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Editorial on the Research Topic

Mathematical and statistical modeling of infection and transmission

dynamics of viral diseases

Introductory remarks on viral disease dynamics

The articles in this Research Topic show,many advances have beenmade in public health

research, especially in the field of data collection, modeling (deterministic and random),

and prediction: (i) public databases on COVID-19 have multiplied [see COVID-19 Open

Data Repository (1) for example 301 public sites around the world allowing access to

COVID-19 data], (ii) review articles on COVID-19 outbreak including statistics and models

are numerous (in Frontiers in Public health alone, the site in WHO COVID-19 Research

Database (2) counts 173 articles under heading Systematic review/Meta-Analysis) and (iii)

the number of articles using a formal approach predicting COVID-19 waves is constantly

growing (Google Scholar lists for example 144,000 articles with the query “modeling and

forecasting COVID-19 pandemic”).

The article in this Research Topic is useful for the modeling of viral disease dynamics.

The various facets of the recent mathematical and
statistical models of viral disease data in this
Research Topic

In the Research Topic entitled “Mathematical and statistical modeling of infection and

transmission dynamics of viral diseases,” the twelve papers are representative of different

mathematical and statistical approaches to the recent COVID-19 pandemic, Hepatitis A/B

virus, and Mpox disease data:

We first present articles that deals with the recent COVID-19 pandemic. In Tormos

et al. analyzed the role of in-person school reopening in Spain on the evolution of
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COVID-19 infections using an interrupted time-series perspective

by exploring the dataset and modeling the dynamics of the disease

in different Spanish regions and autonomous communities that

reopened schools at varying moments in time during September

2020. Their analysis suggests that school reopening may generate a

retro-feedback of the disease spread with parents’ return to work

and social activity, leading to exponential growth, as observed

in Catalonia and other Spanish autonomous communities during

September and October of 2020. Naffeti et al. established that the

geography of the COVID-19 pandemic in Africa largely overlaps

with the geography of the wealth of the 30 countries considered

by using spatiotemporal evolution techniques, which take into

consideration demographic, economic, and environmental aspects

that can better explain the geographical variations of the basic

reproduction rate at the early beginning of each wave of the

pandemic. BuHamra et al. used self-developed natural language

processing to automate the extraction of causes of death and

comorbidities from the electronic health records of COVID-19

outbreak from the start of the pandemic until the end of all

major epidemic waves. The research findings proposed that to

reduce misspellings or incorrect forms, organizing the electronic

health record with well-defined sections and giving menu-

driven options for reporting causes of death and comorbidities.

Majeed et al. aim to examine the impact of SARS-CoV-2

during an influenza season and quantify the effects of the

two respiratory infections co-circulating using a mathematical

model. The research investigates the best techniques to delay

and split the peaks of the influenza outbreak and the COVID-

19 wave among numerous scenarios and interventions. This

study demonstrates that effectively managing and controlling

both influenza and COVID-19 outbreaks during the same season

depends on establishing optimal vaccine coverage techniques.

KhudaBukhsh et al. investigated COVID-19 epidemic in Marion

Correctional Institution in the spring of 2020 using a thorough

and statistically sound technique. The analysis is based on a

compartmental mathematical transmission model that is fitted

to data using dynamical survival analysis, which permits the

computation of explicit likelihoods to summarize uncertainty.

The research findings underscore the tremendous potential for

respiratory infection transmission in prisons, as well as the

crucial need for improved infection monitoring and reporting in

correctional facilities.

Chu et al. identify a random long-term pattern of biweekly

global new COVID-19 cases with a seasonal feature. Most

countries have co-integration linkages of newly reported

instances of distinct varieties of concerns, regardless of their

demographics or responses to the virus. The findings suggested

that consistent techniques may be used to limit the spread.

Furthermore, drastic eradication attempts may be ineffective,

and there is a substantial risk that the COVID-19 pandemic

may become an endemic. Janko et al. developed a framework to

assist policymakers in developing plausible intervention tactics

by dynamically changing non-pharmaceutical interventions

using artificial intelligence to forecast the infection trends,

aggregated the socioeconomic costs from the literature and

expert knowledge, and used a multi-objective optimization

algorithm to find and evaluate various non-pharmaceutical

intervention plans. The model generates efficient intervention

plans to fight a pandemic and can evaluate their effect

and costs.

Furthermore, we present articles in this research theme that

deals with Hepatitis A/B virus modeling. In Sun et al. work

focuses on a fractional-order differential equation model with

time delay and logistic proliferation to better understand the

transmission mechanism of the Hepatitis B virus in the human

body. Their research findings revealed that immune response

time delay and fractional order can substantially impact the

dynamic behavior of the Hepatitis B virus infection transmission.

As a result, while modeling and investigating Hepatitis B

virus infection, temporal delay and fractional order should be

considered. Jeong et al. used a flexible spatio-temporal model

to analyze the spatio-temporal fluctuations of the hepatitis A

virus in Korea and the influence of socioeconomic and weather-

related parameters. To evaluate the effects of risk factors, the

authors developed a Bayesian spatiotemporal zero-inflated Poisson

regression model of weekly hepatitis A virus incidence in Korea.

This is the first study to build a spatiotemporal model of

hepatitis A virus occurrence in Korea, considering numerous

socioeconomic parameters. The proposed model will be beneficial

in forecasting, preventing, and regulating the spread of the hepatitis

A virus.

Mpox disease modeling is also considered by some research

presented by authors in this Research Topic. Ngungu et al. provided

a brief overview of the Mpox virus and its transmission dynamics

by investigating its spread and the effect of a non-pharmaceutical

intervention (quarantine). The work provides insight into the

exponential growth rate of the Mpox virus dynamics prediction

and how to stop it from spreading and understand the effects of

non-pharmaceutical intervention on infected individuals, which

will guide how to deploy intervention resources to contain the

disease’s spread. Yuan et al. developed a Susceptible-Exposed-

Infected-Recovered (SEIR) modeling framework to evaluate the

impact of vaccination and other disease control strategies. The

vaccination of a high-risk group and ring vaccination strategy,

as well as testing, isolating patients and contact tracing, are all

explored, as are various interventions during gathering occasions.

The authors primarily focused on evaluating the effectiveness of

public health control methods, such as preventive vaccination

or immunization post-exposure, to assist public health decision-

making by simulating scenarios of gatherings with varying numbers

of attendance and levels of intervention. The research findings

indicated that reactive ring vaccination may not be sufficient in

and of itself; however, if close contacts of cases can be identified,

vaccinated, and isolated, an outbreak following a mass gathering

event may be avoided.

Lastly, other infectious disease modeling is considered by

N’konzi et al. modified the basic deterministic Susceptible-

Exposed-Infected-Recovered (SEIR) model to account for

the effect of disease control measures as well as the feedback

loop between non-pharmaceutical interventions adherence

and disease dynamics. The model is used to study the impact

of temporal fluctuations in non-pharmaceutical intervention

adherence levels on infectious disease dissemination. To

capture the dynamics of the public level of adherence to
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non-pharmaceutical interventions, authors leverage on the

simulation of disease dynamics and expand on the health

belief model. The model implies that treatments aimed at

enhancing non-pharmaceutical interventions adherence may

be far more valuable than raising overall non-pharmaceutical

interventions stringency.

Concluding remarks

All the contributions to the Research Topic on “Mathematical

and statistical modeling of infection and transmission dynamics

of viral diseases” have a focus on developing mathematical

and statistical models that are well suited for real data,

which are gathered through a process filtered by modeling

constraints. The idea is to obtain the optimal model with

strong predictive power that will match the collected data

and can forecast the future evolution of the observed disease

trends while applying the most appropriate and scalable

inquiry techniques.
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We investigate the e�ects of school reopening on the evolution of COVID-

19 infections during the second wave in Spain studying both regional and

age-group variation within an interrupted time-series design. Spain’s 17

Autonomous Communities reopened schools at di�erent moments in time

during September 2020. We find that in-person school reopening correlates

with a burst in infections in almost all those regions. Data from Spanish

regions gives a further leverage: in some cases, pre-secondary and secondary

education started at di�erent dates. The analysis of those cases does not allow

to conclude whether reopening one educational stage had an overall stronger

impact than the other. To provide a plausible mechanism connecting school

reopening with the burst in contagion, we study the Catalan case in more

detail, scrutinizing the interrupted time-series patterns of infections among

age-groups and the possible connections between them. The stark and sudden

increase in contagion among older children (10–19) just after in-person school

reopening appears to drag the evolution of other age-groups according to

Granger causality. This might be taken as an indirect indication of household

transmission from o�spring to parents with important societal implications for

the aggregate dynamics of infections.

KEYWORDS

COVID-19, SARS-CoV-2, in-person school reopening, non-pharmaceutical

intervention, interrupted time-series analysis

Highlights

- Interrupted time-series analyses show that in-person school reopening precedes and

correlates with a posterior growth in contagion in almost all Spanish regions that

reopened at different moments in time during September 2020 in Spain.

- A more granular analysis of the dynamics of age-groups in the Spanish region

of Catalonia indicates that infections among individuals aged 10–19 grew earlier

and faster than the rest just after school-reopening, driving the evolution of other

age-groups in a Granger causal process.
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Introduction

In many countries, several non-pharmacological

interventions (NPIs) to mitigate the spread of SARS-CoV-

2 in the community have been tested and proved effective, such

as online schooling, mandatory mask wearing or the closure

of bars and restaurants (1–8). Some published studies focus

on specific factors, like age (9–11), while others define more

general models to identify the effects of non-pharmacological

interventions (6), or the effects of the vaccination process on

the population (12). A study of the pandemic situation in

Catalonia proposes the use of a Digital Twin (13). In that study,

a combination of a simulation and an optimization model

through a continuous validation process allows understanding

the effects of the different NPIs on the population by analyzing

the change points brought about by new cases. Similarly, a study

applying Bayesian inference to a type of epidemiological SIR

model (14) analyzes the change points and infers the effects of

different interventions on the evolution of new cases.

During the first wave of the pandemic in Spain (47.3M

inhabitants), and as a part of the lockdown, in-person schooling

was shut down. Nonetheless, both the effectiveness and social

consequences of in-person school closure remain a controversial

issue. Different studies employing various approaches, for school

facilities (15–21) and specifically for child care facilities (22),

have tried to discern if schools are a vector for the propagation

of the infection and whether children have an impact on that

spread (23). Two other studies with a similar focus to ours

at trying to estimate the effect of in-person school reopening

arrived at opposing conclusions when analyzing the second

pandemic wave in Italy: one found a link between school

reopening and the resurgence of the virus (24), while the

other did not (25). For other similar diseases, like influenza

outbreaks, closure of in-person schooling has been an effective

non-pharmaceutical intervention (26, 27). Being the spread of

SARS-CoV-2 mainly airborne (28–30), knowing that to talk

increases the transmission risk (31), and that the risk raises

in poorly ventilated environments (32), it seems plausible

that online schooling will reduce community transmission

as compared to in-person schooling. Besides that, children

seem to have equivalent nasopharyngeal viral loads to adults

(16, 33–35), even though the youngest (ages 0–10) may have

had lower susceptibility (36) therefore some studies suggest

that the transmission is mainly in households (37), although

other suggest that although they have lower susceptibility,

the youngest ones are more infectious than older individuals

(38). Therefore, the spread on schools would remain high

if limited measures are applied to mitigate transmission (35,

39). These different evidences lead to the definition of several

official advices and reports with the purpose to lessen viral

outbreaks in schools in the context of in-person schooling (40,

41) with special focus on the Accumulated Incidence (AI) in

the community.

In this paper we analyze the role of in-person school

reopening in Spain on the evolution of infections. Using

an interrupted time-series perspective, we explore and model

the dynamics followed by the different Spanish regions,

Autonomous Communities, that reopened schools at varying

moments in time during September 2020. The impact of

school reopening is understood in the models as an external

shock or interruption to the series. The evidence points to a

correlation between school reopening and a posterior outbreak

in contagion across most ACs. We further provide a plausible

causal mechanism for that association by studying the Catalan

situation in more detail. For this case, we analyze actual

data on the evolution of infections among the different age-

groups and their interconnected dynamics, identifying some

key sociological patterns. A sudden burst in contagions among

school-age individuals (10–19) takes place just after in-person

school reopening and appears to drag the dynamics of other age-

groups. We argue that actual data may contain age-dependent

measurement error. Therefore, we replicate our interrupted

time-series analysis using corrections for measurement bias as

a robustness test. We weight the actual data by the levels of

prevalence by age-group as obtained from large-scale probability

sample surveys (42–45). This reanalysis confirms our main

findings, what constitutes a strong robustness test, and offers

further light into additional phenomena overlooked in the

official incidence rate records. The data sources we use are

provided by the Open Data service of the Catalonia regional

government (46), accessed through the Socrata connector (47),

and the National Statistics Institute INE (48).

School reopening across Spanish
regions

In Figure 1 we present the number of daily COVID-19 cases

detected in each Autonomous Community (AC, from now on)

from the 1st of January until November 11th of 2020 (49). The

date of school reopening is indicated with a vertical red line, and

a dotted red line shows the 14th day after reopening. This range

of time corresponds to the most likely incubation period for a

child who contracted the virus on the 1st day of reopening and

used as the official quarantine period. Schools were scheduled to

open in different dates during September depending on what the

government of each AC had arranged. In the cases in which pre-

secondary and secondary education did not start the same day,

we used the opening of secondary education as older children

are assumed to have a stronger capacity to infect others. The

figure includes the cases of Ceuta and Melilla which are Spanish

autonomous cities in the North of Africa.

In all but two cases we observe an exponential growth in

contagion 14 days after school reopened in September. The

two exceptions are the Madrid Community and the Canary

Islands. In these two cases, the peak of the second wave
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FIGURE 1

Evolution of the number of COVID-19 cases per day in each Autonomous Community of Spain.
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FIGURE 2

E�ect of school reopening in each ACs. Estimates are incidence-rate ratios from Poisson regressions corrected for over dispersion. 95% CI.

**p < 0.01, *p < 0.05.

occurred before school reopening and containment measures

were already applied previously. In the remaining 15 cases

along with the two autonomous cities, the pattern is of an

exponential growth. In six ACs the upsurge came after the

second wave was being successfully contained, leading to a third

wave: Cantabria, Castile-La Mancha, Extremadura, Balearic

Islands, Basque Country, Region of Murcia, Navarra, Rioja, and

Valencian Community. In four cases, the exponential growth

came after a stationary situation: Andalusia, Aragon, Catalonia,

and Galicia. In the four remaining cases, the number of daily

contagions was already increasing before, but school reopening

established the point where it definitively bursted.

Next, we perform a set of interrupted time-series Poisson

regression models corrected for over dispersion, one for each

AC, using the incidence rate as a dependent variable and having

as predictors a linear trend (time) and a dummy variable

representing an external shock to the series: in-person school

reopening (the intervention), where 1 is the time-period with

in-person classes and 0 otherwise. Therefore, in the models, the

incidence rate (r) is assumed to be given by:

r= log−1 (α0 + β1 (time) + β2 (intervention))

= eα0+β1(time)+β2(intervention) (1)

Full results of those regressions are presented in

Supplementary Table 1. According to this modeling strategy

and looking at the incidence-rate ratios (the change in the

incidence rate due to the intervention) in Figure 2, school

reopening implied a clear raise in the risk of contagion for

the general population in all but three ACs (84% of ACs).

The exceptions were Aragon (AR), Cantabria (CN), and

the Balearic Islands (IB). Asturias was the most affected

AC. Reopening face-to-face classes increased 4.7 times the

rate of infection in this region as compared to the period

when schools were closed. In seven other ACs the rate of

infection tripled (or almost) after the reopening: Extremadura,

Navarra, Ceuta, Rioja, Castile-La Mancha, Melilla, and

Castile and Leon. In other four cases the rate doubled or

nearly: Galicia, Catalonia, Madrid, and Andalusia. In the

remaining four ACs, the impact of reopening was still

relevant implying an increase in cases in between 20 and

10% (Valencian Community, Cantabria, Murcia, and the

Basque Country).

Next, we provide an estimate of the average effect of school

reopening across ACs (rij) by using the pooled dataset of all ACs.

We employ a panel data approach that conveniently accounts for

the clustering of cases in geographical units (see Table 1).We run

a random effects Poisson regression considering entity-specific

intercepts for Autonomous Communities. The model contains a

dummy variable for school reopening and a time trend, as shown

in the following equation:

rit = eα0+β1(timeit)+β2(interventionit)+ui (2)

For i = 1, . . . , 19 ACs and t = 1, . . . , 320 days observed. The

random effects ui are assumed to be normally distributed with

mean 0 and variance σ 2
u .

On average, school reopening has a sizeable and significant

statistical effect. Estimates for school reopening indicate a robust

mean impact of school reopening on the incidence of daily

Frontiers in PublicHealth 04 frontiersin.org

11

https://doi.org/10.3389/fpubh.2022.990277
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tormos et al. 10.3389/fpubh.2022.990277

TABLE 1 Random e�ects Poisson regressions with entity-specific

intercepts (ACs).

IRRs

School reopening 1.760***

(0.005)

Time (linear trend) 1.009***

(0.000)

Constant 36.167***

−8.699

Ln Alpha 0.15

Alpha 1.162

Log likelihood −538,910.76

Observations 5,966

The estimates of Poisson models are incidence-rate ratios (IRRs).

Standard errors are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.

infections across ACs1. The incidence-rate ratio associated to

school reopening implies a 76% average increase in risk for the

population of becoming infected when comparing before and

after reopening. Of course, with observational evidence, third

variables temporally coinciding with school reopening, such as

the return to work, could confound the association. Correlation

does not imply causation, but neither precludes it.

Secondary and pre-secondary education (kindergarten and

primary school) started at different moments in time in

eight ACs. We can benefit from these naturally occurring

phenomenon and use it to test whether the opening of any

of the two educational stages had a stronger aggregate impact

than the other. We run two separate Poisson regression models

for each of these eight ACs, one using time and the date of

pre-secondary education reopening as a predictor variable and

the other employing the date of secondary education reopening

instead. Detailed results are shown in Supplementary Table 3.

In Figure 3, we present the ratio of the effects of opening

secondary education with respect to pre-secondary (the ratio

of the incidence rate ratio). In five out of eight cases (63%),

there are almost no differences between coefficients. In the

remaining three cases the opening of pre-secondary education

had a stronger impact than the start of secondary education.

Indirect evidence of household
transmission

To gain further insight as to which mechanisms may drive

the outbreak of infections coinciding with in-person school

1 The estimates of an equivalent fixed e�ects model adjusting for time-

invariant unobserved heterogeneity portrays the exact same estimates as

the random e�ects model (see Supplementary Table 2).

FIGURE 3

Ratio of the incidence-rate ratios of opening secondary

education with respect to pre-secondary.

reopening, we study the Catalan case with more detailed data

on age-groups (46). We explore the rate of infections per

day within each age-group. Our hypothesis is that contagion

inside family units with children might have been crucially

boosted due to the school reopening. In aggregate terms,

the return to in-person classes would have fostered a silent

spread of the virus through the community with visible societal

consequences 2 weeks later. Lacking direct measures on family

units, we study the aggregate dynamics of infection in age-

groups that might be involved. Individuals in their forties

(40–49) are more likely to have children between the ages of

10 and 19 and live together with them (50). Using aggregate

time series data, in the following analysis we show how

these two age groups evolve similarly over time during the

second wave of the pandemic, and that school reopening

might be one main driver of the exponential growth in

infections among children aged 10–19, dragging the evolution

of older adults.

In Figure 4 we present the detailed development of the daily

number of cases in Catalonia across the two pandemic waves

observed. Again, we marked with a red line the moment of the

reopening of schools, and with a dotted red line the passing of

14 days of the reopening.

In the first pandemic wave the number of cases observed

per day was clearly less than the actual cases due to a lack

of testing and plenty underreporting. A remarkable contention

of the virus followed the strict lockdown that spanned from

mid-March to June the 21st. Infections dropped to a minimum

throughout July. During the end of June, cases started raising

again but stabilized in a sort of plateau. A plausible explanation

for this growth is a concurrent raise in testing during that

period, instead of an actual increase in the number of cases (see

Supplementary Figure 3).

Besides the growth in testing efforts, the surge in infections

that lead to the summer plateau could also be connected to

the reopening of bars and restaurants, a share of employees
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FIGURE 4

Evolution of the number of COVID-19 cases per day in

Catalonia.

going back to work, and friends and family gatherings. In any

case, during that plateau the dynamics was stationary (unit root

DF test = −5.187 with a p-value = 0.000 for the period). The

reopening of schools happened on September 15th and 14 days

later a clear exponential growth in the number of cases took

place. The co-occurrence in time of two phenomena does not

prove causation. The increase in cases could have just temporally

coincided with school reopening and be motivated by other

factors instead. In any event, school reopening as a cause fulfills

one of the rules of causality, that causes must temporally precede

effects. Besides that, we already observed a similar pattern across

many other ACs. In what follows, we analyze a plausible causal

mechanism connecting in-person school reopening with the

exponential surge in infections by studying the coevolution of

age-groups involved in the process.

We implement a smoothing transformation of the time-

series data for each age-group with a non-parametric procedure

using locally weighted regressions2, (see Supplementary Figure 1

to inspect the graphs with the original incidence count data).

Figure 5 presents these estimates for all age-groups together,

which help to visualize the patterns emerging from the data. The

10–19 age-group is the first experiencing an exponential growth

just after school reopening following the plateau phase, and the

one with a faster and larger increase in the rate of cases.

We focus on studying people in their forties (40–49 years

old) as they are in a stage of the life cycle likely to have school

children at home between the ages of 10 and 193. After school

reopening, in households where 40-year-olds and their offspring

live together, contagion risk would be higher than in other family

units. Ever since, not only parents could potentially infect their

children but also vice versa. First, we compare the coevolution

2 Using the lowess command in Stata.

3 According to o�cial statistics (INE), in Catalonia the average age for

a woman to have a child during the period from 2000 to 2019 was 31.13

years, the highest in Europe (48).

of youths between 10 and 19 years of age with people in their

forties as well as with individuals in their thirties and fifties

(Figure 6)4. Overall, these three older age-groups are somehow

similar in terms of lifestyle and habits. They all loosely belong

to the middle-aged category of the human life cycle, clearly

differentiated from other life stages such as childhood, youth, or

old age. They also portray a similar dynamic.

Our hypothesis regarding the mechanism that connects

the evolution of the middle-aged with the 10- to 19-year-old

individuals is that they live together in the same households, and

the transmission from offspring to adults may have substantially

increased due to in-person school reopening. If we compare

the development of these two age segments over the period,

we see that during the first wave of the pandemic both

dynamics were uncorrelated. Middle-aged people got infected,

but there were almost no cases (detected) among youths.

Besides underreporting and a higher level of asymptomatic

cases, schools were closed during the first wave. In the phase

after the lockdown, cases among this younger group started

to increase, but always remained at a lower level than middle-

aged individuals. We consider people in their forties as clearly

representative of the middle life stage of the life cycle and the

age-group most likely to parent youngster in between 10 and

19 years of age. The plateau phase implied a stationary state

for both groups (unit root DF test = −5.323 and −4.963,

respectively, with a p-value = 0.000). At this stage, the higher

level of infections among individuals in their forties could be

related to going back to work, and other sort of gatherings. It

could well be that, inside the household, contagion from parents

to offspring was predominant at that moment. The opening of

schools brings a stark increase in youth infections. Cases among

younger people (10–19 years old) start rising before the growth

among older adults (e.g., 40–49). If we compare a critical range

of time, that between September 11th and the 7th of October,

infections among youths were increasing faster than among their

elders. OLS regressions with deterministic time trends yield a

slope of 7.73 in the case of the young age-group and of 5.66 in

the older one (full results not shown for simplicity). In fact, the

steepest exponential growth of all age-groups takes place among

individuals between 10 and 19 years (see Table 2).

The smoothing procedure helped us at visually appreciating

how the increase in cases among young people aged 10–19 years

preceded the subsequent increase in the group aged 40 to 49

and was larger in magnitude. With the aim of testing the role of

the 10–19 age-group, after in-person school reopening, to drive

the evolution of the pandemic during the second wave through

their impact on people of other age-groups, especially middle-

aged people, we now perform a set of time series tests using

actual incidence rates. As a robustness check, we additionally

4 Analyses including the other middle-aged groups are included in the

Supplementary Figure 1.
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FIGURE 5

Smoothed estimates using locally weighted regression of the evolution of the rate of COVID-19 cases per day in Catalonia by age-groups.

Notice that the age-group 90+ is not represented for clarity purposes, due to its large incidence levels during the first wave.

FIGURE 6

Smoothed estimates using locally weighted regression of the

evolution of the number of COVID-19 cases per day in

Catalonia by specific age-groups.

perform the same tests on a weighted version of the time-series

data adjusted for prevalence levels in each age-group.

Granger causality test

The Granger causality test (51) is a time-series procedure

to verify if the evolution of one time series is able to predict

TABLE 2 Fitting deterministic linear and exponential time trends to

the evolution of the di�erent age-groups over the second pandemic

wave in Catalonia.

R-squared

Linear Exponential Ratio

0–9 years old 0.49 0.62 1.25

10–19 years old 0.45 0.76 1.69

20–29 years old 0.49 0.60 1.23

30–39 years old 0.49 0.59 1.21

40–49 years old 0.47 0.57 1.22

50–59 years old 0.46 0.54 1.18

60–69 years old 0.46 0.55 1.21

70–79 years old 0.44 0.54 1.23

80–89 years old 0.37 0.42 1.13

another time series. Table 3 shows a group of Granger causality

tests to evaluate the effect of the 10–19 age-group series on the

40–49 age-group series. It presents a set of nested OLS regression

models with the 40–49 age-group series as the dependent

variable and the lagged dependent variable (with up to 10 lags)

and the 10–19 age-group variable (also with up to 10 lags) as

independent variables. This specification can be expressed using
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the following equation:

yt=α0+(β1yt−1+· · ·+β10yt−10)+ (β11xt−1+· · ·

+β20xt−10)+ut (3)

where the level of infections in the 40–49 age-group y at time

t is a function of a constant α0; the lagged dependent variable,

in up to 10 consecutive lags (β1yt−1 , . . . , β10yt−10); and the

lagged independent variable: the level of infections in the 10–19

age-group in up to 10 consecutive lags (β11xt−1 , . . . , β20xt−10).

The term ut is the error term of the time-series regression.

We are interested in the F-statistic of the models that will

eventually allow us to reject the null hypothesis. We reject

the null in eight of the 10 models. Only with lags one and

two the F-statistic is below the critical threshold. This has a

substantive meaning: it takes longer than one or two single lags

for the dynamics of the 10–19 age-group series to influence

the 40–49 series. In the remaining models with more lags, the

p-value associated to the F-statistic is always under 0.05 (p <

0.000) indicating that we can reject the null hypothesis that all

coefficients of lag of the independent variable (10–19 age group

series) are equal to 0. Therefore, we can state that the 10–19

age-group Granger causes the 40–49 age-group series.

Instead of this stream of causality from children to adults,

could the level of parental infections be driving the level of

infections of their offspring? To test it, we reverted the former

Granger causality analysis so that the 10–19 age-group series

is now the dependent variable (yt) and the 40–49 series the

independent variable (xt−n). This would allow us checking

whether there is a sort of reverse process by which the 40-year-

olds are those who cause youths to get infected. As shown in

Table 4, there is also evidence of this line of causation, but it is

substantially weaker. In only three of the 10 models, we observe

a Granger causal process. In any case, a bidirectional association

among both series is consistent with the notion of a feedback

relationship due to cohabitation of these age-groups in the same

family units within households.

Chow test

In addition, we may want to verify when this relationship

between the two time-series appears. We perform a test to

check whether the opening of schools, as an external shock,

implies a key disruption in the series under study here (Table 5).

The Chow test is calculated after an OLS regression with the

lagged dependent variable and the lagged independent variable

as regressors together with the interaction of school reopening

with both age-group series. The equation can be portrayed

as follows:

yt=α0+β1yt−1+β2xt−1+β3z+β4(yt−1·z)+β5(xt−1·z)+ut (4)

where the level of infections in the 40–49 age-group y at time

t is a function of a constant α0, the lagged dependent variable

β1yt−1), the lagged independent variable (the level of infection

of the 10–19 age-group expressed by β2xt−1), a dummy variable

representing school reopening β3z, the interaction of school

reopening with the lagged dependent variable β4(yt−1·z) and the

lagged independent variable β5(xt−1·z). The term ut is the error

term of the time-series regression.

The null hypothesis for the Chow test means no break. If the

p-value is <0.05, we can reject the null in favor of the alternative

that there is a break. Our results indicate that the null hypothesis

can be rejected, and we can conclude that school reopening

caused a break in the regression coefficients.

Weighting by prevalence as a
robustness check

The use of actual incidence records involves assuming that

measurement error does not substantially distort our inferences.

The proportion of asymptomatic cases is a key aspect to

understand the pattern of the SARS-CoV-2 spread. Previous

research (52) establishes that almost 60% of infected people

report no symptomatology during an early stage of the disease,

although symptoms can appear later as a result of being tested

in the presymptomatic phase (53). This serves as a basis to

discuss regarding the proportionality of the diagnostic effort

done in all the age-groups, and if this can affect the analysis.

Some studies suggested that the age range from 0 to 20 is

highly asymptomatic (54). Moreover, other analyses seem to

show that the prevalence on children is higher than previously

thought (55), being prevalence a good estimator for capturing

the true incidence on the population. Therefore, raw incidence

data certainly contains statistical biases due to non-random

factors such as the degree of asymptomatic individuals, which

vary by age-group, or differences in diagnosis efforts on each

age-segment of the population. In contrast to official incidence

records, prevalence studies are implemented using random

sampling, which allows obtaining more representative and

realistic incidence estimates by age-groups. When data does not

come from a random sample, as in the official records of infected

individuals, it is susceptible of containing systematic error

from the self-selection of symptomatic infected individuals that

correlates with aging, or to over represent certain population

segments for whom public diagnosis efforts are higher, such

as younger individuals, but using less representative sampling

procedures. The number of tests done for the age group from

10 to 19 is huge as compared to those performed on other age

groups (see Supplementary Figure 3). However, this does not

imply an improvement in detection, since it depends on the

method used to perform the testing, and on whether the samples

are correctly selected. As an example, the tests performed in a

classroom typically composed of 25 students due to the detection

of a positive index case will result in largely negative tests

results. This is because only about 8% of infective individuals are
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TABLE 3 Granger causality test for the 40–49 age-group series as dependent variable.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

40–49 40–49 40–49 40–49 40–49 40–49 40–49 40–49 40–49 40–49

L1.40–49 0.674*** 0.579*** 0.2 0.255* 0.342*** 0.209* 0.152 0.307*** 0.344*** 0.213*

(0.115) (0.142) (0.134) (0.141) (0.129) (0.122) (0.113) (0.11) (0.11) (0.115)

L2.40–49 0.221 0.674*** 0.717*** 0.53*** 0.603*** 0.431*** 0.361*** 0.396*** 0.34***

(0.137) (0.136) (0.143) (0.136) (0.126) (0.116) (0.1) (0.112) (0.115)

L3.40–49 0.04 −0.029 −0.042 −0.203 −0.131 −0.022 −0.024 0.219*

(0.123) (0.147) (0.139) (0.131) (0.12) (0.104) (0.098) (0.115)

L4.40-49 −0.051 0.471*** 0.289** 0.148 0.045 0.108 0.133

(0.124) (0.134) (0.129) (0.119) (0.103) (0.098) (0.096)

L5.40–49 −0.514*** −0.142 −0.331*** −0.163 −0.223** −0.215**

(0.114) (0.127) (0.118) (0.103) (0.098) (0.096)

L6.40–49 0.051 −0.02 0.173* 0.221** 0.217**

(0.118) (0.117) (0.103) (0.098) (0.096)

L7.40–49 0.664*** 0.513*** 0.632*** 0.645***

(0.108) (0.1) (0.098) (0.096)

L8.40–49 −0.349*** −0.448*** −0.274**

(0.106) (0.113) (0.121)

L9.40–49 −0.16 −0.08

(0.106) (0.116)

L10.40–49 −0.407***

(0.105)

L1.10–19 0.089 0.11 0.408*** 0.397*** 0.34*** 0.348*** 0.292*** 0.314*** 0.102 0.185*

(0.075) (0.111) (0.104) (0.105) (0.096) (0.095) (0.093) (0.086) (0.096) (0.096)

L2.10–19 −0.096 −0.822*** −0.876*** −0.858*** −0.825*** −0.58*** −0.435*** −0.236** −0.256**

(0.102) (0.12) (0.127) (0.116) (0.108) (0.103) (0.091) (0.104) (0.114)

L3.10–19 0.413*** 0.525*** 0.638*** 0.563*** 0.411*** 0.279*** 0.281*** 0.183*

(0.089) (0.131) (0.127) (0.118) (0.109) (0.095) (0.09) (0.104)

L4.10–19 −0.038 −0.625*** −0.314** −0.222** −0.161* −0.186** −0.201**

(0.094) (0.123) (0.123) (0.112) (0.096) (0.091) (0.089)

L5.10–19 0.603*** 0.036 0.207* 0.199** 0.214** 0.198**

(0.086) (0.12) (0.113) (0.097) (0.092) (0.09)

L6.10–19 0.295*** 0.157 −0.113 −0.083 −0.075

(0.092) (0.109) (0.098) (0.093) (0.09)

L7.10–19 −0.224** 0.166* 0.021 0.021

(0.091) (0.095) (0.093) (0.091)

L8.10–19 −0.186** 0.166 0.048

(0.085) (0.113) (0.116)

L9.10–19 −0.213** −0.192

(0.094) (0.122)

L10.10–19 0.189**

(0.094)

Constant 3.897*** 3.037*** 1.546 1.734 2.126** 1.903** 1.26 1.416* 1.558** 1.921***

(1.057) (1.169) (1.051) (1.082) (1.009) (0.949) (0.871) (0.754) (0.721) (0.713)

Observations 259 258 257 256 255 254 253 252 251 250

R–squared 0.648 0.652 0.743 0.744 0.79 0.822 0.856 0.895 0.907 0.913

Granger test

F 1.41 0.56 16.50 12.13 21.93 15.33 6.89 4.94 3.67 3.47

Sig. 0.236 0.572 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Standard errors are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
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TABLE 4 Granger causality test for the 10–19 age–group series as dependent variable.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

10–19 10–19 10–19 10–19 10–19 10–19 10–19 10–19 10–19 10–19

L1.10–19 0.726*** 0.808*** 1.119*** 1.097*** 0.992*** 0.943*** 0.771*** 0.943*** 0.782*** 0.845***

(0.096) (0.143) (0.14) (0.141) (0.124) (0.115) (0.118) (0.099) (0.115) (0.117)

L2.10–19 −0.041 −0.878*** −0.962*** −0.944*** −0.862*** −0.631*** −0.374*** −0.203 −0.178

(0.132) (0.16) (0.17) (0.149) (0.131) (0.131) (0.104) (0.125) (0.139)

L3.10–19 0.528*** 0.624*** 0.691*** 0.541*** 0.41*** 0.212* 0.225** 0.1

(0.119) (0.176) (0.163) (0.143) (0.138) (0.108) (0.108) (0.127)

L4.10–19 0.045 −0.727*** −0.231 −0.178 −0.086 −0.104 −0.125

(0.125) (0.159) (0.149) (0.142) (0.11) (0.109) (0.109)

L5.10–19 0.966*** −0.022 0.192 0.195* 0.208* 0.201*

(0.111) (0.145) (0.143) (0.111) (0.11) (0.11)

L6.10–19 0.636*** 0.291** −0.111 −0.091 −0.091

(0.112) (0.138) (0.112) (0.111) (0.11)

L7.10–19 0.12 0.847*** 0.765*** 0.764***

(0.115) (0.109) (0.112) (0.111)

L8.10–19 −0.636*** −0.375*** −0.458***

(0.098) (0.136) (0.142)

L9.10–19 −0.223** −0.272*

(0.112) (0.149)

L10.10–19 0.23**

(0.115)

L1.40–49 0.225 0.205 −0.19 −0.117 0.027 −0.153 −0.126 −0.108 −0.044 −0.134

(0.147) (0.183) (0.18) (0.188) (0.166) (0.148) (0.143) (0.125) (0.132) (0.14)

L2.40–49 −0.061 0.488*** 0.573*** 0.368** 0.498*** 0.322** 0.199* 0.149 0.072

(0.176) (0.182) (0.191) (0.175) (0.152) (0.148) (0.115) (0.134) (0.141)

L3.40–49 −0.056 −0.08 0.002 −0.253 −0.146 0.051 0.038 0.263*

(0.165) (0.196) (0.18) (0.158) (0.151) (0.119) (0.118) (0.14)

L4.40–49 −0.193 0.568*** 0.317** 0.145 −0.038 0.009 0.035

(0.166) (0.173) (0.155) (0.151) (0.118) (0.118) (0.117)

L5.40–49 −1.001*** −0.308** −0.451*** −0.176 −0.22* −0.227*

(0.147) (0.154) (0.149) (0.118) (0.118) (0.118)

L6.40–49 −0.141 −0.032 0.193 0.225* 0.234**

(0.142) (0.148) (0.118) (0.118) (0.118)

L7.40–49 0.309** −0.063 −0.012 −0.01

(0.137) (0.115) (0.118) (0.117)

L8.40–49 −0.082 −0.197 −0.068

(0.122) (0.136) (0.147)

L9.40–49 0.027 0.137

(0.127) (0.142)

L10.40–49 −0.377***

(0.128)

Constant 0.564 1.252 −0.273 0.127 1.131 0.987 0.635 0.733 0.768 1.086

(1.354) (1.503) (1.407) (1.447) (1.301) (1.147) (1.104) (0.864) (0.865) (0.869)

Observations 259 258 257 256 255 254 253 252 251 250

R–squared 0.753 0.754 0.804 0.806 0.852 0.89 0.902 0.942 0.944 0.946

Granger tests

F 2.34 0.67 2.59 2.41 10.89 4.04 2.91 1.10 1.20 1.93

Sig. 0.127 0.510 0.053 0.050 0.000 0.001 0.001 0.366 0.295 0.043

Standard errors are in parentheses.

***p < 0.01, **p < 0.05, *p < 0.1.
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TABLE 5 Chow test of school reopening.

Coef. SE

Constant 2.71* 1.196

40–49 years old

Lag 1 0.721** 0.151

10–19 years old

Lag 1 0.028 0.151

School opening 10.42** 2.732

School * 40–49 0.104 0.261

School * 10–19 −0.161 0.213

Observations 259

R-squared 0.676

Chow test

F 7.230

P-value 0.000

**p < 0.01, *p < 0.05.

responsible for 60% of the cases (56), and highly asymptomatic

individuals are less infectious (57).

As a robustness test of our main analysis, we use data

from large scale prevalence studies in Spain (42–45) to weight

the actual incidence records and try compensating for the

aforementioned biases. This robustness test implies weighting

each age-group’s time-series by their specific percentual level of

detection before reanalyzing the data (see the explanation of the

calculation procedure on the Supplementary material).

In Figure 7 we present the smoothed estimates of the

incidence rates weighted by prevalence. Again, we can clearly

identify how the 10–19 series grows exponentially faster and

more intensely than the middle-aged series just after school

reopening during the second wave. The increase among the 50-

year-old individuals becomes now the second in importance.

Furthermore, weighted data allows appreciating a more realistic

estimate of the true overall magnitude of the first wave, which

was far wider than the second. In any case, incidence among

youths (10–19) during the first wave was rather low coinciding

with a period when in-person school was closed.

The 10–19 age-group moves from being the second least

infected group during the first wave (just after children between

0 and 9 years of age as shown in Supplementary Figure 5) to be

leading the levels of contagion during the second wave, both in

terms of the timing an intensity of its growth. The key exogenous

contextual element that varies between these two waves and

may be responsible for this difference is in-person schooling.

Contagion among youths related to in-person classes does not

necessarily translate into a life-threatening health risk for this

age-group, however, it increases the danger in aggregate terms

for the transmission to individuals of older age-groups across

society at large, and especially within the multigenerational

households where these young people live. Figure 7 further

allows appreciating an overlooked increased in contagion of

youths taking place after the first wave, when containment

FIGURE 7

Evolution of the rate of COVID-19 cases per day in Catalonia by

age-group with data corrected by the level of prevalence.

measures were slightly relaxed. This growth finally went down

during the summer months. If we rerun the Granger causality

tests specified with the 40–49 series as determined by the 10–

19 and up to 10 lags, we obtain evidence of Granger causality

processes in three of its lags (see Supplementary Table 3). All in

all, the replication of the analysis on the weighted time-series

increases our confidence in the validity of our main results.

Discussion

In-person school reopening taking place at different dates

during September 2020 precedes and correlates with a posterior

growth in contagion in almost all Spanish regions. The time-

series analysis of Catalan age-groups indicates that contagion

among young individuals aged 10–19 after school-reopening

grows earlier and faster than the rest, Granger causing the

evolution of other age-groups. The lack of public awareness

of this phenomenon might be due to a collective cognitive

confusion regarding the actual role of school reopening.

Different studies at the individual level show that children

become less infected and are less infectious than older

individuals (58). From this fact many conclude that it was

rather safe to keep schools opened. This inference could actually

be a sort of fallacy. Even if children are less infectious and

get less infected (some estimates say by half), it has been

proven they are infectious and infect. Moreover, even a smaller

proportion of infected individuals can imply a large number

of actual cases when the target population is very large: the

whole school children population. As a result, the aggregate role

of opening schools for the expansion of the pandemic can be

collectively underestimated.

Like almost all the statistical tests, there is strong evidence

for the correlation of the different effects presented here, but the

causation if hidden. Granger causality is a statistical hypothesis

test for determining whether one time series can forecast another

one. Notice that it is only capable of testing the temporal
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relation between the two time-series, since the true causation

is a complex philosophical issue, here we can only assess if one

time-series forecasts another time-series.

To test the robustness of our findings we implemented a

weighting procedure based on prevalence studies to estimate

the actual percent of detection. This allows us to generate a

new time-series that represents the real cases. Reproducing

our analysis with this corrected data yield equivalent results,

enforcing our confidence in the findings.

Other studies have also analyzed the impact of

school closures together with other non-pharmacological

interventions. These studies employed large datasets that

included multiple countries and various non-pharmacological

interventions, and in all of them it was observed that the

closure of schools provided a reduction in the Rt (6–8, 59).

School reopening seems to have an impact on the Rt when

this non-pharmaceutical intervention is lifted and applied, and

coherently with the mortality (21), as is described on (60).

Furthermore, another study (61), using a methodology

similar to that employed in our research, observed that parental

exposure to open schools is associated with a somewhat higher

rate of PCR-confirmed SARS-CoV-2 infection OR 1.17; CI 95%

1.03–1.32. It was also higher among teachers, PCR-confirmed

SARS-CoV-2 infection OR 2.01; CI 95% 1.52–2.67.

In addition, a different research (62) robustly estimated

that the closure of schools, like other interventions to

reduce contacts in large groups, is one of the most effective

interventions to contain the spread of COVID-19 by reducing

the daily incidence.

While previous research has identified the overall impact

of different non-pharmacological interventions in the reduction

of SAR-CoV-2 spread, our study focuses more in depth on

one of those interventions (school closure/reopening), in a

specific context (Spain and Catalonia), at a particular moment

in time (the second wave) and using an interrupted time-

series approach. Our method can be easily reproduced in other

countries to eventually find comparable patterns.

From our analysis we can contemplate the possibility that

school reopening may generate a retro-feedback with parents’

return to work and social activity, leading to an exponential

growth, as observed in Catalonia and other Spanish ACs during

September and October of 2020.

Despite its cost, online or hybrid schooling could have been

a cost-effective option considering the potential role of schools

as drivers of the virus in the community. The spread of the

virus may imply higher expenses when medical, economic, and

social costs of closing economic activities due to the arrival of a

new viral wave are contemplated altogether. This understanding

could help policy makers to find suitable solutions to limit

the spread of the virus in the community such as using tele-

education while keeping onsite schools for parents that need

it, improving the ventilation of classes with HEPA filters, or

reducing the ratios for onsite school.

Posterior virus variants, such as the B.1.1.7 detected in the

UK, seem to increase the transmission rate among children. If

this is confirmed, new analysis should be performed to assess

how it will amplify the transmission rate in the community.

The estimated effects of school reopening would constitute a

downward estimation of the real impact in a context where new

variants are widespread.

All in all, the findings presented here are consequential

not only for the particular case of study, but more generally.

Heated debates about the adequacy and safety of in-person

school reopening have been held around the world. Different

considerations regarding its costs and benefits have been casted,

however, the full implications of its costs might not been

weighted accurately enough. We believe our findings constitute

a contribution in this direction.
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In this article, a fractional-order di�erential equation model of HBV infection

was proposedwith a Caputo derivative, delayed immune response, and logistic

proliferation. Initially, infection-free and infection equilibriums and the basic

reproduction number were computed. Thereafter, the stability of the two

equilibriums was analyzed based on the fractional Routh–Hurwitz stability

criterion, and the results indicated that the stability will change if the time delay

or fractional order changes. In addition, the sensitivity of the basic reproduction

number was analyzed to find out the most sensitive parameter. Lastly, the

theoretical analysis was verified by numerical simulations. The results showed

that the time delay of immune response and fractional order can significantly

a�ect the dynamic behavior in the HBV infection process. Therefore, it is

necessary to consider time delay and fractional order in modeling HBV

infection and studying its dynamics.

KEYWORDS

HBV model, time delay, fractional order, stability, Hopf bifurcation

Introduction

Hepatitis B virus (HBV) can attack the liver and cause both acute and chronic

diseases and further lead to fibrosis, cirrhosis, or even cancer. It is estimated that 296

million people have chronic hepatitis B, and 1.5 million new infections are reported

each year; 820 000 people died of hepatitis B infections in 2019 (1). Therefore, HBV has

become a major public health problem affecting human health (2).

Mathematical modeling and analysis of infectious viruses help understand

the infection mechanism and realize the disease progression (3–5). Furthermore,

mathematical modeling can also provide new insights to find the key factors

to treat infectious diseases (6). In 1996, the basic ordinary differential equation

(ODE) model of HBV infection was established with uninfected cells, infected

cells, and free viruses (7). This is an early mathematical model for studying the

spread of viruses. As research progresses, the mathematical modeling of virus

transmission has become more and more complicated. For instance, Peter et al.

(3) established a deterministic ODE model with six compartments to study the

transmission dynamics of measles and obtained the best fit using available data,
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which could help health workers in decision-making and

policymakers to frame policies to eradicate the spread of measles

in Nigeria. Mayowa et al. (5) divided the population into

six classes and formulated a six-compartmental deterministic

model to investigate the effect of vaccination on the dynamics

of tuberculosis in a given population. All the aforementioned

mathematical models are based on ordinary differential

equations with bilinear incidence rate.

Subsequently, a large number of dynamic models were

proposed to describe and analyze virus infection according to

different biological mechanisms (8–13); for example, because

hepatocytes have the ability to regenerate, the models are

constrained by the number of healthy and infected hepatocytes.

Li et al. (10) developed a logistic growth model of HBV.

Moreover, in order to characterize the time of a body’s immune

response after the virus infection of target cells, time delay

has been considered. Therefore, Zhang et al. (13) proposed

a susceptible-vaccinated-exposed-infectious-removed (SVEIR)

epidemic model with two time delays and constructed a

Lyapunov function to discuss the asymptotic stability of the

positive equilibrium point. Babasola et al. (14) modeled the

spread of COVID-19 with a convex incidence rate incorporated

with a time delay and proved that delay can destabilize the

system and lead to periodic oscillation.

In recent years, a fractional derivative for describing

memory, history, and heredity effects in modeling physical,

chemical, financial, and biological systems has received

increasing attention (15–28). For example, Diethelm (29) used

a fractional-order model to simulate the dynamics of a dengue

fever outbreak. The results showed that the simulation accuracy

of the fractional-order model is much higher than that of

the integer-order derivative. Gilberto et al. (30) proposed a

fractional-order model to research the dynamics of influenza A

(H1N1), and the results showed that the fractional-order model

was in good agreement with real data. Similarly, Ogunrinde

et al. (27) divided the population into five classes and proposed

a fractional-order differential equation model to study COVID-

19. The basic reproduction number was calculated by the

spectral radius method, and the stability analysis of the model

was carried out by constructing the Lyapunov function. Finally,

the parameters were estimated by collected data, and the model

can offer guidance to policymakers.

In addition to the mathematical modeling of fractional

differential equations for the aforementioned infectious diseases,

there are also many studies that use the fractional-order model

to characterize the process of HBV infections (31–33). For

example, Simelane and Dlamini (33) established a fractional-

order HBV model with a saturated incidence rate by using

the Caputo fractional derivatives. Then, the basic reproduction

number was calculated, and the stability of the equilibriums

was discussed. The simulation results demonstrated that the

fractional-order model is more appropriate for modeling HBV

transmission dynamics than the integer-order model. The time

of HBV entry into the healthy liver cells and the production of

new virus particles should be taken into account; therefore, Gao

et al. (32) established a three-dimensional delayed fractional-

order HBV model, which included healthy hepatocytes, infected

hepatocytes, and free viruses, as follows:











CF
0 Dσ1

t x(t) = λ1
σ1 − µ1

σ1x(t)− β1
σ1x(t)v(t)+ δ1

σ1y(t),
CF
0 Dσ1

t y(t) = β1
σ1x(t)v(t)− (α1

σ1 + δ1
σ1 )y(t),

CF
0 Dσ2

t v(t) = c1
σ2y(t − τ )e−ρτ

− γ1
σ2v(t).

(1)

This model has not considered the cytotoxic T lymphocyte

(CTL) and alanine aminotransferase (ALT) levels, which reflect

the extent of liver damage. Therefore, the items of CTL and ALT

will be considered in our established model.

However, until now, no study has been designed to

analyze the dynamics of HBV involving logistic proliferation,

time delay, and items of CTL and ALT by fractional-

order differential equations. Motivated by the aforementioned

discussion, we proposed a fractional-order differential equation

model with time delay and logistic proliferation in order to

better understand the transmission mechanism of HBV in the

human body.

The remaining part of this article is organized as follows:

Section Mathematical model deals with the formulation of

the model. Section Equilibriums and the basic reproduction

number discusses the infection-free and infection equilibriums

and the basic reproduction number. Section Equilibriums and

the basic reproduction number discusses the stability analysis

of the two equilibriums and analyzes the sensitivity of the basic

reproduction number. Section Numerical simulation gives an

account of the numerical simulations of equilibriums and the

Hopf bifurcation. Finally, Section Conclusion and discussion

comprises the conclusion and discussion.

Mathematical model

Therefore, based on our work (34), we proposed a fractional-

order differential equation model with time delay and logistic

proliferation as follows:







































dαx(t)
dt = ξα

+ rαx(t)
(

1−
x(t)+y(t)
Tα
max

)

− dαx(t)− bαx(t)v(t),
dαy(t)
dt = bαx(t)v(t)− aαy(t)− kα

1 y(t − τ )z(t − τ ),

dαv(t)
dt = kαy(t)− εαv(t)− kα

2 y(t − τ )z(t − τ ),
dαz(t)
dt = kα

3 y(t − τ )z(t − τ )− kα
4 z(t),

dαw(t)
dt = kα

5 + kα
6 y(t)z(t)− kα

7w(t).

(2)

where the variables x, y, v, z, and w represent the uninfected

cells, infected cells, viruses, CTL level, and ALT level,

respectively; ξ and r are the production rate and proliferation

rate of uninfected cells, respectively; Tmax is the maximum

hepatocyte count in the liver; d is the death rate of uninfected
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cells; b is the infection rate of uninfected cells to become infected

cells; a is the death rate of infected cells; k1 represents the

cure rate of infected cells by CTL; k and ε are the production

rate and death rate of free viruses, respectively; k2 represents

the clearance rate of free viruses by CTL; k3 and k4 are the

production rate and death rate of CTL, respectively; k5 is the

natural production rate of ALT; k6 is the production rate of ALT

from infected cells; k7 is the death rate; τ is time delay with the

order of α(0 < α ≤ 1); and dαx(t)
dt ,

dαy(t)
dt , dαv(t)

dt , dαz(t)
dt , and

dαw(t)
dt denote the Caputo fractional derivatives. Hence, d

αx(t)
dt is

defined as follows:

dαxi
dt

= In−α dnx

dtn
=

1

Ŵ(n− α)

∫ t

0
(t − s)(n−α−1)x(n)(s)ds (3)

where n−1 < α < n, n ∈ N andŴ(�) is the gamma function.

When 0 < α < 1,

dαx

dt
=

1

Ŵ(1− α)

∫ t

0

x′(s)

(t − s)α
ds (4)

Based on the aforementioned model, the equilibriums and

stability analysis are discussed in Section Equilibriums and the

basic reproduction number.

Equilibriums and the basic
reproduction number

In the following paragraphs, the equilibriums and the basic

reproduction number are discussed.

Equilibriums

The method to compute the equilibrium is to set dαx(t)
dt = 0,

dαy(t)
dt = 0, d

αv(t)
dt = 0, d

αz(t)
dt = 0, and dαw(t)

dt = 0. Hence, we

get the following equations:































ξα
− dαx(t) + rαx(t)

(

1−
x(t)+y(t)
Tα
max

)

− bαx(t)v(t) = 0,

bαx(t)v(t)− aαy(t)− kα1 y(t − τ )z(t − τ ) = 0,

kαy(t)− εαv(t)− kα2 y(t − τ )z(t − τ ) = 0,

kα3 y(t − τ )z(t − τ )− kα4 z(t) = 0,

kα5 + kα6 y(t)z(t)− kα7w(t) = 0.

(5)

The infection-free equilibrium E0 denotes x 6= 0,w 6= 0, y =

v = z = 0; thus, the infection-free equilibrium is as follows:

E0 =
(

x0, y0, v0, z0,w0
)

=

(

Tα
max

2rα

[

−(dα
− rα)+

√

(dα − rα)2 +
4ξαrα

Tα
max

]

, 0, 0, 0,
kα5
kα7

)

Similarly, the infection equilibrium E1, which denotes x 6=

0, y 6= 0, v 6= 0, z 6= 0,w 6= 0, was computed by the

following equations:































ξα
− dαx∗ + rαx∗

(

1−
x∗+y∗

Tα
max

)

− bαxv=0,

bαx∗v∗ − aαy∗ − kα1 y
∗z∗=0,

kαy∗ − εαv∗ − kα2 y
∗z∗=0,

kα3 y
∗z∗ − kα4 z

∗=0,

kα5 + kα6 y
∗z∗ − kα7w

∗=0.

(6)

The previous equations were solved, and the infection

equilibrium was obtained as follows:

x∗ = −
B
3A +

3

√

−
q
2 +

√

q2

4 +
p3

27 +

3

√

−
q
2 −

√

q2

4 +
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27 , y
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=
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4
kα
3
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aαkα
2 k

α
4+kαkα

1 k
α
4
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2 k

α
3 x

∗+εαkα
1 k

α
3
, z∗ =
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kα
2
−

εα(aαkα
2−kαkα

1 )

kα
2 (b

αkα
2 x

∗+εαkα
1 )
,w∗

=
kα
5
kα
7
+

kαkα
4 k

α
6
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2 k

α
3 k

α
7
−

εαkα
4 k

α
6 (a

αkα
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2 k
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3 k

α
7 (b
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.

where

A =
bαrαkα

2
Tα
max

,B = −

[

bαkα
2 (r

α
− dα

−
rαkα

4
Tα
maxk

α
3
)−

εαrαkα
1

Tα
max

]

,

C = −

[

bαξαkα
2 + εαkα

1 (r
α
− dα

−
rαkα

4
Tα
maxk

α
3
)−

bαkα
4 (a

αkα
2+kαkα

1 )

kα
3

]

,

D = −εαξαkα
1 , p =

3AC−B2

3A2 , q =
27A2D−9ABC+2B3

27A3 .

Thus, the infection equilibrium is as follows:

E1 = (x∗, y∗, v∗, z∗,w∗)

=

(

x∗,
kα
4
kα
3
,

aαkα
2 k

α
4+kαkα

1 k
α
4

bαkα
2 k

α
3 x

∗+εαkα
1 k

α
3
, k

α

kα
2
−

εα(aαkα
2−kαkα

1 )

kα
2 (b

αkα
2 x

∗+εαkα
1 )
,
kα
5
kα
7

+
kαkα

4 k
α
6

kα
2 k

α
3 k

α
7
−

εαkα
4 k

α
6 (a

αkα
2−kαkα

1 )

kα
2 k

α
3 k

α
7 (b

αkα
2 x

∗+εαkα
1 )

)

Basic reproduction number

The basic reproduction number can be calculated by the

method of integral operator spectral radius given as follows:

R0 = ρ(FV−1)

Thus, the basic reproduction number of E0 is as follows:

R0 =
bαkαx0
aαεα

,

where

F =

[

bαv 0 bαx

0 kαy 0

]

,V =

[

0 aα
+ kα1 ze

−λτ 0

0 kα2 ze
−λτ εα

]

.

Similarly, the basic reproduction number of E1 is as follows:

R1 =
bαkαx∗

εα
(

aα +
kαkα

1
kα
2

−
εαkα

1 (a
αkα

2−kαkα
1 )

kα
2 (b

αkα
2 x

∗+εαkα
1 )

)
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Stability and sensitivity analyses

The local asymptotic stability of E0 and E1 is discussed in this part.

First, the Jacobi matrix was computed as follows:

Jac =





















−dα
+ rα −

2rαx+y
Tα
max

−
rαx
Tα
max

−bαx 0 0

bαv −aα
− kα1 ze

−Sατ bαx −kα1 ye
−Sατ 0

0 kα − kα2 ze
−Sατ

−εα
−kα2 ye

−Sατ 0

0 kα3 ze
−Sατ 0 kα3 ye

−Sατ
− kα4 0

0 kα6 z 0 kα6 y −kα7





















(7)

Based on the previous Jacobi matrix, we got the characteristic determinant:

∣

∣SαI − Jac
∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sα + dα
− rα +

2rαx+y
Tα
max

rαx
Tα
max

bαx 0 0

−bαv Sα + aα
+ kα1 ze

−Sατ
−bαx kα1 ye

−Sατ 0

0 −kα + kα2 ze
−Sατ Sα + εα kα2 ye

−Sατ 0

0 −kα3 ze
−Sατ 0 Sα + kα4 − kα3 ye

−Sατ 0

0 −kα6 z 0 −kα6 y Sα + kα7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Let Sα = λ , then the simplified characteristic determinant is as follows:

|λI − Jac| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ + dα
− rα +

2rαx+y
Tmax

rαx
Tmax

bαx 0 0

−bαv λ + aα
+ kα1 ze

−λτ
−bαx kα1 ye

−λτ 0

0 −kα + kα2 ze
−λτ λ + εα kα2 ye

−λτ 0

0 −kα3 ze
−λτ 0 λ + kα4 − kα3 ye

−λτ 0

0 −kα6 z 0 −kα6 y λ + kα7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Local asymptotic stability of the infection-free equilibrium

The characteristic determinant at the infection-free equilibrium (E0) is as follows:

|λI − Jac| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ + dα
− rα +

2rαx0
Tα
max

rαx0
Tα
max

bαx 0 0

0 λ + aα
−bαx0 0 0

0 −kα λ + εα 0 0

0 0 0 λ + kα4 0

0 0 0 0 λ + kα7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (λ + dα
− rα +

2rαx0
Tα
max

)(λ + kα4 )(λ + kα7 )
[

(λ + aα)(λ + εα)

− bαkαx0
]

When |λI − Jac| = 0, the eigenvalues are λ1 = −dα
+ rα −

2rαx0
Tα
max

, λ2 = kα4 , λ3 = kα7 , λ4 =
−(aα

+εα)+

√

(aα+εα)2−4(aαεα−bαkαx0)
2 ,

and λ5 =
−(aα

+εα)−

√

(aα+εα)2−4(aαεα−bαkαx0)
2 .

Since d > r and R0 =
bαkαx0
aαεα < 1, we have λ1,2,3,4,5 < 0. Thus,

∣

∣arg(S1,2,3,4,5)
∣

∣ > απ
2 .

Thus, we get the conclusion that when R0 =
bαkαx0
aαεα < 1, E0 is locally asymptotically stable.
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Local asymptotic stability of the infection equilibrium

The characteristic determinant at the infection equilibrium (E1) is as follows:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ + dα
− rα +

2rαx+y
Tα
max

rαx
Tα
max

bαx 0 0

−bαv λ + aα
+ kα1 ze

−λτ
−bαx kα1 ye

−λτ 0

0 −kα + kα2 ze
−λτ λ + εα kα2 ye

−λτ 0

0 −kα3 ze
−λτ 0 λ + kα4 − kα3 ye

−λτ 0

0 −kα6 z 0 −kα6 y λ + kα7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

λ + kα7
)



































(λ + A0)









(

λ2 + (aα
+ εα)λ + aαεα

+ kα1 zλe
−λτ

+ εαkα1 ze
−λτ

) (

λ + kα4 − kα3 ye
−λτ

)

+bαx
(

−kα + kα2 ze
−λτ

) (

λ + kα4 − kα3 ye
−λτ

)

+ kα1 k
α
3 yz

(

λ + εα
)

e−2λτ

+bαkα2 xye
−λτ









+bαv

[

rαx
Tα
max

(

λ + εα
)

(

λ + kα4 − kα3 ye
−λτ

)

− bαx

(
(

λ + kα4 − kα3 ye
−λτ

) (

kα2 ze
−λτ

− kα
)

+kα2 k
α
3 yze

−2λτ

)]



































where A0 = dα
− rα +

2rαx+y
Tα
max

.

For convenience, we made the following simplifications:

(

λ2 + (aα
+ εα)λ + aαεα

+ kα1 zλe
−λτ

+ εαkα1 ze
−λτ

) (

λ + kα4 − kα3 ye
−λτ

)

= λ3 + A1λ
2
+ A2λ + A3 + A4λ

2e−λτ
+ A5λe−λτ

+ A6e−λτ
+ A7λe−2λτ

+ A8e−2λτ

where

A1 = aα
+ εα

+ kα4 ,A2 = aαεα
+ (aα

+ εα)kα4 ,A3 = aαεαkα4 ,A4 = (kα1 z − kα3 y),

A5 = εαkα1 z + kα1 k
α
4 z − (aα

+ εα)kα3 y,A6 = εαkα1 k
α
4 z − aαεαkα3 y,A7 = −kα1 k

α
3 yz,

A8 = −εαkα1 k
α
3 yz.

bαx
(

λ + kα4 − kα3 ye
−λτ

) (

−kα + kα2 ze
−λτ

)

+ kα1 k
α
3 yz(λ + ε)αe−2λτ

+ bαkα2 xye
−λτ

= A9λ + A10 + A11λe
−λτ

+ A12e
−λτ

+ A13λe
−2λτ

+ A14e
−2λτ

where

A9 = −bαkαx,A10 = −bαkαkα4 x,A11 = bαkα2 xz,A12 = bαkαkα3 xy+ bαkα2 k
α
4 xz + bαkα2 xy,

A13 = kα1 k
α
3 yz,A14 = εαkα1 k

α
3 yz − bkα2 k

α
3 xyz

bαv

[

rαx
Tα
max

(

λ + εα
)

(

λ + kα4 − kα3 ye
−λτ

)

− bαx

(
(

λ + kα4 − kα3 ye
−λτ

) (

kα2 ze
−λτ

− kα
)

+kα2 k
α
3 yze

−2λτ

)]

= A15λ
2
+ A16λ + A17 + A18λe−λτ

+ A19e−λτ
+ A20e−2λτ

where

A15 =
bαrαxv

Tα
max

,A16 = bαv(
rαkα4 x

Tα
max

+
εαrαx

Tmax
+ bαkαx),A17 = bαv(

εαrαkα4 x

Tα
max

+ bαkαkα4 x),

A18 = −bαv(
rαkα

3 xy
Tα
max

+ bαkα2 xz),A19 = −bαv(
εαrαkα

3 xy
Tα
max

+ bαkα2 k
α
4 xz + bαkαkα3 xy),

A20 = −b2αxv(kα2 k
α
3 yz − kα2 k

α
3 yz).
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Thus, the characteristic determinant becomes as follows:

(

λ + k7
)











(λ + A0)

[

λ3 + A1λ
2
+ A2λ + A3 + A4λ

2e−λτ
+ A5λe−λτ

+ A6e−λτ
+ A7λe−2λτ

+A8e
−2λτ

+ A9λ + A10 + A11λe
−λτ

+ A12e
−λτ

+ A13λe
−2λτ

+ A14e
−2λτ

]

+A15λ
2
+ A16λ + A17 + A18λe−λτ

+ A19e−λτ
+ A20e−2λτ











=
(

λ + kα7
)

{[

λ4 + B1λ3 + B2λ2 + B3λ + B4 + B5λ3e−λτ
+ B6λ2e−λτ

+ B7λe−λτ
+ B8e−λτ

+B9λ2e−2λτ
+ B10λe−2λτ

+ B11e−2λτ

]}

where

B1 = A1 + A0,B2 = A2 + A9 + A0A1 + A15,B3 = A3 + A10 + A0A2 + A0A9 + A16,

B4 = A0A3 + A0A10 + A17,B5 = A4,B6 = A5 + A11 + A0A4,B7 = A6 + A12 + A0A5 + A0A11 + A18,

B8 = A0A6 + A0A12 + A19,B9 = A7 + A13,B10 = A8 + A14 + A0A7 + A0A13,B11 = A0A8 + A0A14 + A20.

For further simplification, we derived the following assignment:

C1 = B1+k7,C2 = B2 + k7B1,C3 = B3 + k7B2,C4 = B4 + k7B3,C5 = k7,C6 = B5,C7 = B6 + k7B5,

C8 = B7 + k7B6,C9 = B8 + k7B7,C10 = k7B8,C11 = B9,C12 = B10 + k7B9,C13 = B11 + k7B10,C14 = k7B11.

The characteristic determinant is as follows:

H(λ; τ )=λ5 + C1λ4 + C2λ3 + C3λ2 + C4λ + C5 + (C6λ4 + C7λ3 + C8λ2 + C9λ + C10)e−λτ

+(C11λ
3
+ C12λ

2
+ C13λ + C14)e

−2λτ=0
(8)

When τ = 0, the previous equation becomes as follows:

λ5 + D1λ
4
+ D2λ

3
+ D3λ

2
+ D4λ + D5 = 0 (9)

where

D1 = C1 + C6,D2 = C2 + C7 + C11,D3 = C3 + C8 + C12,D4 = C4 + C9 + C13,D5 = C5 + C10 + C14.

Based on equation (9), we get the following lemma by applying the Routh–Hurwitz criterion.

Lemma If equation (9) satisfies 11 ≡ D1 > 0, 12 ≡

∣

∣

∣

∣

∣

D1 1

D3 D2

∣

∣

∣

∣

∣

> 0, and 13 ≡

∣

∣

∣

∣

∣

∣

∣

D1 1 0

D3 D2 D1

D5 D4 D3

∣

∣

∣

∣

∣

∣

∣

> 0, E1 is locally asymptotically stable

when τ = 0.

Proof. The detailed proof can be referred to Peter et al. (26), Ogunrinde et al. (27).

The aforementioned lemma indicated that when τ = 0, all roots of H(λ; τ ) are to the left of the imaginary axis, and some roots

may cross to the right from the imaginary axis as τ increases. Thus, E1 is unstable because of its positive real parts.

Then, the stability of system (2) was investigated when τ > 0.

Both sides of equation (8) were multiplied by eλτ :

(C6λ
4
+ C7λ

3
+ C8λ

2
+ C9λ + C10)+ (λ5 + C1λ

4
+ C2λ

3
+ C3λ

2
+ C4λ + C5)e

λτ

+(C11λ3 + C12λ2 + C13λ + C14)e−λτ=0
(10)

Suppose the aforementioned equation has a purely imaginary root λ = iω (ω > 0), then we have eiω = cosω + i sinω, e−iω
=

cosω − i sinω . Substituting λ = iω into equation (10), we have

C6λ
4
+ C7λ

3
+ C8λ

2
+ C9λ + C10 = C6ω

4
− C7ω

3i− C8ω
2
+ C9ωi+ C10 (11)
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(λ5 + C1λ4 + C2λ3 + C3λ2 + C4λ + C5)eλτ
= (C1ω4

− C3ω2
+ C5) cosωτ + (ω5

−

C2ω
3
+ C4ω) cosωτ i+ (−ω5

+ C2ω
3
− C4ω) sinωτ + (C1ω

4
− C3ω

2
+ C5) sinωτ i

(12)

(C11λ
3
+ C12λ

2
+ C13λ + C14)e

−λτ
= (−C12ω

2
+ C14) cosωτ + (−C11ω

3
+ C13ω)

× cosωτ i+ (−C11ω3
+ C13ω) sinωτ + (C12ω2

− C14) sinωτ i
(13)

Therefore, equation (10) becomes as follows:

(C1ω
4
− C3ω

2
− C12ω

2
+ C5 + C14) cosωτ + (ω5

− C2ω
3
− C11ω

3
+ C4ω + C13ω) cosωτ i

+(−ω5
+ C2ω

3
− C11ω

3
− C4ω + C13ω) sinωτ + (C1ω

4
− C3ω

2
+ C12ω

2
+ C5 − C14) sinωτ i

+C6ω4
− C7ω3i− C8ω2

+ C9ωi+ C10 = 0

For convenience, we assumed the following:

a1 = C1ω4
− C3ω2

− C12ω2
+ C5 + C14, a2 = ω5

− C2ω3
− C11ω3

+ C4ω + C13ω,

a3 = −ω5
+ C2ω

3
− C11ω

3
− C4ω + C13ω, a4 = C1ω

4
− C3ω

2
+ C12ω

2
+ C5 − C14.

Thus, we get

a1 cosωτ + a2 cosωτ i+ a3 sinωτ + a4 sinωτ i+ C6ω
4
− C7ω

3i− C8ω
2

+C9ωi+ C10 = 0
(14)

The real part after separating the real and imaginary parts is as follows:

a1 cosωτ + a3 sinωτ = −C6ω
4
+ C8ω

2
− C10 = D1 (15)

and the imaginary part is as follows:

a2 cosωτ + a4 sinωτ = C7ω
3
− C9ω = D2 (16)

It follows from the real part and imaginary part that

cosωτ =
a4D1 − a3D2

a1a4 − a2a3
; sinωτ =

a1D2 − a2D1

a1a4 − a2a3
(17)

Suppose equation (10) has ñ(1 ≤ ñ ≤ 5) positive real roots, denoted by xn(1 ≤ n ≤ ñ).

Let
√
xn = ω , we get

cos(
√
xnτ ) = Qn

=
(C1ω

4
−C3ω

2
+C12ω

2
+C5−C14)(−C6ω

4
+C8ω

2
−C10)−(−ω5

+C2ω
3
−C11ω

3
−C4ω+C13ω)(C7ω

3
−C9ω)

(C1ω
4−C3ω

2−C12ω
2+C5+C14)(C1ω

4−C3ω
2+C12ω

2+C5−C14)−(ω5−C2ω
3−C11ω

3+C4ω+C13ω)(−ω5+C2ω
3−C11ω

3−C4ω+C13ω)

sin(
√
xnτ ) = Pn

=
(C1ω

4
−C3ω

2
−C12ω

2
+C5+C14)(C7ω

3
−C9ω)−(ω5

−C2ω
3
−C11ω

3
+C4ω+C13ω)(−C6ω

4
+C8ω

2
−C10)

(C1ω
4−C3ω

2−C12ω
2+C5+C14)(C1ω

4−C3ω
2+C12ω

2+C5−C14)−(ω5−C2ω
3−C11ω

3+C4ω+C13ω)(−ω5+C2ω
3−C11ω

3−C4ω+C13ω)

Let

τ
(j)
n =







1
√
xn

[

arccos(Qn)+ 2jπ
]

, if Pn ≥ 0

1
√
xn

[

2π − arccos(Qn)+ 2jπ
]

, if Pn < 0

Here, the positive integer n satisfies 1 ≤ n ≤ ñ, j = 0, 1, 2, ...
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Thus, from the aforementioned equation, we know that the characteristic equation has a pair of purely imaginary roots ±i
√
xn.

We define λ
(j)
n (τ ) = α

(j)
n (τ ) + iω

(j)
n (τ ) as the root of equation (10) near τ

(j)
n for every 1 ≤ n ≤ ñ and j, satisfying α

(j)
n (τ

(j)
n ) = 0 and

ω
(j)
n (τ

(j)
n ) =

√
xn. In summary, we arrived at the following theorem:

Theorem 1When τ ∈ [0, τ
(0)
n0 ) and there are positive real roots in equation (10), infection equilibrium E1 is locally asymptotically

stable, where

τ
(0)
n0 = min

{

τ
(j)
n

∣

∣

∣
1 ≤ n ≤ ñ, j = 0, 1, 2, ...

}

.

Proof.When τ ∈ [0, τ
(0)
n0 ) and equation (10) have no positive real roots, where τ

(0)
n0 = min

{

τ
(j)
n

∣

∣

∣
1 ≤ n ≤ ñ, j = 0, 1, 2, ...

}

, all the

roots have strictly negative real parts. Thus, E1 is locally asymptotically stable for τ ∈ [0, τ
(0)
n0 ).

Sensitivity of the basic reproduction number

In this part, the sensitivity index of the basic reproduction number is explored in order to find out the most sensitive parameter that

can significantly affect the basic reproduction number and give proper treatment strategies (3).

The sensitivity index can be computed by using the following equation:

KR0
q =

∂R0
∂q

×
q

R0
(18)

The basic reproduction number of E0 is as follows:

R0 =
bαkαx0
aαεα

,where x0 =
Tα
max

2rα

[

−(dα
− rα)+

√

(dα − rα)2 +
4ξαrα

Tα
max

]

.

The results of sensitivity indexes (Table 1) demonstrated that the infection rate of uninfected cells to become infected cells (b),

production rate of free viruses (k), maximum hepatocyte counts in the liver (Tmax), and production rate of uninfected cells (ξ ) have the

highest positive index. Therefore, decreasing the infection rate, the production rate of free viruses, and the production rate of uninfected

cells can help treat patients with hepatitis B. On the contrary, the death rate of infected cells (a), the death rate of free viruses (ε ), and

the death rate of uninfected cells (d) have the highest negative index. This also suggests that increasing the death rate of infected cells,

the death rate of free viruses, and the death rate of uninfected cells can also keep R0 < 1 and help the treatment of patients with

hepatitis B.

Numerical simulation

In this section, a simulation is carried out to prove the accuracy of the aforementioned theoretical analysis.

Algorithm

Before the simulation, first, we provide the algorithm to solve the fractional-order differential equation (35, 36):















































































x(tk) =
[

ξα
− dαx(tk−1)+ rαx(tk−1)

(

1−
x(tk−1)+y(tk−1)

Tα
max

)

− bαx(tk−1)v(tk−1)
]

hq1 −
k
∑

j=v
c
(q1)
j x(tk−j),

y(tk) =
[

bαx(tk−1)v(tk−1)− ay(tk−1)− kα1 y(tk−m−1)z(tk−m−1)
]

hq1 −
k
∑

j=v
c
(q1)
j y(tk−j),

v(tk) =
[

kαy(tk−1)− εαv(tk−1)− kα2 y(tk−m−1)z(tk−m−1)
]

hq1 −
k
∑

j=v
c
(q1)
j v(tk−j),

z(tk) =
[

kα3 y(tk−m−1)z(tk−m−1)− kα4 z(tk−1)
]

hq1 −
k
∑

j=v
c
(q1)
j z(tk−j),

w(tk) =
[

kα5 + kα6 y(tk−1)z(tk−1)− kα7w(tk−1)
]

hq1 −
k
∑

j=v
c
(q1)
j w(tk−j),

(19)
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TABLE 1 Sensitivity indexes of R0 to model parameters.

Parameter Sensitivity index

b 0.9000

k 0.9000

a −0.8100

ε −0.8100

Tmax 0.9298

d −0.8951

r −0.4518

ξ 0.8716

TABLE 2 Description of parameters and values when R0 < 1.

Parameter Description Value Source

ξ Production rate of uninfected cells 4.6664 (37)

d Death rate of uninfected cells 2.1897 Estimated

r Proliferation rate of uninfected

cells

0.0924 Estimated

Tmax Maximum hepatocyte counts in the

liver

4.2843 Estimated

b Infection rate of uninfected cells to

become infected cells

1.4042 Estimated

a Death rate of infected cells 3.8707 Estimated

k1 Cure rate of infected cells by CTL 1.8838 (37)

k Production rate of free viruses 1.3655 (37)

ε Death rate of free viruses 1.48663 Estimated

k2 Clearance rate of free viruses by

CTL

1.2661 Estimated

k3 Production rate of CTL 3.8549 (37)

k4 Death rate of CTL 1.1395 Estimated

k5 Natural production rate of ALT 1.8789 (37)

k6 Production rate of ALT from

infected cells

0.12002 Estimated

k7 Death rate of ALT 1.2557 Estimated

where Tsim is time length, k = 1, 2, 3, ...,N, N = [Tsim/h],

m = [τ/h], and x(0) = x0, v(0) = v0,w(0) = w0, y(t) =

y0, z(t) = z0, t ∈ [−τ , 0] are the initial conditions. c
(q)
0 =

1, c
(q)
j =

(

1−
1+q
j

)

c
(q)
j−1.

Simulation of asymptotically stable
infection-free equilibrium

First, we simulate the case of infection-free. The parameters

are shown in Table 2.

The time length is 400, and the initial conditions are x(0) =

1, v(0) = 1, w(0) = 1, y(t) = 1, z(t) = 1, t ∈ [−τ , 0]. The

order α = 0.9 and the time delay τ = 0.7. Therefore, we have

E0 =
(

x0, y0, v0, z0,w0
)

= (2.0289, 0, 0, 0, 1.4372), and the

basic reproduction number R0 = 0.7546.

The behaviors of the uninfected cells (x), infected cells

(y), free viruses (v), CTLs (z), and ALT (w) are shown in

Figure 1. In Figure 1, all individuals converge to the infection-

free equilibrium E0, and the basic reproduction number R0
is 0.7546, which is smaller than 1. This coincides with our

theoretical analysis, which showed that when R0 < 1, the

infection-free equilibrium E0 is asymptotically stable.

Simulation of asymptotically stable
infection equilibrium

The theoretical analysis of the infection equilibrium is

verified in this section. Similarly, the parameters are shown in

Table 3.

The initial conditions are the same as in the previous

section. The time length is 400. The order α = 0.9,

and the time delay τ = 1.2. Therefore, the infection

equilibrium is as follows: E1 =
(

x1, y1, v1, z1,w1
)

=

(1.2762, 0.3341, 0.5338, 1.0787, 1.4802), and the basic

reproduction number is R1 = 2.0132.

Figure 2 is the behavior of the uninfected cells (x), infected

cells (y), free viruses (v), CTLs (z), and ALT (w) with R1 > 1

and τ = 1.2. From Figure 2, we know that although all the

individuals oscillate at the beginning, they converge to infection

equilibrium E1shortly. Figure 3 shows the phase portraits of

the uninfected cell–infected cell–free virus space; the arrow

indicates the direction of convergence of the phase portraits, and

it converges to the infection equilibrium E1 (red dot).

Simulation of the Hopf bifurcation of the
infection equilibrium

In this subsection, the Hopf bifurcation of the infection

equilibrium is simulated. All parameters are the same as

those in Section Simulation of asymptotically stable infection

equilibrium, except τ = 3.2.

Figure 4 shows that when τ = 3.2, the uninfected cells (x),

infected cells (y), free viruses (v), CTLs (z), and ALT (w) oscillate

periodically around the infection equilibrium E1. Figure 5 shows

the phase portraits of the uninfected cell–infected cell–free

virus space, and when τ = 3.2, the phase portraits are a

stable limit cycle which is around the infection equilibrium E1.

The bifurcation diagram (Figure 6) shows that the stability of

infection equilibrium E1 changes at τ = 1.2.
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FIGURE 1

Dynamic change trend of uninfected cells (x), infected cells (y), free viruses (v), CTLs (z), and ALT (w) with R0 < 1 and τ = 0.7.

TABLE 3 Description of parameters and values when R1 > 1.

Parameter Description Value Source

ξ Production rate of uninfected cells 4.6664 (37)

d Death rate of uninfected cells 2.1897 Estimated

r Proliferation rate of uninfected cells 0.0924 Estimated

Tmax Maximum hepatocyte counts in the liver 4.2843 Estimated

b Infection rate of uninfected cells to become infected cells 2.4042 Estimated

a Death rate of infected cells 2.8707 Estimated

k1 Cure rate of infected cells by CTL 1.8838 (37)

k Production rate of free viruses 2.3655 (37)

ε Death rate of free viruses 0.48663 (37)

k2 Clearance rate of free viruses by CTL 1.2661 Estimated

k3 Production rate of CTL 3.8549 (37)

k4 Death rate of CTL 1.1395 Estimated

k5 Natural production rate of ALT 1.8789 (37)

k6 Production rate of ALT from infected cells 0.12002 Estimated

k7 Death rate of ALT 1.2557 Estimated

Simulation of phase portraits with
di�erent orders

In this section, the phase portraits with different orders

are studied by using the method of numerical simulation.

The initial order is α = 0.75, and with step of 0.05,

the order increases to 0.99. The phase portraits also used

the uninfected cell–infected cell–free virus space. As shown

in Figure 7, when τ = 1.2 and the order (α ) increases

from 0.75 to 0.99, the volume of the phase portraits becomes
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FIGURE 2

Dynamic change trend of uninfected cells (x), infected cells (y), free viruses (v), CTLs (z), ALT (w), and phase portraits of the xyz-space with

R1 > 1 and τ = 1.2.

FIGURE 3

Phase portraits of the xyz-space with R1 > 1 and τ = 1.2.

bigger and the phase portraits become more complicated.

Furthermore, the numerical simulations indicated that when the

order increases from 0.75 to 0.95, the uninfected cell–infected

cell–free virus space converges to the infection equilibrium

E1. However, when α = 0.99, the phase portrait is a stable

limit cycle, which is around the infection equilibrium E1. This

indicated that the order can significantly affect the stability of

the system.

Conclusion and discussion

In this study, a fractional differential model of HBV infection

with time delay and logistic proliferation was proposed in

order to better understand the infection mechanism and realize

the infection progression. First, the infection-free equilibrium,

infection equilibrium, and the basic reproduction number

were computed. In epidemiology, R0 is considered the most

important parameter, which provides an insight into how the

disease spreads and helps us understand how to control the

disease. Therefore, we proved that if the basic reproduction

number R0 =
bαkαx0
aαεα < 1, the infection-free equilibrium

(E0) is locally asymptotically stable, which indicated that if

the basic reproduction number R0 < 1 can be controlled

in patients, hepatitis B will disappear. Similarly, the stability

analysis of the infection-free equilibrium (E1) was discussed.

In addition, the Hopf bifurcation of the infection equilibrium

was studied at the theoretical level. Furthermore, sensitivity was

analyzed to screen out the parameters that can significantly

affect the basic reproduction number in our model. The results

indicated that decreasing the infection rate (b), production rate

of free viruses (k) and production rate of uninfected cells (ξ )

can significantly decrease the basic reproduction number (R0).

Similarly, increasing the death rate of infected cells (a), the

Frontiers in PublicHealth 11 frontiersin.org

32

https://doi.org/10.3389/fpubh.2022.1036901
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sun et al. 10.3389/fpubh.2022.1036901

FIGURE 4

Dynamic change trend of uninfected cells (x), infected cells (y), free viruses (v), CTLs (z), ALT (w), and phase portraits of the xyz-space with

τ = 3.2.

FIGURE 5

Phase portraits of the xyz-space with τ = 3.2.

death rate of free viruses (ε ) and he death rate of uninfected

cells (d) can also decrease the basic reproduction number (R0).

Therefore, in order to keep R0 < 1, the patient can decrease

parameters b, k, and ξ or increase a, ε , and d to achieve the

purpose of treatment.

In order to verify the accuracy of the aforementioned

theoretical analysis, the numerical simulations were carried out.

The simulation results showed that when R0 < 1 and τ < 1.2,

FIGURE 6

One parameter bifurcation diagram with respect to τ .

the infection-free equilibrium E0 is asymptotically stable, which

indicates that the disease will disappear. When R1 > 1 and τ <

1.2, the infection equilibrium E1 is asymptotically stable, which

indicates that the disease could be mitigated and will lead to a

lower infectious class over a period. However, with the increase

in τ , the uninfected cells, infected cells, free viruses, CTL

levels, and ALT levels oscillate periodically around the infection
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FIGURE 7

Phase portraits of the xyz-space with τ = 1.2 and α = 0.75, α = 0.80, α = 0.85, α = 0.90, and α = 0.99.

equilibrium E1, and the phase portrait is a stable limit cycle,

which around the infection equilibrium E1 indicate that the

disease would be out of control. Furthermore, the simulations

also indicated that the order can significantly affect the stability

of the system. For example, if the order is in the range of 0.75–

0.95, the phase portraits converge to the infection equilibrium

E1, and when α = 0.99, the phase portrait is a stable limit cycle.

Therefore, time delay and fractional order are necessary

factors that should be considered in modeling HBV infection

and for researching dynamic characteristics. Although the

process of HBV infection is more complicated than is

established in this study, we believe that the model and

analysis can play an important role in improving the HBV

treatment regimen.
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Background: The monkeypox outbreak in non-endemic countries in recent

months has led theWorldHealthOrganization (WHO) to declare a public health

emergency of international concern (PHEIC). It is thought that festivals, parties,

and other gatherings may have contributed to the outbreak.

Methods: We considered a hypothetical metropolitan city and modeled the

transmission of the monkeypox virus in humans in a high-risk group (HRG)

and a low-risk group (LRG) using a Susceptible-Exposed-Infectious-Recovered

(SEIR) model and incorporated gathering events. Model simulations assessed

how the vaccination strategies combined with other public health measures

can contribute to mitigating or halting outbreaks from mass gathering events.

Results: The risk of a monkeypox outbreak was high when mass gathering

events occurred in the absence of public health control measures. However,

the outbreaks were controlled by isolating cases and vaccinating their

close contacts. Furthermore, contact tracing, vaccinating, and isolating

close contacts, if they can be implemented, were more e�ective for the

containment of monkeypox transmission during summer gatherings than

a broad vaccination campaign among HRG, when accounting for the low

vaccination coverage in the overall population, and the time needed for the

development of the immune responses. Reducing the number of attendees

and e�ective contacts during the gathering could also prevent a burgeoning

outbreak, as could restricting attendance through vaccination requirements.

Conclusion: Monkeypox outbreaks following mass gatherings can be made

less likely with some restrictions on either the number and density of attendees

in the gathering or vaccination requirements. The ring vaccination strategy
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inoculating close contacts of confirmed cases may not be enough to prevent

potential outbreaks; however, mass gatherings can be rendered less risky if

that strategy is combined with public health measures, including identifying

and isolating cases and contact tracing. Compliance with the community and

promotion of awareness are also indispensable to containing the outbreak.

KEYWORDS

monkeypox, vaccination strategy, ring vaccination, gatherings, testing, modeling,

control

Introduction

Monkeypox, a zoonosis, has been recorded since early May

2022 in at least 30 non-endemic countries including Spain,

the United States, Germany, the United Kingdom, France, and

Canada (1). As of 21 July 2022, the cumulative number of

confirmed cases exceeded 15,000 globally (2). On 23 July 2022,

the World Health Organization (WHO) declared monkeypox

a Public Health Emergency of International Concern (PHEIC)

due to outbreaks in multiple countries and continents (3).

The Public Health Agency of Canada (PHAC) reported 1,410

cases of monkeypox as of 14 October 2022, mostly occurring

in Quebec, Ontario, and British Columbia (4). The unusual

outbreak emerged in non-endemic areas of the world associated

with transmission among gay, bisexual, and other men who

have sex with men (gbMSM) (5). Although at the time of

writing this paper, the epidemic was declining, there remains a

pressing need to understand the epidemic and potential control

methods (5–7).

Monkeypox virus, which is closely related to smallpox, is

an enveloped double-stranded DNA virus, with two clades, the

Central African clade and the West African clade (7, 8). The

former is more virulent with reported fatality rates in Africa

of 10% for the Central Africa clade and 3.6% for the West

African clade (7). The incubation period ranges from 5 to 21

days, after which infected individuals may initially have flu-

like symptoms, then, 1–3 days later, a characteristic skin rash

develops. The recovery period may take 2–4 weeks (8). In the

recent outbreak, there are atypical clinical observations. The

majority of the patients are gbMSMwho reported genital lesions

which subsequently develop into skin lesions on other body sites,

although with more limited distribution than reported in the

previous outbreaks (9).

In Canada, control is based on vaccines and non-

pharmaceutical interventions including recommendations for

testing and isolation of cases, and, where possible, tracing

of contacts (10). In June 2022, the National Advisory

Committee on Immunization (NACI) released a guideline on

using an orthopoxvirus (Imvamune R©) vaccine with potential

efficacy against monkeypox (11). The guideline recommends

pre-exposure prophylaxis (PrEP) vaccination for adults at high

risk of exposure (occupational or otherwise) and also post-

exposure prophylaxis (PEP).

After 2 years of restrictions on gatherings due to the control

and prevention of the COVID-19 pandemic, mass gatherings

related to festivals and ceremonies are now allowed with no

attendance limitations (12). In many Canadian provinces, local

festivals recorded attendance close to the pre-pandemic level

(12–15), which has led to concerns about the spread and possible

outbreaks of monkeypox. WHO also expressed concerns that

more infections could arise in Europe and elsewhere (16) due

to private and social gatherings during festivals, parties, and

holidays. In fact, in the United States, many cases were reported

linked to large social gatherings, such as pride events, pool

parties, and bathhouses (17, 18). Consequently, it is essential to

assess the effect of gathering events on monkeypox transmission

to inform public health on the most effective control measures.

Transmission risk at a gathering is mainly associated with

the gathering size (19) and is proportional to the population

density at the gathering place (20). Using an individual-based

model, Moritz et al. (21) showed that for a mass gathering

event (MGE) with 200,000 participants, there is a 23.6% increase

in positive cases attributed to MGE for the transmission of

COVID-19. Also, the effect of increased density of contacts

during Hajj was estimated to generate a 78-fold increase in

meningococcal infection that impacts not only pilgrims but also

the local population (22).

To investigate the dynamics of monkeypox and provide

information to public health for prevention and control,

especially at gatherings, we established a SEIR modeling

framework to assess the effect of the vaccination and other

control methods. The vaccination in a high-risk group and ring

vaccination strategy along with testing and isolation of cases

and contact tracing, as well as the possible interventions during

gathering events, are also considered. We mainly focused on

assessing the effectiveness of public health control measures,

including preventive vaccination or vaccination post-exposure,

to simulate the scenarios of gathering with different numbers of

attendees and different levels of interventions to inform public

health decision-making. Our findings suggested that reactive
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ring vaccination may itself not be enough; however, if close

contacts of cases can be identified, vaccinated, and isolated, an

outbreak after MGEs may be prevented.

Methods

Modeling overview

The vast majority of reported cases occurring in the recent

outbreaks in non-endemic areas have been linked to specific

high-risk locations and populations. Hence, to better capture the

infection dynamics within different risk settings, we considered

the population to be divided into two subgroups: a low-risk

population (LRG), which is defined as individuals who behave

in such a way that their possibility of becoming infected is

reduced, and a high-risk population (HRG), which is defined

as individuals whose behavior makes them at higher risk of

acquiring the infection. For simplicity, henceforth, we use

subscript 1 for the LRG and subscript 2 for the HRG. Those two

groups interact between and within groups as represented by a

contact matrix (cij, i, j = 1, 2), defined using the assumptions

in Yuan et al. (23). We assumed that there is no movement of

population between the risk groups unless there is a gathering

event such that a proportion of LRG people may become part of

the HRG.

The infection dynamic follows the SEIR framework, which is

extended to include the prodromal stage, vaccinated (partially,

fully), and quarantined (tested and confirmed, vaccinated, and

susceptible). Susceptible (S) individuals become infected, and

move to the exposed compartment (E), after encountering

an infectious individual from either LRG or HRG, assuming

that the latter group is with higher susceptibility than the

first group. After a latent period, the prodromal stage (P)

begins, and during this phase no symptoms are apparent, but

the individual can shed the virus (24). This period is then

followed by the symptomatic infectious stage (I) and then

recovery (R) occurs. Infectious individuals with symptoms may

be tested, then quarantined (Q), while their contacts, which

might be susceptible, exposed, or pre-symptomatic, can be

vaccinated and quarantined (Qs or Qv) to prevent any further

spread of the infection. Although the model does not include

demographics, we assumed that infection-related death might

occur among infectious individuals. Isolated individuals who

develop infection will remain isolated until recovery. Individuals

in both prodromal and symptomatic infectious stages can

transmit the infection; however, infections in the prodromal

phase are assumed to be less infectious than those in the

symptomatic phase. The population structure and flow diagram

of the disease are shown in Figure 1.

We included the current vaccination process in Canada

(11) to explore its effectiveness by assuming that only high-risk

people and close contacts of confirmed cases will be vaccinated.

We also examined the public health measures of testing and

isolating cases. Model assumptions, variables, and parameters

are summarized in Tables 1–5, and the model equations are

presented in Supplementary material S1.

Transmission

We used the assumptions of Yuan et al. (23) on the

transmission of the monkeypox virus. The probability of

transmission per contact was assumed to vary between 12.2 and

24.5% among the HRG and between 0.37 and 0.74%, among

LRG, as calculated from the basic reproduction number R0
derived from our simplified model without public health control

measures (see Supplementary material S2 for details) and all the

other parameters being fixed (Tables 3, 4).

Public health interventions

On 10 June 2022, NACI issued interim guidance on the

use of Imvamune R© in the context of monkeypox outbreaks in

Canada (11). Imvamune, initially developed for the prevention

of smallpox, is a two-dose vaccine with the second dose

administered 28 days after the first one. The immune response

is detectable by week 2 after the first dose and peaked at

week 6 after dose 2 in a randomized, open-label trial designed

to compare the effectiveness of Imvamune with the second-

generation replicating smallpox vaccine (11). Given the recent

emergence of cases and the use of vaccines, there are no available

data indicating the effectiveness of Imvamune vaccination

against monkeypox infection; however, studies of vaccine

effectiveness (VE) of smallpox vaccine may provide a general

estimation. In the context of PEP, the median effectiveness

in preventing smallpox disease with vaccination at 1–3 days

after exposure was estimated at 80% (30). There are a lot

of uncertainties about the effectiveness of Imvamune against

monkeypox infection, although some observational studies

suggested an efficacy of about 85% among fully vaccinated

individuals (11). Hence, in our model, we assumed that the

efficacy of the first and second doses ranges between 40 and 60%,

and 70 and 85%, respectively.

For simplification, given the extensive vaccine campaign

against smallpox until 1972, we assumed that all individuals born

before that year are fully vaccinated and therefore protected in

the model. We defined here that partially and fully vaccinated

represent the individuals who received one or two doses of

vaccine, respectively.

PEP with contact tracing (PEPCT)

Post-Exposure Prophylaxis with Contact Tracing (PEPCT)

in our model means that individuals (without symptoms) with
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FIGURE 1

Schematic diagram (A) and flow chart (B) of the MPX transmission among the population classified with low-risk group (LRG, i = 1) and high-risk

group (HRG, i = 2), considering the gathering event. In groups i: Susceptible (Si), Exposed (Ei), infectious, prodromal phase (Pi), infectious, acute

phase, with rash symptom (Ii), Recovered R; Quarantined (Q), Quarantined and vaccinated (Qv); Quarantined and Susceptible (Qsi); partially

vaccinated HRG individuals, V2, fully vaccinated HRG individuals V2, fully vaccinated LRG individuals (born before 1972), V1. The individuals in the

orange compartments are infectious, while those in dark green compartments are quarantined and hence not involved in the transmission. The

compartments of partially and fully vaccinated are presented with light and middle green colors respectively. The arrow with red color

represents the process of vaccinating the HRG individuals and the exposures from contact tracing, while the arrow with blue color represents

the testing and isolation of symptomatic infections. The dash lines show the transmission routes between the LRG and HRG. The description of

the parameters shown in the flow diagram can be found in Tables 3, 4.

Frontiers in PublicHealth 04 frontiersin.org

40

https://doi.org/10.3389/fpubh.2022.1026489
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yuan et al. 10.3389/fpubh.2022.1026489

TABLE 1 Model assumptions.

Model assumptions

Population

classification

• The human population is divided into two groups, low-risk

group (LRG, i= 1) and high-risk group (HRG, i= 2).

Demographic • Immigration, birth, and natural death of the population are

ignored. The mortality from infection is considered.

Monkeypox

transmission

• Infectious individuals in both prodromal phase (with lower

infectiousness ξ1 , assumed to be 75% of that during the rash

stage) and acute phase can transmit the virus.

• The tested positive, confirmed and isolated individuals and

the vaccinated and quarantined individuals are not involved

in the transmission.

• The susceptibility of LRG individuals is lower than that of

HRG individuals, with a scaling factor ξ2 (assumed to be

0.05).

• The contacts among LRG individuals mainly come from the

LRG individuals, with the proportion k1 (assumed to be 0.6)

of the contact rate baseline in the human population.

• The contact rate in the HRG is higher than that in the LRG,

by a factor k2 of the contact rate baseline (assumed to be

1.3).

• The contact between HRG individuals and LRG individuals

is low, accounting for (1− k1) of the contact rate baseline.

• The vertical transmission is ignored.

Testing and

isolation

• Individuals with rash symptoms will go to hospital seeking

medical help and then be tested, confirmed and isolated and

this process may take 1/ρ days.

• Proportion of confirmed infections (α) will comply with

the isolation strategy.

Vaccination • The two-dose vaccine considered is Imvamune R© , and a

second dose is offered 28 days after the first dose.

• Individuals receiving the first dose after 2 weeks when

the immune response is detectable, and the second

dose of Imvamune after 6 weeks when the immune

response peaked, are considered as partially vaccinated

and fully vaccinated, respectively. Given the vaccination

campaign against smallpox, individuals born before 1972

are considered to be fully vaccinated.

• Post-Exposure Prophylaxis with contact tracing (PEPCT):

Individuals (without symptom) with high-risk exposures to

a confirmed case of monkeypoxmay be vaccinated and then

quarantined.

• Pre-Exposure Prophylaxis in HRG (PrEPH): Susceptible

individuals in HRG may be vaccinated.

• The effectiveness of the first and second dose is assumed to

be ǫ1 and ǫ2 , respectively.

Gathering

event

• During the period of gathering event, the contact rate

between LRG and HRG and within HRG may increase κ1

and κ2 times, respectively.

• Some susceptible individuals in the LRG may transit to

the HRG.

exposure to any confirmed case of monkeypox may be traced,

vaccinated, and then quarantined. The effect of the vaccine in

PEPCT is not significant as the individuals with exposure will be

required to isolate and quarantine until fully recovered.

The proportion of PEPCT is represented by θi, (i = 1, 2),

which should be the product of the vaccination proportion of the

traced close contact and the proportion of contacts that could be

traced. Also, it takes time to trace and isolate which in fact can be

modeled by the parameter 1/η, the average time from exposure

to becoming vaccinated and isolated.

We denote by MI1 (t) and MI2 (t) the number of new daily

confirmed monkeypox cases in the LRG and HRG at time t,

respectively, and are defined as follows:

MI1 (t) = ρI1 (t)

MI2 (t) = ρI2 (t)

where 1/ρ is the average number of days infectious individuals

spend between showing rash symptoms and being tested

and confirmed.

Following Yuan et al. (23), the number of close contacts

of newly confirmed cases in the LRG, who are in the exposed

state ZE1(t) and the prodromal phase ZP1(t) at time t can be

calculated as

ZE1 (t) = [ξ2β

2
∑

i=1

c2iMI1 (t)
c11

c11 + c12

+β

2
∑

i=1

c2iMI2 (t)
c21

c21 + c22
]

τ

τ + δ
,

ZP1 (t) = [ξ2β

2
∑

i=1

c2iMI1 (t)
c11

c11 + c12

+β

2
∑

i=1

c2iMI2 (t)
c21

c21 + c22
]

δ

τ + δ
.

Similarly, we obtained the number of close contacts of newly

confirmed cases in the HRG, who are in the exposed state ZE2(t)

and the prodromal phase ZP2(t), as

ZE2 (t) = [ξ2β

2
∑

i=1

c2iMI1 (t)
c12

c11 + c12

+ β

2
∑

i=1

c2iMI2 (t)
c22

c21 + c22
]

τ

τ + δ
,

ZP2 (t) = [ξ2β

2
∑

i=1

c2iMI1 (t)
c12

c11 + c12

+ β

2
∑

i=1

c2iMI2 (t)
c22

c21 + c22
]

δ

τ + δ
.
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TABLE 2 Variables used in the modeling of monkeypox transmission and their assumed initial values.

Variables Description Initial value Ref.

Si(t) Number of susceptible individuals in group i at day t Assumed

Ei(t) Number of exposed individuals in group i at day t Assumed

Pi(t) Number of infectious individuals in the prodromal

phase in group i at day t

Assumed

Ii(t) Number of infectious individuals with rash symptoms

in the acute phase in group i at day t

Assumed

Q(t) Number of tested, confirmed and isolated symptomatic

individuals at day t

0 Assumed

R(t) Number of recovered individuals at day t 0 Assumed

V1(t) Number of fully vaccinated individuals in LRG at day t (1− pHRG)×38.4%×Np (25)

V2(t) Number of partially vaccinated individuals in HRG at

day t

0 Assumed

V2(t) Number of fully vaccinated individuals in HRG at day t pHRG×38.4%×Np (25)

Qv(t) Number of vaccinated and quarantined individuals

who has been exposed to the confirmed cases at day t

0 Assumed

QSi (t) Number of susceptible individuals in population i, i

=1,2 who has been exposed to the confirmed cases at

day t, and consequently vaccinated and isolated.

0 Assumed

Also, the number of close contacts of newly confirmed cases

that are susceptible in the LRG and HRG is

ZS1 (t) = (1− ξ2β)

2
∑

i=1

c2iMI1 (t)
c11

c11 + c12

+ (1− β)

2
∑

i=1

c2iMI2 (t)
c21

c21 + c22
,

ZS2 (t) = (1− ξ2β)

2
∑

i=1

c2iMI1 (t)
c12

c11 + c12

+ (1− β)

2
∑

i=1

c2iMI2 (t)
c22

c21 + c22
.

PrEPH in HRG (PrEPH)

Pre-exposure prophylaxis in HRG (PrEPH) refers to

administering the vaccine to individuals at high risk of

exposure to the virus. Hence, in our model, vaccination is only

administered to those in HRG. Since people born before 1972

have been vaccinated with the smallpox vaccine, therefore, in

the initial state in the model, a proportion of the LRG and HRG

populations is considered fully vaccinated for simplicity.

Testing and isolation

Testing and isolation are crucial steps to detect monkeypox

infections and stop the virus from spreading. Individuals with

clinical illnesses where monkeypox is suspected should be tested

and proceeded for self-isolation before the negative test result

is received, while individuals with positive test results should

isolate at home until they recover. However, it can take several

days from when infected individuals develop symptoms to seek

medical help and then get tested, with large variations depending

on the individuals’ behaviors. In addition, the recovery period

takes 2–4 weeks, and with respect to the isolation strategy may

not be total, hence compliance with the isolation strategy for

those tested and confirmed monkeypox cases are also included

in our model.

Gatherings

Gathering events, here refer to mass gatherings, are defined

by the WHO as “more than a specified number of persons at

a specific location for a specific purpose for a defined period

of time” (31). Gatherings may contribute significantly to the
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TABLE 3 Parameters used in the modeling of monkeypox transmission (assumed).

Parameter Definition Value (range) Ref.

Demographic related

pHRG Proportion of the population that is in the HRG 0.035 Assumed

Np The total number of populations in the hypothetical city 5,000,000 Assumed

Transmission related

1/γ Q Average number of days of recovery needed for isolated individuals, days 28 Assumed

1/γ v Average number of days of recovery needed for exposed individuals

vaccinated and quarantined, days

21 Assumed

ξ1 Scaling factor of infectiousness of infected in the prodromal phase compared

to infections with rash symptoms

0.75 Assumed

ξ2 Scaling factor of susceptibility of LRG individuals compared to HRG

individuals

0.03 Assumed

β Probability of transmission per contact among HRG (0.122, 0.245) Assumed

k1 Proportion of contacts within the LRG in overall contacts 0.6 Assumed

k2 Scaling factor of contact rate among HRG compared to baseline contact 1.3 Assumed

Vaccine related

ǫ1 The effectiveness of first dose of Imvamune against monkeypox infection 40% (40–60%) Assumed

ǫ2 The effectiveness of second dose of Imvamune against monkeypox infection 80% (70–85%) Assumed

Public health control measures related

1/λ The average time to achieve the vaccination coverage in HRG, days 40 (30–90) Assumed

pv The vaccination coverage in HRG 0.6 (0.1–0.9) Assumed

θ1 The vaccination proportion of individuals in LRG who are the close contact

with the confirmed cases

0.35 (0.1–0.6) Assumed

θ2 The vaccination proportion of individuals in HRG who are the close contact

with the confirmed cases

0.6 (0.3–0.8) Assumed

rLH The daily transition rate of the low-risk susceptible individuals to the

high-risk, 1/days

0.0005 (0.0001–0.001) Assumed

cG Number of effective contacts during the gathering, persons 30 (10–50) Assumed

pt1 Proportion of symptomatic individuals in LRG who has been tested and

isolated

0.3 (0.1–0.5) Assumed

pt2 Proportion of symptomatic individuals in HRG who has been tested and

isolated

0.5 (0.3–0.7) Assumed

α Proportion of individuals who comply with the isolation strategy 0.4 (0.3–0.6) Assumed

spread of infectious diseases, as was extensively studied during

the SARS-CoV-2 pandemic (19–21).

Modeling of gathering event in the absence of
a specific intervention

Not only will individuals from HRG attend the gathering

event, but also individuals in the LRG will join and some

of them may transit to the HRG; therefore, facilitating virus

spreading and posing the risk of a possible outbreak. In our

model, we denote G(t) as an indicator parameter if there is a

gathering event.

G (t) =

{

1, with gathering event,

0, without gathering event.

The daily transition rate from the low-risk susceptible

individuals to the high-risk ones is rLH days−1. During the

period of gathering events, we assume that the total number

of attendees is NG and the proportion of attendees from LRG

and HRG is pGL and pGH , respectively. The proportion of LRG

and HRG individuals attending the gathering event on day t is

calculated as

pL(t) =
pGLNG

N1 (t)
, pH(t) =

pGHNG

N2(t)
,

respectively, and the number of infectious attendees during the

gathering on day t is given by

NGI(t) = pL (t) [P1 (t) + I1 (t)]+ pH (t) [P2 (t) + I2 (t)] ,
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TABLE 4 Parameters used in the modeling of monkeypox transmission (from literature).

Parameter Definition Value (range) Ref.

Demographic related

p50+ The proportion of individuals who were born before 1972 and has

been fully vaccinated to the total populations

38.4% (25)

Transmission related

τ Average incubation period of MPX, days 13 (8)

δ Average number of days from prodromal phase to acute phase, days 3 (8)

µ Daily disease induced death rate, 1/days 3.6%/21 (7)

1/γ Average number of days of recovery needed for infectious individuals

with rash symptoms, days

21 (8)

c0 Baseline contact rate among the overall population, per day 10.8 (26)

Vaccine related

1/ζ1 The time from the first dose administered to the immune response

start, days

14 (11)

1/ζ2 The time from the immune response started after first dose to immune

response peak after second dose, days

56 (11)

Gathering event related

T1 The starting time of the gathering event Jul. 20, 2022 (27)

T2 The end time of the gathering event Aug. 1, 2022 (27)

Public health control measures related

Tv The starting time of the vaccination strategy conducted June 10, 2022 (28)

1/η The average time of the close contact of confirmed cases from the

exposed to be traced and then vaccinated, days

7 (1–14) (11)

1/ρ The average days from when infected individuals develop symptoms to

seek medical help and then get tested, days

7 (1–13) (29)

where N1(t) = S1(t) + E1(t) + P1(t) + I1(t) + V1(t) and

N2(t) = S2(t)+E2(t)+P2(t)+ I2(t)+V2(t)+V2(t). Note that

the number of recovered individuals is small and not included

for simplicity.

Following Champredon et al. (19), we calculated the

expected minimum probability of transmissions per attendee

that will occur during the gathering, considering the vaccination

of attendees, yielding

rG (t) = 1−

((

1−
NGI(t)

NG − 1
β

)cG)

where cG is the number of effective contacts with an infectious

individual during the gathering. An effective contact is defined

as a contact where there is physical contact and enough

exposure time between individuals which may result in the

transmission of monkeypox. Hence, the number of LRG-

susceptible individuals infected during the gathering is,

IGS1 = pLS1rG,

and the number of fully vaccinated LRG individuals infected

during the gathering is,

IGV1 = pLV1rG(1− ǫ2).

Similarly, we obtained the number of susceptible, partially

vaccinated, and fully vaccinated individuals from HRG infected

during the gathering as,

IGS2=pHS2rG, I
G
V2=pHV2rG(1− ǫ1), I

G
VV2=pHV2rG(1− ǫ2),

respectively.

The expected minimum number of transmissions that will

occur during the gathering is thus,

IG = IGS1 + IGV1 + IGS2 + IGV2 + IGVV2.

Modeling vaccination intervention specific to
gatherings

If public health interventions, including vaccination

strategy, are applied at the gathering event to prevent the

transmission, we assumed that only the fully vaccinated

individuals are allowed to attend the gathering, which includes

both vaccinated individuals and the individuals vaccinated but

not effectively protected (infected, and in the prodromal state).

Hence, the proportion of attendance in the qualified LRG and
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TABLE 5 Parameters defined in the modeling of monkeypox

transmission.

Parameter Definition Value (range) Ref.

cij Matrix of contacts among the

groups

c11 = c0k1 , c21 = c12 ,

c12 = c0
(

1− k1
)

,

c22 = c0k2 .

Gathering event related

G(t) Indicator parameter if

gathering event take place or

not

- Defined

NG The number of attendees of

the gathering event

- Defined

T The duration of gathering

event, days

T2 − T1 Defined

pGH Proportion of individuals

attending the gathering event

who is from HRG

1− pGL Defined

pL Proportion of LRG

individuals attending the

gathering event at day t

- Defined

pH Proportion of HRG

individuals attending the

gathering event at day t

- Defined

HRG on day t is

pL(t) =
pGLNG

V1 (t) + PV1(t)
, pH(t) =

pGHNG

V2 (t) + PV2(t)
,

where PV1 =
(1−ǫ2)V1(t)

S1(t)+(1−ǫ2)V1(t)

[

P1 (t) + E1(t)
]

and

PV2 =
(1− ǫ2)V2(t)

S2 (t) + (1− ǫ1)V2 (t) + (1− ǫ2)V2 (t)

[

P2 (t) + E2(t)
]

are the number of individuals in the prodromal state who are

fully vaccinated but not effectively protected in the LRG and

HRG, respectively.

Hence, the number of infectious attendees during the

gathering on day t, which can only include the fully vaccinated

individuals and those infected but in the prodromal stage, is

NGI (t) = pL
(1− ǫ2)V1 (t)

S1 (t) + (1− ǫ2)V1 (t)
P1 (t)

+ pH
(1− ǫ2)V2 (t)

S2 (t) + (1− ǫ1)V2 (t) + (1− ǫ2)V2 (t)
P2(t).

Since only fully vaccinated individuals are allowed to attend

the gathering, the minimum probability of transmissions per

attendee will become

rG (t) = 1−

(

(

1−
NGI (t)

NG − 1
β (1− ǫ2)

)cG
)

.

Hence, the expectedminimumnumber of transmissions that

will occur during the gathering is

IGV1 = pL (t)V1 (t) rG (t) , IGVV2 = pH (t)V2rG (t)

respectively.

Scenario analysis

We conducted numerical simulations with the setting of

the hypothetical metropolitan city, starting on 1 May 2022, and

the model was run for 2 years (730 days). The vaccination

started to be administered in HRG individuals on 10 June 2022

(28). The initial values, parameters with fixed values, and the

range of some parameters used for simulations are presented

in Tables 2–4. We investigated five different scenarios listed in

Table 6 by presenting the projection of daily new infections

in LRG and HRG (per 100,000 individuals). In scenarios 1–3,

the projection of mean and 95% confidence interval of daily

new infections are obtained from 5,000 parameter sets sampling

from the prior distribution (uniform) of parameters, by the

Latin hypercube sampling (LHS) method (32, 33). We only

present the mean of all the simulations in scenarios 2 and

3 for an intuitive interpretation of the results. We explored

the proportion of vaccination coverage needed to prevent

transmission under different assumptions in scenarios 4 and

5, where other parameters are fixed at the values presented

in Tables 3, 4. The analyses were conducted using MATLAB

(R2020a) (34).

Sensitivity analysis

Sensitivity analyses were conducted to address the

uncertainty of the parameters through the LHS and the partial

rank correlation coefficient (PRCC) method (32). We generated

5,000 samples of parameters related to vaccination strategy,

including the efficacy of the vaccine, the vaccination coverage in

HRG, the days needed to achieve the vaccination coverage, and

the vaccination proportion of close contacts of confirmed cases

in HRG and LRG, and the parameters associated with gathering

events, including the number of attendees of gathering, the

effective contacts in the gathering, the proportion of attendees

from LRG individuals. The ranges of parameters used in the

sensitivity analysis are reported in Supplementary Table S1. We

calculated the value of PRCC to investigate the relationship

between the parameters and the model outputs of cumulative

cases, which above 0.5 were considered to be significant.
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TABLE 6 Lists of settings of scenarios to projections of monkeypox

infection.

Scenarios Settings

Scenario 1 Gathering events and no public health (PH) control

measures are conducted.

• 10, 000 daily attendees, R0 = 1.5 (Baseline).

• 10, 000 daily attendees, R0 = 3.

• 100,000 daily attendees, R0 = 3.

Scenario 2 Gathering events (no interventions on the attendees) with

100,000 daily attendees, 10, 30 or 50 effective contacts in the

gathering and R0 = 3.

• With testing, isolation, and PEPCT strategy, but without

PrEPH.

• With testing, isolation, and PrEPH (90% HRG received 1

dose vaccine as of July 20), but without PEPCT strategy.

Scenario 3 Gathering events with 100,000 daily attendees (fully

vaccinated), 10, 30 or 50 effective contacts in the gathering

and R0 = 3.

• With testing, isolation, and PrEPH (60% HRG received 1

dose vaccine as of Jul 20) and PEPCT strategy.

• With testing, isolation, and PrEPH (90% HRG received 1

dose vaccine as of Jul 20), testing and isolation, but

without PEPCT strategy.

Scenario 4 Gathering events (no interventions on the attendees) with

100,000 daily attendees, and R0 = 3. With testing, isolation,

and without PEPCT strategy, and other settings.

Scenario 5 Gathering events (no interventions on the attendees) with

100,000 daily attendees, 50 effective contacts in the

gathering and R0 = 3. With testing, isolation, vaccinating

30% close contact of confirmed cases in LRG, and other

settings.

Some general setting and descriptions

Gathering event Starting from July 20 to August 1, 2022.

No PH control

measures

No interventions on monkeypox transmission, like testing,

isolation, tracing or vaccination.

R0 = 1.5 or 3 The probability of per contact among HRG is 12.2 % or

24.5%.

Testing, isolation The testing and isolation strategy are implemented and the

testing proportion of symptomatic infection in HRG and

LRG is 50% and 30% respectively.

PEPCT strategy Vaccinating the 60% close contact of confirmed cases in

HRG and 30% close contact of confirmed cases in LRG.

Other settings The time from individuals developing symptoms, to seeking

medical help and then being tested and isolated is 7 days,

and the time for tracing and vaccinating the close contacts

of confirmed cases is 7 days, the daily transition rate from

LRG to HRG during the gathering is 0.0005, and the

proportion of individuals adhering to the isolation strategy

is 40%, and the 10% of attendees is LRG individuals.

Results

Impact of no public health measures
implementation after gatherings

We projected the daily new infections in LRG and HRG

when the MGE occurred between 20 July and 1 August

2022 (Figure 2, Scenario 1 described in Table 6). We varied

the number of participants and transmissibility levels of the

monkeypox virus, under the assumption that public health

control measures are not in place. A large outbreak of cases

follows MGEs, with the number of cases increasing as the

number of attendees and probability of transmission increase,

raising the transmission. However, with the lowest number of

participants and lower value of R0, the outbreak shows the

beginning of an increasing trend 400 days after the gathering.

For a gathering with 10,000 daily attendees, the risk of a

monkeypox outbreak is low if the transmission probability per

contact among the HRG individuals of the monkeypox virus

is 12.2% (R0 = 1.5). On the other hand, we could observe a

large outbreak if the number of participants increases to 100,000,

with an average peak of daily new infections in HRG of around

150 per 100,000 people. If R0 = 3 and attendance increases

to 100,000, the outbreak will immediately follow the gathering

event, with a larger peak size of infections (500 per 100,000).

E�ects of PEPCT strategies

Figures 3, 4 (Scenario 2 and 3 described in Table 6) show

the impact of PEPCT and PrEPH strategies under the possibility

of a mass gathering with 100,000 attendees and relatively high

transmission efficiency of the monkeypox virus (R0 = 3).

Overall, if testing and isolation of symptomatic cases are in place,

and contact tracing is effective, the PEPCT strategy is more

beneficial to the control of monkeypox outbreaks, compared

to the PrEPH strategy, and this is expected given the time

needed to develop an immune response and the low vaccine

coverage in the overall population in the simulations. With the

implementation of the PEPCT strategy, tracing, vaccinating, and

isolating 60 and 30% of close contacts of confirmed monkeypox

cases in HRG and LRG, respectively, and maximum effective

contacts in the gathering, the average peak of daily new infection

in HRG was below 4 per 100,000 attendees (Figure 3, second

panel). However, this number exceeds 90 per 100,000 if 90%

of HRG individuals received at least 1 dose of vaccine before

the gathering event started, but without PEPCT (Figure 3,

fourth panel).

Similar results were obtained if all attendees of the gathering

event are fully vaccinated (Figure 4). If the PEPCT strategy is

implemented and the effective contacts during the gathering are

50, the mean peak of daily infection in HRG is below 1 per

100,000, although only 60% of individuals were administered 1
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FIGURE 2

Projections of daily new infections (per 100 k) in the LRG and HRG without public health control measures if there is a gathering event from 20

July to 1 August 2022, with 10,000 or 100,000 daily attendees. The reproduction number of monkeypox transmission is 1.5 or 3. The gray

shaded bar represents the gathering event occurring. The detailed setting can be found in Table 6, scenario 1.

dose of vaccine before the gathering. Conversely, with only 10

effective contacts in the gathering, the mean peak of daily new

infection in HRG exceeds 35 per 100, 000, if vaccinating 90% of

HRG individuals with 1 dose before the gathering but without a

PEPCT strategy. Regardless of whether there was a vaccination

requirement for the attendance of gathering events, PEPCT

strategies are critical to containing monkeypox transmission

arising from gatherings.

Results for LRG follow the same trends of HRG, but with a

smaller magnitude.

Measures to prevent outbreaks after
gatherings: Restricting e�ective contacts
or vaccination

The peak size of the monkeypox outbreak is significantly

associated with the number of effective contacts in the gathering

if there are no restrictions on the gathering activities (Figure 3).

Thus, the public health control measures aiming at constraining

effective contacts during the gathering are essential to prevent

the possible outbreak under this circumstance.

However, contact during the gathering would have a slight

effect on the progression of the monkeypox transmission if

only fully vaccinated individuals are allowed to attend the

gathering (Figure 4). Moreover, whether there is a vaccination

requirement for the attendees of gathering activities or not,

public health control measures, such as PEPCT, are needed to

prevent an outbreak resulting fromMGEs.

Identification of the best combination of
vaccination coverage and gathering
intervention

Figure 5 shows a contour plot of peak infection in LRG and

HRG under Scenario 4 (described in Table 6), when effective

contacts and vaccine coverage (one dose by July 20) are varied.

These results permit the determination of the vaccination

coverage in HRG and constraints of contacts in gathering

needed to prevent monkeypox transmission if the gathering
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FIGURE 3

Projections of daily new infections (per 100 k) in the LRG and HRG with di�erent public health control strategies under the di�erent e�ective

contacts in the gathering if there is a gathering event occurring from 20 July to 1 August 2022, with daily 100,000 attendees. (A) With PEPCT,

testing and isolation, but without PrEPH; (B) with PrEPH, testing and isolation, but without PEPCT. Note that the reproduction number of

monkeypox transmission is 3. The testing proportion of symptomatic infection in HRG and LRG is 50 and 30%, respectively. The PEPCT strategy

represents that we vaccinated the 60% close contacts in HRG and 30% close contact in LRG. The gray shaded bar represents the gathering event

occurring. The detailed setting can be found in Table 6, scenario 2.

event occurs. In this scenario, testing and isolation (30 and

50% of symptomatic infections in LRG and HRG) are included.

As illustrated in Figure 5, public health interventions on

constraining contacts during the gathering aremore beneficial to

contain the transmission, compared to the strategy of increasing

vaccination coverage in HRG shortly before the event. The

infection in the LRG could be kept below 1 per 100,000 if the

effective contacts in the gathering are 46. However, the contacts

should be < 15 to maintain a low prevalence (10 per 100,000)

in HRG.

Identification of the best combination of
PEPCT and PrEPH strategy

The contour plot of peak infection in LRG and HRG with

varying vaccination proportions of PEPCT and PrEPH is shown

in Figure 6, if all the individuals were allowed to attend the mass

gathering events (100,000 attendees), along with assumptions

listed in Table 6 (Scenario 5). If vaccination coverage of 1 dose in

HRG as of 20 July is 10%, tomaintain the infection in LRG below

1 per 100,000, at least 38% of close contact of confirmed cases in
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FIGURE 4

Projections of daily new infections (per 100 k) in the LRG and HRG with di�erent public health control strategies under the di�erent e�ective

contacts in the gathering if there is a gathering event occurring from 20 July to 1 August 2022, with daily 100,000 attendees who has been fully

vaccinated. (A) With PrEPH (60% HRG received 1 dose before 20 July) and PEPCT, testing and isolation; (B) with PrEPH (90% HRG received 1

dose before 20 July), testing and isolation, but without PEPCT. Note that the reproduction number of monkeypox transmission is 3. The testing

proportion of symptomatic infection in HRG and LRG is 50 and 30%, respectively. The PEPCT strategy represents that we vaccinated the 60%

close contacts in HRG and 30% close contact in LRG. The gray shaded bar represents the gathering event occurring. The detailed setting can be

found in Table 6, scenario 3.

HRG should be traced, vaccinated, and isolated. However, this

proportion needs to increase to 75% to keep the infection in

HRG below 1 per 100,000.

Sensitivity analysis

The observed number of attendees, the number of effective

contacts, and the transition rate from LRG to HRG during

the gathering are significantly positively correlated with the

cumulative cases (Figure 7A). On the other hand, the proportion

of attendees from the LRG is negatively correlated to the

cumulative cases, but not significant, which indicates a

possibility of the dilution effect of the LRG attendees on the

gathering events in consideration of the fact that they have a

lower possibility to transmit the virus to the LRG community.

The sensitivity analysis also showed that the efficacy of the

second dose and the vaccine coverage of close contact with

confirmed cases in HRG and LRG present a negative correlation

with cumulative cases (Figure 7B). Nevertheless, the first dose

Frontiers in PublicHealth 13 frontiersin.org

49

https://doi.org/10.3389/fpubh.2022.1026489
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yuan et al. 10.3389/fpubh.2022.1026489

FIGURE 5

The contour plot of peak infection in LRG and HRG (per 100 k) with di�erent e�ective contacts in the gathering and the vaccination coverage

achieved (1 dose) on 20 July. There is no PEPCT strategy and the testing proportion of symptomatic infection in HRG and LRG is 50 and 30%

respectively. The detailed setting can be found in Table 6, scenario 4.

FIGURE 6

The contour plot of peak infection in LRG and HRG (per 100 k) with vaccination proportion of close contact in HRG and the vaccination

coverage achieved (1 dose) on 20 July. The testing proportion of symptomatic infection in HRG and LRG is 50 and 30%, respectively. A total of

30% close contact of confirmed cases in LRG are traced, vaccinated and quarantined. The detailed setting can be found in Table 6, scenario 5.
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FIGURE 7

The PRCC plots of (A) gathering event-related (B) transmission and vaccine-related (C) public health control strategy-related parameters on

cumulative cases.

efficacy and its coverage in HRG, and the daily vaccination rate

in HRG are not significant to the cumulative cases, due to the

small proportion of HRG individuals in the total population

(Figure 7C).

The sensitivity analysis confirmed that the PEPCT strategy

and the interventions in the gathering activities are crucial to

curb monkeypox spreading at gatherings. Moreover, the efforts

of case detection, testing and isolation, and contact tracing,
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of symptomatic monkeypox cases affect the progression of the

disease significantly (Figure 7C).

Discussion

The classification of the monkeypox outbreak as a PHEIC

by WHO underlines its global seriousness (3). In this study,

we employed a mathematical modeling approach to explore

how vaccinations and other public health measures can be

implemented, in a hypothetical metropolitan city, to prevent

the spread of monkeypox in human populations after mass

gatherings events. Our results suggested that the risk of a

monkeypox outbreak after gatherings is high, especially if the

number of attendees was large and public health measures

were not in place. However, effective public health measures

can support the containment of monkeypox transmission at

mass gatherings by a combination of constraints on effective

contact at the gatherings, implementation of PrEPH, testing

and isolation of symptomatic cases, and contact tracing

and PEP (here studied as one process PEPCT). Vaccination

requirements for participants in mass gathering events could

play a crucial role in curbing the spreading of viruses. In

addition, tracing, vaccinating, and isolating the close contacts

who are exposed to cases was more beneficial to contain

monkeypox transmission compared to a PrEP vaccination

campaign in HRG individuals that begins shortly before

the event.

Our novel model structure, with consideration of saturation

of contacts at gatherings, allowed us to assess the monkeypox

transmission risk on the occasion that gathering activities occur.

Our results suggested that ring vaccination, along with efficient

contact tracing and isolation, can be a powerful tool to halt the

spread of the monkeypox virus linked to mass gathering events.

Either limiting the gathering size and density, requiring the

vaccination of attendees, or both may be essential for safe social

gathering events. Additional measures were also required, such

as a high level of effort to test and isolate confirmed cases and

PEPCT, which required rigorous contact tracing and compliance

with isolation policies.

In these simulations, the containment effect of PEPCT

was determined by the vaccine efficacy, the proportion of

contacts traced, the days needs to trace the exposures and

vaccination, and the compliance with the quarantine after

vaccination. Hence, PEPCTmay not work as expected due to the

uncertainty of efficacy and availability of the vaccine, as well as

the difficulty in identifying the people who are most at risk from

infection (35). Moreover, the significant containment effect of

the PEPCT strategy mainly results from the transmission cut-

off due to the contact tracing and isolation of the exposures.

In reality, there is considerable difficulty in identifying contacts

with cases, thus limiting the PEPCT strategy. Containing the

spreading of monkeypox by ring vaccination protocol is also

greatly dependent on the willingness of inoculation of the

individual with exposure and compliance with the quarantine

after vaccination.

In addition, the precise effectiveness of the smallpox

vaccine against monkeypox infection in the human population

remains unclear, although initial studies begin to suggest

high effectiveness (36). The rollout of the vaccine campaign

in HRG, or extending the eligibility to individuals with a

moderate risk, requires the support of enough stockpiles of

the vaccine. Given the limited vaccine capacity, the public

health sector should prioritize vaccines for the communities at

risk (37). However, targeting specific communities or groups

of people may deepen stigma and hinder tracing, vaccination,

and identification of cases (5, 35, 38). Also, only vaccinating

the individuals with high risk was not enough to prevent

the outbreak in a scenario with an increased transmission

efficiency of the virus (possibly due to accelerated evolution)

and there may be increased spillover from HRG to LRG

(Supplementary Figure S1).

Although our modeling scenario simulations are conducted

in a hypothetical metropolitan city with parameters from

literature regarding Canadian cities, our model can be

easily applied to any jurisdictions and areas where data

are available, with the refinement of key parameters like

the efficacy of vaccines to inform public health decision

making. But the specific numbers required to halt the

transmission need to be re-examined in a given region with

local data. Besides, it is known that animals are a reservoir

and part of the transmission to the human population, but

this is not included in our work as we are focusing on

the effect of vaccination and gathering events, and it can

underestimate the transmission risk (23). We will include it in

further study.
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The aim of this study is to make a comparative study on the reproduction

number R0 computed at the beginning of each wave for African countries

and to understand the reasons for the disparities between them. The study

covers the two first years of the COVID-19 pandemic and for 30 African

countries. It links pandemic variables, reproduction number R0, demographic

variable, median age of the population, economic variables, GDP and CHE

per capita, and climatic variables, mean temperature at the beginning of

each waves. The results show that the di�usion of COVID-19 in Africa was

heterogeneous even between geographical proximal countries. The di�erence

of the basic reproduction number R0 values is very large between countries

and is significantly correlated with economic and climatic variables GDP and

temperature and to a less extent with the mean age of the population.

KEYWORDS

reproduction number R0, epidemiology, Africa, regional analysis, COVID-19, SIR

model, SARS-CoV-2

1. Introduction

On January 30, 2020, theWorld Health Organization (WHO) declared COVID-19 as

a Public Health Emergency of International Concern1 and by March 11, 2020, declared

the first pandemic caused by the coronavirus. Up to July 2021, COVID-19 has affected

over 187 million people with more than 4 million associated deaths and in addition, has

induced catastrophic public health and socio-economic affliction globally (1).

The first cases in Africa to be reported by WHO were respectively, on February 14,

18, and 25, 2020, in Egypt, Algeria, and Nigeria. These first cases have nearly coincided

with those in Europe, which is likely the original source of pathogen introduction in

Africa.2 Since then, the virus has spread quite quickly (see Figure 1) (2). Up to June 6,

2020, most African countries have crossed the threshold of 1, 000 cases and the whole

1 https://www.who.int/director-general/speeches/detail/who-director-general-s-statement-

on-ihr-emergency-committee-on-novel-coronavirus-(2019-ncov)

2 https://www.afro.who.int/news/covid-19-cases-top-10-000-africa, https://covid19.ncdc.gov.

ng/
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FIGURE 1

Spread of COVID-19 in Africa.

continent had 175, 423 cumulative cases and 4, 862 reported

deaths. The WHO had predicted that 29 to 44 million Africans

would be infected with COVID-19 during the first year of the

pandemic, and 83 to 190 thousand Africans would had die if they

don’t uphold containment measures.3

The high levels of poverty, weak health systems, and

a large number of crowded urban areas, make the virus

particularly devastating in African countries.4 However, the

warmer climate, the population youth, and the boosted

immunity by long exposure to previous endemic pathogens,

would allow the continent to mitigate the risk of the pandemic

(3). In this context, the diversity of COVID-19’s dynamics

throughout Africa and its relationship to socioeconomic and

3 https://www.afro.who.int/news/new-who-estimates-190-000-

people-could-die-covid-19-africa-if-not-controlled

4 https://africacenter.org/spotlight/mapping-risk-factors-spread-

covid-19-africa/

environmental factors can help us better understand the

epidemic’s determinism.

Like European countries (4), at the beginning of the COVID-

19 epidemic, most African countries implemented strict Non-

Pharmaceutical intervention (NPI) to limit the spread of this

pandemic (5–7). This has included: the obligation to mask

wearing and social distancing measures at the individual

level, frontier closure, the closure of schools, universities, and

public places, the closure of mosques and churches, and the

prohibition of movement between cities and provinces. These

measures have contributed in reducing the spread of the

pandemic (8, 9). However, considering the socio-economical

heterogeneity of the African countries (10), the response to these

measures differed from one country to another as evidenced

by the disparities between regions in infected cases and wave

numbers (11).

To date, few studies have analyzed how the pandemic

spread in Africa and how its intensity varied over time (12–

16). Moreover, to our knowledge, no study has been conducted
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FIGURE 2

Flowchart diagram to explain the di�erent steps of the methodology.

to analyze what are the determinants that could explain the

geography of the pandemic.

This study aims at analyzing the Spatio-temporal evolution

of the COVID-19 infection across 30 African countries and for

each wave until March, 2022. And to provide demo-economical

and environmental factors that can better explain the regional

heterogeneity of the basic reproduction rate, R0. To this end,

we calculate R0 at the early beginning of each wave, in order

to avoid taking into account the NPI measure. We then make

a correlation analysis between R0 and collected demographic,

economic, and climatic data so as to assess how these factors may

account for the regional variations of the pandemic.

The document is organized as follows: In Section 2, the

material and method are presented. In Section 3, results and

discussion are given. Finally, the conclusion is given in Section 4.

2. Materials and methods

In order to comprehend the differences between African

countries, we collected epidemiological data from 45 African

countries. Due to the quality of the data, this list was reduced

to 30 countries distributed between North, South, East and

West Africa. These countries are: Algeria, Angola, Burkina Faso,

Cameroon, Chad, Ivory Coast, Egypt, Ethiopia, Guinea, Guinea-

Bissau, Kenya, Libya, Madagascar, Mali, Mauritania, Morocco,

Mozambique, Namibia, Niger, Nigeria, RDC, Rwanda, Senegal,

Somalia, South Africa, Sudan, Tanzania, Tunisia, Zambia,

and Zimbabwe.

Up to March, 2022, With the exception of Tanzania,

Madagascar, Chad, and Burkina Faso, which had three waves,

and Kenya, Algeria, Tunisia, and Zambia, which had five waves,

nearly all of the thirty African countries analyzed had four

waves. For all countries, the Omicron variant generated themost

recent wave.

We took into account six epidemiological, demo-economical

and climate factors for each country:

• Epidemiological variables are: The basic reproduction

numbers, R0, of each wave, used to analyze the temporal

evolution of the COVID-19 wave by wave at each country.

The second one is themean value of R0 over waves, denoted

by MeanR where MeanR =
1

n

n
∑

i=1

Ri0, R
i
0 is the R0 of the

wave i and n is the number of waves. the MeanR is used to

for an inter-countries comparison.

• Economic variables: The current health expenditure

(CHE), and the gross domestic product (GDP) were
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FIGURE 3

Frequency distribution and histogram of MeanR of all waves.

TABLE 1 Distribution ofMeanR by Country.

MeanR Country

Group 1 [2.49, 3.22] Senegal, Zimbabwe, South Africa,

Angola, Zambia, Ethiopia

Group 2 [1.99, 2.43] Mali, RDC, Guinea, Sudan, Algeria

Kenya, Nigeria, Mauritania, Libya

Guinea-Bissau, Namibia, Morocco

Rwanda, Côte d’Ivoire, Tunisia

Mozambique, Tanzania

Group 3 [1.69, 1.907] Madagascar, Niger, Egypt, Somalia,

Chad, Burkina-Faso, and Cameroon

collected from World Bank data.5 It has been shown that

these variables have an impact on the propagation of the

pandemic in several countries (17–19).

• Climate variable: Mean of the country’s temperature at the

periods of the beginning waves.6,7

• Demographic variable: The median of ages of the

population population (see text footnote 5) as older patients

are at higher risk of developing severity (20).

For each wave and each African country, basic reproduction

rate, R0, was computed using the method developed in (21).

This method is based on a SIR model, which is an Ordinary

Differential Equations (ODE) that describes a structured

population through three classes: S (susceptible), I (infected:

5 https://data.worldbank.org/indicator/SH.XPD.CHEX.GD.ZS

6 http://www.climatemps.com/

7 https://climateknowledgeportal.worldbank.org/country/central-

african-republic/climate-data-historical

reported and unreported), and R (removed: recovered or die).

For more detail about the system of ordinary differential

equations, parameters identification and how to determine the

R0 values see Appendix. As it is difficult to estimate the impact

of control policies in the calculation of R0, we chose to calculate

R0 with data from the first days of each wave. Indeed, we assume

that at the beginning of each wave the control policies are very

little applied or non-existent, so the growth of the pandemic

is exponential.

To measure the degree of the relationship between variables,

we use the Pearson correlation defined by (22).

For the clustering countries with similar data variables,

we use an “unsupervised learning” method, the hierarchical

clustering (23).

In this method, it is not necessary to specify an initial

number of clusters to run the algorithm. Dendrogram was used

to visualize the partitioning of the data.

Impact data variables were summarized and visualized using

Principal Component Analysis (PCA) (24).

Data set implementation and analysis is described in

Figure 2.

3. Results and discussion

In this section, we perform inter-country and intra-

country analyses integrating economic, climatic, and

demographic factors.

3.1. Inter-country analysis

Based on the mean of R0, MeanR, distribution across waves

(see Figure 3), we divided countries into three groups (see

Table 1 and Figure 4).

We observe thatmore than 50% of the countries haveMeanR

values in [1.99, 2.37], mainly located in north Africa. Moreover,

25% of the other countries show higher values ofMeanR and are

located especially in South Africa.

3.2. Intra-country distribution

When comparing the first three waves, we can see that the R0

values for waves 4 and 5 have significantly grown (see Table 2).

This makes sense given how quickly the Delta and Omicron

variants have spread.

Based on the values of R0 and for each wave, we clustered

the countries into three groups (see Table 3 and Figure 5). We

observe that countries with the highest MeanR, corresponding

to Group 1, had experienced a strong first or second wave

(countries in Group 1 for the first or second wave).
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FIGURE 4

Distribution of MeanR among 30 countries in Africa.

TABLE 2 Mean R0 over countries by waves.

First wave Second wave Third wave Fourth wave Fifth wave

R0 1.87 2.04 1.91 2.95 3.53

Low R0 waves were experienced by the countries with the

lowest MeanR Group (Group 3 for the MeanR). Indeed, some

of the least affected countries (belonging to Group 2 or 3),

have experienced three weak waves, such as Kenya and Guinea

(Group 3, for the three waves) or a medium wave as Libya

(Group 3 for waves 1 and group 2 for wave 2) RDC (Group 3

for waves 1 and 2 and Group 2 for wave 3) and Mauritania and

Cameroon (Group 3 for waves 1 and 3).

We note that, in general, countries in the first Group

for the first wave (except for Senegal, Tanzania, and Sudan)

experienced a weaker second and third wave. Conversely,

countries that experienced a weaker first wave (Groups

2 and 3), experienced a stronger second or third wave

(Group 1). Indeed, in Tunisia, the first and third waves

(belonging to Group 1), were significant, but the second

wave was less so (belonging to Group 3). Senegal experienced

three major waves (belonging to Group 1). Finally, South

Africa, Chad, Morocco, and Algeria had a powerful first

wave (belonging to Group 1), a moderate second wave

(belonging to Group 2), and a weak third wave (belonging

to Group 3).

3.3. Impact of economic factor

Next, we looked at the relationship between

the mean R0 values, MeanR, and the Gross

Domestic Product (GDP), and the Current Health

Expenditure (CHE) (see Table 4 and data in the

Appendix).

It is revealed that the MeanR is highly positively correlated

to GDP and is moderately positively correlated to CHE.

Indeed, countries with the highest GDPs in Africa (GDPs

above US$3000 per capita), especially South Africa and

some North African countries like Tunisia, Morocco, and

Algeria, experienced a significant first wave (see Table 5).

These countries were the first to be impacted by the

epidemic because of their degree of development, which

makes them more accessible to international trade (see

Figure 6).

The lower relationship between R0 and CHE may be

explained by two facts: Firstly, we measured R0 at the start

of the wave when public health interventions were either

not yet in place or were poorly in place. Secondly, the

Frontiers in PublicHealth 05 frontiersin.org

59

https://doi.org/10.3389/fpubh.2022.1039925
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


N
a
�
e
ti
e
t
a
l.

1
0
.3
3
8
9
/fp

u
b
h
.2
0
2
2
.1
0
3
9
9
2
5

TABLE 3 Distribution of the country between a Group of R0 for each wave.

First wave Second wave Third wave Fourth wave Fifth wave

[R0] Country [R0] Country [R0] Country [R0] Country [R0] Country

Group 1 [1.95, 3.25] Guinea-Bissau [2.19, 3.72] Madagascar [2.26, 2.57] Mozambique [4.05, 5.4] Angola, Zimbabwe [4.23] Zambia

Mali Burkina Faso Guinea Ethiopia, Côte d’Ivoire

Senegal Nigeria Tunisia

Chad Mauritania Zimbabwe

Sudan Sudan Rwanda

Namibia Mozambique Senegal

Algeria Senegal Libya

Tanzania Egypt

Tunisia Zambia

Morocco Tanzania

South Africa Zimbabwe

Group 2 [1.54, 1.8] Rwanda [1.74, 2.06] Algeria [1.96, 2.13] Côte d’Ivoire [2.64, 3.47] Guinea-Bissau, Mauritania [3.34, 3.72] Tunisia

Nigeria Chad Namibia Senegal, Rwanda Kenya

Somalia Ethiopia RDC Mozambique, Nigeria

Côte d’Ivoire Mali Somalia South Africa, Niger

Ethiopia Rwanda Zambia Libya, RDC, Namibia

Madagascar Libya Mali Morocco, Zambia, Guinea

Niger Namibia Ethiopia

Zimbabwe Morocco Tanzania

Burkina Faso Cameroon

South Africa

Group 3 [1.34, 1.46] Angola [1.41, 1.7] Somalia [1.14, 1.86] Mauritania [1.51, 1.46] Somalia, Kenya, Mali [2.85] Algeria

Kenya Niger Nigeria Algeria, Tunisia

Libya Guinea-Bissau Egypt Cameroon, Sudan, Egypt

Mauritania Côte d’Ivoire Sudan

Zambia Tunisia Algeria

Mozambique RDC Guinea-Bissau

Guinea Kenya South Africa

RDC Angola Kenya

Cameroon Guinea Morocco

Madagascar

Cameroon

Angola

Burkina-Faso

Niger

Chad

Groups 1, 2, and 3: Are the respectively the classes of the highest, the average and the lowest values. [R0]: Is the interval of the R0 values at each class.
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FIGURE 5

(Continued)
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FIGURE 5

Distribution of the R0 of 30 countries in Africa for each wave.

CHE plays a role in terms of preparedness and impact to

improve the public health policy between waves in terms

of screening capacity. A country with a high CHE has the

material, human and technological resources to perform the

volume of diagnostic tests and thus has the capacity to rapidly

identify confirmed cases. This implies a strong dependence

between the number of tests and CHE (17). It was noted that

countries with low health system investment, CHE, often have

a low testing capacity which makes it difficult to assess the

true extent of COVID-19. For example, as of mid-April 2020,

the Democratic Republic of the Congo was only performing

about 200 tests per day (25), Senegal about 300 tests per

day, and Ethiopia about 400 tests per day while the number

of tests was 3493 in South Africa.8 For these countries, the

question of the quality of the data and the reality of the virus

circulation arises.

3.4. Impact of demographic factors

According to Table 4, there is a correlation between the

demographic factors, i.e., the median age and MeanR. We

observe (see Figure 5), that most countries with a median age

8 https://ourworldindata.org/grapher/daily-tests-per-thousand-

people-smoothed-7-day
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TABLE 4 Results of correlation analysis.

Country Correlation

coefficients

MeanR vs. GDP

Mozambique, Mauritania, Nigeria Libya, Madagascar,

Kenya, South Africa,

0.722

RDC, Chad, Côte d’Ivoire, Sudan, Mali, Niger,

Guinea-Bissau, Morocco,

Tunisia, Somalia, Namibia, Burkina Faso, Guinea, South

Africa, Algeria

MeanR vs. CHE

Mozambique, Mauritania, Nigeria, Libya, Cameroon,

Rwanda, Madagascar,

0.563

South Africa, Guinea, RDC, Chad, Côte d’Ivoire, Sudan,

Mali, Morocco,

Tunisia, Zimbabwe,Kenya, Angola,

MeanR vs. Median age

Mozambique, Mauritania, Nigeria, Libya, Cameroon,

Rwanda, Madagascar,

0.626

South Africa, Guinea, RDC, Chad, Côte d’Ivoire, Sudan,

Mali, Niger,

Morocco, Tunisia, Somalia, Namibia, Burkina Faso,Kenya,

Guinea-Bissau,

MeanR vs. Mean Temperature

Mozambique, Mauritania, Nigeria, Libya, Rwanda,

Madagascar, Kenya,

−0.729

Guinea, RDC, Chad, Côte d’Ivoire, Sudan, Mali, Niger,

Guinea-Bissau,

Algeria, Tunisia, Angola, Somalia, Tanzania, Zambia,

Namibia,

Burkina Faso, Morocco, South Africa

Country: The country used for the correlation analysis. Correlation coefficient: Is the

value of the Pearson coefficient.MeanR vs. Y: The analysis of the correlation between the

variableMeanR and Y . where Y ∈ {GDP,CHE,Medianage ,Mean Temperature}. We Show

that if economic and the age are increasing, theMeanR increasing while it is decreasing if

the temperature increasing.

under 18 have a MeanR less than 2, including Niger, Mali,

Chad, Somalia, and Burkina Faso. While South Africa and other

countries with a median age greater than 27 have a MeanR

greater than 2.

This result may be explained by the fact that older people

are over-represented in the COVID-19 data since they are

more likely to be tested and have more serious infections

(26). In contrast, younger people tend to be in better health

than older ones, making them more immune to infection.

This has been observed in the influenza pandemic in Africa

where children and adolescents had a negligible epidemiological

impact (27).

3.5. Impact of climatic factors

The annual temperature and MeanR are negatively highly

correlated, as seen in Table 4 and Figure 5. Indeed, we

observe that almost all of the countries with a lower

value of meanR have a dry climate and a high annual

temperature (annual temperature greater than 27◦C), in

contrast to the northern countries, which have a lower

annual temperature (annual temperature less than 23◦C; see

Figure 4).

Note that, negative correlation had already been observed in

China (28), in several Latin American countries (29, 30), in the

U.S.A. (31) and in Japan (32). From a biological point of view,

low humidity dries out the nasal mucosa and impairs the stability

of the aerosol droplets and therefore virus particles (33). Hence,

the virus replication is limited by temperatures (20 and 30◦C)

(34).

3.6. Clustering of African country from
epidemic, economic, demographic, and
climatic variables

We performed a hierarchical clustering and a principal

component analysis (PCA) (Figures 7–10). The PCA depicts

two primary axes (PC1, PC2) that together account for

75% of country variation, 54.2% for the PC1 and 20.6%

for the PC2. The primary parameters in PC2 are MeanR,

median age, and GDP. For PC1, the primary parameter is

the temperature.

We then performed a Hierarchical Clustering of the

countries (see Figure 7). We were able to divide the countries

into two distinct clusters. Morocco, Algeria, Tunisia, Libya,

Egypt, Namibia, and South Africa make up the first cluster,

which spans north and south Africa. This cluster is characterized

by high median age and a high GDP > US$3000) (in [21.8, 32.7]

years old). Except for Egypt (MeanR = 1.8), this cluster has

witnessed an average of MeanR > 2.2. We have identified five

countries that had a significant first wave.

The second cluster is in turn divided into sub-

clusters, the first sub-cluster includes Tanzania, Ethiopia,

Angola, Zambia, Rwanda, and Zimbabwe. This cluster is

characterized by high values of MeanR. MeanR in [2.4, 3.21] in

Zimbabwe, a middle GDP in US$ [797, 1800], and a median

age < 20 years.

The latest cluster includes the rest of the countries. This

cluster is characterized by a high annual temperature of more

than 25◦C and a GDP of between US$2350 and US$438. These

countries are distinguished by MeanR values in [1.69, 2.59].

Twelve of the 18 countries of the second Group are included in

this cluster.
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TABLE 5 Distribution of the countries between classes waves of R0 and GDP (in US$).

GDP > 3000 1000 < GDP ≤ 3000 GDP ≤ 1000

First wave

C1(1) Morocco, South Africa, Tanzania, Sudan, Chad,

Tunisia, Namibia, Senegal Guinea-Bissau

Algeria, Mali,

C2(1) Egypt, Zimbabwe, Somalia, Madagascar,

Côte d’Ivoire Rwanda, Burkina-Faso,

Ethiopia, Niger,

C3(1) Libya Guinea, Cameroon Mozambique, RDC,

Angola, Kenya, Zambia

Mauritania,

Second wave

C1(2) Egypt Tanzania, Senegal, Sudan, Madagascar,

Zimbabwe, Mauritania Mozambique, Zambia

Burkina-Faso,

C2(2) Morocco, South Africa, Cameroon Chad, Mali,

Algeria, Namibia, Rwanda, Ethiopia

Libya

C3(2) Tunisia Guinea, Angola, Guinea-Bissau, Somalia,

Côte d’Ivoire, Kenya, Niger, RDC

Third wave

C1(3) Libya, Tunisia Zimbabwe, Guinea Mozambique, Rwanda,

Ethiopia

C2(3) Namibia Tanzania, Senegal, Zambia, Mali,

Côte d’Ivoire RDC, Somalia,

C3(3) Egypt, Morocco, Mauritania, Cameroon, Sudan, Madagascar,

Algeria, South Africa, Angola, Kenya Guinea-Bissau, Niger,

Burkina-Faso, Chad

Fourth wave

C1(4) Zimbabwe, Côte d’Ivoire, Ethiopia, Guinea-Bissau

Angola,

C2(4) Libya, Namibia, Guinea, Senegal Mozambique, Rwanda,

South Africa, Morocco, Mauritania RDC, Niger

Zambia,

C3(4) Tunisia, Egypt, Cameroon, Kenya Mali, Somalia, Sudan

Algeria

Fifth wave

C1(5) Zambia

C2(5) Tunisia Kenya

C3(5) Algeria

MeanR

C1 South Africa Zimbabwe, Senegal, Angola Ethiopia, Zambia

C2 Morocco, Algeria, Tunisia, Tanzania, Guinea, Kenya, Mozambique, Sudan,

Libya Mauritania, Nigeria, Guinea-Bissau, Rwanda,

Côte d’Ivoire Mali,RDC,

C3 Egypt Cameroon Somalia, Madagascar, Niger,

Chad, Burkina-Faso

C
(j)
i : is the group i, i = 1, 2, 3 at wave j, j = 1, 2, 3, 4, 5. We show that countries with the highest GDPs in Africa (GDPs above US3000$ per capita), especially South Africa and some North

African countries like Tunisia, Morocco, and Algeria are experienced a significant first wave.
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FIGURE 6

Distribution of the t0 for the first wave.

4. Conclusion

The objective of our paper was to document the Spatio-

temporal variations in the baseline reproduction rate R0

and to understand the reasons for the different disparities

between them. We highlight that more developed countries

experienced a higher incidence in the first wave, which can

be explained by their higher international exposure. We also

show that the quality of health systems played a key role in

limiting virus-related mortality. Consistent with the literature,

we also show that countries with younger populations were

less affected by the pandemic. Finally, we show that climate

also plays a determining role in explaining the reproduction

rate R0. At the end of the analysis of the determinants,

we have made a clustering of the countries in order to

identify which ones have been the most suffering during

this pandemic or on the contrary which ones have been the

most resistant.

Our results show that the geography of the pandemic

in Africa largely overlaps with the geography of the wealth

of the states. Consequently, the fight against poverty and

the development of health infrastructures are sine-qua-non

conditions for an effective fight against future epidemics or

pandemic crises that could occur.
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FIGURE 7

Hierarchical clustering (Dendrogram) for the pandemic, economic, demographic, and climatic variables allows countries to be grouped into 3

separate clusters.

FIGURE 8

Principal components (PC) plot from the principal component analysis (PCA) on the pandemic, economic, demographic, and climatic variables.
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Appendix: Model description

This model consists of the following system of ordinary

differential equations:



























S′(t) = −τS(t)[I(t)+ U(t)]

I′(t) = τS(t)[I(t)+ U(t)]− νI(t)

R′(t) = ν1I(t)− ηR(t)

U′(t) = ν2I(t)− ηU(t)

(1)

Where t ≥ t0 the time in days, t0 is the beginning date

of each wave, S(t) is the number of individuals susceptible to

infection at time t, I(t) is the number of infectious individuals

at time t, R(t) is the number of reported infectious individuals

at time t and U(t) is the number of unreported infectious

individuals at time t. This system is supplemented by initial

condition at time t = t0, (S0, I0,R0,U0).

We assume that the cumulative number of reported

symptomatic cases at time t is proportional to the cumulative

number of symptomatic cases for each time t. Let’s denote the

proportion coefficient by f . Therefore, the rate of asymptomatic

infectious becoming reported symptomatic is ν1 = f ν and

the rate of asymptomatic infectious becoming unreported

symptomatic is ν2 = (1− f )ν.

Table A1 represents the set of parameters that are fixed by

the hypothesis and those evaluated by the country model.

We assume that η =
1
7 and ν =

1
7 , are fixed for

all African countries, which means that the average period

of infectiousness of both unreported symptomatic infectious

individuals and reported symptomatic infectious individuals

and that the average period of infectiousness is 7 days. The

fraction of total infectious cases that are reported f is unknown

and varies from region to region.

The cumulative number of the reported symptomatic

infectious cases at time t is obtained by using the following

equation (21):

CR(t) = ν1

∫ t

t0

I(s)ds (2)

Since in the early stage of the epidemic, all the infected

components of the system grow exponentially and the number of

Table A1 Parameters and initial conditions of the model 1.

Symbol Interpretation Method

t0 Time at which the epidemic started Fitted

S0 Number of susceptible at time t0 Fixed

I0 Number of asymptomatic infectious at

time t0

Fitted

U0 Number of unreported symptomatic

infectious at time t0

Fitted

τ Transmission rate Fitted

1
ν

Average time during which

asymptomatic infectious are

asymptomatic

Fitted

f Fraction of asymptomatic infectious

that become reported symptomatic

infectious

Estimated

ν1 = f ν Rate at which asymptomatic infectious

become reported symptomatic

Fitted

ν2 = (1− f )ν Rate at which asymptomatic infectious

become unreported symptomatic

Fitted

1
η

Average time symptomatic infectious

have symptoms

Fixed

susceptible remains unchanged during a relatively short period

of time t, we can fit an exponentially growing curve CR(t) to

the cumulative reported cases data defined by the following

special form :

CR(t) = χ1 exp(χ2t)− χ3 (3)

with χ1,χ2 and χ3 three positive numbers that we estimate using

log-linear regression and the Genetic algorithm optimization

method (35).

Following (21), we have:



































t0 =
1
χ2

(ln(χ3)− ln(χ1))

I0 =
χ1χ2 exp(χ2t0)

f ν

U0 =
ν2

η+χ2
I0 =

(1−f )ν
η+χ2

I0

τ =
χ2+ν
S0

η+χ2
ν2+η+χ2

R0 =
τS0
ν (1+ ν2

η )

(4)
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1Department of Information Science, Kuwait University, Kuwait City, Kuwait, 2Surgery Department,
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Background: The high infection rate, severe symptoms, and evolving aspects

of the COVID-19 pandemic provide challenges for a variety of medical systems

around the world. Automatic information retrieval from unstructured text is

greatly aided by Natural Language Processing (NLP), the primary approach

taken in this field. This study addresses COVID-19 mortality data from the

intensive care unit (ICU) in Kuwait during the first 18months of the pandemic. A

key goal is to extract and classify the primary and intermediate causes of death

from electronic health records (EHRs) in a timely way. In addition, comorbid

conditions or concurrent diseases were retrieved and analyzed in relation to a

variety of causes of mortality.

Method: An NLP system using the Python programming language is

constructed to automate the process of extracting primary and secondary

causes of death, as well as comorbidities. The system is capable of handling

inaccurate and messy data, this includes inadequate formats, spelling mistakes

and mispositioned information. A machine learning decision trees method is

used to classify the causes of death.

Results: For 54.8% of the 1691 ICU patients we studied, septic shock or

sepsis-related multiorgan failure was the leading cause of mortality. About

three-quarters of patients die from acute respiratory distress syndrome (ARDS),

a common intermediate cause of death. An arrhythmia (AF) disorder was

determined to be the strongest predictor of intermediate cause of death,

whether caused by ARDS or other causes.

Conclusion: We created an NLP system to automate the extraction of causes

of death and comorbidities from EHRs. Our method processes messy and

erroneous data and classifies the primary and intermediate causes of death of

COVID-19 patients. We advocate arranging the EHRwithwell-defined sections

and menu-driven options to reduce incorrect forms.

KEYWORDS

natural language processing, text mining, information extraction, SARS-CoV-2,

mortality, decision tree, prediction
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Introduction

The COVID-19 pandemic has had a significant impact

on how and where healthcare is delivered effectively and

efficiently. During the pandemic, the need for novel and current

technologies arise to assist in predicting clinical outcomes in

critical time with the high overflow of patients. Clinical (text)

notes constitute a major source of medical data and are rarely

used to their full capacity, even though they include a wealth

of subjective information. Prior to electronic health records

(EHRs), practitioners had to manually collect data from clinical

notes, which was costly and difficult to scale up. Despite the

expanding volumes of healthcare data, Kong (1) claims that over

80% of text, image, signal, and other medical data collections

remain unstructured and unused. One main goal in medical

research is to use EHRs to extract and analyze well-structured

data. Many methods were devised and evaluated using EHRs for

detecting patients with known risk factors for consequences such

as stroke and significant bleeding (2), as well as investigating the

difficulties of decoding and comprehending clinical narratives

(3). Natural language processing (NLP) can expedite diagnosis

and care to patients who are most vulnerable during pandemics

by using textual data from medical records. According to

Zhou et al. (4), only NLP can extract information about

a patient’s family history from free-text clinical papers. The

researchers employed word embeddings and a Convolutional

Neural Network (CNN) to recognize International Classification

of Diseases (ICD-10) diagnostic codes in discharge notes and

outperformed current methods with little data preparation (5).

Artificial Intelligence (AI) and Machine Learning (ML)

technologies including NLP can be used to aid in the diagnosis

and treatment of individuals suffering from acute and chronic

diseases during the COVID-19 pandemic. DeCapprio et al. (6)

used medical records that had already been made public as

COVID-19 proxies (pneumonia, influenza, acute bronchitis, and

upper respiratory illnesses). Zoabi et al. (7) came up with a

machine learning decision tree model that predicts a positive

COVID-19 infection in an RT-PCR test during the first month

of the pandemic. Izquierdo et al. (8) used a mix of traditional

epidemiological methods, NLP, and ML predictive modeling to

find out what symptoms COVID-19 patients have that make

them likely to be admitted to the ICU. Guan et al. (9) employed

simple-tree XGBoost to identify high-risk COVID-19 cases and

assessed howmuch faster causes of deathmay be identified using

minimally preprocessed notes.

This study intends to construct an NLP system to automate

the extraction of primary and secondary causes of death, as

well as comorbidities, from the mortality EHRs of COVID-19

patients admitted to the ICU in Kuwait during the pandemic.

Since many of the free-text notes were inadequately formatted,

contained spelling mistakes and were placed in the wrong field,

acquiring sufficient and reliable data was the largest hurdle. In

fact, the causes of death in most records in our data were not

expressed precisely nor was in the correct field although the

EHRs file is mortality specific.

Other work in the literature used available clean EHRs for

their analysis. However, EHRsmay sometimes be inaccurate and

noisy due to them being compiled under extreme pressures of

time and manpower due to the large influx of patients with

critical cases, such as the case during the pandemic. EHRs need

to be first corrected and cleaned to be used for proper analysis or

be used in medical systems such the Unified Medical Language

System (UMLS) and SNOMED CT. Otherwise, a significant

amount of information will be lost.

To correct the EHRs we used physicians as the domain

knowledge experts to understand and extract the common

mistakes in the EHRs that were done by their fellow physicians.

Their knowledge and findings were converted to a Python

language code to automate cleaning and fixing the data in the

EHRs. Also, the Python code used the domain expert knowledge

to distinguish between acute diseases and causes of death in

some circumstances. In addition, the causes of death were

classified to a direct cause or a related one. Comorbidities

were used as an important factor in analyzing the cause of

death. This will offer precise information on the casuality and

spectrum of comorbidities in fatal instances, allowing for an

accurate evaluation of COVID-19’s hazardous nature. Finally,

we have utilized a decision tree-based model to predict death

due to ARDS or other complications. These findings can assist

healthcare systems to plan for the spread of future pandemics

and identify groups at risk.

Methods

The data

Data on COVID-19 mortalities were retrieved from Jaber

Hospital’s mortality Electronic Health Records (EHR) for all

patients admitted to the ICU betweenMarch 7, 2020, and August

19, 2021, and death reported betweenMarch 7, 2020, and August

27, 2021. The data set contains 1691 cases after excluding 12

children (<17 years old) and 46 with no data entries. The

monthly total death rate in Kuwait is depicted in Worldometer

cite (10). On the final day of data collection for this study, the

total number of COVID-19 deaths was reported to be 2415;

thus, our sample size covers 70% (1691/2415) of the COVID-

19 mortality population. We also covered all death peaks and

pandemic main waves during this time.

Initially, the data was extracted as a pdf file and then

converted to an Excel spreadsheet. Patients’ demographics (age,

gender, and residency), date of ICU admission, date of death,

reasons for admission, admission diagnosis, final diagnosis,

cause of death, brief history, brief summary, and contributing

factors are all included in each record. To ensure confidentiality,

all data was anonymized and all patient identifiers were
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FIGURE 1

Word cloud plot of death causes and contributing factors.

removed. Additional data cleansing were also performed to

ensure data accuracy.

Creating corpus of terminologies

The data sheet obtained from EHR has mainly eleven

columns: date of admission to ICU, date of death, age at death,

admission diagnosis, reason for admission, final diagnosis, cause

of death (COD), brief history, brief summary, and contributing

factors. Except for the first three, all remaining columns are

text features.

The underlying cause of death, such as “COVID-19” or

“COVID 19 pneumonia,” was listed in the COD column in

many records, whereas the primary/intermediate causes were

found explicitly or indirectly in the brief summary or brief

history columns. Furthermore, there were two major flaws in

the free-text notes in the mortality EHR. The first issue is that

many terminologies have misspellings or improper forms. For

example, multiorgan failure is referred to as “Multi-Organs”

or “Multiorgan Failure.” The second issue is inconsistency

in the reporting of text notes. The causes of death are not

always listed in the data columns that you would expect.

Comorbidities, on the other hand, are not consistently included

in the list of contributing factors. As a result, we are unable

to use the existing NLP tools or Unified Medical Language

System (UMLS). We had to develop our own system to extract

concepts, knowledge, and relationships from the mortality EHR

at hand.

TABLE 1 Primary causes of death.

Primary COD (Abbrev.) Alternative terms

Cardiopulmonary arrest (CPA) Cardiopulmonary collapse, cardiorespiratory

arrest, cardiorespiratory failure,

cardiorespiratory collapse, circulatory

collapse, asystole

Cardiac arrest (CA) Cardiogenic shock, cardiovascular collapse,

cardiac event, bradycardic arrest, STEMI

Respiratory failure (HRF) Pulmonary failure, pulmonary arrest,

pulmonary dysfunction, hypoxia, hypoxic,

hypoxemia, hypoxemic, desaturate

Multiorgan failure (MOF) MODS, multiple organ dysfunction

syndrome, multi organ failure, multiple

organ failure, multisystem failure

Hepatic failure (LF) Liver failure, worsening liver function,

hepatic failure

Renal failure (RF) kidney failure, dialysis, CRRT

Septic shock (SS)

CODs and comorbidity glossary tables

Our strategy is to extract the causes of death (COD) and

comorbidities/diseases by using NLP techniques such as a bag-

of-word (BoW) model. The BoW model will be applied on each

column to extract all terms and phrases that represent the CODs

and comorbidities for each patient. The model achieves this

by tokenizing all text columns in the data sheet and creating

a case/term occurrence matrix where each row represents a
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TABLE 2 Intermediate causes of death.

Intermediate COD (Abbrev.) Alternative terms

Acute respiratory distress syndrome (ARDS) Mechanical ventilation, acute respiratory failure, hypoxic respiratory failure, HRF

Acute kidney failure (AKI) Acute kidney injury, renal impairment, anuric, hyperkalemia, dialysis

Pulmonary embolism (PE) DVT collapse, thrombosis

Heart failure (HF) Rescue PCI, cardiomyopathy, myocarditis

Stroke (ST) CVA, cerebrovascular accident, failed thrombolysis, hemorrhagic cerebral, subdural, subarachnoid hemorrhage, hge

Pneumothorax (PN) Tension pneumothorax, hemothorax, hemopneumothorax, hydropneumothorax, pneumoperitoneum, bilateral chest

tubes, chest tube

Myocardial infarction (MI) STEMI, PCI, CCU, ischemic changes, cardiac strain, st elevation, troponin elevated, NStemi

Arrhythmia (AR) Ventricular fibrillation, VFib, ventricular tachycardia, vtach, rhythm, atrial fibrillation, AF, PAF

Bleeding (BL) ICH, hematoma, AVM, intracerebral hemorrhage, epistaxis, PRBC, transfusion, melena, upper GI bleeds

Disseminated intravascular coagulation (DI) DIC

Urinary tract infection (UT) UTI, urinary tract infection, urosepsis, E.col

TABLE 3 General disease categories (GDC), comorbidities and other risk factors.

GDC (Abbrev.) Comorbidity/risk factor (Abbrev.)

Endocrine, nutritional, and metabolic diseases (ENMs) Diabetes mellitus (DM), thyroid disease (THY), dyslipidemia (DLP), obesity (OB), Addison disease (ADs)

Diseases of the nervous system (DNS) Stroke (CVA), Parkinson’s disease (PD), dementia (DEM), multiple sclerosis (MS), epilepsy (EP), psychiatric

disorders (OCD)

Diseases of the circulatory system (DCS) Hypertension (HTN), anemia (IDA), pulmonary embolism (PE), peripheral vascular disease (PVD), bleeding

disorders (BDs)

Cardiovascular system diseases (CVD) Coronary artery disease (CAD), cardiomyopathy (HCM), valvular heart disease (AVR), heart failure (HF),

arrhythmia (AF)

Respiratory diseases (RDs) Asthma (BA), chronic obstructive pulmonary disease (COPD), lung disease (LD)

GI disorders (GIDs) Inflammatory bowel disease (IBD), gastroesophageal reflux (GERD), liver disease (LD)

Diseases of the genitourinary (DGS) Chronic kidney disease (CKD), benign prostatic hyperplasia (BPH)

Autoimmune disorders (ADs) Rheumatoid arthritis (RA), Immunecompromised (IC) (a risk factor)

Ortho disorders (ODs) Bone disorders (OA)

Infectious diseases (IDs) HIV-infection (HIV)

Neoplasms (CRC) Cancer (CA) of any kind

Congenital disorders (CDs) Down syndrome (DS)

patient’s case and each column represents each medical term

relating to a cause of death or comorbidity, all other word tokens

will be omitted. The cells of the matrix will contain a 0 or 1

representing the occurrence or absence of the term from the

case. The terms related to cause of death will be categorized to

three stages similar to the fashion of death certificates. These

stages are the primary, intermediate and the underlying cause

(which led to the intermediate).

The list of primary causes of death, according to WHO

guidelines, denotes the condition (injury, complication,

or disease) that directly preceded death. WHO issued an

updated International Classification of Diseases (ICD) and

health-related problems to accommodate COVID-19-related

death complications (11). The condition(s) that led to the

primary COD are reflected in the intermediate COD. Multiple

complications contributing to the intermediate COD were

identified in the majority of COVID-19 decedents in the ICU in

this study. Additionally, COVID-19 pneumonia was the most

frequently encountered underlying cause in those ICU cases,

resulting in an intermediate stage of complication.

In order to create BoW, the COD and comorbidity terms

were extracted from the EHR in several steps. Starting with

a preliminary text analysis using the text mining package

(tm) and the word cloud generator package (wordcloud) in

R to extract the most common terms (Figure 1). To create

glossary tables, our medical experts validated the extracted

terms by reviewing 50–100 EHRs at random. The process

was repeated four times to ensure that the majority of the

terminologies were covered. This helped identify alternative

terminologies and misspelled terms. Tables 1, 2 show the refined
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FIGURE 2

Primary and Intermediate CODs encoding flowchart.

FIGURE 3

Pseudocode for Primary COD.

list of primary COD and intermediate COD. In accordance

with the International Classification of Diseases (11), Table 3

provides twelve general disease categories (GDC), 34 distinct

comorbidities, and a risk factor associated with our data.

Detailed versions of Tables 1–3, including all potential alternate

terms and/or incorrect forms may be requested from the

corresponding author.

Developing and applying NLP methods

We created an NLP method to identify, extract, and

automatically encode natural language from mortality EHRs

into structured clinical data. Tables 1, 2 are used as keywords to

extract primary and intermediate CODs, while Table 3 presents

keywords to extract comorbidities. Method created in Python.

Figure 2 shows our algorithm.

In this method, text is stripped of punctuation, special

characters, capitalization, stop words, and tokenization. Used

EHR variables include cause of death, final diagnosis, brief

history, and brief summary. To create a case/COD term

occurrence matrix, binary variables must be created for

each primary/intermediate COD listed in Tables 1, 2. Initial

occurrence matrix setting is zero. CODs or equivalents are

compatible with tokens. The case/term occurrence matrix cell

is set to 1 upon a match. Every case applies (rows). A COD

abbreviation was not mistaken for a term, as PE is not present

in hypertensive or hyperthyroid. Negation was also carefully

handled; if a term is preceded by a negative or conditional word,

it will not match. Exclusion words consist of (no, not, no sign of,

non, no history of, no active, no previous medical, not known

to have, no indications of, previous condition, old condition).

Text format is used to list the final primary and intermediate

CODs. The pseudocode used to extract the final primary COD is

depicted in Figure 3.

Determining the actual intermediate CODs are handled

differently. Multiple intermediate CODs are reported as a group.

Our clinicians manually validated and separated the correct

outcome to determine which disorders were terminal. A counter

matching the extracted causes is also computed to help identify

the terminal cause based on the most common causes to cross-

check the accuracy of the findings.

The comorbidities for each case are identified using

Table 3 in the same manner that CODs are identified.

Preprocessed word tokens are extracted from the EHR reason

for admission, contributing factors, admission diagnosis and

brief summary.
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Data manipulation and analysis

Original EHR mortality data had two sets of variables. First

set included seven categorical and quantitative variables. Second

set included eight free-text variables. The pdf data sheet was

converted to an Excel sheet for data manipulation and cleaning.

The second set of data was used to generate 70 variables using

Python to determine death causes and comorbidities. During

exploratory data analysis, we generated appropriate graphs

(bar, pie, boxplots) and summary statistics (mean, median, SD,

IQR). Hypothesis tests included Chi-square, TURF, ANOVA,

and Kruskal Wallis. Finally, we built our prediction model

with a decision tree. SPSS V23 and R were used for the

statistical analysis.

Results

Overall findings

The majority of the 1,691 anonymous COVID-19 decedents

were male 963 (56.9%). The age at death ranges between

19.8 and 103.2 years with 63.8 years (SD 14.4). On the

average the duration stay in ICU prior to death was 18.5

TABLE 4 Demographic and clinical characteristics.

Variable Summary Count (%) Graph

Age Mean (sd): 63.8 (14.4)

min ≤med ≤max: 19.8 ≤ 64.5 ≤ 103.2

IQR (CV): 20.7 (0.2)

662 distinct values

Age group 1. (< 50) years

2. (50–64) years

3. (65+) years

303 (17.9%)

573 (33.9%)

815 (48.2%)

Gender 1. Female

2. Male

728 (43.1%)

963 (56.9%)

ICU (days) Mean (sd): 18.5 (12.8)

min ≤med ≤max: 0 ≤ 16 ≤ 86

IQR (CV): 14 (0.7)

74 distinct values

Total comorbidities Mean (sd): 2.7 (1.9)

min ≤med ≤max: 0 ≤ 3 ≤ 11

IQR (CV): 3 (0.7)

12 distinct values

Total comorbidities group Mean (sd): 2.6 (1.7)

min ≤med ≤max: 0 ≤ 3 ≤ 6

IQR (CV): 3 (0.6)

0 : 172 (10.8%)

1 : 288 (18.1%)

2 : 333 (20.9%)

3 : 304 (19.1%)

4 : 245 (15.4%)

5 : 143 (9.0%)

6 : 110 (6.9%)
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days (SD 12.8). Two or more comorbidities were present

(mean 2.5, SD 1.9) with hypertension and diabetes mellitus

shared among more than half of them (Table 4). Since

these patients died in the intensive care unit, COVID-19

pneumonia was mainly the underlying cause of death

that resulted in intermediate and thus primary causes of

death. COVID-19 pneumonia was detected in 94 percent of

cases (1592/1691).

TABLE 5 Demographic and clinical characteristics by age group.

Age group (yrs.)

Variable N Overall Age < 50 Age [50-64] Age =65+ p-valueb

N = 1,691a N = 303a N = 573a N = 815a

Age 1,691 64 (54, 74) 43 (39, 47) 58 (54, 62) 75 (70, 81) <0.001

Gender 1,691 0.003

Female 728 (43%) 114 (38%) 229 (40%) 385 (47%)

Male 963 (57%) 189 (62%) 344 (60%) 430 (53%)

ICU (days) 1,691 16 (10, 24) 14 (9, 23) 16 (10, 24) 16 (10, 24) 0.19

Total comorbidities 1,596 3 (1, 4) 1 (0, 2) 2 (1, 3) 3 (2, 5) <0.001

Unknown 95 0 33 62

Total group comorbidities 1,595 <0.001

0 172 (11%) 111 (37%) 61 (11%) 0 (0%)

1 288 (18%) 85 (28%) 122 (23%) 81 (11%)

2 333 (21%) 59 (19%) 136 (25%) 138 (18%)

3 304 (19%) 30 (9.9%) 99 (18%) 175 (23%)

4 245 (15%) 12 (4.0%) 72 (13%) 161 (21%)

5 143 (9.0%) 2 (0.7%) 32 (5.9%) 109 (14%)

6 110 (6.9%) 4 (1.3%) 18 (3.3%) 88 (12%)

Unknown 96 0 33 63

aMedian (IQR) or Frequency (%).
bKruskal-Wallis rank sum test; Pearson’s Chi-squared test.

FIGURE 4

Combined intermediate complications and terminal Intermediate COD.
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TABLE 6 Primary by intermediate causes of death.

Primary COD count (%)

Inter-mediate COD SS CPA HRF CA SS + MOF MOF RF Total

AR 53 (7.9) 26 (8.6) 11 (4.7) 26 (14.4) 14 (10.4) 12 (9.6) 3 (6.8) 145 (8.6)

ARDS 523 (78.4) 220 (72.4) 194 (82.6) 117 (65) 94 (69.6) 8 (64.8) 35 (79.5) 1,265 (74.8)

BL 12 (1.8) 3 (1) 5 (2.1) 3 (1.7) 1 (0.7) 5 (4) 0 (0) 29 (1.7)

DI 14 (2.1) 2 (0.7) 0 (0) 1 (0.6) 11 (8.1) 4 (3.2) 1 (2.3) 33 (2)

HF 0 (0) 2 (0.7) 0 (0) 1 (0.6) 0 (0) 1 (0.8) 0 (0) 4 (0.2)

MI 23 (3.4) 26 (8.6) 4 (1.7) 21 (11.7) 5 (3.7) 9 (7.2) 0 (0) 88 (5.2)

PE 14 (2.1) 16 (5.3) 12 (5.1) 7 (3.9) 5 (3.7) 5 (4) 1 (2.3) 60 (3.5)

PN 22 (3.3) 8 (2.6) 7 (3) 3 (1.7) 2 (1.5) 6 (4.8) 3 (6.8) 51 (3)

ST 2 (0.3) 1 (0.3) 1 (0.4) 1 (0.6) 1 (0.7) 0 (0) 0 (0) 6 (0.4)

UT 2 (0.3) 0 (0) 1 (0.4) 0(0) 1 (0.7) 1(0.8) 0 (0) 5 (0.3)

Total 667 (100) 304 (100) 235 (100) 180 (100) 135 (100) 125 (100) 44 (100) 1,691 (100)

When the mean ICU stay was compared across the three

age groups of <50, 50–64, and 65 or more, no significant

difference (Table 5) using the ANOVA F-test (p-value = 0.903).

On the other hand, testing for mean total comorbidities across

these three age groups was significant (p-value <0.0001), and

the Tukey B multiple comparison test reveals significance with

three means for groups in homogenous subsets of mean total

comorbidities of 1.25, 2.19, and 3.28, respectively.

Clinical characteristics and common
causes of death among COVID-19
patients

We identified primary and secondary causes of death. Septic

shock was the primary COD in 667 patients (39.4%), followed

by cardiopulmonary arrest 304 (18.0%), respiratory failure 235

(13.9%), and cardiac arrest 180 (10.6%). The percentages of

cases with (septic shock & MOF), MOF, and renal failure were

135 (8.0%), 125 (7.4), and 44 (2.6%), respectively. Hepatic

failure occurred in only one case and thus ignored from further

analysis. On the other hand, ARDS was one of the main reasons

for ICU admissions and was reported in all deaths. Numerous

cases were reported in which a combination of intermediate

death complications occurred. These cases were thoroughly

examined by our physicians to determine which terminal

complication is more likely to be classified as the intermediate

COD. It was found that around 75% of these decedents had

ARDS as an intermediate COD, while the remaining 25% had

intermediate COD other than ARDS. Among the other causes

are AKI, AR, BL, DI, HF, MI, PE, PN, ST, and UT. The frequency

distribution of intermediate combined complications along with

the frequency distribution of the terminal complication leading

to intermediate COD are shown in Figure 4. Table 6 shows the

count and percentage of counts for primary and intermediate

causes, as well as the column percentages for primary causes.

While ARDS is the most prevalent intermediate COD regardless

of primary cause, AR and MI disorders were significantly (7.2–

14.4%) linked with cardiac arrest and MOF.

Age distribution appears to be similar by primary COD, with

a median age at death of 64.5 years and an interquartile range

(IQR = 20.7). However, a few young patients, approximately

the age of 20, died because of MOF or renal failure (Figure 5).

The median length of stay in the ICU prior to death was

approximately 16 days overall but was significantly longer (∼

20 days) for those who died of septic shock or (septic shock

+ MOF). Patients who died because of MOF had an average

of three or more comorbidities. Those who died of renal

failure and (septic shock + MOF) died in a manner like that

described above.

Those who died because of AR, DI, or MI had the highest

average age (70 years) and total comorbidities (3 or more),

as well as the shortest average stay in the ICU. Patients who

died of HF were younger (average age 50 years) and had more

than two comorbidities, with an ICU stay of < 20 days. We

also noticed the sequences of (MI → septic shock) and (PE →

respiratory failure) were associate with 4 or above comorbidities

on the average.

Exploring the relationship between
comorbidities and causes of death

The following is a list of the comorbidities of dead patients in

this study. Hypertension (57%) is the most common condition,

followed by diabetes (52%), coronary artery disease (23%),

and chronic renal disease (14%). 12% for each arrhythmia

and dyslipidemia, cancer (11%), Rheumatoid arthritis (10%),
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FIGURE 5

Primary and Intermediate CODs distribution by age and clinical characteristics.

TABLE 7 Best reach and frequency by group size.

Size Reach Cases % Count Responses %

ADDED: HTN 1 962 56.9 962 27.7

ADDED: DM 2 1,139 67.4 1,834 52.9

KEPT: HTN

ADDED: Cancer 3 1,195 70.7 2,026 58.4

KEPT: DM, HTN

ADDED: RA 4 1,234 73.0 2,196 63.3

KEPT: Cancer, DM, HTN

ADDED: AF 5 1,266 74.9 2,402 69.3

KEPT: Cancer, DM, HTN, RA

ADDED: Obesity 6 1,296 76.6 2,550 73.5

KEPT: AF, Cancer, DM, HTN, RA

obesity (9%), thyroid disease (8%), stroke (7%), pulmonary

embolism (5%), asthma (4%), valvular heart disease (4%),

bleeding disorders (4%), and 3% for each COPD and dementia.

The remaining comorbidities with < 3% reported incidence

include Anemia, heart failure, prostate hyperplasia, liver disease,

epilepsy, cardiomyopathy, peripheral vascular disease, lung

disease, psychiatric disorders, osteoporosis, multiple sclerosis,

down syndrome, Parkinson’s disease, inflammatory bowel

disease, gastroesophageal reflux disease, Addison disease, and

HIV infection.

Next, we present the results of the Total Unduplicated Reach

and Frequency (TURF) method. TURF is a popular statistical

technique in market research that ranks product combinations

according to the number of customers who favor them (12).

In this study, we applied the method in a clinical setting,

treating comorbidities and patients as products and people.
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The goal is to determine the most likely disease combinations

that these patients share. The analysis traverses all possible

combinations of comorbidities and records two statistics for

each: reach and frequency. The reach is the percentage of

individuals who exhibit at least one comorbidity in a given

combination, and the frequency is the total number of times

comorbidities are exhibited in a given combination. We tested

the method for all comorbidities listed in Table 3 and a range of

reach values. Table 7 provides a summary of the ideal choices

according to the number of diseases (Size). For instance, the

optimal combination of four comorbidities has a 73 percent

FIGURE 6

Proportions of general disease categories by Intermediate COD.

success rate with RA, cancer, DM, and HTN. This indicates

that seventy-three percent of the patients had at least one of

the conditions (rheumatological disorders, cancer, DM, HTN).

If Diabetes and High Blood Pressure were eliminated from

the analysis due to their high prevalence and we wanted

to evaluate other possible combinations of diseases, the one

with the highest prevalence was (obesity, CAD, Cancer, RA)

with 43.6%.

When we looked at the general disease classification

frequencies, we found that over 60% of the patients had

circulatory (DCS) and endocrine (ENMS) disorders, one-

third had cardiovascular diseases (CVD), and the remaining

categories (RDs, CRC, DNS, ADs, DGS) varied from 8 to

15%. In compared to patients who died of ARDS/PE/Other,

approximately 65 percent of patients who died of MI or AR had

cardiovascular illnesses (Figure 6). Those who die from ARDS,

on the other hand, usually have endocrine or circulatory system

problems. Nervous system diseases were the least common

among the PE dead. With chi-square test findings of (175.5,

p-value 0.001) and (12.2, p-value = 0.016), the circulatory

and nervous systems had the most significant association with

intermediate COD.

Predicting death due to ARDS or other
causes

The total comorbidities distribution by age group of

COVID-19 deaths due to ARDS or other cause is displayed in

FIGURE 7

Total comorbidities by age group due to ARDS or other causes of death.
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FIGURE 8

Decision Tree prediction model of ARDS/Other causes of death.

Figure 7. Patients under the age of 50 have a similar comorbidity

distribution, with an average of one disease. Two comorbidities

were found on average per age group (50–64) with more

variation among those who died from causes other than ARDS.

In contrast, older patients (age>65) who died from causes other

than ARDS have an average of four comorbidities, compared to

three for the other group who died mainly from ARDS.

In this section, we used decision tree (DT) to determine

the most parsimonious predictors of intermediate COD among

COVID-19 patients in intensive care units. Decision trees learn

to divide data into smaller and smaller categories to forecast

the goal. The test is represented by a node, while the numerous

outcomes are represented by edges. The dividing process is

repeated until no further gains can be obtained or a preset

rule is reached. Three common decision tree techniques include

classification and regression tree (CART), chi-squared automatic

interaction detection (CHAID), and quick unbiased efficient

statistical tree (QUIEST). For mathematical explanations and

performance comparisons of these DT approaches, see Lin et al.

(13). Figure 8 illustrates the results of the QUEST model, which

demonstrate that the existence of an arrhythmia (AF) was the

best indicator of the intermediate cause (ARDS/Other). Patients

with AF are more likely to have a cause other than ARDS

(54.9%). Node 1 is considered a terminal node for predicting a

cause of death other than ARDS since no child nodes was found

below it. In patients without AF, on the other hand, CAD was

the second-best predictor of (ARDS/Other). In patients without

AF but with CAD, the terminal Node 3 predicted 66.9 ARDS

vs. 33.1% for other causes. PE is an additional predictor in the

model for patients who do not have AF or CAD. ARDS is the

main intermediate COD in this group, accounting for over 83%

of patients without PE and 58% of patients with PE who died

from ARDS. The risk and classification tables allow for a quick

evaluation of themodel’s performance. The risk ofmisclassifying

the cause of death is estimated to be 0.272 (or 27.2%), which is

consistent with the results of the classification table, which show

that 76% of causes of death are correctly classified.

Discussion

We used Machine learning NLP to extract clinical data

and causes of death from EHRs for COVID-19 patients

at Jaber Hospital in Kuwait. Consistency and completeness

issues with the text data in these records made extraction

difficult. During the pandemic, Jaber hospital was restricted

to COVID-19 admissions, with most critical cases transferred

from other hospitals. Many patient records were incomplete

due to patients being transferred from district hospitals where

their original medical records were kept. Machine learning and

big data analytics have been used to investigate disease-related

prognostic factors (14).

Several clinical characteristics have been linked to COVID-

19 mortality. Age, gender, comorbidities, ICU stay, and disease

severity are all factors. Increased proportions of 65-year-olds

or older led to a significant age-mortality association (15, 16).

Males were more likely to die from COVID-19 (17, 18). More

than double the number of death patients had two or more

comorbidities, according to Ayed et al. (17). Combining old age

and comorbidities was also a factor in death (19) and survival

time (20). On the other hand, Zhou et al. (21) reported a median

(IQR) time of 18.5 (15–22) days from onset of symptoms to

death. In our study, 815 (48%) of 1691 deceased ICU COVID-19

patients were over 65, men were more prevalent (56.9 vs. 43.1%),

patients with two or more comorbidities accounted for 52% of

cases, and the mean (SD) survival time to death was 18.5 (12.8)

days. Hypertension and diabetes accounted for more than half of

all cases in this study. This confirms prior research (17, 22–24).

In COVID-19 patients, cardiovascular disease and secondary

infections increase disease severity and mortality (15, 25, 26).

Circulatory and cardiovascular diseases account for 61.6 and

32.5% of these patients, respectively; HIV-infections are rare.

COVID-19 patients had a higher incidence of kidney and heart

disease, and myocardium damage reduced survival (16, 27, 28).
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Previous research on comorbidities and death causes

has linked dysfunction to mortality (17, 29). In this study,

decedents with MOF and renal failure averaged three or

more comorbidities. Septic shock was the leading primary

cause, accounting for 667 deaths (39.4%), followed by

cardiopulmonary arrest (304 deaths, 18%), respiratory failure

(235 deaths, 13.9%), and cardiac arrest (180 deaths, 10.6%).

The most common intermediate COD, on the other hand, was

ARDS (1265, 74.8%). We also found 849 (50.2%) cases of sepsis.

Other findings (21) revealed that sepsis was the leading cause

of death (59%) among the 54 pandemic deaths, followed by

respiratory failure (54%), ARDS (31%), heart failure (23%), and

septic shock (20%).

Acute respiratory distress syndrome (ARDS) is a severe

COVID-19 consequence. Patients with moderate-to-severe

ARDS require invasive mechanical ventilation and intensive

medical therapy (30, 31). ARDS was one of the most common

reasons for ICU hospitalizations, as it was recorded in 81.8% of

ICU survivors and all fatalities (32). This is also demonstrated

in our data, as all patients were admitted to the intensive care

unit, and ARDS was a common morbid consequence. However,

complications other than ARDS were deemed the predominant

intermediate COD in 25% of the cases (Figure 4). As a result,

we employed decision trees to forecast the most significant

contributing factors to intermediate COD, namely ARDS or

Other cause. “Other” denotes a complication associated with

AKI, AR, BL, DI, HF, MI, PE, PN, ST, or UT. We encountered

only three significant predictors, namely arrhythmia (AF),

coronary artery disease (CAD), and pulmonary embolism

(PE). Patients with AF were more likely to have an etiology

other than ARDS. According to Elezkurtaj et al. (33), the

majority of decedents died from COVID-19, with preexisting

health conditions and comorbidities only contributing to the

mechanism of death. We agree because, among the many

variables examined in this study, only a few contributing factors

were found to be significant with intermediate COD.

Strengths, limitations, and future work

The dynamic nature of the method, its usability, and its

potential to maintain self-control all contribute to its strength.

In addition, the sampled data span both significant pandemic

waves and death peaks, accounting for 70% of the total reported

COVID-19 fatality cases in Kuwait. The death rate drastically

decreased after then. Therefore, our sample represents the

population under consideration to a high degree of accuracy.

Nevertheless, our study has several limitations. First, there is a

chance of selection or referral bias as the research was conducted

at a single location, i.e., Jaber Hospital. Second, the lack of

information extracted from the inadequate documentation of

the patient records. The absence of a symptom (such as obesity,

smoking, etc.) does not necessarily suggest that a patient is

symptom-free. Thirdly, patients were typically transferred late

in the course of their disease, and their medical records lacked

vital medical history information. Such discrepancies in clinical

datamay result in information bias that contributes to a decrease

in model precision.

Future studies could potentially investigate the impact of

vaccines on the time to death, provide survival time estimates

by cause of death, and perform spatiotemporal analyses of

transferable patients. Knowing the COVID-19 death rate and

patient survival rate can help risk management experts. COVID-

19 or its evolving variants can be avoided, and strategies can be

used to slow their spread.

Conclusion

We employ self-developed natural language processing

(NLP) to automate the extraction of causes of death and

comorbidities from the EHRs of COVID-19 decedents from the

beginning of the pandemic through all major pandemic waves

in this study. We structured the acquired text data and used it to

conduct additional research.

We analyzed the demographic, clinical, and causes of death

data for 1,691 ICU patients and discovered that the most

common primary causes of death, which were documented in

54.8% of cases, were infection-related and included septic shock

or sepsis-related multi-organ failure. The second most common

cause of death was respiratory failure or cardiopulmonary arrest,

which were documented in 32.2% of cases. Furthermore, cardiac

arrest and renal failure account for 10.6 and 2.6% of all deaths,

respectively. ARDS, on the other hand, was the most common

cause of mortality in the intermediate stage. Arrhythmia (AF)

was revealed to be the strongest predictor of intermediate cause

(ARDS/Other) using machine learning decision tree analysis.

We recommend structuring the EHR with well-defined

sections and providing menu-driven options for reporting

causes of death and comorbidities to minimize misspellings or

incorrect forms. Comprehensive assessment and user guidance

are required for standards to be effectively integrated into

EHR systems.
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Non-pharmaceutical interventions (NPIs) play a central role in infectious

disease outbreak response and control. Their usefulness cannot be overstated,

especially during the early phases of a new epidemic when vaccines and

e�ective treatments are not available yet. These interventions can be very

e�ective in curtailing the spread of infectious diseases when adequately

implemented and su�ciently adopted by the public. However, NPIs can be

very disruptive, and the socioeconomic and cultural hardships that come

with their implementation interfere with both the ability and willingness of

a�ected populations to adopt such interventions. This can lead to reduced

and unsteady adherence to NPIs, making disease control more challenging to

achieve. Deciphering this complex interaction between disease dynamics, NPI

stringency, and NPI adoption would play a critical role in informing disease

control strategies. In this work, we formulate a general-purpose model that

integrates government-imposed control measures and public adherence into

a deterministic compartmental epidemic model and study its properties. By

combining imitation dynamics and the health belief model to encode the

unsteady nature of NPI adherence, we investigate how temporal variations in

NPI adherence levels a�ect the dynamics and control of infectious diseases.

Among the results, we note the occurrence of multiple epidemic waves as

a result of temporal variations in NPI adherence and a trade-o� between

the stringency of control measures and adherence. Additionally, our results

suggest that interventions that aim at increasing public adherence to NPIs

are more beneficial than implementing more stringent measures. Our findings

highlight the necessity of taking the socioeconomic and cultural realities of

a�ected populations into account when devising public health interventions.

KEYWORDS

SEIR model, non-pharmaceutical interventions, time-varying adherence, epidemic

waves, numerical simulations
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1. Introduction

An important aspect of the control of infectious diseases

is the use of non-pharmaceutical interventions (NPIs) such as

social distancing, mask-wearing, school closures, mass gathering

bans, and lockdowns that aim to change key aspects of

human behavior to reduce transmission rates. Their usefulness

cannot be overstated, especially during the early phases of a

new epidemic when vaccines are not available yet. The still

ongoing COVID-19 pandemic has underscored the value of

these interventions even beyond the early phases of an epidemic.

Various studies have shown, for instance, the necessity of

keeping NPIs in place during the vaccine rollout in 2021, a

year after the start of the pandemic (1, 2). The literature on

the usefulness of NPIs and their effects on the transmission

dynamics of COVID-19 is vast (3–9).

However, as the COVID-19 pandemic has shown, disease

control measures can come with unprecedented damages to

economies and overall well-being that usually interfere with the

willingness and capabilities of the public to adopt recommended

health behaviors. This can lead to reduced and unsteady

adherence to NPIs, making disease control more challenging to

achieve. Additionally, the COVID-19 pandemic has highlighted

the fact that faced with the same public health threat, countries

will implement interventions of varied stringency and the level

of public adherence to these interventions will vary widely

between regions and over time (10–15). This has consequences

on the effectiveness of NPIs over time. In particular, the study

by Ge et al. (16) has highlighted the fluctuating nature of NPI

performance over time at different geographical scales. These

observations are not particular to the COVID-19 pandemic. The

works by Matthews Pillemer et al. (17) and Wang et al. (18)

showed, for instance, that similar patterns had been observed

during the 2002-03 SARS outbreak in four different regions

around the world and the 2013 H7N9 outbreak in China,

respectively.

Many studies have investigated the predictors of adherence

to NPIs during public health emergencies and causes of

variations in adherence levels over time, especially during the

COVID-19 pandemic (13, 17, 19–22). The most commonly

identified factors that affect compliance with NPIs are risk

perception, trust or lack of trust in public health authorities,

misinformation, economic hardship, and the sociocultural

realities of affected populations. NPI adherence patterns can

significantly impact the effectiveness of disease control strategies

and interact largely with disease dynamics over time. Factors like

risk perception and perceived economic hardship due to NPI

adherence are subject to temporal change as the disease unfolds

resulting in a complex interaction between disease dynamics, the

stringency of NPIs, and NPI adherence.

Untangling the feedback loop between human behavior and

the spread of infectious diseases has caught the attention of

many over the last two decades due to its importance for

epidemic preparedness and control and this has led to what is

now called behavioral epidemiology of infectious diseases (23–26).

Though the pre-COVID-19 literature is vast, we have not come

across many studies related to modeling the interplay between

NPI stringency, NPI adherence, and the dynamics of infectious

diseases. Much progress has been made since the beginning

of the COVID-19 pandemic, however. The studies by Acuña-

Zegarra et al. (27) and Iyaniwura et al. (28) both investigated

the impact of adherence to NPIs on the dynamics of COVID-

19 using an SEIR-like model. In particular, they both divide

the population into 2 groups: individuals who adhere to all the

NPIs are put in one group, and those who do not adhere in

the other group. To capture the time-varying nature of NPI

adherence, the two models allow flows between the 2 groups,

though the model by Acuña-Zegarra et al. (27) incorporates only

the movement from the adherents to the non-adherents group.

However, though their modeling framework allows highlighting

the effect of NPI adherence on disease dynamics, it is agnostic

on the drivers of changes in NPI adherence status. Additionally,

since most individuals only partially adhere to NPIs, it does not

seem sensible to divide the population into adherents and non-

adherents. Finally, their models do not capture the interaction

between NPI intensity and NPI adherence, nor do they allow to

answer the question of how disease dynamics interact with either

of the two.

Other modeling studies on NPIs focused on assessing the

effectiveness of NPIs or their usefulness in specific contexts (29–

31). Though these models have played a major role in shedding

light on the need for sustained adherence to NPIs during the

COVID-19 pandemic, the authors studied the effect of NPI

adherence on disease dynamics by simulating the models under

different fixed NPI adherence scenarios, and thus failing to

account for the impacts of temporal variations in NPI adherence

on disease dynamics.

In this study, we aim to fill in this gap. We modify the

classical deterministic Susceptible-Exposed-Infected-Recovered

(SEIR) model to capture both the effect of disease control

measures and the feedback loop between NPI adherence and

disease dynamics. We use the model to investigate the effect of

temporal variations in NPI adherence levels on the spread of

infectious diseases. We use imitation dynamics and build upon

the health belief model to encode the dynamics of the public level

of adherence to NPIs.We do not take into account the intricacies

of specific diseases such as the spread of different variants or

strains and the availability of vaccines for sake of generality.

The approach we use for modeling temporal variations in NPI

adherence is similar to the one adopted in Jentsch et al. (32).

The rest of this paper is organized as follows. In Section

2 we present the mathematical model used in this study.

Section 3 contains our results. In particular, we derive an

expression for the basic reproduction number (R0) and study
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the stability properties of the equilibrium solutions of the model.

Furthermore, we perform a scenario analysis to investigate the

effect of both the stringency of NPIs and temporal variations in

the level of adherence on the disease dynamics. Lastly, in Section

4 we provide a discussion of our results.

2. Methods

2.1. Baseline model

We use a deterministic SEIR model that divides the population

into four distinct compartments based on the respective disease

state of individuals. The Susceptible (S) compartment contains

individuals who can but have not yet been infected by the

disease. Individuals in the Exposed (E) have been infected by

the disease but cannot spread it, whereas those in the Infected

(I) compartment can transmit the disease. The Recovered (R)

compartment contains individuals who have recovered from the

disease. Our model takes into account births and both natural

and disease-induced deaths. For simplicity, we do not take

reinfections into account. That is, we assume that individuals

who recover from the disease become immune over the course

of the epidemic. This is the case for diseases like measles,

for example. This leads to the following system of differential

equations:

dS

dt
= π −

(

λ(t)+ µ
)

S, (1a)

dE

dt
= λ(t)S− (κ + µ)E, (1b)

dI

dt
= κE− (γ + δ + µ)I, (1c)

dR

dt
= γ I − µR, (1d)

with nonnegative initial conditions S(0) = S0,E(0) = E0, I(0) =

I0,R(0) = R0, and x(0) = x(0). The disease state variables S,E, I,

and R represent fractions of the population in the corresponding

compartment, and model parameters are as described in Table 1

below.

In the classical SEIR model, non-pharmaceutical

interventions are not explicitly taken into consideration,

thus the force of infection, λ(t), is given by

λ(t) = β0I(t), (2)

where β0 is the effective contact rate or transmission rate in the

absence of control measures and I(t) is the prevalence rate of the

disease in the population at time t, i.e., the ratio of the number

of infected individuals to the total population count.

TABLE 1 Description of state variables and model parameters.

Variables Description

S Fraction of susceptible individuals

E Fraction of exposed individuals

I Fraction of infectious individuals (prevalence rate)

R Fraction of recovered individuals

x Level of adherence to recommended control measures

Parameters Description

π Birth/recruitment rate

β0 Effective contact rate in the absence of disease control measures

µ Natural death rate

1/κ Mean latent period

γ Recovery rate of infected individuals

δ Disease-induced per capita death rate

α Disease control strength

ri Overall perceived susceptibility

m Overall perceived severity of the disease

rc Overall perceived frustration with control measures

k Overall sensitivity to changes in disease prevalence

ω rim/rc

K k/rc

2.2. Incorporating control measures

To incorporate the effect of NPIs, we assume that the

stringency of interventions is proportional to the prevalence rate

of the disease and that they are geared toward reducing the

transmission rate of the disease. Hence, we use a prevalence-

dependent contact rate and modify the force of infection in

Equation (2) to obtain:

λ(t) =
β0I(t)

1+ αI(t)
, (3)

where α is a positive, constant parameter that measures the

stringency of government policy responses to curb the epidemic.

A probably more insightful way of thinking about the parameter

α is that the fraction 1/α defines the prevalence rate that has

to be reached within the population for the policymakers to

implement NPIs that aim to reduce the transmission rate by

half. Hence, high values of α mean that decision-makers have

a stringent policy approach in responding to the epidemic

whereas lower values correspond to instances of a more hands-

off policy approach. It is worth noting that the use of prevalence-

dependent contact rates tomodel behavioral responses to disease

outbreaks as in Equation (3) can be traced back to the work of

Capasso and Serio (33) and was used by Gros et al. (34) to model

short-term control strategies for the SARS-CoV-2 virus.
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An important limitation of the force of infection in Equation

(3) is that it implicitly assumes that individuals’ compliance with

disease control measures is constant over time. However, as

shown earlier, this is not realistic in many instances.

2.3. Modeling the dynamics of NPI
adherence level

To model temporal variations in adherence levels to NPIs,

we introduce an additional variable, x(t), that measures the level

of adherence to disease control measures at time t. We modify

the force of infection in Equation (3) to obtain:

λ(t) =
β0I

1+ αIx(t)
. (4)

We assume that x(t) is an average over the population.

Building upon the health belief model (35) and using imitation

dynamics, as in the work by Bauch (36) on vaccinating behavior,

we model the dynamics of the adherence level by

dx

dt
= kx(1− x)(−rc + rimI), (5)

where rc represents the perceived frustration with NPIs due

to the socioeconomic, cultural, and emotional damages and

inconveniences associated with NPI adoption; ri and m

represent the perceived susceptibility to the disease and the

perceived severity of the disease, respectively; and kmeasures the

public responsiveness to changes in disease prevalence. Defining

K = k/rc and ω = rim/rc as in Bauch (36), we then rewrite

Equation (5) as:

dx

dt
= Kx(1− x)(−1+ ωI), (6)

where I =
1

ω
is a threshold prevalence rate below which the

adherence level would be decreasing. Hence, the two threshold

prevalence rates I = 1/α and I = 1/ω are loose measures of

tolerance for the disease at the decision-makers level and public

level, respectively.

3. Results

In this section, we derive a mathematical expression for

the basic reproduction number, R0, and study the stability

properties of both disease-free and endemic equilibrium

solutions in Section 3.1. In particular, we show that the model

has two disease-free equilibria, of which one is always unstable

and the other is globally asymptotically stable whenR0 < 1 and

unstable otherwise. WhenR0 > 1, the model has three endemic

equilibrium solutions that exchange stability as R0 is varied.

These analytical results are followed by extensive numerical

simulations in Section 3.2.

3.1. Equilibria and basic reproduction
number

Our model has two disease-free equilibria given by

E1 = (S1,E1, I1,R1, x1) =

(

π

µ
, 0, 0, 0, 0

)

, (7)

and

E2 = (S2,E2, I2,R2, x2) =

(

π

µ
, 0, 0, 0, 1

)

, (8)

corresponding to the case where there is no disease and no

adherence to NPIs for E1, and the situation where the disease

is absent but the population fully complies with prevention

measures E2.

The basic reproduction number,R0, for this model is given

by

R0 =
β0κπ

χµ
, (9)

with χ = (κ + µ)(γ + δ + µ).

The disease-free equilibrium point E1 is globally

asymptotically stable when R0 < 1 and unstable when

R0 > 1, whereas E2 is always unstable (proof in Section 1 of the

Supplementary material). This encapsulates the fact that when

there is no disease, individuals have no incentive to adhere

to NPIs, especially because the cost of adopting preventive

measures, no matter how small it might be, would still be higher

than the perceived risk of acquiring the disease when the disease

is absent.

Additionally, the model has rich dynamics with three

endemic equilibria given by

(a) E3 ≡ (S∗,E∗, I∗,R∗, x∗), with

S∗ =
χ

βκ
,

E∗ =
µ(γ + δ + µ)

κβ
(R0 − 1),

I∗ =
µ

β
(R0 − 1) ,

R∗ =
γ

β
(R0 − 1) ,

x∗ = 0,

(10)

exists whenR0 > 1.
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(b) E4 ≡ (S∗,E∗, I∗,R∗, x∗), with

S∗ =
1

µ

(

π −
χ

κω

)

=
π

R0

(

R0 −
β

µω

)

,

E∗ =
γ + δ + µ

κω
,

I∗ =
1

ω
,

R∗ =
γ

µω
,

x∗ =
1

α

[

R0 −

(

1+
β

µω

)]

,

(11)

exists when

R0 > 1+
β

µω
, (12)

and

(c) E5 ≡ (S∗,E∗, I∗,R∗, x∗), with

S∗ =
απκ + χ

κ(β + αµ)
,

E∗ =
µ(γ + δ + µ)

κ(β + αµ)
(R0 − 1),

I∗ =
µ

β + αµ
(R0 − 1),

R∗ =
γ

β + αµ
(R0 − 1),

x∗ = 1,

(13)

exists wheneverR0 > 1.

Theorem 1 (Stability of E3). The endemic equilibrium point E3

is locally asymptotically stable when

1 < R0 < 1+
β

µω
, (14)

and unstable otherwise.

Theorem 2 (Stability of E5). The endemic equilibrium point E5

is locally asymptotically stable when

R0 > 1+
β

µω
+

α

ω
(15) and R0 >

1

µ

(

χ

ξ0
− 1

)

,(16)

where χ = (γ + δ + µ)(κ + µ) and ξ0 = γ + δ + κ + 2µ.

Moreover, if we assume the latency period is at least 1 day so

that κ ≤ 1, then (Equation 15) subsumes (Equation 16). The

endemic equilibrium E5 is unstable whenR0 < 1+
β

µω +
α
ω .

Theorem 1 shows that for diseases that eventually spread

within a population, the higher ω is, the more likely the public

will keep some level of adherence to NPIs when the disease

becomes endemic. On the other hand, Theorem 2 shows that the

TABLE 2 Parameter values used in simulations.

Parameter Figures 1–5 Figure 6

π 0.000002 0.0017

µ 0.000002 0.0017

β0 1.1 0.6

κ 1/6 0.2

γ 0.125 0.2

δ 0.001 0.004

K 0.4 0.3

likelihood of having full adherence to NPIs during the endemic

stage is both proportional to ω and inversely proportional to

the stringency of control measures, α. This highlights a trade-

off between NPI stringency and adherence. (Proofs can be found

in Section 2 of the Supplementary material).

3.2. Scenario analysis

We simulate the modified SEIR model given by Equations

(1), (3), and (6) in different scenarios to better understand the

effect of temporal variations in NPI adherence levels on disease

dynamics. We keep all the epidemiological parameters fixed and

vary only the values of α, the stringency of control measures, and

ω, with 1/ω measuring the tolerance of the disease in the public.

Parameter values used in simulations are given in Table 2.

3.2.1. Baseline scenario

First, we consider the hypothetical situation where the NPI

adherence level is fixed over time, i.e., x(t) = x. When x = 0 or

α = 0, the model reduces to the classical SEIR model without

the effect of disease control interventions. It is easy to see that

when the adherence level is constant over time, one can write

x(t) = 1 without any loss of generality. We investigate the

dynamics of the disease when the adherence level is fixed at

x = 1 for different values of α. Figure 1 shows that increasing

the stringency of NPIs can result in a substantial decrease in

the prevalence at the peak of the epidemic. It is important to

note that the model predicts that the epidemic curve can be

flattened for high values of α, and the ultimate conclusion would

be that the higher the stringency of NPIs, the better. However,

this might not hold when temporal variations in NPI adherence

are considered, as we show below.

3.2.2. Time-varying adherence level

3.2.2.1. Fixed NPI stringency

First, we fix the stringency of NPIs to α = 100 and

investigate the effect of varying ω. Figure 2 shows that if ω =
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FIGURE 1

E�ect of increasing NPI stringency when the adherence level to

NPIs is constant over time. It is clear that under this assumption,

substantial increases in NPI stringency result in a considerable

decrease in the prevalence at the peak of the epidemic.

FIGURE 2

E�ect of increasing ω at fixed α = 100. This figure shows that

when the level of public tolerance for the disease is high, the

prevalence at the peak of the epidemic can be much higher

than what might be expected under the fixed NPI adherence

level assumption.

100, i.e., the risk perceived by the public exceeds the barriers to

NPI adherence only when disease prevalence is at least 1%, then

the peak prevalence of the epidemic would exceed 20%, whereas

it was lower than 10% even for mildly stringent NPIs (α = 50)

when the NPI adherence level was assumed constant throughout

the epidemic. However, if the public perceives amuch higher risk

from the disease (ω ≥ 6,000), the level of adherence to control

measures would be much higher and the peak prevalence can

be reduced to around 6%, which is much closer to what was

observed in Figure 1. It is noteworthy that even under perfect

adherence to NPIs, the prevalence at peak cannot be further

reduced without increasing the stringency of control measures.

3.2.2.2. Fixed public tolerance for the disease

We observed that under the fixed adherence assumption,

i.e., x(t) = 1 for all t, a substantial increase in NPI stringency

would result in a substantial decrease in the peak prevalence

for relatively low values of α. However, this might not be the

case when the NPI adherence level, x(t), is time-varying. To

see what might happen in this case, we fix ω = 100 and

simulate the model for different values of α. Figure 3 shows that

increasing the NPI stringency, α, does not result in a substantial

decrease in the peak prevalence when the public tolerance for

the disease is not sufficiently low. This is in contrast with

what is observed in Figure 1 when the NPI adherence level is

constant over time. Moreover, for considerably high values of

α, the level of adherence to NPIs fluctuates over time due to

trade-offs between NPI stringency and adherence, leading to the

occurrence of multiple epidemic waves. This seemingly counter-

intuitive observation might be justified by the quite high public

tolerance of the disease when ω = 100 as the NPI adherence

level increases only when the disease prevalence is at least 1%.

This might happen either because the perceived risk for the

disease is low or because the perceived frustration with NPIs is

much higher than the perceived risk. This shows that not much

can be achieved by imposing very stringent control measures if

the capacity and willingness of the public to adopt suchmeasures

are not increased.

3.2.2.3. Striking the right balance between NPI

stringency and adherence

To understand what might happen when NPI stringency is

high but not too high, we fix NPI stringency at α = 500 and

simulate the model for different values of ω. Figures 4A, B show

that for small values of ω, multiple epidemic waves can occur

due to the trade-offs between NPI stringency and adherence.

However, as ω is increased, the effectiveness of NPIs increases

and the epidemic curve can be flattened (see Figure 4C). It is

important to note that the peak prevalence for the flattened

epidemic curve (ω = 6,000) is around 1.4%, which is much

lower compared to the 31.1% when ω = 50 and lower than the

1.7% prevalence peak for the second wave when ω = 100. This

suggests that disease control can be much more effective with

reasonably stringent NPIs if the willingness and capacity of the

public to adopt such measures is increased.

3.2.2.4. What matters most: Increasing NPI stringency

or adherence?

We compare the relative reduction in the prevalence at

the first peak when α is increased at fixed ω and when ω is

increased at fixed α. Figure 5 shows that increasing ω, and thus

the adherence level to NPIs, results in a much more substantial

reduction in the peak prevalence than increasingNPI stringency,

α, at fixed ω.
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FIGURE 3

E�ect of increasing the stringency of NPIs, α, when the level of adherence to NPIs is time-varying and ω = 100 is fixed. This shows that if the

public tolerance for the disease is not su�ciently low, increasing NPI stringency results only in a marginal decrease in the peak prevalence and

can induce the occurrence of multiple epidemic waves. This is in contrast with what is observed in Figure 1 when the NPI adherence level is

constant over time. (A) The prevalence rate of the disease. (B) Time-varying adherence level to NPIs.

FIGURE 4

E�ect of increasing ω at fixed medium-level NPI stringency (α = 500). (A, B) Show that multiple epidemic waves can occur when ω is not high

enough. Both the number of secondary waves and the prevalence at each secondary peak depend on the stringency of NPIs, α, and the public

tolerance for the disease, 1/ω. (C) Shows that the epidemic curve can be flattened for considerably high values of ω.

3.2.2.5. Equilibrium solutions

Lastly, we simulate the modified SEIR model with a different

set of parameter values to investigate the behavior of the system

at equilibrium. In particular, we fix the NPI stringency at α =

2000 and use ω as the bifurcation parameter. Figure 6 shows

that when ω is low, the NPI adherence level decays to zero as
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FIGURE 5

(A) Reduction in the peak prevalence when α is increased at fixed ω contrasted with the reduction when ω is increased at fixed ω. (B) Increasing

ω, and thus the NPI adherence level, therefore, results in much higher marginal benefits than increasing the stringency of NPIs at fixed ω.

the disease becomes endemic. However, for larger values of ω,

observe either partial or full adherence to NPIs at the endemic

state depending on how large the value of ω is. Therefore, the

system undergoes two transcritical bifurcations as the value of

ω is varied. It is important to note that the exact values where

these exchanges of stability occur depend on the values of other

parameters. In the particular case of partial NPI adherence at

equilibrium, increasing the value of ω results in both a decrease

in the endemic prevalence rate and an increase in the NPI

adherence level at equilibrium. Additionally, increasing the NPI

stringency, α, at fixed ω can destabilize the system from full to

partial adherence and even no adherence to NPIs at equilibrium.

4. Discussion

Non-pharmaceutical interventions play a central role

in infectious disease outbreak response and control. These

interventions can be very effective in curtailing the spread

of infectious diseases when adequately implemented and

sufficiently adopted by the population. However, NPIs can be

very disruptive, and the socioeconomic and cultural challenges

associated with their implementation interfere with both the

ability and willingness of affected populations to adopt such

interventions (25). This can lead to not only geographical but

also temporal variations in adherence levels to NPIs during

disease outbreaks and impede the control of infectious diseases

(12). In this study, we investigated the interplay between NPI

stringency, temporal variations in NPI adherence levels, and

disease dynamics using mathematical modeling. We showed

that when the NPI adherence level is assumed constant over

time, a substantial increase in the stringency of NPIs would

result in a substantial decrease in the peak prevalence and

the epidemic curve can be flattened by imposing stringent

disease control measures. The ultimate conclusion, in this case,

is that the higher the stringency of NPIs, the more effective

disease control is. Though this agrees with the results by Gros

et al. (34), we showed that this conclusion might not hold

when temporal variations in NPI adherence levels are taken

into account. For time-varying adherence levels to NPIs, the

dynamics of the disease are no longer influenced only by the

stringency of control measures, but also by risk perception

and the perceived frustration associated with NPIs. Our results

suggest that when the public tolerance for the disease is relatively

high, which might occur when either the perceived risk is

low or the perceived frustration with NPIs is high, the level

of adherence to NPIs might fluctuate over time, consistent

with the results by Crane et al. (14). We showed that these

fluctuations in NPI adherence levels over time might induce

the occurrence of multiple epidemic waves, which is consistent

with the results by Ochab et al. (37) and Ngonghala et al.

(38). Furthermore, our results suggest a trade-off between NPI

stringency and adherence in the sense that the public would find

it more difficult to sustain high levels of NPI adherence when the

stringency level is high, which is again consistent with the results

by Acuña-Zegarra et al. (27). This conclusion is supported
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FIGURE 6

Behavior at equilibrium (endemic) for di�erent values of the ω. For low values of ω, public tolerance for the disease is high and the system

converges to a state where there is no adherence to NPIs during the endemic stage of the disease. For higher values of ω, however, NPI

adherence during the endemic stage can be either partial or total depending on how large the value of ω is. (A) Prevalence rates. (B) Adherence

levels.

both by our scenario analysis and analytical derivations of

the stability properties of the endemic equilibrium points of

our model.

Our model also suggests that interventions that aim

at increasing the adherence level to NPIs might be much

more valuable than increasing the overall NPI stringency. In

particular, we showed that an epidemic can be effectively

controlled even with not very stringent NPIs if the ability

and willingness of the public to adopt such interventions is

sufficiently increased. We, therefore, argue that for the effective

control of infectious disease outbreaks, public health authorities

should not only focus on implementing the right policies but

also, more importantly, on devising strategies to both increase

risk perception and decrease the frustration associated with

NPIs. This agrees with the conclusions by Avusuglo et al. (31).

Importantly, our results suggest that much consideration should

be given to the socioeconomic and cultural realities of affected

populations when devising public health policies for infectious

disease control.

Our work has important limitations that present

opportunities for future studies. First, our model has not

been calibrated to epidemic data. Also, we have kept the model

simple for generality. However, to reflect real viral epidemics,

it might be useful to take factors such as re-infections, vaccine

availability, and the spread of multiple variants of the same

virus into account. Furthermore, we assumed that the level of

frustration with NPIs is constant over time. This might not

be realistic. Accounting for temporal variations in frustration

levels associated with NPIs might yield more insight. Lastly,

we assumed that the implementation of NPIs was triggered

by the prevalence of the disease. However, there might be

cases where NPIs are implemented based on other factors such

as the availability of intensive care units or the number of

disease-induced deaths. It would be insightful to check whether
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the conclusions of this study are robust with respect to these

other modeling approaches.
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Mitigating co-circulation of
seasonal influenza and
COVID-19 pandemic in the
presence of vaccination: A
mathematical modeling
approach

Bushra Majeed1, Jummy Funke David1, Nicola Luigi Bragazzi1,

Zack McCarthy1, Martin David Grunnill1, Jane He�ernan2,3,

Jianhong Wu1* and Woldegebriel Assefa Woldegerima1*

1Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York

University, Toronto, ON, Canada, 2Centre for Disease Modeling, Department of Mathematics and

Statistics, York University, Toronto, ON, Canada, 3Modelling Infection and Immunity Lab,

Department of Mathematics and Statistics, York University, Toronto, ON, Canada

The co-circulation of two respiratory infections with similar symptoms in a

population can significantly overburden a healthcare system by slowing the

testing and treatment. The persistent emergence of contagious variants of

SARS-CoV-2, alongwith imperfect vaccines and their waning protections, have

increased the likelihood of new COVID-19 outbreaks taking place during a

typical flu season. Here, we developed a mathematical model for the co-

circulation dynamics of COVID-19 and influenza, under di�erent scenarios

of influenza vaccine coverage, COVID-19 vaccine booster coverage and

e�cacy, and testing capacity. We investigated the required minimal and

optimal coverage of COVID-19 booster (third) and fourth doses, in conjunction

with the influenza vaccine, to avoid the coincidence of infection peaks for

both diseases in a single season. We show that the testing delay brought on

by the high number of influenza cases impacts the dynamics of influenza

and COVID-19 transmission. The earlier the peak of the flu season and the

greater the number of infections with flu-like symptoms, the greater the

risk of flu transmission, which slows down COVID-19 testing, resulting in

the delay of complete isolation of patients with COVID-19 who have not

been isolated before the clinical presentation of symptoms and have been

continuing their normal daily activities. Furthermore, our simulations stress

the importance of vaccine uptake for preventing infection, severe illness, and

hospitalization at the individual level and for disease outbreak control at the

population level to avoid putting strain on already weak and overwhelmed

healthcare systems. As such, ensuring optimal vaccine coverage for COVID-

19 and influenza to reduce the burden of these infections is paramount.

We showed that by keeping the influenza vaccine coverage about 35% and

increasing the coverage of booster or fourth dose of COVID-19 not only

reduces the infections with COVID-19 but also can delay its peak time. If

the influenza vaccine coverage is increased to 55%, unexpectedly, it increases
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the peak size of influenza infections slightly, while it reduces the peak size of

COVID-19 as well as significantly delays the peaks of both of these diseases.

Mask-wearing coupled with a moderate increase in the vaccine uptake may

mitigate COVID-19 and prevent an influenza outbreak.

KEYWORDS

COVID-19, influenza, co-circulation, seasonal flu, vaccine coverage, mathematical

model

1. Introduction

Despite the implementation of non-pharmaceutical

interventions (NPIs) (1, 2) and the existence of highly effective

vaccines (3), the “coronavirus disease 2019” (COVID-19)

pandemic continues to plague the globe (4). Due to the

emergence of multiple highly contagious strains (5) that can

evade the immune response and make the existing vaccines less

effective (6, 7), it can be expected that new waves of COVID-19

will arise (8), with COVID-19 becoming an endemic disease (9).

If these waves occur during a typical influenza season in many

regions of the world, then this would create a situation of co-

circulation of multiple respiratory viruses, including influenza

and respiratory syncytial virus (RSV) (10), among others. Since

respiratory pathogens share similar symptoms, this poses a

serious challenge to the global public health system (11). During

the first 2 years of the still ongoing COVID-19 pandemic,

seasonal influenza infections have been mitigated, likely due to

the mandatory use of personal protective equipment (PPE) and

the implementation of stringent packages of NPIs to contain

the spread of COVID-19 (12). On the other hand, the lack of

exposure to the influenza virus may also have decreased the

population’s immunity levels and increased susceptibility to

influenza because of its low circulation in the two previous

seasons (13). All this, taken together, may potentially lead to a

larger seasonal influenza outbreak when COVID-19-induced

social distancing and other restrictions are relaxed, creating

the ideal situation for influenza–COVID co-circulating in the

population.

The combined risk of the concurrent influenza epidemic

and the COVID-19 pandemic is a serious global public health

concern since it can be extremely difficult to anticipate influenza

circulation in the upcoming winter with COVID-19. Some

epidemiological observational studies have investigated the

impact of SARS-CoV-2 and influenza viruses co-circulation in

terms of prevalence rate of co-circulation, clinical outcomes, and

imposed burden (11, 14).

Mathematical modeling can play a key role in accounting

for interactions of a given pathogen with other infectious agents

and in quantifying the real burden of each pathogen and the full

impact and effectiveness of public health interventions targeting

each infectious agent (15, 16). This is particularly relevant given

that, in the current situation, where the SARS-CoV-2 virus is still

transmitting continuously in the world despite the availability

of many effective vaccines, the emergence of new variants of

concern (VOCs) is inevitable.

Considering the additional burden of COVID-19 during the

influenza season on population health and healthcare systems,

including emergency departments (EDs), it is of paramount

importance to investigate the effects of co-circulations when

vaccines are available for both diseases. Therefore, the present

mathematical model was developed with the aim of studying

the impact of SARS-CoV-2 during an influenza season,

quantitatively assessing the effects of the co-circulation of the

two respiratory pathogens. In particular, in the present study,

we are interested in finding optimal strategies to manage and

control both influenza and COVID-19 outbreaks during the

same season. Among many scenarios and interventions, we

consider optimal strategies to delay and separate the peaks of the

influenza outbreak and COVID-19 wave.

2. The co-circulation model

To investigate the co-circulation of influenza and SARS-

CoV-2, a deterministic compartmental model formulated in

terms of ordinary differential equations was employed. The

objective of the study is to identify potential control strategies

to mitigate the burden caused by both viruses in the near

term, that is, during a single respiratory illness season, several

simplifying assumptions were made to focus on essential

elements relevant to the present study. Specifically, the following

assumptions were made to enable such a focus. Changes

in population demographics were not considered, that is,

births and deaths were not modeled, and the population size

remained constant. A closed population was considered and,

therefore, no inbound or outbound travel occurred. It was

assumed that the populationmixed homogeneously. Age-related

heterogeneities (e.g., susceptibility to infection, social contact

mixing, and vaccination coverage) and spatial heterogeneities

(e.g., testing and case reporting, social contact mixing, and

level of pathogen circulation) were not considered. Given that
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symptomatic influenza and COVID-19 share similar symptoms,

the RT-PCR testing capacity was considered to be a shared

resource between infections occurring by both influenza and

SARS-CoV-2.

Due to the scarcity of data and for model simplification, we

assume that infections are exclusive and neither pathogen can be

supplanted within an infected host. In other words, we assume

no co-infection and super-infection of both diseases. However,

secondary infection is possible, that is, an individual, after

recovery from one disease, can get infected by other diseases.

Focusing on a single respiratory illness reason, it was assumed

that upon infection by both influenza virus and SARS-CoV-

2 (temporally distinct infections) complete immunity against

infection by both pathogens was conferred. All individuals

were assumed to be vaccinated before the considered influenza

season started, and no vaccination occurred during the season.

This means that, rather than modeling vaccination as a time-

dependent process, administration of vaccines was modeled as

a time-independent process and was embedded in the initial

conditions.

The population was stratified into susceptible, isolated,

infected, diagnosed, recovered, and hospitalized states, with

further stratification based on epidemiological history (e.g.,

prior infection) of the two circulating viruses (Figure 1).

Vaccination of individuals against both influenza and COVID-

19 was considered in the model; therefore, dividing the

population susceptible to infection by both pathogens into four

classes: those individuals not vaccinated against either influenza

or COVID-19 (denoted by Su); those individuals vaccinated

against COVID-19 and not influenza (Vc); those individuals

vaccinated against influenza and not COVID-19 (Vf ); and those

individuals vaccinated against influenza and COVID-19 (Vcf ).

Each of these four groups could potentially be infected by SARS-

CoV-2 and influenza, with vaccination modulating the infection

risk in each class.

In the model, unvaccinated individuals (Su) were infected by

influenza at rate λf and with SARS-CoV-2 at rate λc. Vaccination

status modulated the infection process as follows: Individuals

vaccinated against influenza were assumed to be infected by

influenza at a reduced rate (1 − φf )λf , where φf is the vaccine

effectiveness against infection by influenza. It has been suggested

that influenza vaccination may reduce susceptibility to COVID-

19 (17, 18); therefore, those individuals vaccinated against

influenza were assumed to be infected by SARS-CoV-2 at the

reduced rate (1− η)λc, where 0 ≤ η ≤ 1. Individuals vaccinated

against both COVID-19 and influenza were therefore infected

by SARS-CoV-2 at rate λc(1− φc)(1− η) and by influenza virus

at rate (1− φf )λf .

Upon infection, and in light of the fact that influenza

and COVID-19 share common symptoms, it was assumed

that a fraction q of symptomatic individuals isolate themselves

until their test results become available (thus entering the

Q class); meanwhile, the remaining proportion (1 − q)

continues socio-economic activity without disruption (i.e.,

their contact patterns were assumed to remain unaltered).

Those individuals in the isolated (Q) class that tested positive

for COVID-19 were assumed to remain isolated and not

infectious; meanwhile, those individuals who tested negative

were assumed to end their isolation and resume normal

mixing.

Those individuals in Ic are diagnosed and isolated, recovered

naturally, or hospitalized from their primary infection. This is

in contrast to individuals in If who either recover naturally

or are hospitalized from their primary infection. Given that

the study is concerned with a single respiratory disease season,

we considered the case where recovery from this primary

infection yields immunity to re-infection by the same pathogen.

Meanwhile, those who recovered from primary infection (Rf

and Rc) become susceptible to secondary infection. When an

individual experiences primary and secondary infection, they

are considered immune to infection by both influenza and

SARS-CoV-2.

Infectious individuals, either influenza (If ) or COVID-19

(Ic), may be diagnosed, and subsequently, COVID-19-tested

positive individuals are isolated (moving to (Dc) compartment),

while COVID-19-tested negative will move out from the Q class

to (If ) compartment. Later on, we will specify how the incidence

of both diseases impacts the diagnosis speed since they share

common symptoms.

Isolated individuals were assumed to transmit the disease

longer. Furthermore, diagnosed (Dc) and infectious individuals

(If ) or (Ic) can recover from influenza or COVID-19,

respectively, at the rate of γcD and γfI or γcI (moving to

class Rf or Rc, respectively), or they will be admitted to

hospitals with disease-induced severity, at the rate of τf from

If class and at the rate of θc and τc from Dc and Ic classes,

respectively.

We assume that after recovery from either of these diseases,

an individual is completely immune (recall this research focuses

on a flu season only) to that disease but susceptible to the other

diseases. Individuals recovered from COVID-19 but infected

with influenza are denoted by Icf and hospitalized as Hc
f . And

those individuals recovered from influenza but infected with

COVID-19 are denoted by I
f
c , with the diagnosed and isolated

denoted by D
f
c and hospitalized H

f
c . Individuals experiencing

such secondary infections become immune to both diseases after

recovery from the second disease.

2.1. Standing assumptions

We assume that a fraction of the population receives the

flu vaccine, and another fraction of the population receives the

COVID-19 vaccine. A fraction of the population may receive

vaccines for both influenza and COVID-19.We assume that they
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FIGURE 1

A flow diagram of the transmission dynamics model, considering the co-circulation of influenza and SARS-CoV-2 viruses. On the right side of the

diagram, classes Ic, Dc, and Hc represent that there are further sub-classes in each of these compartments. Similarly, flu classes have sub classes.

receive the vaccine(s) before our considered influenza season

starts. We do not assume a perfect vaccine, so individuals

who received a vaccine can still be infected by the disease

intended. Furthermore, we assume that a vaccine against

influenza or COVID-19 reduces the risk of being infected

(reduction in susceptibility) and reduces the risk of severity of

disease (hospitalization) if infected by the disease the vaccine is

intended.

The flow diagram of the model formulation is shown in

Figure 1. Note that in each class other than susceptibles (Su,

Vc, Vf , and Vcf ) and completely recovered R classes, there are

further four sub-classes that are tracked. For instance, the Ic class

has Icvc, Icvf , Icu, and Icvcf sub-classes. In these sub-classes, the

first letter in sub-index represents the disease class “f” for flu

and “c” for COVID-19. Other indices represent the status of the

vaccine. For example,

Icvc: First letter “c” in sub-index means infectious

with COVID-19, next “vc” represents vaccinated against

COVID-19.

Icvf : First letter “c” in sub-index means infectious with

COVID-19, next “vf ” represents vaccinated against flu.

Icu: First letter “c” in sub-index means infectious with

COVID-19, next “u” represents unvaccinated.

Icvcf : First letter “c” in sub-index means infectious with

COVID-19, next “vcf ” represents vaccinated against both

flu and COVID.

Due to the co-circulation of both influenza and SARS-CoV-

2 in a single season and due to their common symptoms,

COVID-19 testing can be slowed down with a large number

of individuals infected with either flu and COVID-19.

Therefore, the diagnostic rate to confirm the disease type is

a decreasing function of the total number of infections (with

either flu or COVID-19) modeled by the available testing

capacity. This can be modeled using the Holling type II

functions:

Fc(Ic, If , I
c
f , I

f
c ,Q) =

δIcIc

1+ w(Ic + If + Icf + I
f
c + Q)

Ff (Ic, If , I
c
f , I

f
c ,Q) =

δIf If

1+ w(Ic + If + Icf + I
f
c + Q)

Fcf (Ic, If , I
c
f , I

f
c ,Q) =

δIf I
c
f

1+ w(Ic + If + Icf + I
f
c + Q)
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F
f
c (Ic, If , I

c
f , I

f
c ,Q) =

δIcI
f
c

1+ w(Ic + If + Icf + I
f
c + Q)

FQ(Ic, If , I
c
f , I

f
c ,Q) =

δQQ

1+ w(Ic + If + Icf + I
f
c + Q)

,

where w is the constant such that 1/w is the

maximum number of people who can be tested

per day (testing capacity per day). These functions

characterize the saturation phenomenon of limited testing

resources.

2.1.1. Forces of infections: COVID-19 and
influenza

We use standard incidence to describe the forces of

infections:

λc =
βcC(Icu + Icvf + Icvc + Icvcf + I

f
cu + I

f
cvf + I

f
cvc + I

f
cvcf )

N

λf =
βfC(Ifu + Ifvf + Ifvc + Ifvcf + Icfu + Icfvf + Icfvc + Icfvcf )

N
.

In summary, the mathematical model for the co-circulation

of COVID-19 and flu is given below, with two diseases coupled

through their impact on testing speed (and thus isolation

duration of the patients with flu):

S′u = −λcSu − λf Su (1)

V ′
c = −λc(1− φc)Vc − λfVc (2)

V ′

f = −λf (1− φf )Vf − λc(1− η)Vf (3)

V ′

cf = −λf (1− φf )Vcf − λc(1− φc)(1− η)Vcf (4)

Note that there are 16 subclasses in Q compartment, that is,

Q′
= Q′

cvc + Q′

cvf + Q′
cu + Q′

cvcf + Q′

fvc + Q′

fvf + Q′

fu + Q′

fvcf+

Q′c
fvc + Q′c

fu + Q′c
fvf + Q′c

fvcf + Q
′f
cvc + Q

′f
cu + Q

′f
cvf + Q

′f
cvcf

where,



















































































































































































































Q′
cvc = qλc(1− φc)Vc − FQcvc

Q′

cvf = qλc(1− η)Vf − FQcvf

Q′
cu = qλcSu − FQcu

Q′

cvcf = qλc(1− φc)(1− η)Vcf − FQcvcf

Q′

fvc = qλfVf − FQfvc

Q′

fvf = qλf (1− φf )Vf − FQfvf

Q′

fu = qλf Sf − FQfu

Q′

fvcf = qλf (1− φf )Vcf − FQfvcf

Q′c
fvc = qλf R

c
vc − FcQfvc

Q′c
fvf = qλf (1− φf )R

c
vf − FcQfvf

Q′c
fu = qλf R

c
u − FcQfu

Q′c
fvcf = qλf (1− φf )R

c
vcf − Fcfvcf

Q
′f
cvc = qλc(1− φc)R

f
vc − F

f
Qcvc

Q
′f
cvf = qλc(1− η)R

f
vf − F

f
Qcvf

Q
′f
cu = qλcR

f
u − F

f
Qcu

Q
′f
cvcf = qλc(1− φc)(1− η)R

f
vcf − F

f
Qcvcf

(5)

Furthermore, we consider subclasses of Ic as follows:

I′c = I′cu + I′cvf + I′cvc + I′cvcf



































































I′cvc = (1− q)λc(1− φc)Vc − γcIcvc − Fcvc(Ic, If , I
c
f , I

f
c ,Q)

− (1− κc)τcIcvc

I′cvf = (1− q)λc(1− η)Vf − γcIcvf − Fcvf (Ic, If , I
c
f , I

f
c ,Q)

− τcIcvf

I′cu = (1− q)λcSu − γcIcu − Fcu(Ic, If , I
c
f , I

f
c ,Q)− τcIcu

I′cvcf = (1− q)λc(1− φc)(1− η)Vcf − γcIcvcf

− Fcvcf (Ic, If , I
c
f , I

f
c ,Q)− (1− κc)τcIcvcf

(6)

D′
c = D′

cu + D′

cvf + D′
cvc + D′

cvcf
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TABLE 1 Parameters definitions and values with references.

Parameter list

Parameter Definition Value Source

βc Probability of transmission of COVID 0.1351 Estimated for BA.5

βf Probability of transmission of Influenza 0.02–0.035 (32)

C Contact rate 11.58 (33)

η Protective effect against infection by the coronavirus if vaccinated

with influenza

0.297 (18)

φc COVID-19 vaccine effectiveness against infection Section 2.1.2 (34)

φf Influenza Vaccine effectiveness against infection (reduction in

susceptibility)

0.4–0.6 (35, 36)

γc Recovery rate of COVID-19 infectious individuals 1/7 (28)

γcD Recovery rate of COVID-19 diagnosed isolated individuals 1/5 Section 2.1.3

γcH Recovery rate of COVID-19 hospitalized individuals 1/12 (31)

γf Recovery rate of influenza infectious individuals 1/5 (16)

q Fraction of individuals isolated on symptoms before testing 0.5 Assumed

γfH Recovery rate of influenza hospitalized individuals 1/10 Assumed

δc Diagnose rate of symptomatic infected with COVID 1/2 (37)

δf Diagnose rate of symptomatic infected with influenza 1/2 Assumed

1/w Maximum testing capacity per day 5,000 (38)

θc Rate at which COVID-19 confirmed cases hospitalized 0.0305 Calculated from (39)

τc Rate at which COVID-19 infectious cases hospitalized 0.0305 Calculated from (39)

τf Rate at which influenza infectious cases hospitalized 0.0305 Assumed

κc Vaccine effectiveness against hospitalization with COVID 0.8–0.95 (34)

κf Vaccine effectiveness against hospitalization with influenza 0.35–0.5748 (26, 40)
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H′

cvf = θcDcvf + τcIcvf − γcHHcvf

H′
cu = θcDcu + τcIcu − γcHHcu

H′

cvcf = (1− κc)θcDcvcf + (1− κc)τcIcvcf − γcHHcvcf .

(8)

Here, confirmed/diagnosed cases go to hospitals at rate

θc and infected but not diagnosed at rate τc, and κc is the

effectiveness of the COVID vaccine to the severity of infection

to breakthrough infection.

R′c = R′cvc + R′cu + R′cvf + R′cvcf
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FIGURE 2

The impact of varying the maximum testing capacity per day on COVID-19 and influenza disease prevalence. Left plot represents the total

number of infections with COVID-19 (Ic(t)+ I
f
c
(t)) and right plot shows the total number of infections with influenza (If (t)+ I

c

f
(t)).
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FIGURE 3

The impact of varying the transmission probability βf on COVID-19 and influenza disease prevalence. Left plot represents the total number of

infections with COVID-19 (Ic(t)+ I
f
c
(t)) and right plot shows the total number of infections with influenza (If (t)+ I

c

f
(t)).
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FIGURE 4

A plot with high resolution for the case in Figure 3 for 30 days. Note that the scale of infections in this plot is some orders of magnitude smaller

than in Figure 3.
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We get the equation for fully recovered class from both

diseases.

R′ = γcI
f
c + γcDD

f
c + γcHH

f
c + γf I

c
f + γfHH

c
f (18)

2.1.2. Dose-specific (COVID-19) vaccine
e�ectiveness

Most existing vaccines are found to be effective against

COVID-19 disease; however, emergence and persistent spread

of new SARS-CoV-2 variants render these vaccines less effective

against the circulating strain (19, 20). The effectiveness of

COVID-19 vaccines against infection also varies by the number

of doses. Our study considers the case where the circulating

strain is Omicron (B.1.1.529) variant. The first dose of COVID-

19 has been deemed ineffective against Omicron infection,

but the vaccine effectiveness against second, third, and fourth

doses increases and will be assumed to be 0.06, 0.39, and 0.49,

respectively (21, 22). To bemore generic, the COVID-19 vaccine

effectiveness in our model is defined as follows:

φc = ρ1 ∗ ef1 + ρ2 ∗ ef2 + ρ3 ∗ ef3 + ρ4 ∗ ef4,
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FIGURE 5

Impact of increasing booster dose when influenza vaccine coverage is 35.43%.

where ef1, ef2, ef3, and ef4 represent the effectiveness of doses 1,

2, 3, and 4, respectively, against infection and ρ1, ρ2 , ρ3, and ρ4

represent vaccine coverage with doses 1, 2, 3, and 4, respectively.

2.1.3. Recovery rate of diagnosed/isolated
individuals

As documented in (23), for COVID-19 laboratory-based

testing, patient samples must be first transported to the

laboratory, and therefore, it takes 1–3 days to receive test

results. So, in what follows, we take diagnose rate δc=1/2

day−1 as the baseline assumption. Since we are assuming

only flu and COVID-19 are co-circulating, a COVID-19 test

negative result implies the flu test positive; hence, we assume

the same diagnostic rate for influenza. Furthermore, to calculate

the average infectious period 1/γcD of the COVID-19 test

positive/isolated cases, we use

1/γc = average infectious period for COVID-19

and

1/δc = average time to test positive of a COVID-19 infection,

Therefore,

1/γcD = 1/γc − 1/δc, γcD =
γcδc

δc − γc
.

As individuals are tested before they recover, 1/γc > 1/δc.

2.2. Parameters and initial conditions

We have used some of the data from the province of Ontario,

Canada, as a case study. We take the following initial values for

vaccinated and unvaccinated state variables. We assume N0 is

the total population of Ontario. From (24), 84.81% of the total

population of Ontario will be vaccinated against COVID-19 with

dose one, two, three, or four by 19 July 2022. So, initially, a

proportion of the population vaccinated against COVID-19 is

Vc = 0.8481 × N0. As a baseline, we assume that 40% (25)

of the population who is vaccinated against COVID-19 also

gets the influenza vaccine. Thus, this fraction will move to the

Vcf 0 initially vaccinated against both COVID-19 and influenza

classes. This gives:

Vc0 = 0.8481× N0 − Vcf 0,Vcf 0 = 0.4× 0.8481× N0.

Furthermore, because a large proportion of the population

has received COVID-19 vaccine and only a small proportion
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FIGURE 6

Increasing booster dose when influenza vaccine coverage also increases to 55%.

(15.19%) is left unvaccinated, we assume that 10% of the

remaining (COVID-19) unvaccinated population is vaccinated

against influenza only. Hence, initially vaccinated against

influenza is as follows:

Vf 0 = 0.1× (N0 − 0.8481× N0).

Thus, unvaccinated class has the initial value:

Su0 = N0 − Vc0 − Vcf 0 − Vf 0.

The effectiveness of influenza vaccine against hospitalization

range about 35–60% by age (26, 27). In our study, we assume a

homogeneous population, so in our simulations, we use 50% as

a baseline.

Most of the other parameters are taken from the literature. In

particular, we numerically estimated the baseline transmission

probability βc for BA.5 by inverting the formula of reproduction

number Ro and following the approach in (28) and using

the change in the transmission probability from the ancestral

strain to BA.5 in (29, 30). Some of the parameters relevant to

influenza, including τf , the rate at which influenza infectious

cases hospitalized, and δf , diagnosis time of symptomatic

infected with influenza, are assumed to be the same as COVID-

19 for simplifications. On average, the time a person with

COVID-19 stays in hospital is 12 days (31), and 10 days for

influenza. Furthermore, a fraction q of individuals who are

isolated immediately on symptoms before testing is chosen at

50% as a baseline. The parameters of the co-circulation model is

given in Table 1.

3. Simulation results

Increasing COVID-19 test capacity: For simulations below,

first, we vary the testing capacity from 6,000 to 30,000 in

Figure 2.

We observe that by increasing the testing capacity, the peak

time of COVID-19 is postponed and the peak value is also

reduced (left plot in the Figure 2). On the other side (right plot of

the Figure 2), the peak time of influenza cases is delayed but the

peak number of influenza infections increases when the COVID-

19 test capacity is increased. This is because, when more tests are

done per day, more individuals are isolated because the common

flu and COVID-19 symptoms are diagnosed earlier, and those

who tested negative for COVID-19 will terminate their isolation.

So, an early conclusion of COVID-19 negative will increase the

force of infection for flu.
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FIGURE 7

Impact of increasing coverage of COVID-19 booster (third) and fourth doses simultaneously with 55% influenza vaccine coverage on COVID-19

and influenza infections.

Varying flu transmission rate: Next, as shown in Figure 3,

we consider varying the transmission probability of influenza

βf . This consideration is motivated by the significantly low flu

cases during the COVID-19 pandemic due to social distancing.

Consequently, there is a possibility that in the coming flu

season, the population has larger than normal susceptibility to

the flu. In our simulations, we kept testing capacity 6,000 as a

baseline.

We can see from the right plot of Figure 4 that influenza

cases increases and peak earlier by increasing βf , which is

obvious. However, by increasing transmission probability of

influenza, COVID-19 cases (left plot) peak earlier with visible

higher peak value. For example, if βf is increased by 30%,

from 0.035 to 0.0455, then COVID-19 infections peak about

30 days earlier. Again this is attributed by the testing delay

due to the high volume of influenza infections: The higher

the transmission probability for the flu, the earlier the peak

time for flu outbreak and the higher the number of infections

with flu-like symptoms to slow down the COVID-19 testing,

leading to a delay in full isolation of the patients with

COVID-19. Figure 4 shows the impact of increasing βf on

influenza and COVID-19 infections with high resolution in first

30 days.

3.1. The influenza vaccine and COVID-19
booster coverage

We now consider the issue of minimal and optimal coverage

of the booster (third) and fourth doses of COVID-19 and

influenza vaccines to control both diseases or to reduce the

burden of both diseases together in a single season.

In Figure 5, we start by considering 40% of individuals

who are vaccinated against COVID-19 with first, second, or

third dose also get the influenza vaccine. As of 19 July 2022,

84.81% of Ontario residents are fully vaccinated against COVID-

19. As such, we consider 33.92% of Ontario residents are

vaccinated against influenza from this fraction of population,

and 10% of the remaining 15.19 % who are not vaccinated

against COVID-19 receive influenza vaccine. Thus, the overall

population initially vaccinated against influenza is 33.92% +

1.519% = 35.43%. Finally, the proportion of the Ontario

population receiving booster dose is 41.35%. In our simulations,

we will consider this coverage to be increased to 50, 60, and 70%,

respectively, to see the impact of increasing booster coverage on

the prevalence of both COVID-19 and influenza.

In the left plot of Figure 6, we observe delaying the COVID-

19 peak and reducing the peak size by increasing COVID-19
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FIGURE 8

Impact of 20% mask-wearing with an increasing coverage of COVID-19 booster (third dose) and 55% influenza vaccine coverage on COVID-19

and influenza prevalence.

booster coverage. On the other hand, in the right plot, we

observe an increase of influenza peak value with increasing

COVID-19 booster coverage; increasing the coverage from 41.35

to 70% will see flu peak value changes from close to 15,000 to

25,000. This is because when we increase the COVID-19 booster

coverage, there will be less COVID-19 infections and hence less

isolation, so the increase in the population susceptibility to flu.

Next, as shown in Figure 7, we investigate the impact of

increasing the influenza vaccine coverage to 55% from 35%,

along with the increase of booster dose of COVID-19. We

observe that, though there is no significant impact of increasing

influenza vaccine coverage on peak values of both diseases and

the peak size of influenza infections increases by increasing

influenza vaccine coverage, peak times for both diseases are

remarkably delayed. Similar results in Figure 7 are observed by

increasing 10% coverage of booster (third dose) and fourth doses

of COVID-19 and influenza coverage by 55%.

We also carry out some simulations to assess the impact

of personal protections such as mask-wearing along with

increasing the booster dose of COVID-19 and influenza vaccine

coverage by 55%. We note that mask-wearing is no longer

compulsory in Ontario; however, mask-wearing is strongly

recommended. Reducing βf and βc by 20%, as shown in

Figure 8, there will be no COVID-19 outbreak under a variety

of booster coverage, and we also see a noticeable reduction

in influenza cases. On the other hand, we observed through

simulations result (not shown here) that if influenza coverage is

kept at 35%, then there is a high increase in influenza infections.

So, we conclude that to control outbreaks of both diseases,

an increase in influenza vaccine coverage and continuing the

mask-wearing to reduce the COVID-19 and flu transmission by

20% can play a considerable role even without increasing the

COVID-19 booster dose or fourth dose.

We plot some color-coded simulations to visualize the

variation of total infections of COVID-19 and influenza at the

peak sizes and overall total infections in Figure 9. We vary

the proportion of individuals vaccinated with the third dose

of COVID-19 vaccine (horizontal axis) with the proportion

vaccinated against influenza (vertical axis) and examine the

impact on individuals infected with COVID-19 (Ic + I
f
c ), the

upper left panel in Figure 9, and influenza (If +Icf ), right panel in

Figure 9. The peak size of individuals infected with COVID-19

decreases with an increase in both the proportion of individuals

vaccinated with COVID-19 and influenza vaccines. Based on our

model results, it is possible to lower the overall peak size and that

of individuals infected with COVID-19 when we vaccinate about
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70% of the population with the third dose of the COVID-19

vaccine, together with vaccinating about 65% of the population

with influenza vaccine (see Figure 9 upper left panel and bottom

panel). Alternatively, increasing the proportion of individuals

vaccinated with COVID-19 and/or influenza vaccines increase

the peak size of individuals infected with influenza (see Figure 9,

top right panel). Furthermore, by varying the same proportion

of individuals with the booster dose of COVID-19 and influenza

vaccine, we plot Figure 10 [the peak time (the time when there

would be a maximum number of total COVID-19 infections)

(left panel), and total influenza infections (right panel)].

We also consider the impact of the fraction of isolation “q”

of infected individuals with influenza and COVID-19 symptoms

before the diagnosis. We vary this fraction from 10 to 60%

to produce Figure 11 with influenza vaccine coverage of 35%.

In Figure 11, we can observe that the peak time for COVID-

19 is postponed; and peak value is reduced with increasing

fraction “q.” The peak time for influenza is also postponed,

however, against the intuition, the peak number of infections

with influenza for q = 20%− 30% decreases and then increases

again by increasing isolation before testing. This is because of

the intensive transmission rate of COVID-19 and dominance at

the beginning, with much higher number of initial infections as

compared with the influenza. So, after getting recovered from

COVID-19, there would be more susceptibility to influenza, and

influenza infections start to increase and COVID-19 infections

start to decrease. With q = 40% − 60%, there is a substantial

delay in the COVID-19 peak. So, more infections with influenza

can be seen earlier because of more susceptibility to influenza.

Although there is also a delay in influenza peak with increasing

“q,” similar results (not shown here) are found with influenza

vaccine coverage of 55%.

3.2. Sensitivity analysis

We also conduct the sensitivity analysis using Latin

Hypercube Sampling (LHS) and partial rank correlation

coefficients (PRCC) method on different important epidemic

outcomes to public health, like the total number of infections,

peak number of infections (peak magnitude), and peak time

to identify the key parameters of epidemic with the hope of

determining public health measures that can be implemented

to control or eliminate the outbreaks of these diseases. PRCC

is an efficient sensitivity analysis method based on sampling,

which assigns a value between −1 and +1 for each parameter.

A positive PRCC value indicates a positive correlation of the

parameter with disease maintenance, whereas a negative value

indicates a negative correlation with the disease. The parameters

studied are as follows: βf , βc, φf , φc, q, and C. Figures 12,

13 show the PRCC indices of these selected parameters on

total number of infections (Figure 12A), peak time (Figure 12B),

and peak number of infections (Figure 12C) of COVID-19 and

influenza, respectively.

Figure 13A determines that the disease transmission

probabilities, βf and βc, and contact rate C have a positive

impacts, while vaccine effectiveness φf , φc, and q have negative

impacts. A significant positive correlation among COVID-19

infections and contact rate C and βf , and a negative correlation

with COVID-19 vaccine effectiveness φc are evident. A positive

correlation with βf means more susceptibility to influenza

in the population leading to more infections with influenza

would also lead to more infections with COVID-19 because

of common symptoms and delay in diagnosis. On the other

hand, a strong negative correlation of q means as many

individuals on symptoms immediately isolate themselves before

diagnosis, there would be fewer infections with COVID-19.

We can also see that COVID-19 infections are less sensitive

to influenza vaccine but increase in influenza coverage would

reduce COVID-19 infections. This is because influenza vaccines

are assumed to provide some protection against COVID-19

infection too. Figure 13B shows the effects of the PRCC indices

on the peak time. The effects of these parameters are reversed,

but their relative levels of influence show a similar pattern.

Finally, Figure 13C shows the effects of the PRCC indices on

the epidemic peak size. The impacts of these parameters closely

resemble to those observed in Figure 13C. Next, Figure 13A

shows the sensitivity of the chosen parameters to total influenza

infections. Here, a strong positive correlation of βf and contact

rate C and a significant negative correlation of φf and βc with

total influenza infections are understandable. But a positive

impact of φc on influenza infections means that if there are more

COVID-19 booster or fourth doses administrated (considering

booster and fourth doses because first dose has no and second

dose has very low, 0.06%, effectiveness against COVID-19

infection), then it will result in more infections with influenza.

Furthermore, here q has a positive correlation with influenza

infections. Similarly, sensitivity analysis results for influenza

epidemic peak magnitude (Figure 13C) and a reverse pattern for

influenza peak time (Figure 13B) are obtained.

4. Discussion

In the present study, we developed a deterministic

mathematical model to describe the dynamics of COVID-19

and influenza transmission when both are present in the same

season, and a certain percentage of the population has received

the influenza, COVID-19, or both vaccines.

Worldwide, the influenza virus, through seasonal waves

of infection, generates a significant toll of cases and deaths

(41). According to the World Health Organization, before

the COVID-19 pandemic, there were an estimated 1 billion

cases yearly, of which 3–5 million resulted in 290,000–650,000

influenza-related respiratory deaths (42). In the Northern and
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FIGURE 9

Impact of increasing proportion of individuals vaccinated with the first booster dose of COVID-19 and influenza vaccines on the peak size of

infections. The top left plot represents the total number of infections with COVID-19 (Ic(t)+ I
f
c
(t)) and the top right plot shows the total number

of infections with influenza (If (t)+ I
c

f
(t)). Bottom panel shows the peak size of overall total COVID-19 and influenza cases (Ic(t)+ I

f
c
(t)+ (If (t)+ I

c

f
(t)).

SouthernHemispheres, the flu season usually runs fromOctober

to April and April to September, respectively.

COVID-19 has perturbed seasonal influenza activity (43): in

2020 and 2021, this remained low historically at international

levels (44–49). These changes were attributed to the widespread

implementation of NPIs such as physical distancing, masking

requirements, and lockdowns to mitigate the transmission

of SARS-CoV-2. More recently, however, and coinciding

with relaxation in public health mitigation, a substantial

simultaneous burden of influenza and SARS-CoV-2 has been

observed in the Southern Hemisphere. The June 2022 Australian

Influenza Surveillance Report stated that from mid-April 2022,

the weekly number of laboratory-confirmed influenza cases

in Australia had occurred earlier than usual and exceeded

the 5-year average (50). In the Northern Hemisphere, in

Canada, after lifting public health measures at the beginning of

March 2022, influenza virus circulation increased, reaching the

seasonal epidemic threshold in April with an unusual peak in

May 2022 (51).

Although influenza and COVID-19 viruses belong to

different families and have some differences, with SARS-CoV-

2 having a much higher basic reproduction number, longer

incubation period, and shorter interval between symptoms

onset and infectivity (52), COVID-19 shares many significant

clinical and epidemiological features with influenza, such as

transmission routes and symptoms. Clinical differentiation of

these two respiratory diseases can be a challenge, particularly in

the early stage, based on a common diagnosis in the absence

of laboratory evidence and isolation of a specific pathogen.

Therefore, a laboratory diagnostic test may be required to

rule out the suspicion and establish a definitive diagnosis.

Some sophisticated mathematical/statistical techniques, such as

machine learning-based decision modeling approaches, have

been able to distinguish between influenza and COVID-19 cases

(53, 54).

In terms of clinical public and global health, even though

available vaccines do not provide complete protection against

infection, they can reduce the severity of the disease significantly.

As influenza virus also mutates frequently, an updated flu

vaccine is required every year, considering which strains

are anticipated to circulate in the community. Thus, the

effectiveness of the flu vaccine varies depending on how well

the vaccine matches with circulating strains or who is being

vaccinated (age or health characteristics of the vaccinated

individual) (55). According to health professionals, receiving

influenza and COVID-19 vaccines is a cornerstone to protect
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FIGURE 10

Impact of increasing proportion of individuals vaccinated with the first booster dose of COVID-19 and influenza vaccines on the peak time of

infections. Left plot represents the total number of infections with COVID-19 (Ic(t)+ I
f
c
(t)) and right plot shows the total number of infections

with influenza (If (t)+ I
c

f
(t)).

against illness of both diseases and potentially their severe

consequences, including hospitalization and fatality (56, 57).

Therefore, reducing the burden of COVID-19 and influenza

will depend primarily on increasing vaccination coverage. A

mathematical model (58) has modeled the interaction between

SARS-CoV-2 and influenza during the early phase of the

COVID-19 pandemic. Using a population-based modeling

approach, the authors found a 2- to 2.5-fold population-level

increase in COVID-19 transmission associated with influenza

co-circulation, warranting the importance of being immunized

against influenza. Influenza vaccination can represent, indeed,

an important public health intervention to, at least partially,

relieve andmitigate against the burden generated by SARS-CoV-

2 and influenza co-circulation (14). As found by a systematic

review of the literature, influenza immunization can also,

indeed, confer protection against COVID-19 (59).

In our model, we took into account the multi-factorial

interactions between influenza and COVID-19 in terms of

additional epidemiological, clinical, and organizational burdens

due to their comparable early symptoms, which can present

a clinical challenge in determining the patient’s disease type

and overwhelm testing capacity, lowering the diagnosis rate. In

this scenario, we observe that if testing capacity is increased

per day, it will delay the peak of COVID-19 in addition to

reducing it. On the other hand, because of early detection and

lack of isolation, influenza cases can grow. Agreeing with (60),

the low levels of influenza activity in the previous 2 years of

the COVID-19 pandemic may result in an increased proportion

of susceptible individuals. Our simulations with increasing

influenza transmissibility show that this will bring the peaks of

influenza and COVID-19 earlier, slightly decrease the COVID-

19 peak size, but significantly increase the flu peak. Here, we

can see the real influence of co-circulation and interaction of

COVID-19 and influenza on each other. It is because of the

testing delay brought on by the high number of influenza cases.

The earlier the flu season’s peak and greater the number of

infections with flu-like symptoms, the greater the risk of flu

transmission, which slows down COVID-19 testing, resulting

in the delay of complete isolation of patients with COVID-

19, who have not been isolated before the clinical presentation

of symptoms and have been continuing their normal daily

activities. Furthermore, our simulations stress the importance

of vaccine uptake for preventing infection, severe illness, and

hospitalization at the individual level and for disease outbreak

control at the population level to avoid putting strain on already

weak and overwhelmed healthcare systems. As such, ensuring
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FIGURE 11

Impact of varying fraction (q) of individuals who isolate them on symptoms of influenza and COVID-19 before testing on total influenza and

COVID-19 infections when influenza vaccine coverage is 35%.

FIGURE 12

Sensitivity analysis of three epidemic outcomes of COVID-19. (A–C) Total COVID-19 infections, the epidemic peak time of COVID-19, and the

peak magnitude of COVID-19 respectively. The sensitivity analysis is done with 2,000 bins.

optimal vaccine coverage for COVID-19 and influenza to reduce

the burden of these infections is paramount. We showed that

by keeping the influenza vaccine coverage about 35% and

increasing the coverage of booster or fourth dose of COVID-

19 not only reduces the infections with COVID-19 but also can

delay its peak time. If the influenza vaccine coverage is increased

to 55%, unexpectedly, it increases the peak size of influenza

infections slightly, while it reduces the peak size of COVID-

19 as well as significantly delays the peaks of both of these

diseases. Also, we have shown that personal protection decisions

like mask-wearing can mitigate the COVID-19 outbreak and

can avert an outbreak of seasonal influenza significantly. In

conclusion, an increase in vaccine uptake of both diseases,

particularly influenza, can significantly delay the peak time of
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FIGURE 13

Sensitivity analysis of three epidemic outcomes of influenza. (A–C) Total number of influenza infections, epidemic peak time of influenza, and

peak magnitude of influenza, respectively.

both COVID-19 and influenza. Mask-wearing coupled with a

moderate increase in the vaccine uptake may mitigate COVID-

19 and prevent an influenza outbreak.

However, there are some limitations in the present study.

To keep this model parsimonious, we did not include latent or

asymptomatic stages of infection. We believe including these

stages would not overly affect our predictions due to themajority

of COVID-19 and flu cases being symptomatic, and therefore

requiring diagnosis (61). Future studies may be extended to add

these states if needed. We did not consider outflow from the

isolation class (before testing) to the recovered class because of

the long delay in diagnosis. Although we did some simulations

by incorporating it into our model (not included in the article),

there is not much difference between these and our key findings

of the given model in this study, except we see more delay in

peak times of both diseases. And by increasing influenza vaccine

coverage from 35 to 55%, there is a delay in influenza cases

instead of a slight increase in influenza peak as in our original

model. Also, with 55% influenza vaccine and 20% masking,

there would be no outbreak of COVID-19 and influenza even

if booster and fourth doses coverage are kept moderate.

Our study has important practical implications for public

health policy: It shows that effectively managing and controlling

both influenza and COVID-19 outbreaks during the same

season depend on ensuring optimal strategies in terms of vaccine

coverage.
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Hepatitis A is a water-borne infectious disease that frequently occurs in

unsanitary environments. However, paradoxically, those who have spent their

infancy in a sanitary environment are more susceptible to hepatitis A because

they do not have the opportunity to acquire natural immunity. In Korea,

hepatitis A is prevalent because of the distribution of uncooked seafood,

especially during hot and humid summers. In general, the transmission

of hepatitis A is known to be dynamically a�ected by socioeconomic,

environmental, and weather-related factors and is heterogeneous in time and

space. In this study, we aimed to investigate the spatio-temporal variation

of hepatitis A and the e�ects of socioeconomic and weather-related factors

in Korea using a flexible spatio-temporal model. We propose a Bayesian

Poisson regression model coupled with spatio-temporal variability to estimate

the e�ects of risk factors. We used weekly hepatitis A incidence data across

250 districts in Korea from 2016 to 2019. We found spatial and temporal

autocorrelations of hepatitis A indicating that the spatial distribution of hepatitis

A varied dynamically over time. From the estimation results, we noticed that

the districts with large proportions of males and foreigners correspond to

higher incidences. The average temperature was positively correlated with

the incidence, which is in agreement with other studies showing that the

incidences in Korea are noticeable in spring and summer due to the increased

outdoor activity and intake of stale seafood. To the best of our knowledge,

this study is the first to suggest a spatio-temporal model for hepatitis A across

the entirety of Korean. The proposed model could be useful for predicting,

preventing, and controlling the spread of hepatitis A.

KEYWORDS

hepatitis A virus, spatio-temporal analysis, spatio-temporal models, zero-inflated

Poisson, Bayesian hierarchical modeling, Korea
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1. Introduction

Unlike Hepatitis B or C, Hepatitis A virus (HAV) is not

transmitted through blood, but by consuming food or water

contaminated with HAV or by contact with an infected person

(1). World Health Organization (1) reported that the number

of deaths from HAV in 2015 was estimated to be about 11,000

worldwide, accounting for 0.8% of deaths from viral infections.

A case-control study of the HAV outbreak in Shanghai in 1988

supported that clams were a carrier of the virus (2). In Korea,

HAV is often reported to spread through shellfish consumption

(3). In India, a case-control study showed a high association

between pipe water contamination and HAV infection (4). It

particularly occurs in underdeveloped areas where personal

hygiene management is poor, and HAV infection cases are

decreasing in countries with an improvement in socioeconomic

level, clean water management system, and HAV vaccination

(5). However, the incidence rate has recently increased rapidly,

in young adults who grew up in a hygienic environment in

Korea (6).

Several studies have investigated the effects of

socioeconomic and epidemiological factors such as age,

medical level, and hygiene level on HAV in various countries.

For example, it was noted that a significantly lower rate

of HAV infection in people coupled with moderate to high

socioeconomic conditions in Brazil, Argentina, and Mexico in

Tapia-Conyer et al. (7). Mantovani et al. (8) discovered that a

region with a high incidence of HAV had a weak socioeconomic

condition in Brazil, thus emphasizing the need for hygiene

improvement and better water treatment in the western

Brazilian Amazon to reduce infectious disease outbreaks. Dogru

et al. (9) classified children under the age of 15 in Turkey

into three categories and analyzed the spatial patterns of HAV

occurrence. In Turkey, the incidence of HAV was reported

to be high in areas where water and sewage facilities are not

well equipped. Copado-Villagrana et al. (10) pointed out

that HAV infections were mainly found in the metropolitan

areas of southern and western Mexico, noting that it may be

associated with poor medical services in the most marginalized

areas. Zheng et al. (11) characterized changes in the incidence

and mortality of HAV in various age groups and regions in

China from 1990 to 2018 and evaluated the effectiveness of the

nationwide expanded program on immunization. The spread

of the disease was decreased by expanding vaccinations and

improving hygiene facilities. Shanmugam et al. (12) showed

that primary infection of HAV among the older age group in

India has recently decreased with improved living conditions.

Weather-related variables are associated with the incidence

of HAV. According to Cann et al. (13), in extreme weather

conditions such as hurricanes, cross-contamination of water

supply and sewage may affect the transmission of waterborne

diseases. In Brazil, cases of HAV infection increased during the

rainy season (14). In state of Pará, Brazil, monthly accumulated

precipitation was positively correlated with the incidence of

HAV (15). Tosepu (16) found a strong relationship between

HAV and weather change, particularly rainfall and floods, in

several areas, such as Spain, India, China, and Egypt. Baek

et al. (17) showed that weekly precipitation and maximum

temperature tended to decrease the incidence rate ratio of HAV

in Seoul, Korea from the analysis of time series with past 1–

6 week lags. In Seoul, the capital of South Korea, nearly 100%

of households receive sterilized tap water and most citizens

drink purified or clean spring water. In addition, since Seoul

is geographically less affected by typhoons and floods, HAV is

not likely to be transmitted due to cross-contamination of water

supply and sewerage due to heavy seasonal rains as in other

regions (17). In this respect, HAV incidence seems to be related

to weather conditions, but the pattern may differ across regions.

Fares (18) pointed out that some specific months are associated

with a higher incidence of HAV in most countries around the

world, but the exact reason for the seasonality of HAV has yet

to be known. Several researchers have suggested climatic and

behavioral factors such as swimming and traveling may play an

important role in seasonal disease incidence (18). Moon et al.

(19), based on the dataset in Korea from 2011 to 2013, reported

that most HAV cases occurred from March to June. People have

more outdoor activities as the weather becomes warmer during

this period; thus, they are at risk of being exposed to tainted

drinking water and uncooked seafood. Both are well-known risk

factors for HAV infections (20). Thus, weather-related variables

such as temperature and precipitation should be considered

when studying HAV occurrences because weather conditions

can affect people’s behavior.

Various spatio-temporal analyses have been conducted to

explore and understand the risk of HAV in terms of spatial

and temporal structures. Gomez-Barroso et al. (21) analyzed

the space-time risk of HAV using standardized incidence ratios

(SIR; the ratio between actual and expected cases) and the

posterior probability of the smoothed relative risk (RR; the

ratio of the outcome probability for the exposed group to

the probability for the unexposed group) in Spain at the

municipal level from 1997 to 2007. Stoitsova et al. (22) applied

the Global Moran’s I index for spatial autocorrelation across

Bulgaria concerning the risk of HAV infection and SIR across

the nation for the whole period from 2003 to 2013 and two

divided periods (2003–2008 and 2008–2013). Leal et al. (23)

explored the spatio-temporal patterns of HAV outbreaks before

(2008–2013) and after (2014–2017) the implementation of the

national public immunization program in Pará State, a region

of Brazil with severe endemic disease. Space-time scan statistics

were applied to detect spatio-temporal clusters. Moreover, Leal

et al. (15) investigated the association between environmental

and socio-demographic data in HAV transmission in Pará

State, Brazil, using various models, including generalized linear
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models, multilayer perceptron (MPL) deep-learning algorithm,

gradient boost, decision tree, and histogram gradient boost

(HGB). To reflect the spatial variation, the longitude and

latitude of each municipality were used as covariates in

the model.

As discussed above, HAV is related to many factors, such

as socioeconomic and epidemiological factors, weather-related

factors, and spatio-temporal variations; therefore, referring to

the status of diseases in other countries is not enough. For a

better understanding of the HAV of the country, we should

consider not only its local and national characteristics but also

its social and hygienic situation.

With rapid urbanization, Korea has become cleaner. Since

the first sewage treatment plant was established in Korea in

1976 (24), the number of sewage treatment plants has gradually

increased, and accordingly, the number of HAV infections

caused by contaminated water has decreased rapidly. As of

2020, the water supply rate is 97% nationwide, 100% in Seoul

and 45.7% in Cheongyang-gun, Chungcheongnam-do. In the

same year, the sewage supply rate was 94.5% nationwide,

100% in Seoul, and 5.4% in Ulleung-gun, Gyeongsangbuk-do.

Although Korea’s large cities have well-equipped water and

sewage facilities, some areas of rural and fishing villages are in

poor condition. Children with acute HAV are asymptomatic or

mildly symptomatic, and antibodies (IgG anti-HAV) develop,

resulting in lifelong immunity (6). According to Yoon et al.

(6), IgG anti-HAV seropositivity in the Korean young adult

population was low and a clean environment may lead to a

decrease in the natural immune system population. Since the

HAV vaccination began in 1997, the vaccination rate for 3-

year-old infants in Korea exceeded 95% in 2019, according

to the Korea Disease Control and Prevention Agency. People

without antibodies are at an increased risk of exposure to HAV

during active adolescence because they do not contract HAV

as a child. When infected as an adult, the immune response is

severe and symptoms such as jaundice appear; in severe cases,

acute liver failure can lead to death (6). People born after 1980,

when the environment was cleaner and the HAV vaccine was

yet developed, have been reported to be more susceptible to

HAV (25, 26). Other similar studies on the seroprevalence of

HAV antibodies have been reported steadily over time (27–

30).

Some efforts have been made to investigate and understand

the status of HAV in Korea using statistical approaches. Research

on the frequency analysis of the number of HAV infections

by year, region, and age have been steadily reported (19, 31–

33). Moon et al. (19) studied the epidemiological status of

HAV cases in Korea between 2011 and 2013. They described

significant differences in the incidence of HAV between months,

regions, sexes, and age groups. In particular, they classified

regions into five clusters according to the RR. Using Moran’s

I and scan statistics, they found clear and existing regional

differences in the incidence of HAV; however, their approach

was limited to exploratory data analysis. In addition, RR does

not always show correct risks (34). Seo et al. (25) studied the

effect of socioeconomic status and environmental hygiene by

region on the incidence of HAV based on the registered national

population of Korea and national health insurance data from

2004 to 2008 using a Poisson regression model. Choi (35)

conducted spatial hotspot detection of monthly incidences of

HAV using spatial scan statistics and investigated the effects

of socioeconomic factors using the Bayesian spatial Poisson

regression model. Even though the HAV data were monthly, the

proposed spatial model considered yearly incidence data and

was independently applied. Thus, this study did not consider

temporal and spatial variations for consecutive periods. Choi

(36) analyzed HAV incidence data from 2007 to 2012 in

Korea using a Bayesian spatio-temporal Poisson regression

model. In Korea, HAV occurs more in summer and less in

winter; therefore, seasonal factors are reflected in the model

using a sine/cosine function. However, this study did not

consider socioeconomic or weather factors. Baek et al. (17)

conducted a time series analysis to explain the influence of

factors, such as temperature and precipitation, on the incidence

of HAV in Seoul, Korea. By minimizing the influence of

other factors and limiting the study region to a place with

a similar lifestyle, they could explain the association between

weather-related factors and HAV incidence. However, it is

questionable whether the same result can hold for other regions

rather than Seoul in Korea. Also, further investigation of the

association between HAV cases and variables other than weather

is required.

In this study, we aimed to investigate the spatio-temporal

variation of HAV in Korea and effects of socioeconomic

and weather-related factors using a flexible spatio-temporal

model. We proposed a Bayesian spatio-temporal zero-inflated

Poisson regression model of weekly HAV incidence in Korea

to estimate the effects of risk factors. This study is the first

to develop a spatio-temporal model of HAV incidence across

the entirety of Korean, with various socioeconomic factors. The

advantage of this study is that the proposed model could be

useful in predicting, preventing, and controlling the spread of

hepatitis A.

2. Materials and methods

2.1. Description of data

We considered HAV cases as a response variable and

socioeconomic, environmental, and weather-related factors as

explanatory variables. The dataset for 250 nationwide districts

from 2016 to 2019 was obtained from the Korea Disease

Control and Prevention Agency. The weekly HAV cases at the

district level (called si/gun/gu) had many zero counts (73.5%),

suggesting zero-inflated statistical modeling.
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We considered income, education level, and fertility rate as

socioeconomic factors, because they affect the quality of life. The

income variable is defined as the average monthly income per

person at the district level. We calculated the high education

rate as the proportion of educational attainment of a university

degree or higher among the population in their 20s or an older

age. The fertility rate was obtained from the actual fertility rate

of women 15–49 years in Statistics Korea. We also considered

the male proportion because people with active social activities

are more likely to be exposed to HAV, and previous studies,

including Moon et al. (19), found that the infection occurred

more often among men than that among women. Since people

born around the 1980s in Korea have a weak tendency toward

HAV immunity (26), we considered the age group of 30–49

years. Jacobsen (20) mentioned that diverse epidemiological

profiles should be treated as risk factors for HAV, and the

number of registered foreigners was used for analyzes. Based

on the result of Choi (35), we included the number of medical

doctors per 1,000 people as a factor.

For environmental factors, we considered the water supply

and sewage treatment facility rates obtained annually from

Statistics Korea. Water supply plays an important role not

only in terms of health and sanitation but also in industry

and firefighting. Waterworks are essential for daily life, but the

water system capacity varies depending on several conditions,

such as the residential environment (including the housing

structure) and the financial status of the local government.

Therefore, the water supply rate can be used to evaluate the

quality of the local living environment. According to statistics

published by the Ministry of Environment of Korea, the water

supply rate in Korea increased from 80.1% in 1991 to 97.3%

in 2019 due to the government’s continuous infrastructure

expansion. However, the water supply rate varied between

regions. For example, Seoul and Daegu reached 100%, but

Jeju Island did not even reach 90%. The gap between the

city and rural (and small town) areas is sufficiently large

to be ignored. The public sewage treatment facility rate for

the population is the ratio of the population beneficiaries of

public sewerage services, and the closer it is to 100%, the

higher the ratio of the population beneficiaries of public sewage

services.

The three weather variables of interest, average temperature,

total precipitation, and average humidity, were obtained from

the Korea Meteorological Administration. The weather datasets

were measured using two systems, an automatic weather system

(AWS) and automated synoptic observing system (ASOS),

at distinct weather stations (up to 510 and 103 stations,

respectively). These measured values should be located in the

same spatial domain as other factors; thus, we need to fit a

surface to irregularly spaced weather values. Here, we combined

the datasets from the two systems and subsequently predicted

the weather values at each time and location of interest. To

achieve this goal, we used the Krigingmodel based on a Gaussian

TABLE 1 Description of data set (outcome, socioeconomic factors,

environmental factors, and weather-related factors).

Variable
type

Variable Time unit

Outcome HAV cases Weekly

Socioeconomic

factor

Total income per person

(1 million won)

Yearly

High education rate (%) 2015

Total fertility rate per

woman aged 15–49 years

Yearly

Proportion of males (%) Yearly

Proportion of people

aged 30–49 years (%)

Yearly

Log(number of

foreigners)

Yearly

Number of doctors per

thousand people

Yearly

Environmental

factor

Water supply rate (%) Yearly

Sewage treatment facility

rate (%)

Yearly

Weather-

related

factor

Average temperature

(◦C)

Weekly

Total precipitation (mm) Weekly

Average humidity (%) Weekly

spatial random process with a Matérn covariance function at a

given time (37).

We report a list of factors for this study in Table 1

and their data sources in Supplementary Table S1. Here, HAV

cases and weather-related factors were measured weekly, but

socioeconomic and environmental factors were collected yearly.

For the socioeconomic and environmental factors, we obtained

datasets from different statistics from various institutions.

However, we can conveniently access all statistics through the

Korean Statistical Information Service (KOSIS).

2.2. Spatial and temporal association
measures

First, weekly HAV cases in a given district are now becoming

time series data. Thus, we considered the autocorrelation

function (ACF) and partial autocorrelation function (PACF) to

examine the temporal association. The ACF corresponds to the

correlation between the time series with a lagged version of itself,

whereas the PACFmeasures the additional correlation explained

by each successive lagged term. Although these two functions

are slightly different, they are both measures of the association

between current and past series values. For more details on the

ACF and PACF, we refer to Brockwell and Davis (38).
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In contrast, HAV cases in districts given at a time are areal

data. In this case, we used Moran’s I index measuring the

strength of spatial associations among districts (39) to examine

the spatial association. It is a spatial analog of the measure of

association in a time series. In addition, Moran’s I index explores

a specific type of spatial clustering (40). The proximity matrix

consists of weights that spatially connect two districts in a certain

manner. Here, two districts closer to one another have more

weight than those farther away. Moran’s I index coupled with

the proximity matrix can be interpreted as follows: a negative

value corresponds to some clustering of dissimilar values, a zero

value corresponds to perfect randomness, and a positive value

indicates some clustering of similar values.

All the analyzes were performed using R software (version

4.1.0; https://www.r-project.org). We used “ape” (41) and

“fields” (42) packages to compute the distances among districts

and the global Moran’s I index.

2.3. Statistical model

A Bayesian space-time regression model was developed

to investigate the association between socioeconomic,

environmental, and weather-related factors and HAV cases and

to account for the space-time-dependent structures in the data.

As there were many zero values in the weekly district-level HAV

cases data, we used a zero-inflated Poisson (ZIP) distribution.

Moreover, we considered the two-stage framework proposed

by Lawson et al. (43) to overcome the spatial confounding

bias problem.

In the first stage, the number of cases for district area s (=

1, 2, · · · , S) and weekly time index t (= 1, 2, · · · , T), ys,t ,

follows a zero-inflated Poisson distribution as follows:

ys,t ∼ ZIP(ps,t , λs,t),

where ps,t is the probability of structural zeros and λs,t is the

mean term of the Poisson distribution without structural zeros.

The hierarchical structure of the ZIP model can be expressed as

ys,t|zs,t ∼ Poisson(µs,t = λs,t(1− zs,t)),

zs,t ∼ Bernoulli(ps,t),

logit(ps,t) = γ0 + XT
s,j(t)γ +WT

s,tδ,

where j(t) is the yearly time index for socioeconomic and

environmental factors and zs,t is a binary variable with

probability ps,t , representing whether it is a structural zero or

not. The logit(ps,t) is the linear combination of the intercept

γ0, and the fixed socioeconomic and environmental factors

Xs,j(t) and weather-related factors Ws,t with the corresponding

coefficient vectors γ and δ, respectively. The log RR, log(λs,t), is

modeled using fixed factors with the corresponding coefficient

vectors β and α.

log(λs,t) = β0 + XT
s,j(t)β +WT

s,tα + log(Ns,j(t)), (1)

where β0 is the intercept and Ns,j(t) is the population density

as the off-set. The model of the first-stage only considers fixed

factors without spatio-temporal variations.

After fitting the first-stage model using a Bayesian approach,

the estimates µ̂s,t were computed using the posterior means.

Continuous-type residuals were calculated as follows:

r̂s,t = log (ys,t + 0.1)− log(µ̂s,t),

where an extra value of 0.1 is added in the residual calculation

because of the zero values of ys,t .

In the second-stage, the residuals are modeled to explain the

spatio-temporal variations over the first-stage covariates-only

model.

r̂s,t ∼ N(STs,t , σ
2
r ),

STs,t = r0 + us + vs + ηt + τt , (2)

where r0 ∼ N(0, 100) is the intercept. The spatial random

component us ∼ N(0, σ 2
u ) explains the spatially uncorrelated

structures, and vs explains the spatially-correlated structures

with conditional intrinsic auto-regressive (CIAR) distribution

from Besag et al. (44), vs ∼ CIAR(σ 2
v ). The random components

ηt ∼ N(0, σ 2
η ) and τt ∼ N(τt−1, σ

2
τ ) explain the temporal-

uncorrelated and temporal-correlated structures, respectively.

After fitting the residual model with a Bayesian approach,

the estimated means of the spatio-temporal structures, ̂STs,t ,

were obtained. We incorporated the estimated spatio-temporal

variations into the fixed covariates. The final model is expressed

as follows:

log(λs,t) = β0+XT
s,j(t)β+WT

s,tα+log(Ns,j(t))+̂STs,t+ǫs,t , (3)

where ǫs,t ∼ N(0, σ 2
ǫ ) is the uncorrelated space-time random

component that is not explained by the estimated space-time

structure. Finally, the restricted ZIP regression model was

fitted using a Bayesian approach to obtain the final estimates

for β and α.

For the parameter estimation, we use non-informative

priors, Normal(0, 100), for the coefficient parameters β0, γ0,

β , α, γ , and δ. The standard deviations σu, σv, ση , and στ

are assigned to a uniform distribution, Uniform (0, 10). The

NIMBLE package developed by de Valpine et al. (45) in the

statistical software R was used to produce posterior samples.

After discarding samples as a burn-in, 5,000 posterior samples

with thin 50 were collected. Codes for the models can be found

at https://github.com/JungsoonChoi/STmodeling_HepA.git.
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TABLE 2 Descriptive statistical analysis.

Variable Mean SD Q1 Q3 IQR

Total income per person 33.68 6.25 29.45 36.40 6.95

High education rate 31.12 11.19 21.70 38.12 16.42

Total fertility rate 1.14 0.27 0.95 1.30 0.35

Proportion of males 50.09 1.29 49.26 50.75 1.49

Proportion of people aged

30–49 years

27.66 5.22 23.14 31.77 8.63

Log(number of

foreigners)

7.83 1.22 6.88 8.68 1.80

Number of doctors per

thousand people

2.69 2.25 1.70 2.80 1.10

Water supply rate 81.05 30.39 78.97 99.90 20.93

Sewage treatment facility

rate

84.69 17.25 74.18 99.50 25.32

Average temperature 12.82 9.69 4.32 21.05 16.73

Total precipitation 21.45 38.02 0.39 24.77 24.38

Average humidity 68.46 10.63 61.01 76.66 15.65

3. Results

Table 2 presents a summary of the statistical analysis of all

the variables. The proportion of men had a 1.49% interquartile

range (IQR = Q3-Q1), and the proportion of people aged 30–

49 years had an IQR of 8.63%. Among the socioeconomic

factors, these variables showed relatively smaller variations

over districts and years. The average temperature and total

precipitation had larger standard deviation (SD) values than that

of the mean values. Water supply and sewage treatment facility

rates have high mean values of 81.05 and 84.69, respectively.

Supplementary Figure S1 shows the spatial variation of the

average socioeconomic and environmental factors for 2016–

2019. Supplementary Table S2 presents the number of HAV

cases per 1,000 people divided into five groups for each

socioeconomic and environmental factor. For the level of

high education, the average number of HAV cases per 1,000

people 0.470 in the G1 districts and 0.615 in the G5 districts,

respectively.

3.1. Spatial and temporal distributions of
HAV

Figure 1A represents the weekly number of HAV cases

from 2016 to 2019. Time series plots of weekly HAV cases

in selected districts, Seoul-si Jongno-gu, Busan-si Sasang-gu,

Daejeon-si Seo-gu, and Gyeonggi-do Bucheon-si, are shown in

Figure 1B. We found that the temporal distribution of weekly

HAV cases varied across districts. Figure 1C compares the

temporal variation in the cases from 2016 to 2019. In 2016, the

number of HAV cases was high in the spring, but in 2019, it was

high in the summer. There was little change in the number of

HAV cases in 2018 compared with that of the other years.

Figures 2A–D illustrate the number of cases per 1,000

people in 2016, 2017, 2018, and 2019, respectively. Overall,

the central region of Korea, the Seoul metropolitan area, had

a higher number of cases than that in the other regions. The

Chungcheong Province, which is close to the Seoul metropolitan

region, had a greater number of cases per 1,000 people than that

in the other regions.

Figure 2 shows the existing connections of observations

between the different districts. Themore correlated the cases, the

closer the districts were to the map. Table 3 presents the global

Moran’s I values for each year. Here, we calculated the distance-

based global Moran’s I value and found a positive correlation in

space. Figure 3 presents the time series plot of weekly Moran’s I

and its P-values.We also found spatial dependence of HAV cases

at most time points.

Figure 4 shows the ACF and PACF for all districts and each

selected district. They are important tools in the exploratory

data analysis of time series and, in particular, help to understand

the correlation between observations at different time points.

It is evident that the time series values at Daejeon-si Seo-gu

and Gyeonggi-do Bucheon-si are related to their past values.

Thus, considering temporal dependencies when modeling HAV

cases is required. Figures 3, 4 show that we must not ignore not

only temporal dependence but also spatial dependence. Thus, we

included both spatial- and temporal-dependent structures in the

model for a better fit.

3.2. Bayesian spatio-temporal model

We evaluated the performance of the proposed model,

with several competing models as follows: Poisson and ZIP

distributions were considered. Type 1 included only fixed factors

without a random component. Type 2 included both fixed

factors and spatio-temporal random components STs,t on the

right side of (2). Type 3 also includes fixed factors and spatio-

temporal random components within the two-stage framework.

The proposed model was a ZIP model with type 3.

Table 4 presents the comparison results of the models, with

the mean absolute error (MAE), mean squared prediction Error

(MSPE), and deviance information criterion (DIC=Dbar+pD)

(46). In general, smaller values of the model fit criterion indicate

a better model than that of the competitors. The proposed

model (ZIP with type 3) had a smaller MAE and MSPE than

that of the other models. Overall, the ZIP models provide

slightly better performance than that of the Poisson models

in terms of MAE, MSPE, and DIC. The ZIP model with

type 2 has a slightly smaller DIC than that of the proposed

model. However, the parameter estimation result of a ZIP
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FIGURE 1

(A) Number of HAV cases from 2016 to 2019. (B) Weekly HAV cases at selected districts. (C) Temporal distribution of weekly total cases from

2016 to 2019.

with the ST model suffered from the spatial confounding

bias issue, providing many insignificant coefficients due to

the spatio-temporal random components. Thus, we preferred

the proposed model in terms of model fit and better

interpretation.

All the variables considered in our proposed model were

statistically significant at a significance level of 0.05. The

parameter estimates are presented in Table 5. Total income per

person, high education rate, total fertility rate, the proportion of

males, and the number of foreigners were positively associated

with the number of HAV cases. However, the proportion

of people aged 30–49 years and the number of doctors per

1,000 people were negatively associated with the number of

cases. In addition, we found a negative association between

environmental factors, including water supply rate, sewage

treatment facility rate, and cases. This indicates that the higher

the water quality of the environment, the lower the HAV

incidence rate. For weather-related factors, the coefficient of

average temperature had a positive value, and the coefficient of

precipitation and humidity had a negative value with a small

absolute value.

4. Discussion

We investigated the spatio-temporal distribution of the HAV

incidence data in Korea from 2016 to 2019 with visualization

methods and various statistical methods such as ACF, PACF, and

Moran’s I. The results showed that the spatial distribution of

HAV incidence varied dynamically over the temporal period of

interest and that the temporal distribution varied across districts.

We also found that the yearly temporal distribution of HAV

cases in Korea is quite different. We found a high peak and

significant temporal variation in 2019. Son et al. (47) reported

that the ingestion of salted clams significantly increased the risk

of HAV in Korea in 2019.

Several HAV studies have been limited to frequency analysis,

spatial correlation exploration usingMoran’s I, and comparisons
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FIGURE 2

Number of HAV cases per 1,000 people in (A) 2016, (B) 2017, (C) 2018, and (D) 2019.

TABLE 3 Distance-based global Moran’s I from 2016 to 2019.

2016 2017 2018 2019

Moran’s I 0.138 0.304 0.246 0.186

of SIR and RR. Frequency analysis is useful for finding the

frequency of a variable in the entire data, but it is difficult to

find a pattern when multiple variables are given conditionally.

For example, our frequency analysis in Supplementary Table S2

showed that HAV cases increases up to the 80% quantile of

water supply rates and sewage treatment facility rates, and

then decreases in the quantile beyond that. However, such

results were inconsistent with previous studies (4, 9), and it was

known that these factors were related to other socioeconomic

factors and had spatial variations. Therefore, frequency analysis

alone has a limitation in investigating the association between

environmental factors and HAV. Moran’s I index is useful

for investigating spatial correlation at a fixed time point, but

it has a limitation in that it cannot simultaneously determine

spatio-temporal correlation. SIR and RR are mainly used to

identify patterns of disease occurrence. By representing the SIR
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FIGURE 3

Time series plot of weekly Moran’s I and its P-value from 2016 to 2019.

and RR values on a map, it is easy to identify the regions

at high risk for disease. However, it is difficult to reflect the

spatio-temporal correlation using SIR and RR simultaneously.

For example, Moon et al. (19) investigated the incidence

rates in Korea from 2011 to 2013 by year and age groups

and represented RR in specific regions by year. They focused

more on frequency analysis and could not consider spatio-

temporal dependent structures simultaneously. Examining each

variable separately, without considering multiple variables

simultaneously, may result in a biased conclusion. In this

respect, a regression model with multiple variables is better

than that of frequency analysis. Furthermore, it is important

to consider spatio-temporal association for epidemic data

simultaneously.

Our study proposed spatio-temporal modeling of weekly

incidence data in Korea using a Bayesian approach to

better explain the complicated spatio-temporal dependence

structures of HAV cases. The model assessed the effects

of socioeconomic, environmental, and weather factors

on weekly HAV cases by adjusting the spatio-temporal

dynamics.

The contribution of this study is to examine the spatio-

temporal distribution of HAV cases using various exploratory

data analysis methods and to develop a Bayesian spatio-temporal

model for considering simultaneous spatio-temporal dependent

structures of the data. In terms of modeling, our contributions

are as follows. Because the onset of infectious diseases has

spatial and temporal correlations, a regression model that does

not reflect these variations may result in a poor model fit.

Considering this point, we applied a regression model with

spatio-temporal variations to HAV data in Korea. We attempted

to find a model that best reflects spatio-temporal variation. We

applied the two-stage framework following (43) to avoid spatial

confounding bias issues; thus, we obtained a better model fit

than that of the other models. Moreover, the HAV cases are

counted and contain many zero values, and we consider the

ZIP regression as the base model. Using the ZIP regression

model coupled with two-stage and spatio-temporal structures,

we demonstrated that spatio-temporal variation could not be

neglected in analyzing an epidemic disease.

In the proposed spatio-temporal model, various

socioeconomic, environmental, and weather-related factors

were statistically significant for HAV occurrence in Korea from

2016 to 2019. The results showed that the higher the level

of income and education, the more social activities, and the

more frequent contact with people, the higher the possibility

of exposure to HAV in Korea. It also showed that the higher

the male ratio and number of foreigners residing, the higher

the HAV incidence rate. Our findings agree with the studies

mentioned earlier in Korea (19, 25, 35). Moreover, the number

of medical doctors was negatively associated with the HAV

incidence rate, as mentioned by Choi (35). We found that the

proportion of people aged 30–49 years and incidence had a

negative association after adjusting various socioeconomic and

environmental factors. This result is somewhat inconsistent

with the previous study of Yoon et al. (6). There might be

confounding factors that were not considered in our study.

Explanations for the present findings warrant further study on

the association of the proportion of people with specific age

groups and HAV.
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FIGURE 4

ACF and PACF plots of weekly number of cases. (A, B) are for whole districts, (C, D) are for Daejeon-si Seo-gu, and (E, F) are for Gyeonggi-do

Bucheon-si.

TABLE 4 Model comparison results.

Distribution Type MAE MSPE Dbar DIC pD

1 0.745 2.595 128,717 128,727 11

Poisson 2 0.479 0.917 76,911 78,239 1,328

3 0.366 0.329 66,743 73,175 6,432

1 0.742 2.583 128,017 128,028 11

ZIP 2 0.465 0.858 72,699 73,049 350

3 0.365 0.328 66,657 73,119 6,462

The bold values indicate the smallest value of MAE, MSPE, and DIC.

We found that the coefficients of the water supply and

sewage treatment facility rates were negative, indicating that the

higher the water quality and hygiene conditions, the lower the

incidence rate of HAV. These results are in line with previous

studies (8, 9), even though our exploratory data analysis in

Supplementary Table S2 looked like a positive association. Thus,

we again confirmed the importance of spatio-temporal multiple

regression modeling to examine the association between factors

and HAV simultaneously.

For weather-related factors, the coefficient of average

temperature had a positive value, and the coefficient of

precipitation and humidity had a negative value with a
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TABLE 5 Parameter estimates from the proposed model.

Variable type Variable Posterior mean 2.5% 97.5%

Socioeconomic Total income per person 0.042 0.039 0.047

factors High education rate 0.025 0.019 0.030

Total fertility rate 0.437 0.332 0.769

Proportion of males 0.367 0.286 0.408

Proportion of people with 30–49 years old –0.138 –0.150 –0.127

Log(number of foreigners) 0.517 0.493 0.577

Number of doctors per thousand people –0.171 –0.183 –0.161

Environmental Water supply rate –0.028 –0.034 –0.024

factors Sewage treatment facility rate –0.031 –0.034 –0.019

Weather-related Average temperature 0.038 0.036 0.040

factors Total precipitation –0.001 –0.002 –0.001

Average humidity –0.006 –0.008 –0.003

small absolute value. Supplementary Figure S3 showed

the positive association between average temperature

and HAV cases, although the associations between other

weather factors and HAV were not clearly shown. Moreover,

Supplementary Table S3 indicated that the number of HAV

cases was relatively large in the spring and summer seasons.

A clear seasonal variation was observed in 2019. In Korea, the

incidence of HAV is relatively high during spring and summer

because of increased outdoor activity and ingestion of not clean

food handling (19). Thus, we conclude that temperature is more

associated with HAV outbreaks than precipitation or humidity

in Korea.

As in the existing studies on HAV in Korea (19,

25, 35), we confirmed that there are risk factors for

HAV occurrence. The distribution status of HAV varies by

region and time. Additionally, differences in socioeconomic

variables, such as education level, sex, number of medical

doctors, and water quality, affect the number of HAV

cases. Environmental and weather-related factors are also

important; however, we found that the contribution of

socioeconomic factors is more crucial for HAV occurrence.

Therefore, we should recognize the different factors in

different regions and prepare region-specific control and

prevention strategies for HAV infection. Furthermore, Kang

et al. (26) mentioned that a particular age group has a

low antibody cultivation rate and is more vulnerable to

infection. Therefore, we must consider an age-specific strategic

vaccine plan.

Association between socioeconomic factors and HAV

prevalence may vary from region to region because the different

areas have different characteristics. For example, Jacobsen and

Koopman (48) described that a higher level of education leads

to a sustained decrease in the incidence of HAV, whereas there

was no statistically significant difference in education when

examining HAV antibodies between sewage workers in France

and the control group in Cadilhac and Roudot-Thoraval (49).

While Rachiotis et al. (50) showed that people with higher

education levels had higher rates of anti-HAV in stratified

analysis among municipal waste collectors, Arvanitidou et al.

(51) showed that the prevalence of anti-HAV was significantly

higher in less educated persons. Our exploratory data analysis

(Supplementary Table S2) and modeling results provided the

positive association between higher education rate and HAV

in Korea during 2016–2019. In Korea, people with higher

education background tend to have more active social lives and

more frequent contact with people so they may have highly

exposure to HAV. Seo et al. (25) reported a similar result in

Korea. Thus, it is important to consider regional characteristics

along with weather-related factors to better understand HAV

across Korea.

There was a limitation concerning the data in this study.

We focused on regional aggregated data, which could lead

to biased results. Thus, ascertaining the direct relationship

between factors and outcomes can be limited. If we obtain

individual-level HAV case data with individual-level risk factors

and conduct spatio-temporal data analyzes, we can find more

features that influence the HAV cases and draw clearer

pictures of the infection spread problem. Thus, this is one of

the future research directions the authors intend to pursue.
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www.kdca.go.kr/index.es?sid=a3). The socioeconomic and

environmental datasets can be found in the Korean Statistical

Information Service (https://kosis.kr/eng/) and Statistics Korea

(https://kostat.go.kr/portal/eng). The weather-related datasets

were obtained from the Korea Meteorological Administration

(http://www.kma.go.kr/eng/index.jsp).
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One key task in the early fight against the COVID-19 pandemic was to plan

non-pharmaceutical interventions to reduce the spread of the infection while limiting

the burden on the society and economy. With more data on the pandemic being

generated, it became possible to model both the infection trends and intervention

costs, transforming the creation of an intervention plan into a computational

optimization problem. This paper proposes a framework developed to help policy-

makers plan the best combination of non-pharmaceutical interventions and to

change them over time. We developed a hybrid machine-learning epidemiological

model to forecast the infection trends, aggregated the socio-economic costs

from the literature and expert knowledge, and used a multi-objective optimization

algorithm to find and evaluate various intervention plans. The framework is modular

and easily adjustable to a real-world situation, it is trained and tested on data collected

from almost all countries in the world, and its proposed intervention plans generally

outperform those used in real life in terms of both the number of infections and

intervention costs.

KEYWORDS

COVID-19, multi-objective optimization, epidemiological modeling, machine learning,

intervention plans

1. Introduction

The first line of defense against the spread of the SARS-CoV-2 virus was the introduction

of Non-Pharmaceutical Interventions (NPIs) by national governments. With the virus being

aerosol-borne, some of the key measures included the use of face masks and restrictions on

gatherings, which have often resulted in partial or full lockdowns. While effective at reducing

the number of infections (1, 2), restrictive NPIs also presented immense Socio-Economic

Costs (SECs) to the population (3). Policy-makers were faced with an almost impossible task

of carefully balancing NPI costs against the predicted NPI benefits, largely without having

appropriate tools and data for evidence-based decisions.

To add complexity to the problem, in a typical intervention plan adopted by policy-makers,

a combination of NPIs would be used, each of them taking place for different periods of

time. These plans were usually prepared by expert panels who had the challenge of selecting

intervention plans without assurance that they would really flatten the infection curve enough

to be lifted within the expected period (4, 5).
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While many models for the prediction of daily infections and

the impact of NPIs on the spread of the pandemic have been

proposed (1, 2), little work has been done regarding the prescription

of intervention plans—especially taking into account the NPI costs

and how to best combine NPIs. Yousefpour et al. (6), for example,

proposed a framework based on SEIRD models and multi-objective

optimization to prescribe NPIs. However, the optimization did not

operate on real-life NPIs, and as such, this approach cannot be

directly used by policy-makers. Chen et al. (7) created a linear

programming tool to explore the trade-off between the expected

mortality rate of COVID-19 and return to normal activities, while

Yaesoubi et al. (8) developed a decision tool to determine when to

trigger, continue, or stop physical distancing intervention in order

to minimize both the deaths from COVID-19 and intervention

duration. Both studies combined the objectives into a single function

and the final result was a single intervention plan. Such approaches

require a strong predefined preference on how to balance the

objectives, which is often difficult to define in practice. In addition,

none of the three approaches was extensively tested on various

epidemiological scenarios. For this reason, their generalization to

real-world situations is not known.

A more structured attempt to research the possibility of using

artificial intelligence (AI) to automatically prescribe intervention

plans was made by the $500K Pandemic Response Challenge (9),

organized by XPRIZE and sponsored by Cognizant. The participants

were tasked with finding good trade-offs between the costs of NPIs

and their benefits—and assemble three-month intervention plans

for each territory (all countries and some sub-country regions). An

approach proposed by the sponsor [Miikkulainen et al. (10)] involved

the use of evolutionary algorithms to evolve neural networks that

prescribe intervention plans. This approach was intended to point

the way for the competitors, who would go on to develop better-

performing approaches. The competition ended with two “Grand

Prize Winners.” One of them (11) combined two prescriptors:

the first selected the most cost-effective intervention plans from

a subset of possible plans with precomputed effectiveness, and

the second greedily composed intervention plans from most cost-

effective individual NPIs. The other winning submission—submitted

by some of this paper’s authors—was the starting point for the

approach described here.

In this paper, we describe a framework to help policy-makers

design reasonable intervention strategies by dynamically adjusting

NPIs. The framework is comprised of three components: a predictor

based on the SEIRD epidemiological model that predicts infection

trends, a compilation of SECs of NPIs, as found in the literature, and a

prescriptor that finds diverse optimized intervention plans. The main

methodological novelty of the predictor is that the key parameters of

the SEIRDmodel can be dynamically adapted to any set of given NPIs

using a machine-learning model. Intuitively, the machine-learning

model decreases the disease transmission rate in the SEIRD model

when strict NPIs are in place, and vice versa. In contrast to most

related work, our prescriptor uses multi-objective optimization and

does not combine the objectives into a single function. As such, it

can find near-optimal trade-offs between the costs (SEC) and benefits

(reduced number of infections) of NPIs, and presents the results

in the form of a Pareto-front approximation. Ideally, the obtained

Pareto-front approximation ranges from costly intervention plans,

which significantly decrease infections, to cheap but not as effective

TABLE 1 Social and economic costs for OxNPIs.

OxNPI Economic Social Combined

C1: School closing 3.9 11 0.55

C2: Workplace

closing

22.0 11 0.96

C3: Cancel public

events

1.4 7 0.32

C4: Restrictions on

gatherings

1.4 10 0.45

C5: Close public

transport

0.3 2 0.09

C6: Stay at home

requirements

5.2 12 0.62

C7: Restrictions on

internal movement

7.8 10 0.59

C8: International

travel controls

6.6 2 0.20

H1: Public

information

campaigns

0.0026 1 0.04

H2: Testing policy 0.6 1 0.05

H3: Contact tracing 0.1 1 0.04

H6: Facial coverings 0.03 5 0.21

Economic costs are shown as % of GDP loss in the period the NPI was implemented. The social

costs are based on domain knowledge and expressed on a 1–12 scale. The combined column is

the average of the two costs, when both are normalized to the [0, 1] range.

ones—presenting a set of plans for the policy-maker to choose from.

Our methodology was extensively tested: the predictor was tested

on data from 194 territories and the prescriptor on data from 50

territories. It yields semantically sensible results, achieves similar

or better prediction accuracy than previously proposed models,

and furthermore, proposes better plans—at least based on our

simulations—than those actually implemented by policy-makers in

the studied period (March 2020 to April 2021).

2. Methods

We defined an intervention plan as a prescription of which

NPIs, and with what strictness, are to be used on each day in a

time period. For this study we considered 12 NPIs listed in Table 1,

and we denoted this set as OxNPIs as it is derived from Oxford’s

OxCGRT dataset (12) introduced in the following subsection. The

task of finding good intervention plans could then be framed as a

multi-objective optimization problem—trying to minimize both the

number of infections and the SEC that would result from a given

plan.

Given this formulation, we had to solve the following three

problems: 1) how to estimate the number of infections in a specific

territory, given an intervention plan; 2) how to estimate the SEC of

an intervention plan; and 3) how to use both these estimators and a

multi-objective optimization algorithm to find different intervention

plans. We start by describing the dataset used and then our solution

to each of the listed problems in the following subsections.
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2.1. Dataset

The NPIs used in this study were derived from the “COVID-

19 Government response tracker” database, collected by Blavatnik

School of Government at Oxford University (12). This database

defines the periods in which different NPIs (e.g., “C1: School closing”

and “C8: International travel controls”) were implemented in each

territory (entities such as countries, US states, or counties of the

UK). It also defines their “strictness” in the form of numbers usually

ranging from 0 to 3 or 4, which can represent, for example, if all or

only some schools were closed. From the NPI list available in the

Oxford database, we selected 12 for analysis in this study: H1, H2,

H4, H6, C1-C8 (OxNPIs). Their description and the reasoning for

their selection can be found in the Supplementary material—Non-

Pharmaceutical Interventions.

The number of infections and deaths (note that we are working

with “reported cases” which is only an approximation for the

actual number of infections) was queried from the same database

for the period between March 1, 2020, and April 14, 2021.

This database contained 235 territories, of which different subsets

were used in different stages of our methodology. For fitting the

epidemiological model, all 235 territories were used. Then, some

territories were excluded as their data could not be accurately fit with

an epidemiological model (e.g., if the number of reported infections

were too low or data was missing). This resulted in 194 territories

on which we evaluated the predictive model. For each of them, we

chose fifty 70-day time intervals, thus generating 9,700 test cases for

the task.

In addition to the already described OxNPIs and infection

numbers, the following attributes were used to train the machine-

learning models: vaccination (13) (one shot, two shots), strains

(14, 15) of concern and interest as defined by the World

Health Organization (16) testing rate (17), number of hospitalized

patients (18), number of patients in intensive care (18), mask use (19),

mobility (20, 21), weather (22), holidays (19), and 93 static features

characterizing countries and regions (e.g., development, culture, and

health) from our previous study (23). “Duration” features were also

constructed to capture how long each NPI had been active to date and

how much time had elapsed since the first recorded infection case.

Finally, for the prescriptor evaluation, we chose a representative

sample of 50 different 60-day intervals. This sample was selected by

first defining the “category” for each time interval: the categories

were created based on the size of the territory (small/large) and

the derivative of the number of infections (slope). The slopes were

either constant, moderately steep (falling/raising), or very steep

(falling/raising). Altogether, we had 10 categories, and we randomly

selected five time-intervals from each. An additional condition for an

interval to be selected was to have at least 0.5 average number of daily

new infections per 100k of population.

2.2. Hybrid machine-learning
epidemiological model

To predict the future number of infections we used an

epidemiological model that can model the course of the disease given

some parameters (infection rate, incubation period, mortality) in

combination with a machine-learning model that can estimate these

parameters from the active NPIs.

2.2.1. Epidemiological model
We used the SEIRD (24) model, which originates from the

SIR family of standard epidemiological models used to study the

dynamics of infectious diseases. Even if the SEIRD model is more

complex than the basic SIR or SIRD models, it has proven to

be more numerically stable than the other two for our purpose,

and in addition, the numbers for all five categories were available.

The model consists of a set of differential equations (Equation 1).

Letters represent the size of a given compartment (Susceptible,

Exposed, Infected, Recovered, and Deceased), N is the sum of all

compartments, β is the infection rate, σ is the incubation period

(1/days), γ is the recovery rate, µ is the mortality rate, and t is time.

The reproduction number can be estimated as β
σ
.

dS

dt
= −β

SI

N
dE

dt
= β

SI

N
− σE

dI

dt
= σE− (γ + µ)I

dR

dt
= γ I

dD

dt
= µI

(1)

In a standard SEIRD model, the parameters β , µ, and σ are

constant. In reality—especially in the case of COVID-19—they are

highly dependent on various factors, including the NPIs. In related

work, there were several attempts at modeling β as a function

of interventions. In the DELPHI model developed by COVID

Analytics (25), the effect of interventions was modeled using an

arctan function (26). Zou et al. (27) used machine learning to learn

the epidemiological model parameter values from the number of

infected and removed (deceased and recovered) cases at time t.

In our model, we used machine-learning models that used several

different features to achieve this task—allowing us a greater flexibility

in dynamically changing the parameters, as opposed to what could be

achieved with other methods from related work.

2.2.2. Predicting the model parameters with
machine learning

The first step of the process was to fit the β , µ, and σ

parameters to different territory/time intervals. This was done by

finding parameter values that minimize the least squares error in

predicting the reported number of infections and deaths. The time

series of data for each of the 235 territories were split into intervals

based on two criteria: NPI change (at least two NPIs change on the

same day) and infection trend (a 7-day moving-average number of

infections that was previously raising, starts falling—or vice versa),

and each was fitted separately.

These fitted values were then used as prediction targets for three

machine-learning regression models (one model per parameter).

When trained, these models would be used to predict the parameters

when evaluating different NPIs by the prescriptor.

For the prediction of each parameter, we used the features

described in the Dataset section, and some of their subsets. We

performed an initial feature selection on the available dataset by

employing Recursive Feature Elimination (RFE) with a 10-fold cross-

validation. We evaluated both 1) straightforward feature selection
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(i.e., running the algorithm on all available features), and 2) including

the OxNPIs in the selected features and running the RFE only on

the remaining features. However, the results showed no significant

improvement after the RFE algorithm. For the sake of model

interpretability, we selected the features presenting the strongest

correlation with the reported number of infections, and ended up

with OxNPIs, duration features, historical infections, COVID-19

strains, and vaccination features.

We tested linear regression (28), ridge regression (28), decision

tree (28), LGBM (29), XGB (30), CatBoost (31), Elastic Net (28),

Bayesian ridge (28), SVR (28), and Random Forest models (28).

The models were compared with 10-fold cross-validation where

the train/test splits were performed territory-wise, meaning that all

instances of a territory were in either the test or the train set. Keeping

all instances of one territory in the same set was important since

consecutive instances were typically similar.

In the cases of linear and ridge regression, the regression

coefficients for the final model were calculated as the mean values

of the coefficients generated in the 10-fold cross-validation. The “H1:

Public information campaigns” regression coefficient initially had an

excessive value because the corresponding NPI was essentially always

present (and was thus used by the model almost as the intercept).

We, therefore, manually adjusted it based on Haug et al.’s (32) study.

Specifically, we used the four NPIs for which there was a good match

between our categorization and the one presented by Haug et al.: “C1:

School closing,” “C7: Restrictions on internal movement,” “C3: Cancel

public events,” and “C5: Close public transport.” We computed the

ratio between the decrease in reproduction rate (β/γ ) for these four

NPIs (32), and the decrease for “H1: Public information campaigns.”

We then multiplied our coefficients for the same NPIs with these

ratios, which yielded four possible values for the H1 coefficient. We

used the average of these. We then re-ran the regression with fixed

relations between the NPI coefficients, so that the relation between

them and other coefficients could be readjusted.

Since the parameter β (infection rate) was most strongly affected

by NPIs, and since we are aware of no strong reason why the other

two should be, we also considered predicting β only. And since the

parameters of the model are not independent, we considered using

some as features for the prediction of others. However, both of these

approaches gave worse results.

2.2.3. Prediction pipeline
The goal of the prediction pipeline is to predict the number

of infections given an intervention plan (which OxNPIs are used

on a given day). To do so, we create a feature vector by joining

the OxNPI data with the remaining features. Then, for each day, a

prediction of all three parameters is made with the three respective

machine-learning models.

Next, for the time interval leading to (but not including) the

prediction interval, the fitted parameters are queried. We assume that

the parameters at the beginning of the prediction interval should be

the same as the fitted parameters at the end of the last one directly

preceding it. Thus, the machine-learning predictions are normalized

as βi = βlast/β0, where βi is the value of the predicted parameter β

on the i-th day, and βlast is the last known fitted value of β preceding

the prediction interval. Parameters σ and µ are normalized similarly.

If the parameters for any day are such that the reproduction rate

exceeds five, then the value of β is reduced until the reproduction

rate falls to this threshold value. This is done because such high

reproduction rates do not appear in real-life data, but they might be

predicted due to some edge case in machine learning. All parameters

are smoothed using weighted decay (α = 0.2), as we assume that all

parameters are changing smoothly.

When the parameters are estimated for each day, they are

inserted into the SEIRD model, which can then produce the number

of infections for each day. The starting value of the “Exposed”

compartment is set in a way such that the predicted and reported

numbers of infections match on day zero.

2.3. Socio-economic costs of di�erent NPIs

The collection of socio-economic costs (SEC) of individual

OxNPIs was not the primary focus of our work, but nonetheless we

compiled a sensible set in order to properly test our methodology.

The collected SECs were derived from a set of costs from related

work and from the opinion of a domain expert. Due to the available

literature, the costs are likely to contain a bias toward Western

countries, and most data is based on reports and gray literature.

In the study, we used the values listed in Table 1, but the

methodology is rather general and a policy-maker can easily adapt

it to produce a set of SECs for a specific territory—possibly also

implicitly expressing their preferences on what NPIs to avoid (by

assigning them higher costs). The combined SEC is made simply by

normalizing both costs to the [0, 1] range and then averaging both.

While this number does not have a good interpretation, it does rank

the OxNPIs according to their SECs. The costs are given for the case

in which the NPI is implemented with its maximum strictness. For

other strictness levels, the costs were linearly scaled down (in rare

cases, a custom social cost was defined and used instead of the linearly

scaled value). In addition, the “C6: Stay at home requirements” NPI

requires the implementation of the C1, C2, C3, C4, C5, and C8 NPIs.

Thus, even if it did not have the highest cost, the overall cost implicitly

includes the costs of all other listed NPIs.

2.3.1. GDP loss
Because the available findings on economic cost of NPIs differ in

terms of the setting and time, they were normalized to represent the %

of GDP loss caused by the NPI while it was in effect. Country-specific

GDP values (US $) were used (33). For example, if the “C3: Cancel

public events” NPI is active for 1 month and it has the cost of 1.4,

then our method assumes that the GDP in this month is 1.4% lower

than usual—note that this is not the annual GDP loss but that for the

predicted period. The complete overview of the cost data used can

be found in the Supplementary material—GDP cost. While there is

some overlap between the NPIs, we have explicitly modeled this only

in case of C6 as previously described.

2.3.2. Social impact
While economic costs were available for most OxNPIs, the

literature on social costs was far more scarce. We thus placed the

ranking of OxNPIs by social costs on a theoretical foundation, but

we could not justify the numerical costs as solidly. In addition,

according to the literature, these costs may vary across countries

(e.g., collectivistic vs. individualistic countries); however, we applied
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standard levels for all WEIRD countries (i.e., for Western, Educated,

Industrialized, Rich, and Democratic, a common grouping in

psychological studies). To estimate the social costs, we ranked the

OxNPIs from the highest to the lowest based on the perceived strain,

dread and loss, perceptions of restricted freedoms, and constraining

behaviors (i.e., on the negative impact of each measure on behavior,

attitudes, and one’s well-being). Using the rational choice theory,

we assumed that the higher the perception of strain, dread and

loss, the more negative is the impact and the higher are the social

costs. Understanding human behavior and risk perception is central

to effective pandemic management, and thus we applied insights

from social and behavioral sciences to inform our assumptions on

social impact. For determining the cost of individual policies see

Supplementary material—Social cost discussion.

2.4. Proposing interventions

The task of proposing intervention plans can be mathematically

formulated as a multi-objective optimization problem with two

objectives that need to be minimized: the total number of infections

(f1) and the SECs of the proposed plan (f2). The two objectives are

conflicting since an effective way to slow down the spread of infection

requires a stringent intervention plan with expensive NPIs. The first

objective is expressed as the total number of infections predicted from

the HMLE model, while the second objective is the cost of NPIs

averaged over the plan’s duration. The problem is constrained by

limiting the number of new daily infections to 150 per 100k residents.

This is done as the plans with more infections were not considered

useful to policy-makers and almost never appear (< 1%) in real-life

data in the studied period.

The proposed intervention plans are composed of OxNPIs

that can vary over time, but are restricted to last at least g days

in a row, where g is a predetermined parameter we refer to as

granularity. An NPI, for example, “C2: Workplace closing,” can be

applied with different levels of strictness (0—no policy, 1— closure

recommended, 2—closure for specific sectors, 3—closure for all-but-

essential workplaces). With this in mind we can formally define

the intervention plan—a solution to the proposed optimization

problem—as a 12 × n integer-valued matrix, P, where its 12 rows

correspond to the 12 OxNPIs and n is the number of time slots

determined by the given granularity and the whole period (e.g.,

Figure 1 contains n = 4 time slots resulting from a granularity value

of 14 days and an interval length of 60 days). In detail, Pij indicates

the strictness of the i-th NPI in the j-th time slot. In particular, we

tested five values for granularity: 1, 3, 7, 14, and 30.

Based on the multi-objective formulation of the proposed

optimization problem, the experimental evaluation aimed at finding

sets of trade-off intervention plans representing approximations for

Pareto fronts. For this purpose, we used the Nondominated Sorting

Genetic Algorithm II (NSGA-II) (34) equipped with a Constrained

Dominance Principle (CDP) (34) to handle the constraint. NSGA-

II belongs to the group of evolutionary algorithms, and as such,

it imitates the biological evolution to search the space of possible

intervention plans and find plans with good trade-offs between the

two objectives.

The optimization problem was solved using two NSGA-II

internal solution representations: the full representation defined by

FIGURE 1

Sample intervention plan for France between November 24, 2020, and

January 24, 2021, with a granularity value of 14 days. Refer to Figure 6

to see how this plan compares against other proposed plans in the

same period.

the matrix P and the condensed representation defined by a vector

of length n where the j-th variable corresponds to the maximum

SEC allowed at the j-th time slot. The second representation was

considered due to the significant reduction in the search space

dimensionality (from 12n to n), allowing for much faster convergence

than the high-dimensional search space for the full representation.

While the full representation can be used without modifications, the

condensed representation needs to be decoded to the intervention

plan before evaluation. This is achieved by replacing the SECs with

OxNPI values. The OxNPI combination to replace each SEC is

selected as the one with the lowest projected infections out of those

within the allowed SECs. This mapping is computed in advance, by

having all OxNPIs combinations sorted based on their effectiveness

(by using linear model’s coefficients for each NPI), so that the most

effective combination that does not exceed the cost threshold can

easily be selected.

The one-point crossover was used as the crossover operator and

the random resetting as the mutation operator. Additionally, the

crossover probability was set to 0.9 and the mutation probability to

1/D, where D equals 12n for the full representation and n for the

condensed representation.

3. Results

3.1. Predicting infections

While the SEIRD model on its own is accurate in predicting the

future in cases where NPIs are not changing and historically-fitted

parameters can be used (see Figure 2 and Supplementary material—

Estimating the prediction error), it does not correctly predict the

infection trends following a change of the NPIs— which is essential if

the framework is to propose which NPIs to use in the future. Ideally,

as the NPIs change, the parameters of the SEIRD system would be

adjusted accordingly, taking into account their changed impact on

the disease transmission rate. An example of such behavior can be

seen in Figure 2, as generated by our HMLE method.
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FIGURE 2

(A) Daily infections for Italy over 20 months (purple) together with the

predictions using best fitted SEIRD model (green). Fitting was

conducted by first splitting the data into segments, represented by

dashed vertical lines, where at least two NPIs were changed with

respect to the previous segment. Di�erent segments use di�erent

fitted parameters. (B) Daily infection predictions for Norway, made

both by using only fitted parameters (green) and by using parameters

adapted by machine learning, which reflect the change to more strict

NPIs (yellow).

To assess the performance of the HMLE method, we show in

Figure 3 that our predictor significantly outperforms the “standard

predictor” provided by Cognizant in the second phase of the XPRIZE

competition (9) (for details of this test, see Supplementary material—

Estimating the prediction error). This is a predictor published prior to

the competition (10), which represented the state of the art for NPI-

dependent prediction at the time. The mean average error (MAE)

of our predictor is 5.9 times lower on day 70. To explore what

contributes to the increased performance, we compared the full

implementation to two additional versions of our method: 1) one

that relies only on machine learning to set the parameter values of

the SEIRD model without normalizing them using the last known

fitted parameter values, and 2) one that retains the last known

fitted parameter values throughout the forecast period, without using

FIGURE 3

Di�erent versions of the HMLE method compared to the “standard

predictor” (9). Testing was conducted on 50 random time intervals for

each of the selected 194 territories.

FIGURE 4

Coe�cients from the linear model corresponding to OxNPIs. We use

the terminology of Oxford’s COVID-19 Government Response Tracker

(12), with containment (C) and health (H) categories. Relative values of

NPIs can signify their importance for reducing the number of

infections—the larger the negative value, the more they suppress the

infection spread.

machine learning to account for NPI changes. The experimental

results showed that the parameters predicted by themachine-learning

model are less appropriate on average, than the last known fitted

parameters; when normalized, however, they outperform the last

known fitted parameters. The benefit of machine learning does not

appear to be huge, but it is significant in case of important NPI

changes, as demonstrated in Figure 2.

Of all machine-learning algorithms tested (see

Supplementary material—Estimating the prediction error), the

Ridge classifier (a type of linear model) had the highest accuracy.

Aside from the prediction accuracy, the model has an additional

advantage—it is easily interpretable. Figure 4 lists the coefficients

corresponding to the normalized OxNPI strictness values. Given
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FIGURE 5

(A) Hypervolume progress for di�erent granularity values using

condensed representation and (B) hypervolume progress for full and

condensed representations with the best performing granularity

values. A logarithmic scale is used for the horizontal axis (number of

evaluations).

this normalization, the model’s coefficient magnitude can indicate

relative NPI importance. Our model’s most important intervention is

the cancellation of public events, which is consistent with the related

work that typically ranks it among the top NPIs (32). Next is school

closure, which additionally results in some parents staying at home,

so its importance is not surprising. These two are followed by contact

tracing—which is difficult to execute well, and other sources do not

rate this NPI as high. In the fourth place are international travel

controls, which played a big role in some countries, particularly in

the early stages of the pandemic. The importance of this NPI was

corroborated by Haug et al. (32). Other NPIs have notably lower

coefficient values. This may come as a surprise for “C2: Workplace

closing,” “C4: Restrictions on gatherings,” and “C6: Stay at home

requirements,” but it should be noted that 1) these three NPIs have a

large overlap with each other and with other NPIs, and 2) they were

usually instituted when the epidemiological situation was grave, with

many NPIs in force simultaneously, thus making it very difficult to

FIGURE 6

Comparing di�erent intervention plans for France. (A) Shows the SEC

(GDP loss + social cost) over time. (B) Shows the predicted number of

infections, (C) Shows the trade-o�s between the two criteria (SEC and

the number of infections) for di�erent plans.

properly isolate the importance of each of them. This is why in these

cases the assigned regression coefficient do not necessarily correctly

reflect their relative importance. Nonetheless, their sum is close to

the largest single coefficient. Of note, the NPI features were not the

only ones included in the model, but the coefficient values of the

others were an order of magnitude lower than those listed here.

Finally, for a direct comparison with related work, the HMLE

model described here is an improved version of the one used in the
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FIGURE 7

(A) Average SEC across all 500 proposed intervention plans (50 test

cases, 10 plans on each), given the number of days since the

intervention has started. (B) Average OxNPI strictness (normalized to

0-1 range) across all 500 proposed intervention plans, given the

number of days since the intervention has started.

XPRIZE challenge, which was ranking between the 1st and 4th place

during the 2 month prediction period on real data for 235 territories

(35).

3.2. Proposing interventions

Figure 1 shows a sample trade-off intervention plan consisting

of NPIs changing in time (g = 14), to provide a better intuition

for the end goal of this work. It lists all 12 OxNPIs, their maximum

value, and some sample values. For example, the intervention plan

depicted in Figure 1 suggests to close all-but-essential workplaces

from November 24, 2020, to December 20, 2020, but relaxes most

countermeasures after that.

The experimental setup was established based on some initial

experiments. NSGA-II was run with a population of 100 solutions

for 500 generations (50k plan evaluations in total). This number of

evaluations proved to be sufficient for convergence using coarser

granularity values. Moreover, increasing function evaluations did not

significantly improve the results, even for finer granularity values. For

this reason, 50k evaluations represented a good trade-off between the

framework’s effectiveness and efficiency.

We tried to identify the best value for granularity and we

compared five values: 1, 3, 7, 14, and 30. Theoretically, with a finer

granularity, we can achieve at least as good intervention plans as

with a coarser granularity. However, with finer granularity, aside

from being impractical in real-life use, the search space of the

optimization problem increases significantly, and the optimization

cannot always find the best solutions. Then, we compared the two

ways of representing intervention plans during optimization: full vs.

condensed.

In all experiments in this section, the optimization was tested on

50 representative territory/time interval examples (see Section 2.1.).

Due to the stochastic nature of the employed optimization approach,

the presented results were obtained after running the optimization

31 times on each example, as this is enough to obtain statistically

relevant results. To measure the effectiveness of the multi-objective

optimization, we used the well-known hypervolume indicator (36)—

the volume of the area bounded by the Pareto front approximation

and a user-defined reference point. The medians of the obtained

hypervolumes were used for testing the statistical significance of one

granularity/representation being better than the other.

We first compared different granularity values when using

the condensed representation. According to the Friedman test,

we observed statistically significant differences between granularity

values: χ2(3) ≈ 150.678 and p < 0.01 for social weights, χ2(3) ≈

119.309 and p < 0.01 for GDPweights, and χ2(3) ≈ 106.139 and p <

0.01 for combined weights. Post-hoc analysis with Wilcoxon signed-

rank test and Holm’s correction to adjust the p-values indicated

that the granularity of 14 days was the most effective among the

tested values (see Supplementary material—Details about the multi-

objective optimization results).

Our results confirm that the optimization algorithm struggles to

find near-optimal interventions plans with fine granularity values,

due to the increase in search space dimensionality. For example,

Figure 5 shows the hypervolume progress—the improvement of

the results during the optimization—averaged over 31 optimization

runs where the number of intervention plan evaluations was

experimentally increased from the default 50 to 300 k. This was done

to estimate the optimization behavior and convergence when using

a large number of evaluations. As we can see, although the results

obtained with a granularity value of 7 days eventually surpassed

those results obtained with a granularity value of 14 days (at around

230 k evaluations), the computational time required to obtain better

results using finer granularity values was almost five times longer,

and the gain in the solutions’ quality was negligible compared to

the additional computational resources spent (Figure 5). In addition,

the extremely small differences between the granularity value of 7

or 14 days are practically irrelevant since, in a real-world scenario,

the objectives cannot be measured and predicted with such accuracy.

Moreover, it is easier to implement intervention plans that change

with coarse granularity values (37); therefore, a granularity value of

14 days seems to be a reasonable choice.

A similar investigation was devoted to finding the best granularity

value for the full representation. The results of the statistical analysis

revealed significant differences in hypervolume values and showed

that the granularity of 30 days is the best performing value for

this representation. The complete results can be found in the

Supplementary material.
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Finally, we compared the full and condensed representations with

the best performing granularity values. According to the Wilcoxon

signed-rank test, the condensed representation outperformed the full

representation for all types of weights (p < 0.01). Moreover, Figure 5

compares the hypervolume progress between the two representations

on a typical problem instance, where a much faster convergence

can be observed with the condensed representation. This was

not unexpected since the applied optimization approach performs

significantly faster for low-dimensional search spaces. The results

provided in the following sections were obtained using the condensed

representation with a granularity of 14 days since this was the best

performing setting.

3.3. Intervention plan interpretation

To better understand how different intervention plans compare,

we generated 10 different intervention plans for the same

territory/time interval as that shown in Figure 1 (among all

intervention plans obtained by the optimization, we selected the 10

that are the furthest from each other in the objective space). Figure 6

shows for each plan 1) the strictness of the interventions over time, 2)

the resulting infection curve, and 3) the comparison of the 10 plans

in terms of the number of infections and strictness. This example was

done with the granularity of 14 days using the “combined” cost for

the interventions. However, we generated plans using all different

intervention costs and both 7 and 14 granularities for the same 50

test cases that were used for testingmulti-objective optimization. This

complete set of results can be found on the results webpage (38).

For a subset of these results, see Supplementary material—Sample

intervention plans.

The proposed plans present a wide range of trade-offs between

the two objectives, and policy-makers can choose the one most suited

to their needs. In addition, they can change a portion of the plan

if deemed necessary and evaluate it again. This whole framework is

available as a web tool (39), currently implemented for Slovenia.

The proposed solutions were compared with the real-life solution

implemented in the same territory/time. This real-life solution was

estimated in two ways, (real) using the actual reported number of

infections and (predicted) using the predicted number of infections

given the implemented NPIs. As the real SEC was, in most cases,

unknown, we used the same estimation function for the real case as

for the proposed plans. In all 50 test cases, the proposed solutions

compared favorably against the predicted case, and in 47 test cases,

the proposed solutions compared favorably against the real case. On

average, we could find a solution with the same number of infections

but with 47.1% lower SEC, or a solution with the same SEC but 68.8%

lower number of infections (for details, see Supplementary material—

Comparison of the proposed and implemented solutions).

To explore the trends in the structure of the intervention plans,

we considered two experiments. First, we averaged the OxNPIs costs

across all plans in all test examples, aggregated on a daily basis.

The results in Figure 7 show that, on average, the intervention plans

are the strictest at the beginning and then gradually become more

relaxed. It also shows that in test intervals where the infections were

falling, the overall strictness is lower than in cases where infections

were raising. The difference might not be as big as expected,

again due to the optimizer providing a wide range of intervention

plans.

In the second experiment in Figure 7, we show the average

strictness of individual OxNPIs, again averaged across all

intervention plans in all test cases. The NPIs with high average

intensities can be considered to provide good trade-offs between

their cost and effect.

The structure of the proposed plans was generally quite consistent

from one territory to another. One can reason that—since the NPIs

tend to have similar cost and benefit (at least in relative terms)

regardless of the current epidemiological picture, and the prescriptor

is designed to create solutions with a wide range of costs—the

resulting plans will, in most cases, share a common structure that

will be somewhat adjusted for different territories/time intervals.

Another way of looking at it is to consider that reducing the number

of infections when there are, for example, 1,000 daily infections

has the same importance to the algorithm as reducing the number

when there are 3,000 daily infections. It is up to the policy-maker

to consider when the situation merits selecting a different proposed

intervention plan with a lower/higher SEC.

4. Conclusion

The presented framework can generate efficient intervention

plans to fight a pandemic, and can evaluate their effect and costs.

This can greatly help policy-makers to pursue sensible intervention

strategies and reason about their strengths and weaknesses. We

showed that intervention plans it generates—at least when evaluated

with our methodology—are better than past interventions generated

by policy-makers. Since very few NPIs are still used against COVID-

19, the main value of our framework is in pandemic preparedness:

both as a tool to fight future pandemics (for which it would probably

not require many modifications), and as a demonstration of the

value of artificial intelligence in this area in general. All data used

to generate the figures is available in our repository (38). The

same repository also contains all final results. All code used in the

production of the results is available in our code repository (40).

4.1. Intervention plan insights

In general, the most effective NPIs were school closing, canceling

of public events, workplace closing, contact tracing, and international

travel controls. This list is not surprising as it is similar to the

findings in the literature (1, 2). When accounting for cost (which

is usually not done), the most efficient NPIs were information

campaigns, canceling of public events, and international travel

controls, followed by school closing. The least efficient were the

restrictions on internal movement, facial coverings, stay-at-home

requirements and workplace closing. The latter two are on the list due

to their high cost; in particular, the former can usually be substituted

with a combination of other more socially acceptable NPIs. The low

placement of facial coverings was surprising. Perhaps this is due

to masks being somehow inconsistently applied, which may result

in bad training data—or alternatively due to "facial coverings" NPI

being almost always active, which made it difficult to isolate its effect.

Finally, it could be the case that its social cost was overestimated in

this study and it should be reduced in potential future analysis.
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An additional benefit of the framework, aside from calculating the

cost benefit of individual NPIs, is that it can present a timeline of NPI

changes that adapts to the current epidemiological situation. In most

cases, the approach “start with a strict policy and reduce it over time”

seems to be the most effective. We have also shown that adapting the

NPI policy every 14 days is enough to get almost ideal cost/benefit as

with finer granularities (e.g., adapting every 3 days provides negligible

benefits). Intervention plans made and changed on a monthly basis

were found still acceptable; however, using a granularity value of 14

proved to be generally more robust. This could be a valuable finding

as frequent changes in NPI policy make adherence difficult and can

probably increase socio-economic costs (although we did not model

this explicitly). For comparison, we analyzed how often were NPIs

changing in real-life situations. For 80% of countries, themedian time

before changing at least one NPI was somewhere between 14 and 30

days and approximately 90% of countries changed their NPIs at least

once, under 14 days of the last change.

4.2. Technical advantages

The following are the key innovations introduced: 1) combining

machine-learning and SEIRD models in a way that allows the

SEIRD parameters to be adapted to different NPIs and thus simulate

their effect on infections; 2) using historically fitted parameters to

normalize the values output by machine learning in order to adapt

predictions for each territory; 3) using multi-objective optimization

for finding the best intervention plans in combination with a

“condensed” solution representation—facilitating a highly efficient

search.

We argue our predictor to be state-of-the-art. However, it was

designed and trained for the whole world, and it is almost certain

that for many specific territories, a better predictor could be/was

developed.

Similarly, while the proposed OxNPI costs are carefully

considered, they can certainly be improved upon, especially for

specific territories. In future work, the whole SEC model can even

be made more complex, i.e., non-linearly accounting for the NPI

duration. To take all of this in consideration, we made our whole

methodology highly modular, so that each part can be substituted by

a similar one if necessary—or one can simply adjust the parameter

values of the current components.

4.3. Limitations

A drawback of the proposed framework is the negligible effect of

vaccinations in the models. While we used some vaccination data,

the vaccinations were not widespread at the time of data collection.

This can be remedied in future work by using more recent data and

probably adding another compartment that models vaccinations to

the epidemiological model.

Second, the infection predictor can sometimes become unreliable

when predicting for two or more months in advance. We thus

recommend that it should be mostly used for shorter periods (30–

45 days in advance) and then the predictions should be updated in

real time as new data become available. The predictor also becomes

unreliable when the number of infections is growing very quickly.

Due to the nature of exponential growth, even a small misprediction

of a parameter of the SEIRDmodel can quickly lead the model astray.

The problem is compounded by people spontaneously behaving

more cautiously during severe disease breakouts, which affects the

infections but is not recorded in NPI data. This effect is difficult to

avoid, so it should be taken into consideration when analyzing the

proposed plans. It should also be noted that infection prediction is

used as the basis for NPI prescription (it is used to simulate the effects

of different intervention plans), and thus any error in the former

affects the latter. This effect is also difficult to avoid or even evaluate,

as only one intervention plan can be executed at the same time in

practice.

Models were made based on the COVID strains active in the

studied period and would have to be slightly adjusted in order to be

used for the currently emerging or future COVID strains.

Last, we used the reported number of the infections as one of the

objectives—and one can argue that some other metric, such as the

number of hospitalizations or deaths might be more appropriate. The

hospitalizations were rejected in this study as the data needed was

available for only 33% of the studied territories, while infections were

preferred over deaths to match the Pandemic Response Challenge

competition. Nonetheless, effectively the same methodology (with

some tweaks to the epidemiological model) could be used to study

the other mentioned criteria.
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In this study, a mathematical model for studying the dynamics of monkeypox

virus transmission with non-pharmaceutical intervention is created, examined, and

simulated using real-time data. Positiveness, invariance, and boundedness of the

solutions are thus examined as fundamental features of mathematical models.

The equilibrium points and the prerequisites for their stability are achieved. The

basic reproduction number and thus the virus transmission coe�cient R0 were

determined and quantitatively used to study the global stability of the model’s steady

state. Furthermore, this study considered the sensitivity analysis of the parameters

according to R0. The most sensitive variables that are important for infection

control are determined using the normalized forward sensitivity index. Data from

the United Kingdom collected between May and August 2022, which also aid in

demonstrating the usefulness and practical application of the model to the spread

of the disease in the United Kingdom, were used. In addition, using the Caputo–

Fabrizio operator, Krasnoselskii’s fixed point theorem has been used to analyze the

existence and uniqueness of the solutions to the suggested model. The numerical

simulations are presented to assess the system dynamic behavior. More vulnerability

was observed when monkeypox virus cases first appeared recently as a result of

numerical calculations. We advise the policymakers to consider these elements to

control monkeypox transmission. Based on these findings, we hypothesized that

another control parameter could be the memory index or fractional order.

KEYWORDS

Caputo-Fabrizio fractional derivative, reproduction number, parameter estimation, numerical

scheme, data fitting

1. Introduction

The unexpected breakout and global spread of monkeypox have drawn the attention of

scientists due to the continuing COVID-19 pandemic. The prevalence of the largest and most

pervasive monkeypox pandemic outside of Africa as of 22 June 2022, is 3,340 confirmed

cases reported across the world. In addition to mother-to-child vertical transmission, the

monkeypox virus can spread from person to person by direct contact with infectious skin or
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mucosal skin lesions, respiratory droplets, or indirect contact

with contaminated objects or materials. The possibility of

community transmission cannot be ruled out, and it may also

be sexually transferred by semen or vaginal fluid. The virus that

causes monkeypox is called the monkeypox virus, and it is an

enveloped, linear, double-stranded DNA virus that belongs to

the Chordopoxvirinae subfamily of the Poxviridae family. With

symptoms of the disease lasting 2–4 weeks and a death rate

that previously ranged from 0 to 11 deaths, monkeypox is often

a self-limiting sickness. Intense headaches, fever, lesions, and

lymphadenopathy are some of the symptoms of monkeypox.

Antiviral medications and smallpox vaccines have been approved

for use in various nations in response to the monkeypox outbreak,

despite the fact that there is no specific treatment or vaccine for

monkeypox virus infection. Before allowing the virus to successfully

establish person-to-person transmission, quick action is required

to stop the local development of the disease and, consequently, the

global monkeypox outbreak (1–11). In Peter et al. (12), modeling and

optimal control were used to study monkeypox and the cost-effective

strategies were investigated. This study shows that, among all

competing measures, combining preventative measures to reduce

rodent-to-human disease transmission is the most practical and

cost-effective option.

Numerous research articles have been published where both

classical and fractional models were constructed, and there is a

plethora of literature on modeling infectious diseases. Because

fractional-order derivative has unique properties such as heredity

and memory that enable it to fully comprehend the dynamics of

real phenomena, an analysis based on fractional-order derivative

is more advantageous and practical than an analysis based on

classical derivative (13, 14). At two separate closed locations, the

phenomenon is indistinguishable by the standard derivatives. A

generalized derivative known as the fractional order was proposed

to address the problems with ordinary derivatives (15). Many

researchers used fractional- order derivatives inmany fields, as shown

in Kumar et al. (16), Higazy et al. (17), Djida and Atangana (18),

Baba (19), Owolabi and Atangana (20), Mohammadi et al. (21),

Baleanu et al. (22), and Wutiphol and Turab (23). In the realm of

mathematical biology, the Mittag–Leffler-type kernel has been used

continuously over other derivatives, and numerous epidemiological

models, such as for dengue fever, smoking, tuberculosis, measles,

Ebola, and other diseases, have been studied using this operator as

shown in Asamoah et al. (24), Peter et al. (25, 26), Kumar et al.

(27), Morales-Delgadoa et al. (28), Atangana and Baleanu (29),

and Atangana et al. (30). Most notably, in Zhang et al. (31), the

Mittag–Leffler-type kernel modeling for Ebola–malaria co-infection

was investigated by the authors with the best possible control. They

strongly recommended the Mittag–Leffler-type kernel. In Kumar

et al. (32), investigated the COVID-19 model using singular and

non-singular fractional operators and compared the results of these

operators. In Aslam et al. (33), the authors examined a recent study

on the mathematical modeling of HIV/AIDS using the Mittag–

Leffler-type kernel and came to the conclusion that the infection

rate decreases with decreasing operator. In Evirgen (34), the authors

studied the transmission dynamics of the Nipah virus using the

Caputo derivative. One of the interesting segments of their study

was to focus on tracing the influence of fractional-order derivatives

on the manner in which the model responds. In Ucar (35), the

authors investigated a fractional SAIDR model within the framework

of the Mittag–Leffler-type kernel. The effectiveness of the fractional

operator is shown through a numerical simulation.

Considering the characteristics of exponential decay, the Caputo–

Fabrizio fractional-order operator has been preferred over Atangana–

Beleanu beta derivatives and a few other operators in the field of

mathematical biology with more information (17–19, 24, 36–39). For

instance, in Addai et al. (40), the authors studied a novel model

of COVID-19 incorporating Alzheimer’s disease using the Caputo–

Fabrizio fractional-order operator. The results of the aforementioned

study revealed that the two diseases have a link and the authors

also concluded that the fractional operator is related to the rate of

infection. In Shaikh and Nisar (41), the authors also considered the

transmission dynamics of a fractional-order typhoid fever model

using the Caputo–Fabrizio operator and the existence theory and

achieved numerical solutions. In Shah et al. (42), Shah and his co-

authors conducted a semi-analytical study of the Pine Wilt Disease

(PWD)model with a convex rate via fractional order involving a non-

singular kernel. To comprehend the trade-off between the lockdown

and the transmission of the virus, Ahmed and his co-authors devised

a five-term dynamical system (43). Another use of the Caputo–

Fabrizio fractional-order operator was indicated, for instance, in

Addai et al. (40), Shaikh and Nisar (41), Shah et al. (42), Ahmed et al.

(43), Ullah et al. (44), Abboubakar et al. (45).

Furthermore, in Peter et al. (46), the authors used real data from

Nigeria to study the dynamics of the transmission of the monkeypox

virus using fractional calculus. The authors presented an argument on

the modeling system by studying the infection control policies that

will help the public to better understand the significance of control

parameters in the eradication of the virus in the studied population.

Furthermore, the transmission dynamics of the monkeypox virus was

studied using a mathematical modeling approach in Peter et al. (47).

In their findings, the authors indicated that the isolation of infected

individuals in the human population helps reduce the transmission

of the disease, which can serve as a form of intervention to control

the spread of the virus.

We observed that none of the studies on the monkeypox virus

and its modes of transmission took into account the interaction

between the isolated and exposed compartments in the human

subpopulation and the results of that contact rate with the rodent

population and applied the modeling approach to real data from the

United Kingdom. The major goals of this research are to calculate

the exponential growth rate of the monkeypox virus, to forecast

what might occur in future and how to stop it from spreading,

and to understand the effects of non-pharmaceutical intervention

on infected individuals, which will be able to guide us on how to

deploy intervention resources to contain the spread of the disease.

The remaining sections of the article are structured as follows: Section

2 presents some basic definitions and preliminary information,

Section 3 presents the model formulation, Sections 4 deals with the

dynamism of the model, Section 5 computes the basic reproduction

number and some basic mathematical analysis, Section 6 present the

endemic equilibrium of the model, Section 7 proves the existence and

uniqueness of our model, Section 8 deals with the fitting of the model

to real data from the United Kingdom, Section 9 presents numerical

schemes and numerical simulations, Section 10 deals with sensitivity

analysis, and Section 11 provides some perspectives, discussion, and

conclusion.
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2. Preliminaries

In this section, we review several key definitions, lemmas, and

concepts that are necessary to understand the suggested model.

Definition 2.1 Let f ∈ Q1(p, q), q > p, and α∗ ∈ (0, 1) (17),

(40). Then, the Caputo–Fabrizio fractional-order derivative can be

defined as

CF
p Dαt f (t) =

G(α)

1− α

∫ t

p
f ′(x)exp

[

− α
t − s

1− α

]

ds.

Here, G(α) is a normalization function, where G(0) = G(1) = 1.

The fractional integral of the Caputo–Fabrizio fractional order is

defined by:

Iαt f (t) =
2(1− α)

2(1− α)G(α)
f (t)+

2α

(2− α)G(α)

∫ t

0
f (s)ds, t ≥ 0.

Lemma 2.2 Assuming there is a function u(t) ∈ Wl[0, η], then the

solution of fractional differential equation

{

CFDαt f (t) = u(t), t ∈ [0, η],

f (0) = f0,

is given by

f (t) = f0 +
2(1− α)

2(1− α)G(t)
f (t)+

2α

(2− α)G(α)

∫ t

0
f (s)ds, t ≥ 0

(24),(17), (40).

Lemma 2.3 Suppose A ⊂ B be a closed convex non-empty subset of

A and there exist two operators, T1 and T2, then it is Krasnoselskii’s

fixed point theorem (40) and it follows that:

(i) T1u+ T1u ∈ A, ∀u ∈ A;

(ii) T1 is contraction and T2 continuous and compact. Then quantify

at least one solution u ∈ A such that

T1u+ T2u = u.

3. Model formulation

Using a system of differential equations, we studied both human

and rodent populations in a closed homogeneous environment.

There are five compartments in a human population of size Nh(t):

Susceptible Sh(t); Exposed Eh(t); Infected Ih(t); Isolation/Quarantine
Qh(t); and Recovered Rh(t); where Nh(t) = Sh(t) + Eh(t) +

Ih(t) + Qh(t) + Rh(t). The rodent population Nr(t) is split into Sr(t)

Susceptible; Er(t) Exposed; and Ir(t) Infected. Let Nr(t) = Sr(t) +
Er(t) + Ir(t). From the aforementioned description, using the ideas

in Yinka-Ogunleye et al. (5), we extend the studies of Peter et al.

(46) and (47), then the ordinary differential equations in system

(1) describe the dynamics of monkeypox transmission incorporating

TABLE 1 Interpretation of parameters in the model.

Parameter Interpretation

3h Human recruitment rate

3r Rodent recruitment rate

ξh Immunity loss rate for human

θh Undetected rate of human after diagnosis

µh ,µr Natural death rate for humans and rodents

νh , νr Disease-induced death rate for humans and rodents

φh ,φr The rate at which humans and rodents move from exposed to

infectious stage

ψh The rate of humans recovery from monkeypox

γh The rate of identifying as suspected case of monkeypox

δh The rate of moving from isolated to recovered class

βrh The rate of transmission within rodents and humans

βhh The rate of transmission within humans

βrr The rate of transmission within rodents

non-pharmaceutical intervention;



























































dSh
dt = 3h + ξhRh + θhQh − λhSh − µhSh,
dEh
dt = λhSh − γhEh − φhEh − µhEh,
dIh
dt = φhEh − (ψh + µh + νh)Ih,
dQh
dt = γhEh − (θh + δh + µh + νh)Qh,
dRh
dt = ψhIh + δhQh − ξhRh − µhRh,
dSr
dt = 3r − λrSr − µrSr
dEr
dt = λrSr − φrEr − µrEr ,
dIr
dt = φrEr − (µr + νr)Ir ,

(1)

where λh =
βrhIr+βhhIh

Nh
, λr =

βrrIr
Nr

. To capture the memory

in the predictions of the monkeypox virus transmission model

and also to verify that both sides of the fractional equations

have exact dimensions, the time-dependent kernel is defined by

the power law correlation function, as in Tilahuna et al. (48);

therefore, we propose the following fractional-order model for the

monkeypox virus transmission model using the Caputo–Fabrizio

fractional-order derivative;



















































CFDαt Sh(t) = 3h + ξhRh + θhQh − λhSh − µhSh,
CFDαt Eh(t) = λhSh − γhEh − φhEh − µhEh,
CFDαt Ih(t) = φhEh − (ψh + µh + νh)Ih,
CFDαt Qh(t) = γhEh − (θh + δh + µh + νh)Qh,
CFDαt Rh(t) = ψhIh + δhQh − ξhRh − µhRh,
CFDαt Sr(t) = 3r − λrSr − µrSr
CFDαt Er(t) = λrSr − φrEr − µrEr ,
CFDαt Ir(t) = φrEr − (µr + νr)Ir .

(2)

The flow diagram of the model equation is presented in Figure 1

while the parameters used in the model and their signification is

presented in Table 1.

4. Dynamics of the model

In this section, we focus on the dynamics of the solutions

for the suggested models (1) and (2) that are positive, bounded,
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FIGURE 1

Transfer diagram of the dynamic transmission of the monkeypox virus.

and invariant. In an epidemiological model, it is important to

evaluate the population survival and the expansion that is naturally

constrained by scarce resources. As a result, we demonstrate the

following theorem.

Theorem 1. The solution of (1) along with initial conditions is

positively invariant and bounded in R8
+
. Therefore,































































limt→∞ sup Sh(t) ≤ Sh∞ =
3h+θhQh∞+ξhRh∞

λh+µh
,

limt→∞ supEh(t) ≤ Eh∞ =
λhSh∞

(ξh+φh+µh)
,

limt→∞ sup Ih(t) ≤ Ih∞ =
φhEh∞

(ψh+ηh+µh)
,

limt→∞ supQh(t) ≤ Qh∞ =
γhEh∞

(θh+δh+µh+νh)
,

limt→∞ supRh(t) ≤ Rh∞ =
ψhIh∞+δhQh∞

(ξh+µh)
,

limt→∞ sup Sr(t) ≤ Sr∞ =
3r

λr+µr
,

limt→∞ supEr(t) ≤ Er∞ =
λrSr∞
(φr+µr)

,

limt→∞ sup Ir(t) ≤ Ir∞ =
φrEr∞
(νr+µr)

.

(3)

Proof. Using the results in Lin (49) and taking into account the initial

values given, from model (2), we obtain



















































CFDαt Sh(t)|Sh(0) = 3h + ξhRh + θhQh ≥ 0,
CFDαt Eh(t)|Eh(0) = λhSh ≥ 0,
CFDαt Ih(t)|Ih(0) = φhEh ≥ 0,
CFDαt Ih(t)|Qh(0) = γhEh ≥ 0,
CFDαt Rh(t)|Rh(0) = ψhIh + δhQh ≥ 0,
CFDαt Sv(t)|Sr(0) = 3r ≥ 0,
CFDαt Ev(t)|Er(0) = λrSr ≥ 0,
CFDαt Iv(t)|Ir(0) = φrEr ≥ 0.

(4)

From Equation (4), we can see that Sh(0) > 0,Eh(0) > 0, Ih(0) >

0,Rh(0) > 0, Sv(0) > 0,Ev(0) > 0, Iv(0) > 0, for all t > 0. From

Equation (2), the first equation gives

CFDαt Sh(t) ≤ 3h + ξhRh + θhQh − λhSh − µhSh ≥ 0.

Then, by applying the fractional comparison technique, we obtain the

first estimate of Equation (4). We continue for the second equation of

the system of Equation (2), we obtain

CFDαt Eh(t) ≤ λhSh − γhEh − φhEh − µhEh ≥ 0.

Therefore, we get the second estimate of Equation (1). We continue

again for the third equation of the system of Equation (2), we obtain

CFDαt Ih(t) ≤ φhEh − (ψh + µh + νh)Ih ≥ 0,

and, consequently, we obtain the third estimate of Equation (4).

Similarly, for the fourth to eighth equation, we obtain the estimate

of Equation (4). Hence, Theorem 1 is complete.

4.1. Monkeypox equilibrium state

The monkeypox model is studied by obtaining the equilibrium states.

To verify the existence of the equilibrium points, the derivatives of

the model on the right-hand side are set to zero, which provides the

monkeypox disease free equilibrium points.

We assume Eh,Er , Ih, Ir ,Qh,Rh, Sh, Sr be the solution to the

monkeypox model with the initial condition in a feasible region

such that

Ŵh = Eh, Ih,Qh,Rh, Sh ∈ R
5
:Nh =

3h

µh
, (5)

Ŵr = Er , Ir , Sr ∈ R
3
:Nr =

3r

µr
, (6)

where the human population is represented as

Nh = Eh(t)+ Ih(t)+ Qh(t)+ Rh(t)+ Sh(t), (7)

and the rodent population, respectively,

Nr = Er(t)+ Ir(t)+ Sr(t). (8)

To achieve the disease-free equilibrium state, the derivatives are set

to zero as seen in (10) to obtain

E∗ =
(

E∗h,E
∗

r , I
∗

h , I
∗

r ,Q
∗

h,R
∗

h, S
∗

h, S
∗

r

)

. (9)
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By setting the derivatives to zero, we obtain

dEh
dt

=
dEr
dt

=
dIh
dt

=
dIr
dt

=
dQh

dt
=

dRh
dt

=
dSh
dt

=
dSr
dt

= 0;

(10)

hence, Equation (9) is represented as

E∗ =

(

0, 0, 0, 0, 0, 0,
3h

µh
,
3r

µr

)

. (11)

This equation describes a population free of monkeypox infection

and is denoted as E∗

5. The basic reproduction number

We derive the basic reproduction number R0 by using the next-

generation matrix approach (25). Since Eh, Ih,Qh, and Ir are the

disease-infected classes, hence,

f =



























0

λhSh
0

0

0

0

0

0



























, v =



























−3h − ξhRh − θhQh + λhSh + µhSh
γhEh + φhEh + µhEh

−φhEh + (ψh + µh + νh)Ih
−γhEh + (θh + δh + µh + νh)Qh

−ψhIh − δhQh + ξhRh + µhRh
−3r + λrSr + µrSr
−λrSr + φrEr + µrEr
−φrEr + (µr + νr)Ir



























. (12)

F =











0 0 βhh3h
µh

0 βhh3h
µh

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0











,

V =











γh + φh + µh 0 0 0

−φh ψh + µh + νh 0 0

−γh 0 θh + δh + µh + νh 0

0 0 0 µr + νr











.

(13)

V−1
=













1
γ1+µ1+φ1

0 0 0
φ1

γ1µ1+γ1ν1+γ1ψ1+µ
2+ν1µ1+µ1φ1+µ1ψ1+ν1φ1+ψ1φ1

1
ν1+µ1+ψ1

0 0
γ1

γ1δ1+δ1µ1+δ1φ1+γ1µ1+ν1γ1+γ1θ1+µ
2
1+µ1ν1+µ1φ1+µ1θ1+ν1φ1+θ1φ1

0 1
ν1+µ1+θ1+δ1

0

0 0 0 1
ν2+µ2













. (14)

The next-generation matrix (G) is given by

G = F.V−1
=

















β1λ1φ1
Nhµ1(γ1µ1+γ1ν1+γ1ψ1+µ

2+ν1µ1+µ1φ1+µ1ψ1+ν1φ1+ψ1φ1)
β1λ1

Nhµ1(ν1+µ1+ψ1)
0 β1λ1

Nhµ1(ν1+µ1)

0 0 0 0

0 0 0 0

0 0 0 0

















. (15)

The basic reproduction number R0 is the dominant eigenvalue

(spectral radius) of the next-generation matrix G, that is,R0 = ρ(G)

R0 =
βhh3hφh

µh(γh + φh + µh)(ψ1 + µh + νh)

5.1. Stability of monkeypox-free equilibrium
(MFE)

Investigating the stability of the monkeypox disease-free equilibrium,

we compute the Jacobian matrix of the system at the disease-free

equilibrium by obtaining the eigenvalues, which will be used to

determine the stability of the model.

JE∗ =





























−
βhhIh+βrhIr

Nh
− µh 0 0 θh ξh 0 0 −

(βhh+βrh)Sh
Nh

βhhIh+βrhIr
Nh

ζ1 0 0 0 0 0
(βhh+βrh)Sh

Nh

0 ϕh 0 0 0 0 0 0

0 γh 0 ζ2 0 0 0 0

0 0 0 δh −µh − ξh 0 0 0

0 0 0 0 0 −
βrr Ir
Nr

− µr 0 −
βrrSr
Nr

0 0 0 0 0 βrr Ir
Nr

−ϕr − µr
βrrSr
Nr

0 0 0 0 0 0 ϕr −µr − νr





























,

(16)

where ζ1 and ζ2 are represented in Equations (17) and (18)

ζ1 = −γh − ϕh − µh, (17)

ζ2 = −θh − δh − µh − νh. (18)

Evaluating JE∗ at the monkeypox-free equilibrium (MFE),

we obtain

JMFE∗

=



























−µh 0 0 θh ξh 0 0 −
(βhh+βrh )3h

Nhµh

0 −γh − ϕh − µh 0 0 0 0 0 (βhh+βrh )3h

Nhµh

0 ϕh 0 0 0 0 0 0

0 γh 0 −θh − δh − µh − νh 0 0 0 0

0 0 0 δh −µh − ξh 0 0 0

0 0 0 0 0 −µr 0 −
βrr3r

Nrµr

0 0 0 0 0 0 −ϕr − µr
βrr3r

Nrµr

0 0 0 0 0 0 ϕr −µr − νr



























.

(19)

We compute the eigenvalues from the JMFE∗ using

the characteristic polynomial of O8, which will not be

represented as a result of its lengthiness. The eigenvalues

and characteristic polynomial are calculated by |JMFE∗ − I|,

where I is an 8 × 8 unit matrix, and the values of λ
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are obtained:

λ =































0

−µh

−µh − ξh

−µr

−γh − ϕh − µh

−θh − δh − µh − νh
−2Nrµ

2
r+(−νr−ϕr)Nrµr+

√
µr(Nr(νr−ϕr)2µr+43rβrrϕr)Nr

2Nrµr

−2Nrµ
2
r+(−νr−ϕr)Nrµr−

√
µr(Nr(νr−ϕr)2µr+43rβrrϕr)Nr

2Nrµr































(20)

Let 11 and 12 be well represented from Equation (20) in Equations

(21) and (22)

11 = µr(Nr(νr − ϕr)
2µr + 43rβrrϕr)Nr , (21)

12 = 2Nrµ
2
r + (−νr − ϕr)Nrµr . (22)

Then,

λ1 = 0, (23)

λ2 = −µh, (24)

λ3 = −(µh + ξh), (25)

λ4 = −µr (26)

λ5 = −(γh + ϕh + µh), (27)

λ6 = −(θh + δh + µh + νh), (28)

λ7 =
−12 +

√
11

2Nrµr
, (29)

λ8 =
−12 −

√
11

2Nrµr
. (30)

From the calculated eigenvalues, we obtain negative real parts, that is,

the monkeypox-free equilibrium is asymptotically stable if

−12 −
√
11

2Nrµr
< 0. (31)

Upon simplification, we obtain Equation (31):

Nrµr(2µr − νr − ϕr)
2

Nrµr(νr − ϕr)2 + 43rβrrϕr
< 1. (32)

Therefore, the monkeypox-free equilibrium state is

asymptotically stable.

5.2. Global stability of the equilibrium state

If R0 < 1, then the monkeypox-free equilibrium is globally

asymptotically stable; otherwise, it is unstable. This is proven by the

Lyapunov function such that

L(Eh) = Eh (33)

Differentiating, we obtain

L′(Eh) = E
′

h (34)

= λhSh − γhEh − φhEh − µhEh (35)

= λhSh − (γh + φh + µh)Eh. (36)

At the disease-free equilibrium state as seen in Equation

(11), Sh =
3h
µh

,

L′(Eh) = λh(
3h

µh
)− (γh − φh − µh)Eh (37)

E
′

h = (γh + φh + µh)

[

3hλh

µh(γh + φh + µh)Eh
− 1

]

Eh (38)

E
′

h = (γh + φh + µh)(R0 − 1)Eh ≤ 0 ifR0 ≤ 0. (39)

From the result obtained in Equation (39), we can see that

E
′

h ≤ 0 provided R0 ≤ 0 as well as E
′

h = 0 provided

that R0 = 0 or Eh = 0. Global stability of the disease-

free equilibrium is asymptotically stable, if R0 ≤ 0; otherwise,

it is unstable.

6. Endemic equilibrium state

The endemic equilibrium state occurs when the rate of infection

persists in the population and it is represented in Equations (40 - 47)

by E∗∗h ,E∗∗r , I∗∗h , I∗∗r ,Q∗∗

h ,R∗∗h , S∗∗h , S∗∗r .

E∗∗h =

[

µ3
h + k1µ2

h + (k2 + k3)µh + k4
]

3hλh

µ5
h + p1µ4

h + p2 · µ3
h + p3 · µ2

h + µh · p4 + λhνhξh · p5
(40)

E∗∗r =
λr3r

(µr + ϕr)(µr + λr)
(41)

I∗∗h =
(µ2

h + (δh + νh + θh + ξh)µh + δhξh + νhξh + θhξh)3hλhϕh

µ5
h + p1µ4

h + p2 · µ3
h + p3 · µ2

h + µh · p4 + λhνhξh · p5 + p6
(42)

I∗∗r =
ϕrλr3r

λrµ
2
r + λrµrνr + λrµrϕr + λrνrϕr + µ

3
r + µ

2
r νr + µ

2
rϕr + µrνrϕr

(43)

Q∗∗

h =
(γhµ

2
h + γh(νh + ψh + ξh)µh + γh(νhξh + ψhξh))3hλh

µ5
h + p1µ4

h + p2 · µ3
h + p3 · µ2

h + µh · p4 + λhνhξh · p5 + p6
(44)

R∗∗h =

(δhψh + µhψh + νhψh + ψhθh)λh3hϕh + (δhγhµh + δhγhνh + δhγhψh)λh3h

µ5
h + p1µ4

h + p2 · µ3
h + p3 · µ2

h + µh · p4 + λhνhξh · p5 + p6
(45)
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S∗∗h =
3hµ

4
h +3h · h1 · µ

3
h +3h · h2 · µ

2
h +3h · h3 · µh +3h · h4

µ5
h + p1µ4

h + p2 · µ3
h + p3 · µ2

h + µh · p4 + λhνhξh · p5 + p6
(46)

S∗∗r =
3r

λr + µr
, (47)

where

d1 = (ψh + νh),

d2 = (δh + νh + θh + ξh),

d3 = (δh + νh + θh),

k1 = (ψh + 2νh + δh + θh + ξh)

k2 = d1 + d2,

k3 = ξh · d3,

k4 = d1 · ξh · d3,

p1 = δh + γh + λh + 2νh + ψh + θh + ϕh + ξh,

p2 = δhγh + δhλh + δhνh + δhψh + δhϕh + δhξh + γhλh

+ 2γhνh + γhψh + γhθh + γhξh + 2λhνh + λhψh + λhθh

+ λhϕh + λhξh + ν
2
h + νhψh + νhθh + 2νhϕh + 2νhξh

+ ψhθh + ψhϕh + ψhξh

+ θhϕh + θhξh + ϕhξh,

p3 = δhγhλh + δhγhνh + δhγhψh + δhγhξh + δhλhνh + δhλhψh

+ δhλhϕh + δhλhξh + δhνhϕh + δhνhξh + δhψhϕh + δhψhξh

+ δhϕhξh + 2γhλhνh + γhλhψh + γhλhξh + γhν
2
h + γhνhψh

+ γhνhθh + 2γhνhξh + γhψhθh + γhψhξh + γhθhξh + λhν
2
h

+ λhνhψh + λhνhθh + 2λhνhϕh + 2λhνhξh + λhψhθh + λhψhϕh

+ λhψhξh + λhθhϕh + λhθhξh + λhϕhξh + ν
2
hϕh + ν

2
hξh + νhψhϕh

+ νhψhξh + νhθhϕh + νhθhξh + 2νhϕhξh + ψhθhϕh + ψhθhξh

+ ψhϕhξh + θhϕhξh,

p4 = δhγhλhνh + δhγhλhψh + δhγhνhξh + δhγhψhξh + δhλhνhϕh

+ δhλhνhξh + δhλhψhϕh + δhλhψhξh + δhλhϕhξh + δhνhϕhξh

+ δhψhϕhξh + γhλhν
2
h + γhλhνhψh + 2γhλhνhξh + γhλhψhξh

+ γhν
2
hξh + γhνhψhξh + γhνhθhξh + γhψhθhξh + λhν

2
hϕh + λhν

2
hξh

+ λhνhψhϕh + λhνhψhξh + λhνhθhϕh + λhνhθhξh + 2λhνhϕhξh

+ λhψhθhϕh + λhψhθhξh + λhθhϕhξh + ν
2
hϕhξh

+ νhψhϕhξh + νhθhϕhξh + ψhθhϕhξh,

p5 = δhϕh + γhνh + γhψh + νhϕh + θhϕh,

p6 = δhλhνhϕhξh + γhλhν
2
hξh + γhλhνhψhξh + λhν

2
hϕhξh

+ λhνhθhϕhξh,

h1 = δh + γh + 2νh + ψh + θh + ϕh + ξh,

h2 = δhγh + δhνh + δhψh + δhϕh + δhξh + 2γhνh + γhψh + γhθh

+ γhξh + ν
2
h + νhψh + νhθh + 2νhϕh + 2νhξh + ψhθh + ψhϕh

+ ψhξh + θhϕh + θhξh + ϕhξh,

h3 = δhγhνh + δhγhψh + δhγhξh + δhνhϕh + δhνhξh + δhψhϕh

+ δhψhξh + δhϕhξh + γhν
2
h + γhνhψh + γhνhθh

+ 2γhνhξh + γhψhθh + γhψhξh + γhθhξh + ν
2
hϕh

+ ν2hξh + νhψhϕh + νhψhξh + νhθhϕh + νhθhξh + 2νhϕhξh

+ ψhθhϕh + ψhθhξh + ψhϕhξh + θhϕhξh,

h4 = δhγhνhξh + δhγhψhξh + δhνhϕhξh + δhψhϕhξh + γhν
2
hξh

+ γhνhψhξh + γhνhθhξh + γhψhθhξh + ν
2
hϕhξh + νhψhϕhξh

+ νhθhϕhξh + ψhθhϕhξh, (48)

7. Existence and uniqueness results for
the monkeypox transmission model
with non-pharmaceutical intervention

We reformulate Equation (2) as follows:



























































































































































81(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = 3h + ξhRh

+θhQh − λhSh − µhSh,

82(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = λhSh

−γhEh − φhEh − µhEh,

83(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = φhEh

−(ψh + µh + νh)Ih,

84(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = γhEh

−(θh + δh + µh + νh)Qh

85(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = ψhIh

+δhQh − ξhRh − µhRh,

86(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = 3r − λrSr

−µrSr

87(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = λrSr − φrEr

−µrEr ,

88(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)) = φrEr

−(µr + νr)Ir .

From Equation (10), the developed model of Equation (1) can be

written in the form

{

CFDαt 8(t) = ϒ(t,8(t)), t ∈ [0, η], 0 < α ≤ 1,

8(0) = 80,
(49)

8(t) =



















































Sh(t),
Eh(t),
Ih(t),

Qh(t),
Rh(t),
Sr(t),

Er(t),
Ir(t),

80 =



















































Sh(0),
Eh(0),
Ih(0),

Qh(0),

Rh(0),
Sr(0),

Er(0),
Ir(0),

(50)
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therefore,

ϒ(t,8(t)) =



















































81(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),
82(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

83(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),
84(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),
85(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),

86(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),
87(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)),
88(t, Sh(t),Eh(t), Ih(t),Qh(t),Rh(t), Sr(t),Er(t), Ir(t)).

(51)

With the help of Lemma 2.4, Equation (49) yields







8(t) = 80(t)+
2(1− α)

2(1− α)G(α)
ϒ(t,8(t))+

2α

(2− α)G(α)
×

∫ t
0 ϒ(s,8(s))ds.

(52)

Furthermore, let ussay E = C([0, η]) is the Banach space, and

supposing that the following assumptions hold;

(H1), there exists a non-negative constant Q,W, and k ∈ [0, 1)

such that

ϒ(t,8(t)) ≤ Q|8|k +W.

(H2) There exists a nonnegative constantCρ > 0 for all8, 8̃ ∈ E,

then

|ϒ(t,8(t))−ϒ(t, 8̃(t))| ≤ Cρ[|8− 8̃|].

Furthermore, let us define operator Am :E → E such that

Amℵ(t) = M18(t)+M28(t),

therefore, we can see that











M18(t) = 80(t)+
2(1− α)

2(1− α)G(α)
ϒ(t,8(t)),

M28(t) =
2α

(2− α)G(α)

∫ t
0 ϒ(s,8(s))ds.

(53)

From this knowledge, Equation (52) can be written as







Am8(t) = 80(t)+
2(1− α)

2(1− α)G(α)
ϒ(t,8(t))+

2α

(2− α)G(α)
×

∫ t
0 ϒ(s,8(s))ds.

(54)

Theorem 2. Suppose that (H1) and (H2) hold, such that
2(1− α)

2(1− α)G(α)
Cρ < 1, then, the monkeypox transmission model

with non-pharmaceutical intervention has at least one solution.

Proof. For simplicity, we divide the proof into two steps.

Step 1. We prove that operator M1 is contraction. Then, let 8̃ ∈ �,

where� = {8 ∈ Z : ||8|| ≤ ϑ ,ϑ > 0} is a close convex set, thus

|M18(t)−M28| =
2(1− α)

2(1− α)G(α)
maxα∈[0,η]

|ϒ(t,8(t))−ϒ(t, 8̃(t))|,

≤
2(1− α)

2(1− α)G(α)
Cρ ||8− 8̃||.

(55)

Thus,

||M18−M28(t)|| ≤
2(1− α)

2(1− α)G(α)
Cρ ||8− 8̃||.

Hence,M1 is contraction since
2(1− α)

2(1− α)G(α)
Cρ < 1.

Step 2. We also prove thatM2 is compact and also continuous; for all

8 ∈ �, thenM2 will be continuous as8 is continuous, thus

||M2(8)|| = maxt∈[0,η] |
2α

(2− α)G(α)

∫ t
0 ϒ(s,8(s))ds|,

≤
2α

(2− α)G(α)
η

∫ t
0 |ϒ(s,8(s))|ds.

≤
2α

(2− α)G(α)
η[Q|8|k +W].

(56)

Hence, M2 is boundedness. For equicontinuous, let t1, t2 ∈ [0, η]

such that

|(M28)(t1)− (M28)(t2)| =
2α

(2− α)G(α)
maxt∈[0,η]

∣

∣

∫ t1
0 ϒ(s,8(s))ds

−
∫ t2
0 8(s,ℵ(s))ds

∣

∣

≤
2α

(2− α)G(α)
[Q|8|k +W]|t1 − t2|.

(57)

As t1 → t2, then |(M28)(t1) − (M28)(t2)| → 0, which makes

operator M2 equicontinuous and compact by the Arzela–Ascoli

theorem. Therefore, by Lemma 2.3, the existence for the monkeypox

transmission model with non-pharmaceutical intervention has at

least one solution. 2

Theorem 3. Suppose that ∃ is a nonnegative integer 3ρ is > 0

such that

3ρ =

[

2(1− α)

2(1− α)G(α)
Lρ +

2α

(2− α)G(α)
ηLρ

]

< 1, (58)

then operator Am has a unique fixed point.

Proof. Let8, 8̃ ∈ �, then we say

||Am8− Am8̃|| ≤ ||M18−M18̃|| + ||M28−M28̃||,

≤
2(1− α)

2(1− α)G(α)
maxt∈[0,η]

∣

∣ϒ(t,8(t))−ϒ(t, 8̃(t))|

+
2α

(2− α)G(α)
maxt∈[0,η]

∣

∣

∫ t
0 ϒ(s,8(s))ds

−
∫ t
0 ϒ(s, 8̃(s))ds

∣

∣

≤
[ 2(1− α)

2(1− α)G(α)
Cρ +

2α

(2− α)G(α)
ηCρ

]

||8− 8̃||,

= 3ρ ||8− 8̃||.

(59)

Hence, by the Banach contraction principle, Am has a unique fixed

point. Consequently, the monkeypox transmission model with non-

pharmaceutical intervention has a unique solution. 2

8. Fitting of model to data

We used the available public database to collect our data while the

formulated model of Equation (1) includes 16 parameters. To treat

the waggliness of the reported daily new cases, we smoothed the data

to remove noise from the data set so as to make it suitable for our

analysis. The total population of the United Kingdom is 68,530,739
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TABLE 2 Parameter values in the model.

Parameter Value Source

3h 8644 Estimated

3r 0.9 Assumed

ξh 0.00001 Fitted

θh 0.029 Fitted

µr 0.00200 (46)

µh 0.05 (1)

νh , νr 0.00008, 0.0001 Fitted

φh ,φr 0.007 Fitted

ψh 0.056 Fitted

γh 0.0081 Fitted

δh 0.012 Fitted

βrh 0.000009 Fitted

βhh 0.00008 Fitted

βrr 0.0057 Fitted

FIGURE 2

Model fitting.

(1), which was used for calculating the initial number of susceptible

humans, while the initial value for the number of infected humans

was calculated from the reported daily new cases. Other initial values

were assumed.

The link to the data used for this research and the initial values;

Sh(t) = 68530739;Eh(t) = 0; Ih(t) = 31412;Qh(t) = 0; Sr(t) =

1074103;Er(t) = 1074103; and Ir(t) = 1074103; can be found in

the Data Availability section. The parameters are fitted based on the

smoothed reported daily new cases of infected humans from May to

August 2022. This information was taken from the United Kingdom

public health database (1). The nonlinear least square technique was

used to fit the model using python programming. Table 2 shows all

of the parameter values that were fitted, and Figure 2 shows the data

fitting of the observed smoothed daily new cases.

9. Numerical scheme

In this section, we present the numerical results for the

monkeypox transmission model with non-pharmaceutical

intervention based on the Lagrange interpolation. Details about the

numerical scheme is presented in Atangana and Owolabi (50). The

Cauchy problem of the CF fractional derivative can be given as:

CFDαt 8(t) = ϒ(t,8(t)), (60)

On the other hand, we can express Equation (60) as

8(t) = 80(t)+
(1− α)

G(α)
ϒ(t,8(t))+

α

G(α)
×

∫ t
0 ϒ(s,8(s))ds.

(61)

Taking Equation (61) at the point tn+1 = (n + 1)h and tn = nh,
n = 0, 1, 2, 3, ..., with h being the time step, we have

8(tn+1) = 8(0)+
(1− α)

G(α)
ϒ(tn,8(tn))+

α

G(α)

×

∫ tn+1

tn
ϒ(s,8(s))ds,

(62)

8(tn) = 8(0)+
(1− α)

G(α)
8(tn−1,ℵ(tn−1))+

α

G(α)

×

∫ tn+1

tn
ϒ(s,8(s))ds.

(63)

Taking the results of Equations (62)-(63) in

8(tn+1)− ℵ(tn) =
(1− α)

G(α)

(

ϒ(tn,8(tn))− ϒ(tn−1,8(tn−1))
)

+
α

G(α)
×

∫ tn+1

tn
ϒ(s,8(s))ds,

(64)

Equation (64) in the two-step Lagrange polynomial gives

8(tn+1)−8(tn) =
(1− α)

G(α)

(

ϒ(tn,8(tn))− ϒ(tn−1,8(tn−1))
)

+
α

G(α)
×

∫ tα+1

tα

[ϒ(tn,8(tn))

h
(s− tn−1)

−
ϒ(tn−1,8(tn−1))

h
(s− tn)

]

ds.

(65)

The aforementioned Equation (65) leads to

8(tn+1)−8(tn) =
(1− α)

G(α)

(

ϒ(tn,8(tn))−ϒ(tn−1,8(tn−1))
)

+
α

G(α)
×

[ϒ(tn,8(tn))

h

∫ tn+1

tn
(s− tn−1)ds−

ϒ(tn−1,8(tn−1))

h
∫ tn+1

tn
(s− tn)ds

]

.

(66)

Frontiers in PublicHealth 09 frontiersin.org
147

https://doi.org/10.3389/fpubh.2023.1101436
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ngungu et al. 10.3389/fpubh.2023.1101436

FIGURE 3

The sensitivity analysis of R0 with respect to the parameter p of the system (1).

Solving the integrals in Equation (66) yields

∫ tn+1

tn
(s− tn−1)ds =

3

2
h2,

∫ tn+1

tn
(s− tn)ds =

1

2
h2.

(67)

Substituting Equation (67) into Equation (66), then generalizing the

numerical scheme of CF is as follows:

8n+1 = ℵn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

8(tn,8n)

−
[ (1− α)

G(α)
+

hα

2G(α)

]

8(tn−1,ℵn−1).

(68)
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FIGURE 4

Numerical trajectory of the CF-fractional-order derivative, α, of Equation (2). (A) Dynamics of susceptible (Sh) humans class. (B) Dynamics of expose (Eh)

humans class. (C) Dynamics of infected (Ih) humans class. (D) Dynamics of quarantine (Qh) class.

Thus, in terms of our CF-fractional monkeypox transmission

model with non-pharmaceutical intervention, we obtain;

Shn+1
= Shn +

[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn, Shn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1, Shn−1
).

(69)

Ehn+1
= Ehn +

[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn,Ehn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1,Ehn−1
).

(70)

Ihn+1
= Ihn +

[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn, Ihn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1, Ihn−1
).

(71)

Qhn+1
= Qhn +

[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn,Qhn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1,Qhn−1
).

(72)

Rhn+1
= Shn +

[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn,Rhn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1,Rhn−1
).

(73)
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FIGURE 5

Numerical trajectory of the CF-fractional-order derivative, α, of Equation (2). (A) Dynamics of recovery (Rh) class. (B) Dynamics of susceptible (Sr) rodents

class. (C) Dynamics of exposed (Er) rodents class. (D) Dynamics of asymptomatic infected (Ir) rodents class.

Srn+1 = Shn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn, Srn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1, Srn−1 ).

(74)

Ern+1 = Shn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn,Ern )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1,Ern−1 ).

(75)

Irn+1 = Shn +
[ (1− α)

G(α)
+

3hα

2G(α)

]

ϒ(tn, Irn )

−
[ (1− α)

G(α)
+

hα

2G(α)

]

ϒ(tn−1, Irn−1 ).

(76)

10. Sensitivity analysis

Since an epidemiological system’s parameters are either

estimated or fitted, there is some degree of uncertainty in

the numbers that are utilized to derive conclusions about the

underlying epidemic. It is crucial to evaluate the individual

effects of each parameter on the dynamics of the epidemic

to identify those effects that have the greatest impact on

the epidemic’s spread or contraction. For biological factors

included in the proposed monkeypox model, we perform the

sensitivity analysis in this section. This analysis is investigated

analytically by computing ∂R0
∂p , where, p = (βhh,3h,φh,µh, γh, νh,

and ψh). The sensitivity of R0 to each parameter is
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as follows:

∂R0

∂βhh
=

λhφh

µh(γh + µh + φh)(νh + µh + ψh)
> 0,

∂R0

∂3h
=

βhhφh

µh(γh + µh + φh)(νh + µh + ψh)
> 0,

∂R0

∂φh
=

βhh3h(γh + µh)

µh(γh + µh + φh)(νh + µh + ψh)
,

∂R0

∂µh
= −

βhh3h(µh(γh + µh + φh)+ µh(νh + µh + ψh)

+(γh + µh + φh)(νh + µh + ψh))

µ2
h(γh + µh + φh)2(νh + µh + ψh)2

< 0,

∂R0

∂γh
= −

βhhλhφh

µh(γh + µh + φh)2(νh + µh + ψh)
< 0,

∂R0

∂νh
= −

βhhλhφh

µh(γh + µh + φh)2(νh + µh + ψh)2
< 0,

∂R0

∂ψh
= −

βhhλhφh

µh(γh + µh + φh)2(νh + µh + ψh)2
< 0,

thus,

∂R0

∂βhh
= 124645.995943846

∂R0

∂3h
= 16.9011519923859

∂R0

∂φh
=

0.1746837421029776

(0.008139+ ψh)2

∂R0

∂µh
= −

9.912× 10−7µ2
h + 4.7035744× 10−8µ2

h
+2.797853632× 10−10

µ2
h(µ

4
h + 0.014236µ3

h + 0.00012055158688µ1

+7.17083788864× 10−7)

,

∂R0

∂γh
= −

0.15096125860751

(γh + 0.007039)2
,

∂R0

∂νh
= −

0.59600691709814

(νh + 0.056039)2
,

∂R0

∂ψh
= −

0.59600691709814

(νh + 0.056039)2
.

(77)

The sensitivity index technique will help measure the most

sensitive parameters for the fundamental reproductive number

R0 (Borgonovo et al. (51) for details about the method). The

fundamental reproduction number’s normalized sensitivity index is

provided by SR0
p =

∂R0
∂p .

p
R0

, where p is a parameter as defined earlier.

We obtain

SR0
βhh

= 1,

SR0
3h

= 1,

SR0
φh

=
γh + µh

γh + µh + φh
,

SR0
µh

=

µh(γh + µh + φh)+ µh(νh + µh + ψh)

+(γh + µh + φh)(νh + µh + ψh)

(γh + µh + φh)(νh + µh + ψh)
,

SR0
γh

=
γh

γh + µh + φh
,

SR0
νh

=
νh

νh + µh + ψh
,

SR0
ψh

=
ψh

νh + µh + ψh
.

TABLE 3 The sensitivity index ofR0 with respect to parameter p of the

system (1).

Parameter Sensitivity index

νh –0.0014

3h 1

φh –1.003

µh –1.003

βhh 1

γh –0.5350

ψh –0.9979

The sensitivity indices using the parameter values given in Table 2 are

presented in Table 3. The sensitivity analysis of βhh,3h,φh,ψh, νh, γh,

and µh with respect toR0 and their graphs are presented in Figure 3.

Two of the sensitivity indices are positive while others are

negative, as can be seen in Table 3. Additionally, the majority

of these indices are functions of the Caputo–Fabrizio fractional

monkeypox model parameters. This implies that changing one of

the parameters slightly will alter the dynamics of the epidemic.

The basic reproductive number R0 normalized sensitivity indices

to the Caputo–Fabrizio fractional monkeypox model parameters are

calculated. We conclude that increasing the rate of recovery and the

rate of identifying suspected cases, that is, isolation and quarantining

of the monkeypox virus carrier will aid in decreasing the R0, which

is an affirmation of the effect of non-pharmaceutical intervention to

combat the spread of the virus.

11. Discussion and conclusion

Following the estimation of parameter values and data fitting,

we simulate the Caputo–Fabrizio fractional monkeypox virus model

using the parameter values, as presented in Table 2. The fitted

Caputo–Fabrizio curve and R0 are given in Figure 2. Figures 4, 5

show dynamic behavior for all the nine compartments involved in

the proposed Caputo–Fabrizio fractional monkeypox virus model.

We observed a significantly high susceptibility and infection in the

solution pathways of individual species. The work of Hammouch

et al. (52), Bonyah et al. (53), Peter (54), and Sene (55) have

provided a strong basis for the discussion of our results. This

indicates that, whenever the memory index increases, the rate at

which people get infected with monkeypox virus reduces and vice

versa, which then indicates that, using fractional order, we can obtain

clear qualitative information on monkeypox virus transmission. In

Figure 6, we varied the input parameter γh on quarantine and

exposed, respectively, to observe variation in the system dynamics.

We noticed the contribution of this parameter in the transmission

pathways of infected individuals. In a similar way, we varied the

input parameters δh and ψh on individual recovery and noticed the

variation in the trajectory of monkeypox recovery. We discovered

that the rate at which humans and rodents move from exposed to

infectious stage is also important and potentially dangerous in terms

of increasing the level of monkeypox infection.

In conclusion, we provided a brief overview of the monkeypox

virus and the dynamics of its transmission in this study. We

investigated the spread of monkeypox virus and its effect on
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FIGURE 6

Numerical trajectory of varying δh, γh,ψh, and φh when α = 0.95. (A) Variation of δh on recovery class. (B) Variation of γh on expose class. (C) Variation of

γh on quarantine class. (D) Variation of ψh on recovery class. (E) Variation of φh on infected class.

non-pharmaceutical intervention, thus quarantine. Positiveness,

invariance, boundedness, and equilibrium points of the solutions

are thus examined as fundamental features of mathematical models.

We considered real data of the monkeypox virus from the

United Kingdom, and the best fit curve has been obtained (see

Figure 2). As a result, we created a novel, dimensionally consistent

Caputo–Fabrizio fractional-order model. Krasnoselskii’s fixed point

theorem has been used to demonstrate that the system has a

solution.The Adams–Bashforth method has been used to display

numerical simulations of the suggested pandemic model for various

fractional orders and parameter values. We looked into the impact

of factors on the expansion and contraction of the quarantine

compartment, recovery compartment, and infected compartment

on the spread and regression of the pandemic with the use of
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numerical simulations. As can be inferred from the data, it is clear

that the fractional-order equations can help explain this unique

effect of the monkeypox. Real-world data can be used to test the

accuracy of a mathematical model that has been created. The key

challenge, however, is where to find these data and/or how to

obtain the right curve for the collected data. The mathematical

representation of the monkeypox has been the subject of numerous

studies. To the best of our knowledge, there is still no research

on fractional modeling that uses actual data on the monkeypox

in the United Kingdom. Using actual data on the monkeypox

from the United Kingdom, a fractional-order modeling has been

shown in this study. The numerical results of this study show

that the spread of monkeypox can be stopped if the number of

contacts with infected people can be decreased through methods

such as effective mass education, improved quarantine facilities,

or increased testing of the general population, that is, performing

routine tests not only on exposed individuals but also on those

who have come into contact with infected patients. As a result,

these studies offer other professionals and scientists who focus on

infectious diseases insight that may help them in future to control

the outbreak of monkeypox and contribute to the development

of further treatment options. This study may provide insight into

potential future research projects in this regard. Future study of the

monkeypox can take into account other fractional operator types,

both with and without single kernels. Furthermore, data imputation

techniques can be used to fit rodent population parameters from the

number of monkeypox disease since the number of rodents cannot

be determined.
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Incarcerated individuals are a highly vulnerable population for infection with

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding

the transmission of respiratory infections within prisons and between prisons and

surrounding communities is a crucial component of pandemic preparedness and

response. Here, we use mathematical and statistical models to analyze publicly

available data on the spread of SARS-CoV-2 reported by the Ohio Department

of Rehabilitation and Corrections (ODRC). Results from mass testing conducted

on April 16, 2020 were analyzed together with time of first reported SARS-

CoV-2 infection among Marion Correctional Institution (MCI) inmates. Extremely

rapid, widespread infection of MCI inmates was reported, with nearly 80% of

inmates infected within 3 weeks of the first reported inmate case. The dynamical

survival analysis (DSA) framework that we use allows the derivation of explicit

likelihoods based on mathematical models of transmission. We find that these

data are consistent with three non-exclusive possibilities: (i) a basic reproduction

number >14 with a single initially infected inmate, (ii) an initial superspreading

event resulting in several hundred initially infected inmates with a reproduction

number of approximately three, or (iii) earlier undetected circulation of virus

among inmates prior to April. All three scenarios attest to the vulnerabilities of

prisoners to COVID-19, and the inability to distinguish among these possibilities

highlights the need for improved infection surveillance and reporting in prisons.

KEYWORDS

SARS-CoV-2, correctional facilities, mathematical modeling, mass testing, reproduction

number

1. Introduction

The COVID-19 pandemic has demonstrated the tremendous vulnerability of

incarcerated individuals to respiratory infections. More than 600,000 COVID-19 cases and

close to 3,000 deaths were reported among incarcerated individuals in the United States as of

October 2022 (1), and case rates for incarcerated individuals are more than five times higher

than for the general population (2). Factors contributing to SARS-CoV-2 transmission

in prisons include shared housing, crowding, hygiene challenges, and inability to social

distance (3). Outbreak sizes within facilities can be high: infections in more than 80% of

prisoners at the Marion Correctional Institution (MCI) in Ohio have been identified (4–

7), and similarly high levels of infection have been observed at correctional facilities in

other jurisdictions (8, 9). The vulnerability of prisoners and prison staff to COVID-19,

the epidemiological connections between prisons and between prisons and surrounding

communities, and the potential for prisons to become amplifiers of transmission have been

noted by many authors (10–21).
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Studies of COVID-19 outbreaks in correctional facilities can

help us understand transmission in prisons and jails and identify

practices to prevent and control future outbreaks. Research during

the COVID-19 pandemic addressed vaccine efficacy and uptake

studies among inmates and staff (22, 23), examination of policies

by state corrections departments (24), studies of outbreaks started

by transfer of infected inmates between prisons (20), quantitative

analyses of relationships between correctional facility cases and

cases in surrounding communities (18, 19), and analysis of

interventions such as decarceration, single-celling, and testing of

asymptomatic individuals (25). Analyses of outbreaks in specific

facilities include time series analysis (9), assessment of outbreak

response in a California state prison (16), and network analyses

based upon inmate housing and staff assignments (26). Modeling

studies include stochastic simulations of transmission among

inmates and staff (27) and fitting compartmental models to case

time series data (28). In particular, Puglisi et al. (28) use model fits

to estimate the basic reproduction number (R0) for the ancestral

strain of SARS-CoV-2 in a large urban jail. Several of these studies

point to the need for improved data collection and reporting (21).

Here, we study the COVID-19 outbreak in MCI in the

spring of 2020 using publicly available time series data from the

Ohio Department of Rehabilitation and Corrections (ODRC). In

particular, our main contribution is a rigorous and statistically

principled analysis of the results of mass testing conducted at

MCI in April 2020. The analysis is based on a compartmental

mathematical model of transmission that is fit to data using

a statistical approach called the dynamical survival analysis

(DSA) (29, 30), which allows the calculation of explicit likelihoods

to summarize uncertainty. Our results highlight the explosive

potential for transmission of respiratory infections in prisons as

well as the critical need for improved monitoring and reporting of

infection in correctional facilities.

2. Data and methods

2.1. Case data

Mass RT-PCR testing of all inmates and partial testing of staff at

MCI was conducted on April 16, 2020. The total number of inmates

and the number of inmates and staff testing positive for SARS-

CoV-2 over time were obtained from public ODRC reports (7).

Results from early SARS-CoV-2 tests were available with a slight

time-lag, so we accumulate the cases reported at MCI over April

16–23, 2020 as a single mass testing data point assigned to April 16,

which was the date of mass testing. The mass testing event received

significant media coverage and was reported widely in numerous

news articles (4–6).

2.2. Mathematical model

We use a compartmental susceptible-exposed-infectious-

recovered (SEIR) model of SARS-CoV-2 dynamics in MCI. Such

compartmental models have been used extensively in the literature

because they tend to provide a good approximation to the process

of disease spread (31). Assuming a well-mixed population, under

the standard SEIR model, the proportions of individuals in the

susceptible (St), exposed (Et), infectious (It), and recovered (Rt)
compartments as a function of time t satisfy the following system

of differential equations:

Ṡt = −βStIt ,
Ėt = βStIt − αEt ,
İt = αEt − γ It ,

Ṙt = γ It ,

(1)

where the positive parameters β ,α, and γ denote the infection rate,

incubation rate, and recovery rate, respectively.

2.3. Statistical analysis

We derive a likelihood function for observing n positives out

of N incarcerated individuals on day u as follows: Using the DSA

approach of (29, 30, 32, 33), we interpret St as an improper survival

function. The mathematical justification for such an interpretation

is provided by the Sellke construction by which the function St can

be identified as the limiting probability of an initially susceptible

individual not getting infected by time t. Note that the function St
satisfying (1) is indeed a decreasing function and, when properly

scaled, we set S0 = 1. However, unlike proper survival functions

that vanish at infinity (i.e., decrease to zero in the limit), the

function St → S∞ > 0 as t → ∞ so it is an improper survival

function. However, we make it a proper survival function by

conditioning on ever being infected. Given observation up to time

T > 0, the time TE that an initially susceptible individual becomes

infected and enters the E compartment follows the conditional

probability density function

fT(t) = −
Ṡt
τT

, (2)

where τT = 1 − ST . The time TI to becoming infectious has the

conditional density

gT(t) =
αEt
τt

, (3)

and the recovery time TR has the conditional density

hT(t) =
γ (It − ρe−γ t)

τT
. (4)

Note that the random variables TE, TI − TE, and TR − TI

are mutually independent and that TI − TE and TR − TI have

exponential distributions with rates α and γ , respectively (29). The

parameter ρ is the initial proportion of infectious individuals.

Mass testing yields a number of individuals who test positive

and a total number of tests administered on the day of mass testing.

To use these data, let TN denote the time when virus first becomes

undetectable in an individual. We then describe the epidemic

process by the pair of random variables (TE,TN). Let ε = TN − TE.

Then, the probability of an individual testing positive on the day of

the mass testing (at time u) is given by

pu = Pr(TE < u < TN) = Pr(0 < u− TE < ε). (5)
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FIGURE 1

Positive tests over time among (A) inmates and (B) sta� at MCI, as reported by the Ohio Department of Corrections and Rehabilitation (7).

FIGURE 2

Time to infect 80% of the population in SEIR model with median

incubation period of 5.1 days and mean infectious period of 5.6

days.

We fix ε = 21 days, corresponding to detectable virus for 3 weeks

following an individual becoming infectious (34, 35). We set 1/α =

5.1/ log(2) days [corresponding to a median incubation period of

5.1 days (36)] and assume a mean infectious period 1/γ of 5.6

days (37).

If n out of N individuals test positive on the day of the mass

testing u, the log-likelihood function is given by

ℓ(β | n,N) = log

((

N

n

)

pnu(1− pu)
N−n

)

, (6)

with the probability of testing positive pu as described in Equation

(5). Note that the above likelihood function is a consequence of the

functional law of the large numbers for Poisson processes and the

Sellke construction.

The crux of the DSA method is that it allows one to interpret

functions that describe the large-population limiting proportions

of individuals in different compartments as probabilistic quantities,

such as survival functions or probability density functions of

transfer times from one compartment to another. This change in

perspective has a number of statistical advantages. For instance,

it makes available the entire toolkit of survival analysis, by virtue

of which it can account for censoring, truncation and aggregation

of data in a natural way. Variations of the DSA method have been

recently applied to analyze not only COVID-19, but also the 2001

foot-and-mouth disease (FMD) outbreak in the United Kingdom

(30) and multiple waves of the 2018–2020 Ebola epidemic in the

Democratic Republic of Congo (32). It is important to note that

the date considered in this article are from the first phase of

the pandemic when vaccines were not yet available. Nevertheless,

the DSA method is capable to incorporating vaccination regimes.

For instance, the method was applied to assess the potential

impact of vaccination in Israel in (38). See also Klaus et al. (39)

where the method was applied to COVID-19 data in the state of

Ohio, USA.

3. Results

3.1. Reported outbreak time course

According to ODRC reports (7), the first identified COVID-19

case at MCI was an infected staff member on March 29. Following

this initial case, precautions such as cohorting and modified

movement were enacted in order to restrict mixing and reduce

transmission. As stated in the publicly available ODRC report from

March 30, 2020:

Based on a staff member reporting a positive COVID

test, MCI is operating under modified movement and the

population is being separated by unit along with other

precautionary measures. Every inmate at MCI is monitored

daily and has their temperature taken along with a check for

symptoms. Currently, there are no inmates symptomatic for

COVID-19.
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FIGURE 3

Log-likelihood in the (R0, outbreak onset date) plane for mass testing data under a SEIR model with a 3 week test-positive window following the

onset of infectiousness. The R0 values that maximize the likelihood as a function of outbreak onset date are shown as a solid red line that follows the

right-most branch of the ‘wishbone’ in the log-likelihood plot. The R0 values consistent with the reported data (with onsets in late March or later) are

as large as 10. Onset dates prior to March, while inconsistent with the reported data, give more realistic R0 values of less than five.

The first COVID-19 case among inmates was identified on

April 3. Mass RT-PCR testing of all inmates and partial testing

of staff was conducted on April 16. By April 20, SARS-CoV-2

infection had been identified in 79% (1,950/2,453) of inmates and

35% (154/446) of staff. These numbers come directly from data on

the ODRCwebsite.We take theMay 5, 2020 listing of 2,453 inmates

at MCI as the denominator. There is a lag of a few days between

when mass testing occurred (April 16) and when jumps in case

counts are reported in the ODRC data (April 18–19 for inmates and

April 20 for staff), which may reflect delay in data entry. Figure 1

shows a time series of reported COVID-19 cases at MCI.

3.2. Basic reproduction number and initial
exposure size

The basic reproduction numberR0 is one of the key parameters

in models of infectious diseases (31). It is defined as the expected

number of secondary cases generated by an infected individual in a

population where all individuals are susceptible to infection. When

R0 > 1, disease can spread rapidly and cause a large epidemic

with positive probability. WhenR0 < 1, the spread of disease dies

out stochastically and a large epidemic cannot occur. R0 can also

be used to calculate the so-called “herd immunity threshold” for

interventions like vaccination that effectively reduce the susceptible

population.

To examine which values of the basic reproduction number

R0 are consistent with the rapid spread of COVID-19 observed

at MCI, we use the SEIR model (1). In order for mass screening

to identify 80% of the population as positive for COVID-19 on

April 16, at least 80% of the population must have been infected

by that date. Figure 2 shows the time needed to infect 80% of

the population in the SEIR model as a function of R0 and the

initial number of exposed individuals (E0). While R0 values of

two or larger are able to eventually infect 80% or more of the

population, this can take on the order of months for modest values

of R0. Reproduction numbers >14 are needed before outbreaks

originating from a single exposed individual are able to generate a

3-week cumulative incidence consistent with that reported forMCI.

An alternative explanation is that the outbreak involved more

than one initially infected prisoner. Figure 2 shows that, for a fixed

R0 value, increasing E0 decreases the time needed to infect 80% of

the population. However, an initial condition of E0 > 563 is needed

for an outbreak withR0 = 3 to infect 80% of the population within

3 weeks.

3.3. Time of initial outbreak circulation

A third possibility is that SARS-CoV-2 was circulating among

prisoners prior to April 3. Figure 3 shows the log-likelihood (6)

for observing the mass testing results in MCI according to

the SEIR model (1) as a function of R0 and the outbreak

onset date, with E0 fixed at one. The outbreak onset date

and R0 are unidentifiable from the mass testing data alone,

with the “wishbone” shape running diagonally across Figure 3

corresponding to pairs of outbreak onset and R0 that are

almost equally likely given the observed data. Outbreak onsets

in late March or later correspond to R0 > 10, while earlier

outbreak onsets correspond to smaller R0 values. Note that onset

dates prior to March are required to give R0 values of less

than five.

In general, the larger the value of the parameter R0, the

more difficult it is to control the epidemic. Our analysis is

consistent with this. Both the first and the third possibilities

explained above suggest that the R0 values consistent with

the reported data must be extremely high, calling attention to

the explosive potential for COVID-19 transmission in prisons.

Both the second and the third possibilities underscore the

implausibility of the reported disease introduction date and/or

the initial amount of infection, calling attention to the need

for more reliable monitoring and reporting of infection in

correctional facilities.
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4. Discussion and conclusion

The official reports from ODRC describe widespread infection

of MCI inmates with SARS-CoV-2 within the span of 3 weeks.

Our primary contribution is a rigorous analysis of the data

using an SEIR compartmental model fit to these data using

the DSA approach, which allows us to use all of the tools

of likelihood-based inference. This analysis indicates three non-

exclusive possible explanations for this rapid spread: (i) values

for the basic reproduction number that are far higher than the

R0 values between two and three that have been estimated for

the ancestral strain of SARS-CoV-2 in non-prison settings in

the United States (37), (ii) initial exposure of a large number

of infected prisoners as in an extreme superspreading event, or

(iii) early undetected circulation of SARS-CoV-2 among prisoners

prior to April 3. We note that the R0 values in (i) are even

greater than the already high estimates of the basic reproduction

number in a large urban jail (28). All three possibilities speak

to the vulnerabilities of prison inmates and staff to COVID-19.

Distinguishing between these different scenarios is impossible

without improved data collection and reporting. An arguable

weakness of our analysis is that it is retrospective in nature.

However, we believe studies such as ours will lead to improvements

that allow more detailed insight into the transmission of

respiratory infections within prisons are critical for protecting the

health of prison inmates, staff, and surrounding communities in

future pandemics.

Permissive conditions for spread within correctional facilities,

challenges for disease surveillance and care in these settings,

and the inextricable link between COVID-19 within correctional

facilities and disease spread in the surrounding community,

have been discussed eloquently by others (10–14). Structural

changes such as lower inmate densities (25, 40) and improved

ventilation (9, 16) are needed to decrease transmission potential

in correctional facilities. Efforts to increase vaccine coverage

are also important, particularly among prison staff who may

have relatively low vaccine uptake (23). Community case rates

are associated with cases in prisons (18), inmate transfers can

allow outbreaks to jump from one prison to another (20),

and staff can be an epidemiological link between correctional

facilities and surrounding communities. Without changes to

protect the health of staff and inmates, it is predictable

prisons will be vulnerable to extremely rapid spread of future

respiratory pathogens.

Improved surveillance and reporting are critical for

pandemic preparedness and for preventing or controlling

future outbreaks of respiratory diseases in prisons. Testing

policies during the COVID-19 pandemic varied widely across

state corrections departments (24). Testing protocols changed

over time, and state reporting of COVID-19 cases in prisons

was often incomplete or absent (41). Swift response is essential

for preventing and controlling large outbreaks, and it has

been identified as a distinguishing feature for countries with

successful COVID-19 pandemic responses (42). This swift

response is impossible without pathogen detection and reporting

efforts that include correctional facilities. Going forward,

we urge health departments and corrections departments to

collect accurate data and to make these data available for

analysis with appropriate protections for human subjects in this

vulnerable population.
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Background: The coronavirus disease (COVID-19) pandemic is slowing down, and

countries are discussing whether preventive measures have remained e�ective or

not. This study aimed to investigate a particular property of the trend of COVID-19

that existed and if its variants of concern were cointegrated, determining its

possible transformation into an endemic.

Methods: Biweekly expected new cases by variants of COVID-19 for 48 countries

from 02 May 2020 to 29 August 2022 were acquired from the GISAID database.

While the case series was tested for homoscedasticity with the Breusch–Pagan

test, seasonal decomposition was used to obtain a trend component of the

biweekly global new case series. The percentage change of trend was then

tested for zero-mean symmetry with the one-sample Wilcoxon signed rank test

and zero-mean stationarity with the augmented Dickey–Fuller test to confirm

a random COVID trend globally. Vector error correction models with the same

seasonal adjustment were regressed to obtain a variant-cointegrated series

for each country. They were tested by the augmented Dickey–Fuller test for

stationarity to confirm a constant long-term stochastic intervariant interaction

within the country.

Results: The trend series of seasonality-adjusted global COVID-19 new cases

was found to be heteroscedastic (p = 0.002), while its rate of change was

indeterministic (p = 0.052) and stationary (p = 0.024). Seasonal cointegration

relationships between expected new case series by variants were found in 37

out of 48 countries (p < 0.05), reflecting a constant long-term stochastic trend

in new case numbers contributed from di�erent variants of concern within

most countries.

Conclusion: Our results indicated that the new case long-term trends were

random on a global scale and stable within most countries; therefore, the virus

was unlikely to be eliminated but containable. Policymakers are currently in the

process of adapting to the transformation of the pandemic into an endemic.

KEYWORDS

COVID-19, variant of concern (VOC), strategy, global, time-series, mutation

Introduction

The World Health Organization (WHO) declared the SARS-CoV-2, commonly known

for causing COVID-19, a global pandemic crisis on 11 March 2020 (1). According to the

WHO, as of 16 September 2022, in total, there were 608,328,548 confirmed cases and

6,501,469 claimed deaths (1). It had been over 2.5 years since the declaration, and this

epidemiological crisis has remained a controversial issue worldwide. Numerous challenges
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came along with the pandemic. Scientists and researchers across

the world were working around the clock to invent vaccines and

strategies for curing COVID-19. Despite researchers across the

world continuing to investigate the strategies to end the pandemic,

including vaccination promotion, vaccine effectiveness toward

variants of concern (VOCs), and quarantine effectiveness (2, 3), the

pandemic was still ongoing.

The long fight against COVID-19 had led to an economic

downturn, as many countries had imposed lockdowns, which had

hugely limited global human mobility. In addition to the economic

aspects, the healthcare system had been given extra resources

and burdens (4). The WHO had provided operational guidance

for maintaining essential health services while enhancing medical

surveillance to contain the spread of COVID-19 (5). This has

resulted in a large number of patients being affected and delayed

their medical appointment schedules (6). Furthermore, countries

are facing a dilemma in balancing the COVID-19 response and

essential healthcare services. Various viewpoints were raised by

different countries, with some of them insisting that preventive

measures should be upheld while others preferred the world

to return to normal without strict preventive measures against

the virus. In this study, we aimed to investigate whether there

is an uncontrollable, random trend of global new cases and to

identify whether the COVID virus behaved like the influenza

virus to be long-living and seasonally fluctuating with different

VOCs (7) or as a one-off outbreak like severe acute respiratory

syndrome (SARS) (8).

Method

Data extraction and processing

Daily reported new case numbers, and the ratio of major

concerns of variants per each country from 02 May 2020 to 29

FIGURE 1

(A) Expected worldwide biweekly new cases. (B) Expected worldwide biweekly new cases by variants.

August 2022 were acquired from the GISAID database (https://

ourworldindata.org/grapher/covid-variants-bar) (9). There were

10 time series representing the ratio of major concerns of variants

per each country, Alpha, Beta, Gamma, Delta, Omicron (BA.1),

Omicron (BA.2), Omicron (BA.4), Omicron (BA.5), Omicron

(BA.2.12.1), and Omicron (BA.2.75), and 1 extra for other variants.

The data were resampled on a biweekly basis due to data sparsity

of variant ratio data. There were at most 61 data points per

country. The missing data points were filled by the previous

data point, which extended for at most 1 month, assuming that

the monthly variations were not significant. Only countries with

processed data for over two-thirds of the period, i.e., at least 41

data points, were analyzed to avoid misinterpretation of the results.

A total of 48 countries met the inclusive criteria after filtering:

Argentina, Australia, Austria, Bangladesh, Belgium, Brazil, Canada,

Chile, Croatia, Czechia, Denmark, Estonia, Finland, France,

Germany, Greece, Hong Kong, India, Indonesia, Ireland, Israel,

Italy, Japan, Kenya, Latvia, Lithuania, Luxembourg, Malaysia,

Mexico, Netherlands, Norway, Peru, Philippines, Poland, Portugal,

Romania, Russia, Singapore, Slovakia, Slovenia, South Africa, South

Korea, Spain, Sweden, Switzerland, Turkey, the United Kingdom,

and the United States. Ratios of the submitted sequence of COVID

variants of each country were then multiplied with the biweekly

reported new case numbers of each country, yielding the expected

number of biweekly new cases by a variant type for each country.

Long-term trends of worldwide biweekly
new cases

By adding up the biweekly new cases of the included countries,

a worldwide biweekly new case series was obtained. It was

decomposed for the seasonal component analysis to analyze its

trend, seasonality, and noise to remove the seasonality property

of COVID (10). An additive model would be used if the series
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FIGURE 2

(A) Expected worldwide biweekly new cases. (B) Trend component. (C) Seasonal component. (D) Residual.

was homoscedastic (serial independence in regression residual) by

time progression, which would be verified by the Breusch–Pagan

test (11). Otherwise, a multiplicative model would be used (12).

The cycle period was set at seven time steps, assuming a regular

quarterly spatiotemporal fluctuation (13).

{

y(t) = T(t)+ S(t)+ ǫ

y(t) = T(t)× S(t)× ǫ

additive model

multiplicative model

where y(t) represented the worldwide biweekly new case series

to be decomposed, T(t) was the trend component representing

the long-term progression of the series, S(t) was the seasonality

component representing the regular seasonal variation of the series,

and ǫ was the residual noise.

In this study, the convolution method (linear kernel) was used

to filter the trend and seasonality components (14). The trend

component was extracted by the followingmoving average formula:

T (t) = 1
2×7 + 1

∑7
i=−7 xt+i for t > 7

Then, by removing the trend component from the observed

data, the seasonal component was obtained by the mean of every

7th data point from the detrended data starting from the 1st, 2nd,

3rd, 4th, 5th, 6th, and 7th data points:

S(t) =
1

n(A)

∑

i∈A

[xi − T (i)]

where

A =
{

i : i mod 7 = t mod 7 for 1 ≤ i∈ N ≤n (X)
}

n (A) = #of items in A

The remaining unexplained component by trend and

seasonality of the observed data was considered residual noise.

The regressed trend component T (t) was extracted as the

smoothened series representing the trend of the worldwide

biweekly new cases for studying the long-term trend. The

percentage change per time step of this trend was tested with the
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FIGURE 3

Estimated PDF of % change in trend of worldwide biweekly new cases.

one-sample Wilcoxon signed-rank test for zero-mean symmetrical

distribution and augmented the Dickey–Fuller test for stationarity,

with no lag-level difference allowed and a non-deterministic trend.

We could identify the characteristics of the change of trend

component to observe if a random or drifted long-term trend of

the number of worldwide biweekly new cases existed.

Cointegration between expected new case
numbers by variants within countries

Variants of concern (VOCs) were studied by individual

countries. To verify if there exist any cointegration relationships

between the time series of the estimated number of reported cases

of different variants of each shortlisted country, i.e., if the case-by-

variant series would have a long-term constant stochastic trend, a

Vector Error CorrectionModel (VECM) with one seasonal lag level

(7 data points) was regressed for the case of each country, under

the hypothesis that there exist (1) at least one cointegration rank

with case numbers by variants and (2) a constant long-term trend

of case numbers such that the seasonal difference was a zero-mean

normal variable.

1yt = φ0 + 5yt−1 + 81yt−1 + ǫt

1yt = yt − yt−7

where yt was the case-by-variant vector at time t, φ0 was the

regressed intercept term as the case-by-variant vector at time 0,

5yt−1 was the error correction term, 8 was the coefficient vector

of the auto-correlated case-by-variant term for time t − 1, and

ǫt was white noise at time t. The error correction term 5yt−1

can be decomposed into αβT , where β could be extracted as the

cointegrating vector for stationary testing (15).

The normalized dot product of the estimated cases by variants

of each country and the corresponding cointegrating vector was

obtained as the “cointegrated series” of the country. This series

was tested by the augmented Dickey–Fuller test for stationarity,

with no lag-level difference allowed and under a non-deterministic

trend assumption. A stationary “cointegrated series” confirmed

a constant long-term stochastic trend in the number of the

combination of cases by variants of that particular country.

All data manipulation, visualization, modeling, and testing

were carried out by Python 3.9.7 under Jupyter notebook

environment, with the aid of the Pandas, NumPy,Matplotlib, SciPy,

and Statsmodel libraries. The alpha values of all statistical tests were

set as 0.05.

Results

Long-term trends of worldwide biweekly
new cases

The trend of biweekly new cases over the globe and their

expected compositions by variants are displayed in Figure 1. It was

observed that the biweekly new case series had no deterministic or

directional trend, except for the sudden surge in Omicron (BA.1 &

BA.2) in early 2022. The Breusch–Pagan test results showed that the

series was heteroscedastic (p= 0.002).
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TABLE 1 Stationarity test on cointegration series by country.

Country p-value Cointegrated

Argentina 0.000000 ✓

Australia 0.000029 ✓

Austria 0.161500

Bangladesh 0.008982 ✓

Belgium 0.422995

Brazil 0.001473 ✓

Canada 0.984466

Chile 0.000000 ✓

Croatia 0.000000 ✓

Czechia 0.000000 ✓

Denmark 0.008688 ✓

Estonia 0.000012 ✓

Finland 0.000001 ✓

France 0.000002 ✓

Germany 0.000013 ✓

Greece 0.000004 ✓

Hong Kong 0.000019 ✓

India 0.110762

Indonesia 0.000001 ✓

Ireland 0.000015 ✓

Israel 0.683367

Italy 0.000000 ✓

Japan 1.000000

Kenya 0.000000 ✓

Latvia 1.000000

Lithuania 0.000000 ✓

Luxembourg 0.000000 ✓

Malaysia 0.002662 ✓

Mexico 0.009539 ✓

Netherlands 0.735694

Norway 0.000000 ✓

Peru 0.000001 ✓

Philippines 0.369270

Poland 0.002056 ✓

Portugal 0.935441

Romania 0.000000 ✓

Russia 0.000068 ✓

Singapore 0.011175 ✓

Slovakia 0.000000 ✓

Slovenia 0.000828 ✓

South Africa 0.000000 ✓

(Continued)

TABLE 1 (Continued)

Country p-value Cointegrated

South Korea 0.974641

Spain 0.000000 ✓

Sweden 0.000002 ✓

Switzerland 0.000095 ✓

Turkey 0.000037 ✓

United Kingdom 0.001633 ✓

United States 0.044868 ✓

As observed in a near-quarterly cyclic fluctuation, the series

was decomposed into a trend, seasonal and residual components,

as shown in Figure 2, via a multiplicative model. The mean

and variance of the percentage change in the smoothened trend

component were 0.039 (+/– 0.155) but were symmetrically

distributed in terms of zero-mean (p = 0.052) and non-

deterministically stationary (p = 0.024). Figure 3 shows the

estimated probability density function of the percentage change in

the smoothened trend component. A heavy tail on the positive side

might have skewed the distribution, explaining why the distribution

was only weakly symmetric, given the p-value was very close to the

threshold of rejecting the null hypothesis.

Cointegration between expected case
numbers by variants within countries

Table 1 and Figure 4 show that 37 out of 48 countries had

their case-by-variants cointegrated. The cointegrated series of most

countries were very stationary until some stirrings were observed

in early- and mid-2022, which was the period when worldwide

Omicron (BA.1 & BA.2) cases surged, but most of them returned

to original levels afterward.

Discussion

Interpretation of research findings

Our results discovered that the percentage change in the

underlying trend of the biweekly new case series was a zero-

mean symmetrical distribution. The series was heteroscedastic, but

meant differently for variance by time. However, the direction of

the trend was indeterministic. This increasing randomness over

time was very likely coming from the Omicron spike during

early 2022. This development suggested that there existed random

long-term biweekly COVID new case numbers after seasonal

adjustment, which was difficult to model by any distribution. Given

the percentage change in the symmetrical zero-mean distribution

with non-deterministic variance, one might simulate the trend

series by a Heston model (16). It was the collective result of all

governments’ interventions, people’s actions, and environmental

factors. As a result, it was likely that the trend in COVID new

cases was uncontrollable, random, and unlikely to be diminished

by human interference.
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FIGURE 4

Case-by-variant by country and their corresponding normalized

cointegration series.

However, there were 77.1% of the involved worldwide nations,

regardless of their geographical locations, side of the hemisphere,

major ethnicity, or population structure and density, exhibited a

relatively constant and stable seasonality-adjusted cointegration

relationship between different VOCs. A recent study suggested

that a variant would dominate a period and subside but then

will be replaced by another strand in its ratio of all COVID

new cases (17). Our study provides an additional quantitative

proof of not only the ratio of the VOCs but also of their newly

infected numbers which behaved in that way, resulting in seasonal

fluctuation but consistent COVID infection numbers that never

ended. The variant-cointegrated countries had a wide range of

stringent measures in COVID response policies (18). This could

suggest that the strength of COVID control might be able to

control the virus spread but not the existence of the virus, as no

measure could be taken to prevent the rise of a new variant. The

different properties between global and regional scales suggested

that the inconsistent policies between countries made the infection

uncontrollable, whereas local consistent strategies could contain

the spread, regardless of their extent.

It was noticeable that only the Omicron outbreak during early-

to-mid 2022 had cause a significant shock in the cointegration

series in most countries. That was likely due to the unusually

high infectivity and transmitting ability of the VOC (19), causing

the infection numbers to ramp up and down sharply. The

unsmooth transition of dominating VOC thus disrupted the

balance temporarily.

Policies implication

COVID-19 has added an extra burden to the medical system in

every country regardless of preventive measures, medical expenses,

and research development. Millions of individual lives have been

claimed from all walks of life. We are all desperate for a cure

to end this pandemic and achieve a healthy community. Owing

to the enormous infection numbers and exposure to antigens

due to vaccine administration (20), and from our results, the

transmission of COVID-19 possibly stayed in a relatively loosely

controllable range. Based on our results, over 70% of the country

was cointegrated while the VOC continued to surge, and the

infection control implemented within a region is sufficient for

containment of the disease spread. These measures might be

covariates that affect the seasonal property of the disease spread

and the infection rate in some regions (10). However, these local

interventions remained random in the long-term global biweekly

new cases. Thus, extreme preventive measures were unlikely to

control the infection number to its aim of total elimination. These

results aligned with the results of previous studies (20). Elimination

in the community might not be worthwhile given the large amount

of medical and social resources allocated. Policymakers should

be aware of this issue to balance public health concerns and

economical activities.

As stated by the WHO in a media briefing on 14 September

2022, COVID-19 will continue but the wild pandemic situation is

coming to an end (21). Our results serve as a quantitative proof

of the statement. Our results indicated that the virus appeared to be

continuing regardless of the scale and strictness of the implemented

infection control policies, but the effectiveness of intracountry
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containment shall be appreciated. Regional infection control

measures and personal hygiene should be sustained to contain the

spread. However, further or upgraded anti-virus implementation

including lockdowns may not be effective in containing the virus.

At the same time, countries might shift their focus from eliminating

the virus to avoiding seasonal outbreaks threatening the local

healthcare systems. It might also add indications to the direction

of preventive measures, especially those measures that are related

to vaccine research. Instead of focusing on the current variants

of concern, it might be useful to predict and select a few possible

virus strands that might be susceptible to a possible outbreak for

vaccination, just like the influenza virus.

There are several strengths to this study. This research

provided quantitative proof and perspectives on the current trend,

seasonal, and cointegration properties of the COVID-19 new

case series. Unveiling the underlying structure, it served as a

guide to an early adaption of a possible transformation from the

COVID pandemic into a regular respiratory endemic. We also

pinpointed the need for shifting the policy focus from tackling the

current COVID-19 situation to preventing future unknown new

variant outbreaks.

The data themselves could also be concerning. Since there

were only at most 61 data points per country, the regressed

models were sensitive to sharp changes such as the Omicron

surge in early-to mid-2022. From Figure 2D, we were able

to observe a heteroscedastic, periodic fluctuation in residual

noise, which could be due to insufficiency in the decomposition

model to capture the full feature of the underlying seasonal

signals. Thus, the found trend and seasonal properties are

uncertain due to unmodeled factors. Improvement in modeling

the decomposition, as well as continued observation, is needed

for consolidating the evidence and conclusion. In addition, the

data were logged under voluntary input in the database and

might not be able to fully reflect the actual ratios of variants.

While no data from any African country were available after

processing, they aggregated the lack of input data issue. This

would affect the representativeness of the data to cover the

world’s situation.

Conclusion

In this study, a random long-term trend of biweekly global

new COVID cases was identified with a seasonal property. There

existed cointegration relationships of newly reported cases of

different variants of concerns for most countries, regardless of

their demographics and responses toward the virus. The results

suggested that consistent strategies could contain the spread. In

addition, extreme eliminatory measures may not be effective, and

a high possibility of the COVID pandemic was transforming into

an endemic.
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