About this Research Topic
The aforementioned techniques offer a large set of possibilities to investigate biopolymeric structures and their interaction with each other (i.e. molecular recognition), which is the first step towards the comprehension of molecular recognition in physiologically relevant phenomena. However, only in the very last years the importance of dynamics and of the timescale of atomic and molecular motions emerged clearly, suggesting that a new era of reconsideration of both existing and new structures has begun and that a syncretic approach must be adopted in order to provide a novel vision of molecular recognition based on dynamic properties of biomolecules and on a temporal hierarchy of events.
Moreover in the recent years, a plethora of computational techniques, in particular the diffusion of molecular mechanics (MM) / dynamics (MD) based techniques (plain MD, Metadynamics, Accelerated MD, Langevin Dynamics, rigid body docking) reinforced the idea that the coupling between structure and dynamics is crucial for the explanation of physical-chemical properties of biomolecules and for the prediction of interactions between molecular partners in the living organisms. In particular, due to the availability of increasing computational power at relatively low cost, we assisted to the rise in importance of cross-contamination between computational and experimental disciplines in this sense. This led to the development of new disciplines that reject a straightforward classification and that face new challenges, with experimental data interpreted on the light of computational models or, vice versa, where the computational physical-chemistry is used as a generator of hypothesis verified by means of experimental techniques.
In this sense, our Research Topic intends to bring together current and interdisciplinary research, reviews, and opinions related to the big theme of molecular recognition of and between biomacromolecules, showing the strength of a crosstalk between experimental data and computational models. We cordially encourage authors from fields of biology, chemistry, physics, informatics, and other related disciplines to submit their manuscripts related to this Research Topic for publication.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.