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Editorial on the Research Topic

Lessons and policy consequences of mathematical modeling in relation

to ongoing pandemics

COVID-19 marked the second pandemic of the 21st century, following the swine

pandemic (A/H1N1pdm09) of 2009. It is the third outbreak of coronaviruses after SARS

(2003) and MERS (2013), and the seventh monitored outbreak (including those caused by

the Zika virus and the avian flus A/H5N1 and A/H7N9). Excluding the Zika virus (belonging

to the “Flaviviridae” family) and A/H5N1, the remaining were emerging viruses (1). While

some uncertainty persists about the origin of SAR-CoV-2, current evidence suggests an

animal origin (2). According to numerous studies highlighting the role of Climate change

in increasing the risk rate of cross-species viral transmission (3), the potential for pandemics

to emerge as one of the most significant threats to humanity in the future is evident (4). The

development of coordinated national pandemic plans should be a priority for every country

in order to release a global response to a global issue (5).

An effective pandemic plan should be designed through a multidisciplinary approach,

offering flexibility for calibration based on evolving data evidence, and structured around

the following points:

(a) Epidemiological: Establish a robust epidemiological surveillance system

encompassing the entire national territory. Based on varying assumptions about the

virus’s virulence, simulated scenarios should be run to project the virus’s potential spread

within the population. Epidemiological thresholds to activate restrictive public policies

(including mobility restrictions and social distancing) as well as mandatory sectorial

behaviors (including the use of FFP2 face mask in public transport, smart working, and

distance learning) should be proposed based on predictive model outputs. During the

pandemic, it is important to adapt the most relevant existing models to data evidence and

develop new models as necessary.

(b) Medical: Research and development of vaccines and treatments to address the

biological aspects of preventing and caring the disease. Healthcare workers must be

trained to manage the pandemic with simulations over time to ensure basic preparedness.
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(c) Logistics: Implementing the healthcare response by defining

the necessary resources (including diagnostic tests, protective

equipment, hospital capacity, and vaccines) and organizing

their distribution across territories. Coordination from national

government to local institutions with multiple decision-making

centers should be implemented to facilitate collective territorial

coherence and minimize the possible consequences of government

crisis. Primary health care should play an active role in

guaranteeing system resilience (6).

(d) Political and ethical: Selecting the epidemiological

thresholds and determining their implementation pattern

requires a delicate balance among competing human rights,

including liberty, economy, and health. Sociologists, jurists, and

constitutionalists should engage in relevant discussions aimed at

increasing the likelihood of public acceptance.

(e) Communication: Design a communication campaign using

multimedia platforms to effectively convey accessible and clear

information in a visually and verbally engaging manner, reaching a

wide audience. Emphasize scientific dissemination rather than TV

entertainment programs and address the anti-vax problem with the

appropriate information.

This Research Topic includes 11 original research, two brief

reports, two reviews, and one perspective paper. All the original

research and brief reports either used publicly available data or

were made accessible upon request to the authors. Four studies

included the analysis code. Simulations were carried out through

the COVASIM model (7), which is implemented in free python

code.1 Focusing on mathematical modeling, the collected papers

addressed points (a) and (e) of the previous list during the

COVID-19 pandemic.

The primary overarching conclusion from this Research Topic

is the remarkable proliferation of mathematical modeling during

the emergency period. This global effort reflects the impressive

mobilization of human societies worldwide as well as an underlying

lack of preparedness and coordination. For instance, the Israeli

health response relied on three different models with varying

assumptions and outcomes (Niv-Yagoda et al.).

An overview of pandemic characteristics was provided through

descriptive and predictive models. By analyzing cases from the

Mexico’s surveillance system during the first 2 years, Loza et al.

confirmed the key role of comorbidities in disease severity and

the effectiveness of vaccination campaigns. Ferrante introduced the

negative binomial model to estimate the incidence of infection from

mortality in Italy. Results indicate that over 40% of infections went

undetected, with the majority occurring before the introduction of

rapid tests. Cumsille et al. predicted the occupancy of intensive care

units by adding to the SIR model a compartment representing the

number of patients in intensive care and two parameters describing

the rate from susceptible to recovered (due to vaccine protection)

and the vice versa (due to vaccine immunity decay).

A description of the models used to evaluate the effectiveness

of the vaccination campaign along with two study using them are

included. Filho et al. conducted a review on studies addressing

the impact of a vaccination program. They found that half of

1 Available online at: https://github.com/InstituteforDiseaseModeling/

covasim.

them simulated scenarios with and without vaccines, while the

others compared the populations before and after vaccination.

By simulating the scenario without a vaccination, Ferrante found

that vaccines prevented 115,000 deaths during the first two

pandemic years in Italy. By comparing the pre- and post-

vaccination populations, Lokonon et al. studied the lag-time

effects of vaccination through a quasi-Poisson regression with a

distributed lag linear model. They found a significant protective

effect when the 40% of people were vaccinated, with a lag time of

15 days for the effect of the third dose.

Non-pharmaceutical interventions were extensively

investigated, including their impact on seasonal influenza.

Montcho et al. analyzed these interventions using a distributed

lag linear model. They found that stricter restrictions led to fewer

admissions in regular and intensive care units, with a 9–10 day time

lag. Rodríguez et al. investigated the impact of non-pharmaceutical

interventions in Spain using a data-driven agent-based model.

Simulations revealed that the combination of tracing and testing,

along with the associated isolation of positive individuals,

halved infections and deaths. Valgañón et al. investigated the

socioeconomic determinants of stay-at-home through a SEIR

model that included a permeability parameter and a predeceased

compartment. Their study highlighted the need for equitable

global policies, showing the challenges low-income countries

face in mitigating the virus spread and protecting vulnerable

populations. Lin et al. studied the effects of non-pharmaceutical

policies on the seasonal flu and found that wearing face masks

and avoiding crowded places protected ∼20 and 40% of people,

respectively. Furthermore, if more than 85% of people had adopted

both behaviors the reproduction number could have been <1.

As with other respiratory viruses, schools played a relevant

role in the COVID-19 spread. Yin et al. studied the university

resumption impact using a disaster management perspective and

the pressure–state–response model. Their model included six

factors representing disaster hazards that university can only

monitor (including epidemic risk level of the school’s location

and means of transportation back to school) and fourteen

factors related to system vulnerability that can also be controlled

(including student behaviors and routine campus activities).

Through simulations, Abeysuriya et al. compared three testing

strategies in schools: home quarantine of all contacts of a positive

case; “test-to-stay” strategy for close contacts of a case for 7 days;

and an asymptomatic surveillance strategy involving twice-weekly

screening of all students. Compared to extended home quarantine,

test-to-stay strongly increased days of face-to-face teaching while

maintaining a similar effectiveness for reducing school infections.

Asymptomatic screening was beneficial in reducing both infections

and lost days of face-to-face teaching especially when community

prevalence was high.

The COVID-19 pandemic also marked an intensive use

of machine learning and sentiment analysis in epidemiological

modeling. Varón et al. performed a review to describe the role

of machine learning in health policies. They found an increasing

usage of these methods both in COVID-19 and long COVID

studies, including clinical diagnosis, epidemiological analysis, drug

discovery, patterns and relationships of symptoms, and predicting

risk indicators. Chen et al. proposed integrating epidemic modeling

with content and sentiment infoveillance based on natural language
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processing. They concluded that infoveillance from massive social

media data complements and enhances current epidemic models.

Zhang et al. conducted a sentiment analysis of the Chinese

reopening policy after 3 years of “zero-COVID” measures. They

found a negative attitude toward “sudden” measures and suggest

preparing people in advance with relevant health consultation

services and an effective communication strategy.

Results from this Research Topic suggest several points

to upgrade the pandemic response from national to a global

level. In particular, for improving the initial preparedness

we recommend:

1) WHO should lead research efforts to identify and classify

potential spillover viruses (8) and advance research on related

vaccines and therapies.

2) WHO should develop guidelines for establishing public

and standardized national-level epidemiological virus

surveillance systems based on Statistical Data and Metadata

eXchange (9). These systems ensure the collection of

consistent national data, which can be simply transmitted to

a global database (such as the global influenza surveillance

and Response System) and made accessible through

user-friendly APIs.

3) National pandemic plans should include simulations of

virus spread, considering varying levels of virulence and

transmission abilities. These simulations should use an agent-

based model and encompass factors such as the saturation

level of hospitals and the impact of pharmaceutical and non-

pharmaceutical policies.

4) Countries should integrate pandemic-era hygiene rules (such

as wearing face mask in crowded places and washing hands

after touching surfaces potentially contaminated) into primary

school hygiene education.

Additionally, priorities during a pandemic should include:

5) In countries initially affected, lethality should be promptly

estimated through community serosurveys focused on the

area surrounding the initial deaths. Subsequent refinement

can be achieved through regional and national serosurveys

that track virus circulation.

6) Estimating the lethality hazard ratios for the virus variants

compared to the original strain, along with the relative risks

of infection and death among vaccinated and unvaccinated

individuals, will allow for the consistent application

of the negative binomial model throughout the entire

pandemic period.

7) Ensure the rapid availability of reliable rapid tests to support a

worldwide testing campaign for identifying positive cases and

contact tracing.

8) Secure the swift availability and equitable global distribution

of effective vaccines.

9) Calibrate health policy and communication campaigns based

on sentiment analysis to increase public compliance.
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Background: The novel coronavirus disease 2019 (COVID-19) is an ongoing

pandemic that was first recognized in China in December 2019. This paper

aims to provide a detailed overview of the first 2 years of the pandemic in Italy.

Design and methods: Using the negative binomial distribution, the daily

incidence of infections was estimated through the virus’s lethality and the

moving-averaged deaths. The lethality of the original strain (estimated through

national sero-surveys) was adjusted daily for age of infections, hazard ratios of

virus variants, and the cumulative distribution of vaccinated individuals.

Results: From February 24, 2020, to February 28, 2022, there were 20,833,018

(20,728,924–20,937,375) cases distributed over five waves. The overall lethality

rate was 0.73%, but daily it ranged from 2.78% (in the first wave) to 0.15% (in the

last wave). The first two waves had the highest number of daily deaths (about

710) and the last wave showed the highest peak of daily infections (220,487).

Restriction measures of population mobility strongly slowed the viral spread.

During the 2nd year of the pandemic, vaccines prevented 10,000,000 infections

and 115,000 deaths.

Conclusion: Almost 40% of COVID-19 infections have gone undetected

and they were mostly concentrated in the first year of the pandemic. From

the second year, a massive test campaign made it possible to detect more

asymptomatic cases, especially among the youngest. Mobility restriction

measures were an e�ective suppression strategy while distance learning and

smart working were e�ective mitigation strategies. Despite the variants of

concern, vaccines strongly reduced the pandemic impact on the healthcare

system avoiding strong restriction measures.

KEYWORDS

COVID-19, incidence, lethality, health policy, negative binomial, moving averages

Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new

virus identified in Wuhan (Hubei, China) in late 2019 (1). SARS-CoV-2 causes the

coronavirus disease 2019 (COVID-19), an illness that ranges from mild flu symptoms

to bilateral interstitial pneumonia (2). The virus spread so quickly around the

world that the World Health Organization (WHO) declared the COVID-19 a Public

Health Emergency of International Concern on January 30, 2020 and a pandemic on
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March 11, 2020, (3). Unlike other coronaviruses, the SARS-CoV-

2 is able to spread through pre- and asymptomatic infections

that are difficult to detect and isolate, requiring health authorities

to test all contacts of confirmed cases to lower the risk of spread

(4, 5). The lethality of the original strain was estimated using

infection fatality ratios (IFR) assessed through several national

sero-surveys (6, 7). While relatively low in the whole population

(<1 death per 100 infections in developed countries), the risk

of death is shown to increase with age (up to 10–15 deaths

per 100 infections in people aged more than 75 years) and

in patients who are immunosuppressed or have concomitant

comorbidities (8, 9). Furthermore, since the prognosis of severe

cases depends on the availability of intensive care beds, lethality

increases when critical care capacity is saturated (10). To address

the pandemic, a global vaccination campaign was launched,

and pharmaceutical industry developed candidate COVID-19

vaccines at an unprecedented speed. By the end of 2020,

global Medicines Agencies had conditionally approved several

vaccines based on different technologies, with others close

behind (11, 12). During the first 2 years of the pandemic

(since December 29, 2019, to February 28, 2022), National

Health Institutions detected 444,900,763 confirmed cases and

reported 6,020,752 deaths worldwide1. The highest number

of infections favored mutations in the viral genome sequence

and led to generation and spread of many viral variants (13).

WHO coordinates national and subnational research aimed at

sequencing RNA viral genomes detected in infected people and

classifying variants of concern (VOC) that may pose a greater

risk to global public health2. From May 2020 to February 2022,

WHO identified five consecutive VOCs: Alpha, Beta, Gamma,

Delta, and Omicron. Each variant showed an increased capacity

to spread (even within vaccinated people) and although the

debate on virulence is still open, it would appear that all the

VOCs except Omicron caused a disease with higher severity and

mortality (14, 15). In February 2020, Italy was the European

epicenter of the SARS-CoV-2 spreading. The unexpectedly high

speed of transmissions quickly resulted in hospital saturation

and forced the Italian government to establish a national

lockdown. Restriction measures blocked the first wave and were

gradually removed in parallel with the development of a robust

COVID-19 contact tracing system. To avoid lockdown during

the secondwave, the national government has applied a standard

set of restriction measures (from soft to hard) at the regional

level based on the risk of spread evaluated on a weekly basis.

The risk level by geographic area (represented by a colored map:

white = low, yellow =moderate, orange = high, red = highest)

was evaluated by determining weekly estimates of incidence and

reproductive number (Rt). During the second wave (December

1 https://covid19.who.int (accessed September 19, 2022).

2 https://www.who.int/en/activities/tracking-SARS-CoV-2-variants

(accessed September 19, 2022).

27th, 2020), a national vaccination campaign was launched

using two messenger RNA (Pfizer-BioNTech, Moderna) and

two vector vaccines (Janssen, Vaxzevria) (14). Given the high

percentage of vaccinated people in the third wave, the hospital

saturation levels replaced the Rt in the risk evaluation. Although

vaccine protection declined over time (especially against virus

variants), protection returned following administration of the

booster dose especially against the development of severe

infections (16–19). Health institution recommended a booster

shot after 4 months from the standard cycle in September 2021,

and included children aged 5–11 years in the vaccine campaign

in December 2021 (19, 20). This study aims to provide a detailed

overview of the first 2 years of the pandemic in Italy, where

13,000,000 of confirmed cases and 155,000 deaths were reported

from February 2020 to 2022. The current paper is part of a

larger project aimed at describing the epidemiology of Italian

COVID-19 pandemic and follows an initial article introducing

the method used to describe the pandemic in its 1st year (21).

Methods

Study design

This study analyzed public data of COVID-19 in Italy

collected in the national registry by the Civil Protection (CP) and

the National Health Institute (ISS).

Settings

The Italian Government declared a health emergency status

on January 3, 2020 and extended it to March 31, 2022. The CP

was delegated to manage the process and established a system to

collect COVID-19 data in a national registry (managed by the

ISS). Aggregate data on incidence and vaccination are published

daily. The ISS reviews and updates the registry data to account

for data reporting delays and regional recounts and releases an

updated report with details including the age distribution of

detected cases. The European Center for Disease Prevention and

Control (ECDC) collects VOCs continental data through the

European Surveillance System (TESSy).

Participants

All confirmed cases of COVID-19 in Italy.

Outcomes

The primary outcomes were: (1) the number Nk of persons

who became infected on the kth day of pandemic; (2) the

numberDk of persons who died (over time) among Nk (i.e., the
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number of deaths by the infection day); (3) the number υk of

persons who were officially detected amongNk (i.e., the number

of diagnosed cases by the infection day).

Data sources/measurement

Aggregate data from the national COVID-19 registry and

the vaccine campaign are stored in public repositories and

updated daily. The data include daily counts of performed tests,

of diagnosed cases and fatalities who tested positive using the

polymerase chain reaction or the rapid antigen test (beginning

on January 8, 2021), and of persons who received vaccine shots

by region3. The ISS provides a weekly report that includes the

median age of detected cases, estimates of vaccine protection and

(beginning on December 7, 2020) the distribution of detected

cases by 10-year age class4 (22). The ECDC releases European

data on VOCs5, the National Institute of Statistics releases

data from the sero-survey (May 25–July 15, 2020)6 and on

Italian population7.

Statistical analysis

As already highlighted by De Natale et al. at the onset of

the pandemic, the high number of asymptomatic infections

makes deaths more suitable than detected cases for estimating

incidence (23). Given the probability pk of dying after having

caught the infection on the kth pandemic day (k ∈ Z
+),

we used the negative binomial distribution to estimate the

daily number of infections (Nk) from the resulting deaths

over time [Dk; Section Modeling the Incidence of Infections

(Negative Binomial Distribution)]. First, we estimated Dk by

applying the weighted moving average to deaths (that are

recorded by the occurrence date, Section Estimating Dk and υk:

WeightedMoving Average). Second, wemodeled the probability

pk accounting for the age at infection, VOCs prevalence

and population vaccination level (Section Modeling the Daily

Probability to Die pk). Using other simple assumptions, we

evaluated excess death (for health system saturation) and

lives saved by vaccines (Sections Excess Death and Vaccine

Effect). Finally, we used the number of detected cases υk

among Nk to check the admissibility (Nk > υk) of estimates

(Sections Estimating Dk and υk: Weighted Moving Average

3 https://github.com/italia/covid19-opendata-vaccini/tree/master/

dati (accessed September 09, 2022).

4 https://github.com/floatingpurr/covid-19_sorveglianza_integrata_

italia/tree/main/data (accessed September 09, 2022).

5 https://www.ecdc.europa.eu/en/publications-data/data-virus-

variants-covid-19-eueea (accessed September 09, 2022).

6 https://www.istat.it/it/archivio/242676 (accessed September 09,

2022).

7 https://demo.istat.it (accessed September 09, 2022).

and Checking Estimates). In the following, we will proceed

with the mathematical formulation, which will be progressively

upgraded, in the next sections, to consider the more complex

probabilities involving age classes, different strains, and

vaccination level. Once the main formulas are established, the

estimated variables used to determine the solutions will be given

in the Section Estimating the Daily Lethality.

Modeling the incidence of infections (negative
binomial distribution)

Let X
(j)
k

be the binary random variable representing the

outcome (1 = dead; 0 = recovered) of the jth person infected

on the kth day of the pandemic

X
(j)
k

=

{
1 pk
0 1− pk

and let N
(Dk)

k
be the random variable representing the rank of

the daily infection resulting in theDk-th death, the probability of

N
(Dk)

k
follows a negative binomial distribution with parameters

Dk and pk

P
{
N

(Dk)

k
= n

}
= P

{∑n−1

j=1
X

(j)
k

= Dk − 1,

∑n

j=1
X

(j)
k

= Dk

}

=

(
n− 1

Dk − 1

)
p
Dk

k

(
1− pk

)n−Dk (1)

with k,Dk ∈ Z+, n ≥ Dk. We estimated the number of daily

infections (with the related 95% CI) as the mean of Equation (1)

N̂
(Dk)

k
= E

[
N

(Dk)

k

]
=

Dk

pk
. (2)

Estimating Dk and υk: Weighted moving
average

Let dk,k+j and υk,k+j be the number of persons infected on

the kth pandemic day who died or were diagnosed j days after

the infection, the number of deaths (Dk), and detected cases (Vk)

among infections on the kth pandemic day can be evaluated as

Dk =
∑

j
dk,k+j and Vk =

∑

j

υk,k+ j.

Since only the corresponding number of events by the

occurrence date (of death or diagnosis) is available

d
·,k+j =

∑
i
di,k+j and υ

·,k+j =
∑

i
υi,k+j (3)

Dk and Vk were estimated as

Dk =

∑
j
π

(k+j)
j d

·,k+j and Vk =

∑
j
θ
(k+j)
j υ

·,k+j, (4)
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where π
(k+j)
j and θ

(k+j)
j are the fractions

π
(k+j)
j =

dk,k+j

d
·,k+j

and θ
(k+j)
j =

υk,k+j

υ
·,k+ j

.

Let Tdead and Tdiagn represent the time from infection to

death and diagnosis, respectively, and αk and βk be the binary

variables representing the events to die (αk = 1) or be alive

(αk = 0) and to be diagnosed (βk = 1) or undetected (βk = 0)

on the kth pandemic day, π
(k+j)
j and θ

(k+j)
j can be expressed

as the conditional probability to die or be diagnosed j days after

the infection

π
(k+j)
j = P

{
j ≤ Tdead < j+ 1|αk+j = 1

}
and

θ
(k+j)
j = P

{
j ≤ Tdiagn < j+ 1|βk+j = 1

}
. (5)

The ISS provided estimated quartiles (Q1, Q2, and Q3)

of the time distributions from symptoms to death and

diagnosis during three different periods (March-May/2020,

June-September/2020, and October/2020-December/2020). The

ISS estimates for time to death are admissible under symmetric

distributions except during the summer period [where there

was strong bias from clusters of vacationers (24)]. These biased

estimates were not considered and the remaining, which are

equivalent [Table 1 in (21)], were extended to the whole studied

period. We added 5 days [the mean time from infection to

symptoms (25)] to ISS estimates to obtain the corresponding

parameters of the probability density function of the time from

infection to death and diagnosis

f
(αk=1)
Tdead

(t) =

d

dt
P
{
Tdead < t|αk = 1

}
and

f
(βk=1)
Tdiagn

(t) =

d

dt
P
{
Tdiagn < t|βk = 1

}
. (6)

If necessary, we adjusted for symmetry by replacing the

median with the center of first and third quartile and assumed

that the functions in Equation (6) follow the truncated

normal distribution

FT (t) =

e
−
1
2

(
t−µ
σ

)2

σ
√

2π

∫ 2µ
0

e
−
1
2

(
t−µ
σ

)2

σ
√

2π
dt

with t ∈ [0, 2µ] , (7)

where µ and σ are the mean and standard deviation of

the parent general normal probability with µ =
Q3+Q1

2

and σ =
Q3−Q1
1.34896 . Of note, the Equation (4) with probabilities

Equation (5) derived from Equation (7) can be also interpreted

as a weighted moving average of period 2µ + 1 on time series

d.,k+j and υ.,k+j in (3)

Dk =

∑2µ

j=0
π

(k+j)
j d.,k+j and Vk =

∑2µ

j=0
θ
(k+j)
j υ.,k+ j.

Modeling the daily probability to die pk
Let Xj,ξ ,V and Yk,j,ξ ,V be the binary random variables

representing the events “to die after the infection” and “to be

infected on the kth pandemic day,” respectively, by 10-year

age class (j: 0–9, 10–19, . . . , 80–89, 90+ years), VOC (ξ : 0 =

original strain; 1 = Alpha; 2 = Beta; 3 = Gamma;4 = Delta;

5 = Omicron), and vaccination level (V : 0 = unvaccinated;

1 = uncompleted basic cycle; 2 = completed basic cycle more

than 4 months ago; 3 = completed basic cycle in the last 4

months; 4 = received a booster shot). By assuming that the

conditional probability pk,j,ξ ,V to die after having caught the

infection on the kth day does not depend on k, we have that

pj,ξ ,V = P
{
Xj,ξ ,V = 1|Yk,j,ξ ,V = 1

}
∀ k ∈ Z

+. (8)

Let Nk,j,ξ ,V be the number of infected people on the kth

pandemic day by age class, VOC, and vaccination level and

Nk,.,.,. be the total number of infections on the same day, the

overall probability pk to die among infections on the k-th day

is equal to

pk =

∑
j

∑
ξ

∑
V
pj,ξ ,V

Nk,j,ξ ,V

Nk,.,.,.
. (9)

Now, let RRj,ξ ,V be the risk ratio to die of people with the

vaccination level V (= 0, 1, 2, 3, 4) vs. unvaccinated (V = 0) by

age class and VOC

RRj,ξ ,V =

pj,ξ ,V

pj,ξ ,0
, (10)

and let Nk,j,ξ ,. and Nk,j,.,. be the number of infections on

the kth pandemic, respectively, by age class and VOC (with

any vaccination level) and by age class (with any VOC and

vaccination level), the Equation (9) can be rewritten through the

Equation (10) as

pk =
∑

j

[∑
ξ

(∑
V
RRj,ξ ,V

Nk,j,ξ ,V

Nk,j,ξ ,.

)
pj,ξ ,0

Nk,j,ξ ,.

Nk,j,.,.

]
Nk,j,.,.

Nk,.,.,.
.

(11)

Finally, let Sj,ξ ,0 (t) and Sj,0,0 (t) be the distributions of

survival time of unvaccinated people in the jth age class,

respectively, for the VOC ξ (= 0, 1, 2, 3, 4, 5) and original virus

strain (ξ = 0), under the assumption of proportional hazards we

have that

d

dt
log
[
Sj,ξ ,0 (t)

]
= hR

j,ξ ,0

d

dt
log
[
Sj,0,0 (t)

]
, (12)

where hRj,ξ ,0 are the hazard ratios by VOC (ξ = 0, 1, 2, 3, 4,

5 vs. ξ = 0) by age class for unvaccinated people (V = 0). By

integrating the Equation (12) over the whole pandemic period,

we obtain the following identity

Sj,ξ ,0 =

[
Sj,0,0

]hRj,ξ ,0 (13)
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and since Sj,ξ ,0 = 1− pj,ξ ,0 and Sj,0,0 = 1− pj,0,0 the Equation

(11) can be expressed as

pk =

∑
j

{∑
ξ

(∑
V
RRj,ξ ,V

Nk,j,ξ ,V

Nk,j,ξ ,.

)

[
1−

(
1− pj,0,0

)hRj,ξ ,0 ]Nk,j,ξ ,.

Nk,j,.,.

}
Nk,j,.,.

Nk,.,.,.
. (14)

The Equation (14) is the lethality equation I introduced to

compute the pandemic parameters of interest. We can notice

that it depends on k only through the daily distribution of

infection by age, VOC, and vaccination level and that we can

derive the lethality by variant as

pk,ξ =

∑
j

(∑
V
RRj,ξ ,V

Nk,j,ξ ,V

Nk,j,ξ ,.

)

[
1−

(
1− pj,0,0

)hRj,ξ ,0 ]Nk,j,ξ ,.

Nk,.,ξ ,.
,

where
Nk,j,ξ ,.

Nk,.,ξ ,.
is the age distribution of infections due to the

variant ξ . All still unknown quantities used to univocally

determine the result will be specified in the paragraph

Estimating the daily lethality.

Excess death

Let P and Pj be, respectively, the Italian population and its

subgroup in the j-th age class and Y
(j)
i be the binary random

variable indicating that the ith person in the jth age class has been

infected. If the virus spreads randomly within the population,

P
{
Y

(j)
i = 1

}
=

1

P
∀ i, j

we would have that the distribution of cases by age class equals

that of the whole population

∑Pj

i=1
P
{
Y

(j)
i = 1

}
=

Pj

P
(15)

and the related probability of dying can be obtained from

Equation (14) by replacing the proportion of infected people

by age class (
Nk,j,.,.

Nk,.,.,.
) with the corresponding proportion in the

population (
Pj
P ),

p+
k

=

∑
j

{∑
ξ

(∑
V
RRj,ξ ,V

Nk,j,ξ ,V

Nk,j,ξ ,.

)

[
1−

(
1− pj,0,0

)hRj,ξ ,0 ]Nk,j,ξ ,.

Nk,j,.,.

}
Pj

P
. (16)

Since COVID-19 transmission began among younger people

and eventually spreadwithin the elderly (26), it was assumed that

the spread was out-of-control if the distribution of detected cases

by age class followed the age structure of the population (15).

Through the deaths that resulted from the product between the

Equation (2) and the Equation (16),

D+

k
= N̂

(Dk)

k
p+
k
=

D̂k

pk
p+
k
,

the excess death was defined as the following difference:

DExcess
k = D+

k
− D̂k.

Vaccine e�ect

Avoided infections

By rewriting the conditional probability in Equation (8) as

ratio of probabilities, the relative risk in Equation (10) can be

expressed as

RRj,ξ ,V =

P
{
Xj,ξ ,V = 1,Yk,j,ξ ,V = 1

}
/P
{
Yk,j,ξ ,V = 1

}

P
{
Xj,ξ ,0 = 1,Yk,j,ξ ,0 = 1

}
/P
{
Yk,j,ξ ,0 = 1

} (17)

Under the assumption that the vaccines had no impact

on the risk of catching the infection (P
{
Yk,j,ξ ,V = 1

}
=

P
{
Yk,j,ξ ,0 = 1

}
), the relative risk (17) reduces to:

RR
(.,0)
j,ξ ,V =

P
{
Xk,j,ξ ,V = 1,Yk,j,ξ ,V = 1

}

P
{
Xk,j,ξ ,0 = 1,Yk,j,ξ ,0 = 1

} . (18)

Finally, let Popk,j,ξ ,V be the population at risk on the kth

pandemic by age class, VOC, and vaccination level and Dk,j,ξ ,V

be the number of deaths in each group, through the relationship

Dk,j,ξ ,V = P
{
Xj,ξ ,V = 1,Yk,j,ξ ,V = 1

}
Popk,j,ξ ,V ,

the relative risk (18) can be rewritten as

RR
(.,0)
j,ξ ,V =

Dk,j,ξ ,V/Popk,j,ξ ,V

Dk,j,ξ ,0/Popk,j,ξ ,0
(19)

By replacing in Equation (14) RRj,ξ ,V with RR
(.,0)
j,ξ ,V , we

obtain the daily probability p
(.,0)
k

to die if the vaccines have

no protective effects against catching infection. By replacing

in Equation (2) pk with p
(.,0)
k

, we can estimate the number of

infections that would have occurred without vaccines

N̂
(0)
k

=

Dk

p
(.,0)
k

. (20)

Saved lives

If the vaccines have no effect against death, the relative risks

RRj,ξ ,V in Equation (14) would be equal to 1 and the lethality

would reduce to

p
(0,.)
k

=

∑
j

{∑
ξ

[
1−

(
1− pj,0,0

)hRj,ξ ,0] Nk,j,ξ ,.

Nk,j,.,.

}
Nk,j,.,.

Nk,.,.,.
.

(21)
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By multiplying the Equation (20) for the Equation (21), we

obtain an estimate of the number of deaths D∗∗

k
that would have

occurred without vaccines

D∗∗

k = N̂
(0)
k

p
(0,. )
k

.

By multiplying the Equation (2) for the Equation (21), we

obtain an estimate of the number of deaths D∗

k
that would have

occurred without vaccines among the infected people

D∗

k = N̂kp
(0,. )
k

.

Checking estimates

We studied the ratios r̂k of detected cases υ̂k among

estimated infections N̂k on kth day (Figure 2)

r̂k =
υ̂k

N̂k
.

If r̂k (i) >1 (i.e., υ̂k > N̂k), then the estimated p̂k
overestimates the actual pk on the kth pandemic day

pk < p̂k.

Estimating the daily lethality

Available data to estimate quantities in Equation (14) were

used as follows:

1) The probability pj,0,0 of dying among unvaccinated (V =

0) people in the jth age class who were infected with the

original strain (ξ = 0) was estimated using the IFR by age

class (ÎFRj,0,0) in (6)

p̂j,0,0 = ÎFRj,0,0. (22)

2) The daily unvaccinated population by age (Nk,j,.,0) was

estimated as the difference between the ISTAT population7

and the vaccinated people4.

3) As estimates of hazard ratios hRj,ξ ,0 were used those from

(27, 28) and since those for Alpha, Beta, Gamma, and

Delta are not determined by age class, we considered them

constant by age.

4) Let Dj,ξ ,V , Cj,ξ ,V , and Popj,ξ ,V be the number of deaths,

of detected infections, and of population by age class,

VOC, and vaccination level, respectively. The ISS provided

estimates of the relative rate (vaccinated/unvaccinated) of

deaths (RDj,ξ ,V ) and of infections (RCj,ξ ,V )

R̂Dj,ξ ,V =

D̂j,ξ ,V/P̂opj,ξ ,V

D̂j,ξ ,0/P̂opj,ξ ,0
and R̂Cj,ξ ,V =

Ĉj,ξ ,V

P̂opj,ξ ,V

Ĉj,ξ ,0

P̂opj,ξ ,0

,

for the periods January–September/2021, October/2021,

November/2021, December/2022, January /2022, and

February/2022 (22). We used those estimates to assess

the relative risk in Equation (10) and in Equation (19)

as follows

R̂Rj,ξ ,V =

R̂Dj,ξ ,V

R̂Cj,ξ ,V
=

D̂j,ξ ,V/Ĉj,ξ ,V

D̂j,ξ ,0/Ĉj,ξ ,0
and

R̂R
(.,0)
j,ξ ,V =

R̂Dj,ξ ,V

R̂Cj,ξ ,0
= R̂Dj,ξ ,V . (23)

5) As estimates of the fraction of vaccinated infections

by age class and VOC (
Nk,j,ξ ,V

Nk,j,ξ ,.
), the daily fraction

of vaccinated population by age class4 were used.

The more a VOC is prevalent, the lesser the

introduced bias.

6) As daily fraction of infections for each VOC (ξ = 0,

1, . . . , 5) by age class (
Nk,j,ξ ,.

Nk,j,.,.
) daily estimates from5

were used.

7) As estimates of age distribution of total infections (
Nk,j,.,.

Nk,.,.,.
)

and of those by VOC (
Nk,j,ξ ,.

Nk,.,ξ ,.
), was used the daily age

distribution of detected cases released by the ISS from

December 8, 2020 (f
(ISS)
k,j

)3. For the precedent period

(during which the ISS only released the median age

of detected cases), we constructed fictitious populations

P(Medk) with median ages (MEDs) equal to those

estimated and with the age structure related with that

of Italian population provided by the ISTAT7 [Section

Estimating f
(Medk)
j,k

].

Estimating f
(Medk)
j,k

Let Pj and P
(Medk)
k,j

be the people of age j in the Italian and

in fictitious populations, respectively, on the kth pandemic day,

using the definition of “median” we have that

P
(Medk)
k,0

∑Medk

j=0

P
(Medk)
k,j

P
(Medk)
k,0

= 0.5 and

P
(Medk)
k,100+

∑100

j=Medk+1

P
(Medk)
k,j

P
(Medk)
k,100+

= 0.5, (24)

where 100+ indicate people aged 100 years and more. By

assuming that the ratios between infected people at ages

greater than the median and the oldest (100+ years) are

equal to those in the Italian population, and that the ratios

between those at ages smaller than or equal to the median
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and the youngest (0 years) are also equal to those in the

Italian population

P
(Medk)
k,j

P
(Medk)
k,0

=

Pj

P0
with j = 0, 1, . . . ,MED and

P
(Medk)
k,j

P
(Medk)
k,100+

=

Pj

P100+
with j = MED+1, . . . , 100+, (25)

P
(Medk)
k,0

and P
(Medk)
k,100+

are determined from the Equation (24) and

can be used to derive all the remaining fractions (f
(Medk )
k,j

)

f
(Medk)
k,j

=

P
(Medk)
k,j

P
(Medk)
k,.

j = 1, . . . , 100+ .

Since the method returns one probability estimate per week

(ISS median age refers to a week), each pair of values was linearly

connected. By assuming RRj,ξ ,V = hRj,ξ ,0 = 1 in Equation (14),

the resulting death probability is equal to

p
(Medk)
k

=

∑
j
pj,0,0f

(Medk)
k,j

. (26)

By replacing the Equation (26) in the Equation (2), we

estimated the number of infections (N̂) from the beginning to

the middle day of the ISTAT seroruvey (June 19, 2020; after 120

gg from the beginning) as

N̂ =

120∑

k=1

Dk

p
(Medk)
k

and the ratio with the corresponding ISTAT estimate (N) was

used as correction factor of the Equation (26)

p̂k =

N̂

N
p
(Medk)
k

with k = 1, ..., 120. (27)

Waves

In epidemiology, an internationally accepted definition of

“wave” does not still exist; the term refers to the appearance of a

plot of cases over time. In this paper, the word “wave” is used to

indicate the part of the plot that lies between two local minima.

Health policy evaluation

The effects of applied health policies were determined by

comparing the weekly and bi-weekly incidence rates before and

after the day (k) they entered into force

(
Nk+j − Nk

)
−

(
Nk − Nk−j

)

Nk − Nk−j
with k ∈ Z+ and j = 7, 14.

Data cleaning methods

Dates of the ISS cumulative distribution of detected cases by

age correlate with the most recent update. Those distributions

were reordered to have non-decreasing functions. Since the

VOC prevalence data in TESSEy cover a week, the data were

linearly fitted to obtain daily prevalence. In addition, frequencies

recorded before the official date of the first available samples

were set to zero.

Results

During the first 2 years of the COVID-19 pandemic

(from February 24, 2020, to February 28, 2022; 736 days

and 106 weeks) in Italy, there were 20,833,018 (20,728,922–

20,937,373) infections and 152,358 deaths for an overall lethality

rate of 0.73%. Health Institutions detected 63% of the total

infections using 193,442,203 tests. From February 1, 2021, three

VOCs became predominant: Alpha (February–June, 2021);

Delta (July–December, 2021); and Omicron (January–February,

2022). Up to February 2022, 14.2% of people were unvaccinated

(including children aged 0–4 years), 2.1% were waiting for the

second shot, 12.2% had completed the basic vaccine cycle (one

shot for the Jensen vaccine or two shots of other vaccines)

> 4 months ago, 7.9% had completed the basic vaccine cycle

in the last 4 months, and 63.6% had received the additional

dose. Health policies evolved from a national lockdown to the

development of a strong contact tracing system (the monthly

number of tests increased from 506,496 in March 2020 to

17,089,550 in February 2022), accompanied by a large-scale

vaccination campaign and additional local measures.

Incidence curve

The incidence curve in Figure 1 shows five waves. The

first wave (characterized by infection with non-VOCs variants)

lasted 147 days (from February 24 to July 19, 2020), included

1,526,561 infections (of which 240,802 were detected through

6,937,326 diagnostic tests), and peaked at 33,683 infections

on March 12, 2020. The second wave (characterized by the

predominance of the Alpha variant in the right tail) lasted

200 days (from July 20, 2020, to February 4, 2021), included

4,716,509 infections (of which 2,495,649 were detected through

29,891,933 diagnostic tests), and peaked at 57,594 infections on

November 3, 2020. This wave also showed a hump of about

30,000 infections in the second half of December. The third

wave (characterized by the Alpha variant) lasted 139 days (from

February 5 to June 23, 2021), included 2,800,141 infections (of

which 1,553,334 were detected through 37,736,565 diagnostic

tests), and peaked at 36,471 infections on March 11, 2021. The

fourth wave (characterized by the Delta variant) lasted 100 days
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FIGURE 1

Daily incidence of COVID-19 in Italy (February 2020–2022).

(from June 24, 2021, to October 1, 2021), included 650,487

infections (of which 436,315 were detected through 23,693,891

diagnostic tests), and peaked at 10,617 infections on August 9,

2021. The fifth wave (characterized by a mixture of the Delta

and Omicron variants) lasted 150 days (from October 2, 2021,

to the end of the study period), included 11,139,320 infections

(of which 8,344,165 were detected through 98,182,488 diagnostic

tests), and peaked at 220,487 infections on January 1, 2022

(Table 1). From the third to the fifth wave, the proportion of

infections among young individuals (0–19 years) increased by

up to 30% (Supplementary Figure 1).

Lethality

Estimates of infection-related deaths during the 1st months

of the pandemic were provided by a fictitious population (26)

and adjusted using a correction factor (27) of 1.02%. Daily

lethality ranged from 2.8% (first wave: April 9, 2020) to 0.15%

(last wave: December 30, 2021), causing a total of 152,358 deaths

with a peak of 723 deaths on November 5, 2020 (Figures 2, 3).

After the peak, lethality in the first wave decreased to 1.0% on

June 11, 2020, generating 32,739 deaths. Initially, lethality of the

second wave, which caused 62,595 deaths, decreased to 0.8%

on August 15, 2020, and then increased to a peak of 1.6% on

December 8, 2020, then remained stable. The lethality in the

third wave peaked at 1.4% on February 8, 2021, then decreased

to 0.45% by June 8, 2021, and caused 28,596 deaths. The lethality

in the fourth wave, which caused 3,620 deaths, initially decreased

to 0.38% by July 6, 2021, and then increased to a peak of 0.91% by

September 30, 2021. The lethality of the fifth wave, which caused

24,808 deaths, decreased continuously from a peak of 0.91% on

October 2, 2021 to 0.15% onDecember 30, 2021, and then slowly

increased to 0.18% by the end of February 2022. Two periods

had the lethality higher than the threshold: the first 4 months

of the first wave (March-June, 2020), with an excess of 14,134

deaths; and the last 3 months of the second wave (November,

2020–January, 2021), with an excess of 6,478 deaths (Figure 3).

Impact of variants of concerns

Of five VOCs, three became prevalent (Alpha, Delta,

and Omicron), each replacing prior variants at a faster
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pace. Omicron was responsible for the higher number of

infections (7,557,368), while Alpha was associated with the

largest number of deaths (29,167). Without vaccines, Delta

would be the most virulent VOC with > 70,000 deaths

(Supplementary Table 1).

Vaccine e�ect

Vaccines reduced infections by 38% (from 25,045,987 to

15,604,551) and deaths by 62% (from 185,850 to 71,760). Of

114,090 lives saved, 62,902 (55%) would have resulted from

infections prevented and 51,188 (45%) from the infections that

occurred. Without vaccines, the expected number of infections

would have been 30,274,455 (30,160,115–30,389,006), and the

expected number of deaths 266,448 for a lethality of 0.88%

(Figures 1–3 and Table 1).

Health policies e�ects on estimated
curves

The strongest restriction measures affecting all the

population (initial stay at home, the November 2020

introduction of standardized prevention measures based

geographic risk, and the Christmas 2020 and Easter 2021

restrictions) strongly reduced the curve rates (up to 1,000%)

within a 1st week of their introduction. Industrial lockdown

and specific restrictions (including 75% of high-school students

who received distance learning) implemented in October 2020

are associated with smaller (from −37 to −227%) and slower

(concentrated in the 2nd week) rate reductions. Curve rates

increased after school openings (except after the last one of

January 2022) and reductions in smart working, especially

during the 2nd week. Rate increments after school openings

reduced over time. In-shop Christmas 2020 incentives increased

the incidence rate by 90–100% and the death rate by 45–60%.

The introduction of a compulsory green pass reduced the rate of

infection and death curve by 150–200 and 40–70%, respectively.

The mandatory use of the FFp2 mask in closed places reduced

the curve rates by 45–85% (Table 2). The introduction of rapid

tests (from January 2021) increased the percentage of infections

detected among children, particularly when schools were open

(Supplementary Figure 1).

Discussion

This paper provides a comprehensive picture for the first

2 years (February 2020–2022) of the COVID-19 pandemic in

Italy, including the impact of VOCs, the vaccine campaign (until

the third shot), and an evaluation of government health policies

using only public data.
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TABLE 2 Di�erences in rates of COVID-19 incidence and death curves before and after prevention measures.

N Date Measures Relative difference of rates (%)

Incidence curve death curve

Weekly Bi-weekly Weekly Bi-weekly

1 05/03/2020 Schools closed −67 −98 −73 −105

2 12/03/2020 Stop to all mobility—Stay at home −189 −152 −238 −179

3 23/03/2020 Industrial lockdown −77 −227 −77 −86

4 17/05/2020 Allowing intraregional mobility 30 48 35 57

5 04/06/2020 Free mobility 29 40 10 27

6 14/09/2020 Schools opened 609 1,128 544 1,027

7 24/10/2020 Several restrictions (including 75% DAD high school) −57 −83 −37 −63

8 05/11/2020 Regional restrictions according to Rt −508 −220 −151 −149

9 08/12/2020 Incentives for Christmas shopping 90 97 46 59

10 20/12/2020 No mobility between regions −179 37 32 9

11 24/12/2020 Christmas rules: Just 1 visit per day to parents within municipalities −643 −1,002 −62 −43

12 07/01/2021 Regional restrictions according to Rt −182 −184 −33 −77

13 25/01/2021 High school opening (50–75% in presence) 124 175 123 150

14 15/03/2021 Easter rules: equal rules between yellow and orange regions −458 −433 −239 −2,497

15 23/04/2021 Put back of yellow are (with curfew 22.00–05.00) and introduction of free pass −21 −39 12 23

16 23/05/2021 In yellow area: Gym opening 15 33 28 50

17 01/06/2021 In yellow area: Indoor catering 29 47 33 56

18 21/06/2021 In yellow area: No curfew 118 167 94 133

19 09/07/2021 Semi-final and final of 2020 UEFA European Football Championship 38 257 188 497

20 06/08/2021 Compulsory green pass for many group activities −208 −147 −41 −71

21 17/09/2021 Schools opened 90 97 94 120

22 15/10/2021 Back to work in office 24 85 27 66

23 27/11/2021 Extension of mandatory vaccination and of green pass 32 135 24 63

24 27/12/2021 Mandatory ffp2 on public transport −55 −85 −44 −76

25 09/01/2022 Schools opened −180 −1,524 −2,842 −309

Italy, February 2020–2022.

Virus spread

Almost 40% of COVID-19 infections have gone undetected,

likely because they were asymptomatic or paucisymptomatic.

During the first wave, the virus primarily spread in the

north of the country and was highly concentrated in the

Lombardy region. The virus likely arrived in Italy through the

airport system of Milan (the largest city in Lombardy), which

includes one intercontinental and two international airports

(one of which in Bergamo, the most hard-hit Italian city).

Like other respiratory viruses, SARS-CoV-2 spreads directly

or indirectly through person-to-person contact (especially in

indoor environments) (29). Lombardy is the Italian region with

the highest level of daily commuting for work or school8.

Indeed, a study highlighted the association between the regional

patterns of viral spread during the first wave and the origin-

destination matrix of goods and food transportation and for the

8 https://www.istat.it/it/archivio/139381

population (30). Another component responsible for the rapid

spread of COVID-19 was unpreparedness. During the onset

phase of the pandemic, hospitals followed WHO guidelines

and tested only people with a known link to China (thus

accelerating the spread of the virus). Fortunately, the quick stop

to all national mobility on March 12, 2020, confined the virus

to northern regions. Data collected during the second wave

revealed similar patterns to those reported by other studies:

the virus infects younger people first followed by those >70

years of age (26). Since retired people have fewer daily contacts

than students and workers, who often use public transport

and share indoor environments with others, it is likely that

school and work transmission impacted the onset of the familial

transmission chain among the elderly. Infected students and

workers carried the virus home, transmitted the infection to

other family members (31) and increased the probability that

older relatives (including grandparents) would become infected,

especially through presymptomatic or asymptomatic infections.

During the summermonths, those of 20–29 years of age were the
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FIGURE 2

Daily lethality of COVID-19 in Italy (February 2020–2022).

hardest hit, presumably because of increased nightlife and other

social activities. Without public health policies, it is likely that

two waves would have occurred per year (similar to the fourth

and fifth waves as shown in Figure 1): a winter wave (resulting

from a higher number of transmissions from indirect contacts)

and a summer wave (largely resulting from direct contacts). The

former is longer (October to June), peaks in January, and is more

virulent because it mainly involves families; the latter is shorter

(July to September), peaks in August, and is less virulent because

it primarily involves single people.

Lethality

The estimates of lethality obtained by the fictitious

populations (26) provided a cases count by June 20, 2020,

that was very close to that estimated by the national ISTAT

sero-survive6, with an error of 2%. This indicates that with

a high median age of detected cases (with respect to that

of the national population), the fictitious population provides

reasonable estimates when the age distribution of cases is

unknown. The virus’s lethality was extremely high in the first

3 months of the pandemic, when the median age of detected

cases was much higher than that of the population. This is the

result of two serious errors: a lack of screening tests to reduce

transmission from adult/young to elderly and the use of nursing

homes to support hospitals with saturated capacity in the hardest

hit regions (which increased infections among the most at risk

population) (32). Lethality was higher than expected even during

the second wave. The introduction of reliable rapid tests allowed

a massive test campaign that kept lethality under the threshold

from the right tail of the second wave. Lethality would have

been under the threshold even without vaccines (Figure 2 dotted

curves). Of the three prevalent VOCs in Italy, the first two were

more virulent than the original strain, the third was not. To

ensure that vaccines remain updated and new and potentially

harmful variants are identified early, ongoing research on the

evolution of virus genomes is crucial.

Health policies

The stronger the restriction measure, the higher its efficacy

and the more quickly it took effect. Supporting the assumption

that the incidence curve was largely underestimated at the

onset of pandemic, the initial lockdown impacted the death

rate more than the infections rate. After the second wave,

the large-scale screening helped to monitor the actual size
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FIGURE 3

Daily deaths of COVID-19 in Italy (February 2020–2022).

of the outbreaks, especially among young students (often

asymptomatic). Quarantining infected grandsons (tested at

school) and parents (tested at work) likely protected the

grandparents. This is supported by increased rates of infection

and death curves after school openings (except the last one)

and reductions in smart working. However, in schools, those

increments declined over time until disappearing, presumably

because school protocols became more and more effective.

Even if the mandatory use of the ffp2 in the public transport

reduced the curves rate by up to 70% during 2021 Christmas

holidays, their true effect is shown after the schools opening,

where rates drastically decreased of 1,500–2,800%. Although

protective effect of the vaccines was reduced by the emergence

of new variants, vaccination saved more than 110,000 lives and

avoided the saturation of the health system without a need

for stronger restriction measures even during periods of high

virus circulation.

Advice

It is necessary to monitor the evolution of SARS-CoV-

2 in greater depth and to develop mathematical models that

can predict future changes in its genome. A flexible pandemic

plan able to adapt to the evidence of the data (collected

through a digital and multi-connected surveillance system)

should be developed through a multidisciplinary approach and

shared with international health authorities. It should contain

measures that are tailored for different combinations of virus

transmissibility and virulence (from low-low to high-high).

Estimates of territorial origin-destination matrices can help

to simulate possible spatiotemporal patterns of virus spread.

Initial settings of a public health response should refer to an

“average” or “worst case” scenario and updates should follow

data evidence.
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Background: Before major non-pharmaceutical interventions were

implemented, seasonal incidence of influenza in Hong Kong showed a rapid

and unexpected reduction immediately following the early spread of COVID-

19 in mainland China in January 2020. This decline was presumably associated

with precautionary behavioral changes (e.g., wearing face masks and avoiding

crowded places). Knowing their e�ectiveness on the transmissibility of

seasonal influenza can inform future influenza prevention strategies.

Methods: We estimated the e�ective reproduction number

(Rt) of seasonal influenza in 2019/20 winter using a time-series

susceptible-infectious-recovered (TS-SIR) model with a Bayesian inference

by integrated nested Laplace approximation (INLA). After taking account of

changes in underreporting and herd immunity, the individual e�ects of the

behavioral changes were quantified.

Findings: The model-estimated mean Rt reduced from 1.29 (95%CI,

1.27–1.32) to 0.73 (95%CI, 0.73–0.74) after the COVID-19 community spread

began. Wearing face masks protected 17.4% of people (95%CI, 16.3–18.3%)

from infections, having about half of the e�ect as avoiding crowded places

(44.1%, 95%CI, 43.5–44.7%). Within the current model, if more than 85% of

people had adopted both behaviors, the initial Rt could have been less than 1.

Conclusion: Our model results indicate that wearing face masks and

avoiding crowded places could have potentially significant suppressive impacts

on influenza.

KEYWORDS

COVID-19, influenza, face mask, social distancing, time-series analysis, infectious

disease modeling
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1. Introduction

Many studies warned that repeated COVID-19 outbreaks are

expected to happen and the number of infections and deaths

could become even worse during winter (1–5). Besides the

relaxation of social distancing during winter holidays, seasonal

influenza, which commonly circulates during wintertime, may

facilitate the transmission and mortality of COVID-19 if both

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) and influenza virus spread at the same time (6–9). In

fact, many places have seen surges in COVID-19 infections

in 2020/2021 winter (10–12). Since many cities have reopened

after the vaccine has been distributed, it is important to know

whether individual precautionary behaviors (such as avoiding

crowded places and wearing face masks) without strict social

distancing rules can prevent an influenza outbreak. How to

prevent influenza outbreak or the co-circulation with COVID-

19 are major tasks for World Health Organization (13, 14).

During the early spread of COVID-19 in China, many

Hong Kong residents began to wear face masks mainly in

public transport and avoid going to crowded places voluntarily.

Due to the high influx of travelers from mainland China,

Hong Kong faced and acknowledged an extremely high risk

during the early spread. After WHO made an announcement

of the initial spreading of COVID-19 in Wuhan on January

14, 2020 (15), people in Hong Kong perceived the risk of

infection and changed their behavior immediately. Cowling et

al. (16) showed that the number of people avoiding crowded

places and wearing face masks increased between January

and February 2020. Their first survey (January 20–23) was

conducted immediately after the announcement byWHO about

noting limited human-to-human transmission and the First-

Level Public Health Emergency Response in China (15, 17).

Their second survey (February 11–14) was conducted after the

first local (community) transmission event was confirmed in

Hong Kong on February 4. Few cases sporadically occurred

up to early March, indicating that the first significant COVID-

19 outbreak began. Because seasonal influenza incidence was

progressively reducing during these survey periods soon after its

initial rapid growth, it is likely that this unexpected reduction in

the incidence of influenza was due to the behavioral changes in

response to the potential COVID-19 spread.

These precautionary behavioral changes during January

and February 2020 showed a more relaxed restriction than

formal social distancing rules or other non-pharmaceutical

interventions (NPIs) implemented later (e.g., the first group

gathering ban was effective from March 29, 2020). By

comparing the effective reproduction number (Rt) in influenza

along with these differences in the precautionary behaviors,

the corresponding effects can be quantified, which provide

important insights to understand whether an influenza outbreak

can be controlled using less intensive social distancing

restrictions without huge socioeconomic impacts. Furthermore,

whether individuals practice precautionary measures or choose

to be vaccinated largely depends on their risk perception,

relating to a complex decision-making process (18, 19).

Knowing the impacts of these behavioral changes help to forecast

the possible epidemic situations after reopening.

Timely public health decision-making often needs to be

made during an outbreak. However, the methods of estimating

parameters, such as Rt , of traditional susceptible-infectious-

recovered (SIR) equations under Bayesian framework (e.g.,

Markov chain Monte Carlo (20), particle filtering (21, 22),

etc.) are usually time-consuming. Alternatively, the time-series

susceptible-infectious-recovered (TS-SIR) model provides a

computationally inexpensive way to model the transmission

dynamics as the parameters can be estimated through a

generalized linear model (GLM) (23–25). Compared with

frequentist approaches, Bayesian approaches to modeling and

inference of infectious disease dynamics have the advantage

that latent parameters (e.g., actual numbers of uninfected

(susceptible) and infected individuals) and their uncertainties

can be seamlessly accounted for (26). To further reduce the

computational load from traditional methods for Bayesian

inference, some approximation methods such as integrated

nested Laplace approximations (INLA) approach can be

applied (27).

The aim of our studywas to identify the relationship between

precautionary behaviors (e.g., wearing face masks and avoiding

crowded places) and the reduction in influenza transmissibility.

We adopted a TS-SIR model to estimate the Rt in influenza

seasons by using a Bayesian approach with INLA. TS-SIR

was transformed to a GLM with Poisson regression. After

considering the effect of underreporting and separating the effect

from herd immunity, we were able i) to quantify the effects of

wearing face masks and avoiding crowded places throughout an

outbreak and ii) to identify the required percentage of people

adopting such precautionary behaviors that could suppress

the outbreak.

2. Materials and methods

2.1. Data collection

The weekly reported influenza cases in Hong Kong from

April 12, 2015 to March 22, 2020 were obtained from the

Centre for Health Protection (CHP) (28). Only outbreaks during

regular winter seasons were collected for our study (Figure 1A).

2.2. Modeling

On January 14, 2020, WHO made an announcement of

COVID-19 outbreak, and shortly afterward, China declared a

first-level public health emergency response (15, 17). Hence,
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FIGURE 1

Reported cases of influenza in Hong Kong between years 2015 and early 2020. (A) Weekly reported influenza cases. Influenza seasons

considered for model training are highlighted in light brown color, indicating an ordinary influenza period. Red color indicates the period with

precautionary behavioral changes. (B) Weekly reported severe influenza cases.

within the study period of 2019/20 seasonal influenza outbreak

(Figure 1A), we defined the period from the start of the outbreak

(November 24, 2019) up to January 12, 2020 before the majority

of Hong Kong residents knew the existence of COVID-19 as an

ordinary influenza period. This ordinary period also included

the winter influenza seasons during the years 2015–2016, 2017–

2018, and 2018–2019. We included these previous seasons to

increase the statistical power and obtain robust estimates of the

baseline reporting rate. We did not consider the year 2016–2017

in our training set as there was no obvious winter seasonal peak.

Three phases with different transmission patterns were

observed in the 2019–2020 winter influenza season (i.e., the

growing, plateau, and decline periods). These phases were

correlated to the stages of COVID-19 spread in Hong Kong.

The ordinary phase (Phase 1) indicated the period before

COVID-19. In addition to the ordinary phase (corresponding

to the growing period of the outbreak), we further split

the influenza season after January 12, 2020 into two other

phases: the awareness phase (Phase 2), from January 12 to

February 2, when people received the announcement given by

WHO, corresponding to the plateau period; and the spreading

phase (Phase 3), from February 2 to February 23, during

which local community transmission occurred in Hong Kong,

corresponding to the decline period.
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Time-Series Susceptible-Infectious-Recovered (TS-SIR)

model

Effective reproduction number Rt at time t was calculated as

follows:

Rt = R0 × Cj × (
St

N
), (1)

where R0 is the basic reproduction number and Cj is the contact

ratio, a ratio of the contact rate during phase j compared to the

pre-pandemic period (Phase 1; j = 1). The baseline contact

ratio for the pre-pandemic period was fixed at C1 = 1. St is

the susceptible population at time t and N is the population in

Hong Kong. Since official population data were only reported

in 2016 and 2021 from the Census and Statistics Department

of Hong Kong (29), we assumed the population growth to

be linear between 2016 and 2021, that is, the population was

7,336,585 in 2016, 7,365,931 in 2018, 7,380,605 in 2019, and

7,395,278 in 2020. We defined the effects of behavioral changes

on transmissibility in phase j (8j) as the percentage of reduction

in contact ratio, in which the effect of herd immunity (i.e., the

effect contributed by the reduction in susceptible population

over time) is removed:

8j = (1− Cj)× 100%. (2)

While many of the epidemiological models used for

influenza modeling are conventional compartmental models

(i.e., SIR model), an alternative, though related, model is the TS-

SIR model (24), which transforms the conventional model to a

GLM, a classic regression approach. In this study, we adopted

a TS-SIR model with reference to Imai et al. (24) to capture the

transmission dynamics for influenza and we considered different

reporting rates at different periods of time due to public’s risk

perception amid COVID-19:

Yt

ρj
= R

Tc
t−1 ×

Yt−1

ρj

= (R0 × Cj ×
St−1

N
)Tc ×

Yt−1

ρj

= (R0 × Cj ×
N −

∑t−1
i=0 Yi/ρj

N
)Tc ×

Yt−1

ρj
,

(3)

where Yt is the reported incidence at time t and St−1 is

the susceptible population at time t − 1; we considered the

susceptible population equal to total population minus the

cumulative incidence within an influenza season, i.e., St−1 =

N −

∑t−1
i=0 Yi/ρj, ρj is the reporting rate at Phase j. Because

weekly influenza data are published by CHP in Hong Kong, the

unit of t is week (and t = 1, 2, ...). To calculate the number of

infected cases generated from a single infected case after a unit

of time, a time scale Tc relative to the generation time of 3.5 days

is introduced (30), which is calculated as 7/3.5 = 2.

Equation (3) can be transformed to a GLM with Poisson

distribution (see Supplementary material for details), such that

Yt/ρj ∼ Poisson(µt), where µt denotes the expected value

of the weekly influenza cases. We had log(µt) = log(
Yt−1
ρj

) +

Tc log(R0 × Cj)−
Tc×

∑t−1
i=0 Yi/ρj
N .

To estimate parameters, we first obtained R0 and ρ1

during the ordinary period (which includes the winter influenza

seasons during 2015–16, 2017–18, 2018–19, and 2019–20 up

to January 12, 2020). Then, we obtained ρ2, C2, ρ3, and C3,

subsequently, by modeling the situations in Phase 2 and Phase

3. The detailed procedures for model fitting can be found in

Supplementary material.

We estimated the effects of wearing face masks and avoiding

crowded places on the contact ratio defined in our model. The

percentage of reduction in contact ratio was used to represent

the percent reduction in Rt while excluding the impact from the

herd immunity (see Equation 2). We assumed that these two

effects are independent and additive; thus, we have

8j = φsd(xj,sd − x1,sd)+ φm(xj,m − x1,m), (4)

where 8j is the overall percent reduction of contact ratio

in Phase 2 and Phase 3 (j = 2, 3), which was previously

estimated from Equations 1 and 2; xj,sd and xj,m are the

percentages of population avoiding crowded places and wearing

face masks in Phase j, respectively. x1,sd and x1,m are their

baseline percentages (the estimates of the baseline percentages

come from our survey, see Results Section for details). φsd and

φm are parameters indicating the effectiveness of individual

behaviors. The product of φ and x was referred as the effect on

contact ratio in total population. To account for the uncertainty

in the extent of avoiding crowded places and wearing face

masks at different periods of time, we assumed that the number

of survey participants avoiding crowded places or wearing

face masks followed a binomial distribution (the number of

trials is equal to the population in Hong Kong in 2020, with

different probabilities in the different phases according to the

mean percentages in the surveys. We adopted a bootstrap

approach to capture the uncertainty in model parameters

(see Supplementary material for details). The code for the

abovementioned models can be found at https://github.com/

hy39/ts-sir-flu.

3. Results

To quantify the effects of behavioral changes (in response to

the initial spread of COVID-19) on influenza transmissibility,

we classified the 2019–20 winter influenza season into three

different phases based on the pattern of influenza activity as

mentioned in the Section 2 (Figure 2): Phases 1, 2, and 3

show the growth, plateau, and decline phases of the dynamics,

respectively. Comparing influenza activity in year 2019–2020

with the previous seasons, the growth became apparently

limited after Phase 1 and then reduced significantly without
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FIGURE 2

Model prediction of influenza cases in 2019–20 winter influenza season in Hong Kong. Rt at the boundaries (the second and third dashed lines)

between phases were estimated from the model taking account of changes in both behavior and herd immunity. The prediction in Phase 2

(Awareness: the period immediately after people were aware of the existence of COVID-19) is shown in red. The prediction in Phase 3

(Spreading: the period immediately after local COVID-19 cases began to spread) is shown in green. The prediction intervals in Phase 2 and 3 are

shown with narrow intervals. 8 denotes the percentage of reduction in Rt at Phase 2 and 3 compared to Phase 1, resulting from the changes in

behavior only (i.e., excluding the e�ects from herd immunity).

showing a typical curvature of epidemic peak. Presumably, this

unusual pattern was due to the human behavioral changes

associated with people’s risk perception on certain critical public

health events (i.e., COVID-19 spreading) (Figure 3B). Hence, we

correlated these three phases to different epidemic statuses of

COVID-19, namely ordinary, awareness, and spreading phases

(see Section 2 and Figure 2).

To estimate the effects of behavioral changes on the

transmissibility, we adopted a TS-SIR model by taking account

of the herd immunity changes. Our model captured the

dynamics across the three phases well. The number of influenza

cases stopped growing after people avoided crowded places

and wore face masks. Compared with the projection of cases

without the effects of behavioral changes (i.e., under ordinary

transmission dynamics), the number of cases began to decline at

least 4 weeks earlier and the total number of reported cases until

February 23 was reduced by 78.8% (Figure 2).

Initial Rt , also called the basic reproduction number R0, was

estimated to be 1.37 (95%CI, 1.35–1.4). In 2020 winter influenza

season, the Rt reduced slightly from 1.31 to 1.23 during Phase

1 (Figures 2, 3A), which was mainly caused by the increase in

herd immunity after the infected cases were recovered. After

the risk of COVID-19 transmission has been noticed, the Rt on

January 12 reduced from 1.23 (end of Phase 1) to 1.03 (start

of Phase 2), with an effect of behavioral changes 82 (i.e., the

percentage of reduction in Rt after excluding the effects of herd

immunity; see Section 2) being 16.2% (95%CI, 14.8–17.5%) in

this phase. The Rt on February 2 further reduced from 0.94 (end

of Phase 2) to 0.75 (start of Phase 3), with an overall effect of

behavioral changes 83 being 32.9% (95%CI, 31.6–34.1%) in this

phase. In Phase 3, the Rt slightly reduced to 0.73 at the end. The

prediction intervals in Phase 2 and Phase 3 are narrow because

the uncertainty of adjusted reporting rates at the corresponding

phases was small (see Supplementary material and subsequent

paragraphs for details). The results showed that the reductions

in transmissibility were primarily due to the behavioral changes

against COVID-19 and only partially due to the increase in herd

immunity (Figure 3A).

We next quantified the effects of different behaviors. The

survey during the baseline showed that 37.9% of people would

avoid crowded places and 45.5% would wear face masks

for preventing influenza infection (Figure 4). The behavioral

changes in the subsequent phases were revealed by the study

of Cowling et al. (16) (Figure 4), in which two surveys were

conducted immediately after Phase 2 and 3 began (Figure 3A).

The percentage of people avoiding crowded places increased

from 60% to 90%, while the percentage for wearing face masks

increased from 75 to 98%. At that time, social distancing rules,
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FIGURE 3

Changes in Rt before COVID-19 outbreak. (A) Estimated Rt in 2019/20 winter influenza season. The mean Rt was estimated as 1.29 (95%CI,

1.27–1.32) in Phase 1, reduced to 1.00 (95%CI, 0.99–1.00) in Phase 2, and further reduced to 0.73 (95%CI, 0.73–0.74) in Phase 3. In applying

EpiEstim package, the number of influenza cases per week was converted into cases per 3.5 days by linear interpolation on the cumulative

influenza cases, which equals to roughly one generation time of influenza (30). For other settings in applying the EpiEstim package, the serial

interval was a gamma distribution with the mean equal to 3.5 days and the standard deviation equal to 1 day, and the window size was 2 weeks.

(B) Timeline about COVID-19. Important events are shown in red, while other events are shown in green.
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TABLE 1 Impacts of precautionary behaviors in influenza control and

transmissibility from our model.

Impact Value (95%CI)

(%) Effectiveness of avoiding crowded places 44.1 (43.5, 44.7)

(%) Effectiveness of wearing face masks 17.4 (16.3, 18.3)

Estimated R0 when nobody

wears face masks or avoids crowded places 1.71 (1.707, 1.715)

Percentage of people required to adopt precautionary

behaviors in order to lower R0 to below 1 84.3% (84.1%, 84.5%)

such as gathering ban, have not been implemented by the

Hong Kong government yet. Both avoiding crowded places and

wearing face masks were precautionary behaviors triggered by

individual’s risk perception.

We estimated the effects of these two behavioral changes

after separating the effect of herd immunity (see Section 2). The

results showed that wearing face masks was associated with an

17.4% reduction in Rt (the coefficient is 0.174, 95%CI, 0.163–

0.183) (Table 1). The effect of avoiding crowded places was

44.1% (the coefficient is 0.441, 95%CI, 0.435 to 0.447). When

nobody wears face masks or avoids crowded places, the initial

Rt was 1.71 (95%CI, 1.707–1.715), which was higher than our

previous estimate of 1.37. This is because a fraction of people

have adopted preventive measures for influenza (Figure 4). To

reduce R0 to below one, more than 84.3% (95%CI, 84.1–84.5%)

of people have to wear face masks and avoid crowded places.

Note that we addressed the concerns of underreporting due

to COVID-19 by adjusting the reporting rates in different phases

(see Supplementary material for details) with the ratio of the

severe influenza cases to total reported influenza cases (Table 2

and Figure 1B). The ordinary reporting rate was estimated as

0.0065 (95%CI, 0.0064–0.0067), and the adjusted reporting rate

dropped to 0.0057 (95%CI, 0.0056–0.0059) in Phase 2 and

further to 0.0022 (95%CI, 0.0021–0.0022) in Phase 3. There was

a reduction in reporting rate (0.0008 and 0.0043, respectively,

for Phase 2 and Phase 3, compared with Phase 1) across the

three phases, which conforms to the expectation that fewer

patients with influenza visit hospitals or clinics under the risk

of COVID-19.

Our results were compared with the Rt estimated using data

on the number of observed new cases with a statistical method

based on renewal function (EpiEstim package) (31) (Figure 3A).

The comparison showed that the Rt estimations from both

methods were consistent. However, the Rt from the EpiEstim

package showed larger variations within each phase than our

predictions. Before the spread of COVID-19 (i.e., Phase 1), the

Rt from EpiEstim are similar with and without reporting rate

adjusted (gray line and blue line, respectively, in Figure 3A).

However, without adjusting reporting rate, the Rt from EpiEstim

was lower than the Rt estimates with the reporting rate adjusted.

4. Discussion

The importance of wearing face masks on stopping COVID-

19 spread through droplet or aerosol transmission has been

addressed by the WHO (32). Although the effects of wearing

face masks on preventing common respiratory virus infection,

such as influenza or SARS-CoV-2, have been intensely discussed

using empirical evidence from laboratory (33–36) or simulation

studies (37), the evidence from the population study is little (38).

We quantified the effects of wearing face masks and avoiding

crowded places on seasonal influenza transmissibility during

early COVID-19 spread period when human behavior changed.

The results demonstrated that precautionary behavioral changes

may have had a large impact on influenza transmission, even

before strict social distancing rules were implemented. This

gives important recommendation on the prevention of future

influenza using NPIs.

Possibly because of the risk perception related to previous

experience of SARS epidemic in 2003, the adoption rate of face

masks in Hong Kong was high even before COVID-19 began

to spread in the community [see Figure 4 from our data and

the data revealed by the surveys from Cowling et al. (16) and

Kwok et al. (39)]. Even though these spontaneous behavioral

changes were less restricted than formal social distancing

rules, our estimation, taking account of the underreporting

of influenza cases, showed that Rt reduced from 1.31 to 0.73

(Figure 2). High risk perception may also affect the decision-

making in vaccination. The complex relationships between

behavioral changes and transmission dynamics can be modeled

through the evolutionary game theory (18, 19), which is

important in predicting and preparing for future outbreaks

after reopening.

A reduction in the incidence of influenza has also been

reported in mainland China during the early COVID-19 spread

(40), which further supports the finding that the interventions

implemented against COVID-19 significantly reduced influenza

incidence. The interventions appeared to have different degrees

of impact on influenza incidence than in Hong Kong, which

was likely because of the start time of the influenza season. In

mainland China, the influenza season began in November 2019

(40) but the COVID-19 interventions (first-level responses)

were implemented in late January 2020, when the epidemic

peak has already been reached. However, Hong Kong had an

influenza season at a later time and the COVID-19-induced

interventions or precautionary behaviors were adopted before

the peak (Figure 2). Hence, the incidence of influenza incidence

was less in Hong Kong.

Based on the data from Hong Kong, our results showed

that wearing face masks could reduce seasonal influenza

transmission by as much as 17.4% in the population, which is

nearly half of the effect of avoiding crowded places (44.1%).

Within our model, if more than 85% of the people had avoided

crowded places and wore face masks, Rt could have reduced to
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FIGURE 4

Changes in behavior in response to COVID-19. Results of Phase 1 were taken from a survey conducted during January 5–February 15, 2020 for

assessing the baseline behavior taken to prevent influenza infection. Sample size is 66, with 45 females. Respondents were aged between 19 and

64. Three respondents have taken flu vaccination. Note that the survey questions only ask the possible measures in order to prevent influenza

but not COVID-19. Hence, the results indicate the baseline behavior before COVID-19 emerged (Avoiding crowded places: 37.9%, 95%CI,

26.2–49.6%; Wearing face masks: 45.5%, 95%CI, 33.5–57.5%). Results of Phases 2 (Cowling Survey 1) and 3 (Cowling Survey 2) were taken from

a previous study conducted by Cowling et al. (16)) before NPIs were implemented in Hong Kong. Cowling Survey 1 (January 20-23) was

conducted immediately after the WHO made an announcement on January 14, 2020 and when China declared a first-level public health

emergency response (January 20, 2020) (15, 17) (sample size is 1008; Avoiding crowded places: 61%, 95%CI, 57.2–65.4%; Wearing face masks:

75%, 95%CI, 70.4–78.6%). Cowling Survey 2 (February 11-14) was conducted after the first community transmission event was confirmed in

Hong Kong (sample size is 1000; Avoiding crowded places: 90%, 95%CI, 86.2–94.2%; Wearing face masks: 98%, 95%CI, 93.5–100%).

TABLE 2 Ratios of severe cases to the total reported cases in several

winter influenza seasons.

Year Ratio (%)

2016 3.1

2018 3.5

2019 3.8

2020 - Phase 2 4.0

2020 - Phase 3 10.0

The ratios were applied to adjust the reporting rates in Phase 2 and Phase 3 of 2019/2020

winter influenza season.

below one. This evidence suggests that, without strong policy

restrictions in social distancing (i.e., four-person gathering ban

in public places or even a lockdown), the incidence of influenza

can still be greatly reduced by simple behavioral changes. This

highlights the need of future research on whether mandatory

mask wearing policy in certain public places only (e.g., public

transport or other crowded places) can significantly reduce

influenza infection.

A TS-SIR model provides a convenient way to estimate

epidemiological parameters using the classical GLM approach

without losing the nonlinear effects in the conventional SIR

model. To estimate the reproduction number accurately, our

model took account of the change in reporting rate due to the

outbreaks of COVID-19, with reference to the fact that people

were reluctant to go to the clinic (81% (16) and 76% (39) of

the respondents). Using the TS-SIR model, we were able to

separate the changes in Rt due to both behavioral changes and

the increase in herd immunity. This allowed us to quantify the

changes in Rt caused by the behavioral changes using a classical

statistical approach.

Nevertheless, there are some limitations in our study.

In the proposed model, we assumed the population was

random mixing without considering the effect of heterogeneous

mixing (24). We mainly assumed that avoiding crowded

places and wearing face masks were the major behaviors
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that could reduce the number of transmissions, because these

transmissions mainly occur through the droplets released when

an infected person sneezes, coughs, or speaks. In addition, in

the effectiveness-behavior analysis (Equation 4), we checked

whether confounding factors occurred. We found that the

probability of wearing face masks is not conditional on avoiding

crowded places, enabling us to use a simple additive approach to

assess the individual effects. A larger sample indeed can increase

the statistical power of the effectiveness-behavior analysis (i.e.,

the credible intervals of the resulted effects). However, due

to time constraints, the sample size in our survey on Phase

1 behavior was limited. Furthermore, the surveyed behavioral

changes were simply interpreted in the percentage of the

population. Future studies should be conducted to quantify the

duration of wearing face masks.

Preparing for the co-circulation of influenza and COVID-

19 is critically important (14). While many countries lifted the

requirements of social distancing and wearing face masks as

COVID-19 vaccination rolled out and the omicron (B.1.1.529)

outbreaks passed, these relaxations likely led to the rise of

seasonal influenza infections. However, COVID-19 continues

to spread with more than 1 million new cases per day

globally (March 2022) (41). Some biotechnology companies have

been developing a COVID-19-Influenza combination vaccine

to provide protections from both illnesses at the same time

(42, 43). To reduce the influenza incidence from a non-

pharmaceutical perspective, we recommend that the idea of

wearing face masks in certain public places and/or simple social

distancing (i.e., avoiding crowded places) should be promoted.

The effectiveness of such precautionary behaviors on seasonal

influenza based on our study can also potentially give us hints for

the recommendations of behavioral shift in dealing with future

pandemics (44).
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The role of models as a
decision-making support tool
rather than a guiding light in
managing the COVID-19
pandemic
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Reference scenarios based on mathematical models are used by public health

experts to study infectious diseases. To gain insight intomodeling assumptions,

we analyzed the three major models that served as the basis for policy making

in Israel during the COVID-19 pandemic and compared them to independently

collected data. The number of confirmed patients, the number of patients in

critical condition and the number of COVID-19 deaths predicted by themodels

were compared to actual data collected and published in the Israeli Ministry

of Health’s dashboard. Our analysis showed that the models succeeded in

predicting the number of COVID-19 cases but failed to deliver an appropriate

prediction of the number of critically ill and deceased persons. Inherent

uncertainty and a multiplicity of assumptions that were not based on reliable

information have led to significant variability among models, and between the

models and real-world data. Althoughmodels improve policy leaders’ ability to

act rationally despite great uncertainty, there is an inherent di�culty in relying

on mathematical models as reliable tools for predicting and formulating a

strategy for dealing with the spread of an unknown disease.

KEYWORDS

COVID-19, models, health policy, evidence based decision-making, public health

Introduction

By its very nature, health is a statistical science replete with uncertainty, which is

particularly high in certain situations such as pandemics. Hence over the years, and

in various situations, decision makers in different countries have sought the help of

reference scenarios and models to predict disease spread as a tool for effective ways to

prevent it and for formulating tailored health policies (1–3). This was also the case when

the magnitude of local infection with COVID-19 in the Chinese province of Wuhan

came to light and morbidity spread to other countries until the WHO declared it a

pandemic (4).
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With the increasing reports about the spread of the

disease, and like many countries worldwide, Israel adopted the

recommendations of the WHO and began to take behavioral-

social preventive measures in order to slow down and reduce

the rate of COVID-19 spread. The measures described below

were incorporated into Israel’s health policy, some of them were

unique to Israel.

Preventive measures taken before the
first COVID-19 wave

In January 2020, health institutions were instructed to

be vigilant regarding individuals who returned from China

and showed symptoms of illness (fever, cough, etc.), and to

increase awareness among medical teams, and the importance

of protecting the treating staff.

From the end of January 2020, an order established the

mandatory isolation in a dedicated hospital setting of any person

who returned from China showing symptoms of illness. The

order also stated that forced isolation can be carried out for a

person who shows resistance to voluntary isolation. At the same

time, flights arriving from China were prohibited from landing

in Israel, and later the entry of tourists to Israel from East-

Asian countries (Japan, Hong Kong, South Korea, Thailand,

etc.) were prohibited. In February 2020, airline routes from East

Asian countries to Israel were closed, followed by routes from

countries with excess morbidity – Italy and Spain. Finally, in

the second week of March, air traffic to Israel was significantly

reduced to the point of almost complete closure of Israel’s air,

land and sea borders (with the exception of rescue flights to

repatriate Israeli residents abroad). At the same time (February

2020) amandatory 14-day home isolation period was established

– first for those returning from China and other East Asian

countries, then for those returning from Italy, Spain, France,

Germany, Switzerland and Austria. Finally, in the second week

of March, the obligation of home isolation was extended to all

those entering the State of Israel.

The first COVID-19 patient was diagnosed in Israel on

February 23, 2020. The turning point of disease spread occurred

in the second week of March 2020, when an exponential increase

in new cases was observed in the country. Between March

2020 and March 2022, Israel faced five COVID-19 waves which

resulted in over 4 million cases and over 10,000 deaths.

Measures taken during the first wave

In March gatherings and mass events were gradually

decreased from 2,000 to 100 participants and were then banned.

Places of recreation and leisure as well as workplaces were closed

(except for those defined as essential workers – 15% activity

in the economy). On March 17, 2020, lockdown was declared.

The education system and universities were shut down. Public

transportation was significantly reduced, and residents were

instructed not to leave their house, except for essential needs

(food, medication and essential work). Later, the citizens were

instructed not to go further than 100 meters of their place

of residence (except for essential needs) and the gathering of

more than two people who do not leave in the same household

was prohibited. These instructions were anchored by the

government as emergency regulations on March 25, 2020. In an

unprecedented manner, in March 2020 the Israeli government

decided to make use of advanced technological means of cellular

tracking in order to enforce the obligation of isolation. In

addition, and as a tool for epidemiological investigation, the

General Security Service was authorized (under emergency

regulations) to collect and process detailed information about

the location andmovement routes of people whowere diagnosed

with COVID-19 from 14 days before the diagnosis, with the aim

of identifying contacts and isolating possible infection circles.

Once the system was activated, individuals began to receive

proactive messages about being in the vicinity of a confirmed

COVID-19 patient without revealing the details of the patient

himself. This move to track individuals by cell phones has

received a lot of public criticism on the grounds of a severe and

disproportionate violation of basic rights, including the right

to privacy.

In the second week of April 2020, due to fear of gatherings

and contagion during the Jewish holiday Passover, it was decided

to tighten lockdown and move to a temporary state of curfew

for the entire days of the holiday. Police and judicial forces were

deployed across the country while blocking mobility between

cities and strictly enforcing those who violated the curfew

conditions (among other things by imposing fines between NIS

500 and NIS 5,000). Lockdown restrictions were gradually lifted

in May and June 2020.

Measures taken during the second wave

On September 18, 2020, a second lockdown for 21 days was

announced in Israel. A few days later, it was decided to take

further steps to tighten the lockdown. A differential program

called “The Traffic Light”, which comprised classification of

cities according to morbidity levels, was instated. On October

17, 2020, lockdown ended, except for cities defined as ’red cities’

under the Traffic Light program.

Measures taken during the third wave

On December 27, 2020, due to a renewed increase in

morbidity, a third lockdown was announced. Unlike the

previous two lockdowns, this time the Israeli government
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decided not to close educational institutions and the scope of

work in the private sector was only reduced to 50%.

Measures taken during the fourth and
fifth waves

From June 2021, after elections and the establishment of

a new government, Israel decided to move from a policy

of lockdowns in response to increased morbidity to softer

preventive measures. These included encouraging vaccinations,

reducing gatherings, providing green certificates to vaccinated

individuals which allowed them to enter shops and other public

places, and monitoring morbidity.

The use of models to predict morbidity
and mortality

Reference scenarios are based on mathematical models

used by public health experts to study infectious diseases.

Such scenarios have many advantages, but they also present

significant challenges, disadvantages and are sometimes even

misleading. Starting in March 2020 experts from various fields

began publishing in the public domain predictions on the

“behavior” of the Severe Acute Respiratory Syndrome Corona

Virus 2 (SARS-CoV-2) and the expected morbidity, mortality,

and duration of the pandemic. These scenarios ranged from

very optimistic to pessimistic ones. The models were designed

to assist decision makers in dealing with core questions

about the pandemic, such as the expected daily number

of infections, the expected burden on hospitals, and policy

implications. The predictions were based on mathematical

calculations, hypotheses and assumptions, but on very little

reliable information.

The Israeli Ministry of Health began to work with several

reference scenarios formulated based on various assumptions

at a relatively early stage. Most of the models were based on

the Susceptible-Infectious-Recovered (SIR) model for studying

epidemic spread as first published in 1927 by Kermack and

McKendrick (5). Although this mathematical model has evolved

and developed over the years, its basic principles have not

changed. Thus, most models used for predicting COVID-19

disease spread have used the basic reproduction number (R0)

as a tool to reflect the intensity of epidemic spread and have

applied the principles of population classification into 3 groups:

susceptible, infected and recovered. R0 is the mean number of

secondary cases an infected person can cause in a population

where there is no immunity. R0 was calculated by comparing

the number of infected individuals in a given week with the

number of infected individuals in the previous week. This index

is greatly affected by a range of factors that can be influenced

both by the characteristics of the population and by preventive

measures. Although R0 is an important tool for developing

theoretical models, its effectiveness in predicting the spread

diseases was not tested prior to the COVID-19 pandemic. The

most optimistic scenario (R0 = 1.2) estimated that there would

be 108,000 critically ill patients with COVID-19 in Israel and

that 8,600 would die of the disease, while the most pessimistic

one (R0 = 2) predicted that there would be 270,000 critically

ill patients and that 21,600 would die (The definition of critical

cases was based on the Israeli Ministry of Health’s definition,

which included oxygen saturation levels below 94% as the main

criteria). These scenarios were first presented to decision-makers

and later to the public without proper and balanced mediation

of the information, which led to the escalation in national

anxiety and panic. At first the panic was translated into a rare

public collaboration with government directives, but as time

went on and the actual number of cases, critically ill patients and

deaths turned out to be fundamentally different, the scenarios

and forecasts became a double-edged sword as public trust and

cooperation began to falter.

Although reference scenarios are based on a seemingly

objective mathematical models, they often embody a variety

of subjective assumptions due to the uncertainty inherent in

unfamiliar morbidity. Models can only be useful in the context

of imperfect information. In the absence of reliable information,

some of these assumptions are influenced by the modelist’s

personal and/or professional perceptions of the characteristics

of the disease, its future behavior, and the behavior of the public.

Assessment of gaps between models and real-world data,

can assist policy makers in adopting an informed, data-based

approach and can advance knowledge-based decision-making

processes when dealing with subsequent crises. We examined

the various reference scenarios that were presented to decision-

makers in Israel and tried to estimate their quality compared to

the actual data collected.

Study data and methods

Although many prediction models were developed during

the COVID-19 pandemic, we analyzed the 3 major models that

served as the basis for policy making. Model data used in this

analysis is public information that was made available by the

three model teams at different timepoints during the pandemic

on social media, television, press, official social networks, and as

presentations presented to health policy leaders.

The models were analyzed anonymously. Due to the

multiplicity of existing data in the field, we focused on

comparing the predicted number of confirmed COVID-19

patients, patients in critical condition and deaths to the

actual data collected and published in the Israeli Ministry of

Health’s dashboard.
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For convenience, we defined the five COVID-19 waves

in Israel:

First wave: March–May 2020

Second wave: June–November 2020

Third wave: December 2020–May 2021

Fourth wave: June–November 2021

Fifth Wave: December 2021–February 2022.

For the purpose of this study, a model forecast beyond±10%

of the ‘real world data’ is over/under estimating.

Study results

The progress of the number of new cases in Israel is

presented in Figure 1. Table 1 presents a comparison of the

models and real-world data published by the Israeli Ministry

of Health. It is important to note that the table is based on

publications of the models and thus reflect different outcomes,

which differ between the models. For example, while some of the

models presented the cumulated number of new cases, others

focused on the highest (peak) number of new cases and did

not provided forecast of the cumulated number of cases for the

entire wave.

Models description

There were inherent differences between the different

models as each model uses different techniques and relies

on specific characters and scientific approaches. Severe cases

were defined by the models based on the MOH definition

(saturation levels, intensive care units). The models evolved

over time to include additional variables such as vaccination

status of various populations, the effect of various stringency

of lockdowns, and other preventive actions. The purpose of

team number 1 was to model the risk for the collapse of the

health system. This was achieved by modeling the chance for

hospitalization and death for each new case. The team developed

a new model which was used with Monte Carlo simulation and

combined models based on the characteristics of the infected

individuals. The model included a survival analysis with Kaplan

Meier and a Cox proportional hazards model. Team number

2 used an Age-of-Infection model. It uses the number of cases

which has characteristics of Poisson distribution with dynamic

expectation. Team number 3 performed short-term modeling

(nowcasting) combined with other stochastic models (agent-

based models) that examined the individual and followed the

course of the exposure (infected, hospitalized, deceased, etc).

The model presented a forecast of the presence and the near

future and aimed to identify important parameters and provide

predictions based on these parameters.

The first wave: March–May 2020

The models’ overestimation of morbidity in comparison

to actual data is highly evident in the analysis of First-Wave

data. The predicted cumulative number of confirmed cases

for this wave was up to 100 times higher than the actual

number of confirmed cases. A similar trend was observed for the

comparison between the predicted and actual number of deaths

and critically ill patients. The largest gap between predicted and

actual data was observed in Team 3’s model. Team 3 predicted

that the number of confirmed cases would be 50–100 times

higher than actual data. Interestingly, Teams 2 and 3 predicted

the same range of deaths, probably because they used R0 as the

main explanatory variable in their sensitivity analyses. Team 1’s

number of predicted deaths was 161 times higher than the actual

data (46,772 vs. 289).

The second wave: June–November 2020

Ministry of Health data showed that at the Second Wave’s

peak, at the end of September 2020, there were 9,051 confirmed

cases and the cumulative number of confirmed cases for the

entire wave was 319,921. This number corresponds with the

models’ predictions. However, all three models provided a

significant overestimation of the number of critically ill patients

(495 at the wave’s peak). Teams 1 and 3 overestimated this

number by 2–3 times. Team 2’s estimation was even higher,

but this team combined the number of patients in moderate

and critical condition. Interestingly, Teams 2 and 3 predicted

a significantly lower number of deaths compared to the actual

data, while Team 1 overestimated the number of deaths by

more than 100%. It is important to note that Team 1 only

predicted the number of new patients in critical condition and

did not provide predictions for the number of confirmed cases.

Therefore, it is difficult to assess the effectiveness of the model

in predicting disease spread (in terms of new cases) during the

second wave.

The third wave: December 2020–May 2021

In the Third Wave Team 2 provided the closest

prediction to actual data – both in the number of confirmed

cases and in the number of deaths. This team tried to

evaluate the effectiveness of strict lockdown alongside

the vaccination campaign; therefore, it made a relatively

careful estimation (under estimation) of the number of

confirmed cases. Actual data showed an initial increase in

the number of confirmed cases which decreased slowly.

This trend was not predicted by the model. The models

that were relatively accurate in predicting the number

of confirmed cases in the second wave, made significant

overestimations in the third wave, probably due to the start of

the vaccination campaign.
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FIGURE 1

Number of confirmed COVID-19 infections per day in Israel (March 2020–February 2022).

The fourth wave: June–November 2021

The fourth wave was characterized by the spread of the

delta strain of the virus, along with a decline in immune

defense. Most teams were successful in predicting the number of

confirmed cases as well as the number of deaths, with only about

10% deviation between the model and actual data. In contrast,

the models, and particularly that of Team 3, overestimated

the number of critically ill patients (2000 predicted vs. 766

actual). Team 2 developed a model which considered the

vaccination booster as a crucial parameter in predicting the

number of critically ill (1000–2500). However, both predicted

values presents a large-scale overestimation. It is possible that

the gradual decline in immune protection may have benefited

the models by reducing the gap between the actual number

of critically ill patients and their predicted number. Although

the models did not account for decreased immune protection

but rather provided their prediction based on the number of

confirmed cases, the decrease in immune protection led to an

increase in the number of critically ill patients, bringing it closer

to the predicted number.

The fifth wave: December 2021–February 2022

The rapid spread of the omicron variant, which manifested

in a very high number of daily confirmed cases (up to a peak

of 85,000 confirmed cases per day and a total of about 2.3

million confirmed cases in this wave), resulted in high variance

among the models regarding the number of confirmed cases

and the rate of increase in cases. While Team 1 predicted an

average of 45,000 confirmed cases per day, Teams 2 and 3

predicted a cumulative number of confirmed cases that was

double compared to the actual data: Team 2 estimated that

there would be 4 million confirmed cases (vs. 2.3 million

cases that were actually confirmed) and Team 3 predicted that

there would be 73,000–146,000 confirmed cases per day. There

was considerable variation among the models in the predicted

number of critically ill patients: while Team 1 predicted a lower

number of critically ill patients than the actual number, Team 2

overestimated their number by over 100%, and Team 3, which

provided gloomy predictions for most of the waves, accurately

predicted the number of critically ill patients in the fifth wave.

It is also important to note that due to multiple contradictory

information on the severity of disease caused by the Omicron

strain, information on the predicted number of deaths was not

published by the modeling team. Instead, they chose to focus

on the number of newly confirmed cases and the number of

critically ill patients.

Discussion

Models’ evaluation

From the day it was identified, SARS-CoV-2 has proven its

ability to surprise healthcare systems worldwide. Tthroughout

the COVID-19 pandemic in Israel, the reference models
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TABLE 1 Comparison of models and real-world data, Israel March 2020–February 2022.

Ministry of health data Team 1 Team 2 Team 3

Model description Combined models based on the

infection characteristics:

Survival analysis Kaplan Meier) and

Cox proportional hazards model

Aalen johsnaen estimator self-developed

model with Monte Carlo simulation

Age-of-Infection model: number of cases has

Poisson distribution characteristics with

dynamic expectation

Short-term modeling (nowcasting)

combined with other stochastic models

(agent-based models)

First wave: March-May 2020

Confirmed COVID-19 cases Tests Peak: 17,047 (peak 724/day) No

data

– 18,000–193,000 576,000–1,440,000

Critically ill 192 224,366 108,000–270,000 108,000–270,000

Dead 289 46,772 8,600–21,600* 8,600–21,600*

Second wave: June—November 2020

Confirmed COVID–19 cases

Tests

319,921 (Peak 9,051/day) 3,362,484 298,000 7,500–9,200 peak

Critically ill 495 976–1,193

Weekly forecast

critically and moderately ill: 9,550 820

Dead 2,596 FromMarch 20: 8,361–10,534

(8,000–10,200 for the second wave

alone)

1300 , 1,600

Third wave: December 2020—May 2021

Confirmed COVID–19 cases

Tests

Peak: 10,123 502819

(peak 10,123/day) 10,375,126

16,700–22,300

Depending on sensitivity analysis for

vaccine efficiency and initial R

Differs between different scenarios (strict

lockdown yes/no) 6,120–10,000

4,000–8,000 peak

Critically ill 1,193 1,700–2,400 Differs between different scenarios (strict

lockdown yes/no) and on vaccination status

600–1,474 (lockdown y/n) 1,340–3,230

(vaccine y/n)

2,539–6,834 (vaccine y/n)

Dead 3,541 2,450–2,700 Differs between different scenarios (strict

lockdown yes/no) and on vaccination status

1,250–3,085 (lockdown y/n)

4,500–5,700

On average, depending on preventive

actions

Fourth wave: June—November 2021

Confirmed COVID–19 cases

Tests

50,4587 (Peak 11,346/day)

18,437,810

11,000 peak Mainly children and unvaccinated

adolescents

9,000 peak

Critically ill 766 850 Varied based on the vaccination status and

based on age. 1000 (with booster)–2,500

(no booster)

2,000

Dead 1,782 – 200–1,400 Depends on the rate of the

vaccination campaign (combined model

teams 2 and 3)

1,500 according to mortality model

Fifth wave: December 2021—February 2022

Confirmed COVID–19 cases

Tests **

2,293,405 (Peak 85,192/day)

18,369,900

45,000/day 4,000,000 73,000–46,000/day

Critically ill 1,255 800–1,000 1,250–2,750 700–1,566

Dead 2,042 100/week

*Teams 2 and 3 worked together at the beginning of the pandemic, joining forces in order to provide scientific assumptions to policy makers. As a result, the same prediction was provided by both teams. Later on, as these teams separated, differences in

forecasts were observed. **The number of tests during the fifth wave includes both PCR tests and Rapid (Antigen) tests.
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overestimated morbidity in comparison to actual data from the

Ministry of Health. High variance was observed both among the

models and for eachmodel over time. Eachmodeling team chose

to focus on a different outcome. For example, in later waves

Team 1 moved to focus on patients in critical condition while

Team 3 continued to provide predictions regarding the number

of confirmed COVID-19 cases.

An examination of the various models by time shows that

in most cases all teams overestimated the number of confirmed

COVID-19 cases and critically ill patients with better accuracy

in later stages of the pandemic. This is probably a consequence

of the lack of uniformity in the knowledge available to the

various modelers during the pandemic. The models usually

used the R0 number as the primary variable for predicting the

spread of disease. Considering the evolution and variability of

SARS-CoV-2 during the pandemic, this classification proved

to be challenging. The uncertainly derived from the lack of

reliable and available information on a wide range of essential

parameters that affect R0, including, the nature of infection,

its duration and severity, transmissibility, infectiousness, the

average number of days in which an individual remains infected,

population density and health, the average age of the population,

the appearance of new variants, and the behavior of the public.

In addition, the published Rt and the number of those infected

were affected by government measures, the extent of public

immunization, the effect of vaccines on the number of new

cases and on the number of critically ill patients and the

degree of protection against re-infection. Furthermore, the

various models examined disease spread on a national level

and did not make consider essential variables and unique

characteristics to Israel that may influence disease spread, such

as its young population, one central entry into the country,

emergency preparedness, the population strata, its density, and

the number of children per household. Moreover, due to the

great complexity of the spread characteristics of the virus,

it was not possible to construct a model that included all

known variables and the researchers were satisfied with relatively

simple models that included using R0 numbers from other

countries or calculating R0 numbers according to the number

of confirmed infections in Israel with age adjustments. All

of these variables created a complex reality that challenged

the various models (6). In practice methods that previously

helped in predicting disease spread have been found to be

less accurate, (7, 8) which has led, among other things, to

constant updating of models and methods (9, 10). Over time,

each modeling team chose to analyze different data. Although

they could better predict the wave trend (increase/decrease),

wide gaps remained between the data presented by each

model and the actual intensity of morbidity, the number

of critically ill patients and mortality. Models that provided

accurate predictions for one wave, were very inaccurate in the

next wave.

Public communication

The public’s behavior also affected the spread of disease:

during the first wave there was great uncertainty together with

conflicting reports from sources abroad about a very high R0

number, which contributed to very high public response to

the restrictions imposed by the government. As time passed

and the public understood that the pandemic may last for a

long time, compliance with governmental restrictions decreased,

which may have resulted in certain gaps between the models

and actual data. For example, while the models predicted a

steep rise in morbidity, no such increase was recorded in real

life. These gaps may have led to further public non-compliance

with governmental restrictions because the predictions did not

come true.

The differences between the models’ predictions and real-

world data shows that policy-making cannot stop the spread

of disease altogether, however, it has a limited ability to slow it

down, with the intention of trying to flatten its growth curve

as much as possible and to avoid very high morbidity in a very

short time (and thus to avoid insufficiency of the health system),

sometimes even at the cost of dispersing disease spread over a

longer period of time.

It is also important to consider the issue of disseminating

the models to the public. The extensive media coverage of the

COVID-19 pandemic included, among other things, the daily

publication of morbidity data alongside various assessments,

forecasts and models. Often, this information was partial or was

provided without framing the information within the correct

context, so that the public only received the "bottom line”

(R0 number scenario or prediction of morbidity) without the

different parameters that make up the model, the sensitivity tests

and parameters that affect the model’s accuracy in predicting

morbidity, or the difference in the meaning of the scenario

(advantages/disadvantages) and its predictions. Due to the

recognized importance of models as a tool to help dealing with

the pandemic, and the understanding that in the reality of a

new disease much more is unknown, it would have been more

appropriate to mediate the information in a way that reflected its

limitations and shortcomings and to show professional modesty.

Although transparency is a fundamental value in health

systems, the damage to public trust that results from publishing

information without appropriatemediation and context framing

outweighs its benefit. Such damage to trust can lead to decreased

public response to professional guidance and to the ability of

the government to deal with the spread of disease. In practice,

the public’s exposure to significant gaps among the scenarios

predicted by the models and actual morbidity, increased the

public’s distrust in decision-makers. Hence, it is very important

to mediate the information and the various models to the public

in an orderly and reliable manner, while presenting the models

correctly and accurately as a tool for decision-making.
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Advice/policy implications

Upon the emergence of a new disease, there is an inherent

difficulty in relying on mathematical models as a reliable tool

for predicting and formulating a strategy for dealing with its

spread. Such uncertainty and a multiplicity of assumptions that

are not based on reliable information may lead to significant

gaps among the various models, and between the models and

real-world data. Data researchers who have agreed to contribute

their time and experience toward presenting ways to deal

with the COVID-19 pandemic are a welcome phenomenon

that should be encouraged and preserved. At the same time,

decision-makers must integrate the information presented to

them in order to advance knowledge-based decision-making

processes on the one hand, but they must also recognize the

structural weaknesses of mathematical models when faced with

uncertainty. The decision-making process and health policy

design should regardmodels as auxiliary tools and consider their

limitations and weaknesses, while remembering that preventive

measures, public behavior, seasonality and additional factors

influence the models’ predictions. Behavioral elements such as

public compliance, avoiding crowding, participating in indoor

activities, etc. has a large impact on the different models

accuracy. Thus, real world data on these parameters can be

integrated into the models in order to enhance their precision.

It is essential to correctly mediate the reference scenarios

to decision makers and the public, while providing the

appropriate context of the mathematical models together with

their advantages and disadvantages. In view of the findings of

this study, we suggest creating an elaborate mechanism that will

serve as a tool for decision-makers. This mechanism should

comprise two separate but complementary components: (a) a

prediction range derived from combined key models; (b) an

independent and separate prediction for each of the models

while preserving their different methodologies. Furthermore,

we recommend developing a mechanism that would provide

modelers access to institutional data in a structured and orderly

manner, in addition to the information collected by them

independently. This may help to improve and refine the various

mathematical models.

Limitations

First, the current study presents data from different models

that were used by policymakers. These models were influenced

by several parameters such as policy recommendations,

preventative measures, and public awareness, social distancing,

etc. this may lead to a potential bias in providing interpretations

for the results. However, policy makers used the same models,

with the same potential biases, thus we believe the analysis

suggested is appropriate. Second, the models were published

only in secondary publications and were not peer-reviewed.

Nevertheless, these models were presented to the government

and health authorities and they served as the basis for

decision making.
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Background: During the COVID-19 pandemic, universities around the world

had to find a balance between the need to resume classes and prevent the

spread of the virus by ensuring the health of students. The purpose of our study

was to e�ectively assess the overall risk of universities reopening during the

COVID-19 epidemic.

Design and methods: Using the pressure–state–response model, we

designed a risk evaluation method from a disaster management perspective.

First, we performed a literature review to find the main factors a�ecting the

virus spread. Second, we used the pressure–state–response to represent how

the considered hazards acts and interacts before grouping them as disaster and

vulnerability factors. Third, we assigned to all factors a risk function ranging

from 1 to 4. Fourth, we modeled the risk indexes of disaster and of system

vulnerability through simple and appropriate weights and combined them in an

overall risk for the university resumption. Finally, we showed how the method

works by evaluating the reopening of the Hebei Province University in 2022

and highlighted the resulting advice for reducing related risks.

Results: Our model included 20 risk factors, six representing exogenous

hazards (disaster factors) that university can only monitor and 14 related

to system vulnerability that can also control. Disaster factors included

epidemic risk level of students’ residence and the school’s location, means of

transportation back to school, size of the university population, the number of

migrants on and o� campus and express carrier infection. Vulnerability factors

included student behaviors, routine campus activities and all the other actions

the university can take to control the virus spread. The university of Baoding

city (Hebei Province) showed a disaster risk of 1.880 and a vulnerability of 1.666

which combined provided a low risk of school resumption.

Conclusion: Our study judged the risks involved in resuming school and put

forward specific countermeasures for reducing the risk levels. This not only

protects public health security but also has some practical implications for

improving the evaluation and rational decision-making abilities of all parties.

KEYWORDS

resumption of universities, risk prevention and control, comprehensive risk

assessment, COVID-19, fuzzy statistical model
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1. Introduction

The novel coronavirus disease 2019 (COVID-19) is an

ongoing pandemic that has evolved into a global crisis and has

seriously challenged the development process of human society

(1). The COVID-19 pandemic is a major worldwide public

health emergency that spreads fast over a wide range of locations

and is difficult to prevent and control; however, thanks to the

concerted efforts of people around the world and to a global

vaccination campaign, the epidemic prevention and control

situation has continued to improve, and the order of work and

life was quickly restored (2). Despite this, the appearance of

virus variants with higher infectivity makes the pandemic still

not under effective control (3). Tertiary education Institutions

play a key role in assuming the functions of higher education

and are also an important public field to manage emergencies

(4). In the COVID-19 context, many colleges and universities

have issued plans to reopen their school even if before the

pandemic showed high incidences of respiratory infectious

diseases.While resuming in-person teaching, the back-to-school

activities mean further battles for epidemic prevention and

control for several reasons. First, colleges and universities

need to be effective regarding the prevention, monitoring, and

management of public health emergencies. Measures taken by

colleges and universities often lag behind the development speed

of the crisis, and the phenomenon of post-management rather

than prevention always exists. For example, emergency warning

mechanisms in Chinese universities have been ineffective due

to the uncertainty of public health emergencies and technology

defects. Second, the ability to cope with and guide public

opinion in a public health crisis is a considerable aspect of

university governance modernization, especially in the Internet

era. As a relatively closed social cluster, the spread of rumors

and false information in a university can easily cause panic

among teachers and students, creating additional considerations

for governing public health emergencies (5). Social media has

rapidly developed, and society has entered an information age.

Young people use social media much more frequently than

other age groups, making it more difficult for universities,

which are mainly composed of young college students, to curb

false information. Third, the education system has entered the

mobile war stage of epidemic prevention and control, and risk

factors have become more complex and changeable (6). The

full resumption of education in colleges and universities has

brought about a larger range and scale of personnel mobility.

The activities and management issues of overseas students

have brought new risks to epidemic prevention and control

in schools, which has changed from positional to mobile

anti-disease warfare. In addition, as epidemic prevention and

control has entered the normalization stage, various associated

problems emerged, such as stress responses, anxiety, and other

psychological problems; livelihood issues, such as entering

schools and resuming employment; and teaching management

issues, such as the connection between online and offline

teaching. In China, the problem has been investigated with

different approaches and several solutions have been proposed.

Yang (7) constructed a risk assessment system for school

respiratory infectious disease outbreaks from four perspectives:

possibility, vulnerability, severity, and countermeasures. Liu

and Zhang (8) discussed applying a risk assessment of the

overall smart campus framework in terms of risk identification,

assessment, disposal, and control to form a set of network

security risk assessment methods that can be widely applied to

the current overall smart campus frameworks. Ding and Li (9)

proposed a Delphi method and AHP method combined with

Borda ordinal value method to study the risks after returning

to school under the COVID-19 epidemic. Wang et al. (10)

discussed a risk assessment method for reopening universities

that can evaluate the comprehensive risks of resuming education

during the COVID-19 epidemic and assist universities in

making organizational decisions for reopening. Although the

latter study analyzed the interaction mechanisms of various

factors based on pressure–state–response model and established

a comprehensive risk assessment index system for COVID-

19 outbreaks in colleges and universities, important factors

involved during education resumption are missing. Starting

from the previous results, the aim of this study is to introduce

a comprehensive index to measure the risk of virus spread

during university resumption and to take a university as our

research object.

2. Methods

The proposed risk evaluation tool is designed from a

disaster management perspective and is based on the pressure–

state–response model. First, we have selected the main factors

affecting the virus spread that are the most considered in

literature. The selection of these factors is based on the five

principles of significance, operability, practicability, relevance

and concreteness of the index system, PSR model, and many

literature (2–22). Second, we used the pressure–state–response

to represent how those hazards acts and interacts before

grouping them in disaster and vulnerability factors. Levels of

categorical factors (such as means of transport) were ranked

from lowly to highly dangerous and recoded with values

corresponding to the risk rank (such as Self-driving = 1, Taxi =

2, Train/R= 3, Other= 4). Third, according to Chinese 3-levels

territorial epidemic risk (high, medium, and low),1 to simplify

the computational process we used step functions to assign risks

1 In June 2022, the following classification was introduced: Over the

past 14 days, areas with no confirmed cases nor new cases are defined

as low risk; areas with no more than 50 newly confirmed cases or

a cumulative total of more than 50 confirmed cases and no cluster

of outbreaks are defined as moderate risk. Areas with more than 50

cumulative confirmed cases and clusters of outbreaks are defined as high

risk.
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to factors values ranging from 1 to 4. The choices of those

functions are based on the experience of the risk assessment

expert group composed of experts in various fields such as

medicine, education and emergency management. Fourth, we

modeled the risk indexes of disaster and of system vulnerability

as weighted mean of related indexes and combined them in and

overall risk for the university resumption. Finally, we showed

how the method works by evaluating the reopening of the Hebei

Province University in 2022 and highlighted the resulting advice

for reducing related risks.

2.1. PSR model

The PSR framework models the chain of causal links

between a system working to maintain a state, and exogenous

forces working to change it. Formally, it is an interconnected

conceptual structure consisting of three parts (11): pressure,

which represents the process of adverse effects generated

from the system interference and coercion (12); state, which

represents the current state of the system under external

pressure (13); response, which represents the feedback process

of the system in response to external pressure (14). Even

if domestic scholars generally use this theory to explain

phenomena in the fields of taxation and ecological and

environmental protection (15), it can also reflect the dynamic

processes and internal logic of university environments. All

the factors that affect the epidemiological risks associated with

university resumption and all the involved subjects interact

and influence each other in a dynamic balance (Figure 1).

The epidemic situation before students return to school, the

public transportation they take on the way back to school, and

the flow of people inside and outside the school after they

return increase the risk of epidemic transmission and together

form the pressure system. Information released by the pressure

system allow involved subjects to take countermeasures. The

status system includes student behaviors and routine campus

activities, such as raising students’ risk awareness, adopting

online education, distance learning and strengthening campus

space management to reduce the risk of the virus spreading.

The response system includes all the measures a university

can take that do not strictly concern the routine campus

activity, such as emergency plans, drills, and assessments;

the establishment of isolation sites; and the development

of response systems to deal with outbreaks. The epidemic

prevention and control status quo in colleges and universities

will directly affect the response measure effectiveness and

timelines, and improvements in response capacity will feed back

to the status system and improve the prevention and control

status quo.

Methods for detecting and measuring selected risk factors

are summarized in Supplementary material 1 and described in

the following sections.

2.1.1. Indicators of pressure system

Since the movement of people inside and outside the school

will increase the risk of the epidemic spreading, as indicators of

the Pressure System we selected: epidemic risk level of students’

residence (P1) (13); epidemic risk level of the school’s location

(P2) (6); means of transportation back to school (P3) (6); size

of the university population (P4) (16); the number of migrants

on and off campus (P5) (16); and express carrier infection (P6)

(17). According to national classification of territorial risk (see

text footnote 1), we assigned to each level of P1 and P2 risks

equal to 1.5 (low), 2.5 (medium) or 3.5 (dangerous). Risk of

P3 was assessed as the weighted mean of risks of the 4 most

used vehicles such as Self-driving, Taxi, Train/R, Other. Means

of transportation were ranked by the expected number of close

contacts, then we assigned equidistant risk values (Self-driving

= 1, Taxi= 2, Train/R= 3, Other= 4) weighted with fraction of

users. Risk values of 1, 2, 3, 4 were assigned to P4, P5, and P6 as

follows: if the number (n) of students returning to school/1,000

was n < 0.5, 0.5 ≤ n < 1, 1 ≤ n < 2, 2 ≤ n respectively; if the

percentage (p) of students entering and leaving the school was p

< 5%, 5% ≤ p < 15%, 15% ≤ p < 25%, p ≤ 25% respectively;

if the percentage (p) of express deliveries from medium and

dangerous risk places was p < 5%, 5% ≤ p < 15%, 15% ≤ p

< 25%, p≤ 25% respectively.

2.1.2. Indicators of state system

We analyzed the state system from the perspective of

individual students, the campus environment, management

measures, and the use of digital technology. As indicators we

selected: students’ knowledge of the epidemic (S1) (9); students’

awareness of risk (S2) (10); the situation of campus environment

renovation (S3) (18); propaganda of anti-epidemic culture (S4)

(19); personnel control measures (S5) (20); periodic nucleic

acid testing (S6) (21); campus space management (S7) (18); the

application of digital teaching technology (S8) (22); and the

application of digital epidemic prevention technology (S9) (6).

Risk of S1 was assessed by assign risk values to the students’

knowledge level of epidemic prevention and control (X) of 4 –

3(X – 8)/(10 – 8) and 4 if 8 ≤ X and X < 8, respectively. Risk

values of 1, 2, 3, 4 were assigned to S2–S9 as follows: if the risk

awareness of the students observed in daily behavior was very

strong, strong, general, and weak, respectively; if the campus

environment renovation (cleaned up campus health dead spots;

disinfected public places; equipped with disinfectants and hand

sanitizer) was completed (three items), almost completed (two

items), started (one item), and not started (0 item), respectively;
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FIGURE 1

PSR mechanism model of epidemic risk situation in universities from a disaster management perspective.

TABLE 1 Value reference for ri .

w
∗

i
Instruction

1.0 w∗

i−1 and w∗

i have the same contribution

1.2 w∗

i−1 contributes a little more than w∗

i

1.4 w∗

i−1 makes a bigger contribution than w∗

i

1.6 w∗

i−1 has a stronger contribution than w∗

i

1.8 w∗

i−1 definitely contributes more than w∗

i

if the percentage (p) of promoted prevention and control culture

was 50% ≤ p, 30% ≤ p < 50%, 15% ≤ p < 30%, p <

15% respectively; if the organizational framework of colleges

and universities was met the requirements, slightly defective,

major defects, failure to formulate a reasonable organizational

institutional framework, respectively; if the frequency (p) of

nucleic acid testing was once a day, three times a week, twice

a week, once a week respectively; if the distance (d) in meters

(m) among the students was 2m ≤ d, 1.5m ≤ d < 2m, 1m

≤ d < 1.5m, d < 1m respectively; if the percentage (p) of

the satisfaction of teachers and students with online teaching

was 95% ≤ p, 90% ≤ p < 95%, 80% ≤ p < 90%, p < 80%

respectively; if the percentage (p) of student nucleic acid testing

system registration was 95% ≤ p, 90% ≤ p < 95%, 80% ≤ p <

90%, p < 80% respectively.

2.1.3. Indicators of response system

According to the mechanisms of the discovery, initiation,

and control of emergency responses, as indicators of the

Response System we selected: daily health reports for students

TABLE 2 Epidemic risk matrix of resumption in universities.

H

V (1,2] (2,3] (3,4]

(1,2] L L M

(2,3] L M D

(3,4] M D D

(R1) (6); emergency drill and evaluation (R2) (19); preparation

of emergency plans (R3) (2); cooperation between universities

and other subjects (R4) (6); and quarantine settings (R5) (2).

Risk of values of 1, 2, 3, 4 were assigned to R1–R5 as follows:

if the health monitoring days per student in the data system

(d) was 14 ≤ d, 7 ≤ d < 14, 0 ≤ d < 7, unestablished

system respectively; if the school epidemic drill situation

was conducted as emergency drills for evaluation and made

improvements based on evaluation comments, emergency drills

and assessments but did not improve all assessments, emergency

drills but did not conduct drill evaluations or unconducted

respectively; if the emergency response plan was well-prepared

contingency plans for various emergencies, comparatively

perfect preparation of various contingency plans, inadequate

preparation of contingency plans for various emergencies,

failure to prepare for various emergencies respectively; if the

university collaborated with three, two, one or no organizations

respectively; if the isolation area and the personnel on duty

was evaluated as adequate quarantine areas and staff on full-

day duty, inadequate quarantine areas and staff on full-day

duty, adequate quarantine areas and staff not on duty all
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TABLE 3 Epidemic risk index collection—pressure system for university resumption.

Subsystem Pressure

Indicator P1 P2 P3 P4 P5 P6

Result Low risk Low risk 3.32 1 ≤ n < 2 xi < 5% xi < 5%

Assignment 1.5 1.5 3.32 3 1 1

Weight 0.15 0.23 0.19 0.22 0.12 0.09

TABLE 4 Epidemic risk index collection—status system for university resumption.

Subsystem State

Indicator S1 S2 S3 S4 S5 S6 S7 S8 S9

Result 8.4 Strong risk

awareness

Completed 3

items

xi ≥ 50% Slightly

flawed

3 times a

week

1.5 ≤ xi ≤ 2 90% ≤ xi ≤ 95% 80%≤ xi ≤ 90%

Assignment 3.4 2 1 1 2 2 2 2 3

Weight 0.06 0.09 0.16 0.05 0.12 0.17 0.15 0.11 0.09

TABLE 5 Epidemic risk index collection—response system for university resumption.

Subsystem Response

Indicator R1 R2 R3 R4 R5

Result 14 Carried out

emergency drills

and improved them

The preplan

preparation was

relatively perfect

Cooperated with

two institutions

The isolation area

was sufficient and

the personnel were

on duty all day

Assignment 1 1 2 2 1

Weight 0.16 0.22 0.20 0.18 0.24

day, inadequate quarantine areas and staff not on duty all

day respectively.

2.2. Overall risk evaluation

From the previous three indicators, we obtained an overall

risk evaluation by using a disaster management perspective. In

the specific, the risk degree (R) of reopening a university was

evaluated through the cartesian product of disaster (H) and

vulnerability (V) factors (10).

R = H × V (1)

where H reflects the pressure subsystem and V both the state

and response subsystems of the related PSR model (Figure 1).

Like in natural disasters, the Equation (1) is suitable to represent

the levels of risks related to the virus spread. Indeed, at the

onset of outbreaks, interventions on hazards included in H may

not be rapid enough and differences in the level of epidemic

are determined by the capacity to reduce students’ vulnerability.

Furthermore, to consider the specific universities conditions we

introduced index weight settings to adapt to local conditions.

The proposed index method first needs to assess H and V

as follows

{
H =

∑6
i=1 piwi

V = WS
∑9

j=1 sjwj +WR
∑5

l=1 rlwl
(2)

where pi, sj, rl andwi,wj,wl represent values and weights of each

indicator of pressure (i = 1, 2, · · · , 6), state (j = 1, 2, · · · , 9),

and response (l = 1, 2, · · · , 5), respectively.WS andWR are the

weights of the state and response systems, respectively, which

represent the vulnerability of the students to the pandemic. To

simplify the complexity of the evaluation system, we used the

improved order relation method to determine the weights and

to satisfy the weak consistency of the indicator (23).
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Risk factors can be ranked from the most to the less

important (C1,C2...,Cm) by associating to them a corresponding

system of non-increasing weights (w1* ≥ w2* ≥ ... ≥ wm*)

with
∑m

i=1 w
∗

i = 1. By using Ci to represent the indicators in

the subsystem P, S and R, the weight calculation method of each

indicator was as follows:

① Experts judged the influence importance of a subsystem’s

risk value according to each indicator in the subsystem and

provided the weight order, which was denoted as

w1* ≥ w2* ≥ ... ≥ wm* (3)

② We compared the sorted weight of indicators Ci−1(w
∗

i−1)

and Ci(w
∗

i−1), which were denoted using the following formula:

ri =
w∗

i−1

w∗

i

, i = 2, 3, . . . ,m (4)

For the value of ri, please refer to Table 1 (23).

③ Weight w∗

m and w∗

i were calculated one after the other

as follows:

w∗

m =

(
1+

∑m

i=2

∏m

k=i
rk

)
−1

, w∗

i−1 = w∗

m

∏m

k=i
rk i = 2, · · · ,m.

(5)

Finally, we used the risk matrix in Zhao and Wang (24) to

determine the comprehensive risk level of the epidemic situation

during university resumption, and the evaluation results were

represented using D (dangerous), M (moderate), and L (low).

Table 2 shows the risk matrix of the epidemic situation during

university resumption. Risk level D indicates that students’

return to school is unacceptable, and the school should

immediately stop the return process and make corrections. M

means that it is not expected to happen, and management

decisions are made to prevent the development of risks. L

means it is acceptable, and the risk control measures should be

improved accordingly.

2.3. Case study

We used the university of Baoding city, Hebei Province,

as case study. With permission from the Department of

Education, the school resumed all in-person activities (under

closed management) in February 2022. Since March 14, 2022,

online teaching was promptly adopted, (with teachers teaching

online at home and students choosing quiet places) because of

outbreaks in all of China’s provinces. Data related to the risk

indicator factors were collected as follows. Risk levels issued

by the regional Health Commission were used to measure P1

and P2. The university has performed a survey of returning

students through questionnaire to measure P3, P4, and P5.

We asked that express deliveries station fill out the online

shared form questionnaire to measure P6. We randomly selected

100 students to conduct an epidemic knowledge questionnaire

to collect data related to factors S1 and S8. We asked that

the monitor of each class fills out the online shared form

questionnaire to collect data related to factor S2. We asked

that the head of epidemic control checks the item and fills out

the online shared form questionnaire to collect data related to

factors S3, S6, S7, and S9. We asked that the publicity department

of the school count the number and methods of anti-epidemic

activities and fills in questionnaires to collect data related to

factor S4. Risk level can be determined by the risk assessment

expert group composed of experts in various fields such as

medicine, education and emergency management to collect data

related to factor S5. We collected data related to factor R1 from

the database of the epidemic prevention and control department.

We asked that the head of epidemic control checks the item

and fills out the online shared form questionnaire to collect data

related to factors R2, R3, and R4. We collected data related to

factor R5 from the duty record registration form.

3. Results

According to the case study, the percent of high risk level,

medium risk level and low risk level of students’ residence (P1)

were 6.71, 8.03, and 85.26%, respectively. The regional Health

Commission thought that epidemic risk level of the school’s

location (P2) is low risk level. The ways that students returned

to school (P3) were as follows: 8.6% by car, 64.3% by train (high-

speed rail), 6.8% by taxi, and 20.3% by other means. The size of

the university population (P4) is 1,850. The number of migrants

on and off campus (P5) is 56, and it accounts for 10% of the

total population. The high risk level, medium risk level and

low risk level of express carrier infection (P6) were 1.25, 2.91,

and 95.84%, respectively. The level of students’ knowledge of

the epidemic (S1) is 3.4. The percent of the very strong level,

strong level, general level and weak level of students’ awareness

of risk (S2) were 9.16, 81.67, 5.92, and 3.25%, respectively.

Cleaned up campus health dead spots, disinfected public places,

equipped with disinfectants and hand sanitizer were finished

for the situation of campus environment renovation (S3).

The percent of the propaganda of anti-epidemic culture (S4)

on the school’s official website, official account, Douyin, and

other platforms is 75.68%. The expert group thought that the

personnel control measures (S5) were slightly defective. The

epidemic prevention and control department asked the periodic

nucleic acid testing (S6) is three times a week. The expert group

thought that the distance between the students is ∼1.2m for

campus space management (S7). The satisfaction of teachers

and students with online teaching based on the application
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of digital teaching technology (S8) is 91.28%. The percent of

the student nucleic acid testing system registration is 88.43%

for the application of digital epidemic prevention technology

(S9). The number of the health monitoring days per student

in the data system (R1) is 14 days. The expert group thought

that the university conducted emergency drills for evaluation

and made improvements based on evaluation comments (R2).

The expert group thought that the preparation of emergency

plans (R3) was comparatively perfect. There are two parties

cooperating between universities and other subjects (R4).

Quarantine settings (R5) were adequate quarantine areas and

staff on full-day duty. Detected factors categories or values by

subsystems (Pressure, state and response), with corresponding

risks and weights, are reported in Tables 3–5.

After calculation, H = 1.880 and V = 1.666 were

obtained, indicating that the comprehensive risk of the school’s

resumption was low. Therefore, risk prevention and control

measures needed to be improved accordingly.

4. Discussions

The COVID-19 pandemic highlighted the need to multiply

our efforts in epidemic prevention and control to protect

public health. Since young people (often asymptomatic) are

important spreader of COVID-19 (1), colleges and universities

need to assess the risks involved in resuming school and

make evidence-based decisions. To improve the risk index,

we considered more factors compared to previous studies and

described the influencing mechanisms between them through

the PSR model. Finally, the disaster management perspective

provided a clear picture highlighting the scale of university

response. In effect, while the system vulnerabilities show where

the countermeasures can be applied to be effective, the PSR

model describes their impact.

4.1. E�ective response suggested from
the model

Based on our evaluation results, our study judged the

risks involved in resuming school and put forward specific

countermeasures for reducing the risk levels. This not only

protects public health security but also has some practical

implications for improving the evaluation and rational decision-

making abilities of all parties. Students should apply to return

to school in the system given by the school according to

their requirements. They should fill in the date of their return

and their mode of transportation, such as bus number and

other relevant information, and they can only return after

the school has provided their approval. Students are required

to have health and travel codes, a 14-day health monitoring

information form, and nucleic acid test proof within 48 h to

enter the campus. Students are required to sign the Student

Commitment to Return to School and strictly comply with the

requirements of returning to campus. After entering the campus,

the school will immediately disinfect students’ luggage, bags,

and other items, and conduct nucleic acid tests at designated

locations. The school told students not to walk around the

campus without special reasons and to narrow their scope

of activities as far as possible. Students are not allowed to

return to school without verification. Schools can hold lectures

on epidemic prevention and control knowledge and relevant

laws and regulations regularly, both online and offline. At

the same time, information about epidemic prevention and

control and national prevention and control policies should be

posted on the school’s publicity board and dormitory bulletin

board. Because online teaching is adopted during closed-loop

management, schools should actively take measures. Schools

should strengthen the awareness of students and teachers

regarding digital teaching technology and the use of teaching

software so that they can correctly and skillfully use Dingding,

Rain Classroom, Tencent Conference, and other platforms for

teaching, ensuring the smooth progress of courses. Teachers

should change their management mode from offline to online

in a timely fashion. They should also make full use of the

functions of each lecturing platform, such as check-in, links,

video, and submitting homework, to innovate their teaching

and enhance the effectiveness of their student management

to ensure students continue with an appropriate level of

learning engagement. However, the school should coordinate

and improve the student management network platform system,

collect all students’ personal and facial information, and form

a complete data management database. By doing so, the school

can improve the accuracy of management, reduce the workload,

and achieve high levels of management efficiency. The school

should carry out refined prevention and control work in strict

accordance with the relevant regulations of the national and

provincial CDC, insist on regular nucleic acid testing and

health reports, and strictly isolate migrants. The organization’s

institutional framework should also be optimized to clarify the

responsibilities for epidemic prevention and control. Schools

should ensure basic medical security and that they have adequate

supplies, and implement real-name registration applications.

School leaders and related management personnel should not

only perform their respective duties but also give responsibilities

to student party members. The school should organize students

to be on duty every day in designated places, such as

restaurants and libraries, to supervise students’ daily behaviors

so that disease prevention procedures can be fully implemented

among students.

4.2. Response suggested to the case
study

The results of the case study show that the university’s

comprehensive risk of resuming classes is low risk, and the
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university can allow students to return to classes in terms of

epidemic prevention and control. In terms of catastrophes, the

university and most of its students were at a low risk level.

The size of returning students and delivery of express have little

impact on the epidemic prevention and control of the university.

The transportation of students back to school is the most critical

factor in the disaster. This requires the establishment of rules

for returning students to school. In terms of vulnerability,

campus epidemic prevention equipment, epidemic prevention

culture publicity, health testing, epidemic prevention drills

and quarantine Settings play an active role in prevention and

control. However, risk awareness among students and digital

epidemic prevention are hindering epidemic control. This

requires increasing students’ awareness of risks and using big

data intelligence to enhance epidemic prevention. Other aspects

should also be effectively addressed. In general, the university

should further improve and optimize the transportation mode

of students returning to campus, students’ risk awareness

and digital epidemic prevention to enhance the epidemic

prevention and control effect. Based on the above analysis, the

following measures are proposed. (1) Improve students’ return

to school information statistics. According to the arrival time of

students by plane, train (high-speed railway) and other public

transportation, school buses and special buses can be arranged at

the airport, high-speed railway station and other transportation

stations to reduce the risk of infection on the return trip. (2) The

school vigorously publicized how individuals could contribute

to epidemic prevention and control, provide role models, and

create a cultural atmosphere for epidemic prevention and

control on campus. Schools can conduct publicity through

online platforms, shoot high-quality and positive short videos

on epidemic prevention and control, and regularly release

and update these materials on Douyin, Kuaishou, and other

platforms to expand the scope of publicity and influence.

In this way, students can improve their epidemic and risk

awareness and regulate their behavior in strict accordance

with institutional requirements to deal with the current severe

situation with the correct attitude. (3) Schools should establish

an epidemic prevention command platform and control center,

and formulate a 24-h duty system for epidemic prevention and

control. Additionally, on-duty staff should carry out training and

education to ensure timely responses to all kinds of emergencies.

4.3. Limitations and strengths of the study

Our study had some limitations, which deserve further

study and attention. First, the functions to evaluate the risk

of factors derived from subjective evaluations although they

are based only on the experience of the risk assessment expert

group composed of experts in various fields such as medicine,

education and emergency management. Second, our study only

used one case study while comparisons could help to calibrate

the measure tool. The research system should be expanded

according to the varying situations of different universities and

more indicators should be included in the evaluation process.

However, our model (to the best of authors knowledge) is to date

one of the most complete describing the complex interaction

mechanism of factors that affects the university spread of the

virus. In addition, artificial intelligence technology could be

gradually introduced to find more factors and as support of

factors weights assignment.
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Background: After the initial outbreak in China (December 2019), the World

HealthOrganization declared COVID-19 a pandemic onMarch 11th, 2020. This

paper aims to describe the first 2 years of the pandemic in Mexico.

Design and methods: This is a population-based longitudinal study. We

analyzed data from the national COVID-19 registry to describe the evolution

of the pandemic in terms of the number of confirmed cases, hospitalizations,

deaths and reported symptoms in relation to health policies and circulating

variants. We also carried out logistic regression to investigate the major risk

factors for disease severity.

Results: From March 2020 to March 2022, the coronavirus disease

2019 (COVID-19) pandemic in Mexico underwent four epidemic

waves. Out of 5,702,143 confirmed cases, 680,063 were hospitalized

(11.9%), and 324,436 (5.7%) died. Even if there was no di�erence in

susceptibility by gender, males had a higher risk of death (CFP: 7.3 vs.

4.2%) and hospital admission risk (HP: 14.4 vs. 9.5%). Severity increased

with age. With respect to younger ages (0–17 years), the 60+ years

or older group reached adjusted odds ratios of 9.63 in the case of
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admission and 53.05 (95%CI: 27.94–118.62) in the case of death. The presence

of any comorbidity more than doubled the odds ratio, with hypertension-

diabetes as the riskiest combination. While the wave peaks increased over time,

the odds ratios for developing severe disease (waves 2, 3, and 4 to wave 1)

decreased to 0.15 (95% CI: 0.12–0.18) in the fourth wave.

Conclusion: The health policy promoted by the Mexican government

decreased hospitalizations and deaths, particularly among older adults with

the highest risk of admission and death. Comorbidities augment the risk of

developing severe illness, which is shown to rise by double in the Mexican

population, particularly for those reported with hypertension-diabetes. Factors

such as the decrease in the severity of the SARS-CoV2 variants, changes in

symptomatology, and advances in the management of patients, vaccination,

and treatments influenced the decrease in mortality and hospitalizations.

KEYWORDS

COVID-19, variants, comorbidities, symptoms, logistic-regression, case-fatality-

proportion

Introduction

In the last 2 months of 2019, cases of a novel severe

pneumonia of unknown etiology were initially detected in the

city of Wuhan, China. Using molecular biology techniques

and genomic sequencing, its etiologic agent was characterized

and classified as a new virus in the Betacoronavirus genus of

the Coronaviridae family, phylogenetically closely related to

severe acute respiratory syndrome coronavirus (SARS-CoV)

and Middle East respiratory syndrome coronavirus (MERS-

CoV). This new virus was designated severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) (1), and the associated

disease was named coronavirus disease 2019 (COVID-19). After

the initial outbreak in China and its subsequent epidemiological

spread, the World Health Organization (WHO) declared

COVID-19 a Public Health Emergency of International Concern

on January 30th, 2020, and a pandemic on March 11th, 20201

Before scaling to a global pandemic, the fatality rate in China

ranged between 2 and 3.7% (2), with a greater impact observed

among older adults. This rate pattern was reproduced around

the world, where older adults were the most affected group

(3). Additionally, reports indicated that a set of common

Abbreviations: CCs, Confirmed cases; RT–PCR, Polymerase Chain

Reaction test; CFP, Case fatality Proportion; HP, Hospital Admission

Proportion; AR, Admission Risk; OR, Odd Ratio; SSA, Mexican Federal

Health Ministry; DGE, General Directorate of Epidemiology; COVID-

19, Coronavirus disease 2019; SARS-CoV-2, severe acute respiratory

syndrome coronavirus 2; MERS-CoV, Middle East respiratory syndrome

coronavirus; SISVER, Respiratory Diseases Surveillance System.

1 https://www.who.int/en/news/item/27-04-2020-who-timeline---

covid-19

symptoms associated with COVID-19, including fever, cough,

dyspnea, sputum production, headache, myalgia, and fatigue,

have been reported worldwide (4). Symptoms with a lower

prevalence in the population, including diarrhea, hemoptysis

and difficulty breathing (5), were also reported. Nevertheless,

symptoms have varied, and anosmia and dysgeusia were also

acknowledged as potential clinical markers of the disease.

Different SARS-CoV-2 variants have emerged throughout the

pandemic due to the natural accumulation of mutations in

the viral genome that have circulated worldwide. To monitor

viral evolution, the WHO encourages genomic analysis of virus

samples. Relevant variants associated with a risk of global

impact ranging from possible to alarming are classified as under

monitoring (VUM), of interest (VOI), and of concern (VOC)1.

Physicians treating COVID-19 patients have reported changes

in the symptomatology associated with specific variants detected

in the studied patients. For example, patients with the Omicron

variant, first detected in samples collected in South Africa

on November 14th, 2021, showed symptoms that were more

similar to those of a common cold, mostly without anosmia

or dysgeusia (6). In Mexico, the first SARS-CoV-2-positive

sample was reported on February 27th, 2020, from a patient

returning from a trip to Italy. By March 4th, the number of cases

had risen to 80, strongly suggesting the onset of community

transmission of the virus (7). On March 30th, 2020, the Mexican

government emitted a national epidemiological alert placing

the general population under lockdown and suspending non-

essential activities, allowing only those related to health, security,

governance, services, and the economy. By March 19th, 2022,

there were more than 5.7 million confirmed cases and 324

thousand deaths according to official epidemiological reports

from the Mexican Health Ministry (SSA for its acronym in
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Spanish, Secretaria de Salud) that monitored cases through

the Respiratory Diseases Surveillance System (SISVER) and

the General Directorate of Epidemiology (DGE). The SISVER

database includes clinical and epidemiological information that

allows the tracking of the pandemic2 Data available up to

March 19th, 2022, show that the country has experienced several

epidemiological surges (peaks or epidemiological waves) in the

number of confirmed cases (CCs) of SARS-CoV-2 infection.

During late 2020 and early 2021, Mexico registered a significant

increase in the number of CCs, mainly driven by the B.1.1.519

variant (8), which was classified as a variant under monitoring

(VUM) by the WHO in 2021. The vaccination campaign

began for healthcare personnel and the over-60 population

in the same period. Later, by June 2021, the pandemic was

dominated by the Delta variant of concern (VOC) (9), while

three other vaccines with different levels of effectiveness, as seen

in Supplementary Table 1, were added to the vaccine campaign.

Since December 2021, the Omicron variant and its sub-variants

have been circulating in Mexico. This study aimed to detail

the epidemiological evolution of the COVID-19 pandemic in

Mexico during the first 2 years (March 2020–2022), the health

policies adopted by the national government, and the circulating

virus variants.

Methods

Settings

During the week of March 30th, 2020, the DGE declared

a public health emergency and stated that the country had

entered a community transmission stage. The strategy followed

by theMexican government for the epidemiological surveillance

of COVID-19 is represented in Figure 1. The first step in

the diagnosis began when a patient attended a health care

unit after being in contact with an infected individual or

showing symptoms. After filling out the admission form and

questioning, the health personnel determined whether the

patient should be tested. At the beginning of the pandemic,

the patients were tested for SARS-CoV-2 only in hospitals.

Then, the Mexican government published a standard that makes

COVID-19 tests available to clinical laboratories and drugstores.

Until mid-November, RT–PCR was the only test available, and

antigen testing was authorized by Mexican health authorities.

Six vaccines were used during the vaccine campaign in this

period3, and the main characteristics and dates of approval are

summarized in Supplementary Table 1.

Study population and design

This is a population-based longitudinal study.

2 https://coronavirus.gob.mx/informacion-accesible/

3 https://covid19.trackvaccines.org/country/mexico/

Participants

All suspected COVID-19 cases recorded in the

SISVER database.

Outcomes

Number of suspected cases (SCs), number of confirmed

cases (CCs), number of CCs who died (deaths), number of

CCs who were hospitalized (hospital admissions), case fatality

proportion (CFP), and hospital admission proportion (HP).

Independent variable

Sex (men, women), age (0–17 yrs., 18–29 yrs., 30–39

yrs., 40–49 yrs., 50–59 yrs., 60+ yrs.), patient comorbidities

(hypertension, obesity, diabetes, asthma, heart disease, renal

insufficiency, COPD, immunosuppression, HIV/AIDS), patient

symptoms, virus variant (lineages recorded in GSAID), and

monthly percentages of vaccinated people.

Data source/measurement

The data provided by the SSA (through the DGE) contain

suspected or confirmed cases, which include ambulatory,

hospitalized, and deceased patients with demographic variables,

self-reported comorbidities, and the main symptoms. SCs are

patients seeking medical care as suspects (with symptoms or

after contact with a CC). CCs are individuals with a quantitative

reverse transcription polymerase chain reaction test (RT–PCR)

positive for SARS-CoV-2, positive antigen tests or a positive

result ruled by epidemiologic association (confirmed cases by

epidemiologic association). Confirmed cases by epidemiologic

association are SCs who have been in close contact (living

within a distance of less than 1 meter for 15 continuous or

cumulative minutes) with a laboratory-confirmed case by RT–

PCR or rapid antigen test for SARS-CoV-2, from 2 to 14 days

before the onset of symptoms and that the confirmed case to

which it is associated, is registered on the SISVER platform

or in the Online Notification System for Epidemiological

Surveillance (SINOLAVE). Deaths are the CCs that held a

death certificate. Hospital admissions are the CCs that were

hospitalized. CFP is the fraction of deaths among the CCs.

HP is the fraction of hospital admissions among the CCs.

The operational definitions of outcomes were taken from the

Mexican standard for epidemiological surveillance4 We chose

the age groups following the vaccination strategy implemented

by the Mexican government. The reported comorbidities were

obtained through the suspected case study form completed

during admission or health care visits. Patient symptoms were

recorded by the health care personnel. For each suspected case

4 https://coronavirus.gob.mx/wp-content/uploads/2022/01/2022.01.

12-Lineamiento_VE_ERV_DGE.pdf
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FIGURE 1

Follow-up of suspected COVID-19 cases reported in the SISVER database. The diagram shows suspected cases of viral respiratory disease and

their evolution path. A fraction of the patients with a negative antigen test were tested by RT–PCR.

tested, one or more tests can be conducted, but the data set in

our study reports only the last result. Sequenced SARS-CoV-2

genomes from Mexico were uploaded to the GISAID database5

that had assigned lineage and date of complete sample collection

(n = 47,572). Those sequences represent less than 1% of the

CCs. Monthly percentages of people who received one dose of

a vaccine and those who were fully vaccinated were downloaded

from “Our World in Data”6

Statistical analysis

The period analyzed in this work comprises epidemiological

week 14 of 2020 (beginning on March 29th, 2020) up to

5 https://gisaid.org/hcov19-variants/

6 https://ourworldindata.org/grapher/covid-vaccination-doses-per-

capita?country~MEX

epidemiological week 11 of 2022 (concluding on March 19th,

2022). Data were grouped according to the date of symptom

onset. The distributions of the number of CCs, deaths and

hospital admissions were analyzed by epidemiological period,

sex, and age. Using the last result for every patient tested,

we assessed a lower bound for the weekly number of tests

(Supplementary Figure 2). The epidemic peaks were determined

considering the changes in CC numbers in a three-week moving

average of the weekly growth factor Gn, where n means the nth

week, which is calculated as the difference in natural logarithms

(ln) of new cases accumulated in two subsequent weeks:

Gn = ln (NI (tn)) − ln
(
NI

(
tn−1

))

where NI (tn)are the new cases reported during week nth.

This approach was chosen because, in the early stages of any

epidemic, the number of infected patients grows exponentially

at a given rate of G (10); this implies that the number of

new infections in a time interval of length t is approximately
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expressed by I(t) α exp(Gt). Nevertheless, the weekly growth

factor Gn is also helpful in obtaining information on contagion

dynamics in every step of the pandemic. To characterize

the waves, we performed descriptive analysis using simple

frequencies and percentages of study variables. The CFP and HP

were estimated as the average of 100 subsamples of size 15,000

taken from the original data set. After applying the Shapiro–

Wilks test, we assumed the data’s normality and calculated the

95% CI. To show the dynamics of the SARS-CoV-2 lineages that

circulated in our country, a pile density curve was built. To show

how symptoms have changed over time and how frequently

they were among patients, we carried out cluster analysis. For

the most frequent comorbidities among the Mexican population

(diabetes, hypertension, and obesity), we also explored the

combined effects of each pair of those comorbidities. Finally,

we used multivariate logistic regression models with death

and hospital admission as outcomes and the epidemic wave

(1, 2, 3, 4), sex, age and the presence of comorbidities (yes,

no) as risk factors. All analyses were performed with R v.4.1

statistical software7 We used ggplot2 v.3.3. to build the pile

density curve and the pheatmap package8 with default options

and the complete option to group symptoms throughout the

study period.

Results

At the end of this study (March 19th, 2022), the national

COVID-19 registry included a total of 15,458,158 suspected

cases, out of which 5,702,143 were CCs, while 9,108,393 were

not. The remaining 647,622 had no reported result because they

were not tested or because the result was considered invalid

(for example, due to poor sampling or poor handling of the

test) (Figure 1). The overall fraction of CCs among the SCs

(rc) is equal to 0.36, but it strongly varied over time and

reached its maximum (0.67) in the last weeks of the study

period. Supplementary Figure 1 shows that the peaks of rc and

epidemic waves approximately coincide. The curves of CCs,

hospitalizations and deaths showed four peaks, but while those

of CCs tended to increase, the others tended to decrease. The

vaccination campaign started at the end of 2020, and in 1 year,

63.6% of the population had at least one dose (Figure 2A).

Several virus variants became prevalent, with each time the

latest replacing the previous one at a faster rate (Figure 2B).

Of all CCs, 680,063 were hospitalized (11.9%), and 324,436

(5.7%) died. Even if the gender ratio of women to men was

1.08, males had a higher risk of death (CFP: 7.3 vs. 4.2%)

and hospital admission risk (HP: 14.4 vs. 9.5%). Age was most

strongly associated with the risk of death and admission. For

the 60+ age group, CFP (26.8%) and HP (43.1%) were the

7 https://cran.r-project.org/

8 https://CRAN.R-project.org/package=pheatmap

highest; these values gradually decreased for the rest of the age

groups. Remarkably, the HP curve by age is “J” shaped, with

the 0–17 years group showing a higher HP (4.0%) than the

next group.

Hypertension (12.7%), obesity (10.5%), and diabetes (9.5%)

were the most prevalent comorbidities. Other comorbidities,

such as heart disease, chronic obstructive pulmonary disease

(COPD), renal insufficiency, and different immunosuppressive

conditions, contributed to low percentages (<10%) among

CCs. The percentage of deaths among people with diabetes

was 21.9%, and that among people with hypertension

was 19.8%, which was higher than the global percentage

(14.5%). We also observed that the CFP of less prevalent

comorbidities, such as renal insufficiency (38.1%), COPD

(32.8%), and immunosuppression (21.6%), indicates an

augmented risk of death (Table 1). In Figure 3, cluster

(a) shows symptoms with a prevalence over 50% (cough,

headache, fever, odynophagia, myalgias, and arthralgias);

cluster (b) shows symptoms with a prevalence between 30

and 50% among people with CCs (rhinorrhea, chills, and

sudden onset symptoms); and cluster (c) shows symptoms

with a prevalence lower than 30% among people with CCs

(vomiting, cyanosis, polypnea, abdominal pain, conjunctivitis,

shortness of breath, chest pain, anosmia, dysgeusia, irritability,

and diarrhea).

Determining the waves

We choose the date when the DGE declared the public

health emergency (March 30th, 2020) as the starting day of

the first wave. From that point, the weekly growth rate (Gn)

decreased from values that were over 50% to negative values

(when the trend was inverted and began a brief period of

decline in the number of CCs). After a period with Gn ≈ 0 ,

there was a sudden increase at the beginning of week 40 (mid-

September 2020) that marked the start of the second wave.

The end of this second wave was followed by a five-week-

long decline in CCs (0% > Gn > −12%). Afterward, as of

epidemiological week 21 in 2021 (beginning onMay 23rd, 2021),

the beginning of the third epidemic wave was determined since

Gn changed its sign. After a period of a moderate decrease at

the end of the third wave (0 > Gn > −7%), a substantial

increase was observed (Gn ≈ 100 %) in week 51 of 2021

(beginning on December 19th, 2021), becoming the fourth

epidemiological wave. TheGnvalue showed substantial variation

throughout the examined waves. The relatively high values at the

beginning of the pandemic constituted a transient phenomenon.

Afterward, the maximum observed Gn value during the first

and second epidemic waves was approximately 20%, rising from

more than 30% in W3 to almost 100% during the fourth wave

(Figure 4).

Frontiers in PublicHealth 05 frontiersin.org

54

https://doi.org/10.3389/fpubh.2022.1050673
https://cran.r-project.org/
https://CRAN.R-project.org/package=pheatmap
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Loza et al. 10.3389/fpubh.2022.1050673

FIGURE 2

Confirmed cases, hospitalizations, deaths, vaccinations, and the presence of variants in Mexico. (A) Weekly distribution of CCs (scale on the

right), hospitalizations, and deaths (scale on the left). The stacked bar plot in this figure presents the share of people partly (yellow bar) and fully

vaccinated (navy bar). The percentage scale is displayed in gray on the inner right area of the plot. Bars are placed at the midpoint of the

respective month beginning in January 2021. (B) Distribution of variants in the study period. The main variants that circulated in Mexico in the

four evaluated periods are shown.

Wave 1 (W1)

The first wave started on March 29th, 2020 and ended on

September 26th, 2020. During this period, 1,670,308 patients

were tested at least once, and 809,387 CCs were detected with a

median age of 43.7 years. Among CCs, there were 100,228 deaths

(CFP = 12.3%) and 203,992 hospitalizations (HP = 25.1%)

(Table 2). Approximately 150,000 CCs occurred in each 10-year

age group over 18 and approximately 25,000 among children and

adolescents (0–17 years). Hospitalizations and deaths increased

exponentially with age (Supplementary Figure 3). The most

common symptoms were headache, fever, myalgia, arthralgia,

general malaise, and odynophagia (Figure 3). None of the

circulating variants dominated during this first wave, and the

most common variants included B.1, B.1.1, and B.1.1.222, from

these, the first and the third variants reached its maximum

prevalence (23%) in August-September 2020 (Figure 2B). The

main strategy established by the Mexican government during

this first wave was called the Safe Distance National Campaign,

which began on March 23rd and ended on May 30th, 2020

(Figure 4). After this measure, a remarkable decrease in weekly

growth rate (Gn) from values that were over 50% to values

close to 20% (Gn . 23%) was observed during mid-May. This
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TABLE 1 Characteristics of COVID-19 infections, deaths, and hospitalization.

Disease Populationa CCs Deaths Hospitalizations

n % n % n CFP (%) n HP (%)

Gender

Male 61,473,390 (48.8) 2,734,533 (Median

age 38.4 yrs.)

(48.0) 199,655 (Median

age 63.7 yrs.)

(7.3) 395,354 (Median

age 58.3 yrs.)

(14.5)

Female 64,540,634 (51.2) 2,967,610 (Median

age 38.4 yrs.)

(52.0) 124,781 (Median

age 65.0 yrs.)

(4.2) 284,709 (Median

age 58.8 yrs.)

(9.6)

Age (years)

0–17 38,521,344 (30.6) 369,277 (6.5) 1,262 (0.3) 14,822 (4.0)

18–29 24,729,112 (19.6) 1,395,260 (24.4) 5,418 (0.4) 35,030 (2.5)

30–39 18,441,103 (14.6) 1,295,787 (22.7) 15,767 (1.2) 63,795 (4.9)

40–49 16,445,999 (13.0) 1,106,120 (19.4) 37,089 (3.3) 104,002 (9.4)

50–59 12,733,490 (10.1) 793,746 (13.9) 66,048 (8.3) 142,813 (18.0)

60+ 15,142,976 (12.0) 741,953 (13.0) 198,852 (26.8) 319,601 (43.1)

Comorbidity

Hypertension - - 722,714 (12.7) 143,429 (19.8) 250,145 (34.6)

Diabetes - - 542,746 (9.5) 119,071 (21.9) 212,366 (39.1)

Obesity - - 599,034 (10.5) 67,261 (11.2) 132,498 (22.1)

Asthma - - 109,701 (1.9) 55,57 (5.1) 13,319 (12.1)

Heart disease - - 61,180 (1.1) 16,151 (26.4) 28,249 (46.1)

Renal insufficiency - - 60,275 (1.1) 22,986 (38.14) 37,618 (62.4)

COPD - - 42,917 (0.7) 14,084 (32.82) 23,377 (54.4)

Immuno-suppression - - 33,820 (0.6) 73,18 (21.64) 14,246 (42.1)

HIV/AIDS - - 16,594 (0.39) 1,506 (9.1) 3,297 (19.9)

Other - - 87,820 (1.5) 16,448 (18.7) 31,231 (35.6)

Overall∗ 1,403,710 (24.6) 203,104 (14.47) 380,477 (27.1)

Mexico March 2020-2022. a Population census of 2020. “-” Unknown. “∗” Refers to all comorbidities.

Gn value remained positive and below 23% for 2 months until

reaching its highest point in the 2nd week of July 2020. At this

turning point (Gn = 0), the trend was inverted and began

a brief period of decline in the number of CCs followed by a

(Gn ≈ 0) plateau.

Wave 2 (W2)

The second wave started in mid-September 2020 [when

a new sustained increase in CCs was observed (Figure 2)]

and ended in the 2nd week of April 2021. In this period,

4,302,882 patients were tested, and 1,538,110 CCs were detected

with a median age of 41.9 years. Among CCs, there were

132,638 deaths (CFP = 8.7%) and 705,673 hospitalizations

(HP = 16.4%). With respect to W1, the overall proportions of

deaths and hospitalizations were reduced by one-third (Table 2),

while in all age classes, the number of CCs, hospitalizations

and deaths increased (Supplementary Figure 3). The symptoms

clusters a and b showed a steep decrease in prevalence (Figure 3).

The initial prevalent variant B.1.1.222 was gradually replaced

by the B.1.1.519 variant, and neither has been considered a

VOC. During November 2020, the government authorized the

use of antigen tests as a method to confirm the infection

(Supplementary Figure 2), and a month later, it started the

vaccination campaign. After the peak of January 2021, the

number of weekly CCs decreased drastically. The increase

in CCs was mainly associated with the dissemination of the

B.1.1.519 variant (Figure 2B).

Wave 3 (W3)

The third wave began as of epidemiological week 21 in

2021 (beginning on May 23rd, 2021) and ended on November

6th, 2021. During this period, 4,289,906 patients were tested,

and 1,439,463 CCs were detected with a median age of 34.7

years. Among CCs, there were 61,155 deaths (CFP = 4.2%) and
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FIGURE 3

Symptom distribution. Heatmap and the cluster showing changes in the proportion of each recorded symptom among confirmed patients from

May 2020 to March 2022.

141,067 hospitalizations (HP = 9.8%). With respect to W2, the

proportions of deaths and hospitalizations halved with respect

to the previous wave (Table 2). CCs increased in individuals

under 40 years of age, were stable in the 40–49 year age class

and decreased in people aged 50 years of age and older, while

deaths and hospital admissions declined in all ages and above all

among older adults (Supplementary Figure 3). The data show an

increase in rhinorrhea and odynophagia, such as a new increase

in fever, cough, headache, and a decrease in shortness of breath

and chest pain. Although Alpha and Gamma variants initially

replaced the B.1.1.519 lineage, the Delta variant (appeared in

June 2021) quickly became dominant (87% prevalence in August

2021) and characterized this wave (Figure 2B). The vaccination

campaign progressed with the inclusion of individuals between

18 and 29 years of age. The maximum of this wave was followed

by a decrease in CCs that ended in week 44 of 2021.

Wave 4 (W4)

On December 19th, 2021, the fourth epidemiological wave

started (Figure 4). As of March 19, 2022, 3,035,537 patients were

tested, and 1,722,625 CCs were detected with a median age

of 36.5 years. Among CCs, there were 20,659 deaths (CFP =

1.2%) and 58,569 hospitalizations (HP = 3.4%). With respect

to W3, the proportions of deaths and hospitalizations were

reduced by two-thirds (Table 2), and CCs increased in adult

age classes (18–59 years), while they slightly decreased in

youngest (0–17 years) and older adults (60+ years). Deaths

Frontiers in PublicHealth 08 frontiersin.org

57

https://doi.org/10.3389/fpubh.2022.1050673
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Loza et al. 10.3389/fpubh.2022.1050673

FIGURE 4

Growth Factor. The plot displays in the vertical axis the three-week moving average of the growth factor time series for the period under

study—relevant events such as the progress in vaccination o�cial strategy, variant detection, and public policy health interventions are shown.

The filled points represent each wave, and the empty points represent the interwave periods.

and hospital admissions continued to decline in all age

groups (Supplementary Figure 3). The prevalence of anosmia

and dysgeusia decreased. Infections in this wave were driven

by the Omicron variant BA.1, which replaced the Delta variant

very quickly (Figure 2B). The peak in weekly CCs was reached

between the second and third week of January 2022 and lasted

up to the fourth week of February 2022, when the CCs showed

a steep fall (Gn < −50%) (Figure 4). The vaccination campaign

included the first dose for individuals between 14 and 17 years

and the booster shot for those aged 30 and over.

Multivariable analysis of hospital
admissions and deaths in Mexico during
the 4 waves

Taking as reference the age group between 0 and 17 years,

the group of 60 years or older reached a maximum in both

admission and death risk with adjusted odds ratios of 9.63

(95% CI: 7.22, 13.11) and of 53.05 (95% CI: 27.94, 118.62),

respectively. In both cases, the ORs follow a descending pattern

(Tables 3, 4). Interestingly, for the age group of 18 to 29 years,

and despite not being significant in the cases of deaths, our

results for admissions OR = 0.52 (CI 95%: 0.37, 0.73) and for

deaths OR = 0.95 (CI 95%: 0.46, 2.25) imply a reduction in

the admission and death risk concerning the reference group.

We also observed a progressive reduction in the admission

and death risk as the four waves elapsed, with the fourth wave

displaying a stronger association with the decrease in admission

and death risks. For this wave (W4), the fitted values for ORs

in the admissions and deaths case were equal to 0.15 (95%

CI: 0.13–0.18). Overall, men had higher odds of admissions

(OR = 1.59; 95% CI: 1.44, 1.75) and deaths (OR = 1.78;

95% CI: 1.60, 1.97). Finally, the presence of comorbidities was

associated with an increased admission (OR = 2.40; 95% CI:

2.17, 2.66) and death (OR=2.38; 95% CI: 2.14, 2.66) risk. For

each combination of hypertension, diabetes and obesity, we
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TABLE 3 Hospital admissions risk.

Odd ratio 95% CI P value

Wave

Wave 4 0.15 0.12 to 0.18 <2e-16

Wave 3 0.52 0.45 to 0.60 1.8E-13

Wave 2 0.72 0.64 to 0.81 1.0E-06

Wave 1 1.0 - -

Sex

Men 1.78 1.60 to 1.97 <2e-16

Women 1.0 - -

Age

> 59 yr. 53.05 27.94 to 118.62 <2e-16

50–59 yr. 15.35 8.05 to 34.43 6.6E-11

40–49 yr. 6.69 3.49 to 15.06 1.5E-06

30–39 yr. 2.67 1.37 to 6.08 0.0105

18–29 yr. 0.95 0.46 to 2.26 0.9004

0–17 yr. 1.0 - -

Comorbidities

Yes 2.38 2.14 to 2.66 <2e-16

No 1.0 - -

Multivariable logistic regression results for risk of hospital admission among patients

with coronavirus disease.

observed, throughout the waves, a downward trend in the

percentage of COVID-19 patients with those comorbidities

(Supplementary Figure 5). We can note a similar behavior in

the case of deaths, except for the group of patients with both

diabetes and hypertension, for which we observe an increased

contribution to the total deaths in the fourth wave. We also note

that the proportion of all these comorbidities in the CC increases

by at least a factor of two in the total number of deaths for all

the waves.

Discussion

From the beginning of the pandemic to March 29th,

2022, there were a total of 490,204,256 confirmed cases and

6,173,572 deaths around the world9 The highest number of

infections favored the appearance of new variants with some

evolutionary advantage. The local emergence and dominance

of SARS-CoV-2 variants as well as the health system responses

modeled the pattern of the pandemic in the COVID-19

epidemiological profiles of countries (11). In Mexico, the

first case of COVID-19 was recorded on February 27,

2020. For almost 1 month, the detected infections were

9 https://covid19.who.int/

Frontiers in PublicHealth 10 frontiersin.org

59

https://doi.org/10.3389/fpubh.2022.1050673
https://covid19.who.int/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Loza et al. 10.3389/fpubh.2022.1050673

TABLE 4 Death risk.

Odd ratio 95% CI P value

Wave

Wave 4 0.15 0.13 to 0.18 < 2e-16

Wave 3 0.46 0.40 to 0.53 < 2e-16

Wave 2 0.59 0.52 to 0.66 5.9E-13

Wave 1 1.0 - -

Sex

Men 1.59 1.44 to 1.75 1.9E-14

Women 1.0 - -

Age

>59 yr. 9.63 7.22 to 13.11 < 2e-16

50–59 yr. 3.18 2.37 to 4.35 6.0E-11

40–49 yr. 1.68 1.25 to 2.30 0.001275

30–39 yr. 0.93 0.68 to 1.28 0.630152

18–29 yr. 0.52 0.37 to 0.73 0.000205

0–17 yr. 1.0 - -

Comorbidities

Yes 2.40 2.17 to 2.66 < 2e-16

No 1.0 - -

Multivariable logistic regression results for risk of death among patients with

coronavirus disease.

all imported. The first local transmissions were reported

on March 23rd, 2020, 1 week later, when the government

declared a public health emergency (12); since then, and

until March 2022, four epidemic waves have occurred,

in contrast to Italy, where five waves and VOCs were

reported (11).

Virus spread and evolution

As in the rest of the world, at the onset of the pandemic,

a patchwork of virus variants circulated in Mexico (7).

In the second wave, B.1.1.519 was the dominant variant.

Rodriguez-Maldonado et al. (8) reported a sequence mutation

at position T478K in the S protein (8) that may be involved

in immune evasion and transmission advantage over the

previous circulating variants. At the end of W2, the Alpha

variant appeared first and spread faster than B.1.1.519, followed

by Gamma, which spread even faster in some areas of

the country (13). Finally, the introduction of the Delta

variant occurred during mid-June 2021 (9), which reached

87% prevalence in August 2021 during the third wave peak

(Figure 2B). In the fourth wave and as of December 2021,

the Omicron variant (BA. 1) pushed out the Delta variant

and became the most prevalent in March 2022 (the end

of this analysis), representing over 90% of the sequences

obtained (Figure 2B). As reported in several studies, all the

VOCs showed each time an increased transmissibility with

respect to the previous one (14). Even if the distribution of

CCs over time also depends on the health policies adopted

at the national and local levels, such as on the behavior of

the population, the dynamic of the CCs from W2 to W4

(associated with the prevalent variants) is consistent with the

ever-greater spread capacity developed by the variants that

have followed one another. The evolution of the virus also

altered patients’ manifested symptomatology. At the onset of

the pandemic (4), the most frequent symptoms were “similar

to that of an acute respiratory infection”, such as headache,

fever, myalgia, arthralgia, general malaise, and odynophagia

(Figure 3). Since anosmia and dysgeusia were poorly associated

with other coronaviruses, these symptoms were not considered

for diagnosis in the surveillance of W1, thus hindering early

detection and treatment. The progression of the pandemic and

of cases of the B.1.1.519 variant showed a decrease in symptoms

such as cough and headaches. In line with results from other

studies (15), symptoms such as rhinorrhea and odynophagia

were more prevalent with the Delta variant. Instead, cough,

fever, myalgia, malaise, headache, body ache, and moderate

to severe fatigue were more common with Omicron (W4),

supporting the assumption that this variant infects mainly the

upper respiratory tract (16). Our data also confirmed (Figure 3)

that anosmia was less prevalent in Omicron infections (17)

and indicate that diagnosis is a challenge to physicians as new

variants emerge.

Health policies and health system
response

The maximum value recorded in the first wave for the

growth factor Gn was the lowest for the four waves. This

behavior could be related to the Safe Distance National

Campaign proposed by theMexican government onMarch 23rd,

2020. The campaign included school lockdowns and reduced

economic activities, retaining only essential services. However,

the were a relative limited number of diagnostic tests, thus

reducing the detection of cases. Furthermore, the results of the

logistic regression show that this wave presents, globally, both

the highest admission and death risk. This behavior is confirmed

in a study showing the leading causes of excess mortality

in Mexico during 2020–2021 (18) and suggests that the safe

distance campaign was a useful measure to reduce the number

of CCs but had less impact on the proportion of hospitalized

and deceased patients. W2 showed an increase in CCs compared

with W1 (Figure 2), partly due to the higher number of total

infections and the improved detection of infections. On the one
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hand, fewer restrictions on population mobility increased the

contact rate. On the other hand, the introduction of rapid tests

increased the total number of tests conducted daily and allowed

for more comprehensive monitoring of the pandemic. As shown

in Table 2, W2 is also characterized by the highest number

of deaths and hospital admissions and by the highest ratio of

deaths/admissions (>0.5). Several reasons may have contributed

to this result, such as hospital saturation and high occupancy

of intensive care units in public and private institutions, as

well as an increase in in-house oxygen demand. In W3, Delta

dominance caused an increase in infections among younger

ages that were not yet (0–17 years) or were just (18–29 years)

included in the vaccination campaign. In contrast, infections

among individuals over 50 years of age (the first to complete

the vaccine cycle) decreased. Even if several studies found that

Delta was the most virulent VOC (19), there was a decrease in

hospital admissions and deaths that can be explained by several

factors. One of them is the progress in the vaccination campaign,

which for the first time included individuals between 18 and 59

years. By the end of July 2021, 16 and 20% of the total population

were partially and fully vaccinated, respectively. In this period,

other vaccines were introduced in the vaccine campaign with

differences in effectiveness (Supplementary Table 1); however,

deaths and hospitalizations continued to decline, indicating that

this vaccine mosaic gave reasonable protection in the Mexican

population and decreased the severity of the registered cases.

Nonetheless, another factor that helped to reduce the number

of deaths as the pandemic continued was the acquisition of

knowledge in treating the disease by health professionals. At the

beginning of the pandemic, authorities recommended staying

home until symptoms such as fever or chills and shortness of

breath appeared. Currently, the recommendation is to receive

health care if someone is suspected to be infected with SARS-

CoV-2. This last recommendation leads to a better diagnosis

and early treatment. Additionally, the introduction of antivirals

and steroids, known for preventing progression to respiratory

failure and death (20), were important factors in decreasing the

death rate. It is important to highlight that a better treatment

regimen in light of the molecular evolution of the virus has

altered how the immune system faces the disease (21). In the

fourth wave, the higher exposure of individuals to the new and

more transmissible Omicron variant (due to the resumption

of social activities) may have caused the observed upturn of

CCs in the 18–49 age group. Additionally, in the case of the

50–59 age group, the loss of vaccine effectiveness caused by

a decline in neutralizing antibodies against SARS-CoV-2 (22)

may have been another reason for the increase in CCs, since

these groups received the first two doses between May and

July of 2021. Interestingly, W4 presented a decline in the

frequency of CCs with comorbidities compared with the first

wave (Supplementary Figure 4). This result can be associated

with advances in vaccination and changes in the severity of

the illness.

Fragile population

Worldwide reports have shown that while both sexes show

the same susceptibility to COVID-19 infection, males belong

to the population most vulnerable to COVID-19. Furthermore,

aging and underlying comorbidities represent two serious risk

factors for developing severe disease (23, 24). Consistent with

those findings, in Mexico, while there was no difference in the

likelihood of becoming infected between sexes (Table 1), males

had higher odds than females of being hospitalized and dying

(Tables 3, 4), and patients older than 50 years showed the highest

odds of being hospitalized or dying compared to younger people

(0–29 years). The presence of comorbidities also represented an

important risk factor for the development of severe infection,

increasing the odds of hospitalization and death by almost

2.5 times (Tables 3, 4). The highest risks of hospitalizations

and deaths observed, especially in the first and second waves,

could be related to the high prevalence of obesity, diabetes,

and hypertension in all age groups of the Mexican population

(25). In 2016, Mexico declared an obesity health emergency,

where 76.0% of adults were overweight and obese10 In 2020,

the Health and Nutrition National Survey (ENSANUT as its

acronym in Spanish) reported a diabetes prevalence of 15.7%

and a prevalence of hypertension of 30.2% among people over

20 years of age11 The combination of hypertension and diabetes

strongly compromises the prognosis of COVID-19 patients.

These conditions combined with aging represented the higher

risk of death among those included in our study.

Limitations and strengths of the study

Especially in the first wave, the data suffer from bias

due to undetected patients. However, the introduction of

rapid testing allowed more complete monitoring of the

pandemic. Nevertheless, the data are a highly reliable and

complete source of information on the health strategy

followed by the Mexican government. The experience of

the first 2 years of the pandemic could help to define

health policies for the follow-up of future epidemics and

pandemics. It would be advisable to include the establishment

of active contact system tracing in the national pandemic

plan and defining a minimum threshold for the number

of intensive care units at the regional level based on the

population age, health and density. The information delivered

by these data and their analysis could provide the general

population with educational tools and access to health care

services that improve their quality of life and allow them

10 https://www.gob.mx/salud/prensa/emite-la-secretaria-de-salud-

emergencia-epidemiologica-por-diabetes-mellitus-y-obesidad

11 https://ensanut.insp.mx
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to face this and subsequent epidemics as a healthy and

informed population.
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Introduction: Evaluating the potential e�ects of non-pharmaceutical

interventions on COVID-19 dynamics is challenging and controversially discussed

in the literature. The reasons are manifold, and some of them are as follows. First,

interventions are strongly correlated, making a specific contribution di�cult to

disentangle; second, time trends (including SARS-CoV-2 variants, vaccination

coverage and seasonality) influence the potential e�ects; third, interventions

influence the di�erent populations and dynamics with a time delay.

Methods: In this article, we apply a distributed lag linear model on COVID-19 data

from Germany from January 2020 to June 2022 to study intensity and lag time

e�ects on the number of hospital patients and the number of prevalent intensive

care patients diagnosed with polymerase chain reaction tests. We further discuss

how the findings depend on the complexity of accounting for the seasonal trends.

Results and discussion: Our findings show that the first reducing e�ect of non-

pharmaceutical interventions on the number of prevalent intensive care patients

before vaccination can be expected not before a time lag of 5 days; themain e�ect

is after a time lag of 10–15 days. In general, we denote that the number of hospital

and prevalent intensive care patients decrease with an increase in the overall non-

pharmaceutical interventions intensity with a time lag of 9 and 10 days. Finally, we

emphasize a clear interpretation of the findings noting that a causal conclusion is

challenging due to the lack of a suitable experimental study design.

KEYWORDS

lag-time e�ects, non-pharmaceutical interventions, distributed lag linear model, COVID-

19 dynamics, Germany

Introduction

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) (1), entered the world unexpectedly in 2019,

dramatically changing human life (2). Infection occurs through respiratory droplets and

contact routes during the incubation period. Outbreaks of the disease first appeared in

Wuhan, Hubei Province, China (3), then spread to the United States, Europe, and Asia,

reaching all continents. Since the World Health Organization (WHO) declared the disease a

pandemic on March 11, 2020 (4), as of June 27, 2022, there have been more than 547 million

confirmed cases worldwide and more than 6 million reported deaths (5). However, many
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confirmed cases required hospitalization for several weeks while

others require Intensive Care Unit (ICU) treatment (6). Due to a

limited number of hospital beds, mainly ICU beds, many countries

have adopted early control measures to prevent viral transmission

and to avoid overloading the healthcare system (7, 8). Germany,

the largest economic producer in Europe, has also inevitably

experienced this pandemic. The first confirmed COVID-19 case

in Germany was reported in late January 2020 following contact

with an infected colleague from China (9). Afterwards, as of April

17, 2020, the Robert Koch-Institute (RKI) counts over 130,000

confirmed infections and about 4,000 deaths in Germany (10). To

anticipate the massive flow of COVID-19, the federal government

introduces public closures by closing public spaces such as schools,

universities, and restaurants. Additional measures such as the

national curfew ban and restrictions on people gatherings were also

applied. In principle, people were advised to stay home as long as

possible and leave home only for basic needs (11).

Several mathematical and statistical approaches have been

developed to investigate the effectiveness of NPIs. Among these

studies, Brauner et al. (12) applied a semi-mechanistic hierarchical

Bayesian model to estimate the impact of NPIs on the time

reproduction numbers in 41 countries during the first wave of

the pandemic. They found that closing all educational institutions,

limiting gatherings to 10 people or less, and closing face-to-

face businesses reduced transmission considerably. The additional

effect of stay-at-home orders was comparatively small. Nader

et al. (13) used a non-parametric machine learning model to

assess the effects of NPIs in relation to how long they have

been in place and the effectiveness of NPIs in relation to their

implementation date on the daily growth rate (relative increase

in cumulative confirmed COVID-19 cases from 1 day to the

next). They found that the closure and regulation of schools was

the most important NPI, associated with a pronounced effect

about 10 days after implementation. Sharma et al. (14) considered

a semi-mechanistic hierarchical Bayesian model to examine the

effect estimates for individual NPI during Europe’s second wave

of COVID-19 on daily cases and deaths. They concluded that

business closures, educational institution closures, and gathering

bans reduced transmission but less than they did during the first

wave. Ge et al. (15) used a Bayesian inference model to assess

the changing effect of NPIs and vaccination on reducing COVID-

19 transmission based on the time reproduction numbers. Their

results demonstrate that NPIs were complementary to vaccination

in an effort to reduce COVID-19 transmission, and the relaxation

of NPIs might depend on vaccination rates, control targets, and

vaccine effectiveness concerning extant and emerging variants.

All the studies cited above have shown the effectiveness of

NPIs. However, they did not consider the delay effects related to

the NPIs implementation. A health effect is frequently associated

with protracted exposures of varying intensity sustained in the

past (16). The effects of exposing a particular event may not

always be limited to the time of its occurrence and may appear

with lag times (17). Policy lags are generally understood as

unavoidable time delays. While there may exist several possible

reasons for a lag, there is no general agreement on its length (18).

This can be explained by the high sensitivity of the lagged and

baseline exposure terms and also the implication of time-varying

confounding variables in the models (19). Similar time lags have

been noticed during the COVID-19 outbreak when various non-

pharmaceutical interventions (NPIs) were implemented. Different

policies may have different levels of effectiveness on disease spread,

and the response to these policies is still unclear (20).

The main complexity of modeling and interpreting such

phenomena lies in the additional temporal dimension needed

to express the association, as the risk depends on both the

intensity and timing of past exposures. This type of dependency

is defined here as NPIs intensity-lag-response (Hospitalized cases

and ICU cases) association. Statistical regression models are used

to determine the relationship between predictors and outcomes

and then estimate their effects. The Distributed Lag Model (DLM)

models the exposure–response relationship and then introduces

a series of consequences caused by this exposure to events. In

addition, the method is used as well to determine the distribution of

the subsequent effects after the occurrence of events (in lag times).

This method has been developed for time series data and used in

studies of various designs and data structures, cohort, case-control,

or longitudinal studies (17). Distributed Lag Models have been

successfully applied in epidemiological research (21–24).

Changes in the coronavirus infection dynamic in Germany led

to the implementation of a policy like NPIs. The effect of NPIs

may not be immediate since NPIs need some time to affect the

pandemic situation. Then, it is reasonable to use the time lag

concept in the analysis of COVID-19 research. This work aims to

study intensity and lag time effects on the numbers of COVID-

19 hospital and prevalent intensive care patients diagnosed with

polymerase chain reaction tests in Germany from 10 January 2020

to June 2022. In this study, we applied a DLM to the number

of COVID-19 hospital patients (Hospitalized cases) in Germany

and the number of COVID-19 prevalent intensive care patients

(ICU cases), considering all non-pharmaceutical interventions

implemented in Germany and estimated their delayed effects. The

results provide policymakers with essential information to make

more informed decisions, considering the effect of NPIs, and their

lag time in managing possible future pandemics.

Methods

Data description

Real data about the number of hospital patients (Hospitalized

cases), prevalent intensive care patients (ICU cases), overall

non-pharmaceutical intervention intensity (NPIs) for each of

the 16 German states, the proportion of people who received

at least two doses (V2) in Germany from January 2020 to

June 2022, were extracted from the corona Daten platform site

(https://www.corona-datenplattform.de). The first two variables

(i.e., Hospitalized and ICU cases) were summed over states to

obtain German countrywide data for our analysis.

The overall intensity of non-pharmaceutical interventions for

Germany was computed using

NPIst =

16∑

f=1

ℑfNPIf ,t (1)
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where ℑf is state f relative population share in Germany, and

NPIf ,t is the intensity of all NPIs implemented in the state f at time

t. The whole German data was split into two sets to obtain a dataset

before vaccination (from January 2020 to December 2020 data), a

dataset with vaccination (from December 2020 to June 2022 data),

and the entire dataset (from January 2020 to June 2022).

Distributed lag generalized linear model
based regression

To assess the lag time effects of non-pharmaceutical

interventions on COVID-19 dynamics, we used a DLM on

each of the three datasets, considering the daily number of

hospital patients (Hospitalized cases) and the number of prevalent

intensive care patients (ICU cases) as response variables and

overall NPIs intensity as exposure (predictor). Only time (variable

date) is considered as a confounding variable for the data before

vaccination. In addition to the time, the proportion of people who

received at least two doses (V2) was considered a confounding

variable for the data with vaccination and the entire data. The

analyses were conducted within the statistical environment R

version 4.0.3 (25) using the package dlnm (26).

Mathematically, a general model for time series data of

outcomes yt at time t can be written as:

g (µt) = α +

J∑

j=1

sj

(
xtj;β j

)
+

K∑

k=1

φkutk, (2)

where µt = E
(
yt

)
is the expected response for the day t, g is a

monotonic link function (here g = log), and yt (t = 1, . . . n) arises

from a time series which is assumed to have an exponential family

distribution (27). The function sj is a smoother of the relationships

between the variables xj and the linear predictor, expressed by

the parameter βj. Lastly, the uk variables include other predictors

with effects specified by the related coefficients φk. In this paper,

we considered a set of variables x, which is overall NPIs intensity

(NPIs) and two sets of variables u1 and u2, which are, respectively,

date (t) and the proportion of people who received at least two

doses (V2). We did a transformation to use nonlinear influences

of the variable date (t) and captured its effect changing over time.

This transformation is described in matrix notation as

f (t,α) = ztα

where zt is the tth row of the matrix Z. The transformation

on a variable date (time) consists of using ns(t, df ), where df

corresponds to the degree of freedom and ns, the natural spline

function. The parameters for the natural spline are implicitly

captured in the ns function of the R package splines. The matrix Z is

generated automatically, and the parameters for the natural spline

are implicitly captured by the function ns.

For the models considered, we assumed the influence of NPIs

and the proportion of people who received at least two doses

(V2) to be linear, with no basis transformation. We assumed

this since, from a preliminary investigation based on the Akaike

Information Criterion (AIC), the linear model outperforms the

non-linear model. The general notation for exposure-response

linear relationships could be

s(xt;β) =

L∑

ℓ=0

βℓxt−ℓ (3)

where ℓ ∈ [0, L] is the lag duration, L (here L = 30) is the

lag period over which exposure to x is assumed to affect the count

change at time t, xt−ℓ is exposure intensity at time t−ℓ, and βℓ is the

contribution from a unit increase in exposure x occurring at time

t − ℓ in the past to a given count change measured at time t. For

a more detailed description of the general theory on time-lagged

models, we refer the reader to Gasparrini (26). The models are

specified as indicated in Table 1 for the three datasets, along with

the maximum number of degrees of freedom (df max) considered.

To implement delayed effects, the variables NPIs, V2, and date

(t) are used to predict the two response variables (Hospitalized

cases, ICU cases). The analysis is based on the models in Table 1,

fitted through a generalized linear model with the Quasi-Poisson

family, with natural splines of time with different degrees of

freedom (df = 1 to df max) to describe long-time trends. A

comparison was made between models with varying numbers of

degrees of freedom using modified Akaike information criterion

for models with overdispersed responses fitted through quasi-

likelihood (28), given by:

QAIC = −2L( ˆθ)+ 2φ̂k, (4)

where k is the number of parameters, whereas L is the log-

likelihood of the fitted model with parameters ˆθ and φ̂, the

estimated overdispersion parameter. Minimizing this criterion has

led to the best model.

Sensitivity analyses were conducted to assess the impact of

choices regarding the number of degrees of freedom (df ) of

the models. Specifically, we examine changes in the estimated

overall effect associated with varying df for specifying the date or

seasonal trend.

Results

Results for simple DLMs, assuming a linear relationship

between response variables (number of hospital patients

and number of prevalent intensive care patients) and all

non-pharmaceutical interventions implemented in Germany

(data before vaccination), and the proportion of people who

received at least two doses (data with vaccination and entire

Germany data) with a maximum lag equal to 30 days are

summarized as follows. The Quasi AIC values for the number

of degrees of freedom, df = 1 to df max (Table 1), are shown

in Supplementary Figure S6. When used to compare different

modeling choices with varying numbers of degrees of freedom,

the Quasi AIC led to a parsimonious model, with 7 df for the

data before vaccination (Supplementary Figures S7A, D), 15

df for the data with vaccination (Supplementary Figures S7B,

E), 23 df for the whole German COVID-19 Hospitalized cases

(Supplementary Figure S7C), and 19 df for whole German

COVID-19 ICU cases (Supplementary Figure S7F) to describe the

overall effect of exposures-lag on response variables.
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TABLE 1 Summary of model features. df max is the maximum degree of freedom considered.

Dataset Model df max

Data before vaccination g (µt) = α + ns(t, df )+
∑L

ℓ=0 βℓNPIst−ℓ 10

Data with vaccination
g (µt) = α + ns(t, df )+

∑L
ℓ=0 β1ℓNPIst−ℓ +

∑L
ℓ=0 β2ℓV2t−ℓ

15

Entire data 25

An overall graph of the effect of NPIs on the number of hospital

patients (Hospitalized cases) and the number of prevalent intensive

care patients (ICU cases) is provided in Figure 1, showing heat

maps of the relative count change (RCC) of response variable

along overall NPIs intensity and lags. Overall, the figure indicates

that NPIs have an effect on the response variables before the

vaccination program (Figures 1A, D) than on the response variables

in the other two datasets (data with vaccination and the entire

Germany data). The effect of NPIs is somewhat more immediate

on Hospitalized cases before vaccination than on ICU cases. From

40% to 60% overall NPIs intensity, the mean relative count change

of hospitalization before vaccination decreased from 1 to 0.85. In

addition, a delay of 5 days was observed in the effect of overall NPIs

on the ICU cases before vaccination, with a relative count change

of 0.85 from 45% overall NPIs intensity.

Concerning data with vaccination and the entire German data,

the lag time effects of non-pharmaceutical interventions on the

number of hospital patients (Hospitalized cases) are immediate.

However, the relative count change in hospitalization (data with

vaccination) is high between lags 9 and 10 days from 55% to 60%

overall NPIs intensity in Germany (see Figure 1B). The maximum

effect of all non-pharmaceutical interventions implemented in

Germany on Hospitalized and ICU cases during the vaccination

programme is reached approximately at lag 25–30 days at 45–60%

overall NPIs intensity.

Figure 2 presents the results from the sensitivity analyses,

showing the overall effect of all NPIs implemented in Germany,

summing up the contributions for the 30 days of lag considered

in the analysis. There was an overall decrease in the number of

patients in hospital and intensive care units with increasing overall

NPIs intensity. This relative count change (RCC) was canceled out

for the data before vaccination and reached its minimum value

of around 0.3 for the data with vaccination and the entire data at

55–60% overall NPIs intensity.

Discussions

This study used a Distributed Lag Linear Model (DLM) to

evaluate the lag time effects of non-pharmaceutical interventions

on the number of COVID-19 hospital patients and the number of

prevalent COVID-19 intensive care patients. Based on the results

of this analysis, it is important to investigate both the lag and

magnitude of NPIs impact jointly (17).

An epidemiological discussion of DLM choice emphasized the

need to balance capturing detail and allow for interpretation (23).

Despite its conceptual simplicity, DLM specifications allow for a

wide range of models, including simple previously used models and

more complex variants. There is a challenge in choosing between

alternatives when there is an abundance of choices (number

of degrees of freedom, maximum lag). We used quasi-Akaike

information criteria to guide the selection of the number of degrees

of freedom (df ) of the variable time. Due to the lack of consensus

about what constitutes an optimal model, sensitivity analyses are

particularly important for assessing how key conclusions depend

on the model’s number of degrees of freedom.

The results of our study revealed that NPIs have a positive

effect on the number of hospital patients (Hospitalized cases) and

of prevalent intensive care patients (ICU cases) for all the datasets

(data before vaccination, data with vaccination or the entire

COVID-19 German data) since the overall non-pharmaceutical

intervention decrease the number of incident hospital patients

(Hospitalized cases) and the number of prevalent intensive care

patients (ICU cases). These results are similar to a previous study

which showed that some interventions are effective in reducing the

advent of the pandemic (29). We found that the first reducing effect

of NPIs on the number of prevalent intensive care patients before

vaccination cannot be expected before a time lag of 5 days. As 5 days

seems to be a short delay effect, it might be possible that already the

announcement of planned NPI introductions from policy makers

have an impact on the social behavior such as contact activities and

hence on the pandemic dynamics. However, our results also suggest

that the main effect is after a time lag of 10–15 days.

However, the results contrast with a previous study which

evaluated NPIs effects on the COVID-19 pandemic in Germany

and three other European countries using the Granger Causality

test (30). In addition, previous studies have focussed on the effect

of NPIs on infectious cases and death (11, 14), recovered cases

(11), daily growth rate (13), or time-varying reproduction number

(12, 15) contrary to this study. The contradiction could be due

to the fact that the previous study took into account the effect of

NPIs on the number of infections in the second wave, whereas we

evaluated the way how NPIs are associated with a decrease in the

number of patients in hospitals and intensive care units diagnosed

with PCR in several waves. We note that the number of infections

in the general population usually depends on several non-infection-

related factors, such as testing behavior and the day of the week and

is therefore often subject to reporting bias and delays. Thus, this

outcome is less specific and prone to higher statistical noise than the

number of patients in hospital and intensive care units. In addition

to the DLM analyses, the Granger causality test methodology has

been applied to our data set. They resulted in a similar conclusion,

even though all-time series have to be transformed by the second

differences to reach stationarity and decomposed with respect to

time trends and seasonality (data not shown).

The advantage of applying DLM is that it is flexible and

provides a comprehensive scheme for interpreting outcomes from

exposure-lag-response associations contrary to other statistical
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FIGURE 1

2-D plot of relative count change (RCC) along NPIs and lags on the number of hospital patients (Hospitalized cases) and the number of prevalent

intensive care patients (ICU cases). (A) RCC of Hospitalization (df = 7), (B) RCC of Hospitalization, df = 15, (C) RCC of Hospitalization, df = 23, (D)

RCC of ICU cases (df = 7), (E) RCC of ICU cases, df = 15, and (F) RCC of ICU cases, df = 19.

approaches (16). The main limitation of our analysis is that

our results cannot—strictly speaking—be interpreted as causal

effects; they are associations. To increase the ability to infer

causality, pragmatic study designs such as the SMART (Sequential,

Multiple-Assignment Randomized Trial), stepped wedge, and

preference designs could have been an option (31). An interesting
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FIGURE 2

Overall lag e�ect of NPIs intensity on the number of incident hospital patients (Hospitalized cases) and the number of prevalent intensive care

patients (ICU cases) with 95% confidence intervals. (A) Overall e�ect, 30 days lag, df = 7, (B) overall e�ect, 30 days lag, df = 15, (C) overall e�ect, 30

days lag, df = 23, (D) overall e�ect, 30 days lag, df = 7, (E) overall e�ect, 30 days lag, df = 15 and (F) overall e�ect, 30 days lag, df = 19.

design and analysis is also the trial emulation approach (32),

where cluster-randomized trials are mimicked. However, in

Germany, the introduction, timing, and intensity of NPIs

were quite homogeneously distributed across Germany (see

Supplementary material); hence, the above-mentioned designs

were hardly feasible in practice.

Obtaining “zero Hospitalized or ICU COVID-19 cases” may

not be achievable, but reducing the number to a level that can be

managed by the health system might be a feasible goal. This paper

considered a bundle or the overall intensity of NPIs implemented in

Germany; an isolation of specific NPIs is hardly feasible due to high

correlations. However, a society’s ability to fight a pandemic can be

influenced by various factors, including how well the public health

care systemworks, how the governmentmanages risk, transparency

of information flow, how it is driven by politics, corporate and

citizen compliance, etc. Consequently, further studies are needed

to investigate what determines whether or not the COVID-19

pandemic is controlled.

An application to the COVID-19 data from Germany indicates

that the Distributed Lag Model can be used to assess the
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effect of control measures dictated by health policies with

changes in the transmission dynamics of the studied disease.

In addition, using them can assist policymakers in planning

appropriate and timely strategies and allocating resources (20).

Our results can inform political decision makers regarding

how long NPIs need to be implemented to take effect on

controlling the COVID-19 dynamics in hospitals. However,

we focused only on this aspect. Beyond that, NPIs create

tremendous economic and social collateral damages of multifaceted

dimensions such as psychological long-term effects on mental

health of children due to long school closures and contact

distancing. Thus, political decision makers need to trade off

NPIs effects on hospitals against the collateral damages of NPIs

in the society.
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Comprehensive surveillance systems are the key to provide accurate data

for e�ective modeling. Traditional symptom-based case surveillance has been

joined with recent genomic, serologic, and environment surveillance to provide

more integrated disease surveillance systems. A major gap in comprehensive

disease surveillance is to accurately monitor potential population behavioral

changes in real-time. Population-wide behaviors such as compliance with various

interventions and vaccination acceptance significantly influence and drive the

overall epidemic dynamics in the society. Original infoveillance utilizes online

query data (e.g., Google and Wikipedia search of a specific content topic such

as an epidemic) and later focuses on large volumes of online discourse data

about the from social media platforms and further augments epidemic modeling.

It mainly uses number of posts to approximate public awareness of the disease,

and further compares with observed epidemic dynamics for better projection. The

current COVID-19 pandemic shows that there is an urgency to further harness

the rich, detailed content and sentiment information, which can provide more

accurate and granular information on public awareness and perceptions toward

multiple aspects of the disease, especially various interventions. In this perspective

paper, we describe a novel conceptual analytical framework of content and

sentiment infoveillance (CSI) and integration with epidemic modeling. This CSI

framework includes data retrieval and pre-processing; information extraction

via natural language processing to identify and quantify detailed time, location,

content, and sentiment information; and integrating infoveillance with common

epidemic modeling techniques of both mechanistic and data-driven methods.

CSI complements and significantly enhances current epidemic models for more

informed decision by integrating behavioral aspects from detailed, instantaneous

infoveillance from massive social media data.
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infoveillance, modeling, behavior, parameterization, mechanism, data-driven (DD)
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1. Introduction

Mathematical models, such as the mechanistic susceptible

exposed infectious recovered (SEIR) type modeling paradigm

and alternative data-driven methods, have made investigations

on epidemics across the globe (1). Epidemic modeling can

systematically characterize epidemiological processes (e.g.,

transmission, immunization, hospitalization, recovery, etc.)

and provide key metrics for epidemic projection, intervention,

and resource optimization. In order to achieve these goals,

a fundamental layer in epidemic modeling is to ensure

comprehensive, accurate, and effective data collection through

surveillance systems. The grand challenge of current epidemic

modeling is to effectively identify, integrate, and analyze

heterogeneous, cross-scale, and multimodal data from pathogen

biology, human cognition and behavior, to social determinants of

health (2).

Currently, many surveillance systems, such as the U.S.

National Notifiable Diseases Surveillance System (NNDSS), have

been developed from reported symptomatic cases. Additional

surveillance systems, including genomic, serologic, and

environmental surveillance systems in the CDC COVID-19

data dashboard, have been developed across national, state, and

local levels, along with many other regions in the world (3, 4).

A key driver of epidemic dynamics is host cognition and

behavior, such as adherence to interventions and vaccine

acceptance. However, effective monitoring of behavior

continuously on a large scale is challenging, as is quantifying

its relevance to the observed health outcomes in an epidemic.

Traditional participatory survey-based surveillance cannot

provide comprehensive and continuous characterization of public

perceptions toward the epidemic and various interventions,

especially vaccination. Accurate characterization of public

perceptions at different locations during different phases of an

epidemic is critical to our efforts in designing and evaluating

targeted interventions. To address this major issue, infoveillance,

which observes, retrieves, and analyzes public online discourse

especially on social media, has been developed since the 2000’s

(5–8). Infoveillance is implemented to monitor many diseases,

including seasonal and pandemic influenza, Ebola, and COVID-19

epidemics (9–11). Traditional infoveillance approaches analyze

online discourse dynamics of health issues by counting relevant

posts and/or search queries. For instance, using COVID-19 specific

terms, daily number or percentage of COVID-19-related posts and

search queries can be counted. The discourse dynamics, expressed

as the time series of the absolute number or relative percentage of

the disease, is then compared with important health outcomes such

as reported case, vaccination uptake, hospitalization, and death.

Abbreviations: ABM, Agent-Based Model; API, Application Process Interface;

BERT, Bidirectional Encoder Representations from Transformers; LDA, Latent

Dirichlet Allocation; LUT, Look Up Table; NNDSS, National Notifiable

Diseases Surveillance System; NLP, Natural Language Processing;

RNN, Recurrent Neural Network; SEIR, Susceptible, Exposed, Infected,

Recovered; SVM, Support Vector Machine; TF-IDF, Term Frequency-Inverse

Document Frequency.

Studies have shown that effective infoveillance can help predict

early surges of an epidemic (9–11).

Nevertheless, we argue that traditional infoveillance—

albeit offering advances in surveillance of various disease

outbreaks, timing, and locations– lacks detailed extraction and

characterization of dynamic public awareness, perceptions and

sentiments toward interventions, which reflect behavioral changes

and drive epidemic dynamics. Traditional infoveillance focuses on

time series of posting counts or queries of the health issue, and

ignores the large amount and rich information embedded in the

actual contents of these discourses. With more recent advances

in natural language processing (NLP), it is possible to further

extract important information, such as contents and sentiments

from social media posts (12–17, 20, 21). In this perspective

paper, we introduce a conceptual framework of comprehensive

content and sentiment infoveillance (CSI), including data mining

and knowledge discovery of content and sentiment from social

media discussions on epidemics (especially toward important

interventions such as vaccination) with spatio-temporal variations,

and integration with existing mechanistic and data-driven

epidemic modeling techniques.

2. Content and sentiment infoveillance
framework for epidemic modeling

2.1. Data retrieval, sampling, and
pre-processing

Online discourse data are retrieved and sampled via application

process interfaces (APIs). Many online platforms, such as Google,

Wikipedia, Twitter, Instagram, Facebook, TikTok, have a public

API. For instance, COVID-19 Twitter discussion will be acquired

via the Twitter API. Specific keywords and key phrases related to

COVID-19 will be predetermined to the API query, along with

other specifications such as frequency and rate of sampling. Because

of the sheer volume of COVID-19 discussions, usually a daily

random 1% sampling will pull millions tweets per day, adequate

for further CSI. Raw data (usually in JSON file format) from API

query consist of two components: post body, including mainly the

textual data of the post; and post metadata, including posting time,

location, ID information (ID, display name, verification status,

number of friends, number of followers, etc.), and post virality

measures (e.g., numbers of shares, replies, and likes). Raw JSON

data are transformed into a dataframe for further mining and

analyses. Each row in the dataframe corresponds to a specific tweet

post, with both post body and metadata across multiple columns

(Figure 1).

2.2. Data mining and natural language
processing

Once raw data are retrieved and pre-processed, the major task

is to transform the unstructured textual data into numeric format

for effective analyses. We propose a standardized four dimensions
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FIGURE 1

Social media data retrieval, sampling, and pre-processing. using Twitter as an example for online social platforms.

FIGURE 2

Social media data mining, NLP, and integration with epidemic modeling.

of information to be extracted from each post: (1) time, (2) location,

(3) content, and (4) sentiment.

The first two dimensions, time and location will be derived

from metadata. However, not all social media users allow sharing

their locations, nor would location information always exist

in a post. A post can be a general discussion of the health

issue. Location data may be determined via natural language

processing (NLP) of the post. A feasible solution is to develop

a rule-based lookup table (LUT) with pre-defined location term

database. Depending on the nature and scope of a specific study,

the LUT may contain state-level (i.e., names, abbreviations, or

other synonyms/indicators of the 51 states, DC, and oversea

territories), or county-level (e.g., Mecklenburg County where

Charlotte is located) terms. Then, a post is compared with

the LUT to determine if there is a match of location terms.

A large sample size during the initial API query will ensure

adequate spatial coverage. Alternatively, if specific locations are

of interest, these locations can be pre-specified in the initial

API query (e.g., adding specific location keywords in the query)

for sampling.

A third and perhaps the most important dimension is the

content (also known as topic or narrative) of the post. A

feasible approach is to use LUT with predefined terms to identify

specific contents, similar to spatial information identification.

For example, “vaccine,” “vaccination,” “inoculation, “shot,” “jab,”

“immunization,” “herd immunity” are all be relevant terms of

vaccination contents. However, unlike spatial information which

can be exhaustively captured by LUT, content information has

much more variability and may include terms that are missed

in the predetermined LUT. On the other hand, certain terms

can have a low specificity. For instance, although “shot” is often

interchangeable with “vaccination,” a post mentioning “shot” may

not be related to vaccination at all, causing a “false positive” sample

of vaccination-related content.

Recent advances in NLP are able to accurately and

comprehensively identify content information from textual

data (e.g., a social media post, a sentence, a document, and a

corpus with multiple documents). Latent Dirichlet allocation

(LDA) is a probabilistic-based technique that generates clusters

of distributions of words to identify latent topics from input
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texts. The words in different topics are assumed to have Dirichlet

distributions, hence the term LDA. Performance metrics of LDA

include perplexity and topic coherence score, which evaluate model

predictability and quality of topics, respectively. Outcomes of LDA

are the most relevant words in each identified topic. Note that LDA

is an unsupervised clustering algorithm, i.e., identified topics come

unlabeled from LDA. Therefore, final interpretation and labeling

of each topic requires domain knowledge from researchers.

Bidirectional encoder representations from transformers

(BERT) is another emerging and powerful NLP technique for topic

modeling. The textual data of posts are fed into BERT to generate

different levels of embeddings based on the contexts of the word.

BERT is constructed from deep neural networks (DNN) with

millions of hyperparameters and pre-trained by massive corpus

from online text sources including Wikipedia. BERT is able to

learn high-level representations of textual data, and cluster reduced

embeddings more effectively than probabilistic-based LDA. The

clusters are then processed via term frequency-inverse document

frequency (TF-IDF) to further create topics from clusters. Finally,

similar to LDA, domain knowledge is applied to label and interpret

identified contents.

In short, different NLP (LUT, LDA, BERT) all fulfill the same

objective: further breaking down posts with textual data into more

granular, specific contents for further analyses. Certain contents

are specifically relevant for epidemic modeling, e.g., discussions on

vaccinations and other interventions.

Lastly, sentiment analysis is carried out to evaluate sentiments

and/or emotions in the post. Sentiments can be an important

indicator of potential health behavioral change, which is crucial for

epidemic processes such as infection and vaccination. Depending

on the natural of the research, sentiment can be quantified as

binary positive or negative, discrete scales (e.g., positive, neutral, or

negative) or more granular Paul Ekman six emotion classification

and more continuous emotion axes (20–23). Various methods

can be used for sentiment analysis, including BERT and ML

classification methods (e.g., support vector machine, SVM). In

particular, sentiments toward interventions (NPIs and vaccination)

can be critical indicators of changes in behavior and epidemic

dynamics during the COVID-19 pandemic.

The post-specific dataframe (row as post and columns

as the four major dimensions of information) will then be

transformed into multiple specific dataframes based on posts’

contents, for instance, vaccine-specific, mask mandate-specific,

social distancing-specific. The conceptual analytical and NLP

framework is presented in Figure 2.

2.3. Integrating novel CSI with epidemic
modeling: a proposed case study for
COVID-19

Once the four dimensions of information – time, location,

content, and sentiment – have been retrieved from social media

posts, we further recommend the following framework to integrate

this novel CSI with epidemic modeling with a case study for

COVID-19. This novel CSI significantly increases the amount

of information from post contents and sentiments especially on

public sentiments toward vaccination and other interventions

during the pandemic. We will further extract intervention-specific

content, along with sentiments toward these interventions and

spatial information. For instance, we will construct a time series

of vaccination-related posts (CVtj) at a given location j. CVtj can

be either absolute number of posts, or relative percentage in all

sampled posts at day t. In general, percentage of vaccination-

related posts reflects public awareness of the content such as

vaccination. The dynamic change of a specific content (e.g.,

vaccination) percentage reflects the varying degrees of public

awareness during different phases of the pandemic. In addition,

sentiment shifts of the vaccination content topic will also be

captured by the sentiment time series, which can be expressed as the

percentage of positive or negative sentiment toward vaccination,

SVtj. The sentiment time series reflects the dynamic change

of vaccination acceptance by the public at the location j. For

instance, vaccination acceptance can be evaluated by positive

sentiments or emotions expressed in the posts. Similarly, positive

sentiments toward other NPIs (e.g., social distancing, mask-

wearing) may indicate increased willingness of compliance with

these health policies. These detailed, dynamic characterizations of

public awareness and acceptance of vaccination and other NPIs

are critical indicators of health decisions and potential behavioral

changes (e.g., actively seeking vaccination) during the COVID-

19 pandemics. Then, an epidemic model tracks and projects case

series Yt based on current observations and other covariates

such as vaccination awareness and acceptance (Figure 2). The

functional response of these covariates can be mechanistic (i.e.,

parameters in SEIR-type model and rules in ABM) or data-driven,

discussed below.

The first approach is to use this novel CSI to parameterize and

calibrate mechanistic models, including SEIR-type compartment

models and more recently introduced agent-based models (ABMs)

that tracks detailed behaviors and interactions among individuals.

We will compare and evaluate the relationship of content (CVtj)

and sentiment (SVtj) time series with traditionally measured health

outcomes, such as numbers of reported cases, hospitalizations,

and deaths due to COVID-19. By parameterizing vaccination

acceptance on these actual health outcomes, it will significantly

enhance ABM’s ability to further incorporate dynamic behavioral

aspects, evaluate effectiveness of vaccination for COVID-19, and

predict unintended consequences such as varying vaccination

uptake rates across time and location.

Another major category of epidemic modeling is non-

mechanistic data-driven models. Our previous study, along with

several other studies, have shown that multivariate deep learning

models, such as different types of recurrent neural network (RNN)

models, can effectively project epidemic dynamics of COVID-

19 (18, 19). Depending on different hypotheses, content (C) and

sentiment (S) of interventions can be regarded as input variables

that influence observed disease outcomes (D), such that Dtj =

f (Ctj, Stj). Alternatively, we could hypothesize no a priori influence,

i.e., observed disease outcomes and online contents, sentiments

toward interventions (e.g., vaccination) can mutually influence

each other. Changing health outcomes in different phases of the

pandemic can also influence public perceptions of the severity

of the COVID-19 pandemic, and consequently alter vaccination

acceptance. In this circumstance, multiple time series Dtj, Ctj, and
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Stj are modeled in parallel in RNN to make projections of each time

series into the future.

3. Discussion

In this paper, we propose a more granular and comprehensive

CSI as a critical component in the integrated disease surveillance

system through effective data mining on online discourse data

during an epidemic such as COVID-19. Social media and

other online platforms provide massive data for knowledge

discovery through advanced computational techniques, such as

NLP. The dynamic changes in public awareness and perceptions

toward various interventions, especially COVID-19 vaccination,

can be effectively derived from NLP. Exploring these more

granular dimensions of information, previously unavailable in

traditional infoveillance, should significantly enhance integrative

modeling efforts.

This proposed novel CSI framework naturally integrates

theoretical foundations of social sciences and technical advances in

information and computer science to address an important public

health issue: to effectively incorporate cognitive and behavioral

aspects into epidemic modeling. Here, we suggest some potential

applications of the proposed infoveillance framework. It can

effectively identify tipping points in public sentiments toward

certain controversial topics, such as vaccination especially in the

U.S. Knowing exactly when, where, and how the public will

respond to COVID-19 vaccination can be crucial to inform

local and national public health agencies to develop health

communication strategies to encourage mass immunization and

minimize the consequences of preventable cases, hospitalizations,

and deaths. In addition, the novel CSI framework can be applied

in conjunction with NLP-based misinformation detection methods

to monitor surges of vaccination-related misinformation. This

CSI framework could also evaluate responses and perceptions

of different populations (e.g., race/ethnicity, age, or other social

determinants of health) to specific types of interventions.

While social media provide large volumes of public discourse

data on diseases to characterize public responses, sampling bias

may still occur due to the observational study nature of passive

infoveillance. Users of online platforms such as social media

may not be adequately representative of the target population.

Therefore, active participatory studies, such as randomized surveys,

can complement this novel CSI via social media analytics.
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Mathematical modeling has been fundamental to achieving near real-time

accurate forecasts of the spread of COVID-19. Similarly, the design of

non-pharmaceutical interventions has played a key role in the application of

policies to contain the spread. However, there is less work done regarding

quantitative approaches to characterize the impact of each intervention, which

can greatly vary depending on the culture, region, and specific circumstances of

the population under consideration. In this work, we develop a high-resolution,

data-driven agent-basedmodel of the spread of COVID-19 among the population

in five Spanish cities. These populations synthesize multiple data sources that

summarize the main interaction environments leading to potential contacts. We

simulate the spreading of COVID-19 in these cities and study the e�ect of several

non-pharmaceutical interventions. We illustrate the potential of our approach

through a case study and derive the impact of the most relevant interventions

through scenarios where they are suppressed. Our framework constitutes a first

tool to simulate di�erent intervention scenarios for decision-making.

KEYWORDS

epidemic spreading, digital twins, COVID-19, non-pharmaceutical interventions,

pandemic control

1. Introduction

The COVID-19 pandemic has globally impacted a plethora of systems, with health

(1), socio-economic (2, 3), and environmental (4) consequences. To control the spread

of SARS-CoV-2, policymakers implemented a diversity of procedures, grouped into

either mitigation or suppression strategies. Lockdowns, implying home confinement, were

frequently introduced to stop the spreading in early 2020 when the dynamics of the infection

mechanisms were not clear. However, these lockdowns resulted in deep impacts on the

economy, and later on, other non-pharmaceutical interventions were designed, such as the

use of face masks, the closure of restaurants, universities, or schools, as well as contact

tracing, testing, and isolation of close contacts of infected individuals.

The initial stages of the pandemic represented a high degree of uncertainty, both

regarding the original transmission of the pathogen to human beings and reliable

surveillance data [due to low testing efforts and inappropriate surveillance systems (5)].

Nowadays the situation has improved, as the availability of more data—even if many times

of poor quality and low reliability—in principle allows to characterize the spreading at a large

scale. Moreover, the existent data enables the development of mathematical models that help
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quantify the observed evolution of the pandemic and evaluate the

effects of the intervention scenarios.

The first wave of COVID-19 raised a challenge for modeling

approaches due to the general bad data quality. Specifically, the lack

of knowledge about the COVID-19 spread, the similarity between

the symptoms of COVID-19 and those of influenza, and the low

testing effort led together to lower rates of diagnosis and hence

underreporting mainly in the number of cases (6), but also in the

number of deaths. Seroprevalence studies (7) and the analysis of

anomalies on the temporal series of deaths (8) were needed to

estimate the real impact of the spreading process, showing that

there were up to 10 times more cases than the reported ones. In

this regard, spreading models can shed light on the real outcome of

the infection across the population.

To properly model the spreading of a disease in the population,

it is fundamental to acknowledge that human interactions are

highly heterogeneous. Although network epidemiology can capture

part of this diversity, such as the broad nature of the distribution of

the number of interactions, the variability of contexts remains out

of this formalism. These contexts can be effectively captured using

multilayer networks, which are networks with multiple layers, each

one describing the interactions in a different context (9, 10). In this

work, we leverage anonymous, publicly available data to build high-

resolution synthetic cities and encode them in multilayer networks

(11, 12). We use these synthetic networks to study the propagation

of the first wave of COVID-19 in five Spanish cities. Furthermore,

we extend the simulation to the second wave for the particular case

of the city of Zaragoza and thoroughly characterize the impact of

non-pharmaceutical interventions during this period.

2. Materials and methods

2.1. Multilayer contact networks

We create five digital populations describing the inhabitants

and the interactions between them in the cities of Barcelona,

Valencia, Seville, Zaragoza, and Murcia, all of them located

in Spain (Figures 1A–F). Their population ranges between 450

thousand and 1.7 million inhabitants (Figures 1G–I). Additionally,

we include external individuals that may not be registered in the

census but with most of their interactions expected to happen

in these cities. These external individuals include old people

living in nursing homes and non-local university students. Each

inhabitant is represented in the population as a node connected

to other inhabitants. These links were built according to the

specific data sources for each city and each feature, as listed in the

Supplementary material.

2.1.1. Demography
We obtained the geographical distribution, sex, and age of the

inhabitants of the cities at the beginning of 2020 from multiple

demographic data sources. The maximum spatial resolution was

the census district (Figures 1B–F), at which we found most of the

needed information to create the synthetic digital cities. Ages were

available in age groups with a resolution of 5 years. Thus, we

interpolated these age groups to consider a resolution of 1 year

between 0 and 30 years, which was necessary to properly infer the

interactions at schools and universities. This allowed us to create a

synthetic population for each city resembling the characteristics of

the real ones.

2.1.2. Contact networks
We modeled the contacts between individuals through

networks described by the aggregation of multiple interaction

layers (13). Specifically, we considered six interaction layers: home,

nursing homes, school, work, university, and community. We

incorporated empirical data from multiple datasets available from

national, regional, and local sources to infer the connections

between the individuals in the different environments introduced

by the interaction layers. In Figure 2, we show the age mixing

patterns of the population extracted from our synthetic cities (12).

2.1.3. Home layer
Individuals in the home layer are connected if they live

together. We extracted the information on the number of homes

of a specific size, the average home size, and the home structure at

the district level. We use the information from the national census

of 2011 (14), themost recent one that is currently available, (see also

the Supplementary material) for all the cities except for Barcelona,

for which this information is available from local sources with

higher resolution.We also use the age difference of the home nuclei,

at district resolution, from the national census. This information

is key for reproducing realistic home contact matrices, as the

home structures include in the “adults” category any individual

aged between 25 and 64 years old. Connecting randomly pairs of

individuals in this broad group could lead to less representative

links in most homes, composed of two adults alone or with children

or old people. As we do not know if these nuclei are assortative or

disassortative, we include the data on the age difference of the nuclei

to create this synthetic layer.

2.1.4. School layer
This layer connects all the students and a teacher within

the same scholar unit. Besides, all the teachers that work in

the same center are also connected. We included in this layer

the infant levels (0–3 and 3–6 years old), primary school (7–

12), secondary school (13–16), high school (17–18), and job

training (from 17). We inferred these connections using data

on the number of students per level, the number of units

per level, and the number of schools, taking into account

the levels offered by each kind of school. This information

was available at the district level for Barcelona and Valencia.

Additionally, data on the specific size of each specific unit at

each center was available for Valencia and used for that layer

inference. For Seville, Zaragoza, and Murcia, this information

was available at the municipality level, so we mapped the school

coordinates to the districts, and we inferred the rest of the

needed information from the one at the municipality level. Once

the synthetic units, at each center, were created, we assigned

individuals from the population to those units. First, we filled

each unit with individuals of that specific age that have their

homes located in the same district. Secondly, the units that

had not been filled totally with individuals from the same
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FIGURE 1

Geography and demography of the five cities represented through synthetic populations. (A) Location of the five cities. (B–F) Geographical

representation (Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL) of the district structure at each city (source:

Instituto Nacional de Estadística, INE), with colors representing the population of each district. (G) Local and non-local populations (nursing homes

residents and university students). The five cities studied are Barcelona (BCN), Valencia (VLC), Seville (SEV), Zaragoza (ZGZ), and Murcia (MUR).

district were filled with individuals from other districts, with

a priority determined by the distance between the centroids

of the districts, until all the units in the city were full. We

assumed that, after that step, the remaining individuals were not

included in the education system. Teachers were chosen randomly

among individuals aged between 30 and 70 from any district in

the city.

2.1.5. University layer
We generated the university contact layer using the national

statistics of the number of registered students per university and

per degree, split by sexes, available from the Spanish Ministry

of Education, considering both undergraduate and graduate

programs, for the academic year 2019–2020. We considered

the universities located in the same province as the studied
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FIGURE 2

Contact matrices between age groups in (A) Barcelona (BCN), (B) Valencia (VLC), (C) Seville (SEV), (D) Zaragoza (ZGZ), and (E) Murcia (MUR). (A–E)

Each entry wij is computed as the total number of observed links between individuals belonging to the age group in row i and column j, normalized

with the number of individuals in each column. Thus, they represent, for a given column, the expected number of links of a random individual to

individuals from each row. (F) Link distribution among the di�erent layers in the five studied cities expressed as a percentage of the total number of

contacts in each city.
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cities, after removing distance-learning universities. Then, we

estimated which students are registered and live in the city,

and which ones are external, either registered in the same or

another province. Local students have also interactions in the

other layers, while externals are only in the university layer.

Finally, we obtained the national age profiles by sex of university

students, picked individuals from our synthetic population, and

introduced those external, according to these profiles. We designed

a connectivity pattern of all-to-all for degrees that had sizes

lower than 50 people, and otherwise generated patches with

all-to-all connectivity of a maximum size of 50 people for the

larger ones.

2.1.6. Work layer
In the work layer, individuals that belong to the same

company are connected together. We obtained the distribution

of companies’ sizes (S) throughout all the Spanish provinces,

which follows a power-law distribution pdf (S)∼ S−2. Then,

we generated companies with sizes that follow this distribution,

and, when sizes were higher than 20 people, we distributed the

workers among patches with a maximum size of 20 people. We

estimated the number of workers by subtracting the number of

autonomous workers from the number of registered workers in

each city, according to the Social Security reports. We extracted

sex and age features also from Social Security reports on a

national scale. We did not consider as potential workers those

that were assigned a school patch, either as teachers or students.

The synthetic companies were filled with individuals from the

synthetic population following the corresponding distributions by

age and gender.

2.1.7. Nursing homes layer
We collected information on the number of nursing homes

and their capacity in each municipality. Additionally, we gathered

national statistics on the age and gender of the people that

reside in nursing homes. We assumed that the nursing homes

need one caretaker for every four places, and chose that

uniformly from those in the dataset older than 16 years

old (minimum age for being allowed to work). Inside each

nursing home, we assumed an all-to-all connection. Note that

individuals residing in nursing homes do not interact in the

household layer.

2.1.8. Community layer
We generated a synthetic community layer connecting

randomly pairs of individuals living in the same district, according

to the contact matrices for Spain in Prem et al. (15). There

were contact matrices available for home, work, school, and other

locations, and we chose the latter. This dataset reported the

probability of connecting pairs of individuals according to their

ages, in age groups of 5 years up to 75 years old. For individuals

older than 75 years old, we extrapolated the data of the oldest

available group.

2.2. Epidemic spreading

2.2.1. Spreading model
We used the COVASIM software for modeling the spread

of COVID-19 (16). COVASIM is an open-source Python-based

agent-based modeling tool. COVASIM considers a susceptible-

exposed-infected-recovered or dead (SEIRD) epidemic model that

includes disease parameters informed by the medical literature.

The infected compartment is divided into asymptomatic and

symptomatic infectious individuals, with the latter including

presymptomatic, mild, severe, and critical stages. The three

symptomatic stages can evolve to the recovered state, while the

critical state can alternatively lead to the death of the individual

(Supplementary Figure S1). The probabilities of developing

symptoms, severe symptoms, a critical case, and from it the

death of the individual are specified by age groups, arranged in

10-year-long age cohorts. This software has been used for studying

different scenarios, for example, assessing the test-trace-quarantine

strategy (17) or quantifying the risk of outbreaks after international

border opening (18). We modified COVASIM to include the

specific details of our synthetic cities. Specifically, we included the

age, sex, and contacts of the individuals in each of the considered

cities. We ran independent simulations where each simulation

chose one randomly infected seed as the first infected individual.

Then, we kept the endemic realizations, defined as those leading to

a finite number of deaths, which we set higher than 10 for the first

wave. For the second wave, we also requested that there were more

than 10 death observations in the last 10 days of the realization.

Apart from the internal parameters of COVASIM, we considered

independently the infection rate and the date of arrival of the first

infected individual. We calibrated both parameters for each city

analyzing the official time series of deaths (see section 2.2.2), which

were more reliable than the number of cases that could suffer from

high underdetection rates (6).

2.2.2. Epidemic data
We obtained the temporal series of the number of deaths and

the number of confirmed cases from the SpanishMinistry of Health

(19) at the province level, with daily resolution. Then, wemultiplied

these values by the fraction of the province’s population living in the

city. We averaged the rescaled data over a moving window of 7 days

(the specific day± 3 days) to smooth the fluctuations.

2.3. Quantifying public health policies

To illustrate the potential of our approach, after calibrating

the first wave of COVID-19 in our model with synthetic digital

cities, we implemented a case study of the second wave focusing

on the city of Zaragoza. This second wave occurred between July

and December 2020.

The non-pharmaceutical interventions that were introduced in

this city to mitigate the spread of COVID-19 were the following:

• Testing and tracing. Positive tested individuals and their close

contacts were isolated for 14 days until 30th September, and

from then on for 10 days.
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• Restrictions on restaurants, cafes, and nightlife. Starting on

5th August, lifted on 4th September, and re-started on

19th October.

• Opening of the schools with reduced group sizes and safety

measures. Different levels started progressively, from 7th

September to 17th September.

• Opening of the universities with reduced group sizes. The

university was opened on 14th September.

• Interventions impacting the community layer. We considered

the interventions related to the State of Alarm and those

related to the capacity and schedules of restaurants and bars.

In addition to these policies, we also took into account the

annual leave period of workers and considered a reduced number

of interactions in the work layer starting on 15th July until the

middle of September, with the maximum reduction on 1st August.

In terms of the model, this implies a higher amount of time (e.g.,

more weight of this layer) associated with the interactions in the

community layer.

We used the infection rate (β) and date of arrival of the

infected seed obtained in the calibration of the first wave and ran

the model from the estimated arrival of the first case (see section

3.2) to 1st December 2020. Since we ran the simulations from the

beginning of the first wave, we lifted progressively the restrictions

that were active from the 14th of March in two steps: on the 1st and

20th of June, following the progressive lift of the restrictions that

actually happened.

We kept 25% of the contacts in the school and university layers

to simulate the small group’s policy, and reduced β by 50% in

the school layer, considering the strict protocol to avoid contagion

at schools.

After calibrating the model of the second wave with these

non-pharmaceutical interventions and considering the results of

the simulation, we introduced different counterfactual scenarios in

which we quantified the effect of each of the non-pharmaceutical

interventions adopted. More specifically, we computed the number

of deaths and the disease prevalence by performing simulations

with the same epidemiological parameters but switching on and off

alternative interventions. Finally, we computed the relative change

in the relevant quantity X (X = deaths or prevalence) as r =

(Xcounterfactual
− Xsimulated-2nd-wave)/Xsimulated-2nd-wave. Therefore,

the absolute change can be obtained as Xcounterfactual
= (1 + r) ·

Xsimulated-2nd-wave.

We considered the following nine different counterfactuals:

• No testing and no contact tracing. The testing intervention

was removed. Hence, as contact tracing depends on

the results of the testing process, contact tracing was

automatically removed.

• No contact tracing. To analyze the impact of the contact

tracing strategy and decouple it from the testing process, we

kept the testing intervention and its parameters but removed

contact tracing interventions.

• Opening 100% university. We considered the opening of the

university layer with 100% of the contacts, instead of the 25%

contacts estimated through the small group’s intervention.

• Not opening university. We simulated a scenario where the

university layer remained closed.

• Opening all schools together (x2). The school opening was

done following a staggered strategy, such that each level

started on a different date. We simulated scenarios where

all the levels started on the same date, either on the date of

the earliest opening (7th September) or the latest opening

(17th September).

• 100% β in schools, whole groups. Schools were one of the

sectors where strong protocols were introduced, reducing

considerably the infection rate and also the group size. We

simulated the absence of these protocols, keeping the same

infection rate as in the rest of the layers, and considering this

layer with whole groups, that is, 100% of the contacts.

• Not opening schools. We quantified the changes in the

outcome of the second wave if the schools had not been open.

• No interventions in October. We observed that the

interventions in October were key to controlling the second

wave. Thus, we removed these interventions and computed

this counterfactual, keeping the same final date, such that the

result was comparable with the rest of the counterfactuals.

However, we assumed that removing these interventions

would imply that the second wave continued growing on

time. To characterize this growth (in terms of both time extent

and outcome), we ran additional simulations for 15 and 30

days more and compared them with extrapolations of the

original second wave simulation for the same period (without

including additional measurements introduced on December

2020 or calibrating the observed data in that period).

3. Results

3.1. Contact matrices

With the information contained in the multilayer networks

we can infer the contact matrices of the population (12). These

matrices can be used to inform classical epidemiological models for

studies not based on agent-basedmodels, or to obtain an aggregated

picture of the interactions in the system, as in this case. Indeed, as

we can see in Figures 2A–E, the shape of the matrices indicates that

our networks display an assortative pattern with blocks of infants,

adults, and the older adults with a higher preference to interact

with other individuals with similar ages. The number of contacts

per layer is also significantly different both within and across cities

(Figure 2F). For instance, workplace contacts are predominant

in Barcelona and Zaragoza, the university ones in Valencia and

Murcia, and the school contacts in Seville. Note that our agent-

based model explicitly contains each link between two individuals,

and thus these matrices are not used to model the spreading.

3.2. First wave

In order to be able to explore realistic counterfactuals for the

effectiveness of the most important NPIs adopted, we started by

simulating the first wave to calibrate the model for each of the

cities considered. Specifically, we ran simulations of the spread

of COVID-19 in these cities using the software COVASIM. We

estimated the transmission rate and the arrival of the initial seed,
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FIGURE 3

First wave of infections of COVID-19 in five Spanish cities: (A) Barcelona (BCN), (B) Valencia (VLC), (C) Seville (SEV), (D) Zaragoza (ZGZ), and (E)Murcia

(MUR). The number of deaths D estimated by our model (solid line, the shaded area represents the 5-95% CI) agrees with the data (properly rescaled,

see section 2) reported by the Spanish Ministry of Health (dots), with an excess of deaths in the initial stages of the wave.

TABLE 1 Starting date (Start), infection rate (β), prevalence (Prev.), and number of deaths (Deaths) from the model output of the first wave.

City Start β Prev. (5–95% CI) Deaths (5–95% CI) Ref. Prev. (5–95% CI)

Barcelona Jan 05 0.0300 14.6 (13.1–16.1) 2,334 (2,188–2,477) 7.4 (6.2–8.9)

Valencia Dec 20 0.0251 3.1 (1.5–4.7) 227 (141–313) 2.1 (1.5–3.0)

Seville Dec 26 0.0232 2.4 (1.1–4.7) 195 (75–314) 2.7 (1.9–3.8)

Zaragoza Jan 1 0.0280 6.1 (3.9–8.3) 599 (465–733) 5.2 (3.9–6.9)

Murcia Dec 29 0.0260 2.4 (1.6–3.3) 89 (67–111) 1.6 (1.0–2.5)

The reference prevalence (Ref. Prev.) is that provided in the first phase of the national study of seroprevalence for the first wave in its second round, finished on June 1st (7).

considered as a single infected individual (Figure 3, Table 1). Our

multilayer approach allowed us to introduce the effects of the

national lockdown declared on 14th March 2020, reducing the

contacts in the work layer to 20% (10% for Barcelona) and 0% in

the university, school, and community layers. Our results indicate

an earlier arrival of COVID-19 to these cities (upon the assumption

of a single initial seed), and they highlight the earlier occurrence

of deaths at the beginning of the first wave, not considered

in the official statistics, in Barcelona, Valencia, Seville, and

Zaragoza. The prevalence estimates from our model are compatible

with those obtained from the nationwide seroprevalence study

in Spain (see Table 1). Note that this seroprevalence study

detected 10 times more cases than the ones reported by the

surveillance system.

3.3. Second wave. Counterfactuals

When restrictions were progressively lifted after the end of

the first wave, a second wave started growing (Figure 4), and we

calibrated our model to obtain the impact of the interventions on

our model parameters (see section 2).

The calibration of the second wave led to the following results:

• Varying number of links in the community layer: connections

were set at 50% of the baseline value (1st June, progressive lift

of restrictions), 80% (20th June, end of the national State of

Alarm), 50% (5th August, regional limits on restaurant and

bar schedules), 100% (4th September, lift of restrictions), 30%

(19th October, regional limits on the schedule and capacity of
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restaurants and bars), and 10% (26th October, national State

of Alarm).

• Varying the weight of the links in the community layer:

increase by 50% from 20th June to 26th October (end and

beginning, respectively, of the national State of Alarm).

• Varying the number of links in the work layer: connections

were set at 70% of the baseline value (1st June), 50% (15th

July), 30% (1st August), and 50% (20th September). These

changes in summer accounted for the summer holidays

period. Mobility reports (20) showed a slow return to mobility

associated with work in September.

• Testing. The probability of symptomatic individuals being

tested (per day with symptoms) was estimated to be 15%

between 1st July and 14th September, and 9% from 15th

September. The delay between the test and the result

notification (with the beginning of the associated isolation

period) was fixed to 1 day.

• Contact tracing. The contacts from positive-tested individuals

were traced with a general probability Pt . Additionally, Pt was

weighted for each layer of contacts, fixing the weights 1 for

home, 0.8 for school, 0.6 for university, 0.8 for work, 0.0 for

the community [until the introduction of the contact tracing

app Radar COVID (21), which increased it to 0.05], and 0.0

for nursing homes. We fixed the time between the positive

notification and the communication with close contacts to 2

days. Pt was estimated to be 0.4 between 1st July and 19th

August, 0.45 between 20th August (introduction of Radar

COVID) and 30th September, and 0.5 from 1st October (extra

support to contact tracing from trained soldiers).

Overall, the model (Figure 4) estimated that there were 1,354

deaths (5–95 CI), with a prevalence of 22.6% (21.0–24.2% 5–95 CI).

This prevalence was higher than the reported in the fourth phase

of the national seroprevalence study carried out in mid November

(7), which estimated a prevalence of 12.7% (10.1–15.8% 5–95 CI) at

the province level. Even though the data at the municipality level

is not available, it reported that the prevalence in municipalities

with more than 100,000 inhabitants was 50% larger than in the

smaller ones. The province of Zaragoza is highly heterogeneous

in terms of size, with one municipality (out of 293) containing

69% of the almost 1,000,000 inhabitants in the province. Thus, it

is expected that the prevalence at the city level should be much

larger. Similarly, our model in the first wave agreed with the

empirical observations of the temporal evolution of the number

of deaths documented, with a minor overestimation for Murcia

but a larger one for Barcelona. We interpret these divergences as

possibly missing data, in line with other studies that have claimed a

higher number of deaths than that reported by the official statistics,

which was particularly significant in the administrative region of

Catalonia, where Barcelona is located (8).

The results of the counterfactual analysis shown in Figure 5

indicate that the combination of tracing and testing, with the

associated isolation of positive individuals, was very effective in

reducing the number of both deaths and infections. Note that for

this case, the counterfactual (i.e., lack of such measures) led to

more than twice the number of infected individuals, and also nearly

doubled the number of deaths. Next, we quantified the impact of

FIGURE 4

Modeling the first and second waves of COVID-19 spreading on

Zaragoza from January to December 2020. We represent the

temporal evolution of the number of deaths D, with shaded regions

depicting the 5–95% confidence intervals of the model.

contact tracing alone by keeping the testing process, together with

the isolation of individuals with a positive test, but removing the

contact tracing. This scenario also showed an increase in both the

number of infections and deaths. However, the increase of both

observables was twice lower than if both contact-tracing and testing

are removed, highlighting the importance of combining these two

interventions to achieve the best result. The third-most important

counterfactual according to the increase in deaths was the removal

of the interventions in schools, which however produce the second-

largest increase in the number of infections, but with a smaller

impact in the number of deaths because most infections would

occur in non-risk age groups. Interestingly, opening the university

without restrictions would lead to fewer infections than with

schools completely opened, however leading to more deaths. The

synchronous opening of the schools for different levels also implied

an increase in prevalence and deaths, but with a lower impact than

other interventions. Finally, there were also some counterfactual

scenarios that produced a decrease in the observables, such as

keeping schools or the university closed. However, their impact

was minor.

For the sake of completeness, we also assessed the impact of the

interventions in October to control the outbreak. In principle, these

measures did not have a big impact as shown in Figure 5. However,

the interpretation is not straightforward, because our second wave

simulations finish on December 1st, and the absence of these

interventionsmay have implied a later end of this wave. To quantify

this, we extended, without adding any new intervention, both the

calibrated and counterfactual simulations, finishing the simulation

on (a) 15th December and (b) 31st December. Our results showed

that the relative change between the real extrapolated framework

and this counterfactual kept increasing after 1st December (9.5%

for deaths, 50.9% for prevalence), as the extrapolated values were

higher on 15th December (40.3% for deaths, 71.1% for prevalence),

and slightly decreased at 31st December (25.3% for deaths, 66.5%
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FIGURE 5

Estimating the impact of non-pharmaceutical interventions on the second wave of COVID-19 spreading in Zaragoza. We compute the relative

change with respect to the outcome of the model in terms of prevalence and number of deaths for di�erent simulated scenarios. The relative

di�erence in the relevant quantity X (X = deaths or prevalence) is computed as (Xcounterfactual
− Xsimulated-2nd-wave)/Xsimulated-2nd-wave .

for prevalence), indicating that by this date, the counterfactual wave

would have finished. Hence, this extrapolation suggests that this

counterfactual would have implied, compared with the rest of the

counterfactuals, the second-largest increase in prevalence, and the

fourth-largest increase in the number of deaths.

4. Discussion and conclusions

The quick spread of a deadly infection among a population

represents a threat to public health systems, which requires

immediate action and extra resources in order to mitigate and

eventually control the impact of the associated disease on the

population. However, interventions need to be carefully evaluated,

as our society is a complex interdependent system in which

mitigating the effects of one disease might result in non-desirable

side effects such as the reduction of the services provided to

both prevent and treat other diseases (22–24). To avoid these

effects, scientists and policy-makers need computational resources

that allow for a fast assessment of the possible outcome of

interventions whenever pharmaceutical interventions, such as

vaccination campaigns, are not possible. This is often the case

when new diseases emerge, as seen with the virus SARS-CoV-2,

which currently represents one of the major threats to public health

systems. On the one hand, governments and health organizations

need to allocate significant resources in order to develop and

test vaccines and/or specific pharmacological treatments. On the

other hand, traditional surveillance methods are likely to miss

large numbers of new infections in the population, leading to

a high number of undocumented infections during the early

stages of the disease, as also happened in the case of SARS-

CoV-2 (25). In such situations, non-pharmaceutical interventions

represent the alternative to at least earning time. This is where

data-driven and computational frameworks are fundamental to

inform models that can illustrate the outcome of different non-

pharmaceutical interventions. In this paper, we have presented

a model that could be used to characterize the consequences

of a plethora of non-pharmaceutical interventions. We applied

the model to study the first and second waves of COVID-

19 in Spain, finding that testing, tracing, and isolation were

among the most effective interventions to reduce both the

number of deaths and infections, in line with similar studies

for other geographical locations (13, 26, 27). Our study also

shows that, on the whole, the interventions adopted during

the second wave for the city of Zaragoza, were effective and

reduced the number of deaths and infections by around 10% and

50%, respectively. The effort presented in this work, informing

a computational model of COVID-19 spreading with synthetic

populations based on real data, has the potential to speed up the

analysis of different intervention scenarios in future large-scale

epidemic emergencies.

This work has some limitations that deserve further discussion.

First of all, our simulations considered a single randomly chosen

initial seed, and from this, we estimated the date of arrival of

the disease. Nevertheless, the spreading process could have started

by the arrival of several infected individuals either synchronously

or asynchronously. However, we think that these approaches are

equivalent, as they would lead to the same number of infected

individuals at later dates. In contrast, different effects could emerge

when specific individuals, according to, for example, their age,

district of residence, or employment status, display a higher

likelihood to introduce the infection. Another limitation is the

isolation of the cities, as they are considered closed systems.

This can be solved by introducing a spontaneous infection rate

reflecting the imported cases from other locations, although we

assume that in the cases of generalized local transmission this rate

would lead to minor differences. The emergence of variants with

different infection and recovery rates and death probabilities is

challenging for these models, requesting the parameter correction

for subsequent waves happening when other variants were present.

The latter, however, does not impact predictions at the early stages

of an emerging disease, which is when evaluating possible NPIs is

most needed. Finally, we considered the main non-pharmaceutical

interventions that were applied in the city of Zaragoza, but their

calibration may include the effect of other interventions that we

assumed to have minor effects.
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Our multilayer network method, informed from multiple data

sources, contrasts with other approaches used for modeling the

spread of COVID-19. These include the introduction of meta-

population approaches representing recurrent mobility (28, 29), the

use of demography to infer social contact data (6), information

from real-time human mobility indices (30), or the use of high-

resolution individual trajectories (13). We acknowledge that the

latter method would be the ideal scenario in terms of accuracy, but

it would request the availability of detailed mobility data, which

is not directly linked to layers whose dynamics are shaped by

interventions. When such data is not available, our method can

inform mathematical models of spreading while keeping realistic

social contact data.

In summary, our work shows how models of digital cities

can be coupled to agent-based epidemiological models of disease

dynamics and be used for scenario evaluation. Our approach aligns

with the spirit of developing digital twins to face the challenges

raised by the Sustainable Development Goals (https://sdgs.un.org),

related for example with environmental problems or health issues.

After the extensive data search needed for creating these cities

(see Supplementary material), updating these digital cities will

be a more straightforward task, allowing them to timely inform

the models that help design non-pharmaceutical interventions to

mitigate the effects of future pandemics.
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Background:One of the main lessons of the COVID-19 pandemic is that we must

prepare to face another pandemic like it. Consequently, this article aims to develop

a general framework consisting of epidemiological modeling and a practical

identifiability approach to assess combined vaccination and non-pharmaceutical

intervention (NPI) strategies for the dynamics of any transmissible disease.

Materials and methods: Epidemiological modeling of the present work relies

on delay di�erential equations describing time variation and transitions between

suitable compartments. The practical identifiability approach relies on parameter

optimization, a parametric bootstrap technique, and data processing. We

implemented a careful parameter optimization algorithm by searching for suitable

initialization according to each processed dataset. In addition, we implemented a

parametric bootstrap technique to accurately predict the ICU curve trend in the

medium term and assess vaccination.

Results: We show the framework’s calibration capabilities for several processed

COVID-19 datasets of di�erent regions of Chile. We found a unique range of

parameters that works well for every dataset and provides overall numerical

stability and convergence for parameter optimization. Consequently, the

framework produces outstanding results concerning quantitative tracking of

COVID-19 dynamics. In addition, it allows us to accurately predict the ICU curve

trend in the medium term and assess vaccination. Finally, it is reproducible since

we provide open-source codes that consider parameter initialization standardized

for every dataset.

Conclusion: This work attempts to implement a holistic and general modeling

framework for quantitative tracking of the dynamics of any transmissible disease,

focusing on accurately predicting the ICU curve trend in the medium term

and assessing vaccination. The scientific community could adapt it to evaluate

the impact of combined vaccination and NPIs strategies for COVID-19 or any

transmissible disease in any country and help visualize the potential e�ects of

implemented plans by policymakers. In future work, we want to improve the

computational cost of the parametric bootstrap technique or use another more

e�cient technique. The aim would be to reconstruct epidemiological curves to

predict the combined NPIs and vaccination policies’ impact on the ICU curve

trend in real-time, providing scientific evidence to help anticipate policymakers’

decisions.

KEYWORDS

COVID-19, predictive modeling, epidemiological modeling, time delays, vaccination,

practical identifiability, parameter optimization, parametric bootstrap
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1. Introduction

The COVID-19 pandemic has induced a significant research

effort for tracking, prediction, and control. In Chile, which is

no stranger to the above, health authorities initiated vaccination

in the summer of 2021, gradually reducing overall ICU patients

and death by COVID-19 while suspending non-pharmaceutical

interventions (NPIs) such as lockdowns (partial or total). One of

the main lessons is that we must be prepared to face another

pandemic like it. Consequently, this article aims to develop

a general modeling framework consisting of epidemiological

modeling generalization and devising a practical identifiability

approach to assess combined vaccination and NPIs strategies

for the dynamics of any transmissible disease. To validate the

framework, we applied it to track COVID-19 dynamics, accurately

predict the ICU curve trend in the medium term, and assess

vaccination in Chile.

The literature on COVID-19 modeling is vast. A search in the

Web of Science (WOS) with the terms “COVID-19”, “modeling”,

and “time delays”, refined by WOS categories related to STEM

disciplines, resulted in 95 articles (in January 2023). Therefore,

we only review some of those that we believe are important for

their applications. For example, Al-Tuwairqi and Al-Harbi (1)

proposed a model to investigate the effects of time delay in vaccine

production on COVID-19 spread. In addition, Zhenzhen et al. (2)

studied a model with “long memory” to describe the multi-wave

peaks of the COVID-19 dynamics, where “long memory” allows

for predicting this last using non-local terms, which means that

one can include an arbitrary long history of the disease. Indeed,

for a particular non-local term, the authors obtained a model with

time delays. Furthermore, the authors modeled vaccination as an

impulsive term that translates into decreased susceptibility.

Moreover, Ghosh et al. (3) derived a model with time delay,

where the last is the disease duration, i.e., the average time in which

infected individuals recover or die. Zhai et al. (4) investigated a

SEIR-type model with time delay and vaccination control. The first

parameter is similar to that introduced in our previous work (5) but

is considered in the exposed population equation. They simulated

vaccination as a control that decreases susceptibility, similar to

the generalization we propose in the present work. Finally, our

current work relies on generalizing the model developed by (5),

which has common elements with some cited works here. Indeed,

in (5), we introduced the same time delay that models the

average time to recover or die, as in (3). At the same time, we

could interpret our previous model (5) as one incorporating a

long memory effect in the sense that it allows the reproduction

of multi-wave peaks depending on the parameter values, as

we showed.

The general goal is to implement a hybrid approach (6),

in this case, a holistic combination of mathematical modeling

with a practical identifiability approach to reconstruct and

predict epidemiological curves based on careful optimization,

synthetic data, automatic data scanning, and calibration. Precisely,

the scientific novelty of the article relies on developing a

general modeling framework that could contribute to anticipating

epidemiological scenarios, evaluating the impact of combined

vaccination and NPI strategies for any transmissible disease, and

helping to visualize the potential effects of implemented plans by

policymakers.

To achieve the general goal, we rely on our previous work

that forecasted COVID-19’s second wave in May 2021 in Chile,

calibrating data between March and September 2020 (before

vaccination began) through suitable epidemiological modeling (5).

Our specific goals are:

1. To generalize our previously developed epidemiological

modeling to describe vaccination and assess combined

vaccination and NPI strategies for the dynamics of any

transmissible disease and, as a study case, of COVID-19.

2. To improve the practical identifiability approach to calibrate

the generalized epidemiological modeling with different datasets

representing different regions of Chile and accurately forecast

the ICU curve trend in the medium term in any stage of the

COVID-19 pandemic.

3. To provide open-source codes that implement our general

epidemiological modeling framework with standardized

parameter initialization for every dataset for reproducibility.

To implement the general modeling framework, we processed

and used the official COVID-19 datasets provided by the

Chilean government. The framework consists of two main parts:

epidemiological modeling generalization and devising a practical

identifiability approach. The first consists of a non-linear delay

differential equations (DDE) system describing time variation and

transitions between the compartments of susceptible, infected,

recovered and the sum of ICU plus dead. The second relies

on parameter optimization (5, 7, 8), a parametric bootstrap

technique (9), and data processing. A novelty of this work is the

implementation of a careful parameter optimization algorithm by

searching for suitable initializations according to each processed

dataset. In addition, we implemented a parametric bootstrap

technique to accurately predict the ICU curve trend in the medium

term and assess vaccination.

We have organized the article as follows: we describe the

general modeling framework in Section 2. More precisely, based on

our previous work (5), we describe the epidemiological modeling

generalization in Section 2.1. Then, in Section 2.2, we detail

the careful parameter optimization algorithm implementation, the

parametric bootstrap technique, and data processing, among other

methodology pieces. Then, we provide the modeling results to

validate the framework with several datasets representing COVID-

19 dynamics in different regions of Chile in Section 3. Finally,

in Section 4, we discuss the results and give some conclusions in

Section 5.

2. General modeling framework’
description

In this section, we describe the general modeling framework.

To do so, we have split it into two main subsections that generalize

previously developed epidemiological modeling and devise the

practical identifiability approach.
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2.1. Epidemiological modeling
generalization

In the present section, we describe the epidemiological

modeling introduced by (5), then present and provide a complete

description of each part of the modeling generalization.

2.1.1. Previous work
To derive the epidemiological modeling generalization, we

rely on the generalized SIR model with constant time delays or

generalized SIRmodel previously devised by (5), which describes the

NPIs’ effect through variations in the rate of disease transmission.

We remark here that the NPIs’ impact consists of social distancing

and that the generalized SIR model does not describe vaccination.

To be precise, the model corresponds to the following non-linear

DDE system:

dS

dt
(t) = −

β(t)

N
S(t)I(t − τ1), (1a)

dI

dt
(t) =

β(t)

N
S(t)I(t − τ1)− γIRI(t − τ2), (1b)

dR

dt
(t) = γIRI(t − τ2). (1c)

It is worth noting that the generalized SIR model can generate

complex dynamics since, by contrast to the classical SIR model, it

can simulate more than one local maximum for the infected. Then,

it provides a way to explain several COVID-19 waves, depending on

the parameters’ values (5). In addition, the generalized SIR model

would produce better prediction results than the classical SEIR

model since no observation of the exposed population is available

since, similarly to the asymptomatic population, those exposed are

challenging to observe. Indeed, the Chilean government’s COVID-

19 database (10), apart from the symptomatic cases, counts the

asymptomatic ones, and there is no way to know howmany of these

become symptomatic (5).

The parameters of the model (1) are as follows: β(t)

corresponds to the mean rate of disease transmission, γIR is the

mean removal rate, τ1 is the mean incubation time of disease, and

τ2 is the mean time from onset to clinical recovery or death caused

by disease, or the duration time of disease until recovery or death.

Model (1) follows the susceptible-infectious-removed (SIR)

paradigm. Susceptible (S) individuals infected by SARS-CoV-2

undergo incubation during a mean time (τ1) before becoming

infected (I). The infected individuals are infected by the disease

for a mean time (τ2) until being removed (R) by clinical recovery

or death.

The initial conditions have to satisfy S(t0)+ I(t0)+ R(t0) = N,

where N is the size of the population under study for a closed

system and taking into account that (S + I + R)′(t) = 0 for all

t > 0, for a suitably chosen t0.

In the case of COVID-19, following the discussion by (5),

we assume that the number of infected reported with symptoms

confirmed by Reverse Transcriptional Polymerase Chain Reaction

(RT-PCR) tests, denoted by Ir(t), is underestimated since it depends

on the availability and application of RT-PCR tests. Consequently,

we assume that Ir(t) is a fraction of the actual number of infected

I(t),

Ir(t) = f (t)I(t), (2)

where f (t) is the ratio of positive RT-PCR tests number (confirmed

cases) over the actual infected cases for the day t, which accounts

for the real positivity rate. It is worth noting that f (t) is not the

same as the positivity rate of detected cases, but it is related to it,

and it involves the asymptomatic infected (5). We modeled f (t) as

an inverted Sigmoid-type function such that if I(t) is small enough,

which occurred during the beginning of the outbreak, then an

important fraction of the real infected cases are detected (Ir(t) ≈

I(t)). On the contrary, when I(t) is large enough, which occurred

just before the quarantines were imposed, then only a small fraction

0 < a < 1 of the real infected cases are detected (Ir(t) ≈ aI(t)).

Precisely, f (t) is defined as

f (t) = 1+
a− 1

1+ e−k(I(t)−Ithr)
(3)

whose parameters are a, k and Ithr , where a and k represent the

minimum and the decay rate of f (t), respectively. On the other

hand, to measure how large/small I(t) is, we introduce a threshold

Ithr such that I(t) ≪ Ithr implies f (t) ≈ 1, and I(t) ≫ Ithr implies

f (t) ≈ a≪ 1.

Model (1), describing time variation and transitions S-to-I-to-R

plus Equations (2)–(3), representing the real positivity rate, is quite

general since it models the dynamics of any transmissible disease,

not considering vaccination. The model parameters, gathered

in vector (β(t), γIR, τ1, τ2, a, k, Ithr), are unknown or inaccessible

and have to be identified from time-series observations Ir
corresponding to the number of infected reported with symptoms

confirmed by RT-PCR tests. In (5), we devised a practical

identifiability approach, i.e., a set of techniques to reliably estimate

parameters with acceptable accuracy from noisy data (11, 12). In

particular, we reproduced epidemiological scenarios considering

β(t) varying in time to describe NPI strategies ranging from

total relaxation to imposing strict social distancing (complete

lockdown differed by municipalities) at different periods. As a

result, we forecasted the second wave of May 2021 in Chile,

calibrating data between March and September 2020 (before

vaccination began).

2.1.2. Toward modeling’s generalization
To make model (1) more complete and realistic, we developed

a generalization to measure the hospital load on the healthcare

system through the number of patients hospitalized in the ICU

and to assess the vaccination. Equations (2)–(3) that model the real

positivity rate remain unchanged. In the following, we provide a

modeling description of both aspects.

2.1.2.1. Vaccination description

According to (13), vaccination protects in four ways: against

infection, symptoms, severe disease, and reducing onward

transmission. However, even considering part of the vaccination’s

ways of protection, the model can become very complex, as in

the work by (13). Moreover, since COVID-19 data has great

uncertainty, among other issues discussed in the data processing

section, any model will provide results accordingly, no matter how

exact its representation of reality is. Consequently, our present
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work is in the same spirit as our previous work (5) in that keeping

a model simple is critical to reasonably carrying out a practical

identifiability approach. Even so, it is still a challenge to do it in

real-time to anticipate epidemiological scenarios to help predict the

hospital load on the healthcare system, as required in the first year

of the pandemic (before vaccination). In this regard, we assume

vaccination protects against infection by diminishing susceptibility,

as assumed, for example, by (2, 4), which translates into adding

new terms to Equations (1a) and (1c) for those susceptible and

those recovered and several meaningful parameters associated with

vaccination.

According to the previous discussion, the new terms that

model vaccination account for the transition from susceptible to

recovered, its inverse, and their respective times of transition.

Transition rates are denoted by γSR(t) and γRS(t), while the times

model as delays within the new terms added, designated by τ3 and

τ4, respectively.We allow transition rates to vary in time to describe

them more realistically since they depend on several factors that

may change over time, as explained below (e.g., the immunity of an

individual without booster doses decays faster).

Parameter γSR(t) relates mainly to the vaccination uptake rate,

while γRS(t) relates to the waning of immunity after vaccination.

Moreover, parameters τ3 and τ4 depend on every delivered vaccine’s

effectiveness and immunity waning. However, the vaccination

uptake rate, effectiveness, and immunity waning of vaccines are not

well-determined since they depend on several factors such as prior

infection, age, sex, T-cell response, and the periodicity of vaccine

injections. In addition, only natural infection mounts a significant

and lasting immune response (14). Therefore, parameters γSR(t),

γRS(t), τ3, and τ4 depend on many factors, which makes it difficult

to estimate them and they are strongly available data-dependent,

independent of how exact the model’s representation of reality is.

Thus, they are inaccessible and must be identified from time-series

observations of COVID-19, as noted before.

The model equations that consider vaccination are:

dS

dt
(t) = −

β(t)

N
S(t)I(t − τ1)− γSR(t)S(t − τ3)+ γRS(t)S(t − τ4),

(4a)

dR

dt
(t) = γIR(t)I(t − τ2)

+γSR(t)S(t − τ3)− γRS(t)S(t − τ4)+ γUR(t)U(t − τ6). (4b)

The second and third terms of Equations (4a)–(4b) model the

transitions from the susceptible to recovered compartment, and

conversely, τ3 stands for the mean time delay for those susceptible

to become immune after vaccination, and γSR(t) indicates how

fast it happens. Similarly, τ4 designates the mean time until an

individual loses immunity, so τ4 is the mean duration of immunity

by vaccination, and γRS(t) measures how fast it happens. Finally, the

last term in Equation (4b) pertains to theU compartment, which we

explain below.

2.1.2.2. U compartment description and modeling

generalization summary

Finally, as mentioned before, we added the variable U to model

(1), representing the sum of the patients in the ICU plus those

confirmed dead due to COVID-19, the equation of which contains

the transitions from I-to-U and U-to-R. The variable R now

describes the recovered, whereas R in the model (1) represented the

removed, i.e., the sum of those who had recovered plus those who

had died.

As before, the mentioned transitions encompass rates and time

delays, denoted by γIU (t), τ5, γUR(t), and τ6. Precisely, we model

the transition I-to-U by the rate γIU (t) and the time τ5 that those

infected took to be admitted to the ICU. In addition, we represent

the transitionU-to-R by the rate γUR(t) and the time τ6 that patients

took to recover in the ICU.

We summarize the modeling generalization as the following

non-linear DDE system:

dS

dt
(t) = −

β(t)

N
S(t)I(t − τ1)− γSR(t)S(t − τ3)+ γRS(t)S(t − τ4),

(5a)

dI

dt
(t) =

β(t)

N
S(t)I(t − τ1)− γIR(t)I(t − τ2)− γIU (t)I(t − τ5),

(5b)

dR

dt
(t) = γIR(t)I(t − τ2)+ γSR(t)S(t − τ3)− γRS(t)S(t − τ4)

+γUR(t)U(t − τ6), (5c)

dU

dt
(t) = γIU (t)I(t − τ5)− γUR(t)U(t − τ6). (5d)

Again, the previous system is closed since the variables’ sum

equals N, the size of the targeted population. The DDE system

(5) and Equations (2)–(3) will be named general epidemiological

modeling, which is quite broad since it models the dynamics

of any transmissible disease under any combination of NPIs

and vaccination. To describe simply the in-time-variation of

parameters β(t), γIU (t), and γUR(t), we assumed that these

are piecewise linear functions. Then, the functions β(t), γIU (t),

and γUR(t) are represented by the vectors β , γIU and γUR

in R
nβ+1 that represent nβ straight lines approximating the

respective functions. We gave the same description for the

in-time-variation of parameters γSR(t), γRS(t), and γIR(t), i.e.,

they are represented by the vectors γSR, γRS, and γIR in

R
nγ +1.

Therefore, general epidemiological modeling depends on p : =

3(nβ + nγ )+ 15 parameters gathered in the vector θ ∈ R
p defined

by:

θ = (θ1, θ2) ∈ R
p , (6a)

θ1 = (γIR, γSR, γRS, γIU , β , γUR, τ )t ∈ R
3(nγ +nβ )+12, (6b)

γIR, γSR, γRS ∈ R
nγ +1, (6c)

β , γIU , γUR ∈ R
nβ+1, (6d)

τ = (τ1, τ2, τ3, τ4, τ5, τ6)
t
∈ R

6, (6e)

θ2 = (a, k, Ithr)
t
∈ R

3, (6f)

where nγ , nβ is the number of time intervals to reconstruct γSR(t),

γRS(t), and γIR(t), and β(t), γIU (t), γUR(t) piecewise linearly with

equally spaced intervals, respectively. For instance, using nβ = 9,

nγ = 9, one has p = 3(nβ + nγ )+ 15 = 69 parameters to estimate,

i.e., θ ∈ R
69.

Table 1 summarizes the parameters of general epidemiological

modeling given by Equations (5), (2), and (3).
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Table 1 Parameters of general epidemiological modeling.

Symbol Description Unit

τ1 Mean incubation time days

τ2 Mean time to recover for mild

cases

days

τ3 Mean time from susceptible to

recovery (by vaccination

immunity)

days

τ4 Mean duration of immunity (by

vaccination)

days

τ5 Mean time from infected to ICU days

τ6 Mean time from ICU to recover days

γIR Mean recovery rate for mild cases days−1

β Mean transmission rate days−1

γIU Mean transition rate from infected

to ICU

days−1

γUR Mean recovery rate for ICU

patients

days−1

γSR Mean transition rate from

susceptible to recovered

days−1

γRS Mean transition rate from

recovered to susceptible

days−1

a Minimum of the real positivity rate –

k Decay rate of the real positivity rate inhabitants−1

Ithr Infection threshold of the real

positivity rate

inhabitants

2.2. A practical identifiability approach

We devised a practical identifiability approach that relies on

parameter optimization, a parametric bootstrap technique, and

data processing, for which computer implementation includes

open-source data and code repository through GitHub (15).

The approach relies on solving a parameter estimation problem

through a careful optimization algorithm, numerical resolution

of modeling equations, a parametric bootstrap technique,

and data processing. For solving the modeling equations, we

required the provision of reasonable bounds for the parameters,

which is critical for achieving a stable numerical method. In

addition, the parameter range is meaningful, at least regarding

the time delays that describe relevant parameters from the

epidemiology viewpoint.

Next, we describe each piece of the practical identifiability

approach.

2.2.1. Parameter estimation problem description
To reproduce and predict COVID-19 dynamics in Chile, one

has to solve the parameter estimation problem: given a dataset of

the time-series observations of COVID-19 dynamics, identify the

parameter vector θ such that general epidemiological modeling fits

them in the least-squares sense. The time-series observations we

used are

{[
(Ir)j, (Ur)j

]
: j = 1, · · · , n

}
.

Ir corresponds to the number of infected reported with

symptoms confirmed by RT-PCR tests [see Equation (2) and its

respective explanation], Ur corresponds to the observations of

variable U, i.e., the sum of the patients in the ICU and confirmed

deaths due to COVID-19, and n is the number of data.

More precisely, we have to find the vector θ ∈ R
p, defined by

Equation (6), that minimizes the sum of squares:

SS(θ) : =
∥∥(ResI , ResU)t

∥∥2
=

n∑

j=1

[
(ResI)

2
j + (ResU)2j

]
(7)

where ResI and ResU ∈ R
n stand for the relative residuals of

variable I and U, respectively, defined by

(ResI)j : =

[
(Ir)j − f (tj, θ2)I(tj, θ1)

]

f (tj, θ2)I(tj, θ1)
j = 1, · · · , n (8a)

(ResU )j : =

[
(Ur)j − U(tj, θ1)

]

U(tj, θ1)
j = 1, · · · , n. (8b)

The objective function defined in (7) corresponds to the sum

of squares of the residuals relative to the model observations,

f (tj, θ2)I(tj, θ1) and U(tj, θ1). The choice of the relative residuals

obeys to take into account the unequal quality of the observations

(16). In this case, the patients in the ICU plus confirmed deaths due

to COVID-19 (variable U) is better observed than those infected

(variable I).

The components of ResI , defined in (8a), correspond to

the differences between the time-series observations (Ir)j, and

the model observations f (tj, θ2)I(tj, θ1) (see Equation 2). The

components of ResU , defined in (8b), are the differences between

the time-series observations (Ur)j, and the model observations

U(tj, θ1). Both variables, I and U, correspond to the solution of the

general epidemiological model (5), (2), and (3) calculated at (tj, θ)

for j = 1, · · · , n, for a given parameter vector θ = (θ1, θ2) ∈ R
p

defined by (6).

2.2.2. A careful optimization algorithm
To calibrate general epidemiological modeling, we

implemented a careful optimization algorithm that combines

data processing algorithms (cleaning, smoothing, and curve

interpolation), initial parameter estimation generation, and a

non-linear least-squares optimization method to minimize SS(θ)

[Equation (7)] for each processed dataset.

The argument minimum of the sum of squares designs as θ̂

for every dataset. The vector θ̂ is called the non-linear least-squares

estimator, abbreviated as non-linear LSE.

Next, we provide details on the implementation.

2.2.2.1. Implementation

We employed theTrust-Region Interior Reflective (TIR)method

implemented in Matlab R2022b as the subroutine lsqnonlin,

specially adapted for solving non-linear least-squares minimization

problems. The convergence of the TIR method depends strongly

on initial parameter estimation, which has to be relatively close to
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the optimal solution (7, 8). We efficiently minimized the objective

function by implementing a percentage decrease technique from the

parameters’ ranges to calculate suitable initial parameter vectors for

every dataset in a standardized manner. According to our previous

experience (5), the initial parameters that mainly influence the

fitting results are β , γIU , γUR ∈ R
nβ+1, which describe the mean

rate of disease transmission and transitions from I-to-U and U-

to-R. To avoid overfitting, we selected nβ equispaced intervals to

accurately fit and predict after the final calibration time for every

dataset.

Next, we explain the numerical resolution of general

epidemiological modeling within a range for meaningful

parameters and the percentage decrease technique, which are

critical for implementing our careful optimization algorithm.

2.2.2.2. Numerical resolution of general epidemiological

modeling

To evaluate the objective function SS(θ), we numerically solved

the model (5) at tj, j = 1, · · · , n, for different parameter vectors

θ chosen ad-hoc for each dataset. We carried out the numerical

resolution by a Runge-Kutta type formula (17): the subroutine

dde23 implemented in Matlab, designed for solving non-linear

DDE systems. In addition, we reconstructed the function of history

(required for solving DDE instead of the initial condition for

classical ordinary differential equations systems) for the model

(5) by interpolating the data Ir(t), Ur(t), and recovered for

every studied dataset. We used a shape-preserving piecewise cubic

interpolation as devised by the interp1 Matlab subroutine with the

option pchip.

2.2.2.3. Meaningful parameter bounds

We computed the model parameters θ given in (6) using

meaningful bounds from an epidemiological viewpoint for the time

delays: 1 ≤ τ1 ≤ 14, 1 ≤ τ2 ≤ 21, 14 ≤ τ5 ≤ 56, and 21 ≤ τ6 ≤ 42

days. We imposed these bounds because the incubation period

(τ1) ranges from 1 to 14 days (mean of 5–6 days), the median

time from onset to clinical recovery for mild COVID-19 cases is

approximately 2 weeks (τ2), and is 3–6 weeks for patients with

severe or critical symptoms (τ6). In addition, among patients who

died, the time from symptom onset to outcome ranged from 2 to 8

weeks (τ5) (18). In addition, we assume that vaccination immunity

duration, τ4, ranges from 1 to 240 days since immunity declines

only at 6–8 months after natural infection (19). In contrast, no

range is well-determined for the transition time from susceptible

to recovered, τ3, however, one may expect that it is relatively small,

so we assume 1 ≤ τ3 ≤ 14.

For the real positivity fraction, f (t), one has that

0 < a < 1, min{(Ir)j : j = 1, · · · , n} ≤ Ithr ≤ max{(Ir)j :

j = 1, · · · , n}.

Finally, all the rest of the parameters (transition and

transmission rates) have to be within ranges to achieve stability of

the careful optimization algorithm implementation, mainly related

to general epidemiological modeling numerical resolution, as we

explain next.

2.2.2.4. Percentage decrease technique for numerical

stability

Convergence of the optimization algorithm, lsqnonlin, depends

directly on that of the dde23 solver, both implemented in Matlab.

Through our experiments, we verified that the model’s numerical

solution calculated by dde23 strongly depends on the derivatives

of the first points evaluated, and its convergence relies on the

closeness of the initial curves used to build the history function. To

overcome this stability problem without intervening or designing

newMatlab numerical libraries, we developed a simple but effective

technique, called the percentage decrease technique, to produce

initial curves contained in the feasible space of the official data

curves.

The percentage decrease technique consists of multiplying

the upper bounds of the parameter vector θ (see Equation

6) by a fraction ω ∈ [1e − 4, 1e − 2], excluding time

delays τ (see Equation 6e). Concretely, we chose the initial

parameter vector defined by θ (0) : = ω · UBθ , where

UBθ stands for the upper bound of θ , described in Section

2.2.2.3.

We calibrated ω for every studied dataset representing a

characteristic epidemiological curve, with the magnitude or period

of peaks’ duration differentiated, which is mainly related to the

density and mobility of the population. We chose a value of ω

inversely proportional to the population size within the interval

[1e − 4, 1e − 2]. Therefore, one should use a small value, e.g.,

ω = 1e− 3 or 0.1% of UBθ for large cities (millions of inhabitants),

and an even smaller value, e.g., ω = 1e − 4 or 0.01% of UBθ for

towns with fewer inhabitants (less than one million). Generally,

ω = 1e − 3 works well for all cases obtaining a similar minimum

error. Still, we calibrated a suitable value of ω for every dataset

to speed up the execution time of the optimization subroutine

lsqnonlin.

2.2.3. A parametric bootstrap technique
Once we calibrated a dataset, we applied a parametric

bootstrap technique (PBT) to quantify the parameters’

uncertainty and construct confidence intervals to achieve

reliable and accurate forecasting performance, obtained

by propagating the uncertainty (9). The PBT generates

synthetic datasets repeatedly sampled from the least-squares

curves:

F
(
tj, θ̂

)
: =

[
f
(
tj, θ̂2

)
I
(
tj, θ̂1

)
, U

(
tj, θ̂1

)]
. (9)

However, the PBT requires intensive computational resources

and time since it generates simulated data from F(tj, θ̂) and

calculates least-squares parameter estimates for each generated

synthetic dataset. Therefore, we applied this technique to show

the predictive power of general epidemiological modeling and

assess vaccination only for one dataset, corresponding to days 280–

530 that encompass the Metropolitan region’s second wave, and

considering the last 12 weeks to test the forecasting performance

of the PBT.
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In the PBT, one assumes that synthetic data follows a given

probability distribution with an expected value equal to the least-

squares curves F(tj, θ̂). To be precise, we implemented the following

algorithm:

1. We calculated the parameter estimates θ̂ through least-squares

fitting the model to the time-series data to obtain the best-fit

model given by F(tj, θ̂) (see Equation 9).

2. Using the least-squares fitted model F(tj, θ̂), we

generated M replicated synthetic datasets denoted by

FSD1 (tj, θ̂), FSD2 (tj, θ̂), · · · , FSDM (tj, θ̂). We generated synthetic

datasets as random vectors with a mean equal to F(tj, θ̂):

FSDk (tj, θ̂) ∼ Dist

[
F(tj, θ̂)

]
(10)

where Dist is a given probability distribution of mean equal

to F(tj, θ̂), and variance proportional to the mean magnitude

or the covariance matrix of it. For instance, we used the

normal, Poisson, and negative binomial distributions. The last

is adequate to model data over-dispersion while controlling its

magnitude (9).

3. We re-calculated the least-squares parameter estimates fitting

the model to each of theM-simulated datasets realizations. Each

parameter vector is denoted by θ̂ℓ for ℓ = 1, 2, · · · ,M.

4. Using the set of re-estimated parameters θ̂ℓ, ℓ = 1, 2, · · · ,M,

we calculated a confidence interval at the level of 95%. The

uncertainty around the least-squares model fit is given by

F(tj, θ̂1), F(tj, θ̂2), · · · , F(tj, θ̂M).

Typical values for the number of bootstrap samples M

range from 50 to 200 for a proper standard error estimation;

see p. 13–14 in (20). Indeed, by choosing M = 100, the

standard error estimate provides reliable results for parameter

estimation, as shown in Section 4. However, beyond choosing a

good number of bootstrap samples M, careful implementation

of the PBT is critical for obtaining θ̂ℓ corresponding to F(t, θ̂ℓ)

so that the curves that are reproduced and predicted remain

positive for all t within the time interval of calibration and

prediction.

The calculated confidence interval is our prediction interval,

denoted by PI, and defined by:

PI : =
[
LB

θ̂
, UB

θ̂

]
: =

[
¯̂
θ ± t0.975,M−1 SE

]

=

¯̂
θ

[
1± t0.975,M−1 NSE

]
, (11a)

NSE : =
SE

¯̂
θ

=

1
√

M

s
θ̂

¯̂
θ

, (11b)

where
¯̂
θ ∈ R

p is the mean of theM bootstrap parameters θ̂ℓ ∈ R
p,

t0.975,M−1 is the 0.975 percentile of the t-student distribution with

M − 1 degrees of freedom, s
θ̂
∈ R

p is the standard deviation of

the M bootstrap parameters, and NSE ∈ R
p is the normalized

standard error (5) (the definitions of s
θ̂
and NSE are understood

component-by-component).

The resulting uncertainty around the least-squares model fit,

F(t, θ̂), is quantified by the 95% confidence bounds [LB
θ̂
and UB

θ̂
,

defined by (11)] (9). Since we are interested in computing a more

accurate prediction for the ICU curve trend in the medium term,

we define an error criterion that includes performance for fit and

forecasting. More precisely, we define

E(θ̂ℓ) : = 0.6FPU (θ̂ℓ)+ 0.2FPI(θ̂ℓ)+ 0.1[RMSEU (θ̂ℓ)

+RMSEI(θ̂ℓ)], ℓ = 1, · · · ,M. (12)

In Equation (12), the root mean squared error (RMSE) to

measure the fit performance is defined by (16):

RMSEI =


 1

n− p

n∑

j=1

(ResI)
2
j



1/2

,

RMSEU =


 1

n− p

n∑

j=1

(ResU )
2
j



1/2

. (13)

We calculated the RMSE over the calibration period (n and

p are the calibrated dataset size and the number of model

parameters, respectively). A similar criterion was employed for

the forecasting performance (FP), but the sum over the prediction

period was computed and normalized by the number of predicted

data points.

In Equation (12), we gave more weight (60%) to FPU since

variable U is better observed than variable I, followed by FPI
(20%) and the RMSE for both variables (10% each). Furthermore,

it was more important to make more effort to follow up with the

sum of the ICU patients and those who had died than those who

were infected. Thus, we first focused on having better forecasting

performance for ICU patients plus those who died and then on the

number of infected persons reported. We gave less importance to

the fitting performance, so the model did not overfit to actual data,

which have much uncertainty, among other problems discussed in

Section 3.1.

From the error criterion given in (12), we define the best

parameter vector, denoted by θ̂ ¯k, among the vectors θ̂ℓ for ℓ =

1, · · · ,M that minimizes E(θ̂ℓ), i.e.,

E(θ̂ ¯k) : = min
1≤ℓ≤M

E(θ̂ℓ) (14)
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The best parameter vector defined in this way realizes the

minimum error of the PBT we implemented and induces the best

model curves, which privilege the forecasting performance. So,

the best model curves are those evaluated at the best parameter

vector, F(t, θ̂ ¯k). In addition, the prediction interval PI produces an

envelope of model curves F(t, θ̂ℓ) for ℓ = 1, · · · ,M, quantifying

uncertainty around the best model curves F(t, θ̂ ¯k).

Finally, to assess the impact of vaccination, we compared

different immunity durations, the parameter τ4, from 60 to 240

days, spaced every 30 days. For that, we calculated a weighted mean

between the least PBT error E(θ̂ ¯k) given in (14) with the mean of

the NSE given in (11b), denoted by NSE. We evaluated the best τ4

as the value minimizing the weighted error, WE, defined by

WE : =
2

3
E(θ̂ ¯k)+

1

3
NSE. (15)

We gave more weight (66.67%) to the minimum PBT error and

the least weight (only 33.33%) to the mean of the NSE to privilege

the FP in (14) over the uncertainty represented by the NSE in (11b),

which was within reasonable bounds.

2.2.4. Data processing and actual data limitations
The datasets’ sources correspond to the Chilean government’s

COVID-19 database at the regional level, which we used to

track and predict COVID-19 dynamics (10). We used datasets

representing different regions of the north, south, and center,

including the Metropolitan Region (MR), the major city of which

is the country’s capital, Santiago de Chile. They correspond to

reported infected persons with symptoms confirmed by RT-PCR

tests (Ir), recovered cases (R), patients in the ICU, those confirmed

dead due to COVID-19 (D), and the size of targeted populations

(N).We appliedmobile averages with different window sizes to deal

with data that were not always reported daily and to smooth out

the data.

2.2.4.1. Available actual data limitations

A common problem in processing and modeling

epidemiological curve data is the time lag of the information

reported, which was not daily but accumulated every 3–5 days in

the Chilean case as observed in Figure 1, which depicts various

sub-peaks in the official Chilean data curves, specifically in the data

of those infected (I), recovered (R), and deceased (D). In addition,

the relevant information is only detailed at the national level,

FIGURE 1

O�cial COVID-19 incidence curves (Chile); raw data and processing with moving averages.
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such as daily admissions to the ICU and COVID-19 reinfections

according to the vaccination scheme, which was accumulated

weekly, and provisional since it was being validated [(10), product

90]. Therefore, using data in constant validation does not ensure

a precise replication of the results, unlike I, R, and ICU, which

have been maintained without significant variation over time. In

addition, in the case of deaths in Chile at the beginning of 2022, the

probable cases (without a prior confirmation test for COVID-19)

were added to the official data (more than 10,000 cases) for the

daily death count. Since the daily distribution of such cases is

unknown, in our study, we only considered confirmed death due

to COVID-19 reported daily.

Although different epidemiological datasets are available in the

official Chilean repository (10), most are designed for statistical

studies rather than for modeling studies. The most consistent data

(without repetition of cases) is deceased persons, which has a

high correlation (Pearson coefficient of 0.8) with hospitalized ICU

patients (Figure 2). Therefore, in addition to being relevant data to

determine the hospital load, hospitalized ICU patients are of high

value in terms of the quality of the available data, from which one

can conduct modeling studies at the regional level for the Chilean

case. Furthermore, the interest in approximating regional curves

and not only the national ones is based on the fact that it allows us to

validate our general modeling framework with several datasets and

analyze the epidemic in different geographical areas. The previous

consideration is relevant to Chile, the longest country in the world,

with different climates from north to south, and therefore a good

case study for the present work. Finally, we applied our general

modeling framework to study the COVID-19 data available (I, R,

ICU, and D) and, in the future, we will extend and adapt to any

transmissible disease in any country. It is feasible given that in

most of the world, it is more viable to track critical cases (those

hospitalized in ICUs), deaths, and, to a lesser extent, those who are

infected/recovered (the actual total is never reached).

2.2.4.2. Hardware, software, and parallel computing

We used a data science workstation for the careful optimization

algorithm implementation with the following features: Intel Core i9

FIGURE 2

Correlations of incidence curves (Chile).

7900x, 10 Cores/20 threads, 128 Gb memory, NVIDIA Titan RTX

24Gb, and twomobile laptops with Intel Core i7s, 4 Cores/8 threads

with 16 Gb memory. We implemented all our calibration codes by

using the software Matlab R2022b. In addition, we used the Matlab

parallel computing toolbox to speed up the computation with the

parpool (“Processes,” 20) option on the workstation.

For implementing the PBT (forecasting), we used two mobile

laptops equipped with an Intel Core i7 processor with 8 and 12

cores, respectively, with 16 Gb of RAMwithout parallel computing.

3. Results

3.1. General modeling framework
calibration results

3.1.1. Data processing results
Data processing shows that the highest correlated variables

are I and R, followed by ICU admission with ICU hospitalized

and deceased with ICU hospitalized (Figure 3). The two latter are

the most relevant indicators of the impact of the pandemic on

the health system, which justifies our choice of privileging the

forecasting performance in U, as made in Equation (12).

In addition, the optimization results strongly depend on the

parameters’ initial values and the fitted data quality. By applying

moving averages of 14 days, we reduced abrupt slope changes

of the actual epidemiological curves (Figure 1), improving results

with information loss of less than 2% of incidences for both

infected and ICU. In addition, using moving windows combined

with the cumulative distribution curves (Figure 3) reduces the

number of steps of the Matlab dde23 solver (for non-linear

DDE systems) because the slopes are always positive and not

as steep as for daily curves. In this way, our method allows

for calibrating parameters with accumulated and daily curves,

where the cumulative data is helpful in efficiently fitting from

the pandemic’s beginning to any subsequent location and day to

perform block tracking.

3.1.2. Calibration results
The percentage decrease technique, described in Section

2.2.2.4, ensures the overall method stability and convergence by

preventing the NaN appearance (NaN means “Not a Number”)

when overflow occurs (computational numerical limit exceeded).

NaNs are propagated in the model’s history function, making

the optimization solver lsqnonlin require more time to find new

feasible points and often diverge. Using differentω values in θ (0) : =

ω ·UBθ , one may generate suitable initial curves for I and U below

the epidemiological curves. For smallω values (ω ∈ [1e−4, 1e−2]),

the initial curve will approximately be a straight line, obtained

with government data, and greater than zero. By applying this

simple but effective technique, our careful optimization algorithm

implementation ensures stability and convergence for the dde23

solver and the lsqnonlin optimization subroutine within the range

of suitable parameters, as described in Section 2.2.2.3.

Furthermore, to speed up the computation, we performed

a one-step initial optimization defining the real positivity rate

f (t) = 1. This was the same as taking I(t) = Ir(t), i.e.,
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FIGURE 3

Cumulative incidence curves (Chile). Logarithmic and raw data, respectively.

Table 2 Model results for di�erent ω.

Id Fraction ω Curve/window REI RER REICU nβ + 1 t (days) UBτ4

MR.1, Figure 4 1e-03 cum/2 weeks 3.2808e− 01 4.1021e− 01 1.8342e− 01 20 [30, 950] 240

MR.2, Figure 5 1e-03 cum/2 weeks 8.2663e− 02 1.4144e− 01 1.99823− 02 20 [30, 250] 240

MR.3, Figure 6 1e-03 cum/2 weeks 4.5210e− 02 1.6722e− 01 9.4964e− 03 20 [30, 250] 50

VAL.1, Figure 7 1e-03 cum/3 weeks 1.0394e+ 00 6.9195e− 01 7.9057e− 01 20 [250, 950] 240

ANT.1, Figures 8C, D 3.5e-03 daily/3 weeks 1.8747e− 01 1.0747e+ 00 8.2074e− 02 20 [250, 600] 240

MAG.1, Figure 9 2.5e-04 cum/2 weeks 9.9075e− 01 3.2812e+ 00 3.4139e+ 00 20 [100, 950] 240

all the actual infected are reported on the entire curve and

storing the resulting ω as a checkpoint. Then, when required to

optimize the curve over any time interval, the obtained ω was

used as the initial value, starting the computation closer to the

optimum.

In Table 2, we present the optimization results for several

datasets located throughout all of Chile: the Metropolitan region,

Valparaíso region (center), Antofagasta region (northern), and

Magallanes region (southern), designated by the identifiers MR,

VAL, ANT, and MAG in the Id column. We plotted the

corresponding curves in Figures 4–9. In addition, Table 2 shows the

results concerning a study on the immunity duration in different

time intervals to assess vaccination. We obtained the calibration

results by varying the upper bound UBτ4 of the parameter τ4 for

a dataset that contains the MR’s first wave; see rows MR.2-MR.3

in Table 2 and Figures 5, 6. The interpretation was that the least

mean relative error for I and U, REI and REU , implied that the

corresponding τ4 value was the most probable for the respective

dataset. This τ4 variation is helpful for the analysis, simulation, and

evaluation of epidemiological scenarios where, for example, a better

fit for τ4 larger means a high vaccine immunity duration.

From Table 2, for example, by decreasing the upper

bound of τ4, comparing the results between MR.2 and MR.3

(through REI and REU ), we observe that τ4 is small, which

could be interpreted as correct, since in the MR’s first wave

there was no vaccination and therefore no immunity due

to it.

General epidemiological modeling with cumulative data allows

us to fit the complete epidemiological curve for analytical purposes

(MR.1 in Table 2) with slightly less precision. In some cases, it was

necessary to increase the moving window size to handle abrupt

changes of derivative in the curves or optimize with other fractions

of the upper bounds (different values of ω). Although the error

obtained may increase, these approximations (Val.1 in Table 2)

should be considered since they may indicate a data problem or a

change in the epidemiological scenario. The fact that these cases

of higher error occur only for the data from those infected is

another reason to focus more on the number of ICU patients plus

deceased.

An example of the cases explained above is the Antofagasta

region, the results from which are quantified with the ANT.1

identifier in the Id column in Table 2 and depicted in Figure 8A.

We observed a wave not reported in the data for t ∈ [250, 950].

In addition, Figure 8C depicts that the model fits data for t ∈

[250, 600], with low error for I and U, even if the actual infected

(calculated by the model) was much higher than reported.
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FIGURE 4

Fitted incidence curves in the Metropolitan region, Chile, 1 April 2020 to 8 October 2022.

FIGURE 5

The first epidemiological wave in the Metropolitan region, Chile. 1 April 2020 to 7 November 2020; UBτ4 = 240 (unrestricted immunity duration).

Finally, we present the case of the Magallanes region (MAG.1

in Table 2), a zone located in the extreme south of Chile

with very few inhabitants and, therefore, little data. Despite

this, the model also fits curve U reasonably, despite a more

significant error, where the relevance is to interpret the curve’s

trend.
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FIGURE 6

The first epidemiological wave in the Metropolitan region, Chile. 1 April 2020 to 7 November 2020; UBτ4 = 50 (immunity duration restriction).

FIGURE 7

Fitted incidence curves in the Valparaíso region, Chile. 7 October 2020 to 8 October 2022; UBτ4 = 240 (unrestricted immunity duration).

Frontiers in PublicHealth 12 frontiersin.org100

https://doi.org/10.3389/fpubh.2023.1111641
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Cumsille et al. 10.3389/fpubh.2023.1111641

FIGURE 8

Fitted incidence curves in the Antofagasta region, Chile; UBτ4 = 240 (unrestricted immunity duration). (A, B) 7 November 2020 to 8 October 2022;

(C, D) 7 November 2020 to 23 October 2021.

FIGURE 9

Fitted incidence curves in the Magallanes region, Chile. 10 June 2020 to 8 October 2022; UBτ4 = 240 (unrestricted immunity duration).
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3.2. Parametric bootstrap technique results

In this section, we want to show the predictive capabilities of

our general modeling framework. For that, we applied the PBT for

the 280–530 time interval in the Metropolitan region (MR), which

encompasses the MR’s second wave, and the prediction period was

12 weeks.

First, we demonstrate the results obtained using the careful

parameter optimization for fitting general epidemiological

modeling to the actual data by minimizing the sum of squares (7)

(step 1 of the algorithm described in Section 2.2.3). A code run

with this method with 100 iterations took around 14 min in an

Intel Core i7 processor with eight cores and 16 Gb of RAM.

We summarize the numerical results in Table 3 and depict

the least-squares fitted model curves F(tj, θ̂) (Equation 9) in

Figure 10. The corresponding error evaluated in the non-linear LSE

θ̂ , according to Equation (12), is E(θ̂) = 4.3387e− 01.

Second, we show the model results obtained through the

PBT to achieve a better fitting and forecasting performance

(the entire algorithm is described in Section 2.2.3). The PBT

is computationally intensive since the code runs took around

Table 3 Least-squares model results.

h
h
h
h
h
h
h
h

h
h
hh

Criterion
Variable

I U

FP 6.3983e-01 4.3173e-01

RMSE 4.3539e-01 3.3227e-02

24/16 h on one/two high-performance laptops, as described

in Section 2.2.4.2. Using the two laptops, we calculated 50

parameter estimates to obtain the M = 100 bootstrap

parameter realizations for fitting general epidemiological modeling

to every synthetic dataset generated by a normal distribution

with moderate variance relative to the least-squares curves

F(tj, θ̂) [Equation (9)], as explained in Section 2.2.3. Then, we

constructed the best parameter estimate [θ̂ ¯k defined in (14)] and

the PI [LB
θ̂
and UB

θ̂
defined in (11)]. With these estimates,

we plotted the respective curves for infected persons Ir and

the sum of ICU patients and those who were reported dead

Ur .

Figure 11 depicts the model results for synthetic datasets

constructed as explained above. The minimum PBT error was

E(θ̂ ¯k) = 2.8775e − 01, calculated according to Equation (14).

Finally, the parameter estimates uncertainty, corresponding to the

curves plotted in Figure 11, ranged between 0.02 and 18.92% with

a mean of 4.61% measured in normalized standard error (NSE) in

percent, as defined in Equation (11b).

3.3. Assessing the impact of vaccination

We compared different values of the parameter τ4 in the range

of 60–240 days to assess the impact of vaccination on immunity.

For τ4 values spaced every 30 days, and ranging between 60 and 240

days, we obtained the results summarized in Table 4, which shows

the minimum PBT error E(θ̂ ¯k) given in (14), the mean of the NSE

(NSE) given in (11b), and the weighted error WE given in (15).

FIGURE 10

Incidence curves obtained by least-squares. 7 December 2020 to 14 August 2021, encompassing the Metropolitan region’s second wave in Chile.
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FIGURE 11

Incidence curves obtained by the PBT. 7 December 2020 to 14 August 2021, encompassing the Metropolitan region’s second wave in Chile.

From Table 4, we observe that the best value for τ4 was τ4 = 60

days since it yielded the least weighted error WE.

4. Discussion

Concerning quantitative tracking of COVID-19 dynamics, we

can calibrate any dataset with our general modeling framework.

In effect, we show the framework’s calibration capabilities

through several examples for different regions of Chile; see

Table 2 and the corresponding plotted curves in Figures 4–9. In

addition, we corroborated that immunity duration was short

(τ4 ≤ 50 days, as shown in row MR.3 in Table 2) during the

Metropolitan region’s first wave (when there was no vaccination

yet). Consequently, our general modeling framework provides a

flexible tool for studying the dynamics of any transmissible disease

and assessing vaccination, despite the vaccination deficiencies and

data limitations discussed in Sections 2.1.2.1, 2.2.4.1. To do so, it

suffices to have time-series observations for the number of infected

persons and ICU patients and to find a suitable range of initial

parameters meaningful from the epidemiology viewpoint. Then,

the percentage decrease technique allows us to find a unique range

of parameters proper for every studied dataset, which provides

overall method numerical stability and convergence, as shown in

this article.

Concerning the framework’s predictive capabilities, we applied

the PBT to a dataset encompassing the Metropolitan region’s

second wave. The results shown in Table 3 and depicted in

Table 4 Model results for di�erent values of τ4.

τ4 E
(
θ̂
¯k

)
NSE WE

60 2.7309e-01 4.9037e-02 1.9840e-01

90 2.8199e-01 4.9866e-02 2.0462e-01

120 2.9898e-01 5.3788e-02 2.1725e-01

150 2.9882e-01 6.2228e-02 2.1995e-01

180 2.8646e-01 5.4880e-02 2.0926e-01

210 3.4228e-01 5.1622e-02 2.4539e-01

240 3.5367e-01 6.2833e-02 2.5672e-01

τ4 is the mean immunity duration by vaccination; see Table 1.

E(θ̂ ¯k) is the minimum error of the parametric bootstrap technique (PBT); see Equation (14).

NSE is the mean normalized standard error (NSE); see Equation (11b), and

WE is the weighted error; see Equation (15).

Figure 10, show that fitting the model to processed data by

least-squares produces a forecasting performance for variables I

and U that could be better (even more for U), despite their

respective fitting performance (RMSE) being excellent. From the

PBT implementation, we found that the parameter uncertainty

range, evaluated through the percentage NSE, needed to have

reliable parameter estimates (between 0.02 and 18.92% with a

mean of 4.61%), so the number of bootstrap samples M =

100 was suitable. In addition, Figure 11 shows an outstanding

forecasting performance for variables I and U (even more for U)

with an error of 1.5 times less than for the usual least-squares

method (E(θ̂) ≈ 1.5E(θ̂ ¯k)). Therefore, our general epidemiological
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framework can accurately predict the ICU curve trend in the

medium term (12 weeks). However, a limitation to achieving such

a good prediction performance is that the PBT is costly from a

computational viewpoint.

In Figure 11, we observe that the segmented curves (green

lines) are more significant than the filled curves (blue lines) in

specific time intervals, despite that the parameter vector of the firsts

[evaluated at the lower bound of the PI; Equation (11a)] is smaller

than the one of the seconds [evaluated at the best parameter vector;

Equation (14)]. It may happen since, according to Equations (5b)

and (5d), the curves for variables I and U will be significant if

the γIR(t), γIU (t), and γUR(t) rates are close to zero in some time

intervals (which is the case of the segmented curves).

Concerning vaccination assessment relative to its immunity

duration, from Table 4, we infer that τ4 > 60 values do not adapt

to the dataset encompassing the MR’s second wave. Therefore, the

immunity duration should be less than 60 days. This exciting result

implies a short immunity duration during the MR’s second wave,

which is not surprising since vaccination at that time was not yet

widespread. In addition, this result would corroborate that the

vaccination effect is not as significant as the immunity provided by

natural infection, as discussed in Section 2.1.2.1. Indeed, the third

wave magnitude (the most prolonged and steepest so far) shows

that vaccination was relatively ineffective regarding protection

against infection before it. However, onemay think that vaccination

manifests a positive effect by the time of the third wave, which we

can infer from the fact that the ICU patient and death data are low

compared to the infected data during that wave.

Our results rely on the piecewise linear reconstruction of time-

varying parameters γIR, γSR, γRS, γIU , β , and γUR. We could

improve this arbitrary choice by assuming the mechanical laws of

the transmission rate (β) or other rates as, for example, in (21).

5. Conclusions

This work attempts to implement a holistic and general

modeling framework for quantitative tracking of the dynamics of

any transmissible disease, focusing on accurately predicting the

ICU curve trend in the medium term and assessing vaccination.

Implementing a careful optimization algorithm, we obtained

outstanding results concerning quantitative tracking of COVID-

19 dynamics for several processed datasets representing different

regions of Chile and assessing vaccination. In addition, a

parametric bootstrap technique allowed us to predict the ICU curve

trend in the medium term accurately and assess vaccination. As a

result, the scientific community could adapt our general modeling

framework to evaluate the impact of combined vaccination and

NPI strategies for COVID-19 or any transmissible disease in any

country and help visualize the potential effects of implemented

plans by policymakers.

In conclusion, the two main lessons are that we must be

prepared to face another pandemic like COVID-19 and that it is

more important to make more effort to follow up the ICU patients,

which are highly correlated with dead confirmed by COVID-19.

To tackle the first lesson, in future work, we want to improve

the computational cost of the parametric bootstrap technique

or use another technique more efficiently. The aim would be

to reconstruct epidemiological curves to predict the combined

NPIs and vaccination policies’ impact on the ICU curve trend

in real time, providing scientific evidence to help anticipate

policymakers’ decisions.
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Background: The E�cacy and e�ectiveness of vaccination against SARS-CoV-2

have clearly been shown by randomized trials and observational studies. Despite

these successes on the individual level, vaccination of the population is essential

to relieving hospitals and intensive care units. In this context, understanding the

e�ects of vaccination and its lag-time on the population-level dynamics becomes

necessary to adapt the vaccination campaigns and prepare for future pandemics.

Methods: Thiswork applied a quasi-Poisson regressionwith a distributed lag linear

model on German data from a scientific data platform to quantify the e�ects of

vaccination and its lag times on the number of hospital and intensive care patients,

adjusting for the influences of non-pharmaceutical interventions and their time

trends. We separately evaluated the e�ects of the first, second and third doses

administered in Germany.

Results: The results revealed a decrease in the number of hospital and intensive

care patients for high vaccine coverage. The vaccination provides a significant

protective e�ect when at least approximately 40% of people are vaccinated,

whatever the dose considered. We also found a time-delayed e�ect of the

vaccination. Indeed, the e�ect on the number of hospital patients is immediate for

the first and second doses while for the third dose about 15 days are necessary to

have a strong protective e�ect. Concerning the e�ect on the number of intensive

care patients, a significant protective response was obtained after a lag time of

about 15–20 days for the three doses. However, complex time trends, e.g. due to

new variants, which are independent of vaccination make the detection of these

findings challenging.

Conclusion: Our results provide additional information about the protective

e�ects of vaccines against SARS-CoV-2; they are in line with previous findings

and complement the individual-level evidence of clinical trials. Findings from this

work could help public health authorities e�ciently direct their actions against

SARS-CoV-2 and be well-prepared for future pandemics.

KEYWORDS

delayed e�ects, vaccination, non-pharmaceutical interventions (NPIs), linear lag models,

COVID-19, policy decisions
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1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) that emerged in China in late 2019 has caused major public

health concerns and continues to spread worldwide (1–3). There

have been a total of 614 million confirmed cases globally, with

over 6 million deaths reported, as of August 31, 2022, WHO (4).

In Germany, the first COVID-19 case was reported on January

27, 2020, in Bavaria and by March 1, 2020, more than 100

cases were reported (5). Non-Pharmaceutical Interventions (NPIs)

have quickly been promoted by the federal government including

schools, kindergartens, universities, borders for travelers closing

as well as national curfew and contact ban (6). The infection rate

decreased following these measures, however, in mid-July 2020,

the number of cases started to rise again due to relaxation (7).

NPIs have been sufficiently effective in curtailing and mitigating

the burden of the pandemic during at least its first waves (6, 7),

however, some of them such as containment and travel ban could

not bemaintained for long times. It was then believed that the use of

vaccines combined with some control measures may be necessary

to effectively curtail and eliminate COVID-19 (8).

In Germany, the vaccination program began on December 27,

2020, and as of August 31, 2022, 77.66% of all German population

have been fully vaccinated (9). The most used vaccines in Germany

are BioNTech (95% of efficacy), Moderna (94.1%), AstraZeneca

(67%), and Johnson & Johnson (67%) (10–12).

The effect of vaccines is manifold as they act on the individual

as well as the population level (13). On the individual level, vaccines

aim to reduce the risk of acquiring the infection and transmission

but also the clinical consequences once infected. The gold standard

study designs to assess vaccine efficacy are randomized placebo-

controlled trials. In addition, cohort and case-control studies

are used to measure the vaccine effectiveness during real-world

conditions (13). For the SARS-CoV-2 pandemic, several studies

have shown vaccines efficacy and effectiveness (14–17).

Contrary to cohort and case-control studies, ecological or trend

studies compare results on population level over time with varying

vaccine coverage (13). The classical approach in ecological studies

is to extrapolate from time trends before vaccine introduction,

thus creating counterfactual settings which are essential for causal

inference. However, the variants of SARS-CoV-2 and their different

impact on the pandemic dynamic have made extrapolation

extremely difficult.

Moreover, several mathematical models have been developed

to predict and assess the impact of vaccination on the transmission

dynamics of COVID-19. Gnanvi et al. (18) performed a systematic

and critical review on the reliability of predictions of the modeling

techniques on COVID-19 dynamics. Dashtbali and Mirzaie (19)

used a Susceptible, Exposed, Infected, Hospitalized, Recovered,

and Death compartmental model and found that, in the German

population, the number of infected cases at the epidemic peaks

decreases by increasing the vaccine coverage. Wollschläger et al.

(20) applied a multivariable logistic regression on data from the

German federal state of Rhineland-Palatinate and concluded that

vaccination coverage was associated both with a reduction in the

age-groups proportion of COVID-19 fatalities and of reported

SARS-CoV-2 infections. Braun et al. (21) developed an effect model

based on the Batman-SIZ algorithm for modeling the effect of

vaccination on the course of the pandemic in Germany. They

obtained that, the effect of vaccination in reducing the daily number

of new infections, the total number of infections and the occupancy

of intensive-care facilities in hospitals is proportional to the speed

with which the target population are vaccinated. Springer et al. (22)

used linear regression on the 4th corona wave in Germany and

showed that there is a negative correlation between the vaccination

rate and the infection incidence. Campos et al. (23) used a

membrane computing model for simulating the efficacy of vaccines

on the epidemiological dynamics of SARS-CoV-2. They obtained

that generalized vaccination of the entire population (all ages)

added little benefit to overall mortality rates. However, elderly-only

vaccination, even without general interventions directed to reduce

population transmission, is sufficient for dramatically reducing

mortality. Stiegelmeier et al. (24) proposed a p-fuzzy system in

order to model the COVID-19 epidemic evolution under the effect

of vaccination in Brazil. They concluded that the level of infestation

tends to decrease as the number of people vaccinated increases.

Sepulveda et al. (25) constructed a mathematical model based on a

nonlinear system of delayed differential equations to investigate the

qualitative behavior of the COVID-19 pandemic under an initial

vaccination program. They found that if the basic reproduction

number is less than one and the time delays are less than some

critical threshold, then the disease-free equilibrium is locally stable.

Thus, if public health authorities are able to reduce transmission

rates and increase vaccination rates, the burden of the COVID-19

pandemic can be reduced.

Despite the contributions of these studies, they showed

some limitations. First, the classic mathematical models of

epidemiological prediction are quite useful, but deterministic,

demonstrating only the average behavior of the epidemic, which

makes it difficult to quantify uncertainty (26). Second, the effect

of vaccination on COVID-19 reported data may not be linear.

Third, vaccination may also show effects that are delayed in time,

requiring assessment of the temporal dimension of the exposure-

response relationship (27). In addition, the previous studies ignore

the seasonal patterns of COVID-19 and the long-term trends in the

data. Indeed, themain challenge of modeling the effects of exposure

like vaccination on COVID-19 reported data lies in the additional

temporal dimension needed to express this relation, as the effects

depend on both intensity and timing of past exposure (28).

Although several studies have assessed the effects of vaccination on

COVID-19 dynamics, very few have considered its delayed effects.

The aim of this paper is to use an ecological or trend study to

evaluate the way how vaccine coverage of the German population

is associated with the number of SARS-CoV-2 patients in general

hospitals as well as intensive care units. Instead of extrapolating

from time trends before vaccine introduction, we adjusted for the

remaining time trends by natural splines with a high degree of

freedom. We applied a flexible modeling framework by Gasparrini

et al. (29) that can simultaneously represent exposure-response

dependencies and delayed effects. This family of models is called

distributed lag linear models (DLMs). Specifically, we evaluated

the effects of vaccination on the number of prevalent hospital

patients (hospital cases) and intensive care unit patients (ICU cases)

through three separate analyzes by considering people vaccinated
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with one dose (i), people vaccinated with two doses (ii), and people

vaccinated with three doses (iii).We focused on these two outcomes

(hospital cases and ICU cases) since for the COVID-19 pandemic,

controlling hospital and ICU admissions was for German public

health authorities, an important factor in saving the lives of the

patients (30).

2. Methods

2.1. Model framework

2.1.1. General form
To describe the time series of outcomes Yt , the general form of

the model is Gasparrini et al. (29):

f
(
E(Yt

)
) = α +

J∑

j=1

sj
(
xtj;βj

)
+

K∑

k=1

γkutk, (1)

where f is a monotonic link function and Yt is a count time

series response variable, with t = 1, . . . , n, following a distribution

that belongs to the exponential family. sj defines a smoothed

relationship between xj and Yt through a coefficient βj. uk represent

confounding variables and γk the related coefficients.

In this work, the outcomes Yt are daily numbers of prevalent

hospital patients and intensive care unit patients. According to

Cameron and Trivedi test (31), these outcomes are overdispersed

(α = 2903.716, p < 0.0001 for hospital cases and α = 1201.386, p

< 0.0001 for ICU cases). We therefore considered a quasi-Poisson

model with E(Y) = µ; V(Y) = φµ, and a canonical log-link in

Equation (1). Our motivation to choose the quasi-Poisson model

(instead of other alternatives such as the Negative Binomial model)

falls in the straightforward interpretation of the results.

2.1.2. Basic functions and delayed e�ects
The definition of the basis functions relies on two steps. In the

first step, the relationship between xj and f (E(Yt)) is represented

by s(x), and is set in Equation (1) as a sum of linear terms (29).

This relationship is carried out by the choice of a basis, a space

of functions of which s is an element (32). The associated basis

functions are some known transformations of the original variable

x that generate a new set of variables, termed basis variables (29).

Several basis functions have been proposed, and common functions

assuming smooth curves, like polynomials or spline functions (33,

34). The basis function is expressed as follows:

s (xt;β) = z
⊤

t · β , (2)

where z⊤t is the tth row of the n × vx basis matrix Z. The basis

dimension vx equals the degrees of freedom (df ) spent to define the

relationship in this space. The unknown parameters are estimated

including Z in the design matrix of the model in Equation (1).

In the second step, the delayed effects are considered as an

additional dimension. The outcome at a given time t is then

explained in terms of past exposures xt−l, where l (the lag)

represents the elapsed period between exposure and response, here

between vaccination and response.

In this study, the maximum lag is fixed at L = 30 days, based on

previous estimates of the incubation period for COVID-19 (35, 36).

2.1.3. The distributed lag linear models
For a maximum lag L, the additional lag dimension can be

expressed by the n× (L+ 1) matrixQ, such as:

qt. = [xt , . . . , xt−ℓ, . . . , xt−L]
⊤ , (3)

with qt . as the tth row of Q. The vector of lags ℓ =

[0, . . . , ℓ, . . . , L]⊤ corresponds to the scale of the additional

dimension. DLMs are specified by the definition of a cross-basis,

a bi-dimensional functional space describing at the same time, the

shape of the relationship along the predictor x and its distributed lag

effects (37). DLMs apply simultaneously the two transformations

described in Equations (2), (3). A DLM is expressed by Gasparrini

et al. (29):

s (xt; η) =

vx∑

j=1

vℓ∑

k=1

r
⊤

tj c·kηjk = w
⊤

t η, (4)

where rtj is the vector of lagged exposures for the time t transformed

through the basis function j, C is an (L + 1) × vℓ matrix of basis

variables derived from the application of the specific basis functions

to the lag vector ℓ, the vector wt is obtained by applying the vx · vℓ

cross-basis functions to xt and η a vector of unknown parameters.

2.2. The data

The time series of the COVID-19 data were extracted

from the Robert-Koch-Institute website (https://www.rki.de/)

and www.corona-datenplattform.de, data platforms for scientific

research. The predictors were the daily cumulative proportions

of people vaccinated with one dose (V1), two doses (V2), three

doses (V3) and the non-pharmaceutical interventions (NPI) index

(Figure 1A). The outcomes were the number of prevalent hospital

patients (hospital cases) and intensive care unit patients (ICU cases)

(Figure 1B). Hospital cases were collected from March 1, 2020, to

June 30, 2022, while ICU cases were collected fromMarch 24, 2020,

to June 30, 2022.

2.3. Application of DLM to German data

We were interested in the effects of the daily cumulative

proportion of people vaccinated with one dose (V1), two doses (V2)

and three doses (V3), respectively. As V1, V2 and V3 are highly

correlated, we first regressed each series of proportions against the

two others and collected the residuals (38), which were considered

as a second variable in the DLM. We performed three preliminary

separate analyzes as follows:

For the effect of V1, we considered:

model1 : log(V1) ∼ log(V2)+ log(V3)+ ǫa. (5)
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FIGURE 1

Time series of German data considered. (A) The predictors represented by the daily cumulative proportions of people vaccinated with one dose (V1),

two doses (V2), three doses (V3) and the non-pharmaceutical interventions (NPI) index. (B) The outcomes: the daily numbers of prevalent hospital

patients (hospital cases) and intensive care unit patients (ICU cases).

For the effect of V2, we used:

model2 : log(V2) ∼ log(V1)+ log(V3)+ ǫb. (6)

For the effect of V3, we applied:

model3 : log(V3) ∼ log(V1)+ log(V2)+ ǫc. (7)

The DLMs considered to assess the effects of V1, V2, and V3 on

the hospital and ICU cases were defined, respectively, as follows:

log(E(Yt)) = α1 + ns(time, df )+ β1V1,t + γ1ǫa,t + λ1NPIt , (8)

log(E(Yt)) = α2 + ns(time, df )+ β2V2,t + γ2ǫb,t + λ2NPIt , (9)

log(E(Yt)) = α3 + ns(time, df )+ β3V3,t + γ3ǫc,t + λ3NPIt , (10)

where Yt represents the hospital or ICU cases, log, the natural log

function, α1, α2, α3 are the models intercepts, ǫa, ǫb, and ǫc are

the residuals extracted from Equations (5)–(7). The variable time

was set in the model to consider long-term trends and to account

for some of the pandemic patterns, such as variants and seasonal

variations, which are not explained by remaining predictors. In

Equations (8)–(10), V1,t , V2,t and V3,t are the cross-basis functions

of the three vaccination doses while ǫa,t , ǫb,t and ǫc,t represent

the cross-basis functions for the residuals and NPIt , the cross-

basis function of the non-pharmaceutical interventions index,

considered as confounding variable in the models. The unknown

coefficients in the three models are β1, β2, β3, γ1, γ2, γ3, λ1, λ2 and

λ3. Moreover, in the Equations (8), (9), and (10), the terms V1,t ,

V2,t , V3,t , ǫa,t , ǫb,t , ǫc,t and NPIt are lagged with lags ℓ ∈ [0, L],

where L = 30 days represent the maximum lag period. This value
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was allocated to the maximum lag period considering previous

estimates of the incubation period for COVID-19 (35, 36).

The natural cubic spline ns, a flexible and effective technique

for adjustment for nonlinear confounding effects (39), was used

to adjust for the predictors with two degrees of freedom. This

number of degrees of freedom was selected after a sensitivity

analysis (40). The natural cubic spline ns was also used for the

variable time and the degrees of freedom (dfs) to find the best

modeling of the time trend was chosen by minimizing the Quasi-

Akaike information criterion (QAIC) (37) as we considered a

quasi-Poisson model framework.

The relative count change (RCC) with a 95% confidence

interval (CI), calculated as a relative increase/decrease in counts of

hospital and ICU patients, was used to assess the effects. RCC =

1 means that there is no connection between vaccination and the

disease while RCC < 1 and RCC > 1 are related to the reduction

and increase in counts of hospital and ICU patients, respectively

(41). Contour plots that depend on lag times and values of V1,

V2, and V3 were used to visualize the effects. All analyzes were

performed in R version 4.2.1 with the package dlnm (37).

3. Results

To assess the effects of V1, the best fitting was obtained for 15

and 16 degrees of freedom for ICU and hospital cases, respectively.

Concerning V2, 16 and 20 degrees of freedom for ICU and hospital

cases gave the best fitting. Regarding V3, 16 and 23 degrees

of freedom for ICU and hospital cases showed the best fitting.

Supplementary Figures S1, S2 showQAIC values andmodels fitting

(observed data and fitted models).

Figure 2 presents the contour plots of the combined effects of

lag times and vaccinations on the relative count change (RCC)

of hospital and ICU cases. Overall, low vaccine coverage for the

first, second and third doses (0–10%) and short (0–4 days) lag

times show no connection between vaccination and the number of

patients in hospital and ICU (RCC≈1). However, higher vaccine

coverages and longer lag times were associated with a bigger

decrease in the number of patients in hospitals and ICUs (RCC

< 1). The number of COVID-19 patients in hospitals or ICUs

significantly decreases as the vaccine coverage increases. Moreover,

there were delayed effects of vaccination according to the doses.

Strong protective effects were obtained for a lag time of about

15–20 days after vaccination, when at least about 40% of people

are vaccinated.

3.1. The e�ects of V1 on hospital and ICU
cases

Figures 2A, B show the contour plots of the effects of V1 and

lag times on the relative count change (RCC) of hospital and ICU

cases. There was no significant effect on hospital and ICU cases

(RCC≈1) for low vaccine coverage (0–10%) and short (0–4 days)

lag times. Protective effects (decrease in the counts of patients in

hospitals and ICUs) were observed around V1 = 20% with a lag

of 5 days, where RCC = 0.80 (95% CI 0.74–0.85) for hospital

cases and RCC = 0.92 (95% CI 0.88–0.97) for ICU cases. The

number of patients in hospital and ICU (RCC < 1) decreases then

sharply as the lag days and vaccine coverage increase. The number

of COVID-19 patients in hospitals or ICU significantly decreases

(strongest positive effects) for the highest vaccine coverage (77%)

and longest lag times (30 days) with RCC = 0.07 (95% CI 0.06–

0.09) for hospital cases and RCC= 0.24 (95%CI 0.21–0.27) for ICU

cases. Moreover, comparatively, the effects of V1 on hospital cases

are more immediate and intense than on ICU cases.

3.2. The e�ects of V2 on hospital and ICU
cases

Figures 2C, D show the relative count change (RCC) of hospital

and ICU cases as a function of V2 and lag times. Examining

the contour plots, no significant effect of V2 was observed on

hospital and ICU cases (RCC≈1) for low vaccine coverage (0–10%).

Considering the hospital cases, moderate and immediate positive

effects (decrease in counts of hospital patients) were obtained

for moderate vaccine coverage V2 (20–50%) while strong and

immediate positive effects were observed for high vaccine coverage

V2 (50–73%). For ICU cases, there were adverse effects (increase

in counts of ICU patients) for the highest vaccine coverage (70%)

and short (0–3 days) lag times with RCC=1.04 (95% CI 0.79–

1.35). From a lag of 5 days, the highest vaccine coverages V2

were associated with the lowest RCC values, showing strong and

positive effects on ICU cases, which last up to 30 days. The effects

of V2 on hospital cases are more immediate and intense than on

ICU cases.

3.3. The e�ects of V3 on hospital and ICU
cases

Figures 2E, F show the relative count change (RCC) of

hospital and ICU cases as a function of V3 and lag times.

No significant effect of V3 was noticed on hospital and ICU

cases (RCC≈1) for low vaccine coverage (0–10%). Regarding the

hospital cases, moderate and immediate positive effects (decrease

in counts of hospital patients) were obtained for moderate vaccine

coverage V3 (20–35%) while strong and immediate positive

effects were observed for high vaccine coverage V3 (40–61.50%).

For ICU cases, there were adverse effects (increase in counts

of ICU patients) for the highest vaccine coverage (60%) and

short (0–7 days) lag times with RCC = 1.03 (95% CI 1.00–

1.07). From a lag of 10 days, the highest vaccine coverages

V3 were associated with the lowest RCC values and strong

and positive effects on ICU cases were observed until a lag of

30 days.

Comparison between vaccine coverages shows that V1

has a more immediate and intense effect than V2 and that

V2 also has a more immediate and intense effect than V3.

These observations were made for both hospital and ICU

cases. Supplementary Figures S3, S4 present RCC point

estimates and their confidence intervals for vaccination

coverages V1, V2, and V3 in the cases of hospital and ICU

patients, respectively.
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FIGURE 2

Contour plots of the combined e�ects of lag times and vaccinations on the relative count change (RCC) of hospital and ICU cases. (A) Contour plot

of RCC of hospital cases as a function of V1 and lag times. (B) Contour plot of RCC of ICU cases as a function of V1 and lag times. (C) Contour plot of

RCC of hospital cases as a function of V2 and lag times. (D) Contour plot of RCC of ICU cases as a function of V2 and lag times. (E) Contour plot of

RCC of hospital cases as a function of V3 and lag times. (F) Contour plot of RCC of ICU cases as a function of V3 and lag times. DLM1, DLM2, and

DLM3 represent the distributed lag models for the first, second and third doses.

4. Discussion

In this study, we used an ecological or trend study to assess the

effects of vaccination and its lag-time on the number of COVID-

19 hospitals and ICU patients in Germany. From our results,

there was no significant link between the vaccination coverages

V1, V2, and V3 and the number of patients in hospital and

ICU for low vaccine coverages (0–10%) and short lag times as

the relative count change (RCC) was about 1. This means that

regardless of the dose of vaccination received, at least 10% of the

population must be vaccinated to expect a beginning protective

effect against hospital and ICU admissions. The protective effect

is low from 10% and then increases as the vaccination rate

increases. As expected, this result supports the point that a high

vaccination rate is correlated with a lower number of patients

in hospital and ICU (20). We also found that, in the context of

Germany, the vaccination takes its strong protective effect when

at least approximately 40% of people are vaccinated. This result is

consistent with those in Springer et al. (22), which show a negative

correlation between incidence and vaccination rate in Germany

during the 4th wave where the vaccination rate is above 40%.

Our findings are also in line with previous studies showing that
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COVID-19 vaccines are effective against severe forms of the disease

(20, 42).

Furthermore, our results showed a delayed effect of the

vaccination according to the doses and outcomes. Indeed, for the

hospital cases, the effect is immediate for the first and second doses

while for the third dose, a strong protective effect is obtained about

15 days after vaccination. Concerning ICUs cases, there was a lag

time of about 15–20 days to obtain a strong protective effect after

the first, second and third doses, respectively. These lag times are

short compared to that obtained by Li et al. (27) who argued that

the lag time for a response to vaccination was at least 40 days.

However, contrary to our study, they used the daily reported cases

and effective reproduction number as outcomes.

One strength of this study is that our outcomes (hospital and

ICU cases) are very specific with low random noise in contrast to

other outcomes (general SARS-CoV-2 cases, death cases associated

with SARS-CoV-2). German hospitals and intensive care units are

legally obligated to report these SARS-CoV-2 data diagnosed with

PCR. In Germany, there were about 16.69% and 33.36% deaths

among patients admitted to hospital and ICU, respectively (43).

These death rates are very high compared to those in the whole

population, which is 4.35% (44). It was then important to quantify

the effects of vaccination to analyze its contribution to the control

of hospital and ICU admissions since public health authorities were

most concerned about the scenario where the demand exceeds the

capacity of healthcare services (30). To our knowledge, this study

is the first that analyzes the effects of vaccination and its lag times

on the number of COVID-19 patients in hospitals and ICUs in

Germany taking into account long time trends. The findings of

this work are relevant and can be applied in other settings and

localities. We also included NPIs in our models as a confounding

variable since they were maintained at a certain level in the German

population while vaccines are distributed. The use of COVID-19

vaccines in combination with the implementation of NPIs is seen

as the best alternative to rapidly control the pandemic (45). There

is also evidence that an epidemic is likely to rebound immediately

after the implementation of a vaccination program if NPIs are

completely abandoned (27).

One limitation of our study is that our results are highly

dependent on the way we adjusted for the time trends. Moreover,

we do not extrapolate hospital cases from time trends before

vaccine introduction since emerging variants highly differ from

previous variants in terms of transmission, medical condition and

burden of disease.

Several observational study designs are discussed in the

literature to evaluate the impacts of interventions during an

epidemic (13, 46). Digitale et al. (46) reformulated observational

studies as pragmatic designs. For these authors, instead of asking

retrospective questions about interventions that occurred in the

past, the goal should be to prospectively collect data about planned

interventions in the future. However, pragmatic designs require

more initial planning, community engagement and regulations

for human research protection (47). In this study, our design

and analysis differ from pragmatic designs. Moreover, we are not

interested in estimating vaccine efficacy through randomized trials

of individuals or the evaluation of vaccine effectiveness through

observational cohort and case-control studies (13). Instead, we

aimed to assess the effects of changing vaccine coverage on the

number of patients in hospitals and ICUs at a population level. We

evaluated the way how vaccination is associated with a decrease

in the number of patients in hospitals and ICUs. According to

Lipsitch et al. (13), an important consideration of time-trend

vaccine effectiveness studies is that the disease outcome under study

must be sufficiently specific so that the vaccine’s impact on it is likely

to be measurable. This was the case for the outcomes considered

in this study. Health authorities should therefore consider these

results when designing vaccination programs for future pandemics.

Knowing the lag times of the vaccination would allow the public

health authorities to design appropriate interventions to effectively

interrupt the disease transmission (48) if new variants emerged.

5. Conclusion

This work highlights the effects of vaccination on the admission

of COVID-19 patients in hospitals and ICUs in Germany. Our

results showed a decrease in the number of patients in hospitals

and ICUs for an increase in vaccine coverage. This is in line

with the protective effects of vaccines against the severe forms of

COVID-19 as proved through clinical trials. Moreover, we found

that the response to vaccination could be delayed for about 20 days.

These findings could be used for designing vaccination programs

for future pandemics. Further studies should assess the effects of

vaccination considering regional, demographic and social aspects.
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The ongoing COVID-19 pandemic is arguably one of the most challenging health

crises in modern times. The development of e�ective strategies to control the

spread of SARS-CoV-2 were major goals for governments and policy makers.

Mathematical modeling and machine learning emerged as potent tools to guide

and optimize the di�erent control measures. This review briefly summarizes the

SARS-CoV-2 pandemic evolution during the first 3 years. It details the main public

health challenges focusing on the contribution of mathematical modeling to

design and guide government action plans and spread mitigation interventions

of SARS-CoV-2. Next describes the application of machine learning methods in

a series of study cases, including COVID-19 clinical diagnosis, the analysis of

epidemiological variables, and drug discovery by protein engineering techniques.

Lastly, it explores the use of machine learning tools for investigating long COVID,

by identifying patterns and relationships of symptoms, predicting risk indicators,

and enabling early evaluation of COVID-19 sequelae.

KEYWORDS

COVID-19, public health policies, mathematical models, machine learning, long COVID,

SARS-CoV-2

1. Introduction

Mathematical models help to understand the functioning and dynamics of a given system

trough equations and rules, as such, can simulate conditions and scenarios associated with

multiple public policies, non-pharmaceutical interventions (NPI), and vaccine performance

(1). Therefore, mathematical models became major tools for guiding the decision-making

of governments and health systems during the pandemic (2). This section briefly introduces

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and describes relevant

events during the progress pandemic. We then summarize the main applications of

mathematical models and the various uses to describe the transmission behaviors of

SARS-CoV-2.
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1.1. What is the SARS-CoV-2?

SARS-CoV-2 is the pathogen causing the 2019 coronavirus

disease (COVID-19). COVID-19 manifestations range from mild

flu symptoms to severe acute respiratory syndrome. SARS-CoV-

2 virion contains a 29Kb RNA genome wrapped in a capsid

covered by the Spike, the main protein responsible for the high

infection rate (3). During the transmission between humans,

the genome accumulates mutations, generating variants with

selective advantages that predominate in different countries (4).

Intrinsic factors like transmissibility and natural mutation rate,

host factors such as age, risk group, immunity, and socio-cultural

factors like economy, culture, and current levels of globalization

have determined the coronavirus evolution. Integrating SARS-

CoV-2 data is essential to predict its behavior, prevent its

continuous expansion, and understand this disease. Three years

after the pandemic, the scientific community has generated an

unprecedented amount of data, now facing the challenge of

translating this data into knowledge.

1.2. The first 3 years of the pandemic

The first reported case of COVID-19 was in December 2019 (5).

With the exponential increase in infections worldwide, the World

Health Organization (WHO) declared the disease a pandemic in

March 2020. Governments adopted different NPI to mitigate

the virus’s high reproduction rates. These measures included face

masks, social distancing, and lockdowns. While these measures

were implemented worldwide, just a few countries, such as

Vietnam and New Zealand, demonstrated the complete -although

transitory- elimination of the transmission (6). In April and May

2020, the first predictions of the pandemic course were based on

statistical models performed by the Institute for HealthMetrics and

Evaluation and provided a reasonable projection in the short-time

(7). During the first wave, it was also possible to establish that 10%

of the cases were responsible for 80% of the secondary infections,

indicating a high heterogeneity in transmission spread as compared

to other pathogens (8).

In the first pandemic year, it was identified that social contact

in public transport or closed areas allowed high transmission rates

(9, 10). In turn, it was determined that face masks reduce droplet

particle transmission (11). Furthermore, NPI was essential to flatten

the spread curve in the first year of the pandemic preventing

new waves of cases after curves pick, limiting overcrowding of

hospital beds, and giving time to improve treatment strategies

(12). Adaptations of the Susceptible-Infected-Recovered models

helped to demonstrate the NPI effectiveness in preventing the

transmission of the virus. Besides, these same models allowed the

detection of an increase in virus circulation with the relaxation of

the measures (13). Other models, facilitated the test-track-isolation

developing strategies to prevent the spread, demonstrating that

efficient track strategies help to reduce the number of new cases

(14). At the same time, the first signs of SARS-CoV-2 genetic

adaptation arose between March and May 2020, with the emerging

D614G variant, which showed clear worldwide transmissibility

advantages (15). The control of the pandemic at that time

relied on the development of herd immunity, being established

that the necessary protection of the population is approximately

1 −
1
R0
, being estimated at 67% of the people (16). In August

2020, reinfection cases demonstrated that natural immunity only

provides temporary protection (17). In December 2020, the first

clinical trials of vaccines were developed, leading to the emergency

approval of traditional and novel vaccine formulations -such as

mRNA vaccines-. These studies quickly established that immunity

begins between 10 and 14 days after the first dose (18). A second

dose shows protection over 90%, preventing hospitalizations and

deaths (19). The vaccines can block propagation, making cases less

infectious, with a 92% reduction in transmission rates (20). At

the same time, quantitative models pointed to the possibility of

immune escape when complete schemes are not generated. At the

end of 2020, the Alpha variant (B.1.1.7), according to the WHO

terminology, was the variant responsible for the significant increase

in cases in the United Kingdom. This variant was characterized by

presenting spike mutations with binding advantages to the ACE-2

receptor (21), showing clear selection advantages, a phenomenon

observed simultaneously in different parts of the world (22, 23).

The subsequent variant of similar global relevance was Delta

(B.1.617.2), characterized by its high replicative capacity. Vaccine

effectiveness studies showed protection against Alpha and Delta

variants (24). Vaccination programs were effective reducing deaths,

hospitalization admission, and intensive care unit (ICU) occupancy

(see Figure 1). In November 2021, a new outbreak was reported

in South Africa, caused by a new circulating variant presenting

a 60–70 spike gene deletion. This variant was called Omicron

(B1.1.529) and expanded rapidly throughout the world, replacing

the Delta variant. Omicron carries more than 30 spike mutations

(25), being responsible for high worldwide reinfection rates (26).

Vaccines have also shown a protective effect against this variant,

although deaths were reported among unvaccinated individuals.

Omicron subvariant (XBB1.5) has been described as responsible for

40.5% confirmed cases in the EE.UU. as of late December 2022. It

has also been observed that recombinant XBB and BA.2 Omicron

subvariant strains, widely spread in Asia, do not show different

symptoms than the previous variants, nor do they show signs of

being more severe than their predecessors.

Figure 1 summarizes the key variables depicting the pandemic

evolution in five exemplary cases. Each country showed different

spread behaviors of SARS-CoV-2. The measures showed variable

effectiveness. In most countries, other public health policies and

government plans were applied to mitigate the effects of the

spread. However, in most cases, the fatalities decreased after

implementation.

1.3. Applications of mathematical modeling
during the pandemic

The SIR models (Susceptible, Infected, and Recovered) are

spread dynamics analysis models used during the early days of

the pandemic (30). SEIR models (Susceptible-Exposed-Infected-

Recovered) correspond to an adapted SIR model to understand

propagation mechanisms (31). These models do not account

for heterogeneity within the population, thus novel strategies
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FIGURE 1

Behavior of epidemiological variables during the ongoing pandemic of COVID-19. The figure depicts the timeline of new deaths per million

inhabitants (left) and admissions to intensive care unit (ICU) per million inhabitants (right) in relationship with SARS-CoV-2 variants, vaccination

thresholds, and non-pharmacological interventions. The stringency index is a composite measure based on nine response indicators including

school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest). Data acquired from et al. (27), Hasell et al.

(28), and Khare et al. (29).

incorporated a component of population subdivision into multiple

groups and interconnected systems, allowing the representation

of several mechanisms of interaction between different sub-

populations by a multi-group SEIRA (Susceptible-Exposed-

Infected-Recovered and Asymptomatic Model) (32). Another

interesting development was the statistically-based temporal

reclassification of cases. This approach allowed more precise

modeling of SARS-CoV-2 propagation dynamics, by correcting

errors in diagnostic test reporting times and infection time

registries (33, 34).

With the application of NPI strategies to prevent the spread

of SARS-CoV-2, the mathematical models were adapted to

incorporate this new knowledge. This adaptations enabled the

anticipation of the effect of NPI relaxation measures in function

of epidemiological variables, such as levels of hospitalization, use of

ICU, and lethality (35). SEIRAmodels also helped to asses the effect

of vaccines and pharmaceutical interventions (36).

With the first vaccination plans and high immunization rates

started the relaxation of public policies (37). However, the ability

of the virus to mutate and generate variants was associated with

new peaks in cases incidence.Mathematical models were adapted to

this scenario by incorporating information on genomic surveillance

programs, spread of variants, and the effects of immunization

(38–40).

Altogether, mathematical tools proved its relevance in

modeling the behavior of propagation systems and their effect on

populations. The SIR classical model as well as different adaptations

such as SEIR, SEIRA, and others, contributed significantly to the

development of government plans and public health policies.

Nevertheless, traditional mathematical modeling strategies rely on

existing knowledge and cannot account for dynamics not explicitly

incorporated during modeling. Methods based on machine

learning (ML) and artificial intelligence (AI) can overcome these

intrinsic limitations by generating autonomous systems that learn

from the modeled dynamics to predict new behaviors and adapt to

unknown scenarios.

1.4. Vaccines developments, e�cacy, and
adverse e�ects

Population immunity is considered a landmark for epidemic

control. Since immunity through natural infection might result in

unacceptable morbidity and mortality, the development of efficient
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COVID-19 vaccination programs was a prioritary public policy

for most countries (41, 42). The race to develop highly effective

and safe vaccines resulted in various platforms allowing their

implementation at unprecedented speed (43–45).

Due the modest response of traditional vaccines against

other coronaviruses such as Middle East Respiratory Syndrome

Coronavirus (MERS) and Severe Acute Respiratory Syndrome

(SARS), the development of novel formulations was a major

scientific goal (42, 46). A new vaccine technology based on mRNA

technology emerged as candidates in late December 2020 and

two formulations granted emergency approval BNT162b2 (Pfizer-

BioNTech), and mRNA-1273 (Moderna) (47). The developed

vaccines showed promising results in reducing transmissibility and

the probability of death, reaching an efficacy > 90% in phase III

clinical trials (48).

The widespread immunization poses the challenge of

quantifying and understanding short- and long-term toxicity for

novel vaccine formulations. Most studies have shown short-term

safety in the general population. However, in certain groups, severe

adverse events were reported i) anaphylaxis (2.5–4.8 cases per

million adult vaccine doses administered) (49, 50), ii) myocarditis

(52.4 cases and 56.3 cases per million doses) (51), iii) thrombosis

with thrombocytopenia syndrome (2-4 cases per one million doses

administered) (52), and iv) Guillain-Barré syndrome (7.8 cases

per million) (53), as well as an association with multisystemic

inflammatory syndrome (54).

A major challenge is to reliably detect long-term effects that

might occur at different rates in different patients subgroups (55).

Causal association becomes difficult due to the high immunization

rates achieved in most countries. In this complex scenario

mathematical models, ML, and AI, could provide powerful tools

provided that public policies focus on collection of sufficient high-

quality data.

1.5. What is long COVID?

1.5.1. Characteristics and definitions of long
COVID

Long COVID (LC) is a novel multi-systemic disease defined

by the persistence or appearance of a wide variety of symptoms

with variable intensity, regardless of the initial disease severity by

probable or confirmed SARS-CoV-2 infection (56). In response to

the absence of a consensus definition, the WHO proposed using

the term Post-COVID-19 listed in the ICD-10 classification based

on the Delphi consensus (57). This condition usually manifests 3

months after the SARS-CoV-2 infection, the symptoms last for at

least 2 months in the absence of alternative diagnosis (58).

The National Institute for Health Research, classifies LC

into i) post-intensive care syndrome (post-ICU syndrome), ii)

post-viral fatigue syndrome, iii) permanent organ damage, iv)

decompensation of previous chronic diseases, v) the onset of a new

disease triggered by COVID-19, and vi) pharmacological toxicity

from COVID-19 treatment (59).

Other authors had suggested six post-COVID syndrome

subsets, including i) non-severe COVID-19multiorgan sequelae, ii)

pulmonary fibrosis sequelae, iii) myalgic encephalomyelitis/chronic

fatigue syndrome, iv) postural orthostatic tachycardia syndrome, v)

post-intensive care syndrome, and vi) medical or clinical sequelae

(60).

1.5.2. Symptoms and incidence of long COVID
Between 2.3 and 60% of COVID-19 survivors could experience

LC symptoms during the first year, and up to 42% 2 years

after the infection (61–63). Patients with LC present variable

symptoms, including fatigue (29%), muscle pain, palpitations,

cognitive impairment (28%), dyspnea (21%), anxiety (27%), chest

pain, and arthralgia (18%) (see Figure 2) (64). Other patients

report respiratory system dysfunction (26%), or cardiovascular

complications (32–89%) 3 months after the onset of infection

(65–67). Gastrointestinal symptoms have been associated with

an imbalance of gut microbiota, as well as psychological and

central nervous system effects (68, 69). Most of these symptoms

are associated with a reduction in the quality of life. However,

the distinction between SARS-CoV-2-related symptoms to those

linked to other, often pre-existing conditions remains extremely

challenging. As clinical studies addressing this issues take a long

time to develop the NIH launched the Rapid Acceleration of

Diagnostics initiative, and the NIH LC Computational Challenge

(70). This initiative aims to use AI and ML to predict which

patients with SARS-CoV-2 infections are most likely to develop LC.

Figure 2 depicts the relative frequency of LC symptoms registered

by the National COVID Cohort Collaborative (N3C) initiative.

Inviduals that tested positive for SARS-CovV-2 show a higher

frequency of alterations in symptoms such as fatigue and shortness

of breath. The prevalence of these symptoms seems higher in

women. However, the small magnitude of the differences highlights

the challenge of differentiation long COVID from other conditions.

2. Machine learning application to
COVID-19

During the COVID-19 pandemic, ML methods have played a

relevant role in the development of diagnostic strategies (72, 73),

forecasting the epidemiological behavior (74), and as a tool to

support the development and monitoring of public health policies

(75). Figure 3 summarizes the most relevant ML applications

during the COVID-19 pandemic.

2.1. COVID-19 diagnosis

Different strategies based on ML algorithms were designed

during the COVID-19 pandemic to elaborate predictive models

of efficient clinical diagnosis (76). The main inputs used to

build the models are based on images, sounds, respiratory

information, symptoms, andmixed data (77). Convolutional neural

networks (CNN) architectures are commonly employed to develop

classification models via image inputs (e.g., x-ray, CT-chest, and

ultrasounds) (78). Sounds from respiratory information, such as

cough and breath, were common inputs for the development of
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FIGURE 2

Analysis of long COVID symptoms in patients with positive or negative COVID-19 PCR test. Relative frequency of symptoms in individuals with a

positive COVID-19 PCR test (left) as compared to individuals with a negative test. Elaborated on basis of LC symptoms registered by the National

COVID Cohort Collaborative (N3C) initiative. Data acquired from (71).

predictive models employing recurrent neural network (RNN) or

long short-term memory architectures (LSTM), since this type of

architectures have the advantage to maintain the information on

signal frequencies (79). Hybrid methods that combine symptoms

and clinical diagnostic tests as inputs facilitate the development of

more complex predictions models or classifications systems. The

hybrid methods include not only vector information or matrix

spaces, but also data on disease’s propagation. The incorporation of

virus characteristics, close contacts, and contagion networks using

graph neural networks results in highly efficient prediction systems

(80).

To demonstrate the usability of classification models based

on ML techniques, a clinical diagnostic model using CT chest

images was developed following the architecture proposed in

Figure 4 and updating our previously reported method for CT

chest images classification (34). Generally, models based on CNN

architectures can be divided into three large blocks: i) pattern

processing and extraction, ii) learning, and iii) classification blocks.

To extract patterns, a set of three layers composed of CNN, batch

normalization, max pooling, and dropout, was developed. Then, a

flattened layer is used to prepare the inputs to the fully connected

or dense layers, which are part of the learning block, composed of

dense layers interspersed with batch normalization, ending with

a dropout layer. Finally, a last layer of classification is added to

develop the outputs. As activation functions, ReLU and SoftMax

were used. In addition, binary cross entropy associated with an

Adam optimizer was used as a cost function. A total of 2,482 images

were used to train the diagnostic model extracted from (81). For

the training process, a classic validation approach was followed by

segmentation of the training and validation data set (80:20), and

the TensorFlow framework was employed for its implementation

(82). Model training was followed for a total of 10 epochs. The

proposed architecture achieved a precision of 99.81% and 0.027

loss function, demonstrating the high performance obtained by the

proposed architecture. The implemented model can be used as a

support strategy for clinical diagnosis in patients with COVID-19.

Besides, it is possible to apply transfer learning techniques to use the

same images and the same architecture proposed to estimate the

probability that patients present sequelae, one of the most recent

areas of study associated with the concept of LC.

2.2. COVID-19 treatments and strategies to
prevent adverse e�ects

ML applications related to the design of treatment strategies

have focused on drug discovery, drug repurposing, and vaccine

discovery methods (83). For drug repurposing, algorithms are

usually based on networks of knowledge graphs including

virus and host interactions (84). These strategies have used
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FIGURE 3

Summary of machine learning applications to fight COVID-19 during the pandemic. General applications of machine learning were classified into 5

categories: i) The design of diagnosis models based on di�erent types of inputs like CT chest, X-ray images, and symptom descriptions. ii) Treatment

development. iii) The development of epidemiological models to predict new waves and outbreaks. iv) The simulation of potential scenarios, and

monitoring systems to guide public health decisions. v) The diagnosis and identification of risk factors in long COVID.

particular network label propagation combined with semi-

supervised learning method based on regularized Laplacian

to identify interactors of SARS-CoV-2 (85). Another example

is the elaboration of predictive systems based on protein-

protein interaction to estimate affinity between two elements

(86). This issue has been addressed by either CNN or graph

convolutional neural networks (GCNN) architectures. Protein

complexes are typically represented using strategies based on

topological information (87), solvent accessible surface (SAS) (88),

voxel-based molecular surface representation (89), and various

molecular descriptors (90).

Another of the traditional drug repurposing methods are

the gene expression based algorithms (83). The changes in the

expression levels of defensive genes in disease states can be used

as phenotypic descriptors or quantifiers of the transcriptomic

effects of the explored drugs. Besides, methods based on integrated

docking simulation algorithms have made it possible to optimize

drug repurposing systems (91).

Different computational tools have been developed for drug

and vaccine discovery. Zhavoronkov et al. (92) developed a

generative chemistry pipeline based on the knowledge of protein,

molecule structures, and homology models strategies to identify

new drugs related to SARS-CoV-2. Tang et al. (93) have built

processes based on deep learning (DL) algorithms to design new

antivirus drugs of a chemical or peptide nature based on the

information available in the literature and different chemical rules.

Molecular simulations using docking techniques allowed the

development of virtual screening methodologies and iterative

searches to discover new drugs of interest. The discovery of

new chemical compounds with desirable activities is possible

by combining the structural information with strategies of deep

generative models (94, 95).

Predictive models using the linear protein sequences and the

chemical compounds represented as SMILES have been proposed

to predict affinity between proteins and chemical compounds

(96). Different numerical representations strategies have been
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FIGURE 4

Developed architecture for COVID-19 diagnosis classification models based on CT chest images and convolutional neural network architectures.

Three blocks of layers composed of convolution, batch normalization, max pooling and dropout layers are generated as a pattern extraction strategy,

then a flatten layer is used to generate the inputs to the dense layers, which are joined with a layer of batch normalization, followed by three

additional full connected layers, which end with a new dropout layer to prevent overfitting, and the final classification layer. ReLU is used as activation

functions and the SoftMax function in the classification layer. Finally, the Adam optimizer is used as a loss function binary cross entropy. The

developed architecture is an update from previous method for CT chest images classification models developed by our group (34).

implemented to encode the protein sequences, such as binarization

coding, physicochemical properties, and Fourier transforms to

represent protein sequences in spaces of signals (97). Alternatively,

methods based on natural language processing (protein language

models) have been developed (98). In the case of SMILES, different

autoencoders and transformers strategies have been created,

including variational autoencoders and graph junction trees (99).

Performance between methods based on linear sequences

information and those that only incorporate structural details are

similar. However, the processes that use representations based

on NLP seem to present a higher performance because the

autoencoders manage to learn the structural relationships that

guide the function (100). Nevertheless, the learning strategies and

the abilities to extract complex patterns from the information

used for the development of predictive models are properties of

DL methods that, to date, have not been fully understood due to

their functioning as black boxes. The incorporation of techniques

based on explainable AI, is under development to understand the

underlying functions and mechanics of the ML algorithms (101).

Concerning the strategies to prevent the adverse effect

provoked by the vaccination programs, ML analyzes revealed

distinct arterial pulse variability according to side effects of mRNA

vaccine. This can facilitate a time-saving and easy-to-use method

for detecting changes in the vascular properties associated with

cardiovascular side effects following vaccination (102).

The application of explainable ML techniques has allowed to

detect relevant variables to perform predictive models with hight

performances. Abbaspour et al. (103) applied SHAP strategies

combined with XGB model to identify important predictors

(e.g., demographics, any history of allergy, any prior COVID

diagnosis or positive test, vaccine manufacturer, and time-of-

day-of-vaccination) associated to COVID-19 vaccine-related side

effects.

Analyzes of the Vaccine Adverse Event Reporting System

datasets with ML and a statistical approaches identified and

classified pre-existing factors as having an impact on post-

vaccination morbidity and reactogenicity (104). Nevertheless, this

information is limited because the main databases do not have a

larger record size and do not cover all types of vaccines, provoking

problems in the generalization of the identified behaivors.

2.3. COVID-19 epidemiology

The design and implementation of ML models used for

predicting epidemiological variables was a significant challenge.

The need of high volumes of data to generalize the behavior of

the predictive models (105), made necessary to develop methods

for optimizing the representation of the inputs by autoencoders

or embedding (106). The developed models were generated

to promote the implementation of computer systems for the

simulation of scenarios (107) and to facilitate the elaboration of

government public policies focused on preventing the increase in

the number of contagious or the outbreak of new waves (108).

Depending on the input type, the construction of predictive

models can be based on forecasting methods using strategies

such as ARIMA (109, 110) or LSTM architectures (111). Other

strategies were based on logistic regression methods (112),

nonlinear regressions (113), autoregressive models (114), and

Gaussian Process Regression (115). The inputs used to develop

the predictive models contemplate information based on time

series and consider contagion spread records, NPI, scenarios, and

different types of crucial information related to epidemiological

variables. Mathematical methods based on linear algebra and kernel

applications were used to combine the different kinds of data in

hybrid systems elaborated with RNN and CNN architectures (116).
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2.4. COVID-19 public health

One essential use ofML strategies was combiningmathematical

models to develop hybrid knowledge systems to support decisions

in public health. These systems can be classified mainly into

monitoring applications and simulation systems (116). Concerning

monitoring tools, predictive models allow the generation of

early alerts of behaviors during a pandemic. These alerts were

usually related to predicting waves and new contagion outbreaks.

More limited strategies but with significant impact were the

methodologies to forecast the level of ICU occupancy in hospitals

and health systems and their correlation with increases in

contagion rates and mutational variants since it allowed early

warning of the occupancy level and facilitated decision-making to

prevent a whole occupancy level (117).

The simulation of scenarios by ML allowed the evaluation

of public policy effect on populations of interest (118). Despite

the versatility of ML, dynamic changes in the knowledge

embedded in the system—NPI modifications, the application of

vaccine programs, emergence of SARS-CoV-2 variants, etc- makes

necessary a constant adaptation ofML basedmodels. Incorporation

of reinforced learning might help to facilitate this process.

2.5. Application to long COVID

With the emergence of LC, ML methods have been employed

for the development of predictive tools, the construction of

statistical systems for relating patient phenotypes, and the

elaboration of rules and complex patterns to understand the

interactions between systems and types of sequelae. The application

of unsupervised learning algorithms like k-means and kernel

representations strategies enabled to correlate symptoms and

different classifications of LC (119).

Based on data from the N3C electronic health record

repository, Pfaff et al. (119) have developed anMLmodel to classify

the likelihood of LC diagnosis. Using XGBoost machine learning

algorithm this study identified a series of features, including the

healthcare utilization rate, patient age, dyspnea or respiratory

symptoms, other pre-existing risk factors (diabetes, kidney disease,

congestive heart failure, or pulmonary disease), and treatment

medication information to predict LC.

Binka et al. (120) proposed a classification model based on

elastic net penalized logistic regression algorithms for classifying

patients as positive or negative for LC. The model proposed

by Binka et al. (120) employed as descriptors demographic

characteristics, pre-existing conditions, COVID-19 related data,

and all symptoms/conditions recorded >28–183 days after the

COVID-19 symptom onset/reported.

Fritsche et al. (121) described associations from the previous

and acute medical phenomena of COVID-19 as predisposing

diagnoses for LC employing statistical and relation features models.

Performed phenomenon-wide association studies (PheWa) and

Phenotype Risk Scores (PheRS) have uncovered a plethora of

diagnoses associated with LC. These studies associated seven

phenotypes with the pre-COVID-19 period (e.g., irritable bowel

syndrome, concussion, nausea/vomiting, and shortness of breath)

and 69 acute-COVID-19 phenotypes (predominantly respiratory

and circulatory phenotypes) significantly associated with LC. Using

PheRS, a quarter of the COVID-19 positive cohort was identified

with a 3.5-fold increased risk of LC compared to the bottom 50% of

their distributions (121).

Sengupta et al. (122) proposed an interpretable DL approach

based on Gradient-weighted Class Activation Mapping using

N3C and RECOVER data to predict risk factors contributing to

the development of LC. This model used a temporally ordered

list of diagnostic codes six weeks post-COVID-19 infection for

each patient, with an accuracy of 70.48%. Gupta et al. (123)

proposed a stacking ensemble learning technique based on deep

neural networks for early predicting cardiovascular disease risk in

recovered SARS-CoV-2 patients with LC symptoms, achieving an

accuracy of 93.23%.

The here reviewed studies highlight the versatility of ML

methods to study LC, facilitating not only the implementation of

predictive diagnostic tools but also encouraging the integration of

clinical data with, social, demographic and other information, for

the development of robust systems. Despite the versatility of ML

techniques, there are still enormous challenges for their application

in LC analysis, in particular the collection of meaningful data sets

for the development of predictive systems.

3. Discussion

Mathematical models have helped to understand the dynamics

of the spread of SARS-CoV-2 and helped to predict different

scenarios during the COVID-19 pandemic, becoming one of

the most relevant tools for developing public health policies.

Correlating sanitary measures with virus variants and the

effects on the reproduction rate enabled the assessment of

government policies that will help to face new outbreaks

of SARS-CoV-2 or future pandemics. The development

of reliable mathematical models, statistical techniques for

test correction, and methods of analysis of heterogeneous

populations, together with the value of testing strategies and

traceability of close contacts, has been remarkable achievements.

Combining these systems with ML and AI methods increased

the predictive power of the models and facilitated the simulation

of scenarios.

Developing predictive systems for COVID-19 was one of the

significant challenges assumed by thousands of scientists during

the pandemic. The main achievements were developing models for

clinical diagnostic systems, ML for drug and vaccine discovery, and

forecasting models for epidemiological variables to support public

health policies and monitoring systems. In turn, the development

of predictive systems coupled with techniques such as protein

language models and molecular techniques facilitated the study of

variants at the genomic level. Such models helped to understand

how mutations affected critical viral proteins, helping drug and

vaccine designs.

The ongoing pandemic has introduced a complete set of

challenges, and currently, a novel multisystem disease defined

by the persistence or appearance of new symptoms after

SARS-CoV-2 infection has emerged. This complex entity-

denominated LC has yet to be fully elucidated, mainly because
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it is characterized by a wide range of clinical manifestations,

methodological limitations, and heterogeneous definitions that

make clinical and computational analysis difficult. Despite rapidly

emerging studies and growing evidence, current data needs

to be improved. A primary task is to establish an approach

to identify natural language data associated with potential LC

patients. This task will likely require well-designed prospective

studies, unified definitions of LC, an accurate distinction

of SARS-CoV-2-related symptoms, and adequate follow-up

times that include current patients, underrepresented groups,

children, and minority populations. It is granted that ML

strategies will play a critical role in the understanding of LC

and other upcoming challenges of the ongoing SARS-CoV-2

pandemic.

Author contributions

LS, JG-P, and DM-O: conceptualization. DM-O, DA-S,

and JA: methodology. DM-O and MN: validation. LS,

JG-P, DM-O, JA, and DA-S: investigation. LS, DM-O, JG-P,

and MN: writing, review, and editing. MN and RU-P:

supervision, funding resources, and project administration.

All authors contributed to the article and approved the

submitted version.

Funding

The authors acknowledge funding by the MAG-2095 project,

Ministry of Education, Chile. DM-O acknowledges ANID for the

project SUBVENCIÓN A INSTALACIÓN EN LA ACADEMIA

CONVOCATORIA AÑO 2022, Folio 85220004. MN acknowledges

ANID for project ACT210085 and GORE Magallanes for project

FIC-R 40036196-0.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Shankar S, Mohakuda SS, Kumar A, Nazneen P, Yadav AK, Chatterjee K, et al.
Systematic review of predictive mathematical models of COVID-19 epidemic. Med J
Armed Forces India. (2021) 77:S385–392. doi: 10.1016/j.mjafi.2021.05.005

2. Contreras S, Medina-Ortiz D, Conca C, Olivera-Nappa Á. A novel synthetic
model of the glucose-insulin system for patient-wise inference of physiological
parameters from small-size OGTT data. Front Bioeng Biotechnol. (2020) 8:195.
doi: 10.3389/fbioe.2020.00195

3. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of
SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta
Pharmacol Sin. (2020) 41:1141–9. doi: 10.1038/s41401-020-0485-4

4. Magazine N, Zhang T, Wu Y, McGee MC, Veggiani G, Huang W. Mutations
and evolution of the SARS-CoV-2 spike protein. Viruses. (2022) 14:640.
doi: 10.3390/v14030640

5. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. (2020)
25:278. doi: 10.1111/tmi.13383

6. Baker MG, Wilson N. The covid-19 elimination debate needs correct data. BMJ.
(2020) 371. doi: 10.1136/bmj.m3883

7. Holmdahl I, Buckee C. Wrong but useful–what covid-19 epidemiologic models
can and cannot tell us. N Engl J Med. (2020) 383:303–5. doi: 10.1056/NEJMp2016822

8. Wu Z, Harrich D, Li Z, Hu D, Li D. The unique features of SARS-CoV-2
transmission: comparison with SARS-CoV, MERS-CoV and 2009 H1N1 pandemic
influenza virus. Rev Med Virol. (2021) 31:e2171. doi: 10.1002/rmv.2171

9. Li Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, et al. The temporal
association of introducing and lifting non-pharmaceutical interventions with the time-
varying reproduction number (R) of SARS-CoV-2: a modelling study across 131
countries. Lancet Infect Dis. (2021) 21:193–202. doi: 10.1016/S1473-3099(20)30785-4

10. Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenčiak T, et
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Background: The lack of precise definitions and terminological consensus about 
the impact studies of COVID-19 vaccination leads to confusing statements from 
the scientific community about what a vaccination impact study is.

Objective: The present work presents a narrative review, describing and discussing 
COVID-19 vaccination impact studies, mapping their relevant characteristics, 
such as study design, approaches and outcome variables, while analyzing their 
similarities, distinctions, and main insights.

Methods: The articles screening, regarding title, abstract, and full-text reading, 
included papers addressing perspectives about the impact of vaccines on 
population outcomes. The screening process included articles published before 
June 10, 2022, based on the initial papers’ relevance to this study’s research 
topics. The main inclusion criteria were data analyses and study designs based 
on statistical modelling or comparison of pre- and post-vaccination population.

Results: The review included 18 studies evaluating the vaccine impact in a total 
of 48 countries, including 32 high-income countries (United States, Israel, and 
30 Western European countries) and 16 low- and middle-income countries 
(Brazil, Colombia, and 14 Eastern European countries). We summarize the main 
characteristics of the vaccination impact studies analyzed in this narrative review.

Conclusion: Although all studies claim to address the impact of a vaccination 
program, they differ significantly in their objectives since they adopt different 
definitions of impact, methodologies, and outcome variables. These and other 
differences are related to distinct data sources, designs, analysis methods, models, 
and approaches.
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1. Introduction

Since 2020, epidemiological studies related to the effects of 
vaccination against COVID-19 have been gaining prominence in 
leading international journals, reaching more than 700 studies in the 
Scopus database in June 2022. These papers apply distinct study 
designs and address different measures of vaccine performance. 
Clinical trials first stood out in the search to present the efficacy of the 
vaccines during their phase-3 periods before licensing for application 
in the general population.

With the beginning of the vaccination roll-outs worldwide, several 
researchers were dedicated to evaluating the vaccine’s effects on 
individuals or populations. Vaccine efficacy is determined by 
randomized controlled trials, and vaccine effectiveness is estimated 
from post-introduction observational studies. While effectiveness and 
efficacy of vaccination measure the direct effect of a vaccine on the 
vaccinated individuals and aim to describe an individual’s risk 
reduction after vaccination, studies on vaccine impact address the 
outcome of a vaccination program in a community. These studies are 
typically ecological or modeling analyses that compare disease 
outcomes from pre- and post-vaccine introduction. The reductions in 
disease outcomes are estimated through the direct effects of 
vaccination in vaccinated participants and indirect effects due to 
reduced transmission within a community (1).

Most vaccination efficacy studies assess an individual’s risk 
reduction after being vaccinated compared with those unvaccinated, 
thus inevitably addressing vaccine effectiveness (2–4). Vaccination 
impact studies are typically more feasible since individualized data are 
not always available in many scenarios. Only aggregated or 
deidentified data about the vaccination progress is often publicly 
available to infer how the vaccination roll-out impacts the population. 
While vaccine effectiveness studies are more consistent in study design 
and estimates (5), the existing impact studies differ significantly in 
many perspectives, including different study designs, estimated 
community outcomes, confounder variables, data sources, methods 
and models.

Moreover, there are literature works that address the impact of 
COVID-19 vaccination but should be  characterized as vaccine 
effectiveness studies instead. For example, while the title of the work 
by Pritchard et  al. (6) mentions vaccine impact, it presented the 
reduction of individual infections in vaccinated people. In the same 
way, the main results shown in Tande et al. (7) refer to the relative risks 
between vaccinated and non-vaccinated individuals, and Moghadas 
et  al. (8) presented a theoretical simulation addressing 
individual outcomes.

The lack of precise definitions and terminological consensus leads 
to confusing statements from the scientific community about what a 
vaccination impact study is. In addition, there is a myriad of possible 
study designs in the literature that address the impact of vaccination 
programs on distinct populations. Difficulties in comparing study 
results reduce the understanding of the potential impact of a 
COVID-19 vaccination program on a specific population.

The present work presents a narrative review describing and 
discussing COVID-19 vaccine impact studies, mapping their relevant 
characteristics, such as study design, approach and outcome variables, 
while analyzing their similarities, distinctions, and main insights. Our 
search approach not only aims to make explicit the real distinction 
between vaccination impact studies and vaccination efficacy and 

effectiveness studies, but also presents a range of possibilities of scope 
and methods, among other variables. The methodology applied here, 
followed by other recent publications (9–13), can be used to explain 
the impact of a vaccination roll-out in a community, guiding and 
equipping other researchers interested in the subject.

2. Materials and methods

We performed the electronic search using the PubMed and 
Google Scholar databases. The search included literature published 
before November 30, 2021, using the keywords “covid-19,” “SARS-
CoV-2,” “vaccine*” and “impact*.” The articles’ screening included 
studies addressing the impact of COVID-19 vaccines on population 
outcomes. The study selection was conducted by: (i) formulating the 
eligibility criteria; (ii) reading the abstract and selecting for full-text 
reading; (iii) reading the full-texts and selecting for study inclusion; 
and (iv) conducting a snowballing process including other studies by 
forward and backward search (14–17).

We considered the following eligibility criteria for study inclusion: 
articles covering the vaccine impact research topic, with a design of 
statistical modeling and/or comparison between pre- and post-
vaccination population, and written in English. We excluded articles 
not covering the topic of COVID-19 vaccination impact, lacking a 
detailed description, using unclear methods, addressing vaccine 
effectiveness rather than impact, or related to vaccine acceptance and 
health impacts. Among those who focused on the vaccine’s effect on 
preventing COVID-19 cases, most presented the impact from the 
individual perspective of those vaccinated (effectiveness) and not the 
effect of the vaccination process on the entire population (vaccine 
impact). We further conducted a snowballing process from the first 
set of articles, including the literature before June 10, 2022. The 
snowballing search is a backward and forward screening, looking at 
the reference list of the included articles (backward) and the papers 
citing the included studies (forward) (18). We extracted the following 
research characteristics to be discussed: author, year, country, period 
of analysis, data source, design, outcomes and methods/models/
approaches applied.

3. Results

The database search found 741 articles, which were screened 
following the eligibility criteria. From the title and abstract reading, 
we  excluded 704 papers presenting unclear methods lacking a 
detailed description or not covering the topic of COVID-19 
vaccination impact, and 25 studies analyzing vaccine effectiveness 
rather than vaccine impact. This first study selection process yielded 
a set of 12 articles. From the full-text reading, we  excluded four 
papers that did not perform statistical modelling or comparisons 
between pre- and post-vaccination, leaving a total of eight articles. 
From the selected papers, we further conducted a snowballing search, 
finding 269 additional articles citing or being cited by those that 
composed the initial set. These additional articles were screened with 
the criteria described before, and 10 new articles were selected, 
totaling 18 articles. Figure 1 illustrates the flowchart of the whole 
screening process. As the objective was not to conduct a systematic 
review, articles with similar approaches covering the same countries 
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whose titles did not cover the vaccine impact theme were 
not analyzed.

The selected papers presented a diversity of methods, models, and 
approaches to address the impact of vaccines. Table 1 presents the 
characteristics of each article in terms of country, period, data source, 
design, outcomes and methods/models/approaches. The periods of 
reference for most studies involve 5 months or more. In some cases, 
the periods of reference for the used data start before the beginning of 
the vaccination to assess the evolution of cases before and after 
vaccination. There are studies from Latin America (Brazil and 
Colombia), North America (United States), Europe (England, Italy, 
Portugal, and other European countries) and Asia (Israel).

3.1. Summary of studies

Although the selected studies address the impact of a vaccination 
program, they differ significantly in their objective since they adopt 
different definitions of impact and methodologies. For instance, some 
studies have compared COVID-19 outcomes during different periods 
of the pandemic roll-out (specifically, the pre- and post-vaccination). 
In contrast, other studies perform a counterfactual analysis to calculate 

the vaccination program’s impact on a population, estimating what 
could have been the COVID-19 outcome if either no vaccination 
program existed, or vaccination uptake had lower levels on the 
studied population.

Cot et al. (19) built an epidemic Renormalization Group (eRG) 
framework to reproduce and predict the diffusion of the pandemic in 
the U.S., taking human mobility across the U.S. and the influence of 
social distancing into account. Human mobility is monitored using 
open-source flight data among U.S. states. The eRG framework 
provides a single first-order differential equation that describes the 
time-evolution of the cumulative number of infected cases in an 
isolated region. Meslé et  al. (20) estimated the number of deaths 
directly averted in the population of older adults (60 years and older) 
due to COVID-19 vaccination in the WHO European Region from 
December 2020 to November 2021. The authors simulated COVID-19 
outcomes in a scenario without vaccination. The simulation 
parameters were based on information from previous studies of 
COVID-19 vaccine effectiveness in preventing deaths, thus calculating 
the number of directly averted deaths for each country. The analysis 
also applied an adapted formula used by Machado et  al. (21) to 
measure the influenza vaccine program impact, which calculates the 
number of deaths averted with one dose and with full vaccination 

FIGURE 1

Flowchart of the screening process.
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TABLE 1 Main characteristics of included studies.

Author, year Country Period Data sources Study design Outcomes
Method/models/
approaches applied

Cot et al., 2021 US Dec 2020–Mar 2021 The OpenSky COVID-19 Flight 

Dataset and Opendatasoft

Epidemiological statistical 

modeling

COVID-19 case incidence Epidemic Renormalization Group 

(eRG)

Mesle et al., 2021 World Health Organization 

(WHO) European Region

Dec 2020–Nov 2021 The European Surveillance System 

(TESSy)

Comparison of pre- and post-

vaccination population

Averted COVID-19 deaths Estimation of averted events

McNamara et al., 2022 US Nov 2020–Apr 2021 Centers for Disease Control and 

Prevention (CDC)

Comparison of pre- and post-

vaccination population

COVID-19 deaths Difference-in-differences 

framework

Victora et al., 2021 Brazil Jan–May2021 Brazilian Ministry of Health System Comparison of pre- and post-

vaccination population

COVD-19 mortality rate Calculus of COVID-19 age-specific 

mortality rates

Rossman et al., 2021 Israel Aug 2020–Feb 2021 Israeli Ministry of Health Comparison of pre- and post-

vaccination population

COVID-19 cases, hospitalizations, 

and severe hospitalizations

Temporal changes in weekly 

numbers of several clinical 

measures

Galvani et al., 2021 US Oct 2020–Jun 2021 Centers for Disease Control and 

Prevention (CDC)

Epidemiological statistical 

modeling

Averted COVID-19 

hospitalizations and deaths

Estimation of averted events

Andrews et al., 2021 England Dec 2020–Mar 2021 Centers for Disease Control and 

Prevention (CDC)

Epidemiological statistical 

modeling

Averted COVID-19 

hospitalizations and deaths

Estimation of averted events

Machado et al., 2022 Portugal Dec 2020–Jul 2021 Portugal Health General Office Epidemiological statistical 

modeling

Dynamics of confirmed cases and 

transmissibility index value (Rt)

SEIR model

Haas et al., 2022 Israel Dec 2020–Apr 2021 National surveillance data from the 

Israeli Ministry of Health

Comparison of pre- and post-

vaccination population

Averted SARS-CoV-2 infections 

and COVID-19- hospitalizations, 

severe hospitalizations, and deaths.

Estimation of averted events

Milman et al., 2021 Israel Dec 2020–Mar 2021 Maccabi Healthcare Services database Comparison of pre- and post-

vaccination population

Relative changes in positive test 

fraction according to changes in 

the fraction vaccinated

Correlation analysis

Miłobedzki, 2022 European Union countries Jan–Jul 2021 Our World in Data Epidemiological statistical 

modeling

COVID-19 mortality Estimation of confirmed new 

deaths based on infections and 

vaccinations

Liu et al., 2021 13 middle-income countries 

(MICs) of Europe.

Mar–Nov 2021 WHO Strategic Advisory Group of 

Experts on Immunization (SAGE) 

dataset

Epidemiological statistical 

modeling

COVID-19 mortality Transmission Dynamic Model 

(adapted CovidM)

Caetano et al., 2021 Portugal Jan–Sep 2021 ACSS/SPMS hospitalization registry Comparison of pre- and post-

vaccination population

COVID-19 averted deaths; 

Vaccine Effectiveness

SEIR model

Rojas-Botero et al., 

2022

Colombia Mar–Dec 2021 PAIWEB information system of the 

Ministry of Health and Social 

Protection

Comparison of pre- and post-

vaccination population

COVID-19 averted deaths Estimation of averted events; 

Estimation of Vaccine Effectiveness

(Continued)
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through two different equations. The equations associate death 
numbers with vaccine effectiveness and vaccination uptake.

McNamara et al. (22) estimated the national-level impact of the 
initial phases of the COVID-19 vaccination program in the US. The 
authors compared relative changes in four different outcomes 
considering pre- and post-vaccination periods for the whole 
population and age groups. The authors applied a difference-in-
differences framework to evaluate whether outcomes declined rapidly 
after vaccination roll-out in age groups with earlier vaccine eligibility. 
McNamara et al. (22) is mentioned by Ortiz and Neuzil (1) as an 
example of a COVID-19 vaccination program impact study. Victora 
et al. (23) investigated whether vaccination impacts the mortality of 
older individuals in a context of SARS-CoV-2 gamma variant (P.1 
lineage) dominance in Brazil. The study analyzed the changes in 
COVID-19 proportionate mortality and mortality rate ratio in 
different age groups during the increase of vaccination coverage. First, 
they obtained proportionate mortality for older individuals (i.e., the 
ratio between the number of COVID-19 deaths at ages 70–79 and 80+ 
years and total number of COVID-19 deaths). Second, they calculated 
COVID-19 age-specific mortality rates by dividing the numbers of 
weekly deaths by the estimated population by age group. Mortality 
rates at ages 70–79 and 80+ years were then divided by rates for the 
age range 0–9 years in the same week, resulting in mortality rate ratios.

Rossman et  al. (24) analyzed the temporal dynamics of new 
COVID-19 cases and hospitalizations after the vaccination campaign 
to distinguish the possible impact of vaccination from other factors, 
including a third lockdown implemented in Israel in January 2021. 
The authors performed several comparisons: individuals aged 60 years 
and older were prioritized to receive the vaccine first versus younger 
age groups; the January 2021 lockdown versus the September 2020 
lockdown; and early vaccinated versus late-vaccinated cities. Galvani 
et al. (25) estimated the impact of the US COVID-19 vaccination 
campaign in controlling the virus’s transmission and deaths. The 
authors compared COVID-19 outcomes on the current scenario with 
two counterfactuals: 50% of vaccination coverage and without a 
vaccination campaign. They estimated the averted number of 
COVID-19 deaths and hospitalizations, and calculated the adjusted 
odds ratios for vaccination impact, stratified by vaccine platform and 
previous SARS-COV-2 infection. To evaluate the vaccination program 
impact in the US, the researchers expanded their COVID-19 
age-stratified agent-based model to include transmission dynamics of 
the different variants. They also used the population demographics, 
the contact network accounting for pandemic mobility patterns, and 
age-specific risks of severe health outcomes due to COVID-19 as 
model parameters.

Andrews et al. (26) estimated the number of deaths prevented by 
vaccination in England between the start of the vaccination program 
and the end of March 2021. Assessments are made to compare the 
COVID-19 mortality in the current scenario with an estimated 
counterfactual scenario without a vaccination program. Machado 
et al. (27) analyzed the impact of vaccination on the control of the 
pandemic. They investigated the relationship between vaccine 
coverage and non-pharmacological interventions (NPIs), developing 
different scenarios for the fade-out of NPIs as vaccine coverage 
increases in the population. The analysis is based on developing a 
standard mathematical model for assessing the population-level 
impact of a COVID-19 vaccine in a community. A SEIR model is 
created by splitting the total human population into mutually exclusive T
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compartments: unvaccinated susceptible vaccinated, susceptible, early 
exposed, pre-symptomatic infected, symptomatically infected, 
asymptomatically-infected, hospitalized and recovered.

Haas et  al. (28) analyzed the number of averted COVID-19 
infections, hospitalizations, and deaths in Israel due to the nationwide 
vaccination campaign using the Pfizer-BioNTech BNT162b2 mRNA 
COVID-19 vaccine. The authors estimated the direct effects of the 
immunization program for all susceptible individuals who were at 
least with one dose of COVID-19 vaccine compared to unvaccinated 
individuals. Moreover, Milman et al. (29) analyzed the community-
level evidence for SARS-CoV-2 vaccine protection of unvaccinated 
individuals using a correlation analysis to test results collected during 
the rapid vaccine rollout in a large population from 177 Israeli 
communities. To control for the spatiotemporally dynamic nature of 
the epidemic, they focused on relative changes in the proportion of 
positive tests within each community between fixed time intervals.

Miłobedzki et al. (30) estimated the number of confirmed new 
deaths based on infections and vaccinations for the European Union 
countries. They computed the long-run marginal death effect 
concerning confirmed infections and compared it with respect to 
confirmed vaccinations. The authors also calculated the minimal 
weekly number of new vaccinations per million population in a 
European country to keep the number of new deaths per million 
population at a certain level. Liu et  al. (31) applied a dynamic 
transmission model to analyze possible dosing interval strategies for 
two-dose COVID-19 vaccination in thirteen European middle-
income countries and compared their impacts in terms of mortality. 
A vaccine with similar characteristics to AstraZeneca (AZD1222) was 
used in the base scenario. The authors also included sensitivity 
analyses considering different values for vaccine efficacy.

Caetano et al. (32) estimated the COVID-19 averted deaths in 
Portugal using a SEIR model to measure the impact of vaccination 
strategy. The authors adapted an age-structured SEIR deterministic 
model and used hospitalization data for the model calibration to 
measure the impact of the COVID-19 Portuguese vaccination strategy 
on the effective reproduction number. They also explored three 
scenarios for vaccine effectiveness waning: the no-immunity-loss, 
1-year and 3-year immunity duration scenarios. Rojas-Botero et al. 
(33) estimated the number of directly averted deaths due to 
COVID-19 vaccination among older adults in Colombia. The authors 
calculated the full vaccination coverage of older adults, for each 
epidemiological week and age group, from March to December 2021. 
A sensitivity analysis considered variations in vaccine effectiveness by 
age group. Sacco et  al. (34) estimated the number of averted 
COVID-19 cases, hospitalizations, intensive care unit admissions, and 
deaths by COVID-19 vaccination in Italy. The authors applied a 
method widely used in the study of vaccination impact during the 
influenza season (21, 35).

Mattiuzzi et  al. (36) measure the association between the 
percentage of averted deaths of older people and the percentage of 
vaccine uptake in each corresponding European country. The authors 
used data on vaccine uptake and efficacy to perform univariate 
(Spearman’s correlation) and multivariate (multiple linear regression 
analysis) correlations to determine the association of the percentage 
of averted deaths with vaccine uptake and the type of vaccine 
administered. Shoukat et al. (37) applied an age-stratified agent-based 
model of COVID-19 in US data to estimate the averted COVID-19 
hospitalizations and deaths due to the vaccination roll-out. The model 

was calibrated using reported incidence in New York City (NYC), 
considering the relative transmissibility of each variant and 
vaccination coverage. The authors simulated the COVID-19 outbreak 
in NYC under the counterfactual scenario of no-vaccination and 
compared the resulting disease burden using the number of cases, 
hospitalizations, and deaths reported under the actual vaccination 
status. Also in US, Suthar et al. (38) used generalized linear mixed 
models assuming a negative binomial outcome distribution to analyze 
the impact of vaccines in reducing COVID-19 incidence and 
mortality. The authors also included a first-order autoregressive 
correlation structure to account for multiple observations per 
municipality and to identify potential autocorrelation.

The set of studies herein described sought to establish causal 
relationships between the vaccination process and different outcomes 
related to COVID-19. However, in Cot et al. (19) and Rossman et al. 
(24), there is the intermediation of confounders variables such as 
mobility and non-pharmacological interventions (NPI). Studies based 
exclusively on simulations, such as the one from Iboi et al. (39), were 
not included. Although all studies aimed to estimate the impact of the 
vaccination roll-out in a population-level, they used different analysis 
methods, which implies diverse models and tools, to achieve their 
established objectives. For instance, while Meslé et al. (20) estimated 
vaccination campaigns’ impact by calculating the number of averted 
deaths, the study by McNamara et al. (22) estimated by comparing 
pre-vaccination COVID-19 outcomes with post-vaccination 
outcomes. In this sense, the study by Fang et  al. (40) used the 
association between the vaccination coverage and the incidences and 
deaths caused by COVID-19 to calculate the impact of each percentage 
increase in population vaccination rates in the reduction of county-
wide COVID-19 incidence and mortality. Often, the analysis method 
explained how the explanatory and outcome variables were associated. 
The differences among the analysed studies regarding their objectives 
lead to significant contrasts in the analysis methods, tools, and 
variables considered.

3.2. Data sources

The most important data for the studies are those related to the 
COVID-19 vaccination campaign, the confirmed cases and their 
outcomes. Usually, the National Ministry of Health and the Centers 
for Diseases Control are the main sources of these data. Nonetheless, 
depending on the approaches applied, other sources (secondary data) 
are also considered, as in Mattiuzzi et al. (36), which used the data 
produced by Meslé et al. (20).

3.3. Study design

By analyzing the populational level of the data used in the studies 
and their observational nature, we can say that all the studies follow 
an ecological study design, according to Levin et  al. (41). More 
specifically, and according to Hanquet et  al. (42), the impact of a 
vaccination program is estimated by comparing the population with 
access to a vaccination program with a reference population without 
the program, and vaccination program impact studies may follow 
mainly three different designs, which are specific subtypes of an 
ecological study:
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 • Comparison of pre- and post-vaccination population. According 
to this design, the two populations being assessed are separated 
by time, and the study outcome is compared between the pre- 
and post-vaccination periods. In this design, it is important to 
consider the different control measures (or non-pharmaceutical 
interventions) imposed by governments to the population being 
analysed in these two periods. Some initiatives such as the 
Oxford Covid-19 Government Response Tracker – OxCGRT 
(43) systematically collects daily data on policy measures 
enforced by governments (e.g., school closures, travel restrictions, 
vaccination policy, lockdowns) to tackle COVID-19 since the 
beginning of the pandemic and across more than 180 countries, 
and define indicators which may help leverage the impact of a 
vaccination program taking into account the different stringency 
levels applied to the pre- and post-vaccination populations.

 • Cluster randomized vaccination trials. This design is based on 
generating comparable social units called clusters by 
randomization. The outcome is compared between placebo and 
vaccine clusters. Cluster-randomized trials are usually conducted 
to quantify a treatment or intervention effect. In cluster-
randomized trials, individuals are grouped based on specific 
characteristics (e.g., neighbourhood of residence), and the entire 
cluster is randomized to treatment or control. The process of 
randomization ensures that the treatment and control groups are 
exchangeable. This approach is useful when it is impractical or 
infeasible to randomize at the individual level. The randomized 
clusters can be  compared to assess the overall impact of an 
intervention, which is particularly important in settings where 
intervention may have indirect effects (44).

 • Statistical modelling. This design is normally associated with an 
outcome prediction (e.g., disease occurrence) without 
vaccination. It compares it to the population’s occurrence with 
vaccination programs, henceforward named “epidemiological 
statistical modelling.” This design can adjust for differences 
between populations, such as annual variations and secular 
disease trends or changes in health care use.

As shown in Table 1, none of the analysed articles followed the 
cluster-randomized vaccination trial study design. This is possibly due 
to the urge brought by the pandemic to vaccinate the worldwide 
population with vaccines which effectiveness has already been 
attested (45).

Nine out of the eighteen studies followed the epidemiological, 
statistical modelling study design, aiming to predict the impact on a 
community outcome by simulating scenarios with and without a 
vaccination roll-out. Meslé et al. (20), Galvani et al. (25), and Andrews 
et al. (26) estimated the number of either averted deaths or averted 
hospitalisations or both. To make these estimations possible, vaccine 
efficacy and effectiveness against deaths and hospitalisations studies 
were considered input variables of the impact study. In particular, 
Meslé et  al. (20) proposed a standard approach to compare the 
estimated direct impact of the differential roll-out of COVID-19 
vaccination programs across 33 countries in the WHO European 
Region, from December 2020 to November 2021. They calculated the 
weekly number of deaths averted per country taking the number of 
confirmed cases, vaccine coverage, and vaccine effectiveness in the 
given locality and time range into account, following Machado et al. 
(21). They also differed the vaccine coverage and effectiveness with at 

least one dose (which they called VU1 and VE1) from the vaccine 
coverage and effectiveness for those with complete vaccination 
schemas (VU2 and VE2), understanding that the number of vaccine 
doses influences the development of a full immune response 
individually, and consequently the protection from severe infection 
and death. Lower and upper bounds used for VE1 and VE2 were 
chosen based on observational studies for the vaccines most frequently 
used in the countries of that study. In their study, Meslé et al. (20) 
confirmed that both speed and extent of the vaccination in some 
eligible groups were determinants of vaccination impact with regard 
to averted deaths. Galvani et  al. (25) also acknowledged the 
effectiveness of the different COVID-19 vaccine types administered 
in the US from October 2020 to June 2021  in preventing severe 
diseases, hospitalizations, and deaths due to COVID-19, which in turn 
contributed to increasing the impact of the vaccination program, 
potentially because of the vaccine’s ability to reduce transmission of 
the virus.

The remaining studies followed the pre- and post-vaccination 
population comparison design. In McNamara et al. (22) and Rossman 
et al. (24), there were clear rules to define when a specific age group 
goes from pre-vaccination status to post-vaccination status. However, 
there is no such specification in Victora et al. (23), which analyses 
COVID-19 community outcomes over time, while vaccination 
coverage rises for the age groups studied.

Meslé et al. (20) applied the same formula to measure the averted 
deaths due to vaccination for all the populations from the 33 countries 
covered by their study. Even though all analyzed countries are from 
the WHO European region, they differ in many aspects, including 
geographical, sociodemographic, and vaccination programs, since 
each country applied vaccines from different manufacturers, which is 
even pointed out in the study. Moreover, the analysis described by 
Meslé et  al. (20) also assumes that populations with and without 
vaccination programs (a.k.a. pre- and post-vaccination populations) 
have similar baseline transmission (hence the clustered populations 
are similar), which does not hold. Milman et al. (29) presented the 
relative change in the positive test fraction according to the change in 
the proportion of vaccinated individuals. Finally, data completeness is 
also essential for ecological studies. Complete and accurate data is 
fostered in the different health systems, but huge variation in quality 
and validity remains across organizations (46).

3.4. COVID-19 community outcomes 
analyzed

Although all articles address the impact of vaccination programs, 
the outcomes differ significantly. The results from the studies compare 
the dynamics of the pandemic based on different outcomes, with or 
without an ongoing vaccination program, and even simulating 
different vaccination scenarios. They calculate the variations in the 
disease outcome, which may refer to the reduction in cases, 
hospitalizations, deaths, or the number of deaths averted. It is 
important to note that a comparative analysis between studies is 
hampered by the different ways the impacts of vaccination processes 
are presented. Most studies estimated the impact in terms of averted 
COVID-19 deaths (20, 25, 26, 28, 32–34, 36, 37), and some of them 
also analyzed the averted hospitalizations (and severe hospitalizations) 
(24–26, 28, 34, 37). Other studies investigated the COVID-19 
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incidence seeking to estimate the reduction in the number of cases 
(19, 21, 28, 29, 34, 38).

There could be a more specific interest in low- and middle-income 
countries (LMICs) in view of the considerable obstacles in both 
receiving and distributing doses, especially at the beginning of the 
vaccination roll-out when vaccines were scarcer. In the three studies 
related to countries with disparities in access to healthcare and 
potential discrimination in vaccine distribution, the results are in line 
with those of developed countries in terms of impact. In both South 
American countries (Brazil and Colombia) and thirteen European 
countries (Albania, Armenia, Azerbaijan, Belarus, 
Bosnia and Herzegovina, Bulgaria, Georgia, Republic of Moldova, 
Russian Federation, Serbia, North Macedonia, Turkey, and Ukraine), 
they successfully adopted strategies based on staggering vaccination 
in age groups, prioritizing older adults. All studies point to significant 
and relevant impacts of vaccine campaigns on the analyzed 
populations, whether due to the variation in the proportion of deaths 
in different age groups, the declines observed for the prioritized 
groups in the curves of cases and deaths, or the number of deaths 
avoided. The findings of each study are presented in 
Supplementary Table S1.

4. Discussion

The impact studies included in the present narrative review show 
significant differences in how they are developed and the main 
achieved outcomes. The analysis methods and tools are also quite 
different. We only selected articles based on actual vaccination data 
(even if combined with hypothetical vaccination scenarios) and those 
presented due to vaccine impact on the entire population. The selected 
studies covered European, Latin American, North American and 
Asian countries. The reviewed studies used data collected between 
December 2020 and June 2022.

Most COVID-19 vaccination campaigns worldwide have multiple 
vaccine platforms available to immunize a population. Therefore, the 
vaccination impact is not often associated with a vaccine from a single 
manufacturer. However, Israel exclusively used the Pfizer-BioNTech 
BNT162b2 mRNA COVID-19 vaccine. Thus, works from Rossman 
et al. (24), Milman et al. (29) and Haas et al. (28) could address the 
impact of a single platform vaccination campaign.

Cot et al. (19) established the relationship between the weekly 
percentage of the vaccinated population and the number of infections. 
The number of deaths averted by the vaccine is the main result of 
Meslé et  al. (20), covering 33 European countries. Works from 
Rossman et  al. (24), Andrews et  al. (26), Galvani et  al. (25), and 
Victora et al. (23) make use of temporal differences in the vaccination 
rate of different age groups to show a reduction in deaths, 
contamination, and/or hospitalizations for distinct age groups.

Regarding confounders, Rossman et al. (24), Andrews et al. (26), 
Galvani et al. (25), and Victora et al. (23) adjusted their results by age 
group. In Galvani et al. (25), the mobility rate was considered in the 
model. Notably, Victora et al. (23) and Galvani et al. (25) mentioned 
different variants of concern (VoCs) of the SARS-Cov virus; however, 
these VoCs should not be  characterized as confounders of these 
studies since they were not explicitly taken into account in the models. 
Thus, pre- and post-vaccination populations were assumed to have 
similar baseline transmission. These studies only mentioned the VoCs 

that were dominant in the studied populations: Victora et al. (23) 
study was conducted when gamma was the dominant VoC, while 
Galvani et al. (25) was conducted during the dominance of the Alpha, 
Gamma, Delta, and the original Wuhan-1 variants. Likewise, vaccine 
manufacturers were not explicitly addressed in the models to calculate 
the impact and should not be considered confounder variables.

The studies also differ in outcomes, involving deaths, hospital 
admissions, incidences, non-ICU hospitalizations, ICU 
hospitalizations, and symptomatic cases. Machado et al. (27), Cot et al. 
(19), and Rossman et  al. (24) addressed the impact of other 
interventions or occurrences used as parameters; the following 
interventions or occurrences were mentioned: pre-existing immunity, 
self-isolation of infected individuals, state stay-home order, state 
facemask police or proportions of members of public who wear masks 
in public and, finally, lockdowns. Rossman et al. (24) and Machado 
et al. (27) used the impact of lockdown as a model parameter.

The way of presenting the results is also quite different. Most 
articles present the number of cases, hospitalizations or deaths averted. 
In some studies, the asymmetry in the temporality of the vaccination 
process between different age groups is used to point out how it affects 
the relative participation of these groups in the total number of cases, 
deaths or hospitalizations. There are approaches that establish 
comparisons between countries and territories. In these cases, the 
different vaccination rates observed are related to different declines in 
the numbers of cases, hospitalizations or deaths. There is a specific 
article that studies the differentiated impact determined by the 
different intervals between doses. Finally, there is a study in which the 
authors identify the minimum weekly vaccination rate to guarantee a 
specific value for the number of deaths.

Several of the reviewed articles made use of epidemiological 
models such as SEIR, which can be seen as simplistic, that is, using a 
few compartments instead of thousands of compartments to represent 
the real complexity of the system. In an epidemic, several phenomena 
are difficult to understand, caused by the interaction of a huge number 
of agents which, even when acting locally, are capable of influencing 
results elsewhere (47). However, SEIR models proved robust enough 
to be applied in different geographic locations and in populations of 
different ethnic origins, enabling and recommending their use in 
territories with a lack of viral testing. Barbosa et al. (48) applied the 
SEIR model using epidemiological data from Marabá, a poor 
municipality in the state of Pará in Brazil, with estimated values of 
latency time and infectious time obtained in Chinese populations and 
these proved to be useful for predicting the evolution of COVID-19 
cases, a more complex process than the estimation of the vaccine 
impact. One last important consideration concerning the presented 
models is that they do not recognize the prolonged duration of the 
pandemic and the representative rate of deaths during a given period, 
since they do not use the number of deaths and births in the most 
active period of the pandemic as parameters, thus, disregarding its 
vital dynamics, foreseen in the complex systems applied to 
epidemiological models presented by Lima (47).

Figure 2 synthesizes the main characteristics of the vaccination 
impact studies analyzed in this narrative review. Although the lack of 
systematicity in the review process does not allow the complete range 
of designs, methods, variables, and results of vaccine impact studies 
to be presented, it is understood that the outline of its characteristics 
is broad enough to give those interested in the subject the breadth of 
possibilities available.
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5. Conclusion

The articles analyzed in this Narrative Review, regardless of the 
methods applied and country(ies) covered, share in their results the 
significant population impact brought by the vaccination process. 
Although the pandemic is cooling down at the moment, its permanence 
has required new booster doses to be administered. In addition, the 
possibilities for the emergence of new variants of concern can alter 
vaccine efficacy, establishing new levels of vaccine impact. Studying the 
impact of COVID-19 vaccines will remain the slogan of the day for 
some time. The present work contributed to the research on this theme, 
offering a broad and structured view of the methodological possibilities, 
models, approaches and designs. Furthermore, it aims to contribute to 
a broader view of the possible studies, as it also brings together the 
different possibilities of input variables adopted and different outcome 
variables that may represent the vaccination impact.

There is, however, an approach to vaccine impact that remains 
underexplored. In addition to disparities in the application of 
COVID-19 tests and in the supply of protective equipment, LMICs 
suffered from problems related to the availability of vaccines (49). In 
none of the analyzed studies, the discussion on the superiority of the 
strategy, adopted by the richest countries, in terms of vaccine impact, 
of protecting them-selves other than globally controlling the 
COVID-19 pandemic, was privileged. In one of the studies, Louden 
(50) says that careful consideration of vaccine production, pricing, 
allocation, and distribution must be  taken into account to ensure 
equitable access to COVID-19 vaccines scaling up the global 
COVID-19 vaccination program but in this study vaccine impact was 
not the approach. Ali et al. (51) discussed the problem of vaccine 

equity in LMICs. They found that inequalities in wealth, education, 
and geographic access can affect vaccine impact and vaccination 
dropout which demands more attention in countries where the level 
of inequality is considerably higher. The analysis of global vaccination 
rollouts comparing LMIC to rich countries should include each 
country demography (and the age groups approved to be vaccinated). 
LMICs with low proportion of population older than 60 years cannot 
be direct compared to some European countries with high proportion 
of population older than 60 years. Furthermore, the propensity of 
young adults to get vaccinated in a country with a young population 
is different than in one with an old population. The assessment of the 
benefits of potentially protecting older adults to the risks of the 
vaccine is dependent on demography.

Another study alternative, which was not observed, would be to 
evaluate the vaccine impact in terms of the relative dynamics of cases 
and deaths after the consolidation of the vaccination process, 
comparing the results between countries before and after vaccination, 
as a function of the percentage of vaccinated and the number of doses 
administered. Brazil, for example, a LMIC, due to the greater 
adherence of its population to vaccination, after being the eighth 
country in deaths by COVID-19 in the world in the period of 2020–
2021, already occupies the 17th position in October of 2022, 
considering the entire pandemic period, registering fewer deaths per 
capita, bearing in mind only the year 2022, than the United States and 
many European developed countries. Finally, the impact of 
vaccination campaigns could be analyzed in terms of compliance with 
COVID-19 regulations, mobility and contact behavior in 
communities, the likelihood of transmission at a potentially infectious 
contact, human behavior (and mental health), and health care costs.

FIGURE 2

The main characteristics of the vaccination impact studies analysed in this review. As visually represented, a vaccination impact study is distinguished 
by four perspectives: Input variables, Community outcome, Study design, and Analysis methods, models, and approaches.
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Background: In 2021, the Australian Government Department of Health 
commissioned a consortium of modelling groups to generate evidence assisting 
the transition from a goal of no community COVID-19 transmission to ‘living with 
COVID-19’, with adverse health and social consequences limited by vaccination 
and other measures. Due to the extended school closures over 2020–21, 
maximizing face-to-face teaching was a major objective during this transition. 
The consortium was tasked with informing school surveillance and contact 
management strategies to minimize infections and support this goal.

Methods: Outcomes considered were infections and days of face-to-face 
teaching lost in the 45 days following an outbreak within an otherwise COVID-
naïve school setting. A stochastic agent-based model of COVID-19 transmission 
was used to evaluate a ‘test-to-stay’ strategy using daily rapid antigen tests (RATs) 
for close contacts of a case for 7 days compared with home quarantine; and 
an asymptomatic surveillance strategy involving twice-weekly screening of all 
students and/or teachers using RATs.

Findings: Test-to-stay had similar effectiveness for reducing school infections as 
extended home quarantine, without the associated days of face-to-face teaching 
lost. Asymptomatic screening was beneficial in reducing both infections and 
days of face-to-face teaching lost and was most beneficial when community 
prevalence was high.

Interpretation: Use of RATs in school settings for surveillance and contact 
management can help to maximize face-to-face teaching and minimize 
outbreaks. This evidence supported the implementation of surveillance testing in 
schools in several Australian jurisdictions from January 2022.

KEYWORDS

COVID-19, outbreak, rapid antigen test, agent-based model, school, surveillance, 
quarantine
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Introduction

Until mid-2021, Australia endeavored to strongly suppress 
community SARS-CoV-2 transmission by limiting incursions with 
tight border controls and containing outbreaks with contact tracing 
and strict community restrictions, including extended lockdowns in 
some jurisdictions. However, the rollout of COVID-19 vaccines meant 
that Australia could consider alternate approaches to managing 
COVID-19 without either the social and economic impact associated 
with containing outbreaks, or the dire health outcomes associated with 
community transmission prior to vaccines being available. In late 2021, 
the Commonwealth Government commissioned the Doherty Institute 
to lead a consortium of modelling groups to support development of 
the National Plan to transition Australia’s COVID-19 response (1).

While Australia pursued a goal of zero community SARS-CoV-2 
transmission (2020–2021), schools were often closed as part of 
broader lockdown measures. When schools were open, outbreaks in 
most jurisdictions were managed by reactive closures and targeted 
periods of quarantine. This typically involved a school closing for 
cleaning following a positive case (often two to 3 days), followed by a 
14-day quarantine for all close contacts and their households. Specific 
school outbreak strategies differed between states and territories but 
were generally commensurate with other community restrictions, and 
were successful in reducing the size of school outbreaks (2). However, 
due to concern about the potential health and psychosocial impacts 
of these public health responses on children (3), maximizing in-person 
learning was seen as a national priority.

With Australia’s transition to “living with COVID-19” and 
increased community transmission, the rates of incursions into 
schools were anticipated to be higher than previously experienced (4). 
In this context, a quarantine-based approach in schools was 
recognized to be unsustainable and inconsistent with the national 
priority of maximizing face-to-face teaching. Hence there was a need 
for different approaches to managing cases and contacts in schools 
and keeping schools open safely.

This commissioned work was developed through a participatory 
process with the Commonwealth Departments of Health and 
Education. Its agreed focus was to support face-to-face teaching 
through identification of strategies that would minimize importation 
and transmission of infections in the school environment. Given this 
objective, infections and days of face-to-face teaching lost following 
an imported case were defined as the key outcomes of interest. The 
specific aims of this study were to evaluate the potential impacts of two 
strategies identified in consultation: the use of rapid antigen tests 
(RATs) for asymptomatic screening, or as an alternative risk mitigation 
to home quarantine of close contacts, based on their effective 
implementation in other country settings (5–7). The scope of enquiry 
was restricted to transmission risks anticipated in primary and 
secondary day schools, and analyses were conducted prior to the 
emergence of the Omicron variant.

Methods

Model overview

An established agent-based microsimulation model, Covasim (8), 
was used to simulate outbreaks in school settings. The model is 

open-source and available online (9) and has previously been used to 
model epidemic waves and response strategies in Australia (10–12). 
Additional model details are provided in the Supplementary material. 
The code for the simulations and analysis presented in this study is 
available at https://github.com/optimamodel/covasim_aus_schools.

To address the specific questions of this study, we implemented a 
more detailed model of school contact networks than those provided 
by Covasim, based on the structure of the Australian school system. 
Aside from differences in age and vaccine eligibility, there are 
important differences in social and mixing structure between primary 
and secondary schools; hence these two settings were modelled 
separately. Schools were characterized by three types of interaction – 
transmission within classrooms involving students and teachers, 
transmission outside of classrooms between students (e.g., during 
breaks), and transmission outside of classrooms between teachers 
(e.g., in staff common rooms).

Primary schools

In Australia, primary school students are typically assigned to a 
single class for all lessons. Primary schools were therefore modelled 
as a collection of classrooms, aggregated into schools. To construct the 
primary school contact network, children from ages 5–11 were 
assigned to schools. Within each school, students were assigned to 
classrooms with others of the same age, and each classroom had an 
assigned teacher (randomly selected from the working-age population, 
age 18–65). Each classroom was a fully connected cluster, with 
transmission possible between any pair of individuals within the same 
classroom. The classroom contact network was therefore highly 
clustered (Figure 1A). Non-classroom mixing was incorporated by 
assigning each student additional contacts randomly selected from the 
entire school.

Secondary schools

Secondary school students in Australia are typically grouped into 
separate classes for each subject and have around 4–6 classes per day. 
To simplify the implementation and parameterization of the model, 
instead of modelling each classroom explicitly, students were assigned 
a number of random contacts amongst other students of the same age, 
with the number of contacts reflecting the average number of different 
students they would encounter each day. Each student was then 
randomly assigned a number of contacts with staff members reflecting 
the typical number of classes per day, and a number of contacts with 
other students randomly selected from the entire school to account 
for non-classroom mixing. Compared to primary schools, there is 
considerably more mixing between students and teachers within 
classrooms, and classroom contacts are much less clustered 
(Figure 1B).

Disease transmission

Transmission in the model has a probability of occurring each 
time a susceptible individual is in contact with an infectious individual 
through one of their contact networks. The overall transmission 
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probability per contact per day was calibrated based on the Delta 
variant epidemic wave in Melbourne over the July–September 2021 
period (12). For individual contacts, this transmission risk was further 
weighted according to the setting of the contact (e.g., classroom, 
home), the time-varying viral load of the person infected, whether or 
not they have symptoms (based on an age-specific probability of being 
symptomatic), and an age-specific disease susceptibility (Table 1).

Symptomatic testing probability (COVID-19 
cases)

All people with severe disease were assumed to be tested. For 
people with mild symptoms, the model included a per-day probability 
of seeking a test, which was necessary for the first case to be diagnosed 
when surveillance was not in place (noting that the first case to 

be detected may be a household member of a student at the school, 
which would trigger contact tracing for the student). The symptomatic 
testing model calibration process estimated that people with mild 
symptoms who were not identified through contact tracing would 
seek testing during their symptomatic period with a per-day testing 
probability of 11% (varied in a sensitivity analysis).

Vaccination

All baseline scenarios were run with 80% COVID-19 vaccination 
coverage in ages 12+ and 100% vaccination coverage in teachers, 
reflecting likely uptake of the vaccine at the time of analysis, the 
likelihood of vaccines becoming mandatory for teachers, and the 
fact that vaccines for ages 5–11 were yet to be approved for use in 
Australia at the time of reporting. However, sensitivity analyses were 

FIGURE 1

Contact networks within schools in the model for a) primary schools, and b) secondary schools. Schools included student–student classroom 
contacts, student–student non-classroom contacts, teacher-teacher contacts and teacher-student contacts. Primary schools were modelled as a 
collection of classrooms, where students of the same age are assigned a teacher. Secondary school students and teachers have more contacts than 
primary school students and teachers because they attend multiple classes.
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TABLE 1 Model parameters related to schools.

Parameter area Estimate Source

Primary school

Average school size 298
Number of primary students (2,268,891 full time + part time in 2020; ABS (13) Table 42b) divided by 

number of Primary + Primary/secondary schools (6249 + 1363 in 2020; ABS (13) Table 35b).

Average class size 22
Average class size of primary schools. Victorian government (14), with class sizes sampled from their 

distribution in analyses.

Average number of student–student non-

classroom contacts per day, per student
2

Assumption; tested in sensitivity analysis. This impacts the efficacy of test-to-stay of class contacts verses 

close contacts or entire school.

Average number of teacher-teacher contacts 

per day, per teacher
5 Assumption.

Vaccination coverage 0%
Vaccines for under-12 children were not authorized at the time of analysis (a sensitivity analysis 

including vaccination in primary school children is provided in the Supplementary material).

Secondary school

Average students per school 622
Number of secondary students (1,738,083 full time + part time in 2020; ABS (13) Table 42b) divided by 

number of Secondary + Primary/secondary schools (1433 + 1363 in 2020; ABS (13) Table 35b)

Average teacher/student ratio 12 ABS data (13). Suggesting secondary schools have on average 12.1 students to one teacher.

Average number of student–student classroom 

contacts per day
44

Average class size in secondary school of 22 ((15); page 354), assuming two unique classrooms of 

contacts per student per day.

Average number of student–student non-

classroom contacts per day
5

Assumption; tested in sensitivity analysis. This impacts the efficacy of test-to-stay of class contacts verses 

close contacts or entire school.

Average number of teacher-teacher contacts 

per day
5 Assumption.

Average number of teacher-student contacts 

per day, per student
6 Assumes students have six classes per day

Vaccine coverage 80% Assumed peak coverage level, based on expected vaccine uptake at the time of analysis.

Probability of transmission per contact per day (without vaccines or NPIs)

Student–student (primary classroom) 0.25 Delphi process; Scott et al. (10) Measured as relative to household transmission per contact - e.g. a 

typical day’s worth of contact in school is 75% less likely to result in transmission than a typical day’s 

worth of contact at home. Non-classroom primary school contacts equivalent to outdoor contacts; 

secondary school classroom contacts halved to account for shorter interactions. Note: these are not 

attack rates, and all transmission probabilities are scaled by an overall calibration parameter, as well as 

age-specific susceptibility, vaccine status, and NPIs in place. Attack rates also depend on frequency and 

number of contacts. All transmission probabilities were varied in sensitivity analyses when NPI efficacy 

is tested.

Student–student (primary non-classroom) 0.03

Student–student (secondary class contact) 0.12

Student–student (secondary close/social 

contact)
0.12

Teacher-teacher 0.25
Assumption that transmission risks in schools are equivalent for all types of contacts. Note that the 

model has independent parameters to account for differences in susceptibility by age
Teacher-student (primary) 0.25

Teacher-student (secondary) 0.12

Age-susceptibility (relative to 20–49 year old)

Age 0–4 0.349

Derived from Davies et al. (16)

Age 5–9 0.423

Age 10–14 0.495

Age 15–19 0.599

Age 20–24 0.846

Age 24–29 1

Probability of being symptomatic

Age 0–9 0.28

Davies et al. (16)Age 10–19 0.20

Age 20–29 0.26

Rapid antigen testing (RAT)

Sensitivity 0.773
Muhi et al. (17) Lower bound selected to account for inconsistent self-use. Note that PCR is modelled as 

having 87% sensitivity in real world use (systematic review Arevalo-Rodriguez et al. (18))
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run to investigate the extent to which secondary schools in the 
baseline scenarios already benefited from vaccination and to assess 
the benefits of vaccines for primary school students if they became 
available (provided in the Supplementary material). Vaccine 
parameters were based on efficacy estimates against the Delta 
variant available at the time of analysis (19, 20) (see 
Supplementary material).

School testing and tracing strategies

Two overarching strategies for incorporating RATs into schools 
were considered. The first was asymptomatic surveillance, where 
students were required to take RATs regularly regardless of any 
symptoms. The specific implementations considered were: no 
surveillance testing; twice weekly teacher testing with RATs; and twice 
weekly student testing with RATs. These scenarios were considered 
with and without contact tracing in place.

The second strategy considered was a “test-to-stay” scheme in 
which contacts of diagnosed cases performed daily RATs instead of 
being quarantined. The specific implementations of the test-to-stay 
scheme were: no contact tracing (neither testing nor isolation for 
contacts); 7 days quarantine of classroom contacts with/without daily 
RAT; daily RAT of classroom contacts who are permitted to remain at 
school so long as they test negative (“test-to-stay”); and entire school 
test-to-stay with daily RAT after initial case detection.

The scenario with both seven-day quarantine and daily testing for 
7 days enables assessment of the benefit of quarantine incremental to 
test-to-stay, controlling for differences in case ascertainment. Contact 
tracing scenarios were based around classroom contacts rather than 
all contacts, as classroom contacts were deemed more practical to 
identify in response actions. Scenarios were also examined with both 
asymptomatic surveillance and test-to-stay to assess the incremental 
impact of surveillance strategies when combined with contact tracing.

In all scenarios, students or teachers diagnosed with COVID-19 
were assumed to be removed from the school and required to isolate 
until no longer infectious.

Model simulations and outcomes

The model was initialized with a single infection allocated 
randomly within a school. The model was then run for 45 days to 
allow sufficient time for the outbreak to grow within the school, while 
limiting the impact of broader community transmission on within-
school dynamics. The number of cumulative infections in students or 
teachers attending the school were recorded. Infections were used as 
the primary outcome measure as opposed to diagnosed cases to avoid 
bias when comparing strategies with different testing rates. 
Importantly, although we  report outcomes after 45 days, in cases 
where there is substantial transmission the outbreak is likely to 
be  ongoing, and further transmission would take place after the 
simulation timeframe. In these cases, the cumulative number of 
infections after 45 days serves as a proxy measure for the growth rate 
of the outbreak. We elected not report the basic reproduction number 
R0 because the short time window, small size, and wide range of 
stochastic outcomes makes this metric difficult to interpret for the 
outbreaks modelled in this study.

For each scenario, the simulation was repeated 1000 times and 
reported outcomes are based on the distributions of (1) secondary 
infections occurring in the same school; and (2) days of face-to-face 
teaching lost. Days of face-to-face teaching lost are calculated for the 
school as the total student-days spent in isolation or quarantine as a 
result of a school’s testing and quarantine policy over the 45-day 
period. A day of face-to-face teaching lost is accrued for each student, 
for each day that they are unable to attend school, and is therefore 
independent of the structure of the school.

Sensitivity analyses

To enable the analysis to be  applied across a wide range of 
contexts, sensitivity analyses were performed to examine how 
outcomes varied with different assumptions or inputs. The parameters 
that were varied were: school incursion rates (the model was initialized 
with one, two, or three simultaneous incursions as a proxy for 
community prevalence, where settings with high prevalence are more 
likely to have simultaneous or otherwise overlapping outbreaks due to 
high incursion rates from the community); and compliance with test-
to-stay (also an equivalent sensitivity analysis for lower test sensitivity) 
ranging from 0 to 100%.

A number of other parameters were also varied, including vaccine 
coverage, non-pharmaceutical interventions, frequency of surveillance 
testing, number of non-classroom contacts, and symptomatic testing 
rate. These are provided in the Supplementary material.

Total days of face-to-face teaching gained

The modelled scenarios provide estimates of the days of face-to-
face teaching lost per incursion. The total number of days lost or 
gained can be estimated based on the number of school incursions 
that take place. An example of how this calculation could be performed 
is provided in the Supplementary material.

Results

In this section, we simulate incursions in primary and secondary 
schools following an incursion event, and report on the number of 
downstream infections and days of face-to-face teaching lost under a 
range of control strategies. The outcomes described here are specific 
to the parameter values and assumptions outlined in the previous 
section, and therefore general trends should be considered for policy 
rather than the specific quantitative values.

Surveillance strategies, without contact 
tracing/quarantine

We first examined the impact of surveillance testing, in the 
absence of contact tracing. In many simulations, the initial incursion 
led to less than five downstream infections, and of these, the majority 
had no onwards transmission at all (Figure 2).

Twice weekly screening of teachers had minimal impact on 
reducing infections in primary schools, and only a marginal impact in 
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FIGURE 2

Impact of surveillance strategies on the distribution of outcomes for cumulative infections (left) and days of face-to-face teaching lost (right) in a 
single school following a single incursion. Outcomes are from 1,000 model simulations run for 45 days following first diagnosis. Scenarios assume no 
contact tracing or quarantine (only isolation for positive cases that are detected) and from top to bottom are based on: no screening; twice weekly 
testing of teachers with rapid antigen tests; twice weekly testing of students with rapid antigen tests.

secondary schools. Twice weekly screening of students led to earlier 
detection of an incursion and increased the chances of an incursion 
leading to no secondary infections in both primary and secondary 
schools. Screening of students slightly increased the mean days of face-
to-face teaching lost compared with no screening and no contact 
tracing due to the detection of asymptomatic cases. However, the 
average masks the fact that this scenario resulted in a 20% increase in 
the proportion of incursions where transmission was effectively 
averted by early detection, a marked reduction in outbreaks of size 20 
or more, and a reduction in the proportion of simulations with 14 or 
more days of face-to-face teaching lost.

Twice weekly screening of students had a greater impact on 
reducing secondary infections in schools as the number of incursions 
increased (Figure 3). With increased numbers of incursions, days of 
face-to-face teaching lost in secondary schools remained similar with 
or without student screening. In primary schools, days of face-to-face 
teaching lost slightly increased with the screening in place regardless 
of number of incursions. Overall, as the number of incursions 
increased, the incremental benefits for reduced secondary infections 
were far greater than the increase in days of face-to-face teaching lost.

Contact tracing and quarantine strategies: 
“test-to-stay”

We next examined contact tracing and the impact of testing 
contacts compared to quarantining contacts, in the absence of 

surveillance testing. Quarantining classroom contacts of identified 
cases considerably decreases the mean size of outbreaks after 45 days 
– from 46 cases to 26 cases in primary schools, and 52 cases to 25 cases 
in secondary schools (Figure 4). However, this comes at the expense 
of a large number of face-to-face teaching days lost per incursion – an 
average of 256 days in primary schools, and almost 700 days in 
secondary schools.

Test-to-stay of classroom contacts had approximately equivalent 
impacts on transmission as seven-day quarantine of classroom 
contacts in both primary and secondary schools, but without the 
associated face-to-face teaching days lost (Figure 4). Increased case 
ascertainment resulted in slightly more days of face-to-face teaching 
lost compared to the baseline no contact tracing scenario, but as with 
surveillance there was a marked reduction in the proportion of 
incursion leading to outbreaks of 20 or more. The effectiveness of test-
to-stay decreased with low compliance, but conversely, there were 
diminishing returns at high levels of compliance (Figure 5).

The incremental benefit of testing all school contacts in addition 
to classroom contacts was small.

Surveillance strategies combined with 
contact tracing/quarantine

Finally, we examined the impact of surveillance testing, when 
combined with contact tracing and a test-to-stay strategy. Twice 
weekly screening of students had incremental benefits in terms of 
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reduced infections and reduced face-to-face teaching days lost 
(Supplementary material; Figure S1), even when test-to-stay was in 
place. By detecting and removing cases earlier, student screening 
reduces the number of downstream infections following an incursion, 

the likely outbreak size, and the average days of face-to-face teaching 
lost per incursion. In particular, screening resulted in a considerable 
reduction in the proportion of simulations where more than 150 days 
were lost.

FIGURE 3

Impact of multiple incursions on the benefits of surveillance testing. Left bars: the percentage of simulations with more than 20 or 50 cumulative 
infections after 45 days of first diagnosis, for different surveillance strategies and number of initial incursions. Right bars: the percentage of simulations 
with more than 50 or 100 days of face-to-face teaching lost in a single school following the incursions. Outcomes are from 1,000 model simulations 
run for 45 days following first diagnosis. Scenarios assume no contact tracing or quarantine (only isolation for positive cases that are detected) and 
compare no screening to twice weekly testing of students with rapid antigen tests.

FIGURE 4

Impact of contact tracing and quarantine strategies on the distribution of outcomes for cumulative infections (left) and days of face-to-face teaching 
lost (right) in a single school following a single incursion. Outcomes are from 1,000 model simulations run for 45 days following first diagnosis. 
Scenarios top to bottom: no contact tracing; class contacts have 7-day quarantine without/with testing; class contacts test-to-stay with rapid antigen 
tests; entire schools test-to-stay with rapid antigen testing. Top: Primary schools; bottom: Secondary schools.
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TABLE 2 Model-estimated percentage change in mean number of infections and days of face-to-face teaching lost in primary and secondary schools 
compared to no intervention, for the scenarios shown in Figures 2, 4.

Intervention
Primary schools Secondary schools

Mean infections Days lost Mean infections Days lost

Screening interventions

Twice weekly teacher screening −4% (−12,0) −5% (−12,1) −25% (−34,-17) −19% (−31,-12)

Twice weekly student screening −85% (−87,-83) 80% (65,96) −92% (−94,-91) 19% (2,38)

Tracing interventions

Class contacts quarantine −43% (−47,-42) 1180% (1119,1257) −52% (−55,-50) 4219% (3932,4548)

Class contacts quarantine + test at home −43% (−46,-40) 1015% (963,1086) −62% (−65,-60) 5325% (4923,5774)

Class contacts test-to-stay −41% (−45,-39) 245% (229,269) −63% (−65,-60) 194% (170,221)

Entire school test-to-stay −63% (−66,-61) 205% (188,223) −75% (−77,-74) 163% (140,184)

No change Moderate reduction Large reduction Moderate increase Large increase

Results are presented as the percentage change relative to the no intervention scenario (95% confidence interval). Confidence intervals were calculated using the percentile bootstrap method 
with 1,000 replicates.

Summary of trends for surveillance and 
contact tracing strategies

The change in infections and days of face-to-face teaching lost for 
each of the control strategies and settings compared to no intervention 
is summarized in Table 2.

Discussion

This study used an agent-based model to assess the effectiveness 
of a variety of school-based surveillance, contact tracing and 
quarantine strategies to reduce outbreaks and transmission in schools, 
and maximize face-to-face teaching. We  found that twice-weekly 
surveillance testing of students markedly reduced outbreak risk by 
enabling early detection of incursions, and that a ‘test-to-stay’ contact 
tracing strategy could achieve equivalent outbreak containment to 
home quarantine, without the associated loss of face-to-face teaching 
days. This was true for both primary and secondary schools.

School based surveillance testing considerably increased the 
proportion of simulations where an incursion resulted in no more 
than five downstream infections within 45 days. The incremental 
benefits of student surveillance testing were greater as the incursion 
rate increased, indicating that surveillance testing is expected to have 
maximum utility in areas with higher-than-average community 
transmission. Surveillance screening of students was also found to act 
synergistically with contact tracing and could be added on top of other 
policies such as test-to-stay to further reduce infections and in-person 
teaching days lost in areas at risk of outbreaks, but this would need to 
be balanced against the burden of testing for students and teachers.

The test-to-stay strategy outperformed a home quarantine strategy 
significantly in terms of maximizing face-to-face teaching. This is 
because a single infection in a class can result in more than 20 students 
losing 7 days each, and if transmission occurs to other classrooms (or in 
secondary school where students have multiple subjects) then 
quarantine requirements can be  multiplicative. For test-to-stay to 
perform equivalently to home quarantine in terms of minimizing 
outbreak size, students must be compliant with testing requirements; 

FIGURE 5

Impact of compliance on the effectiveness of a test-to-stay (TTS) strategy. Left bars: the percentage of simulations with more than 20 or 50 
cumulative infections after 45 days of first diagnosis, for different TTS compliance. Right bars: the percentage of simulations with more than 50 or  
100 days of face-to-face teaching lost in a single school following the incursion. Outcomes are from 1,000 model simulations run for 45 days 
following first diagnosis.
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however, we found that much of the benefits were still realized with only 
50% compliance. There are also concerns about the reduced sensitivity 
of rapid antigen tests to detect infections in classroom contacts, but in 
this appears to be compensated for with the high frequency of testing. 
The test-to-stay strategy was assessed with an assumed 80% vaccination 
coverage among students 12+ years, which was based on expected 
vaccine uptake at the time of analysis. The actual coverage of vaccines in 
Australia reached 77 and 88% among people aged 12–15 and 16–19 years 
by 31 January 2022 (21), suggesting this was a reasonable approximation, 
and sensitivity analyses showed that it would still be effective at lower 
vaccine coverage (as might be the case in international settings). Overall, 
the key finding that test-based strategies could provide epidemiological 
outcomes equivalent to quarantine was consistent with international 
empirical studies and evaluations that have occurred since (6, 7, 22, 23).

The report from the commissioned work was delivered to the 
Australian Government in November 2021 and was used to inform 
policy development and school-based strategies for 2022. The Australian 
school year aligns with the calendar year, and schools take summer 
vacations with most reopening in late January. In November–December 
2021 the Omicron variant spread throughout Australia with cases 
peaking in early/mid-January 2022, substantially increasing prevalence 
in the community ahead of school reopening. In January 2022, state and 
federal governments developed the National Framework for Managing 
COVID-19 in Schools and Early Childhood Education and Care (24) 
affirming the importance of keeping schools open without prescribing 
specific policies as to how this was to happen. Accordingly, each state 
implemented their own return-to-school policies, depending on their 
specific health and education systems and local state of the epidemic. In 
January 2022, two states, South Australia and Western Australia, 
adopted the test-to-stay strategy, while Australia’s two most populous 
states (NSW and Victoria) and those with the highest case incidence of 
SARS-CoV-2 implemented a twice-weekly screening program, and 
daily testing for 5 days for children in higher risk special school settings.

Strengths

A key strength of the modelling was that it was embedded as a 
part of the policy-making process. Modelers were engaged from the 
beginning, which enabled a deeper understanding of the questions 
most relevant to governments, and analyses could be collaboratively 
designed to best answer them. Another strength was that modelling 
was used to quantify key outcomes that could not be  measured 
through data analysis or other methods. For example, quantifying the 
days of face-to-face teaching gained by early detection and isolation 
of infected students and the subsequent prevention of onward 
transmission. Finally, the modelling formed just one component of 
broader advice to government, who were therefore able to incorporate 
modelling outcomes alongside other forms of evidence, including data 
analysis, feasibility, acceptability, and logistic issues.

Limitations and future work

The findings presented are derived from an individual-based 
model, which is an imperfect representation of the real world with 
uncertainties in many parameters relating to disease progression and 

transmission. Model parameters were based on best-available data at 
the time of analysis.

The specificity of RATs has been measured in the range of 99.73–
100% (17) and we therefore elected not to include false positive test 
results in this study. There would be additional days of face-to-face 
teaching lost due to false positive results associated with the 
surveillance testing and test-to-stay strategies. However, aside from 
the high test specificity limiting the number of false positives, we also 
note that many of the false positives arising from surveillance testing 
would occur in the absence of an active outbreak, and are therefore 
not captured within the scope of the simulations examined here.

Modelling was conducted based on the Delta variant. However, 
sensitivity analyses suggest that outbreak risks and days of face-to-face 
teaching lost following an incursion are greater with a more infectious 
variant. This makes early detection even more important with more 
infectious variants and means that the results of this study are likely 
to be even more pronounced than were estimated at the time. Reduced 
vaccine efficacy would be likely to increase the number of incursions 
and observed transmissibility, further accentuating this effect. The 
sensitivity analyses for TTS compliance (Figure  5) and screening 
frequency (Supplementary material) are equivalent to varying the test 
sensitivity, and suggest that a moderate reduction in RAT test 
sensitivity associated with new variants would be  unlikely to 
qualitatively change our findings.

Specific to schools, limited network-type data on contact patterns 
within schools mean that mixing is approximated as consisting of 
classroom and non-classroom contacts, where students are allocated 
at random to classrooms and then randomly mix with other students 
outside of classrooms (rather than having social clustering). Some 
findings are also sensitive to assumptions for the number of 
non-classroom contacts students have; quarantine or test-to-stay 
strategies in particular focus on classroom contacts rather than close 
contacts as they are more practical to identify. However, these 
strategies will be less effective if a greater proportion of risk comes 
from non-class contacts.

Surveillance of teachers was found to have minimal benefit for 
reducing outbreaks in schools. Teachers only comprise a small 
proportion of the school community and for the purpose of this 
analysis we  assumed that students and teachers had the same 
probability of becoming infected outside the school and causing the 
incursion. If teachers have a higher risk of becoming infected in the 
community than students, which may be  the case (25), then the 
benefit of screening teachers would be higher than estimated.

Schools are embedded within their broader communities and 
receive incursions from the community as well as seeding cases back 
into the community. For this study, outbreaks were projected after a 
random initial incursion, without modelling the process by which the 
incursions occur. However, there may be social or other factors that 
make teachers or older/younger students more likely to be exposed in 
the community, and hence more likely to be the index case within the 
school, and these could change the effectiveness of different control 
measures. Limiting the scope of analysis to the outbreak within a school 
also meant that the benefits of community public health responses on 
reducing incursions into schools are not modelled, nor the benefits of 
school closures on reducing overall community transmission. Future 
work could assess the impact of community interventions on schools, 
and impact of school interventions on the rest of the community.
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We have examined test-to-stay and quarantine protocols in the 
specific context of COVID-19 outbreaks, but the same questions are 
relevant for other respiratory infections such as influenza. The general 
principle of test-to-stay providing similar protection to quarantine is 
strongly dependent on test sensitivity, but is likely to also depend on 
disease attributes such as the incubation period, pre-symptomatic 
infectiousness, and whether there are asymptomatic carriers. Future work 
could investigate how such factors affect the impact of policy responses.

Conclusion

Twice-weekly surveillance testing of students with RATs can 
markedly reduce outbreak risk in schools by enabling early detection 
of incursions and is likely to have greatest benefit in areas with higher 
community transmission. Following an outbreak in a school, as an 
alternative to home quarantine a ‘test-to-stay’ strategy for class 
contacts achieves equivalent outbreak containment and enables face-
to-face teaching. Evaluation of both approaches in schools will 
be  critical to inform ongoing policy decisions and to optimize 
implementation of testing in educational settings when needed to 
reduce incursions.
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Introduction: The COVID-19 pandemic has had a significant impact on public

health and social systems worldwide. This study aims to evaluate the e�cacy of

various policies and restrictions implemented by di�erent countries to control the

spread of the virus.

Methods: To achieve this objective, a compartmentalmodel is used to quantify the

“social permeability” of a population, which reflects the inability of individuals to

remain in confinement and continue social mixing allowing the spread of the virus.

Themodel is calibrated to fit and recreate the dynamics of the epidemic spreading

of 42 countries, mainly taking into account reported deaths and mobility across

the populations.

Results: The results indicate that low-income countries have a harder time

slowing the advance of the pandemic, even if the virus did not initially propagate

as fast as in wealthier countries, showing the disparities between countries in

their ability to mitigate the spread of the disease and its impact on vulnerable

populations.

Discussion: This research contributes to a better understanding of the

socioeconomic and environmental factors that a�ect the spread of the virus and

the need for equitable policy measures to address the disparities in the global

response to the pandemic.

KEYWORDS

COVID-19, epidemic modeling, Bayesian inference, compartmental models, non-

pharmaceutical containment policies

1. Introduction

The COVID-19 disease, caused by the novel coronavirus SARS-CoV-2, is a highly

contagious respiratory illness that was first reported in Wuhan, China in December 2019

(1). It was declared a pandemic by the World Health Organization on March 11th 2020

and by that time, the disease had spread globally, resulting in an international public health

crisis that impacted all aspects of life for those affected. As it continued to spread, countries

worldwide implemented a range of strict measures to contain the virus with varying degrees

of success, including lockdowns, travel restrictions, and social distancing measures (2). Since

the early stages of the pandemic, experts have studied the uneven spatial spread of the virus,

which is associated with socioeconomic and environmental factors (3, 4). These studies

revealed that minorities, low-income areas, and vulnerable populations (5, 6) have been

disproportionately affected by the situation, exacerbating existing inequalities.

Numerous studies have examined the factors that contribute to the reproduction number

or the speed at which a disease propagates in a population (7). Most of these studies

have found positive correlations between the transmissibility of a pathogen and factors

such as population density, income inequality, urban areas, and household size, among

others (8–11). At the onset of the COVID-19 pandemic, an important metric that also
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showed a positive correlation with the reproduction number

of SARS-CoV-2 was the Gross Domestic Product (GDP) per

capita (12–14). This suggests that the virus spread more rapidly

in affluent countries due to a large percentage of the population

living in densely populated cities and the significant inflow of

air traffic facilitating the initial importation of a large number of

cases. However, the data on this correlation was inconclusive in the

subsequent phases of the COVID-19 pandemic.

Despite the implementation of measures to mitigate the

spread of the virus, there are significant disparities between

countries in their ability to contain the pandemic. While wealthier

countries have been able to enforce stay-at-home policies by taking

the appropriate measures and ensuring the safety of the most

vulnerable populations, lower income countries are unable to

prevent the loss of income and jobs, leading to food insecurity

and reduced access to healthcare. As a result, even with mobility

restrictions in place, people in these countries are still exposed to

the risk of the pandemic due to the need to work and maintain

their income.

The goal of this study is to highlight the connection between

the different efficacy of lockdown policies observed across countries

and their socioeconomic features. To this aim, we will attempt to

measure the social permeability of these nations, which accounts

for the inability of the population to remain in confinement and

thus continuing social mixing that allows the disease to spread.

The study of this variable allow us to distinguish unique scenarios

that appear for each studied country and contribute to the already

existing efforts (7) to show the varied relationships between the

spread of epidemics and economic indicators.

2. Methods

2.1. Modeling

2.1.1. Discrete time compartmental model
The main core of this study is the development of a

compartmental model to capture COVID-19 epidemic trajectories

and how they were impacted by non-pharmaceutical interventions

implemented in various countries. To this aim, the model should

be sufficiently complex to provide an accurate representation of

the epidemic process and the primary mechanisms behind virus

transmission, yet simple and adaptable enough to be applied to

different countries.

The proposed compartmental framework is an extended

version of the Susceptible-Exposed-Infected-Recovered (SEIR)

model (15), which allows for monitoring both the number

of deaths over time for each country and the effects of non-

pharmaceutical interventions. Our framework is a discrete-time

model, being each time step a day. The model consists of

six compartments: Susceptible (S), Exposed (E), Infectious (I),

Recovered (R), Pre-deceased (Pd), and Deceased (D). The flows

diagram connecting these compartments is represented in

Figure 1. This diagram depicts the following sequence of events:

In the absence of interventions, Susceptible individuals (S)

have a likelihood of contracting the virus (β) for each contact

with an infected person, leading them to move to the Exposed

compartment (E), meaning that they are carriers of the virus but

not yet contagious. Once in compartment E, individuals can move

to the Infectious compartment (I) with a probability η, where they

can infect Susceptible individuals. Infectious individuals leave their

compartment with probability µ, either recovering and entering

the Recovered compartment (R) with a probability of 1 − ϒ , or

dying due to the disease with a probability of ϒ . In the latter case,

they enter in the Pre-deceased compartment (Pd) and, eventually,

move to the Deceased compartment (D) with probability ξ .

Following the previous assumptions for the compartmental

model, we can propose the dynamical equations driving the

evolution of the individuals. In particular, the evolution from the

Infectious stage can be straightforwardly derived, yielding:

I(t + 1) = ηE(t)+ (1− µ)I(t) , (1)

R(t + 1) = µ(1− ϒ)I(t)+ R(t) , (2)

Pd(t + 1) = µϒI(t)+ (1− ξ )Pd(t) , (3)

D(t + 1) = ξPd(t)+ D(t) . (4)

The remaining equations of the model account for the contagion

of the Susceptible individuals and are shaped by the non-

pharmaceutical interventions, which manifest in a reduction in

mobility and the formation of social bubbles throughout the

populations. The impact of non-pharmaceutical interventions will

be encapsulated in a fraction of the Susceptible population gathering

the number of individuals staying at their households, not being

reachable by their infectious counterparts. To model the evolution

of this confined population, we assume that mobility is governed

by a time-dependent parameter pact(t). In particular, for each

day, a fraction pact(t) of the Susceptible compartment remains

active (Sactive) while the rest, a fraction (1 − pact(t)) of the pool

of Susceptibles, reduce their mobility and social interactions. Of

these individuals, a fraction (1 − φ) stays at home and forms

a social bubble with the rest of the members of the household

(Sconfined). The rest of the individuals that became inactive but

did not successfully isolate themselves completely (Sinactive) mix

with members of other households due to their social permeability.

These three fractions of the Susceptible compartment can be

represented as:

Sactive(t) = S(t)pact(t) (5)

Sinactive(t) = S(t)(1− pact(t))φ (6)

Sconfined(t) = S(t)(1− pact(t))(1− φ) (7)

Taking into account the aforementioned policies and every group

in the Susceptible population, the equation governing the time

evolution of the occupation of the Exposed compartment reads:

E(t + 1) = Sactive(t)Pactive(t)+ Sinactive(t)Pinactive(t)

+Sconfined(t)Pconfined(t)+ (1− η)E(t) , (8)

where Pactive(t), Pinactive(t) and Pconfined(t) account for the

probability that Susceptible individuals belonging to each of these

groups contract the disease at time t. We assume that the number

of contacts made by each group (kactive(t) and kinactive(t)) depends

on the mobility levels in their respective settings, yielding:

kactive(t) = 〈kactive〉pact(t) , (9)

kinactive(t) = 〈kinactive〉pres(t) , (10)
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FIGURE 1

Scheme of the compartmental model here proposed. The model comprises six compartments: Susceptible S, Exposed E, Infectious I, Recovered R,

Pre-deceased Pd and Deceased D. Note that, as a result of the non-pharmaceutical interventions, the Susceptible compartment is divided into three

sub-compartments: Sactive, Sinactive , and Sconfined representing a fraction p(t), (1− p(t))φ and (1− p(t))(1− φ) of the total number of Susceptible

individuals, respectively. A detailed explanation of the flows connecting these compartments can be found in the Section 2.

where pact(t) represents the observed mobility of the people that

travel to their daily destinations and pres(t) is the mobility of

those who remain inactive in their residential areas. Likewise,

〈kactive〉 corresponds to all contacts made by individuals in the

baseline scenario whereas 〈kinactive〉 constitutes their interactions

at home. Both can be estimated from social data existing in the

literature (16).

Assuming a well-mixed population, the probabilities of

contracting the disease can be calculated as:

Pactive(t) = 1−

(
1− β

I(t)

N

)kactive(t)

, (11)

Pinactive(t) = 1−

(
1− β

I(t)

N

)kinactive(t)

, (12)

for the active and inactive population. In addition, there is a chance

that confined individuals contract the disease from other infectious

members of their social bubble. These agents make kinactive contacts

with others in their own household. The probability of getting

infected for this group of individuals depends on the number of

infected people in their households as:

Pconfined(t) = 1−

σ−1∑

i=0

p(i)

(
1− β

i

σ − 1

)kinactive(t)

, (13)

where σ is the number of people in each household (meaning that

a susceptible member is able to make contacts with the other σ − 1

residents) and the probability of finding i infected individuals in a

household is

p(i) =

(
σ − 1

i

)(
I(t)

N

)i (
1−

I(t)

N

)σ−1−i

. (14)

To round off, we assume a closed population so that the occupation

of the S compartment changes with:

S(t+1) = N−E(t+1)−I(t+1)−R(t+1)−Pd(t+1)−D(t+1) . (15)

2.2. Data sources

2.2.1. COVID-19 deaths
To calibrate our model, we rely on data regarding the daily

number of fatalities in each country. As consistency across

populations is crucial, the number of detected cases is not a

suitable metric due to surveillance issues that affect countries

differently (17, 18). There are several contributing factors to

the possible discrepancies on the reported cases. Firstly, testing

strategies can vary across populations, with some focusing on

high-risk groups or areas, while not accounting for asymptomatic

cases. Additionally, limited testing capacity can lead to an

underestimation of the true number of infections, particularly in

areas with high community transmission. Furthermore, differences

in the definition and reporting of cases, as well as demographic

variations such as age, gender, and underlying health conditions,

can make it challenging to compare trends between different

countries or regions.

The accuracy of reported deaths is also not guaranteed for

similar reasons, including possible changes in definition and

reporting delays. To address these reporting issues, we specifically

choose countries with continuous and consistent records of this

information, which are listed in Table 1. The selection of the

countries was performed according to two criteria: there must be

a peak of at least 10 deaths, and the daily mobility and number of

deaths have to be available and consistent for this entire duration.
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TABLE 1 Average contacts of active, 〈kactive〉, and inactive, 〈kinactive〉, average household size σ , GDP per capita and minimum level of mobility during

lockdown for each country.

Country Country code 〈kactive〉 〈kinactive〉 σ GDP per capita (US$) pmin

Argentina AR 14.12 3.84 2.95 8475.73 0.15

Austria AT 12.48 3.13 2.27 48105.63 0.17

Bangladesh BD 16.34 3.55 4.26 2000.64 0.25

Belgium BE 11.38 2.88 2.36 45028.32 0.21

Bolivia (Plurinational State of) BO 17.04 3.03 3.53 3133.1 0.12

Bulgaria BG 12.73 4.06 2.34 10058.08 0.35

Canada CA 12.57 3.1 2.45 43559.71 0.43

Chile CL 13.71 3.66 3.04 13231.71 0.31

Colombia CO 15.26 3.6 3.53 5332.77 0.18

Egypt EG 15.67 3.64 4.13 3608.84 0.38

France FR 11.78 3.1 2.22 38958.6 0.12

Germany DE 6.86 1.79 2.05 45908.72 0.38

Greece GR 11.79 3.18 2.44 18117.07 0.21

Guatemala GT 18.98 4.08 4.81 4331.69 0.31

Honduras HN 18.27 4.23 3.87 2405.73 0.17

Hungary HU 12.07 3.46 2.6 16128.65 0.39

Indonesia ID 15.26 3.14 3.86 3869.59 0.54

Iraq IQ 20.64 4.35 6.35 4145.86 0.33

Ireland IE 12.47 3.43 2.83 86250.99 0.15

Israel IL 13.6 3.84 3.14 47033.59 0.14

Italy IT 14.37 2.94 2.4 31238.05 0.11

Kuwait KW 16.42 4.16 5.8 24809.04 0.12

Luxembourg LU 16.37 3.46 2.41 117181.7 0.17

Malaysia MY 15.4 3.59 4.56 10401.79 0.2

Mexico MX 15.42 4.04 3.75 8325.57 0.4

Morocco MA 14.3 3.72 4.58 3108.18 0.18

Nigeria NG 20.47 4.16 4.66 2085.47 0.44

Pakistan PK 18.65 4.18 6.8 1167.22 0.31

Panama PA 14.62 3.45 3.64 12269.05 0.14

Philippines PH 17.04 3.72 4.23 3298.83 0.17

Poland PL 13.93 4.42 2.81 15764.11 0.32

Portugal PT 11.88 3.03 2.66 22413.04 0.23

Romania RO 11.97 3.41 2.88 12928.58 0.27

Russian Federation RU 12.88 3.42 2.58 10165.51 0.45

Saudi Arabia SA 15.64 4.1 5.6 20110.32 0.27

South Africa ZA 15.92 3.94 3.36 5094.38 0.24

Spain ES 12.02 3.19 2.69 27408.63 0.08

Switzerland CH 13.14 3.11 2.21 86918.65 0.19

Turkiye TR 13.72 3.72 4.07 8538.13 0.27

Ukraine UA 12.65 3.48 2.53 3557.48 0.47

The United Kingdom GB 9.48 2.25 2.27 40718.22 0.22

United States of America US 12.6 3.24 2.49 63122.59 0.54
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The data used in this study is extracted from the official daily counts

of COVID-19 deaths reported for countries by the World Health

Organization and smoothed using a 7-day rolling average.

2.2.2. Mobility reduction data
We extract the level of mobility inside each country at a certain

time, pact(t) and pres(t), from the Google COVID-19 Community

Mobility Reports. Among the different types of movements

included in this study, we focus on the Retail and Recreation

category for the active individuals and the Residential category for

the inactive ones. For each day, the level of mobility is computed

by comparing the amount of flows recorded for this day with

their median values measured in a pre-pandemic baseline scenario,

spanning 5 weeks from January 3 to February 6, 2020. To reduce

data noise, we smooth the curves using a 7-day rolling average.

2.2.3. Socioeconomic data
A key component of the epidemiological model is the average

number of people an individual encounters (contacts) throughout

their day, which varies from one country to another and has

been measured in a certain number of them taking into account

the heterogeneities in the populations. The dataset used for the

simulation comes from a study (16) where the authors extrapolate

the known data to 152 countries and provide contact matrices

representing the number of contacts a person of each age group

has with the others in different settings. For each country, we obtain

the average number of contacts from an active individual 〈kactive〉 as

the weighted average of the total number of contacts made by each

individual of each group in all the settings, taking into account the

population age pyramid of this country (19). To compute the same

quantity for inactive (controlled) individuals 〈kinactive〉, we repeat

the same process by just accounting for the contacts made at home.

The average number of residents in a single home is also

an important parameter of the model, and was reported by the

United Nations (20) formost countries in the world. The household

size σ is available at https://www.un.org/development/desa/pd/

data/household-size-and-composition, and in the model has been

rounded to the nearest integer in order to follow the equations.

Lastly, the Gross Domestic Product (GDP) per capita is taking

into account to find a relation between the wealth of different

populations and the success of their confinement policies. It is

available at www.worldbank.org.

These country-dependent parameters (〈kactive〉, 〈kinactive〉 and

the GDP per capita) are summarized in Table 1.

2.2.4. Epidemiological parameters
Some of the parameters in relation to the compartmental model

have already been determined and are fixed based on the literature:

• η: Probability of leaving the E compartment. It is related to the

average duration of the incubation period. We fix its value to

η = 1.0/5.2 (21).

• µ: Probability of leaving the I compartment. It is related to the

average duration of the infectious windows after contracting

and incubating the virus. We fix its value to µ = 1.0/4.2 (21).

• ϒ : Infection fatality rate which, as reported in (22) and (23), is

estimated to be ϒ = 0.01.

2.3. Model calibration

2.3.1. Approximate Bayesian Computation (ABC)
The Approximate Bayesian Computation (ABC) method, as

described in (24) and (25), provides a solution to Bayesian inference

problems where computing the likelihood function and its further

exploration becomes cumbersome. ABC works by generating

synthetic trajectories using a set of parameters and then accepting

or rejecting those parameters based on how well the synthetic

trajectories match real data. This approach allows the construction

of approximate posterior distributions.

There are several ways of exploring the posterior distribution

of the parameters, one of the simplest being the ABC rejection

algorithm (26), which is used in our case. To quantify the goodness

of a given trajectory generated by a set of parameters Eθ , we use a

logarithmic distance function ρ(Eθ) defined as:

ρ(Eθ) ≡
∑

t

log
[
|Dobs(t)− D

Eθ (t)| + 1
]
, (16)

where Dobs(t) represents the observed daily fatalities at time t and

D
Eθ (t) its value predicted by the synthetic trajectory. Note that,

among all possible choices for this goodness function, we have

chosen a logarithmic function not to under-represent the initial

stage of the epidemics, where there are fewer deaths.

The ABC rejection algorithm builds the posterior distribution

for the model parameters by sampling them from the trajectories

fulfilling that ρ(Eθ) < ǫ, where ǫ is a tolerance threshold. In

our case, we run two rounds of the ABC rejection algorithm. In

the first round, we draw 20 · 106 random samples of variables

from the prior distributions and compute the distance between the

synthetic trajectories and the real data by taking into account the

period between February 20 and May 20, 2020. We set a dynamical

threshold ǫi to accept those 1, 000 trajectories providing the best fits

for the data in each country. We construct the prior distributions

for the second from the accepted trajectories in the first one and

the process is repeated. This second iteration allows the algorithm

to give more accurate results for each country due to the intrinsic

variability of the parameters across countries.

2.3.2. Model free parameters
The numerical iteration of Equation (1) allows one to obtain

synthetic trajectories capturing the evolution of individuals in each

of the compartments. The parameters of the model that are not

fixed from the literature will be left for calibration via the ABC

method. These parameters are:

• β : This parameter represents the probability of infection,

which varies from one country to another due to factors such

as population density, urbanization, and use of masks. The

prior distribution of this parameter is β ∼ U(0.01, 0.3).

• φ: The permeability of the confinement, which is the main

objective of the study to fit. A low permeability means a high

Frontiers in PublicHealth 05 frontiersin.org153

https://doi.org/10.3389/fpubh.2023.1193100
https://covid19.who.int/data
https://www.google.com/covid19/mobility/
https://www.un.org/development/desa/pd/data/household-size-and-composition
https://www.un.org/development/desa/pd/data/household-size-and-composition
www.worldbank.org
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Valgañón et al. 10.3389/fpubh.2023.1193100

effectiveness of the non-pharmaceutical policies due to a good

compliance from the population. The prior distribution of this

parameter is φ ∼ U(0, 1).

• ξ : The probability of leaving the Pd compartment to die

because of the disease. The prior distribution of this parameter

is ξ ∼ U(1/18, 1/6).

• T: The estimated number of days that have elapsed since the

first case of the disease in the country and the day chosen

as the starting point for comparison with observed deaths,

which for all countries corresponds to 2020-02-20. The prior

distribution of this parameter reads T ∼ U(0, 100).

• δ: The delay in death notification. The prior distribution of this

parameter is set at δ ∼ U(2, 20).

Note that δ is not a strictly needed parameter to run the model

but becomes essential to make synthetic trajectories compatible

with real data (27). In all the cases, the prior distributions

chosen are broad enough to avoid biasing the inference of the

posterior distributions.

2.4. Relationship between GDP per capita
and countries permeability

In this section, we explain howwe link the inferred permeability

distributions of individual countries with certain economic

indicators, such as GDP per capita. To obtain a meaningful

association, we should exclude countries for which the model

does not provide a reasonable fit, as well as those where mobility

limitations did not substantially impact the control of the epidemic.

On the one hand, to determine which countries have been

correctly modeled, we calculate the relative area between the

estimated curve and the real data using the following equation:

ε(Eθ) =

∑
t |Dobs(t)− D

Eθ (t)|∑
t Dobs(t)

. (17)

For the subsequent analysis, we discard those countries for which

min(ε(Eθ)) > 0.4 as the model does not fit well the epidemic

trajectories there.

Once these countries are discarded, we quantify the relationship

between permeability and GDP per capita by performing a non-

linear regression fitting the permeability to the following function:

φ(x) = ax−b (18)

where x is the GDP per capita. As our information about

permeability comes from posterior distributions, we conduct 1, 000

independent fits by sampling diverse sets of permeability values

from these distributions. The confidence interval of the regression

curve is calculated as the percentile 2.5 to the percentile 97.5 of the

individuals fits obtained.

3. Results

We calibrate our model to real data using the Approximate

Bayesian Computation (ABC) scheme described in the Methods

section. The results of the calibration for each considered country

can be found in Supplementary Figure 1. One important finding is

that, despite its simplicity, our simple model accurately captures

the time evolution of reported deaths for most countries and

confirms the assumption that the mobility reduction has a direct

effect on the number of daily contagions, which decreases as

stricter policies are put in place. Figure 2 illustrates this by showing

the real and simulated epidemic trajectories for Spain, Colombia,

and Ukraine. The selected countries represent three distinct types

of behavior observed in our study. While Spain and Colombia

implemented similar lockdown policies resulting in comparable

reductions in averagemobility, their outcomes were vastly different:

Spain managed to stop the spread and bend the curve, whereas

Colombia experienced a steady growth in casualties. This pattern

of steady increase is also observed in Ukraine, which had a milder

reduction in mobility compared to Spain and Colombia.

The unequal impact of mobility reduction on epidemic

containment can be captured by the social permeability

φ parameter in our model, which modulates the effective

reproductive number of the circulating virus, as explained in (28).

Namely, low permeability values significantly reduce the pool

of susceptible individuals exposed to the virus due to the lower

household mixing, whereas high permeability values means that all

the individuals remain vulnerable to the virus but with a reduced

exposure due to their hampered social activity.

In Figure 3, we present the posterior distributions obtained

of social permeability for each country analyzed in this study.

Focusing on the specific case of Colombia and Spain, we confirm

that lower efficiency of mobility reductions in Colombia translates

to higher permeability values compared to those inferred for

Spain. While not the focus of our manuscript, other model

parameters also provide insightful information about the impact of

the first COVID-19 epidemic wave and the associated contention

measures across countries. For instance, the inferred values of

parameter T enable to reconstruct the time of onset of the

outbreak in each country, whereas parameter δ accounts for the

heterogeneous delay in reporting deaths. Nonetheless, conclusions

on these parameters should be drawn with caution because of the

correlations between their posterior distributions, as illustrated in

Supplementary Figures 2–4 for the case of Spain, Colombia and

Ukraine, respectively.

To round off, we check whether we can connect the

heterogeneous permeability values inferred for each country with

their corresponding socioeconomic features. In order to establish

a meaningful link, we narrow our focus to countries where

the model accurately predicts the course of the disease. We

determine this accuracy by calculating the normalized distance

ε(Eθ) between the data and the model trajectories, which enables

us to establish a threshold and exclude countries where the model

does not perform well. This procedure is described in more

detail in the Section 2 and the distribution of the minimum

normalized distances εmin observed across countries is represented

in Supplementary Figure 5.

Figure 4 represents the posterior distribution of the social

permeability against the gross domestic product (GDP) per capita

of the selected countries. The tendency showcased in the figure

indicates that there is in fact a negative statistically significant

correlation between the wealth of a country and the ability of its

inhabitants to properly follow the restrictions and stay in lockdown.
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FIGURE 2

Daily evolution of the number of deaths in Spain (A), Colombia (B), and Ukraine (C). In all the panels, dots represent real reported data whereas the

blue shadowed region corresponds to the 95% prediction interval of the accepted trajectories after calibrating the model. The blue solid line

represents the median trajectory whereas the orange line corresponds to the time variation of mobility compared with a baseline pre-pandemic

scenario spanning from January 3 to February 6, 2020.

This negative correlation between the permeability and GDP per

capita is further supported by the non-linear regression of the data

described in the Section 2.

For the sake of completeness, we study the influence of possible

confounding factors on this correlation such as mobility reduction

and deaths caused by the disease. Supplementary Figure 6 shows

that the permeability values have no correlation with the minimum

observed mobility for each one of them, meaning the model can

separate the level of mobility reduction and the effectiveness of the

confinement without one depending on the other. Regarding the

relationship between permeability and death toll per capita in each

country, we observe in Supplementary Figure 7 low permeability

values for those countries with higher number of fatalities but

a large variability without any clear relationship in those less

severely affected.

4. Discussion

The COVID-19 pandemic has had an undeniable impact

on the world and has exposed the existing social and economic

inequalities within many countries (29, 30). To address this

issue, various countries have implemented policies and non-

pharmaceutical interventions to control the virus’s spread and

reduce the number of casualties. However, the pandemic’s

impact has not been evenly distributed across society, with

certain groups suffering more severe consequences than

others (31, 32). This inequality is not limited to individual

countries, but also occurs across nations due to various challenges

that low income countries face in implementing measures

to prevent transmission. Low income countries encounter

numerous obstacles, such as inadequate infrastructure, a lack

of public trust, and a high percentage of individuals working

in the informal sector, who cannot work remotely from home

and lose their source of income (33–35). These factors have

resulted in significant challenges in controlling the virus

in many low income countries, underscoring the pressing

need for a global effort to address the pandemic equitably

and effectively.

The focus of our research has been to explore the impact

of socioeconomic determinants on the efficacy of stay-at-home

measures in controlling the spread of COVID-19. By using the

change in mobility as a metric for the strictness of the restrictions,

without the assumption that they are an accurate quantitative

representation of the real level of confinement that the population

went through, we have been able to replicate the epidemic trajectory

in 42 countries. Our findings indicate that a reduction in mobility is

strongly associated with a decrease in virus transmission. However,

we recognize that this metric may not always be an accurate

representation of the true level of confinement experienced by the

population. To address this, we introduced the concept of social

permeability, which was estimated using Approximate Bayesian

Computation. Our results suggest that low-income countries tend

to have a higher permeability, indicating that restrictions were less

effective in achieving an efficient population confinement.

Finally, the framework here proposed constitutes a minimal

approach to capture the evolution of COVID-19 pandemic under

mobility restrictions and presents different limitations. First, the

model assumes a well-mixed population inside each country,

neglecting possible spatial heterogeneities existing among its

different regions and resulting in the aggregated values for the

variables not representing a fair indicator of the evolution of the

pandemic. In this case, the aggregated values for these variables

do not represent a fair indicator of the evolution of the pandemic.
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FIGURE 3

Posterior distribution for each of the free parameters of our model (φ,β, ξ ,T, δ) obtained after calibrating the model in each of the countries here

analyzed. For each parameter, dots denote the median value of the distribution whereas the solid line represents the IQR of each distribution.

In addition, our model overlooks those policies which might

play an important role in bending the epidemic curves while

not entailing a significant reduction in the mobility levels of

the population. Some examples might be social distancing of the

population, prophylaxismeasures such as hands hygiene or wearing

masks or ban of massive gatherings of individuals. Furthermore,

mobility reduction levels were obtained from the Google COVID-

19 mobility dataset, which relies on the mobility patterns estimated

from smartphone users that have opted in to Google’s Location

History feature, which is off by default. Because of this, the results

are based on the assumption that these users represent the behavior

of the entire population in their respective countries. Despite

all these limitations, we hope that our model paves the way to

the elaboration of more sophisticated frameworks addressing the

relevance of the interplay socioeconomic features and mobility

reductions during epidemic outbreaks.
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FIGURE 4

Posterior distribution obtained for the permeability parameter φ as a function of the GDP per capita of the country in which the model is calibrated.

The shadowed region of the fit shows the 95% prediction interval of the trajectories obtained via non-linear regression φ(x) = ax−b, where x stands

for GDP per capita and the parameters result in a = 16± 4.12, b = 0.39± 0.03. The solid line represents the average value of the fitted trajectories for

each x. The Spearman correlation coe�cient ρS between both variables is ρS = −0.590 with p < 10−4.
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Introduction: Since the outbreak of the COVID-19 pandemic, the Chinese

government has implemented a series of strict prevention and control policies

to prevent the spread of the virus. Recently, the Chinese government suddenly

changed its approach and lifted all prevention and control measures. This sudden

change in policy is expected to lead to a widespread outbreak of COVID-19 in

China, and the public and local governments are not adequately prepared for

the unknown impact on society. The change in the “emergency” prevention and

control policy provides a unique research perspective for this study.

Methods: The purpose of this study is to analyze the public’s attitudes and

emotional responses to COVID-19 under the sudden opening policy, identify the

key factors that contribute to these attitudes and emotions, and propose solutions.

In response to this sudden situation, we conducted data mining on topics and

discussions related to the opening of the epidemic on Sina Weibo, collecting

125,686 interactive comments. We used artificial intelligence technology to

analyze the attitudes and emotions reflected in each data point, identify the key

factors that contribute to these attitudes and emotions, explore the underlying

reasons, and find corresponding solutions.

Results: The results of the study show that in the face of the sudden release of

the epidemic, the public mostly exhibited negative emotions and behaviors, with

many people experiencing anxiety and panic. However, the gradual resumption of

daily life and work has also led some people to exhibit positive attitudes.

Conclusion: The significance of this study is to help the government and

institutions understand the impact of policy implementation on users, and to

enable them to adjust policies in a timely manner to respond to potential social

risks. The government, emergency departments, and the public can all prepare for

similar situations based on the conclusions of this study.

KEYWORDS

COVID-19, deregulation of epidemic control, emotional and attitudinal behaviors, social

media users, artificial intelligence, natural language processing
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1. Introduction

As of September 20, 2022, the global outbreak of COVID-19 has

caused 229 million cases of infection and 4.75 million deaths (1).

The outbreak of the epidemic has the characteristics of suddenness,

rapidity, and unpredictability. It often poses a serious threat to

the life and health of the public and triggers complex emotions

such as panic, dissatisfaction, and anger (2). Three years after

the first COVID-19 case, China announced the end of restriction

measures (later compared to the rest of the world) and experienced

a large-scale spread of infections for the first time. The Chinese

government announced the “Dynamic Zero COVID-19 Strategy”

on January 23, 2020. On December 7, 2022, China suddenly

promulgated the “The New 10 Measures” policy for epidemic

prevention and control and announced the national release of the

blockade (3). China’s local government and the public were not

prepared for the sudden change in epidemic policy. Due to the

government blockade and the implementation of various security

measures, the epidemic not only destroyed economic development

but also changed people’s lives during the pandemic. At the same

time, it also has an important impact on people’s mental health (4).

The public is easily influenced by various government

information, and government policies are also changing. In the

early days, the public obtained government information through

traditional media such as newspapers and television, but lacked

feedback channels. With the emergence of the Internet, the public

can obtain relevant information faster, but the feedback speed

is slow. Nowadays, in the era of mobile Internet, government

information quickly spreads to the public (5), and the public can

also make timely responses to government policies, forming a

communication channel of rapid dissemination and feedback. In

this case, social media has become a part of public life, and due to

public concerns, the use of social media during the pandemic has

becomemore frequent, which can not only maintain social distance

but also obtain more information. The government’s reputation

has also shifted from eWOM to mWOM (6), and the public’s

feedback on government policy implementation has also changed

accordingly. This is also the reason why social media users were

chosen as the research object in this study, as they can provide

timely data and reflect the real public attitudes.

A large amount of information that is difficult to distinguish

between true and false is widely disseminated by social media,

and its adverse effects are comparable to the virus epidemic,

stimulating the public’s nerves, stirring up social emotions,

and creating extremely harmful social risks. The World Health

Organization calls it “Information Epidemic”. The so-called

information epidemic refers to the fact that at the same time

the epidemic, excessive information (some are correct and some

are wrong) makes it difficult for people to find trustworthy

information sources and reliable guidance (7). In the context of

the information epidemic, people have a collective panic because of

various information related to the epidemic, and changes in mood

and attitude have seriously affected the epidemic prevention and

control and social stability.

Understanding the public’s emotional attitude has practical

significance for current and future public health management.

The public’s emotions and views on the risk of the epidemic

determine their personal behavior and whether they cooperate with

the necessary government control measures (7, 8). Mastering the

public’s emotional attitude and the influencing factors will help

the government in implementing effective policies to address the

psychological trauma and fear experienced by the public after the

COVID-19 epidemic.

As a representative Chinese online social media platform

(9), Weibo is designed to facilitate interaction between users.

The interaction in the Weibo environment is related to users’

emotions. The communication and social value transmission

brought by the social interaction of online media will allow users to

experience positive emotional value changes. The close interaction

of microblog users has also brought huge user value (10), user

emotion and user satisfaction, and is also the embodiment of user

behavior in the online social media space.

In the research of network social media users, some studies

believe that posting information through social media is a

behavioral plan for educating users without understanding users’

needs and problems (11). However, recent studies have shown

that online social media has higher user engagement than other

traditional media (12). With the popularity of web social media, the

Chinese government has also extended the category of government

policy information used to web social platforms such as Weibo to

provide information services to users (13). In emergency response,

the release of government policy information mainly considers

the user’s adoption of the information posted by the government’s

official social media, and studies have been conducted on the

factors that affect users’ adoption of government information.

Some studies propose that user communication through social

media, and the adoption of government policy messages, is a

value manifestation of strong democratic countries (14). In a study

of user behavior analysis, sentiment analysis of Twitter posted

information on U.S. presidential candidates evaluates the link

between user tweets and realistic elections (15). Studies of this

type of user behavior have mainly focused on a small number of

social media influencers’ behavioral impacts. It also shows that

users’ emotional behavior is influenced by other users’ online

emotional expressions (16). Aspects of emotion impact research

targeting group social users. When encountering a disaster event,

extracting network social media user behaviors can help emergency

responders form stronger situational awareness of the disaster

area itself (17). In China, there is a strong correlation between

online social user behavior and online political contention. At the

individual level, the emotional response to public events not only

shapes user interpretation but also significantly impacts the social

behavior of network users and the construction of public discourse.

From the social level, social culture not only influences users’

emotional reactions but also determines the mode of government

interactions with the public and the basic framework construction

of Cyberpolitical contention (18).

In this context, behavioral studies of social media users provide

a more comprehensive picture of the impact of the outbreak on

social development. Although numerous studies have analyzed

users of social media in the face of a “post-epidemic” era, especially

when the Chinese government suddenly announced a release of

epidemic policy (the epidemic did not end but rather expanded

further). The information of social media users is characterized

Frontiers in PublicHealth 02 frontiersin.org160

https://doi.org/10.3389/fpubh.2023.1185928
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1185928

by timeliness, and the research on its behavior is a key issue in

this phase of this pandemic, helping the government to respond

to public opinion pressure and adjust related policies in a timely

manner, meanwhile, there is also relatively little research in this

area.

Emotion and attitude are parts of user behavior. In the research

of user’s emotional attitude, the comments with obvious emotional

color and emotional tendency published by users have an important

impact on enterprise performance (19, 20), public policy (21),

and political decision-making (22). In recent years, user emotional

analysis has emerged as a novel research approach in various fields,

including entrepreneurial success (23), environmental factors in

the tourism industry (24), and political decision-making and

planning (25). Similarly, this has led to government departments

and social organizations needing to obtain effective social feedback

by analyzing and mining user emotional data, providing reliable

research basis for government political decision-making and

planning. Sentiment analysis on online social media extracts

valuable information from natural language text to provide

decision-makers with structured and actionable knowledge (26). In

the process of spreading user emotions, emotional user comments

are forwarded more frequently and faster than neutral online

user comments (27). From the perspective of emotional media

communication, there is a difference between the way users

communicate their emotions through online media and face-to-

face communication, and the impact of information transmitted

through online media on the recipient’s emotions is different from

face-to-face communication. The spread of emotion in the network

is mainly judged by online comments. Chinese-related online

reviews are user-oriented, have a wide range of influence, and can

be measured (28). The machine learning method is used to extract

the emotion in online comments, and the Markov blanket model is

introduced to capture the emotion in the text through conditional

dependence between words and keywords and high-frequency

words (29). In-group comments are usually carried out through

a topic, and online comments on Weibo tend to focus on its

relevant “topic”. The “topic” in social media will affect user behavior

(30). In view of the concentration and short text characteristics of

Chinese microblogging topics in this study, Chinese microblogging

is realized through topic clustering and emotional analysis, as well

as prediction of hot issues in microblogging and emotional analysis

of user comments (31).

Users who rely on social media for COVID-19 information

may experience increased anxiety symptoms and decreased trust

in the information. However, this reliance does not significantly

affect preventive behavior, leading to citizens confusion regarding

the adoption of preventive measures. More research is needed

in this field since limited studies have explored the impact of

anxiety on attitudes and behavior during the COVID19 pandemic

(32). Uncertainty is a common emotional response during a

health crisis, such as the COVID-19 pandemic, as it arises

from perceiving an invisible threat with unpredictable outcomes.

Effective communication of health information can help alleviate

the fear induced by uncertainty (33).

The most direct manifestation of reflection on epidemic

prevention and control policies is emotional expression (34).

Through the analysis of emotions, we can understand the impact of

relevant policies on society. In this situation, tracking, identifying,

and analyzing the evolution of public sentiment through the

mining of massive social media data not only helps to identify

public emotions and implement psychological counseling, but also

provides computational support for grasping the trajectory of event

development and improving emergency management effectiveness.

Therefore, the emotional attitude in the context of information

epidemics has become a new research field that is highly concerned

by various sectors.

The current research aims to explore the emotional attitude

of the Chinese public and its influencing factors after the opening

of China’s epidemic policy. A questionnaire survey is a common

data collection method in this research direction (35), but due to

the limited amount of data, it is difficult to grasp the research

problem in a macro and in-depth way. Using the method of

big data text mining, researchers can summarize and study the

impact of epidemic policy on public sentiment and attitudes and

the factors behind it. Text mining is a new field in user emotion

research. It collects data through the network to observe human

psychology and behavior (36, 37). At present, researchers have

used this method to measure the public’s reaction to government

policies such as mental health and social prejudice (38, 39). In the

aspect of emotional attitude research, we also began to use this

method to carry out relevant research (40). The use of large samples

in big data mining implies strong objectivity, high timeliness,

and significant impact, making it a more suitable method for

this study.

Due to the gradual alternation of restrictive and permissive

measures, European and American public health policy

research has primarily focused on assessing the effectiveness

of adopted policies and their economic consequences, rather

than sentiment analysis. In contrast, China government has

recently triggered relevant and emotionally charged discussions

on social networks, by shifting from 3 years of strict epidemic

control policies to a sudden opening up policy announced

within a few days (41). Previous Chinese sentiment research has

predominantly examined the emotional impact of early-stage

epidemic prevention and control measures (34, 42), with less

emphasis on subsequent “changes” in prevention and control

policies as the epidemic situation improves. This article aims to

investigate the attitudes and emotional behaviors of social media

users in response to the abrupt shift in epidemic prevention

policies during the period of December 1st to December

20th, 2022. The primary research questions addressed are

as follows:

1. What are the prevailing attitudes among social media users?

2. How do social media users express their emotions under

different attitudes?

3. What factors influence these attitudes and emotions?

2. Related work

This section discusses related work in three parts: data

acquisition, training of text classification models, and sentiment

analysis based on media users.
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2.1. Weibo data mining

SinaWeibo is one of themost popular social media applications

in China. A significant amount of work has been done to study

the data of Sina Weibo. For example, Samuel et al. (43) used

Weibo data to analyze social media behavior and emotional changes

during emergency events. Garcia and Berton (44) used the TPACK

framework to explore the design and implementation of teaching

by Chinese early childhood education workers during the epidemic

period using Weibo data. Boon-Itt and Skunkan (45) studied

people’s attitudes toward wild animals on Weibo to analyze public

opinions on stray cats in China. Naseem et al. (46) used Python

technology to collect Weibo data containing “Shanghai” during the

epidemic period to study the public’s attitude toward the image of

Shanghai during the COVID-19 pandemic.

2.2. Text classification model

With the explosive growth of information, the method of

manually classifying data by humans has become outdated, and

using machines to automate data annotation has significant

significance. Currently, there are many deep learning-based

methods for text classification. TextCNN (47) uses convolutional

neural networks for text classification, and its network structure is

relatively simple, so the number of network parameters is small,

the calculation is small, and the training speed is fast. HAN

(48) uses a hierarchical structure to not only calculate attention

between words, but also calculate attention between sentences.

When the text/document is long, it can still obtain relatively good

classification results. FastText (49) uses the method of word vector

to classify text, which originated from Google’s work word2vec

(50, 51). FastText’s model is relatively simple, so its inference

speed is fast, and its accuracy is also high. Subsequently, some

text classification methods based on pre-trained models gradually

became mainstream, and they only need a small amount of

data to achieve very good classification effects when completing

specific tasks.

2.3. Sentiment analysis

There is a large amount of work utilizing data on social

media for sentiment analysis during the COVID-19 pandemic.

Samuel et al. (43) collected COVID-19 related tweets and used

naive Bayes and logistic regression classification methods for

sentiment analysis. Garcia and Berton (44) used topic identification

and sentiment analysis to study a large number of tweets from

Brazil and the United States, two countries with high numbers

of transmission and deaths during the COVID-19 pandemic,

analyzing the long-term emotional trends and their relationship

with published news. Boon-Itt and Skunkan (45) conducted data

mining on Twitter, collecting a large number of tweets for keyword

frequency analysis, emotion analysis, and topic modeling, using

natural language processingmethods and latent Dirichlet allocation

algorithm to identify the most common Twitter topics. Naseem

et al. (46) collected a large number of tweets related to the

COVID-19 pandemic on Twitter, conducting a post-evaluation of

the early information flow on social media during the COVID-19

pandemic, providing information for policies applicable to social

platforms. The above work conducted sentiment analysis on social

media users during the COVID-19 pandemic, but lacked sentiment

analysis on social media users in the context of sudden changes in

epidemic policies.

3. Method

We carried out a sentiment analysis conducted on the public

response to the Chinese government’s announcement of removing

COVID-19 mobility restrictions. The analysis was based on the

following steps:

1. Data collection: we acquired sample data for analysis.

2. Data pre-processing: we conducted data cleaning to improve

quality of results and manual labeling to enhance the training

process.

3. Data segmentation: we transformed unstructured text into

structured data through segmentation.

4. Text classification: we assigned attitudes and emotions to each

comment using text classifications technics.

5. Text analysis: we extracted underlying factors through text

analysis methods.

Further details on these steps can be found in the following sections,

and a general representation is provided in Figure 1.

3.1. Setting

On December 7, 2022, the State Council of China issued

10 epidemic prevention policies, announcing that China’s 3-year

epidemic began to be fully liberalized. The announcement of the

State Council marks the almost complete opening of the epidemic

in China in the past 3 years, ushering in a relaxed post-epidemic era!

On December 13, the trip code went offline, marking the end of the

3-year epidemic prevention policy. It triggered a heated discussion

on the Internet, and the public expressed their views one after

another.

3.2. Data collection

Weibo is a popular social media platform that enables instant

information sharing, communication, and interaction among users

through various mobile terminals such as PCs and mobile phones.

With its open platform architecture, Weibo provides a simple and

unprecedented way for users to publish content in realtime to

the public. It has transformed the way information is transmitted

on the internet and facilitated the instant sharing of information.

According to Weibo’s financial report for the fourth quarter and

the whole year of 2020 (2022?), the platform had 521 million

monthly active users and an average of 225 million daily active

users in December 2020 (2022?). OnWeibo, users can express their

opinions on different themes, which are identified by using a “#”

symbol before and after the theme name. For example, themes like

#We are officially moving toward the end of the epidemic life#

allow users to engage in discussions related to specific topics. In our

study, we analyzed the real-time hot search list on Sina Weibo and
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FIGURE 1

Research framework and methods of social media users’ emotions and attitudes.

selected eight themes related to the epidemic with high discussion

rates for data collection. Using Python technology, we collected

a total of 125,686 online comments from December 1, 2022, to

December 20, 2022 (as shown in Table 1). Each comment includes

various attributes such as ID, BID, user ID, user nickname, Weibo

text, headline article URL, publishing location, mentions (user),

topic, reposts, comments, likes, publishing time, publishing tool,

Weibo picture URL, Weibo video URL, and retweet ID.

3.3. Data preprocessing

To ensure data quality, we performed data cleaning and

sorting on the obtained dataset. We retained only the text of

the microblogs, excluding posts with fewer than 10 or more

than 100 words, as well as removing duplicates. Additionally, for

improved machine learning in sentiment analysis, we randomly

selected over 10,000 posts related to the “release epidemic control”

policy for manual labeling. Regarding the attitude reflected in each

post, we utilized three labels: “negative,” “positive,” and “neutral.”

Posts unrelated to the epidemic were marked as “neutral.”

To capture the emotions expressed in the posts, we further

subdivided the “positive” and “negative” attitudes into three types

of emotions each. Specifically, the “positive” attitude encompassed

emotions such as “happy,” “warm,” and “encouraging,” while

the “negative” attitude included emotions like “sad,” “angry,”

and “critical.” An example of the annotated data is shown

in Figure 2.

Frontiers in PublicHealth 05 frontiersin.org163

https://doi.org/10.3389/fpubh.2023.1185928
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1185928

TABLE 1 Characteristics of selected Weibo topics on China’s opening up

after the government announcement.

No. Topic(#...#) Date Comments Likes

1 Twenty measures to

optimize prevention and

control work

2022-11-10 21,593 63,984

2 Close contacts who no

longer judge close

contacts

2022-11-11 15,042 62,744

3 Criteria for delimitation

and removal of epidemic

risk areas

2022-11-21 10,080 32,253

4 Do not check the health

code except for special

places such as schools

2022-12-07 17,587 56,101

5 Farewell to health code 2022-12-08 13,073 24,870

6 Notice on Further

Optimizing Epidemic

Prevention and Control

2022-12-09 15,817 45,970

7 The new ten items of

epidemic situation

2022-12-10 19,123 31,669

8 It is expected to reach

the peak of infection

within 1 month

2022-12-11 13,371 27,373

3.4. Segmentation

Segmentation plays a crucial role in natural language processing

as it transforms unstructured textual data into structured data,

establishing a standardized representation. This process involves

breaking down the text into smaller units, such as words or tokens,

enablingmore granular analysis. By segmenting and structuring the

text data, it becomes easier to perform various analyses, including

text classification and text analysis. In our text classification model,

we employ the trained Chinese word segmentation provided by

RoBERTa as our segmentation tool. This allows us to leverage the

capabilities of RoBERTa in segmenting Chinese text effectively.

Additionally, for constructing the word cloud map using Sina

Weibo data, we utilize the jieba thesaurus. Jieba is an excellent

third-party Chinese word segmentation library in Python, utilizing

a Chinese thesaurus to calculate association probabilities between

Chinese characters. This enables the formation of phrases with

high association probabilities. The combination of RoBERTa and

jieba enables us to effectively segment the Chinese text, facilitating

subsequent analyses and providing valuable insights.

3.5. Text classification

We employ text classification as a method to determine the

attitudes and emotions expressed by the public in each post.

Text classification involves automatically categorizing text data

according to predefined classification rules or standards. It typically

consists of two steps: building the feature representation of the text

and training the classification model. In this study, we adopt the

widely used pre-training+fine-tuning method in the field of natural

language processing. Pre-training involves training the model on

a large corpus of unlabeled text data, using two specific tasks:

Next Sentence Prediction (NSP) and Masked Language Modeling

(Mask LM). In the NSP task, the model is trained to predict

whether the second sentence follows the first sentence in the

original text, enabling it to capture sentence-level relationships

and understand semantics. In the Mask LM task, certain words

in each sentence are randomly masked, and the model predicts

these hidden words based on the context provided by the remaining

words. By comparing the predicted results with the original text,

the model learns to fill in the masked words effectively. After

completing the pre-training stage, the model can be fine-tuned

to adapt to specific characteristics and requirements. This process

involves using a small portion of annotated data from the target

task domain, such as Multi-Genre Natural Language Inference

(MNLI), Named Entity Recognition (NER), and Stanford Question

Answering Dataset (SQuAD), to achieve optimal performance.

MNLI assesses the model’s ability to determine the relationship

between two sentences (entailment, contradiction, or neutral),

while NER focuses on identifying and classifying named entities

(e.g., people, organizations, locations) in text. SQuAD evaluates

the model’s ability to generate precise answers to questions based

on given passages of text. Prominent examples of this method

include Google’s BERT algorithm (52) and OPENAI’s GPT series

(53–55). Considering the advantages of BERT and its variants

over other models, as discussed by (56), we utilize the BERT-

based enhancement algorithm RoBERTA (57). RoBERTA utilizes

longer training times, larger batch sizes, and more data to achieve

improved training results. The training method of the model is

illustrated in Figure 3, where the model is first pre-trained and

then fine-tuned in the downstream task. We separately trained the

attitude analysis model and the emotion analysis model using their

respective attitude and emotion labels.

3.6. Text analysis: factor extraction

Once we have trained the attitude analysis model and the

emotion analysis model, we can proceed with classifying all

the data. As the classification of positive and negative attitudes

encompasses three distinct emotions, we adopt a method that

involves analyzing each emotion separately and then summarizing

the results. For the data classified by the models, we summarize the

information associated with each specific emotion. Subsequently,

we perform text analysis on the collected data, generating word

cloud maps that 8 represent the corresponding attitudes and

emotions. From these word cloud maps, we extract the words with

higher frequencies, enabling us to identify the main influencing

factors for each sentiment (see Figure 4). By calculating the

proportion of each factor within the original data, we can

summarize the key influencing factors that contribute to a

particular attitude or emotion. These factors are further classified

into categories (refer to Figures 5–10), providing a comprehensive

understanding of the underlying factors associated with different

emotional responses.
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FIGURE 2

Example of performed data labeling.

4. Results and discussion

4.1. Positive attitude analysis

Positive attitude includes three emotions: “happy”,

“encourage”, and “warm”. We analyze the influencing factors

of the three emotions respectively, and then summarize the

influencing factors of positive attitude.

4.1.1. “Happy” emotional analysis
We summarize all the data classified as “happy” emotions,

conduct text analysis to get the key influencing factors, and

then count the proportion of each key factor in all the “happy”

data, as shown in Figure 5. In the text analysis of “happy”

emotion data, we select “concert (0.058)”, “go out to play (0.032)”,

“film (0.017)”, “go home (0.032)”, “return to China (0.013)”,

“freedom (0.036)”, “Hong Kong (0.013)”, “Shenzhen (0.026)”,

“Guangzhou (0.067)”, “travel (0.045)”, “have a meal (0.009)”, “at

home (0.013)”, “take-out (0.013)”, “sit-down (0.015)”, “restore

(0.028)”, “development (0.006)”, “work (0.024)”, “consumption

(0.009)”, “good news (0.009)”, and “opportunity (0.015)”, and

according to the characteristics of these factors, they are classified

into five categories. “Entertainment (0.107)”, “family (0.045)”,

“getting around (0.187)”, “live (0.050)”, and “economy (0.091)”,

“Entertainment” is reflected in the public’s expression of the various

entertainment activities they want to carry out after the epidemic

was released. Compared with the limited entertainment activities

FIGURE 3

Training method of model.

during the previous epidemic control, this change makes them

happy. “Family” reflect that people who leave home to work and

study after the epidemic situation is released can finally feel happy

to return to their families without considering being isolated.

“Getting around” is reflected in the fact that people can travel

freely in various cities without checking nucleic acid and travel

codes after the epidemic situation is released. “Life” reflects that
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FIGURE 4

Example of word cloud.

people’s life finally returns to normal, they can freely order take-

out food or go out to eat, and their life gradually returns to the

state before the epidemic. The economy is reflected in the fact

that after the epidemic is closed and controlled, those industries

limited by the epidemic finally have the opportunity to develop,

and the economic situation of the country will gradually improve

so that people can find their desired jobs. The proportion of “travel”

is the highest. Under the policy of opening up the epidemic, the

public can travel freely, which is the primary factor that makes them

happy. Secondly, it is also an important factor of “happy” emotion

to be able to participate in recreational activities as much as possible

and the economic form will be improved.

4.1.2. “Encourage” emotional analysis
In the same way, we also conduct text analysis on all

the data of encouraging emotion. As shown in Figure 6, we

choose “healthy (0.073)”, “protection (0.068)”, “Be safe and sound

(0.017)”, “exercise (0.022)”, “restore (0.022)”, “economy (0.027)”,

“believe (0.017)”, “academician (0.007)”, “country (0.043)”, “policy

(0.033)”, “go out (0.038)”, “life (0.110)”, “facemask (0.062)”, “enjoy

(0.010)”, “freedom (0.018)”, “at home (0.015)”, “family (0.027)”.

The 18 key factors of “happy” are classified into five categories:

“personal physical condition (0.180)”, “national development

(0.066)”, “authoritative interpretation (0.083)”, “life recovery

(0.238)”, and “home epidemic prevention (0.042)”. “Authoritative

interpretation” reflects that the public encourages the liberalization

of the COVID-19 because the authoritative interpretation of the

country and academicians shows that the liberalization of the

epidemic is not a choice of lying flat, but has been overcome. From

it, we can see that the proportion of “returning to life before the

epidemic” is the highest. After the epidemic opens, life will slowly

return to life before the epidemic. This is the primary factor of

“encourage” emotion, and “personal physical condition” is also an

important factor of “encourage” emotion.

FIGURE 5

Data analysis results of “happy” emotion.

4.1.3. “Warm” emotional analysis
The results of “warm” emotional data text analysis are shown

in Figure 7. We have selected “shelter (0.013)”, “nucleic acid
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FIGURE 6

Data analysis results of “encourage” emotion.

(0.096)”, “epidemic prevention (0.042)”, “sealed control (0.036)”,

“epidemic prevention and control (0.012)”, “clear (0.014)”, “go

home (0.029)”, “go out (0.023)”, “place (0.010)”, “freedom (0.025)”,

“go to work (0.011)”, “facemask (0.025)”, “n95 (0.004)”, “medicine

(0.009)”, “hospital (0.012)”, “vaccine (0.012)”, “restore (0.023)”,

“consumption (0.008)”, “travel (0.018)”, “Guangzhou (0.037)”,

“Chongqing (0.014)”, “concert (0.018)”, “Shenzhen (0.011)”,

“Catch a cold (0.020)”, “immunity (0.013)”, “healthy (0.031)”,

“safety (0.012)”. The 27 key factors are classified into six categories:

“liberalizing measures (0.213)”, “live (0.098)”, “medical care

and self-protection (0.079)”, “economy (0.031)”, “entertainment

(0.098)”, and “no more fear of COVID-19 (0.076)”. “Liberalizing

measures” is reflected in the improvement of previous measures

related to epidemic control after the epidemic control. “live” is

reflected in that people’s encouraged be restored to before the

epidemic, and everyone can travel and live freely. “Medical care

and self-protection” is reflected in the fact that people can freely

purchase relevant medical supplies after the epidemic situation is

released, and there is no need to buy cold medicine as before. “No

more fear of COVID-19” is reflected in people’s understanding that

the current COVID-19 is just a serious cold, no longer afraid of

COVID-19, more passionate embrace of life. It can be seen that

“measures related to the relaxation of the epidemic” is the primary

factor that leads to the public’s “enthusiasm”. Under the open state

FIGURE 7

Data analysis results of “warm” emotion.

of the epidemic, restrictions such as nucleic acid testing and travel

codes are imposed on people, which is why the public supports the

opening up of the epidemic with enthusiasm. Secondly, “life” and

“entertainment” are also important influencing factors. In the open

state of the epidemic situation, life will slowly recover, People can

also engage in their favorite entertainment activities.

4.2. Negative attitude analysis

Negative attitudes include three emotions: “sad”, “angry”, and

“critical”. We analyze the influencing factors of the three emotions

respectively and then summarize the influencing factors of negative

attitudes.

4.2.1. “Sad” emotional analysis
The text analysis results of “sad” emotional data are shown in

Figure 8. We selected “fever (0.026)”, “serious (0.025)”, “infection

(0.053)”, “COVID-19 (0.044)”, “suffer (0.024)”, “take part in

the postgraduate entrance examination (0.017)”, “examination

(0.015)”, “university (0.018)”, “school (0.023)”, “express (0.026)”,

“deliver goods (0.005)”, “hospital (0.030)”, “febrifuge (0.012)”,
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FIGURE 8

Data analysis results of “sad” emotion.

“facemask (0.029)”, “vaccine (0.012)”, “go to work (0.019)”,

“customer (0.018)”, “colleague (0.039)”, “mother (0.013)”, “child

(0.028)”, “old man (0.032)”, “family (0.015)”. The 22 key factors of

are classified into six categories: “personal health (0.172)”, “campus

life (0.073)”, “daily necessities (0.031)”, “medical supplies (0.083)”,

“daily life (0.076)”, and “family health (0.088)”. We can see that

“personal health” is the primary factor leading to “sad” emotion,

and “family health” and “medical supplies” are also important

factors. In the open state of the epidemic, most people are infected,

and their illness makes them feel sad, and many people can not buy

medical supplies.

4.2.2. “Angry” emotional analysis
The text analysis results of “Angry” emotional data are

shown in Figure 9. We selected 18 key factors, including “suffer

(0.025)”, “facemask (0.035)”, “nucleic acid (0.068)”, “virus (0.029)”,

“drug (0.011)”, “sequelae (0.009)”, “materials (0.010)”, “express

(0.035)”, “at home (0.030)”, “children (0.021)”, “school (0.021)”,

“examination (0.022)”, “take part in the postgraduate entrance

examination (0.023)”, “student (0.024)”, “go to work (0.030)”,

“economy (0.013)”, “unit (0.009)”, and “make money (0.008)”,

They are classified into five categories: “be ill (0.177)”, “live (0.045)”,

“family (0.051)”, “government containment policy (0.090)”, and

“economy(0.060)”. It can be seen that “be ill” is the primary factor

leading to “angry” emotion. In the open state of the epidemic,

FIGURE 9

Data analysis results of “angry” emotion.

most people are infected, resulting in their anger at the open

policy. In addition, the “government containment policy” is also

an important factor in the “angry” emotion. Many students are

angry that the epidemic is open before the postgraduate entrance

examination, which affects their examination and postgraduate

entrance examination status.

4.2.3. “Critical” emotional analysis
The text analysis results of “critical” emotional data are

shown in Figure 10. We have selected “infection (0.059)”, “virus

(0.031)”, “COVID-19 (0.048)”, “positive (0.019)”, “fever (0.027)”,

“sealed control (0.048)”, “control (0.026)”, “isolation (0.022)”,

“drugs (0.012)”, “N95 (0.006)”, “medicine (0.011)”, “febrifuge

(0.011)”, “vaccine (0.015)”, “facemask (0.036)”, “hospital (0.031)”,

“economy (0.019)”, “lie flat (0.023)”, “company (0.008)”, “school

(0.017)”, “colleague (0.014)”, “at home (0.014)”, “go to work

(0.025)”, “life(0.020)”, “abroad (0.009)”, “the United States (0.010)”,

“domestic (0.008)”, “everywhere (0.010)”, and “China (0.022)”. The

28 key factors are classified into six categories: “be ill (0.184)”,

“action (0.096)”, “medical supplies (0.122)”, “economy (0.050)”,

“live (0.090)”, and “comparison at home and abroad(0.059)”. The

“comparison at home and abroad” is reflected in the fact that

after the opening of the epidemic in China, some public expressed

their dissatisfaction and expressed their feelings by comparing the
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FIGURE 10

Data analysis results of “critical” emotion.

domestic situation with the foreign situation. It can be seen that “be

ill” is also the primary factor of “critical” emotion, and “medical

supplies” is also an important factor.

4.3. Discussion

Currently, research uses Weibo data to discuss the emotional

attitudes of social media users and their influencing factors, which

are reflected in their online comments. By collecting a large amount

of data and using machine learning methods, we explored and

described the emotions, attitudes, and factors of social media users

toward the open policy of the epidemic. The pandemic has had

an impact on the public, and emotional expression is widespread

on social media (58). Furthermore, we found that the emotional

attitudes of social media users are closely related to their actual

needs, rather than the release of policies. Although the government

has issued an open epidemic policy, discussions related to the

epidemic have not ended but have become a hot topic. We discuss

the main findings shown in Figure 11 in detail.

4.3.1. Attitudes of social media users
Previous research suggested that most users had a positive

attitude toward the government’s implementation of the open

policy for the epidemic (58). However, we found that the majority

of users had a negative attitude toward the policy release and did

not want the government to open epidemic prevention and control

policies (59). They expected the Chinese government to maintain

the blockade policy of “zero cases” domestically and epidemic

prevention and control measures for foreign countries. The reason

for the negative attitude of citizens is that after the epidemic policy

is opened, cases will rise sharply, and people feel uneasy. Our

research further found that through 3 years of epidemic prevention

and control policy implementation (60), life in China has returned

to normal, cases have been basically eliminated, and most Chinese

citizens have not been infected with COVID-19. The public has

accepted and adapted to this way of life, and sudden policy changes

have caused panic among the public. Therefore, on the surface,

users in China and other regions are worried about the health

crisis caused by the implementation of open policies and the rise in

cases. However, the reasons behind this are different. This has led to

negative attitudes in Chinamainly being reflected in sad, angry, and

critical, which also reflects the public’s dissatisfaction with policy

changes. At the same time, we also analyzed positive attitudes, and

found that users focused on the theme of “entertainment life” after

the transformation of epidemic prevention and control policies in

positive emotions. Therefore, the main emotions included happy,

encourage, and support.

4.3.2. Emotions of social media users
Positive attitudes, users responded positively to the

government’s open policy. Despite the problems caused by

the epidemic policy, people actively adjusted their attitudes

(61), accepted the relevant policies, and enjoyed spending time

with their families. This study found that during the 3 years of

implementation of China’s epidemic prevention and control policy,

the public’s daily travel was restricted, life was inconvenient, and

the economy was impacted. The sudden change in epidemic policy

brought hope to the public. They are more eager to return to

normal life before the epidemic (41). Therefore, positive attitudes

are mainly reflected in three emotions: happy, encourage, and

support, which also reflect some public support for policy changes.

Negative attitudes, users are worried about health issues and

question the government’s open policy (62). In previous studies,

due to the impact of the epidemic, the economy declined,

unemployment rates rose, people’s income decreased, and a lot

of negative emotions were generated. The government’s open

epidemic policy is to ease social conflicts and increase economic

income. From this perspective, policy changes will have a positive

impact on the public’s lives. This study found that the majority of

the public are dissatisfied with the sudden opening of the epidemic

policy, and they prefer to maintain the current living status. They

are worried that the open epidemic policy will lead to more serious

consequences and hold a pessimistic emotion toward the epidemic

opening. Negative attitudes are mainly reflected in three emotions:

sad, angry, and critical.
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FIGURE 11

Results of the study on the emotions and attitudes of China’s first opening up of epidemic control.

4.3.3. Factors influencing social media users’
attitudes and emotions

In positive user attitudes, previous research has mainly

discussed the overall trend of positive attitudes (63). We further

studied the specific factors influencing emotions under positive

attitudes, including “happy,” “encourage,” and “support.” The main

influencing factors are themes such as “freedom of movement,”

“return to normal life,” and “government policies.” Through data

text analysis, the following conclusions were drawn:

In the “happy” positive emotion, the main influencing factors

are the five categories of “entertainment,” “family,” “travel,” “life,”

and “economy.” In terms of specific expressions, “concerts”

are the most discussed topic in the “entertainment” category.

This also reflects that during the epidemic control period,

there were fewer outdoor entertainment activities, and the

public hopes for a colorful social entertainment life. “Travel”

is the highest proportion of influencing factors in the user’s

“happiness” emotion. Due to the epidemic control policies, the

government has imposed various restrictions on public travel.

Faced with the open policy, travel is the public’s primary choice.

In the “encouragement’ positive emotion, the main influencing

factors are the five categories of “personal physical condition,”

“national development,” “authoritative interpretation,” “return to

pre-epidemic life,” and “family epidemic prevention.” In terms of

specific expressions, “return to pre-epidemic life” is the highest

proportion of influencing factors in the public’s “encouragement”

positive emotion. The public’s encouragement toward the open

policy mainly stems from their desire for a “normal life.” In the

“support” positive emotion, the main influencing factors are the

six categories of “life,” “medical care,” “economy,” “entertainment,”

“treat it as a cold, no longer afraid,” and “epidemic-related open

measures.” Among them, “epidemic-related openmeasures” are the

highest proportion of influencing factors in the “support” positive

emotion. The corresponding measures of the open policy are an

important basis for the public’s acceptance of the policy. Policy

release alone cannot gain public recognition. Timely and effective

response measures are helpful in gaining public “support.”

In negative user attitudes, previous research has focused on

analyzing the influencing factors of specific groups (64). This study

found that the public’s negative attitude toward the sudden opening

policy during the “unexpected” epidemic mainly includes three

emotions: “sad,” “angry,” and “critical.” The influencing factors

are mainly themed around “physical health” and “government

policies.” Through data text analysis, the following conclusions

were drawn:

In the “sad” negative emotion, the six influencing factors

include “personal health,” “campus life,” “daily necessities,”

“medical supplies,” “daily life,” and “family health.” Among them,

“personal health” is the highest proportion of influencing factors

in the “sadness” negative emotion. After the epidemic control

policy was opened, the public’s biggest concern was the rapid

spread of the epidemic, leading to illness. The public expressed

concern about their own health status. In the “angry” negative

emotion, the five main influencing factors are “illness,” “life,”

“family,” “government control policies,” and “economy.” “Illness” is

the highest proportion of influencing factors in the “angry” negative
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emotion. The Chinese public’s biggest fear is getting “COVID-19,”

afraid of dying or suffering from sequelae due to “COVID-19,” so

they expressed “anger” toward the government’s open policy. In

the “critical” negative emotion, the six main influencing factors

are “illness,” “action,” “medical supplies,” “economy,” “life,” and

“domestic and foreign comparisons.” Similarly, “illness” is also

the main influencing factor in the “critical” negative emotion.

Compared with the reasons for “anger,” in the “critical” negative

emotion, more of the public expressed criticism of the sudden

changes in government policies, and in the early stages of policy

implementation, the government did not have corresponding

policy plans and measures, which triggered public criticism of

government actions.

Based on the above analysis, we found that the emotional

attitudes of social media users are mainly based on their actual

lives, which also reflects the insufficient means of the Chinese

government to respond to open policies. Under sudden policy

changes, social media users mainly showed negative emotional

attitudes. The factors influencing negative attitudes are mainly

centered around the themes of “physical health” and “government

policies”. After the outbreak of the epidemic, the coronavirus

began to spread widely, and most people were tortured by various

symptoms of the epidemic, and the supply of related medical

resources was insufficient. People were plunged into an atmosphere

of fear and anxiety, with the main emotions including “sad”,

“angry”, and “critical”. The analysis of the factors influencing

positive attitudes is mainly centered around the themes of “freedom

of travel”, “returning to life”, and “government policies”. After the

epidemic was controlled, policies related to epidemic control were

gradually lifted, and people’s lives could return to the way they were

before the epidemic. They longed for freedom of travel and enjoyed

various entertainment activities, with the main emotions including

“happy”, “encourage”, and “support”.

5. Conclusion

Previous research has revealed the necessity of conducting

sociological investigations into emotions to fully understand

emotions and social life. The lack of emotional communication

due to the impact of quarantine policies during the pandemic

has resulted in negative emotions and psychological problems.

However, the factors behind emotional responses are often difficult

to reflect in “small sample” data collection and are more difficult

to assess from a “micro” perspective, making it difficult to make

judgments at the societal level. From a neuroscientific perspective,

attitudes and emotions can affect cognitive responses, and severe

cases can lead to the onset of other diseases. Furthermore,

understanding the physiological mechanisms behind attitudes and

emotions can help in the treatment and prevention of related

diseases. However, the research methods and conclusions of

sociology and neuroscience seem to be unsuitable for government

management in the face of effective pandemic management.

Therefore, this article takes the sudden implementation of China’s

pandemic opening policy as the research object and uses the online

comments of “Weibo” hot topics as the dataset to study social

media users’ attitudes, emotions, and influencing factors toward the

pandemic opening policy. As is shown in Figure 11, the following

conclusions were drawn through content analysis.

Firstly, in terms of social media users’ attitudes, they mainly

hold a negative attitude toward the “sudden” pandemic opening

policy, and the proportion is quite large. The proportion of positive

and neutral attitudes among the public is roughly equal. This also

shows that the “sudden” pandemic opening policy is a positive

measure at the national level to respond to the pandemic, but

the public maintains a pessimistic view of the implementation of

this policy. Secondly, in terms of social media users’ emotions,

positive emotions such as happiness, encouragement, and warmth

express appreciation for the “sudden” opening policy. Negative

emotions such as sad, angry, and critical express concerns about

the “sudden” opening policy. Finally, the factors that influence the

above attitudes and emotions are mainly “travel,” “entertainment,”

“returning to normal life,” “personal physical condition,” and

“opening measures” for positive attitudes. After classifying the

influencing factors in the data, we found that the themes of

“freedom of travel,” “returning to normal life,” and “government

policies” are the main factors that affect the public’s judgment of

the pandemic opening policy. “Personal health,” “family health,”

“be ill,” “government quarantine policies,” and “medical supply”

are the main factors that affect negative emotions. After classifying

the influencing factors in the data, we found that the themes of

“physical health” and “government policies” are the main factors

that affect the public’s choice of negative emotions.

5.1. Implications

In the face of such sudden changes in epidemic prevention

policies, we suggest the following:

Firstly, the public generally has a negative attitude toward

“sudden” measures, and the government needs to be prepared

to address this negativity. When formulating relevant policies,

the government hopes to gain public acceptance and support.

Therefore, in the future, when releasing similar policies, the

government should prepare in advance for the supply of public

life, formulate detailed measures to respond, and provide relevant

health consultation services. These methods can increase the

public’s positive emotions and help improve their goodwill

and support for the government. Secondly, “life”, “health”,

and “measures” are the primary considerations for the public’s

“positive” emotional attitudes toward “sudden” policies, and

the government should increase its efforts in this regard and

actively respond to public demands. “Getting sick” is the most

worrying negative emotional factor for the public regarding sudden

government policies. At this time, the most important thing is

the treatment plan when “getting sick”, post-recovery body care,

and issues related to life security caused by “getting sick”. The

government should prepare relevant handling plans in advance.

Thirdly, sufficient publicity for “sudden” policies is an important

means, and these factors are the main content direction of policy

publicity. It is necessary to use visual poster design, new media

video releases, news media announcements, and other methods to

publicize relevant government measures to the public. Through

these means, it is more conducive to improving the public’s

Frontiers in PublicHealth 13 frontiersin.org171

https://doi.org/10.3389/fpubh.2023.1185928
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1185928

emotions and attitudes toward government policies and accepting

relevant policies.

In terms of emotion, the emotions (“happy”, “encourage”,

and “warm”) in a positive attitude all express appreciation

for the open policy. “Travel”, “entertainment”, “life recovery”,

“personal physical condition” and “open measures” are the

main influencing factors behind these emotional expressions.

After classifying the influencing factors in the data, it is

mainly “life”, “health”, and “measures” that affect the public’s

judgment on the open policy of the epidemic. The government

hopes to be adopted and supported by the public when

formulating relevant policies. Therefore, when issuing similar

policies in the future, the government should ensure the supply

of public life in advance, formulate detailed measures and

response plans, and provide relevant health consultation services.

These ways can increase the positive feelings of the public

and help to improve the good feeling and warm support for

the government.

5.2. Limitations and future research

There are certain limitations to this study. Firstly, the data only

includes online comments on social media and has undergone text

sentiment analysis, without involving other types of data such as the

number of likes and shares. Combining these data with sentiment

analysis of online comments can help study the spread and impact

of social media users’ emotional attitudes and behaviors. Secondly,

although this paper analyzed users’ emotional attitudes and factors

toward the government’s open policy, how do users’ emotional

attitudes change during the time of infection, illness, and recovery

(usually 2–3 months)? What are the changing factors behind it?

This dynamic development is also an interesting topic for research.
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