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Editorial on the Research Topic

Zoonoses-a rising threat to healthcare system

Zoonoses are infections caused by pathogens that are transmitted from animals to

humans. They contribute to significant healthcare burden in many parts of the world.

The incidence of spillover infections from animals to humans may increase and spread

to wider geographical areas in future, due to the changes of climate, ecology, population

structure, and socioeconomic activities (Ellwanger and Chies, 2021; Lee et al., 2022).

Additionally, immigration and traveling further complicate the transmission biology of

zoonoses (Mavroidi, 2008), imposing challenges to the management and control of such

outbreaks. Notably, many zoonotic pathogens cause asymptomatic infections to their

natural hosts but produce severe pathology in humans (Owen et al., 2004; Evangelista

and Coburn, 2010; Hu et al., 2022). As healthcare workers may not be familiar with the

diagnosis and pathogenesis of different zoonoses in humans, delayed clinical interventions

are relatively common, compromising prognosis. Importantly, research attention dedicated

to many zoonotic outbreaks has been shown to wane over time. Thus, a Research Topic

of articles covering different aspects of several zoonoses and infections with animal

reservoirs were brought together, to offer a convenient reference platform for scientists and

healthcare workers.

Monkeypox was undeniably one of the most concerning zoonoses in 2022. Panda and

Mukherjee provided their opinions regarding the transmission dynamics of monkeypox in

humans, as well as the treatment andmanagement of this infection. Bragazzi et al. compiled a

mini review on factors that lead to the underestimation of sexually transmitted diseases, with

a special focus on monkeypox. In addition, Ullah et al. put together a comprehensive review

article on the epidemiology of monkeypox and its potential threat to public health sector. In

contrast to monkeypox that received relatively high public attention, leptospirosis is a low

key, yet highly fatal bacterial zoonosis. To better understand the pathobiology of Leptospira

infection, Pětrošová et al. investigated the structural diversity of Leptospira lipid A, the

hydrophobic component of endotoxin that is responsible for much of the endotoxin toxicity.

Adding to this, van der Westhuizen et al. studied the prevalence of occupational exposure of

farmworkers to zoonotic pathogens such as Brucella sp., hantaviruses, and Leptospira sp. in

South Africa.
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This Research Topic also received a number of articles related

to several zoonotic parasites, some of which are neglected tropical

diseases. Fasciola gigantica is a large liver fluke of ruminants

that readily infects humans, causing fascioliasis. Zheng et al.

deciphered the proteins that constituted F. gigantica excretory

and secretory products (FgESP) derived from the sera of infected

buffalos at different time points of infection. Mano et al.

reported the correlation between amphotericin B resistance and the

increased fitness of Leishmania martiniquensis, an autochthonous

vector-borne zoonosis in Thailand. Phang et al. (a) investigated

Plasmodium knowlesi, a potentially fatal vector-borne zoonosis that

is prevalent in Southeast Asia. The team predicted the transmission

risk of P. knowlesi by using machine learning-based ecological

niche modeling approaches. A corrigendum for this work was

also published by Phang et al. (b) in this Research Topic. Akoolo

et al. reviewed the influence of protozoan coinfections on the

efficacy of vaccines against the bacterial and viral pathogens. Several

coinfection models with relevance to human epidemiological

situation were highlighted, such as the coinfection of Plasmodium

and non-typhoidal Salmonella (an important group of zoonotic

bacteria), Rotavirus and Cryptosporidium coinfection, as well as

Babesia spp. and Borrelia burgdorferi coinfection (both are vector-

borne zoonoses). In addition, Wong et al. presented a review on

vector management in the control and elimination of vector-borne

zoonoses and vector-borne infections with animal reservoirs.

Zoonosis transmission is a broad topic with various knowledge

gaps remained to be filled. Obviously, the articles assembled in

this Research Topic do not fully reflect the complete picture

of this Research Topic. Nevertheless, this article Research Topic

contributed new insights and knowledge to this field, which

may inspire new studies to improve the understanding on the

transmission biology of zoonoses.
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The world has witnessed some of the deadliest viral epidemics and pandemics during

this 21st century; HIV, Swine Flu or pH1N1, MERS-CoV, Ebola, Zika, Chikungunya,

Dengue, and most recently SARS-CoV-2 or COVID-19 are recorded as few of the

many with far-reaching consequences. By Aug 12, 2022, the SARS-CoV-2 virus has

been responsible for more than 585 million COVID-19 cases globally, resulting in 6.4

million deaths (WHO, 2022c). In reality, the wounds that the COVID-19 pandemic has

inflicted on us are very deep and seem to be long-lasting. Amid this ongoing pandemic

situation, the increasing cases of monkeypox incidence are becoming a global threat.

The virus called monkeypox causes a rare disease in monkeys and humans, specifically

in the regions of central and western African countries. In 1958, the virus was first

isolated in a laboratory when scientists found pox-like outbreaks in monkeys that were

kept for research purposes (Von Magnus et al., 1959). The major animal reservoir or

monkeypox is still not discovered, although few studies suggested Gambian pouched

rats and rope squirrels are the most suspected reservoir (CDC, 2003; Brown and Leggat,

2016). Previously, in 2003, an outbreak was recorded in the US regions, where most

of the cases were reported in both humans and pet prairie dogs (Ligon, 2004). Some

sporadic outbreak of monkeypox have been reported in 2018, 2019, and 2021 (Kraemer

et al., 2022). Although the number was minimal, most cases were reported in the same

family. As per the latest report on Aug 5, 2022, a total of 28,220 confirmed cases have

been reported to the World Health Organization (WHO) from 88 countries, out of that

81 countries were not under the monkeypox virus endemic zone earlier. As of now, there

are 2859 active cases in the United Kingdom, 7509 cases in Unites states of America, 4942

cases in Spain, and 2887 cases in Germany.

There are two possible routes for monkeypox transmission. These are animal-human

transmission and human-human transmission. The animal-to-human transmission is

known as zoonotic transmission, which occurs via direct contact or through food, water

or the environment (Bunge et al., 2022). A few nosocomial transmissions have also been

reported in several regions of Africa. Though the monkeypox virus can enter through

large respiratory droplets, close or direct contact with skin lesions, and possibly through

contaminated fomites, most of the cases of 2022 outbreaks have been identified in the

primary care and sexual health settings, mostly among the men who have sex with men

groups (MSM) (Kupferschmidt, 2022; WHO, 2022b). The virus generally replicates at

the inoculation site and then spreads to the local lymph nodes. The incubation period

generally took around 6 to 13 days with a maximum upper limit of 21 days. There is

usually a 0-5 day invasion period, accompanied by fever and lymphadenopathy before

lessons begin (WHO, 2022a). Persons may experience flu-like symptoms during the

prodrome phase,
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such as fever, chills, malaise, headaches, backaches, sore throats,

shortness of breath, and swollen lymph nodes. The enlarged

lymph nodes are the unique clinical clue of themonkeypox virus,

which distinguish it from human smallpox infection caused

by the variola virus (Cann et al., 2013). The rash is generally

well circumscribed, vesicular, or pustular that are deep-seated,

firm or hard. Over time, the lesions may umbilicate or become

confluent, forming scabs. Although, recent cases have suddenly

started without symptoms like fever, genital lesions, or other

prodromal symptoms (Minhaj et al., 2022). As the clinical

signs and symptoms of monkeypox are similar to smallpox,

chickenpox, measles, coxsackievirus and bacterial infection in

the early period, hence it is very important to use a differential

diagnosis of monkeypox in the early period. Serological methods

are not recommended for monkeypox diagnosis due to the

cross-reactivity of other orthopoxviruses, therefor Polymerase

Chain Reaction (PCR) is the most recommended method for

genome-level identification with higher accuracy and sensitivity

(Saxena et al., 2022).

Currently, no licensed treatment is available for monkeypox,

although two oral drugs, brincidofovir, and tecovirimat, have

been approved to treat smallpox and show antiviral efficacy

against monkeypox (Adler et al., 2022). A study published

in Lancet reported that one patient treated with tecovirimat,

with a dosage of 200mg twice daily for 2 2 weeks orally,

showed a short duration of viral shedding and illness upon

comparison with other patients (Adler et al., 2022). In addition,

the vaccine named MVA-BN, also known as JYNNEOSTM in

the US, has been licensed in the United States to prevent the

cases of monkeypox or make it less severe. In Canada, the

vaccine is called IMVAMUNE
R©
, while in the European Union

it is marketed under the trade name IMVANEX
R©

to reduce

monkeypox severity and prevent future infections. Recently, the

Center for Disease Control and Prevention (CDC) published a

datasheet for monkeypox treatment, where they reported that

the smallpox vaccine, cidofovir, ST-246, and vaccinia immune

globulin can be used to control the monkeypox outbreak but

no supporting data is attached to their claim (CDC, 2022).

Therefore, the development of proper vaccines or antivirals

against the monkeypox infection is the need of the hour that

leads toward detailed research on the infection biology of the

virus. Although a few papers have already reported monkeypox’s

infection biology, there is an urgent need to understand the

virus life cycle starting from the role of different cellular

organelles in viral entry into the cell, each step of its replication

machinery, detailed interactions with the host cells, trafficking,

and finally the egress of the mature viruses (Satheshkumar

and Moss, 2012; Sivan et al., 2016; Realegeno et al., 2020).

Equally, more research on the epidemiological forecasts of the

virus, transmission dynamics and therapeutics prospects are

required to understand the propermodel of diseasemanagement

for monkeypox infection. Recently, In 2021, a research group

designed a mathematical model to understand the transmission

dynamics of the monkeypox virus (Peter et al., 2021). Still, there

aremanymore stones to be turned to understand the proper way

for the management of monkeypox.

The world has already faced a significant outbreak since the

last quarter of 2019. Therefore, there is a panic about whether

monkeypox could cause such a COVID-19-like pandemic or

not. The SARS-CoV-2 virus spreads through tiny airborne

droplets called aerosols, whereas monkeypox is mainly spread

from close contact with a body fluid such as saliva and coughing.

Although emerging literature points toward the presence of

monkeypox DNA in the short-range aerosols, the efficiency

of this transmission route is still under subjected to further

research and validation. Besides everything, any viral disease’s

primary concern is its new behavior. If we recall, in the initial

pandemic situation of COVID-19, there were a few mutations

identified. Nevertheless, later on, scientists cataloged more than

12,000 mutations in the SARS-CoV-2 genome. The monkeypox

virus genome consists of linear double-stranded DNA, size of

approximate ∼197 kb. The genome of this virus is six times as

large and complex to analyze as compared to the genome of

the SARS-CoV-2 coronavirus (Kozlov, 2022). As the genome of

monkeypox is DNA; therefore, the DNA polymerase contains

proofreading skills, which makes DNA viruses prone to being

less mutagenic; hence, we hypothesize that the monkeypox

infection is less likely to create another pandemic situation like

COVID-19. However, there are evidences of certain mutations

found in the monkeypox DNA sample (Weaver and Isaacs,

2008; Zhang et al., 2022). Previously, a study demonstrated

that COP-C3L is a major gene responsible for the difference

in virulence among different monkeypox strains, and predicted

that mutation in this gene could raise a significant pathogenic

strain of monkeypox (Weaver and Isaacs, 2008). A latest

analysis indicated the occurrence of single nucleotide mutations

and frame-shift mutations in the samples collected from this

outbreak (Zhang et al., 2022). Therefore, whether monkeypox

could lead to another pandemic at this time point is still a

debatable subject.

Few hypotheses have already risen regarding this sudden

increase in monkeypox cases. Few studies say that the current

sequences retrieved are mostly similar to those from a

smattering of monkeypox cases that arose outside Africa in

2018-2019 and are linked with the traveling history. Another

hypothesis says that there must be a possibility that the virus was

circulating outside Africa in humans and animals but remains

undetected (Kozlov, 2022).Whereas, a third hypothesis says that

the virus may be coincidently exposed to the community by

sexual networks as the recent unexpected cases in MSMs have

increased (Mohapatra et al., 2022).

After decades of quiescence, the human monkeypox disease

has become a clinically serious infection (Costello et al., 2022).

Since the disease was first reported, no extensive studies

have been conducted on the exploitation of the host cells

by monkeypox infection. Although, few reports have been
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published to identify the mechanism of host susceptibility to

monkeypox infection upon exposure, specifically in mouse

models. The common inbred strains of mice, including BALB/c

and C57BL/c, are remarkably resistant to monkeypox virus

infection, however, CAST/EiJ shows greater sensitivity and

excellent morbidity and mortality due to their inadequate

immune response upon monkeypox infection (Americo et al.,

2010; Earl et al., 2012, 2015). The classical inbred mice make

a more active interferon γ- response, which makes them less

susceptible. It has also been proven that the cytokine IL-15

and the number of NK cells play a critical role in combating

monkeypox infection (Earl et al., 2020). At present, there

are some crucial gaps in understanding the host-cell biology,

pathophysiology and epidemiology of the Monkeypox virus.

Besides all of these, a few standard measures should be taken

by the public to prevent infection with monkeypox. Moreover,

recommendations from WHO is necessary at this point to

increase awareness among the common people. Although,

a few common principles are the thumb rule to prevent

any such viral diseases; Firstly, separate an infected person

from a healthy person; Secondly, utilize appropriate protective

equipment and good hand hygiene to protect household

members when dealing with the infected individuals or serving

as caregiver at home; Thirdly, for disinfection of surface,

use an EPA-registered disinfectant; Fourthly, patients should

avoid contact with pets and animals while infected, as animals

are a potent reservoir of monkeypox; Finally, monkeypox

symptoms, including unexplained lesions, should be evaluated

by a dermatologist and venereologists, and close contact with

others, including sexual or intimate partner, should be avoided

until the condition is evaluated (Khanna et al., 2022; Minhaj

et al., 2022).

Furthermore, we must avoid stigmatizing any infected

individual for the source of their infection. An important

reason for this outbreak is the inveterate neglect of diseases

primarily affecting the poorest populations and the widespread

disregard for communities affected by these diseases (Nakoune

and Olliaro, 2022). The increasing evidence requires further

research on the virus-cell interactions and investigation to

understand the disease dynamics. It is crucial to provide proper

interventions that prove effective in monkeypox endemic low-

income countries, and not simply stockpile them for potential

use in high-income countries. The world has already faced a

global pandemic; therefore, it should be essential to be alert and

ready to respond rapidly.
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Monkeypox is an emerging zoonotic disease caused by the monkeypox 

virus, which is an infectious agent belonging to the genus Orthopoxvirus. 

Currently, commencing from the end of April 2022, an outbreak of 

monkeypox is ongoing, with more than 43,000 cases reported as of 23 August 

2022, involving 99 countries and territories across all the six World Health 

Organization (WHO) regions. On 23 July 2022, the Director-General of the 

WHO declared monkeypox a global public health emergency of international 

concern (PHEIC), since the outbreak represents an extraordinary, unusual, 

and unexpected event that poses a significant risk for international spread, 

requiring an immediate, coordinated international response. However, 

the real magnitude of the burden of disease could be masked by failures 

in ascertainment and under-detection. As such, underestimation affects 

the efficiency and reliability of surveillance and notification systems and 

compromises the possibility of making informed and evidence-based policy 

decisions in terms of the adoption and implementation of ad hoc adequate 

preventive measures. In this review, synthesizing 53 papers, we summarize 

the determinants of the underestimation of sexually transmitted diseases, 

in general, and, in particular, monkeypox, in terms of all their various 

components and dimensions (under-ascertainment, underreporting, 
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under-detection, under-diagnosis, misdiagnosis/misclassification, and 

under-notification).

KEYWORDS

monkeypox, zoonotic disease, emerging and re-emerging infectious disease, 
underestimation, underreporting, under-detection, under-diagnosis, 
under-ascertainment

Introduction

Monkeypox is an emerging zoonotic disease caused by the 
monkeypox virus, which is an infectious agent belonging to the 
family of Poxviruses (Poxviridae), Chordopoxvirinae subfamily, 
and Orthopoxvirus genus (Hughes et al., 2010; Bunge et al., 2022). 
These viruses are large, brick-shaped, enveloped, double-stranded 
DNA viruses (Diven, 2001; Alakunle et al., 2020). Monkeypox 
virus is related to the Variola virus (VARV), the causative agent of 
smallpox, a life-threatening infectious disease fully eradicated in 
1980, and another Orthopoxvirus (Barquet and Domingo, 1997; 
Riedel, 2005; Kmiec and Kirchhoff, 2022). Monkeypox has been 
endemic in some African countries, since 1970, when the first 
human case was reported in a 9-month-old child admitted to the 
Basankusu Hospital in the Democratic Republic of the Congo 
(DRC; Durski et al., 2018).

Currently, commencing from the end of April 2022, an 
outbreak of monkeypox is ongoing, with more than 43,000 cases 
reported as of 23 August 2022, involving 99 countries and 
territories across all the six World Health Organization (WHO) 
regions (Table  1). The most impacted WHO regions are the 
Region of the Americas (AMR; 52.0%) and the European Region 
(EUR; 47.5% of cases), followed by the Western Pacific Region 
(WPR; 0.3%), the African Region (AFR; 0.1%), the Eastern 
Mediterranean Region (EMR; 0.1%), and the South-East Asian 
Region (SEAR; 0.04%). On 23 July 2022, the Director-General of 
the WHO declared monkeypox a global public health emergency 
of international concern (PHEIC; Nuzzo et al., 2022), since the 
outbreak represents an extraordinary, unusual, and unexpected 
event that poses a significant risk for international spread, 
requiring an immediate, coordinated international response.

The epidemiological and clinical features of the ongoing 
monkeypox outbreak are different from those established for 
monkeypox since its initial isolation and identification and during 
the previous outbreaks, with sexual transmission suspected as the 
major transmission route and with the community of men having 
sex with men (MSM) disproportionately impacted (Liu et  al., 
2022; Thornhill et al., 2022). According to a large-scale study, out 
of 528 monkeypox infections diagnosed and reported from 16 
countries, between April 27 and June 24, 2022, the transmission 
was hypothesized to have occurred more likely via sexual 
intercourse in 95% of the cases during the current outbreak 
(Thornhill et al., 2022). Other transmission routes include contact 

with infected animals and travel to endemic countries, 
occupational exposure, and social and household contacts (Liu 
et al., 2022). As such, monkeypox is not an exclusively sexually 
transmitted disease (STD), but its transmission has been 
hypothesized to be  associated with sexual contact. This is an 
important distinction because we  are still not sure that 
transmission is occurring through body fluids exchanged during 
sex, but rather it could be  via contact with mucosal surfaces, 
scarification, or even respiratory exposures.

The real magnitude of the burden of disease could be masked 
by failures in ascertainment and under-detection. As such, 
underestimation affects the efficiency and reliability of surveillance 
and notification systems and compromises the possibility of 
making informed and evidence-based policy decisions in terms of 
the adoption and implementation of ad hoc adequate preventive 
measures. For example, another infectious outbreak, the still 
ongoing “Coronavirus Disease 2019” (COVID-19) pandemic was 
initially underestimated and this, along with the high degree of 
contagiosity of the virus, contributed to its quick global spread 
(Wu et al., 2020; Nakamoto and Zhang, 2021).

According to the working definitions of the “BCoDE-project” 
(Kretzschmar et al., 2012), underestimation can be due to various 
factors, including under-ascertainment. This can occur when 
infected subjects do not seek general practitioners or specialized 
health services, in that they perceive their illness as mild and/or 
self-limiting, do not have adequate health literacy and risk/disease 
perception, or they are asymptomatic and unaware of their disease 
status. Minority groups (including migrants, the lesbian/gay/
bisexual/transgender/transsexual/queer/intersex, LGBTQI+, 
community, and other marginalized or difficult-to-reach 
communities) generally do not consult general practitioners or 
other healthcare workers (Kretzschmar et  al., 2012). Cultural, 
religious, legal, administrative, economic, and financial factors can 
influence health-seeking behaviors. Underreporting, another 
component of underestimation, occurs when symptomatic cases 
in the community refer to health services but have their disease 
status not properly diagnosed or misclassified (under-diagnosis), 
or correctly diagnosed and classified but not effectively transmitted 
to the public health surveillance and monitoring bodies (under-
notification). The reader is referred to Table 2 for further details.

The topic of underestimation of monkeypox cases is of crucial 
importance in the field of public and global health. However, to 
the best of our knowledge, there exists no comprehensive review 
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TABLE 1 Monkeypox cases (confirmed and suspected cases, deaths, and grand total) broken down according to the World Health Organization 
(WHO) region, and country.

Country Confirmed Death Suspected Grand total

African Region (AFR) 54 1 7 62

Benin 3 0 0 3

Ghana 46 1 0 47

South Africa 5 0 0 5

Uganda 0 0 6 6

Zambia 0 0 1 1

Eastern Mediterranean Region (EMR) 35 0 8 43

Iran 1 0 3 4

Lebanon 6 0 0 6

Morocco 1 0 0 1

Pakistan 0 0 1 1

Qatar 3 0 0 3

Saudi Arabia 6 0 0 6

Somalia 0 0 3 3

Sudan 2 0 1 3

United Arab Emirates 16 0 0 16

European Region (EUR) 20,606 2 1 20,609

Andorra 4 0 0 4

Austria 218 0 0 218

Belgium 624 0 0 624

Bosnia And Herzegovina 3 0 0 3

Bulgaria 4 0 0 4

Croatia 22 0 0 22

Cyprus 4 0 0 4

Czech Republic 39 0 0 39

Denmark 169 0 0 169

England 3,050 0 0 3,050

Estonia 9 0 0 9

Finland 22 0 0 22

France 2,873 0 0 2,873

Georgia 2 0 0 2

Germany 3,295 0 0 3,295

Gibraltar 6 0 0 6

Greece 50 0 0 50

Hungary 63 0 0 63

Iceland 12 0 0 12

Ireland 113 0 0 113

Israel 208 0 0 208

Italy 689 0 1 690

Latvia 4 0 0 4

Lithuania 5 0 0 5

Luxembourg 45 0 0 45

Malta 31 0 0 31

Moldova 2 0 0 2

Monaco 3 0 0 3

Montenegro 2 0 0 2

Netherlands 1,090 0 0 1,090

Northern Ireland 27 0 0 27

Norway 76 0 0 76

(Continued)
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TABLE 1 (Continued)

Country Confirmed Death Suspected Grand total

Poland 114 0 0 114

Portugal 810 0 0 810

Romania 34 0 0 34

Russia 1 0 0 1

Scotland 75 0 0 75

Serbia 31 0 0 31

Slovakia 12 0 0 12

Slovenia 43 0 0 43

Spain 6,117 2 0 6,119

Sweden 141 0 0 141

Switzerland 416 0 0 416

Turkey 5 0 0 5

Wales 43 0 0 43

Region of the Americas (AMR) 22,531 4 28 22,563

Argentina 72 0 0 72

Bahamas 2 0 0 2

Barbados 1 0 0 1

Bermuda 1 0 0 1

Bolivia 43 0 1 44

Brazil 3,895 1 7 3,903

Canada 1,168 0 11 1,179

Cayman Islands 0 0 1 1

Chile 207 0 2 209

Colombia 273 0 0 273

Costa Rica 3 0 2 5

Curaçao 1 0 0 1

Dominican Republic 6 0 0 6

Ecuador 19 1 1 21

Greenland 2 0 0 2

Guadeloupe 1 0 0 1

Guatemala 4 0 0 4

Haiti 0 0 1 1

Honduras 3 0 0 3

Jamaica 4 0 0 4

Martinique 2 0 0 2

Mexico 251 1 0 252

Panama 7 0 0 7

Peru 1,127 1 1 1,129

Puerto Rico 77 0 0 77

Saint Martin (French part) 1 0 0 1

United States 15,358 0 0 15,358

Uruguay 2 0 1 3

Venezuela 1 0 0 1

South-East Asian Region (SEAR) 15 1 0 16

India 9 1 0 10

Indonesia 1 0 0 1

Thailand 5 0 0 5

Western Pacific Region (WPR) 122 0 0 122

Australia 90 0 0 90

(Continued)
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addressing the determinants underlying the underestimation of 
STDs, in general, and, in particular, monkeypox. Therefore, the 
present study was undertaken to fill this gap in knowledge.

Materials and methods

An integrative review was conducted. Even though this 
technique dates back to the eighties, it is emerging as an innovative 
tool to synthesize and appraise the existing body of scholarly 
literature on the designated research problem/concept, enabling 
the combination of a heterogeneous array of sources, from 
empirical to conceptual/theoretical investigations, from 
quantitative to qualitative and mixed-method studies, and from 
observational to pilot, feasibility, and interventional studies 
(Broome, 2000). We employed this technique since we were able 
to identify and formulate a broad-scope research problem/
concept/phenomenon of interest, particularly complex 
and articulated.

An integrative review enables to (i) overview and appraise 
theories and practices, (ii) to build bridges across diverse study 
fields, disciplines, and sectors, (iii) to generate and/or refine new 
knowledge and novel hypotheses, and (iv) to formulate and 
propose an actionable framework, being, as such, particularly 
suited for developing and informing healthcare policies and 
practices in an evidence-based fashion. More specifically, an 
integrative review study can be defined as “a review method that 
summarizes past empirical or theoretical literature to provide a 

more comprehensive understanding of a particular phenomenon 
or healthcare problem” (Broome, 2000).

To achieve the ambitious objectives of generating new 
knowledge and/or theories, an integrative review results in one or 
more of the following research synthesis forms: (i) a research 
agenda, (ii) a taxonomy or other conceptual classifications of 
constructs, (iii) alternative models or conceptual frameworks, and 
(iv) a metatheory/an array of metatheories.

Within the so-called “evidence synthesis ecosystem,” a 
systematic literature review and a meta-analysis have a highly 
focused, narrow research scope, whereas a scoping review has a 
broad research question and the objective of mapping, 
synthesizing, and combining the existing body of scholarly 
literature on the designated topic/research question.

We searched a major scholarly electronic database, PubMed/
MEDLINE, for papers without language filters, using a search 
string consisting of several components. First, these components 
were related to (i) health-seeking behaviors (awareness, 
knowledge, attitudes, practices, health-literacy, and health-seeking 
behavior), (ii) underestimation (under-ascertainment, 
underreporting, under-diagnosis, misdiagnosis/misclassification, 
under-detection, or under-notification), and, (iii) STDs (sexual 
transmission, sexually transmitted disease, or sexually transmitted 
infection). We  wanted, indeed, to study determinants of 
underestimation of STDs, including healthcare-seeking behaviors. 
During a second round of literature search, we added a fourth 
component related to the LGBTQI+ community, since it is being 
particularly impacted by the current monkeypox outbreak (see 

TABLE 2 Underestimation, its components/dimensions with definitions and determinants.

Failure to capture all cases Definition Determinants

Underestimation Under-ascertainment
Infected subjects do not seek health 

care

Health literacy, disease perception, perceived 

health needs, cultural and religious factors, 

legal, administrative, and financial barriers

Underreporting Under-diagnosis/under-detection Disease status not diagnosed/

misclassified

Measurement error, lack of knowledge 

concerning testing and/or interpretation of 

tests

Under-notification Diagnosis not transmitted to the 

surveillance and notification system

Reporting/notification policies

TABLE 1 (Continued)

Country Confirmed Death Suspected Grand total

Japan 4 0 0 4

New Caledonia 1 0 0 1

New Zealand 4 0 0 4

Philippines 4 0 0 4

Singapore 15 0 0 15

South Korea 1 0 0 1

Taiwan 3 0 0 3

Grand Total 43,363 8 44 43,415

Data are extracted and collected from the Global Health Initiative (https://www.global.health/).
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Figure 1 and Tables 2, 3 for further details). Google Scholar was 
searched too, looking for resources and items not indexed yet at 
the time of the literature search and for ensuring a broader 
relevant coverage of the literature.

Results

Underestimation of sexually transmitted 
diseases

Out of 230 items returned by searching PubMed/MEDLINE, 
53 articles related to STDs (Franco, 1991; Koutsky et al., 1992; 
Lin et al., 1992; Schulte et al., 1992; Ashley et al., 1993; Webster 
et al., 1993; Brookmeyer et al., 1995; Maher and Hoffman, 1995; 
Petersen et al., 1995; Schachter and Chow, 1995; Wahdan, 1995; 
Schwebke et al., 1996; Agacfidan et al., 1997; Rompalo et al., 
1997; Borisenko, 1998; Paget et al., 2002; Niccolai et al., 2005; 
Dhawan et  al., 2006; Liu et  al., 2006; Munson et  al., 2008; 
Nguyen et al., 2008; Lusk et al., 2010; Andrea and Chapin, 2011; 
Hong et al., 2011; Roth et al., 2011; Wolfers et al., 2011; Koper 
et al., 2013; Krivochenitser et al., 2013; Oliffe et al., 2013; Gratzer 

et al., 2014; Mirzazadeh et al., 2014; Brown et al., 2015; Corbeto 
et al., 2015; Fakoya et al., 2015; Jenkins, 2015; Tomas et al., 2015; 
Johnson and Geffen, 2016; Kustec et  al., 2016; Mlakar and 
Ramšak, 2016; Ni et al., 2016; Allard et al., 2017; Denison et al., 
2017; Lee and Nishiura, 2017; Syme et al., 2017; Hall et al., 2018; 
Mangine et al., 2018; Shahesmaeili et al., 2018; Timsit et al., 
2018; Steen et al., 2019; Knight et al., 2020; Moriña et al., 2021; 
Niekamp et al., 2021; Geba et al., 2022) were deemed eligible for 
inclusion in the present integrative review. More specifically, our 
comprehensive literature search enabled us to identify the 
following determinants of the underestimation of STDs: 
asymptomatic course (Wahdan, 1995; Shahesmaeili et al., 2018; 
Moriña et  al., 2021); atypical clinical and epidemiological 
features (Ni et  al., 2016), including atypical/unusual 
transmission routes (Allard et al., 2017; Lee and Nishiura, 2017; 
Timsit et al., 2018); differences in case definition (Schulte et al., 
1992; Rompalo et al., 1997), and in regional/national testing 
rates (Koper et al., 2013; Kustec et al., 2016); underestimation 
among specific age groups, like the youth and the elderly, and 
populations, such as minority communities and visible 
racialized groups (Webster et  al., 1993), migrant workers 
(Fakoya et al., 2015; Steen et al., 2019), sex workers (Agacfidan 

FIGURE 1

Pictorial flowchart of underestimation.
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et al., 1997; Brown et al., 2015; Hong et al., 2011; Mirzazadeh 
et  al., 2014; Shahesmaeili et  al., 2018), or swingers (Niekamp 
et  al., 2021); use of low-sensitivity and/or low-specificity 
diagnostic assays (Koutsky et  al., 1992; Schulte et  al., 1992; 
Ashley et al., 1993; Petersen et al., 1995; Schachter and Chow, 
1995; Schwebke et al., 1996; Paget et al., 2002; Dhawan et al., 
2006; Munson et al., 2008; Lusk et al., 2010; Andrea and Chapin, 
2011; Gratzer et al., 2014), or inadequate clinical and microbe-
isolation procedures (Koutsky et  al., 1992; Lin et  al., 1992); 
inadequate STD screening policies/protocols (Wahdan, 1995; 
Lusk et al., 2010; Roth et al., 2011; Corbeto et al., 2015; Geba 
et al., 2022); measurement error/misclassification (Franco, 1991; 
Krivochenitser et  al., 2013; Tomas et  al., 2015); barriers to 
accessing STD testing and management services (Mlakar and 
Ramšak, 2016; Denison et al., 2017), including psychological 
issues (Oliffe et  al., 2013), or lack of available facilities and 
infrastructures in resource-limited contexts (Maher and 
Hoffman, 1995); self-treatment (Borisenko, 1998); disease 
perception/health literacy (Liu et al., 2006; Nguyen et al., 2008; 
Wolfers et al., 2011; Hall et al., 2018), including risk perception 
(Syme et al., 2017), that is to say, the subjective assessment about 
the characteristics and severity of a given risk; and limited/
strained testing and diagnostic capacity (Schulte et al., 1992).

These studies concerned the following sexually transmitted 
pathogens/STDs: herpetic diseases (Koutsky et al., 1992; Ashley 
et al., 1993), human papillomavirus or HPV (Franco, 1991; Brown 
et  al., 2015; Shahesmaeili et  al., 2018; Moriña et  al., 2021), 

chancroid (Schulte et al., 1992), Chlamydia trachomatis (Lin et al., 
1992; Maher and Hoffman, 1995; Schachter and Chow, 1995; 
Agacfidan et al., 1997; Paget et al., 2002; Krivochenitser et al., 
2013; Corbeto et al., 2015; Tomas et al., 2015; Kustec et al., 2016; 
Mlakar and Ramšak, 2016), syphilis (Webster et al., 1993; Gratzer 
et al., 2014; Shahesmaeili et al., 2018) and genital ulcer disease 
(GUD; Rompalo et al., 1997), gonorrhea (Webster et al., 1993; 
Maher and Hoffman, 1995; Borisenko, 1998; Krivochenitser et al., 
2013; Tomas et al., 2015; Shahesmaeili et al., 2018), trichomoniasis 
(Maher and Hoffman, 1995; Petersen et al., 1995; Munson et al., 
2008; Lusk et al., 2010; Andrea and Chapin, 2011; Roth et al., 2011; 
Tomas et al., 2015; Shahesmaeili et al., 2018), bacterial vaginosis 
(Schwebke et al., 1996), Ureaplasma urealyticum (Dhawan et al., 
2006), Zika virus (Allard et al., 2017; Lee and Nishiura, 2017), 
amebiasis (Timsit et al., 2018), and human immunodeficiency 
virus, or HIV (Wahdan, 1995; Liu et al., 2006; Nguyen et al., 2008; 
Mirzazadeh et al., 2014; Fakoya et al., 2015; Ni et al., 2016; Hall 
et al., 2018; Steen et al., 2019).

Three articles (Niccolai et al., 2005; Jenkins, 2015; Mangine 
et  al., 2018) contained recommendations to overcome these 
shortcomings: namely, (i) to use sensitive and specific assays, (ii) to 
accurately collect sexual history, including data related to sexual 
orientation, and identify high-risk sexual behaviors (Jenkins, 2015), 
(iii) to strengthen sentinel surveillance and establish further sites, 
to improve the quality of collected data, (iv) to deploy and link 
multiple data sources, such as self-reports, medical record reviews, 
and regional/state health department reports, harmonizing, when 
appropriate, the various and different reporting systems and case 
definitions (Niccolai et  al., 2005), and, (v) to exploit the web, 
including social media and social networks to recruit high-risk 
populations, like the MSM community (Mangine et al., 2018).

Three other studies (Brookmeyer et  al., 1995;Johnson and 
Geffen, 2016; Knight et  al., 2020) focused on mathematical 
modeling, suggesting that the underestimation of STDs can occur 
when one fails to properly model high-risk sexual behaviors (such 
as unprotected, condomless sexual intercourse, use of recreational 
drugs or chemsex, sex with commercial partners, or with 
individuals the HIV status is unknown; Johnson and Geffen, 2016; 
Knight et  al., 2020) or does not adjust for the follow-up bias 
(potential losses during the follow-up; Brookmeyer et al., 1995).

Specifically concerning behavioral determinants of STDs (i.e., 
healthcare-seeking behaviors), a series of qualitative in-depth 
interviews carried out among 24 university students, exhibiting 
risky sexual behaviors (Denison et al., 2017), identified three main 
types of barriers to STD testing: (i) personal (underestimation of 
risk, perception of STD as a not serious disease, fear of invasive 
procedures, self-consciousness in genital examination, and/or 
being too busy); (ii) structural (economic-financial cost of testing, 
environment–clinician attributes and attitudes); and, (iii) social 
(concern/fear of stigmatization).

Finally, seven of the 53 retrieved articles focused on the MSM 
community (Liu et al., 2006; Koper et al., 2013; Brown et al., 2015; 
Mlakar and Ramšak, 2016; Hall et al., 2018; Mangine et al., 2018; 
Knight et al., 2020).

TABLE 3 Search strategy adopted in the present integrative review.

Search 
strategy 
items

Details

Keywords used 

in the search 

string

(“Health-seeking behavior” OR “health-literacy” OR “disease 

knowledge” OR “disease awareness” OR “disease perception” 

OR “risk perception”)

(Underestimated OR underestimation OR underreporting OR 

underreported OR misreporting OR misreported OR under-

diagnosis OR under-diagnosed OR under-ascertainment OR 

under-ascertained OR under-notification OR under-notified 

OR under-detection OR under-detected OR misclassification 

OR misclassified OR under-recognized OR under-

recognition)

(“Sexually transmitted infection” OR “sexually transmitted 

disease” OR “sexual transmission”)

(LGBT OR LGBT+ OR LGBTQ OR LGBTQ+ OR LGBTQI OR 

LGBTQI+ OR “men having sex with men” OR “men who have 

sex with men” OR lesbian OR homosexual OR homosexuality 

OR bisexual OR bisexuality OR “sex and gender minorities” 

OR “sexual orientation” OR “gender identity”)

Time filter From the onset for STDs and from the beginning of the 

monkeypox outbreak

Language filter None applied

STD, sexually transmitted diseases.
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Underestimation of monkeypox cases

So far, the only attempt to test the hypothesis of the impact of 
stigmatization on monkeypox case reporting in European 
countries has been done by Kenyon (Kenyon, 2022), employing 
Spearman’s correlation test to quantitatively explore whether the 
monkeypox national cumulative incidence was negatively 
associated with the intensity of screening for STIs and a composite 
indicator of LGBTQI+ rights (the “Rainbow Index”). The author 
found, instead, a positive correlation between the monkeypox 
epidemiological trend and the intensity of chlamydia/gonorrhea 
(rho 0.68, p < 0.0001), and syphilis (rho 0.62, p < 0.0001) screening, 
and the Rainbow Index (rho 0.65, p < 0.0001), suggesting that in 
several Eastern European countries, the real burden of monkeypox 
is underestimated.

Besides stigmatization and related issues, a few monkeypox 
infections are asymptomatic (Fleischauer et al., 2005; Karem et al., 
2007; Guagliardo et al., 2020) and, when present, symptoms are 
atypical, in that this outbreak differs from previous outbreaks, in 
terms of a shift in mean age and the most affected age group, 
affected sex/gender, risk factors, clinical course, signs/symptoms, 
and, above all, the sexual transmission route (Bragazzi et  al., 
2022a). As such, physicians may not recognize the infection as 
monkeypox. A recent “knowledge, attitudes, and practices” (KAP) 
survey among Italian physicians showed unsatisfying monkeypox-
related knowledge and attitude levels (Riccò et  al., 2022). For 
example, systemic complications of monkeypox, especially among 
children, were generally largely overlooked. Of note, Italian 
physicians who took part in the survey showed substantial 
uncertainties and knowledge gaps related to monkeypox, in terms 
of clinical presentation and main features, risk factors, and 
preventative measures, with less than one-fifth of them confident 
in properly recognizing incident monkeypox cases during their 
clinical activities. Another survey conducted in Jordan (Sallam 
et al., 2022), among 615 university students in health schools/
faculties (medicine, nursing, dentistry, pharmacy, medical 
laboratory sciences, and rehabilitation), identified serious gaps in 
knowledge, with only three out of 11 monkeypox-related 
knowledge items identified correctly by >70% of the respondents. 
Only 26.2% of the participants knew that monkeypox is a vaccine-
preventable disease. However, information about knowledge of 
monkeypox among physicians and allied health professionals 
is scarce.

Also, the monkeypox case definition has only recently been 
revised to be adapted to the ongoing outbreak, in order to reflect 
the new findings and clinical and laboratory features (Bragazzi 
et  al., 2022a; Centers for Disease Control and Prevention 
(CDC), 2022).

Another factor that could result in monkeypox 
underestimation is testing and diagnostic capacity, with a general 
lack of point-of-care tests currently available and, in some 
countries, overall testing (Nuzzo et al., 2022). Diagnostic/testing 
capacity for monkeypox varies substantially worldwide—some 
countries like the United States are able to process up to several 

thousand specimens per week (Cohen, 2022), while others have 
no diagnostic capacity at all; moreover, testing and diagnostic 
capacity are further strained by the still ongoing COVID-19 
pandemic. Testing includes non-variola Orthopoxvirus (NVO) 
generic real-time polymerase chain reaction (PCR) test, 
monkeypox-specific PCR, and sequencing (Jiang et al., 2022).

Further, services and healthcare provisions offered by sexual 
health clinics in some countries, like the United Kingdom, are 
being significantly impacted and disrupted. This could result in a 
significant delay in the diagnosis, treatment, and reporting 
of cases.

Finally, in most cases, contact tracing (also known as partner 
notification) is unfeasible or presents particular challenges in the 
MSM community, given that contacts of infected individuals are 
casual sexual partners (Bell and Potterat, 2011; Bragazzi 
et al., 2022a).

Discussion

Sexually transmitted diseases are generally overlooked and 
underestimated (Sartorius, 2007; Bragazzi et al., 2022b). Based on 
our integrative review of the literature, monkeypox case 
underestimation could be  significant. This has important 
implications for public and global health providers as well as 
policy- and decision-makers, epidemiologists, and 
mathematical modelers.

According to Andersen’s “Behavioral Model of Health Services 
Use,” health-seeking behaviors are complex and multidimensional, 
depending on an array of factors, including “predisposing factors” 
(such as age, sex/gender, ethnicity, or cultural and social variables), 
“enabling factors” (like financial variables—insurance coverage—
or healthcare accessibility/availability), and “need factors” (health, 
risk, and disease perceptions, health literacy, medical conditions, 
or underlying co-morbidities; Babitsch et al., 2012). Symptoms of 
some STDs can be mild and individuals may not seek healthcare. 
Moreover, in the LGBTQI+ community, STDs are usually 
perceived as a “part of the way of life” and as inconvenient 
consequences of being sexually active. In the pre-HIV 
pre-exposure prophylaxis (PrEP) era, HIV was considered the 
most anxiety-provoking STD, followed by viral, recurring STDs, 
and bacterial STDs, which were conceived as trivial and treatable. 
On the other hand, while not generating particular concerns in 
terms of disease perception, a diagnosis of STDs was associated 
with feelings of being “dirty and ashamed” (Holt et al., 2010). Risk 
and disease perceptions regarding HIV have changed after PrEP 
introduction, but the general thought that STD is an untoward 
consequence of sexual activities has remained practically 
unchallenged. Intended and actual utilization of healthcare 
provisions has been found to be related to the endorsement of 
stigmatization of certain sexual practices, such as anal sexual 
intercourse (Kutner et al., 2022). Awareness and attitudes toward 
STDs are highly heterogenous among MSM, with some infections 
considered scarier and others less, depending on their 
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transmission mechanisms, epidemiology (prevalence), visibility 
of symptoms, and impact on health, as well as the availability of 
vaccines and treatment options, based on both personal or friends’ 
experiences (Datta et al., 2019).

Sexual health clinics are usually the first point of access in the 
case of STDs. However, some sex and gender minorities (SGMs), 
despite being at higher risk for STDs, including monkeypox, could 
be  underrepresented. Holmes and Beach (2020) found that 
individuals self-identifying as bisexuals were approximately 
one-quarter of sexual health clinic users, while they represent 
more than half of SGMs populations. The so-called “bisexual 
erasure” or “bisexual invisibility” may be  one of the factors 
explaining the potential underestimation of monkeypox cases, 
with the number of cases reported among men having sex with 
men and women (MSMW) being tremendously underestimated.

All these behaviors can be explained utilizing the “minority 
stress theory” (MST), according to which some marginalized 
communities subjected to stigmatization and discrimination 
experience more stressors than the general population, resulting 
in increased stress-linked coping behaviors, substance use, 
encounters with random/casual sex partners, and poorer health 
outcomes and health-related inequalities. Health disparities could 
be  due to lower access to healthcare services, including 
preventative and STD screening/testing ones (Holmes and 
Beach, 2020).

There are different interests and actors at stake and a holistic 
approach is required to address STDs, in general, and 
monkeypox, specifically. To really advance the field of STD- and 
sexual health-related research, institutional and governmental 
bodies should facilitate “sex-at-birth, sexual orientation, and 
gender identity” (SSOGI)-related data collection, dissemination, 
and utilization, to favor a more “inclusive STD reporting” 
(Baptiste-Roberts et al., 2017). Currently, SSOGI data collection 
is not routinely implemented, with the risk of invisibilizing 
individuals with bi/bi+ umbrella labels, such as bisexual, queer, 
and pansexual individuals (Baptiste-Roberts et  al., 2017). 
Several LGBTQI+ organizations have been collecting SSOGI 
data, but current public health surveillance systems are not 
updated to incorporate such information (Baptiste-Roberts 
et al., 2017). Of note, a major shortcoming of the investigation 
by Kenyon (Bragazzi et  al., 2022b) is that the incidence of 
monkeypox cases was computed utilizing the entire (general) 
population, rather than the MSM/SGM/LGBTQI+ population. 
The latter point reflects the challenges that can be encountered 
in measuring and collecting data related to the sexual 
orientation/gender identity of a patient, given that there exist 
several socio-cultural, historical, as well as political implications 
underlying these issues. Data collected by healthcare providers 
are affected by the patient’s willingness to disclose personal, 
sensitive information and their degree of openness, while self-
report data suffer from selection/self-selection biases. As such, 
the real size of the MSM/SGM/LGBTQI+ population remains 
unknown and discrepancies among studies and differences 
among countries point to the influence of societal variables as 

well as the precise definition of what the MSM/SGM/LGBTQI+ 
population is (Marcus et al., 2013).

Specifically, concerning monkeypox cases, even though in a few 
cases, systemic prodromal symptoms (like fever, headache, 
lymphadenopathy, etc.) typical of the invasion period may 
be  missing, with visible symptoms appearing during the skin 
eruption stage and a few asymptomatic individuals described in the 
current as in previous outbreaks, there are good reasons to suspect 
underestimation just by looking at data, since, as noted by Nuzzo 
et al. (2022), the United States, despite having a larger population 
size, have reported fewer cases than the United Kingdom.

The engagement of the LGBTQI+ community, and especially 
of bisexual/pansexual (bi/bi+) populations, with community-
based sexual health providers is of paramount importance 
(Baptiste-Roberts et al., 2017) to offer LGBTQI+-tailored sexual 
health services. Scaling up community outreach and recruitment 
of LGBTQI+ members, including bi/bi+ people to engage in 
sexual health services represent challenges that need to 
be  prioritized (Baptiste-Roberts et  al., 2017). Adopting an 
intersectional lens, with a focus on populations reporting multiple 
stigmatization and discrimination, such as non-White 
communities, is crucial to address unmet needs. Educating staff 
to be culturally sensitive and competent, fighting against systemic 
and institutional stigmatization, and homo-bi-trans-phobia, and 
creating an inclusive environment represent another societal onus. 
Institutional bodies should conduct awareness campaigns to 
enhance health literacy, minimize structural or perceived barriers 
to STD testing, develop effective and innovative strategies aimed 
at addressing personal beliefs and improving STD testing rates, 
and favor the adoption of healthy sexual practices and behaviors 
(Pitts, 2020).

Social media, including news outlets, should also play their 
role in changing societal views of STDs (Pitts, 2020), combating 
disinformation and infodemic (Ennab et al., 2022), and creating 
awareness that monkeypox can infect all humans regardless of 
their age, sex/gender, sexual orientation, or gender identity. 
Moreover, there are various factors that may increase the potential 
risk for exposure, including close, sexual, and/or intimate contact 
with someone who has monkeypox and symptoms, such as rash, 
soreness, or scabs. Potentially, any sexually active individual could 
contract the infection, even if the focus is mainly on the MSM 
community. This could lead to a (further) underestimation of 
infectious transmission among other populations, as 
previously mentioned.

Conclusion and future prospects

Monkeypox is an emerging sexually transmitted infection, 
which is representing a global public health concern. Mathematical 
modeling of monkeypox should adjust for the underestimation of 
cases and public and global health policy- and decision-makers 
should consider the “hidden burden” of monkeypox when 
designing and implementing packages of interventions. Studies 
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are urgently needed to quantify the degree of underestimation of 
monkeypox cases to better inform the responses to the outbreak.
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A wide range of protozoan pathogens either transmitted by vectors 

(Plasmodium, Babesia, Leishmania and Trypanosoma), by contaminated 

food or water (Entamoeba and Giardia), or by sexual contact (Trichomonas) 

invade various organs in the body and cause prominent human diseases, 

such as malaria, babesiosis, leishmaniasis, trypanosomiasis, diarrhea, and 

trichomoniasis. Humans are frequently exposed to multiple pathogens 

simultaneously, or sequentially in the high-incidence regions to result 

in co-infections. Consequently, synergistic or antagonistic pathogenic 

effects could occur between microbes that also influences overall host 

responses and severity of diseases. The co-infecting organisms can also 

follow independent trajectory. In either case, co-infections change host and 

pathogen metabolic microenvironments, compromise the host immune 

status, and affect microbial pathogenicity to influence tissue colonization. 

Immunomodulation by protozoa often adversely affects cellular and humoral 

immune responses against co-infecting bacterial pathogens and promotes 

bacterial persistence, and result in more severe disease symptoms. Although 

co-infections by protozoa and viruses also occur in humans, extensive studies 

are not yet conducted probably because of limited animal model systems 

available that can be used for both groups of pathogens. Immunosuppressive 

effects of protozoan infections can also attenuate vaccines efficacy, weaken 

immunological memory development, and thus attenuate protection against 

co-infecting pathogens. Due to increasing occurrence of parasitic infections, 

roles of acute to chronic protozoan infection on immunological changes 

need extensive investigations to improve understanding of the mechanistic 

details of specific immune responses alteration. In fact, this phenomenon 

should be seriously considered as one cause of breakthrough infections after 

vaccination against both bacterial and viral pathogens, and for the emergence 

of drug-resistant bacterial strains. Such studies would facilitate development 

and implementation of effective vaccination and treatment regimens to 

prevent or significantly reduce breakthrough infections.
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Introduction

Co-infections of protozoa-bacteria-viruses are an emerging 
phenomenon due to overlapping epidemiological niches or shared 
transmission routes. Co-infections can adversely affect host 
immune responses, pathogenicity of microbes and success of 
chemotherapy and vaccinations. Co-infection of Plasmodium 
species with multiple bacterial species have been reported 
including with Mycobacterium (Chukwuanukwu et  al., 2017), 
Salmonella (Cunnington et  al., 2011), non-typhoid (NT) 
Salmonella (Takem et al., 2014), in addition to viruses such as HIV 
(Alemu et al., 2013), SARS-CoV-2 (Anyanwu, 2021), and hepatitis 
viruses (Helegbe et al., 2018). Such protozoan co-infections with 
bacterial and viral infections have high prevalence in same 
endemic regions especially in Sub-Saharan Africa. Malaria 
patients have been shown to be susceptible to other infections, 
influencing the pathogenesis and prognosis of the disease. Other 
interactions include Babesia-Borrelia (Dunn et al., 2014) as well as 
les common Entamoeba spp.-Escherichia coli have also been 
reported (Fernandez-Lopez et al., 2019). Alteration in the host, for 
instance, due to HIV infection that compromises host immune 
system can render humans more susceptible to co-infection by 
other opportunistic pathogens (Ayoade and Joel Chandranesan, 
2022). Co-infecting pathogens may also have epidemiological 
implications and alter the mortality or morbidity due to diseases 
they cause (Anyanwu, 2021). Increase in DNA uptake and genetic 
recombination includes transfer of antimicrobial resistance genes 
between the co-infecting agents (Marti et al., 2017) resulting in 
emergence of multi-drug resistant pathogens. Apart from the 
effect on the pathogens, co-infections may also impact the efficacy 
of vaccines and success of chemotherapeutic agents.

Bacterial-protozoan co-infections are a commonly occurring 
phenomenon due to overlapping ecological niches and inadequate 
disease control infrastructures and thus, requires an all-inclusive 
approach to develop preventative vaccines and effective 
chemotherapeutic agents (Cox, 2001). Unexplained decline in 
efficacy of vaccines that are routinely used, and emergence of 
breakthrough infections is a concerning trend in disease endemic 
regions and poses a threat to control of infections around the world. 
The success of antimicrobials and vaccinations in diseases control 
depends heavily on a vibrant immune system. The immunodynamics 
of co-infections with protozoa need considered scrutiny during 
development of vaccines and antibiotics because the changes have 
the potential to lead to emergence of antigenic variations, 
breakthrough infections and antibiotic resistance (Wait et al., 2020).

The rise in immunocompromised individual numbers and 
accompanying vaccination failures has created a favorable 
microenvironment for emergence of more virulent pathogens 
(Laufer et al., 2007). This has further increased the urgency to 
investigate the causes of reduced effectiveness of vaccines against 
bacterial and viral pathogens to facilitate formulation of more 
inclusive and rational corrective measures. Inequitable resource 
distribution and marginalization of the developing world coupled 
with poor nutrition and disease control infrastructure complicates 
the control of global disease burden as more resistant strains 

emerge. These pathogens are then carried throughout the globe by 
traveling populations in now highly interconnected world (Walsh, 
1989). This scenario creates an existential threat to disease control 
and a paradigm shift in approaches to vaccine and drug 
development. Therefore, it is critically important that acute to 
chronic protozoan infections and their presence during 
co-infections are considered seriously when more severe disease 
manifestations are noticed, or reduced vaccines effectiveness 
are observed.

Based upon a comprehensive review of literature, we have 
summarized the impact of protozoan infections on pathogenesis 
of co-infecting bacterial and viral pathogens (Figure 1). We have 
also depicted the consequence of acute to chronic parasitic 
infection on emergence of drug-resistance in co-infecting 
pathogens and influence of protozoa on vaccines efficacy that 
could affect protection from infectious bacteria and viruses.

The epidemiology of protozoa-bacteria 
co-infections

Protozoa-bacteria co-infections are an emerging healthcare 
problem especially in the developing world due to geographical 
overlap between different pathogens. For example, the overlapping 
existence of Plasmodium spp. and Mycobacterium tuberculosis that 
cause malaria and tuberculosis (TB), respectively particularly in 
countries with poor healthcare infrastructure creates a perfect 
setting for co-infections (Page et  al., 2005). Co-infections 
involving gastrointestinal pathogens also commonly occur in 
low-income countries with poor water-sewer infrastructure and 
hygienic environments and thus, allow a common pathway of 
transmission (fecal-oral) as reported for Campylobacter jejunum 
and intestinal protozoa (Bronowski et al., 2014). Co-infections 
with sexually transmittable pathogens also occur frequently in 
women with abnormal vaginal bacteriome. Bacterial vaginosis 
(BV), a common syndrome when quantity and quality of vaginal 
microbiota is perturbed, often involves Trichomonas vaginalis 
infection (Onderdonk et al., 2016). Clostridium perfringens and 
T. fetus are also a frequent occurrence in bacterial-protozoan 
vaginosis. Toxoplasma gondii infections have also been observed 
together with Clostridium perfringens during endometritis 
(Alsammani et al., 2012). The presence of infected companion 
feline hosts with susceptible humans serves as the most ardent 
predisposing factor for T. gondii infection cycle. For respiratory 
and gastrointestinal co-infections, other common predisposing 
conditions in humans is underlying immunocompromised status, 
such as during HIV infection/AIDS or the presence of other 
enteric pathogens like entero-viruses.

Common vector and reservoir host(s) harboring multiple 
pathogens have been observed frequently. Babesia species, which 
are protozoans transmitted by Ixodes scapularis ticks, are 
hemoparasites with life cycle and pathology similar to Plasmodium 
spp. and trigger comparable impact on mammalian hosts immune 
responses and show several overlapping diseases manifestations 
(Djokic et al., 2021). Lyme disease causing spirochetal bacteria 
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belonging to Borrelia burgdorferi sensu lato are also transmitted to 
different hosts by ticks (Stewart and Bloom, 2020). Increasing rate 
of co-infections by these two pathogens have been reported in the 
endemic regions of the United States (Swanson et al., 2006; Diuk-
Wasser et al., 2016; Wormser et al., 2019) and Europe (Olsthoorn 
et  al., 2021). Thus, in addition to B. burgdorferi-Babesia 
co-infections, simultaneous Babesia-Anaplasma phagocytophilum 
infections are also reported because tick vector and white footed 
mouse, Peromyscus leucopus (and other reservoir hosts) harbor 
several pathogens together. While some protozoa have established 
a mutual relationship with bacteria in which each microbe benefits 
from the infected host, other examples may involve cases where 
the pathogen modulates the immune status to benefit itself at the 
expense of the host (Schmid-Hempel, 2009).

Protozoan infection and adaptive 
immune response

Following infection, protozoan parasites may either induce 
antibody, cell mediated immunity or stimulate both types of 

immune responses. These changes depend on the type of infection, 
localization of pathogen in the body, and the development stage 
of the organism. Various protozoan pathogens colonize different 
organs of the body, such as gastrointestinal tract (Amoeba), blood 
stream (Trypanosoma), within erythrocytes (Plasmodium and 
Babesia) and inside the macrophages (Leishmania spp., and 
T. gondii). Extracellular parasites generally induce and can often 
be controlled by antibody mediated killing by opsonophagocytosis 
while intracellular protozoan pathogens control requires cell 
mediated immune responses (Bretscher, 1992). Leishmania spp. 
are obligate intracellular protozoan, such that defense mechanisms 
against this parasite depend upon CD4+ T-lymphocytes 
stimulation that could also activate macrophages and induce Th1 
cytokines production (Gupta et al., 2013). Some parasites can 
induce both humoral and cell mediated immunity depending on 
the developmental stage of the pathogen, for, e.g., in Plasmodium 
spp. (Beck et al., 1995). In addition, they may also deploy immune 
evasion mechanisms for survival in the hosts, such as escape from 
antibodies by changing their surface antigenic coats, i.e., antigen 
variation observed in Trypanosoma brucei (Márquez-Contreras, 
2018). Trypanosoma brucei gambiense induces humoral immune 

FIGURE 1

Effect of protozoan infection on adaptive immune response and co-infecting bacteria, and on effectiveness of bacterial and viral vaccines in 
protection from infection. The major pathogenic protozoa, such as Plasmodium, Babesia, Trichomonas and Trypanosoma, often cause 
suppression of adaptive immune response affecting both B and T cells. As a consequence, decrease in the specific antibody levels against co-
infecting bacteria resulting in increase in burden of bacterial pathogens and exacerbation of severity of diseases they cause. Increased bacterial 
burden also enhances probability of emergence of resistance to antimicrobials. Diminished cellular and humoral immune response caused by 
acute to chronic infection by protozoa could also result in reduced efficacy/failure of vaccines against bacterial pathogens and may lead to 
breakthrough infections. Highly variable effects of protozoan infections with respect to antibody response to vaccines against different viral 
pathogens has been reported but their impact on breakthrough infections by the respective viruses remains to be investigated more thoroughly.
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response because of its extra-cellular existence; however, antigenic 
variation of the parasites is hallmark of its long-term persistence 
in the host because it enables the protozoan to evade the immune 
system-mediated elimination in many cases (Márquez-
Contreras, 2018).

The pathogenesis of protozoan-bacterial 
co-infections

Protozoan-bacterial co-infections affects hosts in many ways. 
They can either lead to an antagonistic/deleterious or synergistic/
advantageous pathogenic effect on the infected hosts. Antagonisms 
may be caused by resource competition or stimulation/suppression 
of innate or adaptive immune response that could negatively affect 
the co-infecting pathogen (Rigaud et al., 2010). During synergistic 
interactions, pathogens could suppress immune response of hosts 
resulting in high rates of replication of one or both pathogens. For 
example, protozoan infections can lead to apoptotic clearance of 
cells of the immune system creating a favorable environment for 
their own multiplication and potentially for proliferation of the 
co-infecting bacteria (Gigley et al., 2012). In addition, co-infecting 
pathogens can also modulate the gene expression in each other. 
Furthermore, synergism may also involve direct or indirect 
resources sharing, such that one microbe assists the co-infecting 
pathogen with regards to acquisition of nutrients (Birger et al., 
2015). In this case, one pathogen may create favorable 
environment for colonization and growth of another pathogen, 
for, e.g., the presence of bacterial biofilm may promote 
proliferation of protozoa to stimulate synergism (Denoncourt 
et al., 2014). Alternatively, each pathogen takes on independent 
mechanisms of existence with minimal effect on diseases they 
cause. Several examples listed below demonstrate different effects 
of protozoan-bacterial co-infections on each other and on host(s).

Plasmodium and mycobacterium tuberculosis
Two major diseases, TB and malaria commonly occur 

together in patients due to overlapping geographical regions of 
infection for the two causative organisms (Baluku et al., 2019). 
Due to some similar initial subjective manifestations: flu-like 
illness, chills, fever, and fatigue, diagnostic approaches can miss 
some infections that leads to delayed therapeutic intervention. 
Thus, the lack of treatment for asymptomatic parasitic infection 
can apply selection pressure on TB by facilitating the emergence 
of drug-resistant strains (Murray et  al., 2014). Interestingly, 
P. falciparum and P. vivax infections showed significant reduction 
in B and T (both CD4+ and CD8+) cells in patients (Kassa et al., 
2006). M. tuberculosis infection has also been demonstrated to 
modulate the immune responses and confer immunological 
protection against severe malaria while weakened responses occur 
against bacteria. As a result, Plasmodium-M. tuberculosis 
co-infected patients show reduced/mild symptoms of malaria and 
a more severe symptoms of tuberculosis (Chukwuanukwu et al., 
2017). In a murine model of infection, M. tuberculosis-induced 

potentiation of type 1 immune responses has been associated with 
protection against lethal malaria, which also appears to be related 
to induced production of IFN-γ and TNF-α in C57/BL6 mice 
(Page et al., 2005). Furthermore, mice sequentially infected with 
M. tuberculosis followed by P. yoelii were less capable in containing 
bacterial growth in lungs, spleen, and liver and resulted in 
increased mortality of mice (Scott et al., 2004). Also, increased 
M. tuberculosis burden were observed in lungs of mice co-infected 
with P. berghei (Mueller et  al., 2014) or P. yoelii (Blank et al., 
2016). While this co-existence exacerbates disease by 
M. tuberculosis, it is antagonistic to Plasmodium-induced illness. 
Interestingly, heat shock protein 70 (HSP70) from M. tuberculosis 
has been associated with the induction of a strong humoral and 
cellular response directed against P. falciparum (Page et al., 2005). 
During malaria, a marked increase in the production of the anti-
inflammatory cytokines IL-10 and IL-4 (Chukwuanukwu et al., 
2017) occurs and is thought to exacerbate TB pathology by 
reducing the protective Th1 bias and tilting immunity towards 
Th2 response. Additionally, co-infection with the non-lethal 
P. yoelii also resulted in more severe tuberculosis pathology with 
increased immune cells infiltration, and increased pro-and anti-
inflammatory mediators, mainly IFN-γ, TNF-α, IL-6, IL-10, and 
IL-17. Moreover, higher TNF-α levels positively correlated with 
increased M. tuberculosis burden in lungs of co-infected mice 
(Blank et al., 2016).

Plasmodium and non-typhoid salmonella
Co-infections between Non-Typhoid Salmonella (NTS) and 

highly pathogenic Plasmodium species have also been reported 
(Mtove et  al., 2011). Plasmodium infection causes extensive 
hemolysis and release of cellular heme, which can be toxic for 
organisms. The protozoan converts it to hemozoin, a novel 
non-DNA ligand for Toll-like receptor (TLR)9, which can 
be captured by cells of the reticuloendothelial system (RES) and 
can activate innate immune responses (Simoes et al., 2015). In 
response, mammalian host produces heme oxygenase-1 to 
degrade the heme and mitigate malaria pathology by limiting 
production of reactive oxygen species (ROS; Gozzelino et  al., 
2010); however, reduced ROS has counterproductive effect due to 
decrease in beneficial granulocyte oxidative burst function in 
clearing infections, and thus allows multiplication of co-infecting 
Salmonella in neutrophils (Cunnington et al., 2012; Harding et al., 
2020). Activation of TLR9 also results in the production of 
pro-inflammatory cytokines, certain chemokines, and causes 
up-regulation of costimulatory molecules (Coban et al., 2005).

Plasmodium and other bacterial infections
Bacterial infections offer major complication during 

Plasmodium co-infections. During rodent P. yoelii infection, host 
immunity is impaired against diverse bacteria, including 
Streptococcus pneumoniae due to effects on innate immune 
response (Harding et  al., 2020). A parasite-specific factor 
(haemozoin and bound bioactive molecules) directly contributes 
to Plasmodium-induced suppression of innate immune response 
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against bacteria. P. yoelii infections also suppresses immune 
responses against Listeria monocytogenes by causing increased 
apoptosis of Listeria-specific T cells resulting in slower induction 
of cellular immune responses. Interaction between different 
strains of S. pneumoniae and the rodent malaria parasite 
P. chabaudi have also been shown to promote an antagonistic 
sequelae (Moens et al., 2012; Fairlie-Clarke et al., 2013). Studies 
have also shown that complement components, C1q and C3, 
interact with P. falciparum infected RBCs to initiate the 
complement cascade that leads to complement depletion (Nyakoe 
et al., 2009), which has been attributed to increased burden of 
S. pneumoniae during Plasmodium-S. pneumoniae co-infections 
(Harding et al., 2020).

Babesia spp. and Borrelia burgdorferi
Babesia-B. burgdorferi co-infections are a common occurrence 

due to shared reservoir host(s) and vector (Benach et al., 1985; 
Krause et al., 1996; Wormser et al., 2019). Studies in mice have 
demonstrated that when infected with B. burgdorferi, mice have 
been found to exhibit features similar to those of human Lyme 
disease (Barthold et al., 2010). During experimental co-infection 
of susceptible mice, B. microti infection causes splenomegaly and 
splenic dysfunction that results in a reduction in the levels of 
functional B and T cells. As a result, the production of specific 
antibodies against both pathogens are reduced causing poor 
control of B. burgdorferi infection (Djokic et al., 2019). Diminished 
adaptive immunity then exacerbates Lyme disease severity that is 
indicated by both; increased burden of B. burgdorferi in different 
organs of co-infected mice and more severe Lyme arthritis 
compared to those in mice infected with Lyme spirochetes alone 
(Parveen and Bhanot, 2019). These results agree with previous 
investigation showing that B. burgdorferi infection increased Lyme 
arthritis severity in co-infected Balb/c mice compared to singly 
infected mice (Moro et al., 2002). Limited human epidemiological 
studies have been conducted to determine outcomes of Babesia-
Borrelia co-infection [reviewed (Knapp and Rice, 2015)] but 
overall, more diverse and persistent manifestations associated with 
B. burgdorferi infection were observed in co-infected patients 
(Krause et al., 1996). Thus, limited clinical studies have shown 
some overlapping features with those observed in mice; however, 
more thorough investigations are needed to fully determine the 
impact of co-infections on each disease severity.

Trypanosoma brucei and Brucella
During infection with T. brucei, phagocytosis of the protozoan 

has been found to be associated with an extensive production of 
cytokines. Cytokines IFN-γ and TNF-α were shown to be involved 
in exacerbation of anemia as mice lacking the respective genes 
exhibited protection from anemia, while anti-inflammatory 
cytokine, IL-10 counteracted the effects of Trypanosoma-induced 
anemia (Tabel et al., 2008; Musaya et al., 2015). Mice infected with 
T. brucei exhibit the characteristic parasitemia waves concurrently 
with the host expression of elevated levels of IFN-γ. Trypanosomes 
overcome host innate immune response and then cause significant 

immunosuppression allowing proliferation of this pathogen. The 
induction of pro-inflammatory IFN-γ by host in response to 
T. brucei infection has been shown to reduce splenic bacteria 
burdens in mice infected with either Brucella melitensis, B. abortus, 
or B. suis (Machelart et al., 2017). T. brucei-Brucella co-infection 
is therefore antagonistic for Brucella. In other cases, induction of 
IFN-γ is not sufficient to control selected bacterial infections, for, 
e.g., M. tuberculosis (Vilaplana et al., 2014; Musaya et al., 2015).

Trichomonas vaginalis, Mycoplasma hominis, 
Atopobium spp. and Gardnerella spp.

Trichomoniasis, a prevalent sexually transmitted infection 
(STI) is caused by the protozoan parasite T. vaginalis, which can 
establish a symbiotic relationship with M. hominis, a species 
implicated in bacterial vaginosis (Rappelli et al., 1998). M. hominis 
synergistically upregulates human monocytes pro-inflammatory 
response to T. vaginalis resulting in enhanced inflammation 
during trichomoniasis (Fiori et al., 2013). Due to influence of 
Trichomonas on change in vaginal pH, increase in infections in the 
urogenital tract also include other bacterial vaginosis associated 
bacteria. For example, co-existence of Atopobium and Gardnerella 
have also been found to cause synergistic enhancement of 
T. vaginalis induced production of chemokines (Onderdonk 
et al., 2016).

Protozoa-bacteria co-infection of 
gastrointestinal tract

Bacterial-protozoan co-infections also affect the 
gastrointestinal system with significant implications to the ensuing 
pathology. E. histolytica is a pathogenic protozoan related to 
intestinal and extraintestinal infections. In the large intestine, it 
co-exists with many resident microbiotas and results in 
asymptomatic infection or diarrhea (Stanley, 2003). The protozoan 
must compete with indigenous bacteria and may breach the 
mucus barrier. After binding to host cells, protozoan induces cell 
death, which causes amebic colitis and facilitates dissemination 
into extraintestinal organs. The interaction between E. histolytica 
and E. coli O55 causes substantial changes in their genes’ 
expression (Fernandez-Lopez et al., 2019). E. coli offers nutritional 
support for amoebic growth and helps the parasite to boost 
defenses against H2O2 induced oxidative stress to facilitate 
establishment of parasitic persistence in intestinal mucosa. As an 
example, oxaloacetate produced by E. coli protects E. histolytica 
against H2O2 induced oxidative stress while epithelial monolayers 
exposed to enteropathogenic bacteria are more susceptible to 
additional damage by E. histolytica. Phagocytosis of pathogenic/
non-pathogenic bacteria promoted by amoebae further increased 
epithelial cells layer damage and exacerbated colitis severity 
(Galvan-Moroyoqui et al., 2008).

Murine studies have shown that Giardia intestinalis-
enteroaggregative E. coli (EAEC) co-infection promotes bacterial 
growth impairment, microbiota-dependent delayed parasite 
clearance, microbial metabolic perturbations in the gut, and an 
alteration of localized host immune responses against EAEC 
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(Bartelt et al., 2017). In contrast, G. muris reduces the symptoms 
of Citrobacter rodentium-induced colitis, by enhancing the 
production of mucosal antimicrobial peptides such as mouse 
β-defensin 3 and Trefoil factor 3 (Manko et al., 2017).

Helicobacter pylori (H. pylori) and Cryptosporidium spp. are 
well-known for their high prevalence in immunocompromised 
pediatric patients worldwide especially in developing countries 
(Ibrahim et al., 2019). H. pylori may support the colonization by 
Cryptosporidium spp. and vice versa. The interaction between 
H. pylori and intestinal parasites may have serious health 
consequences because Cryptosporidiosis results in increased 
intestinal permeability while H. pylori causes atrophic changes in 
the stomach. Together they may have a serious impact on tissue 
integrity and the balance of gut microbiome. Further investigation 
is warranted to unravel how this interaction affects the 
gut microbiome.

The epidemiology of protozoan 
parasite-viral co-infections

The interactions between viruses-protozoan co-infections and 
their complexities remain unexplored. These pathogens can 
reciprocally alter their epidemiology and/or host response to 
vaccines and therapies (Karp and Auwaerter, 2007). Virus-
protozoan co-infections such as those caused by HIV and 
Plasmodium have been documented particularly in sub-Saharan 
Africa. Co-existence of these pathogens represents an emerging 
healthcare problem that has been causing significant morbidity 
and mortality, with more than 2 million deaths occurring annually 
(World Health Organization, 2017). Several other studies 
demonstrated that people living with HIV have more frequent and 
severe malaria manifestations (World Health Organization, 2015). 
HIV infected individuals are also at higher risk of exposure to 
leishmaniasis (Okwor and Uzonna, 2013; Diro et al., 2014) and 
have more efficient T. gondii infection with increased risks of 
deaths (Pott Jr. and Castelo, 2013). In addition, people with HIV 
have up to 21% more seroprevalences against amebiasis (Hung 
et al., 2012) and have significantly higher rates of trichomoniasis 
than HIV-negative individuals (36.4% vs. 21.3%) (Davis 
et al., 2016).

Other Plasmodium-viral co-infections are also frequently 
observed in sub-Saharan Africa. A study from Anastos et al., 2010 
in Rwanda (East Africa) showed an association between 
Plasmodium infection and increases risk of cervical precancer in 
Human Papilloma Virus (HPV) infected patients (Anastos et al., 
2010). In a recent study from Nigeria (West Africa), authors 
reported that Plasmodium infection coexists with Measles virus in 
32.5% febrile children analyzed and they were under risk of 
serious consequences or even death (Aminu et al., 2021). Nigeria 
also has high rates of malaria-influenza co-existence among 
people refusing flu vaccinations. Influenza A and B were found in 
54% of unvaccinated pregnant women having Plasmodium 
parasitemia (Anjorin and Nwammadu, 2020). Plasmodium spp. 

and hepatitis B Virus (HBV) infections are prone to co-exist in 
individuals living in the same regions. In a systematic review and 
meta-analysis conducted, 22 studies were analyzed and showed 
that overall co-infection prevalence between Plasmodium spp. and 
HBV is 6% worldwide with the highest prevalence rate (10%) in 
Gambia (Kotepui and Kotepui, 2020). Strong positive association 
was also found between seropositivity for Plasmodium and Ebola 
virus in residents from Gabon, Central Africa with co-infection 
prevalence of 10.2% (Abbate et al., 2020).

Cryptosporidium is one of the most important parasitic 
diarrheal agents affecting children in the developing countries 
(Tamomh et al., 2021). C. hominis, C. parvum and C. meleagridis 
have been implicated in diarrhoea. This protozoan has also 
emerged as a global opportunistic threat causing severe diarrhea 
(Ahmadpour et al., 2020). Cryptosporidium infection is common 
among HIV/AIDS patients (prevalence of 8,69%) worsening the 
protozoan infection associated symptoms causing severe diarrhea 
and eventually death because of low CD4+ T-cells counts (Wang 
et al., 2013; Fregonesi et al., 2015; Hailu et al., 2015; Yang et al., 
2017; Wang et al., 2018). As a consequence of such co-infection 
and severe disease (Fregonesi et  al., 2015; Alemu et  al., 2018) 
parasitemia as high as 90% was observed (Ojurongbe et al., 2011).

Due to more recent emergence of infection by severe acute 
respiratory syndrome coronavirus 2 (SAR-CoV2) in humans, 
co-infections with different protozoan are not fully explored yet. 
Moreover, most of the available reports about SARS-CoV2 
co-infections describe concomitant bacteria, fungus and other 
viral infections, especially associated with respiratory infections 
and pneumonia. In depth studies have not been conducted for 
SARS-CoV2 and protozoan co-infections; however a few reports 
are available showing co-infections occur with Toxoplasma 
(Montazeri et al., 2022), Plasmodium (Raham, 2021; Boonyarangka 
et  al., 2022), Babesia (Jacobs and Siddon, 2021), Leishmania 
(Pikoulas et al., 2022) and Trypanosoma (Alberca et al., 2020). In 
the first year of the COVID-19 pandemic, worldwide malaria 
cases increased from 227 million in 2019 to 241 million in 2020 
(World Health Organization, 2021) and a high rate of latent 
T. gondii infection was also found among COVID-19 patients with 
severe manifestations reported in the Middle East region 
(Montazeri et al., 2022). Therefore, more research is needed to 
fully understand the impact of SARS-CoV-2 infections on 
co-infecting protozoa, and vice versa.

The pathogenesis of protozoan-viral 
co-infections

Plasmodium and HIV
Due to the geographical overlap between Plasmodium and 

HIV, both pathogens can often infect humans with synergistic and 
adverse impact (Alemu et al., 2013). HIV infection increases the 
Plasmodium burden in patients, facilitating the increase in 
protozoan transmission. Conversely, infection with Plasmodium 
results in increase in number and activation state of CD4 + T cells, 
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creating an ideal environment for HIV replication, increasing 
viremia. Other mechanisms of Plasmodium-infection induced 
HIV replication include the secretion of TNF-α that can act 
directly stimulate HIV replication (Ayouba et  al., 2008). 
Additionally, infection with Plasmodium causes pro-inflammatory 
(T helper 1- type) immune response with activation of CD4+, 
CD4 + 5RO + T cells. These T cells are preferred target for HIV 
replication (Spina et al., 1997). CD14+ macrophages activated 
during acute malaria are also a source of migratory reservoirs of 
HIV-1 facilitating dissemination of virus to lymphocytes during 
cell–cell interactions promoting disease dissemination (Pantaleo 
and Koup, 2004). P. falciparum has also been shown to stimulate 
HIV-1 replication through the production of cytokines (IL-6 and 
TNF-α) that activate lymphocytes (Inion et  al., 2003). Other 
studies have shown that exposure to soluble Plasmodium antigens 
and hemozoin induced HIV replication or reactivation via CD4 
T-cell stimulation together with the production of 
pro-inflammatory cytokines, for, e.g., IL-1β, IL-6, and TNF-α 
(Froebel et al., 2004).

Co-infections with SARS-CoV2
It has been hypothesized that malaria may reduce the 

COVID-19 severity in endemic regions of sub-Saharan Africa 
(Gutman et al., 2020; Ssebambulidde et al., 2020; Osei et al., 2022). 
An inverse correlation between the incidence of COVID-19 and 
malaria with less probability of COVID-19 cases was found in 
malaria-endemic countries (Ssebambulidde et  al., 2020). One 
possible explanation for this phenomenon is that malaria patients 
generate anti-GPI antibodies which eventually identify SARS-
CoV-2 glycoproteins developing a protective response against 
COVID-19 improving the disease prognostic (Hussein et  al., 
2020). Conflicting results from a Malian longitudinal cohort study 
showed no association between malaria and COVID-19 
seroconversion or effect on the symptoms reported for COVID-19 
(Woodford et al., 2022). The identification of immunomodulatory 
effects provoked by malaria and helminth infections could lead us 
to better understanding of the factors involved in improvement of 
vaccine efficacy. It still remains unclear how efficacy of COVID-19 
vaccines is affected by these parasites.

There are several reports showing association between 
Neglected Infectious Diseases (NTDs) and SARS-CoV2, in terms 
of how they affect the severity of COVID-19 clinical outcomes, 
vice versa and the development of trained immunity as occurs for 
helminth infections and malaria (Ssebambulidde et  al., 2020; 
Anyanwu, 2021; Gluchowska et al., 2021; Wilairatana et al., 2021; 
Achan et al., 2022; Hussein et al., 2022). Our review of literature 
indicate that the immunomodulatory effects of COVID-19 and 
parasitic co-infections brought insights not by direct investigations 
but based upon lessons learned from other co-infections systems 
(Fonte et al., 2020; Gluchowska et al., 2021; Akelew et al., 2022; 
Woodford et  al., 2022). Briefly, helminth co-infection was 
suggested to cause immunomodulation in COVID-19 patients to 
result in reduction of disease severity (Bradbury et al., 2020). This 
immunomodulation could be due parasite specific innate response 

and Th2 immune response with CD4+ T cells, eosinophils, and 
production of IL-4, IL-5, and IL-10, thereby reducing 
hyperinflammation in patients with severe COVID-19 (Rodriguez, 
2020; Akelew et al., 2022). Reinforcing these observations, a recent 
study showed that patients co-infected with SARS-CoV2 and 
helminths had less severe COVID-19 due to reduced hyper-
inflammation response (Wolday et al., 2021). In fact, an inverse 
correlation between COVID-19 existence and severity was 
observed in countries endemic for soil-transmitted helminths 
(Ssebambulidde et al., 2020).

Plasmodium and SARS-CoV-2
Plasmodium and SARS-CoV2 co-infections have been 

reported to occur across the endemic and non-endemic regions 
(Junaedi et al., 2020). Despite the rising incidence of COVID-19 
disease in the world, an unremarkably lower prevalence has been 
observed in malaria endemic regions (Osei et al., 2022) suggesting 
that Plasmodium presence may offer some protection against 
SARS-CoV-2 infection. SARS-CoV-2 uses the angiotensin-
converting enzyme 2 (ACE2) receptor to enter the host cells. 
However, a D-allele variant of ACEI/D polymorph has been 
described in a mild form of malaria. This ACE I/D polymorphism 
occurs in intron 16 reduces ACE2 expression. Reduced expression 
of ACE2 receptor in populations with this polymorphism may 
play a protective role against severe COVID-19. An increase of its 
substrate Ang II in plasma of these individuals have been 
demonstrated in people with African genetic background 
(Delanghe et al., 2020).

At the height of the COVID-19 outbreaks, relatively low 
prevalence rates were observed in areas known to have high 
malaria endemicity, prompting some interest on the role of 
malaria immunity in protecting COVID-19 infections (Vilaplana 
et al., 2014). Infections with Plasmodium induces both innate and 
adaptive immunity. Recent studies have shown that in addition to 
inducing adaptive B and T cells memory response, innate immune 
response to Plasmodium infection may also induce memory, a 
phenomenon known as trained immunity, which is capable of 
mounting a faster and more robust recall response and may 
provide cross protections against unrelated pathogens (Netea 
et al., 2011, 2020). Cross protection induced by trained immunity 
is a widely acknowledged phenomena and has been demonstrated 
by BCG vaccinations against M. tuberculosis because it provides 
cross protection against unrelated pathogens (Sohrabi et al., 2020). 
The major factors involved in innate immune response to malaria 
include natural killer (NK) cells, monocytes, macrophages, and 
pro- and anti-inflammatory cytokines (Hansen et  al., 2007; 
Doolan et al., 2009). These responses can develop nonspecific 
trained immunity that can be effective against other pathogens 
like SARS-CoV-2, producing a faster and more effective protective 
response (Raham, 2021). Trained immunity against Plasmodium 
could also produce tolerance that tapers down the inflammatory 
response from innate immune cells, such as monocytes (Boutlis 
et al., 2006). Tolerance has the beneficial effect of reducing the 
harmful effect of excessive infection and disease (Nahrendorf 
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et al., 2021), and cross-protection could occur by reduction of the 
inflammatory progression to unrelated disease, including SARS-
CoV2. Such a response may explain the reduced COVID-19 
severity in malaria community (Guha et  al., 2020). Further 
research is needed to examine these concepts as relevant to 
COVID-19 in malaria endemic areas. For example, the innate 
immune factors (NK cells, Type 1 IFN, IgG) need to be evaluated 
in COVID-19 asymptomatic and symptomatic patients in malaria 
endemic areas.

Plasmodium and other viral co-infections
Co-infections by Plasmodium and hepatitis B and C (HBV 

and HCV) viruses often occur due to shared needles and blood 
transfusions etc. (World Health Statistics, 2022). A high incidence 
rate of malaria and hepatitis infection in the sub-Saharan 
population has been reported (Helegbe et al., 2018; Sevede et al., 
2019). Co-infections with Plasmodium and hepatitis often results 
in changes in burdens of both pathogens such that individuals 
co-infected with Plasmodium spp. and HBV display lower 
parasitemia and higher viremia (Andrade et al., 2011). Both of 
these pathogens also have an antagonistic effect on anemia, while 
P. falciparum causes hemolytic anemia, HBV increases 
hemoglobin levels by releasing erythropoietin from regenerating 
hepatic tissues (Simon et al., 1982; Klassen and Spivak, 1990; Ifudu 
and Fowler, 2001). Conversely, during chronic HBV infection, 
cytokines released in response to P. falciparum infection could 
further activate the apoptosis of HBV-infected hepatocytes, and 
exacerbated liver damage as evidenced by the increase in 
pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6 that are 
increased during Plasmodium and chronic HBV infection and 
reduction in anti-inflammatory cytokines IL-10 and IL-4  in 
pregnant women (Brown et al., 1992; Azizieh et al., 2018).

Historically, Ebola outbreaks have occurred in Western Africa, 
and it overlaps with malaria prevalence. Studies have shown that 
P. falciparum infection prior to infection with Ebola virus could 
induce an antiviral activity and a protective role against Ebola. 
Acute Plasmodium infection has been shown to promote IFN-γ-
dependent resistance to Ebola virus infection (Rogers et al., 2020).

Outbreaks of measles have been reported in malaria endemic 
areas of sub-Saharan Africa generating some interest on the 
impact of one pathogen over the other albeit studies to-date are 
limited. One study has shown significantly lower parasitic 
prevalence and mean densities of malaria parasites were found in 
children up to 9 years of age who had measles or influenza than in 
asymptomatic control children (Rooth and Bjorkman, 1992).

Cryptosporidium and HIV
Pathogens belonging genus Cryptosporidium are transmitted 

by fecal-oral route causing gastrointestinal infection in various 
vertebrate species, including humans (Xiao et al., 2004; Wang 
et al., 2011) and has been associated to chronic to life-threatening 
diarrhea in immunocompromised individuals (Conner et  al., 
2019). Both innate and adaptive immune responses play a role in 
protection from cryptosporidiosis and resolution of infection; 

however, cell-mediated immunity is crucial for clearance of 
cryptosporidiosis (Borad and Ward, 2010). HIV/AIDS patients 
with lower CD4 counts are more susceptible to cryptosporidiosis 
and have greater severity of disease (Hunter and Nichols, 2002). 
In HIV/AIDS patients with active cryptosporidiosis, infected 
epithelial cells express high levels of the chemokine, CXCL10, and 
expression levels correlate with the parasite burden (Wang et al., 
2007). Since CXCL10 increases the rate of HIV replication in vitro, 
elevated CXCL10 in cryptosporidiosis may contribute to enhanced 
destruction of CD4+ T cells due to HIV infection (Ahmadpour 
et al., 2020). Humoral immune responses have also been reported 
to play an important role in protection against Cryptosporidiosis 
since studies have suggested that that antibody responses to 
specific antigens were associated with protection from diarrhea in 
Cryptosporidium-infected HIV/AIDS patients (Ahmadpour et al., 
2020). Specific serum IgG, IgM, and IgA production were 
evaluated in Cryptosporidium-HIV co-infection showing no 
difference among patients with or without diarrhea (Kaushik et al., 
2009). The occurrence of diarrhea in HIV-positive individuals was 
not always observed during Cryptosporidium co-infections 
probably because antiretroviral therapy improved the immune 
system functionality (Irisarri-Gutierrez et al., 2017). Conversely, 
Cryptosporidium has been shown to stimulate periductal 
inflammation in the biliary tree, induces biliary epithelial cell 
apoptosis, and thus could contribute to the pathogenesis of AIDS-
cholangiopathy (Chen and LaRusso, 2002).

Toxoplasma and HIV
Toxoplasma gondii, a coccidian protozoan obligate 

intracellular parasite, is the causative agent of toxoplasmosis 
which affects approximately 30% population worldwide. T. gondii 
infection results in malformation and life-threatening disease in 
developing fetuses and is one of the most prevalent causative 
agents of opportunistic infections in HIV/AIDS patients causing 
central nervous system toxoplasmosis (Montoya and Liesenfeld, 
2004; Ayoade and Joel Chandranesan, 2022). According to a 
systematic review, toxoplasmosis co-infection prevalence in HIV 
patients varies greatly among different countries showing the 
highest numbers in Thailand (53.7%), North Sudan (75.0), 
Ethiopia (87.4%), Brazil (80.0%) and Iran (96.3%). These authors 
also observed that high prevalence of T. gondii-HIV co-infections 
in low-income countries (Wang et al., 2017). It has been shown 
that T. gondii-HIV co-infections lead to toxoplasmosis severity 
and increase mortality in patients who developed AIDS and were 
not properly treated (Da Cunha et al., 1994; Pott and Castelo, 
2013; Agrawal et al., 2014). During HIV infection, depletion of 
CD4 cells, decreased production of cytokines and IFNγ, and 
impaired cytotoxic T-lymphocyte activity result in reactivation of 
latent Toxoplasma infection (Basavaraju, 2016), and is associated 
with persistence of IgG antibodies against T gondii (Robert-
Gangneux and Darde, 2012). Additionally, low CD4 T 
lymphocyte count was associated with high frequency of 
encephalitis caused by toxoplasmosis in patients who developed 
AIDS (Lejeune et  al., 2011). On the other hand, T. gondii 
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co-infection also alters the immune response, clinical 
manifestation and transmission of the HIV infection (Welker 
et al., 1993; Bala et al., 1994). In individuals singly infected with 
HIV, for example, both numbers of plasmacytoid dendritic cells 
and IFN-α production are impaired (Feldman et al., 2001), which 
can be  exacerbated during opportunistic Toxoplasma 
co-infection. Additionally, the exposure to T. gondii has been 
shown to potentiate CD4 positive T-cells and possibly monocytes 
to be more permissive for HIV replication (Subauste et al., 2004), 
suggesting that HIV/T. gondii co-infected individuals potentially 
exhibit more severe diseases.

Other protozoan-viral co-infections
Preliminary studies have shown that toxoplasmosis is a risk 

factor for acquiring SARS-CoV-2 infection and severe 
manifestations of COVID-19 (Fiori et al., 2013). T. gondii induces 
the shedding of mitochondrial outer membrane to promote its 
own growth. Intriguingly, the hijacking of host mitochondria has 
been shown to play a critical role in the pathogenesis of COVID-19 
(Lo et al., 2014).

The relationship between HIV-1 infection and amoebiasis 
(Lowther et al., 2000; Hung et al., 2005, 2008) was demonstrated 
by the observation that HIV-infected men having sex with men 
(MSM) were at significantly higher risk of amebiasis than patients 
from other risk groups (Hung et  al., 2008). One study has 
identified Amebic Liver Abscess (ALA) as the most common 
extraintestinal manifestation of invasive infection as an important 
condition in HIV-1-infected individuals and has been attributed 
to the ability of HIV-1 to suppress activity of regulatory T cells. 
This in turn suppresses E. histolytica-specific T-cell reactivity and 
cause increased susceptibility to invasive amebiasis in persons 
with early stage of HIV-1 infection (Hsieh et al., 2007).

Trichomoniasis is a highly prevalent STI among HIV-1-
infected patients (Cu-Uvin et al., 2002). Previous investigation has 
demonstrated that T. vaginalis infection enhances HIV-1 
transmission (Schwebke, 2005). Proposed mechanisms by which 
T. vaginalis infection may increase HIV-1 infection include: 
induction of inflammatory response in vaginal, exocervix, and 
urethral epithelia; disruption of mucosal barrier function; 
recruitment of CD4 lymphocytes and macrophages; development 
of microhemorrhages; degradation of secretory leukocyte protease 
inhibitors; and enhancement of susceptibility to bacterial vaginosis 
or other abnormal vaginal flora that all may increase the risk of 
HIV-1 acquisition (Sorvillo et al., 2001).

Rotavirus often contribute to the Cryptosporidium co- 
infection in farm animals and humans (Izzo et  al., 2011; 
Mokomane et  al., 2018; Praharaj et  al., 2019). Differences in 
clinical manifestation between lambs infected with 
Cryptosporidium alone or together with rotavirus have been 
detected; however, some reports showed no differences during 
these two situations. More research is needed to reveal the 
influence of simultaneous occurrence of different pathogens, 
including C. parvum, which may either facilitate or antagonize 
concurrent infections. Some co-infections with Cryptosporidium 

species may not exert any response but needs to be investigated  
thoroughly.

The impact of protozoan-bacterial 
co-infections on chemotherapeutic 
interventions

The emergence of co-infections could have a modulating 
effect the on the success or failure of chemotherapy by playing a 
role in the emergence of antibiotic resistant strains (Birger et al., 
2015). Co-infecting pathogens are often misdiagnosed due to 
overlapping symptomatology, delay in treatment to allow excessive 
proliferation of the microbe(s) that can render the host immune 
response insufficient to clear infection. Increase burden can 
facilitate development of drug resistance in one or both pathogens 
(U.S. Department of Health and Human Services, 2018). Targeted 
treatment against one pathogen may also remove a competitor 
and could lead to active growth of the remaining pathogen 
increasing the probability of evolution of drug resistant variants 
as seen in malaria and TB (Colombatti et  al., 2011). During 
synergistic infections, reduced immune system-mediated killing 
of pathogens may allow their replication, increasing the possibility 
of the emergence of de novo resistance.

Rifampicin is an antitubercular drug that also exhibits potent 
anti-malarial activity against P. vivax in humans (Pukrittayakamee 
et al., 1994). Continual usage of rifampicin against TB may have 
resulted in discontinuing its use against malaria parasite since the 
therapeutic doses for the two pathogens are different. Impaired 
immunological control of tuberculosis due to the presence of the 
co-infecting Plasmodium spp. may also increase the danger of a 
recrudescence of partially resistant pathogen populations after 
therapy has ended (Okeke, 2003). An indirect effect of 
antimicrobials to bioavailability of drugs, can be due to a physical 
hindrance provided by one pathogen, such as by forming a 
biofilm, leading to suboptimal drug concentration at the 
colonization site. The presence of co-infection may also increase 
the abundance of antibiotic-target pathogen, and thus aiding the 
focal infection.

Development of antimicrobials targeting common metabolic 
pathways of co-infecting pathogens is a promising field of research 
that could limit the establishment of multidrug resistance. For 
example, improvement in design of sulfonamide drugs to target 
the de novo folate synthesis pathway, which is used by both 
Plasmodium spp. and M. tuberculosis is an attractive idea for 
consideration in drug design. In fact, sulfonamide class of 
antibiotics, initially developed as antibacterial agents, have been 
central in the development of antifolate-based combinational 
drugs against malaria. Co-trimoxazole as an antibacterial 
prophylactic agent can also prevent the incidence of malaria. The 
long safety history of co-trimoxazole when used in pregnancy (to 
treat bacterial infections) and its antimalarial prophylactic 
properties have led to the evaluation of this combination to also 
prevent malaria during pregnancy.

31

https://doi.org/10.3389/fmicb.2022.1020029
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Akoolo et al. 10.3389/fmicb.2022.1020029

Frontiers in Microbiology 10 frontiersin.org

The impact of protozoan infections on 
the efficacy of bacterial/viral vaccines

Vaccines, like infections, involve participation of the innate and 
adaptive immune system which encompasses, phagocytosis, 
cytokine/chemokine secretion and activation of the antigen-specific 
adaptive immune response with subsequent immunological memory 
development. An effective adaptive immunity development involves 
activation of specific subsets of T lymphocytes, and stimulation of B 
lymphocytes to differentiate into antibody-secreting plasma cells 
followed by creation of protective immunological memory (Vetter 
et al., 2018). The critical starting point in the development of an 
effective vaccine requires identification of potent antigens that are 
appropriately presentable by professional antigen-presenting cells. 
Changes in the target antigens can impair development of an 
effective immune response. These changes may result from genetic 
variations arising as a consequence of co-infections resulting in 
failure of recognition by the adaptive immune response and 
occurrence of breakthrough infections (Bretsche et al., 2001). A 
previous meta-analysis study showed that parasitic infections such 
as those caused by helminths, protozoa and viruses at the time of 
vaccination were associated with worse immunological responses, 
tending to overcome infection less efficiently after post vaccination 
challenge. Multiple factors determine how parasitic infections 
impact the outcome of immunizations. These include: the type of 
parasite involved, immune response induced, vaccine formulation, 
route of administration, the target antigen, vaccine type (e.g., live 
attenuated, inactivated organism), study design and the timing of 
infection relative to vaccination (Wait et al., 2020).

The association between parasitic infections and impaired 
immune responses to vaccine antigens has been demonstrated for 
a diverse group of pathogens [(Wait et al., 2020) and Table 1]. For 
example, immune response induced by vaccines against 
Haemophilus influenzae and diphtheria (Malhotra et al., 2015), 
Bacille Calmette-Guerin (BCG) and tetanus toxoid (McGregor, 
1962; Greenwood et al., 1972; Elliott et al., 2010; Alvarez-Larrotta 
et al., 2019), S. typhi (Williamson and Greenwood, 1978), acellular 
diphtheria-tetanus and pertussis vaccine (DTPa; Radwanska et al., 
2008), HIV (Robinson et al., 2004), and potentially against SARS-
CoV-2 too could be affected (Fonte et al., 2020; Gluchowska et al., 
2021; Akelew et al., 2022). The impact of helminths on different 
vaccines outcomes has also been reported previously against 
pneumococcus (Apiwattanakul et al., 2014), BCG (Elias et al., 
2008) and HIV-1C (Da’dara and Harn, 2010). Additionally, 
reduced vaccine efficacy has been associated with chronic 
helminth infections when compared to acute infections (Wait 
et al., 2020). In this review, we have focused on the impact of 
protozoan infections on the efficacy of vaccines against bacterial 
and viral infections.

Protozoan parasites and vaccines against 
bacterial pathogens

Immunosuppression by protozoan pathogens could interfere 
with the immune response generated by vaccines, creating a 

negative correlation between parasitic infections and efficacy of 
vaccine in protection. Conversely, there is also evidence that 
vaccines may induce trained immunity and non-specific response 
against protozoa (Welsh and Selin, 2002; Selin et  al., 2006; 
Agrawal, 2019) including those causing malaria and babesiosis 
(Clark et al., 1976, 1977; Garly et al., 2003; Walk et al., 2019). In 
fact, BCG vaccination, which can enhance non-specific 
protection to unrelated infections especially by activation of NK 
cells with non-specific memory by production of 
pro-inflammatory cytokines is provides an example 
(Kleinnijenhuis et al., 2014); however, parasitic infections often 
lead to lower antibody and IFN-γ levels, which represent a 
decrease in the quality of the humoral and cellular immune 
responses (Rowe et al., 2000).

Malaria is a highly prevalent disease in settings where poor 
responses to unrelated vaccines has been reported to occur 
(Natukunda, 2020). Several studies have shown that 
Plasmodium infection might impair vaccine induced protective 
immunity against other pathogens (Dietz et  al., 1997; 
Cunnington and Riley, 2010). Diminished vaccines efficacy has 
been attributed to different factors, such as human and 
bacterial genotypes, exposure to environmental microbes, 
climate and geographical location and prevalence of 
co-infections (Tangie et  al., 2022). A decreased protection 
against murine typhoid in P. yoelii-infected mice vaccinated 
with S. typhimurium antigens correlated with suppression of 
CD4 and CD8 T cell effector responses and increased anti-
inflammatory IL-10 cytokine production (Mooney et al., 2015). 
Plasmodium spp. induced immunosuppression could be  an 
important factor responsible for weak response to routine 
immunizations in malaria-endemic communities (McGregor, 
1962; Gilles et al., 1983). For example, in a study in south coast 
of Kenya showed an impaired IgG antibody response to 
H. influenza b and diphtheria among infants of mothers 
infected with malaria and/or helminths during pregnancy 
compared to infants of uninfected mothers. The authors 
discussed that transplacental exposure of the fetus to parasite 
antigens in prenatal maternal malaria or helminth infections 
could lead an in-utero alteration of fetal immune responses 
affecting the response to vaccines (Malhotra et al., 2015). These 
observations were also confirmed in another study where 
Gambian children with malaria also had low antibodies titers 
to a H. influenza b conjugate vaccines than healthy controls, 
suggesting that the child cytokine profile at the time of antigen 
presentation likely modifies the immune response (Usen et al., 
2000). Immune responses to both Salmonella typhi and 
meningococcal vaccines were also evaluated in Nigerian 
children infected with Plasmodium. Thus, S. typhi vaccination 
given on the first day of malaria infection had the immune 
responsiveness depressed, which rapidly recovered following 
malaria treatment while immune response to meningococcal 
vaccine was still impaired after a month of infection 
(Williamson and Greenwood, 1978). In contrast to all these 
findings, malaria and some helminth diseases during pregnancy 
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TABLE 1 The most common protozoa co-infections and its effects on bacterial/viral vaccines efficacy.

Vaccine Protozoan infection Immunological response against vaccine Effect on vaccine efficacy References

BCG Plasmodium spp. B-cell depletion, loss of central memory CD4+ T cells Vaccine efficacy not significantly altered Tangie et al. (2022)

Different TB vaccines P. yoelii CD4 and CD8 T cells suppressed in mice at 2 weeks M. tuberculosis CFU levels not affected Parra et al. (2011)

Tetanus toxoid P. vivax and P. falciparum Lower expression of cytotoxic T lymphocyte antigen 4 and anti-toxoid IgG levels Tetanus cases not evaluated Alvarez-Larrotta et al. (2019)

Tetanus toxoid Plasmodium spp. Lower antibody response to tetanus toxoid in children with malaria Tetanus cases not evaluated McGregor (1962)

Tetanus toxoid and 

Salmonella typhi

Plasmodium spp. Diminished antibody response to tetanus toxoid and S. typhi O antigen in 

children with acute malaria

Tetanus or S. Typhi cases not evaluated Greenwood et al. (1972)

S. typhi and 

meningococcal vaccines

Plasmodium spp. Antibody levels to both vaccines was significantly reduced when the vaccines 

were given on the first day of illness

Meningococcal disease or typhoid cases not evaluated Williamson and Greenwood 

(1978)

H. influenzae b and 

diphtheria toxoid

P. falciparum Impaired IgG antibody responses to H. influenza b and diphtheria among infants 

of mothers infected with malaria and/or helminths during pregnancy

H. influenzae b and diphtheria cases not evaluated Malhotra et al. (2015)

H. influenzae b Plasmodium spp. 11% of infected children with malaria did not have protective titers H. influenzae b cases not evaluated Usen et al. (2000)

S. pneumoniae and 

diphtheria CRM197 

antigens

Malaria and some helminth 

diseases

Higher anti-vaccine antibody levels against S. pneumoniae and diphtheria 

CRM197 antigens during pregnancy

Throat infection, pneumonia and diphtheria cases not evaluated McKittrick et al. (2019)

NTS serovars P. yoelii Marked reduction of Salmonella-specific CD4 and CD8 T cells immunity in mice Reduced protection with 264-fold (liver), and 31-fold (spleen) 

increase in bacterial burden

Mooney et al. (2015)

Brucella abortus vaccine T. congolense Vaccinated cattle had depressed IgG1 and IgG2 levels by 80%, IgM by 90%. Cattle not challenged with B. abortus Rurangirwa et al. (1983)

Bacillus anthracis spore 

vaccine

T. congolense The anti-anthrax antibody levels were severely depressed in infected goats Goats not challenged with B. anthracis Mwangi et al. (1990)

DTPa vaccine T. brucei Antibody response not determined against vaccine Protection by DTPa vaccine eliminated Radwanska et al. (2008)

HIV DNA vaccine L. major Significant reduction in IFN-γ-production by CD8+ T cells of Balb/c mice after 

in vitro stimulation with gag antigen

HIV vaccine efficacy not determined Robinson et al. (2004)

HPV-16/18 vaccine Plasmodium spp. + helminths Association of malaria parasitemia in young girls with a higher level of anti-

HPV-16/18 antibodies

HPV cases not evaluated Brown et al. (1992)

Classical swine fever 

(CSF) vaccine

T. evansi Antibody responses against CSF vaccine significantly reduced in pigs More vaccinated animals had fever and leucopenia Holland et al. (2003)

Foot-and-mouth disease 

vaccine

T. congolense T. congolense infected cattle had antibody titers significantly depressed after 

secondary vaccination

After viral challenge, difference in protection was not significant 

in T. congolense infected group

Sharpe et al. (1982)

Influenza A Virus (IAV) 

Vaccine

P. yoelii Plasma cell apoptosis and circulating BAFF increased, circulating IAV specific 

antibodies diminished

Higher virus load in challenged P. yoelii infected mice Banga et al. (2015)

Tetanus, measles and 

hepatitis vaccines

P. falciparum Declines in IgG specific for tetanus, measles and hepatitis B in 53, 19 and 33% of 

children, respectively

Incidence of infections not evaluated Banga et al. (2015)

Measles vaccine P. falciparum Antibody titers were significantly higher in the vaccinated children positive for 

P. falciparum

Measles cases not evaluated Smedman et al. (1986)

(Continued)
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were associated with minor, mostly enhancing effects on infant 
anti-vaccine antibody levels against S. pneumoniae and 
diphtheria CRM197 antigens (McKittrick et al., 2019).

Submicroscopic infection by Plasmodium spp. has been 
shown to be  associated with a decrease in the levels of IgG 
against tetanus toxoid (McGregor, 1962; Greenwood et al., 1972; 
Alvarez-Larrotta et al., 2019), however, tetanus and diphtheria 
toxoids continue to offer protection in these individuals 
suggesting that functional immunity was sufficiently protective. 
Chronic protozoan infections can result in persistence of 
stimulating antigen that could lead to exhausted T cells with less 
robust effector functions, and alterations of the differentiation 
and sustenance of memory T cells (Costa-Madeira et al., 2022). 
Up-regulation and co-expression of multiple inhibitory 
receptors and failure to produce antigen-independent memory 
T cells are also observed in these cases (Schietinger and 
Greenberg, 2014).

Some studies showed that pre-existing Plasmodium 
infections did not affect the efficacy of vaccines against 
bacterial or viral pathogens, for instance, P. yoelii infection did 
not affect different formulations of TB vaccine ability to control 
pulmonary growth of an acute virulent M. tuberculosis 
infection (Parra et al., 2011). The immunological response to 
two doses of tetanus toxoid in groups of pregnant Kenyan 
women showed that the presence of Plasmodium parasitemia 
does not interfere with primary or secondary immune response 
during chemoprophylaxis against malaria (Dietz et al., 1997). 
Moreover, two doses of tetanus toxoid in 2-year-old Gambian 
children also showed that chloroquine or pyrimethamine 
chemoprophylaxis lead to more protective immune response 
when compared with children who were not treated for malaria 
(McGregor, 1962).

African trypanosomiasis caused by T. brucei infection 
inhibits protective immune responses against bacterium, 
Bordetella pertussis when immunized with a trivalent human 
vaccine, DTPa in mice (Radwanska et al., 2008). Other species of 
Trypanosoma can also prejudice the protective immune responses 
to bacterial or viral infections in animals. In an earlier study, 
cattle previously infected by Trypanosoma congolense when 
vaccinated against Brucella abortus had 80% reduction in IgG1 
and IgG2 immunoglobulins (Rurangirwa et  al., 1983). 
Furthermore, anti-anthrax antibody levels were severely 
depressed in T. congolense infected goats after immunization with 
Bacillus anthracis inactivated spore vaccine (Mwangi et al., 1990). 
Reduced antibody responses in infected pigs were also suggested 
to occur due to suppression of helper T cell caused by the 
concurrent T. evansi infection. In both mice and cattle, T cell 
proliferation was inhibited upon mitogenic stimulation and was 
mediated by macrophage-like suppressor cells, with reduction in 
IL-2 secretion together with impaired expression of the IL-2 
receptor (Sileghem et  al., 1989; Sileghem and Flynn, 1992). 
T. brucei infection also results in a rapid loss of B cells by 
apoptosis, reducing humoral immunity that further prevents the 
development of protective memory responses and thus, impair Va
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the ability of the host to recall vaccine-induced memory 
responses (Radwanska et al., 2008).

Protozoan parasites and vaccines against viral 
pathogens

Studies in mice suggested that Plasmodium infection is 
deleterious to pre-existing levels of heterologous antibodies. 
Specifically, P. chabaudi blood-stage infection of influenza-
immune inbred and outbred mice resulted in a transient drop in 
influenza-specific antibodies and antibody secreting cells in the 
bone marrow (Ng et al., 2014). These results were confirmed by 
another study in which Malian children with pre-existing tetanus, 
measles, HBV vaccination had an accelerated decline in vaccine-
specific IgG after acute malaria episodes (Banga et al., 2015) due 
to binding of Plasmodium-infected erythrocytes to bone marrow 
stromal cells that may disrupt the survival signals of long-lived 
plasma cells (Rogers et al., 2000; Kinyanjui et al., 2007; Banga 
et al., 2015). Additionally, BAFF receptor, which promotes survival 
of antibody secreting plasma cells, was found to be downregulated 
in splenic and bone marrow plasma cells, while circulating BAFF 
levels and apoptotic plasma cells increased in the bone marrow of 
Plasmodium-infected mice. These results were confirmed by the 
observation that Plasmodium-induced polyclonal B cell activation 
and elevated levels of immunoglobulins results in apoptosis of 
long-lived plasma cells through a CD32-dependent mechanism 
[reported in (Banga et al., 2015)]. Surprisingly, modest positive 
effects of pre-existing Plasmodium and helminths infections on 
vaccines efficacy of HPV vaccine was observed among young girls 
displaying Plasmodium parasitemia (Brown et  al., 2014). 
Additionally, post-immunization measles antibody titers were 
significantly higher in the vaccinated children positive for 
P. falciparum infection than those without malaria parasites in the 
blood (Smedman et al., 1986).

Leishmania major is another protozoan that affects the viral 
vaccines-induced immune response. In BALB/c mice, infection 
with L. major reduced the CD8+ T cell-specific immune response 
induced by HIV-1 DNA vaccine suggesting that Th2 cell response 
caused by L. major infection can negatively affect vaccine efficacy 
(Robinson et al., 2004). Limited studies have been conducted to 
indicate contribution of Trypanosomes on viral vaccines. Foot-
and-mouth disease virus vaccine was evaluated in cattle infected 
with T. congolense and despite significant depression in antibodies 
titers, their subsequent response to live virus challenge was not 
significantly different from the uninfected controls suggesting 
persistence of functional immunity (Sharpe et  al., 1982). 
Antibody responses against classical swine fever virus vaccine 
were significantly decreased in T. evansi-infected pigs as 
compared to uninfected animals (Holland et al., 2003). Thus, 
Trypanosoma affects antibody responses against viral vaccine 
antigens but may or may not affect protection offered by 
the vaccines.

The Rotavirus vaccine efficacy was evaluated in diarrhea-
associated co-infections in India, including those caused by 
Cryptosporidium. Vaccine efficacy decreased from 49.6 to 60.6% 

in the presence of co-infections (Praharaj et al., 2019). In another 
study, enteric co-infections including those by Cryptosporidium 
and Giardia did not affect the effectiveness of rotavirus vaccine. 
Therefore, lower vaccine effectiveness reported in low-income 
countries could not be explained only because of co-infection with 
Cryptosporidium (Mokomane et al., 2018).

Overall, it appears that the effect of protozoan infections on 
antibodies protection against vaccine antigens of different viruses 
is variable but the correlation of change in antibody levels with the 
failure or success of the vaccines in protection against the specific 
viral infection remains to be investigated more extensively.

Concluding remarks

Mammalian hosts encounter protozoan and other pathogens 
that are either transmitted consecutively or simultaneously. The 
impact of immunosuppression by protozoan pathogens often 
increases the co-infecting bacterial burden in the affected organs, 
thus increasing the severity of diseases they cause. It would not 
be surprising if chronic protozoan infection and the resulting 
sustained immunosuppression can activate latent infection, such 
as by M. tuberculosis in malaria endemic regions. Therefore, 
efforts to manage, treat bacterial and protozoan infections or 
develop novel vaccines need to consider the presence of 
co-infections because that could have a dramatic influence on 
host susceptibility to disease and the design of treatment 
approaches. We document variable effects of protozoan infections 
on bacterial and viral vaccines with significant effects on 
reduction in efficacy of bacterial vaccines. Some viral vaccine 
response remains unaltered by the presence of infecting 
protozoan, while antibody titer is either increased or decreased 
in other cases albeit their impact on protection from infection 
remains unclear. Therefore, booster doses of vaccines may 
be needed when breakthrough infections start appearing in a 
particular geographic region, such as tetanus toxoid booster is 
often required under specific circumstances. In fact, vaccines are 
often recommended to protect from recurrence of viral diseases 
such as shingles in otherwise healthy and middle-aged adults 
who were infected with chickenpox as children. Furthermore, a 
more targeted treatment approach needs to be  developed for 
specific co-infections to avoid toxicity due to excessive use of 
chemotherapeutics. For example, common metabolic pathways 
of co-infecting pathogens can maximize antimicrobials efficacy, 
reduce toxicity due to excessive drug use, and curb multidrug 
resistance emergence. Studies in Africa under World Health 
Organization examined antibody titer against measles in 
vaccinated infants with malaria parasite presence/absence. 
Extension of such studies in older children and adults in regions 
with chronic protozoan infection could reveal the full picture of 
their impact on viral vaccines and would lead to better 
understanding of vaccines efficacy, help document causes of 
breakthrough infections and employ approaches for improvement 
of protection by vaccines.
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Abbreviations and descriptions

Bacille Calmette-Guerin (BCG) is a vaccine against 
tuberculosis disease in regions where this disease is highly prevalent.

Bacterial vaginosis (BV) is caused by a localized inflammatory 
response against overgrowing natural microbiota of vagina.

Enteroaggregative E. coli (EAEC) is a pathogenic E. coli species 
that causes chronic diarrhea and is known because of its ability to 
form aggregates on intestinal mucosal surface.

Cross-Reactive-Material-197 (CRM197) is a mutant version of 
the diphtheria toxin rending a protein non-toxic.

Diphtheria-tetanus-acellular pertussis (DTPa) is a trivalent 
vaccine against three bacteria, Corynebacterium diphtheriae, 
Clostridium tetani and Bordetella pertussis given to children to 
prevent from serious diseases by these pathogens. Diphtheria 
causes breathing problem, tetanus results in tightening of muscles 
while pertussis is contagious disease that is also known as 
whooping cough.

Heat shock protein 70 (HSP70) is a universally expressed 
conserved protein in almost all living organisms that serves as 
chaperone for proteins for transport across membrane and also 
have been shown to function as potent stimulators of the innate 
immune system.

Non-Typhoid Salmonella (NTS) are group of Salmonella species 
that are not usually human pathogens unlike Salmonella enterica 
serovar Typhi that causes typhoid fever.

Reactive oxygen species (ROS) are oxygen containing oxygen 
containing reactive species produced during aerobic respiration. 
ROS produced by neutrophils and other phagocytes in 

mammalian hosts can kill organisms by causing permanent 
damage to DNA.

Tuberculosis (TB) is disease caused by respiratory bacterial 
pathogen, Mycobacterium tuberculosis that can be  visualized 
under the microscope after acid-fast staining.
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Introduction: Widespread Fasciola gigantica infection in buffaloes has caused 

great economic losses in buffalo farming. Studies on F. gigantica excretory and 

secretory products (FgESP) have highlighted their importance in F. gigantica 

parasitism and their potential in vaccine development. Identifying FgESP 

components involved in F. gigantica-buffalo interactions during different 

periods is important for developing effective strategies against fasciolosis.

Methods: Buffaloes were assigned to non-infection (n = 3, as control group) 

and infection (n = 3) groups. The infection group was orally administrated 250 

metacercariae. Sera were collected at 3, 10, and 16 weeks post-infection (wpi) for 

the non-infection group and at 0 (pre-infection), 1, 3, 6, 8, 10, 13, and 16 wpi for the 

infection group. FgESP components interacting with sera from the non-infection 

and infection groups assay were pulled down by co-IP and identified using LC–

MS/MS. Interacting FgESP components in infection group were subjected to 

Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway and gene 

ontology (GO) functional annotation to infer their potential functions.

Results and discussion: Proteins of FgESP components identified in the non-

infection group at 3, 10, and 16 wpi accounted for 80.5%, 84.3%, and 82.1% of all 

proteins identified in these three time points, respectively, indicating surroundings 

did not affect buffalo immune response during maintenance. Four hundred 

and ninety proteins were identified in the infection group, of which 87 were 

consistently identified at 7 time points. Following GO analysis showed that most of 

these 87 proteins were in biological processes, while KEGG analysis showed they 

mainly functioned in metabolism and cellular processing, some of which were 

thought to functions throughout the infection process. The numbers of specific 

interactors identified for each week were 1 (n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 

(n = 23), 13 (n = 22), and 16 (n = 14) wpi, some of which were thought to functions 

in specific infection process. This study screened the antigenic targets in FgESP 

during a dense time course over a long period. These findings may enhance the 
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understanding of molecular F. gigantica-buffalo interactions and help identify 

new potential vaccine and drug target candidates.

KEYWORDS

Fasciola gigantica, co-immunoprecipitation, excretory and secretory products, 
interaction, LC–MS/MS, screening

1. Introduction

Fasciolosis is a widespread zoonotic disease caused by Fasciola 
hepatica and Fasciola gigantica that primarily affects public health 
and economically important livestock. It is considered as one of 
the top  17 neglected tropical diseases (Piedrafita et  al., 2010). 
Fasciola hepatica mainly infects sheep and cattle worldwide, while 
F. gigantica mainly infects buffalo in the subtropic and tropic 
zones (Doy and Hughes, 1984; Chen et al., 2000; Zhang et al., 
2005; Aghayan et  al., 2019; Niedziela et  al., 2021). Since its 
infection of livestock leads to annual economic losses of >$3 
billion worldwide (Calvani and Šlapeta, 2021). In addition, at least 
2.4 million individuals are infected worldwide and 180 million are 
at risk of new infections (Meemon and Sobhon, 2015). Despite 
affecting human and livestock health in an area that represents up 
to 77% of the global population, research interest in F. gigantica 
consistently lags behind that of F. hepatica (Agatsuma et al., 2000), 
and little is known about the factors that contribute to the 
pathogenicity and virulence of F. gigantica.

F. gigantica metacercariae ingestion by the definitive host 
leads to excystation and the release of newly excysted juveniles 
(NEJs) that burrow through the duodenal wall into the 
peritoneum. They then move toward the liver and penetrate the 
liver capsule. The immature flukes migrate through the liver for 
11 weeks, reaching and maturing in the bile ducts for 12–16 weeks 
post-infection (wpi), after which they commence egg laying 
(Calvani and Šlapeta, 2021). The F. gigantica life cycle in definitive 
mammalian hosts largely relies on excretory and secretory 
products (FgESP) since they act as antigens that stimulate humoral 
and cell-mediated immunity and also function in fluke survival 
and host–parasite interactions (El-Ghaysh et  al., 1999; Zhang 
et al., 2006; Novobilsky et al., 2007; Hacariz et al., 2011; Wang 
et  al., 2021). Some FgESP components, such as cathepsin L1, 
cathepsin B, saposin-like protein 2 (SAP-2), have been identified 
to identify potential vaccine candidates (Chantree et al., 2013; 
Kueakhai et al., 2013, 2015).

Previous proteomic studies have shown that the FgESP release 
profile varies across three developmental stages: the NEJ 24 h post-
excystment, immature fluke 21 days post-infection (immature), and 
adult (Lalor et al., 2021). In the early infection stage, NEJs secrete a 
range of stage-specific peptidases and proteolytic-related proteins to 
break down extracellular matrix components that maintain tissue 
integrity and participate in fluke invasion (Di Maggio et al., 2019; 
Davey et al., 2022). During the liver migratory phase, immature fluke 

secretions are dominated by peptidases involved in blood digestion, 
cathepsin peptidases, and their inhibitors to support tissue 
penetration and blood feeding (Lalor et al., 2021). Once adults arrive 
at the bile duct, they feed on and detoxify bile components by 
expressing cathepsin L and B peptidases, enzymes, peptidase 
inhibitors, legumain, helminth defense molecules, and glycoproteins 
(Meemon et al., 2004; Ghosh et al., 2005; Adisakwattana et al., 2007; 
Sansri et al., 2013; Ryan et al., 2020; Cwiklinski and Dalton, 2022), 
some of which function in immunoregulation (Ticho et al., 2020). 
Therefore, it is vital to identify the FgESP components produced by 
F. gigantica at different developmental stages to understand 
molecular buffalo-F. gigantica interactions and the F. gigantica 
development process in buffalo. However, difficulties in obtaining 
parasites at different developmental stages in vivo and in vitro make 
it impossible to obtain and study FgESPs at different developmental 
stages. Consequently, FgESPs produced by adults, which can be easily 
obtained, were identified in buffalo serum during different 
F. gigantica infection periods to identify changes in them.

Huang first explored the interaction of FgESP with buffalo 
serum at three-time points (6, 10, and 14 wpi; Huang et al., 2019a). 
Considering the complex interaction mechanisms between 
F. gigantica and buffalo at larval and adult stages, it is still required 
to conduct continuous and periodic observations concerning host-
pathogen interactions. Furthermore, the recent completion of 
genome and transcriptome sequencings (Zhang et  al., 2017; 
Pandey et al., 2020; Luo et al., 2021) enables us to obtain more 
protein sequence information (UniProt F. gigantica database; 
downloaded on 2021/11/19) of F. gigantica in public databases. The 
sera of F. gigantica-infected buffalo were collected at seven time 
points (1, 3, 6, 8, 10, 13, and 16 wpi) and co-immunoprecipitated 
(co-IP) to pull down FgESP components that interacted with them. 
These components were characterized by liquid chromatography–
tandem mass spectrometry (LC–MS/MS) and bioinformatics. This 
approach can be used to analyze specific proteins and provide a 
reliable basis for the screening of diagnostic antigens of F. gigantica.

2. Materials and methods

2.1. Preparation of buffalo serum 
representing different infection periods

Fasciola gigantica metacercariae were collected from Galba 
pervia experimentally infected with miracidia, encysted on 4 cm2 
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polythene strips, and stored in distilled water at 4°C until required. 
Each metacercariae batch was examined for viability and 
then counted.

Six 6-month-old buffaloes of Murrah, Nili-Ravi, 
Mediterranean, and their crossbreds with indigenous buffaloes in 
Guangxi (China) were randomly assigned to non-infection (A1, 
A2, and A3) and infection (B1, B2, and B3) groups, with three in 
each group (Supplementary Table S1). They were stall-fed on a 
balanced diet in the dairy of the Buffalo Research Institute, 
Chinese Academy of Agricultural Sciences, and Guangxi Zhuang 
Nationality Autonomous Region. They were confirmed free from 
fluke infection through indirect FgESP enzyme-linked 
immunosorbent assays (ELISA; Supplementary Table S2) and 
coprological examination (Zhang et  al., 2006). In week 0, the 
infection group was given a gelatine capsule containing 250 viable 
F. gigantica metacercariae, while the non-infection group were 
mock-inoculated with 0.85% sodium chloride solution without 
metacercariae, the mean numbers of flukes recovered were 
55.5 ± 14.1 (22.2 ± 5.6 of infection dose) in infection group (Wang 
et al., 2022b). Whole blood was collected from the non-infection 
(3, 10, and 16 wpi) and infection (0, 1, 3, 6, 8, 10, 13, and 16 wpi) 
groups for serum preparation and stored at −80°C until needed.

2.2. FgESP preparation

FgESPs were prepared as previously described (Novobilský 
et al., 2007). Briefly, adult F. gigantica were collected from infected 
buffaloes’ livers and washed three times in warm phosphate-
buffered saline (PBS, pH 7.2) to remove the residual material. 
Next, flukes were incubated in sterile Roswell Park Memorial 
Institute (RPMI) 1,640 media supplemented with antibiotics and 
antimycotics (10,000 UI/ml penicillin G and 10 mg/ml 
amphotericin B) at 37°C for 2 h. Then, flukes were transferred into 
sterile RPMI 1640 media and incubated at 37°C for a further 5 h. 
After incubation, the supernatant was centrifuged at 2,500 g for 
30 min at 4°C and then filtered through a 0.22 μm nylon filter. 
Finally, the supernatant was concentrated, freeze-dried into a 
powder, and stored at −80°C. Before use, the powder was 
dissolved in deionized water. Its protein concentration was 
determined using a Bicinchoninic Acid (BCA) Assay Kit (Beijing 
Solarbio Science & Technology Co., Ltd., China).

2.3. Co-IP of FgESP-antibody binding 
proteins

The Protein A/G Plus-Agarose Immunoprecipitation Kit 
(Santa Cruz Biotechnology, USA) was used to pull down the 
FgESP-serum antibody binding proteins according to the 
manufacturer’s instructions. For the non-infection group, 5 mg of 
FgESPs was incubated with 1 ml of serum (A1, A2, and A3 at 3, 10, 
and 16 wpi) and 20 μl of Protein A/G Plus-Agarose Beads at 4°C 
for 2 h. Next, pellets were collected by centrifugation at 1,000 g and 

4°C for 5 min. Then, the pellets were washed three times with 
500 μl PBS and centrifugation at 1,000 g and 4°C for 5 min. After 
the final washing, the sediment was resuspended in 50 μl PBS, and 
10 μl was used for sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) analysis. The remaining 40 μl was 
used for LC–MS/MS identification.

For the infection group, 5 mg of FgESPs was precleared 
(negative serum and FgESP pull down non-specific interaction 
proteins through Co-IP) by incubation with 1 ml of negative (week 
0) serum and 20 μl of Protein A/G Plus-Agarose Beads at 4°C for 
2 h. After pelleting the beads by centrifugation at 1,000 g and 4°C 
for 5 min, the supernatant was transferred and divided equally into 
three fresh tubes. Next, 500 μl of corresponding buffalo sera (B1, 
B2, and B3 at 1, 3, 6, 8, 10, 13, and 16 wpi) was added to each tube 
with 20 μl of Protein A/G Plus-Agarose Beads and incubated at 
4°C overnight. The pellet was collected by centrifugation at 1,000 g 
and 4°C for 5 min. The pellets were washed three times with 500 μl 
PBS and centrifugation at 1,000 g and 4°C for 5 min. After the final 
washing, sediments were resuspended in 50 μl PBS, and 10 μl was 
used for SDS-PAGE analysis. The remaining 40 μl was used for 
LC–MS/MS identification.

2.4. In-solution trypsin digestion

Liquid mass spectrometry (LMS) was performed by gel 
chromatography, and the protein solution was conducted to 
SDS-PAGE, then the targets band was extracted from the gel and 
cut into 0.5 mm cubes. Next, the decolorized gel was washed three 
times with acetonitrile solution until gelatinous particles were 
completely white. Then, 500 μl of 10 mM dithiothreitol was added 
and incubated at 56°C for 30 min. Next, 500 μl of a decolorizing 
solution was added and mixed at room temperature for 10 min. 
Then, the gelatinous particles were centrifuged at 3,000 g to 
remove the supernatant. Next, 500 μl of 55 mM iodoacetamide was 
added and incubated for a further 30 min at room temperature 
before being centrifuged at 3,000 g. Then, 500 μl of decolorizing 
solution was added and incubated for 10 min at room temperature 
before being centrifuged at 3,000 g to remove the supernatant. 
Next, 500 μl of acetonitrile was added until the micelles were 
completely whitened and then vacuum-dried for 5 min. Then, 
trypsin was added according to the gel volume and incubated in 
an ice bath for 30 min. Next, 25 mM ammonium bicarbonate (pH 
8.0) was added and incubated at 37°C overnight. Then, 300 μl of 
extraction solution (60% acetonitrile and 5% formic acid) was 
added and sonicated for 10 min. Finally, the solution was 
centrifuged at 3,000 g, and the supernatant was collected and 
vacuum-dried.

2.5. LC–MS/MS analysis

The sample was dissolved with 20 μl of 0.2% trifluoroacetate, 
centrifuged at 10,000 rpm for 20 min, and dried with a vacuum 
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concentrator (LaboGene, SCAN SPEED 40, Denmark). Samples 
were then adjusted to 1 μg/μL using the machine’s buffer. The 
sample volume was set to 5 μl, and the collection scan mode was 
set to 60 min. In the sample, we scanned for peptides with a mass-
to-charge ratio of 350–1,200. The mass spectrometry data was 
collected using the Triple TOF 5600 + LC/MS system (AB SCIEX, 
USA). The peptide samples were dissolved in 2% acetonitrile with 
0.1% formic acid and analyzed using the Triple TOF 5600 Plus 
mass spectrometer coupled with the Eksigent nanoLC system (AB 
SCIEX, USA). The peptide solution was added to the C18 capture 
(3 μm; 350 μm × 0.5 mm; AB Sciex, USA) and C18 analytical 
(3 μm; 75 μm × 150) columns with a 60 min time gradient and a 
300 nl/min flow rate for gradient elution. The two mobile phases 
were buffers A (2% acetonitrile, 0.1% formic acid, and 98% water) 
and B (98% acetonitrile, 0.1% formic acid, 2% water). For 
information-dependent acquisition, the MS spectrum was 
scanned with a 250 ms ion accumulation time, and the MS 
spectrums of 30 precursor ions were acquired with a 50 ms ion 
accumulation time. The MS1 spectrum was collected in the range 
350–1,200 m/z, and the MS2 spectrum was collected in the range 
100–1,500 m/z. The precursor ion dynamic exclusion time was set 
to 15 s.

2.6. Data analysis

The raw MS/MS files were submitted to ProteinPilot 
(version 4.5,1 SCIEX, Redwood City, CA, USA) for analysis. 
ProteinPilot’s Paragon algorithm was used to search the 
UniProtKB-A1E5T4 (A1E5T4_FASGI) database (access time is 
2021/11/19) and identify proteins using the following 
parameters: TripleTOF 5,600, cysteine modification with 
iodoacetamide, and biological modification as the ID focus. The 
identified protein results were subject to certain filtering 
criteria. Peptides with an unused score > 1.3 (credibility of 
>95%) were considered credible, and proteins containing at ≥1 
unique peptide were retained.

3. Results

3.1. Fasciola gigantica infection 
confirmation

Fasciola gigantica infection was confirmed in the three 
buffaloes in the infection group based on positive indirect FgESP-
based ELISA findings 2 wpi. F. gigantica eggs were also detected 
in the faeces between 12 and 14 wpi. In addition, autopsies at 16 
wpi found livers from the infection group to show obvious gross 
pathological lesions, and adult flukes were detected and the mean 
numbers of flukes recovered were 55.5 ± 14.1 (22.2 ± 5.6 of 

1 https://sciex.com.cn/products/software/

infection dose), indicating established infections (Wang et  al., 
2022a). All buffaloes in the non-infection group had negative 
indirect FgESP-based ELISA findings.

3.2. SDS-PAGE confirmation

SDS-PAGE indicated that serum-derived antibodies could 
recognize and pull down specific FgESP components at different 
infection periods in the non-infection and infection groups 
(Figure 1). The molecular weights of majority of specific proteins 
identified and pulled down by non-infection groups ranged from 
25.0 kDa to 116.0 kDa, while infection group ranged from 
18.41 kDa to 116.0 kDa.

3.3. LC–MS/MS analysis of non-infection 
and infection groups

In the non-infection group, individual buffalo were applied 
to analyze the percent of interacting proteins in three stages of 
infection: early (3 wpi), middle (10 wpi) and late (16 wpi), and 
the effect of external environment on the experiment was 
evaluated by the percentage of the number of shared proteins 
identified in the three stages compared with the total number of 
proteins in the three stages. A1W3:318/395 = 80.5%; 
A1W10:318/426 = 74.6%; A1W16:318/416 = 76.4%, A2 and A3 
were also displayed (Table 1).

Overall, 509, 533, and 519 specific proteins were identified in 
buffaloes A1, A2, and A3, of which 419 were identified in all three, 
accounting for 82.3, 78.6, and 80.7% of all proteins identified at 3, 
10, and 16 wpi, respectively (Table 2; Figure 2). As total of 632 
proteins were identified in all three buffaloes, 3 wpi accounting for 
80.5% of all proteins identified, 10 and 16 wpi accounting for 84.3, 
and 82.1% of all proteins identified, respectively (Table  2; 
Supplementary Table S3).

In the infection group, 490 specific proteins were identified 
across all examined wpi. The numbers identified were 171 (1 
wpi), 109 (3 wpi), 186 (6 wpi), 230 (8 wpi), 248 (10 wpi), 251 (13 
wpi), and 237 (16 wpi). Overall, 87 proteins were identified 
consistently across all examined wpi. The numbers of specific 
proteins to each wpi were 12 (1 wpi), 5 (3 wpi), 8 (6 wpi), 15 (8 
wpi), 23 (10 wpi), 22 (13 wpi), and 14 (16 wpi), respectively 
(Figure 3).

3.4. Analysis of consistently detected 
proteins in the infection group

Gene Ontology (GO) classification was used to investigate 
the biological function of the 87 proteins consistently identified 
in the infection group. They were clustered into the “biological 
process,” “cellular component,” and “molecular function” 
categories. Within the “biological process” category, proteins 
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clustered in the “cellular process” (25.8%), “metabolic process” 
(19.1%), “biological regulation” (11.5%), “developmental process” 
(9.6%), “response to stimulus” (7.7%), and “multicellular 

organismal process” (6.7%) subcategories. Within the “cellular 
component” category, the proteins clustered in the “cellular 
anatomical entity” (81.2%) and “protein-containing complex” 
(18.8%) subcategories. Within the “molecular function” category, 
the proteins mainly clustered in the “binding” (46.0%) and 
“catalytic activity” (41.6%) subcategories, with other subcategories 
accounting for much smaller proportions (Figure  4A; 
Supplementary Table S4).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
annotations suggested that the most abundant pathways 
represented by the 87 proteins were “global and overview 
maps,” “amino acid metabolism,” and “carbohydrate 
metabolism” in “metabolism,” followed by “cell growth and 
death” in “cellular processes” (Figure  4B; Table  3). 
Furthermore, 24 of the 87 proteins were annotated in more 
than one KEGG pathway (Supplementary Table S4). These 
included glycometabolism-related proteins, such as 
phosphoglucomutase, glutamate dehydrogenase, 
UTP-glucose-1-phosphate uridylyltransferase, fructose-
bisphosphate aldolase, and malate dehydrogenase, which were 
annotated in ≥5 KEGG pathways. In addition, 14–3-3 proteins 
(Chaithirayanon et  al., 2004; Tian et  al., 2018), ferritin 
(Caban-Hernandez et al., 2012), Fh5 (Rossjohn et al., 1997), 
and heat shock proteins (HSPs; Moxon et al., 2010) were also 
annotated in KEGG pathways.

The subcellular localizations of the 87 proteins were 
cytoplasmic (35.8%), cytoplasm and nucleus (21.9%), and 
mitochondrial (14.6%; Figure 4C; Supplementary Table S4).

FIGURE 1

SDS-PAGE analysis of buffalo serum cocultured with FgESPs during different infection periods. The numerical value above represents the serum’s 
wpi. The capital letter below represents the ID of buffaloes from the non-infection (A1, A2, and A3) and infection (B1, B2, and B3) groups.

TABLE 1 The percent of shared number accounting number of specific week in the non-infection group buffaloes.

3&10&16 wpi 3 wpi 10 wpi 16 wpi

Shared 
number

Number (N3) Percent (%) 
shared / N3

Number 
(N10)

Percent (%) 
shared / 

N10

Number 
(N16)

Percent (%) 
shared / 

N16

A1 318 395 80.5 426 74.6 416 76.4

A2 313 418 74.9 416 74.2 425 73.6

A3 299 355 84.2 413 72.4 409 73.1

FIGURE 2

A Venn diagram showing the number of overlapping proteins 
pulled down by non-infection group’s buffalo serum using the 
FgESPs.
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3.5. Specific proteins detected in the 
infection group

Partial proteins detected in FgESPs from the buffaloes’ sera 
single and multiple wpi are shown in Supplementary Table S5. 
Since this study has described or clustered these proteins into 
specific KEGG pathways, their functions, such as calcium 
binding, could be inferred. Complete lists of proteins identified 
at a single wpi or across multiple wpis are provided in 
Supplementary Tables S6, S7.

4. Discussion

This study used SDS-PAGE to confirm the co-IP assay. The 
non-infection control group showed that many identified proteins 
were shared across time points (3, 10, and 16 wpi), suggesting that 
the buffaloes’ surroundings did not affect their immune response 
during maintenance. While we identified numerous proteins in 
the infection group already reported with F. gigantica, 

we described some unique proteins associated with F. gigantica 
and used KEGG database and subcellular localization analyses to 
infer their potential functions.

KEGG analysis of the 87 proteins continuously identified in the 
infection group showed that some are associated with various 
signaling pathways (Table 3), including cytochrome-P450-related 
drug metabolism (Fh51, prostaglandin-H2 D-isomerase, and 
glutathione transferase), hippo signaling (cardiac muscle alpha-
actin), estrogen signaling (HSP90 alpha [HSP90α]), interleukin 
(IL)-17 signaling (HSP90α), Th17 cell differentiation (HSP90α), 
phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling 
(HSP90α), nucleotide-binding oligomeric domain (NOD)-like 
receptor (NLR) signaling (HSP90α), forkhead box O (FOXO) 
signaling (phosphoenolpyruvate carboxykinase), Wnt signaling 
(cAMP-dependent protein kinase catalytic subunit alpha), and 
longevity regulation (activation protein theta polypeptide).

Anthelmintics can be neutralized or bio-transformed jointly or 
independently by three protein-level defense systems, termed phases 
I to III (Cvilink et al., 2008). In vertebrates and most invertebrates, 
the phase I pathway is oxidative via the cytochrome P450 superfamily 

TABLE 2 The percent of shared number accounting the number of specific week and the number of specific weeks accounting the number of all 
periods in the non-infection group.

wpi Shared number Number of 
specific week 

(N1)

Percent (%) 
shared / N1

Number of three 
periods (N2)

Percent (%) N1 / 
N2

3 419 509 82.3 632 80.5

10 533 78.6 84.3

16 519 80.7 82.1

FIGURE 3

An UpSet diagram showing the number of unique and shared proteins in the infection group across 1, 3, 6, 8, 10, 13, and 16 wpi.
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(Brophy et al., 2012). However, parasitic helminths are much less able 
to neutralize external toxins (xenobiotics) than their mammalian 
hosts (Cvilink et  al., 2009), potentially reflecting their lack of 
important phase I  cytochrome P-450-dependent detoxification 
components. Studies have shown that Glutathione-S-transferase 
(GST), ATP-binding cassette (ABC), fatty acid-binding protein and 
adenosine deaminase (ADA) in the excretory products of fluke 
functions in detoxification during the parasitic process (Morphew 

et al., 2007; Kumkate et al., 2008; Kalita et al., 2017; Rehman et al., 
2020), and the alteration of ADA activity could induce the host 
immune responses switch to Th-2 type and facilitate the 
establishment of flukes within their host (Rehman et al., 2021). In 
addition to the above proteins, KEGG analysis in the present study 
showing that Fh51, prostaglandin-H2 D-isomerase, and glutathione 
transferase has been identified and clustered to cytochrome-P450-
related xenobiotic (drug) metabolism, indicating these three proteins 

A

B C

FIGURE 4

Analysis of the 87 proteins consistently identified in the infection group. (A) GO annotation clustered the proteins into three categories: molecular 
function, cellular component, and biological process. GO annotation and classifications are shown based on secondary names. While the 
horizontal axis represents protein numbers, the vertical axis represents GO secondary names. (B) KEGG pathway protein annotation and its 
corresponding category in the KEGG database are shown in different colors. While the horizontal axis represents protein numbers, the vertical axis 
represents the KEGG class names. (C) Protein subcellular localization. While the horizontal axis represents subcellular classification, the vertical 
axis represents protein numbers.
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may also involve in detoxification during F. gigantica parasitism 
(Alirahmi et al., 2010; Kalita et al., 2019).

As a highly conserved molecular chaperone protein, HSP90 
involved in signal transduction, cell cycle control, stress management 
and folding, degradation, and transport of proteins (Johnson, 2012; 
Roy et al., 2012; Gillan and Devaney, 2014; Hoter et al., 2018; Zininga 
et al., 2018; Biebl and Buchner, 2019; Backe et al., 2020). HSP90 also 
has been thought involved in host immune system modulation via 
platyhelminth secretomes (Liu et al., 2009; Xu et al., 2020). There are 
two cellular subtypes of HSP90, while HSP90α isoforms been 
secreted from cells, HSP90β isoforms (HSP90β) primarily operate 
intracellularly (Jayaprakash et al., 2015). In this study, HSP90α has 
been identified and clustered to interleukin (IL)-17 signaling, Th17 
cell differentiation, phosphoinositide 3-kinase (PI3K)-protein kinase 
B (AKT) signaling, nucleotide-binding oligomeric domain (NOD)-
like receptor (NLR) signaling.

The IL-17 family is a cytokine subgroup that plays crucial 
roles in host defense against microbes and inflammatory disease 
development (Chen et al., 2017). IL-17E (also called IL-25) is 
associated with type 2 T helper cell (Th2) response, promoting 
Th2-related cytokine production for eosinophil recruitment and 
contributing to host defense against parasitic helminth infections 
(Pan et al., 2001; Ballantyne et al., 2007; Saenz et al., 2008; Kang 
et al., 2012). Recently, researchers found that peripheral blood 
lymphocytes (pBLs) significant upregulated Th2/Th17 type 
immune response at 3 and 42 dpi in buffaloes infected with 
F. gigantica (Hu et al., 2022), which was consistent with previous 

studies showing that the Th1-related response is inhibited early in 
F. gigantica infection, while the Th2-related response favoring 
parasitism is promoted (Molina, 2005; Rodriguez et al., 2017). 
HSP90α may regulates the IL-17 signaling pathway during early 
infection, enabling F. gigantica host parasitism. Therefore, it can 
infer that F. gigantica further participates in the Th2 / Th17 type 
immune response by secreting HSP90α in the IL-17 signaling 
pathway in the early stage of infection, thus regulating the host 
immune developed to a direction conducive to fluke survival.

Although HSP90α was identified in FgESP, it may also 
function in intracellular process. The PI3K-AKT signaling 
pathway regulates the number of neoblast/pluripotent cells in 
Schmidtea mediterranea (Peiris et al., 2016) and is essential for 
enhancing pluripotent cell survival (Hossini et al., 2016). Neoblast/
pluripotent cells were produced and proliferated throughout the 
F. hepatica life cycle (McCusker et  al., 2016; Cwiklinski et  al., 
2018), suggesting its key role in Fasciola growth and development. 
Studies have identified cell surface location-chaperone, and assign 
their functions to the recognition of infectious agents or their 
components and subsequent intracellular signaling (Henderson 
et al., 2006). Considering molecular chaperone characteristic of 
HSP90α, together with its clustering to PI3K-AKT signaling 
pathway, HSP90α was supposed to regulate the Neoblast/
pluripotent through the PI3K-AKT signaling pathway, which 
ultimately regulate the growth and development of F. gigantica. 
Cytoplasmic NLRs function as innate pattern recognition 
receptors, the first line of defense against microbial infection 

TABLE 3 Partial proteins consistently identified in the infection group.

Acc Protein 
description

Peptide Unique 
peptide

Coverage (%) Length Mass

tr|A0A504Z0W5|A0A504Z0W5_

FASGI

Fh51 1 1 15.89 107 1,2544.3

tr|A0A504Z3A0|A0A504Z3A0_

FASGI

Prostaglandin-H2 

D-isomerase

14 14 66.82 211 2,4568.3

tr|A0A504YW63|A0A504YW63_

FASGI

Glutathione transferase 10 10 29.07 313 3,5968.5

tr|A0A504YYH3|A0A504YYH3_

FASGI

Cardiac muscle alpha 

actin

15 1 41.07 375 4,1696.3

tr|A0A504YG42|A0A504YG42_

FASGI

Heat shock protein heat 

shock protein 90 alpha

27 25 40.3 722 8,2427.7

tr|A0A504YUP2|A0A504YUP2_

FASGI

Phosphoenolpyruvate 

carboxykinase (GTP)

36 36 70 550 6,1415.2

tr|A0A504YN48|A0A504YN48_

FASGI

cAMP-dependent protein 

kinase catalytic subunit 

alpha

3 3 14.02 321 37,344

tr|A0A504YX93|A0A504YX93_

FASGI

Tyrosine 

3-monooxygenase/

tryptophan 

5-monooxygenase 

activation protein theta 

polypeptide

15 13 66.27 252 2,8661.1
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(Zhang et  al., 2018) that recognize pathogens, recruit innate 
immune cells, and activate adaptive immune responses (Fukata 
et al., 2009; Cooney et al., 2010). NOD1 and NOD2 proteins can 
be recruited to the plasma membrane and regulate nuclear factor 
kappa-light chain enhancers of activated B-cell signaling and 
mitogen-activated protein kinase (MAPK) pathway (Philpott 
et al., 2014). We hypothesize that HSP90α suppresses host innate 
and adaptive immune responses through the NLR signaling 
pathway, enhancing F. gigantica survival.

Wnt signaling pathway including canonical Wnt β-catenin-
dependent and non-canonical Wnt/Ca2+ signaling pathways 
(Ovchinnikov et al., 2020), which can initiate and regulate various 
cellular activities (including cell proliferation and calcium 
homeostasis), regulate the establishment of the anterior–posterior 
axis (AP axis) and the medial-lateral axis (Petersen and Reddien, 
2009; De Robertis, 2010), also involved in the neural system 
formation (Adell et  al., 2009). While canonical pathway can 
be modulated to alter glucose concentrations in the blood and 
surrounding tissues (Zhou et al., 2014; Chen et al., 2018), the 
non-canonical pathway mediates inflammatory responses, 
leading to suppression of host inflammatory responses by 
inhibiting positive feedback mechanisms (De, 2011).

Some of the 87 proteins consistently identified in the 
infection group were not assigned a KEGG signaling pathway, 
including ferritin. A recent study showed that ferritin in FhESPs 
separated by 2D electrophoresis did not react with infected sheep 
serum, suggesting that ferritin was a non-immunogenic FhESP 
protein (Becerro-Recio et al., 2021). However, this study found 
that ferritin consistently reacted with serum from F. gigantica-
infected buffalo, indicating that ferritin in FgESPs is a complete 
antigen. Therefore, ferritin’s function in FgESPs needs to 
be explored further.

Five of the 19 proteins consistently identified during the invasive 
infection phase (1–3 wpi) were uncharacterized 
(Supplementary Tables S6, S7). The microtubule-associated protein 
Futsch was associated with biological processes in GO taxonomic 
annotation. Microtubulin is a benzimidazole (BZ) target extensively 
studied in parasitology (von Samson-Himmelstjerna et al., 2007). A 
study using triclabendazole (TCBZ), a BZ derivative used to treat 
fascioliasis, showed that F. hepatica’s microtubule-mediated functions 
were inhibited by TCBZ exposure, suggesting that microtubule 
proteins may be effective TCBZ targets (Hanna, 2015).

Polyubiquitin proteins and three histones (H2A, H2B, and 
H3) were identified at 1 wpi. After excystation, NEJs interact with 
intestinal epithelial cells and inhibit the immune cell signaling 
cascade by downregulating intracellular signaling and the 
downstream ubiquitination-associated proteins required to 
trigger the immune response (Lammas and Duffus, 1983; Dalton 
et al., 2009; Lalor et al., 2021). Molecules secreted or excreted 
during this stage (1–3 wpi) likely play vital roles in host invasion 
and have the potential to be candidate vaccine/drug targets to 
inhibit NEJ infestation and migration.

Four of the 26 proteins identified between 6 and 8 wpi were 
uncharacterized (Supplementary Tables S6, S7). Programmed cell 

death 6-interacting protein and Thimet oligopeptidase (M03 
family) were identified at both 6 and 8 wpi. GO analysis of 
T-complex protein 1 subunit γ, annexin, and dynein beta chain 
ciliary protein, which were only identified at 6 wpi, identified their 
localization and motility functions. Constitutive HSP70, HSP90 
chaperone protein kinase-targeting subunit, glycerol-3-phosphate 
dehydrogenase (nicotinamide adenine dinucleotide), succinate 
dehydrogenase (ubiquinone) iron–sulfur subunit, mitochondria 
(fragment), and puromycin-sensitive aminopeptidase were only 
identified at 8 wpi. KEGG analysis showed a functional focus on 
energy metabolism, including oxidative phosphorylation, the citric 
acid cycle, starch and sucrose metabolism, purine metabolism, 
pyrimidine metabolism, and nicotinic acid and nicotinamide 
metabolism. Between 6 and 8 wpi, Fasciola migrate to the host’s 
liver and induce high oxidative stress levels (Da Silva et al., 2017). 
HSP70 may function in protein folding and assembly, refolding 
misfolded and aggregated proteins, and transferring proteins to 
mediate the environmental stress and cellular homeostasis effects, 
which is critical for parasite survival (Polla, 1991; Mayer and 
Bukau, 2005; Smith et al., 2008). The active metabolic pathways 
provide the nutrients for F. hepatica growth and development 
between 6 to 8 wpi (Tanaka and Miyajima, 2016), and it may 
be similar in F. gigantica growth and development.

Long-term F. gigantica survival requires a balance between 
immuno-suppressive and-modulatory effects induced by 
F. gigantica and the host’s innate and adaptive immune responses. 
Twelve of the 78 proteins identified between 10 and 16 wpi were 
uncharacterized (Supplementary Tables S6, S7). Legumain-like 
calcium-binding protein 39 and transforming growth factor-β 
(TGF-β)-inducible protein ig-h3 (fragment) were consistently 
identified during this period. KEGG pathway analysis indicated 
that they primarily function in metabolic pathways. Studies have 
shown that recombinant legumain is specifically recognized by 
positive sera from F. hepatica-infected sheep, showing good 
reactogenicity (Zhang et al., 2021). Subsequent studies showed it 
differed biologically between Schistosoma haematobium and 
F. gigantica, indicating its vaccine potential against F. gigantica 
(Adisakwattana et al., 2007).

Tegumental calcium-binding EF-hand protein 4 (CABP4) was 
identified at both 10 and 13 wpi (Supplementary Table S6). The 
EF-hand is an important functional protein domain in F. gigantica 
calcium-binding protein (Santiago et al., 1998). The EF-hand-
containing protein CABP4 is an important FgESP component that 
shows an immunomodulatory effect during F. gigantica infection 
(Subpipattana et al., 2012; Huang et al., 2019b; Ehsan et al., 2021). 
Studies investigating FhCABP1, FhCABP2, and FhCaBP4 have 
been performed (Banford et al., 2013; Thomas and Timson, 2015; 
Cheung et al., 2016). However, relevant studies on F. gigantica 
calcium-binding proteins are lacking. Given the calcium-binding 
protein family’s ability to induce immunoglobulin E-mediated 
host immune responses (Santiago et al., 1998), there is a need to 
study their immunomodulatory functions in F. gigantica.

Fasciola migration in the liver triggers a wound-healing 
response that induces fibrosis to repair the damage (Dorey 
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et  al., 2021), culminating in liver fibrosis and granulomas. 
This progress may be related to forkhead box P3 (FOXP3)+ T 
regulatory cell (Treg) levels (Pacheco et al., 2018), regulatory 
cytokines (IL-10 and TGF-β), and proinflammatory cytokines 
(tumor necrosis factor-alpha and IL-1β; Valero et al., 2017). 
Here, the TGF-β-inducible protein ig-h3 (fragment) identified 
between 10 and 16 wpi may participate in the host tissue 
damage repair (Supplementary Table S5). The aldolase 
(fructose-bisphosphate) identified between 10 and 16 wpi is 
secreted by or attached to the epidermis of Fasciola (Morales 
and Espino, 2012). It mainly acts as a ligand for various host 
components contributing to fluke invasion (Zhang et  al., 
2019), host immune and hemostatic systems regulation, 
angiogenesis, and nutrient absorption (Gómez-Arreaza 
et al., 2014).

FgESPs are exposed to the host immune system and widely 
used as antigens in serological assays. Five of the 19 proteins 
identified between 1 and 3 wpi were uncharacterized 
(Supplementary Tables S6, S7). The specificity and sensibility of 
these proteins still need to be confirmed by Western blot and 
ELISA. Once some have been purified and shown to react well 
with positive serum, they can be  used to develop new early-
diagnosis antigen immunological diagnostic methods. However, 
this study did not identify well-performing early diagnosis 
antigens, such as cathepsin L and secreted aspartyl proteinase 2, 
indicating more accurate approaches may be  needed to 
understand the precise buffalo-F. gigantica interaction 
(Cornelissen et al., 2001; Sriveny et al., 2006; Kueakhai et al., 
2011; Mirzadeh et al., 2017).

During early infection stages, F. gigantica induces the 
Th2-related response and suppresses the Th1-related response 
in the host. Molecules functioning in this process are potential 
vaccine candidates (Donnelly et al., 2008; Walsh et al., 2009). 
Fifteen of the 96 proteins identified between 6 and 10 wpi were 
uncharacterized (Supplementary Tables S6, S7), including 
cathepsin L. Cathepsin-L peptidases have been extensively 
studied since they are internalized by host immune cells and 
degrade the pathogen recognition receptor Toll-like receptor 
3, preventing Toll/IL-1R domain-containing adaptor-inducing 
interferon-β-containing adaptor protein-dependent signaling 
that is essential for the Th1 inflammatory response (Falcón 
et al., 2014). The mammalian target of rapamycin (mTOR), 
MAPK, and FOXO signaling pathways act synergistically to 
promote FOXP3 expression and differentiation into Treg cells 
(Delgoffe et  al., 2009). Treg cells secrete the regulatory 
cytokines TGF-β and IL-10, regulating the Th1-and 
Th2-related responses (Hill et  al., 2007). This process may 
be  related to immunomodulation and long-term host 
colonization (Maizels and Lawrence, 1991; King et al., 1992). 
Since calcium-binding protein 39, F-actin-capping protein 
subunit beta, and V-type proton ATPase subunit H clustered 
with the mTOR signaling pathway; constitutive HSP70 
clustered with the MAPK signaling pathway; and the glucose 
transporter clustered with the FOXO signaling pathway, these 

proteins may regulate the Th1-and Th2-related responses. 
Studying their immunomodulatory functions may contribute 
to vaccine candidate identification.

5. Conclusion

This study performed a detailed screening of antigenic FgESP 
targets, as 490 proteins were identified in the infection group, of 
which 87 were consistently identified at 7 time points, the 
numbers of specific interactors identified for each week were 1 
(n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 (n = 23), 13 (n = 22), and 
16 (n = 14) wpi. These findings will lay the foundation for further 
studies on F. gigantica-host interactions and fascioliasis diagnosis 
and prevention.
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The emergence of potentially life-threatening zoonotic malaria caused by 
Plasmodium knowlesi nearly two decades ago has continued to challenge Malaysia 
healthcare. With a total of 376 P. knowlesi infections notified in 2008, the number 
increased to 2,609 cases in 2020 nationwide. Numerous studies have been conducted 
in Malaysian Borneo to determine the association between environmental factors 
and knowlesi malaria transmission. However, there is still a lack of understanding of 
the environmental influence on knowlesi malaria transmission in Peninsular Malaysia. 
Therefore, our study aimed to investigate the ecological distribution of human 
P. knowlesi malaria in relation to environmental factors in Peninsular Malaysia. A 
total of 2,873 records of human P. knowlesi infections in Peninsular Malaysia from 
1st January 2011 to 31st December 2019 were collated from the Ministry of Health 
Malaysia and geolocated. Three machine learning-based models, maximum entropy 
(MaxEnt), extreme gradient boosting (XGBoost), and ensemble modeling approach, 
were applied to predict the spatial variation of P. knowlesi disease risk. Multiple 
environmental parameters including climate factors, landscape characteristics, 
and anthropogenic factors were included as predictors in both predictive models. 
Subsequently, an ensemble model was developed based on the output of both 
MaxEnt and XGBoost. Comparison between models indicated that the XGBoost 
has higher performance as compared to MaxEnt and ensemble model, with AUCROC 
values of 0.933 ± 0.002 and 0.854 ± 0.007 for train and test datasets, respectively. Key 
environmental covariates affecting human P. knowlesi occurrence were distance to 
the coastline, elevation, tree cover, annual precipitation, tree loss, and distance to 
the forest. Our models indicated that the disease risk areas were mainly distributed in 
low elevation (75–345 m above mean sea level) areas along the Titiwangsa mountain 
range and inland central-northern region of Peninsular Malaysia. The high-resolution 
risk map of human knowlesi malaria constructed in this study can be further utilized 
for multi-pronged interventions targeting community at-risk, macaque populations, 
and mosquito vectors.
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1. Introduction

Environmental variations including land cover types, climate 
changes, anthropogenic landscapes, and host distributions have been 
linked to the geographical distribution and altered transmission patterns 
of malaria and other vector-borne diseases worldwide (Medone et al., 
2015; Morand and Lajaunie, 2021; Kulkarni et al., 2022). In Malaysia, 
the transmission of the simian malaria species Plasmodium knowlesi, via 
Anopheles Leucosphyrus group mosquitoes, has been attributed to 
environmental changes affecting the proximity between people, 
macaque reservoirs (mainly Macaca fascicularis and M. nemestrina), and 
mosquito vectors (Cuenca et al., 2021). It is important to highlight that 
the incidence of human knowlesi malaria has grown significantly over 
the last two decades, threatening the malaria elimination efforts in 
Malaysia and other Southeast Asian countries (Singh et al., 2004; Shearer 
et al., 2016; Chin et al., 2020). It is suggested that the increasing reports 
of human knowlesi malaria are driven by deforestation, agricultural 
expansion, and spatial overlaps between the human population and 
wildlife hosts (Moyes et al., 2016; Fornace et al., 2019).

Malaysia is geographically divided by the South China Sea into two 
regions, Peninsular Malaysia and Malaysian Borneo. Heterogeneities 
exist in the distribution of P. knowlesi vectors between these regions such 
as An. cracens, An. introlatus, and An. hackeri in Peninsular Malaysia, 
and An. balabacensis and An. latens in Malaysian Borneo (Tan et al., 
2008; Wong et al., 2015; Ang et al., 2020; Jeyaprakasam et al., 2021a). 
Molecular epidemiological studies have found that the geographical 
separation could have also driven the allopatric divergence of P. knowlesi 
into distinct subpopulations (Divis et al., 2017). Studies in Sabah, a state 
in Malaysian Borneo, have demonstrated the association between 
environmental factors and knowlesi malaria risk (Brock et al., 2019; 
Fornace et  al., 2019; Sato et  al., 2019; Hod et  al., 2022). However, 
environmental influences on knowlesi malaria in Peninsular Malaysia 
are not widely studied. Therefore, it is of interest to know how 
environmental factors may impact knowlesi malaria transmission in 
Peninsular Malaysia.

As a part of the malaria intervention strategy in Malaysia, disease 
screening via active case detection, mass blood survey, and 
entomological surveillance were conducted mainly in localities with a 
history of malaria cases. This intervention strategy is not able to 
effectively cover other parts of the populations which are at high-risk or 
may be exposed to the disease without case notifications, especially 
among Orang Asli (i.e., indigenous people) communities in forested 
areas lacking accessible roads. Also, not knowing the locations of the 
high-risk area may affect the systematic implementation of macaque 
reservoir screening and entomological surveillance. Therefore, 
identifying the ecological niche of the disease can support plans for 
controlling disease transmission.

The emerging role of machine learning approaches in healthcare 
and spatial epidemiology is instrumental, especially in modeling the 
covariate contribution toward disease transmission as well as to predict 
the spatial distribution of the disease (Kopczewska, 2022; Temenos et al., 
2022). For instance, MaxEnt (maximum entropy) algorithm enables the 
estimation of the geographical range of a target disease by determining 
the probability distribution of maximum entropy (i.e., most spread out 
or closest to uniform) based on the availability of case presence and 
ecological information within the study area (Phillips et  al., 2006). 
Besides, decision-tree-based models such as random forest and 
gradient-boosted tree are popularly used in ecological niche modeling. 
These models have been widely applied to estimate the potential risk 

areas of diseases such as malaria (Bhatt et al., 2017), dengue (Liu et al., 
2016), West Nile virus (Shartova et al., 2022), scrub typhus (Acharya 
et  al., 2019), brucellosis (Jia and Joyner, 2015), and Chagas disease 
(Mischler et al., 2012) as well as to estimate the spatial distribution of 
the vectors of Lyme disease (Burrows et  al., 2022), chikungunya 
(Richman et al., 2018), leishmaniasis (Cunze et al., 2019), and malaria 
(Akpan et al., 2018). Previous studies have demonstrated the use of 
boosted regression tree (BRT) to map the geographical distribution of 
natural reservoirs and vectors of P. knowlesi and estimated the risk of 
P. knowlesi infection throughout Southeast Asia (Moyes et al., 2016; 
Shearer et al., 2016). Also, several studies applied ensemble modeling 
techniques by integrating multiple predictive models to generate a 
prediction of malaria risk with higher performance (Bhatt et al., 2017; 
Chemison et al., 2021).

A relatively new approach known as extreme gradient boosting 
(XGBoost), was found to outperform various models in spatial modeling 
(Zhao et al., 2021). In addition to improving the model performance, 
understanding the influence of each parameter in the model is important 
for public health administration. Recently, SHAP (SHapley Additive 
exPlanations) tool has rendered detailed explanations to once-
considered black-box machine learning models without sacrificing 
performance. This approach is coupled with XGBoost as a method 
emphasized in this study.

Understanding the transmission patterns and geographical 
distribution of P. knowlesi in Peninsular Malaysia is essential to strategize 
effective disease control measures and enhance understanding of how 
ecologies affect the risks of knowlesi malaria. To address these needs, 
we aimed to investigate the impacts of diverse environmental variations 
toward human knowlesi malaria occurrence as well as to predict 
potential high-risk areas for human knowlesi malaria at fine spatial 
resolution across Peninsular Malaysia using machine learning models 
of MaxEnt and XGBoost.

2. Materials and methods

2.1. Ethic statement

This study was registered with the National Medical Research 
Register (NMRR-16-2,109–32,928), and ethical approval was obtained 
from the Malaysian Research Ethical Committee (MREC) [reference no. 
KKM/NIHSEC/P16-1782 (11)]. For all case data, information that 
identifies the patient was anonymized.

2.2. Geography of Peninsular Malaysia

Malaysia is a country in Southeast Asia and has two regions, 
Peninsular Malaysia and Malaysian Borneo (Figure  1A). Our study 
focused on Peninsular Malaysia which extends from latitude 
1°15′50.0″N to 6°43′36.0″N and from longitude 99°35′E to 104°35″E 
(Figure 1B). From 2010 to 2019, Peninsular Malaysia experienced a loss 
of 2.26 million hectares of tree cover (Global Forest Watch, 2021; 
Figure  1C). Within this period, at least 90% of the tree loss was 
attributable to deforestation activities (Global Forest Watch, 2021). 
Previous studies suggested that landscape changes driven by 
deforestation would increase the likelihood of spillover of the macaque 
population into the human population, thus, increasing the risk of 
knowlesi malaria exposure (Fornace et al., 2016).
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2.3. Human knowlesi malaria data

In Malaysia, all laboratory-diagnosed malaria cases are notified to 
the District Health Offices and State Health Departments, which will 
be subsequently compiled by the Ministry of Health Malaysia. Human 
knowlesi malaria cases are diagnosed via microscopic examination and/
or nested PCR assay. In this study, retrospective data on knowlesi malaria 
cases from 1st January 2011 to 31st December 2019 were provided by the 
Ministry of Health Malaysia. Approximately 97.16% (n = 2,873) of the 
reported indigenous knowlesi malaria cases (total = 2,956) were able to 
be geolocated (Figure 1D). The source of infection reported for each case 
was manually geolocated as the occurrence point with reference to 
Google Maps (Google, 2022), Mapcarta (Mapcarta, 2022), Waze (Waze 
Mobile, 2022), as well as state and federal territory gazetteers (Ministry 
of Energy and Natural Resources Malaysia, 2022). For cases with no 
information on the source of infection addresses, household or working 
addresses were used as the replacement for occurrence point (9.89%, 
n = 284, of the geolocated cases were georeferenced this way). Before 
running MaxEnt and XGBoost modeling, reports of cases within the 
same grid in a covariate layer were considered as a single unique record. 
This approach was used to reduce spatial clumping and avoid the 
inflation of model accuracy (Veloz, 2009). Overall, the case dataset 
consisted of 1,845 unique occurrence records. The overview of the 
modeling procedure is shown in Figure 2.

2.4. Spatial environmental covariate data 
collation and processing

ArcGIS Pro version 2.7.2 (Esri, Redlands, CA, United States) and 
QGIS version 3.6.3 (Open Source Geospatial Foundation, Beaverton, 
OR, United States) were used to visualize and process all spatial data. 
Original covariate data were acquired from multiple sources and 
processed as described in Supplementary Data and 
Supplementary Tables 1–3. The coordinate reference systems of all 
spatial data were projected to World Geodetic System (WGS) 84/
Universal Transverse Mercator (UTM) zone 47 N. All covariates were 
resampled to produce raster layers with 1×1 km2 pixel spatial resolution. 
A total of 36 constructed covariate spatial data consisted of landscape, 
climate, anthropogenic, and proximity characteristics were used for 
subsequent analysis (Supplementary Figures 1–3).

2.5. Multicollinearity test

A multicollinearity assessment was conducted to remove highly 
correlated covariates via two steps (Sillero et  al., 2021). Firstly, a 
pairwise correlation matrix was constructed and Pearson’s correlation 
coefficient r ≤ −0.8 or ≥ 0.8 were set as a threshold to selectively 
remove highly correlated covariates. Then, an assessment based on 

A B

C D

FIGURE 1

(A) Location of Peninsular Malaysia (red box). (B) The district-level administrative boundary of Peninsular Malaysia. (C) Extent of tree loss (recorded in years 
2010–2019) and tree cover (recorded in year 2019) in Peninsular Malaysia. Tree loss data was acquired from Global Forest Change database (https://
earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html) whereas tree cover data was acquired from Copernicus Global Land 
Service (https://zenodo.org/record/3939050#.Yw-ZpXZBzIU). (D) Geolocated cases of human knowlesi malaria (n = 2,873) throughout Peninsular Malaysia 
from years 2011–2019.
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the variance inflation factor (VIF) was conducted to remove 
covariates with VIF ≥ 10.

2.6. Maximum entropy (MaxEnt) modeling 
procedure

MaxEnt is a machine learning approach which applies a maximum 
entropy algorithm to model potential distributions of an object based 
on presence-only datasets. MaxEnt version 3.4.4 (Phillips et al., 2006) 
was used in this study to construct the presence-background niche 
model for knowlesi malaria in Peninsular Malaysia. The unique case 
occurrence dataset was randomly partitioned into train dataset (70%) 
and test dataset (30%) through subsampling approach. Log-transformed 
value of human population density covariate was selected as the 
sampling bias layer. Sampling bias layer was included to account for the 
assumption of a greater likelihood of disease detection in populous 
places (Merow et al., 2013). The inclusion of sampling bias layer could 
also reduce the likelihood of false positives such as predicting highly 
populated areas as high-risk areas due to biased detection location. In 
this model, 10,000 background points were randomly sampled. The 
modeling software factors out bias by assigning weights to the 
background points based on the sampling bias layer value during 
modeling. The modeling parameters used include regularization 
multiplier of 1, 2000 iterations, and 0.00001 convergence threshold. The 
area under curve of receiver operating characteristic (AUCROC) was 
used to evaluate the performance of the model. The higher the AUCROC 

value (ranging from 0 to 1), the higher its accuracy. The logistic output 
of the model was selected to present the predicted risk probability.

All environmental covariates (except human population density) 
that passed the multicollinearity assessment were included in the model 
training stage. Ten replicated models were fitted with each trained to a 
separate subsampled dataset. The relative importance of each covariate 
was ranked based on the percent contribution to the model. Backward 
stepwise elimination was applied to the to remove the covariates with 
the lowest percent contribution to the models until all remaining 
covariates have a percent contribution threshold of ≥1%.

To obtain a robust model, 30 replicated models were developed 
using the final covariate dataset (Convertino et al., 2012; Acharya et al., 
2018). Mean output grids were calculated among the raster outputs of 
these 30 models and these grids were used to generate a 1×1 km2 pixel 
spatial resolution predicted risk map of human knowlesi malaria. 
Ecological suitability ranges of the human knowlesi malaria transmission 
per covariate were demonstrated by response curves.

2.7. Extreme gradient boosting (XGBoost) 
modeling procedure

XGBoost is a machine learning algorithm based on gradient 
boosting, which can be utilized for both regression and classification 
problems. XGBoost is known for its ability to speed up data learning 
execution out of core computation (Chen and Guestrin, 2016). Similar 
to MaxEnt, we employed XGBoost as a presence-only model by using 

FIGURE 2

Schematic summarizing the modeling procedure in this study.
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the same dataset in the MaxEnt procedure, consisting of case 
occurrence and background points. This dataset was transformed into 
binary code of 1 and 0 to indicate case occurrence and background 
data, respectively. The covariates utilized for the final MaxEnt was 
similarly employed as predictors in XGBoost modeling. The 
partitioning of the case dataset into 70% train and 30% test datasets was 
the same as previously mentioned in the MaxEnt modeling procedure. 
We constructed the XGBoost model with a tree-based booster learning 
type and set the objective of binary logistic regression. It was noted that 
the background data make up a large proportion of the dataset by 
approximately five-fold as compared to the case occurrence data. This 
would lead to an imbalanced dataset, which can affect the model 
performance and cause biased prediction toward higher proportion 
class of background data. Therefore, we  assigned a class weighted 
approach to reduce the impact of imbalanced data issue. The weight for 
each class (occurrence class weight, w1, and background class weight, 
w0) can be calculated as follows:

 
w N

N
train

train
1

12
=

( ),

 
w N

N
train

train
0

02
=

( ),

where Ntrain is the total number of data points (both occurrence and 
background) in the train dataset, N(train,1) and N(train,0) are the numbers of 
occurrences and backgrounds, respectively, in train dataset. Weight 
assignment allows the handling of class imbalance by reducing model 
bias toward the majority class without manipulating the training data 
distribution (Johnson and Khoshgoftaar, 2019). Besides class weight, 
we included the bias layer of log-transformed human population density 
value as the instance weight for each corresponding occurrence and 
background points to adjust sampling bias. Class weight and instance 
weight were processed prior to input into the train dataset. AUCROC was 
used to evaluate the performance of the model. During model training 
process, hyperparameter tuning was conducted to identify optimal 
parameters while maximizing the model training AUCROC. Five-fold 
cross-validation of the train dataset was performed during the tuning 
phase to avoid overfitting the model prediction. The final optimized 
parameters are described in Supplementary Table 4. Mean output grids 
were calculated among the raster outputs of 30 XGBoost replicates, and 
these grids were used to generate a 1×1 km2 pixel spatial resolution 
predicted risk map of human knowlesi malaria.

To provide better interpretations of environmental conditions and 
knowlesi malaria risk, we  applied SHapley Additive exPlanations 
(SHAP) to disseminate and interpret the output of XGBoost model 
(Campbell et al., 2022). SHAP values were generated to evaluate the 
relative importance of covariates in the model. A high and positive 
SHAP value indicates that the covariate highly and positively affects the 
output of the prediction model and vice versa (Lundberg et al., 2020). 
Global SHAP summary plots and SHAP dependence plots were created 
to explain the relationship between covariates and the model prediction 
output. XGBoost modeling procedure was performed in R using 
maptools, raster, and usdm packages to manage digital mapping and 
data extraction, dplyr package for data manipulation, XGBoost package 
for running XGBoost algorithm, caret package for managing machine 
learning framework and hyperparameter tuning, pROC package for 

analyzing model AUCROC, and SHAPforxgboost package for generating 
SHAP value and plots.

2.8. Ensemble model procedure

Ensemble modeling involves the aggregation of outcome 
prediction from multiple model algorithms to generate a final 
prediction. Model ensemble approach is frequently applied to address 
machine learning issues such as incremental learning, imbalanced 
data, error correction, and confidence estimation, and it usually 
generates improved results (Polikar, 2012). An ensemble model was 
developed by averaging the outputs of MaxEnt and XGBoost models 
using the same subsampled datasets as used for constructing both 
MaxEnt and XGBoost. The averaged ensemble output was used to 
generate human knowlesi malaria risk map. The predictive 
performances of MaxEnt, XGBoost, and ensemble models were 
evaluated using AUCROC, sensitivity, specificity, and F1-score. To 
compare the prediction patterns produced by different models, 20,000 
points were randomly sampled from the risk map outputs of the three 
models and converted by kernel density. District-level annual 
incidence rate in 1 million people was calculated by dividing the 
annual number of reported cases by estimated mid-year population 
size and multiplying by 1,000,000. Spearman’s correlation test was 
conducted to determine the correlation between variables with value 
of p <0.05 indicates statistical significance. The procedure of model 
development and validation was carried out in R software. The R script 
used to conduct XGBoost and ensemble modeling is available at 
https://github.com/WKPhang/XGBoost_EcologicalNicheModel/.

2.9. Identification of priority areas for 
intervention and surveillance

Priority zone maps were developed to identify priority areas for 
intervention targeting agricultural and logging workers, entomological 
surveillance, and macaque surveillance. Before the development of a 
priority zone map for intervention targeting agricultural and forest 
workers, the land cover of the workplace of agricultural and logging 
workers was estimated by overlaying the covariate layers of cropland, 
oil palm, and historical tree loss. For each pixel grid, the highest value 
of either of the overlaid value was selected to represent the value of 
the output map. A priority zone map highlighting important areas for 
intervention targeting agricultural and logging workers is important 
as this group of populations is considered at-risk and regularly 
exposed to potentially infective mosquitoes (Grigg et al., 2017; Chin 
et al., 2021). It was noted that 92% of tree cover loss in the year 2010–
2019 was driven by deforestation (Global Forest Watch, 2021). Hence, 
it is important to consider the high likelihood of logging workers 
presence in areas where tree loss occurred. The relative occurrence 
probability maps of the Anopheles Leucophyrus group mosquito, 
M. fascicularis, and M. nemestrina were included in the development 
of priority zone maps for entomological and macaque surveillance. 
Threshold values indicating relative priority scores were set based on 
the quantile-based classification of each covariate and predicted risk 
map. We assigned the values in the first and second quarters a score 
of 0, values in the third quarter a score of 1, and values in the fourth 
quarter a score of 2. The score assignment of each covariate and risk 
map was described in Supplementary Table 5. For each objective, the 
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relative priority score of covariates and predicted risk map were 
summed to produce scores ranging between 1 (lowest priority) to 5 
(highest priority).

3. Results

3.1. Model development and evaluation

Multicollinearity assessment via a pairwise correlation matrix 
revealed strong correlations between several covariates (Figure 3). Seven 
covariates with strong correlation relationships were removed while 
retaining relevant covariates in the modeling dataset. For instance, 
elevation has strong a negative correlation with three spatial climate 
covariates (historical minimum temperature with r = −0.93, historical 
maximum temperature with r = −0.88, and historical water vapor with 
r = −0.97). Thus, elevation is deemed more suitable to be maintained to 
represent these climate covariates. Besides, dense forest and secondary 
forest covariates were removed to ensure that the dataset achieved an 
overall VIF <10. Twenty-seven covariates were maintained for 
subsequent analysis after multicollinearity assessment. Before modeling, 
the human population density was excluded for inclusion as a sampling 
bias layer, leaving a balance of 26 covariates as predictors in 
starting model.

Backward stepwise elimination was conducted by initial MaxEnt 
modeling using 26 spatial covariates. Subsequently, we  identified a 
reduced dataset of 14 covariates which fulfilled the criteria of having a 
percent contribution of ≥1 (Table 1). MaxEnt modeling using the final 
covariate dataset depicted high model performance with mean AUCROC 
values of 0.835 ± 0.003 and 0.824 ± 0.007 for train and test datasets, 
respectively, (Table 2). The most important covariates were distance to 
coastline, forest cover, cropland, M. fascicularis occurrence probability, 
historical tree loss, and historical annual precipitation (Table 1).

XGBoost modeling using the final 14 covariates showed high 
predictive performance with AUCROC values of 0.933 ± 0.002 and 
0.854 ± 0.007 for the train and test datasets, respectively, (Table 2). The 
key covariates in the model fitting of XGBoost were distance to coastline, 
elevation, tree cover, historical annual precipitation, historical tree loss, 
and distance to forest (Figure 4). The output of ensemble model built 
showed higher AUCROC than MaxEnt but lower than XGBoost 
(AUCROC = 0.904 ± 0.002 for train dataset and AUCROC = 0.845 ± 0.008 for 
test dataset). Despite XGBoost having a superior performance as 
compared to the other models, kernel density estimation showed a 
relatively similar distribution of predicted risk across models. There 
were statistically significant high positive correlations for all pairwise 
comparisons of the models: MaxEnt-XGBoost (ρ = 0.899, value of 
p < 0.001), MaxEnt-ensemble (ρ = 0.969, value of p < 0.001), and 
XGBoost-ensemble (ρ = 0.977, value of p < 0.001) (Figure 5).

FIGURE 3

Correlation matrix of all spatial covariates. Covariates highlighted in red indicated high collinearity (r ≤ −0.8 or ≥ 0.8) with at least one of other covariates were 
removed from the modeling dataset.
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3.2. Environmental suitability for the 
occurrence of human knowlesi malaria

Suitable range of each important environmental factor for the 
occurrence of human knowlesi malaria was identified based on the 
response curve of MaxEnt model and the partial dependence plot of 
XGBoost model (Figures 6, 7). Both models indicated that there was 
a higher risk of human knowlesi infection at inland areas distant 
from the coastline (>50 km distance in XGBoost or > 70 km distance 
in MaxEnt), experienced low intensity of tree loss (3–20% in 
XGBoost or 3–40% in MaxEnt), and with high annual precipitation 
(>2,500 mm in MaxEnt or > 2,640 mm in XGBoost). XGBoost 
demonstrated that there was a higher risk of human knowlesi malaria 
infection at lower elevation regions of 75–345 m above mean sea 
level, a wide range of tree cover (<82%), and near to forest landscape 
(<200 m). In association with various forest-related covariates, 
MaxEnt showed that the risk of knowlesi malaria increased at >32% 
forest cover.

As various forest-related covariates (forest cover, tree cover, 
historical tree loss, and distance to forest) were found to have 
significant influences on either of the two models, it was of interest to 
identify the type of forest where knowlesi malaria transmission is high. 
Thus, an alternative dataset was prepared by replacing the tree cover 
and forest cover with dense forest cover and secondary forest cover. 
An XGBoost analysis involving this dataset showed that knowlesi 
malaria cases have a higher probability to occur in areas with high 

secondary forest cover (>13%) and with low dense forest cover (<18%) 
(Supplementary Figure 4).

Besides, the knowlesi malaria environmental suitability range was 
found to be influenced by other spatial attributes such as M. fascicularis 
occurrence probability, and cropland in MaxEnt (Figure 6). This signifies 
that the occurrence of human knowlesi malaria has a specific ecological 
niche with multi-dimensional environmental factors playing roles in the 
disease transmission cycle.

3.3. Distribution of human knowlesi malaria 
in Peninsular Malaysia

The mean model outputs were used to generate predicted human 
P. knowlesi infection risk maps of 1×1 km2 pixel spatial resolution 
(Figure 8). All models generated similar predicted spatial patterns across 
Peninsular Malaysia. Risk map generated by XGBoost was used as the 
final map output due to its higher performance compared to other 
models (Table 2). Based on the risk map, the models predicted that the 
ecological factors in the central-northern region of Peninsular Malaysia 
and the lower elevation areas along Titiwangsa mountain range are 
highly suitable for knowlesi malaria transmission. The mean predicted 
risk value was extracted for each district in Peninsular Malaysia. The 
district-level mean predicted risk is presented alongside the average 
annual human knowlesi malaria incidence rate in year 2011–2019 
(Figures 9A,B). There is a significant positive correlation between mean 
predicted risk and disease incidence rate (in 1 million people) 
(Spearman’s correlation coefficient ρ = 0.76, value of p < 0.001; 
Figure 9C).

3.4. Intervention and surveillance priority 
zone maps

The predicted risk map produced using XGBoost was subsequently 
selected for developing the intervention and surveillance priority zone 
maps (Figure 10). In coherence with the predicted risk map, most of 
the high-priority areas are situated in the central northern region of 
Peninsular Malaysia. For surveillance targeting agricultural and logging 
workers, the high-priority zones are mostly located in suburban areas 
in the central-northern Peninsular Malaysia region as well as near hills 
in the southern state of Johor (Figure 10A). Anopheles Leucosphyrus 
group mosquito priority zone maps indicated that key areas for 
enhanced surveillance are mostly located in the interior (Figure 10B). 
M. fascicularis surveillance priority zones are mainly situated in the 
peri-domestic areas as compared to M. nemestrina surveillance priority 
zones, which are mainly found in the interior part of 
Peninsular Malaysia.

TABLE 1 Relative importance of each covariate toward modeling of human 
knowlesi malaria risk based on MaxEnt model percent contribution.

Covariates Percent contribution

Distance to coastline 22.643 ± 1.667

Forest cover 17.687 ± 2.555

Cropland 11.120 ± 2.600

M. fascicularis occurrence probability 9.634 ± 0.818

Historical tree loss 6.732 ± 1.219

Historical annual precipitation 5.681 ± 0.712

Oil palm 5.594 ± 1.876

Tree cover 4.493 ± 0.876

Elevation 3.980 ± 1.534

Human footprint 3.319 ± 1.219

Built-up 2.910 ± 0.298

Distance to cropland 2.506 ± 0.899

Distance to forest 2.337 ± 0.891

M. nemestrina occurrence probability 1.366 ± 0.306

TABLE 2 Performance comparison across MaxEnt, XGBoost, and ensemble models.

Model MaxEnt XGBoost Ensemble

Dataset Train Test Train Test Train Test

AUCROC 0.833 ± 0.003 0.821 ± 0.009 0.933 ± 0.002 0.854 ± 0.007 0.904 ± 0.002 0.845 ± 0.008

Sensitivity 0.622 ± 0.006 0.606 ± 0.026 0.916 ± 0.004 0.742 ± 0.18 0.781 ± 0.005 0.684 ± 0.020

Specificity 0.874 ± 0.003 0.874 ± 0.003 0.816 ± 0.003 0.816 ± 0.003 0.848 ± 0.003 0.848 ± 0.003

F1-score 0.479 ± 0.007 0.312 ± 0.008 0.548 ± 0.005 0.293 ± 0.005 0.527 ± 0.005 0.308 ± 0.005

Bolded value indicates the best performance per evaluation metric (AUCROC, Sensitivity, Specificity, and F1-score) per train or test dataset across the three modeling methods.
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4. Discussion

This study incorporated diverse environmental data sources as well 
as the national knowlesi malaria case data to predict spatial knowlesi 
malaria transmission risk using machine learning approaches. Higher 
performance was observed in XGBoost as compared to other modeling 
approaches. XGBoost can generate high-resolution maps showing the 
risk of knowlesi malaria transmission to humans from known reservoirs, 
specifically M. nemestrina and M. fascicularis. One of the primary 
benefits of this map is that it allows for the identification of high-risk 
areas down to the village level. These high-risk areas can be prioritized 
for intervention or strengthening of existing surveillance systems.

In understanding the spatial heterogeneities of human knowlesi 
malaria occurrence, it is important to identify diverse environmental 
factors with optimal ranges that drive the transmission. For instance, 
forest cover was recognized as a key predictor in the MaxEnt model 

training, which reflects the role of forest environments as the habitats of 
macaque reservoirs and Anopheles mosquito vectors. Likewise, the 
XGBoost model showed that knowlesi malaria risk is higher in and near 
to the forest, which has also been observed in previous studies (Tan 
et al., 2008). A study in Sarawak found that the P. knowlesi vector An. 
latens had the highest sporozoite and oocyst rates in the forest as 
compared to farms (Tan et  al., 2008). The association of increased 
knowlesi malaria occurrence with both forest and forest loss provides 
further support for the hypothesis that transmission occurs in forested 
areas undergoing substantial change (Fornace et al., 2016). Deforestation 
has been considered the main driver in the transmission of knowlesi 
malaria. As shown in this study, further classification of forest into dense 
forest and secondary forest revealed that the risk of knowlesi malaria is 
higher in areas mainly covered with secondary forest. An entomological 
study in Sabah found that the abundance of the local primary vector of 
knowlesi malaria, An. balabacensis is higher in the logged forest as 
compared to the primary forest (Brant et  al., 2016). Another study 
revealed that higher percentage of infectious bites were likely to occur 
at households at forest edges (Fornace et al., 2019). This is related to the 
anthropogenic-induced conversion of forests into other land use such 
as cropland and settlements, which would affect macaque movements 
(Stark et  al., 2019). For instance, the movement of macaques from 
forests to plantations and human settlements for food foraging would 
increase the contact between humans and macaques as well as the 
probability of zoonotic transmission of P. knowlesi can occur in the 
presence of efficient vectors (Imai et al., 2014).

In general, the predicted high-risk areas of knowlesi malaria are 
concentrated in lower elevation areas along the Titiwangsa mountain 
range and the central-northern region of Peninsular Malaysia. Other 
studies also indicated that geographical elevation was negatively 
associated with knowlesi malaria exposure (Fornace et al., 2016, 2019). 
This is because both the macaque hosts and vectors are more frequently 
found at lower elevation (Fooden, 1995). The risk of knowlesi malaria 
occurrence increased relative to distance from the coastline. This is 
apparent as forested areas where high transmission occurs are mainly 

FIGURE 4

Global SHAP summary plot. The relative importance of each covariate toward human knowlesi malaria risk is indicated and ordered (most important 
covariate at the top) by the mean absolute SHAP value summarized over 30 model replicates. Warmer dot color indicates higher value of corresponding 
covariate.

FIGURE 5

Distribution of mean predicted risk of each model output based on 
kernel density estimation. Spearman’s correlation test was conducted 
for MaxEnt-XGBoost (ρ = 0.899, value of p < 0.001), MaxEnt-ensemble 
(ρ = 0.969, value of p < 0.001), and XGBoost-ensemble (ρ = 0.977, value of 
p < 0.001).
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situated inland. Greater urbanization nearer to the coastline has 
disrupted Anopheles mosquitoes’ habitat and abundance, thus, 
transmission intensity in these areas is likely low (Ferraguti et al., 2016).

Both MaxEnt and XGBoost models explain that knowlesi malaria 
tends to occur in areas with high historical annual precipitation. 
Consistent rainfall with partial contribution from land-use changes 
would create favorable breeding sites for Anopheles mosquitoes and 
support larval development (Oo et al., 2002; Ahmad et al., 2018). In 
Sabah, an increase in knowlesi malaria cases was observed after 2 to 
4 months of increased rainfall (William et al., 2014). Also, an increase in 
knowlesi malaria incidence 3 months after higher rainfall and higher 
humidity was found via univariate analyses in another study, but these 
associations were not statistically significant in multivariate analysis 
(Cooper et  al., 2020). In Thailand, climate factors such as rainfall, 
temperature, and relative humidity were found to be associated with 

malaria incidence (Kotepui and Kotepui, 2018). Extreme rainfall may 
be unfavorable to malaria transmission as it would lead to a wash-out 
effect that disrupts vector breeding sites and causes larvae mortality 
(Thomson et al., 2005; Tompkins and Ermert, 2013). The utilization of 
time-series modeling would be able to help in explaining the non-linear 
relationship between rainfall and malaria transmission in detail. Also, 
there was a transient drop of number of knowlesi malaria cases 
throughout Malaysia in year 2015 and 2016, which was thought to 
be impacted by changing weather pattern and El Niño phenomenon 
(Cooper et al., 2020; Phang et al., 2020; Ooi et al., 2021). Nevertheless, 
other factors such as landscape factors such land-use change and 
deforestation play important roles in transmission patterns, which makes 
it difficult to fully understand the impact of climate change on knowlesi 
malaria transmission. More research is needed to fully understand the 
complex relationship between climate change and P. knowlesi transmission.

FIGURE 6

Response curve outputs from MaxEnt model demonstrating the range of suitability for human knowlesi malaria occurrence based on only key covariates 
with highest model percent contribution as described in Table 1. Grey band indicates standard deviation of the model output.

FIGURE 7

SHAP dependence plots generated from XGBoost model demonstrating the environmental suitability range for human knowlesi malaria occurrence based 
on only key covariates with highest mean absolute SHAP value as reported in Figure 4. Positive SHAP value indicates higher risk of knowlesi malaria 
infection whereas negative SHAP value indicates lower risk of knowlesi malaria infection. The plots were smoothed using LOESS (locally estimated 
scatterplot smoothing) curve in red.
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The influence of Anopheles Leucosphyrus group mosquito 
occurrence was found to be less important in our models. This covariate 
was initially modeled using the scattered data collected before 2013 
which may not present the reliable spatial distributions in the study 
region and resulted in its weak association with disease occurrence 
(Moyes et al., 2016). Breeding behavior, abundance, and distribution of 

certain mosquito species may change drastically over time due to 
landscape shifts, deforestation, and human encroachment (Burkett-
Cadena and Vittor, 2018). At present, only Anopheles Leucosphyrus 
group mosquitoes are recognized as the vector of P. knowlesi in 
Peninsular Malaysia, but recent studies conducted in Sarawak have 
added An. donaldi from the Barbirostris group as well as An. collessi and 

A B

C D

FIGURE 8

Maps of predicted human knowlesi malaria risk in Peninsular Malaysia. (A) Map of geolocated human knowlesi malaria occurrence throughout Peninsular 
Malaysia from years 2011–2019. Risk maps generated by MaxEnt (B), XGBoost (C), and ensemble models (D). Warmer color indicates higher predicted risk 
of knowlesi malaria.

A B C

FIGURE 9

(A) District-level mean predicted risk of human knowlesi malaria based on XGBoost output. (B) Average annual incidence rate of knowlesi malaria from 
2011 to 2019 by district. Color gradations for maps in (A,B) were determined using Jenks natural breaks. (C) Correlation plot shows statistically significant 
positive correlation (Spearman’s correlation coefficient ρ = 0.76, value of p < 0.001) between mean predicted risk and knowlesi malaria average annual 
incidence rate (in 1 million people).
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An. roperi from the Umbrossus group into the list of potential vectors 
(Ang et al., 2020, 2021). It may be possible that there are efficient vectors 
other than the Leucosphyrus group mosquitoes in Peninsular Malaysia. 
It is necessary to implement continuous entomological surveillance for 
updating entomological data to monitor changes in Anopheles mosquito 
biology, to identify potentially new vectors, as well as to investigate the 
possible influence on receptivity across multiple localities in Malaysia. 
In addition, new tools are essential to enable efficient and cost-effective 
entomological fieldwork. For instance, the predictive risk map developed 
in this study has the potential to guide entomologists in identifying 
suitable surveillance locations. To complement the efficiency of vector 
sampling in the field, the use of commercialized mosquito traps as a 
safer alternative to human landing catch and the application of multiplex 
polymerase chain reaction assay for the accurate identification of certain 
Anopheles mosquito species should be considered (Jeyaprakasam et al., 
2021b; Pramasivan et al., 2022).

The utility of MaxEnt has been well documented in various 
epidemiology-related ecological studies for its high performance in 
species distribution range prediction. However, this showed that 
XGBoost performed better than MaxEnt. Nevertheless, this may not 
indicate that XGBoost always offers superior performance compared to 
MaxEnt. This is because each model has different strengths and 
weaknesses with different outcomes. Therefore, an ensemble of multiple 

models is recommended to integrate the attributes of each involved 
model in a complementary manner. This approach is generally applied 
to address issues such as incremental learning, imbalanced data, error 
correction, and confidence estimation, and it usually generates improved 
results (Polikar, 2012). Some studies highlighted that combining 
relatively high-performing base models with low correlation or high 
diversity can generate ensemble models with higher performance (Pan 
et al., 2019; Yu et al., 2022). Nonetheless, our study demonstrated that 
the use of a single best-performing base model of XGBoost was adequate 
because the outputs from both base models, MaxEnt and XGBoost, were 
highly correlated with a lack of novel information to improve ensemble 
model performance.

The approach applied in this study demonstrated the importance of 
integrating empirical data from multiple agencies and developed a guide 
for future collaborative-based programs. From the zoonotic malaria 
control perspective, it is important to address the interdependence 
between humans, animals, and their environmental variations. The 
involvement of macaques as the natural hosts of P. knowlesi complicates 
the elimination and subsequent eradication of malaria and requires 
intervention strategies designed to specifically address zoonotic 
pathways, which is different from the strategy for tackling human 
malaria (Vythilingam et al., 2018; Mohammad et al., 2022). Thus, a 
unifying approach converging transdisciplinary and multisectoral 

A B

C D

FIGURE 10

Priority zone maps developed to identify priority areas for intervention targeting agricultural and logging workers (A), Anopheles Leucosphyrus group vector 
surveillance (B), M. fascicularis surveillance (C), and M. nemestrina surveillance (D). The priority zone was determined using the sum of relative priority score 
of respective covariate spatial layer and XGBoost predicted risk of human knowlesi malaria.
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efforts is essential to combat the transmission of P. knowlesi, as advocated 
in the “One Health” concept. These efforts include sharing and 
co-assessment of intervention and data from epidemiologists, clinicians, 
zoologists, and entomologists, development of novel tools and platforms 
that can be adapted in different settings, as well as converging diagnostics 
for human, vector, and macaque reservoirs.

The development of intervention and surveillance priority zone map 
highlighted how the risk map can be further utilized to identify priority 
areas for concentrated efforts. For instance, the localities of the population 
at risk can be identified and effective interventions can be adapted to 
target populations. In this case, personal-level protective equipment such 
as insecticide-treated outdoor clothing, topical repellent, 
chemoprophylaxis, and spatial repellent shall be  distributed more 
frequently to agricultural and logging workers, military personnel, as well 
as people living in high-risk areas (Vythilingam et al., 2021; Mohammad 
et  al., 2022). Regular screening as well as awareness programs shall 
be conducted for communities in these areas. Specifically, in high-risk 
areas with a lack of accessible routes, the development and distribution 
of highly sensitive, mobile, and affordable tools such as novel rapid 
diagnostic test kits will enhance public health outreach (Tan et al., 2022).

Several potential strategies have been highlighted in relation to 
vector and wildlife controls. At present, indoor residual spraying and 
insecticide-treated net have been practiced as the core vector 
interventions in Malaysia (Ministry of Health Malaysia, 2022). However, 
the effectiveness of certain indoor-based interventions may be limited by 
the outdoor biting behaviors of the P. knowlesi vectors (Grigg et al., 2017; 
Vythilingam et al., 2021). Recent studies showed that outdoor-based 
applications such as outdoor residual sprays are effective against primary 
P. knowlesi vectors in Malaysian Borneo (Rohani et al., 2020, 2021). The 
distribution of vaccines or drug-treated oral baits for macaques has been 
proposed in wildlife-based intervention, and it is less invasive than 
macaque population culling, which is being debated for ethical reasons 
and uncertain implications (Cuenca et al., 2021). This similar method has 
been found promising in controlling other zoonoses such as Lyme 
disease (Dolan et al., 2017) and rabies (Rosatte et al., 2009; Maki et al., 
2017). Nonetheless, there are currently no suitable vaccine or drug 
candidates that could be adapted for similar use in knowlesi malaria 
wildlife control programs. The use of oral baits will necessitate further 
research, and as suitable oral baits are developed in the future, they can 
be  distributed to macaque populations in knowlesi malaria high-
risk areas.

Surveillance, monitoring, and intervention are important aspects of 
zoonotic disease management and control because they serve as a 
guideline for detecting high-risk areas early in an outbreak and deciding 
how to allocate resources and manpower during disease outbreaks. The 
generated risk map had a high level of agreement with the actual data. 
Therefore, zoonotic disease management and control efforts should 
be targeted at the areas showing high probability of human knowlesi 
malaria occurrence. Furthermore, we propose that covariates with a 
high contribution be considered in field monitoring. We can identify the 
relative impact of environmental factors on knowlesi malaria occurrence 
by analyzing the partial dependence plots of each model. This data is 
required for epidemiologists, public health officials, and policymakers 
to effectively monitor and control knowlesi malaria.

There are several limitations to address concerning this study. 
Firstly, the ecological niche modeling approach in this study did not 
specifically consider the spatial variability of P. knowlesi infections in 
macaques and mosquitoes. To develop a surveillance system of 
macaques and vectors at priority zones will provide such information to 

enhance the accuracy of risk maps. Secondly, moderate F1-scores, which 
is caused by imbalanced data and random selection of background data 
near to reported cases, produced more false positive predictions. 
Elevated false positive rates may place additional demands on resources 
for monitoring and managing disease, however, this can be systematically 
reduced by alternative methods of identifying priority zones for targeted 
interventions. In addition, advanced deep learning algorithms can 
be considered to enhance model performance in the future.

5. Conclusion

Machine learning-based ecological niche modeling approaches such 
as MaxEnt and XGBoost are extremely useful in capturing diverse 
ecological signals relevant to spatial distributions of vector-borne 
diseases. The predictive risk maps produced in the present study can 
be used to identify high-risk areas of knowlesi malaria transmission and 
provide more precise information for decision-making of vector or 
reservoir surveillance and disease control, particularly when prevention 
resources are limited.
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The complex transmission profiles of vector-borne zoonoses (VZB) and vector-
borne infections with animal reservoirs (VBIAR) complicate efforts to break 
the transmission circuit of these infections. To control and eliminate VZB and 
VBIAR, insecticide application may not be conducted easily in all circumstances, 
particularly for infections with sylvatic transmission cycle. As a result, alternative 
approaches have been considered in the vector management against these 
infections. In this review, we highlighted differences among the environmental, 
chemical, and biological control approaches in vector management, from 
the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining 
to the available control approaches were discussed to better understand the 
prospects of integrating these vector control approaches to synergistically break 
the transmission of VZB and VBIAR in humans, in line with the integrated vector 
management (IVM) developed by the World Health Organization (WHO) since 
2004.

KEYWORDS

zoonoses, vector-borne, vector management, control, prevention

Introduction

Zoonoses are infections transmitted from animals to humans (Murphy, 1998). In fact, 
“zoonosis” is a relatively new word coined by German scientist Rudolf Virchow in the late 19th 
century, which combines Greek words “zoon” (animal) and “noson” (disease) (Chomel, 2009). 
Due to increased overlap of habitats by humans and wildlife, climate change, certain economic, 
cultural and dietary practices, as well as invasion of alien species and convenient international 
travels, the healthcare and economic burden exerted by zoonoses has increased significantly 
(Woolhouse and Gowtage-Sequeria, 2005; Jones et al., 2008; Grace et al., 2012; Karesh et al., 
2012; Kulkarni et al., 2015). Zoonoses are caused by a variety of pathogens encompassing 
viruses, bacteria, parasites, fungi, and prions (Taylor et al., 2001; Woolhouse and Gowtage-
Sequeria, 2005; Jones et al., 2008). Theoretically, the transmission of a zoonosis can be prevented 
by segregating humans and the animals that serve as natural hosts of the pathogen (Chomel, 
2009; Karesh et al., 2012). However, control and prevention strategies may face additional 
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challenges when the zoonosis is vector-borne, as reflected by knowlesi 
malaria, a potentially fatal zoonosis transmitted by simio-
anthropophilic anopheline mosquitoes (Tan et al., 2008; Jiram et al., 
2012; Vythilingam et al., 2014; Wong et al., 2015; Lau et al., 2016). 
Similar obstacles happen with vector-borne infections possessing 
animal reservoirs, such as the tsetse fly-transmitted Trypanosoma 
brucei, the sand fly-transmitted leishmaniasis, and the mosquito-
borne Sindbis virus (SINV), Zika virus (ZIKV), and yellow fever 
virus (Balfour, 1914; Njiokou et al., 2006; Singh et al., 2013; Vorou, 
2016; Steyn et al., 2020; Kushwaha et al., 2022). Since the involving 
animals cannot be culled just to break the transmission circuit to 
humans (Lee et al., 2022), vector control is a critical component of 
breaking the transmission of vector-borne zoonoses (VBZ) and 
vector-borne infections with animal reservoirs (VBIAR). Vector 
control programs aim at either reducing the population of the vectors, 
or avoiding, if not reducing the exposure of the targeted vectors to 
humans (Wilson et al., 2020). Notably, a wide variety of arthropods 
and arachnids with different biological behaviors have been verified 
as medically important disease vectors (Table 1). The diverse array of 
vectors, animal reservoirs, and activities engaged by humans in the 
vicinity contribute different challenges to the control and elimination 
of these diseases. Here, we  discussed the main vector control 
strategies in the current scenario, highlighted the strengths, 
limitations, and concerns arising from these approaches, knowledge 
gaps that deserve to be filled, and possibility of integrating multiple 
approaches of vector management into the control and elimination 
of VBZ and VBIAR.

The trilogy of vector control strategies

In general, vector control strategies can be  classified into 
chemical, biological and environmental management approaches 
(Bos, 1991). Each of these approaches gained research and public 
attention at different time points and comes with its own advantages 
and disadvantages. These approaches are inter-related, where 
simultaneous application of multiple approaches can produce either 
synergistic effect against the propagation of vectors, or antagonistic 
effect that disputes the vector control program. Therefore, a 
thorough understanding on each vector control approach is crucial 
for a successful vector control that can lead to the eradication of 
respective vector-borne diseases (WHO, 2012). This is particularly 
crucial for the management of VBZ and VBIAR, as the transmission 
profiles of these infections are usually more complex, involving 
more organisms. In fact, some of these diseases have multiple 
transmission cycles. For example, Trypanosoma cruzi has an urban 
transmission cycle involving humans, and sylvatic cycle involving 
wildlife (Orozco et  al., 2013), whereas yellow fever virus has 
sylvatic, intermediate/savannah and urban transmission cycles 
(Valentine et al., 2019; Cunha et al., 2020; Gabiane et al., 2022). Of 
note, each transmission cycle may involve different vectors with 
distinct biological properties and behaviors that further complicate 
transmission blocking via vector control program. Worse still, 
many of these infections have incompletely deciphered transmission 
risk factors (Swei et  al., 2020). Due to such complexity, a well-
designed multi-pronged strategy that integrates multiple approaches 
may be  more suitable to control the transmission of VBZ 
and VBIAR.

Environment management approach

The environment management approach was the predominant 
vector control method prior to World War II (WWII). During this 
period, comprehensive understanding on local vector behavior and 
ecology dynamics, along with specifically tailored environmental 
management plans were the prerequisites toward a successful vector 
control (Quiroz-Martinez and Rodriguez-Castro, 2007; Wilson et al., 
2020). The environment approach revolves around behavioral 
manipulation and landscape modification (Figure  1). Behavioral 
manipulation can be  directed at humans, animals or the vectors 
involved (Ault, 1994). For example, community members can 
be trained to practice good sanitary measures around their housing 
compound, set up barrier proofing against mosquitoes (such as usage 
of bed net and mosquito screens), and employs personal protection 
when exploring places with high vector density (Demers et al., 2018; 
Wilson et  al., 2020). Zooprophylaxis can be  employed to distract 
vectors from biting humans (or animals that serve as natural reservoirs 
of the targeted pathogen), by introducing another animal with similar 
or better feeding attractiveness to the targeted vectors (Charlwood 
et al., 1985; Sousa et al., 2001). In this context, the mosquito behavior 
is manipulated. On the other hand, landscape modification revolves 
around temporary and permanent strategies of water management, 
with the goal of removing suitable breeding grounds for the vectors 
(Watsons, 1921). Vector control via environment management has 
been employed against the transmission of malaria (Le Prince and 
Orenstein, 1916; Watsons, 1921; Utzinger et al., 2001; Lindsay et al., 
2002; Ferroni et al., 2012), lymphatic filariasis (van den Berg et al., 
2013; Davis et al., 2021), yellow fever (Le Prince and Orenstein, 1916; 
Soper and Wilson, 1943), African trypanosomiasis (Jackson, 1941; 
Jackson, 1943; Jackson, 1948; Scott, 1966; Hargrove, 2003; Headrick, 
2014), and leishmaniasis (Busvine, 1993; Steverding, 2017) in different 
parts of the world. However, this approach does not work in a “one 
size fits all” manner. For example, the zooprophylaxis approach 
reported promising results in Papua  New  Guinea and São Tomé 
(Charlwood et al., 1985; Sousa et al., 2001). However, this approach 
experienced failure in places such as Ethiopia, the Gambia, and 
Pakistan (Bouma and Rowland, 1995; Ghebreyesus et al., 2000; Bøgh 
et al., 2001). Such contradicting outcomes were due to various factors, 
including the types of vectors targeted in these studies. Indeed, the 
success of zooprophylaxis relies on the prerequisites that the involving 
vectors must be zoophilic and exophilic (outdoor feeders), in addition 
to the adequate segregation between the human and animal living 
spaces (Asale et al., 2017).

A thorough evaluation and understanding on the stakeholders 
and targeted areas, along with long-term engagement (commitment) 
by the government and community members are needed to ensure a 
higher success rate of vector control via environment management. 
However, these can only be achieved with adequate time, financial 
support, and sustainable manpower. In addition, the benefits brought 
by this approach may be shadowed by unpredictable and potentially 
irreversible negative impact cast upon the environment, as exemplified 
by the bush clearing effort in parts of Africa during the 1950s and 
1960s to control the population of tsetse flies (Scott, 1966; Hargrove, 
2003; Pilossof, 2016). Hence, this vector control approach may not 
be an ideal solution for all diseases. Nevertheless, this approach is still 
a valuable tool for a sustained elimination of the targeted vector-borne 
diseases, provided that the approach is designed carefully by taking all 
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TABLE 1 Vector-borne diseases (VBDs) and the respective vectors and animal reservoirs.

VBDs Causative agent Vector Animal reservoir Refs

Malaria Human: Plasmodium falciparum, Plasmodium 

vivax, Plasmodium malariae, Plasmodium 

ovale spp.

Mosquito: Anopheles spp. N/A Warren and Wharton (1963), Vythilingam et al. (2001, 2005, 2006), da Rocha et al. 

(2008), Tan et al. (2008), Sinka et al. (2010), Sinka et al. (2011), Jiram et al. (2012), Sinka 

et al. (2012), Vythilingam (2012), Vythilingam and Hii (2013), Vythilingam et al. (2013), 

Vythilingam et al. (2014), Wong et al. (2015), Lau et al. (2016), Liew et al. (2021), and 

Vythilingam et al. (2021)
Zoonotic: Plasmodium knowlesi, Plasmodium 

cynomolgi, Plasmodium inui, Plasmodium 

simium, Plasmodium brasilianum

Mosquito: Leucosphyrus group of 

mosquitoes

Simian primates

Babesiosis Babesia microti, Babesia divergens, Babesia 

duncani, Babesia venatorum

Tick: Ixodes spp. Cattle, roe deer and rodents Donnelly and Peirce (1975), Spielman (1976), Lewis and Young (1980), Walter and 

Weber (1981), Mylonakis (2001), Gray et al. (2002), and Bonnet et al. (2009)

Dengue Dengue virus (DENV) Mosquito: Aedes aegypti, Ae. 

albopictus, Ae. polynesiensis, Ae. 

scutellaris group

Monkey (sylvatic dengue strains) Siler et al. (1926), Chan et al. (1971), Rosen and Gubler (1974), Gubler (1988), Moore 

and Mitchell (1997), Rigau-Perez and Gubler (1997), Scott et al. (1997), Hotta (1998), 

Tsuda et al. (2002), Gubler et al. (2007), Lambrechts et al. (2010), and Higa (2011)

Yellow fever Yellow Fever virus (YFV) Mosquito: Aedes spp., Haemagogus 

spp.

Monkeys Haddow (1969), Barrett and Higgs (2007), and Young et al. (2014)

Chikungunya Chikungunya virus (CHIKV) Mosquito: Ae. aegypti, Ae. albopictus Primates Niyas et al. (2010) and Kumar et al. (2012)

O’nyong’nyong fever O’nyong’nyong virus (ONNV) Mosquito: Anopheles spp. N/A Shore (1961), Johnson (1988), and Young et al. (2014)

Sindbis fever Sindbis virus (SINV) Mosquito: Culex spp., Culiseta spp. Birds Laine et al. (2004), Young et al. (2014), and Sang et al. (2017)

Zika Zika virus (ZIKV) Mosquito: Aedes spp. Primates Dick (1952), Marchette et al. (1969), and Vorou (2016)

Rift Valley fever Rift Valley fever virus (RVFV) Mosquito: Aedes spp., Culex spp. Ruminants Davies (1975), Davies and Highton (1980), Chevalier et al. (2004), and Sang et al. (2017)

West Nile fever West Nile virus (WNV) Mosquito: Culex spp. Birds Taylor and Hurlbut (1953) and Shirato et al. (2005)

Japanese encephalitis Japanese encephalitis virus (JEV) Mosquito: Culex spp., Ae. togoi, Ae. 

japonicus, Ae. vexans nipponii, An. 

annularis, An. vagus

Birds, pigs (amplifier host) Sucharit et al. (1989), Vythilingam et al. (1994), Vythilingam et al. (1995), Vythilingam 

et al. (1997), Weng et al. (1999), Das et al. (2005), Nitatpattana et al. (2005), van den 

Hurk et al. (2006), Seo et al. (2013), and de Wispelaere et al. (2017)

Murray Valley 

encephalitis

Murray Valley encephalitis virus (MVEV) Mosquito: Culex annulirostris Birds Marshall (1988), Mackenzie et al. (1994), Kurucz et al. (2005), and Floridis et al. (2018)

Tick-borne 

encephalitis

Tick-borne encephalitis virus (TBEV) Tick: Ixodes spp., Dermacentor spp. Small mammals Kozuch and Nosek (1971), Labuda and Randolph (1999), and Biernat et al. (2014)

Kunjin encephalitis Kunjin virus (KUNV) Mosquito: Culex annulirostris Birds Doherty et al. (1963), Kay et al. (1984), Marshall (1988), Hall et al. (2002), and Hall et al. 

(2006)

Colorado tick fever Colorado tick fever virus (CTFV) Tick: Dermacentor andersoni Squirrels, chipmunks, mice Florio et al. (1944), Florio and Miller (1948), Florio et al. (1950), and Emmons (1988)

Lymphatic filariasis Human: Wuchereria bancrofti, Brugia malayi, 

Brugia timori

Mosquito: Anopheles spp., Culex spp., 

Aedes spp., Mansonia spp.

Cats, dogs, monkeys, pangolins (B. 

malayi)

Edeson and Wilson (1964), Cheong et al. (1981), Chiang et al. (1984), Hii et al. (1984), 

Zahedi and White (1994), Kanjanopas et al. (2001), Vythilingam (2012), Muslim et al. 

(2013), Vythilingam et al. (2013), WHO (2013), Aagaard et al. (2015), Mulyaningsih 

et al. (2019), and Nunthanid et al. (2020)
Zoonotic: Brugia pahangi Mosquito: Armigeres subalbatus Cats and dogs

Serous cavity filariasis Mansonella perstans, Mansonella ozzardi Midge: Culicoides spp. N/A Manson (1891)

(Continued)
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TABLE 1 (Continued)

VBDs Causative agent Vector Animal reservoir Refs

Subcutaneous 

filariasis

Loiasis: Loa loa Deer fly: Chrysops spp. N/A Kleine (1915), Connal (1921), Macfie and Corson (1922), Fischer et al. (1997), Lawrence 

(2004), Boussinesq (2006), Kelly-Hope et al. (2017), and Hendy et al. (2018)Mansonella streptocerca Midge: Culicoides spp. N/A

Onchocerciasis / river blindness: Onchocerca 

volvulus

Black fly: Simulium spp. N/A

Sleeping sickness 

(African 

trypanosomiasis)

Trypanosoma brucei rhodesiense, 

Trypanosoma brucei gambiense

Tsetse fly: Glossina spp. Cattle (T. brucei rhodesiense) 

Primates & ungulates (T. brucei 

gambiense)#

Bruce (1895, 1915) and Njiokou et al. (2006)

Chagas disease 

(American 

trypanosomiasis)

Trypanosoma cruzi True bug/kissing bug/triatomine/

reduviid bug: Rhodnius prolixus, 

Triatoma infestans

Small rodents Chagas (1909), Jurberg and Galvão (2006), Rassi et al. (2010), and WHO (2015)

Leishmaniasis Leishmania Phlebotomine sandfly: Phlebotomus 

spp., Lutzomyia spp.

Dogs Swaminath et al. (1942), Mukhopadhyay et al. (2000), and Guerbouj et al. (2007)

Epidemic typhus 

(louse-borne typhus)

Rickettsia prowazekii Human body louse: Pediculus 

humanus humanus

Flying squirrels (sylvatic typhus) McDade et al. (1980), McDade and Newhouse (1986), and Durden (2019)

Rocky Mountain 

spotted fever (RMSF)

Rickettsia rickettsii Tick: Dermacentor variabilis, 

Dermacentor andersoni, 

Rhipicephalus sanguine

Small mammals Kohls (1947) and Ahantarig et al. (2013)

Queensland tick 

typhus (QTT)

Rickettsia australis Tick: Ixodes holocyclus, I. tasmania Bandicoots, rodents Fenner (1946), Domrow and Derrick (1964), Sexton et al. (1991), and Barker and 

Walker (2014)

Scrub typhus Orientia tsutsugamushi Mite: Leptotrombidium spp. Rodents Shirai et al. (1981), Pham et al. (2001), Lerdthusnee et al. (2003), and Weitzel et al. 

(2022)

Tularemia (rabbit 

fever)

Francisella tularensis Tick: Amblyomma spp., Dermacentor 

spp., Haemaphysalis spp., Ixodes spp.

Rabbits, hares, other small rodents Parker et al. (1924), Gurycová (1998), Sjöstedt (2007), Kugeler et al. (2009), Männikkö 

(2011), Maurin et al. (2011), Yeni et al. (2021), and Troha et al. (2022)

Deer fly: Chrysops discalis Deers

Lyme disease Borrelia burgdorferi, Borrelia mayonii Tick: Ixodes spp. Avians, mammals Wilson et al. (1985), Steere (2001), Lo Re et al. (2004), and Couper et al. (2020)

Bubonic plague Yersinia pestis Oriental rat flea: Xenopsylla cheopis Rodents Bacot and Martin (1914), Bacot (1915), Burroughs (1947), and Pollitzer (1954)

Anaplasmosis Anaplasma phagocytophilum Tick: Ixodes spp. Mammals, birds Chen et al. (1994), Ohashi et al. (2005), Katargina et al. (2012), and Bakken and Dumler 

(2015)

Ehrlichiosis Ehrlichia chaffeensis, Ehrlichia ewingii, 

Erhlichia muris eauclairensis

Ticks: Amblyomma spp., Ixodes spp. Mammals Anderson et al. (1993), Lockhart et al. (1997), and Ganguly and Mukhopadhayay (2008)

#Humans are the main reservoir for T. brucei gambiense but this parasite has been isolated from primates and ungulates.
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biological, environmental, legal and socio-economic factors 
into consideration.

Chemical vector control

Chemical vector control strategies have gained popularity, 
especially after the WWII, due to the rapid and potent effect of these 
methods. The development, marketing and application of various 
insecticides has been the mainstream of chemical vector control 
strategy. Attempts to employ chemicals for pest control were recorded 
as early as the 1840s (Table 2). However, the discovery of dichloro-
diphenyl-trichloroethane (DDT) revolutionized the approach to 
control vector population. The insecticidal properties of DDT were 
discovered in 1939 (Mellanby, 1992; Davies et al., 2007). Following the 
halted supply of chrysanthemum-derived pyrethrum from Japan due 
to WWII, DDT became the mainstream chemical player in vector 
control (Wilson et al., 2020), especially after its involvement in the 
successful control of typhus outbreak in Europe (Wheeler, 1946). 
Following this much publicized success against lice, DDT was proven 
to be potent against many other vectors such as the mosquito, tsetse 
fly, sandfly and blackfly (Ismail et al., 1975; Loyola et al., 1990, 1991; 
Roberts and Alecrim, 1991; Casas et al., 1998; Hargrove, 2003; Dias, 
2007; Rijal et al., 2019). Nevertheless, the negative impacts brought by 
DDT to non-targeted organisms and environment were discovered 
after years of mass application. As a result, the application of this 
powerful chemical was discontinued abruptly in the 1970s (Davies 
et  al., 2007). Subsequently, other insecticide groups such as 
organophosphates, carbamates and synthetic pyrethroid gained 

FIGURE 1

Different strategies under the environmental management of vector 
control. This approach revolves around behavioral alteration of 
humans, animals and vectors, as well as landscape modification, to 
create barriers between humans and vectors. Of note, the 
“zooprophylaxis” under “behavioral manipulation” involves the 
introduction of animals that are not pathogen reservoirs, to distract 
the blood-seeking vectors from humans and animals that serve as 
natural reservoirs of pathogens. This method involves behavioral 
alteration of animals and vectors, as indicated by the dotted lines in 
the diagram. On the other hand, landscape modification consists of 
permanent and temporary water management strategies to change 
the breeding environment of vectors.
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popularity in many vector control programs. This has stimulated 
various chemical-oriented vector combating strategies, such as the 
long-lasting insecticidal net (LLIN), indoor residual spraying (IRS), 
as well as outdoor residual spraying (ORS; Bonsall and Goose, 1986; 
Bhatt et al., 2015; Rohani et al., 2020; Tangena et al., 2020; Chaumeau 
et al., 2022).

Various chemicals have been developed and marketed as readily 
available larvicides and adulticides. The high availability and 
instantaneous killing effect of these products have created a dogma 
that the chemicals are the best way forward in vector management 
(Casida and Quistad, 1998; Thomas, 2018). Nevertheless, the biology 
of arthropods plays a critical role in determining the success rate of 
insecticide-mediated vector control programs. For instance, IRS and 
LLIN are not suitable for exophagic and exophilic mosquitoes with 
peak biting time in the early evening (Dolan et al., 1993; Rohani et al., 
1999; Smithuis et al., 2013; Wong et al., 2015). Besides, behavioral 
adaptation of endophilic mosquitoes toward avoidance of insecticide-
treated houses or rapid exit from the insecticide-treated buildings will 
minimize the exposure of these vectors to the insecticides, 
compromising the efficacy of the applied insecticide (Killeen, 2014). 
Importantly, the rampant usage of these chemicals has fuelled 
insecticide resistance in arthropods (Kleinschmidt et  al., 2018; 
Tangena et al., 2020). Moreover, these chemicals may cast negative 
impacts to the ecosystem, although of lower toxicity than DDT. For 
example, synthetic pyrethroids are harmful to aquatic environment 
(Thatheyus and Selvam, 2013; Prusty et  al., 2015), whereas 
organophosphates poisoning remains prevalent among communities 
involved in agricultural industry, despite being classified as 
non-persistent pesticides (Jaipieam et al., 2009; Kaushal et al., 2021). 
Due to these disadvantages, the chemical approach must be considered 
carefully in vector control programs against VBZ and VBIAR, 
particularly those with sylvatic transmission cycle.

Despite the non-specific harm to the environment due to their 
toxicity, the rapid and potent effect of insecticides against different 
vectors grants them the high popularity in pest and vector control. 
Many researchers have investigated ways of accelerating the 
degradation of these chemicals to minimize their adverse effects to the 
environment, while retaining their potency against the pests (Zhang 
and Qiao, 2002; Kaushal et al., 2021; Zhao et al., 2022). Meanwhile, the 
discovery of pyrethrum from chrysanthemum plant continues to 
inspire scientists to find novel compounds that can serve as 
bio-insecticides. For example, bioactive metabolites of Streptomyces 
have been reported to demonstrate good potential of becoming 
bio-insecticide candidates (Amelia-Yap et al., 2022). Such discovery 
has been driven by the need of novel, environment-friendly insecticide 
compounds, following rapid development of insecticide resistance and 
concerns over environment harm cast by chemical-based insecticides.

Vector biocontrol approach

Among the vector control strategies, biocontrol approaches have 
received increasing attention and popularity over the past two 
decades. Therefore, various organisms and strategies have been put 
forward as potential vector biocontrol candidates. In general, 
biocontrol approach explores the potential of using organisms and 
microorganisms to control the vector population (van den Bosch 
et al., 1982; Kamareddine, 2012; Okamoto and Amarasekare, 2012; 

Benelli et al., 2016; Huang et al., 2017; Kwenti, 2017; Thomas, 2018), 
based on the natural predation, pathobiological or parasitism 
relationship between the candidates and the targeted vectors (Table 3). 
Biological manipulation targeting certain vital functions of the vectors 
have been explored as a new approach in vector biocontrol (Gillette, 
1988; Iturbe-Ormaetxe et al., 2011; Benelli et al., 2016). Theoretically, 
the biocontrol approach is more target-specific, thus of lower risk of 
imparting off-target effects to the environment. Prior to the new 
millennium, biocontrol approach was not as widely applied as its 
chemical and environmental counterparts, due to the relative ease of 
implementing the other two approaches (Quiroz-Martinez and 
Rodriguez-Castro, 2007; Shaalan and Canyon, 2009; Vershini and 
Kanagappan, 2014; Vinogradov et al., 2022). Nevertheless, biocontrol 
approach has received increasing attention following encouraging 
results obtained from the mass-application of Wolbachia-infected 
Aedes aegypti, genetically modified mosquitoes, sterile male 
triatomine bugs and tsetse flies. In fact, with the increased prevalence 
of VBZ and VBIAR, vector biocontrol approach may offer novel and 
sustainable strategies to control the transmission of these infections. 
Biological control approach can be categorized based on the natural 
relationship between the biocontrol agents and the respective vectors 
(Figure 2), as elaborated in the next few paragraphs of this review.

Biocontrol via predators

The potential of prey–predator relationship in vector control was 
explored before the era of mass insecticide application. For example, 
attempts to reduce the larval population of Stegomyia calopus (vector 
of yellow fever) in Ecuador with freshwater fish were initiated as early 
as the 1910s (Connor, 1922). Various aquatic and amphibian animals 
were put forward as potential candidates to control mosquito 
population, based on their predatory nature to the targeted pests. In 
this review, emphasis is given to medically relevant examples. Of note, 
most of these predator-driven strategies target the aquatic stages of 
mosquitoes because the mosquito larvae share a relatively confined 
living space with the predators. Thus, the aquatic prey–predator 
encounter does not rely as much on the overlapping active hours of 
the prey and predator, as compared to the flying adults. In addition, 
efficient and persistent predation on the vector offspring will inevitably 
control the vector population, and hence disease transmission (Kumar 
and Hwang, 2006; Walker and Lynch, 2007; Louca et al., 2009; Griffin 
and Knight, 2012).

Among the predators, larvivorous fishes have a prolific history as 
a biocontrol agent against pests, particularly mosquitoes. Larvivorous 
fishes were introduced into over 60 countries in 20th century to 
control vector populations (Gerberich and Laird, 1985). Their 
popularity was attributed mainly to their adaptability to a wide variety 
of natural and man-made water bodies that serve as mosquito 
breeding grounds, as well as their rapid reproduction rates 
(Hadjinicolaou and Betzios, 1973; Motabar, 1978; Chandra et  al., 
2008a). Numerous field trials with these predators demonstrated 
between 70 and 97% reduction of mosquito larvae (Connor, 1922; 
Menon and Rajagopalan, 1978; Fletcher et al., 1992; Kumar et al., 
1998; Chandra et al., 2008a; Louca et al., 2009; Griffin and Knight, 
2012). For instance, Aphanius dispar (Arabian toothcarp) managed to 
suppress the population of Anopheles arabiensis and Anopheles 
gambiae in wells, cisterns and barrels in Djibouti (Louis and Albert, 
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TABLE 3 List of available vector biocontrol agents.

Biocontrol 
agent type

Biocontrol 
agent

Commonly used strains/
species

Remark Limitation Refs

Predator Larvivorous fish Aphanius dispar Aplocheilus spp. Chanda 

nama Colisa spp. Carassius auratus Catla 

catla Cirrhinus mrigala Ctenopharyngodon 

idella Cyprinodontidae Cyprinus carpio 

Danio rerio Gambusia affinis Labeo rohita 

Macropodus cupanus Nothobranchius 

guentheri Oreochromis spp. Oryzias 

melastigma Poecilia reticulata Sarotherodon 

niloticus Tilapia spp.

Natural predator of larvae: reduces number of 

mosquito larvae

A threat to native aquatic fauna. 

Inconsistency in terms of efficacy

Connor (1922), Menon and Rajagopalan (1978), Rupp 

(1996), Walton (2007), Chandra et al. (2008a), Louca et al. 

(2009), Griffin and Knight (2012), and Subramaniam et al. 

(2015)

Dragonfly Nymph and adult Anax immaculifrons 

Brachydiplax sobrina Neurothemis 

fluctuans Orthetrum chrysis Orthethrum 

sabina

Reduces the number of the vector population 

through feeding on immature and adult

Critically affected by water quality, thus 

field application can be limited

Sebastian et al. (1990), Singh et al. (2003), Chatterjee et al. 

(2007), Quiroz-Martinez and Rodriguez-Castro (2007), 

Shaalan and Canyon (2009), Vershini and Kanagappan 

(2014), Vatandoost (2021), and Ramlee et al. (2022)

Larvivorous 

mosquito larva

Psorophora subgenus Psorophora Sabethes 

cyaneus Toxorhynchites spp. Lutzia spp. 

Sabethes spp. Trichoprosopon spp. 

Runchyomyia spp. Culex fuscanus 

Anopheles barberi Tripteroides spp. 

Topomyia spp. Wyeomyia subgenus 

Dendromyia Eretmapodites spp. Aedes 

subgenus Alanstomea Aedes subgenus 

Mucidus

Decreases number of mosquito larvae Spatial limitations for application, 

especially for some sylvatic species. 

Risk of cannibalism among larvivorous 

mosquito larva

Chapman (1974), Lounibos (1980), Focks et al. (1985), Annis 

et al. (1989), Annis et al. (1990), Rawlins et al. (1991), Brown 

(1996), Mogi and Chan (1996), Amalraj and Das (1998), 

Collins and Blackwell (2000), Aditya et al. (2006), Benelli 

et al. (2016), Huang et al. (2017), Donald et al. (2020), and 

Hancock et al. (2022)

Larvivorous 

copepod

Megacyclops spp. Mesocyclops spp. 

Macrocylops spp.

Reduces mosquito larvae density Copepods are affected by water 

temperature, low oxygen content and 

accumulation of toxins in water. Some 

copepods are intermediate host for 

guinea-worm and fish tape worm

Marten et al. (1989), Lardeux et al. (1992), Manrique-Saide 

et al. (1998), Schaper (1999), Vu et al. (2005), Marten and 

Reid (2007), Soumare and Cilek (2011), Mahesh Kumar et al. 

(2012), and Vinogradov et al. (2022)

Beetle Diving beetle (Dystiscidae) Water 

scavenger beetle (Hydrophilidae)

Reduces number of vector immatures Incomplete habitats overlap. 

Alternative prey preference. 

Emigration. Limited research

Juliano and Lawton (1990), Lundkvist et al. (2003), Chandra 

et al. (2008b), Shaalan and Canyon (2009), and Vinogradov 

et al. (2022)

Water bug Backswimmer (Notonectidae) Giant water 

bugs (Belostomatidae) Waterboatmen 

(Corixidae)

Reduces number of vectors: feeds by holding 

its prey with pincers and injecting a strong 

liquefying enzyme into it

Greatly affected by water quality, 

limiting its spatial reach to the vectors. 

Difficulty in mass production

Bay (1974), Murdock et al. (1984), Venkatesan and 

Jeyachandra (1985), Sankaralingam and Venkatesan (1989), 

Aditya et al. (2004), Aditya et al. (2005), Shaalan et al. (2007), 

Shaalan and Canyon (2009), Selvarajan and Kakkassery 

(2019), and Vinogradov et al. (2022)

(Continued)
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TABLE 3 (Continued)

Biocontrol 
agent type

Biocontrol 
agent

Commonly used strains/
species

Remark Limitation Refs

Mite Acari spp. Eustigmaeus johnstoni (affects 

sand fly) Pimeliaphilus plumifer (affects 

true bugs)

Feeds on vector immature. Affects the 

physiological aspects of vector: reduces nymph 

molting rate, reduces adult longevity, increases 

mortality in 3rd–5th instar nymph, reduces 

number of viable eggs laid by infected female

Difficulty is mass-rearing Martinez-Sanchez et al. (2007), Badakhshan et al. (2013), 

and Dinesh et al. (2014)

Spider Web-building spider. Hunting spiders 

(Active and passive hunter)

Feeds on vector immatures and adults Consideration on different biological 

factors to ensure successful 

establishment of control

Ximena et al. (2005), Hadole and Vankhede (2013), Fischhoff 

et al. (2018), and Ndava et al. (2018)

Lizard Gehydra dubia Hemidactylus frenatus 

Tarentola mautitanica (prey: true bug)

Feeds on adults Possible threat to native fauna Castello and Gil Rivas (1980) and Canyon and Hii (1997)

Frog and toad Bufo spp. Euphlycytis spp. Hoplobatrachus 

spp. Polypedates cruciger Ramanella spp.

Predates on eggs of mosquito Can be invasive toward native fauna Raghavendra et al. (2008) and Bowatte et al. (2013)

Bird Scrub jay Chicken Yellow-billed oxpecker 

(Buphagus africanus) Red-billed oxpecker 

(Buphagus erythrorhycus)

Predates on ticks (scrub jay: ticks on deer; 

chicken: ticks on cattle; yellow-billed oxpecker: 

ticks on buffaloes; red-billed oxpecker: ticks 

on ungulate)

Oxpecker could induce wound 

enlargement on the mammalian host 

given that it prefers host with most 

ticks. Assessment of tick population 

needs to be performed before 

introduction programme (scrub jay 

and oxpeckers)

Moreau (1933), van Someren (1951), Mundy and Cook 

(1975), Bezuidenhout and Stutterheim (1980), Isenhart and 

DeSante (1985), Hassan et al. (1991), Mooring and Mundy 

(1996), Weeks (1999), and Plantan et al. (2012)

Rodent Sorex araneus Predates on ticks Not advisable as rodent transmits 

several diseases

Short and Norval (1982)

Parasitism Parasitoid 

arthropods

Tachinid fly (parasitizes true bug) Chalcid 

wasp (parasitizes tick) Ixodiphagus hookeri 

(Encyrtid wasp-parasitizes tick)

Immatures of vector is attacked when the eggs 

of the parasitoid arthropods hatch and feed on 

it

Highly sensitive to insecticides. Mass-

rearing in laboratory can be difficult, 

especially the diet preparation

Mather et al. (1987), Tijsse-Klasen et al. (2011), Wang et al. 

(2014), Kwenti (2017), Wang et al. (2019), and Buczek et al. 

(2021)

Pathogens Nematode Mermithid nematode (Perutilimermis 

culicis, Romanomermis spp., Reeseimermis 

nielseni, Diximermis peterseni, 

Hydromermis churchillensis). Rhabditoid 

nematode (Neoaplectana carpocapsae) 

Stenernematid nematode (ticks)

Parasitic relationship: Reduces number of 

mosquitoes. Causes biological castrations 

through interference in mosquito reproduction

Limited resources on the parasitic 

effects of nematodes against the adult 

mosquitoes. Environmental parameters 

limitations such as temperature, pH, 

salinity, and oxygen level

Petersen et al. (1972), Petersen and Willis (1972), Reynolds 

(1972), Chapman (1974), Mitchell et al. (1974), Levy and 

Miller (1977), Molloy and Jamnback (1977), Zhioua et al. 

(1995), Peng et al. (1998), Samish and Glazer (2001), 

Secundio et al. (2002), and Poinar (2018)

(Continued)
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TABLE 3 (Continued)

Biocontrol 
agent type

Biocontrol 
agent

Commonly used strains/
species

Remark Limitation Refs

Entomopathogenic 

fungus

Beauveria spp. Coelomomyces spp. 

Culicinomyces spp. Entomophthora spp. 

Lagenidium spp. Metarhizium spp. Phytium 

spp. Smittium spp. Fusarium oxysporum

Upon contact to external cuticle, toxins are 

released by the infective spores. Modifies 

physiology of insect: reduces likelihood for 

blood-feeding, survival, and fecundity

Slow killing. Production of zoospore is 

difficult and affected by UV irradiation. 

Some strains can affect non-target 

arthropods. Beauveria bassiana are 

inactive against adults in laboratory 

(Anopheles, Aedes, Culex). 

Entomophthora coronata has been 

reported to cause phycomycosis in man 

and horses. Smittium spp. has reduced 

pathogenicity against mosquitoes

Clark et al. (1966), Clark et al. (1968), Anderson and Ringo 

(1969), Ginsberg et al. (2002), Scholte et al. (2004), Scholte 

et al. (2007), Paula et al. (2011a,b), and Fischhoff et al. (2018)

Non-spore-forming 

unicellular 

eukaryotes

Ciliate: Tetrahymena spp. Flagellate: 

(Crithidia spp. Blastocrithidia spp. 

Eugregarine Ascogregarina culicis 

Psychodiella spp. (found only in sand flies) 

Schizogregarine: Caulleryella spp. 

Helicosporida)

Stunts growth of larvae and increased 

mortality. Effects on host’s biological aspects 

especially on females are more profound in 

nutrient-deficient conditions

Pathogenicity highly depends on 

internal and external conditions. Host-

specific

Corliss (1954, 1960), Chapman et al. (1967), Anderson 

(1968), Barrett (1968), McCray et al. (1970), Reynolds 

(1972), Wu and Tesh (1989), Sulaiman (1992), Mourya et al. 

(2003), Albicócco and Vezzani (2009), Lantova et al. (2011), 

and Lantova and Volf (2012, 2014)

Microsporida Thelohania spp. Nosema spp. Pleistophora 

spp. Stempellia spp.

Swollen thorax and abdomen/ benign 

subcutaneous pale spots on mosquito larvae. 

Reduces life span of infected female mosquito

Most of them cannot be transmitted 

perorally. Spores from different species 

are difficult to identify morphologically

Bacteria Bacillus sphaericus Bacillus thuriengiensis 

Bacillus thuringiensin var. thuringiensin 

Cedecca lapegei Proteus mirabilis Different 

Wolbachia strains

Pathobiological effect against vectors: target is 

killed by an enterotoxin from crystal protein of 

spore. Suppresses late instars and pupae. 

Affects reproductive system. Shortens vectors’ 

life

Inconsistent efficacy Lacey and Inman (1985), Novak et al. (1986), Arredondo-

Jimenez et al. (1990), Hassanain et al. (1997), Robert et al. 

(1997), Stouthamer et al. (1999), Armengol et al. (2006), 

Lacey (2007), Panteleev et al. (2007), Hedges et al. (2008), 

Werren et al. (2008), Brelsfoard and Dobson (2009), Kambris 

et al. (2009), Moreira et al. (2009a), Wiwatanaratanabutr and 

Kittayapong (2009), Bian et al. (2010), Ritchie et al. (2010), 

Ahantarig and Kittayapong (2011), Hoffmann et al. (2011), 

Iturbe-Ormaetxe et al. (2011), Walker et al. (2011), Mousson 

et al. (2012), van den Hurk et al. (2012), Bian et al. (2013), 

Aliota et al. (2016a,b), Dutra et al. (2016), Jeffries and Walker 

(2016), Ahmad et al. (2017), Chouin-Carneiro et al. (2019) 

and Nazni et al. (2019)

(Continued)

80

https://doi.org/10.3389/fmicb.2023.1135977
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


W
o

n
g

 et al. 
10

.3
3

8
9

/fm
icb

.2
0

2
3.113

59
77

Fro
n

tie
rs in

 M
icro

b
io

lo
g

y
fro

n
tie

rsin
.o

rg

TABLE 3 (Continued)

Biocontrol 
agent type

Biocontrol 
agent

Commonly used strains/
species

Remark Limitation Refs

Virus Mosquito-specific densovirus (MDV) 

Cytoplasmic polyhedrosis virus (CPV or 

near reovirus) Nuclear polyhedrosis virus 

(NPV or baculovirus) Deltabaculovirus 

(dipteran-specific NPVs) Mosquito 

Iridescent Virus (MIV or iridovirus) 

Entomopoxvirus (EPV)

Intranuclear protein inclusions in Anopheles 

subpictus. Infections in nuclei in midgut and 

gastric caeca of An. sollicitans. Kills fourth 

instar mosquito larvae

Host-specific. Slow killing, hence, 

studies are being performed by genetic 

modification of the virus to have 

quicker effect on the vectors

Anderson (1970), Warburg and Pimenta (1995), Jehle et al. 

(2006), Szewczyk et al. (2009), Szewczyk et al. (2011)

Vital function 

modification

Sterile Insect 

Technique (SIT)

Tsetse fly Mosquito Genetic suppression strategy by creating sterile 

male vector

Sex segregation of sterile insects in 

mass production. Inconsistent lifespan 

affecting release to the wildlife

Alphey and Andreasen (2002), Phuc et al. (2007), and 

Vreysen et al. (2014)

Release of Insects 

carrying a 

Dominant Lethal 

(RIDL)

Mosquito Release of male vector carrying dominant 

lethal transgene to mate with wild female 

vector will results in the death of progeny due 

to the lethal effect from the transgene

Reduced biological fitness of modified 

insect, affecting release to the wild

Fu et al. (2010), Harris et al. (2012), Carvalho et al. (2015), 

Dong et al. (2018), and O’Leary and Adelman (2020)

Genetic Sexing 

Strain (GSS)

Mosquito New World screwworm fly 

(Agriculture pest)

Genetically engineered male with insecticide 

resistance phenotype. Accidentally “leaked” 

females will be killed by the respective 

insecticide prior to release

Production difficulty Fu et al. (2010) and Dong et al. (2018)

CRISPR/Cas 9 

system

Mosquito Sand fly Manipulation of gene expression to alter 

vectorial capacity, survival and fertility of 

vector

Production difficulty, stability issues Dong et al. (2018)
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1988). However, the application of larvivorous fish has raised several 
concerns. The effect of an alien species to the native fauna and flora 
needs to be considered and monitored carefully. For example, the 
continuous introduction of Gambusia affinis (Western mosquitofish) 
into Greece from 1927 to 1937 resulted in the decline of an endemic 
species Valencia letourneuxi (Corfu toothcarp), due to living resource 
competition between the two species (Economidis, 1995; Economidis 
et al., 2000). Similar adverse effects associated with G. affinis have 
been reported from Australia and United  States (Motabar, 1978; 
Arthington, 1991; Walton, 2007).

Similarly, odonates (particularly the larvae) are ferocious and 
imperative predators of many insects. Members of the order Odonata 
include various dragonflies and damselflies (Shaalan and Canyon, 
2009; Vatandoost, 2021). Given their high predation capacity, 
relatively long aquatic life cycle (usually 1–2 years), and shared aquatic 
larval habitat with mosquito juveniles, odonates are potential vector 
biocontrol candidates. Indeed, field trials demonstrated significant 
reduction of mosquito larvae in water reservoirs by dragonfly nymphs 
(Sebastian et al., 1980, 1990; Chatterjee et al., 2007; Mandal et al., 
2008). For example, a trial release of dragonfly nymphs in Myanmar 

reported a significant decrease of Ae. aegypti population in 2–3 weeks, 
and the effect persisted till the end of the 4-month-long trial (Sebastian 
et al., 1990). Similar findings were reported from India (Mandal et al., 
2008). The odonate adults are agile aerial predators that prey on many 
insects (Vatandoost, 2021). Nevertheless, diet analyses of wild-caught 
dragonfly adults inferred that mosquitoes are rarely taken in large 
numbers by odonate adults (Pritchard, 1964; Sukhacheva, 1996; 
Pfitzner et al., 2015). In addition, the active hours (feeding time) of 
odonate adults (most species are diurnal) do not overlap with the 
active hours of many medically important vectors (Pfitzner et al., 
2015; Vatandoost, 2021). Furthermore, the lifespan of odonate adults 
is relatively short (1–8 weeks). Hence, the potential of odonate adults 
as vector biocontrol agents is not as attractive as their juveniles.

The population of many mosquito vectors can be controlled by 
another mosquito via predation. Larvae of mosquitoes from 13 genera 
prey upon larvae of other arthropods (Harbach, 2007). All members 
of genera Toxorhynchites, Lutzia and Psorophora (subgenus 
Psorophora) are obligate predators of other arthropod larvae (Steffan 
and Evenhuis, 1981; Annis et al., 1990; Rawlins et al., 1991; Collins 
and Blackwell, 2000; Aditya et  al., 2006; Wilkerson et  al., 2021; 

FIGURE 2

Different groups of vector biocontrol approach. Gray dotted lines reflect the characteristics of the Wolbachia method that combines the features of 
biocontrol approaches mediated by pathogens and vital function modification.
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Hancock et al., 2022), whereas larvae of Sabethes, several species of 
Culex and Anopheles are facultative predators (Lounibos, 1980; Mogi 
and Chan, 1996; Shaalan and Canyon, 2009; Hancock et al., 2022). Of 
these, Toxorhynchites has received relatively high research attention, 
mainly because the adult is non-hematophagous (blood feeding), 
hence not imposing risk as pest or disease vector (Shaalan and 
Canyon, 2009). Previously, the release of Toxorhynchites amboinensis 
larvae led to a 45% reduction of Ae. aegypti population in urban areas 
of New Orleans (Focks et al., 1985). Similar success was reported with 
T. splendens (Annis et al., 1989; Aditya et al., 2006) and T. moctezuma 
(Rawlins et  al., 1991). Apart from their direct effect via ferocious 
predation, the presence of Toxorhynchites larvae can delay the prey’s 
developmental time and increase the prey’s mortality. This is probably 
due to the stress experienced by the prey in the presence of the 
predator, or the predator-derived kairomones (Andrade, 2015; 
Zuharah et al., 2015). Nevertheless, the mechanism behind this effect 
has yet to be  completely deciphered. Despite the earlier reported 
success, the application of Toxorhynchites as biocontrol agent has been 
hindered by several factors. Firstly, sylvatic species such as T. rutilus 
are not well adapted to urban environment, which restricts its 
application despite the good predation capacity (Focks et al., 1983). 
Nevertheless, a more recent surveillance demonstrated the presence 
of T. rutilus in urban areas, albeit of low numbers (Wilke et al., 2019). 
Indeed, this discovery has reignited the hope of applying 
Toxorhynchites as a vector biocontrol agent in urban areas (Schiller 
et al., 2019). Besides, the slow population expansion of Toxorhynchites 
is another challenge that needs to be overcome. Under the natural 
settings, Toxorhynchites produces few offspring, which limits their 
efficacy and capacity in vector biocontrol. This is further aggravated 
by the cannibalistic nature of Toxorhynchites immatures, especially 
under food-restricted conditions (Donald et al., 2020).

Copepods of genera Megacyclops, Mesocyclops, and Macrocyclops 
are crustaceans that feed primarily on the first instar of mosquito 
larvae. Copepods can adapt to a large variety of water bodies and 
micro aquatic habitats such as phytotelmata (structures of terrestrial 
plants that allow formation of water pockets). Such high adaptability 
allows copepods to be explored as vector biocontrol agents in different 
settings (Vinogradov et al., 2022). In fact, the discovery of copepod’s 
potential in vector biocontrol was rather accidental, following an 
observed reduction of Ae. aegypti and Ae. polynesiensis larvae from 
ovitraps set in a study site at Tahiti, after unintentional introduction 
of copepods to the ovitraps (Riviere and Thirel, 1981). Subsequently, 
field trials from different regions confirmed the effectiveness of 
copepods in various water bodies (including drains and land crab 
burrows) against larvae of medically important mosquitoes, 
particularly of genera Aedes and Ochlerotatus (Lardeux et al., 1992; 
Kay et al., 2002). Importantly, the introduced copepods can adapt and 
colonize nearby water bodies, allowing sustained effort of mosquito 
larval control (Kay et al., 2002). Although being used mainly against 
Aedes spp., copepods have been used against other vectors such as 
Anopheles spp. and Culex spp. (Riviere and Thirel, 1981; Marten et al., 
1989; Lardeux, 1992; Lardeux et al., 1992; Vu et al., 1998; Schaper, 
1999; Marten et al., 2000; Kay et al., 2002; Zoppi de Roa et al., 2002; 
Soumare and Cilek, 2011). Despite their ability to adapt to different 
sizes of water bodies, copepods are particularly sensitive to 
temperature changes, chlorine content, low oxygen levels, and 
presence of toxin within the water (Brown, 1996; Vinogradov et al., 
2022). Moreover, it is important to highlight that several species of 

copepods serve as the intermediate hosts of medically important 
parasites such as Drancunculus medinensis (guinea-worm) and 
Dibothriocephalus latus/ Diphyllobothrium latum (fish tape worm; 
Marten and Reid, 2007; Vinogradov et al., 2022). Therefore, careful 
consideration and planning must be done prior to application of this 
method. For example, non-vector copepod species can still 
be considered as biocontrol agents in certain parts of Africa that are 
endemic for dracunculiasis (Marten and Reid, 2007).

Water bugs, such as the backswimmers (family: Notonectidae), 
giant water bugs (family: Belostomatidae) and waterboatmen (family: 
Corixidae) are important predaceous insects under the order 
Hemiptera (Shaalan and Canyon, 2009). The potential of Anisops 
assimilis (common backswimmer) to control mosquito population 
was reported officially for the first time in 1939, following the 
observation that the backswimmer-harboring water containers were 
void of mosquito larvae, in contrast to the surrounding backswimmer-
free water bodies that were infested with active mosquito larvae 
(Graham, 1939). Although field and laboratory trials using water bugs 
to control mosquito larvae exhibited promising results, they are hardly 
utilized as biocontrol agents due to the high cost and difficulty of mass 
rearing, as well as logistical challenges (Bay, 1974; Murdock et al., 
1984; Venkatesan and Jeyachandra, 1985; Sankaralingam and 
Venkatesan, 1989; Aditya et  al., 2004, 2005, 2006; Selvarajan and 
Kakkassery, 2019).

Predatory coleopterans from the families Dytiscidae (diving 
beetle) and Hydrophilidae (water scavenger beetle) are commonly 
found in ground pools, permanent and temporary ponds (Shaalan and 
Canyon, 2009). Despite the lower research interest, several studies on 
the predatory effect of beetles on mosquito reported promising results 
(Nilsson and Soderstrom, 1988; Juliano and Lawton, 1990; Nilsson 
and Savensson, 1994; Aditya et  al., 2006; Chandra et  al., 2008b). 
However, the efficacy of coleopterans as vector biocontrol agents may 
be compromised by their diet preference (when mosquitoes are not 
the only insects presented), species emigration and cannibalism 
(Juliano and Lawton, 1990; Lundkvist et al., 2003).

Currently, the potential of predators discussed above has not been 
thoroughly explored, and most of the reported studies focused on 
mosquitoes (Kim and Merritt, 1987; Werner and Pont, 2003). Notably, 
several natural predator-based biocontrol strategies have been 
attempted against non-mosquito vectors, notably the parasitic 
VBIAR. For example, Tarentola mautitanica, an insectivorous lizard, 
has been proposed as a candidate to control the population of 
Triatoma infestans (kissing bug) that spreads Chagas disease (Castello 
and Gil Rivas, 1980). Mites and spiders have been suggested as 
biocontrol agents of Phlebotomus spp. (sand fly) that transmits 
leishmaniasis (Dinesh et al., 2014).

Pathogenesis-mediated vector 
biocontrol

Besides predatory animals, pathogens have been proposed as 
biocontrol agents against vectors. In fact, a number of these pathogens 
have been applied in the field. These candidates vary in sizes and 
behavior, encompassing both prokaryotic and eukaryotic organisms. 
The nematodes are probably the largest candidates on the list. The 
mermithids are members of an endoparasitic nematode family. These 
nematodes are highlighted as potential vector biocontrol candidates, 
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due to their parasitic relationship with various arthropods and several 
arachnids (Stabler, 1952; Chapman, 1974). The hatched pre-parasitic 
juveniles of mermithid nematodes aggressively infect mosquito larvae 
(usually the early instars) by paralyzing the targeted hosts, followed by 
penetration of cuticular wound to establish the infection (Sanad et al., 
2017). Once infected, the mermithid parasites take over the cellular 
function regulatory authority of their hosts. If infection occurs during 
the early larvae instar, the parasitized mosquito larvae are halted from 
pupating as the infecting parasites develop within (Stabler, 1952; 
Allahverdipour et al., 2019). When the nutrient resource supplied by 
the infected host is exhausted, the nematode, now at its third-stage 
juvenile post-parasite stage, emerges out of the host, which results in 
the death of the host (Stabler, 1952). The emerged post-parasite stage 
then molts into the free-living adult to reproduce and lay eggs. Multiple 
mermithids may repeatedly infect an already infected larva, giving rise 
to a phenomenon called superparasitism (Sanad et al., 2017). Different 
research groups have demonstrated the mosquito larvicidal effect of 
several mermithids such as Romanonermis iyengari (against Ae. 
aegypti, Ae. albopictus, An. gambiae, Anopheles culicifacies, Anopheles 
stephensi, Anopheles subpictus, Armigeres subalbatus, Culex pipiens, 
Culex quinquefasciatus, Culex sitiens, Culex tritaeniorhynchus, and 
Mansonia annulifera), Diximermis peterseni (against Anopheles 
crucians, Anopheles quadrimaculatus, and Anopheles punctipennis) 
and Strelkovimermis spiculatus (against Aedes albifasciatus and Cx. 
pipiens; Petersen and Willis, 1974; Levy and Miller, 1977; Poinar and 
Camino, 1986; Santamarina Mijares and Perez Pacheco, 1997; Paily and 
Balaraman, 2000; Sanad et al., 2013, 2017; Abagli and Alavo, 2019; 
Abagli et al., 2019). However, the lack of culturable mermithids hinders 
mass application of this nematode as a biocontrol agent (Kendie, 2020).

Entomopathogenic fungi are another group of insect pathogens 
that have been explored as a potential vector biocontrol agent 
(Chapman, 1974). Fungi of genera Beauveria and Metarhizium have 
been shown to exert high mortality to medically important mosquitoes 
of genera Anopheles, Culex and Aedes (Blanford et al., 2011; Accoti 
et al., 2021). The fungal infection exhausts the mosquitoes due to 
increased metabolic rate and reduces their frequency of taking blood 
meals. As a result, the lifespan, oviposition rate, as well as the chance 
of infected mosquitoes to acquire and transmit medically important 
pathogens reduces greatly (Blanford et al., 2011). Interestingly, the 
fungi have been reported to affect both the larval and adult stages of 
mosquitoes (Blanford, 2005; Blanford et  al., 2011). However, the 
virulence of fungi is influenced by various factors (Scholte et al., 2007; 
Paula et al., 2011b; Alkhaibari et al., 2017). For example, most fungi 
may lose their potency after a few months (Scholte et  al., 2007). 
Besides, the lethality of entomopathogenic fungi is influenced by the 
nutritional state of the targeted vector (Paula et  al., 2011b). 
Furthermore, different forms of fungi may demonstrate different 
potency against the mosquitoes. For instance, Ae. aegypti is more 
susceptible to the blastospores of Metarhizium, whereas Cx. 
quinquefasciatus is more susceptible to the conidia forms. On the 
other hand, An. stephensi is susceptible to both forms of Metarhizium 
(Alkhaibari et al., 2017). Notably, it is difficult to culture and mass 
produce fungi (Accoti et  al., 2021). More importantly, these 
entomopathogenic fungi have been reported to cause symptomatic 
infections in immuno-compromised humans, raising safety concerns 
regarding this vector biocontrol agent (Henke et al., 2002; Tucker 
et  al., 2004; Lara Oya et  al., 2016; Goodman et  al., 2018). These 
drawbacks render fungi a less attractive vector biocontrol option.

Bacillus thuringiensis var. israelis (Bti) is a bacterium commonly 
used as a household larvicide. This bacterium produces delta 
endotoxins (known as the “Cry” or “Cyt” toxins) during its 
sporulation, which are potent insecticide proteins (Tabashnik, 1992; 
Wu et al., 1994; Ben-Dov et al., 1995). The toxin has been demonstrated 
to kill larvae of Ae. aegypti and Ae. albopictus effectively, by disrupting 
the osmotic balance of the midgut epithelial cells upon ingestion 
(Chapman, 1974; Promdonkoy and Ellar, 2003; Lacey, 2007). 
Importantly, Bti does not pose direct ecological or health threats as it 
does not affect any off-target organisms including fishes, birds, 
mammals, and many other insects (Fayolle et al., 2015; Poulin and 
Lefebvre, 2018; Poulin et al., 2022). Nevertheless, research is underway 
to evaluate the indirect impact of Bti application, particularly its 
impacts on local ecological systems (Novak et al., 1986; Arredondo-
Jimenez et al., 1990; Kumar et al., 1998; Ritchie et al., 2010; Fayolle 
et al., 2015; Poulin and Lefebvre, 2018; Poulin et al., 2022). Resistance 
against Cry toxin has yet to be reported. Nevertheless, development 
of tolerance toward some of the Cry toxins (Cry4Aa and Cry11Aa) 
was reported in a population of Ae. sticticus (Tetreau et al., 2013).

Viruses, such as the mosquito-specific densoviruses (MDV) may 
be used against the vectors too (Chapman, 1974). MDVs are highly 
infectious to its targets due to its capability of establishing vertical and 
horizontal transmission (Johnson and Rasgon, 2018). Upon infection, 
MDV causes a plethora of pathogeneses on their targets, which lead 
to apoptosis of infected larvae (Roekring and Smith, 2010), and 
shortening of adult lifespan (Suchman et  al., 2006). Interestingly, 
MDV has been shown to reduce the viral load of type II DENV in Ae. 
albopictus (Wei et  al., 2006). Besides, MDV can be  genetically 
modified to cater for different conditions of vector control. For 
instance, a recombinant Ae. aegypti densovirus (AeDNV) expressing 
BmK IT1(an insect-specific toxin) was demonstrated to exert higher 
pathogenicity to Ae. albopictus (Gu et  al., 2010). Despite these 
advantages, large-scale implementation of MDV-mediated vector 
biocontrol strategy may not be easy due to the relatively low stability 
of viral particles outside the hosts (Johnson and Rasgon, 2018). 
Nevertheless, advancement of technology may make this method 
more feasible for mass application in the future.

The potential vector biocontrol candidates above share a drawback 
that need to be overcome for mass application. It remains uncertain 
how sustainable these biocontrol agents can exist in the environment 
for a long-lasting controlling effect against the vector population. This 
is especially crucial for VBZ and VBIAR with complex and sporadic 
transmission profiles. Besides, candidates with healthcare risk 
concerns should not be employed until all doubts are scientifically 
cleared. Nevertheless, biocontrol candidates such as Bti and 
entomopathogenic fungi have been commercialized recently (Akutse 
et al., 2020).

Manipulation of vital biological 
functions

Alternative approaches that revolve around the manipulation of 
vector’s biology have been explored to develop a strategy that preserves 
the relatively target-specific nature of most pathogenesis-mediated 
biocontrol approaches while overcoming the drawbacks faced by these 
strategies. Hence, genetic manipulation of vector’s vital functions has 
gained increasing research attention. Sterile Insect Technique (SIT) is 
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one of the successful examples of such approach (Baumhover et al., 
1955; Lofgren et al., 1974; Patterson et al., 1977). In the SIT approach, 
the male vector is made infertile via radiation exposure or 
chemosterilization (Serebrovsky, 1940; Baxter, 2016). Subsequently, 
when these sterile males are released into the wild and mate with 
females, non-viable offspring are produced. As a result, the targeted 
vector population is reduced. This technique was successfully 
employed to control the infestation of the New World screwworm fly 
(Cochliomyia hominivorax) in the United States, whose maggots are 
capable of causing myiasis with severe tissue damages (Baumhover 
et al., 1955). SIT worked well against C. hominivorax because each 
female fly mates only once. As SIT-modified insects do not produce 
any offspring, the success of this technique depends on the persistent 
release of sterile male specimens to compete with the fertile wild type 
(WT) males for mating. Subsequently, this technique was attempted 
against mosquitoes in the 1970s, which yielded encouraging results. 
The population of Anopheles albimanus in El Salvador was reduced by 
99% after implementing this technique for 5 months (Lofgren et al., 
1974). Several mosquito-targeting field trials were performed in 
Burkina  Faso, France, India, Myanmar, and United  States. The 
experimented mosquitoes were Ae. aegypti, An. gambiae, An. 
quadrimaculatus, Cx pipiens, and Cx quinquefasciatus (Weidhaas et al., 
1962; Dame et al., 1964; Laven, 1967; Davidson et al., 1970; Patterson 
et al., 1970; Curtis, 1976; Grover et al., 1976; Patterson et al., 1977; 
Curtis et  al., 1982). These field trials yielded mixed results. For 
example, in India, the population of targeted mosquitoes was not 
effectively controlled with this approach, due to the immigration of 
mated WT females from the locations adjacent to the trial sites. In 
addition, political turmoil significantly affected the execution of this 
approach, which confounded the success of this strategy (Curtis, 1976; 
Curtis et al., 1982).

Despite the reported success, SIT is accompanied with several 
drawbacks. Firstly, there are concerns among the public members 
regarding the off-target effect of chemosterilizing agents to the 
environment (Bartumeus et  al., 2019). Laboratory bioassays on 
non-target predators such as the common house spider (Achaeranea 
tepidariorum) revealed the significant reduction in fertility among the 
spiders that consumed the chemosterilized mosquitoes (Bracken and 
Dondale, 1972). Nevertheless, this issue can be overcome via simple 
bulk detoxification using acid and alkaline, which eliminates residues 
of chemosterilizing agents without compromising the efficacy of this 
method (Sharma, 1976). Secondly, the difficulty to precisely segregate 
male and female specimens in the insect colony implies the possibility 
of sterilizing female specimens by mistake (Sharma et  al., 1976; 
McInnis et  al., 1994; Parker, 2005). Accidental release of these 
mistakenly treated females will result in mating competition with the 
fertile WT females. As a result, the dispersal of sterile males will 
be  compromised. In addition, radiation used in sterilization will 
significantly shorten the lifespan of these irradiated insects, which 
compromises the success of this technique in the field (Alphey and 
Andreasen, 2002). To overcome this issue, the concept of homozygous 
female-specific lethal genes has been applied, giving rise to techniques 
such as Genetic Sexing Strain (GSS) and Release of Insects carrying a 
Dominant Lethal Gene (RIDL; Franz, 2005; Fu et al., 2010; Harris 
et al., 2011; Carvalho et al., 2015; O’Leary and Adelman, 2020). RIDL 
enables selection of the developmental stage corresponding to the 
manifestation of engineered lethal traits. The insertion of a repressible 
dominant lethal transgene into the mosquito genome confers 

conditional fatality (such as tetracycline-dependent survival) to its late 
juvenile stage. In this approach, the engineered male mosquitoes are 
released to mate with the WT females. Instead of completing 
metamorphosis, the produced juveniles that carry a copy of the 
engineered gene will die in the absence of tetracycline (Phuc et al., 
2007). Indeed, field trials of Ae. aegypti OX513A in Cayman Islands 
and Brazil demonstrated strong suppression of the targeted mosquito 
population (Harris et al., 2012; Carvalho et al., 2015). In addition, 
female-specific flightless phenotype and DENV-susceptible phenotype 
that are genetically engineered in Ae. aegypti have improved the 
gender segregation and impeded vector competence to DENV, 
respectively (de Valdez et  al., 2011; Buchman et  al., 2020). These 
techniques minimize the “leakage” of “accidentally treated females” 
into the wild (Franz, 2002; Calkins and Parker, 2005; Franz, 2005; 
Koskinioti et  al., 2021). In general, the attempts to overcome the 
shortcomings of SIT revolve around gene editing, which was highly 
challenging decades ago. However, the discovery and establishment of 
CRISPR/Cas9 system allows gene editing to be performed much more 
easily (Gupta et al., 2019). This molecular advancement facilitates the 
application of SIT against different vectors.

Besides facilitating SIT in vector biocontrol approach, CRISPR/
Cas9 can be applied to genetically design arthropod vectors that are 
not receptive to pathogens transmitted by them under normal 
circumstances. For example, the knock-out of FREP1 gene has been 
shown to reduce the susceptibility of An. gambiae to Plasmodium spp. 
(Dong et al., 2018). Gene drive is another genetic engineering concept 
that has enjoyed a great push in vector control research following the 
establishment of CRISPR/Cas9 technology. The CRISPR/Cas9- 
integrated gene drive method allows the targeted genes to 
be propagated and inherited much more rapidly than the Mendelian 
rates, resulting in fast replacement or displacement of the targeted 
traits in a population (Leung et al., 2022). Recently, this technology 
has been applied on An. gambiae, resulting in a successful halting of 
Plasmodium development within the genetically modified mosquitoes, 
as well as compromising the survival of the homozygous transgenic 
females (Hoermann et  al., 2022). In addition, other gene editing 
methods, such as the application of homing endonuclease genes 
(HEG) have been explored to control the malaria vectors (Windbichler 
et  al., 2007; Deredec et  al., 2011). Nevertheless, such genetically 
engineered mosquitoes suffered compromised fitness that hindered 
their sustainable establishment in the wild. This drawback is in fact a 
major concern, as modification of one gene may lead to unexpected 
outcomes on the experimented organism (Resnik, 2014, 2017). If the 
mutants with unexpected and undesirable traits (following gene 
editing) thrive in the wild, the ecosystem may be threatened in an 
unprecedented manner. Nevertheless, the successful application of 
vital function modification to control a myiasis causative agent with 
wild and domestic animals as reservoirs reflects the great potential of 
this approach to control VBZ and VBIAR. Importantly, techniques 
stemming from this approach should be  tested, evaluated, and 
validated thoroughly before mass application.

Wolbachia as a novel vector 
biocontrol approach

As elaborated earlier, the pathogenesis-mediated biocontrol 
agents are arthropod pathogens that shorten the lifespan of vectors, 
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whereas genetic manipulation of arthropod vital functions works by 
halting the vectors’ population expansion. The application of 
Wolbachia in vector biocontrol is a unique approach that combines the 
characteristics of both approaches. Wolbachia are maternally 
inherited, gram-negative, obligate intracellular endosymbiotic bacteria 
found in many arthropods such as mites, spiders, scorpions and 
isopods (Werren et al., 2008). Wolbachia are found in various organs 
and tissues within the infected arthropod (Werren, 1997; Werren 
et al., 2008). Besides, medically important filarial nematodes carry 
Wolbachia as well (Lau et al., 2015).

Approximately 60% of the insects are positive for Wolbachia. 
Interestingly, Ae. aegypti is Wolbachia-free under normal condition 
(Kittayapong et al., 2000; Rasgon and Scott, 2004). In the early 2000s, 
Xi et al. (2005) successfully performed an experimental infection on 
Ae. aegypti with Wolbachia wAlbB strain (henceforth wAlbB) derived 
from Ae. albopictus. Subsequently, this finding was explored further, 
with trial release of wAlbB-infected Ae. aegypti in several locations 
reported increased resistance of the vector to DENV, ZIKV, and 
CHIKV (Bian et al., 2010; Aliota et al., 2016a,b; Chouin-Carneiro 
et al., 2019; Nazni et al., 2019). Meanwhile, the infection of Ae. aegypti 
by another more virulent strain of Wolbachia (wMelPop strain) has 
been shown to reduce the number of Ae. aegypti significantly (Rasgon 
et al., 2003; Ritchie et al., 2015). These findings highlight the potential 
of Wolbachia as a tool in vector control program. Therefore, the 
mechanisms behind the effects cast by Wolbachia on the infected 
mosquitoes have received increasing research attention over the past 
two decades.

Wolbachia have evolved and developed various mechanisms to 
manipulate the host’s cellular biology toward their survival advantage, 
namely cytoplasmic incompatibility (CI), parthenogenesis, 
feminization, and male killing (O'Neill et al., 1997; Werren, 1997; 
Werren et al., 2008). CI happens when a Wolbachia-infected male 
mates with either a Wolbachia-negative female or a female infected 
with a different strain of Wolbachia, resulting in non-viable progeny 
(Werren, 1997). This principle forms the basis of “Incompatible Insect 
Technique (IIT)” that drives many Wolbachia-mediated biocontrol 
programs against Ae. aegypti in China, the United  States, and 
Singapore (Ritchie et al., 2015; Mains et al., 2019; Zheng et al., 2019; 
Soh et al., 2021). Parthenogenesis refers to the development of eggs 
into progenies without fertilization, whereas feminization involves 
development of genetic male into female. Wolbachia has been shown 
to induce feminization in several crustaceans and insects (Werren, 
1997; Cordaux et al., 2001; Kageyama et al., 2002; Negri et al., 2006; 
Werren et  al., 2008; Asgharian et  al., 2014; Scola et  al., 2015). 
Meanwhile, male killing happens when the affected males experience 
a significantly shorter lifespan than the affected females. CI, 
parthenogenesis, feminization, and male killing trigger disruption of 
gender ratio in the affected population toward female dominance. 
Using these strategies, Wolbachia manipulates the population 
structure of the infected arthropods, which facilitates the spread and 
establishment of Wolbachia in the wild (Hoffman and Turelli, 1997; 
Werren, 1997; Werren et  al., 2008). Coupled with the reported 
resistance to virus infection by the Wolbachia-infected mosquitoes, 
the establishment of Wolbachia in the vector population may suppress 
the transmission of these pathogens to humans. In fact, countries such 
as Malaysia, Indonesia, Laos, Vietnam, Sri  Lanka, Australia, Fiji, 
Vanuatu, Brazil, Colombia, and Mexico have released Wolbachia 
-infected female Ae. aegypti to establish a stable Wolbachia-infected 

mosquito colony in the wild (Nazni et  al., 2019; World Mosquito 
Program, 2022). Besides mosquitoes, Wolbachia has been explored for 
the control of black flies and sand flies. However, difficulties in colony 
maintenance of black flies and sand flies, coupled with the relatively 
low Wolbachia load post-infection in these insects giving rise to the 
undetectable CI among these insects. This implied the unsuitability of 
Wolbachia for the control of these non-mosquito vectors. Therefore, 
the versatility of the Wolbachia biocontrol approach remains to 
be validated (Crainey et al., 2010; Bordbar et al., 2014).

Despite the promising advantages of Wolbachia-mediated vector 
biocontrol approach, this method has several shortcomings and 
concerns. Similar to SIT, the Wolbachia method faces the issue of 
accidental “female leakage” that may compromise the efficacy of 
IIT-driven vector control strategy. For instance, IIT that incorporates 
Wolbachia can be dampened by mass production. Accidental release 
of Wolbachia-infected females during field trial could affect the 
population suppression goal. Nevertheless, this may not be considered 
as an absolute disadvantage, as Wolbachia-infected mosquitoes have 
been claimed to be  less susceptible to the medically important 
pathogens that they carry (Bian et al., 2010; Nazni et al., 2019). To 
date, the long-term impact of Wolbachia on the targeted mosquitoes 
has not been well studied, partly due to the relatively short discovery 
history of this vector biocontrol candidate. Furthermore, the 
interaction dynamics among the arthropod host, Wolbachia, and the 
medically important pathogens carried by the arthropod remains to 
be fully deciphered. Nevertheless, few studies on this topic revealed 
interesting findings. For example, a previous study demonstrated that 
the Wolbachia-infected Culex tarsalis became more susceptible to 
West Nile Virus, with much higher viral load post-infection, as 
compared to the Wolbachia-free specimens (Dodson et al., 2014). 
Since Wolbachia has been shown to interfere with interactions 
between the arthropod host and the medically important pathogens 
that it carries, it is of utmost importance to consistently assess the 
efficacy and impact of Wolbachia deployed in vector control programs. 
Besides, the wMelPop-related strains have been demonstrated to 
be temperature-sensitive, raising doubts about the sustainability of 
this approach in areas with higher temperature (Ulrich et al., 2016; 
Ross et al., 2017). Succinctly, these concerns deserve more research 
attention despite the higher research difficulty, where longitudinal 
study covering adequately long duration is needed.

Besides, concerns have been raised regarding the possibility of 
Wolbachia to cause pathology to humans. Although Wolbachia can 
be found in mosquito salivary glands, the bacteria are not available in 
saliva, as backed by polymerase chain reaction (PCR) screenings (Wu 
et al., 2004; Moreira et al., 2009b). In addition, Wolbachia are larger 
than the mosquito salivary duct (Moreira et al., 2009b). Hence, it is 
relatively unlikely for the bacteria to be transmitted to humans via 
mosquito bites. Moreover, human volunteers exposed to Wolbachia-
infected mosquitoes over extended period of time revealed absence of 
antibody specific to Wolbachia in their blood (Popovici et al., 2010). 
Of note, responses to Wolbachia or Wolbachia-derived antigens by 
other key players in human immune system remained unclear. Based 
on currently available information, Wolbachia application has been 
considered as a relatively safe vector biocontrol approach. There are 
environmental concerns regarding this approach as well. In fact, the 
major environmental concern is extrapolated from the public health 
concern, where Wolbachia may spread to other organisms across the 
mosquito-related food chain in the ecosystem. This may disrupt the 
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ecosystem dynamics, hence threatening the biodiversity in the affected 
environment. Fortunately, Wolbachia has been proven to be unable to 
establish itself throughout the mosquito-associated food chain 
(Popovici et al., 2010). Notably, natural cross-species infestation of 
Wolbachia is extremely rare (Werren et al., 1995; Werren, 1997), let 
alone a sustained establishment that allows vertical transmission 
(Hoffman and Turelli, 1997; Turelli, 2010).

Importantly, Wolbachia vector control approach may work well 
against a disease transmission that involves only one species of 
arthropod as vector. The effects of Wolbachia infection varies with 
different species of vectors. Hence, infections with multiple vectors, or 
those with incomplete list of vectors cannot employ this method as 
vector control program. The clearance of one vector by the bacteria 
may allow other vectors to thrive, rendering the disease control futile. 
Knowlesi malaria is an example of VBZ with multiple vectors, and the 
list of knowlesi malaria vectors is expanding for the moment (Ang 
et  al., 2020; Jeyaprakasam et  al., 2020; Pramasivan et  al., 2021; 
Vythilingam et  al., 2021). Apart from this, the actual efficacy of 
Wolbachia approach to reduce disease transmission has been 
questioned. Over the past few years, an increasing number of countries 
have participated in the release of Wolbachia-infected Ae. aegypti. 
Nevertheless, many of these countries still experience increased 
burden of dengue transmission after persistent release of these 
mosquitoes (Kementerian Kesihatan Malaysia, 2022). The difficulty to 
establish stable Wolbachia colony within the environment, stability 
and sustainability of this method in the field, and relative attractiveness 
of Wolbachia-infected mosquitoes during mating may contribute to 
the challenges faced by this approach to secure a more obvious disease 
transmission chain breakage in these countries. Obviously, more 
investigations are needed to better understand this approach, and its 
practicality, as well as its sustainability in the field.

Prospects and challenges of vector 
control against VBZ and VBIAR

The control and eradication of VBZ and VBIAR hardly rely on a 
single approach of vector management, due to the complexity of their 
transmission circuit. Hence, the application of integrated vector 
management (IVM) that incorporates multiple vector control 
approaches may increase the success rate of breaking the transmission 
circuit of these infections (WHO, 2012). To implement a successful 
and sustainable IVM, the components of IVM triads (biological, 
environmental, and chemical) should be covered during the designing 
of the vector control plan (Figure 3). Adaptation and customization of 
vector control strategies according to the targeted locations are 
required to ensure high success. For example, the landscape of a 
targeted location can be modified to facilitate the implementation of 
vector biocontrol strategies. At the same time, environment-friendly 
chemicals that can promote biocontrol strategy (such as predator 
attractants and pheromone-like substances) can be applied. IVM is a 
multi-prong approach against the vectors, where the selected strategies 
may complement each other to bring down the vector population. 
Moreover, IVM may minimize the risk of complete failure faced by a 
vector control program, as other components in the IVM may 
continue to work normally when one component is breaking down. 
For instance, ORS (chemical approach) may be completely stopped 
during the total lockdown of sudden onset (as exemplified by the 
COVID-19 pandemic-triggered lockdown in many countries). If the 

affected area has a well-constructed and maintained drainage system 
that hampers oviposition by the vectors (environmental management 
approach), the vector population in that area may not increase after 
ORS is brought to an abrupt halt. In short, multiple components 
should be explored to synergize the vector control effort.

While promoting IVM against VBZ and VBIAR, we should not 
overlook other co-existing factors in the surrounding that may 
confound the outcomes of the vector control strategy. For example, 
knowlesi malaria is one of the most prevalent VBZ in Southeast Asia, 
with Malaysia serving as the epicenter of transmission. Unlike 
P. falciparum that has developed resistance strategies against 
artemisinin (the current first line anti-malarial treatment; Fairhurst 
and Dondorp, 2016; Lee et al., 2021), P. knowlesi remains susceptible 
to artemisinin and other anti-malarials in the market (Fatih et al., 
2013; van Schalkwyk et al., 2017). Nevertheless, this zoonotic parasite 
can cause hyperparasitaemia and life-threatening pathogenesis in 
humans (Lee et al., 2013; Singh and Daneshvar, 2013). Hence, various 
strategies have been considered to control and eliminate this 
infection, including the vector management. The potential of different 
chemical-based approaches has been investigated (Rohani et  al., 
2020), and IVM against knowlesi malaria transmission has been 
proposed (Lee et al., 2022). Currently, it is challenging to implement 
an all-rounded IVM against knowlesi malaria in many hyperendemic 
areas as the vector profile of this VBZ has yet to be  completely 
deciphered. As mentioned earlier, environment management 
demands a thorough evaluation of vector profile, transmission 
dynamics and socio-economic activities in the targeted area. 
Landscape modification that aims against the incriminated vector 
may effectively clear the targeted vector’s population. However, the 
altered landscape may become a conducive breeding ground for 
another species of anophelines capable of transmitting P. knowlesi. 
Besides, many places affected by knowlesi malaria are endemic to 
other vector-borne diseases such as dengue and filariasis (Murphy 
et al., 2020; Zakaria and Avoi, 2022). Therefore, strategies aimed at 
reducing the transmission of knowlesi malaria should not facilitate 
the expansion of vectors responsible for other vector-borne diseases. 
Given the complexity of disease transmission dynamics in many areas 

FIGURE 3

Integrated Vector Management (IVM) involving different components 
in planning and implementation. Multiple components are factored 
into an IVM strategy to optimize the output of vector control.
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endemic to knowlesi malaria, it is not surprising that chemical-based 
vector control approaches are preferred over other approaches as 
chemicals are effective against broader range of vectors, despite the 
potential harmful effects to the environment. Nevertheless, biocontrol 
strategies with lower target specificity (such as the predator–prey 
approaches) deserve more attention. Interestingly, edible fishes can 
be explored as biocontrol candidates, as demonstrated in western 
Kenya (Howard et al., 2007). The Nile tilapia used in this earlier study 
is a commonly farmed and eaten fish. In this study, the Nile tilapia 
significantly reduced the population of An. gambiae s.l., An. funestus 
and culicine mosquitoes (Howard et al., 2007). Such integration of 
vector biocontrol and socioeconomic activity can ensure better 
sustainability of the implemented vector control efforts. Chemical-
based approaches, such as IRS and ORS may be  considered and 
implemented with caution. In addition, environment management 
via human behavioral changes should be emphasized, particularly for 
VBZ like knowlesi malaria, in which the transmission is associated 
with socioeconomic activities near or within forested areas, such as 
tourism, logging, and subsistence cropping (Singh and Daneshvar, 
2013; Müller and Schlagenhauf, 2014; Lee et al., 2022). The challenges 
faced in the control and prevention of knowlesi malaria in Malaysia 
are applicable to other VBZ and VBIAR. Obviously, there are 
numerous knowledge gaps that need to be  filled with properly 
designed studies to put forward better vector control programs. 
Notably, the long-term safety, efficacy, and sustainability of all 
proposed methods should be investigated thoroughly prior to mass 
application. Such information is needed to convince the public 
members and secure their support and compliance to a proposed 
vector control program, which is crucial to many IVMs. In short, 
various factors must be taken into consideration when designing a 
control strategy against VBZ and VBIAR, particularly in areas 
endemic to multiple vector-borne diseases.

Conclusion

Vector control has always been a crucial component of breaking 
the transmission circuit of vector borne diseases. The increased 
prevalence of vector-borne diseases, including several VBZ and 
VBIAR in different parts of the world implies a more important role 
of vector control in healthcare sector. Indeed, there is no “silver 
bullet” for outbreak management, even more so for the management 
of the more complex VBZ and VBIAR. Careful integration of multiple 
vector control approaches in the vector management program may 
increase the success of disease control and prevention. While battling 
these pathogens with large investment in the research and 
development for treatments and vaccines, continuous efforts of 
discovering novel vector control approaches should be  made 

concurrently, to reduce the prevalence of these infections without 
compromising the wellbeing of the environment, humans, and the 
animals involved in the transmission circuit.
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Amphotericin B (AmpB) deoxycholate is the available first-line drug used to treat 
visceral leishmaniasis caused by Leishmania (Mundinia) martiniquensis, however, 
some cases of AmpB treatment failure have been reported in Thailand. Resistance 
to drugs is known to affect parasite fitness with a potential impact on parasite 
transmission but still little is known about the effect of resistance to drugs on L. 
martiniquensis. Here we aimed to gain insight into the fitness changes occurring 
after treatment failure or in vitro-induced resistance to AmpB. L. martiniquensis 
parasites isolated from a patient before (LSCM1) and after relapse (LSCM1-6) were 
compared for in vitro and in vivo fitness changes together with an in vitro induced 
AmpB-resistant parasite generated from LSCM1 parasites (AmpBRP2i). Results 
revealed increased metacyclogenesis of the AmpBPR2i and LSCM1-6 strains 
(AmpB-resistant strains) compared to the LSCM1 strain and increased fitness with 
respect to growth and infectivity. The LSCM1-6 and AmpBRP2i strains were present 
in mice for longer periods compared to the LSCM1 strain, but no clinical signs of 
the disease were observed. These results suggest that the AmpB-resistant parasites 
could be more efficiently transmitted to humans and maintained in asymptomatic 
hosts longer than the susceptible strain. The asymptomatic hosts therefore 
may represent “reservoirs” for the resistant parasites enhancing transmission. 
The results in this study advocate an urgent need to search and monitor for 
AmpB-resistant L. martiniquensis in patients with relapsing leishmaniasis and in 
asymptomatic patients, especially, in HIV/Leishmania coinfected patients.

KEYWORDS

Leishmania, Leishmania martiniquensis, leishmaniasis, fitness, Amphotericin B, drug 
resistance, relapse, Thailand
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Introduction

Leishmania parasites cause a group of anthropozoonoses called 
leishmaniases, which are important neglected tropical diseases. 
Metacyclic promastigotes, the infectious form of the parasite, are 
inoculated to mammalian hosts during the blood meal of infected 
insect vectors, where they are efficiently phagocytosed by cells of 
the mononuclear phagocytic system, notably macrophages. There, 
promastigotes differentiate into amastigote forms whose 
intracellular replication will ultimately cause the 
immunopathologies associated with the different forms of 
leishmaniasis, which include cutaneous, mucocutaneous, and 
visceral leishmaniases (VL). Their clinical spectrum ranges from 
asymptomatic infection or self-limiting cutaneous lesions to lethal 
disseminated infections depending on the species of Leishmania 
parasite and the host’s immune response. L. martiniquensis is a 
newly emerging causative agent of human leishmaniasis first 
reported from Martinique Island (French West Indies) (Desbois 
et al., 2014) and later found in many countries including Thailand. 
Most human cases present clinical features of VL, however, 
HIV-coinfected patients also develop disseminated cutaneous 
leishmaniasis (Pothirat et al., 2014; Chiewchanvit et al., 2015). In 
the absence of vaccines against human leishmaniasis, chemotherapy 
is still the only alternative to tackle the disease despite the 
emergence of drug resistance (World Health Organization, 2022).

Amphotericin B deoxycholate is a widely used antifungal and 
antiprotozoal compound. It binds to ergosterol molecules presenting 
in the membrane of fungi or trypanosomatids, which causes 
depolarization of the membrane and alters membrane permeability 
towards cations, water, and glucose molecules resulting in ions leakage 
and ultimately leading to cell death. This drug has been introduced for 
the treatment of VL in antimonial unresponsive patients from Bihar 
in India, but two clinical AmpB-resistant Leishmania donovani strains 
have already been reported (Srivastava et  al., 2011; Purkait et  al., 
2012). Most leishmaniasis cases in Thailand are treated with AmpB 
(Jariyapan et al., 2018) but recurrence of the disease after treatment 
has been reported in some cases for both immunocompetent and 
immunocompromised patients, including HIV-infected individuals 
(Osatakul et al., 2014; Siriyasatien et al., 2016).

Resistance phenotype to overcome drug treatment often comes 
with fitness changes, fitness being defined as a complex integrated skill 
that allows microorganisms to successfully replicate in a defined 
environment (Natera et al., 2007). Leishmania parasites are highly 
adaptive microorganisms as they must survive and replicate within 
different environments depending on their hosts (insect and mammal) 
to be transmitted. In this context, the ability of Leishmania parasites 
to resist the activity of an antileishmanial drug is shown to have an 
impact on their fitness in one or both hosts which can vary depending 
on the drug and the parasite species. Differences in parasites viability, 
growth, metacyclic promastigote generation, and infectivity in 
laboratory animals have been reported for different species or strains 
of Leishmania parasites resistant to different anti-leishmanial drugs 
(García-Hernández et al., 2015; Hendrickx et al., 2015; Turner et al., 
2015). Experimentally generated L. donovani strains that are resistant 
to single anti-leishmanial drugs (AmpB, miltefosine (MIL), 
paromomycin (PMM), and trivalent antimony (SbIII)) or to drug 
combinations (AmB-MIL, AmB-PMM, AmB-SbIII, MIL-PMM, and 

SbIII-PMM) present a higher promastigote survival rate in conditions 
of starvation, a higher tolerance to heat shock and pH stress, and an 
increased survival rate for in vitro macrophage infections compared 
to their corresponding wild type (García-Hernández et al., 2015). 
MIL-resistant L. major populations generated in vitro using stepwise 
selection exhibited a similar growth rate and response to stress as the 
wild-type parasites but, despite the enhancement of metacyclogenesis 
these parasites show virulence attenuation in vitro and in vivo 
infection assays and decrease survival rates in the natural sandfly 
vector (Turner et  al., 2015). In contrast, comparative phenotypic 
analysis of a matched pair of an L. donovani PMM-susceptible, WT 
parent strain, and its derived PMM-resistant strain revealed no impact 
of the PMM-resistance phenotype on parasite fitness regarding 
promastigote growth, metacyclogenesis, and in vitro and in vivo 
infectivity (Hendrickx et al., 2015).

So far, no data on the fitness of drug-resistant L. martiniquensis, a 
member of the new subgenus Mundinia, are available. We  have 
reported three cases of leishmaniasis caused by L. martiniquensis in 
northern Thailand (Pothirat et al., 2014; Chiewchanvit et al., 2015) 
that showed relapse of the disease after the first treatment with 
AmpB. We  successfully isolated the parasites from bone marrow 
samples and/or skin biopsy samples collected from a patient before 
treatment (LSCM1) and after relapse (LSCM1-6) and could generate 
an in vitro-induced AmpB-resistant strain (AmpBRP2i). Their 
respective fitness phenotypes were analyzed by comparing (i) in vitro 
promastigote growth, (ii) differentiation into infectious metacyclic 
forms in culture (metacyclogenesis), (iii) in vitro infectivity and 
multiplication in mouse peritoneal exudate macrophages (PEMs), and 
(iv) in vivo infectivity in BALB/c mice. We uncovered in vitro and in 
vivo increased fitness that correlated with the AmpB resistance of 
L. martiniquensis. This information reveals an important, latent public 
health threat that calls for an in-depth epidemiological survey and 
molecular analysis of the underlying drug resistance and 
fitness mechanisms.

Materials and methods

Ethics statement

The study was approved by the ethics committee of the Faculty of 
Medicine, Chulalongkorn University (COA No. 467/2021), and 
approval to use mice was obtained from the Ethics Committee on 
Animal Use of the Laboratory Animal Center, Chiang Mai University, 
Chiang Mai, Thailand (COA No. 2562/MC-0009).

Parasite strain and culture

Leishmania martiniquensis parasites, LSCM1 (MHOM/TH/2012/
LSCM1, wild-type), and LSCM1-6 (MHOM/TH/2017/LSCM1-6, 
relapse) strains were used in this study. Leishmania martiniquensis 
LSCM1 was obtained from a VL patient with no known underlying 
immunodeficiency. After being treated with AmpB (1 mg/kg/day) for 
21 days at the first admission, the patient was in remission (Pothirat 
et al., 2014). However, relapse occurred about 1 year after the first 
treatment. Over 5 years, the patient had been given at least six courses 
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of the treatment with AmpB. In 2017, 5 years after the first relapse 
we  successfully isolated and cultured L. martiniquensis LSCM1-6 
parasites from bone marrow aspirate.

To avoid loss of parasite virulence, the parasite strains, LSCM1 
and LSCM1-6, were inoculated in BALB/c mice and recovered 
from the liver or spleen of the infected mice 4 weeks post-infection. 
Isolated parasites were then cultured for two to three passages in 
sterile Schneider’s Insect medium (SIM) (Sigma-Aldrich, St Louis, 
MO, United States), pH 6.8 supplemented with 10% (v/v) heat-
inactivated fetal bovine serum (hiFBS) (Life Technologies-Gibco, 
Grand Island, NY, United States). Cultured parasites (approximately 
1 × 107 cells/mL) were cryopreserved in 7.5% (v/v) glycerol in the 
culture medium and stored in liquid nitrogen. Cryopreserved 
promastigotes were used for this study, and the maximum passage 
number used was seven after cryopreservation. For routine 
cultivation, parasites were maintained in the SIM complete 
medium supplemented with 25 μg/mL gentamycin sulfate (Sigma-
Aldrich, St Louis, MO, United States) at 26°C. Promastigotes were 
sub-passaged to a fresh medium every 4 days to maintain the 
growth and viability of the parasites.

Drug

AmpB was purchased from Gibco (Life Technologies-Gibco, 
Grand Island, NY, United States) as a 250 μg/mL solution solubilized 
in sodium deoxycholate. The stock solution of AmpB was stored at 
−20°C and used within 12 months.

Animal

Eight to twelve-week-old inbred male BALB/c mice (Mus 
musculus), purchased from Nomura Siam International Co., Ltd., 
Bangkok, Thailand, weighing approximately 20 g were used. Mice were 
housed in the animal facilities at the Laboratory Animal Center, 
Chiang Mai University under standard conditions of temperature 
(25 ± 2°C), 12 h light/dark cycle, and fed with a standard pellet diet 
and water ad libitum.

Isolation of mouse peritoneal exudate 
macrophages

The isolation of PEMs was performed as described by Zhang et al. 
(2008) with some modifications. Eight to twelve-week-old female 
BALB/c mice were injected via an intraperitoneal route with 1 mL of 
3% (w/v) Brewer thioglycolate (Himedia, India) solution in PBS. PEMs 
were harvested after 48 h by peritoneal lavage with 2% hiFBS-
RPMI1640 ice-cold medium (GE Healthcare Life Science-HyClone, 
South Logan, UT, United  States) containing 1% penicillin–
streptomycin (PenStrep; Sigma, United  Kingdom). PEMs were 
collected by centrifugation (×500 g, 4°C, 10 min) and then 
resuspended in RPMI medium containing 10% (v/v) hiFBS. The 
viability of PEMs was estimated using trypan blue staining solution 
(Sigma-Aldrich, St Louis, MO, United  States) in an improved 
Neubauer chamber (Precicolor, HBG, Germany) under 
light microscopy.

In vitro drug susceptibility on 
promastigotes

Promastigote viability in the presence of the drug was evaluated 
using alamarBlue® assay (Thermo Fisher Scientific, MA, United States) 
and performed in flat-bottomed 96-well tissue-culture plates. Each 
well was filled with 50 μL of the logarithmic phase culture of 
promastigotes (2 × 106 cells/mL) and incubated at 26°C for 1 h before 
adding AmpB. Parasites were exposed to 50 μL of AmpB over a range 
of concentrations in two-fold drug dilutions (0.0016–25.6 μg/mL). 
After 48 h of incubation, 10 μL of alamarBlue® reagent was added to 
each well and continuously incubated for 24 h. The concentration of 
resorufin in the parasite-drug mixture was measured using a 
spectrophotometer at a wavelength of 570 and 600 nm. The optical 
density in the absence of drugs was set as 100% control. Drug 
susceptibility was determined by calculating the half-maximal 
inhibitory concentration IC50 values from the nonlinear concentration-
response curves using GraphPad Prism version 9.1 software 
(Graphpad Software Inc., San Diego, CA, United  States) and the 
results were expressed as the mean ± standard deviation (SD) of three 
independent experiments.

Resistance selection on promastigotes

A stepwise process previously described by Al-Mohammed et al. 
(2005) and García-Hernández et  al. (2012) was used to select an 
AmpB-resistant line from L. martiniquensis promastigotes (LSCM1) 
with some modifications. Briefly, the selection was initiated with 
promastigotes (2 × 106 cells/mL) starting from 0.025 μg/mL of AmpB 
corresponding to half of the IC50 value determined for the LSCM1 
promastigote (0.05 μg/mL) to 1.0 μg/mL. After each selection step, 
log-phase (day 3) promastigotes (2 × 106 cells/mL) were sub-passaged 
in the SIM medium supplemented with 20% (v/v) hiFBS and 
increasing concentrations of AmpB in stepwise increments. This 
experiment was carried out in flat-bottomed 24-well plastic tissue-
culture plates (ThermoFisher Scientific, Jiangsu, China) with a final 
volume of 1 ml and the plates were maintained at 26°C. At each 
concentration of AmpB, the promastigotes were maintained until a 
growth rate was similar to the LSCM1 control culture. This process 
was applied until reaching the maximum concentration of the drug 
allowing parasite growth. Then, three single clones of the AmpB-
resistant promastigotes, namely, AmpB-Resistant Promastigote clone 
1 (AmpBRP1), AmpB-Resistant Promastigote clone 2 (AmpBRP2), 
and AmpB-Resistant Promastigote clone 3 (AmpBRP3), were selected 
from the in vitro derived AmpB-resistant line by limiting dilution to 
1 cell/mL. The three resistant clones were sub-passaged in the SIM, 
pH 6.8 supplemented with 10% (v/v) hiFBS without AmpB for 20, 30, 
and 40 passages after the selection. For the 20th, 30th, and 40th 
passages the corresponding resistance indexes (IC50 of each clone 
divided by IC50 of the LSCM1) were calculated. The AmpBRP2 
resistant clone that showed high stability of IC50 value and resistance 
index at passage 40 was selected. To avoid the impact of the long-term 
culture of the selected clone (40 passages) on infectivity, the parasites 
with stationary phase promastigotes (at 120 h) were used to infect 
BALB/c mice for 4 weeks. As described above parasites were isolated 
from the liver or spleen of the infected mice and cultured and the IC50 
value and resistance index of the isolated parasites were determined 
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to check for stability of AmpB resistance before cryopreservation for 
further use.

In vitro promastigote growth

The growth profile of the LSCM1, AmpBRP, and LSCM1-6 
parasites was assessed by a direct counting method using an improved 
Neubauer chamber. To generate growth curves, stationary phase 
promastigotes were inoculated at exactly 1 × 106 cells/mL in 5 mL of 
the SIM complete medium and incubated at 26°C. Parasite density 
was determined every 24 h for 10 consecutive days (24 h to 240 h). The 
average promastigote density at each time point was calculated and 
used to draw the final growth curves using GraphPad Prism version 
9.1 software. The doubling time was calculated during the exponential 
growth of the parasites, i.e., between 48 and 72 h of culture. All 
experiments were carried out in duplicate from three independent 
experiments. Results were expressed as mean ± SD.

Morphological assessment for 
metacyclogenesis

Promastigote morphology was evaluated microscopically to assess 
metacyclogenesis. The cell body size (length and width) and flagellum 
lengths were measured. Promastigotes were considered metacyclic 
when the body length was ≤12.5 μm, body width ≤ 1.5 μm, and 
flagellum length > body length (Chanmol et al., 2019). Promastigotes 
of the LSCM1, AmpBRP, and LSCM1-6 were cultured in the SIM, at 
26°C. From 72 h to 240 h of the cultivation, 10 μl of each promastigote 
suspension was stained with 10% (v/v) Giemsa solution. Images were 
acquired under Olympus CX41RF light microscope (Tokyo, Japan) at 
×1,000 magnification and the cell body and flagellum lengths of ≥200 
parasites were measured using DP2-SAL Firmware Ver.3.3.1.198, 
software. The percentage of metacyclic form was calculated at each 
time point of the culture. Results were expressed as mean ± SD and 
were based on three independent experiments in duplicates.

In vitro infection and evaluation of 
intracellular amastigote multiplication

PEMs harvested from BALB/c mice were tested for cell viability 
using trypan blue. PEMs with cell viability above 95% were used. A 
total of 2.5 × 105 cells of PEMs in 500 μL RPMI medium with 10% (v/v) 
hiFBS were plated in round coverslips placed in 24-well tissue culture 
plates and incubated at 37°C and 5% CO2 for 24 h. Nonadherent cells 
were washed out with a pre-warmed RPMI medium. To estimate the 
number of parasites for a ratio of 1:10 adherent cells was counted after 
the 24 h incubation. Then, the adherent cells were infected with the 
stationary phase promastigotes (at 120 h) of the LSCM1, AmpBRP, or 
the LSCM1-6 at the ratio of 1:10. Live/dead staining with trypan blue 
was used to correct for the variable number of dead promastigotes in 
the different cultures. Parasites with cell viability above 99% were used 
in this experiment. After 3 h of incubation, extracellular promastigotes 
were then removed by washing twice with a pre-warmed RPMI 
medium. Coverslips were fixed with absolute methanol for 10 s, 

Giemsa’s-stained for 30 min, and visualized under the Olympus 
CX41RF light microscope (×1,000 magnification). To evaluate the 
level of infection, at least 200 macrophages were counted in 10 
randomly selected microscopic fields in duplicate. The percentage of 
infected macrophages (infection rate) and the average number of 
intracellular parasites per macrophage were determined. In addition, 
the infection index was calculated by multiplying the percentage of 
infected macrophages by the average number of intracellular parasites 
per macrophage to account for the overall intracellular parasite burden.

Evaluation of amastigote multiplication was performed every 24 h 
from 24 h to 120 h post-infection using the same process. To allow 
comparison between the different strains, correction for the baseline 
infectivity was made based on the infection ratio at 24 h post-infection 
(T0). The amastigote multiplication ratio was calculated from the 
average number of intracellular amastigotes at Tx (the evaluated time 
after 24 h post-infection) divided by the average number of 
intracellular amastigotes at T0 (Chanmol et al., 2019). Results were 
expressed as mean ± SD and based on three independent infection 
experiments, each performed in duplicate.

In vivo infectivity

For each parasite strain, 42 BALB/c mice were used. Animals were 
intraperitoneally injected with 2 × 107 stationary phase promastigotes 
(at 120 h) resuspended in 200 μL of PBS. In the control group, six mice 
were injected with 200 μL of PBS. The infected mice were monitored 
weekly for cachexia, fatigue, ascites, scabs or skin lesions, 
hepatomegaly, and splenomegaly and their body weight was recorded 
using a balance (Sartorius TE313S Talent Analytical Balance, Sartorius 
AG, Goettingen, Germany). At 1-, 3-, 7-, 28-, 84-, and 168-days post 
infection (dpi), six animals from each group were sacrificed. In each 
animal, the liver, spleen, and bone marrow were collected separately 
under sterile conditions. The liver and spleen samples were weighed. 
Parasite burden in the liver, spleen, and bone marrow was determined 
by the impression smear method and limiting dilution assay.

For the impression smear method, parasite burden in each organ 
expressed as Leishman Donovan units (LDU) was calculated using the 
formula according to Stauber et al. (1958). The LDU values correspond 
to the number of amastigotes per 1,000 nucleated cells multiplied by 
the organ weight (g).

For limiting dilution assay, parasite burden was quantified in these 
tissues as previously described by Intakhan et al. (2020). The parasite 
load was calculated from the mean of reciprocal positive titers divided 
by the weight of the homogenized cross-section and calculated as the 
number of parasites per gram of organ. Genomic DNA from all 
samples was also extracted for the detection of L. martiniquensis DNA 
by PCR using 70IRD/70IRM primers for the 3  ́untranslated region 
(3  -́UTR) of the heat shock protein 70 (type I) gene (HSP70-I) 
(Jariyapan et al., 2021).

Statistical analysis

All statistical analyses were performed using GraphPad Prism 
version 9.1 software. The statistical differences among the LSCM1, in 
vitro derived AmpB-resistant, and LSCM1-6 strains and between the 
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different time points within one group were evaluated using two-way 
ANOVA, followed by Bonferroni post-hoc comparison tests. The IC50 
values were established from the dose–response curves using the 
GraphPad Prism software. All experiments were performed in 
triplicate and considered statistically significant if the p value 
was <0.05.

Results

In vitro generation of AmpB-resistant 
clones

To select AmpB-resistant lines of L. martiniquensis, 
promastigotes of the LSCM1 strain were exposed to AmpB at a 
starting concentration of 0.025 μg/mL, which was stepwise 
increased to induce drug resistance (Figure  1). The final 
concentration of AmpB that did not affect the normal growth of the 
in vitro derived AmpB-resistant promastigotes was 1.0 μg/
mL. Overall, the selection time lasted 260 days. Three single clones, 
AmpBRP1, AmpBRP2, and AmpBRP3, were selected from the in 
vitro derived AmpB-resistant line by limiting dilution to 1 cell/
mL. In every ten in vitro passages the drug susceptibility of the 

selected AmpB-resistant clones was tested to assess the stability of 
AmpB resistance. The cutoff value for AmpB-resistant strains was 
set at 0.55 μg/ml. At passage 20, the IC50 and resistance index of the 
AmpBRP clones were ranging from 1.23 to 1.59 μg/mL and from 
22.4 to 28.9, respectively (Table 1). The IC50 and the resistance index 
for the three selected clones slightly decreased (statistically 
insignificant) after being maintained in the drug-free medium for 
more than 20 passages. Both the IC50 and resistance index of these 
AmpBRP clones at passages 20, 30, and 40 were higher than that of 
the LSCM1 input population (Table  1). Based on the highest 
resistance index observed at passage 40 (26.3), the AmpBRP2 clone 
was selected for further study.

To avoid the impact of the long-term culture on the infectivity of 
the AmpBRP2 clone, the parasites at passage 40 were used to infect 
BALB/c mice for 4 weeks. The stability of resistance to AmpB of the 
AmpBRP2 parasites recovered from the spleen of one infected mouse 
(further called AmpBRP2i) was evaluated. The IC50 value and 
resistance index of the isolated AmpBRP2i were 0.191 ± 0.02 μg/mL 
and 3.7, respectively (Table  2), inferior to the values of the input 
parasites but still in the same range as the relapsed strain, LSCM1-6. 
The AmpBRP2i strain, therefore, was used for the in vitro and in vivo 
phenotypic comparisons with the susceptible wild-type parent strain, 
LSCM1, and the relapse strain, LSCM1-6 (Figure 1).

FIGURE 1

Schematic diagram of resistance selection for an AmpB-resistant clone on promastigotes and an overview of the comparative fitness of the LSCM1, 
AmpB-resistant clone, and LSCM1-6.

104

https://doi.org/10.3389/fmicb.2023.1156061
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Mano et al. 10.3389/fmicb.2023.1156061

Frontiers in Microbiology 06 frontiersin.org

In vitro promastigote growth

LSCM1, AmpBRP2i, and LSCM1-6 strains were compared for 
their growth as promastigotes in the SIM complete medium at 26°C 
(Figure 2; Supplementary Table S1). Promastigotes of the LSCM1 
reached their peak at 96 h (4.56 × 107 cells/mL), and then started to 
decline to approximately 0.32 × 107 cells/mL at 240 h. AmpBRP2i 
promastigotes reached their peak and entered the stationary phase 
at 120 h with a density of 6.91 × 107 cells/mL, and then at 144 h the 
parasite concentration started to decline to 1.97 × 107 cells/mL at 
240 h. LSCM1-6 promastigotes reached a plateau at 96 h (5.54 × 107 
cells/mL) and sustained the stationary phase until 144 h (5.84 × 107 
cells/mL) before the continuous decrease until the end of the 
experiment. The average promastigote densities of the AmpBRP2i 
and the LSCM1-6 were significantly greater than that of the LSCM1 
from 120 h to 240 h or from 96 h to 240 h, respectively. However, the 
average promastigote density of the LSCM1-6 was significantly lower 
than that of the AmpBRP2i at 144, 168, and 216 h. In summary, the 
AmpB-resistant parasites reached a higher cell density than the 
parental strain LSCM1.

Metacyclogenesis

Metacyclic promastigotes of the LSCM1, AmpBRP2i, and 
LSCM1-6 strains were evaluated based on morphological criteria 
(Figure 3A). The percentage of metacyclic promastigotes of the three 
strains was similar at 72 h (3.6–5.4%), increased by approximately 
6-fold at 120 h (25.4–27%) and sustained for almost 3 days (Figure 3B; 
Supplementary Table S2). The number of LSCM1 metacyclic-like 
parasites reached a maximum at 120 h with 25.4% and then gradually 
dropped to 9.7% after 240 h of culture. For both AmpBRP2i and 
LSCM1-6, the percentage of metacyclic promastigotes reached its 

peak at 144 h with 27.6 and 28.1% respectively, and then decreased 
gradually to 12% at 240 h. Overall, the results demonstrate that the 
maximum rate of metacyclogenesis of the resistant strains, AmpBRP2i 
and LSCM1-6, was rather similar to that of the LSCM1 parental strain 
but the differences observed at 144 and 168 h of culture were, however, 
considered statistically significant.

In vitro PEM infection and intracellular 
amastigote multiplication

PEMs recovered 48 h after injection of Brewer thioglycolate were 
infected at a ratio of 1:10 using stationary phase promastigotes collected 
after 120 h of culture when the average number of metacyclic forms was 
similar for all the parasites. At all-time points of the infection, the 
infection rate, average number of intracellular parasites per cell, and 
infection index of the AmpBRP2i and LSCM1-6 strains were 
significantly higher than those of the LSCM1 strain (Figures 4A–C; 
Supplementary Table S3). The lesser uptake (1.6-fold) of the LSCM1 
parasites alone cannot account for differences in infectivity that 
we observed. However, after 24 h post-infection, the infection index 
and the amastigote multiplication ratio of all strains gradually declined 
until 120 h of infection (Figures  4C,D) showing that none of the 
parasites replicated as amastigotes in PEMs. The failure to obtain a 
robust and long-lasting infection may result from the nature of the 
PEMs we used in our assay. Indeed, (i) mouse macrophages may not 
be as permissive for L. martiniquensis replication, and (ii) the use of 
thioglycolate elicits inflammatory macrophages with increased 
phagocytic and respiratory burst capacity. In conclusion, in our 
experimental in vitro system, the AmpB-resistant parasites were 
initially more infectious than the initial LSCM1 with more infected 
cells, more parasites per cell, and a persisting infection but as the 
susceptible parasites they fell to replicate.

TABLE 1 Promastigote susceptibility to AmpB for L. martiniquensis LSCM1, and in vitro derived AmpBRP clones after removal from drug pressure. 
Results are expressed as mean ± SD based on three independent replicates.

Parasite 
strain

Passages 20 Passages 30 Passages 40

IC50 (μg/mL) Resistance 
indexa

IC50 (μg/mL) Resistance 
index

IC50 (μg/mL) Resistance 
index

LSCM1 0.055 ± 0.02 1 0.054 ± 0.01 1 0.052 ± 0.01 1

AmpBRP1 1.23 ± 0.22 22.4 1.17 ± 0.07 21.7 1.11 ± 0.08 21.3

AmpBRP2 1.59 ± 0.01 28.9 1.49 ± 0.15 27.6 1.37 ± 0.29 26.3

AmpBRP3 1.55 ± 0.01 28.2 1.52 ± 0.03 28.1 1.25 ± 0.17 24.0

aResistance index = IC50 of each AmpBRP clone ÷ IC50 of LSCM1.

TABLE 2 Promastigote susceptibility to AmpB for the LSCM1, AmpBRP2i, and LSCM1-6 strains before and after mouse infection. Results are expressed 
as mean ± SD based on three independent replicates.

Parasite 
strain

Before mouse infection After the 1st mouse infection After the 2nd mouse infection 
(day 28)

IC50 (μg/mL) Resistance 
index

IC50 (μg/mL) Resistance 
index

IC50 (μg/mL) Resistance 
index

LSCM1 0.052 ± 0.01 1 0.052 ± 0.01 1 0.053 ± 0.01 1

AmpBRP2i 1.370 ± 0.29 26.3 0.191 ± 0.02 3.7 0.190 ± 0.02 3.6

LSCM1-6 0.147 ± 0.03 2.8 NAa NA 0.154 ± 0.08 2.9

aNA = not available.
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In vivo infectivity

BALB/c mice were inoculated with 2 × 107 stationary phase culture 
promastigotes (120 h) of the LSCM1, AmpBRP2i, and LSCM1-6 
strains, each composed of approximately 25% metacyclic 
promastigotes (Supplementary Table S2). Throughout the observation, 
no clinical signs of the disease including cachexia, fatigue, ascites, 
scabs or skin lesions, hepatomegaly, and splenomegaly, and no 
statistically significant differences in the weight of the body, liver, and 
spleen among the infected mice with the LSCM1, AmpBRP2i, and 
LSCM1-6 were observed (Figure 5). At all-time points, no parasites 
could be observed in any impression smear of any infected mice.

Parasite burdens in the infected organs were quantified using a 
limiting dilution assay. At 1 and 3 dpi, no parasites were present in the 
culture of liver and spleen samples. After 7 dpi parasites were found 
in the cultures of the liver samples from five to six infected mice with 
a mean parasite burden of approximately 4.47 × 102 parasites/gram of 
liver, 7.08 × 102 parasites/gram of liver and 8.51 × 102 parasites/gram of 
liver from mice infected with LSCM1, AmpBRP2i and LSCM1-6 
parasites, respectively. At 28 dpi, the number of mice with parasites in 
the liver remained stable. The parasite load after infection with the 
LSCM1 started to decrease to 1.70 × 102 parasites/gram of liver whilst 
in the livers of mice infected with the AmpB resistant parasites it 
slightly increased with 1.15 × 103 and 1.44 × 103 parasites/gram of 
organ for AmpBRP2i and LSCM1-6 parasites, respectively. Although 
the parasitic loads in the liver were low the difference between 
susceptible and resistant parasites is statistically significant. No 
parasites of any strains were isolated from the liver samples of the 
infected mice at 84 and 168 dpi (Figure 6A).

For the cultures of spleen samples, the LSCM1 parasites were 
recovered from infected mice sacrificed at 7 and 28 dpi with the 
parasitic load decreasing from 1.23 × 102 (5 out of 6 mice) to 46.77 
parasites/gram of organ in half of the animals After 84 and 168 dpi 
LSCM1 parasites were not anymore detected. AmpBRP2i parasites 
were found in the spleen of the mice sacrificed at 7 to 84 dpi with a 
parasite burden around 1.70 × 102, 3.47 × 102, and 1.70 × 102parasites/
gram of organ, respectively, in at least 3 to 5 mice. No AmpBRP2i 
parasites were observed in the samples at 168 dpi. For LSCM1-6, 
parasites were found in the cultures of the spleen samples collected at 
7 to 168 dpi but the number of mice with parasites decreased over 
time with only half of them still carrying parasites in their spleen at 
the end of the experiment. Consequently, the parasite burden 
gradually decreased from 1.15 × 103 to 1.23 × 102 parasites/gram of 
organ (Figure 6B). No parasites were isolated from all bone marrow 
samples of the infected mice at all-time points.

Polymerase chain reactions on genomic DNA extracted from all 
liver spleen and bone marrow samples from the infected mice were 

FIGURE 2

Growth curves of the L. martiniquensis LSCM1, AmpBRP2i, and 
LSCM1-6 promastigotes cultured in the SIM supplemented with 10% 
(v/v) hiFBS and 25 μg/ml gentamycin sulfate, pH 6.8 at 26°C. All 
parasites were inoculated at 1×106 parasites from stationary growth 
phase/mL and were counted daily until day 10 (240 h). Statistically 
significant differences between LSCM1 and AmpBRP2i are indicated 
as *** = p < 0.001; LSCM1 and LSCM1-6 are indicated as ǂǂǂ = p < 0.001, 
ǂǂ = p < 0.01, and ǂ = p < 0.05; AmpBPR2i and LSCM1-6 are indicated as 
××× = p < 0.001 and ×× = p < 0.01, and × = p < 0.05.

FIGURE 3

(A) Metacyclic promastigotes of L. martiniquensis (arrows). (B) Metacyclogenesis of the LSCM1, AmpBRP2i, and LSCM1-6 promastigotes. Morphometric 
analysis was conducted by microscopy using the criteria defined by Chanmol et al. (2019) from 72 to 240 h of culture. Statistically significant 
differences among the three groups are indicated as follows: ** = p < 0.01; and * = p < 0.05.
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performed. DNA of each parasite strain was detected in the same 
samples where parasites were quantified by the limiting dilution assay. 
No parasitic DNA could be  detected in any of the bone marrow 
samples (Supplementary Figure S1).

The susceptibility to AmpB of the LSCM1, AmpBRP2i, and 
LSCM1-6 strains after the infection was tested. The IC50 value and 
resistance index at 28 dpi were not affected with 0.053 ± 0.01 and 1, 
0.19 ± 0.02 and 3.6, and 0.154 ± 0.08 and 2.9, respectively, indicating 
that the resistant phenotype is stable (Table 2).

Even though the mice model may not be the more suitable system 
for experimental infection with L. martiniquensis, our results suggest 
that AmpB-resistant parasites may survive longer in the animals.

Discussion

Drug resistance in Leishmania parasites is frequently associated 
with molecular and fitness changes. AmpB resistance in 
L. martiniquensis and its consequences on the parasite phenotype is 
poorly documented especially in clinical samples due to the (i) recent 

identification of this new species, (ii) the small number of patients 
with a positive diagnosis of leishmaniasis and AmpB treatment failure, 
and (iii) the even smaller number of patients from whom parasites 
could be isolated before and after the relapse. We have reported three 
cases of leishmaniasis caused by L. martiniquensis in northern 
Thailand that showed relapse of the disease after the first treatment 
with AmpB (Pothirat et  al., 2014; Chiewchanvit et  al., 2015). 
We successfully isolated the parasites from a patient before treatment 
(LSCM1) and after relapse (LSCM1-6) and could generate an in vitro-
induced AmpB-resistant clone (AmpBRP2) that was subsequently 
inoculated to mouse (AmpBRP2i). Here, we used phenotypic analyses 
to correlate AmpB resistance with fitness changes that could 
be relevant for parasite transmission or survival.

The inoculation in the mouse of the AmpBRP2 clone that was 
maintained for 40 in vitro passages led to the recovery of parasites 
(AmpBRP2i) with an 8-fold decrease in the IC50 compared to the 
initial clone. Furthermore, the IC50 value and resistance index were 
unchanged even after a second infection in mice revealing the stability 
of the phenotype. It suggests that the AmpBRP2i strain was a good 
representative for in vitro-generated AmpB-resistant strains and could 

A B

C D

FIGURE 4

PEMs were infected using stationary phase promastigotes after 120 h of culture at a multiplicity of infection (MOI) = 1:10. (A) Percentage of infected cells 
measured from 24 to 120 h post-infection. (B) Average number of parasites per macrophage. (C) Infection index calculated by multiplying the 
percentage of infected macrophages by the average number of parasites per macrophage. (D) Amastigote multiplication ratio calculated from the 
average number of intracellular amastigotes at Tx divided by the average number of intracellular amastigotes at T0 (Chanmol et al., 2019). Results are 
expressed as the means±SD from three different experiments run in duplicate. Statistically significant differences between LSCM1 and AmpBRP2i are 
indicated as *** = p < 0.001; between LSCM1 and LSCM1-6 are indicated as ǂǂǂ = p < 0.001.
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be  used the same parameters to analyze the influence of drug 
resistance on the fitness of the resistant strain in order to compare 
with the wild-type LSCM1 and the relapse LSCM1-6 strains. The 
difference in the level of resistance between the AmpBRP2 and 
AmpBRP2i is not associated with the absence of drug pressure during 

the passage in the animal since AmpBRP2 was maintained in vitro in 
a drug-free medium for 40 passages before the injection to the mouse. 
Leishmania genomic plasticity may account for this result as drug 
resistance (reviewed by Rastrojo et al., 2018; Santi and Murta, 2022) 
and long-term culture (Dumetz et al., 2017; Prieto Barja et al., 2017) 

A

B C

FIGURE 5

(A) Bodyweight of BALB/c mice infected with the L. martiniquensis LSCM1, AmpBRP2i, and LSCM1-6 stationary promastigotes. Animal weight was 
recorded every week. (B,C) Weight of liver and spleen collected from BALB/c mice infected with the L. martiniquensis LSCM1, AmpBRP2i, and LSCM1-6 
stationary promastigotes.

A B

FIGURE 6

Parasite burdens in the liver and spleen samples of BALB/c mice infected with the L. martiniquensis LSCM1, AmpBRP2i, and LSCM1-6 stationary phase 
promastigotes at 1, 3, 7, 28, 84, and 168 dpi determined by limiting dilution assay. (A) Parasite load quantified from the liver of infected mice. (B) Parasite 
load quantified from the spleens of infected mice. Statistically significant differences among the three groups are indicated as follows: *** = p < 0.001. 
The number inside the columns is the number of positive mice per total mice sacrificed in each group.
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has been associated with chromosome and gene copy number 
variations or down-regulation of genes. In AmpB-resistant L. donovani 
parasites generated in vitro, chromosome 29 for which many 
transcripts were overexpressed is co-amplified with chromosomes 5 
and 26 (Rastrojo et al., 2018) previously associated with fast growth in 
culture (Dumetz et al., 2017; Prieto Barja et al., 2017). Conversely, 
inoculation to animals of trisomic parasites notably for chromosomes 
5 and 26 resulted in a shift to disomic karyotype (Prieto Barja et al., 
2017). Comparative genomic analysis of AmpBRP2 and AmpBRP2i 
would be  needed to confirm this hypothesis. Such chromosome 
amplification may also explain the differences in growth that 
we observed between AmpB-resistant (AmpBRP2i and LSCM1-6) 
and the parental strain (LSCM1).

The naturally resistant strain (LSCM1-6) and the in vitro-induced 
AmpB-resistant clone after passage in the mouse (AmpBR2i) display 
the same trend for all the parameters we have tested including IC50 
suggesting that the molecular mechanisms underlying the resistance 
to the drug are if not similar at least converge to the same parasite 
phenotype. Pountain et al. (2019) have shown that AmpB L. mexicana-
resistant lines could harbor mutation(s) in one or more genes from the 
sterol pathway. At least three genes in which mutations resulted in 
AmpB resistance in L. mexicana have been identified, i.e., genes 
involving (1) resistance-associated mutation of the C5DS, (2) specific 
sterol changes resulting from decreased expression of the C24SMT 
due to structural variation events at the genome level, and (3) loss of 
the miltefosine transporter (Pountain et al., 2019). Recently, Alpizar-
Sosa et al. (2022) have reported the selection and characterization of 
fourteen independent lines of L. mexicana and one of L. infantum 
resistant to AmpB or its analog nystatin and demonstrated loss of 
heterozygosity derived from mutations in the C24SMT gene locus and 
changes in the C5DS gene. Single-cell DNA/RNAseq of our naturally 
resistant parasites (LSCM1-6) would help to characterize the 
molecular basis of AmpB resistance in the context of a 
treatment failure.

Drug-resistant parasites tend to be less infective, less virulent or 
display a decreased transmission potential (Hendrickx et al., 2015) or 
at best they present mixed fitness gain in mammal and sand fly hosts 
compared to WT strain (Hendrickx et al., 2020; Van Bockstal et al., 
2020). In our study, in contrast, the fitness of the L. martiniquensis 
AmpB-resistant parasites (LSCM1-6 and AmpBPR2i) increased 
compared to the wild-type LSCM1. The AmpBRP2i and the LSCM1-6 
grew at higher concentrations and produced more metacyclic forms 
than the LSCM1. The fitness of Leishmania parasites relates to their 
ability to successfully survive, reproduce/replicate, infect, and  - 
be transmitted from the host to the vector and reciprocally (Natera 
et  al., 2007). Metacyclogenesis is regarded as a contributor to the 
fitness of the parasite but the ability of metacyclic promastigotes 
themselves is an important factor supporting the successful infectivity 
of the parasites. However, immunopathology depends on the ability 
of metacyclic forms to undergo differentiation in replicating 
amastigotes and the genetic background/immune status of the host. 
BALB/c mouse model is a suitable model for the asymptomatic form 
of human leishmaniasis caused by L. martiniquensis whilst hamsters 
are symptomatic (Intakhan et al., 2020). In our study, when injected 
into BALB/c mice the AmpB-resistant parasites promoted a persisting 
infection, although at a low level, compared to the WT strain. This 
silent infection could greatly impact the level of transmission of 

L. martiniquensis AmpB-resistant parasites in the field provided that 
AmpB resistance does not affect infectivity in vectors.

In conclusion, our results provide indications that AmpB 
treatment of leishmaniasis caused by L. martiniquensis has the 
potential to generate parasites with increased fitness, not only in 
response to treatment (hence resistance) but also in terms of infectivity 
and transmission. In Thailand, at least 24.9% of HIV/Leishmania 
coinfected patients are asymptomatic and L. martiniquensis is one of 
the predominant species detected (Manomat et al., 2017). Since not 
only symptomatic leishmaniasis patients but also asymptomatic HIV/
leishmaniasis patients play an important role as “reservoirs” in 
Leishmania transmission (Molina et al., 2020; Ibarra-Meneses et al., 
2022), our results highlight the need to search and monitor for AmpB-
resistant L. martiniquensis in both patients with symptomatic and 
asymptomatic leishmaniasis, mainly in HIV/Leishmania 
coinfected patients.
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Based on recent multiregional epidemiological investigations of Monkeypox

(MPX), on 24 July 2022, the World Health Organization declared it a global

public health threat. Retrospectively MPX was an ignored zoonotic endemic

infection to tropical rainforest regions of Western and Central African rural

communities until a worldwide epidemic in May 2022 verified the potential

threat of monkeypox virus (MPXV) to be propagated across the contemporary

world via transnational tourism and animal movements. During 2018–2022,

di�erent cases of MPX diagnosed in Nigerian travelers have been documented

in Israel, the United Kingdom, Singapore, and the United States. More recently,

on 27 September 2022, 66,000 MPX cases have been confirmed in more

than 100 non-endemic countries, with fluctuating epidemiological footprinting

from retrospective epidemics. Particular disease-associated risk factors fluctuate

among di�erent epidemics. The unpredicted appearance of MPX in non-endemic

regions suggests some invisible transmission dynamic. Hence, broad-minded and

vigilant epidemiological attention to the current MPX epidemic is mandatory.

Therefore, this review was compiled to highlight the epidemiological dynamic,

global host ranges, and associated risk factors of MPX, concentrating on its

epidemic potential and global public health threat.

KEYWORDS

epidemiology, monkeypox, host range, risk factors, global health, threat

1. Introduction

The re-emergence of various transmissible infections, including Zika virus,

swine flu (H1N1), Ebola virus, Nipah virus, avian influenza (H5N1), severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), Middle East respiratory syndrome

coronaviruses (MERS-CoV), and recent regional outbreaks of monkeypox virus

(MPXV) in the twentyfirst century, is alarming (Mourya et al., 2019). This spillover

of viruses from animal origin to humans has predominantly been due to species

barrier crossing (Bezerra-Santos et al., 2021). At a time when global health experts

and world communities were awaiting the pandemic spread of coronavirus disease

2019 (COVID-19) to be diminished, contemporary global populations now face

an unexpected MPX epidemic. In previous decades, irregular outbreaks, with

thousands of MPX cases, have been predominantly limited to African countries.
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MPX is enzootic in several sub-Saharan states and has co-occurred

in African inhabitants for several years but has not received

sufficient consideration from global technical experts. Excitingly,

MPX, for the first time, acquired worldwide consideration when

it appeared in the USA in 2003 (Reed et al., 2004). Such sporadic

and confined occurrences of MPX in the non-enzootic world have

been associated with international travel and the importation of

infected animals (Reed et al., 2004). AlthoughMPXV spread among

humans has been soundly investigated, its extensive concurrent

appearance in non-enzootic nations has hit the globe with another

shock. Additionally, MPX epidemics have been poorly inspected,

irregularly reported, and poorly epidemiologically defined in the

past, and, ultimately, the picture of this infection is incomplete.

This menace can intensify with temporal patterns in the case

where there is a rise in virulence naturally or through genomic

rearrangement, a spillover into extra extensively dispersed taxa, or

entrance and cluster epizootics in non-enzootic states (Sklenovská

and Van Ranst, 2018). All these risks are further worsened by

enhanced desforestation, increasing population density, large-scale

international travel, immigration, invasion and damage of natural

animal habitations, and poor epidemiological approaches toward

emerging and re-emerging disease investigations (Adler et al.,

2022). Lately, MPX is making headlines due to the worldwide surge

in the occurrence of the infection inmany countries and continents.

On 24 July 2022, the World Health Organization (WHO) declared

MPX a global public health threat. As per the US Centers for

Disease Control and Prevention report of 2 August 2022, ∼25,391

clinically confirmed MPX cases have been documented across 87

states globally (CDC, 2022b). This number has been ballooning

prospectively in the USA, Brazil, Spain, the UK, and Germany

(WHO, 2022d). More recently, on 27 September 2022, over 66,000

confirmed MPX cases have been documented in more than 100

non-endemic states, with fluctuating epidemiological footprinting

from retrospective epidemics. In this scenario, when the global

occurrence of MPX does not decline, the world might see another

pandemic, which may be presently hanging over the head of

the contemporary world and may easily become a global public

health threat. Therefore, this review assembles updated literature

on the different aspects of MPXV regarding disease epidemiology,

host range, and associated risk factor, and also sheds light on its

epizootic potential and global public health threat. Restoring public

health setups and preparing for upcoming epidemics are required,

particularly in underdeveloped countries with deprived healthcare

delivery services.

2. MPX

Monkeypox (MPX) is a sporadic zoonotic viral infection caused

by the MPXV, which belongs to the genus Orthopoxvirus of the

family Poxviridae and is interrelated to the already eradicated

smallpox virus. It is a large, enveloped virus comprising a

dsDNA genome of 190 kbp and having a dumbbell-shaped core

with horizontal figures (Kugelman et al., 2014). The MPXV has

two distinct genomic groups, the West African clade and the

Congo Basin clade. These genomic groups have been geologically

isolated with diverse clinical and epizootological characteristics

(WHO, 2022d). The Congo Basin clade is recognized to induce

serious infection and can spread among humans with a fatality

rate of ∼11%. However, the West African clade displays a

fatality rate of <1% and has never been known to exhibit

human-to-human spread (Jezek et al., 1987). The early signs

and symptoms of MPX are frequent pyrexia, vigorous headache,

myalgia, lymphadenopathy, and lethargy. After fever, the dermal

wounds characteristically burst within 1 to 3 days. The rash tends to

be more confined to the facial region and extremities as compared

with the trunk region of the body. MPX is frequently a self-

determining disease, and symptoms last from 2 to 4 weeks. The

clinical appearance and indications of MPX are exactly like those

of smallpox; however, it is a mild and rarely fatal infection (Soheili

and Nasseri, 2022).

Monkeypox virus (MPXV) continues to present challenges

to public health and healthcare providers in areas with endemic

disease, owing to inadequate capacity to diagnose and clinically

manage patients and to accurately identify exposures (McCollum,

2023). Mostly, MPX cases in the African subcontinent are mainly

misdiagnosed with other zoonotic infections such as cutaneous

anthrax, chickenpox (Varicella), staphylococcal-associated rash,

or fungal diseases in cases with human immunodeficiency virus

(HIV) infection (Formenty et al., 2010). In addition to the current

outbreak, there have been multiple reports of initial misdiagnosis

of patients who were later confirmed to have MPX (Heskin

et al., 2022; Minhaj et al., 2022) due to an atypical clinical

manifestation that does not resemble the MPX observed in African

outbreaks. Laboratory evaluations for monkeypox cases include

electron microscopy, immunohistochemistry, culture of material

from rash specimens, serological testing for specific antibodies,

and real-time or conventional polymerase chain reaction (PCR)

assays. Confirmation of specimens from suspected MPX cases

is performed using nucleic acid amplification testing, such as

real-time or conventional polymerase chain reaction. Restriction

fragment length polymorphism (RFLP) of PCR-amplified genes or

gene fragments is also used to detect monkeypox DNA. However,

this method is time-consuming and requires a virus culture.

Whole-genome sequencing, using next-generation sequencing

technologies, is the gold standard for the characterization of MPXV

and other orthopoxviruses. However, the use of most of the above

diagnostic tools is limited due to their high cost and advanced

technology, especially in developing countries and regions with

limited healthcare resources (MacNeil et al., 2011; Radonić et al.,

2014; Brown and Leggat, 2016; Petersen et al., 2019b; Alakunle et al.,

2020; Cohen-Gihon et al., 2020; Altindis et al., 2022).

Another issue that may cause the disease to re-emerge is a

failure to offer vaccination to susceptible persons in places where

human immunodeficiency virus (HIV) infection is widespread.

Insufficient studies have been devoted to producing a specialized

vaccine to prevent the infection (Heymann et al., 1998), given

the recent return of infectious illnesses during an epidemic.

Moreover, routine vaccination is currently not available in endemic

countries having limited healthcare resources (Damon, 2011).

The extent of protection against the MPXV outbreak offered

by vaccines remains unclear. Similarly, there is currently no

specific treatment approved for MPXV infection, though there

are several antivirals that have been developed and are being

tested to treat smallpox, including tecovirimat, brincidofovir, and

cidofovir (Adler et al., 2022). The present regionalized spatial

distribution of MPX-confirmed cases is shown in Figure 1 (Kaler

et al., 2022).
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FIGURE 1

The present regionalized spatial distribution of MPX-confirmed cases.

3. Epidemiological dynamics of MPX

Monkeypox (MPX) is an infection of global public health

significance as it not only affects states in central and western

African regions, but also the contemporary globe is under threat

(Reynolds et al., 2007). In the previous era, the frequency of human

monkeypox (HMPX) infection was sporadic, and irregular cases

were investigated in several African states. The first HMPX case

was recognized in the 1970s in the Democratic Republic of the

Congo (DRC), associated with a 9-month-old child (Foster et al.,

1972; Arita et al., 1985). This investigation was expanded to further

irregular cases recorded in 11 other states of Africa including

Gabon, Cameroon, Benin, the Central African Republic, DRC, the

Republic of the Congo, South Sudan, Nigeria, Côte d’Ivoire, Sierra

Leone, and Liberia (Durski et al., 2018;World Health Organization,

2022a). From February 1996 to February 1997, a huge outbreak

of MPX was recorded in the DRC, and ∼511 infected cases

were investigated (Centers for Disease Control Prevention (CDC),

2022c). A systemic review and meta-analysis (Sham et al., 2022)

explained details of suspected, confirmed, and fatal MPX cases by

country and year-wise.

In 2003, an MPX epidemic occurred in the US, with 47

apparent or confirmed cases. Investigation showed that the affected

individuals were exposed to the virus via pet prairie dogs retained

with other mammals in a pet supply capacity, comprising the

primary host and rodents from African Ghana (Bernard and

Anderson, 2006). Petersen et al. (2019) investigated 116 clinically

verified individuals with a death rate of 6.7%, and ∼280 suspicious

cases appeared in Nigerian territory in 2018, with the large majority

of cases in individuals under 40 years of age.

The frequency of the infection has affectedly amplified, and

the DRC recorded 20 times more cases between 1981 and 1986

(7.2 cases per 100,000 people) and 2006 and 2007 (144.2 cases

per 100,000 people), and a 5-fold rise from 2001 (0.64 cases per

100,000 people) to 2012 (3.11 cases per100, 000 people) (Hoff

et al., 2017). Bunge et al. (2022) collected data from 28 available

manuscripts and 15 gray database studies on HMPX infection

point out that the incidence rate has been amplified since 1970s,

with a rise in the intermediate age of infected individuals from

4 years old in the 1970s to 21 years old from 2010 to 2019.

Table 1 adopted from Brown and Leggat (2016), Beer and Rao

(2019), Adegboye et al. (2022) and Hatmal et al. (2022) shows

the incidence of MPX and the number of deaths from 1970 to

2021.

In the retrospective outbreak investigations, MPXwas recorded

in youngsters and teenagers in the enzootic areas, with the same

clinical picture and symptoms as observed in older individuals.

The WHO has lately documented that serious cases of MPX more

frequently occur among youngsters and are associated with the

level of virus contact. Moreover, the severity of MPX cases may

be associated with individual health conditions, the nature of

complexities, and essential immune insufficiencies (WHO, 2022c).

Individuals whose date of birth was after the 1980s are at greater

risk because immunization for SPX stopped after its eradication,

and this immunization can also defend people against MPX

(Simpson et al., 2020). Additionally, it was thought that MPX

infects women and men similarly, but, in the recent multi-country

epidemic, several MPX cases have been reported in men who have

sex with other men (MSM) (Bunge et al., 2022; Perez Duque et al.,

2022; WHO, 2022c; Xiang and White, 2022). As per the CDC
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TABLE 1 Incidence of MPX and the number of deaths from 1970 to 2021.

Country/Region Timeframe Total cases Total deaths References

Democratic Republic of the Congo (DRC) 1970 1 1 (Ladnyj et al., 1972)

1981–1986 338 33 (Jezek and Fenner, 1988)

1996–1997 773 8 (CDC, 1997)

2001–2013 19,646 335 (Hoff et al., 2017)

2016 155 11 (Laudisoit et al., 2016)

2019–2020 8388 244 (WHO, 2022g)

Central African Republic 2001 8 2 (Berthet et al., 2011; Nakoune

et al., 2017)

2010 2 0 (Berthet et al., 2011)

2015 3 1 (Nakoune et al., 2017)

2015–2016 62 5 (Kalthan et al., 2018; WHO,

2022h)

2017–2018 41 1 (Durski et al., 2018; WHO,

2022i)

Republic of the Congo 2003 12 1 (Learned et al., 2005)

2010 11 1 (Reynolds et al., 2013)

2017 88 6 (Durski et al., 2018)

Sudan Cameroon 2005 37 0 (Formenty et al., 2010)

1989 1 0 (Tchokoteu et al., 1991)

Gabon 1987 1 1 (Müller et al., 1988)

1991 9 0 (Durski et al., 2018)

Nigeria 1971–1978 3 0 (Breman et al., 1980)

2017–2018 228 6 (Alakunle et al., 2020)

Sierra Leone 1970–1971 1 0 (Breman et al., 1980)

2014–2017 2 1 (Durski et al., 2018)

Liberia 1970–1971 4 0 (Breman et al., 1980)

Côte d’Ivoire 1971 1 0 (Breman et al., 1977)

USA 2003 47 0 (Reed et al., 2004; Sejvar et al.,

2004)

2021 2 0 (World Health Organization,

2022e)

Singapore 2019 1 0 (Yong et al., 2020)

UK 2018 4 0 (Vaughan et al., 2020)

2019 1 0 (UK, 2022)

2021 3 0 (Yong et al., 2020)

Source: Adopted from Brown and Leggat (2016), Beer and Rao (2019), Adegboye et al. (2022), and Hatmal et al. (2022).

report on the 2022 outbreak, the majority of MPX cases are due

to MSM, which puts bisexual, transgender, and gay individuals

at a greater threat of MPX (CDC, 2022b). Further investigations

are mandatory for a better understanding of risk factors regarding

sexual transmission dynamics of MPXV among MSM. The multi-

state 2022 epidemic of MPX cases and deaths recorded by WHO

(2022e) is shows in Table 2.

In some investigations, there is evidence of mixed infection

of MPX with other blood-borne diseases and some sexually

transmitted diseases (Liu et al., 2022), and people with HIV

infection reflected a greater risk dynamic for MPX in the recent

epidemic (Khaity et al., 2022; Bragazzi et al., 2023). In advanced

cases of uncontrolled HIV infection, inappropriate immune

response is significantly related to a weak prognosis, a longer

period of disease signs, late curing of self-controlling MPX, and

complex cures (Iñigo Martínez et al., 2022; Liu et al., 2022).

Consequently, sorting MPX cases for HIV is extremely suggested

in MSM (Liu et al., 2022). Recently, MPX has been accepted

as a key factor that escalates the chance of contracting HIV

(Davido et al., 2022; Patrocinio-Jesus and Peruzzu, 2022). A recent

Frontiers inMicrobiology 04 frontiersin.org115

https://doi.org/10.3389/fmicb.2023.1160984
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ullah et al. 10.3389/fmicb.2023.1160984

TABLE 2 MPX cases and deaths recorded by the WHO during the

multi-state 2022 epidemic (as of 8 June 2022) (World Health

Organization, 2022e).

WHO
zone

State Confirmed
cases

Suspected
cases

Deaths

AFRO Liberia 0 4 0

Sierra Leone 0 2 0

Republic of

Congo

2 7 3

DRC 10 1,356 64

Central

African

Republic

8 17 2

Ghana 5 12 0

Nigeria 31 110 1

Cameroon 3 28 2

AMRO Argentina 2 0 0

Canada 110 0 0

Mexico 1 0 0

USA 40 0 0

EMRO UAE 13 0 0

Morocco 1 0 0

EURO Austria 1 0 0

Belgium 24 0 0

Czech

Republic

6 0 0

Denmark 3 0 0

Finland 3 0 0

France 66 0 0

Germany 113 0 0

Hungary 2 0 0

Ireland 9 0 0

Italy 29 0 0

Israel 2 0 0

Latvia 2 0 0

Malta 1 0 0

Netherlands 54 0 0

Norway 2 0 0

Portugal 191 0 0

Slovenia 6 0 0

Spain 259 0 0

Sweden 6 0 0

Switzerland 12 0 0

UK 321 0 0

WPRO Australia 6 1 0

Cumulative 36 countries 1,344 1,537 72

epidemiological study fromMadrid, Spain reported that 44.3% (225

cases out of 508 totals) of MPX-confirmed cases were linked to

HIV infection (Iñigo Martínez et al., 2022). An additional report

from London, UK indicated that 35.9% (70 cases out of 195

totals) of MPX-confirmed cases were linked to HIV infection (Patel

et al., 2022). Similarly, mild infections of MPX among individuals

with HIV and AIDS have been documented in Italy and Portugal

(Antinori et al., 2022; Perez Duque et al., 2022), particularly among

people with enhanced T-helper cell count, untraceable HIV viral

genomic substance, and weak anti-retroviral treatment (Ortiz-

Martínez et al., 2022). Infected individuals with immunological

suppression initiated by HIV presented a clear-cut, wide scale

of clinical appearances and characteristic MPX wounds. Fever,

exanthema, inguinal lymphadenopathy, and genital ulcers were

major clinical appearances in MPX-infected individuals during the

epidemic in Portugal (Perez Duque et al., 2022). Pustules, papules,

and a necrotic centralized wound in the perianal region, trunk,

genitals, mouth, and facial region were recorded in a 24 year old

bisexual man with HIV infection (De Sousa et al., 2022). Moreover,

throughout the 2017–2018 MPX outbreaks in Nigerian regions, the

majority of mortalities related to MPX were in individuals with

unrestrained HIV, with AIDS appearances, who were not receiving

proper medication (Yinka-Ogunleye et al., 2019). Another study on

Nigeria showed that mixed HIV-infected MPX cases had a more

prolonged disorder, greater wounds, and greater frequency of both

genital ulcers and bacterial skin diseases, compared with HIV-

negative MPX-infected individuals (Ogoina et al., 2020). Mixed

infection with other sexually transmitted diseases (STDs) was also

documented among MPX and HIV cases. An infected individual

with unidentified progressive HIV and syphilis presented with a

severed penis, oral mucosal infection, nasal necrotic wound, and

MPX lesions spread over the entire body (Boesecke et al., 2022).

Active surveillance of MPX was carried out in nine regions of

central DRC during 2005–2007, and ∼760 MPX confirmed cases

were recorded, with an annual occurrence of 55.3 per 100,000

people. Male gender, age <15, a history of vaccination against SPX,

and inhabitants of afforested regions were the main associated risk

factors of MPX (Rimoin et al., 2010). In 2017, a huge incidence

of MPX was recorded in the Nigerian regions, with over 500

suspicious, over 200 confirmed cases, and a death rate of 3% (World

Health Organization, 2022b). In an additional study, Beer and Rao

(2019) investigated 71 reports relating to MPX cases and local

epidemics during 1970–2018. The rates of documented occurrences

were amplified since 1970, with an overall of 35 recorded epidemics

outside the DRC, with 20 between 2010 and 2018.

The CDC, from 1 January 2022 to 5 August 2022, documented

28,220 confirmed cases of MPX in 88 states of the world (CDC,

2022e). The majority of these cases (27,875) were documented in

81 states that have not retrospectively documented MPX (CDC,

2022e). Additionally, a few months ago, the WHO investigated

various human MPX outbreaks in different regions of Europe,

the Americas, the Eastern Mediterranean, and the Western

Pacific, with a total of 1,285 MPX confirmed cases, while 59

confirmed and 1,536 suspicious MPX cases were recorded, with

72 deaths occurring in African territories from January 2022

to June 2022 (World Health Organization, 2022e). The host

range and susceptibility to MPXV infection was detected during

Frontiers inMicrobiology 05 frontiersin.org116

https://doi.org/10.3389/fmicb.2023.1160984
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ullah et al. 10.3389/fmicb.2023.1160984

TABLE 3 Host range and animals susceptible to MPXV infection (Silva et al., 2020).

Order/Family Species Tool of
investigation∗

Relationship to
human infection∗∗

Hominidae/Primates Homo sapiens (Humans) Virus isolation Yes

Pongo pygmaeus (Orangutans) Virus isolation Yes

Pan troglodytes (Chimpanzees) Virus isolation No

Cercopithecidae/Primates Cercocebus atys (Sooty mangabeys) PCR/virus isolation No

Macaca fascicularis (Cynomolgus monkeys) Virus isolation Yes

Callithrichidae/Primates Callithrix jacchus (White-tufted marmosets) Lab. infection No

Chinchillidae/Rodentia Oryctolagus cuniculus (Rabbits) Lab. infection No

Muridae/Rodentia Mus musculus (Inbred mouses) Lab. infection No

Cricetidae/Rodentia Hamsters Lab. infection No

Nesomyidae/Rodentia Cricetomys sp. (Giant-pouched rats) PCR/virus isolation No

Gliridae/Rodentia Graphiurus sp. (African dormices) PCR/virus isolation No

Sciuridae/Rodentia Funisciurus sp. (Rope squirrels) PCR/virus isolation Yes

Cynomys ludovicianus (Black-tailed prairie dogs) PCR Yes

Marmota monax (Woodchucks) PCR/

virus isolation

No

Dipodidae/Rodentia Jaculus sp. (Jerboas) PCR/

virus isolation

No

Hystricidae/Rodentia Atherurus africanus (Porcupines) PCR/virus isolation No

Macroscelididae/Pilosa Myrmecophaga tridactyla (Ant-eaters) Virus isolation No

Didelphidae/Didelphimorphia Didelphis marsupialis (Southern opossums) PCR/ virus isolation No

Monodelphis domestica (Shot-tailed opossums) PCR/virus isolation No

Erinaceidae/Erinaceomorpha Atelerix sp. (African hedgehogs) PCR/virus isolation No

∗Tool of investigation: virus isolation from naturally infected animals; laboratory infection; or molecular assay (PCR). Susceptibility to MPXV infection was detected during investigational

research in the laboratory. ∗∗Transmission to humans previously described in the literature (Silva et al., 2020).

investigatory research in the laboratory by Silva et al. (2020) shown

in Table 3. Several eco-bionomical, environmental, and geostrategic

dynamics might have led to the regional and global appearance

and re-appearance of MPX infection, including the misuse of

rain timberlands, climate alteration, civil and military clashes in

disease areas, highly mobile populations, declining herd immunity,

and the ceasing of SPX immunization (Fauci, 2005; Liu et al.,

2022). On the contrary, the reservoir host, natural history, and

pathogenesis of MPXV are uncertain; hence, there are significant

disputes in recognizing the epidemiological dynamics of MPX

infection (Petersen et al., 2019).

3.1. Epidemiological dynamics of MPX
retrospective to the global epidemic in
2022

Based on 50 years of retrospective analysis of MPX, the DRC

has been the single state to constantly investigate HMPX patients,

and, in the previous 30 years, the figure for documented infected

individuals was over 1,000 per annum (Bunge et al., 2022; WHO,

2022f). During the year 2020, ∼6,257 suspicious individuals of

HMPX were investigated in the DRC (WHO, 2022f). In the initial

120 days of 2022, ∼1,238 Central African clade-associated new

MPX cases were documented in the DRC (Bunge et al., 2022;World

Health Organization, 2022a).

Human monkeypox (HMPX) was only reported outside the

African region when outbreaks linked to infected pet prairie dogs

increased in the USA in 2003 (Brown and Leggat, 2016; Centers

for Disease Control Prevention (CDC), 2020). None of the cases in

this outbreak (a total of 81 recognized cases, 40% of which were

confirmed cases) were attributed to secondary transmission, and

the mortality rate was zero. The dogs acquired infections from

infected exotic dormice and pouched rats, which were transported

from Ghana.

Multiple factors are involved in the rise of HMPX since the

1970s. These include active, passive, and sentinel surveillance

efforts, climatic dynamics, deforestation, and rapid demographic

expansion of regions where the MPXV is retained in a

huge population of host animals, with a surge in natural or

incidental hosts. Furthermore, individuals aged 40–45 years or

less lack immunity to the smallpox virus after the termination

of immunization against smallpox in the 1980s. In summary,

significantly associated dynamics also involve hominid behavior

(for example, interaction with dead or live creatures, reservoir

hosts, staying in tropically reforested or newly desforested ranges,
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TABLE 4 Risk factors associated with MPX cases.

Risk factor References

Age In Nigeria, the age of individuals affected by MPX was <40 years, with the absence of cross-protective resistance as

they were born after the termination of the smallpox eradication campaign (Petersen et al., 2019).

Nosocomial infection Healthcare-associated spread (Petersen et al., 2018).

Zoonotic infection Interaction with infected prairie dogs (Kile et al., 2005) and wildlife, bites from peri-domestic animals, hunters

(Meslin et al., 2000; Reynolds et al., 2007), household materials (Quiner et al., 2017; Yinka-Ogunleye et al., 2019;

Guagliardo et al., 2020), and peridomestic rodents (Reynolds et al., 2010; Salzer et al., 2013).

Travelers Immigrants to non-endemic monkeypox regions (Alakunle et al., 2020).

Human to human transmission Inter-human transmission (Nolen et al., 2015).

Human-to-animal transmission Human-to-dog transmission was reported in France and Brazil (Peters, 1966; Seang et al., 2022; Islam et al., 2023).

Men who have sex with men (MSM) MPX was spread among MSM, those who have bisexual contact, and those who have sex with everyone, including

male colleagues (Endo et al., 2022), young men who have sex with other men, engage in unsafe manners and actions

comprising unsafe sex, HIV positivity, and retrospective records of sexually transmitted diseases (STDs), including

syphilis (Bragazzi et al., 2023).

hunting, close interaction with an infected individual, sharing a

joint bedroom with an infected individual, sharing kitchenette

kits with an infected individual, and preparation and intake of

bush meat or monkeys), scarcity, military, and political conflicts,

territorial movements, tourism, the trade of exotic animals, and

public healthcare services (Hutin et al., 2001; Parker et al., 2007;

Rimoin et al., 2010; Vaughan et al., 2020; Mauldin et al., 2022;

Quarleri et al., 2022).

3.2. Epidemiological dynamics of MPX in
the global epidemic in 2022

Since May 2022, many outbreaks of HMPX have been

documented in European states for the first time, where the MPX

infection is not prevalent (ECDC, 2022a; Sham et al., 2022; World

Health Organization, 2022b,j). From 13 May 2022 to 16 May 2022,

the UK documented six HMPX cases for the first time; these cases

were investigated without any epidemiological associations with

imported animals, travel to African countries, and with all cases

self-distinguishing as men who have sex with other men, bisexual,

or gay (WHO, 2022c). The majority of HMPX cases have a travel

record to various states in Europe and America. Moreover, cases of

HMPX in the enzootic world remain to be described.

Since early May and as of 19 September 2022, over 62,000

HMPX cases have been documented in the non-endemic world

(Centers for Disease Control and Prevention (CDC), 2022d). As

of 19 September 2022, ∼44 European republics have documented

24,017 cases, demonstrating 38.5% of all the globally documented

cases in the recent epidemic. The highest figure (n = 6947) was

documented in Spain, followed by France (n = 3898), Germany

(n = 3563), and the UK (n = 3552); however, one case each

was documented in Ukraine and Turkey. In this epidemic, the

largest number of cases (n = 23,892) was documented in the USA,

comprising 38.3% of the globally reported MPX cases. Variations

in the incidence rate of HMPX by state might be relatively

described by dissimilarities in demography and density population

at threat, social and economic circumstances, under-diagnosis,

and/or improper reporting.

The person-to-person transmission dynamic of HMPX has

been documented in the European region for the first time

(ECDC, 2022a; Vivancos et al., 2022). In the recent occurrence,

clinical features that differ from retrospective documentations

were investigated, including the lack of prodromal or very

minor prodromic symptoms, a rash that appears earlier than

the prodromic stage, a rash that exhibits only an ulcer or some

abrasions, a skin rash restricted only to the perineal or anogenital

region, and mainly inguinal site lymphadenopathy (Bunge et al.,

2022; Iñigo Martínez et al., 2022; Thornhill et al., 2022). Based on

the severity, MPX is categorized as mild and moderate, with ∼4 to

10% of patients admitted to hospitals (Centers for Disease Control

and Prevention (CDC), 2022d; Girometti et al., 2022; WHO,

2022d). Due to encephalitis and comorbidities, ∼20 deaths due to

MPX have been documented in the current multiregional epidemic,

a figure that matches that in Africa as well as in non-endemic states

(Centers for Disease Control and Prevention (CDC), 2022d; ECDC,

2022a; European Centre for Disease Prevention Control (ECDC),

2022c). Though several documentations specified a small number

of cases without symptoms (Centers for Disease Control and

Prevention (CDC), 2022d), a UK-based cohort study investigation

showed interactions with an individual with confirmed MPX

infection were recorded in ∼25% of cases (Patel et al., 2022). In

this prospective epidemic, there has been no concrete evidence of

animal-to-human or human-to-animal spread. In this occurrence,

the investigated viruses were linked to the West African clade

(Isidro et al., 2022; Kmiec and Kirchhoff, 2022).

An epidemiological study at 43 locations in 16 investigated

states documented that ∼99% of men were affected by MPX,

among whom 98% self-distinguished as bisexual men or gay, or

men who have sex with other men (Thornhill et al., 2022). In

the current study, the 18–50 years of age range was reported as

having an average of 38 years of age. Among them, 41% closely

interacted with HIV patients, and in most of the cases, HIV

was considerably controlled. Pre-exposure prevention protocol was

adopted by 57% of HIV-negative individuals or those patients who

were not aware of their HIV status. In 29% of examined individuals,

there was evidence of associated sexually communicated infections.

In this study, confirmation of sexual transmission of infection

was impossible, sex-related history was investigated in 95% of5
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patients, 20% reported engaging in “chem sex” (sex-linked with

the practice of medicines), and 32% reported attending on-site-sex

events (Thornhill et al., 2022).

In the Spanish outbreak (IñigoMartínez et al., 2022),∼84.1% of

MPX cases were documented as having a history of condomless sex

or having sex with more than one sex partner within 3 weeks before

the beginning of disease indications, 8.1% of infected persons

confirmed having safe sexual activities, and 7.9% gave no response.

Furthermore, in the present report,∼80.3% of individuals were not

aware of MPX or had no interaction with a recognized MPX case.

One month before MPX diagnosis, numerous individuals had an

international travel history to Italy, the UK, Germany, Belgium,

Portugal, Peru, etc., with no recorded cases of travel to African

countries. Furthermore, at a sauna region in Madrid and at the

Gay Pride festival on a Spanish island, some cases of MPX were

reported, with various secret gatherings also having a major role;

dating via social networks was recorded by 56.9% of individuals as

well as sexual activities in bars, touring zones, and secret studios.

In this occurrence, the MPXV was investigated in seminal fluid

samples of the patients, with sexual interaction acts a significantly

associated factor in the disease occurrence. More investigation is

required to explain the sexual transmission dynamics of MPX via

genital fluids (Antinori et al., 2022; Iñigo Martínez et al., 2022;

Thornhill et al., 2022; Noe et al., 2023).

Remarkably, various reports show that data were registered as

having a lack of immunization status (Benites-Zapata et al., 2022).

Among the US MPX cases for whom immunization status was

accessible, 14% testified retrospectively to being vaccinated against

smallpox (with 23% receiving single instead of double doses, 23%

receiving pre-exposure prevention at an unidentified stage before

the current occurrence, and 54% of individuals not providing

an answer about vaccination status) (Philpott et al., 2022). To

date, 344 MPX cases have been recorded among medical staff,

and among them, some cases of spread via job-related exposure

have been described in this occurrence (Centers for Disease

Control and Prevention (CDC), 2022d).Worldwide, youngsters are

most vulnerable to MPX because of the termination of smallpox

immunization after the eradication of smallpox (Factsheet for

health professionals on monkeypox: European Centre for Disease,

2022d). To avoid MPX, two vaccines (JYNNEOS and ACAM2000)

are applied as follows: JYNNEOS vaccine is applied to safeguard

against both smallpox and MPX, whereas the ACAM2000 vaccine

is applied to protect against smallpox (Centers for Disease Control

Prevention (CDC), 2022c; Factsheet for health professionals on

monkeypox: European Centre for Disease, 2022d). The feedback

of the immune system after vaccination is mainly based on cross-

defense among the orthopoxviruses and vaccinia virus (McCollum

and Damon, 2014; ECDC, 2022a). In the ongoing occurrence

of MPX in the USA, men who have sex with other men,

gender-diverse individuals, or transgender individuals who had

sex with men in the previous 14 days might get the vaccination

if they had sex with numerous individuals, or had sex at

commercial sex clubs or bathhouses, or had sexual activities at

an occasion, site, or in a zone where MPX spread is happening

(Centers for Disease Control Prevention (CDC), 2022c). As per

the recommendations of the WHO, several states in Europe,

including the UK, Germany, France, and Spain, were providing

immunization during the 2022 MPX epidemic (ECDC, 2022b;

Factsheet for health professionals on monkeypox: European Centre

for Disease, 2022d).

The WHO measures the MPX threat as sensible worldwide,

with the exemption of the European and American regions, where

the threat is evaluated as high (Factsheet for health professionals

on monkeypox: European Centre for Disease, 2022d; Zachary

and Shenoy, 2022). The recent global occurrence differs from

previous epidemics in a few ways: the infrequent degree of

incidence; unusual rapid expansion globally; spreading in non-

endemic countries; mostly spreading among younger men (aged

18–44 years), with over 97% of them self-recognizing as men

who have sexual intercourse with other men or unsafe sex with

several individuals; the role of different super spreading occasions

associated with transnational get-togethers; while asymptomatic

infections and lack of or mild signs throughout the prodromal

period make easier the transmission dynamics of the virus; and

the occurrence of minor cases (Bunge et al., 2022; Centers for

Disease Control and Prevention (CDC), 2022d; Delaney et al., 2022;

WHO, 2022d). In summary, an advanced investigation is required

to properly recognize and advance the supervision of HMPX.

4. MPX host range

Monkeypox virus (MPXV) isolates based on phenotypic and

genetic deviations are divided into two different clades, specifically

the Congo Basin and the West African clades (Likos et al.,

2005). In contrast to the variola virus, which affects only humans,

the MPXV is among those orthopoxviruses that can infect

numerous animal hosts and can spread to humans (Parker et al.,

2007; Parker and Buller, 2013; Patrono et al., 2020; Kmiec and

Kirchhoff, 2022). The fixed reservoir host of the MPXV can

even be unrecognized, but some small mammalians such as giant

pouched rats (Cricetomys spp.), rope squirrels (Funisciurus spp.),

sun squirrels (Heliosciurus spp.), and African dormice (Graphiurus

spp.) are assumed to transmit the virus to human beings in Central

and West Africa (Alakunle et al., 2020). MPXV is communicated

from animals to human beings during hunting, trapping,

treating infected animals, and dealing with their secretory and

excretory fluids.

Based on experimental analyses and field investigations,

MPXV has been documented in a wide range of rodents,

including Oryctolagus cuniculus (rabbits), Mus musculus (mice),

Marmota monax (woodchucks), hamsters, Jaculus sp. (jerboas),

and Atherurus africanus (porcupines). Similarly, based on

techniques such as molecular assay, virus separation, or in vitro

contamination, vulnerability to MPXV was investigated in black-

tailed prairie dogs (Cynomys ludovicianus), anteaters, short-tailed

opossums (Monodelphis domestica), giant anteater (Myrmecophaga

tridactyla), African hedgehogs (Atelerix sp.), southern opossums

(Didelphis marsupialis), and various non-human primate species

(Parker et al., 2007; Doty et al., 2017). The host range and

susceptibility to MPXV infection is also shown in Table 3 (Silva

et al., 2020).

In Africa, Asia, and Europe, non-human primates, chimpanzees

(Pan troglodytes), orangutans (Pongo pygmaeus), cynomolgus

monkeys (Macaca fascicularis), and sooty mangabeys (Cercocebus

atys) can be infected with MPXV. In the USA and the UK,

Frontiers inMicrobiology 08 frontiersin.org119

https://doi.org/10.3389/fmicb.2023.1160984
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ullah et al. 10.3389/fmicb.2023.1160984

non-human primates (Magnus et al., 1959; Wachtman and

Mansfield, 2012; Alakunle et al., 2020) and common marmosets

(Callithrix jacchus) were determined to be vulnerable to MPXV by

intravenous injection (Mucker et al., 2015). Non-human primates

may be affected by MPXV and show signs and symptoms, while

small mammalians can be asymptomatic carriers of the virus (CDC,

2022a).

In 2003, HMPX infection in the USA was mainly linked with

close interaction with ill pet prairie dogs introduced from the

Ghana region of West Africa (Reed et al., 2004). This incident,

as well as the rodent’s infection, intensified alarms about the

entry of MPX infection into the USA. In the meantime, the

vulnerability of numerous African rodents to MPXV raised fear

related to the spread of the virus to human beings, as these

rodents are often maintained as pets (Centers for Disease Control

Prevention (CDC), 2020; Sklenovská, 2020). Non-human primates,

squirrels, and rodents have been observed to have MPXV based

on sero-investigations in African territories. Wild animals are

more susceptible to the disease. In 1985, MPXV was isolated from

Thomas’s rope squirrel (Funisciurus anerythrus) in the DRC and in

2012 from the sooty mangabey (Cercocebus atys) in Cote d Ivoire,

signifying that these animal species might act as MPXV reservoirs

hosts (Falendysz et al., 2017).

Human beings can also be accidental hosts (Parker et al.,

2007) since the eradication of smallpox, based onMPXVmorbidity

and mortality, it is converted into the most significant infective

zoonotic orthopoxvirus for humans. In 1970, the first human

case of MPXV was documented in a 9-month-old child in the

DRC, who presented with smallpox-like skin lesions (Arita and

Henderson, 1968; Ladnyj et al., 1972). Numerous humanoid cases

were investigated in subsequent years. During 1970–1999, the

WHO documented almost 404 confirmed and 500 suspicious

cases of human MPXV in various African states (Liberia, Gabon,

Côte d’Ivoire, Central African Republic, and Cameroon, but

predominantly in the DRC) (World Health Organization, 1997;

Heymann et al., 1998; Sklenovská and Van Ranst, 2018). In May

and June 2003, some MPX cases were reported to the Wisconsin

Division of Public Health, with no mortality and no person-to-

person spread observed (Centers for Disease Control Prevention

(CDC), 2022c). The origin of this occurrence was traced back to the

importation of exotic infected animals from Ghana (Khodakevich

et al., 1986; Sklenovská and Van Ranst, 2018; CDC, 2022b). Luckily,

the stage-wise episode of infected rodents in cages in the USA

was temporary, and the pattern of spread in the country was

destroyed (Petersen et al., 2019a). More recently, on 27 September

2022, 66,000 cases of MPX were confirmed in more than 100 non-

endemic states, with fluctuating epidemiological footprinting from

retrospective outbreaks (Li et al., 2022).

Human MPX cases have been snowballing globally with

time, although they might have been miscalculated. Remarkably,

diagnostic capacities in the affected states are mostly inadequate,

while global healthcare personnel are mostly unaware of MPX

disease. The emergence of the current MPX spread is linked

with dynamics such as the growing invasion of hominids into

wild habitations, the international and global travel of the public

from enzootic regions to non-endemic areas, the introduction of

pets and laboratory animals, lack of active disease surveillance,

and improper prevention and control strategies (Essbauer et al.,

2010). Furthermore, the termination of smallpox immunization

and various reports of animals in captivity or experimental

laboratories have made the global public susceptible to MPXV

infection or other orthopoxvirus infection. As the MPX virus

is an increasing global zoonotic threat with epidemic potential,

and as most of its host range and life cycle in nature remains

unclear, developments are immediately mandatory to recognize

its biological cycle and host range for future prevention and

control strategy.

5. Associated risk factors of MPX

Although the main associated risk factors fluctuate among

different epidemics, the significance of obtaining the characteristics

of particular individuals for calculating and predicting epidemic

patterns cannot be ignored. Conventionally, MPX cases involving

spread among human beings are more probable to be individuals

who are women, non-vaccinated against smallpox, living in the

same house, or providing cure to a primary case (JeŽek et al., 1988).

Prominently, this information is based on clade 1-associated MPX

in the DRC and did not represent other enzootic regions; outbreak

investigations of different endemic states show that youngsters

face the ample burden of the MPX infection. In an occurrence

of clade 2B-associated MPX in Nigerian territory, mostly 21 to

40-year-old individuals were involved (Alakunle et al., 2020),

although the index case was an 11-year-old teenager (Ogoina

et al., 2019; Hobson et al., 2021). These associated risk factors

specify the role of social and behavioral determining factors in

helping the person-to-person spread of MPX infection. However,

a systemic review and meta-analyses (Sham et al., 2022) explained

the detailed associated risk factors for the primary introduction

of MPX.

One of the serious associated risk factors for patients and

healthcare workers is nosocomial MPXV infections (nosocomial

infections, also referred to as healthcare-associated infections

(HAI), are infection(s) acquired during the process of receiving

healthcare that were not present at the time of admission) in both

enzootic and non-enzootic areas. Smallpox was also mainly due to

nosocomial occurrences (CDC, 1963), with the peak rate of spread

occurring inside health centers (Kiang, 2003). Similarly, hospital-

borne occurrences of MPX are mainly serious and long-term.

These consistent multifactorial results include individuals who are

susceptible to diseases, healthcare center sanitation patterns, and

the usage of aerosol-producing measures (Judson, 2019). A total

of six generations of MPXV spread were investigated in a public

healthcare center in Impfondo, Republic of Congo, specifying

MPXV’s potential to spread if not rapidly handled in healthcare

settings (Learned et al., 2005). On one occasion in the UK, amedical

employee who had collected a blanket and dressing of an MPX-

infected person was subsequently contracted MPXV (Vaughan

et al., 2020).

Zoonotic transmission (transmission from animals to human

beings) can arise from direct interaction with the blood, body fluids,

ormucosal or cutaneous lesions of infected animals (Nigeria Centre

for Disease (NCDC), 2022). In Africa, MPX has been reported
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in various hosts including tree squirrels, rope squirrels, dormice,

Gambian poached rats, several types of monkeys, and other animals

(Kile et al., 2005; Yinka-Ogunleye et al., 2019). The reservoir of

MPX has not cleared yet; however, rodents are the main expected

but not clear yet (Kile et al., 2005). The intake of uncooked meat

and other foodstuffs of infected animal origin is a probable risk

factor (Petersen et al., 2018). Individuals living in or near forested

regions could have an incidental or low-degree of exposure to

infected animals.

Human-to-human spread can result from close contact with

respiratory discharges, dermal abrasions of an infected individual,

or a newly infected entity (Nolen et al., 2015). MPXV spread

via respiratory particles typically requires lengthy and close

interactions, which put community health staff, families, and other

close contacts of active cases at greater risk (Petersen et al.,

2018). The predictable sequence of spread in the public has grown

in the current era from six to nine repeated human-to-human

contaminations, and this could indicate decreasing protection in

humans due to the end of smallpox immunization (Meslin et al.,

2000).

Human-to-animal transmission of MPXV has not been

reported yet and it is believed that the outbreak may not have

been caused by infection from animals (Diaz-Cánova et al., 2022).

European health administrators firmly recommend that rodent

pets, e.g., guinea pigs and hamsters, that belong to patients with

HMPX should be quarantined and watched or even euthanized to

stop the spread of the virus (Heskin et al., 2022). However, the most

recent identifications in August 2022 were two cases of human-to-

dog transmission reported in France and Brazil (Peters, 1966; Islam

et al., 2023). In Paris, a pet dog (a healthy 4-year-old male Italian

Greyhound) of two individuals who were suffering from MPX was

also diagnosed with MPXV. The virus was found in the individuals,

and the dog showed homology on DNA sequencing (Seang et al.,

2022). This dog tested positive for MPXV after showing symptoms

such as abdominal abscesses. Based on the sequencing results and

symptoms of the two patients as well as the dog, the researchers

concluded that MPXV was indeed transmitted between humans

and dogs (Seang et al., 2022).

As per disease investigations, the main concern is more for

youngsters and immunocompromised adults, such as persons who

have HIV infection (De Sousa et al., 2022). The recent globalMPXV

occurrence in human beings increases the probability that the virus

might have mutated genetically and that human behavior may have

altered or collected. These mutations might have occurred due to

decreasing smallpox immunity, diminishing COVID-19 protective

policies, sexual connections, and the restart of intercontinental

movements (Zhu et al., 2022). An additional factor recognized in

the current topographical distribution of MPX spread is sexual

interaction, in particular among men who have sex with other men

(ECDC, 2022a). Table 4 shows the updated risk factors associated

with MPX cases worldwide.

6. MPXV as a potential bioweapon

Monkeypox (MPX) is no longer a rare, self-limiting

disease limited to endemic countries. The MPXV is a high-

danger pathogen that can spread to various regions and

poses a significant threat to public health. Its ever-changing

epidemiology and transmission dynamics have increased

the possibility of it evolving into a much deadlier pathogen

that can be used as a bioweapon due to its unanticipated

development in places with no known epidemiological linkages,

which permits undetected transmission for a long period

and raises concerns about the virus’s evolution (Ferdous

et al., 2023). Despite the potential of MPXV to be used as a

global bioweapon, the possibility of biological warfare and

bioterrorism cannot be completely ruled out due to modern

molecular biological advances and the spread of the virus to

various regions due to rising globalization and cross-border

animal mobility. As a result of these factors, MPXV, along

with the variola virus and many other poxviruses, is on the

NIH’s highest danger list. The CDC has categorized it as a

“select agent.” Human travel is prevalent today, providing

risk for the spread of MPX, and animals carried across

borders represent an immediate danger of disease spread

(Amir et al., 2023; Khattak et al., 2023).

7. Critical challenges associated with
MPX research

To better understand the dynamics of MPX transmission

and control, operational research is currently facing challenges,

such as insufficient resources for detailed case investigations and

contact follow-up in affected communities. A lack of adequate

diagnostic facilities in laboratories is a serious problem. Owing

to the lack of laboratory diagnosis capacity and access, as well

as the difficulty of diagnosing MPX, it is difficult to discover

any underlying etiology. A seroprevalence study would help to

understand the epidemiology as well as subclinical infection

among contacts in communities (Lederman et al., 2007). The

currently available serological assays are generic orthopox tests;

they do not specifically test for the MPXV. This is due to the

fact that there is cross-reactivity between MPX and smallpox

viruses, and therefore, we cannot distinguish between a MPXV

infection and prior smallpox vaccinations or other orthopoxvirus

infections. In addition, these assays are not currently available

in the marketplace. It has been found that, according to data

collected from Nigeria, ∼20% of 70 MPX-negative patients

presenting rash illness with similar antigens also had orthopox

antibodies. To identify the transmission of other orthopoxviruses in

human and animal populations, further research, including using

molecular and genomic approaches, is needed (Ihekweazu et al.,

2020).

Precautions such as avoiding close interaction with reservoir

hosts and infected persons, proper handwashing and disinfection,

avoiding non-important travel, usage of suitable personal

protective equipment, appropriate practices of waste management,

and quarantine, treatment, and immunization of infected

individuals must be applied to reduce the spread of MPXV.

It is necessary to enhance continuous active investigation and

monitoring of the MPXV in community health services and

in the general population, particularly in livestock populations

such as animal farmhouses, marketplaces, and slaughterhouses.

Individuals traveling from regions of the world where the infection
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is prevalent must be tested and declared free of disease before

entry to another country. Infected persons must be supervised

to stop the further spread of the virus to vulnerable populations.

The public must be made aware of and educated on the threats of

bushmeat intake, zoonotic spread, the significance of one’s health,

and the application of protective procedures and biosecurity

against the MPXV. Finally, training public health facilitators

on how to avoid the spread of the disease and how to protect

themselves from the threat of infection is critical because

they are at greater threat of being infected (Idris and Adesola,

2022).

8. Conclusion

The contemporary global public in the present era has already

survived the COVID-19 pandemic and the extraordinary damages

it produced. Due to globalization, communicable infections are

becoming more widespread and pose a global public health

threat. There is no method to determine subsequent emerging

diseases, but one example, COVID-19, has re-taught the globe

that what virus will arise as a major public health threat is

somewhat unpredictable and that it is frequently too late to

put in place counter-measures after the fact. The unpredicted

appearance of MPX in the non-endemic world suggests some

undetectable transmission dynamics. Hence, open-minded and

vigilant epidemiological attention and global public awareness of

the recent MPX epidemic are required, not only in developed

economies but also in underdeveloped states that have been

dominated by such viruses for several years. There is an

urgent need for researchers and epidemiologists to participate

more in this global public health threat, follow up on it, and

conduct more molecular epidemiological research on the topic.

Therefore, there is an urgent need for proper epidemiological

approaches to be adopted to investigate the emergence of

current MPX epidemics, as well as the true cause of the

disease, transmission dynamics, identification of associated risk

factors, and investigation of the global host range. Rapid

documentation of new cases, active investigation, and syndromic

observational surveillance approaches would provide insights

into variations in epidemiological tendencies, particularly in

situations where validating diagnostic techniques is challenging.

Therefore, this review has been compiled to highlight the

epidemiology, global host ranges, and associated risk factors

of MPX, focusing on its epidemic potential and global public

health threat.
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Lipid A structural diversity among 
members of the genus Leptospira
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Lipid A is the hydrophobic component of bacterial lipopolysaccharide and an 
activator of the host immune system. Bacteria modify their lipid A structure to 
adapt to the surrounding environment and, in some cases, to evade recognition 
by host immune cells. In this study, lipid A structural diversity within the Leptospira 
genus was explored. The individual Leptospira species have dramatically different 
pathogenic potential that ranges from non-infectious to life-threatening disease 
(leptospirosis). Ten distinct lipid A profiles, denoted L1-L10, were discovered 
across 31 Leptospira reference species, laying a foundation for lipid A-based 
molecular typing. Tandem MS analysis revealed structural features of Leptospira 
membrane lipids that might alter recognition of its lipid A by the host innate 
immune receptors. Results of this study will aid development of strategies to 
improve diagnosis and surveillance of leptospirosis, as well as guide functional 
studies on Leptospira lipid A activity.

KEYWORDS

lipid A, Leptospira, mass spectrometry, structure-activity relationship, molecular typing, 
lipopolysaccharide (LPS), fast lipid analysis technique, pathogenicity

1. Introduction

Lipopolysaccharide (LPS) is one of the hallmark virulence factors of Gram-negative 
pathogens. It consists of three parts: O-antigen, core oligosaccharide antigen, and lipid A. The 
O-antigen is a polysaccharide exposed to the extracellular milieu, and its size and structural 
complexity delays the recognition of LPS by the host immune system and limits binding to host 
antibodies (Duerr et al., 2009; Domínguez-Medina et al., 2020). Core oligosaccharide consists 
of several different monosaccharide units, and connects O-antigen with lipid A. It contributes 
to stability of the outer membrane and it has antigenic properties (Silipo and Molinaro, 2010). 
Finally, lipid A, also known as endotoxin, anchors LPS to the outer leaflet of the outer membrane. 
Lipid A is the membrane anchor of LPS which attaches it to the outer leaflet of the outer 
membrane. It comprises two glucosamine sugars decorated with fatty acyl chains and terminal 
phosphate groups that can be further adorned with other functional moieties (Simpson and 
Trent, 2019).

The biological function of lipid A is dependent on its chemical structure. Bacteria modify 
their lipid A to adapt to changes in their surrounding environment (Needham and Trent, 2013; 
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Simpson and Trent, 2019; Kawahara, 2021). These structural 
adaptations include, for example, modifications to the length and 
saturation of fatty acyl chains to overcome temperature shifts (Gunn 
and Ernst, 2007; Hassan et al., 2020) or addition of functional groups 
to gain resistance to antimicrobial peptides (Trent et al., 2001; Zhou 
et al., 2001), and are covered in great detail in recent reviews (Simpson 
and Trent, 2019; Kawahara, 2021). Lipid A is also a pathogen-
associated molecular pattern. It interacts with the Toll-Like Receptor 
4/Myeloid Differentiation protein 2 (TLR4/MD2) complex in a 
structure-dependent manner (Park et al., 2009; Ohto et al., 2012; Scott 
et al., 2017). The canonical hexa-acylated lipid A from Escherichia coli 
strongly activates TLR4/MD2, and is therefore highly endotoxic (Park 
et al., 2009). In contrast, tetra-acylated lipid A molecules are TLR4/
MD2 antagonists (Baldridge and Crane, 1999; Deguchi et al., 2016). 
Similarly, lipid A molecules with two terminal phosphates are stronger 
TLR4/MD2 ligands than their monophosphorylated counterparts 
(Baldridge and Crane, 1999; Kong et al., 2012). Some pathogens, such 
as Yersinia and Salmonella, modify their lipid A structures accordingly 
to evade host inflammatory responses when establishing infection 
(Kawahara et al., 2002; Rebeil et al., 2004; Kong et al., 2011; Chandler 
et al., 2020).

Leptospira is a diverse group of bacteria comprising non-infectious 
free-living spirochetes, as well as pathogens that cause leptospirosis in 
a wide variety of hosts (Coburn et al., 2021). Unlike other spirochetes, 
all Leptospira possess LPS in their envelopes, and this molecule is 
central to the host immune responses to infection (Werts et al., 2001; 
Nahori et  al., 2005; Viriyakosol et  al., 2006; Murray et  al., 2010; 
Srikram et al., 2011; Marcsisin et al., 2013). The lipid A structure has 
been established in serovars of the pathogenic Leptospira 
(Que-Gewirth et al., 2004; Eshghi et al., 2015; Novak et al., 2022). In 
contrast to the canonical di-glucosamine backbone of lipid A with 
amide- and ester-linked primary fatty acids (Simpson and Trent, 
2019), the backbone of Leptospira lipid A comprises di-aminoglucose 
sugars, which results in linkage of all primary fatty acids through 
amide bonds (Que-Gewirth et al., 2004; Eshghi et al., 2015; Novak 
et al., 2022). In addition, the lipid A has only one terminal phosphate 
that is methylated; a structural feature that has not been described in 
any other bacterial species to date (Que-Gewirth et al., 2004; Simpson 
and Trent, 2019). These unique lipid A features are likely involved in 
the inability of Leptospira lipid A to bind to human TLR4/MD2 (Werts 
et  al., 2001). Similar to other bacterial pathogens, L. interrogans 
modify their lipid A structure to adapt to temperature shifts (Gunn 
and Ernst, 2007; Eshghi et al., 2015).

Given the enormous diversity of the Leptospira genus (Vincent 
et  al., 2019), the structural diversity of its lipid A is curiously 
understudied (Patra et al., 2015; Vanithamani et al., 2021; Novak et al., 
2022). Leptospira are fastidious bacteria that grow slowly in rich and 
complex culturing media supplemented with host factors (Zuerner, 
2005). The traditional protocols for lipid A extraction that require 
large volumes of bacterial culture are therefore likely the cause of this 
knowledge gap. To circumvent these limitations, we employed a rapid 
protocol for lipid A structural characterization, FLATn (Leung et al., 
2017; Sorensen et al., 2020; Yang et al., 2022a), that allowed us to 
utilize an estimated equivalent of 107 Leptospira cells in 1 ml volume 
per assay. We examined lipid A mass spectral profiles, from which 
representative structures were proposed, in 31 Leptospira species from 
different phylogenetic groups. This work therefore represents the first 

comprehensive comparison of lipid A structure in virulent versus 
nonvirulent Leptospira species.

2. Materials and methods

2.1. Leptospira species

Leptospira species used in this study are listed in Table  1. 
Leptospira were grown in the Ellinghausen–McCullough–Johnson–
Harris (EMJH) medium, as modified by Ellis and Thierman (EMJH 
T80/T40/LH); medium was prepared without the addition of rabbit 
serum and superoxide dismutase (Ellis and Thiermann, 1986; Zuerner, 
2005). Cultures were kept at 30°C and shaking at 100 rpm. For all 
experiments, Leptospira species were grown in biological triplicates to 
mid-logarithmic phase (approximately 5× 10^8 cells/ml), as assessed 
by density and motility under a dark-field microscope (Zuerner, 2005).

2.2. Fast lipid analysis technique (FLAT)

Lipid A structural analyses were performed using FLAT (Sorensen 
et al., 2020) and its tandem-MS version FLATn (Yang et al., 2022a). 
Five milliliter of logarithmic Leptospira culture was centrifuged at 
4,000x g for 15 min. Resulting pellets were washed twice with 1 mL of 
phosphate buffered saline (Sigma Aldrich, St. Luis, MO, USA), and 
resuspended in 200 μL of MS-grade water (Fisher Chemical, Hampton, 
NH, USA). One microliter of the sample was spotted on a MALDI 
plate (MFX μFocus plate 12×8 c 2,400 μm 0.7 T; Hudson Surface 
Technology, Inc., South Korea) and air dried. One microliter of the 
FLAT extraction buffer (0.2 M citric acid, 0.1 M sodium citrate in 
MS-grade water; both from Fisher Chemical) was added on the top of 
each sample. MALDI plate was placed in an in-house made humidifier 
chamber and incubated at 110°C for 30 min. Plate was gently washed 
with MS-grade water for approximately 30s and let air dry. Finally, 
1 μL of norharmane matrix (Sigma Aldrich) was spotted on the top of 
each sample and let dry. Norharmane matrix was prepared at 10 mg/
mL in 2:1 v/v MS-grade chloroform and methanol (both from 
Fisher Chemical).

2.3. MALDI MS analysis of lipid A

Mass spectra were obtained on a timsTOF flex MALDI-2 
instrument (Bruker, Bremen, Germany) in the negative ion mode. 
Instrument was calibrated before each experiment in an electrospray 
mode by a direct infusion of the Agilent Calibration mix (Agilent 
Technologies, Santa Clara, CA, USA). Tandem MS analyses were 
performed with the following settings: 3,000 shots/spot on average, 
collision energy: 110–120 eV, isolation width: m/z 4, collision RF: 
1,000 Vpp, transfer time: 110 μs and prepulse storage: 11 μs. To detect 
product ions in the low range m/z, the collision RF and transfer time 
were changed to 300 Vpp and 30 μs, respectively. Data were analyzed 
using mMass v5.5.0 (Strohalm et  al., 2010) and Compass Data 
Analysis v 6.0 (Bruker). Fragmentation patterns of predicted lipid A 
structures were confirmed in ChemDraw v18.0 (PerkinElmer 
Informatics, Waltham, MA, USA). Theoretical isotopic distributions 
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were predicted using Peak-by-Peak Metabolomics software v 2022.8.0 
(Spectroswiss, Lausanne, Switzerland).

3. Results and discussion

Recent advances in the field of Leptospira genomics led to 
identification of 68 reference Leptospira species, and their 
reclassification into four distinct phylogenetic subclades (Vincent 
et al., 2019; Korba et al., 2021). The P1 subclade encompasses species 
formerly known as “pathogens,” the P2 subclade comprises species 
formerly known as “intermediates,” and finally, the S1 and S2 
subclades encompass non-infectious saprophytic species. The P1 
subclade is further divided into P1 high virulence (P1hv) and P1 low 
virulence (P1lv) groups. Leptospira species most frequently involved 
in human disease, such as L. interrogans and L. noguchii, belong to the 
P1hv group, whereas species with no/unknown pathogenic potential 
cluster to the P1lv group (Vincent et  al., 2019). Although the 
differences between the individual subclades are clear on the genome 
level, additional knowledge on phenotypic differences is warranted to 
fully understand the pathogenesis of leptospirosis. Here we examined 
clade-specific differences in the structure of lipid A, the hallmark 
virulence factor of bacterial pathogens.

3.1. Ten unique lipid A profiles were 
detected between the individual Leptospira 
subclades

The negative ion mass spectra of lipid A from 31 Leptospira 
species were examined by FLAT (Sorensen et al., 2020). This included 
five P1hv, five P1lv, nine P2, nine S1, and three S2 species (Table 1). In 
total, 10 different lipid A profiles denoted L1-L10 were detected across 
the examined species (Figure  1; Table  2). In the P1hv group, 
L. interrogans, L. noguchii, and L. weilii shared the L1 profile 
(Figure 1A), and L2 and L3 profiles were detected in L. mayottensis 
and L. santarosai, respectively (Figures 1B,C). The P1lv group was 
homogenous; all P1lv species shared the L4 profile (Figure 1D). In the 
P2 subclade, 7 out of the 9 species shared the L5 lipid A profile with 
L. licerasiae (Figure 1E). The L6 profile was detected in L. fluminis 
(Figure 1F) and the L7 profile in L. perolatii (Figure 1G). The lipid A 
profiles of S1 and S2 species were very similar to each other. Seven out 
of nine S1 species shared the L8 profile with the model saprophytic 
species L. biflexa (Figure 1H). L. noumeaensis and L. kanakyensis 
displayed the L9 phenotype (Figure 1I). Finally, the L10 profile was 
detected in all S2 species (Figure 1J). The individual lipid A profiles of 
all examined Leptospira species can be  found in Supplementary 
material (Supplementary Figures S1–S3).

There was no obvious association between the origin of the 
examined Leptospira species and their lipid A profiles. For example, 
all but one examined P1lv species and all S1 species were isolated from 
water and soil environments (Table 1), yet their lipid A profiles were 
different (Figure 1). Presence of lipid A modifications that could aid 
survival of Leptospira in water and soil environments cannot 
be excluded. However, environment-induced lipid A modifications are 
often transient (Rebeil et al., 2004; Li et al., 2012) and unlikely to 
be  carried over to bacteria grown under conditions where these 
modifications are not required. At the growth conditions used in this 
study (modified EMJH T80/T40/LH, 30°C, and shaking), the strongest 

association was observed between the lipid A profiles of the individual 
Leptospira species and their phylogenetic classification (Figure  1; 
Table 2).

3.2. Leptospira lipid A profiles were 
complex, displaying high intraspecies 
heterogeneity

The structures of the representative lipid A ions of each profile 
(L1–L10) were proposed based on tandem mass spectrometry analysis 
(FLATn) (Yang et al., 2022a). The lipid A structure of L. interrogans 
(L1) corresponded to the previously reported structure for this species 
(Que-Gewirth et  al., 2004; Eshghi et  al., 2015), validating our 
methodology (Figures 2A,B). Interpretation of lipid A profiles can 
be challenging. However, one main lipid A ion is usually surrounded 
by satellite molecules resulting from substantial modifications to this 
lipid A molecule (such as addition of a sugar moiety or a terminal 
phosphate group) (Leung et al., 2017; Liang et al., 2019). In contrast, 
all Leptospira lipid A profiles were complex with several clusters of 
lipid A ions separated by 26 or 28 Da (Figures 1, 2E). These mass 
differences corresponded to an addition of two carbons connected by 
a double bond or a single bond, respectively, and were previously 
described in L. interrogans and L. kirschneri (Novak et  al., 2022) 
(Figure 2E). Each of these clusters was further predicted to consist of 
five individual lipid A ions separated by 2 Da (a double bond), 
revealing an unusual lipid A heterogeneity within a single bacterial 
species (Figure 2E). Briefly, if only a single lipid A ion was present, the 
isotopic distribution would look as depicted in Figure 2C. Instead, the 
measured isotopic distribution in each lipid A cluster (Figure 2E) 
closely corresponded to a mixed isotopic distribution consisting of five 
lipid A ions differentiated by a presence of a double bond (Figure 2D). 
Mass spectrometry-based strategies to locate positions of double 
bonds in unsaturated lipid molecules exist. They include chemical 
derivatization prior mass spectrometry analysis, and are yet to 
be  tested on complex mixtures of lipid A molecules detected in 
Leptospira species (Figure  1E; Novak et  al., 2022). Alternatively, 
proposed lipid A structures can be supported with other analytical 
techniques, such as nuclear magnetic resonance (NMR). However, 
dissolving lipid A in NMR-compatible solvents is challenging due to 
its amphipathic nature (Ribeiro et al., 1999; Zähringer et al., 2001; 
Silipo et al., 2002). The NMR approach is therefore more appropriate 
for characterization of the water-soluble components of LPS (core 
oligosaccharide and O-antigen). Both above-mentioned strategies 
require pure lipid A extracts from large volume of Leptospira culture, 
chemical derivatization reagents and rigorous method optimization 
for complex lipid A samples. Localization of double bonds was 
therefore not possible within the scope of this study. Like others 
(Eshghi et  al., 2015; Novak et  al., 2022) we  therefore proposed 
structures of the representative lipid A for each of the lipid A profiles 
(L1–L10), and concluded that additional degrees of unsaturation were 
present (Figure 3). It is important to note that our approach allowed 
us to obtain valid structural information on Leptospira lipid A from 
an equivalent of 107 cells (approximately 100 μL of exponential 
culture). Experiments were therefore performed in a controlled 
manner, using biological triplicates on two independent experimental 
days. The low amount of starting material does not affect the results. 
Lipid A structures of Pseudomonas aeruginosa, Acinetobacter 
baumannii, and Klebsiella pneumoniae proposed by FLATn 
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corresponded to those determined by other methodologies (Yang 
et al., 2022a). Here we also validated FLATn on lipid A of L. interrogans 
serovar Manilae strain L495 (Figure 1A; Eshghi et al., 2015).

3.3. The interspecies variability of 
Leptospira lipid A: 2 and 2’primary acyl 
chains

Tandem MS analysis revealed that some previously described 
Leptospira lipid A features (Que-Gewirth et al., 2004; Eshghi et al., 

2015) were conserved in all 31 examined species. Specifically, 
representative lipid A molecules were hexa-acylated and 
monophosphorylated, with all primary fatty acyl residues linked via 
amide bonds and a methylated terminal phosphate group present at 1 
position of the di-aminoglucose backbone (Figure  3). A newly 
discovered conserved feature was the presence of C12:0 (OH) residues 
at the 3 and 3′ primary positions (Figure 3).

The structural variability of lipid A between the Leptospira 
species was determined by the length and saturation of 2 and 2′ 
primary acyl and 2′ and 3′ secondary acyl chains (Figure 3). The 
identity of 2 primary acyl chains could be deducted from the main 

TABLE 1 Reference Leptospira species used in this study.

Species Strain Group Origin Virulence 
(hamster)

Reference

L. interrogans L495 P1hv Human; Manila, Philippines Yes Koizumi and Watanabe (2003)

L. mayottensis 200901116 P1hv Human; Mayotte Yes Bourhy et al. (2014)

L. noguchii 201102933 P1hv Human; Guadeloupe Yes Vincent et al. (2019)

L. santarosai LT821 P1hv Proechimys semispinosus (spiny rat); 

Panama Canal Zone

Yes Yasuda et al. (1987)

L. weilii 14535 P1hv Human; Laos Yes Vincent et al. (2019)

L. adleri M7A P1lv Water; Mayotte ND Vincent et al. (2019)

L. ainazelensis 201903074 10/E/19 P1lv Water through (cow breeding); Aïn 

Azel, Algeria

ND Korba et al. (2021)

L. dzianensis M12A P1lv Water; Dziani, Mayotte ND Vincent et al. (2019)

L. gomenensis KG8-B22 P1lv Soil; Kaala-Gomen, New Caledonia ND Vincent et al. (2019)

L. tipperaryensis GWTS1 P1lv Crocidura russula (greater white-

toothed shrew); Tipperary, Ireland

ND Nally et al. (2016)

L. fluminis SCS5 P2 Soil; Sungai Congkak, Malaysia ND Vincent et al. (2019)

L. haakeii ATI7-C-A2 P2 River bank; Unia, New Caledonia ND Thibeaux et al. (2018)

L. hartskeerlii MCA1-C-A1 P2 Soil; Ponerihouen, New Caledonia ND Thibeaux et al. (2018)

L. langatensis SSW18 P2 Water; Sungai Congkak, Malaysia ND Vincent et al. (2019)

L. licerasiae VAR010 P2 Human; Iquitos, Peru No Ricaldi et al. (2012)

L. neocaledonica ES4-C-A1 P2 River bank; Koné, New Caledonia No Thibeaux et al. (2018)

L. perolatii FH1-B-B1 P2 River bank; Touho, New Caledonia No Thibeaux et al. (2018)

L. selangorensis SCW17 P2 Water; Sungai Congkak, Malaysia ND Vincent et al. (2019)

L. venezuelensis CLM-U50 P2 Rattus norvegicus (rat); Venezuela ND Puche et al. (2018)

L. bandrabouensis 201601111 M10A S1 Water; Bandraboua, Mayotte ND Vincent et al. (2019)

L. biflexa Patoc 1 S1 Water; Italy, France No Picardeau et al. (2008)

L. bourretii 201800280 PZF7-6 S1 Soil; Nouméa, New Caledonia ND Vincent et al. (2019)

L. bouyouniensis 201601297 M1A S1 Water; Bouyouni, Mayotte ND Vincent et al. (2019)

L. harrisiae 201602189 FH2-B A1 S1 River bank; Touho, New Caledonia ND Thibeaux et al. (2018)

L. kanakyensis 201800292 TK5-11 S1 Soil; Koné, New Caledonia ND Vincent et al. (2019)

L. montravelensis 201800279 PZF5-3 S1 Water; Nouméa, New Caledonia ND Vincent et al. (2019)

L. mtsangambouensis 201601298 M2A S1 Water; Mtsangamboua, Mayotte ND Vincent et al. (2019)

L. noumeaensis 201800287 PZF14-4 S1 Water; Nouméa, New Caledonia ND Vincent et al. (2019)

L. idonii 201300427 DSM26084; 

Eri-1

S2 Water; Fukuoka, Japan No Saito et al. (2013)

L. kobayashii E30 S2 Soil; Gifu, Japan ND Masuzawa et al. (2019b)

L. ryugenii YH101 S2 Water; Shizuoka, Japan ND Masuzawa et al. (2019a)

Virulence column refers to the golden Syrian hamster model of leptospirosis. ND, not experimentally determined.
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product B1 ion that results from fragmentation of the bond 
connecting the glucosamine backbone (Figures 2A,B). The three 
main B1 ions identified in this study were m/z 695, m/z 721 and m/z 
723 indicating acylation of the phosphorylated sugar unit (GlcN I) 
at position 2 with C14:0 (OH), C16:1 (OH) and C16:0 (OH), 
respectively (Supplementary Figures S4–S6). The 2 and 2′ primary 
acyl chains are usually identical, which stems from the mechanism 
of the lipid A biosynthesis (Raetz et al., 2009; Simpson and Trent, 
2019). Lipid A is synthesized in a series of conserved reactions 
mediated by the family of Lpx enzymes; homologs of most Lpx 
enzymes were identified across Leptospira species (Hinckley et al., 
2005; Eshghi et al., 2015; Nieves et al., 2023). In the early steps, 
LpxA, LpxC, and LpxD produce a molecule of uridine phosphate 
(UDP)-2,3-diacylglucosamine from UDP-N-acetylglucosamine and 
fatty acids bound to acyl carrier proteins. While LpxA is responsible 
for the addition of a fatty acyl to the 3 primary position, LpxD adds 
a fatty acyl to the 2 primary position of the glucosamine backbone. 
Both LpxA and LpxD have affinity toward specific fatty acyl chains, 
and this affinity differs across bacterial species (Simpson and Trent, 
2019). Subsequently, a molecule of “lipid X” (2,3-diacylglucosamine-
1-phoshate) is produced from some UDP-2,3-diacylglucosamine 
precursors via activity of LpxH or its homologs LpxI or LpxG. One 
UDP-2,3-diacylglucosamine and one “lipid X” molecule are then 
condensed together via the activity of LpxB, resulting in identical 
acyl chains in the 2 and 2′ and in the 3 and 3′ primary positions. As 

follows, each of the individual Leptospira subclades had a 
predominant primary acyl chain at the 2 and 2′ primary positions: 
C16:0 (OH) acyls were detected exclusively in P1hv species 
(Figures 3A,C), C14:0 (OH) in all P1lv and P2 species (Figures 3D–G) 
and C16:1 (OH) in all S1 and S2 species (Figures 3H,I). This was 
consistent with a previous study where C16 (OH) were detected 
exclusively in the pathogenic L. interrogans (Patra et al., 2015). Lipid 
A of L. mayottensis incorporated two C14:0 (OH) as the 2 and 2′ 
primary residues and its lipid A therefore resembled those of the 
P1lv and P2 species (Figure 3B, L2 profile).

Interestingly, fragmentation of the L3 and L9 representative 
lipid A ions resulted in two B1 ions instead of one 
(Supplementary Figures S4D, S6F). In L3 (L. santarosai), the two 
B1 ions m/z 695 and m/z 723 were detected, suggesting that the 2 
and 2′ primary acyl chains were interchangeable, creating two 
possible isomers. A combination of C14:0 (OH)/C16:0 (OH) at the 
2/2′ positions resulted in the m/z 695 B1 product ion, while the 
opposite configuration, C16:0 (OH)/C14:0 (OH) at the 2/2′ 
positions, resulted in the m/z 723 B1 ion (Figure 3C). The lipid A 
profile of this strain was also the most complex one with two extra 
double bonds in the base lipid A ion that could not be localized 
using the MS data alone (Figure 3C). In L9 (L. kanakyensis and 
L. noumeaensis), m/z 721 and m/z 747 were detected, likely 
resulting from combinations of C16:1 (OH)/C18:2 (OH) and C18:2 
(OH)/C16:1 (OH) at the 2/2′ primary positions, respectively 

FIGURE 1

Ten lipid A profiles identified within the individual Leptospira subclades (L1-L10). One microliter of logarithmic cell suspensions in MS-grade water was 
spotted on a MALDI plate and subjected to FLAT (Sorensen et al., 2020). MS1 scans were acquired in the negative ion mode, relative intensities (r. int.) 
are shown. (A–C) P1hv group (dark red). (D) P1lv group (light red). (E–G) P2 subclade (purple). (H,I) S1 subclade (green). (J) S2 subclade (blue). Lipid A 
profiles of the individual Leptospira species can be found in Supplementary Figures S1–S3, and the information is summarized in Table 2.
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(Figure 3H). These unusual lipid A structures could be a result of 
simultaneous activity of two LpxD enzymes, as two copies of lpxD 
genes have been annotated in all Leptospira genomes except for 
those belonging to the P2 subclade (Supplementary Figure S7). To 
date, the function of two separate LpxD enzymes was studied only 
in two bacterial species (Simpson and Trent, 2019). In Francisella, 
the expression of LpxD1 and LpxD2 is temperature dependent. 
LpxD1 adds two C18:0 (OH) and LpxD2 adds two C16:0 (OH) to 
the 3 and 3′ primary positions of the lipid A when grown at 37°C 
and 25°C, respectively, aiding adaptation to temperature shifts 
(Gunn and Ernst, 2007; Scott et al., 2016). In L. interrogans, LpxD1 
contributes to pathogenicity, adaptation to temperature changes 
and presence of toxic compounds (Eshghi et al., 2015). However, 
the conditions warranting expression of LpxD1/LpxD2  in 
L. interrogans remain elusive (Eshghi et al., 2015; Simpson and 
Trent, 2019). The representative structures of L3 and L9 phenotypes 
might provide a first hint to function of LpxD1 and LpxD2 in other 
Leptospira species. It occurs that Leptospira species with the L3 and 
the L9 phenotypes, co-expressed LpxD1 and LpxD2 enzymes might 
compete to add acyl residues to the 2 primary position of the early 
UDP-2,3-diacyl glucosamine product in lipid A biosynthesis. A 
similar phenomenon was described for the late acetyltransferases 
LpxL1 and LpxL2 in Klebsiella pneumoniae that compete to add 
either C12:0 or C14:0 at the 2′ secondary position (Li et al., 2016; 
Mills et al., 2017; Simpson and Trent, 2019). Annotated tandem 
mass spectra for all representative lipid A ions can be found in the 
supplementary material (Supplementary Figures S4–S6).

3.4. The interspecies variability of 
Leptospira lipid A: 2′ And 3′ secondary acyl 
chains

All Leptospira species incorporated short fatty acyl chains at 
the 2′ and 3′ secondary positions of their lipid A. In the 

representative lipid A molecules, these residues consisted of a 
combination of C12:1/C14:1 (L1, L3 and L6; Figures 3A,C,F), two 
C12:1 (L5; Figure 3E) or two C14:1 (L4, L8-10; Figures 3D,H,I). 
Representative lipid A molecules of L. mayottensis (L2; Figure 3B) 
and L. perolatii (L7; Figure 3G) contained a combination of C14:2/
C12:1 and C14:1/C8:0, respectively (Figure  3). Secondary acyl 
residues are added to the lipid A by late acyltransferases (homologs 
of LpxL and LpxM from Escherichia coli) (Raetz et al., 2009). Each 
of these enzymes often adds an acyl chain of a specific length and 
degree of saturation (Simpson and Trent, 2019). To date, only one 
bi-functional acyltransferase capable of adding two different acyl 
chains to the 2′ and 3′ secondary positions was reported in 
Acinetobacter baumannii (Boll et  al., 2015). Given the great 
variability of secondary acyl chains across Leptospira, its LpxL 
homolog is likely a multifunctional acyltransferase.

3.5. Penta-acylated lipid A molecules were 
detected in S1 and S2 Leptospira species

A novel structural feature of Leptospira lipid A was found in S1 
and S2 subclades. In these species, additional clusters with lower 
m/z were identified (Figure 1; Supplementary Figure S3). Upon 
tandem mass spectrometry analysis, it was determined that these 
were penta-acylated lipid A molecules (Figure  3; 
Supplementary Figure S6). The mechanisms of synthesis of these 
penta-acylated lipid A species are unclear. In other bacteria, fatty 
acyl chains can be  removed via activity of LpxR (Simpson and 
Trent, 2019). Although homologs of LpxR were identified in 
Leptospira, the LpxR usually removes two acyl chains, not one. PagL 
and PagP enzymes can remove a single acyl chain from the lipid A 
molecule (Ernst et al., 2006; Thaipisuttikul et al., 2014), however, 
homologs of these enzymes were not found in saprophytic 
Leptospira (Picardeau et al., 2008). Finally, in bacteria harboring 
two LpxL enzymes, such as Neisseria meningitidis, loss of one copy 

TABLE 2 Lipid A profiles identified in the individual subclades.

Subclade Profile Incidence Lipid A ions (m/z) Leptospira species

P1hv L1 (3/5) 1,694, 1,722 and 1,750 L. interrogans, L. noguchii and L. weilii

L2 (1/5) 1,638, 1,664 and 1,692 L. mayottensis

L3 (1/5) 1,664, 1,692 and 1,720 L. santarosai

P1lv L4 (5/5) 1,666, 1,694 and 1,720 L. adleri, L. ainazelensis, L. dzianensis, L. gomenensis, and L. tipperaryensis

P2 L5 (7/9) 1,584, 1,612, 1,640 and 1,666 L. haakeii, L. hartskeerli, L. langatensis, L. licerasiae, L. neocaledonica, L. 

selangorensis, and L. venezuelensis

L6 (1/9) 1,614, 1,640 and 1,668 L. fluminis

L7 (1/9) 1,586 and 1,614 L. perolatii

S1 L8 (7/9) 1,540, 1,694, 1,720, 1,748 and 1,774 L. bandrabouensis, L. biflexa, L. bouyouniensis, L. bourrettii, L. harrisiae, L. 

mtsangambouensis, and L. montravelensis

L9 (2/9) 1,540, 1,566, 1720, 1746, 1774 and 

1802

L. noumeaensis and L. kanakyensis

S2 L10 (3/3) 1,538, 1,692, 1720, 1746 and 1772 L. idonii, L. kobayashii, and L. ryugenii

Numbers in brackets correspond to the number of interrogated Leptospira species with the corresponding lipid A profile. The most common lipid A profile is listed first for each subclade; base 
peak ions are highlighted in bold.
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leads to synthesis of penta-acylated lipid A species (Fransen et al., 
2009). This cannot be the case in Leptospira where only one LpxL 
homolog was annotated (Picardeau et  al., 2008). Nonetheless, 

penta-acylated lipid A molecules are known to elicit reduced 
immune responses in the host (Fransen et al., 2010; Scott et al., 
2017), and their presence in saprophytic species is intriguing.

FIGURE 2

Structural determination of L. interrogans lipid A (L1) by tandem mass spectrometry. (A) Proposed structure of the m/z 1724.25 ion corresponds to the 
previously published structure for this species (Que-Gewirth et al., 2004; Eshghi et al., 2015). Fragmentation patterns are depicted as dashed red lines. 
(B) Product ion scan of the precursor ion m/z 1724.25. Calculated m/z of the product ions are listed at the bottom of the panel. (C,D) Theoretical 
isotopic distributions. (C) Isotopic distribution of a single lipid A ion (m/z 1724.25 corresponding to the structure in panel A). (D) Mixed isotopic 
distribution of five lipid A ions that differ from each other by a presence of a single double bond (2 Da). Please note that the abundances of each ion 
were not equal; ratio used for the simulation was 9:21:17:6:1 (m/z 1724:1722:1720:1718:1716). (E) Annotated mass spectrum of L. interrogans lipid A 
profile (L1). Three main clusters of lipid A ions separated by 28 Da were identified. Each individual cluster likely consisted of five lipid A ions that differ 
by a presence of a double bond (red lines). r. int. – relative intensity.
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3.6. Which structural features of Leptospira 
lipid A might contribute to pathogenicity?

Lipid A of pathogenic Leptospira has been previously shown to 
evade recognition by the human TLR4/MD2 (Werts et al., 2001). It 

has been speculated that this might be due to monophosphorylation 
of Leptospira lipid A that is associated with a reduced endotoxic 
activity in other bacteria (Baldridge and Crane, 1999; Wang et al., 
2007). However, this is complicated by the unusual presence of a 
methyl group on the single terminal phosphate (Que-Gewirth et al., 

FIGURE 3

(A–C) L1-L3; P1hv group. (D) L4; P1lv group. (E–G) L5-L7; P2 subclade. (H) L9; S1 subclade. (I) L8 and L10; S1 and S2 subclades. Putative structures 
of lipid A ions representative of the L1–L10 profiles. Structures were proposed based on fragmentation patterns of the representative lipid A ions, as 
detected by FLATn (Yang et al., 2022a; Supplementary Figures S4–S6). Sugar and anomeric configurations were assigned in homology with previous 
data (Que-Gewirth et al., 2004; Eshghi et al., 2015; Novak et al., 2022) and the placement of double bonds is putative. Additional approaches 
discussed in Section 3.2 are needed to fully validate the proposed structures (out of the scope of the current study). Please refer to the Table 2 for 
information on distribution of the individual phenotype across Leptospira species.
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2004). Here, we  revealed other structural features that might 
contribute to this phenomenon.

Degree of TLR4/MD2 activation is also dependent on the length 
of fatty acyl residues. While C12 or C14 are optimal for TLR4/MD2 
binding, C16 is not favorable (Rietschel et al., 1994; Park and Lee, 
2013; Facchini et al., 2018). In deep-sea Moritella species, the lipid 
A either activates TLR4/MD2 or is “immune-silent,” not eliciting 
responses via TLR4/MD2 or other related host receptors (Gauthier 
et al., 2021). While the basic structural features between Moritella 
lipid As are conserved (hexa-acylated bis-phosphorylated 
molecules), the immune-silent Moritella lipid A has higher C16 
content (Gauthier et al., 2021). In this study, C16 (OH) residues were 
found exclusively in pathogenic P1hv species (Figures 3A,C), which 
was consistent with previous findings (Patra et  al., 2015). 
We therefore hypothesize that lipid A of P1lv and P2 species might 
be  better binding partners of the innate immune receptors, 
contributing to faster clearance of these species and their lower 
pathogenic potential in humans. Future studies including assessing 
endotoxin activity of P1lv and P2 lipid A extracts using reporter 
assays are warranted to explore this hypothesis.

Finally, while the discussion to this point has centered around 
lipid A, other lipid molecules are known to confer immune evasion. 
Cardiolipins have been shown to suppress stimulatory activity of 
LPS (Khan et al., 2018). Cardiolipin species have been identified in 
pathogenic as well as non-pathogenic Leptospira species 
(Supplementary Figure S8). Since our lipid preparations for FLAT 
and FLATn consisted of whole cells, it is not possible to determine if 
the cardiolipins were located to the inner or the outer membrane 
and if they can attenuate LPS-mediated immune activation. 
However, their presence in the Leptospira membrane is intriguing 
and warrants further investigation.

3.7. Lipid A-based molecular typing as a 
complementary strategy for Leptospira 
identification and classification

Novel Leptospira species are isolated from various hosts or the 
environment on regular basis (Thibeaux et al., 2018; Masuzawa 
et al., 2019b; Korba et al., 2021). Extensive phenotype profiling 
including serotyping, assessing growth at 37°C, growth in presence 
of purine analog 8-azaguanine, and ultimately animal infection 
studies are needed to distinguish pathogens from saprophytes 
during characterization of novel species (Vincent et  al., 2019). 
Here, we propose the use of L1-L10 lipid A profiles combined with 
FLAT for rapid classification of Leptospira isolates into the 
individual subclades (L1-L3 for P1hv, L4 for P1lv, L5-L7 for P2, 
L8-9 for S1 and L10 for S2 subclades). Lipid A-based MALDI-TOF 
assays allow for rapid (within an hour) identification of bacteria 
directly from a specimen using minimal input and hands-on-time 
(Leung et al., 2017; Liang et al., 2019; Sorensen et al., 2020). Lipid 
A-based assays allow for simultaneous identification and screening 
for antibiotic resistance markers and can be used directly from 
urine (Smith et  al., 2021, 2022; Yang et  al., 2022b). Thanks to 
minimal background in the m/z area where lipid A is detected, 
individual species can also be  identified from multi-bacterial 
samples (Fondrie et  al., 2018; Ryu et  al., 2020). Protein-based 

profiling via MALDI-TOF is routinely used to characterize 
Leptospira species (Thibeaux et al., 2018; Sonthayanon et al., 2019; 
Girault et al., 2020; Korba et al., 2021), and the addition of lipid A 
phenotyping would provide valuable information while utilizing 
the existing infrastructure.

4. Conclusion

This is the first study focused on structural analysis of lipid A 
across the whole Leptospira genus. Ten distinct lipid A profiles were 
revealed that can be used for rapid molecular typing of novel clinical 
and environmental Leptospira isolates, aiding the leptospirosis 
surveillance. In addition, revealed structural differences between lipid 
A of individual species can lead to novel hypotheses on 
Leptospira pathogenicity.
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Introduction: Zoonotic diseases are responsible for 2.5 billion human cases 
globally and approximately 2.7 million deaths annually. Surveillance of animal 
handlers and livestock for zoonotic pathogens contributes to understanding the 
true disease burden and risk factors within a community. This study investigated 
the prevalence of selected zoonoses in cattle, farm workers and occupational 
exposure to endemic zoonotic diseases and their associated risk factors.

Methods: Sputum samples from farmworkers were screened for Mycobacterium 
bovis. Blood specimens from farmworkers and archived sera were tested for 
serological evidence of Brucella sp., hantaviruses, and Leptospira sp. Communal 
and commercial cattle herds were tested for bovine tuberculosis and brucellosis.

Results: Mycobacterium bovis was not isolated from human samples. A total of 
327 human sera were screened, and 35/327 (10.7%) were Brucella sp. IgG positive, 
17/327 (5.2%) Leptospira sp. IgM positive, and 38/327 (11.6%) hantavirus IgG 
positive (95% CI). A higher proportion of Brucella sp. IgG-positive samples were 
detected among veterinarians (value of p = 0.0006). Additionally, two cattle from a 
commercial dairy farm were bovine tuberculosis (bTB) positive using the bTB skin 
test and confirmatory interferon-gamma assay. A higher percentage of confirmed 
brucellosis-positive animals were from communal herds (8.7%) compared to 
commercial herds (1.1%).

Discussion: These findings highlight the brucellosis and M. bovis prevalence in 
commercial and communal herds, the zoonotic disease risk in commercial and 
subsistence farming in developing countries, and the occupational and rural 
exposure risk to zoonotic pathogens.

KEYWORDS

bovine TB transmission, hantavirus, Leptospira, zoonotic, risk factors, brucellosis, 
seroprevalence, tuberculosis
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1. Introduction

Zoonoses are transmitted from vertebrate animals to humans and 
are accountable for more than 60% of all recognized human diseases 
and 75% of emerging infectious diseases (EID; Jones et al., 2008). In 
developing countries, including South Africa (SA), the mortality rate 
associated with EID is 47.3% (Wang et  al., 2016). The majority 
(71.8%) of EID originate from wildlife (Jones et  al., 2008). The 
pandemic potential of EID, as seen in the recent severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, justifies 
increased preparedness and research to understand these pathogens 
(LeDuc and Barry, 2004). Low- and middle-income countries are 
potentially more at risk of zoonotic pathogenic outbreaks due to 
limited resources. Hence, surveillance studies are vital to determine 
disease burden with potential public and veterinary 
health implications.

Mycobacterium bovis is the etiological agent for bovine 
tuberculosis (bTB) in cattle and zoonotic tuberculosis (TB) in humans. 
Evidence suggests an increase in intra- and inter-species transmission 
of M. bovis has previously been reported in South Africa, with bTB 
infection confirmed in cattle and 16 different animal species, including 
one domestic porcine and 15 wildlife species (Hlokwe et al., 2014). 
However, the prevalence of human TB due to M. bovis remains 
relatively unknown in South Africa and globally, primarily due to 
routine diagnostics being unable to differentiate between M. bovis and 
Mycobacterium tuberculosis. Though the two Mycobacterium species 
are genetically closely related, M. bovis does require a different 
treatment as it is inherently resistant to pyrazinamide, an important 
first-line medication used in a TB drug regimen (World Health 
Organization, 2017). A crude estimated rate of overall median 
proportions of zoonotic TB incidents was 2.8% for African countries 
(Müller et al., 2013). In South Africa, bTB and bovine brucellosis (BB) 
infection in cattle are controlled diseases associated with extensive 
morbidity that consequently lead to livestock production losses. 
Furthermore, human diseases caused by these bacteria are a notifiable 
condition due to their associated mortality and morbidity and, 
therefore, a considerable public health concern with substantial 
economic impact.

Brucella spp. are the etiological agents for brucellosis, commonly 
referred to as undulant fever or Malta fever. Brucella abortus, 
responsible for BB, is considered one of the predominant zoonotic 
pathogens in animals and humans (Rahman et al., 2017). Brucellosis 
is annually responsible for approximately 500 000 new human cases 
worldwide, with most cases reported in regions where the disease has 
reached levels of endemicity (Lai et  al., 2017). The last formally 
published study focusing on the incidence rate of Brucella sp. in the 
South Africa human population reported a rate of >0.2 per 100 000 
population based on a survey from 1956 to 1959 (Schrire, 1962). 
Sporadic cases have been reported subsequently, but surveillance 
remains limited (Govindasamy, 2020).

Leptospirosis, also known as Weil’s disease, is a widespread and 
potentially fatal zoonotic bacterial disease transmitted to humans 
from contact with infected animals’ urine (Haake and Levett, 2015). 
Globally, between 300,000 and 500,000 cases of leptospirosis are 
reported each year, with case fatality rates of up to 30% (Tilahun et al., 
2013). In South  Africa, an annual incidence of between 0.15 and 
0.66/100,000 population has been documented, with sporadic 
outbreaks reported (Naidoo et al., 2020; Gizamba et al., 2022).

Hantaviruses are transmitted to humans from contact with excreta 
from infected rodents and have been identified as the cause of mild to 
severe diseases with fatalities in most parts of the world except Africa. 
Serological evidence of hantaviruses has been detected in sub-Saharan, 
East-, and West Africa, and molecular evidence in rodents has been 
described. However, there are no reports on human disease except 
occasionally imported cases (Moolla et al., 2022). The limited studies 
on potential rodent and insectivore hosts have not, to date, shown 
evidence of hantavirus infection in hosts in South Africa, although 
limited surveillance studies in humans have suggested a low level of 
serological evidence. The moderately low seroprevalence rate from 
patients in South Africa does not exclude the possibility of hantavirus 
disease occurring in the country and certainly justifies 
further investigation.

Zoonotic pathogen surveillance studies at the animal-human 
interface and among populations at occupational risk with direct 
animal exposure or exposure due to residing in rural conditions are 
crucial for identifying circulating pathogens with public health 
implications. These zoonoses clinically present with symptoms 
generally shared with a range of other common infectious diseases 
(i.e., malaria, typhoid fever), leading to difficulties in diagnosis and 
underestimating the true burden of these diseases (Salyer et al., 2017).

This study aimed to investigate the prevalence and associated risk 
factors of M. bovis and Brucella sp. in cattle and farmworkers from two 
farming communities: communal or backyard (subsistence) farming 
and large-scale commercial farming. Furthermore, this study aimed 
to document occupational and environmental exposure to Brucella 
sp., Leptospira sp., and hantaviruses across the Free State province, 
South Africa.

2. Materials and methods

2.1. Study design

A prospective, cross-sectional study was conducted using two 
populations which included workers with occupational exposure to 
animals and cattle. The study was conducted between November 2019 
and March 2020. All farms selected for this study had cattle scheduled for 
routine bTB and BB screening as part of the Department of Agriculture 
Land Reform and Rural Development (DALRRD) Free State province 
surveillance program. Subsequently, farmworkers on the chosen farms 
were screened for Mycobacterium tuberculosis complex (MTBC) and 
Brucella IgG antibodies and asked to complete a questionnaire.

Furthermore, a retrospective analysis was performed on archived 
serum samples from workers with occupational exposure to animals 
and residing in rural areas to document zoonotic exposure to Brucella 
sp., Leptospira sp., and hantaviruses amongst high-risk 
occupational groups.

2.2. Study area

This bTB and BB study was conducted on two distinct farming 
populations, one communal farm and four commercial farms 
consisting of two beef and two dairy farms. The informal communal 
farm was located in Maokeng, Kroonstad rural, Free State province, 
South  Africa, and the commercial farms were located within the 
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Moqhaka and Ngwathe municipal regions in the Free State province 
(Figure 1).

2.3. Study populations

2.3.1. Animals
Two commercial dairy farms, designated as farms A and B and two 

commercial beef farms, designated as farms C and D, were selected by 
the Kroonstad State Veterinary Services as per the routine screening 
schedule. Convenience sampling was done for bTB and brucellosis based 
on the cattle availability on the farm on the day of testing and DALRRD 
testing history. The screening was conducted on all animals on each farm 
above the ages of 6 months for bTB and 18 months for BB.

2.3.2. High-risk human occupational workers
The bTB and BB study comprised two sample groups, A and 

B. In group A, 26 on-site/prospective sputum and serum samples 
were collected from farmworkers in the Maokeng community kraal 
(n = 13), commercial dairy farm B (n = 7), and commercial beef 
farm C (n = 6). A convenience sampling method was used. All 
participants above 18 years old were approached and enrolled if 
they agreed to participate in the current study. Specimen collection 
could not be  achieved on farms A and D due to COVID-19 
travel restrictions.

In group B, a total of 301 archived serum samples collected from 
healthy individuals between April 2016 and February 2017 as part of 
a previous study (HSREC34/2016 and ETOVS152/06) were included. 
The individuals lived in rural areas and had exposure to animals due 
to their occupation.

All 327 samples (from groups A and B) used in this study were 
collected within the Free State province and included the following 
high-risk populations: farmworkers (n = 28), abattoir workers 
(n = 207), veterinarians (n = 12), stable grooms (n = 32), recreational 
hunters (n = 46), and laboratory workers (n = 2).

2.4. Tuberculosis test in animals

A total of 321 cattle were tested for bTB, including 33, 126, and 
91 cattle from farms A, B, and C, respectively. Farm D was only 
scheduled for BB screening and not bTB (previously tested 
negative), and 71 cattle were screened for bTB from the Maokeng 
community kraal.

2.4.1. Single intradermal skin test
All cattle herds from the Maokeng community kraal, farms A 

and C were initially screened for bTB using a single intradermal 
skin test (SIST), as described in the Bovine Tuberculosis Manual, 
approved by DALRRD (Department of Agriculture, Forestry and 
Fisheries of SA (DAFF), 2016). Briefly, the skin thickness of the 
animal was measured pre-injection using a Hauptner pistol grip. 
The animal was then injected intradermal with 0.1 ml of 5,000 
International Units (IU) of bovine tuberculin purified protein 
derivative (PPD) (Onderstepoort Biological Products (OBP), 
Pretoria) using a McClintock syringe. After 72 h, reaction sites 
were observed for evidence of swelling or a color change and 
examined for reaction consistency (hard or soft swelling), 
presence of edema, and heat. The measurements were recorded, 
and the difference in skin thickness, pre-and post-injection, was 

FIGURE 1

Study sites in the different municipal regions within the Fezile Dabi district, Free State province, South Africa. Available at https://municipalities.co.za/
map/107.
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determined for each animal by subtracting the measurement 
obtained after 72 h from the initial skin thickness measurement 
to determine reaction type.

Herds were regarded as negative when animals had a change in 
skin thickness of <6 mm, including non–specific reactions. Suspect 
herds were defined as having a single animal with an increase in skin 
thickness of >6 mm, combined with evidence of positive skin reactions. 
Herds with animals showing large typical inflammatory reactions with 
an increase of skin thickness of ≥20 mm were regarded as positive.

2.4.2. Comparative intradermal skin test
The comparative intradermal skin test (CIST) was performed only 

on farms A and B due to COVID-19 restrictions. On farm A, all cattle 
were tested, whereas, on farm B, all SIST-suspect and -positive herds 
were re-tested after 3 months using a CIST. The CIST followed the 
same procedure as the SIST. However, instead of solely injecting 0.1 ml 
of 5,000 IU bovine tuberculin PPD, 0.1 ml of 2,500 IU avian tuberculin 
PPD (OBP, Pretoria) was injected approximately 20 cm apart. The 
bovine reaction increase was determined by subtracting the 72 h post-
injection skin measurement (bovine PPD) from the pre-injection 
normal skin measurement. The avian reaction increase was 
determined by subtracting the 72 h post-injection skin measurement 
(avian PPD) from the pre-injection normal skin measurement. A 
positive difference between bovine and avian of <2 mm was regarded 
as a negative reactor; 3–4 mm suspect; an increase of >5 mm was 
regarded as a positive bovine reactor.

2.4.3. Confirmatory interferon-gamma release 
assay

The interferon-gamma (IFN-γ) release assay was performed on 
heparinized blood samples collected from CIST-suspect and -positive 
reactors as per the Bovigam™ (Thermo Fisher Scientific, 
United  States) standard operating procedure at the Tuberculosis 
Laboratory at Onderstepoort Veterinary Institute (OVI), within 6 h 
after collection. Briefly, blood samples were stimulated with bovine 
PPD, avian PPD, fortuitum PPD (OBP, Pretoria), and pokeweed 
mitogen (OBP, Pretoria) positive control and incubated at ±37°C for 
24 h. Plasma was harvested, and interferon-gamma release was 
detected per the manufacturer’s instructions (Bovigam™).

The release of IFN-γ from stimulated blood was detected using a 
BovigamTM test kit per the manufacturer’s instructions. Steps 
requiring plate washing were done using a 96-well plate washer 
(BioTek ELx50, United States), and the optical density (O.D.) of the 
samples was measured at 450 nm using a plate reader (BioTek Elx800, 
United States). Whole blood stimulated with pokeweed mitogen was 
used as a positive control, and unstimulated blood was used as a 
negative control. The O.D. values for the plasma stimulated with 
bovine PPD, avian PPD, fortuitum PPD, and pokeweed mitogen were 
recorded as O.D.bov, O.D.av., O.D.fort, and O.D.pwh, respectively. 
Unstimulated blood was recorded as O.D.neg. Animals were 
considered bTB positive when (O.D.bov - O.D.av. >2 and O.D.fort - 
O.D.neg ≤0.15). Animals were classified as avian reactors when 
O.D.av. > (O.D.bov + 0.1 × O.D.bov). Animals demonstrating an 
immune response to bovine PPD and fortuitum PPD were classified 
as multiple reactors if (O.D.bov – O.D.av. <0.2 and O.D.fort – O.D.neg 
>0.15). Animals demonstrating an equivalent immune response to 
both bovine PPD and avian PPD were classified as equal reactors 
(O.D.bov + 0.1 × O.D.bov) > O.D.av. > (O.D.bov – 0.1 × O.D.bov). The 

test was considered valid if the O.D. value of the blood stimulated with 
pokeweed mitogen (O.D.pwh) was >0.5.

All samples stimulated with bovine PPD were initially screened to 
determine any positive reactors. Any sample with an O.D. of ≥0.38 
was regarded as positive, as Michel (2008) described. All positive 
reactors were subject to re-testing with the inclusion of avian PPD, 
fortuitum PPD, and controls.

2.4.4. Molecular characterization
From DALRRD’s biobank, previous samples were obtained from 

bTB-positive cattle from the same study farms and were characterized 
using Mycobacterial interspersed repetitive-unit-variable number 
tandem repeat (MIRU-VNTR). The typing was performed using the 24 
MIRU-VNTR typing kit supplied by Quadruplex versions (GenoScreen, 
France), according to the manufacturer’s guidelines by the Tuberculosis 
Laboratory at OVI, Pretoria, South Africa. The MIRU-VNTR profiles 
were reported as numbers corresponding to the number of alleles at 
each locus and were entered in an excel sheet. These numerical patterns 
were then analyzed using the MIRU-VNTRplus database.1

2.5. Tuberculosis test in animal products

2.5.1. Milk culture
Milk was collected from all CIST-suspected and positive 

female animals. All samples were transported and processed for 
culture at the Tuberculosis Laboratory at OVI, Pretoria, 
South  Africa. Milk samples were decontaminated using 1% 
cetylpyridinium chloride to achieve a final volume of 150 mL and 
incubated at 20°C ± 2°C for 1 week in the dark. After that, 
samples were centrifuged at 3500 ×g for 30 min, the supernatant 
discarded, and the remaining pellet was inoculated onto 4X 
Lowenstein Jensen (LJ)  - pyruvate and 2X LJ- glycerol media. 
Incubation followed at 37°C ± 2°C for 10 weeks.

2.6. Tuberculosis test in humans

2.6.1. Sputum decontamination and culture
The 26 sputum samples collected were decontaminated using a BD 

BBL™ MycoPrep™ kit per the manufacturer’s instructions. Following 
this, a BD BACTEC™ MGIT™ 960 Supplement Kit was required for 
selective growth, containing both a growth supplement and an 
antibiotic mixture. Samples were cultured within a BD BACTEC™ 
MGIT™ 960 Mycobacteria Culture System at ±37°C for up to 42 days. 
Positive cultures were initially screened using a modified Ziehl–
Neelsen staining technique to determine phenotypic characteristics.

2.6.2. DNA extraction and line probe assay
DNA was extracted from positive cultures using a GenoLyse® 

DNA Extraction kit from Hain Lifescience according to instructions.
Per the manufacturer’s instructions, M. tuberculosis was 

amplified and genotyped using a GenoType Mycobacterium CM kit. 
Amplicon hybridization was performed using a GenoType 

1 www.miru-vntrplus.org

142

https://doi.org/10.3389/fmicb.2023.1196044
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://www.miru-vntrplus.org


van der Westhuizen et al. 10.3389/fmicb.2023.1196044

Frontiers in Microbiology 05 frontiersin.org

Mycobacterium CM VER 2.0 kit (Hain Lifescience) in an automated 
GT–Blot 48 (Hain Lifescience) hybridization apparatus. Visible 
hybridization bands on the DNA strips were compared to a 
reference key to differentiate and speciate between the 
M. tuberculosis complex and 27 clinically relevant Nontuberculous 
Mycobacteria (NTM).

2.7. Brucellosis test in animals

A total of 1862 whole blood samples from the communal farm 
and commercial farms were collected from the tail vein of cattle. This 
included 33, 117, 449, and 1194 cattle from commercial farms A, B, C, 
and D, respectively. In the Maokeng community, kraal 69 cattle were 
screened for BB. These samples were sent to OVI or Grahamstown 
Veterinary Laboratory for brucellosis screening. An initial rose Bengal 
test (RBT) was performed on all samples, and confirmatory testing 
was performed on positive reactors using a complement fixation 
test (CFT).

2.8. Serological testing of human samples 
for antibodies against Brucella sp., 
Leptospira sp., and hantaviruses

All serum samples were screened for brucella IgG-specific 
antibodies using a commercially available indirect ELISA (Vircell; 
Granada, Spain), and steps were carried out per the manufacturer’s 
instructions. Optical density was measured at a wavelength of 
450 nm (with a reference read at 630 nm) using a BioTek® 800TS™ 
Absorbance Reader (Winooski, United States). The mean O.D. value 
was calculated for the cut-off serum provided, and the antibody 
index was calculated as follows: (sample O.D./cut-off serum mean 
O.D.) × 10. An index of <9 was considered negative, 9–11 equivocal, 
and >11 positive. All results that returned as equivocal were 
re-tested.

Leptospira-specific antibodies were detected using a 
commercially available Panbio IgM ELISA (Windsor, Australia), 
according to the manufacturer’s instructions. Optical density 
values were measured at a 450 nm wavelength with a reference 
filter at 630 nm. The cut-off value was determined by calculating 
the average absorbance of the calibrators tested in triplicate, 
multiplied by the calibrator factor (batch specific). Results were 
calculated as “Panbio units”: sample absorbance/cut-off value. A 
result of <0.9, 0.9 to 1.1, and >1.1 was defined as negative, 
equivocal, or positive, respectively. All samples with an equivocal 
result were re-tested.

A commercially available EUROIMMUN Anti-Hanta Virus Pool 
1 “Eurasia” ELISA (Lübeck, Germany) was used to detect hantavirus-
specific IgG antibodies. This in vitro assay can detect human IgG 
antibodies against old-world hantavirus strains (Hantaan, Dobrava, 
and Puumala), and the procedure was carried out according to the 
manufacturer’s instructions. Results were determined semi-
quantitatively. The ratio of the test sample to the provided calibrator 
was determined as follows: absorbance of the serum sample/
absorbance of calibrator two (20 RU/ml). A ratio of <0.8 was 
considered negative, ≥0.8 to <1.1 equivocal, and ≥1.1 positive. 
Equivocal samples were re-tested.

2.9. Occupational and environmental 
zoonotic risk factors

Demographical, occupational information, food preparation 
practices, and risk factors (e.g., livestock exposure, source of livestock 
food products, and any reports of illness after a participant was 
directly exposed to animal tissue/fluids) were obtained through a 
questionnaire previously used (Vawda et al., 2018).

2.10. Statistical analysis

Database establishment and the necessary manipulation of data 
were done in Excel® 2016. Due to skewed distributions, descriptive 
statistics were calculated, namely frequencies, percentages for 
categorical variables, medians, and quartiles for numerical variables. 
Associations between categorical variables and laboratory outcomes 
were assessed using chi-squared or Fisher’s exact test in the case of 
sparse data. Differences between laboratory outcome groups regarding 
numerical variables were assessed using Mann–Whitney tests. All 
statistical analyses were performed by the University of the Free State 
Department of Biostatistics using SAS Version 9.4.

2.11. Ethical considerations

Ethical approval was obtained from the University of the Free Health 
Sciences Research Ethics Committee (UFS-HSD2019/1075/270801), 
Animal Research Ethics Committee (UFS-AED2019/0111), and 
Environmental & Biosafety Research Ethics Committee (UFS-
ESD2019/0086). Furthermore, permission was obtained from the 
Department of Agriculture, Land Reform and Rural Development 
(DALRRD) before any animal testing was conducted. Verbal consent 
from farm owners was obtained for the collection of animal samples. 
Signed informed consent was obtained from volunteers before the 
samples were collected.

3. Results

3.1. Tuberculosis test in animals

3.1.1. Single and comparative intradermal skin 
test

A total of 321 cattle were screened for bTB using SIST and CIST, 
including 71/321 (22.1%) from the Maokeng community kraal, 
33/321 (10.3%) from farm A, 126/321 (39.3%) from farm B and 
91/321 (28.3%) from farm C. bTB results were read 72 h after 
inoculation. bTB results were available for 301/321 (93.8%). The 
Maokeng community kraal had the least number of animals that 
returned for bTB results (n = 51/71). Based on the SIST results, 3/51 
(5.9%) cattle were suspect reactors in the Maokeng community, and 
4/33 (12.1%) in farm A (Table 1). No positive bTB results with ≥20 
were detected.

Based on the bTB confirmatory test, CIST, the four SIST-suspected 
positive animals from farm A were negative using CIST. In contrast, 
CIST results indicated that 8/126 (6.3%) cattle were positive reactors 
and 8/126 (6.3%) were suspect reactors on farm B. No CIST was 
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performed on samples from animals in the Maokeng community due 
to the animals not being available for the three-month follow-up due 
to covid restrictions.

The IFN-γ release assay was scheduled to be performed on all 
16 CIST-suspect and -positive animals from farm B. Of the 16 
positive/suspect animals, whole blood was collected from 13/16 
(81%). Two animals died during the three-month waiting period, 
and the third had hypocalcemia when sampling was conducted 
(no sample was available). Therefore, the IFN-γ assay was 
performed on 7/8 CIST-positive and 6/8 -suspect animals. Three 
of the 13 cattle had a positive IFN-γ result, two bovine reactors, 
and one avian reactor. The remaining ten samples were negative 

(Table 2). Subsequently, all milk samples collected were culture-
negative (Figure 2).

3.1.2. Confirmatory gamma-interferon assay

3.1.2.1. Molecular characterization

3.1.2.1.1. Tuberculosis test in humans
Mycobacterium bovis or MTBC species were not detected in the 

26 human sputum samples that were tested. Seven of the 26 samples 
(27%) were flagged as culture positive. Nocardia sp. was detected in 
2/7 (28.6%) samples, Mycobacterium intracellulare in 2/7 (28.6%) 
samples, and 3/7 (42.8%) samples were identified as other 
Mycobacterium sp. excluding MTBC and the 27 clinically significant 
NTMs (Table 3).

3.2. Brucella test in animals

A total of 1862 cattle were available for Brucella sp. using the RBT 
(Table 4). However, three samples were hemolysed and not included. 
A total of 52/1859 (2.8%) cattle had a positive RBT result and were 
subjected to confirmatory testing using the CFT. From these results, 
19/52 (36.5%), 6/52 (11.5%), and 27/52 (51.9%) were confirmed CFT 
positive, suspect, and negative, respectively.

3.3. Serological testing of human samples 
for antibodies against Brucella sp., 
Leptospira sp., and hantaviruses

A total of 327 human serum samples were screened for IgG 
antibodies against Brucella sp. and hantaviruses and IgM antibodies 
against Leptospira sp. For each assay, the results were normalized by 
calculating the ratio for each sample to that of the cut-off control 
(according to manufacturers’ instructions). Ratio values calculated for 
each sample in all three assays (Brucella sp., Leptospira sp., and 
hantavirus) were plotted (Figures 3A–C).

TABLE 1 Results of the single intradermal skin test and comparative intradermal skin test in cattle from the Moqhaka and Ngwathe municipality 
regions.

Community Commercial dairy Commercial beef

Maokeng Farm A Farm B Farm C

No. of cattle screened with SIST 71 33 N/A 91

No. of cattle returned after 72h for result readings 51 33 N/A 91

SIST screening results

Positive 0 0 N/A 0

Suspect 3 4 N/A 0

Negative 48 29 N/A 91

No. of cattle screened with CIST N/A 33 126 N/A

No. of cattle returned after 72h for result readings N/A 33 126 N/A

CIST screening results

Positive N/A 0 8 N/A

Negative N/A 33 110 N/A

Suspect N/A 0 8 N/A

*Farm D was not scheduled for bTB screening. SIST, single intradermal skin test; CIST, comparative intradermal skin test. N/A represents not applicable as testing was not done.

TABLE 2 Interferon-gamma release assay and milk culture result from 
cattle with positive and suspect CIST reactions.

Animal 
status 
based 
on 
CIST 
result

CIST 
skin 
reaction 
increase 
(mm)

External 
characteristics 
of injection 
site

IFN-γ 
results

Milk 
culture 
results

Positive 10.4 A, skin condition Positive Negative

Positive 6.7 C Negative Negative

Positive 5.6 C Negative Negative

Positive 5.4 C Negative Negative

Positive 4.8 C, mild D Positive Negative

Positive 4.7 C Negative Negative

Positive 4.6 C Negative Negative

Suspect 3.9 C Negative Negative

Suspect 3.9 C AV Negative

Suspect 3.8 C Negative Negative

Suspect 3.7 F Negative Negative

Suspect 3.6 C Negative Negative

Suspect 3.3 C Negative Negative

C, circumscribed; A, adhesions, D, diffuse; F, flat; AV, avian reactor.
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Results obtained from the Brucella sp. IgG, Leptospira sp. IgM and 
hantavirus IgG ELISA for each occupational group are shown in 
Table 5. Brucella IgG-positive reactors were detected in all occupations. 
Specific to group A (the 26 farm workers), Brucella IgG antibodies 
were detected in three Maokeng community farmers and one farm B 
worker (Table 3). Leptospira sp. IgM and Hantavirus IgG antibodies 
were mainly detected in abattoir workers and stable groomsmen.

3.4. Occupational and environmental 
zoonotic risk factors

P-value analysis of the Brucella IgG positive results showed that 
age (value of p = 0.0008), veterinary work (value of p = 0.0006), and 
laboratory work (value of p = 0.031) were all significant risk factors. 
Based on the participant’s response to the questionnaire, illness post-
exposure to animal tissue/blood (value of p = 0.029) was statistical 
significance to Brucella IgG seropositivity.

The maximum, minimum, and mean age for all Hantavirus 
IgG-positive participants was 65, 19, and 39, respectively. Statistical 
analysis of Hantavirus IgG showed no significance (value of p < 0.05) 
to any risk factor variables.

Analysis conducted on the Leptospira seropositive IgM results 
depicted abattoir work or informal slaughtering (value of p = 0.024) as 
the only significant risk factors.

4. Discussion

This study aimed to investigate the prevalence of M. bovis and 
Brucella sp. in cattle and farm workers in two farming communities 
(communal and commercial) and their associated risk factors. In 
addition, this study documents occupational and environmental 
exposure to Brucella sp., Leptospira sp., and hantaviruses across the 
Free State province, South Africa.

Based on the available data and confirmatory IFN-γ assay and 
skin tests, the cattle bTB prevalence detected in this study was 0.7% 
(two animals), all originating from a commercial dairy farm B 
(Table  1). These findings are lower than reports from other 
sub-Saharan countries, 6.2% in Algeria, 7.4% in Sudan, and ± 27% in 
Ethiopia (Ameni et al., 2011). Our results demonstrate the potentially 
effective control schemes in lowering bTB transmission in the study 
site. In South Africa, the bTB eradication and control scheme was 
implemented in 1969, following the ‘test and slaughter’ approach, due 
to the economic importance of the disease (Michel et al., 2006). The 
approach has been met with great success and led to a substantial 
decrease in bTB in cattle within the commercial sector, from a 
prevalence of 11.8% in 1971 to 0.39% in 1995 (Arnot and Michel, 
2020). Another explanation for the lower incidence rate could be an 
absent reservoir host, such as buffalo or other wildlife species 
neighboring the study area. Spill-over of bTB from wildlife to 
neighboring livestock does reportedly occur at the wildlife-livestock 
interface in South Africa (Musoke et al., 2015).

Unfortunately, neither positive animals were slaughtered to 
inspect for visible lesions and culture. Therefore, no differentiation 
could be made between M. bovis and M. tuberculosis or any other 
member of the MTBC. However, on farm B, in 2018, an animal had a 
positive CIST result and was subsequently slaughtered. No visible 
lesions were detected (personal communication from the 
veterinarian). Nonetheless, lymph node tissue was sent for culture, 
and M. tuberculosis was confirmed (Figure  2). Therefore, the 
possibility arises that both animals may be infected with M. tuberculosis 
based on the farms’ history. Both animals were first-time reactors, 
having tested negative with the CIST 8 months before the 
positive result.

Conversations with the farm owner and workers revealed that in 
2018 (when M. tuberculosis was cultured from an animal on the farm), 
a farm worker diagnosed with TB was present. The worker passed 
away at the end of 2018. Further investigations into the possibility of 
reverse zoonotic TB are required on farm B. Additionally, throughout 
this study, no cattle were introduced into the herd. Therefore, another 
possible explanation could be latent TB reactivation. Previous reports 

FIGURE 2

Mycobacterial interspersed repetitive-unit-variable number tandem repeat (MIRU-VNTR) typing of Mycobacterium tuberculosis isolated from a 
previously bTB CIST-positive cattle from farm B.

TABLE 3 Sputum culture-positive results collected from farm workers 
and herd status.

Sample 
no.

Sex Age Herd 
status

Species

Maokeng community kraal

1 Male 52 Suspect Nocardia sp.

2 Male 23 Suspect Mycobacterium 

intracellulare

3 Male 74 Suspect Mycobacterium 

intracellulare

5 Female 57 Suspect Mycobacterium sp.

Commercial dairy farm B

23 Female 30 Positive Mycobacterium sp.

Commercial beef farm C

21 Male 27 Negative Mycobacterium sp.

24 Male 25 Negative Nocardia sp.
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have shown that cavitation of caseous lesions can occur in cattle herds 
infected with bTB and is required for the bacteria to go into a state of 
dormancy (Van Rhijn et al., 2008). This phenomenon of reactivation 
is documented more frequently in humans than in cattle. However, 
the Australian TB eradication program reports evidence of latent bTB 
reactivation in cattle whereby several infected animals were detected, 
culled, and then years after, more infected animals were detected with 
no external infection source (Cassidy, 2006).

A possible zoonotic transmission source to humans was not found 
in commercial or community-based settings, as all sputum culture 
results were MTBC negative. Rather symbiotically similar Nocardia 
sp. was isolated from two farm workers (2/7), who responded in the 
questionnaire that they regularly consume unpasteurized milk. Based 
on the SIST results, one of the Nocardia sp. positive cases was from a 
farmer in the Maokeng community with a bTB suspect herd. Previous 
studies have confirmed the transmission of Nocardia sp. from cattle to 
humans by consuming dairy products from cattle infected with the 
bacteria (Wahba et al., 2011).

Limited studies have reported BB’s prevalence or incidence rate in 
South Africa cattle populations. Previous findings have reported on 
the seroprevalence of BB in Gauteng, Mpumalanga (Mnisi area), and 
KwaZulu Natal and determined seroprevalence of 2.33, 0.88, and 
1.3%, respectively, with the latter two focusing on communal cattle in 
municipal dip tanks (Matekwe, 2011; Chisi et al., 2014; Govindasamy 
et al., 2021). Moreover, introducing compulsory calf vaccinations in 
South Africa has considerably decreased the overall BB prevalence 
from approximately 10.5% in 1976 to 1.4% in 1988 (Godfroid et al., 
2004). These results agree with the findings from this study, where an 
incidence rate of 1% was determined. Based on the confirmatory BB 
test and CFT assay, 1% of all cattle screened were positive. Of this, 6/69 
(8.7%) cattle were CFT-positive from the Maokeng community, 
whereas commercial beef farm D had 13/1192 (1.1%) BB-positive 
animals. The BB higher seroprevalence in the Maokeng farm was 
expected as literature reports that in subsistence farming communities, 
BB almost always exceeds 5% in sub-Saharan Africa (Chisi et  al., 
2014). Bovine brucellosis’ higher incidence rate in communal settings 
is likely attributed to how animals are managed and a lack of disease 

awareness among farmers (Cloete et al., 2019). In commercial settings, 
animals are raised on enclosed land where movement is restricted and 
controlled. In addition, in these settings, BB control measures such as 
mass herd vaccinations and annual testing are implemented more 
stringently to adhere to specific standards. However, in communal 
farming, grazing land is shared amongst farmers where cattle herds 
interact with other herds, increasing the risk of transmission 
(Madzingira et al., 2020).

Brucella sp. IgG antibody was detected in 4/26 (15.4%) farm 
workers, including 3/13 (23%) Maokeng community farmers and one 
farm B worker. The positive reactors from the Maokeng community 
kraal were from a farm on which BB-positive herds were identified. 
Two of the three farmers reported consuming unpasteurized milk 
regularly from their herd, and the third confirmed to have assisted his 
animals in parturition several times over the past years. The positive 
reactor from the commercial beef farm was from a BB suspect herd, 
as determined by the CFT results. The incidence rate of Brucella sp. 
seropositivity in the community could result from limited knowledge 
regarding disease prevention and transmission and the higher 
incidence among the herd, increasing the risk of potential exposure 
(Cloete et al., 2019). At the time of specimen collection, all participants 
appeared to be healthy. However, Brucella sp. can cause persistent 
chronic infections in humans, and a clinical form of the disease may 
develop due to the individual being immunocompromised (Ulu-Kilic 
et al., 2013). Participants were made aware of the results and advised 
to visit their healthcare facilities in the event they feel unwell.

A few studies have been conducted on occupational exposure to 
Brucella sp. amongst healthy individuals in South  Africa. These 
include a survey study of zoonotic diseases contracted by 88 
South  Africa veterinarians (Gummow, 2003). Out of the 88 
veterinarians surveyed, 56 (63.6%) contracted one or more zoonotic 
diseases, with 7/88 (8%) reporting illness due to brucellosis. In a study 
conducted on 64 dip-tank workers (people who work at dip tanks) in 
Bushbuckridge, Mpumalanga, an incidence rate of 0% (0/64) was 
determined using a Brucellacapt® assay with a reported sensitivity and 
specificity of 96 and 97.5%, respectively (Simpson et al., 2018). The 
higher seroprevalence obtained in this study might indicate a higher 

TABLE 4 Livestock rose bengal test, complement fixation test, and bovine brucellosis results of cattle from Maokeng community kraal and four 
commercial farms linked to farmworkers IgG results.

No. of 
conclusive 

results

No. of RBT 
positive 

reactions (%)

No. of CFT 
positive 

reactions (%)

No. of CFT 
suspect 

reactions (%)

No. of CFT 
negative 

reactions (%)

No. of 
farmworkers with 

a positive IgG 
detected/No. 

tested (%)

Community

Maokeng Com 

Kraals

69 8 (11.6) 6 (8.7) 0 2 (2.9) 3/13 (23.07)

Commercial (dairy)

Farm A 33 0 N/A N/A N/A N/A

Farm B 117 0 N/A N/A N/A 1/13 (7.69)

Commercial (beef)

Farm C 448 9 (2) 0 4 (0.9) 5 (1.1) N/A

Farm D 1192 35 (2.9) 13 (1.1) 2 (0.2) 20 (1.7) N/A

Total 1 859 52 (2.8) 19 (1) 6 (0.3) 27 (1.5)

N/A represents not applicable as testing was not done.
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FIGURE 3

Ratio values calculated for each sample in all three assays (Brucella sp. Leptospira sp., and hantavirus). (A) Ratio values calculated for each sample in the 
Brucella sp. IgG ELISA assay. A ratio of <9 was considered negative, 9–11 equivocal, and > 11 positive. (B) Ratio values calculated for each sample in the 
Leptospira sp. IgM ELISA assay. A ratio of <0.9, 0.9 to 1.1, and >1.1 was defined as negative, equivocal, or positive, respectively. (C) Ratio values 
calculated for each sample in the hantavirus IgG ELISA assay. A value of <0.8 was negative, ≥0.8 to <1.1 equivocal, and ≥1.1 positive.

TABLE 5 Number of positive Brucella sp. IgG, Leptospira sp. IgM and hantavirus IgG reactors per occupation group.

Occupation Number of positive samples, ratio of >11 or >1.1* (%)

Number of 
participants (%)

Brucella sp. IgG 
reactors (%)

Leptospira sp. IgM 
reactors (%)

Hantavirus IgG 
reactors (%)

Abattoir workers 207 (63.3) 20 (9.7) 14 (6.7) 26 (12.6)

Veterinarians 12 (3.7) 6 (50.0) 0 (0) 1 (8.3)

Stable groom 32 (9.8) 2 (6.3) 2 (6.3) 4 (12.5)

Recreational hunters 46 (14.1) 2 (4.3) 1 (2.2) 4 (8.7)

Farm workers 28 (8.6) 4 (14.3) 0 (0) 3 (10.7)

Laboratory workers 2 (0.6) 1 (50.0) 0 0 (0)

Positive rate 26 (68.4)

Total (%) 327 35 (10.7) 17 (5.2) 38 (11.6)

*Depending on manufacturers’ instructions.
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disease burden in the Free State province. The higher seropositivity is 
likely due to the participants’ occupation and recreational activities, 
putting them at a higher risk of contracting an infection. Based on the 
results of this study, two high-risk occupational groups were identified 
as having a higher Brucella IgG seropositive rate compared to the 
other occupations: laboratory workers (p = 0.031) and veterinarians 
(p = 0.0006; Table 5). However, these findings were based on only two 
samples, and further research is required.

In South  Africa, there are sporadic cases of leptospirosis 
reported by the National Institute for Communicable diseases 
(NICD). This report identified abattoir workers as a high-risk 
occupational group for Leptospira sp. in the Free State, indicating 
that Leptospira sp. are circulating within the Free State province. The 
populations screened had possible exposure from various sources, 
including horses, livestock, and rodent populations as rural 
residents, hence although not possible to identify the source of 
infection, the results justify additional investigations to determine 
the prevalence of Leptospira sp. in livestock, domestic animals, 
rodents and wildlife and to identify the serovars circulating for 
diagnostic purposes. Abattoirs should also enforce more strenuous 
preventative measures to reduce infections.

Hantaviruses are usually transmitted from environmental 
exposure, and the presence of hantaviruses in South Africa has, to 
date, not been confirmed. The hantavirus IgG seroprevalence data are 
similar to data obtained in other studies (Klempa et  al., 2013, 
Witkowski et al., 2014). Although no conclusions can be drawn from 
this limited study in the absence of confirmatory assays such as 
neutralization tests, more extensive serosurveillance studies are 
justified to provide more information regarding the presence of 
hantaviruses in the country. Hantaviruses have not previously been 
associated with disease in Africa however, medically significant rodent 
borne hantaviruses belonging to various genera circulate in Asia, 
Europe and North and South America. The presence of potential 
rodent hosts in Africa suggest that they are likely to occur and hence 
warrant investigation as a potential zoonotic pathogen among at 
risk populations.

In conclusion, South Africa has a large proportion of the human 
population dependent on animals for their livelihood, whether as a 
source of food, trade, companionship, or services, and the importance 
of a One Health approach to zoonotic pathogens should 
be  encouraged. Therefore, more emphasis should be  placed on 
populations at higher risk of contracting zoonotic infections 
regarding epidemiological investigations. Identifying high-risk 

populations for different zoonotic diseases across other geographical 
regions will ultimately aid in implementing effective preventative 
measures and assist clinicians in diagnosing undifferentiated febrile 
illness patients.
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