an evolution strategy to make the optimized
initialization parameters better serve the practical application of
neural networks in power systems. The evolution strategy considers
information about various parameters in the distribution systems.
It is empowered by integrating GANRA, the neural network’s
parameter transfer learning, and the solution to distribution
system configurations’ alternation. This composite method can
make the fault detection model more robust in recognition
accuracy and generalization ability, and reduce the influence of grid
structure changes on the fault detection model. And we choose
CNN as the identification fault model to complete verification
experiments.

2 Related principle

2.1 Reptile algorithm

TheReptile algorithm is an efficientML algorithm. It is designed
to find an appropriate initialization parameter for a neural network
to quickly become a target network with a small number of samples
and perform well in future task training (Nichol et al., 2018). The
schematic diagram of parameter update direction in the Reptile
algorithm is shown in Figure 1B. In Figure 1B, the iteration of the
training task network is set to 4 in this section.

TheReptile algorithm is nested by ameta-network and a training
task network. The parameters ϕ of the meta-network are updated by
the parameters θ finding from several stochastic gradient descents
(SGD). SGD is also called the iteration of the training task network
in this paper. The definition of the meta-network updating formula’s
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FIGURE 1
(A). The typical zero-sequence voltage waveforms of high impedance fault and low impedance fault. (B) Schematic diagram of parameter update
direction.

parameter is shown in Eq. 1.

ϕi+1← ϕi + εi (θi(k) −ϕi) (1)

Where ϕi is obtained from the ith meta-network update, θ(k) is
obtained after several network training task iterations with iteration
numberK, and ɛ is themeta-network learning rate, i.e., iterative step.

The algorithm requires a consistent structure of the meta-
network, training task network, and target network to ensure that
the parameters obtained by the Reptile algorithm can be used as
initialization parameters of the target network.

2.2 Adversarial generative network

GAN and its derived models have many applications in
generating samples for data enhancement and data preprocessing in
deep learning (Wang and Zhang, 2021). The critical point is to train
the generator (G) to generate samples. The generator is supposed
to cheat the discriminator (D), which means the samples generated
by the generator will be incorrectly identified as the actual samples.
At the same time, the discriminator constantly recognizes these
generated samples to create more new samples that are infinitely
close to the actual situation. Then, the GAN model composed of G
andD conforms toNash equilibrium (Mo et al., 2020).The objective
function of GAN:

min
G
(max

D
V (G,D)) (2)

Where the function V(⋅) describing the cognitive differences
between G and D for the same kind of things can be expressed as:

V (G,D) = Ex∼Pdata [logD (x)] +Ex∼PG
[log (1−D (x))] (3)

Where Ex∼Pdata is the mathematical expectation that the generated
sample is recognized as the actual sample and x is the set of
actual samples. Pdata is the characteristic distribution of the training
samples, PG is the characteristic distribution of generated samples,

and D(x) is the recognition degree of the discriminator to the actual
sample.

The objective function V can finally be solved through gradient
updating. The gradient update formula is shown in Eq. 4.

{{{
{{{
{

θG← θG − ηG
∂V (G,D)

∂θG

θD← θD + ηD
∂V (G,D)

∂θD

(4)

Where θ is defined as the set of parameters used by the specific
function expression in G and D in the design process, and θG(θD)
is the parameter of G (D), ηG(ηD) is the search step of G(D).

3 Generative adversarial network
based on Reptile algorithm

The structures of the meta-network, training task network
and target network are required to be consistent. These networks’
structures refer to the neural network’s layer of the classical GAN
(Geng et al., 2013). The training task network provides the layer
weights and bias in the neural networks G and D. We get these
parameters by several gradient descent iterations with fewer rounds.
The relationship between meta-network, training network, target
network and GAN is shown in Figure 2A.

3.1 Meta-network

According to the updated parameters in the training task
network, the search direction of initialization parameters with more
potential for employment in the future training task is determined.
Furthermore,meta-networks directly determine the specific value of
the initialization parameters.

The meta-network learning rate ɛ (iteration step) is an adaptive
value that changes with the iterations, as shown in Eq. 5.

ε = a i
Imeta
+ b(1− i

Imeta
) (5)
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FIGURE 2
(A). The relationship between meta-network, training network, target network and GAN. (B). The algorithm process of GANRA to optimize the initial
parameters of the target network. (C). The diagram of practical evolution strategy.

Where Imeta is themeta-network loop iteration, i is the currentmeta-
network iteration, a and b are adjustable learning rate parameters.
a and b decide the parameter update vector of the meta-network.
Nichol et al. (2018) shows the learning curves for various loop
gradient combinations. The improvement is more significant when
using a sum of all gradients in Reptile rather than using just
the final gradient in FOMAML. When a=b=1, the parameter
update vector of the meta-network is the sum of all iterations’
gradients from the training task network. These two reasons suggest
that a=b=1 can benefit from taking many meta-network loop
steps.

When multiple training tasks are running in parallel, the
weight updating formula of the meta-network layer is shown in
Eq. 6.

ϕ← ϕ+ ε 1
N

N

∑
j=1
(ϕ̃j −ϕ) (6)

Where ϕ are all layer weight parameters of the meta-network, ϕ̃j are
all layer weight parameters obtained by network training of the jth
training task in the current meta-network iteration round, N is the
number of parallel training tasks used in a meta-network iteration,
j is the task network’s number undergoing training in the current
meta-network iteration.
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Compared with MAML (Wang et al., 2021), First-order MAML
(FOMAML), and other meta-learning optimization algorithms,
without using gradient or Hesse matrix in the weight update of the
meta-network, the Reptile algorithm is faster.

3.2 Training task network

In essence, the training task network is a GAN. And the
parameters’ optimization reference direction of the meta-network
is obtained through two aspects. One is randomly setting sample
tasks with a specified number and categories, i.e., shot and ways,
and the other is using the parameters obtained during the training
task network after several iterations, i.e., k. Moreover, to ensure the
generalization of the meta-network, the training task network uses
multi-task parallel training. Finally, the parameters obtained by the
training task network are averaged. The above steps are shown in
Eq. 6 in section 3.1.

Since GAN is selected as the grid structure of the meta-network,
training task network, and target network, the loss function L in
the GANRA is defined as the approximate expression Ṽ of Eq. 3, as
shown in Eq. 7. It can obtain parameter updates and estimate loss
values more concretely.

L = −Ṽ = −( 1
m

m

∑
i=1

logD(xi) +
1
m

m

∑
i=1

log(1−−D(x̃i))) (7)

Where xi is the ith point sampled in function Pdata(x), x̃i is the ith
point sampled in function PG(x), m is the total number of sampling
points in the feature distribution of x.

3.3 Generalization and rapidity of initial
parameter search

The study takes two rounds of SGD training task network
iteration, i.e., K=2, in a meta-network training as an example of
the parameter updating process. The initialization parameters of the
training task network are shown in Eq. 8.

θ0 = ϕ = {θG,θD} (8)

Parameters obtained in the next two training rounds are shown
in Eqs 9, 10.

θ1 = θ0 − αL
′
0 (θ0) (9)

θ2 = θ0 − αL
′
0 (θ0) − αL

′
1 (θ1) (10)

Where α is the learning rate of the training task network, L′(θ) is
the derivative of the training task network’s loss function when the
parameter is θ.

The simplified expressions of each function are shown in
Eqs 11–14.

gk = L
′
k (θk) (11)

θk+1 = θi − αgk (12)

̄gk = L
′
k (θ0) (13)

H̄k = L
′′
k (θ0) (14)

According to Figure 1 in Section 2.1 and the Reptile principle,
the parameter descent gradient of themeta-network can be obtained
in Eq 15.

gmeta = g1 + g2 = ̄g1 + ̄g2 − αH̄2 ̄g1 + o(α
2) (15)

According to the derivation of gmeta in Eq. 15, when θ0 is the
initialization parameter of the training task network, the overall
average expectation (AvgGrad) of the loss function L’s gradient ̄g
from a training task network is defined in Eq 16.

AvgGrad = Eτ,i [ ̄g] (16)

The current training sequence of data leads to different training
results in the training tasks. Still, due to the random selection of data,
the average expectation of θ0 on the gradient in L is consistent in
Eq 17.

AvgGrad = Eτ,1 [ ̄g1] = Eτ,2 [ ̄g2] (17)

Similarly, the expected value of the other part of gmeta is shown
in Eq 18.

AvgGradInner = Eτ,1,2 [H̄2 ̄g1] = Eτ,1,2 [H̄1 ̄g2] (18)

Then we obtain

AvgGradInner = 1
2
Eτ,1,2 [H̄2 ̄g1 + H̄1 ̄g2]

= 1
2
Eτ,1,2[

∂
∂ϕ1
( ̄g1 ⋅ ̄g2)]

(19)

The expected value of gmeta can be obtained as shown in Eq 20.

E[gmeta] = 2×AvgGrad

−α×AvgGradInner+ o(α2)
(20)

It shows that the meta-network wants to obtain the same
gradient in each training task network’s iteration.This target requires
that the initial parameters have generalization. At the same time,
the smaller the gradient difference in each iteration of the training
task network, the more consistent the search direction of the meta-
network to seek the optimal initial parameters and the shortest
search path.

3.4 Algorithm implementation

The algorithm process of GANRA to optimize the initial
parameters of the target network is shown in Algorithm 1;
Figure 2B.

The hyper-parameters set in the algorithm include the meta-
network iterations Imeta, the number of parallel training tasks N, the
training task network iteration rounds K, single task size shot, and
task type (or fault type) ways.
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1) Initialize the weights of the meta-network ϕ0,

2) Set each hyper-parameter in GANRA,

3) for meta-network iteration rounds i=1,2,…,Imeta

do:

4) N tasks of T are sampled,

5) for j=1,2,…,N do:%Train N parallel tasks in

the training task network

6) Initialize the network weights of training

tasks θj=ϕi−1,

7) for train task network iteration rounds

k=1,2,…,K do:

8) Perform GAN training on task Tj,

9)Obtain the training task network weight θj

of task Tj,

10) end for

11) end for

12) Update the weights of the meta-network

ϕi← ϕi−1 +1/K*εΣ
N
j=1(θj −ϕi)

13) end for

Algorithm 1. GANRA

4 A practical evolution strategy for
neural networks applied to
distribution system

4.1 Existing problems

When investigating the fault detection application of neural
network in the distribution system, it is found that the transmission
lines of the distribution system usually have the following
characteristics not conducive to the fault detection application of
neural network.

1. The distribution system grid structure is complex and frequently
changes, so the training model without continual and timely
updating is not applicable.

2. The number of lines in the distribution system is huge, and it is
impossible to record fault samples for each branch by installing
recording devices. And the types of fault samples recorded are few,
mostly single-phase grounding faults. The above reasons result in
a small number of recorded waves. In addition, because of low
fault current and obscure waveform characteristics, the recorded
waves of HIF identified and recorded by subsequent protection
devices are rare.

3. The fault characteristics of the distribution system cannot be
learned entirely by using samples generated by the simulation
model. First, due to the randomness and time-varying nature
of the weather and the terrain, it is difficult to determine the
fault current and fault types on the line or completely restore the
complex factors through modeling. These lead to a truncation
error. Second, the neural network is a “black box”. It is unclear if
the neural networkmisses the characteristics of the faults, making
it challenging to generate new samples with corresponding tags.

Since the neural network directly learns fault features instead
of grid operation rules, the mature fault detection model in the
actual grid structure cannot be immediately used in the alternative
or changed grid structure. The judgment accuracy of the changed
grid structure would be significantly reduced.

4.2 Practical evolution strategy

For applying the neural network fault detection model to
practical engineering, the evolution strategy armed with GANRA is
designed as the following three stages.

1. Use the GANRA to generate optimal initialization parameters of
the misjudgment sample generator.

2. The misclassification sample generator constructs samples with
hidden features not learned by the neural network fault detection
model.The hidden features are from a few actual misclassification
fault samples.

3. The fault detection model trained with a large number of
simulation samples or the model in the long-term operation
of the distribution system is used as the pre-training model.
Deep transfer learning (Bousmalis et al., 2016) is used to transfer
the pre-training model to the training model. Then input the
generated samples from Step (2) for the parameter fine-tuning
training of the training model. A detailed description of the
migration strategy is shown in Section 5.5.

The flow of the practical evolution strategy is roughly shown in
Figure 2C.

5 Simulation experiment and result
analysis

This section analyzes the effect of GANRA on generating
HIF samples based on simulation data. Section 5.2 proves the
effectiveness of GANRA in the study of initial training parameters
with generalization. Moreover, this section observes the learning
speed of sample generation and the quality of generated samples.
The generated samples aremadewith the initial parameters obtained
by GANRA and tested in the target network. Section 5.3 compares
several sample generation algorithms to get their effect on the
fault discrimination model generated by CNN under different
sample mixing ratios. The algorithms include the conventional
GAN with random initial parameters, the conventional GAN with
GANRA initial parameters, and Variational Auto-encoders (VAE)
(Zhai et al., 2019). It is worth noting that the GANRA in this
section optimizes initial parameters from the CNN. Section 5.4
conducts experiments under the influence of different proportions
of generated samples on the training accuracy of neural networks.
Section 5.5 uses GANRA to find a group of initial parameters based
on grid structure 1, then generates samples of grid structure 2 with
these parameters and random initial parameters. Finally, Section 5.5
tests the effect of the fault detection model with these training
samples.The specific structure composition of the grids can be found
in Section 5.1, and the hyper-parameter values used by the GANRA
to generate the initial parameters are given in Section 5.3.
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FIGURE 3
Schematic diagram of distribution system grid structure 1.

FIGURE 4
Schematic diagram of ring network grid structure 2.

5.1 Simulation grid structure and sample
composition

A distribution system simulation model is constructed for
flexibility in data acquisition, processing and analysis. The
simulation sample is taken as the actual sample.

The grid structure of the 10 kV distribution system is
shown in Figure 3. The simulation diagram can refer to
Supplementary Figure S1. In Figure 3; Figure 4, the symbol “F
(⋅)” represents the location of the failure point, the solid line means
the overhead line, the dotted line represents the cable line, and every
“Load” can be adjusted.

The actual samples used for neural network training and
verification, including waveform samples of various faults and

TABLE 1 Proportion of each failure type in grid structure 1.

Fault Type HIF LL LLG LLLG Normal
State

SLG Single
Phase Open

Data Rate(%) 84.02 2.70 2.70 0.67 6.27 3.37 0.27

normal distribution system conditions, are collected from the
fault occurrence point F1. Fifteen thousand nine hundred ninety
three fault data are generated for training task extraction and
neural network training and testing. This paper mainly studies
the situations of HIF. Most of the fault data are HIF data, with a
total of 13,438 items. The account of each fault type is shown in
Table 1.
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TABLE 2 Proportion of each failure type in grid structure 2.

Fault Type HIF LL LLG LLLG Normal
Station

SLG Single
Phase Open

Data Rate(%) 34.29 17.14 17.14 5.71 6.43 17.14 2.14

Where LL represents line-to-line fault (or phase fault), LLG
represents line-to-line ground fault (or two-phase ground fault),
LLLG represents three lines ground fault (or three-phase ground
fault), and SLG represents single-line ground fault (or Normal
Single Phase). The common working conditions include load
switching, line reclosing, and capacitor switching at the load
terminal.

Grid structure 2 is used to verify the generality of the initial
parameters generated in Section 5.4. And it is shown in Figure 4,
where the classical IEEE 9 node structure model is adopted. The
simulation diagram can refer to Supplementary Figure S2. In the
experiment, grid structure 2 runs in a way of open loop. Similarly,
the collection point of waveform samples for various faults is F1. To
simulate the lack of fault detection experience in a new grid structure
or system operationmode, it is designed to generate and collect only
4,200 fault data for training task extraction, neural network training,
and neural network testing. And among these 4,200 fault data, only
1,440 are high impedance fault data. The account of each fault type
is shown in Table 2.

The use of such a large difference between the ring network and
the radial network as a control experiment is mainly to emphasize
that even in the case of huge changes in the grid structure, the initial

parameters generated by GANRA under the original grid structure
still have the ability to assist the new grid structure to generate
accurate samples.

The study collects the waveforms of three-phase voltage, three-
phase current, zero-sequence voltage, and zero-sequence current in
the above simulations and decomposes the signals, respectively. The
wavelet decomposition method with a 6 dB parent wavelet extracts
the relevant characteristic quantities of wavelet coefficients. Four
wavelet coefficients are obtained by three wavelet decomposition.
It consists of a three-layer complex wavelet coefficient and one-
layer neighboring wavelet coefficient, and thirty-two lines of
information can be obtained. Then, by summarizing the high-
resolution waveform data in detail and getting the sum of the
multiple sampling points, it receives waveform information with
thirty-two columns. The formula (Pan, 2019) for the energy
relationship between the time domain and frequency domain is
shown in Eq 21.

enm =
X

∑
x=1
|a2

m (x) ⋅Δt| (21)

Where enm represents the nth pixel block containing time-frequency
information of the wavelet coefficient of the corresponding
waveform in the mth line of the actual input image sample, am(x)
represents the sampling amplitude of the xth sampling point of the
wavelet coefficient of the corresponding waveform in the mth row,
△t is the sampling step, X means that the pixel block contains X
sampling points, and each row of 32-pixel blocks contains 32*X
amount of sampling point (waveform) information. Figure 5 shows

FIGURE 5
Image sample composition schematic diagram.
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FIGURE 6
Loss chart for a single training mission.

the sample composition of the simulated waveform data obtained by
sample processing.

5.2 Sample generation experiment

A single training task is extracted to conduct GAN training with
1,000 iteration rounds gan_epoch, and the loss values of G and D are
obtained respectively, as shown in Figure 6.

Compare the lines of Figure 6 with the broken line graphs
of G and D loss values from the GAN training tasks (Task1,
Task2, Task3, and Task4). These tasks use initialization parameters
obtained from four different Imeta training of GANRA (as shown
in Figure 7). In Figure 7, the training task network’s iteration limit
K of the four tasks is 10, and the learning rate of G and D is
0.002. It is found that the G and D loss (g_Loss and d_Loss) of
each training task roughly corresponds to the loss trend within
the corresponding interval of GAN training rounds in a single

training task.Wherein themeta-network iterations Imeta= 1, 50, 400,
1,000.

The hyper-parameter settings of GANRA to the four training
tasks in Figure 7 are shown as follows: the number of parallel
training tasks N=4, iterations of training task network K=10,
adjustable parameters of learning rate of meta-network a =1, b=1,
single task size shot =5, and task type ways=7.

The actual samples, the samples generated by the conventional
GAN with random initial parameters and the samples generated
by the conventional GAN with the optimized initial parameters
are compared to study the influence of the initial parameters,
the GANRA’s meta-network iterations, and the GAN’s iterations
on specific GAN’s generated samples. GANRA generates all the
defined initial parameters. The comparison between the actual
sample image and the generated sample image is shown in Figure 8.
Figures 8A,B compare the sample pictures of HIF generated by
the GAN network with and without the optimized initialization
parameters. Both are trained for 400 rounds. It can be found
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FIGURE 7
Diagram of training task loss under different Imeta.

that the GAN with the optimized initialization parameters can
preliminarily generate images with actual image sample features.
This result is obtained with the GAN iterations epoch=400 and
50 rounds of meta-network training. And it reflects that GANRA
can accelerate GAN’s collection of image features. Figures 8C, D
compare the results of more rounds of GAN training based on
Figures 8A, B. In this case, the GAN assisted by GANRA can
generate a noiseless image sample, while some of the image samples
generated by general GAN still have high noise. This phenomenon
indicates that GANRA can reduce the noise of the generated

samples. Figures 8E, F provide a comparison diagram between
950 GAN epochs generation sample with 1000 GANRA meta-
network iterations and the original sample. The generated sample
is almost consistent with the actual one, and the research results
show this method is promising. However, contrasting the GANRA-
assisted sample generation in Figures 8C, D with Figures 8E, F,
the initialization parameters generated by multiple iterations of the
meta-network have a specific “saturation value”. In other words, the
GAN’s iterations for a particular taskwill not be further reduced.The
quality of the generated samples and theGAN’s iterations to generate
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FIGURE 8
The actual sample of high resistance ground fault and the generated sample diagram under different experimental conditions. (A) GAN, epoch=400 (B)
GANRA, Imeta=50, epoch=400. (C) GAN, epoch=960. (D) GANRA, Imeta=50, epoch=950. (E) Original samples. (F) GANRA, Imeta=1,000, epoch=950.
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TABLE 3 The similarity between the samples generated by different
methods and the actual samples of grid 1.

Proportion of training samples
(Actual sample: Generated sample)

Sample generation
algorithm

GANRA VAE GAN

HIF recognition accuracy (%) 99.85 68.66 98.66

quality-compliant samples will not change significantly in the case
of a sharp increase in Imeta. The above experimental results are
limited by the expectation of GANRA parameters’ generalizability.
The detail of Figure 8 can refer to the Supplementary
 Material S1

5.3 Experiments on the similarity between
samples generated by several generation
methods and the actual samples

The settings of GANRA’s hyper-parameters and the base model
used in fault detection in Sections 4.3, 4.4, and 4.5 are the same. The
hyper-parameters of GANRA are set as follows: the meta-network
iteration rounds Imeta=1,000, the number of parallel training tasks
N=4, the training task network iteration rounds K=10, the meta-
network learning rates a =1, b=1, the single task size shot=35, and
the task type ways=1. Only the binary classification of the HIF and
non-HIF faults is performed in this study. And the HIF recognition
accuracy in this study is used to reflect the similarity between the
generated HIF samples and the actual samples. The training set
comprises the generated samples from different generationmethods
of grid structure 1, and the testing set contains the simulated samples
(called actual samples) of grid structure 1.

A CNN consisted of three convolutional layers and two fully
connected layers is selected for the basic model settings used in
fault detection. The Relu function is used as the activation function.
The learning rate α=0.001, iteration epoch=20, and single training
scale batch_size=66. In this section, the iterations of GAN with
initial parameters generated by the GANRA andwith random initial
parameters are 500 rounds.TheVAE sample generationmodel in the
study refers to the classical model (Pan, 2019).

It can be seen from Table 3 that the samples generated by
GANRA and the samples generated by conventional GAN both
have a high degree of similarity with the actual sample. And several
experimental phenomena show that the recognition accuracy does
not fluctuate much with different GAN initial parameters. At the
same time, the recognition accuracy of VAE-generated samples
jumps between 55% and 100% during the experiment. The study
indicates that VAE learns some features of actual samples accurately
but lacks robustness in other areas. By contrast, GANRA knows
these features of samples in a stable and satisfactorily precise way.
However, compared with the network that only uses GAN to learn
and generate HIF samples, the generated HIF samples are slightly
less reductive than the actual samples because it emphasizes the
generalization of all fault initialization parameters instead of the
optimum of current parameters.

TABLE 4 Influence of different sample composition on fault detection
accuracy of grid 2.

Proportion of training samples
(Actual sample: Generated sample)

HIF recognition
accuracy (%)

1:0 97.73

7:3 99.36

1:1 88.03

3:7 92.39

0:1 66.56

5.4 Influence experiment of sample
proportion on training accuracy

The testing set includes 2,100 actual samples from grid structure
2, and the training set includes both the actual and the samples
generated by GANRA. The proportions of mixed samples are shown
in Table 4. In addition, the data from the training set and testing set
are not coincidental, and the proportions between the training set
and testing set are always kept at a 1:1 ratio. The effect of different
sample structures on the fault detection accuracy of grid structure 2
is shown in Table 4.

As seen from Table 4, the generated samples supported by
GANRA achieve optimal performance in the experiments. Its HIF
recognition accuracy is 99.36% when the proportion of training
samples (actual sample: generated sample) is 7:3.

5.5 Fault detection experiments under
changing conditions of the grid structure

According to the practical evolution strategy proposed in
Section 4.2, relevant simulation experiments are carried out on the
grid structure 2 with several samples. In the simulation experiment
setting, the initial GAN parameters generated by GANRA through
grid structure 1 are applied to the generation of small samples of
grid structure 2 to show whether the GANRA focuses on predicting
initialized parameters on future tasks.

The fault pre-training model adopted is the basic CNN model
mentioned in Section 5.2. The migration parameters used in the
new neural network are obtained after training the actual sample
from grid 1. On this basis, amixture of samples is used to prepare the
fine-tuned parameters of the new fault detection model. The mixed
samples include generated samples and a small number of actual
samples. The specific transfer learning strategies are as follows: first,
the top-level 1 of the actual model is turned into the top-level 2 of
the new model, and this new model is more suitable for the current
training data; second, freeze the parameter training of the bottom
and middle layers of the new model, and train only the top layer 2;
third, the parameter training of the bottom layer and middle layer 1
of the newmodel is frozen, and then the top layer 2 andmiddle layer
2 are trained simultaneously. The corresponding transfer learning
strategy is shown in Figure 9. The box is filled with grey layers for
the parameters to be trained in the specified step.
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FIGURE 9
Transfer learning strategy.

TABLE 5 HIF recognition accuracy in grid structure 2 under different training conditions.

Situation Whether to perform
model fine-tuning

Proportion of training samples
(Actual sample: Generated sample)

HIF recognition
accuracy (%)

(1)* No 1:0 97.73

(2) Yes 1:0 100

(3) Yes 7:3 100

(4) Yes 0:1 89.70

(5) Yes - 34.32

aThe situation (1) is consistent with the mixed sample experiment with a training samples ratio of 1:0 in Table 4, and the experiment will not be repeated.

The proportion of mixed training samples is 7:3 based on
Section 5.4, which can make the recognition of HIF relatively
more accurate. The specific experimental control group is set as
follows.

1. Train the new neural network with the actual sample of grid 2.
2. The actual sample of grid 2 is used to fine-tune the parameters

from the neural network of grid 1.
3. The generated sample are mixed with fine-tuning the parameters

from the neural network of grid 1 and the actual sample of grid 2.
4. The generated samples of grid 2 are used to fine-tune the

parameters from the neural network of grid 1.
5. The neural network of grid 1 detects test samples of grid 2.

The influence of the different proportions of models’ fine-tuning
and training samples on HIF recognition accuracy of grid structure
2 is shown in Table 5.

The comparison between situations (1) and (2) shows that neural
network transfer learning can effectively improve the identification
accuracy of HIF. By the comparison of (2), 3, and 4, it is easy
to find that using appropriate mixed samples to increase the
training sample size is feasible when there are few fault samples

in the new grid structure. This method will not decrease the fault
identification accuracy. However, a large proportion of generated
samples will decrease the identification accuracy. The comparison
between cases (2) and (5) shows that the parameter fine-tuning in
the new grid structure is feasible. It can significantly improve fault
identification accuracy. Therefore, the practical evolution strategy
of neural networks for distribution systems is effective. It can
optimize the utilization of neural networks in power system fault
detection.

6 Conclusion

This paper proposes a GAN evolution strategy based on the
Reptile algorithm to solve practical problems such as small HIF
samples and network structure changes in distribution systems.
The validity, generalization, and speed of GANRA are verified
by mathematics and simulation. The sample generated by the
neural network evolution strategy helps solve some problems
(like a shortage of reliable training data and faults with obscure
characteristics) existing in practical applications through the
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auxiliary neural network fault detection model. Furthermore,
GANRA generates the initial parameters of GAN through indirect
gradient calculation and completes a general optimization of initial
parameters. GANRA can generate samples with better quality faster
than GAN, but when the number of iterations tends to a certain
upper limit, the quality of samples generated by GAN is better than
that of GANRA because of GANRA parameters’ generalizability.
And the quality of samples generated by GANRA is usually better
than that of VAE. This algorithm effectively reduces the computing
time, sample size and the number of learning iterations required to
generate samples in different tasks and grid structures in the future.

For the electrical field, considering the requirements of
timeliness and stability of fault judgment in engineering practice,
such a study can be done by presenting the process of GANRA
optimization of initial parameters in a dynamic and online way.
In addition, the influence of other GAN algorithm variants on
parameter iteration can be explored. For example, a tagged grid
structure emphasizing classification ability can be considered. That
is for enhancing the training ability in the category of samples with
significant differences. Then, the research can extend this ability to
other categories of fault identification.
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Introduction: In the wave of urbanization, the increase of public lighting
equipment in buildings has brought about more prominent problems of energy
saving and consumption reduction.

Methods: In order to solve the above problems, this paper designs a set of
intelligent lighting solutions for digital buildings by combining the smart grid
and non-dominant sorting genetic algorithms. Firstly, an intelligent lighting
monitoring solution is constructed through ZigBee ad hoc network and sensor
technology to monitor the relevant environment and lighting control of the
laboratory building. Secondly, this paper uses the DIALux software network to
build a public lighting light distributiona public lighting light distribution model
in the building, and deeply studies the dimming control strategy of the system
under the principle of making full use of sunlight and natural light.

Results: The purpose ofself-adaptive intelligent control of desktop illuminance,
finally using this scheme to achieve the optimal balance of desktop lighting.

Discussion: The simulation experiment counts the power data of the intelligent
lighting system under different weather conditions. The experimental results
verify that the intelligent lighting control scheme can effectively reduce the
output luminous flux of the lamps, thereby reducing power consumption.

KEYWORDS

smart lighting, digital buildings, non-dominating sorting genetic algorithms, augmented
reality, smart grid

1 Introduction

Building a resource-saving and environment-friendly society is an inevitable
requirement for maintaining sustained and healthy economic development and promoting
social harmony and stability (Özçelik, 2018). With the anti-war of science and technology
and the gradual improvement of human living standards (Zhang et al., 2021), the people’s
requirements for modern intelligent buildings, smart homes, and intelligent lighting are
not only limited to ordinary lighting needs, but also need modern intelligent lighting
systems to meet the different comfort and energy-saving requirements of different groups
of people. Improving the efficiency and use time of electric light sources and developing
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energy-efficient lamps are the main methods of energy-
saving technology in early lighting (Ning et al., 2023). Lee
et al. first proposed to control shutters and lights to reduce
energyconsumption (Cai et al., 2022), and then many scholars
conducted a lot of research on the blade angle control method
of shutters He and Ye (2022), such as pure fuzzy control methods
(Zhang et al., 2023), genetic algorithms (Long et al., 2023) and BP
neural networks Zhong et al. (2023). David et al. used the light
sensor calibration prior information to control daylight adaptive
lighting, in order to reasonably introduce natural light to achieve
energy saving, and corresponding scholars have also studied natural
lighting. They also started from the intelligent control method of
shutters, and adopted fuzzy neural networks (Fei and Yang, 2023),
adaptive fuzzy control (Chen et al., 2022) and other methods. Xiao
Hui of Tongji University and others combined artificial lighting and
natural lighting, proposed a joint control model, and formulated
a joint control strategy. In addition, starting from the principle
of illuminance, reduce the indoor light reduction coefficient,
improve the illuminance of the working area, and also improve
the light distribution effect to achieve the purpose of energy saving.
With the improvement of people’s light distribution design level
in light environment, the benefits of energy saving will become
higher and higher. Alice et al. used wireless integrated dimming
ballast technology to develop wireless command reception from the
central control server and convert it into ballast control signal for
lighting adjustment, realizing the personalized dynamic design of
energy-saving network lighting in open office (Antoine et al., 2021).

In the adaptive energy-saving control of architectural lighting,
the smart grid can provide more energy information and
management capabilities, making the lighting system more
intelligent and efficient. For example, real-time monitoring and
control of lighting equipment can be achieved through smart grids to
adjust according to energy prices and load demand. Non-dominated
sorting genetic algorithms can optimizemultiple objective functions
of lighting equipment, such as the balance between energy saving
and comfort. Using this algorithm, a set of optimal solutions can be
found that do not have a dominance relationship, resulting in more
efficient lighting control.

In this paper, we will mainly use smart grid based and non-
dominated ranking genetic algorithm,which has developed from the
original univariate theory to multivariate theory, from continuous-
time system to discrete-time system, and has been applied in many
fields (Rehman et al., 2023). And we combine it with the smart
grid to apply it to the control of lighting energy efficiency, we can
design a new cognitive lighting control system, that is, a type of
PID controller for stable setting of the appropriate illumination,
while using a genetically optimized controller to minimize power
consumption. We also compared our model with other models, and
the results show that our model performs better than other models
and can effectively control energy savings.

The contribution points of this paper are as follows.

• Compared with pure fuzzy control methods, and genetic
algorithms, this paper uses the smart grid as the basis for a
higher degree of automation. Good flexibility can effectively
improve energy utilization efficiency and economic benefits;
• Compared with the BP neural network model, our model has a

simpler structure, less computation, and can provide adaptive

solutions faster. It adopts a modular design, convenient for
flexible combination and expansion, and can be customized
according to different needs. The application needs in various
complex environments;
• Compared with adopted fuzzy neural networks, and adaptive

fuzzy control methods, our method can effectively solve
complex optimization problems with multiple objective
functions; by effectively preserving the diversity and
convergence speed in the population, we can obtain a The
optimal solution of the group is more applicable to the
problem.

In the rest of this paper, we present recent related work in Section 2.
Section 3 offers our proposed methods: overview, convolutional
neural networks; long and short-term memory networks; transfer
learning. Section 4 presents the experimental part, details, and
comparative experiments. Section 5 concludes.

2 Related work

2.1 BP neural networks

BP neural network is a widely used feed-forward artificial neural
network known as multilayer perceptron (Multilayer Perceptron,
MLP). The BP neural network implements tasks such as pattern
recognition, classification, and regression by passing input data
from the input layer to the hidden layer and output layer and then
adjusting the weight and bias of each layer according to the error
signal (Han et al., 2021).

BP neural network usually has three or more layers: an input
layer, a hidden layer (there may be more than one) and an output
layer. Each neuron is connected to other neurons in the upper
and lower adjacent layers, and the corresponding weight value
determines the connection strength between them. The input data
enters from the input layer and passes through the nonlinear
transformation of the hidden layer to the output layer to calculate
the final result. The BP neural network training usually uses a
backpropagation algorithm (Backpropagation, BP). The algorithm
uses the gradient descent method to minimize the error function
(usually the mean square error function). It updates the weights of
all connections by calculating the error between the output layer and
the target value to reduce the error. This process iterates until the
error reaches a preset threshold or other stopping conditions aremet
(Wu et al., 2022).

BP neural network has the following advantages: It has a
strong nonlinear fitting ability and can handle complex pattern
recognition problems; It has good generalization ability and can
accurately predict unknowndata; It can further improve the network
performance by increasing the number of hidden layers. Flexibility
and performance (Niu et al., 2022). However, the BP neural network
also has the following disadvantages: the training process requires a
large amount of data and calculations, and it is easy to fall into a
local minimum; for different types of data, different preprocessing
and feature selection processes are required; the number of hidden
layers, the number of neurons, etc. The parameters need to be
adjusted manually, affecting the network’s learning efficiency and
performance (Li et al., 2023).
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2.2 The fuzzy logic model

The fuzzy logic model is an artificial intelligence model based
on fuzzy set theory and fuzzy reasoning method, mainly used to
deal with complex, uncertain information and fuzzy information.
Compared with the traditional binary logic model, the fuzzy logic
model can better deal with fuzzy, uncertain and contradictory
problems in real life (Ge et al., 2019).

2.2.1 Fuzzy logic models typically include the
following components

Fuzzy set: A fuzzy concept that describes a variable or object,
which can be a real number interval, a function, or a formalized
mathematical structure; Fuzzy relationship:used to describe the
relationship between two or more fuzzy sets, such as fuzzy equality,
fuzzy inclusion, fuzzy intersection, fuzzy union, etc.; Fuzzy rule:The
law used to map fuzzy input to fuzzy output, usually expressed as a
statement in the form of ”IF-THEN”, where the IF part represents
the condition of the input variable, and the THEN part represents
the value of the output variable; Fuzzy reasoning: Carry out fuzzy
reasoning on the input according to the fuzzy rules and obtain the
corresponding output results, usually using fuzzy logic operators
(such as fuzzy AND, fuzzy OR, fuzzy NOT, etc.) for calculation
(Yang et al., 2023).

In practical applications, fuzzy logic models can be used for
decision-making and control problems in various fields, such as
intelligent transportation, industrial control, financial forecasting,
medical diagnosis, etc. Its main advantage is that it can deal with
fuzzy and uncertain information and has good adaptability and
flexibility; the disadvantage is that it needs to model the input
variables and output resultsmathematically, and themodel structure
is complex and difficult to explain and understand Cheng et al.
(2023).

2.3 SVM model

Support Vector Machine (SVM) is a supervised learning
algorithm widely used in classification, regression and anomaly
detection, which divides data into different categories by finding
the optimal hyperplane. The basic idea of SVM is to map low-
dimensional input data to high-dimensional space so that the data
can be more easily divided linearly or nonlinearly (Wei et al., 2022).

The core of SVM is to select the appropriate kernel function,
commonly used kernel functions include linear kernel, polynomial
kernel, radial basis kernel (RBF) and so on. For linearly separable
datasets, SVM uses a linear kernel function; for nonlinearly
separable datasets, SVMuses a nonlinear kernel function tomap the
original data space to a high-dimensional space for segmentation.
During training, SVM tries to find an optimal hyperplane to split
the data. This hyperplane has the largest margin and the furthest
distance from the support vectors. Support vectors refer to some
points closest to the hyperplane, which determine the position and
direction of the hyperplane. Since SVM focuses on the points closest
to the hyperplane, it is less susceptible to noise. The advantages
of SVM include: its the number of support vectors is small, the
memory usage is small, and it suitable for high-dimensional data
Zhu et al. (2020); It can handle nonlinear data sets and adapt to

FIGURE 1
Schematic diagram of intelligent lighting monitoring scheme based on
smart grid.

various complex problems flexibly through the selection of kernel
functions; it has strong generalization ability and good prediction
performance for new data. The disadvantages of SVM include: for
large-scale data sets, the training time is long, and the calculation
complexity is high; selecting an appropriate kernel function and
performing parameter tuning is necessary, and it is not easy to deal
with the noise brought by the input data (Nazari et al., 2020).

In conclusion, SVM is a powerful, flexible, supervised learning
algorithm with wide application.

3 Intelligent lighting monitoring
solution based on smart grid

3.1 Indoor light distribution model

The system adopts a 3-layer network structure, in which the
perception layer uses low-power ZigBee ad hoc network and sensor
technology to achieve state data acquisition. The transport layer
forms an ARM-5G gateway through ARM embedded technology
and 5G mobile communication technology to realize the remote
transmission of sensing and control data (Xiang et al., 2019). The
application-layer client monitors the experimental building-related
environment and lighting control through the PC or mobile phone.
In order to achieve the purpose of environmental monitoring and
lighting control, the system should have the capabilities of data
acquisition, data transmission, storage management and analysis
decision-making (Song et al., 2020). Thus, the system designs the
overall scheme of intelligent experimental building environment
monitoring system, as shown in Figure 1. As can be seen from the
figure, the system adopts three levels of network structure, which are
the perception layer, the transport layer and the application layer.
Schematic diagram of intelligent lighting monitoring scheme based
on smart grid is shown in Figure 1.

Among them, the perception layer consists of a ZigBee network,
various sensor modules, alarm modules and relay modules to build
a wireless sensor network. This layer mainly solves the problem
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FIGURE 2
Luminous flux transfer schematic.

of interconnec-tion of the underlying wireless sensor network,
which is responsible for collecting data on ambient tempera-
ture, humidity, and smoke concentration and monitoring lighting
facilities Song et al. (2021). Among them, the sensormodule and the
ZigBee module form an endpoint node, ZigBee routes and forwards
data, and the coordina-tor collects and manages data, and sends
the data to the ARM-5G gateway at the transport layer (Yang et al.,
2023).

4 Smart lighting overall control
strategy

This topic discusses the intelligent control of indoor lighting, so
we need to consider the direct illumination of the lighting source
and the reflected illuminance generated by the mutual reflection
between the various surfaces, so as to obtain the closest calculation
results. Suppose there are two diffuse surfaces with an area of a1
and a2 with average luminous intensities of L1 and L2, respectively.
According to the corresponding photometric calculation method
in electrical lighting technology, the Lambert’s cosine law and the
inverse theorem of luminous flux transfer are followed when diffuse
reflection surfaces are followed. Based on the illumination flux
transfer function matrix, that is, the illuminance of each point in the
room is calculated when the direct illumination of each light source
and the mutual reflection illuminance of each surface in the room
are considered at the same time. Luminous flux transfer schematic
is shown in Figure 2.

Assuming that there are two points a and b in the room, it can
be seen from the linear correlation between the illuminance of the
indoor point and the luminous flux of each light source, and the
illuminance of point a and point b are respectively:

Ea = ga1ξ1 + ga2ξ2 +⋯+ ganξm (1)

Eb = gb1ξ1 + gb2ξ2 +⋯+ gbmξm (2)

The ratio of illuminance is:

fab (Ea,Eb) =
Ea
Eb
=
ga1ξ1 + ga2ξ2 +⋯+ gamξm
gb1ξ1 + gb2ξ2 +⋯+ gbmξm

=
Gaξ

T

Gbξ
T (3)

Since the luminous flux matrix of two points a and b is fixed,
the ratio of the illuminance value of any two points in the room
depends on the luminous flux value output by each light source in
the determined multi-light source indoor environment. In a spatial
environment such as a room, whenmultiple light sources are known
(Tran et al., 2021), the proportional relationship between the specific
values of the illumination degree of any two locations in the room is
related to the energy value of the light output by each light source.
Therefore, when the illuminance of a point in the room (sensor
detection point) is known, we can find the illuminance value of
each point in the room through the luminous flux transfer function
matrix.

In the design process of this project, it is necessary to place a
illuminance sensor at a certain point in the room to collect light data.
The selection of sensor position is related to the complexity of the
intelligent control algorithm, and the better the position selection,
the simpler the algorithm. In this paper, DIALux lighting design
software is used to calculate and measure laboratory lighting data,
which we will use to determine the optimal position of the indoor
illuminance sensor and the luminous flux transfer function matrix
of the indoor working surface and sensor points.

4.1 Intelligent light distribution control
based on genetic algorithm

In the process of intelligent lighting control design, the luminous
flux output of each light source determines the illuminance of
each desktop surface, which is a one-way irreversible process. In
the previous article, the luminous flux transfer function matrix
model was mentioned, and here we use it to determine the effect
of natural light on the illuminance of the desktop surface in the
room, so as to obtain the illuminance of outdoor natural light
projected onto each desktop in the room, and then compare this
illumination with the given standard illuminance to determine the
surface illumination required by each desktop from artificial lighting
fixtures (Soheilian et al., 2021). Although the luminous flux output
by each light source is a fixed value, it is not easy to determine
it. Therefore, in the research process of this topic, the genetic
algorithm of no dominated ranking (NSGA) was used to study the
desktop equilibrium illumination optimization distribution model
Tavares et al. (2021).

The main difference between NSGA and simple genetic
algorithms is that the algorithm is layered according to
the dominance relationship between individuals before the
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FIGURE 3
Schematic diagram of the NSGA-II algorithm flow.

FIGURE 4
Crowding of individual i.

selection operator is executed. The following is added: Non-
Dominated Sorting Genetic Algorithm (NSGA) is a multi-objective
optimization algorithm for finding the Pareto optimal solution
set among multiple objective functions. The core idea of NSGA
algorithm is to stratify each individual in the population according
to the number of times other individuals dominate it The core
idea of NSGA algorithm is to stratify each individual in the
population according to the number of times it is dominated by
other individuals, i.e., to rank the individuals in the population non-
dominantly. By grouping individuals and calculating the crowding
degree of individuals in each group, the NSGA algorithm can
converge the solution set to the Pareto optimal solution set while
maintaining the diversity of solution sets.

The optimization process of the NSGA algorithm can be divided
into the following steps:

1. Initialize the population: Randomly generate the initial
population of individuals.

2. Calculate fitness: Calculate the fitness value of each individual
under each objective function.

3. Non-dominance ranking: Each individual in the population
is stratified according to the number of times other individuals, i.e.,
dominate it, non-dominance ranking is performed.

4. Calculate crowding degree: For each individual in the
hierarchy, calculate its crowding degree under a specific objective
function.

5. Selection operation: Selecting the next-generation of
individuals. When selecting the next-generation of individuals, the
individuals with higher non-dominance levels and higher crowding
degrees are preferred.

6. Crossover and mutation operations: Crossover and mutation
operations are performed on the selected individuals to generate the
next-generation of individuals.

7. Repeat steps 2-6 until the stopping condition (e.g., the
maximum number of iterations or the Pareto optimal solution set
is found).

In adaptive energy-saving control of building lighting, the
NSGA algorithm can optimize multiple objective functions, such
as illuminance, colour temperature, and colour reproduction, to
obtain the best lighting solution. With the NSGA algorithm, energy
consumption can be minimized while maintaining lighting quality
within acceptable limits. In practical applications, NSGA algorithms
can be used with sensor networks and intelligent control systems to
achieve adaptive lighting control.

To optimize the NSGA algorithm to save energy, the following
measures can be taken:

1. Optimize parameter settings: Select appropriate genetic
algorithms parameters, such as population size, crossover and
variation probability, to improve the convergence speed and
efficiency of the algorithm.

2. Improving the selection strategy: choosing suitable selection
strategies, such as tournament selection, roulette wheel selection,
etc., to improve the selection efficiency of the algorithm.
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3. Variable constraints for multi-objective optimization
problems: Set appropriate variable constraints for multi-objective
optimization problems to improve the stability and reliability of the
algorithm and avoid unreasonable solutions.

4. Improvement of crossover and variational operations:
Improve the crossover and variational operations to improve the
convergence speed and efficiency of the algorithm.

NSGA algorithm can find the multi-objective optimization
algorithm of the Pareto optimal solution set among multiple
objective functions. In adaptive energy-saving control of building
lighting, the NSGA algorithm can optimize multiple objective
functions to obtain the best lighting solution and further improve
the algorithm efficiency and energy saving by optimizing algorithm
parameters, selection strategies, variable constraints and crossover
and variation operations.

s (d (x,y)) =
{{
{{
{

1−(
d (x,y)
σshare
)

0
(4)

The sharing mode can be divided into fitness sharing in the
coding space, fitness sharing in the decision variable space, and
fitness sharing in the objective function space. First, a parent
population is randomly initialized, and all individuals are sorted by
monodominance and a fitness value can be specified, which can be
specified that the fitness value is equal to its monodominant order,
then 1 is the best fitness value. Then, selective, cross, and mutation
operators are used to produce the next-generation of population,
with a size of N. Schematic diagram of the NSGA-II algorithm flow
is shown in Figure 3.

As shown in Figure 3, the new population generated by the
t generation is first merged with the parent generation to form,
and the population size is 2N. Then a no dominated sort is
performed, resulting in a series of disdominated sets and calculating
crowding. New offspring populations are then generated by genetic
operators (selection, crossover, mutation). When the number of
individuals in the disdominated set produced by the sorting is
sufficient to fill, it is not necessary to continue sorting the remaining
parts. The diversity of no dominated solutions is guaranteed by
crowding comparison operators and does not require additional
shared parameters. By hierarchical storage of all individuals
in the current solution and population, the best individuals
are not lost.

In the original NSGA, we used a sharing function to ensure the
diversity of the population, but this required the decision maker
to specify the value of the shared radius. To solve this problem,
we propose the concept of crowding: the density of surrounding
individuals at a given point in the population, which indicates the
smallest rectangle around individual i that contains individual i itself
but no other individuals, as shown in Figure 4.

From Figure 4, we can see that a small value indicates that
the surrounding area of the individual is crowded. In order to
maintain population diversity, we need a relatively crowded operator
to ensure that the algorithm converges to a uniformly distributed
Pareto surface.

As shown in the Algorithm 1 is the flow chart of the Non-
dominated sorting genetic algorithm.

Algorithm 1. Non-dominated Sorting Genetic Algorithm.

5 Experiment

5.1 Datasets

The experimental environment has four windows facing south,
and a window facing west, the building dimensions in the room are
12 m, 5 m and 3 m in length, width and height, the reflection ratio
of the ceiling, wall and ground is 0.6, 0.4, 0.2, respectively, a total
of 8 sets of dimmable fluorescent lamps are installed in the room,
each set is two 18W fluorescent lamps and an LED lamp installed
in the middle of the two fluorescent lamps. The paper is simulated
based on software designed byDIALux, replacing the intensity of the
outdoor sensor based on changes in the light intensity of the table
outside the window. If we assume that there are two planes in the
room that can be diffuse reflection, 01 (placed in the plane of the
external sensor) and A2 (placed in the plane of the sensor inside the
room), then the general energy of the illumination of 01 irradiating
Q2 and the brightness of 01 are directly proportional and have a
certain relationship with the inclination angle. At the same time,
because the light flux of the sensor position placed indoors and the
light degree of the sensor placed outdoors are in a linear proportional
relationship, plus the irradiation range is known, the light intensity
between the two is also linear to a certain extent. Based on the above
theory, this paper is based on the software designed by DIALux to
simulate the natural lighting situation that occurs at every moment
of life (and the light energy emitted by the lamp does not count), and
calculate the corresponding indoor sensor illuminance and outdoor
sensor approximate illumination at each time point, and obtain data
from 6 a.m. to 6 p.m., as shown in Table 1.

In this project, sunny and cloudy weather were selected for
experiments, and relevant weather data were obtained, and then
this data was brought into the above moderate function formula
for calculation, and the power change of each lamp and the
illuminance change of each desktop surface were measured. By
bringing the collected data into the matrix moderation function
formula mentioned above, the influence of natural light on the
illumination can be obtained. Finally, through the distribution
model of illumination and the distribution model of the neural
network to calculate the lighting data of these two different weathers,
the consumption of room lamps will be obtained by comparing
the two sets of data, and the power of the lamps at this time and
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TABLE 1 Working surface luminous flux transfer functionmatrix.

Luminous flux function Luminous flux transfer function matrix artificial light source function Natural light transfer function

G1 1.0200 0.0000 0.3164 10.571 0.0371 0.3008 10.571 0.0716 4.4731

G2 0.9059 0.0000 0.4456 7.3139 0.0000 0.4668 7.3139 0.0874 3.7009

G3 0.6978 0.0476 0.8299 2.2541 0.0849 0.3518 2.2541 0.1914 3.7738

G4 0.5208 0.1435 2.3142 0.6357 0.1533 0.6566 0.6357 0.3947 4.6848.

G5 0.3736 0.8348 10.232 0.1554 0.2878 0.3468 0.1554 0.7042 4.8257

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

G14 0.2404 0.6681 0.7299 0.5817 6.6614 0.3740 0.5817 3.5706 1.0163

G15 0.3285 2.4157 0.7201 0.7299 1.9951 3.5706 0.7299 9.3448 0.8784

G16 0.6581 7.5688 0.5531 0.7201 0.4541 9.3448 0.7201 8.7557 0.7971

FIGURE 5
Daylight illuminance variation chart in cloudy weather.

the illuminance of the artificial light source on the desktop can be
further calculated, and the total illumination of the desktop can
be obtained by adding the two. Figure 5 shows lighting in cloudy
conditions and Figure 6 shows lighting on sunny days. As can be
seen from the figure, the illuminance of the room varies greatly in
these two weathers.

Without using any lighting control system, simply turn on all
the lighting fixtures, the total power of the luminaire is 450W.
When we only use the window to introduce natural light, the row
of lamps closest to natural light will generally turn off, and the
natural luminosity will change over time due to the operation of
the earth, and the average total power for 8 h is 220W. The average
power of enabling intelligent lighting control for 8 h in amulti-cloud
environment is 210W,while the average power of enabling intelligent
lighting control for 8 h in a clear sky environment is 115W, because
the use of intelligent lighting control can reduce the output luminous
flux of the luminaire and reduce the power used by the luminaire.
Of course, if we want to achieve overall lighting comfort, adaptive
intelligent lighting control will highlight its advantages.

5.2 Experimental results and analysis

In the third chapter, we introduce the adaptive intelligent control
based on the non-dominated ranking genetic algorithm to achieve
the illumination of indoor desktop surface, and finally use the
program to achieve the optimal balance of desktop lighting. The test
of system energy consumption verifies the practicality of the scheme
in energy consumption optimization. In order to further compare
the efficiency of the scheme, we compare the scheme with the
existing extreme value search algorithm based on gradient method.
According to the experimental results, we make the change plot
of the illumination of the two algorithms over time as shown in
Figure 7, and the relationship between the two algorithms of E-T
is shown in Figure 8, and we put the illumination and output of the
two algorithms on a graph respectively in order to visually compare.
In Figure 8, wemade two error bars, one with an error bar of 5{%}E,
which is the solid red line in the figure, and the other with an error
bar of 27{%} E, which is the green line in the figure. The purpose
of marking these two lines is to give a visual comparison between
the results of the search experiment and the results of the traversal
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FIGURE 6
Illuminance change curve of each desktop during daylight on a sunny day.

FIGURE 7
Schematic diagram of light variation curve with time. ((A) The gradient
method is used to search the illumination variation diagram with time;
(B) Time-dependent graph of illumination for genetic search based on
non-dominated sequencing).

experiment. Schematic diagram of light variation curve with time is
shown in Figure 7. Schematic diagram of E-t relationship change is
shown in Figure 8.

As can be seen from Figure 7, the real-time illumination value
change under the two algorithms is basically stable near the set
value. It can be seen from Figure 8 that the energy consumption
of the gradient-based extreme value search algorithm is basically
stable at about 7.78 after 80 s, and the energy consumption of the
no dominated ranking genetic algorithm is basically stable at about
7.36 after 30 s. In the energy-saving control of intelligent lighting
system, the time required to search for the relative minimum energy

FIGURE 8
Schematic diagram of E-t relationship change.

consumption based on the no dominated ranking genetic algorithm
is significantly less than that based on the gradient method extreme
value search algorithm. This shows that the search rate based on the
no dominated ranking genetic algorithm is faster than that based
on the gradient method extremum search algorithm. Compared
with the relative minimum energy consumption value searched, the
relative minimum energy consumption value searched based on the
no dominated ranking genetic algorithm is smaller than that based
on the gradient method extreme value search algorithm, indicating
that the no dominated ranking genetic algorithm is better in terms of
energy saving effect. In the traversal experiment, we obtain a relative
minimum energy consumption value of 7.4658, and the calculation
results by the error show that the search results based on the no
dominated sorting genetic algorithm are closer to the results of the
traversal experiment.

In Figure 9, we compare “pure fuzzy control” (Diethorn, 2021),
“genetic algorithms” (Luo andOyedele, 2021), “BP neural networks”
(Liu et al., 2019), “adaptive fuzzy control” (Wei et al., 2021), “Mou
et al. (Moudgil et al., 2023)”, “Rou et al.” (Roumi et al., 2023), and
“Yaz et al. (Yazdanpanah, 2023)” There are a total of 8 models with
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FIGURE 9
Comparison of inference speed of different models under different conditions (the left picture is the data obtained under sunny weather, and the right
picture is the data obtained under cloudy sky).

FIGURE 10
Comparison of calculation amount of different models (the picture above shows the data under a sunny day, and the picture below shows the data
under a cloudy day).
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FIGURE 11
Comparison of Lift values of different models on different datasets [Picture (A) is the data obtained from Dataset 1 on sunny days, and Picture (B) is the
data obtained from Dataset 2 on cloudy days. The larger the Lift value (lift index), the better the model. better].

FIGURE 12
Changes in the stability index (PIS) of different models when the number of inferences is different [Picture (A) is from the data collected on sunny days in
Dataset 1, It is a relatively simple data set, and picture (B) is from the data collected on cloudy days in data set 2, which is a relatively complex data set].

our model. With the increase in the number of inferences, the
change of inference time needs to consider the characteristics of
real-time response and adjustment of architectural lighting adaptive
energy-saving control. Our model is compared with other models
on different data sets. , have better performance in terms of
inference speed. The reasoning speed is faster, indicating that the
data processing capability of the model is stronger. The adaptive
energy-saving control of architectural lighting needs to monitor
and analyze various factors (such as the light intensity inside and
outside the building, temperature, humidity, etc.), and the artificial
intelligence model needs to have strong Data processing capabilities

to obtain accurate and effective data information. Therefore, our
model has a strong fit for this study.

In Figure 10, we compared the calculation amount of data
obtained by different models under different weather conditions.
The smaller the calculation amount of a model, the less data it
processes, the simpler the model structure and the corresponding
model, andThebetter the performance; it can be seen from the figure
that no matter the data set, our model has the smallest amount of
calculation, which can provide conditions for faster reasoning and
training speed.

In Figure 11, we compare “Ours”, “pure fuzzy control”, “genetic
algorithms”, “BP neural networks”, “adaptive fuzzy control”, “Mou
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FIGURE 13
Comparison of the control effect and recall rate of different models
(dataset 1 is the data collected on sunny days, which is a relatively
simple data set, and data set 2 is the data collected on cloudy days,
which is a relatively complex data set).

et al.”, “Rou et al.”, “Yaz et al.” The Lift values of a total of 8
models. The Lift value measures the performance of a classification
model, which describes how well the model’s predictions compare
to random guessing. A Lift value greater than 1 indicates that
the model performs better than random guessing, while a Lift
value less than 1 indicates that the model does not perform
as well as random guessing. Lift values are often used to
evaluate classification models in scenarios such as marketing
or recommender systems, such as advertisement click-through
rate prediction and product purchase probability prediction, etc.
In these scenarios, the goal of the model is to identify those
users who are interested or have purchase intentions as much as
possible to improve recommendations’ accuracy and transaction
rate. Therefore, the Lift value is also an important indicator to
measure the running effect of a model. It can be seen from the
figure that the Lift value (lift index) of our model is higher than
that of other models in both dataset 1 and dataset 2., showing good
performance.

For example, process 2 is the running process of our model.
First input the data set Dataset “sunny weather”, “cloudy weather”,
then perform Feature extraction and Pre-training, then input the
data into the NSGA network and smart grid for training, and
finally repeat the training process through a series of calculations
to complete the network train.

In Figure 12, we compare the stability indicators of different
models in different data sets. The Population Stability Index
(PSI) is an indicator used to measure the stability between two
groups, usually in evaluating risk models or other predictive model
performance. It can help us determine whether a model has
consistent predictive power over different periods or across different
sample populations. The smaller the PSI value, the smaller the
distribution difference between the new data set and the historical
data set, and the better the stability of the model. A PSI value less
than 0.10 indicates good model stability, while a value greater than
0.25 indicates poormodel stability. It can be seen from the figure that

1: Input: Dataset "sunny weather", "cloudy

weather"

2: Output: Trained network "NSGA"

3: Step 1: Feature extraction

4: Extract features from the input images using a

pre-trained convolutional neural network

(CNN).

5: Step 2: Pre-training

6: Train the feature extractor using unsupervised

pre-training, such as autoencoder, to learn

better representations of the input data.

7: Step 3: Transfer learning

8: Fine-tune the pre-trained feature extractor on

the "sunny weather" dataset to adapt it to the

specific domain.

9: Step 4: Non-dominated sorting genetic

algorithm (NSGA)

10: Use NSGA to optimize the network's

architecture and hyperparameters for

multi-objective performance, such as accuracy

and efficiency.

11: Step 5: Smart grid

12: Use a smart grid to search for the optimal

hyperparameters of the network, such as

learning rate and batch size.

13: Step 6: Loss calculation

14: Calculate the loss of the network using a

specific loss function, such as cross-entropy

or mean squared error.

15: Step 7: Parameter update

16: Update the parameters of the network using an

optimization algorithm, such as stochastic

gradient descent (SGD).

17: Step 8: Warm start

18: Use a warm start strategy to initialize the

network's parameters for faster convergence.

19: Step 9: Adversarial training

20: Train the network with adversarial examples to

improve its robustness to input perturbations.

21: Step 10: Repeat

22: Repeat Steps 4-9 until the network achieves

satisfactory performance on the "cloudy

weather" dataset.

Algorithm 2. Training process of network “NSGA”.

when our model has a large number of inferences, its stability index
is still within a good index, and it is suitable for simple and complex
data sets and has strong generalization.

Figure 13 compares different models’ control effects and recall
rates on different data sets. The control effect of the model is one of
themost important indicators to evaluate the adaptive energy-saving
control model of architectural lighting, that is, the brightness and
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TABLE 2 Performance evaluation of different methods.

Method Inference Time(s) ↓ Flops(G) ↑ Lift ↑ PIS ↓ Control Effect (%) ↑ Recall (%) ↑

pure fuzzy control (Diethorn, 2021) 0.412 ± 0.05 170.02 ± 0.04 1.54 ± 0.01 0.23 ± 0.06 82.78 ± 0.11 65.39 ± 0.09

genetic algorithms (Luo and Oyedele, 2021) 0.537 ± 0.07 98.76 ± 0.08 2.10 ± 0.03 0.29 ± 0.09 88.23 ± 0.08 61.17 ± 0.04

BP neural networks (Liu et al., 2019) 0.243 ± 0.08 123.45 ± 0.07 2.78 ± 0.02 0.21 ± 0.07 79.34 ± 0.02 72.56 ± 0.03

adaptive fuzzy control (Wei et al., 2021) 0.489 ± 0.03 150.10 ± 0.03 3.87 ± 0.01 0.29 ± 0.05 91.04 ± 0.09 69.32 ± 0.06

Mou et al. (Moudgil et al., 2023) 0.398 ± 0.04 115.67 ± 0.09 3.14 ± 0.01 0.17 ± 0.02 88.76 ± 0.05 75.89 ± 0.08

Rou et al. (Roumi et al., 2023) 0.422 ± 0.06 135.31 ± 0.06 1.20 ± 0.02 0.25 ± 0.03 92.13 ± 0.07 68.23 ± 0.04

Yaz et al. (Yazdanpanah, 2023) 0.512 ± 0.09 135.31 ± 0.04 2.67 ± 0.03 0.35 ± 0.08 86.34 ± 0.06 63.45 ± 0.03

Ours 0.187 ± 0.02 93.21 ± 0.05 4.28 ± 0.03 0.1 ± 0.01 97.56 ± 0.04 80.21 ± 0.07

The values marked in black in the table represent the best performance.

switch of the light controlled by the model. The degree to which the
status matches the actual needs. The recall rate of the model is used
to measure the ability of the model to identify positive samples, that
is, how many real positive examples the model can correctly find. It
is also one of the important indicators to measure the model. As can
be seen from Figure 13, whether our model is in data set 1 or data
set 2, its control effect and recall rate are greater than other models,
showing a good performance.The effect can effectively deal with this
problem.

In Table 2, we summarize the previous comparisons, mainly
composed of accuracy, calculation amount, and parameter amount,
and mark the literature we refer to in different models. Our model
is superior to other models in terms of accuracy, computation, and
parameters, and we can have a more comprehensive and intuitive
understanding of our model.

6 Conclusion and discussion

This paper proposes applying a smart grid and non-dominated
sorting genetic algorithm in adaptive energy-saving control of
architectural lighting, which can solve the energy-saving problem
of architectural lighting. Data, combined with a non-dominated
sorting genetic algorithm, which supports unconstrained and
constrained problems; can effectively deal with multi-objective
problems; effectively maintain diversity; high search efficiency and
good accuracy. It is used to solve the problem of optimizing
multiple objective functions simultaneously, which can effectively
help solve the power system scheduling problem. In the experiment,
we compared our model with other models. The results show that
our model has the advantages of faster reasoning speed, lower
calculation load, and the highest control rate and recall rate. It has
a good operating effect and can Effectively solve the problem of
adaptive energy-saving control of architectural lighting.

However, our method also has some limitations, such as
parameter adjustment difficulties: non-dominated sorting genetic
algorithm needs to set a series of parameters, such as population
size, crossover probability, mutation probability, etc., and the
adjustment of these parameters may have an important impact on
the performance of the algorithm. Influence, but it is difficult to
determine the optimal value intuitively. The optimization process

of the non-dominated sorting genetic algorithm is relatively
complicated, and its results are difficult to explain intuitively, which
may cause difficulties for users to understand. To solve these
problems, consider optimizing the model, using the form of a
combined model, combining the advantages of each model to make
the model work better.

Presently, lighting energy saving has been paid attention to
by countries worldwide, and some developed countries have
formulated green lighting plans. Relevant departments of the United
Nations have also proposed developing intelligent lighting buildings
with scientific and advanced lighting technology, which shows the
significance of lighting energy-saving research. This paper counts
the power data of the intelligent lighting system under different
weather conditions through simulation experiments. By comparing
the power data of other different lighting control methods, it is
found that the intelligent lighting system maximizes the utilization
of natural light and achieves the purpose ofmaximum energy saving
without affecting normal lighting, which provides a theoretical basis
for the intelligent lighting system. Promote the lighting control
system based on the DALI protocol. The system designed in this
paper is an intelligent lighting system, but there still needs to be
a big gap from real intelligence. In this paper, grouping control of
lamps is carried out, but grouping is only artificial grouping, which
is not allowed in practical applications, and many factors need to be
considered. For example, indoor facilities, the main activity area of
personnel, etc. These are the difficulties that need to be solved in the
later stage.
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Ultra-short-term power load forecasting (USTPLF) can provide strong support
and guarantee the decisions on unit start-up, shutdown, and power adjustment.
The ultra-short-term power load (USTPL) has strong non-smoothness and
nonlinearity, and the time-series characteristics of the load data themselves are
difficult to explore. Therefore, to fully exploit the intrinsic features of the USTPL,
a stochastic configuration networks (SCNs) USTPLF method based on K-means
clustering (K-means) and empirical mode decomposition (EMD) is proposed.
First, the load data are decomposed into several intrinsic mode functions (i.e.,
IMFs) and residuals (i.e., Res) by EMD. Second, the IMFs are classified by K-means,
and the IMF components of the same class are summed. Third, the SCNs is used
to forecast the electric load on the basis of the classified data. Lastly, on the basis
of the real load of Shenzhen City, the proposed method is applied for emulation
authentication. The result verifies the efficiency of the proposed measure.

KEYWORDS

ultra-short-term power load forecasting, feature extraction, stochastic configuration
networks, empirical mode decomposition, K-means clustering

1 Introduction

1.1 Literature review

Ultra-short-term power load forecasting (USTPLF) is an essential reference for real-
time dispatching orders and a fundamental basis for determining real-time tariffs, grid
peaking, and valley filling (Lin et al., 2022; Lin et al., 2022). In recent years, the increase
in distributed energy sources and the grid connection of new energy generation has led
to the strong nonlinearity, non-smoothness, and randomness of ultra-short-term power
load (USTPL), which brings challenges to USTPLF. Accurate USTPLF can realize the
advanced control of automatic generation, reduce the adjustment pressure on automatic
generation control, guarantee the stable operation of the power system, and enhance
the efficiency of grid dispatch (Yan et al., 2021; Pham et al., 2022; Sun and Cai, 2022).
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Research on power load forecastingmethods. USTPLF ismainly
divided into traditional statistical methods and machine learning
methods. The traditional statistical methods mainly include the
linear regression model (Liang and Tang, 2022), the Kalman filter
method (Guo et al., 2022), and the time series model (He et al.,
2022). Literature (Kim et al., 2022) used the curve extrapolation
method for USTPLF based on short-term load forecasting results,
eliminating the influence of holidays and load inflection points
on the forecasting results. Literature (Guan et al., 2013) used
the Kalman filter to generate prediction intervals and perform
USTPLF automatically. Traditional statistical methods have high
data requirements and cannot obtain accurately predicted load
values when dealing with large amounts of nonlinear load data.
Machine learning methods mainly include BP neural networks
(Chen et al., 2023; da Silva and de Andrade, 2016), support vector
machines (SVM) (Jiang et al., 2020), and deep learning (Tan et al.,
2020). In Literature (Huang et al., 2022), a two-way weighted
LS-SVM was used for USTPLF, which proved the characteristic
of “large near and small far” for USTPLF. It did not rely
on long-range data and considered near-term load data more.
However, the fast leave-one-out method could not find the
optimal parameters of the LS-SVM, which affected the prediction
accuracy. Literature (Madhukumar et al., 2022) first used phase
space reconstruction to find the intrinsic pattern between load
data, established an SVM load prediction model after determining
the import and output data, and optimized the SVM parameters
by using an improved particle swarm algorithm to enhance the
model prediction capability. Literature (Mir et al., 2021) adopted
an enhanced firework algorithm to find the optimal weights
and thresholds of the extreme learning machine to overcome
the problem of model instability caused by randomly generated
weights and thresholds of the extreme learningmachine in USTPLF.
Literature (Gunawan andHuang, 2021) used a stochastic distributed
embedding framework and a BP neural network to solve the
problem of low accuracy of USTPLF caused by a small amount of
data. However, the BP is prone to overfitting when the import data
are significant. In Literature (Xuan et al., 2021), the tree model in
the lightweight gradient boosting machine (Light-BM) was used
to evaluate the importance of each import feature quantitatively.
At the same time, an attention mechanism was introduced to
give different weights to different time series information, which
overcomes the problem of easy loss of crucial information in
gated recurrent neural networks when the import time series is
longer. Additionally, in the field of wind power forecasting, several
studies have proposed novel models to enhance the accuracy of
wind power prediction. For instance, the study by (Shahid et al.,
2021) presented a novel genetic LSTM model for wind power
forecast, which leverages the genetic algorithm to optimize the
LSTM network parameters and improve the forecasting accuracy.
Furthermore, in financial market forecasting, the study conducted
by (Bukhari et al., 2020) proposed a Fractional Neuro-Sequential
ARFIMA-LSTM model, which integrates the ARFIMA model with
LSTM to forecast financial market dynamics more accurately In
Literature (Ageng et al., 2022), a method of USTPLF based on an
extreme gradient enhancement algorithm (XGBOOST) combined
with a long- and short-term memory neural network (LSTM) was
proposed to enhance the accuracy of USTPLF by using XGBOOST
for point prediction and then using LSTM for probabilistic

prediction.Themachine learningmethod is good at handling a large
amount of nonlinear data. It has a good generalization ability to
anonymous data, but it often affects the USTPLF accuracy due to
improper human-set parameters.

A study on the Import feature of USTPLF. USTPLF is usually
influenced by the load data in the hours before the moment
to be predicted and external factors, e.g., wind force and wind
direction do not change much during this period; hence, the
external factors, such as wind force and wind direction, are not
considered in USTPLF (Bouktif S et al., 2018). Tapping the laws
of the electric load data themselves is the key to improving
the accuracy of USTPLF. Literature (Zhao et al., 2019) used the
attention mechanism to assign different weights to the import
data so that the gated recurrent unit (GRU) focuses on learning
important information, which overcomes the disadvantage that the
GRU tends to lose sequence information in the learning process
and improves the prediction efficiency. However, the attention
mechanism only exploits the shallow features of the load data and
does not perform deep mining of the data themselves. Literature
(Li et al., 2017) utilized wavelet decomposition to decompose the
load and a second-order gray neural network to predict and sum
the components. Another study by (Shahid et al., 2020) introduced a
novel Wave nets long short-term memory paradigm for wind power
prediction, which combines the Wave nets model with LSTM to
capture the long-term dependencies in wind power time series data.
Literature (Kong et al., 2020) used multiple clustering analysis to
filter the import features, wavelet decomposition to classify the load
into high- and low-frequency components, a convolutional neural
network (CNN) to predict the high-frequency components, and a
multiplexed CNN (MCNN) to predict low-frequency components.
Cluster analysis and wavelet decomposition can fully exploit the
inherent features and patterns of load data and enhance the
accuracy of USTPLF. Although the wavelet decomposition method
can decompose load sequences, the selection of wavelet basis
functions and decomposition layers has a significant impact on
the decomposition effect for sequences with poor stability, which
increases the prediction difficulty. Literature (Tang et al., 2019)
decomposed the load sequence into different modal components
via empirical mode decomposition (EMD) and predicted the
modal components through deep belief networks and bi-directional
recurrent neural networks. In Literature (Li et al., 2020), the EMD
with adaptive noise was used to decompose the load sequence into
different components, and the SVM with optimized parameters
using the whale algorithm was employed to predict the different
components with enhanced prediction accuracy. The EMD method
is adaptive and can decompose the load on the basis of its
time-series characteristics without artificially setting parameters,
simplifying the prediction difficulty. Therefore, the decomposition
of the prediction model’s import load data can explore the data’s
laws. However, it also increases the prediction time and reduces
the prediction efficiency because of the excessive decomposed
components. A brief summary of the studied literature is presented
in Table 1. In the research of power load forecasting, machine
learningmethods such as neural networks, support vectormachines,
and deep learning have shown excellent performance in handling
large amounts of nonlinear data. Researchers have employed
techniques such as attention mechanisms, wavelet decomposition,
and clustering analysis to uncover the intrinsic patterns and features
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TABLE 1 Literature review summary.

Ref Method Forecasted variable Augmentation strategies

Huang et al. (2022) LS-SVM The load values for a future time period —

Madhukumar et al. (2022) SVM Ultra-Short-Term Power Particle swarm algorithm

Mir et al. (2021) ELM Ultra-Short-Term Power Enhanced firework algorithm

Gunawan and Huang, (2021) BP Ultra-Short-Term Power The stochastic distributed embedding
framework and the backpropagation (BP)
neural network

Xuan et al. (2021) Light-BM The load values Attention Mechanism

Shahid et al. (2021) LSTM Wind power GA

Bukhari et al. (2020) LSTM Financial market ARFIMA-LSTM

Ageng et al. (2022) LSTM Ultra-Short-Term Power Combining XGBOOST and LSTM

Zhao et al. (2019) GRU Ultra-Short-Term Power Attention Mechanism

Li et al. (2017) Second-order Gray Neural Network The load values for a future time period Wavelet Decomposition

Shahid et al. (2020) LSTM Wind power WN-LSTM.

Kong et al. (2020) MCNN Ultra-Short-Term Power Multiple clustering analysis and Wavelet
decomposition

Tang et al. (2019) BRNN Ultra-Short-Term Power EMD

Li et al. (2020) SVM Ultra-Short-Term Power EMD whale algorithm

of load data, aiming to improve prediction accuracy. However,
the decomposition methods may increase prediction time and
reduce efficiency. Therefore, when selecting a forecasting method,
it is necessary to consider the characteristics of load data and the
requirements for prediction accuracy.

1.2 Motivation

Despite the widespread application of data-driven methods
in feature construction and model training, they are not
without limitations. One notable drawback is their excessive
reliance on parameter optimization algorithms, such as particle
swarm optimization or the whale optimization algorithm, which
necessitates parameter tuning and manual intervention. This
reliance adds complexity and subjectivity to the methods. Another
significant limitation is the substantial impact of parameter
selection on the results. In certain methods, such as selecting
wavelet basis functions and determining decomposition levels, the
choice of parameters heavily influences the prediction outcomes.
Determining the appropriate parameters often requires expertise
and rigorous experimental investigation, further complicating the
methods and introducing uncertainty. Additionally, the need for
different parameter settings across diverse datasets and problems
can impede the methods’ generalizability.

These limitations pose challenges and constraints in the practical
application of data-driven methods. To overcome these issues, a
novel approach that integrates Empirical Mode Decomposition
(EMD), K-means clustering, and stochastic configuration networks
(SCNs) has been proposed. This approach offers a unique and
innovative solution that effectively addresses the aforementioned

limitations, thereby enhancing the accuracy and robustness
of load forecasting. Finally, the ultra short term power load
(USTPL) has strong non smoothness and nonlinearity, making it
difficult to explore the time series characteristics of the load data
itself.

1.3 Contributions

This approach makes the following contributions:

(1) It introduces a combined method based on Empirical Mode
Decomposition (EMD), K-means clustering, and stochastic
configuration networks (SCNs) for ultra-short-term load
forecasting. By decomposing the load data into Intrinsic Mode
Functions (IMFs) and residuals using EMD, and then classifying
the IMFs with K-means clustering, the method effectively
explores the intrinsic features of the load data.

(2) The utilization of stochastic configuration networks as the
training model is a significant contribution. SCNs possess
adaptive characteristics and require minimal manual parameter
settings. They are capable of leveraging the key information in
the load sequence and achieving accurate predictions.

(3) By using the classified components as input features for training
SCNs, the method reduces the dependence on parameters, thus
enhancing the reliability and efficiency of ultra-short-term load
forecasting.

In summary, the proposed approach based on EMD, K-means,
and SCNs effectively tackles the limitations of data-driven methods
while enhancing the accuracy and robustness of load forecasting.
By effectively extracting the intrinsic features of historical load
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FIGURE 1
Description of the USTPLF problem.

FIGURE 2
Strategy diagram of the USTPLF method.

data and reducing dependence on parameters, this approach
offers a more efficient and accurate solution for ultra-short-term
load forecasting, surpassing the performance of LSTM and SVM
models.

The study is organized as follows: Section 2 provides the
background and objectives of the research, highlighting the
existing challenges in the field and clarifying the research purpose

and questions. Section 3 introduces the methodology or strategy
employed to address the research problem. Section 4 presents
the approach used for feature extraction from the load data.
Section 5 describes the application of the K-means clustering
algorithm to group the load sequences. Section 6 outlines the
load forecasting model based on stochastic configuration networks.
Section 7 provides a description of the dataset used in the study.
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FIGURE 3
Flowchart of EMD breakdown load data.

2 Problem description

The difference between the USTPLF and the short-term power
load forecast is that it follows the principle of large near and small
far, i.e., the first n hours of the time to be forecasted are crucial for
the USTPLF. Short-term power load forecasting is to forecast a load
of a day on the day to be forecasted simultaneously. It cannot take
into account the interactions between the loads at each moment
on the day to be forecasted, whereas USTPLF is hourly granular.
The accuracy rate is higher, and the moment to be forecasted is
very close to the first n hours. External influencing factors, such
as wind force, wind direction, and humidity, do not change much.
Therefore, in USTPLF, external influences on the load are usually
not considered. The key to improving the accuracy of USTPLF is
digging deeper into the laws in the load data themselves. Traditional
forecasting methods have limited ability to map nonlinear data, and
the LSTM has excessive artificially set parameters, which is prone to
the problem of time series information loss and affects its forecasting

accuracy. SCNs are suitable for USTPLF given the advantages
of less artificially set parameters, high intelligence, and shorter
time required for forecasting. The application of our research lies
in Ultra-Short-Term Power Load Forecasting (USTPLF). USTPLF
aims to accurately predict power load variations in the near future.
This application is crucial for the operation and scheduling of
power systems, enabling power companies to plan generation
capacity, optimize grid operations, and enhance energy utilization
efficiency. The problem description of USTPLF is shown in
Figure 1.

3 Strategy structure

Suppose only the extrinsic features of load data are observed
without digging deeper into the intrinsic features of the load data
themselves. In this case, the prediction accuracy will decrease,
and the prediction time will increase. EMD can decompose
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FIGURE 4
Flowchart of K-means cluster with IMFs.

the original load data into several load sequence components
to explore the original load data’s intrinsic features deeply. K-
means can integrate the components to reduce the prediction
time. Therefore, this study proposes an SCNs ultra-short-term
load forecasting method based on K-means and EMD. First,
missing load data are filled. Second, EMD is used to decompose
the load data into several IMFs and residuals to reduce the
randomness and volatility of the load data. Third, K-means is
used to classify several components, and the components contained
at the center of each cluster are summed. Lastly, the summed
components are imported to stochastic configuration networks
for training. The mean absolute error (MAE), mean absolute
percentage error (MAPE), and root-mean-square error (RMSE)
are chosen to measure the performance of the prediction method.
The specific implementation strategy of the method is shown in
Figure 2.

4 Load data feature extraction

USTPLF predicts the load changes in the next few hours.
During this period, the weather, temperature, humidity, and other
external factors have minimal changes, so the influence of external
factors on the load is not considered. When forecasting, only
observing the external characteristics of the load data and not
digging into the internal laws of the load data themselves will reduce
the forecasting accuracy. Therefore, determining how to mine the

inherent characteristics of load data is important. The load series
is decomposed into IMFs and residuals by EMD (Gloersen and
Huang, 2003) in accordance with the time scale of the load data
themselves. Each IMFs represents the characteristic components
of the load series on this time scale. The characteristic law of
each IMF is the characteristic law of the load data themselves.
The composition of the IMF must meet two characteristics:①The
difference between the number of extreme points and the number
of zero points of the intrinsic mode component cannot be greater
than 1. ② The average value of the upper and lower envelopes
of the eigenmode components at any time is zero (Yang et al.,
2018).

Algorithm 1 is a method used for Empirical Mode
Decomposition (EMD) of historical power load data. The algorithm
takes historical power load data and a preset value R as input,
and it outputs the power load sequence components and the
residual error of the power load series, R(t). The algorithm begins
by extracting all maximum points (e max(t)) and minimum
points (e min(t)) from the load data (P(t)). It then calculates
the average of the load data and generates a new load series
based on this average. Next, the algorithm checks if the difference
between the number of extreme points and the number of zero
points is not greater than 1 and if specific conditions are met.
If these conditions are satisfied, the algorithm selects the first
Intrinsic Mode Function (IMF), which represents a characteristic
component of the load series on a particular time scale. It also
calculates the residual of the load series. The algorithm further
evaluates if the residual is less than the preset value R and if it
represents a monotonic load sequence. If both conditions are met,
the algorithm retains the residual as part of the decomposition
process. Otherwise, it returns to step 1 and repeats the process
with the historical power load data. The specific steps of EMD
decomposition of power load data are shown in Figure 3;
Algorithm 1.

5 K-means of load series

After load feature extraction, the load data are decomposed
into several IMFs and residuals. If all the IMFs and residuals are
imported into the SCNs as import data for training, it will lead to
a large amount of data and increase the prediction time. Given its
real-time characteristics (Ding et al., 2020), USTPLF requires high
forecasting speed. K-means is used to integrate IMFs and residuals
to reduce the import data of the SCNs and enhance the forecasting
speed. First, K-means centers are built, and the coordinates of the
clustering centers are determined. Then, the Euclidean distances
of each IMF, each residual, and the cluster center are calculated.
The calculation formula is shown in Formula (1), and each IMF
and each residual are classified in accordance with the Euclidean
distance. Lastly, the IMFs of the same category are added, and
the added components are used as the import data of the SCNs
ultra-short-term load forecasting model. The process is shown in
Figure 4.

dj = √
n

∑
s=1
(xs − p fs)

2 (1)
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FIGURE 5
SCNs ultra-short-term load forecasting model.

Input: Historical power load data

P(t),t = 1,2,⋯,4032; Preset value R

Output: Power load sequence component

fIMFk(t),k = 1,2,⋯,9, Residual error of power load

series R(t)

1:  Extract all maximum points emax(t) and minimum

points emin(t) in load data P(t)

2:  Calculate the average: eav1(t) =
emax(t)+emin(t)

2

3:  Calculate new load series T1(t) = P(t) −eav1(t);

4:  If the difference between the number of

extreme points of T1(t) and the number of zero

points is not greater than 1 and eav(t) = 0

5:   The first IMF fIMF1(t): = T1(t)

6:   Calculate the residual of load series

R1(t) = P(t) − fIMF1(t)

7:    IfR1(t) is less than the preset value R and

is a monotonic load sequence

8:     The residual R(t): = R1(t)

9:    Else

10:     The historical power load data P(t): = R1(t)

go to step 1

11:    End if

12:  Else

13:   The historical power load data P(t): = T1(t) go

to step 1

14:  End if

Algorithm 1. EMD decomposes historical power load data

where xs(s = 1,2,⋯,n) is the load value of the IMF component,
and p fs( f = 1,2,⋯,z; s = 1,2,⋯,n) is the coordinate value of the f th
cluster center.

6 Load forecasting model based on
stochastic configuration networks

SCNs have the advantages of fewer parameters set manually,
automatically adjusting the weight of each unit in accordance
with the prediction error, avoiding the problem of affecting
the accuracy of load forecasting caused by improper parameter
selection, and rapid selection of hidden parameters through its
evaluation function, thus improving the forecasting efficiency.
Therefore, SCNs are used to forecast USTPLswith high accuracy and
speed requirements. SCNs are random-weighted neural networks
with a supervision mechanism proposed by Wang and Li, (2017).
Their structure includes an input layer, a variable hidden layer,
and an output layer. Unlike the traditional feedforward neural
network, SCNs can start from a small network with minimal human
intervention, randomly select import weights and thresholds,
gradually increase the number of hidden layer neuron nodes,
and use the least squares method to calculate the output weights
and thresholds until the training accuracy of the network meets
the termination conditions. In addition, SCNs add an evaluation
function for random parameters and adaptively select the range of
random parameters.

Suppose we build an SCNs model with L-1 hidden layer nodes,
and its basic mapping relationship is

fL−1(X) = β
TH =

L−1

∑
j=1

βjgj(w
T
j X+ bj)(L = 1,2,…,m; f0 = 0) (2)
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FIGURE 6
IMFs and Res after load data decomposition.

FIGURE 7
Effect of the clustering of each component.

where βj is the output weight matrix of the jth hidden layer
node; X = {X1,X2,…,XN} is the import characteristic matrix, e.g.,
X1 = [x1,x2,⋯xM]

T; wj and bj are the import weight and threshold
matrix of the jth hidden layer node, respectively; gj is the sigmoid
activation function.

gj = g(w
T
j X+ bj) =

1
1+ exp(−wT

j X+ bj)
(3)

FIGURE 8
Training error value corresponding to the number of hidden layer
nodes.

When the model is calculated for the first time, the difference
between the model output and the real value is defined as

eL−1 = f − fL−1 = [eL−1,1,eL−1,2,…,eL−1,m] (4)
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FIGURE 9
Comparison between predicted and actual values of four components. (A) First component predicted value. (B) Second component predicted value.
(C) Third component predicted value. (D) Predicted value of the fourth component.

FIGURE 10
Comparison between total predicted value and actual value.

where eL−1 represents the difference between the number of different
nodes, and eL−1,K is the difference of corresponding characteristics of
different nodes.

When the error does not meet the set value, gL and bg are
randomly generated in accordance with Formula (5)–Formula (7),

and the updated output weight value βL is calculated. A hidden
layer node is added, and the model output is updated to
fL(X) = fL−1(X) + βLgL to achieve the purpose of correcting the
residual. As a result, the output predicted value is closer to the real
value, and the update process is until the error meets the set value.
The update function is

⟨eL−1,q,g
2
L⟩ ≥ b

2
gδL,q,q = 1,2,⋯m (5)

βL,q =
⟨eL−1,q,gL⟩

‖gL‖
2 ,q = 1,2,…,m (6)

{{{
{{{
{

δL =
m

∑
q=1

δL,q

δL,q = (1− r− μL)‖eL−1,q‖
2

(7)

The evaluation function is defined as follows:

ξL,q =
(eL−1,q(X)

T • gL(X))
2

gL(X)
T • gL(X)

− (1− r− μL)eL−1,q(X)
T • eL−1,q(X) (8)

where gL(X) = gL(w
T
LX+ bL); 0 < r < 1; μL is a sequence of non-

negative real numbers. The larger the value of the evaluation

Frontiers in Energy Research 09 frontiersin.org267

https://doi.org/10.3389/fenrg.2023.1182287
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Pang et al. 10.3389/fenrg.2023.1182287

TABLE 2 MAE, MAPE, and RMSE of the four methods.

Prediction method MAE/MW MAPE/% RMSE/MW

EKSCNs 178.94 1.69 216.34

SCNs 569.74 5.71 687.97

EKSVM 389.01 3.63 473.37

EKLSTM 389.53 4.20 558.07

function ξL,q, the better the model parameter configuration,
and the faster the convergence of the stochastic configuration
networks.

The construction of the SCNs ultra-short-term load forecasting
model is shown in Figure 5. The model comprises 144 neurons in
the input layer, 261 neurons in the hidden layer, and 48 neurons
in the output layer. The algorithm starts with initialization and
enters a while loop. In each iteration, it performs nested loops
to randomly assign weights and calculate the evaluation function
and error. If the evaluation function meets certain criteria, the
weights are stored. If the stored set is not empty, the algorithm
finds the weights that maximize the evaluation function and
generates a matrix. Otherwise, it randomly fetches weights and
continues the process. After the iterations, the algorithm calculates
the optimal output weight and output error. It then updates the
weights and continues the loop until the specified conditions are
met. Finally, the algorithm returns the predicted value of load series
components in the time period to be predicted. The detailed steps
of the SCNs ultra-short-term load forecasting model are given in
Algorithm 2.

7 Example analysis

7.1 Dataset description

This study adopts Shenzhen’s power load data set from June 2
to 13 July 2017, with a total of 42 days of load data. The sampling
interval of load data is 15 min, with a total of 4,032 data points. The
time period to be predicted is 12:00–24:00 on July 13.

The power load data set is checked. If there is a missing value, it
is filled with the average value. The data in this dataset are complete,
and whether to fill in missing values is optional.

7.2 Performance evaluation index

MAE, MAPE, and RMSE are used as evaluation indicators of
prediction methods. The calculation formulas are as follows:

MAE = 1
N

N

∑
i=1
|y′i − yi| (9)

MAPE = 1
N

N

∑
i=1
|
y′i − yi
yi
| × 100 (10)

RMSE = √ 1
N

N

∑
i=1
(y′i − yi)

2 (11)

where y′i is the predicted load value, and yi is the actual load value.

Input: Power load sequence component

X = {X1,X2,…,XN},N = 21; Expected output

corresponding to the power load sequence

component T = {t1,t2,…,tN}; Number of neurons in

the maximum hidden layer of SCNs Lmax; Error

tolerance ε; Maximum number of random

configurations Tmax; Value range of random

weight ϒ = {λmin,…,λmax};

Output: Predicted value of load series

components in the time period to be predicted

P = (P1,P2,⋯,Pm),m = 48

1:  Initialization:e0 = [t1,t2,…,tN]T,0 < r < 1,Ω,W = ϕ;

2:  whileL ≤ Lmax and ‖e0‖F > ε, do

3:   forλ ∈ ϒ, do

4:    fork = 1,2,…,Tmax, do

5:     Randomly assign wL and bL from intervals

[−λ,λ]M and [−λ,λ], respectively;

6:    CalculategL(X) =

[gL(w
T
L
x1 +bL),gL(w

T
L
x2 +bL),…,gL(w

T
L
xN +bL)];

7:    Calculate the evaluation function ξL,K;

8:    CalculateμL = (1−r)/(L+1);

9:     ifmin{ξL,1,ξL,2,…,ξL,K} ≥ 0then

10:      Store wL and bL in W and ξL =
K

∑
k=1

ξL,k in Ω;

11:     else

12:      go to step 7

13:     end if

14:    end for

15:    ifW is not an empty set then

16:     Find the w*
L
and b*

L
that make ξL the largest

in Ω, and then generate the matrix [g*
1
,g*

2
,…,g*

L
]

17:     Break (go to step 24)

18:    else

19:     Randomly fetch τ ∈ (0,1−r), update r:

r = r+τ, go back to step 7

20:    end if

21:   end for

22:           Calculate the optimal output

weight[β*
1
,β*

2
,…,β*

L
] = argminβ‖f −

L

∑
j=1

βjgj(w
T
j
X+bj)‖

23:   Calculate output erroreL = eL−1 −β*TL g*
L
;

24:   To updatee0: e0 = eL−1; L: L = L+1;

25:  end while

26:  Returnβ*
1
,β*

2
,…,β*

L
; w* = [w*

1
,w*

2
,…,w*

L
]; b* = [b*

1
,b*

2
,…,b*

L
]

Algorithm 2. SCNs

7.3 Historical load data decomposition

The EMD method is used to decompose the historical power
load data, and a total of 10 components are obtained, including
9 IMFs and 1 residual, which are recorded as e1–e10. The
decomposed load series is shown in Figure 6. The frequency of each
IMF component is relatively stable and shows evident periodicity.
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FIGURE 11
Comparison of errors of the four measures.

FIGURE 12
Comparison between the predicted values of the four methods and
the real values.

Through its periodicity, the characteristics of the load series can be
mined.

From Figure 6, the EMD decomposes the historical power load
data into 10 components. If these 10 components are imported into
the SCNs as import data for training, the calculation amount and
prediction time of the model will increase. Therefore, to enhance
the prediction speed, K-means is used to integrate all components,
which are then used as import data for prediction.The center point is
set to 4, and the effect of clustering each IMF component and Res is
shown in Figure 7. Each component is divided into four categories.
The components in the same category are added to obtain the new
load series components d1–d4. The new components d1–d4 are
predicted as the import data of the stochastic configuration networks
model, and the sum of the four prediction results is the USTPLF
result.

7.4 Parameter settings of stochastic
configuration networks

Before USTPLF, the SCNs should be trained. The evaluation
index used in training is the RMSE of the load forecast value

FIGURE 13
Scatter chart of the predicted values of the four methods and the
actual values.

and the actual value. The relationship between the training error
of SCNs and the number of hidden layer nodes is shown in
Supplementary Appendix SA1 and Figure 8.

From the figure, when the number of hidden layer nodes is
small, the training error of SCNs is significant and does not change
as the number of nodes increases. When the number of hidden
layer nodes increases to 13, the training error of SCNs decreases
significantly, continues to decrease as the number of nodes increases,
and finally tends to stabilize. At this time, the trainingRMSEof SCNs
is 0.2155%.

The specific parameter settings of SCNs are as follows: number
of neurons in themaximumhidden layer Lmax = 300, error tolerance
ε = 0.001, random weight range ϒ = [ 0.1,0.15,0.2, … ,8], and
maximum number of random configurations Tmax = 50.

7.5 Load forecasting and analysis

This study sets every 3 days as a sample, having a total of 39
groups of samples. Of them, 80% are taken as the training set, with a
total of 32 groups of samples; 20% are taken as the test set, with a total
of 7 groups of samples. The import data of each group of samples are
the load data of the first and second days of the sample and the load
data of the third day from 00:00 to 11:45, a total of 144 data; the
output data are the load data of the third day from 12:00 to 23:45,
a total of 48 data. The first load series component d1, the second
load series component d2, the third load series component d3, and
the fourth load series component d4 are imported into the SCNs for
training. The predicted values are compared. The actual load values
in the 12:00–24:00 time period of each load series component to be
predicted are shown in Figure 9. The predicted values of the four
components are added to determine the load values of the period
from 12:00 to 24:00 on the day.The comparisonwith the actual value
is shown in Figure 10.

The four methods are programmed separately, and the
numerical examples are analyzed.
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(1) Method 1: The historical power load data without EMD and K-
means processing are taken as the import data to build the SCNs
model, which is called SCNs.

(2) Method 2:The four load series components obtained after EMD
and K-means processing are taken as import data, four SVM
models are constructed, the prediction results are summed, and
the method is called EKSVM.

(3) Method 3:The four load series components obtained after EMD
and K-means processing are taken as import information, four
LSTM models are set, the prediction results are summed, and
the method is called EKLSTM.

(4) The proposed measure in this thesis is to construct four
SCNs models and sum the prediction results by using the
four load series components obtained after EMD and K-
means processing as import data. The method is named
EKSCNs.

The MAE, MAPE, and RMSE of the four measures are shown in
Table 2. The error between the predicted value and the real value
at 48 time points in the time period from 12:00 to 24:00 on 12
July 2017 is shown in Figure 11. Figure 12 presents a comparison
between the predicted loads of the four methods and the real
loads at 48 time points. The scatter plots between the predicted
values of the four methods and the actual values are given in
Figure 13. The smaller the difference between the predicted and
actual values, the closer the point in the figure is to the diagonal
line.

From Figures 11–13; Table 2, when SCNs are also used, the load
series components obtained after EMD and K-means processing
and used as import data show reductions of 390.8 MW, 4.02%, and
471.63 MW in MAE, MAPE, and RMSE, respectively, compared
with the historical load data that are not preprocessed. This
result verifies the effectiveness of using EMD and K-means in
preprocessing historical load data. In the same case of EMD
and K-means processing, EKSCNs is the closest to the slant,
without abnormal points, and its MAE, MAPE, and RMSE are
smaller than those of EKSVM and EKLSTM. The curve trend
is closer to the real load, which verifies the effectiveness of
using SCNs.

8 Conclusion

In this study, EMD is used to decompose the historical load
data into various components. K-means is employed to sum the
decomposed components by category to establish the EKSCNs
USTPLFmodel. Finally, the load forecasting value of the 12:00–24:00
period of the day to be predicted is obtained. An example proves the
effectiveness of the proposed method.

(1) Through EMD, the historical load data are decomposed into
various IMFs and residuals, and the inherent characteristics of
the load series are mined to enhance the prediction accuracy.

(2) The decomposed components are added by K-means, which
reduces the number of import data and avoids the problem of
increasing workload and slowing down prediction speed caused
by importing all components into stochastic configuration
networks for training.

(3) Compared with the SVM and the LSTM, the SCNs has the
advantage of fewer parameters set manually and avoids the
trouble of forecast precision decline on account of improper
parameter selection.
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