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Genetic diversity and population
structure of a Peruvian cattle herd
using SNP data

Flor-Anita Corredor1, Deyanira Figueroa1, Richard Estrada1,
Wilian Salazar1, Carlos Quilcate1, Héctor V. Vásquez2,
Jhony Gonzales3, Jorge L. Maicelo2, Percy Medina1 and
Carlos I. Arbizu1*
1Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima, Peru,
2Facultad de Ingenierŕa Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio
Rodríguez de Mendoza de Amazonas, Amazonas, Peru , 3Laboratorio de Biología Molecular, Universidad
Nacional de Frontera, Piura, Peru

New-generation sequencing technologies, among them SNP chips for massive
genotyping, are useful for the effective management of genetic resources. To date,
molecular studies in Peruvian cattle are still scarce. For the first time, the genetic
diversity and population structure of a reproductive nucleus cattle herd of four
commercial breeds from a Peruvian institution were determined. This nucleus
comprises Brahman (N = 9), Braunvieh (N = 9), Gyr (N = 5), and Simmental (N =
15) breeds. Additionally, samples from a locally adapted creole cattle, the Arequipa
Fighting Bull (AFB,N = 9), were incorporated. Female individuals were genotyped with
theGGPBovine100Kandmaleswith theBovineHD.Quality control, and theproportion
of polymorphic SNPs, minor allele frequency, expected heterozygosity, observed
heterozygosity, and inbreeding coefficient were estimated for the five breeds.
Admixture, principal component analysis (PCA), and discriminant analysis of
principal components (DAPC) were performed. Also, a dendrogram was
constructed using the Neighbor-Joining clustering algorithm. The genetic diversity
indices in all breeds showed a high proportion of polymorphic SNPs, varying from
51.42% inGyr to 97.58% in AFB. Also, AFB showed the highest expected heterozygosity
estimate (0.41 ± 0.01), while Brahman the lowest (0.33 ± 0.01). Besides, Braunvieh
possessed the highest observed heterozygosity (0.43 ± 0.01), while Brahman the
lowest (0.37 ± 0.02), indicating that Brahman was less diverse. According to the
molecular variance analysis, 75.71% of the variance occurs within individuals, whereas
24.29% occurs among populations. The pairwise genetic differentiation estimates (FST)
between breeds showed values that ranged from 0.08 (Braunvieh vs. AFB) to 0.37
(Brahman vs. Braunvieh). Similarly, pairwise Reynold’s distance ranged from 0.09
(Braunvieh vs. AFB) to 0.46 (Brahman vs. Braunvieh). The dendrogram, similar to
the PCA, identified two groups, showing a clear separation between Bos indicus
(Brahman and Gyr) and B. taurus breeds (Braunvieh, Simmental, and AFB). Simmental
andBraunviehgroupedcloselywith theAFBcattle. Similar resultswereobtained for the
population structure analysiswithK=2. The results from this studywould contribute to
the appropriatemanagement, avoiding lossof genetic variability in thesebreeds and for
future improvements in this nucleus. Additional work is needed to speed up the
breeding process in the Peruvian cattle system.
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1 Introduction

Livestock production around the world is a large sector with an
important contribution of 40% and 20% to agriculture production in
developed and developing countries, respectively (Herrero et al.,
2013; Baltenweck et al., 2020; FAO, 2022). A large part of Peru’s
livestock economy revolves around cattle production (León-Velarde
and Quiroz, 2004). According to the latest Peruvian National
Agricultural Census (Instituto Nacional de Estadística e
Informática, 2012), Peruvian creole cattle (PCC) is the most
predominant cattle population (64.03%). PCC is prevalent in the
Andean sector of the country, where it has been adapted to the
highlands climate conditions (Quispe, 2016; Delgado et al., 2019).
However, in comparison with exotic breeds, PCC achieves smaller
body weights and milk production records (Espinoza and Urviola,
2005; Dipas Vargas, 2015; Ruiz et al., 2021).

Due to the low productivity, small farmers breeding strategy is to
crossbred PCC with other specialized breeds in order to take advantage
of the heterosis effect (Seré et al., 1996;W. et al., 2019). Nowadays, there
are a high availability of bovine breeds that can be used to improvemilk,
meat or double purpose production (Thibier and Wagner, 2002;
Mebratu et al., 2020). However, Peruvian initiatives are lacking the
understanding of the genetics behind. Genetic diversity knowledge is
essential for the effective management of genetic resources (Groeneveld
et al., 2010; Hoban et al., 2013). In recent years the availability of
genotyping technology has become affordable in livestock allowing to
increase genetic studies (Mukhopadhyay et al., 2020). As a result, SNP
markers are becoming increasingly common for diversity analysis and
population structure studies (Morin et al., 2009; Haasl and Payseur,
2011). SNP markers have the advantage of being abundant in the
genome, as well as the ability to be automated through high-through
genotyping panels (Beuzen et al., 2000; Vignal et al., 2002).

In developing countries, nucleus breeding systems represent a
good strategy for animal genetic improvement for ruminants.
Concentrating nucleus cattle in one or a few herds to disseminate
genetic material to other populations is helpful (Kiwuwa, 1992;
Schrooten and van Arendonk, 1992). In 1993, a Peruvian
government herd composed of Brahman, Braunvieh, Gyr and
Simmental breeds was established with the aim to develop
reproductive technology research, such as artificial insemination
and embryo transfer. Currently, the herd is distributing semen
straws and embryos to producers’ associations in order to
disseminated specialized cattle breed genetics. This herd is been
called a genetic nucleus herd, however, there is scarcity of data
available in pedigrees and production records. Therefore, this study
aims to provide understanding of the genetic diversity among the
breeds on this herd, and its population structure, including a PCC
group on the study. We expect to genomic characterize the nucleus
using SNP markers, by obtaining genetic diversity and population
structure parameters.

2 Materials and methods

2.1 Animal sampling and DNA extraction

A total of 63 blood samples were collected from four commercial
breeds of taurus (Braunvieh and Simmental) and indicus cattle

(Brahman and Gyr). According to their pedigree, up to
grandfathers, genetic origins for Brahman and Gyr were
predominantly from Brazil; for Braunvieh, Switzerland and
Colombia; while for Simmental was Germany (Supplementary
Table S1). Blood sampling was performed from a government
herd, the Donoso Agricultural Research Station (EEA Donoso in
Spanish) located in Huaral, Lima (128 masl; 11°31′18″ S and
77°14′06″ W). Pedigree was checked to avoid sampling from
related individuals, animals were not siblings or had a parental
relationship. Blood samples were collecterelated individuals, animals
were not siblings or have a parentald from the epidural vein using a
vacutainer containing EDTA as an anticoagulant and were
immediately transferred to the laboratory for DNA extraction.
Additionally, we got access to 12 hair samples that were collected
from the tail of individuals that were considered as “Arequipa
fighting bull” (AFB), which are bovines from Arequipa region
(2,335 masl; 15°29′58″ S and 72°21′36″ W). Most of these
individuals were selected as they possessed most of the
morphological characteristics of a PCC as identified by their
owners, where its body is unbalanced with the topline being
higher on the front and becoming smaller toward the rear. For
the PCC, the hooks to pin are lower-level hipped when compared to
other breeds of cattle, dairy or beef. The length of the body is shorter,
as is the topline. Colors of hair have multiple variations. The
diversity of colors ranges from a total color cover to mixed ones
and spotting ones.

We extracted genomic DNA from whole blood and hair samples
with the Wizard Genomic DNA Purification Kit (Fitchburg, WI,
United States) following the manufacturer’s instructions. The
quality and quantity of genomic DNA were assessed using
agarose gel electrophoresis and a Nanodrop spectrophotometer
(Model ND 2000, Thermo Fisher Scientific, Wilmington, DE,
United States) prior to genotyping. In addition, 40 genotypes
from reference breeds were included in the analyses. The
reference breeds were sourced from Decker et al. (2014) and the
world reference dataset in Web-Interfaced Next-Generation
Database (WIDDE) database (Sempéré et al., 2015). Breeds
included were Brahman, Braunvieh, Gyr, and Simmental.

2.2 SNP genotyping and quality control

DNA samples were genotyped using Illumina Bovine HD
Genotyping BeadChip and Illumina GGP Bovine 100K BeadChip
with the help of the commercial genotyping service provider
(Neogen, Geneseek, NL, United States). Female individuals were
genotyped with the GGPBovine100K and males with the BovineHD.
The Bovine HD and 100K chips possess 777,962 and 95,256 SNPs,
respectively, uniformly spanning over the entire bovine genome. A
total of 87,669 common markers between both SNP panels were
used for the following analysis. From the total of 71 animals
sampled, we discarded the ones with a genotype call rate minor
to 85% (Purfield et al., 2016). A total of 18 samples were discarded
before starting the SNP quality control. We started the SNP quality
control with 53 animals and 47 remained for the following analysis
after quality control.

SNPs quality control was performed using the PLINK v1.9
program (Purcell et al., 2007). SNPs assigned to sex
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chromosomes and those lacking genomic locations were excluded
from the analysis. SNPs with missing genotypes in more than 10% of
individuals, missing rate per SNP of 10%, andminor allele frequency
(MAF) lower than 0.05 were excluded. However, SNP filtering based
on the Hardy–Weinberg equilibrium was not performed since we
expected Hardy–Weinberg deviations in the studied populations
due to their small and possibly sub-structured population and
genetic drift (Chen et al., 2017). We used 80,178 autosomal SNPs
that remained after applying filtering criteria to assess genetic
diversity. Additionally, linkage disequilibrium pruning, using the
parameter indep (50 5 2), was performed before the population
structure analysis. A total of 16,345 SNPs were obtained after
pruning for LD.

2.3 Genetic diversity

To assess the genetic diversity within the studied population
we used different genetic diversity parameters. The proportion
of polymorphic SNPs (Pn), MAF, expected heterozygosity (He),
observed heterozygosity (Ho), and inbreeding coefficient (FIS)
were estimated using R package dartR (Gruber et al., 2018). The
distribution of MAF was grouped into five different categories
based on the frequency of rare alleles (0 < MAF ≤0.1),
intermediate alleles (0.1 < MAF ≤0.2, 0.2 < MAF ≤0.3, and
0.3 < MAF ≤0.4), and common alleles (0.4 < MAF ≤0.5).

2.4 Population structure

Different approaches were employed to investigate the genetic
structure among the cattle populations of the EEA Donoso herd,
and assess their relationships with the AFB cattle. First, an analysis
of molecular variance (AMOVA) was performed with ARLEQUIN
v.3.5.2 software (Excoffier and Lischer, 2010), with the locus by
locus option and 1,000 permutations. PGDSpider
v.2.1.1.5 software (Lischer and Excoffier, 2012) was used to
convert files between PLINK and Arlequin formats. We used
ARLEQUIN to assess the divergence among breeds. Genetic
differentiation among breed (FST) fixation indices were
calculated using 20,000 permutations and a significance level of
0.05. Also, Reynold’s distance was performed. Second, a principal
component analysis (PCA), and a discriminant analysis of
principal components (DAPC) were perform with PLINK. The
factorextra (Kassambara and Mundt, 2017) and adegenet (Jombart
and Collins, 2017) R packages were used to generate eigenvectors
and eigenvalues, and the outputs were visualized using the package
ggplot2 (Gómez-Rubio, 2017). For PCA and DAPC, animals form
the referenced population were included in the analyses. Third, an
assessment of population genetic structure was performed using
the default settings of ADMIXTURE v.1.3 software (Alexander
et al., 2009). The most appropriate K value was selected after
considering 10-fold cross-validations whereby the best K exhibits
low cross validation error compared to other K values (Alexander
and Lange, 2011). Finally, a Neighbor-Joining tree was constructed
using vcfR (Knaus and Grünwald, 2017), pegas (Paradis, 2010), and
ape (Paradis and Schliep, 2019) packages in R. Additionally,
1,000 bootstrap replicates were conducted.TA
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3 Results

3.1 Genetic diversity analysis

The results of the genetic diversity parameters calculated for the
different cattle breed groups genotyped are summarized in Table 1.
Most of the breeds show a high Pn, varying from 51.42% in Gyr to
97.58% in AFB. The highest mean MAF value was observed in AFB
(0.32 ± 0.13), and the lowest value was observed in Gyr (0.13 ± 0.16)
with a mean value of 0.23 across populations. The He ranged from
0.33 (Brahman) to 0.41 (AFB). The highest observed heterozygosity
was observed in Braunvieh (0.43 ± 0.01), while the lowest was in
Brahman (0.37 ± 0.02). The Ho was greater than the He and the
inbreeding coefficient was negative for the breeds, except for AFB.

Minor allele frequency distribution for different categories is
shown in Figure 1. Among the five cattle breeds, AFB (25,504) and
Gyr (3,903) showed the highest and the lowest count of SNPs when
MAF greater than or equal to 0.3.

The Gyr breed had a higher count of SNPs in the lowest MAF
interval (MAF≤0.1) compared to the counts of SNPs in the higher
MAF intervals. The count of SNPs for the Braunvieh, AFB, and
Simmental cattle breeds was shown to be higher as the MAF interval

FIGURE 1
Distribution of minor allele frequency for each cattle breed.

TABLE 2 Analysis of molecular variance among five cattle breeds.

Source of variation Degree of freedom Sums of squares Variance component % of variations

Among population 4 365574.76 4,301.64 24.29

Within individuals 89 1184932.66 13411.11 75.71

Total 93 1550507.41 17712.74

TABLE 3 Estimates of the pairwise genetic differentiation statistic (FST
statistics; below the diagonal) and the Reynold’s genetic distance (above the
diagonal) among five cattle breeds.

Breed Brahman Braunvieh Gyr AFB Simmental

Brahman 0.46 0.14 0.38 0.43

Braunvieh 0.37 0.44 0.09 0.13

Gyr 0.13 0.36 0.36 0.42

AFB 0.31 0.08 0.30 0.09

Simmental 0.35 0.12 0.34 0.09
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increased. For the Brahman and Gyr breeds the count of SNPs
decreased.

3.2 Population structure

The AMOVA results (Table 2) showed that the most important
part of the genetic variation (75.71%) was observed within the cattle
breeds and variability among the cattle breeds was 24.29%. Also,
pairwise FST and Reynold’s distance among all populations were
estimated (Table 3). The pairwise FST estimates among
breeds ranged from 0.08 (AFB-Braunviehpair) to 0.37

(Braunvieh-Brahman pair). The pairs Braunvieh-Brahman and
Braunvieh-Gyr showed high pairwise FST values, with 0.37 and
0.36, respectively. Furthermore, the pairs Braunvieh-AFB, and AFB-
Simmental showed the lowest pairwise FST values, with 0.08 and
0.09, respectively. The pairwise Reynold’s distance showed a pattern
similar to the one obtained with the FST statistics, with values
ranging from 0.09 (AFB-Braunvieh pair) to 0.46 (Braunvieh-
Brahman pair). The pairs Brahman-Braunvieh and Braunvieh-
Gyr showed high pairwise Reynold’s distance values, with
0.46 and 0.44, respectively. Furthermore, the pairs AFB-
Braunvieh, and AFB-Simmental showed the lowest pairwise FST
values, with 0.09, respectively each.

FIGURE 2
Principal component analysis (PCA) and Discriminant analysis of principal components (DAPC) plots. Samples belong to a reproductive cattle herd
that comprises with Brahman (N = 9), Braunvieh (N = 9), Gyr (N = 5), and Simmental (N = 15) breeds; a locally adapted creole cattle, the Arequipa Fighting
Bull (AFB, N = 9); and 40 genotype samples from reference breeds included in the analyses (subscript with _REF). Symbols and colors indicate breed
affiliation, each symbol represents an individual. (A). For PCA plot, the x- and y-axes are indicated by the first and second components, respectively,
and the values in parentheses show the percentages of total variance explained. (B). For DAPC plot, the scatterplot shows only the first two linear
discriminants of the analysis.

FIGURE 3
Population structure using 16,345 SNPs for five cattle breeds consisting of 47 individuals. Admixture analysis showing the proportions of ancestral
populations for K = 2, each vertical bar exemplifies an individual.
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Figure 2 presents the result of PCA andDAPC analysis performed
to visualize individual relationships among populations. Individuals
were grouped according to their breed origins. The first and second
component accounted for a total of 23.60% and 13.10%, respectively.
PCA and DAPC showed a low differentiation among the AFB,
Braunvieh, and Simmental populations, while the Brahman and
Gyr herds are clearly separated from the other three populations.
In the PCA a substructure was observed corresponding to samples
from Gyr, from the reference populations. The populations included
in this study come from different selection environments. Brahman
and Gyr individuals have been selected for tropical climates. The
Simmental and Braunvieh groups have been selected in template
environments, while AFB individuals have beenmainly selected under
artificial selection pressure.

A graphic representation of cluster structure analysis is depicted
in Figure 3. Based on the ΔK value, K = 2 was the most optimal
number for the inferred genetic structure of the populations
(Supplementary Figure S1). At K = 2 a considerable source of
variation among cattle breeds was perceptible. Cluster
1 comprised of the Brahman and Gyr breed groups (N =
14 genotypes), whereas cluster 2 consisted of the Braunvieh
Simmental, and AFB cattle groups (N = 33 genotypes). The

Brahman and Gyr populations displayed a separated cluster,
whereas the Braunvieh, and AFB, and Simmental populations
presented similar genetic construction.

A neighbor-joining tree was constructed from SNPs (Figure 4),
displaying bootstrap support greater than 70%. The first group is
composed of fifteen Simmental individuals with 100% bootstrap
support. The second group is composed of nine Braunvieh
individuals with 100% bootstrap support. Nine individuals AFB
composed the third group. In concordance with the principal
coordinate analysis, these groups are together. The fourth group
is composed of nine Braunvieh individuals with 100% bootstrap
support. Five individuals Gyr composed the fifth group. These
groups are together with 100% bootstrap support, also in
agreement with principal coordinate analysis. However, an
individual AFB (TP−027A) was integrated into this group of
Brahman and Gyr with 100% bootstrap support.

4 Discussion

Investigating genetic diversity parameters of populations is
critical for developing future breeding objectives (Notter, 1999).

FIGURE 4
Phylogenetic relationship constructed using a neighbor-joining tree from a dataset of 80,178 SNPs in five breeds. Numbers above the branches
represent bootstrap values, with only values higher than 70% shown.
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Here for the first time, we examined population genetic structure of
a group of animals that are been used as a genetic nucleus in Peru, as
well as a group of PCC (AFB). Our results of Pn, MAF, He, Ho
showed that the populations have a moderate genomic diversity. In
this study, all the average values of MAF recorded in taurine cattle
(i.e., Braunvieh, Simmental, and AFB) were higher than those
recorded in zebu cattle (i.e., Brahman and Gyr). This result
might be due to the low representation of zebuine cattle breeds
in the SNP genotyping array used (Chagunda et al., 2018). Most of
the bovine SNP panels available have been developed of the
sequences of individuals belonging to European bovine breeds
(European Cattle Genetic Diversity Consortium et al., 2006; The
Bovine Hapmap Consortium et al., 2009). This might explain why
the observed polymorphism of our SNP data set was higher in the
Braunvieh, Simmental, and AFB breeds.

Previous studies have shown that breeding practices have a great
effect on reducing genetic diversity, leading to a lower level of genetic
diversity in selected germplasm compared with wild varieties
(Tisdell, 2003; Zenger et al., 2007). Interestingly, our genetic
diversity analysis with the four specialized breeds from the
nucleus herd seems to agree. We observed a significantly higher
genetic diversity level in the AFB group breed than in the specialized
breeds, which is similar from those reported in previous studies
(Giovambattista et al., 2001; Egito et al., 2007; Edea et al., 2015). In
the case of AFB, it showed the highest levels of He and one of the
highest for Ho. For these cattle population, there is a marked effect
due to mating control by breeders, which can certainly play an
important role (Hidalgo et al., 2015; Delgado et al., 2019). Creole
breeds are primarily used in the Peruvian livestock systems to
establish crosses with other species of B. taurus, particularly
Brown Swiss and Simmental in high Andean areas (Primo, 1992;
Quispe, 2016). Considering AFB, the mean value of Ho (0.42)
obtained in this study is lower than that (0.77) reported by
Martínez et al. (2015) in Costa Rica, (0.75) Lirón et al. (2006) in
Argentine and Bolivian Creole Breeds, (0.68) Egito et al. (2007), in
Brazil, (0.67) Ginja et al. (2010) in Portuguese Native Cattle, (0.70)
Acosta et al. (2012) in Cuban cattle breeds. However, most of these
studies are also in creole cattle from Latin America where the values
greatly differ from ours. One explanation for these differences is that
our study was based on SNPmarkers, whereas the other studies used
microsatellite markers. As population genetic statistics can easily be
applied to SNPs because they are often bi-allelic, however, a greater
number of polymorphic loci may be required to match the power of
multi-allelic SSR loci (Guichoux et al., 2011; Laoun et al., 2020).
Also, the reduced Ho of the AFB may be explained on the fact that
these individuals, compared to other local breeds, go through a
process of strict artificial selection as growers always look for fighting
traits. AFB are always part of the traditional bullfight activity of
Arequipa. It should be noted that the Brahman and Gyr breed
presented the lowest levels of He and Ho. This lower level of
heterozygotes is generally interpreted as a deviation from random
mating (Zeng et al., 2013; Lamkey and Edwards, 2015).

Regarding the content of Pn, a study in six breeds including
Simmental, determined an average proportion of polymorphic SNPs
of 79% (Dadi et al., 2012), while in this study was 79.72%. FIS
presented an average value of −0.04, which ranged from 0.03 (AFB)
to −0.07 (Brahman and Braunvieh). So, this negative FIS values could
indicate that the population was in outbreeding (Caballero and

Toro, 2002). In addition, mating could be occurring between
individuals from different populations (Wright, 1965; Chesser,
1991). The FIS value was negative for the studied breeds of the
reproductive herd, where Brahman and Braunvieh had the lowest FIS
values, suggesting an excess of heterozygotes and a lack of
population structure (Tantia et al., 2006). This could be due to
the small sample population size.

According to the AMOVA results (Table 2), the proportion of
genetic variability attributable to the difference variation among
populations, and within individuals was 24.29% and 75.71%,
respectively. These results implied lower genetic differentiation
among breeds than within breeds maintained at EEA Donoso.
Similar studies have reported lower values for variation across
populations (Cañón et al., 2001; Lirón et al., 2006; Egito et al.,
2007). Lirón et al. (2006) reported that 8.8% of the total genetic
variation corresponded to differences between populations (zebu
and taurine breeds), while 91.2% was explained by differences
between and within individuals. Cañón et al. (2001) indicated
that about 7% of the total genetic variation corresponded to
differences between racial groups, while the remaining 93%
corresponded to differences between and within individuals. On
the other hand, Egito et al. (2007) reported a value of 12% for genetic
variation attributable to differences between breed groups. The
higher value obtained in the present study may be linked to the
characteristics of the sampling (Kitada et al., 2021). The AFB breed
group is made up of highly heterogeneous animals, which magnifies
the within-group (within individual) variance compared to the
between-group (among population) variance. Many of these
groups are also highly related to each other (i.e., Gyr-Brahman
pair, Simmental-Braunvieh pair), which is further confirmed in the
population structure analyses. The little degree of variation is
consistent with the FST for AFB-Braunvieh pair (0.08) and AFB-
Simmental pair (0.09).

Table 3 showed that the lowest genetic distance (0.08) was
observed for the AFB and Braunvieh. Similarly, for the AFB and
Simmental breeds the genetic distance was low (0.09). These values
close to zero indicate that these breeds shared their genetic material
through breeding. Likewise, Figure 2 showed that Simmental,
Braunvieh, and AFB grouped closely to each other. In addition,
many individuals of AFB possess traits of Braunvieh and Brown
Swiss as they are also employed for beef and milk production. Also,
concordant to the genetic distance, PCA and DAPC indicated that
Brahman and Gyr are closely related. The share of genetic material
between Brahman and Gyr can be explained as they belong to the
same species, B. indicus. On the contrary, higher genetic distances
were observed between Brahman with 1) Braunvieh (0.37), 2)
Simmental (0.35), 3) and AFB (0.31), indicating some degree of
isolation between these breeds, that is, they are not currently
breeding with one another. This could be because the region
where the AFB samples were collected is located in the southern
parts of the country, where climatic conditions are cold. Hence,
European breeds such as Brown Swiss, Braunvieh, Simmental,
Overo negro, Jersey, etc., are more commonly used in these
regions because of the cold climate, whereas Zebuine breeds,
such as the Brahman and Gyr, are preferably used in the
Amazon region of the country, in the north. Our phylogenetic
reconstruction is in concordance with ADMIXTURE analysis and
genetic distances. We identified that the AFB breed is closer to
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Braunvieh than the Simmental breed and others. Arbizu et al. (2022)
examined the relationship between PCC and other B. taurus with an
analysis of the mitochondrial genome and validated these
relationships, probably influenced by the high introgression and
crossing over. Also, a strong relationship between Gyr and Brahman
breeds was identified.

We analyzed the genetic structure of the AFB cattle by using
SNP markers. This information will be valuable to our farmers as
well as future studies. The results of this study provide some insight
that AFB can become a separate breed in the future. The analysis also
provides evidence for two subgroups within the AFB group
(Figure 4), with one level higher of genetic differentiation than
the other one. Also, this new information of a Peruvian reproductive
cattle herd would offer valuable information to establish a genetic
nucleus herd andmodern breeding programs. In addition, we expect
molecular tools become widely employed in favor of the cattle
industry in Peru.

5 Conclusion

We here determined for the first time the genetic diversity and
population structure of a Peruvian cattle herd using SNP data.
Braunvieh breed possessed the highest genetic diversity while
Brahman the lowest. Most of the variance occurs within
individuals among the five breeds evaluated in this study. A total
of two clusters were identified, showing, as expected, a clear
separation between B. indicus (Brahman and Gyr) and B. taurus
breeds (Braunvieh, AFB and Simmental). Interestingly, the AFB was
placed in a single cluster, providing evidence that this may be
considered a breed as farmers from Arequipa breed their animals
in favor of fighting traits. Additional work is needed to also
characterize other cattle herd of INIA located in San Martin
region. We hope this work will pave the way towards developing
a modern cattle breeding program in Peru.
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The erosion of genetic diversity limits long-term genetic gain and impedes the
sustainability of livestock production. In the South African (SA) dairy industry, the
major commercial dairy breeds have been applying estimated breeding values
(EBVs) and/or have been participating in Multiple Across Country Evaluations
(MACE). The transition to genomic estimated breeding values (GEBVs) in
selection strategies requires monitoring of the genetic diversity and inbreeding
of current genotyped animals, especially considering the comparatively small
population sizes of global dairy breeds in SA. This study aimed to perform a
homozygosity-based evaluation of the SA Ayrshire (AYR), Holstein (HST), and
Jersey (JER) dairy cattle breeds. Three sources of information, namely 1) single
nucleotide polymorphism (SNP) genotypes (3,199 animals genotyped for 35,572
SNPs) 2) pedigree records (7,885 AYR; 28,391 HST; 18,755 JER), and 3) identified
runs of homozygosity (ROH) segments were used to quantify inbreeding related
parameters. The lowest pedigree completeness was for the HST population
reducing from a value of 0.990 to 0.186 for generation depths of one to six.
Across all breeds, 46.7% of the detected ROH were between 4 megabase pairs
(Mb) and 8 Mb in length. Two conserved homozygous haplotypes were identified
in more than 70% of the JER population on Bos taurus autosome (BTA) 7. The JER
breed displayed the highest level of inbreeding across all inbreeding coefficients.
The mean (± standard deviation) pedigree-based inbreeding coefficient (FPED)
ranged from 0.051 (±0.020) for AYR to 0.062 (±0.027) for JER, whereas SNP-
based inbreeding coefficients (FSNP) ranged from 0.020 (HST) to 0.190 (JER) and
ROH-based inbreeding coefficients, considering all ROH segment coverage
(FROH), ranged from 0.053 (AYR) to 0.085 (JER). Within-breed Spearman
correlations between pedigree-based and genome-based estimates ranged
from weak (AYR: 0.132 between FPED and FROH calculated for ROH <4Mb in
size) to moderate (HST: 0.584 between FPED and FSNP). Correlations strengthened
between FPED and FROH as the ROH length category was considered lengthened,
suggesting a dependency on breed-specific pedigree depth. The genomic
homozygosity-based parameters studied proved useful in investigating the
current inbreeding status of reference populations genotyped to implement
genomic selection in the three most prominent South African dairy cattle breeds.

KEYWORDS

autozygosity, cattle, inbreeding, pedigree, runs of homozigosity, single nucleotide
polymorphism
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1 Introduction

The early migration of cattle to Southern Africa and the
introduction of exotic cattle into the native landscape are still
debated (Orton et al., 2013). Although it is commonly believed
that dairy cattle were first introduced to South Africa (SA) by the
Dutch East India Company (VOC) during the 17th century to supply
fresh milk to crews of ships passing the Cape of Good Hope, Felius
et al. (2014) reported that the first Friesian cattle were only
introduced to South Africa in 1850. The first Holstein-Friesian
was registered in 1906 with SA Stud Book, and the Breeders’
Society was founded in 1912 (Duvenhage, 2017).

The years 1881 and 1890 have been reported as the most probable
dates for the arrival of the first Jersey and Ayrshire cattle in South
Africa, respectively (SA Stud Book, 2004). TheAyrshire Cattle Breeders’
Society of South Africa was established in 1916, followed by the South
African Jersey Cattle Breeders’ Society in 1920 (Nel, 1968). It can,
therefore, be concluded that European dairy cattle have been farmed in
SouthAfrica formore than a century. No additional breed development
was performed in South Africa, apart from normal selection practices.
The SA dairy populations have strong international genetic linkage due
to extensive use of artificial insemination. The composition of the
breeding objectives is similar to those of other international populations
(Cole & VanRaden, 2018).

Official animal recording for dairy cattle in South Africa dates
back to 1917, with the inception of a milk recording scheme (Van
Marle-Köster and Visser, 2018), which was developed over time to
include contemporary comparison methods in the 1970s, followed
by the implementation of the Best Linear Unbiased Prediction
(BLUP) sire model in 1987 (Mostert et al., 2004). Since the early
1990s, routine genetic evaluations have provided the Ayrshire
(AYR), Holstein (HST), and Jersey (JER) breeders with estimated
breeding values (EBVs) to be used in selection decisions. Routine
participation in INTERBULL for Multiple Across Country
Evaluations followed in 2004 (Mostert et al., 2006).

The breeding objectives for all three breeds include milk yield,
milk quality, fertility, and functional traits (Banga et al., 2014; SA
Stud Book, 2022a; SA Stud Book, 2022b; SA Stud Book, 2022c).
More recently, funding initiatives such as the Dairy Genomics
Program (DGP) have facilitated the establishment of single
nucleotide polymorphism (SNP)-genotyped reference populations
to help generate genomic breeding values for these breeds (Van der
Westhuizen and Mostert, 2020).

Inbreeding results from consanguineous mating inevitably
leading to an increased frequency of homozygosity. The
phenomenon of reduced performance due to inbreeding known
as inbreeding depression has been reported for a plethora of traits in
dairy cows including milk production, reproduction, and fitness
(e.g., survival), thereby impacting overall herd profitability (Doekes
et al., 2019; Makanjuola et al., 2021). Historically, inbreeding was
measured using pedigree information, based on the calculation of
the probability that an individual has inherited alleles identical by
descent (Wright, 1978). This measure of inbreeding is, however,
dependent on both accurate and deep ancestry records (Ablondi
et al., 2022; Saif-ur-Rehman et al., 2022). With the growing
availability of genome-wide genotype information on large
populations of animals, genome-based estimates of inbreeding are
replacing pedigree-based estimates as the statistics of choice.

Runs of homozygosity (ROH) segments are detected using
genome-wide genotype information with the profiling of these
segments providing a well-established methodology to quantify
genetic autozygosity and genetic diversity (Gautason et al., 2021;
Ablondi et al., 2022; Mulim et al., 2022). Detected ROH are
identifiable as continuous segments of homozygous nucleotide
sequences that are highly correlated with mutation loads
(Makanjuola et al., 2021) and can be indicative of the age of
inbreeding based on their length characteristics (Gautason et al.,
2021). Additionally, shared ROH segments, harboring SNP
haplotypes that have a higher incidence compared to a certain
population-specific threshold (Gorssen et al., 2021), may help
guide the localization and/or identification of chromosomal
regions under artificial or natural selection.

The widespread use of certain local and international bulls may
contribute to greater genome-wide and location-specific
homozygosity with downstream repercussions on productivity. In
the South African dairy industry, the majority of bull semen used is
of foreign origin with more than 40% of Holstein semen imported
from the United States of America (USA); Canadian bloodlines
predominate in the Ayrshire bulls used in South Africa while most
Jersey bulls used in South Africa are of USA origin. Semen from
countries such as Great Britain, Denmark, France, the Netherlands,
Australia, and New Zealand have also contributed to the South
African dairy cattle gene pool (Opoola et al., 2020). The ancestral
information of these sires is available through Interbull; the depth of
pedigree available is, however, dependent on each participating
organization (International Bull Evaluation
Service—INTERBULL, 2022). South Africa, with a relatively
small dairy population compared to many other countries, needs
to be able to manage the extent of genetic diversity within its dairy
sector. Having access to genome-wide genotype information on
individual animals provides an opportunity to evaluate the genetic
diversity and inbreeding of the local South African dairy
populations.

The objectives of the present study were to 1) classify and
quantify runs of homozygosity in three South African dairy cattle
populations; 2) estimate inbreeding coefficients using various
sources of information, and 3) compare the inbreeding statistics
generated from either recorded ancestry or genomic information.

2 Materials and methods

Ethical approval was granted by the University of Pretoria’s
Ethics Committee for external data use (EC170627-135). Consent
was provided from the respective breeders’ societies to allow access
to the available pedigree and genotypic data.

2.1 Pedigree data

Pedigree data of the genotyped South African Ayrshire (AYR),
Holstein (HST), and Jersey (JER) populations used in the present
study were provided by SA Stud Book. The pedigree information
included 7,885 AYR (5,654 females, 2,231 males), 28,391 HST
(20,921 females, 7,470 males), and 18,755 JER (14,138 females,
4,617 males) records as summarized in Table 1. The pedigree
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depth was up to 24, 30, and 26 generations deep for the genotyped
AYR, HST, and JER breeds, respectively. The optiSel (Wellmann and
Bennewitz, 2019) R package was utilized to calculate the complete
generation equivalent (CGE) and the pedigree completeness index
(PCI) for each of the individual genotyped animals.

2.2 Single nucleotide polymorphism (SNP)
genotypic data and quality control

A total of 3,199 genotyped animals (2,732 female, and 467 male
cattle) with a sample call rate above 95% were available for this study
consisting of 510 AYR, 1,360 HST, and 1,329 JER cattle. The animals
included in this study originated from the national Dairy Genomic
Program (DGP) with the aim of establishing reference populations
for genomic selection. Animals that were included in this program
represented the local populations and were selected based on EBV
accuracies of at least 60%. The data structure of the genotyped
populations is summarized in Table 1. The year of birth of
genotyped animals ranged from 1973 to 2017 for the AYR,
1981 to 2021 for the HST, and 1989 to 2021 for the JER. For
pedigree depth and inbreeding estimates, only the pedigree of the
genotyped animals was considered.

All AYR animals were genotyped using the BovineSNP50-24
version 3 (Illumina, Inc. San Diego, CA 92122 USA) array
containing 53,218 SNPs. Genotypes of HST and JER animals
originated from five different genotyping panels, namely, the
Bovine SNP50 versions 1 (54,001 SNPs) and 3 (53,218 SNPs),
GeneSeek® Genomic Profiler™ 150K (139,480 SNPs),
International Dairy and Beef (IDB) version 3 (53,450 SNPs),
Weatherbys Scientific VersaSNP 50K™ (49,788 SNPs), and the
Unistel-SA Stud Book 50K version 1 (54,394 SNPs) panels. The
GeneSeek® Genomic Profiler™ 150K genotypes were generated
through the South African DGP that was initiated in 2016 to
benefit herds that participate in pedigree-based genetic
evaluations and/or milk recording schemes provided by the
Agricultural Research Council (ARC) or SA Stud Book. Genotype
calling was done through various local and international service
providers using their respective protocols, and the raw genotype files
were converted into PLINK software version 1.9 (Purcell et al., 2007)
input files. A common set of 36,887 SNPs were extracted for each
population and the data sets were merged for the across-population
analyses.

Sample- and marker-based quality control edits were
performed using PLINK software version 1.9 (Purcell et al.,
2007) to filter out non-autosomal and low-quality (SNP call
rate<95%) SNPs from the dataset. As suggested by Meyermans

et al. (2020) for ROH detection, neither minor allele frequency
(MAF) nor linkage disequilibrium (LD) filtering was applied. No
SNP edits were performed based on Hardy-Weinberg Equilibrium
(HWE). The post-editing data set consisted of 3,199 animals with
35,572 autosomal SNP genotypes and all subsequent analyses were
undertaken using this data set. The same animals were thus used
for the pedigree and genomic analyses.

2.3 Genomic relatedness

GCTA version 1.24 (Genome-wide Complex Trait Analysis;
Yang et al., 2011) was used to estimate genetic relatedness
between individuals from the set of 35,572 autosomal genome-
wide SNPs. A genomic relationship matrix was calculated using
the method by Yang et al. (2010) and was followed by the estimation
of eigenvalues and eigenvectors for a principal component analysis
(PCA). The eigenvectors per animal were plotted as a scatter plot to
visualize genomic relatedness.

2.4 Runs of homozygosity detection

Runs of homozygosity (ROH) for all genotyped animals were
detected using the R package detectRUNS (Biscarini et al., 2019) by
executing both the consecutive-SNP-based detection method (CR)
and sliding window approach (SW; Marras et al., 2015). The SW
approach, and more specifically its application in PLINK software
(Purcell et al., 2007), is generally the most common ROH detection
approach (and, hence, resource for FROH estimation) used across
all livestock species (Peripolli et al., 2017) and has previously
proven to outperform other methods (e.g., Howrigan et al., 2011).
Dixit et al. (2020), for example, reported similar results for the
detectRUNS SW approach to that of PLINK. The CR algorithm,
which executes a window-free SNP-by-SNP approach, has received
less research attention, however, has previously been shown to
produce FROH patterns similar to that of both PLINK and
detectRUNS’ SW approaches despite discrepancies in the
number of ROH identified (Dixit et al., 2020). Both approaches
were, therefore, tested in this study for a more comprehensive
profiling of ROH.

For CR, the following ROH defining parameters were set: i) a
minimum length of 1Mb, ii) a maximum distance (gap) between
consecutive SNPs of 500kb, iii) a lower density limit of one SNP per
75kb, and iv) a maximum of two missing and no opposing
(heterozygous) genotypes were allowed. The aforementioned
parameters were the same for the SW approach, but, the sliding

TABLE 1 A summary of the number of animals included in the pedigree analyses and genomic analyses for the Ayrshire (AYR), Holstein (HST), and Jersey (JER)
breeds.

Population Pedigree analyses Birth year range Genomic analyses Birth year range

AYR 7,885 1910–2017 510 1973–2017

HST 28,391 1917–2021 1,360 1981–2021

JER 18,755 1931–2021 1,329 1989–2021

Total 55,031 3,199
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window size was set to 50 SNPs. The minimum number of SNP that
constituted an ROH segment was set to 54 based on the formula
implemented by Purfield et al. (2012):

l � loge α
ns .ni

loge 1 − het( )

where ns and niwere the numbers of SNPs and individuals, respectively,
α represented the proportion of false-positive identifications (set to 0.05)
and het was the average SNP heterozygosity. The detected ROH were
assigned to one of four length categories: <4Mb, 4≤ROH<8Mb,
8≤ROH<16Mb, or ≥16Mb. The detectRUNS (Biscarini et al., 2019)
package was additionally used to obtain the proportion of times each
SNP fell inside an ROHwithin each population. Based on the produced
Manhattan plots, ROH regions identified in >75% of the JER
population, and >25% in the AYR and HST populations were
investigated using the Ensemble BioMart online tool (http://asia.
ensembl.org/biomart/martview/244b07db6f169a19f1e0362778df6ab5).
Gene ontology and pathway analyses were carried out by PANTHER
version 13.1 software tool (http://pantherdb.org).

2.5 Inbreeding coefficients

Three methods were used to estimate the inbreeding coefficients of
all genotyped individuals: 1) FPED represented a pedigree-derived
estimate, 2) FSNP represented an SNP-by-SNP excess in
homozygosity, and 3) FROH represented genome-wide ROH
coverage. The FPED and FSNP coefficients were calculated using
optiSel (Wellmann and Bennewitz, 2019) and PLINK software
version 1.9 (Purcell et al., 2007), respectively. The FPED coefficient
was calculated using the summary.Pedig function in optiSel, which
estimates the inbreeding coefficient as defined by Meuwissen and Luo
(1992). For FSNP, the --het function in PLINK was executed, which is
based on the formula FSNP � O−E

N−E, where O is the observed number of
homozygous SNPs per individual, E is the expected number of
homozygous SNPs under the Hardy-Weinberg equilibrium (HWE)
calculated based on the estimated allele frequencies of the sample, andN
is the total number of SNPs. Additionally, the observed as well as
expected heterozygosity rates (HO, andHE, respectively) were estimated
as the total number of non-missing genotypes (NNM) minus the
number of observed homozygous genotypes (HOM) divided by the
total non-missing genotypes (NNM).

All FROH coefficients were based on the ROH detected with the
SW approach for comparability. The FROH coefficient was estimated
as (McQuillan et al., 2008):

FROH � ΣLROH

ΣLAUTO

where LROH represented the length of ROH in one individual, and
LAUTO represented the length of the genome covered by SNPs,
excluding the centromeres. Separate FROH coefficients were
additionally calculated based on the length categories previously
described and were labeled FROH<4Mb, FROH4≤x<8Mb, FROH8≤x<16Mb, and
FROH≥16Mb. Comparisons between these statistics were made by
means of Spearman rank (rho) correlations calculated within-
breed using the cor.test function in R software (R Core Team, 2013).

2.6 Effective population size

The effective population size (Ne) of an actual population can be
defined as the size of a hypothetical ideal population resulting in the same
amount of genetic diversity as is present in the real population (Wright,
1978). The Ne based on both pedigree and SNP data were estimated
separately. The estimated Ne based solely on pedigree information is
limited by the pedigree depth (and accuracy of recording), whereas the
SNP-basedmethod is able to estimate both historical and recent Ne but is
limited by the extent of LD captured (and hence, the SNP genotyping
panel density as well as the number of animals genotyped). The pedigree-
based Ne was calculated using the optiSel (Wellmann and Bennewitz,
2019) R package (R Core Team, 2013) for the last 10 complete
generations. The SNP-based estimates of historical (highest number of
generations ago) and recent Ne (least number of generations ago) were
calculated using SNeP v.1.1 software (Barbato et al., 2015) based on
linkage disequilibrium (LD) and by implementing the approximation
proposed by Sved (1971) as a recombination rate modifier.

3 Results

3.1 Pedigree completeness and pedigree-
based population structure

The mean, interquartile range (IQR), and median years of birth for
the genotyped AYR population was 1974, 1956 to 1994, and 1972,
respectively; 1973, 1953 to 1992, and 1969 for the genotyped HST
population, respectively and 1980, 1960 to 1998, and 1982 for the JER
population, respectively. The mean pedigree completeness index (PCI)
of the genotyped populations was 0.976 for the AYR, 0.967 for the HST,
and 0.993 for the JER populations. The average pedigree depth based on
CGE was equal to 9.75 for AYR, 11.70 for HST, and 10.05 for JER.

The mean six-generation deep pedigree completeness for
genotyped animals born in the 10-year period between 2011 and
2021 for the HST and JER breeds, and between 2007 and 2017 for the
AYR breed is summarized in Table 2. These animals represented
between 9% and 11% of the fully-traced back pedigree of the
genotyped populations. The genotyped HST breed consistently
showed the lowest pedigree completeness from six to two
generations ago at 0.186 to 0.544 while the genotyped AYR
(0.288–0.702) and genotyped JER (0.278–0.682) breeds had
similar pedigree completeness six to two generations ago.

TABLE 2 The mean six-generation deep pedigree completeness for the
genotyped South African Holstein (HST) and Jersey (JER) animals born within
the period 2011 to 2021 as well as Ayrshire (AYR) animals born within the
period 2007 to 2017.

Generation depth

Population 1 2 3 4 5 6

AYR 1.000 0.702 0.523 0.414 0.341 0.288

HST 0.990 0.544 0.369 0.278 0.223 0.186

JER 1.000 0.682 0.507 0.399 0.329 0.278
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3.2 Genome-based genetic relatedness

The first and second principal components of the autosomal SNP
genotypes explained 8.3% and 4.6% of the genetic variation between
all individuals and grouped the animals into three distinct clusters that
corresponded with the three separate breeds. For the first principal
component, the standard deviation of the eigenvectors ranged from
0.4 × 10−3 for AYR to 0.002 for JER (Figure 1). The number of outliers
(encircled with gray dotted lines in Figure 1), defined as animals with
eigenvectors outside the boundaries of mean ± 3 standard deviations
for the first and/or second principal components, were three, 15, and
11 for the AYR, HST, and JER populations, respectively. While all
identified outliers in the AYR and HST populations were South
African animals, five of the JER outliers were international bulls
(two from New Zealand and three from Denmark).

3.3 Identified runs of homozygosity (ROH)

The per-breed statistics of the identified ROH are summarized
in Table 3. Irrespective of breed, the CR ROH detection method
identified more homozygous runs compared to the SW approach.
For both detection methods, the majority of detected ROH was in
the JER, followed by the HST and AYR breeds. The mean
(±standard deviation) per individual ROH counts was 17.99 ±
4.96, 16.67 ± 5.47, and 28.30 ± 6.30 for the AYR, HST, and JER
populations, respectively when the SW ROH detection approach
was employed (CR method: AYR = 25.05 ± 6.89, HST = 23.70 ±
7.57, JER = 39.54 ± 8.32). The mean (±standard deviation) length
ROH detected was the largest for the HST population (SWmethod:
8.66 Mb ± 6.82 Mb) and the smallest for the AYR populations (SW
method: 7.69 Mb ± 5.99 Mb). However, the mean (±standard

FIGURE 1
Principal components illustrate the genetic relatedness between andwithin the sampled Ayrshire (AYR), Holstein (HST), and Jersey (JER) populations
with outliers encircled. INT, international animals; SA, South African animals.

TABLE 3 Summary statistics of runs of homozygosity (ROH) identified for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) dairy breeds using two ROH detection
methods.

Breed nROHc MeanTotal
Length (Mb)d

MedianTotal
Length (Mb)d

MeanROH
Length (Mb)5

MinROH Length

(Mb) (BTA)e
MaxROH Length

(Mb) (BTA)e

CRa AYR 12,777 188.66 180.26 7.53 1.02 (BTA2) 48.21 (BTA8)

HST 32,226 193.21 184.32 8.15 1.00 (BTA5) 69.49 (BTA6)

JER 52,553 297.75 292.84 7.53 1.00 (BTA18) 76.59 (BTA4)

SWb AYR 9,176 138.31 133.60 7.69 1.07 (BTA2) 63.45 (BTA6)

HST 22,674 144.46 136.37 8.66 1.00 (BTA5) 75.54 (BTA6)

JER 37,617 221.15 215.26 7.81 1.00 (BTA18) 90.92 (BTA4)

aCR = consecutive SNP-based method.
bSW = sliding window approach.
cnROH = number of ROH segments identified.
dThe mean and median of the summed ROH length (i.e., total ROH genome coverage) per individual.
eThe mean, minimum and maximum ROH length considering all individual ROH segments; BTA = Bos taurus autosome.
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deviation) genome-wide ROH coverage (i.e., the total length of the
genome covered by ROH) was the greatest for JER (SW method:
221.15 Mb ± 69.27 Mb) and the lowest for AYR (SW method:
7.69 Mb ± 5.99 Mb).

The autosome-wide distribution of the total number of ROH
as well as the percentage coverage per autosome is illustrated in
Supplementary Material S1. For all breeds, the most ROH were
detected on BTA1 (range: 708 ROH for AYR to 3,475 ROH for
JER), which is the largest autosome (158.2 Mb), whilst the fewest
ROH (range: 110 for AYR to 440 for JER) were detected on
BTA28 (46.2 Mb). For all breeds, the percentage of ROH coverage
showed an increasing trend towards smaller autosomes (line
graph in Supplementary Material S1) and peaked for BTA25,
with values of 20.8%, 17.2%, and 16.3% estimated for the AYR,
HST, and JER breeds, respectively. The lowest overall percentage
autosomal coverage was observed for BTA5 (across all
breeds: 6.84%).

Across all breeds, and for both detection methods, the
majority of detected ROH were within the 4 ≤ ROH<8 Mb
length category. The distribution of ROH within different
length (in Mb) categories is depicted in Figure 2. Despite the
variation in the number of ROH identified per breed (e.g., SW
method: 13,498 more ROH for HST compared to AYR and
14,943 more segments for JER compared to HST), the
differences in the number per length category were negligible
between AYR and JER. In comparison to the other breeds, the
HST breed had a greater number of large (≥16 Mb) ROH
identified by both detection methods (CR: 0.079; SW: 0.109).

The proportion of times an SNP resided within a detected ROH
was estimated per population. Two ROH haplotypes on
BTA7 were identified in 70.96% of the JER population. The first
preserved region consisted of 20 SNPs spanning 1.19 Mb and the
second of 31 SNPs spanning 2.60 Mb. The first region encompasses
35 protein-coding genes, including LYPD8 (Gram-negative
bacteria defense response) and various olfactory receptor genes,
whilst the second region encompassed 82 protein-coding genes,
including HSPA4 (heat-shock protein), ELANE (immune
response), and LEAP2 (antimicrobial humoral immune

response). Manhattan plots of the incidence of each SNP within
detected ROH per breed are illustrated in Figure 3. For the AYR
breed, the highest occurring consensus ROH haplotype was on
BTA6 (base pairs position: 90,665,860-90,902,316) in 28.82% of
the population. The 0.236 Mb AYR region contains seven protein-
coding genes, including the PPEF2 (Hsp90 protein binding), as
well as the CXCL9 and CXCL10 (both antimicrobial humoral
immune responses). Three smaller ROH haplotypes, close in
proximity, were identified on BTA20 (base pair position ranges:
38,453,649–38,487,130, 38,578,200–39,046,015, and
38,761,711–38,920,878) in 28.31%, 28.16%, and 28.09% of the
HST population, respectively. These 0.054Mb, 0.181Mb, and
0.112 Mb regions contained two, four, and three SNPs,
respectively. The 0.181 Mb genomic region overlaps with the
SPEF2 (sperm flagella 2 protein) protein-coding gene, whereas
the 0.112 Mb overlaps with PRLR, a prolactin receptor.

3.4 Inbreeding coefficients

The variability in animal-specific inbreeding coefficients per
breed for the genotyped animals is illustrated by box and whisker
plots in Figure 4. Furthermore, a contingency table for pedigree
versus genome-based estimates (i.e., FSNP and FROH) is included in
Supplementary Material S2.

The mean FPED for the AYR, HST, and JER genotyped
populations was 0.051, 0.064, and 0.062, respectively. The
highest frequency of AYR, HST, and JER animals fell within the
0.04-0.05, 0.05-0.06, and 0.07-0.08 coefficient classes, respectively.
The greatest observed heterozygosity was in HST (HO = 0.356)
while the lowest was in JER (HO = 0.332); hence, the FSNP-based
inbreeding coefficient ranked the JER breed as the most inbred
(FSNP = 0.190) followed by the AYR (FSNP = 0.088) and HST
(FSNP = 0.020) breeds. For the JER breed, for example, the majority
of animals (1,323 animals of the population of 1,329 animals) were
categorized as having high FSNP values (>0.1) despite most of them
having low (31.9% of animals) or moderate (62.7% of animals)
FPED values (Supplementary Material S2). The rank order of breeds
(from largest to smallest mean) was different for the ROH-based
inbreeding coefficients observed; FROH was the highest for the JER
breed (mean FROH=0.085), followed by the HST (mean FROH =
0.056) which was similar to the AYR (mean FROH = 0.053) breeds.
The most AYR animals had FROH values in the 0.04 to 0.05 interval,
whereas for HST and JER, most animals had FROH values of
0.05–0.06 and 0.06 to 0.07, respectively.

All FROH coefficients, irrespective of what length category was
used to calculate the ROH, were highest for the JER population; the
largest FROH statistic was obtained for FROH calculated for ROH
that were larger than (or equal to) 4 Mb but smaller than 8 Mb
(FROH4≤x<8Mb = 0.029). For FROH<4Mb and FROH4≤x<8Mb, the AYR breed
was similar in value to the HST breed (0.006 for AYR versus
0.004 for HST, and 0.019 for AYR versus 0.017 for HST,
respectively), whereas HST had higher mean values for FROH

calculated on the basis of longer ROH. For both the AYR and
HST breeds, the FROH≥16Mb estimates were the highest (AYR: 0.019;
HST: 0.022).

The Spearman correlations (ρ) between FPED and genome-based
F-statistics are given in Table 4. The correlation coefficients among

FIGURE 2
The proportions of all detected runs of homozygosity (ROH) in
different length categories for the Ayrshire (AYR), Holstein (HST), and
Jersey (JER) dairy breeds. CR, consecutive SNP-based method; SW,
sliding window approach.
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all F statistics were strongest between the genome-based inbreeding
estimates irrespective of the breed; the pairwise FSNP-FROH
correlations ranged from ρ = 0.857 for AYR to ρ = 0.896 for JER.

The FPED coefficient was weak to moderately correlated with FSNP
and FROH within all breeds; the pairwise correlations between FPED
and each of the genome-based coefficients were similar (e.g., for

FIGURE 3
The chromosome-wide proportion of times each SNP resided within a detected ROH for the Ayrshire (AYR), Holstein (HST), and Jersey (JER) breeds
using both the sliding window (A) and consecutive SNP-based (B) detection methods.

FIGURE 4
Box and whisker plots of the pedigree (FPED), single nucleotide polymorphism (FSNP), and runs of homozygosity (FROH) based inbreeding coefficients
estimated for the South African Ayrshire (A), Holstein (B), and Jersey (C) populations.

TABLE 4 Spearman correlations between the pedigree-based inbreeding coefficient (FPED) and various genomics-based inbreeding coefficients for the Ayrshire
(AYR), Holstein (HST), and Jersey (JER) breeds.

Genomic inbreeding coefficient

FSNP FROH FROH<4Mb FROH4≤x<8Mb FROH8≤x<16Mb FROH≥16Mb

FPED AYR 0.396** 0.396** 0.132** 0.203** 0.282** 0.251**

HST 0.584** 0.568** 0.284 0.425** 0.447** 0.406**

JER 0.462** 0.455** 0.050 0.208** 0.310** 0.331**

FROH<4Mb , inbreeding coefficient based on runs of homozygosity (ROH) smaller than 4 Mb in size; FROH4≤x<8Mb , inbreeding coefficient based on ROH larger and equal to 4 Mb but smaller than

8Mb; FROH8≤x<16Mb , inbreeding coefficient based on ROH larger and equal to 8 Mb but smaller than 16Mb; FROH≥16Mb , inbreeding coefficient based on runs of homozygosity (ROH) larger than

16 Mb in size; ** p < 0.001.
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AYR, ρ = 396 for both the FPED-FSNP and FPED-FROH comparisons).
The FPED coefficient was most strongly related to FROH8≤x<16Mb,
compared to other FROH statistics, in both the AYR and HST
breeds (ρ = 0.282, and ρ = 0.447, respectively); within the JER
breed, however, the FPED coefficient was most strongly related to
FROH≥16Mb.

3.5 Effective population size

The pedigree-based Ne estimates increased for all three dairy
cattle populations in this study (Figure 5) from 85 animals
(generation 1) to 497 animals (generation 10) for HST, with a
similar trend in the AYR and JER populations. The JER breed had
the lowest pedigree-based estimates for the oldest (376 animals) and
the youngest generation (57 animals). The AYR population
experienced a large difference in Ne (362 animals) between
generation 9 (419 animals) and generation 1 (57 animals). The
most recent (12 generations ago) LD-based Ne was lowest for the
AYR breed (Ne = 131) and the largest for JER (Ne = 149).

4 Discussion

To ensure sustainable breeding programs within the South
African dairy industry, and to optimize the adoption of
genome-based selection strategies, it is important to
characterize and routinely monitor the genetic variability and
inbreeding levels of the prominent dairy breeds (Howard et al.,
2017). In the global dairy industry, strong directional selection,
achieved by means of methodologies that favor the overuse of a few
elite families (e.g., BLUP), as well as the application of advanced
reproductive technologies (e.g., artificial insemination (AI)), has
resulted in the accumulation of inbreeding, and hence,
homozygosity (Maltecca et al., 2020). South Africa historically
followed this trend of data-driven breeding programs, making use
of international semen from a limited number of genetically elite
bulls. In 2003, up to 36% of all dairy calves born in South Africa
originated from foreign sires (Maiwashe et al., 2006). Due to the
widespread use of AI, and easy access to phenotypic data and

routine genotyping, the global dairy industry was the first livestock
industry to embrace genome-wide enabled selection (GS)
(Wiggans et al., 2011). However, in South Africa, genotyping on
a commercial scale was only possible post-2016 for the dairy sector
with the establishment of a DGP (Van Marle-Koster & Visser,
2018). This program was fundamental for the establishment of
reference populations for the most popular dairy breeds used in the
South African dairy industry (i.e., the AYR, HST, and JER breeds).
The South African training populations remain small compared to
many developed countries, but reflect the breed demographics on
the national level and contain sufficient genotypes to assist in the
genomic management of the populations. This study aimed to
quantify homozygosity-based parameters of the AYR, HST, and
JER populations in South Africa by using their pedigrees as well as
35,572 autosomal SNPs.

4.1 Pedigree completeness

Results from the present study indicate growing pedigree
completeness over the past 10 generations with greater overall
completeness in the AYR and JER populations. Traditionally,
pedigree data has been used in the estimation of population
diversity, but limitations on the quality and pedigree depth
present limitations (the present study; Ablondi et al., 2022).

The high CGE calculated for the HST breed in this study (CGE =
11.70) aligns with previous studies of Canadian Holstein (CGE =
15.5, Stachowicz et al., 2011), Dutch Holstein (CGE = 12.5, Doekes
et al., 2019), and Italian Holstein (CGE = 10.67, Ablondi et al., 2022).
The JER population in this study (CGE = 10.05) is similar to that
reported for Canadian Jerseys at 9.8 (Stachowicz et al., 2011) and
higher than documented in Danish Jerseys (7.36; Sorensen et al.,
2005). These studies, however, included data from animals born in
earlier years when pedigree recording may not have been so
ubiquitous. No literature was available on CGE for a genotyped
AYR population. The lower CGEs for AYR and JER in the present
study can be attributed to shallower pedigree depths in comparison
to the HST breed due to CGE being dependent on the sum of the
proportion of known ancestors over all generations traced
(Wellmann and Bennewitz, 2019).

4.2 Within-breed genomic relatedness

Results of the autosomal SNP-based principal component
analysis suggested a strong genetic influence of international bulls
on the South African gene pool within all breeds. This result
supports the fact that for all three of the studied breeds, the
25 most used AI sires (i.e., with the most daughters per breed
with completed first lactations in 2021) were predominantly of
international descent (SA Stud Book, 2022a; SA Stud Book,
2022b; SA Stud Book, 2022c). The greater observed
heterozygosity in the HST population supported the more
dispersed PCA clustering (and more outliers) and could be
explained by the inclusion of more herds compared to the other
breeds (1,360 animals from 411 herds for HST compared to only
510 genotyped animals from 31 herds for AYR), which would
inevitably increase the extent of variation captured within the

FIGURE 5
Pedigree-based estimates of effective population size (Ne) for
the Ayrshire (AYR), Holstein (HST), and Jersey (JER) populations ten
generations ago.
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sampled population. The relatedness between a genomic selection
reference population and the current (and active) population
subjected to directional selection should be maintained and is
integral to the accuracy of the produced genomic estimated
breeding values (GEBVs) (Goddard & Hayes, 2009). Considering
that genetic progress is directly related to, amongst other factors, the
extent of genetic variation in a given population (Bourdon, 2000),
the PCA-based results may serve as guidelines for future sampling
and/or genotyping strategies to optimize genetic relatedness in
genomic selection pipelines.

4.3 Runs of homozygosity detected

The profiling of genome-wide ROH has become an increasingly
popular parameter for explaining genetic differences between
populations; many ROH-based analyses have been conducted on
global dairy breeds (e.g., Purfield et al., 2012; Mastrangelo et al.,
2018; Doekes et al., 2020). Comparing these studies is, however, not
trivial due to differences in the extent of genomic information available
(higher density genotypes are expected to capture ROH profiles more
comprehensively) and themethodologies used to detect ROH including
the parameters specifiedwhen detecting an ROH (Gautason et al., 2021;
Mulim et al., 2022). Interbreed differences in ROH number and length
characteristics indicate historical differences between breeds within a
certain country or region, or due to recent management actions (Xu
et al., 2019). Although the HST and JER populations in the present
study had similar numbers of individuals genotyped, 66% more ROH
was detected in the JER (37,617 for JER compared to 22,674 for HST).
The difference in the abundance of ROH segments relative to the AYR
in the present study could have been influenced by the much smaller
genotyped AYR population. Taking the sample sizes into account, the
JER still had themost ROHper individual, but the AYRhadmore ROH
per individual than the HST, irrespective of the detection method.

Despite the higher ROH counts observed for the JER population,
the percentage genome coverage by autozygotic segments was the
highest for the HST population (10.02%), followed by the AYR (8.80%)
and JER (8.78%) populations. The percentage coverage was similar to
the 10% reported by Kim et al. (2013) in US Holsteins and the 9.8%
documented by Gautason et al. (2021) in Icelandic cattle. The higher
proportion of large ROH segments (≥16Mb) in the present study,
representing inbreeding effects introduced up to ~6 generations ago
(Ferenčaković, 2015), observed for theHST population (CR: 0.079; SW:
0.109) implies a greater influence of more recent inbreeding in the
population studied. Conversely, the higher proportion of short (<4Mb
in size) ROHs is indicative of older inbreeding effects and/or, possibly,
recent admixture (and, hence, recombination) that could result in the
breakdown of larger ROH (Purfield et al., 2012; Liu et al., 2021). Liu
et al. (2021), for example, reported that ROHs as short as<1Mbmay be
a result of ancestral inbreeding that occurred up to 50 generations ago;
these related mating would be almost impossible to capture with
pedigree information alone (especially considering the poor
participation of South African dairy breeds in pedigree recording).
It is clear that an analysis of ROH abundance and distribution can,
therefore, be used to more comprehensively (and descriptively) explore
genetic diversity within and between populations.

The percentage occurrence of SNPs residing within identified
ROH was analyzed to identify overlapping genomic regions of

autozygosity among animals within breeds. These overlapping
regions could be the result of positive selection and could be
indicative of adaptation to specific environmental conditions (Xu
et al., 2019). The most frequent overlapping region identified in
the present study was similar to those documented by Lozada-
Soto et al. (2022) for North American dairy breeds; in agreement
with Lozada-Soto et al. (2022), ROH hotspots (i.e., containing the
highest SNP incidence within ROH segments) were also identified
on BTA6 for AYR, BTA20 for HST, and BTA7 for JER. Two
hotspots of homozygosity on BTA7 (base pairs: 41417884-
42609605, and 42811272-45412030 base pairs) were in 70.96%
and 70.88%, respectively, of the JER breed in the present study;
these regions fall within the most gene-dense ROH island also
documented for US Jersey (BTA7: 39.76-45.56Mb; Lozada-Soto
et al., 2022).

Amongst the 35 protein-coding genes located in the first preserved
region identified in the present study, is the LYPD8 gene, which has
been suggested to play a role in intestinal immunity in mice (Hsu et al.,
2021) andmore recently in sheep (Chen et al., 2022). TheHSPA4 gene,
identified within the second most conserved region in the JER, is a heat
shock protein (HSP) 70 gene and is well known for its integral role in
cellular stress response to heat (Deb et al., 2014). Because of its lower
body weight and, consequently, lower maintenance requirements, the
JER breed is growing in popularity globally, especially given concerns
over climate change and the expected increase in environmental
stressors. The identification of conserved ROH segments containing
genes, such as the prolactin receptor (PRLR) gene, highlights the higher
selective pressure for milk productivity (Zhang et al., 2008) in HST.
Regions overlapping with genes that are associated with heat stress and
immune response (e.g., PPEF2 for AYR as well as ELANE, and LEAP2
for JER) further support the integral role that these breeds may play in
the future sustainability of the South African dairy industry.

4.4 Inbreeding coefficients

As would be expected for dairy cattle populations, given factors
such as the increased utilization of AI and other reproductive
technologies compared to, for example, beef cattle, all inbreeding
coefficients estimated in the present study suggested inbreeding is
occurring. The FPED values were generally lower than inbreeding
estimates calculated from the genomic data. Perfect concordance
was not expected between the FPED values and those estimated
using genomic information for several reasons including: 1)
pedigree information will not always be complete all the way to
the founder population, 2) the Meuwissen and Luo (1992)
algorithm to estimate inbreeding assumes that animals in the
pedigree with no recorded parents are unrelated and non-
inbred, 3) pedigree errors undoubtedly exist (e.g., Sanarana
et al., 2021), and 4) FPED are based on expected relationships
among individuals and cannot consider the variability that exists
around this expectation owing to Mendelian sampling during
gametogenesis (Kenny et al., 2023). The discrepancy between
FSNP and FROH may be attributed to the fact that FSNP does not
differentiate between alleles that are identical by descent (IBD) or
identical by state (IBS) (Forutan et al., 2018) whereas FROH is
influenced by, among other factors, the genome build (i.e., the
reported position of each SNP relative to others) and SNP
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genotyping panel density. The suitability of each of the genomic
measures is, therefore, dependent on the data available. The FROH

coefficient is, however, more informative because of the additional
information that the ROH length, for example, provides about the
inbreeding history.

However, the means for FPED (ranging from 0.051 for AYR to
0.064 for HST), as well as FSNP (ranging from 0.02 for HST to
0.19 for JER) and FROH (ranging from 0.053 for AYR to 0.085 for
JER), were similar in trend (albeit slightly lower in values) to those
observed by Lozada-Soto et al. (2022) for North American dairy
cattle; Lozada-Soto et al. (2022) reported FPED means ranging from
0.06 for AYR to 0.08 for HST and JER, and FROH means ranging
from 0.11 for AYR to 0.17 for JER. The effect of incomplete pedigree
on the estimates of inbreeding is well documented (e.g., Lutaaya
et al., 1999; Marshall et al., 2002; Cassell et al., 2003), and it is
generally accepted that incomplete and inaccurate pedigree
recording leads to an underestimation of pedigree-based
inbreeding coefficients. Tested against FPED per breed, the
Spearman correlations with both FSNP and length-specific
FROH estimates were weak to moderate and slightly weaker
than, but comparable to, those reported by, for example,
Gautason et al. (2021) using a 50,000 SNP genotyping panel
on over 8,000 Icelandic cattle (ρ for FPED-FIS = 0.52; ρ for FPED-
FROH = 0.63). Cortes-Hernández et al. (2021) observed similarly
weak correlations between FPED and genome-based coefficients
(e.g., 0.39 with FSNP and 0.30 with FROH) in a small Mexican
Holstein population genotyped for 100,806 SNPs. Nonetheless,
the pairwise correlations between FPED and FROH improved as
ROH length increased. Irrespective of breed, the correlation
between FPED and FROH<4MB was the weakest of all
correlations between FPED and length-specific FROH

coefficients. This observation agrees with previous suggestions
that correlations between FPED and FROH strengthen when the
shortest ROH fragments (typically those less than 4 Mb) are not
considered in the calculation (Purfield et al., 2012). The
phenomenon of a strengthening correlation between FPED and
FROH as ROH length increases suggests that the relationship
between FPED and FROH is probably influenced by the breed-
specific pedigree depth (Cortes-Hernández et al., 2021). Many
previous studies have reported stronger FPED-FROH correlations
for populations with deeper recorded pedigree (e.g., Purfield
et al., 2012; Ferenčaković, 2015; Peripolli et al., 2018), as was
the case with the HST (pedigree depth = 11.70; ρ for FPED-
FROH≥16Mb = 0.406) compared to AYR (pedigree depth = 9.75;
ρ for FPED-FROH≥16Mb = 0.251). Considering the generally low
within-breed participation in pedigree recording for South
African dairy breeds (as low as 24%; Van Marle-Köster &
Visser, 2018), the accuracy of pedigree-based inbreeding
coefficients (and by extension relationships between
individuals) should be interpreted with caution.

4.5 Effective population size

Factors that influence Ne estimates include the constant
change in the real population size, unequal sex ratios, and the
variance in the number of offspring per parent (Nielsen and
Slatkin, 2013). A reduction in Ne in livestock is generally the

consequence of selection pressure on traits of economic
importance, exacerbated by the use of a few high-impact sires
via reproductive technologies (Mulim et al., 2022). The pedigree-
based Ne estimates of the youngest animals in the present study
all exceed the FAO guideline of 50 animals (OECD-FAO, 2019)
but it must be noted that they have all reduced substantially over
the last 10 generations. Canadian, Danish, Dutch, Irish, Italian,
and US HST populations have reported pedigree-based Ne of the
youngest generation to be 39, 70, 49, 75, and 39 (Weigel, 2001;
Sorensen et al., 2005; McParland et al., 2007; Makanjuola et al.,
2020; Ablondi et al., 2022) animals, respectively. The South
African HST population had the highest Ne (i.e., 85) of the
three South African dairy breeds investigated in the present study
which may be a consequence of the greater completeness of the
pedigree used and/or the use of a larger number of genetically
dissimilar sires sourced from multiple countries. Sorensen et al.
(2005) reported the pedigree-based Ne of Danish Jersey cattle to
be 116 while Stachowicz et al. (2011) reported a pedigree-based
Ne of 54 for Canadian Jersey. A more recent study on Canadian
Jersey cattle populations suggested an Ne of 49 animals
(Makanjuola et al., 2020). Estimates of Ne for the South
African Jersey yielded a similar low of 57 animals, as well as
South African AYR with a Ne of 57 nine generations ago which
points to lower genetic diversity within these two breeds in
comparison to the HST breed. Although previously reported
Ne estimates vary widely amongst populations, Brotherstone &
Goddard (2005) reported that the Ne of most modern dairy cattle
populations is circa. 100. The predictions for the South African
dairy populations are also between 50 and 100 animals. Because
of the hyperbolic relationship between LD (r2) and Ne, more
recent (i.e., fewer generations ago), estimates of genome-based
Ne are possible with a greater density of SNPs and, therefore, is
better at capturing population-wide LD (Barbato et al., 2015).
Genomic optimum contribution selection may be a viable tool for
dairy breeding programs as it will increase genetic merit while
maintaining genetic diversity (Clark et al., 2013). Genetic gain of
South African dairy breeds may increase due to the current use of
GEBVs (Van der Westhuizen and Mostert, 2020) and will aid in
minimizing the loss of fitness by preventing any further reduction
in Ne. Although the current Ne rates indicate that inbreeding is
well-managed, it should still be monitored regularly to avoid
adverse effects in future generations.

5 Conclusion

The South African AYR has always been a small population
serving a niche market, while the South African HST and JER breeds
are mainly responsible for the fresh milk supply. It will be important
for these breeds to grow and maintain their reference populations
and ensure that international bull families and genotypes are
available for genetic evaluations and continuous monitoring of
diversity and inbreeding. This study confirmed the usefulness of
SNP genotypes for accurately assessing autozygosity and inbreeding
levels, and the impact of these on the management of genetic
resources. The analyzed results support the influence of globalized
dairy germplasm and their observed influences on the genetic
diversity within the JER, HST, and AYR reference populations in
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SouthAfrica thus far. Since the erosion of genetic diversity limits long-
term genetic gain and impedes resilience and sustainability amidst
future challenges, these results may assist in strategies to improve and
update reference populations for genomic selection.
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Community-based breeding programs (CBBPs) have shown, at pilot scale, to
be effective and beneficial in achieving genetic progress and in improving
livelihoods of smallholder communities. In Ethiopia 134 sheep and goat CBBPs
were operational producing their own improved rams and bucks. Based on
experience the implementation of further programs is possible with
appropriate private and public support. A different challenge is the efficient
dissemination of the improved genetics produced in current CBBPs to create
population-wide economic impact. We present a framework applied to the
Ethiopian Washera sheep breed to meet this challenge. We propose the
establishment of a genetic improvement structure that supports a meat
commercialization model based on the integration of community-based
breeding program cooperatives, client communities and complementary
services such as fattening enterprises. We calculated that the recently
established 28 community-based breeding programs in the Washera
breeding tract can provide genetically improved rams to 22% of the four
million head. To reach the whole population 152 additional CBBPs are
needed. We simulated the genetic improvements obtainable in the current
28 CBBPs assuming realized genetic progress in CBBPs of a similar breed and
calculated the expected additional lamb carcass meat production after
10 years of selection to be 7 tons and the accumulated discounted benefit
327 thousand USD. These benefits could be increased if the CBBPs are linked to
client communities by providing them with improved rams: additional meat
production would be 138 tons with a value of 3,088 thousand USD. The total
meat production of the existing Washera CBBPs was calculated at 152 tons and
the joint meat production of CBBPs if integrated with client communities
would be 3,495 tons. A full integration model, which includes enterprises
purchasing lambs for fattening, can produce up to 4,255 tons of meat. We
conclude that Washera CBBPs cooperatives can benefit from a higher level of
organization to produce population-wide genetic improvement and economic
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benefits. Unlike in the dairy and chicken industries, for low input sheep and goat
smallholder systems the proposed commercialization model puts breeder
cooperatives at the center of the operation. Cooperatives need to be
capacitated and supported to become fully functional business ventures.

KEYWORDS

small ruminants, low-input system, animal breeding, lamb meat, selection, development,
benefit

1 Introduction

Livelihood of smallholder farmers often relies on their ruminant
livestock or poultry. Improving efficiency of smallholder systems is a
major aim of research efforts and development projects, which
usually focus on issues such as product marketing, pastoral range
management, feed production, healthcare and genetic improvement
(e.g., Shapiro et al., 2015). The latter includes local breed
improvement through pure breeding and introduction of
alternative breeds for crossbreeding or breed replacement. In any
case improved germplasm, whether in the form of semen, embryos,
eggs or live animals, has to be produced and disseminated efficiently.
Increasing the productivity of animals through genetic improvement
is usually slow and has a small immediate impact but it is
cumulative, permanent and can be cost effective. Cost-
effectiveness is particularly relevant in low-input systems where
cash is needed for immediate household expenses. Genetic
improvement programs also encompass non-monetary returns/
outcomes. For example, improved livestock may have cultural or
social value, new or improved products may contribute to overcome
nutritional deficiencies, locally produced additional food may
increase food security, more efficient animals may allow a
decrease in stocking rates or reduce demand of feed and water,
etc. (FAO, 2010).

Implementation of genetic improvement programs in
smallholder small ruminant conditions is difficult for several
reasons (Wurzinger et al., 2011) and effective programs are very
rare. A recent development is the community-based breeding
program (CBBP) approach of sheep and goat genetic
improvement (Mueller et al., 2015). In these programs instead
of focusing on the genetic improvement of the individual
household flock or on external sire providers, the focus is on
communities where small ruminant keepers agree on cooperating
to produce their own improved sires. In Ethiopia 134 CBBPs were
operational with different sheep and goat breeds. Each CBBP
organized itself as a cooperative, designated enumerators and
made them responsible for data collection. Local researchers were
trained in data processing. CBBPs proved to work well but
required support with seed funding for the revolving expenses,
training, recording, breeding value estimation and other
knowledge transfer associated costs (Haile et al., 2019).
Support from public and private funding organizations
allowed replication of pilot CBBPs in several locations and the
pilot phase concluded that CBBPs are an effective and beneficial
strategy to achieve genetic progress and to improve livelihood at
community level (Haile et al., 2020a).

An additional challenge and opportunity is the efficient
dissemination of the improved genetics produced in current

individual CBBPs to create population-wide impact. Assuming
demand for sheep and goat products continues to grow, a new
supply chain structure will benefit from the support provided by
CBBPs role of genetic improvement providers, i.e., breeding
cooperatives, supplying improved sires to client communities
which benefit from the higher productivity of their animals and
can concentrate on efficient meat production within their
smallholder systems. Such a structure would resemble pyramidal
genetic structures known to work in developed countries.
Development of a more structured and commercially-oriented
small ruminant meat supply chain on a large scale requires a
conceptual framework and several enabling activities. In this
paper we present a framework applied to a specific sheep
population, the Ethiopian Washera sheep breed. We proposed
the necessary steps to establish a genetic improvement structure
that supports a meat commercialization model based on the
integration of CBBP cooperatives, client communities and
complementary services such as fattening enterprises. The paper
also demonstrates the potential impact, both genetic and the
expected economic benefit, when a large proportion of the total
sheep breed population is influenced by improved local genetics, and
discusses implementation issues.

2 Materials and methods

2.1 Theoretical framework

The experience in established CBBPs demonstrates that
selected surplus males become of increasing interest by
neighboring farmers and communities to be used for breeding
(Abate et al., 2020). Thus, in order to reach a large proportion of a
small ruminant population with improved genetics, Mueller et al.
(2019) suggested three strategies: 1) substantially increasing the
number of male lambs sold for breeding per CBBP (up-scaling), 2)
increasing the intensity of use of selected rams by means of
artificial insemination (AI) and, 3) further replication of CBBPs
(out-scaling). A theoretical analysis concluded that up-scaling the
number of improved males from current CBBPs for dissemination
and out-scaling current CBBPs are highly feasible strategies for
population-wide genetic improvement (Mueller et al., 2019). The
more intense use of rams using AI was not cost-effective and was
only justified in specific circumstances. For example, sires with
exceptional high and accurate breeding values may be used as
foundation sires for new CBBPs. Thus, Washera up-scaling and
out-scaling strategies were analyzed.

Recent experiences demonstrated the financial feasibility of
fattening Horro and Bonga sheep (Zemedu et al., 2018). In the
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Washera area, the Ethiopia Livestock and Fishery Sector
Development Project (LFSDP Regional PCU, 2022) established
four cooperatives, each of them with a capacity to fatten
200 lambs at a time and three rounds of fattening per year or
600 lambs per year. There are also about ten other common interest
groups with a fattening capacity of 150 lambs each, making a total
capacity of 3,900 (4 × 600 + 1,500) lambs in fattening stations per
year. The sheep fattening activity is becoming an interesting
business opportunity for local development as it requires
additional feed production facilities which have been established
in the area. These sheep fattening developments were considered as
part of an integrated sheep meat production structure.

2.2 The Washera sheep breed and current
CBBPs

Washera, also known as Agew or Dangla, is short fat tail; large
body size; short-haired; predominantly brown; both males and
females are polled; reared by Amhara and Agew communities in
Ethiopia (Gizaw et al., 2008). The breed is predominantly distributed
inWest Gojjam, East Gojjam and Awi zones in the Amhara Regional
State in Ethiopia (Figure 1) and is one of the most popular and well-
known breeds in the country with a total population of
approximately four million heads in about 300 thousand
households living in 2,800 communities. The area is well known

for having good to very good agricultural potential and the three
zones produce substantial surpluses that are sold to other areas and
are important for the food supply of the country as a whole.
Agriculture, both crop and livestock are the backbone of region’s
economy and 85% of the population in the area depending on
agriculture (Getahun and Shefine, 2015). Sheep are an important
source of income and livelihoods for the local farmers with a
potential to support the national economy because of its fast
growth potential. Ewe mature weight is in the range of 27–31 kg.
The breed is renowned for being prolific and fast growing. These
features are highly appreciated in the region and are preferred
breeding goals of local farmers. Washera sheep are also regularly
used to improve other indigenous sheep breeds, typically in the
Amhara region. Despite its importance, before the recent CBBPs
there were no formal Washera sheep genetic improvement
programs in the country.

The pilot Washera CBBPs were established in 2021 through a
typical approach in which the community establishes a cooperative
where members formally agree on breeding goal, recording and
selection procedures. Farmers with promising male lambs are paid
to retain these lambs till final selection as replacement rams using a
revolving fund which is cashed once these sires are cast for age and
sold for meat. All unselected male lambs are culled for meat. In
2022 there were 28 community-based breeding initiatives covering
several districts in five clusters (Figure 1) which were defined by
taking into account availability of partners, geographic location,

FIGURE 1
Position of Amhara Regional State in Ethiopia, Washera sheep breed distribution and clusters and location of the current 28 CBBPs.
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political administration, ram sharing potential, homogeneity in
agro-ecology and the location of the implementing institutions.

A recent survey (Washera CBBP Survey, unpublished) indicates
a total of 3,233 households engaged in the CBBPs with a mean flock
size of 12.08 sheep including 6.73 breeding females. The total
number of sires was estimated assuming communities follow the
suggested mating ratio of 25 breeding females per sire and a serving
period of 2.5 years. A ram survival rate of 0.95 was assumed. The
total number of lambs produced were calculated assuming a
conception rate of 0.9 and survival to selection or culling age
0.9 and a lambing interval of 8 months, all assumptions were
based on field data. The figure for litter size (lambs born per ewe
lambing) was taken from survey results in each cluster. Thus,
assuming all female lambs and only replacement male lambs are
kept for breeding, then a total of 17,154Washera lambs are annually
culled for meat (Table 1).

2.3 Meat production and commercialization
model

The Washera meat production and commercialization model is
proposed by combining existing up-scaling and out-scaling CBBP
approaches. In this model, CBBPs produce improved breedingmales
for client communities, here called production units, which produce
the bulk of lambs for meat and lambs for individual fattening
enterprises or fattening cooperatives. In the proposed model
CBBP cooperatives are the key organizations establishing the
necessary business links between smallholder farmers in the
village and market players who supply consumers. Thus,
establishing a commercialization model of large scale that
integrates production units, fattening enterprises, and supply of
lambs to the live market or for processing in slaughter houses via the
CBBP cooperatives.

The integration strategies were modelled with assumptions on
numbers of potential ram lambs available for production units,
proportions of lambs produced in these units sold for meat or
diverted to be finished in individual fattening enterprises or
cooperatives as well as number of additional CBBPs required to

impact the whole Washera population. The meat production and
commercialization model were parameterized such that a range of
situations could be tested to predict industry scale, genetic progress
and economic impact.

The analyses were done considering a planning period of
10 years and the following three levels or scenarios of integration.

a) Non-integrated scenario–the current situation where all surplus
male lambs in CBBPs are culled for meat. No formal integration
between CBBPs and production units or fattening enterprises
and cooperatives.

b) Partially integrated scenario–above average CBBP male lambs
are supplied for breeding in production units. No integration
with fattening stations is considered in this case.

c) Integrated scenario–CBBPs supply rams to production units and
these supply lambs to fattening enterprises with three fattening
capacity options (see details in 2.5).

2.4 Calculation of genetic progress

Washera sheep provide meat for sale and consumption. Hence,
sustained improvement of litter size (LS) and lamb weight (SMW)
are obvious breeding goals. Selected animals should also be adapted
to their production systems, particularly resilient to the
environments and regular climatic hazards which may be
exacerbated by climate change.

Genetic progress for these traits has not yet been calculated from
field data in Washera CBBPs. In order to get an estimate of
performance in current Washera sheep CBBPs, the genetic
progress obtained in CBBPs of Horro breed was used. This breed
has similar performance characteristics as Washera, for example,
average litter size in Horro is 1.36 lambs/lambing and average lamb
weight is 20.0 kg (Zemedu et al., 2018) while for Washera sheep
mean ± SD are 1.32 ± 0.34 lambs/lambing and 19.77 ± 3.87 kg,
respectively (recent field survey data, n = 437). Also selection
procedures applied in both breeds are similar. In Horro, annual
genetic progress achieved in SMW was 0.1800 kg/year and progress
in LS was 0.0021 lambs/lambing over the period 2009–2018 (Haile

TABLE 1 Current community-based breeding program (CBBP) statistics per geographical production cluster.

Cluster CBBPs Total
house-
holds

House-
hold
flock size

Ewes per
house-
hold

Litter
size

House-
holds per
CBBP

Ewes
per
CBBP

Total
ewes in
CBBPs

Total
sires in
CBBPs

Young
sires for
CBBPs

Lambs
culled for
meat

no no no no no/
lambing

no no no no no/year no/year

1 7 875 19.71 9.71 1.51 125 1,214 8,500 340 143 7,654

2 9 1,179 9.82 5.55 1.28 131 726 6,538 262 110 4,974

3 2 200 6.00 3.83 1.10 100 383 767 31 13 499

4 5 600 10.00 6.57 1.18 120 789 3,943 158 66 2,760

5 5 379 8.00 5.33 1.06 76 404 2,020 81 34 1,267

Weighted
average

12.08 6.73 1.32 115 777

Total 28 3,233 21,768 871 367 17,154
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et al., 2020a). These improvement rates were applied over 10 years to
simulate expected improvement in newly established Washera
CBBPs using gene flow methodology (Amer, 1999; FAO, 2010).
Genetic progress at production units was calculated considering the
average merit of selected males, assuming a parent average approach
in which half of their genes and half of average production unit ewe
genes are expressed in each year’s progeny batch (Santos et al.,
2017).

Potential annual genetic progress in both SMW and LS was
calculated using selection index theory (Hazel, 1943) and assuming
the Horro sheep parameters, heritability of 0.4090 for SMW and
0.0515 for LS (Kebede, 2002; Haile et al., 2020b) and phenotypic and
genetic correlations between SMW and LS of −0.0828 and 0.0340,
respectively (Kebede, 2002). Selection differential was obtained
considering selection of the top 10% of male candidates and no
selection of females (average standardized selection intensity of
0.877) and generation length was estimated to be 3 years. These
figures together with the market price of a 20.0 kg Washera lamb of
90 USD and about the same number of expressions for both traits
allow calculation of standard index weights and potential genetic
progress in both SMW and LS.

2.5 Calculation of meat production

Meat production was calculated for each production chain
integration level by calculating the number and weight of male
lambs culled or male lambs fattened considering dressing
percentages of 44.2 and 49.48, respectively (Getachew et al.,
2011). For the non-integrated scenario of the present 28 CBBPs,
statistics from Table 1 were used. For the partially-integrated
scenario, the remaining number of lambs culled for meat in
CBBPs and the total number of lambs produced in production
units were calculated and multiplied by the average lamb weight of
20.0 kg.

For the integrated scenario which also considers lamb fattening
enterprises, three cases (c1, c2, and c3) were calculated: considering
the current fattening capacity of 3,900 lambs (c1), increasing
fattening capacity at the current rate of 1,000 more lambs a year
up to 13,900 at year ten (c2), and increasing fattening capacity up to
all acceptable (above average) lambs for fattening (c3). Following the
financial feasibility analysis of Zemedu et al. (2018) with fattening of
Horro male lambs, an average growth of 8 kg live weight after
90 days fattening period was assumed and survival of lambs in
fattening stations of 0.95.

The slight but sustained increase in number of lambs and lamb
weight due to genetic improvement of LS and SMW were also
considered when calculating meat production but reported
separately from a scenario of no genetic improvement. Sensitivity
of the assumed rates of genetic progress in LS and SMW on meat
production and economic outcome was tested setting rates to 80%
and 120% of those observed in Horro CBBPs.

2.6 Calculation of economic parameters

Economic benefit of the different scenarios was calculated as
revenue minus cost over a 10-year planning horizon assuming a

discount rate of 0.07 as in previous studies (Mueller et al., 2019) to
make revenues and costs comparable. In the non-integrated scenario
the economic benefit from sale of lambs culled for meat was
calculated based on lamb numbers and lamb weights and from
known genetic trends for LS and SMW. Revenue per 20.0 kg
Washera lamb was assumed at 90 USD or 4.5 USD per kg live
weight. Several initial and annual costs were considered when
establishing a new CBBP. Initial year costs due to the
construction of a collection yard, purchase of a scale and ear tag
applicator and training or meeting expenses were 700 USD, annual
costs due to purchase of ear tags and payment of enumerator were
900 USD as in Mueller et al. (2019). Note that only additional
income due to genetic improvement and only additional costs due to
the selection program were considered, capital expenses were
ignored.

In the partially-integrated scenario the economic benefit at
CBBP level was calculated as before but considering that a
proportion of lambs are sold for breeding and all male lambs in
the production units are culled for meat. The only additional cost
considered for production units was an overprice of purchased
young CBBP rams. This additional cost for production units and
additional income for CBBPs was taken as equivalent to 1 kg live
lamb price (4.5 USD). The light annual increase in lamb weights and
number of lambs due to genetic improvement were considered and
reported separately.

In the three cases of fully integrated systems, those
including fattening enterprise, the benefit per kg “finished”
meat was calculated as the difference between meat market
price minus fattening cost per kg. Costs included veterinary
services and other associated costs such as concentrate feeding
and watering troughs. This cost per kg was assumed to be 65% of
its price, a figure obtained as average cost in two fattening
experiments applied to young CBBP Horro rams (Zemedu et al.,
2018).

The financial analysis for the three integration scenarios does
not include other expenses than those related to the linking and
fattening. Selection costs were considered for CBBPs since there
would be no CBBP without selection and fattening costs didn’t
include basal feed costs. Economic parameters were calculated
separately with and without genetic improvement. selection
costs, income from sale of cull lambs and income from sale of
lambs for breeding were considered for CBBPs; costs due to
purchase of breeding lambs, income from sale of lambs either for
meat or for fattening were considered for production units; and
costs due to purchase of lambs for fattening, costs of fattening
and income from sale of fattened lambs were considered for
fattening enterprises. Costs and incomes were discounted and
accumulated to year 10, when c2 and c3 reach their fattening
capacity target. Annual and accumulated discounted revenues,
costs and benefits were obtained for the three integration systems
at each production tier. Return on investment (ROI) was
calculated as accumulated discounted revenues over
accumulated discounted costs.

Meat production potential and economic impact were based
on the current number of Washera CBBPs. The number of
additional CBBPs required to reach the entire Washera
population with improved males was extrapolated from the
current landscape.
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3 Results

3.1 Genetic improvement of CBBPs and
production units

After 10 years of selection in CBBPs the increase in SMW
was 1.77 kg and in LS 0.021 lambs. First selected progeny in the
CBBPs was born in year 0 (expressing superiority at lamb age,
year 1) and first improved males are used in production units in
year 1 with improved progeny expressing superiority in year 2.
In the early years SMW and LS trends improve rapidly in the
CBBPs and the genetic trends in the production units follows
with a delay (lag) achieving at year 10 about half the
improvement of the ram provided by the CBBPs. The
increase in litter size at year 10 implied additional 272 and
1,676 lambs in CBBP and client production units, respectively
(Table 4). At year 10 production units lag about two generations
of improvement behind CBBPs (6 years), as presented in
Figure 2.

3.2 Up-scaling washera CBBPs

In the current non-integrated situation, the 28 Washera CBBPs
produce young replacement males for own use and all surplus male
lambs (17,154) are culled for meat. In the partially integrated
situation all CBBP lambs above average (8,322), excluding 5% of
lambs culled for physical appearance are considered available for
breeding. From these, 367 are used as own CBBP replacements and
the remainder 7,956 are selected for use in production units. CBBP
lambs not used for breeding (9,198) are culled for meat (Table 2).
This amounts to about 2.8 (9,198/3,233 households) lambs culled for
meat and about 2.5 (7,956/3,233) young sires sold for breeding per
CBBP household per year. In addition, there is a potential for
another 193,063 lambs to be made available for fattening.

According to data compiled from the regional livestock office
the total Washera ewe population in the five production clusters was
2,147,875. With current up-scaled CBBPs only 22% (472,376/
2,147,875) of the ewes in this population could be served with
CBBP born rams. Assuming that new CBBPs in each cluster will be

FIGURE 2
Genetic progress of lamb weights (SMW) and litter size (LS) in CBBPs and client production units starting selecion in year) and assuming no initial
genetic differences between CBBPs and production units.

TABLE 2 The effect of CBBPs sire production capacity on production units, meat lamb and potential fattening lamb numbers. Estimated CBBP out-scaling
requirements.

Cluster Sire prod.
Capacity in
CBBPs

Young
sires for
prod.
Unit

Lambs
culled for
meat in
CBBP

Ewes
in
prod.
Unit

Meat
lambs in
prod.
Unit

Potential
lambs for
fattening

Potential
finished
lambs

Targeted
ewes in
cluster

Gap of
ewes

Gap of
CBBPs

no/year no/year no/year no no/year no no/year no no no

1 3,704 3,561 4,094 211,407 193,929 96,965 92,116 147,844 −63,563 −2

2 2,415 2,305 2,669 136,847 106,412 53,206 50,546 1,092,459 955,612 60

3 243 230 269 13,682 9,143 4,572 4,343 155,874 142,192 20

4 1,343 1,276 1,484 75,772 54,317 27,158 25,800 260,948 185,176 12

5 618 584 683 34,667 22,324 11,162 10,604 490,750 456,083 62

Total 8,322 7,956 9,198 472,376 386,126 193,063 183,410 2,147,875 1,675,499 152
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of the average CBBP size in the cluster, it was estimated that
152 additional CBBPs are required to serve the whole Washera
ewe population. In cluster one there are no more CBBPs needed, in
fact with the proposed up-scaling strategy there are rams in excess to
serve 63,563 additional ewes at another CBBP site or in production
units. On the other hand, in cluster 5, 62 additional CBBPs are
required to cover the target population of 490,750 ewes (Table 2).
Clearly, these figures are indicative and open to arrangements
between cooperatives of the different clusters. In any case the
results show the need for specific extension services and CBBP
promotion in each district.

3.3 Meat production

Current annual meat production of the 28 CBBPs is about
152 tons (carcass weight) and in the partially integrated scenario
3,495 tons, 81 tons from culled lambs in CBBPs and 3,413 tons from
culled lambs from production units (Table 3). Note here and
elsewhere in tables and text minor rounding effects in the report
of numbers. The effect of genetic improvement in number of lambs
and in lamb weights results in an increase of 7.4 tons in CBBPs and
138 tons in production units at year 10 (Table 4). This amount of
additional meat due to genetic improvement is expected if genetic
progress in the recently established Washera CBBPs achieves the
progress obtained over 9 years in Horro CBBPs, that is 0.18 kg/year
in SMW and 0.0021 lambs/lambing in LS. Using an index based on
Horro and Washera parameters (section 2.4) would increase SMW
progress to 0.46 kg/year and would increase meat production
accordingly. In the fully integrated scenario, another 51 tons of
finished lamb meat is produced using the current lamb fattening
capacity (c1). Assuming a growing fattening capacity, fewer lambs
are culled for meat but more are fattened. Considering the final (year
10) target capacity of 13,900 lambs (c2) and the maximum number
of lambs available for fattening, 193,000 lambs (c3), a range between
183 tons and up to 2,541 tons finished carcass meat can be produced.
The sensitivity test shows that the additional meat production is
directly proportional to the assumed rates of genetic progress. If
these rates in Washera CBBPs would be only 80% of those achieved
in Horro CBBPs the total additional meat production would be

116 tons instead of 146 tons and if these rates would be 120% then
the total additional meat production would be 175 tons (Table 4).

3.4 Economic benefit for CBBPs and
production units

The additional annual discounted benefit due to genetic
improvement of SMW and LS in 28 CBBPs and their client
production units over 10 years of selection is shown in Figure 3.
The selection program in the CBBPs with first progeny born from
selected parents starts in year 0 and the purchase of rams by
production units starts in year 1. In year 0 CBBPs face initial
costs with no economic benefit, but through the following
10 years CBBPs profit from higher lamb weights and sales of
young rams to production units. Production units start to have
expenses in year one when buying first improved young rams. At
year three these expenses are compensated with increased lamb
numbers and increased lamb weights. Due to the large number of
ewes in the production units (472,376 ewes) the total benefit is much
higher than in the CBBP level.

Return on investment (ROI) for the improvement program in
the CBBP layer is much lower than in the production unit layer
(2.5 vs. 13.3 USD per USD invested, Table 4) creating opportunity
for a higher CBBP ram lamb price offered to production units. This
might be contemplated once the improvement programs advance,
and these ram lambs clearly stand out from those currently used.
The ROI would also be much higher with more years of
improvement and if we assume initial genetic differences in
SMW and LS between CBBPs and production units. This is
relevant in the future as CBBPs progress and new production
units joining the integrated chain. Note also that the accumulated
discounted benefit is directly proportional to the rates of genetic
improvement assumed (Table 4).

Benefit for CBBPs integrated with production units resulted
slightly greater than benefit for CBBPs in the current in the non-
integrated situation. The combined benefit for CBBPs and
production units is more than 20 times higher although this isn’t
really an additional benefit to the benefit a similar number of
unlinked farmers would have. The non-accounted benefit will be

TABLE 3 Yearly lamb and carcass meat production in three integration scenarios of CBBPs, production units and fattening enterprises, excluding the effect of
genetic improvement. Based on current 28 CBBPs and three levels of expected final fattening capacity (c1, c2, and c3) described in section 2.5.

Parameter Unit Non-integrated (CBBP) Partially integrated (CBBP +
production unit)

Integrated (CBBP +
production unit +

fattening enterprise)

c1 c2 c3

CBBP CBBP Production unit Total Total Total Total

Number of lambs culled for meat no 17,154 9,198 386,126 395,324 391,424 381,424 202,261

Number of finished lambs no 0 0 0 0 3,705 13,205 183,410

Lamb carcass meat tons 152 81 3,413 3,495 3,415 3,306 1,714

Finished carcass meat tons 0 0 0 0 51 183 2,541

Total carcass meat tons 152 81 3,413 3,495 3,466 3,489 4,255
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more related with genetic improvement and marketing capacity
when joining the integration chain. Depending on the fully
integrated scenario (c1, c2 or c3) more meat is produced
(Table 3) but only a slightly higher benefit is obtained due to
high costs to produce fattened meat. However, combined ROI
are high for all scenarios (Table 5).

4 Discussion

4.1 Model and alternatives

We proposed a framework to impact the Washera sheep
population with genetic improvement in litter size and lamb
growth rate, affecting its entire lamb meat supply chain. The

underlying structure is a pyramidal genetic structure where
CBBPs cooperatives are the nucleus responsible for sustained
genetic improvement and delivery of improved rams to
production units. Eventually, genetic progress achieved in CBBPs
reaches a large proportion of the total Washera population through
reduction in genetic lags between tiers and through sustained
improvements supported by current and future CBBPs. The
proposed genetic improvement and dissemination model leading
to a novel meat supply chain differs from models applied in the
poultry and dairy cattle industry.

In Ethiopia, experiences with improved layer and broiler chicken
breeds, in particular with dual purpose breeds or crossbreds between
commercial and indigenous breeds, as well as their dissemination,
has been in place for a long time. The dynamics of genetic
improvement is “facilitated” since production of genetically
improved eggs and chicks can be centralized and performed on a
large scale. Improved eggs and chicks can be easily transported and
distributed, but mostly under better control of specialized suppliers.
The productive impact of improved poultry germplasm is almost
immediate because broiler growth or laying hens production is
quickly realized and generation length is short. Projects
facilitating farmer’s access to preferred locally adapted improved
breeds and a sustained multiplication and delivery system together
with feed and health services are already in place (Sartas et al., 2021).
These schemes are managed by private companies and are common
in many developing countries.

Dissemination of improved dairy cattle genetics has also been
experienced for a long time in Ethiopia and in many African
countries. In this case, generation length is high, but
improvement can be channeled through artificial insemination
(AI) centers where proven bulls (often imported from developed
countries) provide semen to be used on site to inseminate local cows.
Performance testing and pedigree recording is well established in

TABLE 4 Predicted genetic merit in CBBP and client production units after 10 years of selection for simultaneous improvement of lambweight and litter size and its
effect on additional meat production and economic benefit. Assumed rates of genetic improvement in lamb weight and litter size are those observed in Horro
sheep CBBPs.

Parameter Unit Assumed rates of genetic
improvement

80% of assumed rates of
genetic improvement

120% of assumed rates of
genetic improvement

CBBP Prod. Unit Total CBBP Prod. Unit Total CBBP Prod. Unit Total

Initial lamb weight kg 20.0 20.0 20.0 20.0 20.0 20.0

Initial litter size lambs/
lambing

1.287 1.287 1.287 1.287 1.287 1.287

Final lamb weight kg 21.77 20.81 21.41 20.65 22.12 20.97

Final litter size lambs/
lambing

1.308 1.296 1.303 1.295 1.312 1.298

Additional lambs no 272 1,676 1,949 218 1,341 1,559 327 2,012 2,338

Additional carcass meat tons 7.4 138 146 5.9 111 116 8.9 166 175

Accumulated discounted income 000′$ 549 3,340 3,889 489 2,670 3,159 610 4,009 4,619

Accumulated discounted cost 000′$ 222 251 473 222 251 473 222 251 473

Accumulated discounted benefit 000′$ 327 3,088 3,415 267 2,419 2,686 388 3,758 4,146

Return on investment $/$ 2.5 13.3 8.2 2.2 10.6 6.7 2.7 15.9 9.8

FIGURE 3
Additional annual discounted benefit in current CBBPs and
production units. Selection starts at year 0. For CBBPs benefit
becomes positive in year one mainly due to sale of breeding males to
production units. For these, benefit becomes positive in year
three and increases as improved genes flow through the population.
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many dairy industries, so that information can be processed using
BLUP breeding values in order to detect young dairy bull candidates
for the AI center. Thus, a business structure has evolved around
cattle AI centers providing semen doses and insemination services
(Marshall et al., 2019).

In most developing countries, breeding and genetic
improvement services in sheep and goat are rather uncommon
and are more complicated to apply compared to poultry or dairy
cattle. In many developed countries population wide genetic
improvement of sheep and goats relies on effective pyramidal
genetic structures with a stud (nucleus) tier producing males for
multipliers and these producing males for the base (commercial)
population. Fresh and frozen semen AI services are available and
progeny testing facilities as well as sire referencing schemes are
offered. Controlled matings and systematic performance recording
structures allows both within and across breed genetic evaluations
and optimum use of genetic variability.

In low-input smallholder situations such as in Ethiopia,
pyramidal systems and structured crossbreeding are difficult to
implement. Communal grazing of pastoral systems and limited
infrastructure to control matings is challenging and therefore full
pedigree recording is often impossible. This limits the ability to run
proper population-wide BLUP evaluations. Insemination with
frozen semen in sheep is also more challenging compared to
other species and much costlier than in cattle since it requires
laparoscopic AI instead of intrauterine non-surgery procedures.
Moreover, farmers in smallholder systems have no easy access to
improved genetics. Dedicated producers of locally adapted breeds
are scarce. Frequently when improved genetics is available, it is from
exotic breeds which in most cases are not at all adapted to
smallholder system or environmental conditions faced locally.

A strategy to overcome at least partially these limitations is to
concentrate breeding activities in public research stations and
distribute improved males to private farmers or communities
(Kosgey et al., 2006). There are concerns on the suitability of the
particular breeding objectives, proper management and the actual
genetic progress achieved in such governmental stations and the
adaptation of station bred sires to perform in smallholder farmer
environments. The main problem with this strategy is its
dependence on the particular institutional funding policy and the
risk to lose centralized structures due to natural disasters, disease
outbreaks and conflict situations. For example, the Abergelle goat
nucleus of the Sekota Dryland Research Center was lost due to the

conflict in Northern Ethiopia. The consequence of these limitations
with traditional pyramidal structures and centralized nucleus is that
in countries like Ethiopia formal within breed selection programs for
sheep and goats are rarely found.

The CBBP experience and its organization as cooperatives is
conductive to solving most business-related issues and encourage
genetic improvement limitations (e.g., pedigree and genetic
evaluation structures) to be addressed. A pyramidal structure can
be emulated through the proposed out-and up-scaling strategy and
integration of CBBPs, production units and fattening enterprises.
The proposed framework overcomes key issues related to
stakeholder roles, breeding goals, meat production scaling
strategy, sustainability, resilience and independence. There are, of
course implementation issues and areas for further adjustments and
research needs.

Finally, one of the biggest limitations that is minimized with the
CBBP framework is that of ownership and funding of the breeding
scheme. In this approach, ram lambs selected and commercialized
under the breeding cooperative structure proposed, create enough
revenue to support its maintenance and allow running costs to be
met. There is also a significant opportunity to leverage this
investment, made by the farmers themselves via improved rams
and cooperative arrangements, through fattening and supplying
finished lambs to better paying markets. Other collective
arrangements may include lamb conditioning initiatives to
provide export slaughter houses with appropriate lambs.
Ultimately CBBPs can be seen as a “starting-point for initiators
and participants to continuously discover new ways of collaboration
and engagement” (Wurzinger et al., 2021).

4.2 Implementation of the model

4.2.1 How to make it work
Predictions of meat production and economic benefits were

based on current 28 Washera CBBPs reaching an estimated 22% of
the total Washera sheep population. To reach the whole Washera
population additional 152 CBBPs would be needed. Experience for
establishing new CBBPs has accumulated and guidelines for this task
are available (Haile et al., 2018; Mueller et al., 2021). Nevertheless,
each new CBBPs face challenges which need to be addressed (Haile
et al., 2020b; Endris et al., 2022). The rapid multiplication of pilot
CBBPs was largely possible with the joint complementary effort of a

TABLE 5 Financial analysis of three integration scenarios between CBBPs, production units and fattening enterprises. Integration scenarios c1, c2, and c3 involve
increasing lamb fattening capacities (see text for a detailed description). Total refer to the sum of CBBP, production unit and fattening enterprise.

Non-integrated Partially integrated Integrated

c1 c2 c3

Economic parameter Unit CBBP CBBP Production unit Total Total Total Total

Accumulated discounted income 000′$ 12,387 12,675 278,830 291,505 295,250 299,409 372,251

Accumulated discounted cost 000′$ 222 222 5,280 5,502 9,051 12,990 81,999

Accumulated discounted benefit 000′$ 12,166 12,453 273,549 286,002 286,199 286,418 290,252

Return on investment $/$ 55.9 57.1 52.8 53.0 32.6 23.0 4.5
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number of organizations. Further implementing institutions have to
be detected and involved in the establishment of new CBBPs.
Additional seed funding will be necessary and a comprehensive
training program at community, extension and research centers
must be organized and executed. Many more communities need the
motivation, incentive and support to agree and organize themselves
as a functional CBBP. This requires region-wide awareness and
understanding of the CBBP concept. It needs training and technical
advice, economic benefit and access to markets.

A key integration factor within the supply chain is the
production and dissemination of improved ram lambs for
breeding. In some cases, innovative arrangements between
CBBP cooperatives and client production units may be found.
Outstanding production unit females may be exchanged for
selected CBBP males. This would open the nucleus to base
population genes. Clients also need access to lamb markets
and to fattening. Such complementary business options near
the CBBPs were already initiated by various organizations,
sometimes involving youth groups. Integrating these groups
through genetic dissemination may also be an additional
incentive for the establishment of these types of structures
across multiple regions. Economic feasibility analyses have
shown that fattened males accrued higher net profit than
control males in Bonga and Horro sites but were unrewarding
in Menz and Doyogena sites (Zemedu et al., 2018). Clearly,
fattening depend heavily on supplement costs and economic
benefit will depend on the ability to access cheap quality feed
and the ability to market better lambs for higher prices. Since feed
costs are volatile, close monitoring of economic parameters will
be needed.

4.2.2 Increasing rate of genetic progress
The simulations described in this study were based on the

recently established Washera CBBPs. For that reason, no
difference in initial genetic merit between CBBPs and
production units was assumed in this simulation. This might
be different in future years when current CBBPs will have
improved. In that case genetic progress in production units
will be faster, but the initial lag is likely to be larger. To reach
the entire Washera population with improved rams, another
152 CBBPs would need to be established and integrated with
production units (Table 2). An alternative to guarantee supply of
the required number of rams would be by reducing selection
intensity of males, that is selecting more than 50% of the available
males. But this affects genetic progress and makes selected male
lambs less attractive for breeding. Another aspect to look at more
carefully is selection efficiency given the much higher progress
expected in SMW with efficient index selection. An analyses of
the reasons for this difference may give hints to further
adjustments of selection procedures. A large scale AI program
would also increase the improved population but would require
an important public or private financial support, i.e., business
opportunities to be undertaken by private-sector. The most
prominent solution is to out-scale CBBPs, a strategy which has
proven to be sustainable with high ROI but which needs training
activities, community engagements, and a highly qualified
multidisciplinary team to combine research activities,
extension and services to smallholder farmers. In any case, all

means to make population-wide impact should be exploited,
probably leading to a smart combination of up-scaling, out-
scaling and AI opportunities.

Continuous genetic improvement has been achieved following
an efficient performance recording protocol integrated with CBBP
specific breeding value estimation systems. Breeding values were
estimated for each CBBP separately since genetic links between
CBBPs are weak or absent. In the long term, farmers would benefit
from population-wide genetic evaluations and access to superior
males across CBBPs. Such an evaluation is in principle not difficult
but needs genetic links which can be created using reference sires,
first within clusters and then across clusters. Artificial insemination
will be a convenient tool to facilitate this linkage. A centralized
database with a unique identification system and recording protocol
applied across CBBPs has been progressively implemented (https://
dtreo.io/), allowing a population-wide genetic evaluation to be
targeted and thereby increasing the access to genetic diversity
and consequent genetic progress.

Centralized genetic evaluations require agreements across
communities on technical aspects such as measurements,
economic weights, use of link sires, etc. It also requires
agreements on promotion and marketing aspects. All these call
for a close communication between communities which nowadays is
facilitated by the increased accessibility to mobile phones and other
communication means. Such linking of communities with similar
breeding interest also lead to an across CBBP genetic evaluation.
Other important cooperation items may include research needs,
breed promotion programs, ram sale calendar, AI program, other.

4.2.3 Resilience and sustainability
A concern among livestock breeders is whether their animals are

resilient to climate changes. Amajor advantage of CBBP livestock is that
selection of local breeding stock takes place in the same environment
where target production takes place. Thus, adaptation genes are secured
as local breeds are more resilient (Tibbo et al., 2008). Climate changes
are expected to produce more extreme situations and a slow but
constant average temperature increase (IPCC, 2022). The integration
enabled by the CBBP approach allows the breeding programs to
accommodate to changes faced by smallholder farmers as climatic
trends cause forage availability limitations, instance. Genetic
improvement in this model is a low-cost way for these
communities, as improved livestock tend to be more efficient, and
the structure of the integrated supply chain allows more or less animals
to be diverted to the lamb market or the breeding market accordingly.

In the future, traits susceptibility to climate changes (Berghof
et al., 2019) will be included in breeding goals and selection indexes.
In particular, health related traits representing the breeding goal and
implemented with support from breeding values estimated within
the CBBP structure. The financial sustainability of the proposed
intervention is also largely guaranteed. Altogether, there are
134 CBBPs operating in Ethiopia, this success rate is partly the
result of constructive involvement of all stakeholders and partly
because the CBBP establishment isn’t based on large investments
nor highly cash dependent. Experiences and lessons collected in
Malawi and Uganda also highlight the importance for different
actors to work together by pooling financial resources and technical
expertise for establishment and sustainability of goat CBBPs
(Kaumbata et al., 2020). CBBPs work with locally adapted
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animals, and therefore, the issue of environmental sustainability is
embodied in the CBBP concept (Haile et al., 2019).

The general concept of CBBPs and the proposed framework should
be conveyed by credible personnel and institutions, jointly or in close
agreement with the national agricultural system (NARS). Involving
personnel from a number of institutions, essentially from local
agricultural stations and public extension service, is critical for
success of such initiatives. This includes a strong collaboration as
CBBPs must have a responsible extension officer network. These
officers may attend one or more CBBPs and require periodical
training related to the implementation, execution and monitoring of
CBBPs. Senior extension officers and researchers are in charge of the
most technically demanding genetic specific activities such as genetic
evaluation, artificial insemination and ram selection. Evaluation of the
programs and formal steps to implement adjustments and compliance
requirements are also required and available (Lamuno et al., 2018).

4.2.4 Additional innovations and services
The necessary feed resource development, health intervention

and market linkages require support and guidance. Such needs
should be supported on top of genetic improvement. Under the
Ethiopia Small ruminant value chain transformation (SmaRT
Ethiopia) program, ICARDA and partners developed a number
of innovations, including genetic improvement, dissemination of
improved genetics, development of feed and forages, fattening of
lambs/kids, animal health interventions, and innovative market
outlet with capacity building and innovative credit accessibility
through cooperative organization. These innovations were tested
in different areas and positive socio-economic benefit
reported (Kassie et al., 2021). Pro poor livestock development
is about all the components of improvement working in
concert and at scale. Therefore, in the proposed genetic
improvement scheme, it is imperative that all value chain
components are adequately addressed to bring about
transformational change.

New research needs arise with implementation. If fattening
initiatives multiply genetic improvement goals, CBBPs may need
to consider additional traits such as growth rate to finishing weight
and feed conversion or residual feed intake, since feeding cost would
become an issue.

5 Conclusion

CBBPs produced a big impact on livelihood of individual
communities. We have shown how individual CBBPs can benefit
from a higher level of organization with cooperatives as main
actors to achieve genetic improvement at population-wide
level and estimated the resulting economic benefits. Through
effective integration with fattening enterprises and output
markets, this could also lead to more organized structures in
the Washera meat supply chains. Institutional efforts focusing on
supporting the role of the different tiers of the structure is
essential.
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Improved knowledge of the diversity within and among local animal populations is
increasingly necessary for their sustainable management. Accordingly, this study
assessed the genetic diversity and structure of the indigenous goat population of
Benin. Nine hundred and fifty-four goats were sampled across the three
vegetation zones of Benin [i.e., Guineo-Congolese zone (GCZ), Guineo-
Sudanian zone (GSZ), and Sudanian zone (SZ)] and genotyped with
12 multiplexed microsatellite markers. The genetic diversity and structure of
the indigenous goat population of Benin were examined using the usual
genetic indices (number of alleles Na, expected and observed heterozygosities
He and Ho, Fixation index FST, coefficient of genetic differentiation GST), and three
different methods of structure assessment [Bayesian admixture model in
STRUCTURE, self-organizing map (SOM), and discriminant analysis of principal
components (DAPC)]. The mean values of Na (11.25), He (0.69), Ho (0.66), FST
(0.012), and GST (0.012) estimated in the indigenous Beninese goat population
highlighted great genetic diversity. STRUCTURE and SOM results showed the
existence of two distinct goat groups (Djallonké and Sahelian) with high
crossbreeding effects. Furthermore, DAPC distinguished four clusters within
the goat population descending from the two ancestry groups. Clusters 1 and
3 (most individuals from GCZ) respectively showed a mean Djallonké ancestry
proportion of 73.79% and 71.18%, whereas cluster 4 (mainly of goats from SZ and
some goats of GSZ) showed a mean Sahelian ancestry proportion of 78.65%.
Cluster 2, which grouped almost all animals from the three zones, was also of
Sahelian ancestry but with a high level of interbreeding, as shown by the mean
membership proportion of only 62.73%. It is therefore urgent to develop
community management programs and selection schemes for the main goat
types to ensure the sustainability of goat production in Benin.
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Capra hircus, molecular genetic characterization, genetic structure, indigenous farm
animal genetic resources, phytogeographic zones
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1 Introduction

West African countries are characterized in general by high
variability in farm animal genetic resources (Molina-Flores et al.,
2020). Concerning goat species, Benin’s neighboring countries have
remarkably diversified indigenous goat breeds, defined by different
ecotypes of West African Dwarf goats (WAD, also named Djallonké
goats) found in fifteen West and Central African countries including
Togo, Burkina Faso, and Nigeria (Wilson, 1991; Awobajo et al., 2015);
Red Sokoto goats in Niger and Nigeria, and a large population of
Sahelian goat breeds in Mali, Niger, Burkina Faso and Nigeria (Wilson,
1991). In addition, some exotic goat breeds are also introduced into
these countries such as the Boer and Kalahari goats imported into Niger
(FAO, 2007). This pool of goat breeds from Benin’s neighboring
countries certainly influences the genetic diversity of the indigenous
Beninese goat population whose genetic diversity has not been
documented to date, unlike that of other African countries like
Nigeria (Awobajo et al., 2015; Ojo et al., 2018), Ghana (Ofori et al.,
2021), and Burkina Faso (Traoré et al., 2009). Indeed, the previous
characterization studies conducted on this species in Benin have been
limited to documenting the existing between- and within-species
morphological variability (Dossa et al., 2007; Kouato et al., 2021;
Whannou et al., 2021) and, habitat suitability modeling of the goat
population of Benin under climate change scenarios (Whannou et al.,
2022). Thus, there remains a need to determine the genetic diversity
within and among this indigenous goat population at the molecular
level to optimize their management. Such a study is a response to the
Food and Agriculture Organization of the United Nations (FAO, 2012)
exhortation to document both phenotypic and molecular diversity of
animal genetic resources for better knowledge and definition of policies
for their sustainable management. Regarding molecular genetic
characterization, different tools, including microsatellite markers, and
single-nucleotide polymorphism (SNP) chips have been developed with
advances in technology for a better exploration or analysis of the
genome. However, although SNPs are highly informative and more
nowadays recommended for population genetics studies, their
accessibility remains limited, especially in developing countries due
to the high costs associated with using this high-definition technology
(e.g., cost of chips, high-level infrastructure, and equipment required,
and continuous energy power) (Laoun et al., 2020). In contrast,
microsatellite markers are less expensive, especially if they are
multiplexed, and have demonstrated worldwide their ability to assess
diversity in animal population genetics (Ben Sassi-Zaidy et al., 2022).
This amply justifies their use in numerous genetic diversity studies
conducted in the last years on different species including cattle (Msanga
et al., 2012; Gororo et al., 2018; Demir and Balcioğlu, 2019), pigs
(Djimènou et al., 2021) and small ruminants (Missohou et al., 2011;
Mekuriaw, 2016; Ravimurugan, 2017; Ojo et al., 2018; Dayo et al., 2022).
Therefore, microsatellite markers are still highly useful for preliminary
studies of the diversity of populations that have never been
characterized using molecular tools (Laoun et al., 2020). In such a
context, the genetic diversity of the indigenous Beninese goat
population could be better documented using microsatellite markers
as only phenotype-related information has been reported so far. On the
one hand, it should be noted that a review of previous knowledge on the
diversity of goat breeds present in Benin has reported the cohabitation
of a multitude of West African local breeds such as WAD/Djallonké,
Red Sokoto or Maradi, Sahelian (Hounzangbe-Adode et al., 2011;

Molina-Flores et al., 2020), and exotic breeds like Alpine and
Saanen goats (Hounzangbe-Adode et al., 2011). On the other hand,
the most recent study (Whannou et al., 2022) that addressed the
phenotypic diversity of the local Beninese goat population revealed
the existence of high diversity within and among this indigenous goat
population. Moreover, two major groups of goats have been reported
within the three vegetation zones (i.e., one group of small individuals
mainly in the Guinean-Congolese zone in the South and another group
of relatively large goats from the Guinean-Sudanese zone in central
Benin to the Sudanese zone in northern Benin).

Hence, this study investigated the genetic diversity and structure of
the indigenous goat population in Benin usingmicrosatellite markers to
allow a clear identification of breed groups or genetic types and to
confirm or refute the phenotypic diversity aforementioned.

2 Materials and methods

2.1 Sampling procedure

To address the genetic base and structuring of the indigenous
goat population of Benin, nine hundred and fifty-four (n = 954)
randomly sampled goat hair from the three vegetation zones of
Benin and used in a previous morphological characterization study
(Whannou et al., 2022), were selected from a sample library (N =
2,114). These hair samples were selected from unrelated animals
using the information provided by goat farmers on their animals.
Some characteristics of these vegetation zones i.e., humidity index,
soil characteristics, and predominant vegetation, can be found in
Whannou et al. (2022). The vegetation zones are further subdivided
into phytogeographic zones. The minimum sample size was about
286 individuals per vegetation zone and 92 individuals per
phytogeographic zone. These samples were labeled, packaged,
and transported to the laboratory in Belgium (CARAH, Ath,
Hainaut) for DNA extraction and genotyping.

2.2 DNA extraction and genotyping

DNA was extracted from hair samples following the standard
instructions described for the Qiagen DNeasy Blood and Tissue Kit
used. Each DNA sample was then quantified using a NanoDrop ND-
3300 fluorospectrometer device (Thermo Scientific; Waltham, MA,
United States).

The genotyping analysis was performed with 15 μL of template
DNA using the multiplex kit of 12 microsatellite markers and the
PCR protocol developed by Spanoghe et al. (2022). The fragment
lengths of the PCR products were estimated with the GeneMapper
Software 6.0 (Applied Biosystems). They were then used to construct
a genotypic dataset for statistical analyses.

2.3 Statistical analysis

2.3.1 Genetic diversity assessment
The number of alleles (Na), the effective number of alleles

(Nae), observed (Ho) and expected (He) heterozygosities, and
Polymorphic Information Content (PIC) of each microsatellite

Frontiers in Genetics frontiersin.org02

Whannou et al. 10.3389/fgene.2023.1079048

42

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1079048


marker were first estimated from the dataset (n = 954) using the
Cervus software v 3.0 (Kalinowski et al., 2007). These statistics
were addressed to assess the performance of the loci and to
describe the genetic diversity of the Beninese goat population.
F-statistic indices (FIS, FST, FIT) (Wright, 1969; Weir and
Cockerham, 1984), the coefficient of gene differentiation
(GST), and Nei’s genetic distance (Nei, 1978) were then
computed using the program SPAGeDi 1.5 days (Hardy and
Vekemans, 2002) to assess the genetic variability existing
within (intra-) and among (inter-) vegetation zones.

Additionally, an analysis of molecular variance (AMOVA) was
performed to assess the partition of genetic variation between (inter-)
andwithin (intra-) the goat groups (Excoffier et al., 1992; Paradis, 2010).

2.3.2 Genetic clustering analyses of the goat
population under study

Three methods were used to estimate the genetic clustering of
the goat samples of Benin and their genetic relationship.

First, the genetic structure of the indigenous goat population was
analyzed using the Bayesian admixture approach in the
STRUCTURE software 2.3.4 (Pritchard et al., 2000). The ancestry
proportion was inferred from the genotypic dataset using correlated
allele frequencies, a burn-in period of 50,000 iterations followed by
100,000 Markov Chain Monte Carlo (MCMC) for each number of
possible clusters (K). As genotyping information for the assumed
parent population was not available, we hypothesized K unknown
populations of parents with k varying from 1 to 10, and three
independent replicates (Negrini et al., 2012). The probable number
K of ancestral populations and substructures was identified
according to Evanno et al. (2005) and the obtained posterior
probability values (Pritchard et al., 2000). The representation of
the data was then performed using Structure Plot (Ramasamy et al.,
2014), and the geographic distribution of the main genotype of goats
across the vegetation and phytogeographic zones of Benin was
mapped using the Q matrix out-put.

Second, the non-linear relationships of the genotypic data were
estimated using the Self-Organizing Map (SOM) method (Kohonen,
1982; 2001) under unsupervised learning rules and based on the
model of vegetation zones of Benin (See Spanoghe et al., 2020 for a
full description of the method).

Third, Discriminant Analysis of Principal Components (DAPC)
(Jombart, 2008; Jombart et al., 2010) was applied to the genotypic
dataset to infer the relationship of goat individuals, while maximizing
among-group variation and minimizing within-group variation.
Unsupervised k-means clustering was first used through the
“find.clusters” function of the R package adegenet version 2.1.1
(Jombart, 2008) to estimate the probable number of clusters existing
in the Beninese goat population. The number of clusters (K) was then
defined after a comparison of Bayesian Information Criterion (BIC)
values (Jombart, 2008; Jombart and Ahmed, 2011). The resultant
clusters were plotted in a scatterplot after the determination of the
number of principal components (PCs) with associated linear
discriminants (LD) using the cross-validation function “Xval.dapc”
in the R package adegenet.

Finally, the genetic variation existing within and among the inferred
goat groups from genetic clustering withDAPCwas estimated using the
genetic parameters previously calculated in the first section of Statistic
analysis (i.e., Genetic diversity assessment).

3 Results

3.1 Genetic diversity of the indigenous goat
population from Benin

The different genetic indices Na, He, Ho, PIC, FIS, FST, FIT, and GST

estimated from the Beninese goat dataset are presented in Table 1.
Overall, 135 alleles were identified in the dataset with the multiplex of
12microsatellite markers, with an average of 11.25 alleles per locus. The
lowest Na (4) was recorded for the ILSTS5 locus, and the highest Na
(23) was detected for the MAF065 locus. The average values of He and
Howere 0.66 and 0.69, respectively. The PIC ranged from0.14 (ILSTS5)
to 0.80 (SCRSP9 and CSRD247) with an average value of 0.66. The
mean values of FST, FIT, FIS, and GST were 0.012, 0.047, 0.035, and
0.012 respectively.

The AMOVA results (Table 2) show that only 2.11% of the genetic
variation of the Beninese goat population was observed between
vegetation zones; the highest genetic variation (97.89%) resided
within vegetation zones. Using the vegetation zones as a model of
structuring (Table 3), Na ranged from 9.08 (GCZ) to 10.08 (GSZ), with
a mean value of 9.55. SZ and GSZ showed the highest values of He
(0.70 and 0.69, respectively) and Ho (0.67 for both vegetation zones) as
well as the highest FIS values (0.05 and 0.04, respectively). The highest
pairwise FST (0.021) and Nei’s genetic distance (0.047) were recorded
between GCZ and SZ, whereas the lowest FST (0.006) and Nei’s genetic
distance (0.013) were observed between GSZ and SZ (Table 3).
However, the pairwise FST and Nei’s genetic distances estimated
between GCZ and GSZ were also low and seemed less different
from those recorded between GSZ and SZ (Table 3).

3.2 Genetic structure of the indigenous goat
population from Benin

The STRUCTURE results suggested the best grouping number
(K = 2) based on the highest delta K value (53.17) resulting from the
data (Supplementary Table S1; Supplementary Figure S1). The
indigenous goat population of Benin was therefore composed of
two ancestral genetic groups with different ancestry proportions of
individuals. Overall, 50.20% of the population analyzed was
estimated as Djallonké ancestry, whereas 49.80% was of Sahelian
ancestry (Supplementary Table S2). The individuals’ membership
proportion revealed some admixture, indicating that individuals
share different proportions of the two distinct ancestral goat
populations (i.e., Djallonké and Sahelian) (Figure 1). Considering
that individuals presenting a membership proportion of more than
50% for ancestry population 1 (in green) were mainly ancestry of
Djallonké and those that presented a membership proportion of
more than 50% for ancestry population 2 (in blue) were mostly of
Sahelian ancestry, it appeared that individuals from GCZ were
predominantly of Djallonké ancestry, those of SZ were of
Sahelian ancestry, whereas the GSZ predominantly included
Sahelian genotypes (Figure 2). However, according to a smaller
subdivision than vegetation zones i.e., the phytogeographic zones
(Figure 3), a predominance of Djallonké ancestry was noted in the
four phytogeographic zones of GCZ (i.e., CZ Coastal zone, PoZ Pobe
zone, PlZ Plateau zone, and VOZ Oueme Valley zone), and the
phytogeographic zone of the GSZ closest to the GCZ (i.e., ZZ Zou
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zone). In contrast, the two other phytogeographic zones of the GSZ
(i.e., BZ Bassila zone, and BSZ Borgou-Sud zone) and the
phytogeographic zones of the SZ (i.e., BNZ Borgou-Nord zone,
CAZ Chaîne Atacora zone, and MPZ Mekrou-Pendjari zone)
gathered mostly goats with predominant Sahelian ancestry
(Figure 3).

Furthermore, when the log-likelihood of the data Ln P(D) was
plotted against K, the average log-likelihood of the data Ln P(D)
increased up to K = 4, followed by a serrated decrease to K = 9
(Supplementary Figure S2). The run with the highest Ln P(D) was
thus observed at K = 4 suggesting a structuration of the goat
population under study into four subpopulations. The

TABLE 1 Genetic diversity indices calculated for 12 SSR markers in 954 goat datasets sampled in the three vegetation zones of Benin.

SSR markers Na Scale Ho He PIC FIT FST FIS GST

ILSTS11 10 264–282 0.48 0.49 0.44 0.008 0.002 0.006 0.002

ILSTS5 4 184–192 0.14 0.15 0.14 0.093 0.011 0.083 0.010

MAF065 23 118–183 0.76 0.81 0.79 0.068 0.011 0.056 0.010

MCM527 6 153–168 0.69 0.73 0.68 0.065 0.016 0.050 0.015

SCRSP9 14 117–147 0.80 0.82 0.80 0.032 0.011 0.021 0.010

TCRVB6 14 222–255 0.66 0.68 0.65 0.034 0.009 0.025 0.009

INRA023 13 195–218 0.76 0.80 0.77 0.057 0.031 0.027 0.030

OARFCB20 11 94–119 0.71 0.76 0.73 0.069 0.017 0.054 0.016

OARFCB48 11 151–171 0.74 0.78 0.74 0.045 0.006 0.039 0.006

BM8125 10 111–131 0.74 0.76 0.72 0.016 0.006 0.010 0.006

CSRD247 12 220–249 0.78 0.82 0.80 0.056 0.014 0.043 0.013

INRA063 7 172–184 0.66 0.68 0.63 0.042 0.007 0.035 0.007

Mean 11.25 — 0.66 0.69 0.66 0.047 0.012 0.035 0.012

Na, Number of alleles per marker scale; Ho, observed heterozygosity; He, expected heterozygosity; PIC, polymorphic information content; FIT, intra-class correlation coefficients of allelic states

for gene copies within individuals relative to all populations; FST, gene copies within populations relative to all populations; FIS, gene copies within individuals relative to a population; GST, Nei’s

coefficient of gene variation.

TABLE 2 Analysis of molecular variance (AMOVA) of the 954 goats within and among the three vegetation zones of Benin.

Degree of
freedom

Sum of
square

Variance
component

Percentage of
variation

Phi-
value (φ)

Gene
flow (Nm)

Between vegetation
zones

2 175.28 0.24 2.11 0.02 315

Within vegetation
zones

951 10,679.13 11.23 97.89

TABLE 3 Genetic diversity parameters of the 954 goats within and among the three vegetation zones of Benin.

Vegetation zonesa Within vegetation zones parameters Between vegetation zones
parametersb

n Na Nae He Ho FIS GCZ GSZ SZ

GCZ 377 9.08 3.65 0.67 0.65 0.03 — 0.015 0.047

GSZ 286 10.08 3.97 0.69 0.67 0.04 0.007 — 0.013

SZ 291 9.50 3.98 0.70 0.67 0.05 0.021 0.006 —

Mean — 9.55 3.87 0.69 0.66 0.04

n = number of individuals analyzed, Na = number of alleles, Nae = effective number of alleles, He = expected heterozygosity, Ho = observed heterozygosity, FIS = individual inbreeding

coefficient.
aGCZ: Guineo-Congolese zone, GSZ: Guineo-Sudanian zone, SZ: Sudanian zone.
bFST below the diagonal and Nei’s genetic distance above the diagonal.
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STRUCTURE plot for K = 4 (Figure 4) indicated the existence of two
goat subpopulations of Djallonké distributed from the humid zone
of South Benin (GCZ) to the first phytogeographic zone (i.e., ZZ) of
the transitional vegetation zone in Central Benin (GSZ). Two other
subpopulations of goats sharing mostly Sahelian ancestry were
observed from the remaining two phytogeographic zones of the
GSZ (i.e., BZ, and BSZ) to the drier Sudanian vegetation zone (SZ) in
North Benin (Figure 4).

SOM analysis showed the neural assignment of individuals on
the network (Figure 5). The structuring of the goat population in the
different vegetation zones seems rather diffuse and scattered since all
neurons are occupied whatever the vegetation zones. Nevertheless,
individuals from GCZ were mostly concentrated in left neurons in
the network, while SZ individuals were mostly clustered in right
neurons in the network. GSZ individuals, although widely
distributed across grid neurons, appeared more concentrated in
left and some upper right neurons.

The results of the unsupervised K-means clustering applied to
the dataset prior to DAPC showed BIC values that decreased
between K = 2 and K = 8 where they reach the lowest value of BIC
(Supplementary Figure S3). Thus, any K value between 2 and
8 could be considered as the number of clusters present in the
Beninese goat population. However, when plotting each probable
clustering from 2 to 8, a distinction of goat clusters was first
observed at K = 4. Indeed, all the previous K (i.e., K = 5, K = 6, K =
7, and K = 8) showed many overlaps and representation of four
probable goat groups in the dataset (Supplementary Figures
S4–S7). Thus, four genetic clusters were considered the most
probable groups fitting the structure of the indigenous goat
population from Benin. DAPC analysis was carried out to
assess the sub-clusters at K = 4. After the cross-validation
step, the 45 first PCs (85% of variance conserved) of PCA and
two discriminant eigenvalues were retained. The resulting
scatterplot (Figure 6) showed the separation between clusters
1 and 3 (which consisted mainly of individuals from GCZ) and
clusters 2 and 4 (which consisted mainly of individuals from SZ
and GSZ) concerning LD1. Furthermore, clusters 1 and 3 were
distinct from clusters 2 and 4, respectively, with respect to LD2.
Table 4 presents the composition of the goat clusters identified
within the three vegetation zones of Benin.

Additionally, when comparing the individuals of inferred DAPC
clusters with membership proportions of ancestral goat groups

resulting from STRUCTURE (Table 5), it was estimated that
individuals of cluster 1 (C1) and cluster 3 (C3) were mainly of
Djallonké ancestry with the mean proportion of 73.79% and 71.18%,
respectively, while goats of cluster 2 (C2) and cluster 4 (C4) were of
Sahelian ancestry with a mean proportion of 62.73% and 78.65%,
respectively.

3.3 Genetic diversity of the estimated DAPC
clusters

Table 6 presents the genetic variation within and among the
estimated DAPC clusters. Na within the four inferred DAPC clusters
ranged between 8.92 (C1) and 10.08 (C2) with an average value of
11.25. Nae ranged between 3.43 (C1) and 3.77 (C2 and C4) with a
mean value of 3.93. However, clusters C4 and C2 showed high
degrees of He (0.69 and 0.68, respectively) and Ho (0.67 for both
clusters) compared with C1 (He = 0.64, Ho = 0.65) and C3 (He =
0.65, Ho = 0.65) that recorded the lowest values. FIS recorded within
the clusters ranged between −0.01 (C1) and 0.03 (C4) with a mean
value of 0.04. Considering the FST values recorded between the
inferred DAPC clusters, the highest FST value (0.06) was estimated
between C3 and C4. A similar FST value (0.04) was recorded between
the pairs (C1-C3, C1-C4, C2-C3, and C2-C4). Additionally, a low
Nei’s genetic distance was recorded between C1 and C3, whereas a
high distance was estimated between C3 and C4, but smaller than
that recorded between C1 and C3.

4 Discussion

This study constitutes the first one performed on the genetic
diversity within the goat population of Benin. All the
microsatellite loci used in this study were informative because
they recorded at least 4 alleles (Barker et al., 2001) and most of
them obtained high PIC values (PIC>0.50) (Arora et al., 2010;
Botstein et al., 1980). Regarding the genetic diversity indices
estimated, the mean values of Na (11.25), He (0.69), Ho (0.66),
and PIC (0.66) recorded in this study revealed a high genetic
diversity within the goat population of Benin (Kumar et al., 2009;
Jawasreh et al., 2018; Mihailova, 2021). The average Ho (0.66)
obtained is higher than that reported for the Ardi goat from the

FIGURE 1
Goat population structure determined by STRUCTURE 2.3. Estimated histogram of the population structure with two ancestral populations (K = 2).
Each vertical bar represents one individual in the population based on the percentage of group membership, into the 2 inferred subpopulations.
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Saudi Arabia Kingdom (0.55) (Aljumaah et al., 2012), the
Nigerian West African Dwarf goat (0.60) (Awobajo et al.,
2015), and the Nigerian indigenous goat population (0.61)
(Ojo et al., 2018). However, it is lower than the mean Ho
value (0.84) reported for four Algerian goat breeds (Tefiel
et al., 2018). The mean value of PIC (0.66) obtained in this
study was lower than values reported in Indian goat breeds (0.77)
(Dixit et al., 2012), in Nigerian West African Dwarf goats (0.69)

(Awobajo et al., 2015), and Algerian goat breeds (0.93) (Tefiel
et al., 2018). Although the Beninese goat population appeared
diverse, the low FIS (0.035) and FIT (0.047) values recorded
suggest some inbreeding events in this population (Tolone
et al., 2012). Indeed, a positive FIS value is generally
considered as an indicator of heterozygosity deficit compared
with Hardy-Weinberg equilibrium (Tefiel et al., 2018).
Nevertheless, obtained values of FIS and FIT were lower than

FIGURE 2
Map of the spatial distribution of the two inferred ancestral populations based on membership assignment from the population structure analysis
following vegetation zones pattern.
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those (FIS = 0.090, FIT = 0.180) reported by Awobajo et al. (2015)
(FIS = 0.105, FIT = 0.129) by Ojo et al. (2018) (FIS = 0.035, FIT =
0.063) by Traoré et al. (2009) in Burkina Faso goats, and to (FIS =
0.057, FIT = 0.102) reported by Tefiel et al. (2018) in the four
Algerian goat breeds. This highlights the diversity of indigenous
goat populations in Africa, and probably reflects the difference in
the management of goat resources from one country to another.

The mean value of FST (0.012) obtained in this study was
inferior to 0.05, indicating a very low genetic differentiation in
the goat population of Benin. The coefficient of gene
differentiation (GST) obtained with a mean value of

0.012 confirmed the limited genetic differentiation between
vegetation zones. The result of the AMOVA applied to the
dataset using vegetation zones as a like-effect of variation also
confirmed this limited genetic differentiation. Therefore, the
genetic differentiation of the Beninese goat population is
intraspecific diversity, thus mainly due to the diversity
between individuals within vegetation zones. The lack of
genetic differentiation observed between vegetation zones is
probably due to different factors including the proximity of
production areas, similar extensive breeding practices in the
different vegetation zones, but especially the gene flow that

FIGURE 3
Map of the spatial distribution of the two inferred ancestral populations based on membership assignment from the population structure analysis
following vegetation and phytogeographic zones patterns.
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occurred between individuals of the main goat groups in the past.
A similar finding has been reported by Tolone et al. (2012). The
proximity of the breeding areas certainly favors the continuous
exchange of breeds through the market system and other
mechanisms developed by the different actors of the goat
value chain, such as gifts. Moreover, the extensive breeding
practices developed by goat breeders (notably the non-control
of reproduction in most breeding areas) in all vegetation zones
are probably also levers of diversity in the Beninese goat
population and therefore favor the low genetic differentiation
observed. In comparison to other studies, the average FST over
loci (0.012) estimated in the Beninese goat population is lower
than the value obtained in goat populations of Burkina Faso
(0.035) (Traoré et al., 2009), Nigeria (0.10) (Awobajo et al., 2015)
and (0.030) (Ojo et al., 2018), and Algeria (0.048) (Tefiel et al.,
2018). Therefore, the indigenous goat population of Benin is less
differentiated than those of other African countries.

The high mean values of Na, He, Ho, and FIS obtained in
GSZ and SZ goat subpopulations when measuring the genetic
diversity existing within and among the vegetation zones,
underline that the goats of these vegetation zones are very
diverse, but some individuals from these zones are also
inbred. In a similar study, Tolone et al. (2012) also recorded
high He and Na values within subpopulations or breed groups,
with high FIS, and concluded a high genetic diversity within
these subpopulations or breed groups. Furthermore, the highest

values of pairwise FST and Nei’s genetic distance recorded
between GCZ and SZ confirm that goats from these two
vegetation zones are genetically different. In contrast, the
lowest values of FST and Nei’s genetic distance obtained
between GSZ and SZ suggest that goats from these zones are
genetically close. However, some goats from GSZ would be also
genetically closer to GCZ individuals, and their genetic
proximity seems similar to that observed between GSZ and
SZ, as shown by their near similarity between the indices of
genetic differentiation and the genetic distance of Nei’s
(Table 3). These results suggest that GSZ is an intermediate
subpopulation of goats with a high gene flow. In a recent study
of phenotypic diversity, Whannou et al. (2022) stated that GCZ
grouped mainly small-size goats, namely, Djallonké, whereas
large and intermediate goat types (i.e., Sahelian and crossbreed
goats) predominated in SZ and GSZ. Moreover, these authors
argued that GSZ may be considered an interbreeding zone.
Therefore, the current genetic findings agree to some extent
with previous results on phenotypic diversity.

The investigation of the genetic structure of the Beninese
goat population using three different methods (STRUCTURE,
SOM, and DAPC) confirmed the aforementioned results. First,
the STRUCTURE results confirmed the widely accepted
existence of two existing ancestral populations of goats in
Benin (Meyer, 2002; Dossa et al., 2007; Hounzangbé-Adote
et al., 2011) with gene flows between these populations, as

FIGURE 4
Goat population structure determined by STRUCTURE 2.3. Estimated histogram of the population structure with two ancestral populations (K = 4).
Each vertical bar represents one individual in the population based on the percentage of group membership, into the 4 inferred subgroups.

FIGURE 5
Distribution of the genotyped goats on the SOM network according to the assignment of each of the vegetation zone groups. Each colored dot
corresponds to a goat individual. The plots express individual’s assignment by emphasizing vegetation zone models where GCZ: Guineo-Congolese
zone, GSZ: Guineo-Sudanian zone, and SZ: Sudanian zone.
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suggested by the most probable value of K = 2 groups and
proportions of individuals’ assignment. Moreover, the
STRUCTURE results showed that goats in GCZ and SZ were
genetically more distant than that observed between GSZ and
SZ. Indeed, GSZ grouped the two distinct goat genotypes.
Second, SOM results supported the lower genetic
differentiation existing between individuals from vegetation
zones and suggested a distinction between goats from GCZ
and those from SZ, but the closeness of individuals from GSZ to
those of the two other distinct zones. Finally, the DAPC results
that reveal the existence of four goat genetic clusters (C) in
Benin according to both vegetation and phytogeographic zones,

confirm the geographic distribution of goat types in Benin as
previously defined based on morphology (Whannou et al.,
2022). These results also show that the two main ancestral
goat populations are highly crossed, with a critical purity
degree of only 70% for the purest subpopulations (i.e., C1,
C3, and C4) (Table 5). Considering these results, there is a
risk of losing part of genetic diversity if no breeding policy is
defined to maintain some pure individuals of the main goat
types. Moreover, there are no reliable updated data on the
population size of the different goat genetic types identified
due to the lack of organization in the goat farming sector in
Benin. As a result, the sustainability of goat resources in Benin

FIGURE 6
Scatterplot of the first two Linear Discriminants (LD) showing genetic clusters for 954 indigenous goat sampled in the three vegetation zones of
Benin applying unsupervised Discriminant Analysis of Principal Components (DAPC). Each ellipse represents a priori cluster and each dot an individual.

TABLE 4 Genetic clusters inferred for 954 goats from the three vegetation zones of Benin by applying the unsupervised discriminant analysis of principal
components (DAPC).

Vegetation zones Clusters

C1 (n = 208) C2 (n = 292) C3 (n = 239) C4 (n = 215)

GCZ 139 85 120 33

GSZ 54 89 64 79

SZ 15 118 55 103

GCZ, Guineo-Congolese zone; GSZ, Guineo-Sudanian zone; SZ, Sudanian zone.
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would be threatened if crossbreeding practices continue
anarchically on farms without measures being taken to
conserve the predominant genetic types. New management
policies for goat keeping in Benin are therefore essential to
ensure their sustainable use and to face the challenges of current
and future climate and societal changes. To achieve this, an
inventory of goat genetic resources should be organized at the
national level together with the elicitation of goat farmers’
preferences for goat breeds and production objectives and
will allow the establishment of guidelines for maintaining the
existing diversity within the goat population in Benin.

5 Conclusion

This study provides valuable data on the genetic diversity and
structure of the indigenous goat population of Benin and fairly
confirms the phenotypic diversity observed within this
population. Indeed, the results highlighted the presence of two
ancestral genetic groups of goats in Benin with a high level of
interbreeding, particularly in GSZ. However, although the
indigenous goat population of Benin is highly diverse, the
pressure of poorly planned and controlled crossbreeding might
threaten the sustainability of goat farming systems. With the

current pressure of climate and societal changes, any threat to
local goat resources should be prevented more than ever.
Measures for the conservation and sustainable management of
indigenous goat resources need to be taken involving the farmers
who are the owners of these animal genetic resources. For
instance, sensitization and training sessions could be
organized to raise the awareness of farmers on the need to
maintain farm animal genetic resources, to show them the
importance and necessity of monitoring and organizing
reproduction in their herds, and to remind them or strengthen
their knowledge of the qualities of local breeds such as the
trypanotolerance and prolificacy of the Djallonké goats with a
view to establishing purebred breeding. In addition, the Beninese
government should, in the long term, introduce breeding laws
and policies to control the movement of animals both at the
borders and within Beninese localities. Finally, conservation
programs for the local breeds should be urgently set up.

Data availability statement
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the article/Supplementary Materials, further inquiries can be
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TABLE 5 Mean, minimum, and maximum of ancestral proportions (estimated in structure) for the clusters inferred with the unsupervised clustering in DAPC in the
sampled goat population (N = 954).

Ancestral populations Statistics Clusters

C1 C2 C3 C4

(n = 208) (n = 292) (n = 239) (n = 215)

Djallonké goat Mean (%) 73.79 37.27 71.18 21.35

Minimum (%) 7.00 2.20 3.90 2.30

Maximum (%) 98.10 96.30 97.70 94.60

Sahelian goat Mean (%) 26.21 62.73 28.82 78.65

Minimum (%) 1.90 3.70 2.30 5.40

Maximum (%) 93.00 97.80 96.10 97.70

TABLE 6 Genetic diversity parameters of the inferred clusters from the Beninese goat population (N = 954).

Clusters Within clusters Between clustersa

n Na Nae He Ho FIS C1 C2 C3 C4

C1 208 8.92 3.43 0.64 0.65 −0.01 0.10 0.08 0.10

C2 292 10.08 3.77 0.68 0.67 0.01 0.05 0.09 0.09

C3 239 9.25 3.51 0.65 0.65 0.002 0.04 0.04 0.14

C4 215 9.75 3.77 0.69 0.67 0.03 0.04 0.04 0.06

Mean 11.25 3.93 0.69 0.66 0.04

n = number of individuals analyzed, Na = number of alleles, Nae = effective number of alleles, He = expected heterozygosity, Ho = observed heterozygosity, FIS = individual inbreeding

coefficient.
aFST below the diagonal and Nei’s genetic distance above the diagonal.
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Breeding programs involving either centralized nucleus schemes and/or
importation of exotic germplasm for crossbreeding were not successful and
sustainable in most Africa countries. Community-based breeding programs
(CBBPs) are now suggested as alternatives that aim to improve local breeds
and concurrently conserve them. Community-based breeding program is
unique in that it involves the different actors from the initial phase of design up
until implementation of the programs, gives farmers the knowledge, skills and
support they need to continue making improvements long into the future and is
suitable for low input systems. In Ethiopia, we piloted CBBPs in sheep and goats,
and the results show that they are technically feasible to implement, generate
genetic gains in breeding goal traits and result in socio-economic impact. In
Malawi, CBBPs were piloted in local goats, and results showed substantial gain in
production traits of growth and carcass yields. CBBPs are currently being
integrated into goat pass-on programs in few NGOs and is out-scaled to local
pig production. Impressive results have also been generated from pilot CBBPs in
Tanzania. From experiential monitoring and learning, their success depends on
the following: 1) identification of the right beneficiaries; 2) clear framework for
dissemination of improved genetics and an up/out scaling strategy; 3) institutional
arrangements including establishment of breeders’ cooperatives to support
functionality and sustainability; 4) capacity development of the different actors
on animal husbandry, breeding practices, breeding value estimation and sound
financial management; 5) easy to use mobile applications for data collection and
management; 6) long-term technical support mainly in data management,
analysis and feedback of estimated breeding values from committed and
accessible technical staff; 7) complementary services including disease
prevention and control, proper feeding, and market linkages for improved
genotypes and non-selected counterparts; 8) a system for certification of
breeding rams/bucks to ensure quality control; 9) periodic program evaluation
and impact assessment; and 10) flexibility in the implementation of the programs.
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Lessons relating to technical, institutional, community dynamics and the innovative
approaches followed are discussed.
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1 Introduction

The failure of centralized nucleus breeding schemes and
crossbreeding programs for small ruminants has called for a
mindset shift for sustainable options of genetic improvement in
low input systems. Recently, a more participatory approach started
gaining global interest (Mueller et al., 2015). Called “community-
based breeding,” it combines farmer training to improve selection
methods, pooling community flocks to create a larger gene pool
from which breeding animals can be selected, technical support to
provide farmers with information on breeding options, data
collection and analysis to evaluate individual animal
performance. This approach is inherently sustainable as it
engages the communities, hence supports local-level decision
making, focuses on locally adapted indigenous breeds, considers
the constraints that smallholder farmers face and empowers farmers’
organizations (cooperatives) in low input systems.

Genetic improvement of livestock is often viewed as a complex
process that requires technical and organizational sophistication. In
Europe, animal breeding has been traditionally supported by the
State where large national breeding programs have been
implemented. Currently, these programs are mostly run and
financed by farmer cooperatives/breeds’ associations and include
data recording and processing, and the evaluation of the genetic
merit of individual animals. In developing countries, the appropriate
infrastructure to implement such programs is largely unavailable.
Therefore, past attempts to replicate developed-country approaches
often mismatched goals and targets, could not fit into low-input
systems with many producers each owning small flock sizes, and
have resulted in little success.

Community-based breeding programs cover a range of
situations (e.g., Sölkner et al., 1998; ICAR-FAO, 2000; Haile
et al., 2018) but typically target low input systems and farmers
within limited geographical boundaries having a common interest to
work together to preserve and improve their genetic resources
(Mueller et al., 2015). They focus on indigenous stock and
consider farmers’ needs, views, decisions and active participation,
from inception through to implementation, and therefore provide a
participatory and bottom-up approach. Their success is based upon
proper consideration of farmers’ breeding objectives, infrastructure,
participation, and ownership (Sölkner et al., 1998; Wurzinger et al.,
2011; Mueller et al., 2015; Haile et al., 2020). In low input small
holder production systems, flock sizes are typically small, and this
makes the design of conventional breeding programs difficult and
there is a danger of inbreeding. Pooling flocks together, which is
done in community-based breeding programs (CBBPs), helps avert
the challenge.

In 2009, the approach was introduced to Ethiopia by the
International Center for Agricultural Research in the Dry Areas
(ICARDA) in partnership with the International Livestock Research
Institute (ILRI), Austria’s University of Natural Resources and Life

Sciences (BOKU), and the Ethiopian National Agricultural Research
System. In Ethiopia, the implementation of CBBPs started with
4 communities representing different breeds and productions
systems. These pilot CBBPs have since expanded to include more
than 130 communities. Though implemented at a pilot scale in
Ethiopia, the CBBPs have resulted in quantifiable genetic gains and
impacted the livelihoods of rural communities (Haile et al., 2020).
There are also on-going breeding programs for local goats of Malawi
and Tanzania which have generated similar gains in goats from four
and three communities, respectively (Kaumbata et al., 2020). The
approach has also been introduced to other countries including,
Burkina Faso, Iran, Liberia, South Africa, Sudan, and Uganda.
Currently, CBBPs focusing on local genotypes are being
advocated as the strategy of choice for genetic improvement of
sheep and goats (Sölkner et al., 1998; Kosgey and Okeyo, 2007;
Mueller et al., 2015; Haile et al., 2019, 2020).

Designing a CBBP is much more comprehensive than simply
applying genetic theories to achieve increased productivity. Its
implementation combines infrastructure, capacity development of
national partners, community development, and the opportunity to
improve farmer livelihoods by creating integrated processes for
productive breeding of adapted animals and the markets for their
products. By working with local breeds, CBBPs offer a framework to
achieving goals of breed improvement and conserving the animal
genetic resources. Several studies have been conducted to design
suitable CBBPs for smallholder farming systems in Ethiopia, Malawi
and Tanzania (Gizaw et al., 2009; Haile et al., 2018; Kaumbata et al.,
2020).

These pilot schemes need to be scaled out to have significant
impact on the lives of larger populations. For this to happen, the
substantial knowledge and experience gained in these pilots and the
lessons learnt, need to be communicated and shared to guide new
CBBPs and sustain existing programs. In this paper the essentials for
success of CBBPs, lessons learned and innovations by communities
are highlighted. The knowledge gaps which need to be addressed are
also identified with specific knowledge users in mind.

2 How community-based breeding
programs were implemented in the
Ethiopian, Malawi and Tanzania pilots

CBBPs combine selection of breeding rams/bucks based on
systematic recording of important flock productivity
improvement parameters, such as body weight at 4–6 months
and lambing/kidding interval, with expert local opinion as to
what constitutes a good ram/buck and communal use of selected
rams/bucks. Farmers who wish to participate are organized into
sheep/goat breeding associations, many of which evolve into formal
cooperatives with a prominent financial profile (Haile et al., 2018).
Local enumerators are recruited to help with data collection, which
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is then managed in a database and analyzed by scientists from local
research centers to inform selection decisions. Extension staff are
involved and they are educated on the required technical aspects to
facilitate successful implementation of CBBPs.

All animals in a community are treated as one flock and two
stages of ram/buck selection are usually applied: initial screening
when traditionally sales of young lambs/kids occur (at 4–6 months
of age) and final selection of yearling for admission to breeding. All
young rams/bucks are collected at a central location in each
community on an agreed screening date. Selection is then carried
out based on the estimated breeding values or on selection indexes
constructed to improve agreed multi-trait breeding objectives.

A breeding ram/buck selection committee comprised of
3–5 members that are elected by the community is involved in
the selection. If, for example, 15 rams/bucks were to be selected from
100 candidates, 20 would be pre-selected based on their breeding
values and the committee will then rank the selected rams/bucks and
cull the last five. To arrive at the decision, the committee examines
the conformation, coat colour, presence or absence of horns, horn
type, tail type and other criteria. The number of rams/bucks to be
selected depends on the number of ewes/does available for mating
while accounting for the replacement rates. Unselected rams/bucks
can be castrated, fattened and marketed for meat production. Ram/
buck rotation can be practiced in order to avoid inbreeding as these
rams/bucks can only stay and be used for breeding in the community
for amaximum of 3 years and should be culled once its daughters are
ready to be mated. The culled rams/bucks if still young can be sold as
a breeding animal to other communities. In Ethiopia, the pilot
CBBPs have been designed and implemented since 2009 by a team of
researchers from ICARDA, ILRI, BOKU University, Austria and
Ethiopian National Agricultural Research Centers. The pilot CBBPs
were supported through various projects funded by multiple donors.
The day-to-day follow-up of these CBBPs was done by the research
and extension departments of the Ethiopian government. For
Tanzania, the field implementation was supported by the
government of Tanzania through the Tanzania Livestock
Research Institute (TALIRI) and the local government authority
of the respective districts where the program was implemented. For
Malawi, pilot implementation by researchers from Lilongwe
University of Agriculture and Natural Resources (LUANAR)
started in 2015 with support from USDA, and backstopped by
BOKU University. Department of Animal Health and Livestock
Development and Department of Agriculture Research Services of
Malawi collaborated in the project implementation.

3 Results from community-based
breeding programs in Ethiopia, Malawi
and Tanzania

In Ethiopia, there are more than 130 CBBPs with around
100 households each. As CBBP is a relatively new strategy for
genetic improvement of small ruminants, the last 10 years have
been spent on testing the functionality of the strategy and we have
been refining and customizing the program to different species
(sheep or goats), breeds, agro-ecologies and production systems. In
Tanzania, we have started with 3 pilot CBBPs containing between
30 and 40 indigenous goat keeping households each. In Malawi, four

CBBPs were established in 2013 with financial support by USDA.
We have evaluated the biological and socio-economic performance
of CBBPs in Ethiopia, Malawi and Tanzania and below are the
findings as reported in Haile et al. (2020) and Kaumbata et al. (2020).

• Sheep/goat farming, once a side activity for the farmers in
these countries, is now the main business and the linchpin of
their livelihoods.

• High demand for breeding males from neighboring
communities, other government programs and NGOs in all
sites, provides the foundation for specific business models
around production of breeding sires and semen for artificial
insemination.

• In Ethiopia, more than 13,000 households in 130 villages
derive direct benefits from the scheme and the emergence
of a functional cooperative society in each village.

• Most of the participating households in Menz (a CBBP site in
Ethiopia) have graduated from the government-run safety net
program that meets short-term food needs through emergency
relief. They now use income from the sale of sheep to meet
their subsistence needs.

• “Best of stock” growing breeding lambs/kids, that were
previously sold and slaughtered (“negative selection”), are
now retained as breeding stock in all communities.

• Increased income from sheep and goat production (an average
increase of 20 percent since CBBP inception in 2009 in
Ethiopia) and increased mutton consumption (now an
average of 3 sheep slaughtered for home consumption per
family per year compared to 1 sheep at the start of the project)
directly linked to CBBP production in Bonga, Horro and
Menz sites in Ethiopia.

• Sheep/goats in CBBPs have shown improved performance,
such as lamb/kid growth rate, lambing/kidding interval,
reduced mortality and attract higher market prices
compared to sheep/goats from non-CBBP farmers in all
communities.

• Most of the established cooperatives have managed to build
capital (e.g., Boka-Shuta cooperative in Ethiopia has about
USD 110,000).

4 Lessons learnt from implementing
community-based breeding programs

4.1 Technical

Breeding objective definition: there are many tools which can
help define breeding objectives of communities, including structured
surveys, choice card experiments, group and individual rankings
(Duguma et al., 2011), bio-economic analyses or combinations of
different approaches. However, given the complexity, resource need
and the ultimate output generated, individual rankings offer the best
option. This is very easy and allows the full participation of owners
in choosing their best and worst animals from their flocks (Mirkena,
2010; Getachew et al., 2020).

Community-based breeding program structures: CBBPs should
be tailored to different production systems. For instance, pastoral
production systems need different schemes to mixed crop livestock
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systems (Getachew et al., 2022). In pastoral areas, the schemes must
consider mobility patterns, larger flock sizes, and climate patterns
leading to breeding objectives focusing on adaptive traits, etc.
Communities with large flock sizes should be treated differently
to those with small flock sizes. In the latter, households can pool
their animals and selection can be organized from many flocks.
However, in situations where individual household flock size is large,
within flock (household) selection can be designed. Where some
households keep large flocks, it may be difficult to identify and
record all animals. In such cases, elite herds can be selected to serve
as sires of dams based on interest of herd owners and individual
animal performance. Other specific situations such as where flocks
mix in communal grazing areas or where sires are separated from the
flocks for various reasons, need to be evaluated as these would entail
different sire use strategies.

Performance and pedigree recording: implementation of CBBPs
should be simplified at the beginning. Selection of sires could start
from simple mass selection where indexes could be constructed for
maximum of three traits based on individual animal performance.
This would be followed by calculating breeding values using
spreadsheets (e.g., excel), after correcting for known variations.
When experience is developed, selection can be based on
estimated breeding values. BLUP breeding values are usually
calculated considering the sire as “unknown” and therefore
breeding values (BV) calculated with larger error variances and
genetic trend will be underestimated. Henderson (1988) showed that
by identifying possible sires and assigning to each a mating
probability, one could estimate BV with greater accuracy. In
many CBBPs pedigree databases, sire identification is uncertain
rather than completely unknown. Farmers may be requested to
provide possible sires with a mating probability estimation enabling
the use of Henderson’s method to calculate BVs. The general lesson
is that, inaction rather than the absence of perfect data is the major
constraint in livestock breeding (Rege et al., 2011).

Performance and pedigree data recording is feasible in CBBPs
(Gizaw et al., 2014). However, the characteristics and limitations of
low input systems need to be considered. The general advice is, keep
it simple and sustainable; agree on few/key economically important
traits, especially at the start and align recording to routine practices
(weaning, vaccination, sales, etc.).

Enumerators are very crucial for data collection and day to day
follow-up of the breeding programs. Also, the extension is influential
in facilitating the implementation of these programs. The extension
staff are responsible for the provision of extension services and, they
play a critical role of linking farmers with researchers (Kaumbata
et al., 2020). Furthermore, public support is crucial for sustainability
of the breeding programs. Governments should invest on some of
the complementary services and hire enumerators over a longer
period until the community becomes economically viable to absorb
their costs.

Capacity development of the different actors, mainly farmers is
extremely important for the success of CBBPs. Farmers need to be
trained on basic animal husbandry, including healthcare, proper
feeding, and selection practices. Cooperative leaders could also be
trained on leadership, financial management and bookkeeping.
Tailored trainings need to be organized for different actors in
CBBP. Local researchers must be trained on implementation of
CBBPs; focusing on data collection, management and analysis,

animal ranking and sire use and mating plans; reproductive
management and application of reproductive biotechnologies;
flock health monitoring and health certification of the improved
sires. Breeding programs need long-term commitment and support
from different actors. Technical support from research and
extension partners mainly in data management, analysis and
feedback of estimated breeding values is crucial.

4.2 Institutional

Establishment of breeders’ cooperatives with clear by-laws and
formal organizational structures are crucial for success of CBBPs.
Although not uniform in all CBBP sites, groups of committees
manage the cooperatives. These include, a main committee with a
chair, a procurement committee, a control committee, a credit and
savings committee and a capacity building committee. The
committees are responsible for effective functioning of the
breeding cooperatives and roles and responsibilities are shared
among the committees. Overall, CBBP operation is managed by
the cooperatives. Formally registered cooperatives are governed by
their by-laws and members abide by their rules. Legally registered
cooperatives had better management and financial resources, better
selection and management of breeding rams (Gutu et al., 2015). The
governments are keen to organize farmers and to support
cooperatives. Formally registered cooperatives have access to free
auditing services, training and support for financial record-keeping
from district cooperative promotion offices.

Proper organizational link among the different actors in CBBP is
crucial. In CBBP, as indicated earlier, there are cooperative
committees at community level; team of researchers with team
leader at research sites; and the CGIAR team. The day-to-day
follow-up of CBBP including data collection is done by
enumerators. The research team follows the activities on the
ground including compilation of data collected by enumerators
and estimation of breeding values and assist in selection decision.
The research team also liaises with the implementing institutions on
technical and financial matters.

These structures are very useful for close follow up and
sustainability of the CBBPs. The close interaction also helps
develop trust among the partners for similar interventions. The
injection of revolving funds from projects, could help the
cooperatives to purchase young sires that can be used for
breeding. It also means that if a member needs cash, they could
sell their young animal to the cooperative before selection decision is
made so that the best breeding animals are retained in the
community.

4.3 Community issues

Like any enterprise, communities need to see benefits from
CBBPs for them to fully engage. Therefore, it is important that such
schemes are properly planned with real benefits to farmers. Within-
breed selection schemes will result in genetic improvement,
improved productivity and profitability if properly executed
(Haile et al., 2020). However, it should be noted that short-to
perhaps medium-term returns on investment will most likely

Frontiers in Genetics frontiersin.org04

Haile et al. 10.3389/fgene.2023.1119024

56

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1119024


TABLE 1 Major requirements for setting up community-based breeding programs and support services needed.

Components of the
community-based
breeding program

Existing knowledge Knowledge we have
generated

Knowledge gaps in the
existing interventions

Who are the potential
institutions/
organizations (national/
subnational) to be
engaged in designing/
implementing the
actions

Definition of breeding objectives
and selection traits

Tools to undertake interviews,
choice experiments, group
ranking experiments

Own flock ranking experiment
(Duguma et al., 2010)

Rapid method to determine
initial selection traits to be
followed by more
comprehensive approach to
breeding objectives

Lead: Ethiopia Livestock
Development Institute (ELDI);
Tanzania Livestock Research
Institute (TALIRI); Lilongwe
University of Agriculture and
Natural Resources (LUANAR)

Site level: Ethiopia Regional and
Federal Agricultural Research
Institutes (ERFARI); Tanzania
Regional Administration and
Local Government Authorities
(TRALGA); Local and
International NGOs that
promote livestock livelihood
projects

Breeding structures for different
systems

Centralized nucleus breeding
structures

Community-based breeding
structures (Mirkena et al., 2012;
Haile et al., 2018; Jembere et al.,
2019; Getachew et al., 2020)

Refining breeding structures for
pastoral production systems
with large flock sizes

Lead: ELDI; TALIRI; LUANAR

Site level: ERFARI; TRALGA;
NGOs

Data recording and management
system

Development of database for
data recording has been a
challenge. Many efforts did
not succeed

Dtreo, data recording and
management flatform (https://
dtreo.io/)

Inbuilt system for estimation of
breeding values and ranking of
sires

Lead: ERFARI; TALIRI;
LUANAR

Dissemination of improved
genetics

Distribution of improved sires
to the base population

Methodological framework for
optimized dissemination of
improved genetics (Mueller et al.,
2019)

Field testing of the framework
is going on; to have the
dissemination program
conceptualized and
implemented by the
communities

Lead: Ethiopia Ministry of
Agriculture, extension division;
TALIRI; Malawi, Department of
Animal Health and Livestock
Development (DAHLD)

Site level: District level livestock
bureau, local enumerators and
extension staff

Reproductive biotechnology as a
tool for dissemination of
improved genetics

Seasonality and rhythms of
reproduction of indigenous
sheep and goat breeds in their
homelands

Response to potential
synchronization protocols (Rekik
et al., 2016); Validation of a simple,
cost-effective oestrous
synchronization
protocol—Organization and
functioning of low-infrastructure
artificial insemination mobile
laboratories (Besufkad et al., 2020)

Easy methods for cooling
semen to reach distant
communities

ERFARI; TALIRI; Tanzania
National Artificial Insemination
Center (NAIC)

Synchronizing artificial
insemination data with the core
breeding program data

ELDI; TALIRI; LUANAR

Certification of breeding sires
based on genetic merit,
reproductive potential and
health status

Regional animal production and
animal health divisions

Breeders cooperative
establishment

No formal association Legal breeders cooperative with
clear by-laws (Gutu et al., 2015)

Build their capacity; access to
rural micro-financing

National regulations: Ethiopia
Ministry of Agriculture,
cooperative office; Tanzania
Cooperative Development
Commission (TCDC); Malawi
Ministry of Trade and Industry

Site level: District Office of
cooperatives

Institutionalization of the
breeding program

Centralized breeding
programs run by government

Breeding programs run by
community through legal breeders
cooperatives, supported by NARS
and the extension division (Haile
et al., 2018, 2020)

Experiences with the pilot
schemes taken to scale;
Strengthening of breeders
cooperatives to make them a
viable commercial enterprise

Lead: ELDI; TALIRI; LUANAR

Site level: ERFARI; TRALGA,
Local enumerators and
extension staff in Ethiopia,
Tanzania and Malawi

(Continued on following page)
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come from non-genetic gains, such as improvement in feeding,
disease control and better reproductive management (for example,
making breeding sires available in the required number to serve all
females will result in more lambs/kids) and market linkages.
Implementation of the CBBPs is also contributing to managing
crosscutting issues including environmental conservation in the face
of climate change mitigation and gender equity (Kaumbata et al.,
2020). Therefore, genetic improvement effort should be part of an
overall livestock development agenda across the whole value chain.

5 Innovations by the communities

CBBPs are implemented through clearly defined guidelines
(Haile et al., 2018). However, in implementing CBBPs,
communities innovate and do things differently and efficiently to
strengthen their operations. Some examples of innovative
approaches followed by communities in different CBBPs are
summarized below.

• As indicated earlier, some of the cooperatives have built capital
through sale of breeding sires and culled animals. This capital
is being used for different purposes including uplifting the
financial status of the members and others. They have
therefore devised a system where they advance credit to
their members and other cooperatives (https://bit.ly/
2PpG4Xr).

• In Bonga (Ethiopia) CBBPs, the cooperative members agreed
and are in the process of forming a breeding nucleus for elite
ewes. They knew that not all ewes are of the same genetic merit
and have started identifying best ewes based on their own
criteria and will only allow breeding rams produced from these
elite ewes to be used in the communities. The elite ewes shall
be retained by their respective owner farmers and will not
move into a central station. They are discussing mechanisms
to reward farmers whose ewes are selected. Although the

initiative is from the farmers, the research team will
support the establishment of the nucleus with performance
records derived from the breeding database. Hence, farmers
selection criteria will be augmented with known performance
data. Selection on the dam side has been found to result in
genetic gain in CBBPs (Jembere et al., 2019), therefore, the
breeder cooperatives are moving towards more effective
selection.

• The cooperative leaders have established sub-groups based on
neighborhoods and any information from both the research
team and extension is channeled through the sub-groups to all
the members and this ensures easy and reliable information
flow and action.

• Ram/buck sharing and management has been one of the
challenges in CBBPs. However, once bought by the
cooperatives, the communities have developed different
systems of sharing males and management of the potential
candidate males. For example, in Bonga (Ethiopia), following
the purchase of potential candidate rams, the cooperative
leaders decide who keeps the ram depending on the
number required in the mating group, individual
experience in managing rams etc. The farmer manages the
communal rams for the period the ram is in service, and
thereafter when the ram is sold the profit realized from its sale
(i.e., the difference between the cost when the young ram was
bought and when sold) is shared between the farmers and the
cooperative. Similar management of bucks was adopted in
Malawi CBBP sites.

• Close follow-up is an important element for a successful
CBBP. This is done by the research and extension team.
However, in one of the sites (Bonga, Ethiopia) the
cooperative leaders also took initiative to supervise their
members every month and provide feedback to the research
center, enumerators and their members.

• In the Abergelle (Ethiopia) goat CBBP, each CBBP participant
operates a savings bank account. All members unanimously

TABLE 1 (Continued) Major requirements for setting up community-based breeding programs and support services needed.

Components of the
community-based
breeding program

Existing knowledge Knowledge we have
generated

Knowledge gaps in the
existing interventions

Who are the potential
institutions/
organizations (national/
subnational) to be
engaged in designing/
implementing the
actions

Markets for breeding and meat
animals

Informal markets which are
inefficient

Evidence generated on the benefit of
market facilities and market
information system (Kassie et al.,
2020) to marketing of small
ruminants; evidence on policy
induced price distortions (Kassie
et al., 2019)

Marketing models tailored to
different goat and sheep
markets

Regulations: Ministry of
agriculture/Livestock, marketing
department; Site level:
Stakeholder communities of
practice under development

Evaluation of breeding programs No formal comprehensive
evaluation framework
available in Ethiopia

Framework and evidence on both
biological and socioeconomic
evaluation of CBBPs (Haile et al.,
2018, 2019; 2020; Lamuno et al.,
2018)

Incorporation of the evaluation
framework in the national
breeding programs

Lead: ELDI; TALIRI; LUANAR

Site level: Ethiopia regional and
federal agricultural research
institutes; TALIRI zonal centers;
LUANAR CBBP sites
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agreed to save ETB 200 (equivalent to US$ 5) for every buck
kid sold. This has cultivated a saving culture in the
community.

• Integration of CBBPs into local or community leadership
systems. In the beginning it is hard to have every farmer in
the community to accept the idea, something which might
be a hinderance in progress of the program. Some farmers
may not be willing to cull their poorly performing animals
and use those selected by the committee. In the
communities in Tanzania through the involvement of
village leaders, rules for successful CBBPs are set and
agreed in village meetings and are reinforced locally.

6 Success factors

Based on the experience and lessons learnt from the
implementation of CBBP pilots in the region, critical factors for
the success of CBBPs were identified.

1. Identification of the right beneficiary following a clear
guideline on who should be a member. Some essential
factors to consider in selecting target communities for a
CBBP as detailed in Haile et al. (2018) and include: a)
External factors (market access, potential negative and/or
positive impacts by other projects, synergies with other
projects, government support, NGO support and
availability of inputs and services); and b) community-
related factors (willingness to participate in the program,
prioritizing the species of interest, existence of communal/
shared resources and/or institutional arrangements, presence
of community leaders (elders) and champion farmers/
pastoralists who are critical in socio-cultural structures in
the region).

2. Institutional arrangements including the establishment of
breeders’ cooperatives to support functionality and
sustainability of the programs. There must be clear
working modalities and implementation structures among
the different CBBP actors, as detailed in Section 4.2. Legal
cooperatives with clearly defined by-laws must be established
for each CBBP.

3. Capacity development of the different actors on basic animal
husbandry, breeding practices, estimation of breeding values
and financial management. Capacity development of the
different actors is of utmost importance for the success of
CBBPs. The breeding programme should be supported by
comprehensive extension work to train the farmers and
boost their experiences and skills in small ruminant
production techniques (Yapi-Gnaore, 2000). During that
period, farmers should be informed of the long-term
benefits they could derive from breeding programs and
activities such as performance recording. Too little
investment in expertise has contributed to low efficiency
and in some cases failure of breeding programs and absence
of science-based genetic improvement practices (Gizaw
et al., 2018).

4. Breeding programs cannot be implemented without
performance and pedigree recording. A mobile application

for data recording and management would allow accurate
recording and ease the job of the enumerators. Given the
challenge of internet connection in villages of developing
countries, an offline mobile application for data collection
and management is vital. The International Center for
Agricultural Research in the Dry Areas, in partnership
with AbacusBio (https://abacusbio.com/), has established a
cloud-based digital genetic database and data capture
platform (DTREO) for Ethiopia, Tanzania and India. The
platform captures and stores data and is designed for offline
data capture in situations where internet connectivity is poor.
Such a data system could be used.

5. Framework for dissemination of improved genetics and up/
out scaling strategy. For CBBPs to have significant impact
they need to scale. Improved genetics produced in CBBPs
need to reach the production/base population. This requires
a clear design as suggested by Mueller et al. (2019).

6. The expansion of a delivery system based on service
provision in reproductive technologies such as artificial
insemination (AI) to support the up/out scaling strategy,
diet improvement at critical stages of the reproductive cycle
and ultrasound-based pregnancy diagnosis mobile units to
serve selection of the females for AI and to down-control
infertility by identifying and culling problematic females.

7. Support for long periods by committed technical staff mainly in
data management, analysis and feedback of estimated breeding
values. We have clearly seen over the years that CBBPs that are
supported and implemented by committed research and
extension staff are the ones that succeed. While CBBP is a
low investment intervention, it needs very close follow-up for
the community to take up the challenge of ultimately running
the programs.

8. Pro poor livestock development needs to consider the whole
value chain development. This includes support in
complementary services such as disease prevention and
control, feeding interventions, market linkages for meat and
breeding animals.

9. To ensure quality control, a system for certification of improved
rams/bucks by an authorized body is needed. The quality and
value of selected sires is the backbone of breeding programs. The
vision is to gradually move from producing genetically
improved sires to establishing a reliable stud where breeding
excellence is certified. Emerging breeding programs are
hindered and can collapse prematurely when farmers cannot
access superior males of good breeding quality, reproductive
and health standard.

10. Evaluation of the program and assessment of impact of the
scheme. An integral component of a functional CBBP is
monitoring technical and management issues related to
the implementation of the breeding program; whether
outputs, outcomes and impacts are achieved or achievable;
and whether mechanisms to ensure sustainability of the
breeding program are in place.

Table 1 summarizes the major requirements for setting up
CBBPs and the support services that are needed. It also
highlights the available knowledge, what needs to be done and
the suggested institution to lead it.
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7 Conclusion

Community-based breeding program is a new approach that has
stimulated global interest. It has been implemented in Ethiopia since
2009 and scaled to Malawi and Tanzania as an alternative to the
often-unsuccessful centralized nucleus breeding programs. Different
schemes were designed and implemented in different production
systems in the countries. The results indicated that measurable
genetic gain could be achieved for important breeding goal traits
and CBBPs resulted in socio-economic benefit to the communities.
For the success of such schemes, we have identified factors that need
to be followed. Additionally, there are several lessons drawn from
these schemes and, innovative approaches were also followed by
some communities which either solved emerging problems or
helped to ensure sustainability of such schemes.
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Pig productivity is very low in the Eastern Himalayan hill region due to the poor
performance of local pigs. To improve pig productivity, it was decided to develop a
crossbred pig of NiangMegha indigenous and Hampshire as an exotic germplasm.
The performance of crossbred pigs with different levels of Hampshire and
indigenous inheritance—H-50 × NM-50 (HN-50), H-75 × NM-25 (HN-75), and
H-87.5 × NM-12.5 (HN-87.5)—was compared for their performance to find a
suitable level of genetic inheritance. Among the crossbreds, HN-75 performed
better in terms of production, reproduction performance, and adaptability. Inter se
mating and selection were carried out on six generations of HN-75 pigs, and
genetic gain and trait stability were evaluated and released as a crossbred. These
crossbred pigs attained body weights of 77.5–90.7 kg by 10months of age, with
FCR of 4.3:1. Age at puberty was 276.66 ± 2.25 days, and average birth weight was
0.92 ± 0.06 kg. Litter size at birth and weaning were 9.12 ± 0.55 and 8.52 ± 0.81.
These pigs have good mothering abilities with a weaning percentage of 89.32 ±
2.52%, good carcass quality, and consumer preference. The lifetime productivity
for an average of six farrowings/sow showed a total litter size at birth of 51.83 ±
1.61 and total litter size at weaning of 47.17 ± 2.69. In a smallholder production
system, the crossbred pigs showed a better growth rate and a higher litter size at
birth and at weaning than average local pigs. Hence, the popularization of this
crossbreedwould enhance the production, productivity, livelihood, and incomeof
the regionʼs farmers.

KEYWORDS

crossbred pig, Niang Megha, Hampshire inheritance, performance, Eastern Himalayan,
hill ecosystem

1 Introduction

The Eastern Himalayan hill region of India has a distinct ecosystem, topography, and
biodiversity. This subtropical hill region has less than 15% cultivable land; almost 90% of
the area is covered by evergreen forest (Poffenberger et al., 2007) and mostly inhabited
by tribal ethnicities (Govt. of India, 2011). Livestock plays a crucial role in the nutritional
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security, income, and livelihood of the farmers in the region.
Among the various forms of livestock, pigs are the most popular
and valued species and are an integral part of the diversified
resource-poor agriculture in the region, especially among the
tribal communities (Rangnekar, 2006; Banik et al., 2013; Jain,
2016). Pigs have a special significance in the socio-economic
status of the farmers (Kadirvel et al., 2013). Pork is the most
preferred meat among the population; this region has much
higher pork consumption than the rest of the country
(Kumaresan et al., 2006a). Due to the importance of pig in
this region’s dietary habits, almost every rural household rears
two to three pigs as a livelihood resource (Kadirvel et al., 2013).
However, pigs are reared under a smallholder low-input
production system which utilizes locally available resources
like agricultural bio-products and kitchen wastes as they feed
off less than 1 ha of land (Kumaresan et al., 2007; Haldar et al.,
2017; Kadirvel et al., 2017). The total pig population of India is
9.06 million, of which 7.16 million (79.03%) are contributed by
indigenous and local pigs (Livestock census, 2019). The north-
eastern states of India constitute almost half the of country’s total
pig population: 46.80% (Basic Animal Husbandry Fisheries
Statistics, 2019). Low quality local pigs comprise 67.90% of the
region’s total pig population. Although a considerable pig
population is present there, the productivity of the pigs is low
due to the poor productive and reproductive performance of local
pigs (Kadirvel et al., 2021). In order to improve pig productivity
in the region and the preference for crossbred pigs among local
farmers, a project was developed to crossbreed pigs with the
Niang Megha pig as indigenous germplasm for better adaptability
and Hampshire as an exotic germplasm for enhanced
productivity in the hill ecosystem of the North-Eastern Hill
(NEH) region of India. The indigenous pig Niang Megha was
selected for the study since they have evolved over many years
and are well suited in the hilly, low-input traditional tribal
production system (Rajbongshi et al., 2017). Hampshire has
been used extensively for breeding purpose for up-grading
local pigs as it has well-balanced productive and reproductive
performance in tropical humid environments (Kumaresan et al.,
2006b; Oke et al., 2006), as well as the preference for black
coloured pigs among the farmers. The objective of this study
was to develop a crossbred pig with indigenous and Hampshire
inheritance. Planning for the development of the crossbred pig
was initiated in 1998—a crossbreeding program with rigorous
selection. Further study was conducted to evaluate the
performance of different traits of economic importance
(including both productivity and adaptability traits), which
resulted in the development of a crossbred pig named
“Lumsniang,” based on the locality and its features.

2 Materials and methods

2.1 Study location

Experiments I and II were conducted in the pig breeding farm
of the ICAR Research Complex for the NEH Region. The farm is
located at 24.58°N to 26.07°N latitude and 89.48°E to 92.51°E
longitude with an altitude of 1,010 m above mean sea level.

Annual minimum, maximum, and mean temperatures are
13.06°C, 25.46°C, and 19.26°C, respectively. Relative humidity
varies from 65% to 81.70% with an average of 72.24%.
Experiment III was conducted in a smallholder production
system with farmers having experience of rearing low-quality
pigs. The agro-climatic conditions were similar, and the
experiments were conducted in the same region of nearby
villages/cluster of the institute. The study site is located
1,005–1120 m above mean sea level, which is in a high rainfall
area of 2,239–2,953 mm annually. A subtropical climate prevails
in the study area, with annual maximum and minimum
temperatures ranging from 21.1 to 29.2°C and 7.0 to 20.9°C,
respectively. In the study area, pig husbandry plays a significant
role in supporting the social, cultural, and economic livelihood of
the tribal people in the location. The pigs are mostly reared under
a traditional smallholder low-input production system where
every tribal household rears two to three average-quality pigs
in their backyard, as reported previously (Kadirvel et al., 2017).
Rice and pork are the staple foods in the study location; hence,
pork is in great demand as a meat.

2.2 Management system

The pigs in the study were reared under an intensive
management system and housed according to their sex, age, and
physiological condition. Pregnant sows were transferred to
farrowing pens 1 month before farrowing. Mature boars were
kept in individual pens. Piglets were brooded and fed commercial
mesh ad libitum as per standard recommendation—pig starter feed
containing 22% crude protein and 3300 ME/kg. Protein contents of
18% for weaned piglets up to 3 months of age, 15% for growers, 16%
for breeding boars and pregnant sows, and 14% for finisher/dry sows
were incorporated in the ration. Drinking water was provided ad
libitum throughout the period. Piglets were weaned at 56 days old.
Iron injections were given on the 4th and 14th days, deworming and
vaccination were carried out regularly, and other therapeutic
treatments were provided as needed. Mating was carried out
through natural service.

FIGURE 1
Indigenous breed: adult Niang Megha pig.
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2.3 Breeding management

Niang Megha (NM), a registered small-sized indigenous breed
of pig having a 35–40 kg body weight at 10 months of age, was used
as the dam line (Figure 1). Some 40 pure NMwere purchased in a sex
ratio of 1:3 from different parts of its home tract to avoid inbreeding
based on pedigree, phenotypic, and morphometric characteristics
true to NM; they were maintained at the institute’s pig breeding
farm. These indigenous pigs have poor productive and reproductive
performance. Similarly, 40 pure Hampshire pigs for the sire line
were procured from pig breeding farm at Kyrdemkulai, Government
of Meghalaya, and maintained under the same conditions. A group
of selected NM gilts was bred with pure Hampshire boars to achieve
50% Hampshire-inheritance crossbred pigs. To select male and
female F1, male animals were selected based on weaning weight
and 8-month body weight, in a two-stage sequential selection.
Female animals were selected on the dam’s litter size at birth
(>7) and the weaning weight and number of functional teats (at
least six pairs of functional teats). The progeny of F1 crossbred HN-
50 (50%H × 50%NM) gilts were again backcrossed with Hampshire
boars to produce crossbred HN-75 (75% H, 25% NM) pig. Pure-
breed Hampshire boars were utilized to produce crossbred HN-87.5
(87.5% H and 12.5% NM). A 1:3 sex ratio of male to female animals
was maintained to avoid inbreeding effects in the farm. The
crossbred pigs with the desired level of exotic inheritance were
maintained by inter se mating following strict selection for six
generations for stabilization of (re)productive performance. The
cross-breeding strategy followed in the present study is depicted in
Figure 2.

2.3.1 Experiment I: Comparative performance of
crossbred pigs with different levels of genetic
inheritance

The performance of NM and crossbred pigs with different levels
of Hampshire inheritance was compared with respect to their
productive and reproductive performance, as well as their
incidence of disease. The study was conducted to identify a
suitable level of exotic inheritance for adaptability and better
performance in the hill ecosystem. Data for this comparative
study were obtained from pigs of the four genetic groups—NM,
HN-50, HN-75, and HN-87.5—spread over 7 years from 1998 to
2006. A random sample of 55 piglets from each genetic group was
selected for productive performance. From each genetic group,
25 random sows were selected to study reproductive performance
at puberty, first conception, inter-farrowing interval, and litter size at
birth and at weaning. A total of 30 random adult pigs from each
genetic group were slaughtered at 10 months old over the years to
study carcass traits. During this period, the incidence of different
diseases was also recorded for each genetic group. The medicine and
veterinary cost per year was also calculated by dividing the total
expenditure by the number of pigs in each genetic group. Based on
the phenotypic performance, HN-75 was selected in 2006 for further
improvement.

2.3.2 Experiment II: Inter se mating and evaluation
of selected crossbred pigs

Data were obtained from 240 pigs for production performance
and from 30 breeding sows for reproduction traits over 9 years from
2006 to 2015. The selection of the sows was based on their lifetime
productivity (over six generations) based on the number of piglets
born over their lifetime, litter size at birth, weaning weight, litter
weight at birth, and number of functional teats. Similarly, the
selection of boars was based on phenotypic performance such as
body conformity, presence of well-developed testicles, birth weight,
weaning weight, and individual body weight as per age. The overall
and generational genetic gain of the crossbred variety was estimated
for different productive and reproductive parameters. After stable
performance for 3–4 years in terms of productive and reproductive
traits, the pigs were considered crossbred.

2.3.3 Experiment III: Performance evaluation of
crossbred pigs under a smallholder production
system

To evaluate the crossbreed, farmers rearing average local pigs
were selected from 20 villages; 100 units of the crossbred pig were
established, each unit consisting of two female animals and one male
animal under the smallholder production system. Data were
obtained from a total of 120 piglets for growth performance and
50 sows for reproductive traits over 3 years. The pigs were
maintained in the pen system of housing made of locally
available materials. Pigsties were made of either concrete, wooden
planks, or bamboo poles with a tin roof. These pigs were fed different
levels of concentrate feed/feed ingredients purchased from market,
in addition to local agro-wastes and household kitchen wastes.
Training in modern pig husbandry management with continuous
technological backup was provided to the farmers as well as the
provision of healthcare management. These farmers were also
advised to carry out regular deworming and vaccination and to

FIGURE 2
Crossbreeding program.
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perform improved management practices, including preparation of
low-cost feed formulation with locally available feed resources. The
performance of crossbred piglets was monitored at monthly
intervals to record their health, growth rate, and reproductive
parameters. To compare their performance with existing local
pigs, the same numbers of the latter were selected from different
households in the same clusters/villages. The pig units were visited
by project staff and monitored monthly to record their health,
incidence of diseases conditions, growth rate, and reproductive
parameters. These farmers were also advised to carry out regular
deworming and vaccination and to follow improved management
practices. Market demand as well as consumer preference for
crossbred or average pigs was assessed using a pretested survey
format. The 100 individual farmers interviewed on the market
demand and consumer preference were scored using a scale from
1 (poor) to 5 (excellent).

2.4 Statistical analysis

All the collected data were analysed using SPSS statistical
software 2008 (SPSS, 2008). Multiple ANOVA was performed to
check if the means of various traits and market demand among the
genetic groups were different at the 5% level of significance (p ≤
0.05). For disease incidence, the Kruskal–Wallis H test was
conducted with binary data for significant difference among the
genetic groups. Duncan’s multiple range test was performed to make
all pairwise comparisons among the means of traits of different
genetic groups wherever a significant difference was obtained.

3 Results

3.1 Experiment I: Comparative performance
of crossbred pigs with different levels of
genetic inheritance

The productive performance of NM, HN-50, HN-75, and HN-
87.5 is presented in Table 1. Pre- and post-weaning growth rates
were significantly higher in the crossbred pigs than NM. Among the

crossbreds, HN-87.5 had a significantly higher pre-weaning
(153.57 ± 1.71 g/day) and post-weaning growth rate (332.17 ±
1.27 g/day) than HN-50 and HN-75. Body weight at all age
groups was significantly higher in HN-87.5 than other genetic
groups. HN-87.5 pigs attained the highest body weight of 89.54 ±
0.97 kg at 10 months old, followed by HN-75 (83.92 ± 0.67 kg), HN-
50 (65.21 ± 0.98 kg), and NM pigs (37.63 ± 0.86 kg).

Age at puberty, age at first farrowing, and inter-farrowing
interval increased in the crossbred pigs with increased exotic
inheritance (Table 2). Litter size at birth was significantly higher
(p ≤ 0.05) in HN-87.5 compared to other genetic groups;
however, no significant difference was observed for litter size
at weaning. Hence, HN-87.5 was found to have a significantly
lower weaning percentage than other genetic groups, mainly due
to crushing, which indicates poor mothering ability. HN-75 was
found to have better litter performance than HN-50, although
there was no significant difference. However, traits such as age at
puberty, at first conception, and at first farrowing were
significantly earlier in NM than in crossbred pigs due to
earlier sexual maturity.

The incidence of different diseases as well as mortality patterns
varies with different genetic groups of pigs (Table 3). The incidence
of stillbirth and crushing of piglets was found to be significantly (p ≤
0.05) higher in HN-87.5 pigs than other genetic groups. Similarly,
piglet diarrhoea was found to be significantly (p ≤ 0.05) higher in
HN-87.5 (10.23 ± 0.33%), followed by HN-75 (8.53 ± 0.31%) and
HN-50 (8.24 ± 0.23%) and was lowest in NM (6.78 ± 0.11%). Pre-
weaning mortality was found to be significantly higher (p ≤ 0.05) in
HN-87.5 pigs (8.43 ± 0.32%) than other genetic groups. Post-
weaning mortality was significantly higher (p ≤ 0.05) in HN-
87.5 than in HN-50, but there was no significant difference with
HN-75. However, adult mortality was significantly higher (p ≤ 0.05)
in HN-87.5 than for other genetic groups. The medicine and
veterinary costs per year were also highest in HN-87.5 crossbred
pigs (Table 3).

It was noted from this comparative study that HN-87.5 has
better productive performance than the other genetic groups;
however, an exotic inheritance level that exceeds 75% can result
in a longer inter-farrowing interval, poorer weaning percentage
due to poorer mothering ability, higher incidence of different

TABLE 1 Comparison of productive traits of different genetic groups of pigs (Mean ± S.E.).

Parameter Niang Megha (50) HN-50 (50) HN-75 (50) HN-87.5 (50)

Pre-weaning growth rate (g/d) 84.45a ± 1.21 106.45b ± 1.29 133.45c ± 1.34 153.57d ± 1.71

Post-weaning growth rate (g/d) 133.55a ± 1.91 240.87b ± 0.84 320.55c ± 1.34 332.17d ± 1.27

Body weight at different ages (kg)

60 days 5.59a ± 0.03 7.40b ± 0.44 9.00c ± 0.36 10.54d ± 0.47

120 days 11.55a ± 0.52 16.68b ± 0.37 19.22c ± 0.52 24.63d ± 0.57

180 days 19.97a ± 0.42 29.35b ± 0.76 42.56c ± 0.79 47.02d ± 0.69

240 days 28.75a ± 0.76 42.53b ± 0.83 65.87c ± 0.67 68.72d ± 0.75

300 days 37.63a ± 0.86 65.21b ± 0.98 83.92c ± 0.77 89.54d ± 0.97

a-b values in the same row with different superscript differ significantly (p ≤ 0.05). Means with different superscripts in respective rows differ significantly (p ≤ 0.05). Figures in parenthesis

indicate the number of observations. NM: Niang Megha; HN-50: 50% H × 50% NM; HN-75: 75% H × 25% NM; HN-87.5: 87.5% H × 12.5% NM.

Frontiers in Genetics frontiersin.org04

Kadirvel et al. 10.3389/fgene.2023.1042554

65

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1042554


disease conditions, and higher mortality. Crossbred HN-75 had
overall better phenotypic performance and better adaptability in
terms of disease resistance. Therefore, this study selected
crossbred pigs with 75% Hampshire inheritance (HN-75) for
further improvement.

3.2 Experiment II: Inter se mating and
evaluation of selected crossbred pigs

Selected HN-75 pigs were maintained by inter se mating and
important economic traits were evaluated for their stability, along

TABLE 2 Comparison of various reproductive traits of different genetic groups of pigs (Mean ± S.E.).

Trait NM (Tribout et al.,
2010)

HN-50 (Tribout et al.,
2010)

HN-75 (Tribout et al.,
2010)

HN-87.5 (Tribout et al.,
2010)

Age at puberty (days) 213.19a ± 2.86 266.38b ± 1.19 293.16bc±1.19 306.31cd ± 1.45

Age at first conception
(days)

240.35a ± 1.92 300.15b ± 2.41 331.13bc±1.41 346.32cd ± 1.35

Age at first farrowing (days) 362.67a ± 2.95 424.25b ± 2.52 432.17bc±1.52 478.50cd ± 2.50

Inter-farrowing interval
(days)

210.33a ± 1.42 215.46a ± 1.16 208.04a ± 2.16 220.50b ± 1.75

Litter size at birth (no.) 5.80a ± 0.42 7.52b ± 0.85 8.72b ± 0.75 9.28c ± 0.33

Litter size at weaning (no.) 4.57a ± 0.48 7.11b ± 1.81 8.05b ± 0.52 8.42b ± 0.73

Birth weight (kg) 0.54a ± 0.34 0.79b ± 0.16 0.83b ± 0.16 0.94b ± 0.21

Weaning weight (kg) 5.25a ± 0.44 6.78b ± 0.14 8.32b ± 1.14 9.54b ± 0.47

Av. weaning percentage (%) 80.35a ± 0.77 92.82b ± 0.72 87.36c ± 0.75 85.28d ± 0.76

a-b values in the same row with different superscript differ significantly (p ≤ 0.05). Means with different superscripts in respective rows differ significantly (p ≤ 0.05). Figures in parenthesis

indicate number of observations. NM: Niang Megha; HN-50: 50% H × 50% NM; HN-75: 75%H × 25% NM; HN-87.5: 87.5% H × 12.5% NM.

TABLE 3 Incidence (%) of major disease conditions in different genetic groups of pigs (mean ± S.E.).

Diseases condition NM HN-50 HN-75 HN-87.5

Pre-weaning

Stillbirth 0.23a ± 0.00 0.37a ± 0.00 0.73b ± 0.01 0.88b ± 0.02

Crushing of piglets 0.72a ± 0.00 0.15b ± 0.00 1.20c ± 0.03 2.67d ± 0.07

Weak piglets 0.07a ± 0.00 0.03b ± 0.00 0.07a ± 0.00 0.12c ± 0.00

Piglet diarrhoea 6.78a ± 0.11 8.24b ± 0.23 8.53b ± 0.31 10.23c ± 0.33

Mortality (%) 6.76a ± 0.21 5.34a ± 0.15 6.13a ± 0.21 8.43b ± 0.32

Post-weaning

Piglet diarrhoea 3.41a ± 0.07 3.72a ± 0.08 4.23b ± 0.11 4.87b ± 0.13

Wound/abscess/ear bit/leg-lesion/other body lesions 9.73a ± 0.03 12.31a ± 0.02 16.72b ± 0.31 21.34c ± 0.37

Pneumonia 4.52a ± 0.03 3.73a ± 0.02 4.34a ± 0.03 4.57a ± 0.02

Skin diseases/lesions 5.72a ± 0.02 5.78a ± 0.03 7.45b ± 0.04 12.4c ± 0.11

Weakness 2.31a ± 0.01 3.52b ± 0.02 3.78b ± 0.12 5.3c ± 0.91

Lameness/arthritis/hoof lesions 1.22a ± 0.01 1.87a ± 0.02 3.52b ± 0.11 5.72c ± 0.12

Metritis 0.23a ± 0.00 0.34a ± 0.00 0.78b ± 0.00 0.84b ± 0.00

Other minor (uterine prolapse) 1.23a ± 0.01 1.45a ± 0.01 3.6b ± 0.02 4.87c ± 0.4

Mortality % 2.01a ± 0.01 2.13a ± 0.01 3.42b ± 0.02 3.76b ± 0.02

Adult mortality % 0.44a ± 0.00 0.76a ± 0.00 1.21b ± 0.01 1.76c ± 0.01

Medicine and veterinary costs/year (INR) 387.55a ± 2.32 427.21a ± 2.50 467.35b ± 3.71 523.22c ± 3.91

a-b values in the same row with different superscript differ significantly (p ≤ 0.05). Means with different superscripts in respective rows differ significantly (p ≤ 0.05). NM: Niang Megha; HN-50:

50% H × 50% NM; HN-75: 75% H × 25% NM; HN-87.5: 87.5% H × 12.5% NM.
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with their performance over six generations. All parameters showed
gradual improvement along the generations due to selection
(Table 4). The overall genetic gains for litter size at birth and at
weaning were 4.59 and 5.84%, respectively. Similarly, the genetic
gain for birth and weaning weight were 10.84 and 13.70%,
respectively, over the six generations. Body weight at 120 days
was found to have the highest overall genetic gain (22.94%)
among all the parameters considered.

3.3 Performance of the crossbred pig
selected after inter se mating

The performance of the crossbred pigs in terms of production,
reproduction, and carcass traits was evaluated and the results are
presented in Table 5. The average pre- and post-weaning growth
rates were 143.50 ± 1.22 and 320.33 ± 1.55 g/day, respectively. The
pigs attained the average body weight of 86.48 ± 0.92 kg at
10 months with ranges from 77.5 to 90.7 kg. Age at first
conception was found to be 331.13 ± 2.65 days (Table 5). Litter
size at birth was 9.12 ± 0.55 and at weaning was 8.52 ± 0.81. The
crossbred pig variety was slaughtered at 10 months old to study the
carcass traits. The average dressing percentage was 73.33 ± 0.37%
with back-fat thickness of 2.30 ± 0.21 cm (Table 5). Lifetime
productivity of the crossbred pig was also evaluated for six
farrowings (Table 6). The crossbred pigs were found to have a
total litter size at birth of 51.83 ± 1.61, whereas total litter size at
weaning was 47.17 ± 2.69 in the present study

3.4 Experiment III: Performance evaluation
of crossbred pigs under a smallholder
production system

For performance evaluation of the crossbred pig under a
smallholder production system, data were collected from the

TABLE 4 Improvement of performance and genetic gain of HN-75 crossbred pigs over six generations through selection (Mean ± S.E.).

Parameter First
generation

Second
generation

Third
generation

Fourth
generation

Fifth
generation

Sixth
generation

Overall
genetic
gain (%)

Average
genetic gain/
generation (%)

Litter size at
birth (no.)

8.72 ± 0.75 8.79 ± 0.87 8.81 ± 1.04 8.98 ± 0.17 9.02 ± 1.21 9.12 ± 0.55 4.59 0.76

Litter size at
weaning (no.)

8.05 ± 0.52 8.12 ± 0.87 8.25 ± 0.25 8.27 ± 0.73 8.37 ± 0.21 8.52 ± 0.81 5.84 0.97

Body weight at (kg)

Birth 0.83 ± 0.16 0.85 ± 0.25 0.87 ± 0.26 0.88 ± 0.16 0.89 ± 0.16 0.92 ± 0.06 10.84 1.81

Weaning 8.32 ± 0.34 8.63 ± 0.47 8.87 ± 0.48 9.05 ± 0.54 9.21 ± 0.87 9.46 ± 0.81 13.70 2.28

120 days 19.22 ± 0.52 19.98 ± 0.38 20.33 ± 0.49 20.43 ± 0.39 21.43 ± 0.58 23.63 ± 0.55 22.94 3.82

180 days 42.56 ± 0.79 43.54 ± 0.59 44.87 ± 0.62 45.16 ± 0.66 46.57 ± 0.57 47.13 ± 0.64 10.74 1.79

240 days 65.87 ± 0.67 65.69 ± 0.73 66.59 ± 0.58 67.20 ± 0.82 67.45 ± 0.78 68.11 ± 0.80 3.40 0.57

300 days 83.92 ± 0.67 83.79 ± 0.94 84.47 ± 0.87 85.21 ± 0.59 85.36 ± 0.67 86.48 ± 0.92 3.05 0.51

No. of observations is 240 for production traits and 30 for reproduction traits.

TABLE 5 Performance of crossbred pig variety.

Parameter Mean ± SE

Production Performance (N = 85)

1. Pre-weaning growth rate (g/d) 143.50 ± 1.22

2. Post-weaning growth rate (g/d) 320.33 ± 1.55

3. Feed conversion efficiency () 1:4.30

4. Body weight at 120 days (kg) 23.63 ± 0.55

5. Body weight at 180 days (kg) 47.13 ± 0.64

6. Body weight at 240 days (kg) 68.11 ± 0.80

7. Body weight at 300 days (kg) 86.48 ± 0.92

Reproduction performance (N = 50)

1. Age at puberty (days) 276.66 ± 2.23

2. Age at first conception (days) 331.13 ± 2.65

3. Age at first farrowing (days) 425.26 ± 2.82

4. Inter-farrowing intervals (days) 205.04 ± 1.82

5. Litter size at birth (no.) 9.12 ± 0.55

6. Litter size at weaning (no.) 8.52 ± 0.81

7. Birth weight (kg) 0.92 ± 0.06

8. Weaning weight (kg) 9.46 ± 0.81

9. Weaning percentage 89.32 ± 2.52

Carcass performance (N = 25)

1. Carcass weight (kg) 64.27 ± 0.67

2. Dressing percentage (%) 73.33 ± 0.37

3. Carcass length (cm) 70.62 ± 0.78

4. Back-fat thickness (cm) 2.30 ± 0.21

N, Number of observations
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established 100 units. The crossbred pig performed significantly
better than average local pigs under the improved management
condition (Table 7). Litter size at birth in the crossbred pigs was
8.87 ± 0.24 and at weaning was 8.27 ± 0.37; they were found to be
significantly higher (58–65%) than local pigs under the same
management in a smallholder production system. The crossbred
pig attained a body weight of 82.54 ± 1.12 kg by 300 days—35–42%
higher than local pigs. The number of piglets per sow per year
ranged from five to seven in local pigs but 10 to 15 in the crossbred
pigs—significantly higher (p < 0.01) (Table 7). Hence, the crossbred
pigs performed better in terms of both production and reproduction
than the local pigs. Incidences of different diseases were recorded:
pre-weaning mortality did not differ significantly between crossbred
and local average pigs (Supplementary Table S1). However, post-
weaning and adult mortality was significantly higher (p < 0.05) in
crossbred pigs than local pigs under a smallholder pig production
system. For market demand between the crossbreed and local pigs
based on the survey, the former had a significantly (p < 0.05) higher
score than that of the latter. However, the score for consumer
preference did not differ significantly between the two varieties
(Table 7).

4 Discussion

Pigs occupy a unique role among the meat-producing animals of
the Eastern Himalayan hill region and are the animal of choice for
meat, especially for tribal populations in Northeast India (Talukdar
et al., 2019). However, there is a high supply–demand gap in pork
due to less-productive pigs under the traditional backyard
production system (Mahajan et al., 2015). Crossbred pigs are
superior on average than their purebred counterparts under
harsh and diverse agro-climatic conditions (Li et al., 2022).
Crossbreeding programs take advantage of the effect of individual
as well as maternal and paternal heterosis (Versen et al., 2019). To
enhance pig productivity in the region, there is an urgent need for
the introduction of high-yielding crossbred varieties with
indigenous inheritance under the changing climatic conditions.
Thus, this study was conducted to develop a crossbred
indigenous Niang Megha and Hampshire pig for better
adaptability and performance in the hill ecosystem of the Eastern
Himalayan hill region of India.

In the first phase, NMwas crossed with Hampshire to develop F1
(HN-50), HN-75, and HN-87.50; their performance was evaluated
to determine the optimum level of exotic inheritance for better
adaptability to the region. HN-50 was better in terms of age at sexual
maturity, waning percentage, and cost of veterinary medicine than
other genetic groups due to higher NM inheritance in HN-50.
However, HN-75 was superior to HN-50 for growth
performance, litter size at birth and weaning, and for lifetime
productivity (Tables 1–3). Based on productive and reproductive
performance and disease incidence among the crossbred pigs, those
with 75% Hampshire and 25% NM inheritance were selected for
crossbreeding development.

Due to the planned crossbreeding programwith rigorous selection,
crossbred HN-75 pigs attained better adaptability and performance in
the hill ecosystem, climatic resilient traits, promising growth rate, and
good mothering ability with higher litter size (Banik et al., 2018).
However, Kumar et al. (2018) observed that 50% Tamworth × 50%
Desi cross pigs (T&D) performed better than 75% Hampshire × 25%
Desi pigs due to their higher level of indigenous inheritance. In the

TABLE 6 Lifetime production traits of crossbred pig variety (N = 50).

Parameter Mean ± S.E.

1. Total litter size at birth (no.) 51.83 ± 1.61

2. Average litter size at birth (no.) 9.17 ± 0.17

3. Total litter weight at birth (kg) 44.07 ± 1.29

4. Average litter weight at birth (kg) 7.75 ± 0.14

5. Total litter size at weaning (no.) 47.17 ± 2.69

6. Average litter size at weaning (no.) 8.49 ± 0.20

7. Total litter weight at weaning (kg) 446.19 ± 3.52

8. Average litter weight at weaning (kg) 78.46 ± 1.91

N, number of observations

TABLE 7 Performance of crossbred variety under a smallholder pig production system and its market demand and consumer preference.

Parameter Average local Crossbred variety

1. Litter size at birth (no.) 5.83a ± 0.35 8.87b ± 0.24

2. Litter size at weaning (no.) 5.00a ± 0.27 8.27b ± 0.37

3. Body weight at 120 days (kg) 10.85a ± 0.85 24.13b ± 0.56

4. Body weight at 180 days (kg) 18.56a ± 1.05 44.81b ± 0.72

5. Body weight at 240 days (kg) 25.68a ± 0.96 65.31b ± 0.82

6. Body weight at 300 days (kg) 34.17a ± 1.35 82.54b ± 1.12

7. Number of piglets/year/sow 6.23a ± 0.23 13.82a ± 0.38

8. Market demand score 3.67a ± 0.18 4.27b ± 0.20

9. Consumer preference score 4.36a ± 0.24 4.12a ± 0.17

a-b values in the same row with different superscript differ significantly (p ≤ 0.05). *Means with the same superscript are not significantly (p > 0.05) different in the same rows.
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present study, after inter semating and selection of HN-75 pigs for six
generations, their performance was found to gradually improve, which
could be attributable to selective breeding. Production traits were
found to have positive and higher genetic gains compared to
reproduction traits, since production traits have higher heritability
than the latter (Alam et al., 2021). Tribout et al. (2010) also reported
similar results for positive genetic gain in production traits on French
Large White pigs in two generations of selective breeding. After
stability was established for economic traits, the HN-75 pigs were
released as “Lumsniang” (lum means “hill” and sniang means “pig”)
(AICRP, 2018).

The crossbred pig was evaluated for its performance and was found
to perform well in productive, reproductive, and carcass traits in the hill
ecosystem. It attained a body weight of 23.63 ± 0.55 kg at 3 months old
and 86.48 ± 0.92 kg at 10 months old. The present finding was
comparatively higher than the body weights of indigenous pigs
(Niang Megha and Doom) for the corresponding ages (Khargharia
et al., 2014), which is due to the Hampshire inheritance. The present
findings, however, corroborate the findings of Haldar et al. (2017) who
reported that the crossbred pigs—Ghungroo × Hampshire, Tripura
Mali × Duroc, and Niang Megha × Hampshire—attained mean body
weight of 71.58–89.50 kg at 12 months old. Reproductive performance
of the crossbred pig variety was also found to be better than indigenous
pigs. However, age at puberty (276.66 ± 2.23 days) and at first farrowing
(425.26 ± 2.82 days) of the crossbred pigs in the present study was
found to be higher than indigenous pigs like Niang Megha and Doom
(Khargharia et al., 2014). The litter size at birth and weaning for the
crossbred pigs was 9.02 ± 0.55 and 8.12 ± 0.81, respectively, which is
higher than indigenous pigs owing to the Hampshire inheritance.
Sharma et al. (2019) reported relatively higher litter size at birth and
at weaning in synthetic three-way-cross pigs, Pakhribas in Nepal.
Average weight at birth and weaning was found to be 0.92 ±
0.06 kg and 9.46 ± 0.81 kg. Similar findings were recorded in
crossbred pigs of Large Black, Saddleback, and Hampshire in
Bhutan (Thapa and Timsina, 2018). However, Sharma et al. (2019)
reported higher average weight at birth and at weaning in synthetic
three-way-cross pigs, Pakhribas in Nepal, than the present study. To
study carcass traits, the crossbred pig variety in the present study was
slaughtered at 300 days old. The carcass weight was found to be 64.27 ±
0.67 kg and was similar to that of three-way crossbred pigs (25% Large
White Yorkshire × 25% Landrace × 50% Duroc) as reported by Sutha
et al. (2015); however, they reported lower dressing percentage than the
present study’s crossbred pigs. The carcass length of these crossbred pigs
was 70.62 ± 0.78 cm and back-fat thickness was 2.30 ± 0.21 cm—similar
to the reports in crossbred pigs of 50% Tamworth × 50% Desi pigs of
Assam by Kalita et al. (2016) and crossbred pigs of 75% Hampshire ×
25%NM inMeghalaya (IndianCouncil of Agricultural Research, 2008).
The back-fat thickness of the crossbred pigs in the present study was
comparable to the findings of Zhang et al. (2019) in crossbred breeds of
China obtained by crossing native Jiaxing Black Pigs with Berkshire,
Duroc, and Landrace. Like this study, superior carcass quality was
recently recorded in Iberian × Duroc crossbred pigs (Ortiz et al., 2021).

In the present study, the lifetime productivity of the crossbred pigs
was calculated for six farrowings. The length of productive life and
lifetime production traits are important in commercial swine production
because of their association with stability, productivity, and cost of
production (Hall et al., 2002). The crossbred pigs in the present study
were found to have a total litter size at birth of 51.83 ± 1.61, which

correlates well with the findings of Hall et al. (2002) inMeishan crossbred
pigs but higher than Duroc crossbred pigs in the United Kingdom. The
total litter size at weaning in the present study was found to be similar
with that of Duroc crossbred pigs (Hall et al., 2002).

Smallholder production systems are very common in the North-
eastern hill region of India, where pigs are reared utilising kitchen swill
and free crop residues (Kumaresan et al., 2009). This type of pig
production system is economically viable and sustainable at a
household level. In the present study, the performance of the
crossbred pig variety was compared with that of local average pigs
reared under a smallholder production system. The crossbred variety
performed significantly (p < 0.05) better than the local pigs under the
same management conditions. Nath et al. (2013), comparing the
performance of local with crossbred pigs under smallholder
production system in Sikkim, reported similar findings. The higher
incidence of disease in crossbred pigs might be associated with their
slow adaptability to the existing environment (Bharati et al., 2022).
Litter size at birth of the crossbred variety was 8.87 ± 0.24, whereas at
weaning it was 8.27 ± 0.37, which was significantly higher (p < 0.05)
than the local pigs—results due to the Hampshire inheritance. Haldar
et al. (2017) reported similar litter performance in different crossbred
pigs in a smallholder pig farming system for Hampshire × Ghungroo,
NM × Hampshire, Duroc × Ghungroo, Duroc × Tripura Mali, and
Tamworth × Ranchi local pigs. In the present study, the crossbred
variety attained a body weight of 82.54 ± 1.12 kg by 300 days under a
smallholder production system, which corroborates the findings of
Haldar et al. (2017) in NM × Hampshire crossbreds in smallholder
farms. Hence, rearing the crossbred pig variety under a smallholder
production system was better in terms of production and
reproduction performance and resulted in more profitability than
average local pigs under the same management system.

5 Conclusion

The Lumsniang crossbred pig variety performed better in terms
of productive and reproductive traits, besides having better
adaptability in the hill ecosystem, over the existing indigenous/
average pigs in the Eastern Himalayan hill region. Furthermore, the
crossbred pigs performed better than local pigs under a low-input
traditional production system. Large-scale dissemination of the
crossbred variety in the smallholder production system is
possible by introducing nuclear breeding farms at a district level
in collaboration with state departments. Large-scale propagation of
the crossbred pig variety could lead to increases in production,
productivity, livelihood, and income of the region’s farmers.
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The African livestock sector plays a key role in improving the livelihoods of people
through the supply of food, improved nutrition and consequently health. However, its
impact on the economy of the people and contribution to national GDP is highly
variable and generally below its potential. This study was conducted to assess the
current state of livestock phenomics and genetic evaluation methods being used
across the continent, the main challenges, and to demonstrate the effects of various
genetic models on the accuracy and rate of genetic gain that could be achieved. An
online survey of livestock experts, academics, scientists, national focal points for
animal genetic resources, policymakers, extension agents and animal breeding
industry was conducted in 38 African countries. The results revealed 1) limited
national livestock identification and data recording systems, 2) limited data on
livestock production and health traits and genomic information, 3) mass selection
was the commonmethod used for genetic improvementwith very limited application
of genetic and genomic-based selection and evaluation, 4) limited human capacity,
infrastructure, and funding for livestock genetic improvement programmes, as well as
enabling animal breeding policies. A joint genetic evaluation of Holstein-Friesian using
pooled data fromKenya and South Africawas piloted. The pilot analysis yielded higher
accuracy of prediction of breeding values, pointing to possibility of higher genetic
gains that could be achieved and demonstrating the potential power ofmulti-country
evaluations: Kenya benefited on the 305-days milk yield and the age at first calving
and South Africa on the age at first calving and the first calving interval. The findings
from this study will help in developing harmonized protocols for animal identification,
livestock data recording, and genetic evaluations (both national and across-countries)
as well as in designing subsequent capacity building and training programmes for
animal breeders and livestock farmers in Africa. National governments need to put in
place enabling policies, the necessary infrastructure and funding for national and
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across country collaborations for a joint genetic evaluationwhichwill revolutionize the
livestock genetic improvement in Africa.

KEYWORDS

animal identification, livestock data recording, genetic evaluation, ICT and mobile
technologies, Africa

1 Introduction

African livestock sector plays an important role by contributing to
the livelihoods of households as well as food, nutrition security and
health. According to FAOSTAT (FAOSTAT, 2019), Africa’s total
livestock population was estimated in 2018 at 2 billion poultry
birds (chickens, guinea fowl, turkeys, ducks, and pigeons),
438 million goats, 384 million sheep, around 356 million cattle,
40.5 million pigs, nearly 31 million camels, and 38 million equines
(donkeys, horses and mules). This livestock population comprises
diverse breeds, well adapted to their environments withmore than 70%
under traditional production system (Ibeagha-Awemu et al., 2019),
and mostly kept by the rural poor farmers. Most African livestock
breeds have not been systematically improved and are characterized by
low productivity. At this rate, the African livestock systems will not
meet the increasing demand for animal proteins by a rapidly growing
human population, urbanization and income growth (Thornton, 2010;
OECD, 2018). However, in high income countries in the global
North, genetic improvement has, over the past 70 years, led
to dramatic gains in dairy, poultry and other commodities. To
achieve these extraordinary results, structured and well-established
livestock breeding programmes have been underpinned by adequate
infrastructure, trained personnel, progressive farmers with access to
inputs and markets. Unfortunately, the design and application of
successful breeding programmes in Africa have been limited
(Ibeagha-Awemu et al., 2019; Ouédraogo et al., 2021; Opoola et al.,
2019; Missanjo, 2010; FAO, 2015).

Phenotypes play an important role in understanding the genetic
basis of livestock performance and are essential in informing and
ensuring effective herd and flock management (Mrode et al., 2020).
Phenomics can be defined as the application of technologies to
collect phenotypes easily, cheaply, and in large volume. Phenotypes
combined with pedigree or genomic information help breeders to
identify and select genetically superior animals to be parents of the
next-generation, thus driving sustainable genetic improvement
through genetic evaluation. Geneticists use statistical models to
separate genetic effects from environmental effects by modelling
the genetic effect as random with pedigree or genomic relationships
between animals and modelling a herd or herd-season effects as
fixed or random contemporary groups (Mrode, 2014).

Studies have shown that accuracy of predicted genetic merits of
animals, and hence the genetic gains that could be realized, depend
to some extent on different genetic models used for estimation
(Tesfa et al., 2004; Tesfa and Garikipati, 2014; Shamia and El-Tajori,
2019; Opoola et al., 2020; Tshilate et al., 2021). Phenomics and
genetic evaluation methods, and results obtained, are therefore
fundamental at farm level for profitability; at the national level
for effective agricultural policies formulation, and at the continental
level for across country collaboration for livestock improvement
(Mrode et al., 2020).

However, in most African countries, phenotyping or
performance recording has always been a major challenge due
limited investments in on-farm recording (Trivedi, 1998; Ojango
et al., 2017; Tshilate et al., 2021). Livestock performance recording
and genetic evaluation have been initiated and are on-going in a
limited number of countries in Africa, with different levels of success
and rigour. However, the current status of livestock performance
recording, the availability of data, systems of management of such
data, the genetic evaluations methods used as well as the challenges
faced by such efforts are yet to be fully documented. Better
understanding of the key factors that affect phenomics and
genetic/genomic evaluations in African countries will inform the
development of mitigation strategies as well as the design of livestock
breeding programmes that meet the current and future needs of the
continent.

The aim of this study was therefore to assess the current status of
phenomics and other data systems and recording, livestock genetic
evaluation approaches in Africa and to demonstrate the effects of
various genetic models on the accuracy and rate of genetic gain that
could be achieved in livestock.

2 Materials and methods

2.1 Data collection

2.1.1 Survey
A survey was carried out in 2020 using an online questionnaire,

telephone and skype interviews. The questionnaire recipients
included: 1) current Food and Agriculture Organization of the
United Nations (FAO) national focal points for animal genetic
resources, 2) individuals identified from lists of participants of
scientific conferences and workshops on livestock production and
genetics held in Africa from 2000 to 2019. The conferences and
workshops were randomly selected and all the names on the delegate
lists were contacted as respondents. The survey questionnaire was
sent to 501 respondents from the 54 African countries. The
contacted delegates were predominantly scientists and other
professionals in animal/veterinary science, animal breeders and
geneticists affiliated with government livestock ministries,
research institutes, universities, farmers associations and NGO’s .
The e-survey was active for a period of 68 days. A reminder e-mail
was sent every 15 days after first dispatch. The survey questions were
a combination of open-ended, close-ended, structured and
unstructured questions (Supplementary Data Sheet S1). The main
themes in the survey included: livestock species, genotypes (breeds
and crossbreeds) in use, human capacity in animal science, livestock
genetic improvement initiatives, data recording and animal ranking
systems, genetic evaluation methods being used and challenges
affecting livestock genetic evaluations, the available livestock data
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and if the custodians of such data are willing to be supported to use
the same data to undertake better genetic evaluation and multi-
country collaborations for livestock genetic improvement in Africa.
Responses were obtained from 92 respondents in 38 African
countries across the five regions. Northern Africa (Algeria, Egypt,
Mauritania, Morocco, and Tunisia), Central Africa (Cameroon,
Chad, Congo, Democratic Republic of Congo, Gabon), Southern
Africa (Angola, Malawi, Mozambique, South Africa, Zambia, and
Zimbabwe), Eastern Africa (Comoros, Djibouti, Ethiopia, Kenya,
Rwanda, Seychelles, Sudan, Tanzania, and Uganda) and Western
Africa (Benin, Burkina Faso, Cabo Verde, Côte d’Ivoire, The
Gambia, Ghana, Liberia, Mali, Niger, Nigeria, Senegal, Sierra
Leone, and Togo) (Supplementary Table S1).

2.1.2 Joint genetic analysis
The data used for joint genetic evaluation was reported by the

respondents. Thus, performance and pedigree data were obtained
from the Agricultural Research Council (ARC) in Pretoria, South
Africa and the Kenya Livestock Breeders Association (KLBA), Kenya.
In summary, the data comprised 305-day milk yield (MY305) records
from 2,333 and 25,208 first lactation of Holstein-Friesian cows in
Kenya (1979–2014) and South Africa (1997–2014), respectively. The
pedigree data comprised 103 and 505 sires with daughter performance
records in Kenya and South Africa, respectively. The common sires
between both countries were 40. The reproduction traits were age at
first calving (AFC, months) and the interval between first and second
calving (CI1, months).

2.2 Statistical analysis

Survey data were analysed by country and region using descriptive
statistics tools of the R software package (R Core Team, 2013).
Proportions were estimated for each of the studied variables in the
five regions specified. The proportions were averaged over regions
without considering any heterogeneity among respondents within a
given region. The Chi-square test was used to test for differences
between observed proportions in the five African regions. Z-test was
used for pairwise comparison between proportions.

In the joint-genetic analysis, a multi-trait animal model was used
in Blupf90 (Misztal et al., 2018) to analyse first lactation MY305,
AFC and CI1 within country using the model:

Yijk � Hj +HYSk + age cov( ) + ai + eijk (1)

Where: Yijk = an observation of MY305, AFC or CI1; Hj = fixed
effect of herd j in which animal i was born;HYSk = fixed effect of the
kth herd-year-season of production; age (cov) = age as covariate; ai =
random additive genetic effect of animal i; and eijk = random error
term. The calving age was not included in the analysis of AFC. The
across-country analysis was implemented by pooling data from the
two countries using the model similar to Eq. 1 with an additional
fixed effect of country. Genetic gains per generation were predicted
for each country and trait by using the Breeders’ equation (Falconer
and Mackay, 1996): R = i. ρ. σg.

Where R: Response to selection or predicted genetic gain per
generation, i: Selection intensity, ρ: Accuracy of selection (square
root of reliability of sire EBVs), σ g: genetic standard deviation of
studied traits. The R was based on sire selection only within- and

across country (Rendel and Robertson, 1950). Different selection
intensities were tested based on selection of the top 5, 10, 25, 50, 75,
and 100 sires within- and across-country. Predicted levels of genetic
gain achievable within-country was compared to the predicted
genetic gains across-countries.

3 Results

3.1 Current state of animal identification and
data recording in Africa

At the herd level, Ear tagging (33.1%) was the most used animal
identification method (p < 0.05) followed by branding (17.6%), ear
notching (16.3%), ear tattooing and number tagging (11%) while the
tribal signs (0.4%) and hindquarter tattooing (0.4%) were the least
frequent animal identification methods. Only 18.5% of the
respondents mentioned existence of national animal identification
system (NAIS) in their respective countries (Egypt, Morocco,
Mozambique, Nigeria, South Africa, Tanzania, Tunisia and
Zimbabwe). No NAIS was mentioned in Central Africa.
However, most of the mentioned NAISs are still rudimentary
based on ear tags. Furthermore, it was reported that farmers are
not interested to participate in the national animal identification
system. The NAISs reported by the respondents are described below.

In Egypt, animal identification is limited to state organisations
and farms. This is part of the preservation of the purebred and
developed chickens in some governmental institutional stations and
projects (in vivo) and in National Gene Bank (in vitro). In Morocco,
the electronic chips identification for goat and sheep is managed by
the ministry of agriculture. All goat and sheep farmers are
recommended to use E-chips for identification of their animals.
Horses are ear-tagged. In Tunisia, two NAISs were reported: the
identification system for cattle, sheep, goat and camel based on ear
tagging and managed by “Office de l’ Elevage et des Pâturages
(OEP)” and the identification system for horses based on electronic
chips and managed by The National Foundation for the
Improvement of The Horses Breed (FNARC). In Nigeria, the
animal identification system is not well developed. However,
there is a recent Livestock24 programme (https://livestock247.
com/) that tracks animals from farm, livestock market and
slaughter houses in Nigeria. In Tanzania, the Tanzania National
Animal Identification and Traceability System (TANLITS; https://
asdp.kilimo.go.tz/) has been recently developed. Thus, ear tagging or
branding of unique national ID has been introduced but is yet to be
practiced by all farmers. TANLITS is a web-based platform
developed to drive the animal identification, registration and
traceability Act Chapter 184 of the Tanzania laws and its
regulations. The purposes of TANLITS include controlling
livestock theft and animal diseases, to regulate movement of
livestock, enhancing food safety assurance and promote access to
livestock markets. In South Africa, systematic animal identification
of cattle was reported by respondents. The Department of
Agriculture, Land and Rural Development manages the South
African NAIS. Farmers are given a branding criterion and from
age of 7 months any cattle born in South Africa needs to be branded.
The South Africa Studbook Association also manage animal
identification through the registration and recording of the birth
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and ownership information of purebred animals and continuously
update these animals’ pedigree information. In Mozambique, a
national ear tag identification system was reported where a
combination of letters (indicating year) and numbers indicating
order of birth in the group are used to tag animals. Some units also
use tattoos. However, the majority of farmers inMozambique do not
identify their animals. In Zimbabwe, a NAIS exists for Tuli cattle and
is managed by the Livestock Identification Trust (LIT). Farms pay
for tag and the LIT generates tag numbers. Tags give traceability and
are specific to each farm. Each region with its own brand and each
farm within a region with its own ID. The reported livestock data in
Africa and the custodians are described below.

From the survey, 58.7% of respondents mentioned ongoing
livestock genetic improvement programmes or projects with
performance and pedigree and/or genotypic data available in their
respective countries (Algeria, Benin, Burkina Faso, Cameroon, Chad,
Côte d’Ivoire, Djibouti, DR Congo, Egypt, Ethiopia, Kenya, Malawi,
Mali, Morocco, Niger, Nigeria, Rwanda, Senegal, South Africa, Sudan,
Tanzania, The Gambia, Togo, Zambia, and Zimbabwe). Out of the
positive responses, Eastern Africa (76.2%) and Southern Africa (75%)
had the highest proportions of ongoing genetic improvement
initiatives followed by Central Africa (60%), Western Africa
(52.6%) and the Northern Africa (45.4%) had the lowest (p <
0.01). The available data per species and regions are shown in Figure 1.

The reported data were recorded mostly on dairy cattle (22.9%)
followed by beef cattle (19.1%), chicken (16.8%), sheep (16.8%),
goats (16%), pigs (5.3%), guinea fowl (2.3%) and horses (0.8%). In
Western Africa, chicken was the most reported specie with
production and pedigree data while dairy cattle, beef cattle and
chicken were the most reported in Central Africa. Beef cattle was the
most reported in Southern Africa. Dairy cattle and sheep were the
most reported in Eastern and Northern Africa respectively. As
shown in Figure 2, the most recorded data in Africa were on
growth traits (19.9%), followed by pedigrees (19%), reproduction
data (17.8%), milk traits data (12.6%), herd health data (8.7%),
carcass and meat traits data (7.8%), low density genomic data
(4.8%), high density genomic data (4.3%), economic data (3%)

and egg laying performance (0.9%). Body condition score, eggs
quality and wool quality were the least recorded traits (0.4%). There
were significant differences across traits (p < 0.001). The most
recorded traits in Western Africa were growth traits (23.7%)
followed by reproduction traits (19.7%) and pedigree data
(17.1%). In Eastern Africa, milk traits (19.2%), growth traits
(19.2%), reproduction data (16.7%) and pedigrees (15.4%) were
the most reported. In Northern Africa, reproduction data (27.8%),
pedigree (22.2%) and Growth traits (16.7%) were the most reported
while pedigree data (29.8%), growth traits (19.1%) and reproduction
data (12.8%) were the most reported in Southern Africa. In Central
Africa, milk traits (25%), reproduction data (16.7%), health data
(16.7%) and economic data (16.7%) were the most reported.

The most important custodians of the reported data in Africa
were research institutes (48.4%) followed by government (26.6%),
universities (7.8%), NGOs (6.3%), breeders/farmers association
(6.3%), industries (3.1%) and individual farmers (1.6%), with
significant differences across custodians (p < 0.001) as shown in
Figure 3. InWestern, Eastern and Northern Africa, research institutes
were the most important custodians. In Central and Southern Africa,
the available data were equally detained by research institute and
government.

3.2 Genetic evaluation and animal ranking
approaches in Africa

The livestock genetic evaluation methods being used in Africa
are shown in Figure 4. The selection methods being used are mostly
based on mass selection based on phenotypic data (53.9%) followed
by genetic evaluation, including pedigree information (34.3%) and
genomic evaluation (11.8%). There were significant differences
between methods (p < 0.001). A similar trend was observed
within each region, except in Central Africa where selection was
based only on phenotypic performance data. Most respondents
(90.7%) who have reported availability of livestock data believed
that it is a good idea to share such data. Out of this number, 74.1%

FIGURE 1
Proportion of livestock species with both performance and pedigree/genotypic data recorded (p < 0.01).
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opined that the custodians of the reported data would be willing to
be supported to use the same data to undertake better genetic
evaluations. However, some (25.9%) of the respondents believe
that the custodians may not be willing to be supported.

Only 13% (12 out 92) of the respondents mentioned ongoing
national animal ranking systems (NARS) in their respective
countries (Côte d’Ivoire, Morocco, Niger, Nigeria, South Africa,
Tanzania, Kenya, Tunisia, Uganda, and Zimbabwe) as presented in
Table 1. No NARS was reported by Central African countries. The
reported NARSs were based on genetic evaluation (77.8%), mass

selection based on phenotypic performance data (66.7%) and
genomic evaluation (22.2%). In Côte d’Ivoire and Niger, the
national animal ranking systems are based solely on performance
data (growth andmilk traits). InMorocco, the best horses are ranked
at the national level by either considering phenotypic performance
or by integrating the pedigree (genetic) information. South Africa
has a more advanced NARS where cattle are ranked using
quantitative genetic models that integrate pedigree information
and the genomic data to some extents. In Tanzania, the national
animal ranking system for cattle is based on performance, pedigree,

FIGURE 2
Proportion of available livestock data in Africa (p < 0.001).

FIGURE 3
Custodians of reported livestock data in Africa (p < 0.001).
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and genomic evaluation especially for dairy cattle. In Kenya, the
Kenya Animal Genetic Resources Centre (KAGRC) does regular bull
evaluations using performance and pedigree information. The

national animal ranking system in Tunisia focused on cattle by
using pedigree-based best linear unbiased prediction (BLUP)
models. The animals in the Herdbook database in Zimbabwe are

FIGURE 4
Proportions of livestock genetic evaluationmethods in Africa. BGE, Based onGenetic evaluation; BGS, Based onGenomic evaluation; BMS, Based on
mass selection; a,b,c p < 0.001.

TABLE 1 Description of reported national animal ranking systems in Africa.

Country African
region

Species Ranking methods Characteristics of the ranking system

Côte d’Ivoire Western Cattle (Beef), Sheep and
Goat

Based on mass selection Based on the performances data, the best animals are selected

Niger Western Cattle (Dairy), Cattle (Beef),
Sheep, Goat and Chicken

Based on mass selection Selection based on mass selection for growth and milk traits

Nigeria Western Cattle (Dairy), Cattle (Beef),
Sheep and Goat

Based on mass selection and based on
genetic evaluation

Ranking system not described by respondents. They believed
that the information is domiciled with National Animal
Production Research Institute (NAPRI), FMARD, Kaduna,
Nigeria

Uganda Eastern Cattle (Dairy), Cattle (Beef),
Goat, Pig and Chicken

Based on genetic evaluation, and based on
mass selection

Performances of individuals animals are recorded over time.
Samples are taken to determine genetic profiles of the animals
under evaluation. The animals are then ranked either based on
the phenotypic performance or genetic information

Tanzania Eastern Cattle (Dairy) Based on mass selection, based on genetic
evaluation and based on genomic
evaluation and

Ranking of animals based on the genomic, genetic and
phenotype data

Zimbabwe Southern Cattle (Beef) Based on genetic evaluation The animals in the Herdbook database are ranked using
pedigree-based breeding value (EBVs). The national ranking
system is more based on the Tuli Beef breed

Kenya Eastern Cattle (Dairy), Cattle (Beef) Based on mass selection and based on
genetic evaluation

The Kenya Animal Genetic Resources Centre (KAGRC) does
regular bull evaluations using performance and pedigree
information

Morocco Northern Horse Based on genetic evaluation, and based on
mass selection

Depending on the use of the horse, the best animals are ranked
by either considering phenotypic performance or by
integrating the pedigree (genetic) information

Tunisia Northern Cattle (Dairy) Based on genetic evaluation Cattle ranking based on pedigree-BLUP

South Africa Southern Cattle (Dairy), Cattle (Beef),
Sheep, Goat and Pig

Based on genetic evaluation, and Based on
genomic evaluation

Animals are ranked by using quantitative and Molecular
genetics. The methods used include pedigree, genomics and
performance data
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ranked using pedigree-based breeding value (EBVs) and this is
mainly for the Zimbabwean Tuli Beef breed. In Uganda, it was
reported that performances and pedigree data of individual animals
are recorded over a period of time. The animals are then ranked
either based on the phenotypic performance data only or pedigree
information combined with performance data. The national animal
ranking system in Nigeria was not described by the respondents.
They believe that the information can be obtained from the National
Animal Production Research Institute (NAPRI) or from the Federal
Ministry of Agriculture and Rural Development (FMARD) in
Nigeria.

3.3 Potential for multi-country genetic
evaluation and impact on genetic progress

The potential for multi-country genetic evaluation in Africa was
assessed through the survey. Most of the respondents (92.4%) believe
that across-country genetic evaluation will have some mileage in
improving livestock production in Africa. According to these
respondents, the reasons for a potential success in across-country
genetic evaluation included 1) sharing of resources and benefits
(42.4%), 2) existence of transboundary breeds across countries and
regions (34.1%), 3) large reference population will give high accurate
predictions making genomic selection possible (15.3%), 4) similar
environmental conditions and breeding challenges across countries
(8.2%), 5) high and fast genetic gain (4.7%), 6) existing high livestock
genetic diversity in Africa (4.7%), 7) capacity of African diaspora
already involved in across country genetic evaluation (3.5%) and 8)
willingness to implementing multi-country genetic evaluation in
Africa (1.2%) were expressed. However, some of the respondents
(7.6%) mentioned that multi-country genetic evaluation would not
work in the African livestock production systems, mainly because of:
1) limited genetic material exchange and hence lack of herd
connectedness between countries (42.9%), 2) lack of functional
national animal identification, data recording and evaluation
systems (42.9%), 3) lack of required infrastructure for across
country genetic evaluation (28.6%), 4) limited international
collaboration (ICAR, Interbull) in Africa (14.3%), 5) lack of
human capacity (14.3%), 6) lack of enabling breeding policies for
across country genetic evaluation (14.3%) and 7) scepticism and
concerns about data sharing (14.3%). Two respondents mentioned
that multi-country genetic evaluation for poultry, pigs and small
ruminants can be challenging, costly and not feasible.

Using the reported dairy performance and pedigree data from
Holstein-Friesian in South Africa and Kenya, we assessed the impact
of different genetic evaluation approaches and models, on accuracy
and the rate of genetic progress that could be achieved for 305-day
milk yield (MY305), age at first calving (AFC) and first calving
interval (CI1) (Tables 2, 3). The results showed that the accuracies of
prediction in multi-traits across-country genetic evaluation were
higher than the accuracies of within country genetic evaluation for
MY305 (0.7 vs. 0.56) and AFC (0.78 vs. 0.49) in Kenya and for AFC
in South Africa (0.78 vs. 0.76) (Table 3). Regardless of proportion of
selected sires (Top 5–100 sires), selection based on multi-country
genetic evaluation resulted in higher and favourable gains for
MY305 in first lactation in Kenya and for AFC in both Kenya
and South Africa. Selection based on the top 50 to 100 sires in

across-country genetic evaluation resulted in highest responses for
all the studied traits in South Africa (Table 3). Kenya would only
achieve 4%–73% and 3%–52% of genetic responses respectively for
MY305 and AFC from within country genetic evaluations compared
to multi-country. This translates to a benefit of 27%–96% and 48%–

97% respectively for MY305 and AFC. Furthermore, South Africa
would only achieve 63%–66% and 88%–92% of genetic responses
respectively for AFC and CI1 from within country genetic
evaluations compared to a multi-country. This translates to a
benefit of 34%–37% and 8%–12% respectively for AFC and CI1.
Kenya would benefit more from multi-country genetic evaluation of
MY305 and AFC compared to South Africa.

3.4 Challenges in livestock phenomics and
genetic evaluations in Africa

Respondents identified the main challenges affecting livestock
data recording and genetic evaluation in Africa. The challenges varied
across countries and regions. At the continental level, the following
challenges were cited: 1) lack and/or inadequate human capacity and
skills in livestock genetic evaluation (60.9%),2) lack of required
infrastructure for livestock data recording and genetic evaluation
(42.4%), 3) inadequate and lack of governmental funding for
livestock genetic evaluation (39.1%), 4) lack of enabling animal
breeding policies (32.6%), 5) poor animal identification and data
recording (23.9%), and 6) lack of systematic animal performance and
pedigree data recording (22.8%) among others. There was significant
differences in the reported challenges across the five African regions
(p < 0.05). The lack of human capacity in livestock genetic evaluation
was the main challenge in Eastern Africa (85.7%), Southern Africa
(66.7%) and Western Africa (60.5%). The major challenge in
Northern Africa and Central Africa were poor animal
identification and data recording (54.5%) and lack of government
funding for livestock data recording and genetic evaluation (60%),
respectively. The respondents mentioned the following challenges to
potential implementation of multi-country genetic evaluation in
Africa: 1) human capacity for multi-country genetic evaluation and
management (28.4%) 2) differences in national breeding policies
(26.1%), 3) lack of framework for joint funding for such an
initiative (21.6%),4) required infrastructure for across country
genetic evaluation (20.5%), 5) absence of standardization of data
collection tools and methods (17%),6) differences in breeding goals/
traits of interests among countries (15.9%) and 7) data access and
benefits sharing issues across countries (14.8%), among others.

4 Discussion

This study has highlighted, for the first time, the current state of
livestock phenomics and genetic evaluation approaches in Africa,
the main challenges at the national, sub-regional and continental
levels. From this, possible solutions can be inferred. We further
demonstrated that the multi-country genetic evaluation in South
African and Kenyan Holstein-Friesian cattle increased accuracy of
prediction and the expected genetic gains. The major challenges
highlighted by the current study were related to animal
identification and data recording systems, human capacity to
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analyse the data, infrastructure, funding, and animal breeding
policies. Similar issues have been previously reported in dairy
cattle and other livestock species in Africa (Zonabend et al.,
2013; Wurzinger et al., 2014; Ibeagha-Awemu et al., 2019;
Okpeku et al., 2019; Opoola et al., 2019; Rege et al., 2022).
Although most of the respondents described themselves as
experts in the livestock sector, it is important to acknowledge
that some of them may not be fully aware of the reality in the
field, and the increasingly available tools and methods.

4.1 Current state of phenomics and genetic
evaluation approaches in Africa

Systematic animal identification and routine capture of livestock
production and pedigree data are necessary for the prediction of
relative genetic merits of animals and provide the required
information needed to inform herd management and
improvement (Mrode et al., 2020). This study has confirmed
that, in many of the African countries, animal identification,
pedigree and performance recording systems are generally absent
(vanMarle-Köster et al., 2014). In the African smallholders and even
commercial production systems, data collection and storage still

pose great challenges (Ibeagha-Awemu et al., 2019). Thus, it will be
difficult to identify high genetic merit individuals that are both
highly adapted to smallholder farmers’ systems and have optimal
productivity for the environment. Some performance recording and
genetic evaluation programmes exist in African smallholder farming
systems. These include the African Dairy Genetic Gains Programme
(ADGG) that routinely collect on-farm herd health, milk production
traits and genetic information on dairy cattle in Tanzania, Ethiopia,
Kenya, Uganda and Rwanda and digitally shares feedback of the
findings from the collected data to farmers (ILRI, 2021). The ADGG
programme has successfully implemented genomic selection in pure
and crossbred dairy cattle in Eastern Africa (Marshall et al., 2019;
Burrow et al., 2021; Mrode et al., 2021) and this could be extended to
other African countries and regions. This will require important
genomic and performance data generation across the continent. The
reasons for successful genomic selection by ADGG include closer
engagement of the farmers and co-definition of the problems, hence
co-ownership of the strategies to solving the problems of lack of
access to appropriate dairy seedstocks. Secondly, immediate use of
the results from analyses and sharing these with the farmers help to
inform their herd managements and profitability. The farmers
therefore see the relevance of the recording and their roles in the
generation of the data. First initiated in the year 2016, ADGG is

TABLE 2 Predicted genetic gain (PGG) per generation from sire selection only (i.e., the top 5–25 sires are selected) for 305-day milk yield (MY305, Kg), age at first
calving (AFC) and first calving interval (CI1) in first lactation from multi-trait within- and across-country genetic selection (Holstein-Friesians) in Kenya (KE) and
South Africa (SA) Top 5–25 sires.

Top 5 sires

Trait KE PGG %PGG SA Multi-country PGG %PGG

i σ g ρ i σ g ρ PGG %PGG i σ g ρ

MY305 2.08 634 0.56 739.86 73.13 2.67 524.65 0.73 1,024.80 101.30 2.73 528 0.70 1,011.67 100

AFC 2.08 68 0.49 69.02 52.89 2.67 43.02 0.76 86.76 66.48 2.73 61.19 0.78 130.50 100

CI1 2.08 104 0.56 120.96 405.26 2.67 18.49 0.56 27.71 92.83 2.73 20.29 0.54 29.85 100

Top 10 sires

Trait KE PGG %PGG SA Multi-country PGG %PGG

i σ g ρ i σ g ρ PGG %PGG i σ g ρ

MY305 1.77 634 0.56 629.21 68.16 2.42 524.65 0.73 930.59 100.81 2.49 528 0.70 923.14 100

AFC 1.77 68 0.49 58.70 49.29 2.42 43.02 0.76 78.78 66.16 2.49 61.1948 0.78 119.08 100

CI1 1.77 104 0.56 102.87 377.70 2.42 18.49 0.56 25.16 92.38 2.49 20.2946 0.54 27.24 100

Top 25 sires

Trait KE PGG %PGG SA Multi-country PGG %PGG

i σ g ρ i σ g ρ PGG %PGG i σ g ρ

MY305 1.29 634 0.56 458.86 57.88 2.07 524.65 0.73 794.51 100.22 2.14 528 0.70 792.79 100

AFC 1.29 68 0.49 42.81 41.86 2.07 43.02 0.76 67.26 65.77 2.14 61.1948 0.78 102.26 100

CI1 1.29 104 0.56 75.02 320.73 2.07 18.49 0.56 21.48 91.84 2.14 20.2946 0.54 23.39 100

PGG: Predicted genetic gain per generation (Response to selection). i: Selection intensity. ρρ : Accuracy of selection (square root of reliability of EBVs). σ g: Square root of trait genetic variance
estimate.
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relatively young, and it is still benefiting from donor support.
Although much thought has been given to sustainability
considerations, there is still uncertainty on what will happen
when the donor support stops.

As observed in the present study, South Africa has a well-
established cattle data recording and ranking system. It has been
previously reported that South Africa is the only sub-Saharan Africa
country having a sustainable national animal identification and
performance recording scheme, as well as routine genetic
evaluation programmes (Ramatsoma et al., 2015). South Africa
could therefore serve as a model for other African countries for
national animal identification and ranking systems. It must be
emphasized that the systems in South Africa are focused on and
driven by (large and medium) commercial farmers. The country
could, therefore, benefit from collaborations with countries which
have developed genetic evaluation models geared to and/or inclusive
of smallholders. Other cases of successful animal data recording and
genetic evaluation systems are the community-based breeding
programmes (CBBP) for sheep and goats in Ethiopia run by
ICARDA and partners where data are collected using AniCapture
tool and stored at AniCloud database (https://anicloud.com), and
the CBBP for goats in Tanzania, Uganda andMalawi. The successful

data recording by ADGG and the CBBP programmes were due to
innovative use of mobile technologies and ICT tools as reviewed by
Mrode et al. (2020). The adoption of the ADGG approach to fit the
specific local country needs, realities and environments in
sustainable ways is needed. Therefore, understanding and
embracing the partnerships between farmers/farmer
organizations, sub-national, national, key private sector actors,
local and national governments as well as the development
partners are critical to the success of the on-going data recording
systems in Africa and would be expanded to other programs.

The challenge of inadequate and lack of human capacity to
undertake genetic evaluation is real (Rege et al., 2022). The adoption
of mass selection methods by the majority of African animal
breeders is partly due to the lack of animal identification, human
capacity to handle pedigree and genomic data as well as the limited
financial resourcing of livestock improvement programmes. In the
present study, in regions where human capacity is lower there was a
high dominance of phenotypic performance-based selection
compared to pedigree-based and genomic evaluations.
Furthermore, sub-regions with higher available livestock data
(Eastern, Western, and Southern) lack human capacity to carry
out livestock genetic evaluation. Past efforts to tackle the human

TABLE 3 Predicted genetic gain (PGG) per generation from sire selection only (i.e., the top 50–100 sires are selected) for 305-day milk yield (MY305, Kg), age at first
calving (AFC) and first calving interval (CI1) in first lactation from multi-trait within- and across-country genetic selection (Holstein-Friesians) in Kenya (KE) and
South Africa (SA) Top 50–100 sire.

Top 50 sires

Trait KE PGG %PGG SA Multi-country PGG %PGG

i σ g ρ i σ g ρ PGG %PGG i σ g ρ

MY305 0.82 634 0.56 291.68 42.56 1.76 524.65 0.73 675.52 98.56 1.85 528 0.70 685.36 100

AFC 0.82 68 0.49 27.21 30.78 1.76 43.02 0.76 57.19 64.69 1.85 61.1948 0.78 88.41 100

CI1 0.82 104 0.56 47.69 235.83 1.76 18.49 0.56 18.27 90.33 1.85 20.2946 0.54 20.22 100

Top 75 sires

Trait KE PGG %PGG SA Multi-country PGG %PGG

i σ g ρ i σ g ρ PGG %PGG i σ g ρ

MY305 0.46 634 0.56 163.62 26.77 1.56 524.65 0.73 598.76 97.95 1.65 528 0.70 611.27 100

AFC 0.46 68 0.49 15.26 19.36 1.56 43.02 0.76 50.69 64.29 1.65 61.1948 0.78 78.85 100

CI1 0.46 104 0.56 26.75 148.33 1.56 18.49 0.56 16.19 89.77 1.65 20.2946 0.54 18.03 100

Top 100 sires

Trait KE PGG %PGG SA Multi-country PGG %PGG

i σ g ρ i σ g ρ PGG %PGG i σ g ρ

MY305 0.07 634 0.56 24.85 4.45 1.41 524.65 0.73 540.02 96.76 1.51 528 0.70 558.10 100

AFC 0.07 68 0.49 2.33 3.24 1.41 43.02 0.76 46.10 63.96 1.51 61.1948 0.78 72.08 100

CI1 0.07 104 0.56 4.08 24.64 1.41 18.49 0.56 14.60 88.23 1.51 20.2946 0.54 16.55 100

PGG: Predicted genetic gain per generation (Response to selection). i : Selection intensity. ρρ : Accuracy of selection (square root of reliability of EBVs). σg : square root of trait genetic variance
estimate.
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capacity challenge has included the development of animal genetic
training resources and “training the trainers” programme where
more than 100 scientists from 25 countries in sub-Saharan Africa
and 15 countries in South and South East Asia were trained through
workshops and refresher courses (Ojango et al., 2009). The recently
established African Animal Breeding Network (AABNet, http://
animalbreeding-africa.org/) could also build on previous efforts
to address the human capacity issue through annual and
purposely designed short term training courses in animal
breeding, quantitative genetics, genomics and bioinformatics. The
tailor-made short courses will emphasize theoretical concepts,
problem-solving and hands-on training. It is envisaged that, in
addition to strengthening of the capacity of scientists AABNet
will work with strategically selected individual countries to
support the development of long-term genetic improvement
programmes, including performance recording, pedigree
information, genotyping to support genetic analysis, genomic
prediction, inter alia. The case farms identified in target
countries as part of the initiative will be supported by the trained
scientists who will help them to select and disseminate genetically
superior animals during implementation phase of breeding
programmes. Systems for animal performance recording that
provide feedbacks to farmers need to be developed with
supportive policies to enable their large-scale adoption (Opoola
et al., 2019). In southern and eastern African regions, it has been
reported that institutional set up to support animal breeding
programmes is fragmented and that livestock recording for the
purpose of research and development breeding practices is lacking
(Zonabend et al., 2013). Similar issues have been observed in the
other African sub-regions in the present study. There is therefore a
need for collaboration between countries and regions to tackle the
common issues hindering livestock genetic improvement in the
continent. This will require that African governments commit to
setting aside a certain percentage of their livestock budgets to
purchase state-of-the-art equipment and upgrade the existing
ones with strong institutional support. At the same time there is
need to strengthen livestock policies and ensure that they are
adequately implemented.

4.2 Potential for across country genetic
evaluation

Most of the respondents believe that across-country genetic
evaluation in Africa will have an important mileage in livestock
sector. Across-country evaluation will build genetic evaluation
capacities of countries where such capacities are lacking. This will
also partly solve the resource challenge as by pooling resources, the
countries with inadequate resources can be supported by those who
have, including international institutions (e.g., ICAR, AABNet, and
ADGG). In addition to solving the inadequacy of human capacity,
across country evaluation will enable more rigour and higher
reliabilities of the genetic predictions. For example, the current
study showed that Kenya benefitted more from selecting sires
across different countries than using only its own national sires for
genetic evaluation of MY305 and AFC while South Africa benefitted
for AFC andCI1. The benefits from across country genetic evaluations
in cattle have been well demonstrated in developed countries (Banos

and Smith, 1991; Hammami et al., 2009; Nilforooshan, 2011). In a
recent study in Sub-Saharan Africa, Opoola et al. (2020) utilized the
across country method to examineMY305, AFC and CI1 in Holstein-
Friesian and Jersey cattle breeds in Zimbabwe, South Africa and
Kenya. Results showed that the genetic variance and heritability were
not always estimable within-country but were significantly different
from zero in the across country evaluation, and there was greater
predicted genetic gains in all traits from the across-country genetic
evaluation due to greater accuracy of selection compared to within-
country. However, Opoola et al. (2020) used single trait animal model
in contrast to the multi-trait analysis implemented in the present
study. The multi-trait analyses take into consideration the genetic
correlation between the studied traits. Furthermore, all previous
attempts of across county genetic evaluation assumed a genetic
correlation of unity and did not take into consideration the
genotype-by-environment effect as the classical method
implemented by Interbull. The greater predicted genetic gains in
across country evaluation is due to the existence of genetic links across
countries. For the computation of genetic gains only the sire pathways
have been considered. Therefore, the rate of genetic gain reported in
the present study represents approximately about 66% of possible
genetic progress (Schmidt and Vleck, 1974). This implies that the
benefit from across country genetic evaluation would even be higher if
cows were also selected. Across country genetic evaluation requires
strong expertise and collaborations (Opoola et al., 2020).
Unfortunately, South Africa is the only African country
participating in the Interbull of international Committee for
Animal Recording (ICAR). Efforts need to be made to get other
African countries to join the Interbull international genetic evaluation.

As alluded to above, a multi-country breeding programme based
on joint genetic evaluation would be possible when there are genetic
links across countries, and would provide a platform for accelerated
genetic gains through selection and germplasm exchange between
sub-Saharan African countries (Opoola et al., 2020). However, the
lack of herd connectedness and pedigree data recording in African
traditional production systems may limit the application of the
classical multiple across country genetic evaluation in African
indigenous livestock. This is where the use of genomic
methodologies would be very useful. For example, a genomic
matrix can be used to assess relationships allowing estimation of
genomic breeding values to enable selection of superior parents to
drive improvement. Genomic selection also offers the advantage of
selecting young animals and hence reducing generation interval
compared to the traditional approach. Therefore, across-country
genomic evaluation could be the way for across country genetic
evaluation in African indigenous livestock breeds. A recent study,
has tested the feasibility of multiple country and breed genomic
prediction of tick resistance in seven beef cattle breeds including the
South African indigenous Nguni cattle breed (Cardoso et al., 2021).
The results showed that genomic multi-traits approach improved
predictive ability for resistance to ticks and could be used to improve
tick resistance of the studied populations (Cardoso et al., 2021).
Moreover, the ADGG programme is generating data across
Ethiopia, Tanzania, Kenya, Uganda, and Rwanda using genomic
evaluation methods and could serve as a testbed for multiple across
country genomic evaluation in Africa. A recent study examining
ADGG data between Ethiopia and Tanzania indicated a very low
genetic correlation of about 0.13 for milk yield between the two
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countries and highlighted the need to deliberately exchange top
ranking bulls between the countries (Mrode et al., 2022).
Furthermore, the present study revealed the existence of livestock
performance (milk traits, growth, reproduction, health, etc.),
pedigree, genetic information data on various cattle breeds across
African countries and sub-regions as well as the custodians of these
data. As a next step, AABNet could put in place a Memorandum of
Understanding between data custodians across countries. The
governments and custodians of the available data in each country
should be sensitized about the benefits of across country genetic
evaluation and about sharing resources and capacity to carry out
across-country genetic evaluation for common traits as done in
western countries. The diversity displayed by African indigenous
livestock breeds as well as the existence of capacity in the African
diaspora already involved in the ICAR international genetic
evaluation, and the establishment of AABNet, are important
opportunities to be exploited to rapidly promote genetic
improvement between African countries. Although the difference
in breeding goals between countries has been listed as a challenge by
respondents, scenarios can be assumed and analyses that speak to
the similarities can be undertaken. A sustainable animal breeding
programme in Africa would require a strong national and regional
collaboration and collective actions by all the stakeholders (farmers,
breed societies, research institutes, universities, governments,
private businesses, and NGOs) working together to achieve a
common goal as illustrated by Ibeagha-Awemu et al. (2019).

4.3 Future approaches for livestock
phenomics and genetic evaluation in Africa

Application of ICT and mobile devices to record performance
data on-farm in dairy cattle and small ruminants is already
happening in Africa (Mrode et al., 2020). In South Africa
successful attempts have been made in the use of mobile
platforms and low-cost censors for precision phenotyping in both
beef and dairy cattle (Visser et al., 2020). The current ICT and
mobile technologies used for livestock data recording are still relying
on internet which is a big challenge in Africa. Going forward,
livestock phenomics and genetic evaluation in the continent will
need to include digital tools and ICT that do not rely on internet
(Mrode et al., 2020). Availability of requisite human capacity,
infrastructure, appropriate animal breeding policies, and adequate
financial resources will be required to underpin functional and
sustainable genetic evaluation systems. These modest successes to
date, have beenmade by countries working independently, mostly in
donor-funded, time-bound projects. There is a need to build on
these efforts to establish a continental initiative that leverages on
potential complementarities and synergies. Moreover, most the
traits currently being recorded are easy to measure. These
include milk yield, live weights based on heart girth, body
condition score, growth traits, age at calving and calving interval.
The more difficult traits to measure such as residual feed efficiency,
feed conversion ratio and disease resistance are yet to be recorded
using the mobile technologies. There will be need to develop
harmonized standards for livestock identification and precision
phenotyping using ICAR as a reference. Given that there are
already many Apps that are being used to collect data from

farmers’ herds, there is a need for collaboration around data
collection and sharing using agreed protocols and standards, and
governed by formalized agreements, first within countries, and
deploying more robust management tools (e.g., block chains) and
automation of database links via APIs (Application Programming
Interface).

There is also scope for inclusion of georeferencing of herds to
enable connection of collected performance data with related global
meta-weather data to estimate the effects of climatic conditions on
productivity and hence integrate climate resilience in livestock
breeding objectives. In addition, a combination of mobile
telephony and collection of e GPS coordinates of farms can
provide for a powerful spatial modelling to identify superior
animals in smallholder farms (Selle et al., 2020), thus overcoming
some of the current challenges associated with low connectedness
among farms which are also widely scattered and difficult to reach.
AABNet could play an important role in advancing the livestock
phenomics and genetic evaluation agenda in the continent by
facilitating the development of harmonized livestock identification
and data recording systems for the willing African countries and
supporting them to carry out their national routine genetic evaluation.

Availability of appropriate technical capacity is crucial for
functioning genetic improvement programmes. Many African
University curricular have not been responsive to the rapid
developments in technologies and the opportunities these provide
for animal genetic evaluations and overall design and execution of
breeding programmes. As alluded to above, the mission of AABNet
places it in good place to facilitate the retooling of African animal
geneticists and breeders as well as private sector players, including
farmers, to equip them with what they need to drive genetic
improvement programmes using state-of-the art technologies and
tools. One tool approach in this regard could be through
organisation of massive open online courses (MOOCs) and
annual summer classes. The key topics of the training sessions
will focus on definition of breeding goals adapted to African
livestock production system systems, hands-on training on
inclusion of performance, pedigree, and genomic information in
the estimation of genetic merit of animals, breeding programme
design, optimisation and simulation. This will help to develop
breeding programmes that are sustainable and adapted to the
various livestock production systems in the continent. AABNet
has recently organised a 3-week training (14 February—11 March
2022) to support 48 participants from 30 African countries. The
training mode used included classroom lectures, and hands-on lab
sessions covering various topics. A big emphasis on definition of
standard and harmonisation animal identification and data
recording systems will be needed in future trainings. A lesson
learnt from the previous trainings organised in Africa is non-
availability of real data from the attendees as well as the short
duration of the trainings limiting the acquisition of hands-on skills.
To address this challenge, AABNet could invite the participants
from the institutions of the custodians of available livestock data (as
reported in this study). The custodians of data could nominate
participants from their institutions who would bring specific data
sets with them to analyse as part of the training. This approach can
potentially deliver huge benefits by contributing to the transfer of the
acquired skills to the home organisations. After the national genetic
evaluation, the across country genetic evaluation could be carried
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out under the coordination and technical support by the AABNet
members—both in the continent and Diaspora—and the results
shared with participating countries through processes which also
include capacity development to enhance effective use of the results.
For across country evaluation, emphasis should initially be on dairy
cattle due to the evidence of use of international sires for artificial
insemination in different African countries. As also mentioned by
Mulder et al. (2017), the most critical point in establishing cross-
country collaboration in the African context is to create an
environment of fairness and equity in data and benefit sharing.
This should be an important consideration from the start of
discussions among partners from the different countries, and
formal agreements should have clear statements of ownership
and benefits.

5 Conclusion

This study has highlighted the current status of livestock
phenomics and genetic evaluation approaches in Africa, with a
focus on the main challenges at the national, sub-regional and
continental levels, and possible solutions to these challenges. The
challenges identified are related to animal identification and data
recording systems, availability of digital tools and ICT not relying on
internet, human capacity, infrastructure, funding and animal
breeding policies. It is evident that the lack of a robust animal
identification and data recording systems as well as human capacity
has greatly influenced the choice of selection method, and explains
the predominance of mass selection as the method currently being
applied by most countries. A case example done as part of this study
of joint genetic evaluation of Holstein-Friesian cattle data from
Kenya and South Africa resulted in higher accuracy of prediction
and genetic gains, demonstrating the benefits of such an approach.
Results showed that Kenya benefited from the joint evaluation on
the 305-days milk yield and the age at first calving, while South
Africa got benefits on the age at first calving and the first calving
interval. In addition to demonstrating these benefits, the findings
of this study have identified issues around harmonized protocols
for animal identification, livestock data recording and genetic
evaluations (both national and across-country) as well as capacity
building and training programmes for animal breeders and
livestock farmers in Africa. Other needed enablers identified
include policies, appropriate infrastructure and funding. It is
concluded that the development of a joint genetic evaluation
across African countries could revolutionize livestock genetic
improvement in the continent.
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Muscle transcriptome analysis
provides new insights into the
growth gap between fast- and
slow-growing Sinocyclocheilus
grahami
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Laboratory of Plateau Fish Breeding, Kunming Institute of Zoology, Chinese Academy of Sciences,
Kunming, Yunnan, China, 3Yunnan Engineering Research Center for Plateau-Lake Health and Restoration,
Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China, 4Kunming College
of Life Science, University of Chinese Academy of Sciences, Beijing, China, 5Fishery Technology Extension
Station of Yunnan, Kunming, Yunnan, China

Sinocyclocheilus grahami is an economically valuable and famous fish in Yunnan
Province, China. However, given its slow growth (40 g/2 years) and large growth
differences among individuals, its growth performance needs to be improved for
sustainable future use, in which molecular breeding technology can play an
important role. In the current study, we conducted muscle transcriptomic analysis to
investigate the growth gaps among individuals and the mechanism underlying growth
within 14 fast- and 14 slow-growth S. grahami. In total, 1,647 differentially expressed
genes (DEGs) were obtained, including 947 up-regulated and 700 down-regulated
DEGs in fast-growth group. Most DEGs were significantly enriched in ECM-receptor
interaction, starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate
metabolism, amino acids biosynthesis and metabolism, peroxisome, and PPAR
signaling pathway. Some genes related to glycogen degradation, glucose transport,
and glycolysis (e.g., adipoq, prkag1, slc2a1, agl, pygm, pgm1, pfkm, gapdh, aldoa, pgk1,
pgam2, bpgm, and eno3) were up-regulated, while some genes related to fatty acid
degradation and transport (e.g., acox1, acaa1, fabp1b.1, slc27a1, and slc27a2) and amino
acid metabolism (e.g., agxt, shmt1, glula, and cth) were down-regulated in the fast-
growth group. Weighted gene co-expression network analysis identified col1a1, col1a2,
col5a1, col6a2, col10a1, col26a1, bglap, and krt15 as crucial genes for S. grahami growth.
Several genes related to bone andmuscle growth (e.g., bmp2, bmp3, tgfb1, tgfb2, gdf10,
andmyog) were also up-regulated in the fast-growth group. These results suggest that
fast-growth fishmay uptake adequate energy (e.g., glucose, fatty acid, and amino acids)
from fodder, with excess energy substances used to synthesize collagen to accelerate
bone and muscle growth after normal life activities are maintained. Moreover, energy
uptakemay be the root cause, while collagen synthesismay be the direct reason for the
growth gap between fast- and slow-growth fish. Hence, improving food intake and
collagen synthesis may be crucial for accelerating S. grahami growth, and further
research is required to fully understand and confirm these associations.
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1 Introduction

Sinocyclocheilus grahami (Cypriniformes, Cyprinidae) is an
endemic fish species in China, with restricted distribution in
Dianchi Lake and surrounding streams on the Yunnan Plateau
(Zhao and Zhang, 2009). As one of the “Four Famous Fishes” in
Yunnan, S. grahami is an economically valuable species known for
its excellent quality and higher crude protein (~20%), essential
amino acids (~18%) and polyunsaturated fatty acids (~0.34%)
content than Ctenopharyngodon idellus, Hypophthalmichthys
nobilis, or Cyprinus carpio (Zhao et al., 2013), and possesses huge
breeding potential, especially in freshwater aquaculture. From the
1960s, the species became highly endangered due to habitat
destruction, water pollution, and alien species invasion (Yang
et al., 2007). As such, over the past 2 decades, our team has
successfully established an artificial breeding program to ensure
the survival of the species and lay a foundation for its production,
resulting in the creation of a new national breed (“S. grahami, Bayou
No. 1”, hereafter S. grahami) with accelerated growth and weakened
intermuscular bones via four generations of artificial selection (Yang
et al., 2007; Pan et al., 2009; Yin et al., 2021). However, slow growth
(40 g/2 years, 2 years = mature age) and growth gaps among
individuals remain problematic, and further selective breeding is
required to obtain a faster and more stable growing strain.

With the rapid development of molecular biology and
sequencing technology, modern breeding techniques attempt to
target the regulatory genes underpinning desired phenotypes and
achieve superior varieties via the selection or manipulation of these
genes, i.e., molecular-assisted breeding (Eze, 2019; Liu et al., 2022).
Therefore, it has become increasingly important to understand the
regulatory mechanisms andmajor genes behind desired phenotypes.

Although growth is a vital characteristic of farmed species, it is a
complex trait influenced bymany genes withminor effects. As such, the
genetic mechanisms underlying growth remain unclear, although
various relevant genes have been identified, including growth axis-
related genes [growth hormone (gh), growth hormone receptor (ghr),
insulin-like growth factor I (igf1), insulin-like growth factor II (igf2),
somatostatin (sst)] and muscle growth regulating genes [myostatin
(mstn), myogenic regulatory factors (mrfs)] and appetite, food intake
regulate genes [melanocortin receptor-4 (mc4r), ghrelin (ghrl)] (De-
Santis and Jerry, 2007; Blanco et al., 2017; Baldini and Phelan, 2019).
Nevertheless, many genes related to growth remain unresolved, and the
mechanisms for growth differ in different species (Laghari et al., 2014;
Yu et al., 2016; Chen et al., 2022). Hence, mechanistic analysis of S.
grahami is required to better guide breeding.

Fish growth can be achieved via skeletal muscle growth,
primarily determined by hyperplasia and hypertrophy of muscle
fibers (muscle cells) (Stoiber et al., 2002; Johnston, 2006; Fuentes
et al., 2013). Muscle constitutes 50%–70% of body weight of most
commercially important fish species and is the main consumed
product (Li et al., 2019). Therefore, muscle growth plays a critical
role in fish growth. Transcriptomic analysis plays a significant role in
all fields of biological research and is widely used to study gene
expression profiles and functional mechanisms of genotypes
(Klopfleisch and Gruber, 2012; Papatheodorou et al., 2015). For
instance, muscle transcriptomic studies have identified several genes
correlated with growth in a variety of fish species, including
Micropterus salmoides (Li et al., 2017), Ctenopharyngodon idella

(Lu et al., 2020), Schizothorax prenanti (Li et al., 2019), and
Mylopharyngodon piceus (Zhang et al., 2020).

Here, we focused on exploring the molecular mechanisms and
major genes underlying growth of S. grahami, and aimed to verify
differences in gene expression profiles between fast- and slow-
growth fish and identify key genes involved in body length/
weight based on muscle transcriptomic analysis. We hope that
our study can provide valuable information for further studying
of growth mechanisms and breeding strategies in S. grahami and
other farmed species.

2 Materials and methods

2.1 Ethics statement

All research protocols and treatments of experimental fish were
reviewed and approved by the Internal Review Board of the
Kunming Institute of Zoology (KIZ), Chinese Academy of
Sciences (CAS), China (approval ID: IACUC-PA-2021-07-053).

2.2 Preliminary study

To determine the effect of random variables caused by rearing
environment and select themost appropriate samples for next analysis, a
preliminary study was conducted. We carried out a bulk RNA-seq
strategy for extremely large and small size samples in a sibling population
(generated from one female × one male) and a random population
(generated frommultiple females ×males) from the farmed “S. grahami,
Bayou No. 1”. After RNA-seq data analysis, we observed that the major
differentially expressed genes (DEGs) were similar between the two
populations (Supplementary Figure S2). It is evident that when the
rearing conditions are consistent, the randomvariables caused by rearing
environment can be negligible. Therefore, to further investigate the
mechanisms underlying growth, in the current study, we selected the
random population (diverse genetic backgrounds) cultivated in one tank
to perform further analysis. The detailed information for preliminary
study was provided in Supplementary Material.

2.3 Fish cultivation, sample collection, and
sequencing of S. grahami

Fish were obtained from the Endangered Fish Conservation
Center (EFCC) of the Kunming Institute of Zoology (KIZ), Chinese
Academy of Sciences, Kunming, Yunnan, China. In February 2018, a
random population (generated from multiple females × males,
~20,000 individuals) of farmed S. grahami was constructed using
artificial reproduction. The resulting offspring were cultivated in a
3 m × 4 m × 1.5 m pond, with the water temperature, dissolved
oxygen (DO) and PH levels maintained near 22°C ± 1°C, 6.5 mg/L
and 8.0, respectively. One-third of water in pond was changed with
fresh water daily. They were fed twice a day (fodder volume 3% of
fish weight) to apparent satiation by a commercial diet (protein 40%,
lipid 18%, Specialized and high-end feed for freshwater fish,
Tongwei Group) for 8 months at the EFCC. We then separated
individuals into large-, medium-, and small-sized groups (in
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different buckets) according to body size. To further observe the
growth gap and minimize the effect of environmental random
variables for our results, we transported 500 individuals
(200 extremely large, 200 extremely small, and 100 medium-sized
individuals) labeled with visible implant elastomer (VIE) of different
colors to one fish tank (1 m × 0.6 m × 1 m) in the laboratory at KIZ.
The rearing conditions and feeding regime were consistent with
previous setup. After 2 months of regular feeding, wemeasured body
weight and body length separately, and the growth gap between
extremely large, medium-sized and extremely small individuals
persists throughout the experiment. Therefore, we selected
14 extremely large and 14 extremely small individuals as the two
extreme bulks of growth.

Fish samples from the two extreme bulks were first euthanized
using MS-222. Muscle tissues of each individual were collected and
kept under sterile conditions. Subsequently, total RNAwas extracted
using an RNA Purification Kit (Omega BioTek, United States) in
accordance with the manufacturer’s instructions. For each sample,
RNA concentration and quality were measured using a
Nanophotometer (Implen, Germany) and Agilent
2100 Bioanalyzer (Agilent Technologies Inc., United States),
respectively. High-quality samples (OD260/280 ≥ 1.8, OD260/
230 ≥ 1.8) were labelled into a paired-end 150-bp library and
sequenced using the Illumina Hiseq X-Ten platform.

2.4 Transcript-level gene expression analysis
and functional enrichment of differentially
expressed genes (DEGs)

Raw RNA sequencing (RNA-seq) reads from each sample were
filtered using FastQC (v0.11.8) and Trimmomatic (v0.38). Clean
reads were aligned to the reference genome (GenBank: GCA_
001515645.1) using Hisat2 (v2.1.0) with default parameters. The
unique mapped reads of each sample were used to calculate
fragments per kilobase of exon model per million mapped
fragments (FPKM) using Cufflinks (v2.2.1) with default settings.
According to the gene expression level of each sample, package
DEseq2 in R (v4.0.5) was used to detect significant DEGs, with |log2
(fold-change)| ≥ 1 and adjusted p ≤ 0.05 applied as filtering
thresholds. To further clarify the functions of DEGs, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were performed using
DAVID (https://david.ncifcrf.gov/summary.jsp) and the
clusterProfiler package in R (v4.0.5).

2.5 Weighted gene co-expression network
analysis (WGCNA)

The FPKM of all genes was used to build unsigned co-expression
networks using the WGCNA package in R (v4.0.5) (Langfelder and
Horvath, 2008). We first used the pickSoftThreshold function in the
WGCNA package to calculate the weighting coefficient β to ensure
that the resulting network was close to scale-free topology (linear
regression model satisfies R2 = 0.85 as a threshold). The Pearson
correlation matrix was then used to analyze the co-expression of the
paired genes, and network construction was performed using the

one-step function (blockwiseModules) in theWGCNA package with
parameters “maxBlockSize = nGenes, TOMType = ‘unsigned’,
minModuleSize = 30, reassignThreshold = 0, mergeCutHeight =
0.25, corType = ‘pearson’ ”. Next, the correlation coefficient between
the module eigenvector (module eigengene, ME) and different
influencing factors was calculated to determine the module most
highly related to the phenotype. Module membership ≥ 0.8 and gene
significance ≥ 0.2 were set as the threshold of hub genes screened in
the optimal-related module. Cytoscape (v3.7.2) was used to analyze
the degree of genes and construct the visualization network.

2.6 Quantitative real-time PCR

To validate the transcriptome data, ten DEGs were randomly
chosen and their mRNA levels were assessed using qRT-PCR
(quantitative real-time PCR) in six fast-growth and six slow-
growth samples (randomly selected). All primers designed by
Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-
blast/) according to CDS (Coding Sequence) sequences of S.
grahami from the National Center for Biotechnology
Information (NCBI) database. For qRT-PCR, 0.25 µg of total
RNA was used for cDNA synthesis with PrimeScript™ RT
Reagent Kit with gDNA Eraser (Takara, Japan) based on
manuals. The two-step qRT-PCR program included enzyme
activation at 95°C (30 s) and 40 cycles at 95°C (5 s), 60°C
(30 s) was performed with TB Green® Premix Ex Taq™ II
(TaKaRa, Japan) using the CFX Connect Real-Time System
(BioRad, United States). PCR amplification of all samples was
performed in triplicate. Eukaryotic translation elongation factor
2 (Eef2) was used as the reference gene to calculate the relative
expression levels mainly because of its stability, which the CT
values are similar in all samples (Zhang et al., 2017; Zhang et al.,
2019). Fold changes in gene expression were calculated using the
2−ΔΔCT method (Livak and Schmittgen, 2001).

2.7 Statistical analysis

Statistical analysis was performed with Excel 2010 and SPSS 25.0
(SPSS, United States). All data were presented as mean ± standard
deviation (SD). Significant differences were analyzed via one-way
ANOVA (analysis of variance) and significance was accepted at the
level of p < 0.05.

3 Results

3.1 Sample collection and sequencing

In total, 28 individuals at the same developmental period
(10 months old) but with different growth rates (14 fastest
growing individuals, body length: 46.33 ± 2.08 mm, body
weight 1.93 ± 0.26 g; 14 slowest growing individuals, body
length: 19.88 ± 0.86 mm, body weight: 0.13 ± 0.02 g) were
selected for analysis. Body length and weight were significantly
different between the fast-growth and slow-growth groups (p <
0.01) (Figures 1A, B).
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The 28 RNA samples were sequenced using the Illumina Hiseq
X-Ten platform. After quality trimming, a total of 781,181,070 clean
reads (150 bp) were generated for analysis (Supplementary Table
S1). Among them, 390,057,252 reads were from the fast-growth
individuals and 391,123,818 were from the slow-growth individuals.
The Q30 range was 95.25%–95.78% for all individuals, indicating
that data quality of each sample was sufficient for the following
analyses. Principal component analysis (PCA) was performed to
explore the relationship between gene expression and body length/
weight before differential expression analysis. Results showed that
the fast- and slow-growth groups could be differentiated by PC1
(explaining 53% of the variance) (Figure 1C), indicating that
PC1 was correlated with body length/weight, and the following
analyses for major DEGs was feasible.

3.2 Differential expression and functional
enrichment analysis

In total, 1,647 DEGs (two-fold change in expression and
adjusted p < 0.05) were identified in the fast- versus slow-growth

groups, including 947 up-regulated and 700 down-regulated DEGs
in the fast-growth group (Figures 1D, E). Based on the DEGs
heatmap, DEGs expression were significantly different between
the two groups, but were consistent in the 14 fast-growth
samples and 14 slow-growth samples, indicating no significant
differences within groups and that the DEGs were suitable for
subsequent analyses (Figure 1D). The markedly up-regulated
genes for fast-growth group included collagen alpha-1(X) chain
(col10a1), papilin (papln), sarcolipin (sln), mid1-interacting protein
1-B (mid1ip1b), biglycan (bgn), cytochrome c oxidase subunit
4 isoform 2 (cox4i2), and keratin, type I cytoskeletal 15 (krt15),
while the markedly down-regulated genes included neurofilament
light polypeptide (nefl), dehydrogenase/reductase SDR family
member 12 (dhr12), sodium/potassium-transporting ATPase
subunit alpha-1 (atp1a1), myelin proteolipid protein (plp), and
creatine kinase B-type (ckb) (Figure 1E).

To understand the functions of the DEGs, we performed GO
enrichment analysis. The 947 up-regulated DEGs were classified
into 37 GO terms (adjusted p < 0.05) (Figure 2A), including
extracellular matrix organization (GO:0030198), glycolytic process
(GO:0006096), skeletal muscle tissue development (GO:0007519),

FIGURE 1
Phenotypes and DEGs of fast- and slow-growth S. grahami. (A) Living specimen of fast- and slow-growth S. grahami. (B) Body length/weight
variations in fast- and slow-growth groups. P < 0.01 are representedwith two asterisks. (C) PCA of correlation between phenotype and gene expression in
fast- and slow-growth groups. (D) Heatmap of DEGs for fast- and slow-growth groups. (E) Volcano plot for fast- and slow-growth groups.
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skeletal system development (GO:0001501), collagen fibril
organization (GO:0030199), skeletal muscle fiber development
(GO:0048741), and growth factor activity (GO:0008083). In
addition, the 700 down-regulated DEGs were classified into nine
GO terms (adjusted p < 0.05) (Figure 2B), including lipid metabolic
process (GO:0006629), fatty acid metabolic process (GO:0006631),
glycolytic process (GO: 0006096), oxidoreductase activity (GO:
0016491), and catalytic activity (GO:0003824).

To further identify the biological pathways that regulate growth in
S. grahami, we performed KEGG pathway analysis of the up- and
down-regulated DEGs (adjusted p < 0.05). Results showed that the up-
regulated DEGs were primarily enriched in ECM-receptor interaction,
glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino
acids, FoxO signaling pathway, cardiac muscle contraction, arginine
and proline metabolism, adipocytokine signaling pathway, starch
and sucrose metabolism, glycine, serine, and threonine metabolism,
galactose metabolism, pyruvate metabolism, pentose phosphate
pathway, and fructose and mannose metabolism (Figure 2C). In
addition, several down-regulated DEGs were also enriched in
glycolysis/gluconeogenesis, biosynthesis of amino acids, fructose and
mannose metabolism, carbon metabolism, pentose phosphate
pathway, glycine, and serine and threonine metabolism (Figure 2C).

Other down-regulated DEGs were enriched in the PPAR signaling
pathway, peroxisome, glyoxylate and dicarboxylate metabolism,
alanine, aspartate, and glutamate metabolism, steroid biosynthesis,
biosynthesis of unsaturated fatty acids, and arachidonic acid
metabolism (Figure 2C).

3.3 Weighted gene co-expression network
analysis

To better understand the relationships between genes and
phenotypes, we used 19,094 genes for WGCNA and a soft-power
threshold of β = 6 for further analysis. In total, 20 modules were
classified with module sizes ranging from 52 to 5,151, with 667 genes
not assigned to any module (Figures 3A, B). The most abundant
module was the turquoise module, containing 5,151 genes, including
690 up-regulated and 134 down-regulated DEGs (Figure 3B),
followed by the blue module, containing 4,629 genes, including
132 up-regulated and 329 down-regulated DEGs (Figure 3B). Based
on the correlation coefficient of modules and sample body weight/
length, the turquoise (R > 0.87, p < 0.05) and blue (R < −0.82, p <
0.05) modules were significantly positively and negatively correlated

FIGURE 2
GO and KEGG enrichment analysis of DEGs. (A) GO enrichment analysis of up-regulated DEGs. (B) GO enrichment analysis of down-regulated
DEGs. (C) KEGG enrichment analysis of up- and down-regulatedDEGs. X-axis represents the rich factor, which reflects the degree of enrichment of DEGs
in each KEGG pathway.
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with body length/weight, respectively (Figure 3B). Based on module
membership ≥ 0.8 and gene significance ≥ 0.2, 739 and 529 genes
were identified as hub genes in the turquoise and blue modules,
respectively.

As many hub genes were found under the threshold criteria,
we identified crucial genes according to the degree of node
connection. In the turquoise module, 65 genes with the
strongest interaction (top 200 weight pairs, weight value
> 0.5403) were chosen for network construction. Lysyl oxidase
homolog 3 (loxl3), collagen alpha-2(VI) chain (col6a2), collagen
alpha-1(I) chain (col1a1), collagen alpha-1(V) chain (col5a1),
and collagen alpha 2(I) chain (col1a2), which showed the highest
degree of node connection (degree ≥ 22), were up-regulated
in the fast-growth group, and positively correlated with body
weight/length (Figure 3C). Simultaneously, in the blue module,
69 genes with the strongest interaction (top 200 weight pairs,

weight value > 0.5225) were chosen for network construction.
Osteocalcin (bglap), collagen alpha-1 (XXVI) chain (col26a1),
collagen alpha-1(X) chain (col10a1), keratin, type I cytoskeletal
15 (krt15), and mid1-interacting protein 1-B (mid1ip1b), which
showed the highest degree of node connection (degree ≥ 18), were
up-regulated in the fast-growth group, and positively correlated
with body weight/length (Figure 3D). Thus, these identified genes
may be crucial genes for S. grahami growth in the turquoise and
blue modules.

3.4 Validation by quantitative real-time PCR

Ten DEGs were chosen for qRT-PCR to validate the expression
pattern observed in transcriptome data. Figure 4 displays the relative
expression levels of adipoq, pgm1, aldoa, pgk1, col1a2, col6a1,

FIGURE 3
WGCNA for S. grahami. (A) Average linkage clustering tree (dendrogram) based on topological overlap distance in gene expression profiles inmuscle
datasets. Branches of dendrogram correspond to modules, shown in “module” color bar below dendrogram. (B) Correlation between module
eigengenes and phenotype and module genes. Left: Correlation between module eigengenes and phenotype. Each row corresponds to a module
identified on the left side by its color. Each column corresponds to a phenotype. Each cell reports Pearson correlation between module eigengene
and phenotype. Cells are color-coded using correlation values according to color scale on the right; positive correlations are in red and negative
correlations are in blue. Middle: Gene number in each module. Right: DEG number in each module. (C) Network view of turquoise module. Node are
labeledwith gene symbols, colored according to gene type, and sized according to gene degree. (D)Network view of bluemodule. Node are labeledwith
gene symbols, colored according to gene type, and sized according to gene degree.
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col10a1, bglap, krt15, cth in both fast- and slow-growth groups. The
ratio of DEGs expression levels between the fast and slow-growth
groups were calculated for qRT-PCR and RNA-seq data, respectively
(Figure 4K). The result indicates the expression pattern observed in
qRT-PCR is consistent with that observed in the RNA-seq data
(Supplementary Figure S3). Moreover, these expression patterns
were consistent with that observed in the bulk RNA-Seq data for
preliminary study (Supplementary Figure S4), strongly indicate the
reliability of the results in our study. The qRT-PCR primers of these
DEGs were provided in Supplementary Table S2.

4 Discussion

As a critical economic trait, growth is important for the
development of aquaculture. A growing number of

transcriptomic studies have identified growth mechanism
diversity in species, tissues, and environments (Fu et al., 2019;
Prieto et al., 2019; Lu et al., 2020; Wang et al., 2021). In our
study, 1,647 DEGs (947 up-regulated and 700 down-regulated
DEGs in the fast-growth group) were obtained from muscle
tissue between the fast- and slow-growth groups. Most DEGs
were significantly enriched in metabolic pathways, such as starch
and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate
metabolism, glycine, serine and threonine metabolism, arginine
and proline metabolism, biosynthesis of amino acids, peroxisome,
and PPAR signaling pathway (Figure 2C). These findings are similar
to those in previous studies on C. idella (Lu et al., 2020), Eriocheir
sinensis (Wang et al., 2021), and Paramisgurnus dabryanus (Zhao
et al., 2021), suggesting that metabolism plays a crucial role in
growth, and the fast-growth group exhibit higher expression of some
metabolic genes than slow-growth group.

FIGURE 4
Validation of gene expression for 10 DEGs by quantitative real-time PCR. The relative mRNA expression levels of adipoq, pgm1, aldoa, pgk1, col1a2,
col6a1, col10a1, bglap, krt15, cth generated by qRT-PCR are depicted in A, B, C, D, E, F, G, H, I, respectively. The red and cyan boxes represent the fast- and
slow-growth groups, respectively. Each black dot represents the relative mRNA expression level of a sample. The logarithmic scale (log10) for the ratio of
DEGs expression levels between fast- and slow-growth groups for qRT-PCR and RNA-seq were depicted in K.
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Achieving somatic growth requires depletion of available
nutrients and energy acquired from the environment, which are
converted into cellular and tissue components through metabolic
cellular reactions (Sousa et al., 2010; Lukas et al., 2011; Canosa and
Bertucci, 2020). Glucose and fatty acids are the most important
sources of energy for animal growth (Judge and Dodd, 2020).
Animals preferentially use dietary glucose and fatty acids for
energy supply. When the body enters a long period of fasting or
starvation, stored glycogen, fatty acids, and protein will be
successively decomposed and utilized to maintain normal life

activities (Judge and Dodd, 2020). In our study, adiponectin
(adipoq), 5′-AMP-activated protein kinase subunit gamma-1
(prkag1), and solute carrier family 2, facilitated glucose
transporter member 1 (slc2a1) were up-regulated and enriched in
the adipocytokine signaling pathway. Studies have shown that
adiponectin (encoded by adipoq) can activate AMP-activated
protein kinase (AMPK) subunits (encoded by prkag1), thereby
directly regulating glucose metabolism and insulin sensitivity
(Yamauchi et al., 2002; Schönke et al., 2015). Adiponectin is also
an important appetite regulator, modulating energy homeostasis by

FIGURE 5
Regulatory networks for vital DEGs. Black represents substrate for biological process. Purple arrow represents direction of reaction. Red represents
up-regulated DEGs, green represents down-regulated DEGs in fast-growth group. adipoq: adiponectin; prkag1: 5′-AMP-activated protein kinase subunit
gamma-1; slc2a1: solute carrier family 2, facilitated glucose transporter member 1; pygm: glycogen phosphorylase, muscle form; agl: glycogen
debranching enzyme; pgm1: phosphoglucomutase-1; fbp1: fructose-1,6-bisphosphatase 1; fbp2: fructose-1,6-bisphosphatase 2; pfkm: ATP-
dependent 6-phosphofructokinase, muscle type; pfkp: ATP-dependent 6-phosphofructokinase, platelet type; aldoa: fructose-bisphosphate aldolase A;
aldob: aldolase b, fructose-bisphosphate; aldoc: fructose-bisphosphate aldolase C; tpi1: triosephosphate isomerase 1; gapdh: glyceraldehyde-3-
phosphate dehydrogenase; pgk1: phosphoglycerate kinase 1; bpgm: 2,3-bisphosphoglycerate mutase; pgam1: phosphoglycerate mutase 1; pgam2:
phosphoglycerate mutase 2; eno1: alpha-enolase; eno3: beta-enolase; pkm: pyruvate kinase PKM; pklr: pyruvate kinase L/R; ldha: L-lactate
dehydrogenase A chain; ldhbb: lactate dehydrogenase Bb; acyp2: acylphosphatase 2; acss2: acetyl-coenzyme A synthetase, cytoplasmic; acox1:
peroxisomal acyl-coenzyme A oxidase 1; acaa1: 3-ketoacyl-CoA thiolase B, peroxisomal; got2: aspartate aminotransferase, mitochondrial; agxt: serine-
pyruvate aminotransferase, mitochondrial; alaat2: alanine aminotransferase 2; glula: glutamate-ammonia ligase (glutamine synthase); cbsa:
cystathionine beta-synthase a; cth: cystathionine gamma-lyase; shmt1: serine hydroxymethyltransferase 1; gatm: glycine amidinotransferase,
mitochondrial; p4ha1: prolyl 4-hydroxylase subunit alpha-1; col1a1: collagen alpha-1(I) chain; col1a2: collagen alpha 2(I) chain; col5a1: collagen alpha-
1(V) chain; col6a2: collagen alpha-2(VI) chain; col10a1: collagen alpha-1(X) chain; col26a1: collagen alpha-1 (XXVI) chain; tgfb1: transforming growth
factor beta-1; tgfb2: transforming growth factor beta-2; bmp2: bone morphogenetic protein 2; bmp3: bone morphogenetic protein 3; gdf10: growth/
differentiation factor 10; myog: myogenin.
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increasing appetite, boosting substrate storage, and decreasing
energy expenditure (Wolf, 2003; Jeon et al., 2021). Glucose
transporter 1, a uniporter protein encoded by slc2a1, facilitates
glucose diffusion across the cell membrane, regulating the first
limiting step (glucose transport into cells) for glucose
homeostasis (Yan, 2017; Coudert et al., 2018). Moreover, several
genes involved in glycogen degradation and glycolysis were up-
regulated in the fast-growth group (Figure 5), including
glycogen debranching enzyme (agl), glycogen phosphorylase,
muscle form (pygm), phosphoglucomutase-1 (pgm1), ATP-
dependent 6-phosphofructokinase, muscle type (pfkm), fructose-
bisphosphate aldolase A (aldoa), glyceraldehyde-3-phosphate
dehydrogenase (gapdh), phosphoglycerate kinase 1 (pgk1),
phosphoglycerate mutase 2 (pgam2), 2,3-bisphosphoglycerate
mutase (bpgm), beta-enolase (eno3), pyruvate kinase PKM (pkm),
L-lactate dehydrogenase A chain (ldha), and acetyl-coenzyme A
synthetase, cytoplasmic (acss2). High expression of these genes
indicates that glucose utilization ability is higher in the fast-
growth S. grahami fish.

In addition, several genes related to glycolysis were down-
regulated in fast-growth S. grahami (Figure 5), including ATP-
dependent 6-phosphofructokinase, platelet type (pfkp), aldolase b,
fructose-bisphosphate (aldob), fructose-bisphosphate aldolase C
(aldoc), phosphoglycerate mutase 1 (pgam1), alpha-enolase
(eno1), pyruvate kinase L/R (pklr), and lactate dehydrogenase Bb
(ldhbb). Despite similar functions as pfkm, aldoa, pgam2, eno3, and
pkm, which are mainly expressed in the muscle, pfkp, aldob, aldoc,
pgam1, eno1, and pklr are mainly expressed in non-muscle tissues
(e.g., brain, liver, blood) (Verma and Dutta, 1994; Zhang et al., 2001;
Caspi et al., 2014; Ausina et al., 2018; Tarnopolsky, 2018; Ždralević
et al., 2018). Their downregulation in the fast-growth group and
upregulation in the slow-growth group may be a sign of energy
homeostasis, whereby energy was supplied to the brain and liver to
maintain normal vital activities in the slow-growth group, but excess
energy was supplied to the muscles for growth in the fast-growth
group.

Several down-regulated DEGs in the fast-growth group were
also enriched in the peroxisome and PPAR signaling pathways,
which mainly regulate fatty acid transport and β oxidation to
degradation (Ordovás et al., 2006; Morais et al., 2007; Watkins
et al., 2007; Fidaleo et al., 2011; Shinoda et al., 2020), including
peroxisomal acyl-coenzyme A oxidase 1 (acox1), 3-ketoacyl-CoA
thiolase B, peroxisomal (acaa1), very long-chain acyl-CoA
synthetase (slc27a2), fatty acid binding protein 1-B.1 (fabp1b.1),
and long-chain fatty acid transport protein 1 (slc27a1) (Figure 5).
These results indicate that fatty acid utilization is lower in the faster
growing fish. In addition, some DEGs involved in the regulation of
cholesterol and polyunsaturated fatty acid synthesis were also down-
regulated in the fast-growth group. Cholesterol and polyunsaturated
fatty acids are extremely important biological molecules that play
essential roles in membrane structure and are precursors for the
synthesis of other biological molecules (Simons and Ikonen, 2000;
Christie and Harwood, 2020). Endogenous cholesterol and
polyunsaturated fatty acid biosynthesis are affected by existing
intracellular levels, i.e., higher food intake leads to lower
endogenous biosynthesis in the body, while lower food intake has
the opposite effect (Simons and Ikonen, 2000; Xu et al., 2020). This
suggests that the fast-growth group had a higher dietary intake of

cholesterol and polyunsaturated fatty acids, and thus could not
mobilize endogenous synthesis to meet body needs.

Amino acids can directly promotemuscle growth in fish, both by
stimulating rates of protein synthesis and reducing rates of protein
degradation (Seiliez et al., 2008; Cleveland and Radler, 2019). In the
current study, we identified several DEGs correlated with glycine,
serine, arginine, and proline metabolism (Figure 5), e.g., serine-
pyruvate aminotransferase, mitochondrial (agxt), serine
hydroxymethyltransferase 1 (shmt1), glutamate-ammonia ligase
(glutamine synthase) (glula), cystathionine gamma-lyase (cth),
and prolyl 4-hydroxylase subunit alpha-1 (p4ha1). In the fast-
growth group, agxt, shmt1, cth, and glula were down-regulated.
Agxt encodes serine-pyruvate aminotransferase, which catalyzes the
conversion of alanine and glyoxylate into pyruvate and glycine,
respectively (Cellini et al., 2007; Montioli et al., 2015), shmt1
catalyzes the transfer of serine to glycine (Wang et al., 2013;
Pinthong et al., 2014), cth catalyzes the conversion of
cystathionine into cysteine (Krück et al., 2009), and glula
regulates de novo glutamine production from glutamate (Eelen
et al., 2018). P4ha1, which catalyzes the formation of 4-
hydroxyproline (Rappu et al., 2019; Tolonen et al., 2022), was
up-regulated in the fast-growth group. These results indicate that
the fast-growth group may exhibit stronger 4-hydroxyproline
synthesis, lower glycine, cysteine, and glutamine synthesis, and
somewhat lower amino acid synthesis ability than the slow-
growth group.

Based on the expression of genes related to glucose, fatty acid,
and amino acid metabolism, the fast-growth group exhibited higher
glucose and lower fatty acid utilization and lower amino acid
synthesis activity compared to the slow-growth group. These
results suggest that the fast-growth group consumed adequate
energy (glucose, fatty acid, and amino acid) from fodder, with
excess energy substances used for growth after maintenance of
normal life activities. Therefore, energy intake and metabolism
are crucial for S. grahami growth. Energy intake may be the root
cause for the gap in growth between fast- and slow-growing S.
grahami fish. Thus, the genes that regulate appetite and food intake
(e.g., adipoq) require further analysis.

The synthesis of macromolecular substances (e.g., protein) is the
foundation for growth and is based on the uptake and metabolism of
energy substances. Here, we identified several collagen synthesis genes
with a high degree of node connection (degree≥ 18) based onWGCNA,
which allows exploration of the correlations among large-scale gene
expression data and phenotypes (Langfelder and Horvath, 2008). These
genes, including col1a1, col1a2, col5a1, col6a2, col10a1, and col26a1,
were up-regulated in the fast-growth group and significantly positively
correlated with body length/weight. Genes with a high degree of node
connection are significantly correlated with proximity to the center of
the network (Zhou et al., 2022). Thus, col1a1, col1a2, col5a1, col6a2,
col10a1, and col26a1 may be crucial genes for S. grahami growth. The
upregulation of these genes implies that collagen synthesis ability is
higher in faster growing fish (Tolonen et al., 2022). Collagen accounts
for one-third of total protein in postnatal animals. It is the main
component of connective tissue and plays an important role in force
transmission and tissue structure maintenance, especially tendons,
ligaments, bone, and muscle, as well as in growth, development, and
health (KJÆR, 2004; Zhang et al., 2005; Li and Wu, 2018). Glycine,
proline, and hydroxyproline are major amino acids, accounting for 57%
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of total amino acids in collagen (Li andWu, 2018). In our study, p4ha1
was up-regulated in the fast-growth group. This may promote collagen
synthesis as p4ha1 catalyzes 4-hydroxyproline formation, which is
essential for proper three-dimensional folding of newly synthesized
procollagen chains (Rappu et al., 2019; Tolonen et al., 2022). However,
some genes related to glycine and proline synthesis were not markedly
different or down-regulated in the fast-growth group. These results
suggest that the fast-growth group consumes sufficient amino acids for
direct utilization, thereby reducing the endogenous synthesis of amino
acids, which is energy efficient and will promote body growth. The
increased synthesis of 4-hydroxyproline but not glycine and proline
may be because 4-hydroxyproline is produced from proline-containing
collagen rather than from free amino acids (Gorres and Raines, 2010).

WGCNA also identified bglap and krt15 as crucial genes with the
largest expression differences in S. grahami growth (Figure 1E;
Figure 3D). Studies have shown that bglap and krt15 play critical
roles in bone formation and mineralization and in structural
integrity (Lee et al., 2007; Bose et al., 2013; Komori, 2020). We
also identified several growth factors and muscle-growth related
genes that were up-regulated in the fast-growth group, such as bone
morphogenetic protein 2 (bmp2), bone morphogenetic protein 3
(bmp3), transforming growth factor beta-1 (tgfb1), transforming
growth factor beta-2 (tgfb2), growth/differentiation factor 10
(gdf10), myogenin (myog), myosin-binding protein C, fast-type
(mybpc2), myosin heavy chain, fast skeletal muscle (myh),
myosin light chain, skeletal muscle (myl1, myl3), troponin I, fast
skeletal muscle (tnni2), troponin T, fast skeletal muscle (tnnt3), and
troponin C, skeletal muscle (tnnc2). Growth/differentiation factors
(GDFs), BMPs, and TGF-β are multi-functional growth factors
belonging to the TGF-β superfamily and play important roles in
development and tissue homeostasis via regulation of cell
proliferation, migration, and differentiation, ECM production,
multiple cellular signal transduction, cardiogenesis, somite
formation, neurogenesis, and musculoskeletal development
(Cunningham et al., 1995; Macias et al., 1997; Hino et al., 2004;
Maatouk et al., 2009; Heldin and Moustakas, 2016; Zhou et al.,
2016). Studies have also found that TGF-β stimulates collagen
synthesis and mediates metabolic pathways by regulating the
expression of glucose transporter 1 (slc2a1) (Johnston and Gillis,
2017; Yu et al., 2019; Zhou et al., 2021). Myog belongs to the
Myogenic Regulatory Factors (MRFs) family, plays a crucial role
in myogenesis (De-Santis and Jerry, 2007). Myosin heavy chain and
myosin light chain are major component for skeletal muscle
myosins (Schiaffino and Reggiani, 1996). Troponin is the key
calcium-dependent regulator of striated muscles, and composed
of troponin C (TnC), troponin I (TnI), and troponin T (TnT)
(Rasmussen and Jin, 2021). Myosin, troponin and myosin-binding
protein C are crucial components of skeletal muscle, which essential
for myogenesis, muscle contraction (Das et al., 2019; Song et al.,
2021; Rasmussen and Jin, 2021). The high expression of these genes
would strengthen the muscle growth and contraction.

The WGCNA results also indicated that the differences in collagen
synthesis may be the direct cause of the growth gap between the fast-
and slow-growth groups of S. grahami. Glycine, proline and
hydroxyproline are the main amino acids for collagen synthesis.
Endogenous amino acid synthesis (e.g., proline and hydroxyproline)
consumes a large amount of adenosine triphosphate (ATP) but is
inadequate to meet optimal growth and connective tissue repair (Li and

Wu, 2018). Hence, adequate amounts of dietary proline and
hydroxyproline are essential for maximizing growth performance
and feed efficiency in farmed S. grahami.

5 Conclusion

Based on transcriptomic analysis of S. grahami muscle, we
identified various genes related to glucose, fatty acid, and amino
acid uptake and metabolism, and collagen synthesis, which play
crucial roles in promoting bone and muscle growth. Energy uptake
and collagen synthesis may be the key factors for the growth gap
between fast- and slow-growth S. grahami, and energy uptake may
be the root cause, while collagen synthesis may be the direct reason.
The reasons for differences in uptake and how to improve intake and
collagen synthesis require further research. Our findings provide
new insights into the mechanism underlying the growth gap
between fast- and slow-growth S. grahami and provide an
important theoretical basis for guiding S. grahami breeding.
Furthermore, these results may provide valuable information for
further studying of growth mechanisms and breeding strategies in
other species.
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Meta-analysis of heritability
estimates and genome-wide
association for tick-borne
haemoparasites in African cattle
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Rebecca Callaby1,3, Rongrong Zhao1, Appolinaire Djikeng1,3,
Josephus Fourie4, James G. D. Prendergast1,3† and
Liam J. Morrison1,3†

1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh,
United Kingdom, 2Clinglobal, Tamarin, Mauritius, 3Centre for Tropical Livestock Genetics and Health
(CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom, 4Clinvet, Waverly, NY,
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The control of tick-borne haemoparasites in cattle largely relies on the use of
acaricide drugs against the tick vectors, with some vaccination also being used
against selected pathogens. These interventions can be difficult in Africa, where
accessibility and cost of vaccines can be issues, and the increasing resistance of tick
vectors to the widely used acaricides is a complication to disease control. A potential
complementary control strategy could be the exploitation of any natural host genetic
resistance to the pathogens. However, there are currently very few estimates of the
extent of host resistance to tick-borne haemoparasites, and a significant contributing
factor to this knowledge gap is likely to be the difficulty of collecting appropriate
samples anddata in the smallholder systems that predominate livestock production in
low- and middle-income countries, particularly at scale. In this study, we have
estimated the heritability for the presence/absence of several important
haemoparasite species (including Anaplasma marginale, Babesia bigemina, Babesia
bovis, and Ehrlichia ruminantium), as well as for relevant traits such as body weight
and body condition score (BCS), in 1,694 cattle from four African countries (Burkina
Faso, Ghana, Nigeria, and Tanzania). Heritability estimates within countries were
mostly not significant, ranging from 0.05 to 0.84 across traits and countries, with
standard errors between 0.07 and 0.91. However, the weighted mean of heritability
estimates was moderate and significant for body weight and BCS (0.40 and 0.49,
respectively), with significant heritabilities also observed for the presence of A.
marginale (0.16) and E. ruminantium (0.19). In a meta-analysis of genome-wide
association studies (GWAS) for these traits, two peaks were identified as reaching the
suggestive significance threshold (p< 1.91 × 10−7 andp< 1.89× 10−7, respectively): one
on chromosome 24 for BCS and one on chromosome 8 for the E. ruminantium
infection status. These findings indicate that there is likely to be a genetic basis that
contributes to pathogen presence/absence for tick-borne haemoparasite species,
which could potentially be exploited to improve cattle resistance in Africa to the
economically important diseases caused by these pathogens.
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heritability, genome-wide association studies, tick-borne haemoparasites, meta-analysis,
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1 Introduction

In Africa, livestock forms a critical part of the livelihoods of
most rural households, with approximately 162 million low-
income livestock keepers (Kruska et al., 2003). In most
African countries, livestock is managed under small- to large-
scale systems, with small-scale production systems
predominating and including pastoral, agro-pastoral, and
mixed smallholder farming (Ibeagha-Awemu et al., 2019).
They represent approximately 70% of livestock productivity
and serve as household assets with multiple livelihood
functions, providing food, income, and important non-market
services (Ruto et al., 2008). These small-scale systems are
characterised by small animal population sizes and low inputs
and outputs, which make it difficult to set up programmes aiming
at increasing livestock productivity for food production and
income generation (Ibeagha-Awemu et al., 2019). However,
given the importance of livestock to the diets and incomes of
poor farming households and the predicted increase in demand
for livestock products throughout the low- and middle-income
world over the next few decades, understanding how livestock fits
into these systems and how these systems may evolve in the
future is critical (Kruska et al., 2003).

The main factors limiting cattle performance under
extensive range management in tropical environments are
feed resource availability and quality (Hernández-Castellano
et al., 2019) and health-related issues, with ticks being among
the most important vectors of disease pathogens in livestock
and companion animals (Ghosh et al., 2006). Direct effects of
tick infestation on cattle include the consumption of blood,
causing anaemia and damage to the skin or hide, with
downstream effects resulting in reductions in fertility, body
weight, and milk production, as well as toxicoses, paralysis, and
mortality (Jongejan and Uilenberg, 2004). The economic losses
due to ticks and tick-borne diseases (TBDs) have been
estimated at more than 3 billion dollars per year in Brazil
alone (Grisi et al., 2014). No estimates of economic losses
were found for the African continent; however, in Tanzania
alone, for example, the total annual national loss due to TBDs
was estimated to be 364 million dollars, including the estimated
mortality of 1.3 million cattle, mainly attributed to the tick-
borne disease East Coast fever, caused by Theileria parva
(Kivaria, 2006).

The economically most important TBDs of cattle on a global
scale are bovine babesiosis, caused by protozoa of the genus
Babesia (Babesia bovis and Babesia bigemina), bovine
anaplasmosis (Anaplasma marginale), bovine theileriosis,
caused by Theileria annulata, East Coast fever, caused by
Theileria parva, and ehrlichiosis or heartwater of cattle
(Ehrlichia ruminantium) (Uilenberg, 1995). Both babesiosis
and anaplasmosis can cause severe anaemia, while heartwater,
especially in its acute form, can cause a sudden high fever, loss of
appetite, depression, and breathing problems. All these diseases
have a significant negative economic impact on livestock in
tropical countries, due to the expense of vector control,
treatment of the disease, effect on animal productivity, and
the death of susceptible animals (Mukhebi et al., 1999; Kocan
et al., 2003).

In addition to the relatively limited use of live vaccines against a
small number of tick-borne pathogens, the strategy most commonly
adopted to control tick-borne parasitic diseases is the application of
acaricides. The widespread and large-scale use of these acaricides has
increased the incidence of acaricide-resistant ticks and exacerbated
the occurrence of environmental and food contamination (Parizi
et al., 2009; Abbas et al., 2014; Githaka et al., 2022). This has led to an
economic and social demand for alternative approaches to reduce
tick infestation and thereby enhance the contribution of cattle to the
world economy. Natural immunity to the tick vector, which is
observed in cattle in environments where ticks are endemic,
shows promise for genetic tick control strategies that can reduce
expenditure on acaricides and other chemical control methods
(Mapholi et al., 2014). Across Africa, it has been common to
crossbreed indicine (Bos taurus indicus) with taurine (Bos taurus
taurus) cattle (Jonsson et al., 2008; Cardoso et al., 2021), one reason
being that indicine animals are known to bemore resistant to ticks as
well as TBDs (Silva et al., 2002; Wragg et al., 2022), and this has
resulted in generally admixed populations across the continent
(Gebrehiwot et al., 2020).

There is precedent for genetic tolerance to vector-borne
pathogens proving tractable and potentially applicable as a
practical aid in disease control in cattle (Bahbahani and
Hanotte, 2015). A very well-defined example is
trypanosomiasis, caused by tsetse fly-transmitted protozoan
parasites of the Trypanosoma genus, where the tolerance of
some African taurine breeds has been long recognised and
characterised, and loci underpinning this trait have been
identified (Murray et al., 1984; Hanotte et al., 2003; Kim
et al., 2020). With respect to TBDs, natural tolerance among
certain African cattle populations to the Theileria parva
pathogen has been known for some time. T. parva infection
is responsible for East Coast fever (ECF), a TBD that causes
significant mortality in infected, susceptible cattle in East and
Southern Africa. Ndungu et al. (2005) demonstrated that East
African Shorthorn Zebu (EASZ) originating from ECF endemic
areas showed significantly higher tolerance to T. parva
challenges than exotic breeds and EASZ from non-endemic
areas. Likewise, a notable recent study by Wragg et al. (2022)
highlighted that certain lineages of Boran cattle also show
elevated tolerance to T. parva infection and identified a locus
associated with tolerance to ECF. The identification of this locus
by Wragg et al. (2022) raises the promise of marker-assisted
selection for cattle that are less susceptible to infection by T.
parva. However, in general, only a few studies have reported
naturally occurring loci with large effects that confer resistance
to disease in livestock (White et al., 2014; Chen et al., 2015;
Matika et al., 2019), and studies of natural tolerance to most
African cattle pathogens remain limited.

Resistance to diseases is usually a physiologically complex trait that
develops over time, with the mechanisms underlying genetic
differences in resistance being poorly understood. Traditionally, the
genetic control of complex traits in livestock has been based on
estimating breeding values from phenotypic and pedigree
information, without identifying the genes or gene variants
underlying the observed variation (Goddard and Hayes, 2009),
which can be a challenge in most African husbandry systems.
However, current molecular tools allow animal geneticists to
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investigate the nature of genetic variation underlying complex traits,
without requiring pedigree information, making selection a possibility.

While several genome-wide association studies (GWAS) have
already reported quantitative trait loci for resistance to ticks (see
Mapholi et al., 2014 for a review) in cattle, very few studies
investigating loci underlying variation in resistance to tick-borne
haemoparasites are reported in the literature.

Although a variety of arrays are currently available for
genotyping in cattle, they are mostly designed for European
breeds and are, therefore, biased toward variants common to
these breeds. This can make it difficult to map the genetic loci that
underlie important traits in African cattle, which are a mixture of
African taurine and indicine backgrounds (Gebrehiwot et al.,
2020). A recent study demonstrated that the Illumina HD (https://
www.illumina.com/ documents/products/datasheets/datasheet_bovine
HD.pdf) and the Axiom Genome-Wide BOS1 (https://www.
thermofisher.com/order/catalog/product/901791#/901791) arrays are
the best at capturing the diversity across African breeds/populations,
even if compared with Bos t. indicus-specific arrays (Riggio et al., 2022).
Another limitation to performing GWAS on African cattle is the small
size of most herds, which limits the power to detect significant
associations. In this case, a meta-analysis, combining results across
independent studies, could help boost statistical power (Munafò and
Flint, 2004). This study aimed to investigate the potential of breeding for
cattle resistant or tolerant to particular TBDs by characterising the
heritability of relevant traits and investigating the potential of
identifying loci underlying the variation in the presence of tick-
borne haemoparasites, as well as important traits such as body

weight and body condition score (BCS), in African cattle from four
different countries (Burkina Faso, Ghana, Nigeria, and Tanzania).

2 Materials and methods

2.1 Population

The population consisted of 1,694 one- to two-year-old cattle
across four African countries (Burkina Faso, n = 300; Ghana, n =
459; Nigeria, n = 454; and Tanzania, n = 481), which is a subset of the
1,740 cattle used in Riggio et al. (2022). Sampling sites within the
country consisted of smallholder farmer settlements with herds that
were mainly sedentary, within at least two districts per country,
chosen taking into consideration high cattle density and an expected
or previously recorded high prevalence of ticks and TBDs. These
farmers were considered to belong to communities of limited-
resource stockbreeders. Up to four visits per sampling site were
conducted over a period of 12 months (between August 2016 and
August 2017) in order to cover both the rainy and dry seasons (see
Heylen et al., 2023a; Heylen et al., 2023b for more details). However,
in the current study, only one record per animal was available.
Figure 1 shows the major sampling locations across the four African
countries. The map was drawn using the maps package in R (https://
cran.r-project.org/web/packages/maps/index.html).

2.2 Phenotypic measurements

Body weight was estimated using a Rondo tape according to the
manufacturer’s recommendations (Agrihealth Rondo). It is based on
the measurement of thoracic girth, which is reported to be highly
correlated with body weight in cattle (Heinrichs et al., 2007; Swali
et al., 2008). Body condition scoring (BCS) was also conducted for
these animals. BCS was based on a subjective classification scale of
nine points, from extremely thin (i.e., score 1) to extremely fat
(i.e., score 9), as reported by Arango et al. (2002).

Blood samples (approximately 125 μL) were collected from the
middle ear vein using a sterile lancet and capillary tube. Samples
were then applied onto Whatman® FTA® cards, air-dried, labelled
appropriately, and packed in foil pouches with a silica gel, prior to
DNA isolation. DNA was isolated from 2 × 5 mm diameter blood-
soaked FTA card punches using the MagMAX DNA Multi-Sample
Ultra Kit according to the manufacturer’s recommendations. DNA
isolation was performed using the KingFisher 96-flex instrument,
processing 92 samples per run and including extraction controls for
each run. Eluted DNA was collected in a final volume of 75 µL and
used for downstream processing. Testing was performed to assess
the absence/presence (i.e., 0/1) of anaplasmosis, babesiosis,
theileriosis, and ehrlichiosis. The inhibitor tolerant and highly
processive SsoAdvanced Universal Probes Supermix DNA
polymerase master mix (Bio-Rad) was used in all PCR assay
development and final detection assays. Published assay primers
and probes (Kim et al., 2007; Decaro et al., 2008; Steyn et al., 2008)
were evaluated in a single target and multiplex environment using
sequence-verified linear synthetic DNA templates to determine the
limit of detection (LOD) for each assay in the presence of 10 ng
bovine DNA. Final multiplex PCR assay combinations were based

FIGURE 1
Map showing the major sampling locations across the four
African countries (Burkina Faso, Ghana, Nigeria, and Tanzania).
Sampling locations are represented by circles, with size and colour
changing according to the numbers of animals.
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on results that exhibited the same LOD in both single and multiplex
PCR setups (data not shown). The Hamilton Nimbus robotic liquid
handling system was used for mastermix and template addition to a
384-well PCR plate. All plates contained positive control samples
(synthetic DNA representing 100 copies of each target region per
reaction), negative control (10 ng bovine DNA from a donor animal
to exclude host-related amplification), and extraction control (to
exclude extraction kit-related amplification). A measure of 5 µL of
template DNA was used in a 15 µL final PCR reaction and was
subjected to thermal cycling consisting of initial denaturation at
98°C for 3 min, followed by 45 cycles of 95°C for 15 s and 60°C for
30 s, making use of the QuantStudio6 qPCR system. Data captured
during thermal cycling were analysed using QuantStudio Real-Time
PCR software v1.2. Samples exhibiting the correct amplification
profiles were called as detected (i.e., presence = 1), whereas the rest
were called not detected (i.e., absence = 0).

2.3 Genotypic data

Animals were genotyped using the Illumina HD genotyping
array. The SNP genotype data were subjected to quality control (QC)
measures, as previously described in Riggio et al. (2022). QC was
conducted per country, and the SNPs with a minor-allele frequency
(MAF) < 0.01 or a call rate <90% were removed. Furthermore,
markers on the sex chromosomes were removed from the analysis.
After QC, 585,754 SNPs were retained for the Burkina Faso
population, 594,060 for Ghana, 586,851 for Nigeria, and
595,683 for Tanzania and used for variance component
estimation analyses. The positions of SNP markers were relative
to the ARS-UCD1.2 bovine genome assembly (Rosen et al., 2020).
Genome-wide association analyses were subsequently performed
using 10,282,187 variants previously imputed by Riggio et al. (2022).
Only variants with an imputation accuracy r2 (as obtained from
Minimac4 software, https://genome.sph.umich.edu/wiki/
Minimac4) >0.85 and a MAF >0.05 were considered for the
within-population GWAS (i.e., out of the 10,282,187 imputed
genotypes, 5,460,147 were retained for Burkina Faso,
5,477,083 for Ghana, 5,474,804 for Nigeria, and 5,464,291 for
Tanzania).

2.4 Statistical analyses

Descriptive statistics were calculated for body weight and BCS
for each country, whereas prevalence was calculated for the
haemoparasites and defined as the percentage of animals that
were positive by qPCR at any time during the period considered
in this study.

Initial data exploration and model development were conducted
in SAS version 9.4, using the PROC GLM (SAS Institute Inc., Cary,
NC). Variance components for all traits were estimated within the
country using ASReml 4 (Gilmour et al., 2015), fitting an animal
model with a logit function for the binary traits (i.e., the
haemoparasite traits). The fixed effects were: sex (two levels, male
and female), district (two levels), with visit number, and the first five
genetic principal components (PCs) as covariates. The PCs were
included as a substitute for the effects of breed, to account for

population structure. The animal was fitted as a random effect, and
the relationship matrix (GRM, G) was calculated using VanRaden’s
method 2 (VanRaden, 2008), with all SNPs from the HD array. The
rma function in the metafor package (Viechtbauer, 2010) in R was
used to obtain the weighted mean of heritability estimates (h2m)
across the four African countries. In addition, Q statistics (Cochran,
1954) were used to quantify the degree of heterogeneity among
countries for each trait.

The GWAS analyses for each country were performed using
GEMMA (Zhou and Stephens, 2012) using the imputed genotypes.
The same fixed (i.e., sex, district, visit number, and the first five
genetic PCs) and random (i.e., animal) effects used for the variance
component analysis were fitted, assuming a model where the vectors
of random effects, u, and errors, , follow multivariate normal
(MVN) distributions given by u ~ MVN (0,VGG) and  ~ MVN
(0,VEI), where VG and VE are the genetic variances associated withG
and environmental variance, respectively. GEMMA provides a
regression coefficient for each SNP, and their statistical
significance was assessed using a Wald test. A Bonferroni
correction was used to account for multiple testing and identify
the p-values for genome-wide (p < 0.05) and suggestive (i.e., one
false positive per genome scan) significance thresholds. The within-
country analyses were followed by a meta-analysis using a weighted
Z-score model as implemented in theMETAL software (Willer et al.,
2010). The weighted Z-score model used p-values, directions of
effect estimates, and weights in individual GWAS based on the
sample size to compute a Z-score. The heterogeneity of the effect
sizes across countries was evaluated using Cochran’s Q-test
(Cochran, 1954) as implemented in the METAL software (Willer
et al., 2010). Only common SNPs across countries were considered.

Genes overlapping the regions of interest were identified using
the biomaRt package in R (Durinck et al., 2009). Variants in the
regions were those identified in cohorts of 92 African cattle (Dutta
et al., 2020), and the linkage disequilibrium (LD) between the target
variants and other variants was calculated using PLINK 1.9 (Purcell
et al., 2007). The Manhattan plots and tracks were made using the
ggplot2 (Wickham, 2016), dplyr (Wickham et al., 2023), and Gviz
(Hahne and Ivanek, 2016) packages in R.

3 Results

To estimate the heritability of the presence of tick-borne
haemoparasites, body weight, and body condition score in
African cattle, we analysed four independent datasets from
Burkina Faso, Ghana, Nigeria, and Tanzania, for a total of
1,694 cattle. Heritability estimates were then used to calculate the
weighted mean of heritability estimates (h2m) across countries. The
same data were also used to carry out GWAS to identify potential
loci underlying genetic variation in the traits of interest, with a meta-
analysis across countries being conducted.

Means, standard deviations, coefficients of variation, and ranges
of the continuous traits considered in this study (i.e., body weight
and BCS) are presented per country in Table 1. Body weight values
over three standard deviations from the mean were removed.
Although there is some variation across countries for body
weight, coefficients of variation (CVs) are similar for all
countries, ranging between 30 and 39, with Nigeria having the
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highest value. This is confirmed by the histogram in Supplementary
Figure S1, which shows higher variability in the body weight
distribution for Nigeria. More variability was observed for the
BCS, with CVs ranging between 18 for Ghana and 34 for
Burkina Faso (see also Supplementary Figure S2, showing the
distribution of BCS categories across the four countries).

Table 2 shows the prevalence of different haemoparasites as
assayed by species-specific qPCR across the four countries. The
prevalence of Theileria is not presented as it was not detected in any
sample. The highest prevalence was observed forA. marginale across
all countries (ranging between 43% and 97%), with Ghana
presenting the highest prevalence. In general, prevalence was
lower in Burkina Faso than in other countries for all parasites
considered. This might have an impact on the estimation of the
heritabilities and analyses of GWAS, as there is insufficient
information to generate reliable results. Similarly, the analyses for
A. marginale in Ghana may be affected by the very high prevalence.

Table 3 shows the heritability (h2) estimates for body weight and
BCS as well as the haemoparasite traits for each country. For most
traits, the standard errors of the heritability estimates were large,
making the estimated h2 not significant. While these estimates are
not significant and there is little consistency across countries, there is

evidence of genetic variation. These results are probably a reflection
of the challenges of collecting consistent phenotypes in the settings
concerned, as well as the limitations associated with issues such as
small herd sizes.

Table 4 presents the weighted mean of heritability estimates
(h2m) and Q statistics for each trait. The h2m was moderate and
significant (p < 0.05) for both body weight and BCS (0.40 and 0.49,

TABLE 1 Descriptive statistics of body weight and body condition score per country.

Body weight (kg) Body condition score (1–9)

Mean ± SD CV (%) Min–max Mean ± SD CV (%) Min–max

Burkina Faso 193.2 ± 62.4 32 70.0–378.0 4.09 ± 1.38 34 2–9

Ghana 96.4 ± 29.3 30 70.0–220.0 5.37 ± 0.97 18 3–8

Nigeria 128.0 ± 49.7 39 46.0–339.0 4.41 ± 0.98 22 1–7

Tanzania 126.8 ± 43.4 34 50.0–290.0 5.58 ± 1.09 20 3–8

TABLE 2 Prevalence (%) of haemoparasitic infections per country. The number of individuals with information used to calculate the prevalence is also reported.

Burkina Faso (n = 218) Ghana (n = 459) Nigeria (n = 331) Tanzania (n = 481)

Anaplasma marginale 43 97 47 72

Babesia bigemina 1 20 22 29

Babesia bovis 1 9 1 9

Ehrlichia ruminantium 2 12 5 6

TABLE 3 Heritability (h2) estimates (±s.e.) for body weight, BCS, and haemoparasite traits per country. Significant estimates are also shown (*).

Burkina Faso Ghana Nigeria Tanzania

Body weight 0.67 ± 0.39 0.14 ± 0.17 0.54 ± 0.13* 0.39 ± 0.19*

Body condition score 0.25 ± 0.25 0.60 ± 0.15* 0.25 ± 0.14 0.84 ± 0.18*

Anaplasma marginale 0.10 ± 0.13 0.29 ± 0.21 0.18 ± 0.09* 0.15 ± 0.07*

Babesia bigemina 0.40 ± 0.35 0.07 ± 0.11 0.15 ± 0.13 0.09 ± 0.08

Babesia bovis 0.22 ± 0.91 0.12 ± 0.17 0.20 ± 0.59 0.08 ± 0.18

Ehrlichia ruminantium 0.42 ± 0.32 0.05 ± 0.16 0.21 ± 0.23 0.25 ± 0.14

TABLE 4 Weighted means of heritability estimates (h2
m) and their Q statistics

(Q) for body weight, BCS, and haemoparasite traits across countries.

h2
m ± s.e Q statistics Q p-value

Body weight 0.40 ± 0.11a 3.98 0.26

Body condition score 0.49 ± 0.14a 8.18 0.04

Anaplasma marginale 0.16 ± 0.05a 0.67 0.88

Babesia bigemina 0.10 ± 0.06 0.97 0.81

Babesia bovis 0.11 ± 0.12 0.07 0.99

Ehrlichia ruminantium 0.19 ± 0.09a 1.47 0.69

a(p < 0.05).
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respectively), with significant Q statistics for BCS. When looking at
the haemoparasite traits, although the h2m estimates are low, ranging
between 0.10 for B. bigemina and 0.19 for E. ruminantium, the
estimates for A. marginale and E. ruminantium are both significant,
suggesting a genetic component to the presence of these parasites in
African cattle.

Within-country GWAS analyses did not generally show any regions
associatedwith the traits of interest, reflecting the low sample numbers. To
overcome this limitation, we performedmeta-analyses across countries for
the two quantitative and four haemoparasite phenotypes. When the
prevalence of a phenotype was ≥0.05 or ≤0.95 within a country, the
corresponding results were excluded from these meta-analyses. Across
these six phenotypes, two peaks reached suggestive significance (p< 1.91 ×
10−7 and p < 1.89 × 10−7, respectively). The first peak (lead variant: chr24:
24760549:A:G; p = 1.2 × 10−7) was observed for the body condition score
on chromosome 24 (Figure 2), with this peak overlapping the GAREM1
gene (Figure 4A) that has previously been linked to bodymass inmice and
humans (Nishino et al., 2022). The second peak (lead variant: chr8:
62534748:T:C; p = 4.5 × 10−8) was identified for the E. ruminantium
infection status on chromosome 8 (Figure 3), which overlaps seven genes
(Figure 4B). Of these, the Tudor domain-containing protein 7 (TDRD7)
gene has previously been associated with immune responses.

4 Discussion

Selection programmes for the improvement of host resistance
against ticks and tick-borne diseases could be considered an
important strategy for reducing the expenses associated with
treatment and prophylaxis management. However, the
implementation of genetic improvement programmes has always
been difficult in low- and middle-income country settings, due to

many factors, including cost, lack of or poor infrastructure, and
small herds, which hinder the estimation of population-specific
parameters (i.e., heritability and genetic correlations) for traits of
economic importance. Moreover, traditionally, the implementation
of a breeding programme required an accurate pedigree. In
smallholder properties in tropical and subtropical environments,
there is often no pedigree recording and no phenotype data
recording, rendering conventional breeding practices impossible
to implement. Current molecular tools allow for investigating the
genetics of complex traits without requiring pedigree information,
making selection based on the genome a possibility. One of the key
shortcomings of using these technologies in low- and middle-
income countries is the cost associated with them. Genotyping
arrays are currently the most commonly used tool in GWAS.
However, the current commercial genotyping arrays are often
biased toward variants common to European breeds, and we
have recently shown that they poorly tag variants segregating in
indicine breeds, with implications for performing GWAS in African
breeds (Riggio et al., 2022). Further limitations associated with
performing GWAS in African cattle are the generally small
sample size and large variability in farming practices as well as
the extensive admixture of these populations (Gebrehiwot et al.,
2020). Combining results across independent studies via meta-
analysis could help partly overcome these issues, boosting the
power to detect significant associations.

To investigate the genetic architecture of the presence of
haemoparasites, as well as body weight and BCS, in African
cattle, we estimated heritabilities and carried out GWAS using
1,694 cattle from four different countries (Burkina Faso, Ghana,
Nigeria, and Tanzania) with genotypes imputed from HD to the
whole-genome level, both independently and via meta-analysis. We
have shown evidence of genetic variation for most traits, with the

FIGURE 2
Manhattan plot (A) displaying themeta-analysis results (-log10 (p) of the corresponding p-values) and Q–Q plot (B) of observed p-values against the
expected p-values for the body condition score. Genome-wide p < 0.05 (red line; p < 9.52 × 10−9 corresponding to -log10 (p) of 8.02) and suggestive (blue
line; p < 1.91 × 10−7 corresponding to -log10 (p) of 6.72) significance thresholds are also shown.
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weighted mean of heritability estimates being moderate for body
weight and BCS and low for haemoparasites, and we have identified
two peaks reaching the suggestive significance threshold (i.e., one
false positive per genome scan) in the meta-analysis. We could not
include Theileria parva in the analysis as we did not detect any
infections in our sample set. This was expected for Ghana, Burkina
Faso, and Nigeria but was surprising for Tanzania, where both the
tick vector and Theileria parva are endemic (Kerario et al., 2017;

Allan et al., 2021). The explanation for the lack of detection is either
lack of sensitivity based on the substrate (DNA from FTA cards is
less effective than DNA purified from blood (Hailemariam et al.,
2017)), the assay used (only primers suitable for use in qPCR were
considered for this study, which may have compromised sensitivity),
or lack of detectable infection in the target animals (it is probable
that any infected animals would be carriers, meaning low parasite
numbers). However, the lack of detectable infections meant that we

FIGURE 4
Manhattan plot of the regions of interest on chromosome 24 for the body condition score (A) and on chromosome 8 for the Ehrlichia ruminantium
infection status (B). The purple diamond in the plots represents the variant with the smallest p-value in the areas of interest. Other variants in the area are
coloured according to their LD (r2) with the target variant.

FIGURE 3
Manhattan plot (A) displaying themeta-analysis results (-log10 (p) of the corresponding p-values) and Q–Q plot (B) of observed p-values against the
expected p-values for the Ehrlichia ruminantium infection status. Genome-wide p < 0.05 (red line; p < 9.42 × 10−9 corresponding to -log10 (p) of 8.03) and
suggestive (blue line; p < 1.89 × 10−7 corresponding to -log10 (p) of 6.73) significance thresholds are also shown.
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were not able to assess heritability for this important pathogen,
although numbers and, therefore, power would have been very low
in any case given the restriction to one country.

Although heritability estimates for body weight and BCS within the
country were mostly not significant, the weighted means of heritability
estimates (h2m) weremoderate and significant (i.e., 0.40 for body weight
and 0.49 for BCS). This estimate of the heritability of body weight is
consistent with that previously estimated within European cattle, where
values generally fall between 0.4 and 0.7 (Mehtiö et al., 2021). Likewise,
heritability estimates for BCS in European cattle breeds have generally
fallen within the range of 0.2–0.5 (Bastin and Gengler, 2013).
Consequently, our heritability estimates for these traits are consistent
with previous findings.

Estimates for haemoparasites were lower, ranging between
0.10 and 0.19. Low heritability estimates for the infection levels
of B. bigemina and B. bovis (i.e., 0.09 and 0.1, respectively) were also
previously reported by Romero (2021). Although we use a different
definition of the trait, as we are only considering the presence/
absence of the pathogen, both results seem to be consistent in
showing a high environmental influence on such traits. Romero
(2021) also reported a heritability estimate of 0.09 for the infection
level of A. marginale.

Previous studies have identified a region on chromosome
5 associated with BCS in tropical cattle (Porto-Neto et al., 2014), but
there was little evidence of an association with this locus in our analyses.
However, the authors in that study visually assessed body condition at
an average of 30 months of age and subjectively scored at 1/3rd score
increments from 1 to 5 and subsequently converted it to a continuous
15-point scale (Porto-Neto et al., 2014), whereas we used a classification
scale of nine points. In this study, we identified a region reaching the
suggestive significance level on chromosome 24, which overlaps the
GAREM1 gene. In a study on body mass in humans and mice, Nishino
et al. (2022) found thatGAREM1 is required for normal growth and for
maintaining average body size in these species. This gene is
consequently a potentially interesting candidate for follow-up work
further exploring its potential link to BCS in African cattle.

Considerable work has been carried out to address the genetic
control of resistance to ticks [see Mapholi et al. (2014) for a review].
To the best of our knowledge, few studies have been published so far
for TBDs (Romero, 2021; Wragg et al., 2022). Comparisons across
studies are not easy, given the complexity of the traits and the
differences among populations and in tick/pathogen prevalence, as
well as the approaches used. Moreover, in contrast to association
studies in humans, where in general largely unrelated individuals are
used, livestock populations are often characterised by high levels of
relatedness (i.e., closely related animals with a complex population
structure) and an a priori unbalanced distribution of allele
frequencies, which is likely to inflate the rate of false-positive
associations between the traits and the markers, making true
associations harder to detect. However, our meta-analysis showed
evidence of a peak on chromosome 8 for the E. ruminantium
infection status. This region overlaps several genes, though
TDRD7 is potentially the strongest candidate for being linked to
the infection status. Given that E. ruminantium is an intracellular
bacterium, this gene could be relevant as it is an important factor
involved in cellular responses to viral infection (Thakur et al., 2019;
Subramanian et al., 2020; Forst et al., 2022). A previous study from
Romero (2021) in a similar number of South American cattle, using

predominantly low-density arrays, prioritised several regions across
the genome potentially affecting the infection level of B. bigemina
(chromosomes 5, 7, 10, 20, and 27) and A. marginale (chromosomes
2, 5, 8, 10, 13, 15, 17, 20, 24, and 29). However, none of these regions
were significant in our analyses.

In conclusion, in this study, we aimed at estimating heritabilities and
identifying loci underlying genetic variations for important
haemoparasites, as well as body weight and body condition score, in
African cattle. Despite the relatively modest heritability estimates in the
within-country analysis, our meta-analysis results have indicated the
possibility of improving these traits. Moreover, our meta-analyses have
identified two regions associatedwith body condition score and presence/
absence of E. ruminantium, which should be further explored. These data
suggest that future larger-scale studies to explore the genetic basis of
resistance/tolerance to tick-borne pathogens havemerit, as improving the
resolution by increasing animal numbers has the potential to identify
genetic traits that may contribute in the future to reducing the disease
burdens on smallholder farmers in Africa.
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The Tigray region, where we found around eight per cent of the indigenous cattle
population of Ethiopia, is considered as the historic centre of the country, with the
ancient pre-Aksumite and Aksumite civilisations in contact with the civilisations of the
Fertile Crescent and the Indian subcontinent. Here, we used whole genome
sequencing data to characterise the genomic diversity, relatedness, and admixture
of five cattle populations (Abergelle, Arado, Begait, Erob, and Raya) indigenous to the
Tigray regionof Ethiopia.Wedetected 28 to29million SNPs and 2.7 to 2.9million indels
in each population, of which 7% of SNPs and 34% of indels were novel. Functional
annotation of the variants showed around 0.01% SNPs and 0.22%–0.27% indels in
coding regions. Enrichment analysis of genes overlapping missense private SNPs
revealed 20 significant GO terms and KEGG pathways that were shared by or
specific to breeds. They included important genes associated with morphology
(SCN4A, TAS1R2 and KCNG4), milk yield (GABRG1), meat quality (MMRN2, VWC2),
feed efficiency (PCDH8 and SLC26A3), immune response (LAMC1, PCDH18, CELSR1,
TLR6 and ITGA5), heat resistance (NPFFR1 and HTR7) and genes belonging to the
olfactory gene family,whichmaybe related to adaptation toharsh environments. Tigray
indigenous cattle are very diverse. Their genome-wide average nucleotide diversity
ranged from 0.0035 to 0.0036. The number of heterozygous SNPs was about
0.6–0.7 times higher than homozygous ones. The within-breed average number of
ROHs ranged from 777.82 to 1000.45, with the average sum of the length of ROHs
ranging from 122.01Mbp to 163.88Mbp. The genomic inbreeding coefficients differed
among animals andbreeds, reaching up to 10% in someBegait andRaya animals. Tigray
indigenous cattle shared a common ancestry with Asian indicine (85.6%–88.7%) and
African taurine (11.3%–14.1%) cattle, with very small, if any, European taurine
introgression. This study identified high within-breed genetic diversity representing
an opportunity for breeding improvement programs and, also, significant novel variants
that could increase the number of known cattle variants, an important contribution to
the knowledge of domestic cattle genetic diversity.
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Introduction

From the main domestication centres, cattle dispersed
worldwide through trading and human migration routes
(Hanotte et al., 2002; Beja-Pereira et al., 2006; Freeman et al.,
2006; Ajmone-Marsan et al., 2010). The long process of their
origin, domestication, and natural and artificial selection led to
diversified phenotypic attributes related to their history, agro-
ecologies and production systems (Ajmone-Marsan et al., 2010;
Purfield et al., 2012; FAO, 2015). About 1019 local cattle breeds have
been recognised worldwide (FAO, 2015). However, the growing
demand for animal-based food products is resulting in the extensive
introduction of a few specialised high-yielding milk and beef breeds
(Ajmone-Marsan et al., 2010; FAO, 2015; Kukučková et al., 2017)
with crossbreeding or replacement of the indigenous genotypes. It
may trigger a sharp decline in the population size of local breeds
(Medugorac et al., 2009) and erosion of their genetic makeup. It has
been estimated that around 50% of the global cattle breeds’ diversity
remains unknown (FAO, 2015). Characterising the diversity of
indigenous breeds is important for understanding their adaptive
traits and for targeted conservation strategies (FAO, 2015; Mwai
et al., 2015; Addo et al., 2019; Eusebi et al., 2020).

Ethiopia is a major entry gate for cattle into the African
continent (Hanotte et al., 2002; Li et al., 2007; Edea et al., 2015).
It is the home of Africa’s largest cattle population and ranks the fifth
worldwide (Mwai et al., 2015; CSA, 2018). It has 60.39 million heads
of cattle, of which 98.24% are indigenous to the country (CSA, 2018)
and managed by smallholder farmers (Rowlands et al., 2006; EBI,
2016). The indigenous cattle of Ethiopia produce, reproduce, and
survive with little veterinarian intervention and limited feed
resources, including in extreme temperatures (hot or cold) and
diverse agro-ecologies ranging from low altitude (<500 m above sea
level (m.a.s.l.) to high altitude mountainous areas (>3000 m.a.s.l.)
(EBI, 2016; Bekuma and Hirpha, 2018).

The region of Tigray in the North of Ethiopia is an ancient
centre of civilisations (e.g., ancient pre-Aksumite Kingdom of
Da’amat and Aksumite Kingdom of Axum) which were in
trading contacts with the ancient civilisations of the Fertile
Crescent and the Indus Valley (Finneran, 2007; Pagani et al.,
2012). Accordingly, it had an important role in the introduction
of livestock into the Horn of Africa (Woldekiros and D’Andrea,
2017).

Tigray is the fourth most cattle-populated Ethiopian region,
with about 8% of the country’s cattle genetic resource (CSA, 2018).
Previous studies have characterised some of these populations using
low-density molecular markers such as microsatellites,
Y-chromosome markers or SNPs arrays (Li et al., 2007; Zerabruk
et al., 2007; Dadi et al., 2008; Zerabruk et al., 2011; Edea et al., 2015).
Using five Y chromosome markers, Li et al. (2007) identified
indicine but no taurine Y chromosome in the Tigray cattle with
the exception of an Arado bull. Dadi et al. (2008) characterised the
genetic diversity of Raya (Tigray cattle) and other cattle from
different parts of Ethiopia using 30 microsatellite loci. Zerabruk
et al. (2007) reported the genetic diversity of the five recognised
Tigray cattle populations (Abergelle, Arado, Begait, Erob and Raya)
using 20 autosomal microsatellite markers and observed that the
Begait cattle had the highest within-population diversity among the
examined ones. Using the same set of 20 autosomal microsatellite

markers, Zerabruk et al. (2011) characterised the admixture
composition of the Tigray cattle and reported a small proportion
of European taurine background in some animals. Edea et al. (2015)
genotyped three Tigray cattle populations (Arado, Begait and Raya)
and four other Ethiopian cattle populations using the GeneSeek
Genomic Profiler HD Bead Chip SNP array and found high genetic
differentiation and unique admixture patterns in the Begait cattle.

Whole-genome sequence analyses are now the method of
choice for genome diversity characterisation (Shendure and Ji,
2008; Stafuzza et al., 2017). At the opposite of microsatellite and
SNPs arrays, they provide a complete representation of the
diversity of a genome and an entry point to the identification
of candidate causative variants associated with Mendelian and
quantitative traits (Jiang et al., 2014; Das et al., 2015). Compared
to SNPs arrays, often selected for polymorphisms in a reduced
number of breeds, they are less prone to ascertainment biases.
However, it should be noted that polymorphism detection relies
on sequence alignment against a single genome of reference,
which will still introduce biases in the identification of SNPs
following the genome of reference chosen. Recently, a few studies
(Kim et al., 2020; Jang et al., 2022; Terefe et al., 2022; Terefe et al.,
2023) have reported the whole-genome characterisation of
Ethiopian indigenous cattle, making it the African country
with the largest number of cattle genome sequences available.
However, they are still several main gaps in our knowledge with
cattle populations from some geographic areas and cattle
populations living in extreme environments yet to be
characterised at the whole genome level (Edea et al., 2013; EBI,
2016). For instance, all the previous whole-genome based
characterization studies on Ethiopian cattle populations (Kim
et al., 2020; Jang et al., 2022; Terefe et al., 2022) did not
include any Tigray cattle, with the exception of one Tigray
cattle population (Begait) (Terefe et al., 2023).

We reported previously a multivariate morphological
description of the Tigray cattle populations, using 21 qualitative
traits and 21 body measurements (Zegeye et al., 2021). For the five
Tigray indigenous cattle populations (Arado, Begait, Abergelle,
Erob, and Raya cattle), four distinct clusters were identified with
the Abergelle and Erob grouped together (Zegeye et al., 2021). Here,
we characterised the same five populations using autosomal SNPs
and insertion/deletion (indels) variants to assess their genetic
diversity, differentiation, relatedness and admixture. We aimed to
examine their genetic uniqueness and to pave the way for further
analysis to identify genomic regions and, ultimately, the genetic
control of their morphological and adaptative traits.

Materials and methods

Sample collection

Fifty-four whole blood samples were collected from five
indigenous cattle populations (11 Abergelle, 11 Arado, 11 Begait,
10 Erob, and 11 Raya cattle) in the Tigray region of Northern
Ethiopia (Figures 1A–C). The sampling area and morphological
descriptions of the populations were reported previously (Zegeye
et al., 2021). The whole blood was collected from the jugular vein of
each animal by venipuncture with a 10 mL (millilitre) vacutainer
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blood collection tube containing ethylenediaminetetraacetic acid
(EDTA) as an anticoagulant. The blood was gently mixed with
the EDTA and placed into an icebox containing ice. It was brought
to the International Livestock Research Institute molecular
laboratory facility (ILRI - Addis Ababa), where it was stored
at −21°C (degree centigrade) until the extraction of the genomic
DNA (gDNA).

Genomic DNA extraction and quality
checking

The gDNA was extracted using the Qiagen DNeasy Blood and
Tissue Kit (Qiagen, Hilden, Germany) following the manufacturer’s
standard procedure. The extracted gDNA samples were evaluated for

their concentration and quality using a Nanodrop spectrophotometer
(DeNovix-DS-11+spectrophotometer, USA) and 1% agarose gel
electrophoresis. A minimum of 5 µg of high quality gDNA with a
concentration >50 nanogram per microliter (ng/µL) (Supplementary
Table S1) was used for whole-genome sequencing.

Library construction and sequencing

The gDNA samples were sent to the ILRI-CAAS Joint
Laboratory of Livestock and Forage Genetic Resources in Beijing,
P.R. China, which supervised the genome sequencing. Following the
manufacturer’s specifications, a paired-end DNA library was
constructed for each of the 54 samples. The gDNA was
sequenced on an Illumina HiSeq X10 platform.

FIGURE 1
(A) Physical map of Tigray region based on elevation (meters above sea level, m.a.s.l.) with sampling sites for each population. (B) Physical map of
Tigray region based on Major Agroecological Zones of Tigray (MAZT) (MOA, 1998) with sampling sites for each population. (C) Photos of the studied
indigenous Tigray cattle populations.

Frontiers in Genetics frontiersin.org03

Zegeye et al. 10.3389/fgene.2023.1050365

110

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1050365


Short read mapping and variant calling

The sequence reads were checked for quality using FastQC version
0.11.5. Following quality checking, paired-end reads (FASTAQ format)
were aligned against the cattle reference genome assembly (ARS_
UCD1.2, Bos taurus, Hereford breed) using the BWA version 0.7.17 (Li
and Durbin, 2009). The mapped reads were sorted using samtools
version 1.8 (Li et al., 2009) and converted to BAM formats using
PICARD tools version 2.18.2. Duplicated reads were marked and
removed using PICARD’s MarkDuplicates command. Moreover,
the percentages of reads mapped to the reference genome were
computed from dedup_recal.bam file using the Genome Analysis
Toolkit’s (GATK, version 3.8-1-0-gf15c1c3ef) DepthOfCoverage “-ct
5 -ct 10 -ct 20 -ct 40”.

The base quality score recalibration (BQSR) was performed
using the GATK’s BaseRecalibrator and the uniquely mapped
reads for variant calling were selected using the GATK’s
HaplotypeCaller (McKenna et al., 2010). The genomic variants
(GVCF files) generated from each sample were jointly analysed
using the GATK’s GenotypeGVCFtool. Called variants (SNPs and
indels) were separately subjected to variant filtration (GATK hard
filter) setting MQ > 40, QD > 2.0, ReadPosRankSum > 8.0,
MappingQualityRankSum > 12.5 and HaplotypeScore > 13 for
SNPs and FS > 200.0, QD < 2.0, ReadPosRankSum < −20.0 and
QUAL <20) for indels. Only bi-allelic variants that meet the
specified filtering criteria were selected for further analysis.

Variant statistics and annotation

To compute the variant statistics (e.g., total number of SNPs,
total number of indels, indel length, and nucleotide substitution), we
used the VCF-stats command of VCFtools/0.1.14/Perl. The number
of transition and transversion, average ratios of transitions-to-
transversions (Ti/Tv), and distribution of SNPs and indels at
different allelic frequencies were analysed using stats command
and plot-VCF-stats of BCFtools/1.8 (Li et al., 2009). Moreover,
SNPs and indels density across chromosomes were computed for
each population using VCFtools version 0.1.15 and then averaged
using R version 3.6.1 (R Development Core Team, 2019). We
searched and compared our SNPs against the dbSNP ver150
(https://genome.ucsc.edu/cgi-bin/hgGateway, last accessed in July
2021). Finally, the variants (SNPs and indels) were classified
according to their potential functions using the Ensemble Variant
Effect Predictor tool (VEP, (https://www.ensembl.org/info/docs/
tools/vep/index.html), and the genes overlapping private missense
variants were functionally annotated by DAVID version 6.8 (https://
david.ncifcrf.gov/home.jsp). Significant Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were selected based on different criteria including p < 0.05,
Bonferroni < 0.05, FDR < 0.05 and fold enrichment > 1.

Genome-wide nucleotide diversity and
heterozygosity

The genome-wide nucleotide diversity (π) was analysed for
each population using VCFtools version 0.1.15 in 20 kb windows

with a 10 kb sliding step (with the--window-pi 20000 --window-pi-
step 10000 option) (Danecek et al., 2011). The numbers of non-
reference heterozygous and homozygous variants (SNPs and
indels) were analysed using the VCF-stats command of
VCFtools/0.1.14/Perl. Further, the observed heterozygosity (Ho)
was calculated following the command “--het” in PLINK version
1.9 (Purcell et al., 2007).

Runs of homozygosity and genomic
inbreeding

The runs of homozygosity (ROH) were detected using PLINK
version 1.9 (Purcell et al., 2007) by setting a sliding window of
50 SNPs (--homozyg-window-snp 50), one possible heterozygous
genotype (--homozyg-window-het 1), two missing genotypes
(--homozyg-window-missing 2), a minimum SNP density of
1 SNP every 50 kb (--homozyg-density 50), a minimum number
of 100 SNPs (--homozyg-snp100), a minimum length of 100 kb
(--homozyg-kb 100), a maximum gap of 1 Mb between consecutive
homozygous SNPs (--homozyg-gap 1000) and the presence of the
SNP in at least five homozygous reads (--homozyg-window-
threshold 0.05).

We calculated the genomic inbreeding value for each cattle by
dividing the sum of ROHs length with the total length of the genome
(FROH = LROH/LAUTO), following McQuillan et al. (2008), Zhang
et al. (2015a), Addo et al. (2019) and Guo J. et al. (2019). For this
analysis, we considered a total genome length of 2,715,853,792 bp
(2.72 Gb) (ARS_UCD1.2). An alternate inbreeding coefficient
(FHOM) was also calculated for each animal using the “--het”
command in PLINK version 1.9 (Purcell et al., 2007) following
Addo et al. (2019).

Genetic relationship and differentiation

Publicly available genome sequences of 15 cattle breeds
(Supplementary Table S2) from six reference groups were
added to the dataset for genetic relationship and differentiation
analyses. These included African sanga (Afar and Ankole, crosses
between African zebu and longhorn humpless taurine), African
zenga (Fogera and Horro, crosses between African zebu and
sanga), African zebu (Ethiopian Boran and Kenana), African
taurine (Muturu and N’Dama), European taurine (Angus and
Holstein), Asian zebu (Bhagnari, Cholistani, Dhanni, Sahiwal and
Tharparkar). The VCFs of all the reference populations were
generated from their raw sequence reads by applying the same
procedures mentioned above, and subsequently merged with the
five Tigray cattle populations. The merged dataset included
164 cattle genomes and 42,766,398 raw SNPs. It was pruned
using PLINK version 1.9 (Purcell et al., 2007) by setting
different filtering and quality control thresholds, such as
“--mind 0.25 --geno 0.1 --maf 0.05 --indep-pairwise 50 10 0.5
--set-missing-var-ids C@P”. Where--mind 0.25 = individual
sample to be removed following 25% or more missing
genotype data, --geno 0.1 = variants to be removed due to 10%
of missing genotype data, --maf 0.05 = variants to be removed due
to minor allele frequency less than 0.05, --indep-pairwise 50 10
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0.5 = SNPs with pairwise r2 values higher than 0.5 in sliding
windows of 50 SNPs moving stepwise with ten SNPs at a time
across the genome and set-missing-var-ids C@P =missing IDs set.
After applying the quality control and filtering thresholds, the
pruned final data set including 3,695,054 SNPs and 164 animals
was converted to plink. fam, plink. bin, and plink. bed file using
the flag “--make-bed” in PLINK version 1.9 (Purcell et al., 2007).

Principal component analysis
The LD-pruned dataset consisting of 3,695,054 SNPs and

164 individuals was used for principal component analysis (PCA).
To calculate pca.egenvel and pca.egenvec, we used the flag “plink--
pca” with a default parameter, for the first 20 principal components
(PCs). Then, the proportions of variances explained by the eigenvector
were computed by dividing each egenvel by the total sum of all
egenvels (1–20) and expressing it as a per centage. Finally, the two first
PCs were plotted against each other using the ggplot2 package in R
version 3.6.1 (R Development Core Team, 2019) to illustrate the
population clustering.

Genetic admixture analysis
Using the same LD-pruned dataset (3,695,054 SNPs), the

ADMIXTURE version 1.3.0 software (Alexander et al., 2009) was
used to determine the optimal number of clusters (K) and to
describe individual ancestry. A cross-validation procedure was
performed using the program’s flag "-cv” for K = 1 to K = 10.
The K with the lowest cross-validation error was taken as the
recommended number of clusters for the dataset. The cross-
validation error value for each K (1–10) and the cluster
assignments were plotted using R version 3.6.1 (R Development
Core Team, 2019).

Genetic differentiation
The genetic distance (FST) between pairs of populations (Weir

and Clark Cockerham, 1984) was analysed using VCFtools version
0.1.15 in 100 kb windows with a 50 kb sliding step (with the--
window-pi 100000 --window-pi-step 50000 option) (Purcell et al.,
2007). The pairwise weighted FST-based heat map with a
dendrogram was plotted in R version 3.6.1 (R Development Core

TABLE 1 Variant statistics within cattle populations from Tigray region,
Ethiopia.

Variables Cattle breeds

Abergelle Arado Begait Erob Raya

No. of
samples

11 11 11 10 11

SNPs

Novel (%) 2135111
(7.22)

2138760
(7.2)

2091767
(7.23)

1999834
(7.13)

2161976
(7.36)

Known 27428853 27574364 26840780 26045211 27231606

Total 29563964 29713124 28932547 28045045 29393582

Indels

Novel (%) 985169
(34.11)

991807
(34.13)

968237
(34.22)

938479
(34.06)

1003423
(34.6)

Known 1902736 1914050 1861562 1817017 1896421

Total 2887905 2905857 2829799 2755496 2899844

No. = number, this abbreviation works for all No. in the tables.

FIGURE 2
The distribution of private SNPs and indels across samples for each population (ABR* for Abergelle, AR* for Arado, BG* for Begait, ER* for Erob and
RAY* for Raya cattle).
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Team, 2019). Next, a Neighbor-Net tree based on pairwise FST values
was constructed using the Neighbor-Net algorithm (Bryant and
Moulton, 2004) implemented in SplitsTree5 V 5.0.0” (Huson and
Bryant, 2006) and plotted in R version 3.6.1 (R Development Core
Team, 2019).

Results

Intra-population genetic diversity in the
Tigray cattle

Mapping and variant detection
The number of paired-sequence reads for each animal ranged

from 200,684,387 to 289,752,799, with a mapping rate of 99.61%–

99.79% to the reference genome (ARS_UCD1.2). The average
sequencing depth among populations ranged from 10.13 X (Erob
cattle) to 10.64 X (Begait cattle). Furthermore, over 88% of the bases
were covered with at least five reads, and 39%–42% were covered
with at least ten reads (Supplementary Table S3).

Variant calling and filtration combining the five Tigray cattle
populations resulted in the detection of around 36 million (M) SNPs
(n = 36,003,573) and 3.7 M indels (n = 3,703,659) (Supplementary
Table S4B). The number of SNPs detected per individual sample
ranged from 12 M to 13 M (Supplementary Table S4A). The number
of SNPs at population level ranged from 28 M to 29 M, of which 7%
were novel (Table 1). A total of 2,113,093 (7.15%) SNPs were shared
among Abergelle cattle, 2,062,642 (6.94%) among Arado cattle,
2,182,704 (7.54%) among Begait cattle, 2724,442 (9.71%) among
Erob cattle, and 2,161,735 (7.35%) among Raya cattle
(Supplementary Table S4B). Around 674,019 (1.87%) SNPs were
shared across the five Tigray cattle populations (Supplementary
Table S4B).

We detected around 1.1 M–1.2 M indels in each individual cattle
(Supplementary Table S4A), while the number of indels in each
population ranged from 2,755,496 (Erob) to 2,905,857 (Arado). Of
these, around 34% were novel (Table 1). Within a population, 177,353
(6.14%), 173,842 (5.98%), 183,302 (6.48%), 228,704 (8.3%) and 181,610
(6.26%) indels were common to all samples in Abergelle, Arado, Begait,
Erob, and Raya cattle populations, respectively. Around 1.43% (52,992)
of indels were shared across all the five Tigray cattle populations
(Supplementary Table S4B).

Except for Erob cattle, the number of private SNPs across
individual samples ranged from 32,245 to 81,933, and the
number of private indels ranged from 5,276 to 14,182 (Figure 2).
Among Erob cattle, four samples (ER06, ER17, ER13 and ER10) had

FIGURE 3
Distribution of the variants based on allele frequency (blue bars represent SNPs and the green line represents indels).

FIGURE 4
Allele frequency of private SNPs, where each coloured line
represents a cattle population.
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fewer private variants (9,929 to 11,526 SNPs and 2,675 to
2,870 indels) compared to the remaining Tigray cattle samples.
At the population level, we detected 571,535, 634,275, 583,831,
433,013 and 569,013 private SNPs for Abergelle, Arado, Begait,
Erob and Raya cattle populations, respectively.

Density of the variants and their allele frequencies
The density of genome-wide SNPs ranged from 11.27 ± 7.69 to

11.94 ± 7.88 SNPs/kb and of indels from 1.08 ± 1.34 to 1.17 ±
1.41 indels/kb across the five Tigray cattle populations
(Supplementary Tables S5, S6). Chromosomes 23, 27 and 28 had
the highest density of variants (13–14 SNPs/kb and 1.3 to 1.4 indel/kb),
while chromosomes 19, 13, 3 and 11 had the lowest ones (10–11 SNPs/
kb and <1.1 indels/kb). The chromosome-wise distributions of variants
(SNPs and indels) were proportional to the length of the chromosomes
(Supplementary Tables S7, S8). As expected, large chromosomes had
more variants than small ones (Supplementary Figures S1A–D).
However, the density of variants (SNPs/kb or indel/kb) was higher
on small chromosomes than large ones.

Across the five Tigray indigenous cattle populations, the average
alternate (non-reference) allele frequencies of SNPs and indels were
0.32 and 0.28 to 0.3, respectively. The proportion of SNPs with mean
alternate allele frequency (AAF) < 0.5 ranged from 77% to 79% and
the proportion of SNPs with mean AAF > 0.9 was around 4%. The

proportion of indels with mean AAF < 0.5 ranged from 78% to 80%
(Supplementary Table S9). However, most of the variants (SNPs and
indels) had frequencies of 10% or less (Figure 3). Allele frequencies
of private SNPs ranged from 0.05 to 0.55, of which 67% (Erob cattle)
to 83% (Arado cattle) of these SNPs had an allele frequency of 0.05
(Figure 4).

Nucleotide substitutions and indel length
The Ti/Tv ratio was around 2.35 (Supplementary Table S10). It

supported a high sequencing accuracy for all samples. Across all the
samples, the highest number of nucleotide substitutions were
recorded for the bases Cytosine to Thymine (C > T) and the
bases Guanine to Adenine (G > A) while the least number of
nucleotide substitutions for the bases Adenine to Thymine (A >
T) and Thymine to Adenine (T > A) (Supplementary Table S10 and
Supplementary Figure S2A). The number of insertions was about
0.33–0.35 times higher than deletions. Furthermore, the length of
indels ranged from −28 bp (deletion, Abergelle) to +23 bp (insertion,
Begait) (Supplementary Table S11). Almost 50% of the indels had a
length of 1 bp, while the majority of indels were less than 5 bp
(87.12% in Abergelle, 87.08% in Arado, 87.11% in Begait, 87.18% in
Erob and 87.11% in Raya cattle). Only around 13% of the total indels
had lengths greater than or equal to 6 bp (Supplementary Table S11
and Supplementary Figure S2B).

TABLE 2 Population level summary of annotation of SNPs in the Tigray cattle.

All consequences Abergelle Arado Begait Erob Raya

No. of samples 11 11 11 10 11

Bi-allelic variants processed 29563964 29713124 28932547 28045045 29393582

Splice donor variant 707 684 693 672 690

Splice acceptor variant 439 452 442 429 435

Stop gained 1682 1748 1706 1648 1765

Stop lost 245 238 237 239 243

Start lost 397 406 382 373 413

Missense variant 149334 150764 146883 141733 149448

Splice region variant 40755 41135 39987 38861 40791

Synonymous variant 228481 229776 224200 217399 228249

Stop retained variant 169 183 169 160 180

Coding sequence variant 1 1 1 1 1

Mature miRNA variant 123 125 121 120 125

5_prime UTR variant 49794 49766 48751 46913 50016

3_prime UTR variant 137652 138671 135235 131341 137754

Non-coding transcript exon variant 31400 31309 30515 29622 31084

Intron variant 22387867 22473356 21940886 21255569 22194958

Non-coding transcript variant 502772 505660 496259 476848 500512

Upstream gene variant 2074721 2090124 2042625 1979084 2075740

Downstream gene variant 2111713 2121229 2070242 2007161 2104907

Intergenic variant 17584768 17682416 17197428 16677542 17502131
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Functional distribution of variants (SNPs and indels)
The annotation of the SNPs showed that around 59.5% of them

were in the intergenic regions. Around 76% of annotated SNPs
were in introns, 7% in upstream of genes, 7.2% in downstream of
genes, 0.5% in 3′ untranslated region (UTR), 0.2% in 5’ UTR and
0.11% in non-coding transcript exon. The number of SNPs in the
coding regions (stop gain, stop lost and stop retained, start lost,
missense and synonymous SNPs, and coding sequences) was
approximately 0.01% in all populations (380,309 in Abergelle,
383,116 in Arado, 373,578 in Begait, 361,55 in Erob and
380,299 in Raya cattle) (Table 2) (Supplementary Figure S3), of
which around 17%–18% had deleterious effects (Supplementary
Figure S4).

Around 57%, 77%, 7.4%, 8%, 0.6%, 0.2% and 0.1% of the indels
were in intergenic regions, introns, upstream of genes, downstream
of genes, 3′ UTR, 5’ UTR and non-coding transcript exons,
respectively. The total numbers of indels located within the
coding regions (stop gain, stop lost, stop retained, start lost, start

retained, frameshifts, inframe insertions, inframe deletions, protein-
altering variants and coding sequences) ranged from 0.22% (Raya
cattle, 6,414) to 0.27% (Erob cattle, 7,462) (Table 3). Among the
indels located in the coding regions, 63.20%, 63.39%, 62.65%,
63.48% and 77.6% resulted in codon frameshifts (codon
alteration), of which 0.81%, 0.84%, 0.98%, 0.84% and 0.88% may
affect protein functions in Abergelle, Arado, Begait, Erob, and Raya
cattle populations, respectively (Supplementary Figure S5).

Enrichment analysis of the genes overlapping private SNPs
A separate analysis of the private SNPs for each population showed

1,455, 1,809, 1,470, 1,203, and 1,701 private missense SNPs for
Abergelle, Arado, Begait, Erob and Raya cattle populations,
respectively; of which 97.9% (Erob) to 98.9% (Raya) were in coding
regions while the remaining ones overlapped with splice regions. Of the
missense SNPs in the coding regions, 33.1%, 34.4%, 52.7%, 64.8% and
58.1% had deleterious effects in Abergelle, Arado, Begait, Erob and Raya
cattle populations, respectively (Figure 5).

TABLE 3 Population level summary of annotation of indels in the Tigray cattle.

All consequences Abergelle Arado Begait Erob Raya

No. of samples 11 11 11 10 11

Bi-allelic variants processed 2887905 2905857 2829799 2755496 2899844

Transcript ablation 4 5 5 5 5

Splice donor variant 248 240 236 206 227

Splice acceptor variant 232 234 215 208 221

Stop gained 57 61 64 62 61

Frameshift variant 4788 4875 4688 4737 4977

Stop lost 28 28 28 24 25

Start lost 42 39 41 34 38

Inframe insertion 825 834 815 799 853

Inframe deletion 1565 1578 1561 1540 1781

Protein altering variant 39 41 46 40 44

Splice region variant 3797 3913 3805 3716 3952

Stop retained variant 17 17 21 22 20

Start retained variant 13 14 13 13 12

Coding sequence variant 202 204 206 191 206

Mature miRNA variant 12 16 13 16 17

5 prime UTR variant 4855 4835 4842 4647 4985

3 prime UTR variant 16000 16025 15703 15327 16165

Non-coding transcript exon variant 2439 2440 2409 2321 2441

Intron variant 2237586 2246670 2192419 2135981 2239005

Non-coding transcript variant 47834 48290 47388 45827 48017

Upstream gene variant 214934 216603 211424 205980 217097

Downstream gene variant 230871 232624 227186 220614 232751

Intergenic variant 1642232 1653813 1607488 1565117 1648903
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Functional enrichment analysis of the genes overlapping private
SNPs in coding regions identified 16, 12, 16, 6 and 10 significant (p <
0.05, Bonferroni < 0.05, FDR < 0.05 and fold enrichment > 1) GO
terms of biological process (BP), cellular component (CC), molecular
function (MF) and KEGG pathways in Abergelle, Arado, Begait, Erob
and Raya cattle populations, respectively (Figure 6). Out of the
enriched terms, the top three most significant ones (p = 1.6 × 10−5

to 6.8 × 10−67, Bonferroni = 1.65 × 10−2 to 7.5 × 10−64, FDR = 8.3 × 10−3

to 7.5 × 10−64 and fold enrichment = 2.3–4.3) were olfactory receptor

activity (GO:0004984), olfactory transduction (bta04740) and odorant
binding (GO:0005549). These were common to all five Tigray cattle
populations.

Within populations, the enrichment analysis further identified
many population specific genes associated with the aforementioned
three most significant terms. Around 11% (Erob cattle) to 17%
(Abergelle cattle) of the genes were associated with olfactory
receptor activity, 13% (Erob cattle) to 18% (Abergelle cattle) with
olfactory transduction, and 3% (Erob cattle) to 6% (Abergelle cattle)
with odorant binding (Additional file, Sheet 1).

Eleven genes, including OR4F73, OR1L21, OR5AN1, OR9S29,
OR9M1D, OR2H20, OR4X16, OR5AK29, OR6C4, OR8B1AU and
OR9S40, were commonly enriched in the three shared GO terms. Six
GO terms (GO:0004871~signal transducer activity, GO:
0004872~receptor activity, GO:0004888~transmembrane signaling
receptor activity, GO:0038023~signaling receptor activity, GO:
0060089~molecular transducer activity, GO:0099600~transmembrane
receptor activity) with relatedmolecular functions were enriched in four
populations (Abergelle, Arado, Begait and Raya cattle). Interestingly,
two significant GO terms of the cellular component associated with an
integral component of the plasma membrane (GO:0005887) and the
intrinsic component of the plasma membrane (GO:0031226) were only
enriched in Begait cattle. TwoGO terms of the cellular component (GO:
0005578) related with proteinaceous extracellular matrix and
extracellular matrix component (GO:0044420) were significantly
enriched only in the Erob cattle (Additional file, Sheet 1).

Nucleotide diversity and heterozygosity
The average genome-wide nucleotide diversity (π) ranged from

3.5 ± 1.77 × 10−3 (Raya) to 3.57 ± 1.76 × 10−3 (Arado) (Figure 7 and
Supplementary Table S12). Besides, the average non-reference
heterozygous variants (SNPs and indels) were around 0.6 to 0.7
times higher than the corresponding homozygous variants

FIGURE 5
Private SNPs with missense effects overlapping coding and
splicing regions, where, CR represents the number of missense SNPs
overlapping coding regions, SR represents the number of missense
SNPs overlapping splice regions, CRD represents the number of
missense SNPs overlapping coding regions with deleterious effects,
and SRD represents the number of missense SNPs overlapping splice
regions with deleterious effects.

FIGURE 6
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms in the Tigray cattle, where the size of the circles
represents how large the number of genes represented in a specific GO or KEGG pathway term and the level of significance, while each coloured circle
represents a cattle population.
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(Supplementary Table S12). At the individual level, the ratio of
heterozygous to homozygous SNPs ranged from 1.39 to 1.89, and of
the indels from 1.39 to 1.84 (Supplementary Figures S6A–E). The mean
observed heterozygosity (Ho) was the highest in Arado cattle (0.302 ±
0.010) but the lowest in Raya cattle (0.278 ± 0.016) (Supplementary
Table S12).

Runs of homozygosity and genomic inbreeding
Abundance and length of ROH in the Tigray cattle
compared to major reference cattle groups

We calculated ROH for the five Tigray cattle populations and the
reference breeds. The average number and length of ROH segments
varied considerably within and among breeds (Figure 8; Table 4 and
Supplementary Table S13). The within breed average number of
ROH for the Tigray cattle ranged from 777.82 (Arado cattle) to
1000.45 (Raya cattle), and the within breed average sum of the length
of ROH ranges from 122.01 megabase pairs (Mbp) (Arado cattle) to
163.88 Mbp (Raya cattle). The average number of ROHs and the
average sum of the length of ROH in the Tigray cattle were higher
than the ones recorded in Asian zebu, African zebu from Sudan
(Kenana), African taurine (Muturu and N’Dama) and African sanga
from Uganda (Ankole). But they were much lower compared to
European taurine cattle (Holstein and Angus). However, in general,
all the Tigray cattle had close ROH profiles with the other cattle
populations originating from Ethiopia (Afar, Eth. Boran, Fogera and
Horro) (Table 4).

Distribution of ROH based on segment length categories
The number of ROH across length categories (0.1–0.25 Mbp,

> 0.25–0.5 Mbp, > 0.5–1 Mbp and > 1 Mbp) varied among breeds.
ROH in the length category of 0.1–0.25 Mbp accounted for
90%–92% of the total ROH. For the length categories
>0.25–0.5 Mbp and > 0.5–1 Mbp, ROH frequencies were about
7%–10% and 0.2%–0.4%, respectively (Supplementary Tables S14,
S15). ROH > 1 Mbp were only found in Begait and Raya cattle
(BG15, RAY11, RAY22 and RAY26) (Supplementary Table S13). In
the length categories 0.1–0.25 Mbp, the Tigray cattle had more ROH
when compared to Holstein and Angus, but they were less than the
African sanga from Uganda (Ankole), African taurine (Muturu and
N’Dama) and the Asian zebu. Above the 0.25 Mbp length category,
the Tigray cattle had more ROH when compared to Ankole,
Muturu, N’Dama and Asian zebu, but they were less than Angus
and Holstein (Supplementary Tables S14, S15).

Genomic positions under runs of homozygosity and
inbreeding across the Tigray cattle

The chromosome-wise distributions of the number and length of
ROH and the incidence of SNPs on ROH were different across the five
Tigray cattle populations, except for the Abergelle and Erob cattle
(Figures 9A–C and Supplementary Tables S16–S18). At the population
level, the mean genomic inbreeding coefficient was the smallest in
Arado (FROH = 0.047 ± 0.004 and FHOM= 0.043 ± 0.035) but the highest
in Raya cattle (FROH = 0.064 ± 0.025 and FHOM = 0.07 ± 0.054)

FIGURE 7
Box plot for nucleotide diversity, where each coloured box plot represents a cattle population.
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(Supplementary Table S19). One Begait cattle (BG15 with FROH =
0.103 and FHOM = 0.107) and three Raya cattle (RAY11 with FROH =
0.114 and FHOM = 0.12, RAY22 with FROH = 0.099 and FHOM = 0.168,
and RAY26 with FROH = 0.088 and FHOM = 0.111) showed strong
genomic inbreeding values based on both methods (Figure 9D and
Supplementary Table S20).

Relationship and inter-population genetic
differentiation

Principal component analysis
The PCA showed the presence of six potential clusters of

populations (Figure 10). PC1 and PC2 explained 32.27% and
12.33% of the total variation, respectively (Figure 10 and
Supplementary Figure S7). PC1 separated Ankole and taurine
cattle (African and European) from Asian zebu, Kenana and all
the cattle from Ethiopia, including the Tigray cattle (Abergelle,
Arado, Begait, Erob and Raya). PC2 divided the European
taurine cattle and Asian zebu from the Ankole and African
taurine cattle (Figure 10). Combining PC1 and PC2 illustrated
that the Tigray cattle populations (Abergelle, Arado, Begait, Erob
and Raya) were close to the Asian zebu and the African sanga
(Ankole).

PC1 and PC2 for the five Tigray cattle populations and other
Ethiopian cattle representing three cattle groups of African zebu
(Ethiopian Boran), African sanga (Afar) and African zenga
(Fogera and Horro) jointly accounted for 15.34% of the total
variation, of which the Begait and Erob cattle were separated
from the other populations (Figure 11A). The PC1 (6.09%) of the
five Tigray cattle populations alone separated Begait cattle from
the other four Tigray cattle populations, while PC2 (5.23%)
divided Raya cattle from the other four Tigray cattle
populations (Figure 11B).

Genetic admixture and population genetic
differentiation

As indicated by the lowest cross-validation error (0.51)
(Supplementary Figure S8), the admixture analysis suggested
three ancestral sources. At K = 3, the taurine ancestry for the
Tigray cattle was shown to be mainly shared with the African
taurine, except for some individuals in Arado (n = 3) and Begait
(n = 2) cattle having 0.1%–1.8% of European taurine ancestry
(Figure 12). In each population, the African taurine ancestry
ranged from 11.3% (Erob cattle) to 14.1% (Begait cattle) and,
accordingly, the indicine ancestry from 85.6% (Arado cattle) to
88.7% (Erob cattle) (Supplementary Figure S9). More interestingly,
as the number of potential ancestries increased, the Tigray cattle

FIGURE 8
ROH profile of each animal across all cattle, including reference populations, where individual colour and circle represent a cattle population and
individuals, respectively.
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local ancestry appeared. At K = 7 and K = 10, both Erob and Begait
cattle showed some unique local ancestries (Supplementary
Figure S10).

FST for the Tigray cattle populations ranged from 0.07 to
0.08 with Asian Zebu, 0.084 to 0.108 with Ankole (African sanga
originating from Uganda), 0.236 to 0.264 with N’Dama (African
taurine), 0.328 to 0.36 with Muturu (African taurine) and 0.300 to
0.335 with the European taurine cattle (Angus and Holstein)
(Supplementary Table S21). Within Ethiopian cattle, we observed
two groups among the Tigray cattle populations for the FST

estimates with other Ethiopian cattle populations, with higher
genetic differentiation (FST > 0.02) for Begait and Erob cattle
from Ethiopian Boran, Fogera and Horro cattle than for
Abergelle, Arado and Raya cattle (FST around 0.01) (Figure 13
and Supplementary Table S21).

Overall, the heat map and dendrogram (Figure 13 and
Supplementary Table S21) generated from pairwise weighted FST
values among the Tigray cattle populations and the Tigray cattle
populations against other cattle breeds (African sanga, African
zenga, African zebu, Asian zebu, African and European taurine
cattle) showed two main genetic clades: One comprising the taurine
group with two sub-clusters African and European) and another
including the Asian zebu and other non-taurine African origin
breeds (including the Tigray cattle populations). This was
consistent with the PCA and admixture analysis results. Further,
the Neighbor-Net tree based on the pairwise FST values (Figure 14)
supported the admixture, the heat map and the dendrogram results.

Discussion

We report the first whole-genome-sequence-based
characterisation of the genetic diversity, relatedness and
admixture of cattle populations indigenous to the Ethiopia’s
Tigray region. We used abundance, distribution and functional
description of SNPs and indels, genome-wide nucleotide diversity
(π), heterozygosity (Ho), runs of homozygosity (ROH) and genomic
inbreeding coefficient to evaluate the intra-population genetic
diversity. The pairwise population differentiation (FST) and
relationship based on PCA and admixture analysis were
employed to assess the inter-population differentiation and
relationship among the Tigray cattle and between the Tigray
cattle and other reference cattle groups (African sanga, African
zenga, African and Asian zebu, and African and European taurine
cattle).

We compared our findings with previous studies using the same
ARS-UCD1.2 as reference genome (Rosen et al., 2020). For cattle
populations as in our study, predominantly of indicine ancestry, this
would have likely inflated the number of detected SNPs. Aligning
our reads to an indicine reference genome would minimize
subspecies ascertainment of SNPs biases (Low et al., 2020).

The alignment rates of the Tigray cattle sequence reads were
similar to those of other African (Kim et al., 2020), Chinese (Jiaxian
Red, Wenshan, Wannan and Leiqiong) (Zhang et al., 2019; Xia et al.,
2021) and European (Angus and Holstein) (Kim et al., 2020) cattle
breeds, suggesting the overall similarity in autosomal structures
across cattle populations in the world, despite their distinct
evolutionary histories.

The high variation in number of genetic variants (SNPs and
indels) within and across the Tigray cattle populations illustrated
their rich genetic diversity. Also, we found a substantial number of
novel variants (SNPs and indels) in the Tigray cattle (Table 1),
indicating their importance as a reservoir of genetic diversity
previously uncharacterized. Interestingly, we found many new
indels (around 34%) compared to novel SNPs. However, it
should be emphasized that indels have been given so far less
attention in cattle genomic analyses (Stafuzza et al., 2017),
despite being part of the important drivers of phenotypic and

TABLE 4 Number of animals with and without ROH, breed-wise total and
average number of ROH and average sum of the length of ROH for the Tigray
cattle populations compared to reference cattle populations.

Breed No.
w/o
ROHa

No.
w/
ROHb

Total
no. of
ROHc

Avg. no. of
ROH
segments
(min-max)d

Avg. ROH
segment
lengths in
Mbp
(min-max)e

Abergelle 0 11 9131 830.09
(748–907)

130.13
(112.92–148.83)

Arado 0 11 8556 777.82
(706–861)

122.01
(108.02–135.65)

Begait 0 11 10003 909.36
(767–1504)

148.9
(121.14–266.71)

Erob 0 10 8371 837.1
(727–1099)

131.92
(110.40–177.46)

Raya 0 11 11005 1000.45
(703–1662)

163.88
(105.87–297.29)

Eth.Boran 0 10 8937 893.7
(734–1259)

143.94
(113.6–210.41)

Kenana 0 10 4624 462.4
(150–1657)

73.79
(20.24–298.06)

Fogera 0 9 7817 868.56
(571–1353)

124.5
(84.47–234.48)

Horro 0 11 8508 773.45
(618–1334)

121.74
(91.91–228.27)

Ankole 0 10 2299 209 (6–423) 31.16
(0.78–58.99)

Afar 0 10 7441 744.1
(649–918)

115.21
(95.06–146.82)

Holstein 0 10 22124 2212.4
(1827–2710)

432.61
(325.89–547.33)

Angus 0 10 22999 2299.9
(1374–2670)

439.31
(264.38–553.70)

Muturu 0 10 6755 675.5
(40–1590)

94.88
(4.79–232.72)

N’Dama 0 10 6870 687 (194–969) 94.49
(23.67–133.10)

Asian
zebu

1 9 1292 143.56 (0–704) 20.39
(113.57–103.09)

aNumber of animals without ROH.
bNumber of animals with ROH.
cTotal number of ROH across each population.
dAverage number of ROH segments (Minimum to maximum).
eAverage ROH segment length in megabyte (Minimum to maximum).
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genetic diversity (Iqbal et al., 2019). Most of the whole genome
analyses on African cattle breeds were based on SNPs (Kim et al.,
2017; Tijjani et al., 2019; Kim et al., 2020; Jang et al., 2022; Mauki
et al., 2022; Terefe et al., 2022; Terefe et al., 2023), while our study is
the first to report indels for Ethiopian cattle.

High genetic “functional” variability in the
Tigray cattle

We observed private variants in each Tigray cattle population.
Though they only represented around 1.5% (Erob cattle) to 2.1%
(Arado cattle) of the total variants in respective populations, they
might serve as important diagnostic markers. A small proportion of
these SNPs (around 0.23%–0.32%) were missense variants, of which
the majority were located in coding regions (97.9%–98.9%), while a
few (1.1%–2.1%) were in splice regions. Amongst these SNPs, one-
third to two-thirds had a predicted deleterious effect.

Further analysis of all private missense variants identified several
GO terms and KEGG pathways shared by different populations or to
be population specific. The two most significant GO terms of the
molecular function (the olfactory receptor activity and odorant
binding) and one most significant KEGG pathway (olfactory

transduction) present in the five Tigray cattle populations were
associated with olfaction or odour recognition. An efficient olfactory
reception is an important fitness mechanisms essential for
adaptation, including food and water search behaviour and
reproduction (Kour et al., 2022). Odour recognition influences
food intake identification and preference (Soria-Gómez et al., 2014).

The GO terms of the cellular component related to the integral
component of the plasma membrane (GO:0005887) and its subtype
intrinsic component of the plasma membrane (GO:0031226) were
only found in Begait cattle. In these GO terms, several important
genes were found to be associated with morphology, production,
reproduction, feed efficiency, immune response and environmental
adaptation. For example, SCN4A (Cai et al., 2019) and TAS1R2
(Zhang et al., 2012) were reported to be associated with body height
in cattle. KCNG4 was found to be related to morphometric traits like
rump height, body length and chest depth in goats (Easa et al., 2022).
FLT4 was identified to be relevant to proliferation and growth in
cattle (Keogh et al., 2019). GABRG1 was implicated in milk yield
(Pedrosa et al., 2021). Other genes in Begait cattle included PCDH8
(Taussat et al., 2020) and SLC26A3 (Kern et al., 2016) associated
with feed efficiency in cattle, PCDH18 related to the immune system
and adipogenesis (de Lima et al., 2020). DUOX2 is important for
thyroid hormones production and in innate immunity (Maruo et al.,

FIGURE 9
Genomic positions under runs of homozygosity (ROH). (A) Chromosome-wise mean number of ROH across cattle populations. (B) Chromosome-
wise mean sum of ROH lengths across cattle populations. (C) Incidence of SNPs on ROH across each autosome among individual animals of each cattle
population (where each circle represents an individual within a population and each colour represents a population). (D) Inbreeding coefficients (FROH and
FHOM) among individual animals of each cattle population (where each circle represents an individual within a population and each colour represents
a population).
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2016),Mfsd2b important in S1P transport activity (Kobayashi et al.,
2018) essential for various cellular functions (Spiegel and Milstien,
2011; Cyster and Schwab, 2012), ITGA5 involved in different
inflammation and immune response functions such as PI3K–Akt
signaling pathway, bacterial invasion of epithelial cells, phagosome
and human papillomavirus infection (Wang et al., 2021). NPFFR1
(Moulédous et al., 2010) and HTR7 (Hedlund et al., 2003) are

important in body temperature regulation. Last but not least,
Kcnv2 was reported to be associated with visual adaptation in a
changing lighting condition environment (Hölter et al., 2012).

Two significant GO terms of the cellular component (GO:
0005578~proteinaceous extracellular matrix and GO:
0044420~extracellular matrix component) were explicitly
enriched in Erob cattle. Genes such as multimerin 2 (MMRN2),

FIGURE 10
Principal component analysis plot (PC1 and PC2) of the five Tigray cattle populations and reference cattle groups. African sanga (Afar and Ankole,
crosses between African zebu and longhorn humpless taurine), African zenga (Fogera and Horro, crosses between African zebu and sanga), African zebu
(Ethiopian Boran and Kenana), African taurine (Muturu and N’Dama), European taurine (Angus and Holstein) and Asian zebu (Bhagnari, Cholistani, Dhanni,
Sahiwal and Tharparkar).

FIGURE 11
(A) Principal component analysis plot (PC1 and PC2) of the five Tigray cattle populations and other Ethiopian cattle representing three cattle groups
of African zebu (Ethiopian Boran), African sanga (Afar) and African zenga (Fogera and Horro). (B) Principal component analysis plot (PC1 and PC2) for the
five Tigray cattle populations alone (Abergelle, Arado, Begait, Erob and Raya).
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von Willebrand factor C domain containing 2 (VWC2) and laminin
subunit gamma 1 (LAMC1) were important in these GO terms. The
MMRN2 is associated with a meat quality trait called meat juiciness
(Leal-Gutiérrez et al., 2019). Similarly, VWC2 was considered as a
candidate gene for intramuscular fat content, one of the most
important meat quality traits in beef cattle (Halli et al., 2022).
VWC2 was also reported to be associated to feed efficiency in
pigs (Wang et al., 2015). LAMC1 was involved in different
inflammation and immune response pathways, including prion
diseases (bovine spongiform encephalopathy), amoebiasis and
toxoplasmosis in cattle. Moreover, LAMC1 was also shown to be
relevant to temperature range in cattle (Flori et al., 2019).

Six molecular function GO terms relevant to intra- or extra-
cellular activity were significantly enriched in several Tigray cattle
populations (Abergelle, Arado, Begait and Raya), in which a few
genes such as cadherin EGF LAG seven-pass G-type receptor 1
(CELSR1), gamma-aminobutyric acid type A receptor rho3 subunit
(GABRR3), plexin A2 (PLXNA2) and toll-like receptor 6 (TLR6)
were identified in Abergelle, Arado and Raya cattle, while the gene
macrophage stimulating 1 receptor (MST1R) was overrepresented in
the six GO terms (in Abergelle, Arado, Begait and Raya). CELSR1
(Guo Y. et al., 2019) was found to be overexpressed following in vitro
treatment of lipopolysaccharide, a cause of the endometrium
inflammation (Sheldon et al., 2010), supporting its importance in
immune response. In significantly enriched GO terms in Abergelle,
Arado and Raya cattle, we found TLR6 as an important candidate
gene for bovine tuberculosis resistance (Song et al., 2014). Several

studies (Zhang et al., 2009; Seabury et al., 2010; Fisher et al., 2011;
Elmaghraby et al., 2018; MaurićMaljković et al., 2023) have reported
the importance of toll-like receptor genes for immunity, disease
resistance and adaptive immune responses, including mastitis, the
most economically important disease in dairy cattle (Elmaghraby
et al., 2018; Maurić Maljković et al., 2023). Other genes relevant to
oxidative stress (MST1) (Xiao et al., 2011), cattle temperament
(PLXNA2) (Gutiérrez-Gil et al., 2008) and fertility such as sperm
motility (GABRR3) (Hering et al., 2014) were also present in the six
GO terms (Abergelle, Arado and Raya cattle).

In our previous morphological study of the same Tigray cattle
populations (Zegeye et al., 2021), we showed that four of the five
populations may be separated using morphological criteria. The
exception was Erob and Abergelle, with a similar morphology. In
particular, Begait cattle had the largest body size, a finding in
agreement with the missense variants within genes linked to body
height and length. Also, the presence of missense variants in genes
involved in olfaction may be attributed to the adaptation of the Tigray
cattle to the dry agro-ecology in the region, a characteristic of the
Sudano-Sahelian ecology with heat and water stress as an issue (Nyssen
et al., 2009; Kumasi and Asenso-Okyere, 2011; Abraha, 2013). In
addition, the regional landscape is mainly composed of mountains
and hills (Kumasi and Asenso-Okyere, 2011) with limited grazing
resources. As a result, the Tigray cattle are strongly adapted to feed
shortage, as evidenced by the overrepresentation of genes associated with
the olfactory and sensory perception of smell to differentiate the edible
from non-edible or palatable from non-palatable browse plant species.

FIGURE 12
Admixture at K = 2 to K = 6 (the black lines separate the populations labelled below the figure).
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High genetic diversity within and across the
Tigray cattle populations

There is a high genome-wide nucleotide diversity (π) in all
Tigray cattle, comparable with the values observed in Asian indicine
cattle but higher than those in taurine cattle (Muturu, N’Dama,

Angus and Holstein) (Figure 7) and indicine-taurine admixed (π =
2.9 × 10−3 for Jiaxian Red) cattle (Xia et al., 2021). Similarly, the
observed heterozygosity (Ho), an important indicator of genetic
variability in domestic animals (Zhang et al., 2018), ranging from
0.278 to 0.302 among the Tigray cattle was similar with other
indicine but higher than African and European taurine cattle.

FIGURE 13
Heat map and dendrogram based on pairwise weighted FST values. The darker colour indicates higher pairwise population differentiation while
lighter colour lower population differentiation.

FIGURE 14
Neighbor-Net tree based on pairwise FST values.
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Historic factors associated with the arrival and admixture of cattle
in the Horn of Africa, including the Tigray region, likely shaped
today’s genome diversity of the Tigray cattle. As an ancient centre of
civilisation, the Tigray region probably witnessed the early arrival of
taurine cattle, followed by late introductions of indicine cattle in
several migration waves, which continuously enriched the genomic
landscape of the Tigray cattle. While our results indicated a large
proportion of indicine background in Tigray cattle (around 90%), we
still found a proportion of African taurine ancestry in their genomes.
Wemay reasonably hypothesise that the rich genetic variation present
in modern Tigray cattle is a legacy of multiple introductions,
admixture and dispersion of cattle across the Horn of Africa.

We compared the ROH distribution pattern across the Tigray cattle
populations and between the Tigray cattle and other reference cattle
groups included in this study and found that all the Tigray cattle showed
different patterns of ROH as compared to Asian zebu, African taurine
(N’Dama andMuturu), African sanga (Ankole), African zebu (Kenana)
and European-taurine (Angus and Holstein) cattle. As expected from
their high genomic diversity, the number and cumulative length of
ROH were smaller in the Tigray cattle compared with previous reports
for taurine cattle (Purfield et al., 2012; Xia et al., 2021) and indicine-
taurine admixed cattle outside Ethiopia (Xia et al., 2021). However, the
number and length of ROHobserved in the Tigray cattle were similar to
the one reported for other Ethiopian breeds included in our study
(Horro, Fogera, Borana, and Afar). It suggests common breeding
history among Ethiopian cattle breeds, while PCA and admixture
results suggest close genetic relationships among the Ethiopian cattle
as recently showed in a genome analysis including 14 Ethiopian
indigenous cattle breeds (Terefe et al., 2023).

Inbreeding coefficients were far lower in the Tigray cattle than
those reported in other cattle breeds, particularly the Danish dairy
cattle breeds (Zhang et al., 2015b), with an inbreeding coefficient five
times higher at a population level. An inbreeding coefficient below
5%, as observed for nearly all animals in this study (FROH), is
generally considered to have no consequence on an individual’s
fitness (Slate et al., 2004). Therefore, the level of inbreeding in the
Tigray cattle is within an acceptable range to accommodate within-
population improvement of their productivity.

Population genetic structure and
relationship

Taurine ancestry was generally low in the Tigray cattle relative to
other African humped cattle breeds (Kim et al., 2020). This is
particularly expected for cattle populations geographically close to
the entry points of Asian indicine cattle into Africa. The unique local
ancestries observed in Erob (K = 7) or Begait (K = 10) and their
introgression to all non-taurine African breeds (Supplementary Figure
S10) could further confirm the probability of the Tigray region of
Ethiopia as a gate of cattle to Africa. Moreover, we observed a closer
relationship between Begait to Kenana cattle (a Sudanese cattle breed)
than with other Tigray cattle populations. Begait cattle are typically
found in the western Tigray regions close to the Sudanese border.
Therefore, gene flow fromBegait cattle to Sudanese cattle is possible or
vice versa. Previously, we observed a close morphological relationship
between Erob and Abergelle cattle (Zegeye et al., 2021). This result is
not supported by our genetic relationship analysis with the two breeds

here clearly separated (e.g., FST-based dendrogram, Supplementary
Figure S11). The two breeds are found at different altitudes
(Figure 1B). Henceforth, the relationship between Erob and
Abergelle cattle requires further investigation.

Conclusion

Overall, we provided a detailed analysis using whole genome
sequencing data of the genetic diversity, relatedness and admixture
of five cattle populations indigenous to the Tigray region, the
northernmost state of Ethiopia and a major geographic region of
ancient civilizations. We found around 36 M SNPs and 3.7 M indels,
where around 7% and 34% of them were novel. The contribution of
such novel variants increases the number of known cattle genomic
variants and prompts our understanding of the genetic diversity of
domestic cattle. We found a high within-population diversity based
on the incidence, type and distribution of the genomic variants,
genome-wide nucleotide diversity, heterozygosity, runs of
homozygosity and genomic inbreeding coefficient. Besides, we
detected a sign of poor management in a few Begait and Raya
cattle having long ROH and strong inbreeding (>10%), possibly
resulting from consanguineous mating. So, these two populations
may need special attention to maintain their within-population
genetic diversity. The admixture analysis confirmed that the
Tigray cattle have a common main indicine ancestry, followed by
a low African taurine and a rather limited European taurine
ancestry. With high within-population genetic diversity, the
Tigray cattle represent an important indigenous genetic resource
for breeding improvement to enhance their productivity (e.g., milk),
while maintaining their environmental adaptability. All the Tigray
cattle populations shared highly significant GO and pathway terms
associated with sensory perception of smell with overrepresented
genes in the olfactory family, which may be relevant to their
adaptation to their harsh environments.
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The AfricanGoat Improvement Network (AGIN) is a collaborative group of scientists
focused on genetic improvement of goats in small holder communities across the
African continent. The group emerged from a series of workshops focused on
enhancing goat productivity and sustainability. Discussions began in 2011 at the
inaugural workshop held in Nairobi, Kenya. The goals of this diverse group were to:
improve indigenous goat production in Africa; characterize existing goat
populations and to facilitate germplasm preservation where appropriate; and to
genomic approaches to better understand adaptation. The long-term goal was to
develop cost-effective strategies to apply genomics to improve productivity of
small holder farmers without sacrificing adaptation. Genome-wide information on
genetic variation enabled genetic diversity studies, facilitated improved germplasm
preservation decisions, and provided information necessary to initiate large scale
genetic improvement programs. These improvements were partially implemented
through a series of community-based breeding programs that engaged and
empowered local small farmers, especially women, to promote sustainability of
the production system. As with many international collaborative efforts, the AGIN
work serves as a platform for human capacity development. This paper chronicles
the evolution of the collaborative approach leading to the current AGIN
organization and describes how it builds capacity for sustained research and
development long after the initial program funds are gone. It is unique in its
effectiveness for simultaneous, multi-level capacity building for researchers,
students, farmers and communities, and local and regional government officials.
The positive impact of AGIN capacity building has been felt by participants from
developing, as well as developed country partners.

KEYWORDS

goats, genomics, genetics, community-based breeding programs, sustainability, small-
holder
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1 Introduction

1.1 Background

Goats are crucial sources of milk, meat, and income for many
smallholders in sub-Saharan Africa (Panin and Mahabile, 1997;
Kosgey et al., 2008). Livestock are particularly critical to the poor
in marginal areas where crop yields are inadequate and ruminants
can convert low-quality feedstuffs into high-quality dietary
protein for humans (McDowell, 1988). Goats have been
naturally selected as well as selectively bred (Figure 1) to
accommodate the highly variable conditions across sub-
Saharan Africa resulting in locally adapted populations
(Daramola and Adeloye, 2009; Karnuah et al., 2018). Goats
have several advantages, particularly over cattle, that allow
them to contribute to socio-economic development of Africa.
Significantly, goats browse and can consume a wide range of
grasses, leaves, and feeds that people find unappealing or are
unable to digest. Additionally, goats have the ability to travel great
distances in search of feed and have a small body size resulting in
reduced feed requirements. Finally, goats have high reproductive
rates (i.e., multiple births) and short generation intervals.
Geographic isolation and genetic bottlenecks of goats in
African populations have yielded a vast resource of phenotypic
and genetic variation within and among native breeds.

1.2 Problem

Despite this tremendous genetic resource, large portions of
sub-Saharan Africa remain food insecure (Smith et al., 2006).
The simplicity of the explanation of that problem belies the
complexity of a solution. The lack of productivity lies at the
intersection of basic practices: traditional animal husbandry to
manage production systems, pedigree and performance
recording, and selective breeding. Much of the deficits seen in
these production systems are best met with an outreach program
very much like the cooperative extension system that had such a
huge impact in transferring improved agricultural practices and
technologies in the U.S. over the 20th century (Rasmussen,
1989).

1.3 Community-based breeding programs

To facilitate this knowledge transfer in the absence of a formal
cooperative extension service, a system of community-based
breeding programs (CBBP; see Abbreviations Table (Supplemental
Materials)) could leverage local researchers and technical experts
familiar with the traditional animal husbandry production systems of
that community. CBBPs have recently grown in popularity (Wurzinger
et al., 2021). With a CBBP approach, farmers and local communities
actively participate in the decision-making using their priorities and
preferences. This strategy is usually built on locally-adapted and
indigenous breeds of livestock with a goal of sustainable
intensification. Genetic improvement is increased in most CBBP as
opposed to farmers selling the best (i.e., heaviest) offspring, which would
induce a negative selection (Gizaw et al., 2014; Haile et al., 2018).

1.4 Research goals

The initial goals of our efforts combined science and application. The
scientific component of this project involved two distinct efforts. The first
was the sampling of African goat breeds and populations followed by
genomic characterization to better understand genetic diversity andwithin
and across population variation of the African goats. Once the existing
variation was characterized, a framework could be established for
migration and admixture between those populations. The second
scientific goal was the identification, description, and use of “signatures
of selection.” Selection signatures are genomic footprints that provide
evidence of historic selection (Kreitman, 2000; de Simoni Gouveia et al.,
2014). The failure of non-adapted goats created from advanced backcross
or intercross populations to thrive when exposed to extensive natural
conditions and the related stressful environments in Africa is compelling
evidence of the genetic component to adaptation (Hassen et al., 2002;
Tibbo, 2006; Escareño Sánchez, 2010). The practical components of this
project involve outreach, capacity building, and technology transfer. We
believe that the most important practical component is the application of
CBBPs (Mueller et al., 2015), a tool that is key to sustainability.

2 AGIN: The African Goat Improvement
Network

2.1 AGIN overview

The first workshop was held in Nairobi, Kenya in 2011 and
continued through the re-branded AGIN II meeting in 2013
(Entebbe, Uganda), AGIN III in 2014 (Addis Ababa, Ethiopia),
AGIN IV in 2016 (at FAO in Rome, Italy), and AGIN V in 2017
(Pretoria, South Africa). The goals of this diverse group were to: improve
indigenous goat production in Africa; characterize existing goat
populations and to facilitate germplasm preservation where
appropriate; and to combine the use of genomics to understand
adaptation. The long-term goal was to develop cost-effective
strategies to improve productivity of small holder farmers without
sacrificing adaptation.

FIGURE 1
AGIN scientists and partners consider data recorded on goat
growth rates.
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2.2 The beginning—Events leading up to the
first meeting

In the time leading up to the initiation of the project that
spawned the AGIN group, the BovineSNP50 genotyping tool
(Matukumalli et al., 2009) was beginning to have impact on dairy
cattle genetic improvement through the application of genome
selection (Meuwissen et al., 2001; VanRaden et al., 2009; Garcia-
Ruiz et al., 2016) in the US. The tools being developed at that
time were mostly based on single nucleotide polymorphisms
(SNP), or single base changes, in the DNA sequence. In addition
to the use of SNPs to implement genome selection, these SNPs
were being used for verification of parentage or even to discover
putative parents for animals with unknown or incorrect
parentage (Gibbs et al., 2009). The initial idea of the
United States Department of Agriculture (USDA)—
Agricultural Research Service (ARS) research group was to
simplify the genome selection strategy, but still apply
genomics to genetic improvement in goat populations in
Africa. This assumption proved to be wildly overly simplistic.

2.2.1 Serendipity strikes
There were several events that were serendipitous despite being

quite important in the process of forming the project that eventually
led to the AGIN group. One of the first of these events was the
invitation of one of the ARS scientists (CPVT) to a livestock genetics
expert consultation meeting held in Nairobi, Kenya sponsored by
the Bill and Melinda Gates Foundation (BMGF) in February 2009.
An afternoon excursion during that visit to several neighborhoods
around Nairobi made clear that indigenous goats were thriving in
this environment (Figure 2). Understanding the genetics and biology
of adaptation has been a high priority of this project since that
moment. The importance of goats as a source of high-quality protein

and as a repository of assets became apparent during that tour of
Nairobi. Several discussions about the importance of goats in small
holder production systems during the BMGF meeting confirmed
and even enhanced that observation.

At the same time another member of the ARS team (JTS) spent
3 months fostering collaboration between USDA and the Bureau of
Food Security at the US Agency for International Development
(USAID). During that time, the US government’s global hunger and
food security initiative, Feed the Future, introduced the Norman Borlaug
Commemorative Research Initiative, a collaborative research effort
between ARS and USAID. The project, “Improving Livestock
Productivity through Enhanced Breeding Programs,” was funded
through this initiative and began immediately with the first meeting
of the group that would become the AGIN consortium in the fall of
2011 at the International Livestock Research Institute (ILRI) in Nairobi.
The project is typically just called “The Goat Improvement Project.”

2.2.2 Initial objectives
The initial project proposal submitted to USAID contained four

primary objectives. First, to sequence and build a de novo assembly
of the domestic goat genome and to discover a large number of SNP
markers to enable construction of a high-density genotyping array.
Second, to conduct a workshop to enlist partners and establish a
strategy for developing and deploying genomic and genetic tools.
Third, to genotype 15 individuals per breed at high density (50K) for
50 breeds for a total of 750 animals. Finally, to genotype
2000 individuals at reduced density, collect phenotypes from
those animals, and establish a training and outreach network.
There were ongoing efforts led by the International Goat
Genome Consortium (IGGC) to build a goat genome assembly
(Dong et al., 2013) and to develop a high-density genotyping
platform, the GoatSNP50 chip (Tosser-Klopp et al., 2014). The
AGIN project took advantage of the international efforts, despite

FIGURE 2
Goats roaming the streets of Nairobi.
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uncertainty that these tools would be well-adapted to African goat
studies.

2.3 The formation of AGIN—The African
Goat Improvement Network

The central aim of the goat improvement project was to
catalyze a regional, perhaps even continental, cooperative effort
to apply genomic tools to aid characterization of the structure of
caprine genomes in locally-adapted, native breeds throughout
sub-Saharan Africa. Using this approach, the intention was to
develop genomic tools for animal improvement efforts in Africa.
There was also a strong desire to establish regional cooperation so
that an individual country breeding program could leverage the
efforts and collective expertise of the group members. In other
words, to provide a nexus to enhance the cooperative efforts of
advanced research institutions, such as ARS, ILRI, and colleges
and universities.

This project deployed a unique, three-pronged approach to
livestock improvement in the developing world, especially in
Africa. First, the project focused on long-term, sustainable
solutions by bringing together classical breeding programs and
fundamental animal husbandry techniques as prerequisites to
implementing genomic-based approaches. Second, the ARS
research group has focused attention on development of
partnerships with established research and outreach programs in
the specific countries that we targeted. The third feature of the AGIN
approach, was to integrate opportunities for capacity building
throughout the program at all levels of implementation,
including farmers, students, researchers, and government and
policy-making officials. The AGIN brought together top experts
working in African developing communities and directly engaging
farmers. Through these efforts the group worked to make state of the
art technology more accessible to African small holders, researchers,
and government officials concerned with animal genetic
improvement and conservation. The AGIN group also recognized
the importance of including social scientists and economists in the
project to maximizemarket opportunities for goats and to document
the impact of goats on the livelihood of small holders in Africa.

2.4 AGIN I—The beginning

2.4.1 Field visit
From the start, the AGIN meetings have been composed of two

distinct elements. The first component has been field visits to interact
with producers or other members of the goat value chain. The field visit
associated with the first group meeting was a trip to the Mwingi district
of Kenya (approximately 150–200 km northeast of Nairobi) on
November 28 and 29, 2011. The purpose of the field trip was to
view the array of smallholder goat production systems in that area,
understanding that this location was but one region of Africa with a
subset of farming and agribusiness practices. Participants in the field trip
represented a variety of governmental and non-governmental agencies,
research groups, and universities. The 2-day field trip was led by
personnel from Farm Africa, a non-governmental organization
working on livestock improvement in East Africa. The group visited
a number of facilities, including a pastoral goat production system, an
auction market, community-based production systems (Figure 3),
breeding stations, and a purebred dairy goat operation. Each visit
provided an opportunity to discuss with the farmers, mostly women
and generally small holders, the impact of generating meat, milk, or
revenue had in their lives or their families. The group also discussed the
challenges and opportunities the small holders had in marketing their
products.

2.4.2 Workshop
The second phase of each AGIN gathering has been highlighted by a

workshop incorporating new observations from the recent field visit,
description of production systems and practices in counties represented
at the workshop, and presentations from experts across goat research
areas. From the beginning, we have emphasized the importance of
discussions and fostered diversity of opinions among participants. The
model—visit with local goat smallholders and then convene a workshop
to discuss the observations of the group and evaluate assumptions—is to
observe well managed production systems and then do a reality check on
the aims and approaches of the group. The meeting “Workshop I:
Defining technical aspects of sequencing the goat genome, outlining
project goals” was conducted on November 30 and December 1,
2011 and included 23 participants. This first meeting was dominated
by delegates from Kenya and the U.S., with nine and five attendees,
respectively. The remaining participants represented Austria (2), Brazil
(1), China (1), Syria (1), Tanzania (1), Uganda (2), and the U.K. (1).

There were a number of observations made during that initial
workshop. From the field visits, it was apparent that large-scale on-farm
data collection or tissue sampling to enable DNA extraction and
eventual genotyping was impractical. The application of genomic
tools in large scale was also deemed unrealistic. The group also
concluded that wholesale replacement of indigenous goats with
those selected for production in temperate climates had been largely
unsuccessful, as many groups have observed (Kosgey et al., 2006).
Furthermore, the workshop attendees felt that the locally-adapted goats
were an important resource that should be more comprehensively
characterized and the biology of adaptation, in particular, needed to be
better understood. The assembled group was very supportive of the
training provided by Farm Africa that accompanied the introduction of
elite breeding stock. The farming practices learned by these program
participants enhanced productivity through improved animal health,
nutrition, and reproduction. It was noted, however, that in many cases

FIGURE 3
Well managed goats observed on the AGIN I field visit.

Frontiers in Genetics frontiersin.org05

Van Tassell et al. 10.3389/fgene.2023.1183240

132

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1183240


alternative methods are needed for application of technology by
smallholders. Finally, there was nearly universal support for ARS
scientists to continue development of a high-quality genome
assembly for the goat.

At the close of the meeting, the objectives of the goat
improvement project were changed substantially. The first two
objectives were largely intact from the original proposal,
specifically, first, to conduct workshops that brought together a
broad range of people with an interest in sustainable, locally-adapted
goat production systems and, second, to develop a true de novo
assembly of the caprine genome, as we focused on improving the
existing assembly. The third set of goals was to characterize
indigenous goats of African smallholders. This set of goals
included identifying goat populations to characterize, collecting
samples, extracting DNA, generating genotype and sequence
data, and conducting analyses to identify signatures of selection.

We eventually concluded that theGoatSNP50 performedwell when
genotyping African goats, and it became clear that it was unnecessary to
designing a new SNP-chip. Instead, the AGIN partnered with the IGGC
to contribute design efforts to upcoming versions of the chip. The
ultimate objective of this goal was to identify population-based
signatures of selection with genotypic data along with data from
targeted resequencing of these adapted populations. These signatures
could then be traced with data from low-density SNP panels across
generations to ensure that those areas previously impacted by selection
would be maintained while introgressing loci elsewhere in the genome.
The assays would provide an inexpensive test of breeding animals,
allowing for enhanced productivity while maintaining adaptation and
fitness in the existing production system. The expectation driving this
approach is that this strategy would increase productivity while
maintaining genetic variation in the indigenous goat population. An
additional goal was identified—create a name for the group that was
coalescing. Following this meeting the name African Goat
Improvement Network—AGIN was agreed on by the group.

In January 2012 the project and one of the PIs (TSS) received the
Illumina Agricultural Greater Good Initiative Award, including

400 GoatSNP50 genotyping assays and discount on any additional
goat assays supporting this project. This award allowed us to
significantly increase the scope of the project. In addition, Egyptian
samples were collected and genotyped through support of the Greater
Good Initiative.

2.5 AGIN II—Training for phenotype and
tissue collection

2.5.1 Workshop
The second workshop was hosted by the Association for

Strengthening Agricultural Research in Eastern and Central Africa
(ASARECA) in Entebbe, Uganda on March 12 and 13, 2013 and
included 34 participants, and was again dominated by delegates from
the host country, Uganda, and the U.S., with nine and 11 participants,
respectively. The remaining participants represented Austria (2), Italy
(2), Kenya (3), Malawi (1), Mozambique (1), Nigeria (1), South Africa
(1), Tanzania (1), the U.K. (1), and Zimbabwe (1). At this meeting the
workshop was held prior to the field visits. The workshop focused on the
development of the AGIN. Additionally, the research group focused on
the development ofCBBP to create a sustainable environment for genetic
improvement and information exchange. The members of the AGIN at
that time represented 10 African universities and 3 regional research
institutes.

During the AGIN workshop, several committees were developed
to establish clear guidelines and expectations and to facilitate candid
communications. These committees were intended to address:

1) guidelines for collaboration, including publications and
authorship, data access, funding recognition, and access to
materials and data;

2) animal sampling prioritization and logistics;
3) phenotype collection;
4) genetic resources and conservation; and
5) outreach education and training.

FIGURE 4
Members of AGIN II gathering in Uganda.
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2.5.2 Field visits
Five farm visits took place from Kampala on 14 March 2013 to

Luweero and Wakiso districts and March 15 to Mukono and Jinja
(Figure 4). The participants discussed the AGIN project goals with
farmers, who represented a broad range of resource constrained
production systems. Goat herd sizes ranged from 2 goats to several
hundred, and production systems ranged from highly extensive to
intensively managed.

A large number of AGIN members were trained to collect
phenotypes and tissue sampling using a standardized method
named the AGIN image collection protocol (AGIN-ICP).
Researchers from Ethiopia, Italy, Kenya, Malawi, Mozambique,
Nigeria, Rwanda, South Africa, Tanzania, Uganda, The
United States, and Zimbabwe were trained to obtain digital
images and to collect body measures. Coordination of sample
collection was led by ASARECA and ARS. At that time,
phenotypes (digital images and body measurements) and tissue
samples were collected from more than 1,800 goats in
10 countries (7 African countries).

2.6 AGIN III—Focus on community-based
breeding programs (CBBP)

The International Livestock Research Institute (ILRI) in
partnership with ARS co-organized AGIN III, with a workshop

entitled “Best Practices for Community-Based Breeding Programs
(CBBP) - Genetic Improvement of Goats.” The meetings were held on
June 12–13, 2014, in Addis Ababa, Ethiopia. Attendees included
individual farmers and CBBP implementers, representatives from
universities and research organizations, as well as government
ministries (USDA-ARS, USAID, ILRI, International Center for
Agricultural Research in the Dry Areas (ICARDA), ASARECA,
Food and Agriculture Organization of the United Nations (FAO),
and Embrapa) representing 16 countries (11 African countries
(Ethiopia, Kenya, Malawi, South Africa, and Uganda) and
Australia, Austria, Brazil, Italy, and the US).

2.6.1 Field visits
A group of about 20 AGIN III workshop attendees

participated in a 2-day field trip held before the workshop on
June 10–11, 2014. The purpose of the tour was to visit sheep
CBBP in the villages of Molale and Mehal Meda in Menz,
Ethiopia (Figure 5). Visits to the Menz communities provided
highly successful examples of CBBP and offered a valuable
opportunity to see collaborative efforts in action. These visits
also gave AGIN partners an opportunity to interact directly with
smallholders and learn their views of the CBBP. Most
importantly, these visits to CBBP demonstrated the impact of
the projects on the lives of the participants. The two CBBP that
were visited were established in 2008. Researchers worked with
villagers to determine their breeding goals, and ram selection

FIGURE 5
Members of AGIN visited a community-based breeding program in the Mentz region of Ethiopia and observed an annual selection of the best sheep
in the collective flock as part of the AGIN III field visit.
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based on these goals began in 2010. The project included about
60 households participating in each village. The formation of
these CBBP was led by Johann Sölkner, an active member
of AGIN.

Several Ethiopian graduate students earned their doctoral
degrees conducting research on these CBBP under the direction
of Professor Sölkner. These newly trained researchers joined AGIN
and were active participants, sharing their knowledge and
experiences with the communities. One of the principal
objectives of AGIN is to foster the development of local capacity
that will form a nucleus of expertise for African CBBP in the future.
These African students also will provide leadership and invaluable
guidance to the overall AGIN CBBP efforts across the continent.

Participants in the field trip observed the CBBP in action, as
the farmers conducted a selection for the best ram lambs. There
was also a competition for the best young rams and ewes. Awards
were sponsored by the USAID Feed the Future Initiative, with
ribbons provided as recognition for the best animals. At the close
of the ceremony, the smallholders addressed the group. They
thanked the researchers who had worked with them over the
years to develop the CBBP and explained that their animals were
now known as a high-quality product and commanded a higher
price in the markets. They also expressed intense appreciation for
the improvement seen in their flock, as evidenced by their

animals’ enhanced ability to cope with current drought
conditions that have caused food shortages for animals in
other villages in the area. The villagers described their recent
achievement in gaining legal status as a cooperative, giving them
the ability to apply to aid organizations for veterinary services
and other benefits.

2.6.2 Workshop
Based on the observations on the field visits, the workshop

discussion focused largely on determining best practices for
CBBP implementation for sustainable small holder goat
breeding programs. This topic was well aligned with several
AGIN project objectives and was timely with AGIN CBBP
activities being initiated in Uganda and Malawi in 2014. In
addition, there were reports updating AGIN members on
current research projects and future directions. Specific
updates included the de novo genome assembly of the
domestic goat, genetic characterization of indigenous, exotic,
and admixed populations, development and analyses of a
digital phenotype collection, analysis of body size variation
and finally, a report on consideration of the Boer breed that
originated in South Africa and has spread across the African
continent and the globe. Global comparisons were planned to be
done with US (Spanish derived), New Zealand (Boer), Turkey
(domestication center), Brazil (climate, parasite resistance) and
Italy (dairy breeds) goats to find important adaptive traits present
in African goat breeds. These traits were targets for acceleration
of genetic improvement.

2.7 Between AGIN III and IV—New goals
identified

With an increased focus on CBBP, establishing CBBP was added
as an official project goal and efforts were divided into 4 sub-goals.
The overarching goal was to establish CBBP for small holder goat
producers. The four sub-goals added were:

1. To establish in country scientific partnerships and to identify
communities to host CBBP;

2. To select founding stock and initiate breeding programs;
3. To genotype and analyze founder animals developing

smallholder DNA tools as needed; and,
4. To benchmark genetic progress of these CBBP.

2.8 AGIN IV—Implementation of
community-based breeding programs
(CBBP)—“It takes a village. . .”

The AGIN efforts were designed to bring smallholders located in
developing economies into the 21st century as full players and partners.
As of 2016, the AGIN community represented nearly 40 research,
educational, or international development institutions from
20 countries, 12 of them African. To reduce the travel costs of the
combined events, the format of the AGIN IV meeting was altered. The
field visits were made to two of the Malawi CBBP just prior to the
workshop, whichwas held in Rome, Italy at the headquarters of the FAO.

FIGURE 6
AGIN member participate with community selection process as
part of the AGIN IV field visit.
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2.8.1 Field visit
A relatively small team visited two of four CBBP sites in Lower

Shire, Malawi. The CBBP collaboratively developed breeding goals
directly with small-holder farmers and designed a program to
implement those goals (Figure 6). These efforts were funded by a
collaborative research effort between USDA-ARS and USAID and
facilitated by AGIN, a group of livestock, genetic, and international
development experts. The AGIN model is a novel approach to build
sustainable livestock improvement in developing countries by
integrating direct input and training of farmers, extension,
genetics, livestock and international development experts. The
ultimate goal was to build sustainable animal genetic improvement
to enhance human, livestock and economic health in the community.
Also attending the Malawi site visits were Ugandan, South African,
andAustrian project partners, and the regional ProgramManager and
staff of the Shire Valley Agricultural Development Division of the
Malawi Ministry of Agriculture, Irrigation and Water Development.

2.8.2 Workshop
The AGIN IV workshop was hosted at the FAO headquarters in

Rome, Italy on February 22–24, 2016. A total of 43 participants from
17 countries, representing government and university researchers,
international development experts, post docs, and graduate students
attended, including representatives from USAID in Washington,
DC and the US mission in Rome (Figure 7). Specific outcomes
included a draft strategic plan to implement, test, and evaluate a
novel approach to livestock development focused on long-term,
sustainable solutions via integration of 1) community-based
breeding programs (CBBP), 2) application of modern genomics
and genetic tools based on farmer input for use within the CBBP,
and 3) multi-level networking and capacity building. Much of the
discussion at the workshop focused on the limited time remaining
for funding to continue from USAID and USDA-ARS and
developing a continuity strategy for the funded projects to
establish a plan to ensure sustainability.

FIGURE 7
Members of AGIN IV workshop at the United Nations Food and Agriculture Organization (UNFAO) in Rome, Italy.

FIGURE 8
Members of the African Goat Improvement Network (AGIN) team at the AGIN V workshop.
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2.9 AGIN V—The last waltz

The South African Agricultural Research Council (ARC) hosted
the final AGIN (V) meeting. The meeting was held October 31 to
November 2, 2017 at ARC facilities in Pretoria, South Africa. The
goat improvement project funded travel and housing for
20 participants to attend this meeting. The Food and Agriculture
of the United Nations (FAO) continued to collaboratively support
the efforts of the project, and FAO funded 7 additional attendees.
The AGIN V meeting was attended by over 40 participants,
representing nearly 30 organizations from almost 20 countries
(Figure 8).

2.9.1 Site visits
The AGIN V meeting was preceded by a visit to an ARC

sponsored CBBP in the village of Pella, North-West Province,
South Africa on October 30, 2017. The Pella CBBP site visit
coincided with a meeting of the village royal family, the local
government board, and representatives of farmer organizations.
Representatives of the AGIN group that travelled to Pella met
with the local board and the “Kgosi,” or chief of the village,
separately, and an informational meeting was led by
representatives of ARC. In addition to meeting with these
community members, the AGIN group visited two of the
community farms and met with these producers.

2.9.2 Workshop
The AGIN V workshop featured research updates from many

of the consortia that attended the meeting, including USDA-ARS,
USAID, IGGC, Centre for Tropical Livestock Genetics and
Health (CTLGH), and others. Progress reports on CBBP in
South Africa managed and funded by ARC and the University
of KwaZulu-Natal, Malawi coordinated by Lilongwe University
of Agriculture and Natural Resources (LUANR), and Uganda
overseen by NARO were provided by representatives of those
projects. The program also featured breakout sessions and
follow-up discussions that focused on: the long-term
sustainability of CBBP; capacity building in African
membership countries; technical shortcomings; and research
needs. Great interest was shown in expanding the CBBP
model to additional member countries and much discussion
centered on a continuity strategy for CBBP to become
sustainable.

3 de novo goat genome assembly

From the very start of the efforts that led to the goat improvement
program, constructing a de novo assembly of the goat genome was the
highest priority objective under the project funded by the USAID. The
highly fragmented nature of short-read assemblies, which were
common at the time, fundamentally limited the reliability of
genomic analyses. The hundreds of thousand gaps present in these
genomes had deleterious effects on gene annotation, regulatory network
analysis, association studies, and more. A group of researchers led by
Wen Wang at the Beijing Genomics Institute was already building an
assembly of the goat genome from short sequencing reads (Dong et al.,
2013), so we requested access to their raw data to attempt a re-assembly

using a long-read strategy. The leaders of that consortium declined to
make that data available, so, our group felt it was necessary to develop
an independent assembly of the goat genome.

Brian Sayre at Virginia State University led the effort to select the
animal that was to be the donor of tissues used to build the genome
assembly. Sequencing commenced with selection of a highly inbred
male goat, “Papadum” (Figure 9). Assembling a genome is a
complex problem that is further complicated in diploid
organisms by the presence of both maternal and paternal
chromosomes. Choosing an inbred individual minimized those
haplotypic differences and simplified the assembly process.
Papadum was an inbred member of an inbred breed, the San
Clemente. This breed originated from San Clemente Island off
the coast of San Diego, California. Because the San Clemente
goats were confined to an individual island, they inter se mated,
increasing levels of inbreeding. Tissue and DNAwere sent to The US
Meat Animal Research Center in Clay Center, Nebraska and the
Animal Genomics and Improvement Laboratory (AGIL) at the
Beltsville Agricultural Research Center for processing.

Previous work had shown that a mixture of sequencing reads
from long- and short-read instruments improved the
completeness of genome assemblies (Dalloul et al., 2010). But,
sequencing reads from long read platforms resulted in an even
more complete coverage of a genome (Pendleton et al., 2015).
Eventually, multiple technologies would be combined to generate
a genome assembly. These included Pacific Biosciences high
error-rate long-read sequencing for assembly, BioNano optical
mapping, and Hi-C, a genome-wide chromatin conformation
capture protocol using proximity ligation, for scaffolding, and
Illumina short-read sequencing for increasing the base accuracy
of the assembly. The complementarity of these technologies led
to dramatic improvements in genome assemblies (Bickhart et al.,
2017; Worley, 2017). Nature published a Milestone collection for
the 20th anniversary of the human genome sequence in 2021 with
the goat assembly named as one of the 18 papers chosen as
“milestones.” Quoting that article (LaFlamme, 2021), “The
domestic goat genome ARS1 created a new standard for de
novo assemblies of complex genomes.” The detailed
description of the improvements made can be found in that
publication (Bickhart et al., 2017). The quality of the assembly,

FIGURE 9
Papadum - The genome sequencing goat
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ARS1, was described as Golden (Worley, 2017) and Platinum
(LaFlamme, 2021).

4 Community-based breeding
programs (CBBPs)

Community-based breeding programs (CBBPs) can have a positive
impact on the local economy by helping farmers improve genetics and
productivity that can in turn, lead to increased income for farmers and
greater access tomarkets for their products. Additionally, by developing
local capacity and expertise in breeding and management, these
programs can help create jobs and support economic development
in the community. In addition to working with farmers directly, a
successful CBBP also engages the support of local government and
community officials by educating them on the CBBP potential
economic gains made possible with improved animal genetics.
CBBPs are essentially systems that involve local communities to
collaboratively and collectively develop breeding objectives that are
applied across a combined communal herd (Sölkner et al., 1998; Haile
et al., 2011; Wurzinger et al., 2011). The implementation approach for
these CBBPs followed similar steps as those demonstrated with sheep in
Ethiopia (Haile et al., 2011).

4.1 Negative selection

Farmers in developing countries are often under economic
pressures to make short-term choices for economic gain that can
negatively impact the overall genetics of their herd. This
phenomenon is known as negative selection. For example,
negative selection arises from removal of superior (i.e., larger)
males from the breeding population through sales at earlier ages
of these faster growing bucks to fetch higher market prices rather
than retaining them for breeding (Gizaw et al., 2014). The long-
term genetic impact of this short-sighted decision on the herd, is
to leave slower growing males as the breeding males in the
community flocks, perpetuating inferior genetics. CBBP
training programs provide information to farmers on basic
animal breeding strategies, the impacts of negative selection,
and the importance of following breeding objectives. Together,
these steps can lead them to select breeding bucks that meet their
stated breeding objectives. For increased rate of growth, CBBP
farmers find that in just a few generations all of their bucks are of
the fast-growing type. AGIN CBBP programs provide farmers
with the information and tools they need to identify their
breeding objectives and select the very best young breeding
bucks in the project, to keep them retained and available to
the community.

4.2 Participatory approach

The participatory approach embedded in CBBP fosters the
development of community-level capacity, engenders buy-in,
and cultivates ownership among local farmers. This approach
significantly reduces the likelihood of reverting to familiar,
traditional breeding practices, including negative selection,

once the programs conclude. By actively involving the
farmers in the process of enhancing herd management and
establishing dependable record-keeping systems, they acquire
a sense of ownership, thus ensuring sustained progress beyond
the program’s duration. In a CBBP, using local personnel to
collect and manage animal production records is prioritized
over relying on centralized support. The involvement of a local
technician or enumerator plays an important role by providing a
conduit to encourage communication between the farmers and
the researchers during early stages of the CBBP. Key to the
AGIN effort was training local doctoral students to become
CBBP experts in their own countries to ensure sustainability of
this little utilized, yet successful approach for livestock genetic
enhancement in developing countries.

4.3 Locally adapted

Furthermore, CBBP often involves the use of locally adapted
breeds that are better suited to the environmental conditions and
farming practices of the area. This focus on local adaptation
usually enhances herd resilience and adaptability, thus increasing food
and nutrition security for the community. In contrast to historical,
centralized breeding programs that introduced non-local or foreign
breeds, use of local breeds allows farmers to see the potential, and
ultimately the superiority of their locally-adapted animals. This
realization can foster a point of pride among farmers.

Overall, CBBPs are an effective and sustainable approach to
improving the genetic quality and productivity of livestock in
developing countries. By involving local communities and
building local capacity, these programs can promote sustainable
practices and create lasting benefits for the farmers and their
communities.

4.4 Steps to establish a successful CBBP

1. Identify the community: Identify and engage with the
community to be involved in the program. This group
should include a diverse group of individuals, including
the appropriate local or regional officials who will offer
support or champion the CBBP, along with the farmers,
ranchers, and other community members who have an
interest and role in breeding and raising livestock.
Inclusion of women among the community members and
farmers is critical to supporting and elevating families.

2. Define the breeding objectives: Once the community has been
identified, it is critical to assess the breeding priorities. This
process may include identifying the breeds or types of animals
that are most in demand, as well as the specific breeding goals and
objectives identified by the producers.

3. Develop selection strategy: Based on breeding objectives, a
selection process is needed. This strategy may include ranking
criteria [e.g., mass selection, index selection, or BLUP (Van
Vleck, 1993)], mating strategies (e.g., buck management), or
inbreeding management.

4. Implement the program: Once the breeding plan has been
developed, it is time to implement the program. This may
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involve training local community members as enumerators,
applying ear tags, obtaining tissue samples for DNA extraction,
application of best practices for breeding and raising animals, as
well as providing necessary resources or equipment.

5. Monitor and evaluate: It is important to continually monitor and
evaluate the progress of the CBBP. This may include tracking the
number and quality of animals that are produced. Based on the
results, adjustments to the breeding plan may be necessary.

6. Create a sustainable system: Finally, it is essential to create a
sustainable system for the CBBP. This includes establishing a
system of record-keeping and data collection, providing ongoing
training and support, establishment of legal breeder cooperatives, and
encouraging communitymembers to take ownership of the program.

4.5 Some key features of CBBP

• Involvement of local communities: Communities are
actively engaged in the planning, implementation, and
management of the program. This helps to ensure that
the program is tailored to the specific needs and priorities of
the community.

• Focus on genetic improvement: The program may involve the
use of a range of breeding strategies, from basic recordkeeping
andmass selection to artificial insemination, or genetic testing.
This process can lead to increased productivity and better
health of the animals.

• Promoting sustainable practices: CBBPs may also focus on
promoting sustainability in livestock management, such as
reducing the use of inputs like feed and water and reducing the
environmental impact of the production system.

• Support for small-scale farmers: CBBPs often target smallholder
farmers and pastoralists, often women, who may not have the
resources or expertise to improve the genetics of their animals
on their own. The program provides them with the necessary
support and resources to do so.

• Another feature of CBBPs is that farmers pool their herds with
those of other producers in their communities. This creates
bigger and more diverse gene pools, enabling them to maintain
genetic diversity and enhance selection opportunities.

4.6 Pilot CBBP projects

Uganda and Malawi were chosen to host pilot AGIN CBBP
projects. Both countries have a high proportion of households
that own and receive substantial portions of income from goats.
Two locations were selected in each country with two
communities per location chosen (a total of 8 sites). In
Uganda, the final locations selected were Nakapiripit and
Hoima. In Nakapiripit, two communities raising Small East
African goats in a communal grazing system were chosen. In
Hoima, Mubende goats are raised in two production systems,
crop-livestock (tethering) and communal grazing. One community
for each system was selected. In Malawi, communities within the
Magoti extension planning area (EPA) and Zombwe EPA were
selected. Small East African goats are found in both areas. Farmers
in Magoti EPA practice communal grazing while those in Zombwe

EPA favor tethering. In total, we monitored CBBPs in 5 communal
grazing sites and 3 crop-livestock systems.

4.6.1 Uganda
In Uganda, nearly 40% of households own goats, and all but 1% of

those are indigenous. The Ugandan team introduced the CBBP
concept and shared experiences with research stakeholders
including AGIN partners and determined the best locations to
initiate the Ugandan CBBPs - Katakwi and Nakapiripit (Small East
African) and Masindi and Hoima (Mubende goat breed). They held
meetings with district veterinarians, extension workers, and farmers
and conducted field site visits. The characteristics of the sites follow.

4.6.1.1 Katakwi
The principal breed represented in Katakwi is the Small East Africa

goat, and there was generally negative attitude to indigenous goat breeds.
Tethering is used by most farmers, and as a result there is limited mixing
of flocks. The selection objectives include perceived breed purity, body
size, and goat color. Castration has not been practiced in the past. There
were limited farmer groups active in this region. The selling of the best
performing males (i.e., negative selection) was common practice because
they earned a better price in the market.

4.6.1.2 Nakapiripit
While the Small East African goat was also the most common

breed in Nakapiripit, the goats were tended using shared grazing
resources. Households typically stay together using a communal
“kraal,” a traditional African village of huts, typically enclosed by a
fence. Selection goals include increased body size, twinning/triplet
ability, and disease tolerance. Negative selection was practiced in
Nakapiripit. The use of male selection through castration was
practiced but not common. Improvement of productivity was a
high priority here, but introduction of new breeds were not
successful in prior experiences, so improvement of indigenous
goats was important for local communities.

4.6.1.3 Masindi
Mubende and the Small East African goat are both popular breeds

of goats in Masindi. There are both crop-livestock production systems
with 3-6 goats in each herd and pastoral-grazing systems with much
larger herds (~60 goats). Neither of these systems mixed herds. This
community was characterized by poor breeding andmanagement skills
as well as a reluctance to work together in groups. This community has
recently recognized the economic importance of goats.

4.6.1.4 Hoima
The Mubende breed of goat dominates in Hoima, and there is a

growing interest in goat production. The overall population of goats
has grown. As in Masindi, there are both modest sized (~5–6 goats)
crop-livestock production herds and pastoral-grazing systems with
much larger herds (~50–300 goats in each herd). The farmers in
Hoima had a good working knowledge and understanding of
management practices: castration, disease control, genetics and
reproduction. The selection objectives combined twining,
increased birth weight, rapid growth, and large size. There was a
group of strong active farmers (~50 members) working with Zonal
Agricultural Research Organization. There was active sharing of
bucks (free for members; 0.80 USD per breeding for non-members).
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These farmers had strong attachments to goats for economic
importance, however there were some challenges in retaining
good bucks for enough time to impact genetic improvement.

The final sites selected were Nakapiripit consisting of two
communities that used communal grazing production system
falls under communal grazing, and Hoima with one communal
grazing and one tethering system. Pre-printed ear tags were used to
track the animals, and a full time PhD student was engaged in the
project via BOKU, and the AGIN CBBP expert there who has
successfully implemented CBBPs with native graduate students in
several countries.

4.6.2 Malawi
In Malawi, the percent contribution of livestock to household

income ranged from 17% to nearly 60% in the Shire Valley.
Additionally, goats contribute more income to households, especially
female headed households. Negative selection in a subsistence culture
contributed to declines seen in livestock production. The CBBP model
offered an opportunity to improve animal productivity and animal
genetic resource (AnGR) conservation. Twenty-six stakeholder
participants attended the organizational meetings, and the meetings
concluded with the value of the CBBP being recognized and supported
by key organizations. Three potential CBBP sites were considered by the
Malawi team:

4.6.2.1 Magoti
Magoti Extension Planning Area (EPA) in Shire Valley

Agricultural Development Division (ADD). These are
communities that are dependent on livestock. They are also in
regions that will have significant impact from climate change.

4.6.2.2 Zombwe
Zombwe EPA in Mzuzu ADD. These are communities that are

dependent on both crops and livestock, although this region has a
strong culture and tradition of keeping livestock.

4.6.2.3 Mitundu, Mkwinda and Chilaza
Mitundu, Mkwinda, and Chilaza EPA in Lilongwe ADD. These

communities are primarily crop producers with a secondary
dependence on livestock. This region provides proximity to
research institutions (Lilongwe University of Agriculture and
Natural Resources (LUANAR) and Chitedze Agricultural
Research Station). Farmers had an existing rapport with livestock
outreach programs (e.g., community dairying and indigenous
chickens).

Due to the expressed support in the stakeholder meetings
by government and non-governmental organizations groups, all
three sites were selected. Farmers that met with the team
understood the concept of the breeding program. They clearly
appreciated the existing problem of negative selection. All
three communities expressed a desire to participate. The markets
in these areas for goat products are mainly for meat and are used
directly within the farmer’s household or for ceremonies.
Additionally, products could be marketed at various selling points
or trading centers and are now found in some retail shops.

The CBBP model was scaled out to two other districts: Neno
(Lisungwi EPA) and Salima (Matenje EPA). Additionally, some
non-governmental organizations adopted the model and

implemented it in three other districts: Dowa (Mvera EPA),
Kasungu (Lisasadzi EPA) and Mzimba North (Bwengu EPA).

4.7 The future looks bright

4.7.1 Ethiopia
Ethiopia CBBP started in 2009 with four populations (Afar,

Bonga, Horro, and Menz) representing different production
systems and involving 8 communities of about 500 households
owning about 8,000 sheep. These pilot CBBPs have since
expanded to include more than 150 communities. Though
implemented at a pilot scale in Ethiopia, the CBBPs have
resulted in quantifiable genetic gains and impacted the
livelihoods of rural communities (Haile et al., 2020). CBBPs
need to scale up to impact on the lives of larger communities.
To this end, a methodological framework for scaling of CBBPs
was developed (Mueller et al., 2019). AGIN supported scaling of
goat CBBPs in Konso, Ethiopia and more than 2000 households
were covered through this scheme. The Ethiopian government
has identified CBBP as the strategy of choice and several scaling
initiatives are being supported in Ethiopia through various
projects.

4.7.2 Burkina Faso
The objectives of this project were to:

1. Establish CBBPs for smallholder goats in two sites in Burkina
Faso to genetically improve unselected indigenous goat breeds.

2. Explore the possibility of using unique DNA tools and genotype
data to complement phenotype data.

One site of the CBBP implementation was the province of
Namentenga located in the transition area between the Sahelian and
Sudanian agro-ecological area. The second site was the province of Poni
(Zone B) in the southwest of the country belonging to Sudanian agro-
ecological area. Breeding systems in these areas are sedentary
agropastoral system and transhumant pastoral system. Farmers are
largely illiterate, with men slightly outnumbered by women.

The flock size is small (~15), and bucks are selected basedmainly
on body size, coat color, and temperament. Does are selected based
on body size, twinning ability, mothering ability, coat color, and,
kidding frequency.

The project resulted in the implementation of 6 CBBPs at
different sites with the involvement of all stakeholders. The
participants universally appreciated the project. The results are
quite encouraging and constitute assets for the implementation
of programs on a larger scale. However, the management of
selected breeding bucks and their sharing must be addressed
within the communities. The results of the study already show
that the management of bucks in a community grazing context is
very tricky because they are not easy to control. Bucks are
sometimes found in neighboring herds in search of does in
heat and in some cases these bucks are not found. This
phenomenon would explain the low number of bucks in some
locations where owners never find them. Rather than lose their
valuable animals, some farmers prefer to sell their goats at an
early age.
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5 Partnerships and leveraging

Collaboration has been a hallmark of this project. At the first
organizational meeting of this group, we invited researchers and
outreach professionals from a broad range of countries and
organizations from within Africa and abroad. This heterogeneous
group of collaborators generated the name African Goat
Improvement Network (AGIN).

A highly collaborative effort was embraced for collecting
biological samples and for genotyping. At the outset, the Feed
the Future project received a “Greater Good Initiative” from
Illumina, Inc., that represented the genotyping costs for about
400 animals. In addition, the Food and Agricultural Organization
of the U.N. (FAO) solicited proposals to fund sample collection in
four African countries, specifically excluding countries already well
sampled by AGIN collaborators. The four countries that submitted
proposals that were funded were: Egypt, Madagascar, Mali, and
Tanzania. In addition, through collaborations, we had genotypes
shared by Iowa State University (goats from Egypt), Catholic
University in Italy (improved lines of Italian meat and dairy
goats), Virginia State University (U.S. meat goat breeds and
candidates for genome sequencing goat), University of Sao Paulo
and Embrapa in Brazil (tropically adapted Brazilian goats),
AgResearch in New Zealand (South African Boer goats), and the
Agricultural Research Council (ARC) in South Africa (South
African production and local goats). In total, over 4,000 goats
have been sampled from 22 countries world-wide.

The first and most critical partnership that enabled these
efforts was the one established by the Norman Borlaug
Commemorative Research Initiative, a collaborative research
effort between USDA-ARS and USAID. The goat improvement
project has been well funded by the Feed the Future program in
USAID and championed by several USAID (Max Rothschild,
Lindsay Parish, Elaine Grings, and Saharah Moon Chapotin)
and ARS (Eileen Herrara and Irlene Santos) leaders. Additional
support has also been provided through the ARS Office of
International Research Programs. At the time, one of their full-
time employees, Jennifer Woodward-Greene, obtained her Ph.D.
degree in bioinformatics, and her thesis project has contributed the
field sampling protocol and phenotype prediction algorithms for
characterizing morphometric measures of goats.

Despite the generous financial support, the funds were always
tight, in part because genomics research is inherently expensive.
Considering this situation, the funding from the Feed the Future
program was highly leveraged to maximize the impact of these
funds.

Another key partnership established was one with Johann
“Hans” Sölkner at the University of Natural Resources and Life
Sciences (Universität für Bodenkultur—“BOKU”) in Vienna,
Austria. Hans has had a long and successful history of
international development, including a true leadership in the
development of CBBP in smallholder application. BOKU has
played a critical role in our efforts to support graduate training
and capacity building.

The first agreement established to support this project was done
so as a direct result of the first meeting held on the campus of the
International Livestock Research Institute (ILRI) in Nairobi, Kenya
to support training and capacity building in bioinformatics. As part

of this agreement, an ILRI scientist, Denis Mujibi, spent 6 weeks at
the Bovine Functional Genomics Laboratory in Beltsville, Maryland
working with USDA-ARS staff. ILRI also hosted the AGIN III
meeting at its Addis Ababa, Ethiopia campus.

The engagement of three organizations was essential to
establishing the CBBP: In Uganda, CBBP implementation is
being facilitated by the National Livestock Resources Research
Institute (NaLIRRI) under the umbrella of the National
Agricultural Research Organization (NARO) and in Malawi,
Lilongwe University of Agriculture and Natural Resources
(LUANR). These organizations were the “boots on the ground”
partners in the efforts to establish and grow CBBP in Africa.

5.1 International Goat Genome Consortium
(IGGC)

The broad goal of the IGGC is to increase the knowledge of the
goat genome and use that knowledge to answer important biological
questions leading to expanded goat production around the world.
The IGGC website is at www.goatgenome.org. The group formed in
March 2010 with several initiatives: the generation of the first goat
assembly, CHIR_1.0, led by Wen Wang at the Beijing Genomics
Institute (Dong et al., 2013) and the design the first goat SNP chip
led by Gwenola Tosser-Klopp at INRAE (Tosser-Klopp et al., 2014).
The group, led by Gwenola Tosser-Klopp at the Institut National de
Recherche pour l’Agriculture, l’alimentation et l’Environnement
(INRAE, formerly INRA) in Toulouse, France, holds regularly
scheduled communication meetings and coordinates goat
workshops held annually at Plant and Animal Genome meetings.
The AGIN group has interacted with this group, keeping them
informed about genome assembly status and inviting them to AGIN
meetings.

5.2 The AdaptMap project

It became clear that the best outcome for small holders was to
identify those genomic regions important in stabilizing goat
sustainability to parasites and drought. The optimal approach
would be to compare for selective sweeps across global goat
populations. Therefore, our project has joined forces with the
IGGC and two EU consortia: 3SR—Sustainable Solutions for
Small Ruminants and NextGen projects to form the AdaptMap
project. Leveraging this partnership now aligns three goat genomics
projects under one common goal—to understand diversity in goats
for increased food production.

The AdaptMap project, led by Alessandra Stella from Istituto di
Biologia e Biotecnologia Agaria in Lodi, Italy, is an international
effort developed to improve coordination among otherwise
independent projects for genotyping, sequencing and
phenotyping of goat breeds. The aim is to explore diversity of
breeds and populations around the world by using traditional
and novel approaches. Since its inception, the centralized
collection of genomic and phenotypic data from 15 projects on a
total of 33 countries has started. Multiple actions have been
undertaken to standardize genotypic and phenotypic data from
different sources. These groups cover all aspects of the goat
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genome: i) the improvement of genome assembly; ii) genome
annotation; iii) enhancement to the existing SNP genotyping
platform; iv) the selection of a parentage and identity SNP panel;
v) comparative genomics (with other ruminants); vi) integration and
standardization of phenotypic data; vii) population genetics analyses
and population history (domestication reconstruction); viii)
landscape genomics; and, ix) breeding and genetic improvement.
Working groups coordinated by leading scientists have been
identified and several have completed their efforts (Bertolini
et al., 2018; Colli et al., 2018; Stella et al., 2018).

An agreement was initiated to formalize a partnership with the
AdaptMap Consortium and is intended to facilitate goat data
sharing globally and encourage coordination and collaboration
in characterizing the extensive variety of represented goat
populations. The ultimate objective of AdaptMap is to enhance
genetic improvement by understanding the adaptation of goats to
diverse constraints. The efforts will result in a wide sampling of
existing genetic diversity representing Africa as well as related
non-African populations. This increased sampling will potentially
increase power to detect signatures of selection, in addition to
extending the training on phenotyping goats using the African
Goat Improvement Network image collection protocol
(AGIN-ICP).

5.3 VarGoats project

The VarGoats project has as a long-term goal to sequence over
1,000 goat genomes. The scientific objective is to identify variants in
goat genomes associated with domestication and adaptation.
Currently, the project has described a dataset of 1,159 goats,
including over 250 individuals collected by AGIN (Denoyelle
et al., 2021). The VarGoats website is located at www.
goatgenome.org/vargoats.html. The VarGoats project was made
possible by a call for large scale DNA sequencing projects by
France Genomique. The data has been made available to
VarGoats participants and data analysis is being performed in
working groups (~60 international scientific participants), most
of them already created in the AdaptMap program.

5.4 The United Nations Food and
Agricultural Organization (FAO)

The FAO recognizes animal genetics as one of “the pillars in
livestock development,” with characterization, conservation, and
genetic improvement representing three critical components of
this pillar. In addition, characterization is a critical initial step in
proper management of animal genetic resources (AnGR) to inform
breeding programs and conservation decisions. FAO serves as the
secretariat of the Intergovernmental Technical Working Group on
Animal Genetic Resources for Food and Agriculture, which is a
representative group of FAO member countries that advises on
actions to be undertaken to improve the management of livestock
genetic diversity. Paul Boettcher serves as the Secretary of the
Working Group and has played a key role as an international
coordinator of conservation of AnGR. Consequently, FAO
supports the work of groups like AGIN to facilitate phenotypic

and genomic characterization activities. The FAO also supports
data collection and sharing through the Domestic Animal
Diversity Information System (DAD-IS), a global database of
AnGR to provide a data repository and a resource for sharing that
data online. The FAO objective for this work is to achieve sustainable
management of land, water, and genetic resources and improved
responses to global environmental challenges affecting food and
agriculture. With the assistance from donors, FAO has supported
direct funding of AnGR characterization such as AGIN as part of its
effort to achieve this outcome. This collaboration is a 3-way
partnership, with FAO conducting field sample collection and
compiling phenotypic data and pedigrees, USDA-ARS is providing
equipment and guidance for sampling as well as DNA extraction and
genotyping, and the AdaptMap consortium is providing data analysis
and interpretation. Additionally, ASARECA is providing technical
advice. A November 2013 call for proposals to implement the AGIN
sample collection (genotype and phenotype) method yielded
14 proposals from 12 countries. Four of these were selected: Egypt
(Egypt National Research Center), Madagascar (Département de
Recherches Zootechniques et Vétérinaires du Centre National de
Recherche Appliquée au Développement Rural), Mali (Programme
Petits Ruminants, Institut d’Economie Rurale), and Tanzania
(Tanzania Veterinary Laboratory Agency - Tanzania Livestock
Research Institutes and Districts).

5.5 Additional partnerships

Partnerships were also formed with the Association for
Strengthening Agricultural Research in Eastern and Central Africa
(ASARECA) in Entebbe, Uganda; the National Biotechnology
Development Agency in Abuja, Nigeria; Agricultural Research
Council (ARC) of South Africa; and the International Center for
Agricultural Research in the Dry Areas (ICARDA) in Ethiopia, the
Center for Tropical Livestock Genetics and Health (CTLGH) in
Edinburgh, Scotland and Nairobi, Kenya; São Paulo State University
in Araçatuba, Brazil; Università Cattolica del S. Cuore in Piacenza,
Italy; the Egyptian Ministry of Agriculture; Virginia State University
in Petersburg, Virginia, USA; and the Iowa State University Global
Food Security Consortium in Ames, Iowa, United States. Many of
these partnerships were created to facilitate tissue and data
collection and enable the broadest representation of goats for
genetic and genomic comparison.

6 Training and professional
development

6.1 Training for AGIN image collection
protocol

A system was developed by USDA-ARS scientists within AGIN
to enable collection of body measurements and other physical
features from digital images and image analysis tools. This
protocol was formalized and shared through AGIN’s AdaptMap
partnership for international utilization. As part of the development
and training component of this project, about a dozen phenotyping
kits have been distributed and training has been conducted.
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Johann Sölkner, Solomon Abegaz, and Tesfaye Getachew (BOKU),
DenisMujibi and Absolomon Kihara (ILRI), Brian Sayre (Virginia State
University), Clet Masiga (ASARECA) were trained to use the data
collection protocol with a hands-on training. Farai Muchadeyi (ARC)
and Christopher Mukasa (Ahmadu Bello University) were trained
remotely using online tools. Sampling kits have been provided to
researchers associated with ILRI, ASERECA, BOKU, and ARC. Over
time, a large number of AGINmembers received training on the AGIN
image collection protocol (AGIN-ICP).

Researchers from Ethiopia, Italy, Kenya, Malawi, Mozambique,
Nigeria, Rwanda, South Africa, Tanzania, Uganda, The United Sates,
and Zimbabwe were trained to obtain digital images and to collect
body measures. Coordination of sample collection was led by
ASARECA and ARS. At that time, phenotypes (digital images
and body measurements) and tissue samples were collected from
more than 1,800 goats in 10 countries (7 African countries).

6.2 High-school students

Goat field sampling data and geographic information system
information was contributed by Brian Sayre at Virginia State
University to share with 14 high school students in the
Appomattox Regional Governor’s School of Art and Technology
in Petersburg, Virginia, United States. Students used the GIS
information to mine data related to natural resources, weather
patterns, economic indicators, and cultural practices in each
specific region.

6.3 Undergraduate students

In preparation for phylogenetic analyses, Heather Huson,
Cornell University, had undergrad research assistants, Mary Beth
Hannon and John Nystrom, update maps with sampling sites. They
have identified nearest weather data stations to those sites.
Processing raw body measurement data from Ethiopia, Kenya,
and all ASARECA sites to determine average, maximum,
minimum and standard deviation on all phenotyping data was
initiated. Measurements were categorized by breed and country
as well.

Heather Huson at Cornell University developed an international
internship experience for undergraduate students to work with the
Agricultural Research Council (ARC) in South Africa to collect field
data at CBBP and process samples in the laboratory.

6.4 Graduate students

Jennifer Woodward-Greene completed her dissertation and
defense and earned her doctorate in May 2016 from her research
activities associated with the AGIN project. She continued this
work with AGIN, which involved development and refinement of
algorithms to extract phenotypic data from digital photos. One of
the phenotypes included animal body measurements (height,
length, girth) to predict animal body weight when scales are not
available due to cost or convenience. Other phenotypes included
FAMACHA anemia score, tooth age/health assessment, and coat

color/pattern identification. Her work uses digital images that can
be taken with a common cell phone, and development of the
software for automated, “born-digital,” on-farm, collection of
animal records. This work with AGIN provided a once-in-a-
lifetime experience to lead a multi-national effort to develop the
AGIN Image Collection Protocol (AGIN-ICP), [see companion
paper (Woodward-Greene et al, 2023) describing how the AGIN
CBBP model was used as a capacity development platform]. To
process the collected images, she developed the PreciseEdge Image
Segmentation Algorithm (Woodward-Greene et al., 2022) that
isolates and collects (extracts) animal measurement from
AGIN-ICP collected images. The manuscript is in process to
describe the user-friendly software she developed to deploy the
algorithm and related tools for researchers or farmers to collect
digital phenotypes in situ.

Visits to USDA by Priscilla Ramadimetja Mohlatlole and
Keabetswe Tebogo Ncube to build additional capacity with our
South African partners as part of a larger collaborative effort by
ARS and ARC. They were South African doctoral students under
the mentorship of Farai Muchadeyi (ARC) and Edgar Dzomba
(University of KwaZulu-Natal) and were selected in 2016 to
conduct research at the USDA, ARS Animal Genomics
Improvement Lab (AGIL) at the Beltsville Agricultural
Research Center in Beltsville, Maryland (Curt Van Tassell’s
lab). Ms. Mohlatlole was in her second year of a PhD in
Animal Breeding at the ARC and University of KwaZulu-
Natal, and Ms. Ncube had recently completed her MSc at the
University of South Africa and was a first-year PhD student with
ARC and the University of KwaZulu-Natal. Their planned
research while at ARS was directly applicable to the
USDA—USAID Feed the Future Livestock Improvement
Project with aims to achieve objectives set by ARS, ARC and
USAID related to the project. Ms Ncube earned her doctorate
degree in April 2020. Her PhD research focused on differential
gene expression studies to investigate the genetics of meat and
carcass quality traits in SouthAfrican indigenous goats. The project drew
from the principles of AGIN-CBBPs that enabled her to monitor goats
on-farmwithin the CBBP households of Pella village in SouthAfrica and
conduct a set of transcriptome experiments using goats fromPella village
and the ARC experimental farms. The time spent at AGIL gave her
access to computational resources and bioinformatics expertise to help
her through the analysis.

Farai Muchadeyi, (AGIN partner) and graduate student Khanyisile
Mdladla—Hadebe visited the laboratory of Heather Huson at Cornell
University in July 2015 to expand their knowledge in genomic
population structure and admixture analysis. This work contributed
to Ms. Mdladla’s doctoral research and used local data from goats
sampled in South Africa as part of ARC’s collaboration with AGIN and
AdaptMap. Ms Khanyi was in her second year as a PhD student at the
University of KwaZulu-Natal, South Africa under the mentorship of
Farai Muchadeyi (ARC) and Edgar Dzomba (University of KwaZulu-
Natal).

The goat improvement project supported the research and
training of doctoral student, Wilson Nandolo, who worked in
Malawi and Ugandan village breeding programs for sustainable
genetic improvement. Mr. Nandolo worked along with researchers
at the Lilongwe University of Agriculture and Natural Resources
(LUANAR) in Malawi, and the National Agricultural Research
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Organization (NARO) in Uganda. He was trained and mentored by
Hans Sölkner. The existing agreement with BOKU supported the
CBBP in Malawi and Uganda, as well as Mr. Nandolo’s visit to the
AGIL for training in genomic sequencing and analyses techniques.
He worked on copy cumber variation analyses in the goat related to
various traits of interest and provided support in the phenotype
software development to collect phenotypic data on coat color and
pattern from images.

The goat improvement project supported the work of
doctoral student Doreen Lamuno. Ms. Lamuno, much like
Mr. Nandolo, worked in Malawi and Uganda CBBP along
with LUANAR and NARO while mentored by Hans Sölkner,
with an emphasis on the systematic evaluation to provide
guidance for an assessment of the performance, outputs, and
associated impacts of CBBP.

Wilson Kaumbata was the third African PhD student attending
BOKU who was added to the CBBP project. Mr. Kaumbata led the
follow-on assessment of the CBBPs for the two established breeding
communities. This development was timely, as the CBBPs were
firmly established and progressing well. This work contributed to
national goat breeding strategies, exploring the economic and social
impacts of the breeding programs, and developing and testing
approaches to ensure the village breeding program models
employed in Uganda and Malawi could be scaled up (i.e., assess/
develop technology transfer applicability) for application in other
communities.

6.5 Sabatical

Denis Mujibi from International Livestock Research Institute
was hosted by Curt Van Tassell and Tad Sonstegard for training in
population genomics, computational genomics of next-generation
sequence data, and genetics and breeding.

Brian Sayre from Virginia State University was hosted by Curt
Van Tassell on a Faculty Research Fellowships for Capacity
Building at 1890 Land-Grant Universities. The research projects
centered on the use of goat genomics and genetics to strengthen
smallholder livelihoods and communities in Africa. Additionally,
our research had a focus on identifying adaptability traits in goats
to improve sustainable food production for the future.

Clet Wandui Masiga from Association for Strengthening
Agricultural Research in Eastern and Central Africa (ASARECA)
was hosted at Cornell University on a sabbatical visit and worked
with Heather Huson to learn about population genetic methods
using AGIN samples and data.
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The advent of modern genotyping technologies has revolutionized genomic
selection in animal breeding. Large marker datasets have shown several
drawbacks for traditional genomic prediction methods in terms of flexibility,
accuracy, and computational power. Recently, the application of machine
learning models in animal breeding has gained a lot of interest due to their
tremendous flexibility and their ability to capture patterns in large noisy
datasets. Here, we present a general overview of a handful of machine learning
algorithms and their application in genomic prediction to provide a meta-picture
of their performance in genomic estimated breeding values estimation, genotype
imputation, and feature selection. Finally, we discuss a potential adoption of
machine learning models in genomic prediction in developing countries. The
results of the reviewed studies showed that machine learning models have indeed
performed well in fitting large noisy data sets and modeling minor nonadditive
effects in some of the studies. However, sometimes conventional methods
outperformed machine learning models, which confirms that there’s no
universal method for genomic prediction. In summary, machine learning
models have great potential for extracting patterns from single nucleotide
polymorphism datasets. Nonetheless, the level of their adoption in animal
breeding is still low due to data limitations, complex genetic interactions, a
lack of standardization and reproducibility, and the lack of interpretability of
machine learning models when trained with biological data. Consequently,
there is no remarkable outperformance of machine learning methods
compared to traditional methods in genomic prediction. Therefore, more
research should be conducted to discover new insights that could enhance
livestock breeding programs.
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1 Introduction

Farmers and animal breeders have long used artificial selection
to produce offspring with specific desired traits. Assessing the
performance of animals was based solely on phenotypes for
centuries; it was not until the 20th century that pedigree records
and performance data became the keys to genetic selection programs
(Boichard et al., 2016). Several statistical methods were developed to
predict the breeding values of individuals, such as selection index
and Mixed Model Equations (MME), which allowed, due to
advances in computational power, the Best Linear Unbiased
Prediction (BLUP) (Henderson, 1984) to become the most
sophisticated approach for breeding value estimation and thus
enable accurate selection decisions (Meuwissen et al., 2016).
Nevertheless, traditional genetic evaluation techniques are
generally more reliable in estimating breeding values for
phenotypic traits that can be easily measured and have moderate
to high heritability (Boichard et al., 2016). Conversely, traits with
low heritability necessitate a substantial quantity of pedigree and
phenotype data, which increases the generation interval and
subsequently diminishes the overall genetic improvement
accomplished through the breeding program. The emergence of
molecular genetics has prompted researchers to delve into a
comprehensive investigation of how traits are determined at the
DNA level. Numerous studies have been carried out with the aim of
pinpointing particular segments within the genome that play a
crucial role in accounting for variations in genetic characteristics
known as Quantitative Trait Loci. Later in the 1980s to the 2000s,
several methods were proposed for marker-assisted selection (MAS)
research that incorporate information about QTL in the MME as
fixed effects, and thus breeding value estimation is performed by
summing the estimated effects for every QTL (Weigel et al., 2017).
Nevertheless, the effectiveness of incorporating Quantitative Trait
Loci into estimating breeding values was constrained by the sparse
distribution of markers that were in linkage disequilibrium with
QTL across the entire population. Furthermore, it was discovered
that quantitative traits are influenced by a multitude of QTL with
relatively minor individual contributions. Meuwissen et al. (2001)
proposed a multiple QTL methodology named genomic selection,
that estimates breeding values using a dense marker map. Genomic
selection assumes that estimating the effects of a large number of
single nucleotide polymorphism (SNP) across the genome will
enable breeding value estimation without prior knowledge of the
location of specific genes on the genome (Eggen, 2012).

In 2007, progress in molecular technology allowed the first
assembly of the bovine genome. The Illumina Company and an
international consortium introduced a chip to genotype
simultaneously over 54,000 SNPs, which revolutionized dairy
cattle breeding (Boichard et al., 2016), and consequently, various
methods were developed for whole-genome selection in plants and
other domestic animal species. Recently, the availability of high-
throughput genotyping and the decrease in genotyping costs have
made genomic selection a standard method in animal breeding
schemes in many countries (Meuwissen et al., 2016). The underlying
concept is based on predicting markers effects using phenotypic
information and the genomic relationship between individuals of a
reference population previously genotyped and phenotyped to
forecast the breeding values of a certain trait for a population of

genotyped selection candidates (Goddard et al., 2010). Various
statistical methods, such as Genomic Best Linear Unbiased
Prediction (GBLUP) or Bayesian methods with different prior
assumptions, have been developed to predict markers’ effects and
thus the genomic breeding values of individuals. Nevertheless, these
conventional methods were unable to consider non-additive effects
such as epistasis and interactions between genotypes (Bayer et al.,
2021) which can have a large effect on phenotypes in animal species.
Furthermore, genotyping provides ever-increasing marker datasets,
which exacerbates the “curse of dimensionality” also known as the
“large P, small N” paradigm (Nayeri et al., 2019). Consequently,
traditional linear models became inadequate for capturing patterns
and explaining the complex relationships hidden in this mass of
large noisy data.

Recently, the development of machine learning (ML) algorithms
and the concomitant boost in computational processing power have
generated buzz in the scientific community. ML models are known
for their tremendous flexibility and their ability to extract hidden
patterns in large noisy datasets, such as image-based data (Xiao et al.,
2015), massive datasets of heterogeneous records (Li et al., 2018b),
or digital data, which is increasing remarkably due to advancements
in computer vision, natural language processing (NLP), internet of
things (IoT), or computer hardware (David et al., 2019). Genomics,
due to the advent of sequencing technologies, became a field where
researchers deal with massive, heterogeneous, redundant, and
complex omics datasets. Thus, the application of machine
learning models in genomics has been investigated in several
studies. In this paper, we review the application of ML
algorithms to genomic prediction (GP) in livestock breeding.
This work is organized as follows: First, we discuss machine
learning fundamentals and provide a brief description of
common algorithms used in genomic prediction. Second, we
outline the different evaluation methods used to assess the
performance of ML models. Afterwards, we review some of the
published studies concerning the application of ML models in
genomic prediction to provide a meta-picture of their potential
in terms of prediction accuracy and computational time. Finally, we
discuss the potential of applying ML to animal breeding in low- and
middle-income countries.

2 Machine learning fundamentals

Machine learning can be defined as a branch of artificial
intelligence that empowers computer systems to learn without
being voraciously programmed (Sharma and Kumar, 2017). In
other words, a learning computer system can be described as a
computer whose performance P on task T improves as its experience
E increases (Kang and Jameson, 2018). Based on the learning
process, machine learning algorithms can be classified into
supervised learning, unsupervised learning and reinforcement
learning.

2.1 Supervised learning

In supervised learning, the learning process consists of
conceiving a meaning from labeled data. Mainly, supervised
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learning algorithms tend to estimate or predict a response variable y,
based on a set of explicative variables x, through a function called
predictor f(x, β) where β is a vector of model parameters. The
performance criterion we use to define the best predictor is called a
loss function L,we thus define the best predictor as the predictor who
minimizes the loss function L (Crisci et al., 2012; Pereira and
Borysov, 2019). Depending on the nature of the response variable
y (continuous or discrete), supervised learning algorithms are
applied to either regression or classification problems. If the
main task of an algorithm is to predict a numeric value of a
continuous target variable, the ML algorithm performs a
regression problem. Alternatively, a classification problem
consists of training the algorithm using a set of labeled features
(discrete variable), to learn how to successfully classify new features
accordingly (Kang and Jameson, 2018). Sometimes the training data
involves labeled and unlabeled data. This type of learning is called
semi-unsupervised learning and it is considered a class of supervised
learning tasks. Anomaly detection is a typical application of semi-
supervised learning algorithms (Kang and Jameson, 2018).

2.2 Unsupervised learning

Unsupervised learning consists of finding patterns or clusters in
the training data where the target variable is not present. Algorithms
learn on their way to discovering interesting structures in the
training data (Mahesh, 2020). Since the features fed to the
algorithms are unlabeled, there is no way of assessing the
accuracy of these algorithms, unlike supervised learning and
reinforcement learning. These models are mainly used for
clustering and feature reduction (Sharma and Kumar, 2017).

2.3 Reinforcement learning

In reinforcement learning, software agents perceive and
interpret their environment, perform actions and get rewards or
penalties in return. Explicitly, a reinforcement learning algorithm
enables an agent connected to its environment, to choose an action
a1 and generate an output y, given an input i and an environment s1.
The action changes the environment, and a value is attributed to the
transition of the environment’s state through a scalar reinforcement
signal r. Consequently, the agent chooses actions that increase the
sum of values of the reinforcement signal (Kaelbling et al., 1996).
Similar to biological systems, animals living in specific environments
face fundamental challenges such as locating sustenance, avoiding
harm, and reproducing. These environmental conditions are subject
to dynamic changes and sudden variations. Consequently, animals
must continuously acquire knowledge from their surroundings and
adapt their behaviors accordingly (Neftci and Averbeck, 2019).
Similarly, when a robot is assigned the task of navigating a maze
in reinforcement learning scenarios, it functions as an agent within
this process. In its interactions with themaze environment, the robot
seeks to identify optimal paths by taking successive actions
(i.e., moving) while simultaneously receiving feedback through
rewards for proximity to the exit or penalties for deviating
further away or finding no escape route. By integrating these

multiple-step feedback signals into its decision-making processes
over time, the robot gradually enhances its navigation capabilities.

In the field of genomic prediction, supervised learning stands
out as the most widely employed technique. This approach leverages
labeled data to develop and assess models, thereby allowing for more
direct predictions based on established patterns. In contrast, less
prominence is given to unsupervised learning and reinforcement
learning in relation to genomic prediction.

3 Common ML models used for
genomic prediction

In the sections below, we present a short description of some
widely used machine learning algorithms for genomic prediction.

3.1 Linear regression

Linear regression is a model usually used to forecast the value of
a continuous variable y also called label or target variable using ML
terminology, through a vector of explanatory variables also called
independent variables or features X, and a linear function. If the
model involves a single independent variable x, simple linear
regression defines the relationship between the variables using
the model:

y � β0 + β1x + ε (1)
where β0 is the intercept term and β1 is a regression coefficient that
represents the variation in the outcome for a 1-unit increase in the
value of the independent variable x, and ε represents the error term
also called noise. The dependent variable y can be explained with
more than one explanatory variable. In that case, we are talking
about Multivariate Linear Regression (MLR). The basic model for
MLR is Maulud and Abdulazeez (2020):

y � β0 + β1x1 + ... + βmxm + ε (2)
Linear regression is considered a supervised learning algorithm

because we feed the model with a data set containing features xi and
the corresponding values of the target variable yi, and we expect an
accurate prediction of yj for another set of features xj. In order to
reach sufficient accuracy, the model minimizes the value of a chosen
loss function (Nasteski, 2017). The most commonly used loss
function for linear regression is Least Squared Error (LSE)
(Maulud and Abdulazeez, 2020).

3.2 Logistic regression

Logistic regression is a classification model regularly applied for
the analysis of dichotomous or binary outcomes (LaValley, 2008). In
other words, logistic regression is used to study the effects of
predictor variables on binary or categorical outcomes, such as the
presence or absence of an event (Nick and Campbell, 2007).
Training data is fed to a model that uses a logistic function in
order to predict the probability of the event. Unlike linear regression,
logistic regression does not require a linear relationship between
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dependent and independent variables, the model uses a log
transformation to the odds ratio defined as the ratio of the
probability of the event happening divided by the probability of
the event not happening (LaValley, 2008). The logistic regression
hypothesis is defined as (Nasteski, 2017):

hθ x( ) � g θTx( ) (3)

Where the function g is a sigmoid function defined as the
following:

g z( ) � 1
1 + ⅇ−z

(4)

Logistic regression uses a Maximum Likelihood Estimation
(MLE) loss function, which is a conditional probability. The
algorithm assigns each observation to class 0 or class 1 based on
whether the probability is greater or smaller than a given threshold,
0.5 for example, (Belyadi and Haghighat, 2021).

3.3 Decision trees

Decision Trees (DT), also known as Classification And
Regression Trees (CART) is one of the most popular supervised
learning algorithms based on recursive partitioning (Jiang et al.,
2020). This approach was first introduced by Breiman et al. (1984),
and it relies on dividing a heterogeneous large dataset into multiple
smaller homogeneous subsets, which leads to a branching structure.
This structure (Figure 1) consists of nodes connected through
branches. If a node does not represent an incoming edge, it is
called a root. Generally, all nodes have one incoming edge and two
ormore outgoing edges. The nodes with no outgoing edges are called
leaves. In decision trees, splitting the training data is performed by
answering several questions incrementally from the topmost node to
a leaf. A good question can split a heterogeneous dataset into several
homogenous subsamples. Decision trees can deal with both
classification and regression problems. For continuous variables,
the split is performed using a threshold, the rule takes the form x< s
where s is a threshold over the variable x. Contrary, when the

variable is discrete, the split has the form x ∈ Lwhere L is a subset of
possible levels of x. When the target variable is continuous, which
means we are dealing with regression, the predicted value of each
subgroup is the average value of y for all observations in the training
set assigned to that subgroup (Crisci et al., 2012). In contrast, when y
is discrete and DT algorithm is dealing with classification problems,
the most frequent level of y over the leaf observation is assigned to
the target value. The basic algorithm used to build decision trees for
regression matters is the Iterative Dichotomiser 3 (ID3) which uses
the standard deviation reduction (SDR) to generate the decision tree.
In classification situations, the ID3 algorithm uses entropy, defined
as a measure of the homogeneity of subsamples, and information
gain (Choudhary and Gianey, 2017). This method is widely used
because of its flexibility and ease of interpretability.

3.4 Ensemble learning

3.4.1 Bagging
Bagging, also called Bootstrap aggregating, is an ensemble

method used for assembling multiple versions of a predictor to
get an aggregated strong predictor (Breiman, 1996). Given a labeled
training set (X1, Y1)/(Xn, Yn) , bagging algorithm constructs a
bootstrap replicate (X1

*, Y1
*) . . . (X*

n, Y
*
n), by randomly selecting

samples n times with replacement from the original dataset, and
then using them as new learning sets for the CART model. The final
model is obtained by repeating these steps M times during the
learning process. When predicting a numerical outcome, the
aggregation algorithm averages the outcome of all predictors. If
the target variable is a class label, the bagging predictor is then
defined as the majority vote over the M models (Bühlmann, 2012).
Bagging algorithms outperformed simple CART models, showing
substantial gains in accuracy and significant optimization for weak
learners who exhibit unstable behavior. However, bagging
algorithms are sensitive to changes in training sets and can
slightly reduce the performance of stable procedures (Breiman,
1996; Freund and Schapire, 1996; Bühlmann, 2012; Crisci et al.,
2012).

FIGURE 1
Decision trees structure.
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3.4.2 Random forest
Random Forest consists of a combination of tree predictors that

operates as an ensemble (Breiman, 2001). These decision trees are
generated by a randomized tree-building algorithm. The algorithm
builds several trees using different random samples of the same size
as the original training set by including certain items more than
once. Additionally, at each node of the decision trees, the split
considers a small random subset of features. As a result, the
predictions of these trees can be different. The target value is
then assigned to a certain class based on the majority vote over
the prediction given by the trees (Kingsford and Salzberg, 2008).
Random forests can also be used for regression, in which case the
estimated value of the output variable is the average of the
predictions of the trees in the forest (Choudhary and Gianey, 2017).

3.4.3 Boosting
Boosting is a strategy used to enhance the accuracy of prediction

models. It works bymerging multiple simple models, known as weak
learners, into one comprehensive and more accurate model. These
weak learners, such as basic decision trees, do not have high
predictive power on their own. However, when many of them
are combined using a boosting algorithm, their collective
accuracy significantly improves (Freund and Schapire, 1996).

The Adaboost is one of the most widely used practical boosting
algorithms. The learning procedure of this algorithm starts by taking
m labeled training examples S � ((x1, y1)/(xm, ym)), where xi
belongs to some space X and it is represented as a vector of input
values, and yi∈Y is the labeled output associated with xi. Boosting
algorithm runs repeatedly in a series of rounds t = 1, . . . ,T, and every
weak learner who’s given a distribution Dt, which refers to the
distribution of weights assigned to the examples in the training set S
at each iteration, finds a weak hypothesis ht:X→Y. The overall aim of
the weak learning algorithm is to find a hypothesis, called weak
hypothesis, that minimizes the weighted error t associated to Dt. The
final outcome of the boosting algorithm is a combination of all the
weak hypotheses, where each one is assigned a weight (αt) according
to its importance. Themore accurate a weak hypothesis is, the higher
its weight. This final combination is a kind of “majority vote” of all
the weak hypotheses, and it is much more accurate than any of the
individual weak learners. Mathematically, the final hypothesis H is
represented as a weighted majority vote of the weak hypotheses,
where every hypothesis ht is multiplied by a weight αt (Freund and
Schapire, 1996). Boosting is effective at reducing both random
variability (variance) and systematic error (bias) in the
predictions. It also has a unique feature where it focuses more on
the more challenging examples, based on the performance of the
previous weak learners. This makes boosting algorithms perform
better than other methods like bagging, and makes them less
sensitive to changes in the training data (Freund and Schapire,
1996).

3.5 Kernel-based algorithms

3.5.1 Reproducing kernel Hilbert spaces (RKHS)
Reproducing kernel Hilbert (RKHS) is a semi-parametric

regression model applied for the first time on marker genotypes
by Gianola et al. (2011). This method has shown great

computational potential, especially when p >> n. RKHS is a
Hilbert space (H) of functions where every function can be
thought of as a point in Euclidean space, and is assumed to be
bounded and linear. In other words, if two functions f and g have
close norms ‖f(8) − g(x) → 0‖, they also have close values
|f(x) − g(x) → 0|. The learning task of RKHS can be described
as follows: Let xi be a vector of marker genotypes (input), yi a vector
of genetic values (output), and g(x) an unknown function of genetic
effects.

To infer g, RKHS proceeds by defining a space of functions from
which an element ĝ will be chosen if it minimizes the loss function
bellow:

l g
∣∣∣∣λ( ) � y − g

����
����2 + λ g

����
����2H (5)

Where λ is a regularization parameter that controls tradeoffs
between goodness of fit and model complexity, H represents a
Hilbert space, and ‖g‖2H is the square of the norm of g on H. The
square of the norm measures the model complexity. According to
Manton and Amblard (2014), RKHS theory can be used to solve
three types of problems:

(i) when the problem is defined over a subspace that happens to be
RKHS. This suggests that mapping the problem space into a higher
dimensional space makes the problem easier. Genomic selection
poses a high-dimensional challenge as the number of genotypes (p)
typically exceeds the number of individuals (n). By leveraging an
RKHS framework, it becomes possible to mitigate this
dimensionality and facilitate solving such problems. Introducing
a Gaussian kernel allows for transforming the genotypic data into
an appropriate RKHS representation, whereby subsequent linear
regression models can be effectively used for predicting genetic
values within this reduced-dimensional space.

(ii) when a problem has a positive semi-definite function: In the
field of genomic selection, a critical component is the genetic
relationship matrix (also referred to as the kinship matrix),
which quantifies the genetic similarity between individuals.
This function serves an important purpose in correcting for
confounding factors such as population structure and familial
relatedness in association studies. Utilizing a reproducing
kernel Hilbert space is one solution to the problem that
high-dimensional genotypes present. By applying this
approach, we can leverage the kernel trick to effectively
handle and make more manageable this complex problem.

(iii) When the data points can be embedded into a RKHS with the
kernel function capturing the characteristics of the distance
function, given all the data points and a function determining
the distance between them Nayeri et al. (2019). One common task
in genomic selection is to group individuals based on their
genotypes. This is typically done for purposes such as
identifying subpopulations or accounting for population
structure. To achieve this, the genotypes can be embedded into
a reproducible Kernel Hilbert Space using an appropriate kernel
function, such as a Gaussian or linear kernel. By doing so, we are
able to capture the genetic similarity among individuals. The
clustering algorithm operates within this RKHS and aims to
find clusters that are well-separated in the RKHS even if they
may not appear well-separated in the original genotype space.
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3.5.2 Support vector machines
Support vector machines (SVM) is a non-parametric algorithm

proposed by Cortes and Vapnik (1995). It was first conceived for
two-group classification problems; however, it is widely used
nowadays for both regression and classification. When dealing
with clustering, the aim of SVM algorithm is to identify an
optimal hyperplane defined as a boundary that maximally
separates classes (Jiang et al., 2020). When data points are
linearly separable, the SVM algorithm performs a linear
classification and the optimal hyperplane is found using
numerical optimization (Crisci et al., 2012). Otherwise, SVM can
perform a non-linear classification using the Kernel function.
Gaussian kernel function is used to map the data points from a
data space to a high-dimensional feature space. In the feature space,
small spheres appear to enclose the image of data, these spheres are
mapped back to the data space and form cluster boundaries that
enclose data points of the same cluster (Ben-Hur et al., 2001). The
boundaries should maximize the margin between them and the
classes to minimize the classification error (Mahesh, 2020). When
the SVM algorithm is applied to regression problems, the loss
function should include a distance measure. The possible loss
functions are the quadratic, Laplacian loss function, Huber and
the insensitive loss function (Gunn, 1998). SVM algorithms can
result in highly accurate predictions due to their flexibility. However,
they’re described as a black box because no metrics are provided for
how predictors optimize the hyperplane, which makes the
predictions hard to interpret (Jiang et al., 2020).

3.6 Nearest neighbors

Nearest neighbors model is one of the most simple and intuitive
machine learning algorithms. The idea of this approach is to forecast
the value of a target variable yi associated with an input variable xi
based on the distance between xi and other data points. Generally,
Euclidean distance is used, but there are other methods to calculate
this distance, such as Manhattan distance (Zhang, 2016). In
classification, yi is assigned to the class label of the majority of
the nearest data points in the space. Alternatively, when dealing with
regression, the predictor is the average of the output over the nearest
neighbors (Crisci et al., 2012). The K-nearest neighbors (KNN) is the
most popular algorithm in this category. It is based on the same idea
that the nearest patterns to a datapoint xi deliver useful label
information. The unknown parameter K decides how many
neighbors will be considered in the learning process (Kramer,
2013). The number of neighbors K has a significant impact on
the performance of the algorithm. An optimal K is the one that
strikes a balance between overfitting (low bias but high variance) and
underfitting (low variance but high bias). Some authors suggest K to
the square root of the number of observations in the training set
(Zhang, 2016).

3.7 Deep neural networks

Deep learning is a family of powerful learning methods capable
of recognizing complex patterns in raw data (Vieira et al., 2020). The
well-known Rosenblatt “perceptron” proposed in the 1950s was the

first attempt to conceive a model closely analogous to the perceptual
processes of the human brain (Rosenblatt, 1957). Deep neural
networks’ (DNN) structure (Figure 2) consists of stacked layers
of connected neurons. In other words, the DNN model comprises a
certain number of layers, each layer contains several neurons. Each
neuron is connected to the neurons in adjacent layers through
weights that reflect the strength and direction of the connection
(excitatory or inhibitory) (Montesinos-López et al., 2021). DNN
models are characterized by their depth, size and width. The number
of layers that a DNN contains, excluding the input layer, is called
depth. The total number of neurons in the model is referred to as the
size. Finally, the width of the DNN is the layer that comprises the
largest number of neurons.

When running DNN, a set of observations X enter the model
through the input layer. The observations xi are the input and the
output of this layer. In the hidden layers of the DNN, every neuron
of a given layer receives from the layer of lower hierarchical level, the
weighted sum of its neurons’ output, and then passes it through an
activation function to drive it as an output for that neuron. In the
hidden layers, the most widely used activation functions are the
rectified linear unit, hyperbolic tangent activation and the sigmoid
function. In the output layer, the DNN is meant to perform either a
classification or a regression based on the nature of the target
variable. When dealing with classification, the number of neurons
in the output layer is equal to the number of classes. Additionally,
different activation functions could be used according to the type of
the target variable. Softmax is used for categorical variables, the
exponential function for count data and the sigmoid function for
binary outcomes (Vieira et al., 2020; Montesinos-López et al., 2021).
In regression problems, the output layer represents the estimated
values of the target variables and linear activation functions are
applied. The most successful activation function when dealing with a
continuous variable is the rectified linear unit (ReLU) (Bircanoğlu
and Arıca, 2018). The tanh activation function is used in DNN to
introduce non-linearity in the model and to allow the model to learn
from both positive and negative weights since it is centered around
zero (unlike the sigmoid function). It is typically used in the hidden
layers.

Like other ML models, training DNN consists of choosing
optimal weights that minimize the differences between real and
estimated values of the target variable. The gradient descent is used
to minimize the loss function. These parameters need to be updated
during the learning process. When first training the DNNmodel, the
weights are randomly initialized. Once an observation has entered
the model, the information is forward propagated through the
network until it predicts a certain output value. The gradients of
the loss function are then computed using a hyperparameter called
the learning rate η, which indicates how big the steps of gradient
descent should be, and then used to update the function parameters
(weights and biases). Backpropagation is another efficient method of
computing gradients. The concept of this method is based on the fact
that the contribution of each neuron to the loss function is
proportional to the weight of its connection with the neurons of
the following layer. Therefore, these contributions could be
calculated starting from the output layer and backpropagated
through the network using the weights and the derivative of the
activation function (Pereira and Borysov, 2019; Vieira et al., 2020;
Montesinos-López et al., 2021).
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Deep learning comprises a wide variety of architectures. The
most popular ones are the feedforward networks, also called the
multilayer perceptron (MLP), recurrent neural networks (RNN) and
the convolutional neural networks (CNN).

3.7.1 Multilayer perceptron (MLP)
The multilayer perceptron (MLP) is a layered feedforward

network where all layers are fully connected. Every neuron of a
given layer is connected to neurons of the adjacent layer, the
information flows in a single direction. In other words, there are
no intralayer or supralayer connections. MLPs are found to be
powerful and simple to train. However, these networks are not
suitable to deal with spatial or temporal datasets and they’re prone to
overfitting (Montesinos-López et al., 2021).

3.7.2 Recurrent neural networks (RNN)
In Recurrent Neural Networks (RNN), information flows in

both directions. Every neuron has three types of connections:
incoming connections from the previous layer, ongoing
connections toward the subsequent layer, and recurrent
connections between neurons of the same layer (Montesinos-
López et al., 2021). This recursive structure allows this network
to have some notion of memory since the output of a layer depends
on both current and previous inputs. RNN are frequently used to
model space-temporal structures. It is also used in the fields of
natural language processing and speech recognition (Pereira and
Borysov, 2019; Zingaretti et al., 2020).

3.7.3 Convolutional neural networks (CNN)
Convolutional Neural Networks (CNN) are designed to

accommodate situations where data is represented in the form of
multiple arrays. The input variable can have one-dimension such as
SNPs, two dimensions such as color images, or three dimensions for
videos or volumetric images (LeCun et al., 2015). The architecture of
CNNs is made up of convolutional and pooling layers followed by
fully connected neural networks (Pereira and Borysov, 2019). When
training CNNs, the first two types of layers, namely, convolutional

and pooling layers, perform feature extraction. The fully connected
neural network is meant to perform the classification or the
regression task. In the convolutional layer, a mathematical
operation is performed to generate one filtered version of the
original matrices of the input data. This convolutional operation
is called “kernel” or “filter”. A non-linear activation function,
generally ReLU, is applied after every convolution to produce the
output, which is organized as feature maps. The pooling operation
comes after to smooth out the results, its role is to merge
semantically similar features into one. In other words, pooling
reduces the number of parameters and makes the network less
computationally expensive. Max pooling is a typical pooling
operation that proceeds by extracting patches from the feature
maps, determining the maximum value in each patch, and then
eliminating all the other values. Finally, after turning the input
matrices into a one-dimensional vector, the features are mapped by a
network of fully connected layers similar to the aforementioned
feedforward deep network to obtain the final output, the
probabilities of a given feature belonging to a given class for
example,. The output of the fully connected neural network is
fed to another different activation function to perform
classification or regression based on the output variable
(Yamashita et al., 2018). CNNs have been successfully applied in
visual and speech recognition, natural language processing, and
various classification tasks (LeCun et al., 2015; Yamashita et al.,
2018; Pereira and Borysov, 2019).

4 Performance fitness and errormetrics

Machine learning algorithms need to be rigorously evaluated in
order to confirm their validity in understanding complex datasets
and hence extend the use of this model in different datasets.
Generally, the performance of ML models is assessed using
Performance Fitness and Error Metrics (PFEMs), defined as
mathematical constructs used to measure how close the predicted
and real observed values of a given variable are. Choosing the right

FIGURE 2
A graphical representation of a simple neural network.
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metric for assessing the performance of a predictor is very delicate
because a limited understanding of the behavior of algorithms can
lead to misinterpretations of results and thus false assumptions. In
addition, PFEMs are used differently when dealing with regression
and classification problems.

In regression, performance metrics are based on calculating the
distance between predicted and real values using subtraction or
division operations, sometimes supplemented with absoluteness or
squareness. Moreover, PFEMs in regression also investigate the
distribution of residuals, whether it is random or regular, which
indicates that the regression model does not explain all the regularity
in the dataset. The most common PFEMs used in regression are
(Table 1): mean square error (MSE) or root mean square error
(RMSE), normalized mean squared error (NMSE), correlation
coefficient (R), r squared (R2), mean absolute error (MAE), and

mean absolute percentage error (MAPE). They are easy to interpret,
straightforward, and they indicate the magnitude of the difference
between measured and predicted values (Naser and Alavi, 2021).
The interpretation of these metrics can be found elsewhere
(Botchkarev, 2018).

Classification models are meant to categorize data into distinct
classes. Therefore, assessing the performance of classifiers relies on a
confusion matrix where columns represent the predicted values,
while rows represent the actual values as described in Figure 3, where
TP refers to true positives, TN denotes true negatives, FP denotes
false positives, and FN refers to false negatives. The performance of
classifiers is often evaluated using prediction accuracy (PAC),
sensitivity or recall, specificity, and precision. Based on the
confusion matrix, these metrics are defined as below:

PAC � TP + TN

TP + FP + TN + FN
, precision � TP

TP + FP
,

recall � TP

TP + FN
, specificity � TN

TN + FP
(6)

Other methods based on the aforementioned metrics have also
been broadly used in assessing the performance of classifiers. The
F1 score that combines both precision and recall in a harmonic
mean in the following formula:

F1 score � 2 x
precision x recall

precision + recall
(7)

Moreover,Matthews (1975) introduced a coefficient used tomeasure
the performance of binary classifiers, called the Matthews correlation
coefficient (MCC). This coefficient combines all four measures in the
confusion matrix, and thus it is qualified as the most informative metric
especially when a significant imbalance in class sizes is noticed (Nayeri
et al., 2019). MCC formula is represented below:

MCC � TPxTN − FPxFN������������������������������������������
TP + FP( ) x TP + FN( ) x TN + FP( )x TN + FN( )√

(8)
Another criterion widely used to measure the performance of

classifiers is the Area Under the Receiver Operating Characteristic
(ROC) curve (AUC). The ROC curve visualizes the tradeoff between

TABLE 1 Common performance metrics used for the evaluation of regression models.

Metric abbreviation Metric name Metric formula

MSE Mean squared error
MSE � 1

N∑
N

n�1
[y(n) − ŷ(n)]2

RMSE Root mean squared error RMSE � �����
MSE

√

NMSE Normalized mean squared error

NMSE �
∑
N

n�1
[y(n)−ŷ(n)]2

∑
N

n�1
[y(n)−y ]2

MAE Mean absolute error
MAE � 1

N∑
N

n�1
|[y(n) − ŷ(n)]2|

MAPE Mean absolute percentage error
MAPE � 100

N ∑
N

n�1
|[y(n)−ŷ(n)]2y(n) |

R2 Coefficient of determination R2 � 1 −NMSE

Where N (1 , ..., n) is the number of observations, y(n) refers to observed values, and ŷ(n) refers to the estimated values.

FIGURE 3
Interpretation of ROC curves of varying sensitivity and specificity. The
sensitivity and the specificity of the test increases as the curve approaches
thepoint a (x=0, y= 1). Thecloser thecurves are to thediagonal line the less
precise they are. From “ROC-ing along: Evaluation and interpretation
of receiver operating characteristic curves” by Carter et al. (2016).
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sensitivity and specificity. In other words, the curve captures the
ratio of false to true positive rates under variation of the decision
threshold (Hoffmann et al., 2019). Generally, good performance is
detected when the curve is high and close to the left in the ROC
space. In contrast, an inaccurate method has a curve close to the
main diagonal (Figure 4). Thus, when comparing several ML
models, the one with the highest AUC value is the most accurate
(Metz, 1978).

5 Machine learning models applied to
genomic prediction in animal breeding

Machine learning algorithms have been widely used in various
fields. Their ability to discover patterns in large, messy datasets has
driven researchers to investigate their performance in dealing with
complex models and nonlinearities in large datasets. Animal
breeding in the post-genomic era is a domain that deals with
high-dimensional marker datasets such as genomics,
epigenomics, transcriptomics, proteomics and metabolomics. The
most commonly used marker data sets in animal breeding are single
nucleotide polymorphism (SNPs) data sets that represent the genetic
variation in a genome. SNP markers data sets are very large, for
example, the data set resulting from genotyping 2,000 individuals for
10,000 SNP markers, contains 20 million data points. Furthermore,
they can be complex and noisy due to genotyping errors, missing
data, batch effects, and biological variability. Copy number variation
(CNV) is another valuable form of genetic variation that
complements SNPs analysis. CNV datasets are used to investigate
diversity within populations (Yang et al., 2018). They can serve as
informative markers for marker-assisted selection by identifying
CNVs associated with desirable traits (Ma et al., 2018), and genomic
prediction to enhance the accuracy of predicting breeding values
(Hay et al., 2018), etc. In addition, microarray data provide valuable
information concerning gene expression, by measuring the mRNA
expression levels of tens of thousands of genes. Gene expression
datasets are known to be massive (large number of genes) and
redundant, and thus, their manipulation requires a lot of pre-
processing and dimensionality reduction (Liu and Motoda, 2007).
Applying machine learning models is hence becoming attractive in

genomics, due to their potential in dealing with large, noisy data and
modeling minor nonadditive effects as well as interactions between
phenotypes and genotypes.

Machine learning models have several important applications in
genomics. Through the introduction of sophisticated algorithms and
computational models, ML can be trained using large datasets of
genotypes and phenotypes to predict animals’ breeding values for
certain traits. This would enable an accurate selection of animals
with the highest genetic merit and allow for more informed breeding
decisions. MLmodels have successfully been implemented to predict
genomic breeding values across various animal species, including
dairy cattle (Beskorovajni et al., 2022), beef cattle (Srivastava et al.,
2021), pigs (Zhao et al., 2020), and broilers (González-Recio et al.,
2008). The estimated GEBVs provide an accurate prediction of
animals’ genetic potential and thus identify animals with high
genetic potential that surpass the population average. Therefore,
ML models can have a valuable role in allowing breeders to make
more precise breeding decisions, leading to faster genetic progress.

In addition, machine learning algorithms can also be deployed to
predict disease occurrence based on integrated information of
genotypes and health records. For example, Ehret et al. (2015)
applied ML to encounter a serious health problem in the intensive
dairy industry, which is subclinical ketosis risk. The authors proposed
an ANN to investigate the utility of combining metabolic, genomic and
milk performance in predicting milk levels of β-hydroxybutyrate. Data
comprised SNP markers, and weekly records of the concentrations of
glycerophosphocholine, phosphocholine, and milk composition data
(milk yield, fat and protein percentage). The deep learning model
deployed provided an average correlation between real and predicted
values up to 0.643 when incorporating information about metabolite
concentration, milk yield, and genomic information.

Moreover, ML models can be coupled with GWAS and
population genomics to identify genetic variants and biological
pathways linked to specific phenotypic traits. A deep learning
framework was proposed by Zeng et al. (2021) to predict
quantitative phenotypes of interest and discover genomic markers
considering the zygosity of SNP information from plants and
animals as input. Furthermore, ML models can be used to
impute moderate-density genotypes when genotyping large
populations can be expensive and time-consuming. ML models

FIGURE 4
Confusion matrix.
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TABLE 2 Machine learning models applied to genomic prediction in animal breeding.

Year Authors Species Breed No. of
individuals

No. of
markers

Response
variable

ML
algorithms

Aim of the
study

2016 Naderi et al. Dairy cattle
(simulated)

- 20000 females and
400 males

50025 and
10005 SNPs

Subclinical Ketosis ANN (MLP) Building an ANN
for an earlier
prediction of

subclinical Ketosis
in lactation

2016 Yao et al. Dairy cattle Holstein 3000 genotyped
792 genotyped and

phenotyped

57491 SNPs RFI SVM (semi-
supervised
learning)

Describing a SVM-
based semi-

supervised learning
model, and applying

it for genomic
prediction of

residual feed intake

2018 Li et al. Beef cattle Brahman 2093 40184 SNPs BW RF, GBM,
XGBoost

Assessing the
efficiency of three
ML methods in

identifying the top-
ranked SNPs and
using the subsets of
SNPs to construct

genomic
relationship
matrices for

estimating genomic
breeding values

2020 Liang et al. Beef cattle Simmental 1217 671900 SNPs CW, LW, EMA Adaboost.RT
(integrated SVR),

KRR, RF

Applying ensemble
learning models to
predict genomic
breeding values of
three economic

traits

2020 Abdollahi-
Arpanahi et al.

Dairy cattle Holstein 1170 57749 SNPs SCR MLP, CNN,
RF, GB

Comparing the
predictive

performance of two
deep learning
methods, two

ensemble learning
methods, gradient
boosting and two

parametric methods
(GBLUP and
Bayes B)

Simulated
data

- - 100 and
1000 QTNs

A quantitative trait

2021 Chen et al. Beef cattle Nellore 18 16,423 genes FE RF, XGBoost,
RX, SVM

Applying Rf,
XGBoost and RX to

identify small
subsets of
biologically

important genes to
classify animals into
High Feed Efficiency

and Low Feed
Efficiency

2021 Srivastava et al. Beef cattle Hanwoo 7324 53866 SNPs CWT, MS, BFT EMA RF, XGB, SVM Comparing the
predictive ability of
three ML models in

predicting
phenotypes from

genotypes

2021 Wang et al. Pig Yorkshire 2566 44922 SNPs TNB, NBA SVR, KRR, RF,
Adaboost.R2

Exploring and
comparing the

prediction ability of
fourML models to
GBLUP, ssGBLUP

and bayesian
methods in genomic

(Continued on following page)
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can accurately infer missing genotypes and fill the gaps to create
moderate density genotypes. This has already been implemented in
the beef cattle genomic dataset (Sun et al., 2012).

Taken together, ML models appear to be a powerful tool for
enabling more accurate predictions, targeted selection, and an
improved understanding of genetic mechanisms. However, when
training ML models on biological data, several challenges can occur.
For example, when using markers data, environmental data, and
phenotypic records all together to predict a certain variable, the large
heterogeneity of the input data can be a hurdle. Therefore, it is
indispensable to perform a pre-processing step that includes
formatting, cleaning, scaling, and normalizing the data. This step
ensures that the data is prepared to optimize the performance and
accuracy of the machine learning model. Markers data sets are
usually massive and comprise a lot of noise. Using the raw data can
lead to a low performance and overfitting. Thus, performing feature
selection is vital when manipulating omics data in order to reduce
the dimensionality of the data by selecting relevant features while
eliminating noise from the model. Multiple methods can be used to
perform feature selection including statistical methods, correlations,
or hypothesis testing. Recently, ML models were proved to be very
powerful in feature selection. The most broadly used machine
learning-based methods for feature selection are filters, wrappers,
and embedded methods that combine filter and wrapper methods
(Tadist et al., 2019). Machine learning-based feature selection is
widely used when manipulating animal species marker data sets.
Finally, when training ML models on biological data, several steps
should be performed to ensure the quality of the data fed to the
model. In addition, adjusting the hyperparameters and generalizing
the model through regularization techniques are also central to
optimizing the performance of the model. There are multiple
techniques to optimize ML models, such as gradient descent,

stochastic gradient descent, random search, grid search, Bayesian
optimization, and genetic algorithms.

Now that we have discussed the overall applications of ML
models in genomic prediction and the multiple issues encountered
while implementing those models on markers data, we will review,
in this section, some of the published studies on the application of
different ML models for genomic prediction in animal breeding,
feature selection, and genotype imputation separately, to provide a
meta-picture of their potential in terms of prediction accuracy and
computational time. Data sets and different machine learning
models applied to genomic prediction in a handful of the
reviewed papers are summarized in Table 2. In Supplementary
Materials; Table 1 contains the full summary of the reviewed
papers, and Table 2 presents the programming languages and
packages used to train the models in the aforementioned studies.

5.1 Genomic prediction

The wide majority of traits of interest in animal breeding are
presumed to be influenced by many genomic regions with complex
interactions. Kernel-based methods are gaining consideration over
conventional regressionmodels due to their capacity to capture non-
additive effects. A more succinct description of kernel-based
methods applied to GP can be found in Morota and Gianola
(2014). González-Recio et al. (2008) used the F-metric model,
kernel regression, reproducing kernel Hilbert spaces (RKHS)
regression, and Bayesian regression to predict mortality in
broilers and see how well they did compared to the standard
genetic evaluation (E-BLUP), which is only based on pedigree
information. The dataset contained records for mortality rates for
12167 progeny of 200 sires with a total of 5523 SNPs. The authors

TABLE 2 (Continued) Machine learning models applied to genomic prediction in animal breeding.

Year Authors Species Breed No. of
individuals

No. of
markers

Response
variable

ML
algorithms

Aim of the
study

prediction of
reproductive traits

2021 Beskorovajni
et al.

Dairy cattle Holstein 92 - MFP, MPP, CM, FM,
LIV, SCE, HCR,

CCR, DSB, SSB, GL

MLP Predicting yield and
fertility traits using
an MLP model
based on the

Broyden-Fletcher-
Goldfarb-Shanno

iterative
optimization
algorithm for

genomic selection

2021 An et al. Beef cattle Simmental 1301 671990 SNPs Cosine Kernel based
KRR (KcRR),SVR

LW, CW, EMA Assessing the
prediction

accuracies of
12 traits with

various heritabilities
and genetic

architectures using
parametric methods
(GBLUP and Bayes
B), and two machine
learning models
(KcRR and SVR)

Dairy cattle Holstein 5024 42551 SNPs MY, MFP, SCS

Pig - 3534 43494, 43407, and
43412 SNPs for

each trait

T1, T2, T3

Simulated
data

- 4000 50 SNPs for each
trait (3 traits)

T1, T2,T3

A summary of a handful of the reviewed researches in the paper. For the full version of the table please view Supplementary Materials.
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concluded that kernel regression and RKHS regression had a low
residual sum of squares and increased the accuracy from 25% to
150% relative to other methods, and thus the authors recommended
their utility in the genomic prediction of early mortality in broilers.
An et al. (2021) developed another kernel-based algorithm named
Cosine Kernel-based Ridge Regression (KcRR) to perform genomic
prediction using simulated and real datasets. The simulated dataset
included 4000 individuals and concerned three quantitative traits
with various heritabilities (0.36, 0.35, and 0.52). Meanwhile, the real
data concerned three species: a Chinese Simmental beef cattle
dataset contained 1,301 bulls, with a total of 671990 SNPs and
concerned three traits of interest: live weight (LW, kg), cold carcass
weight (CW, kg), and eye muscle area (EMA, cm2). The pig dataset
included 3,534 animals, and finally, the German Holstein cattle
dataset included 5,024 bulls with a total of 42551 SNPs that
concerned three phenotype traits, milk yield (MY, kg), milk fat
percentage (MFP,%), and somatic cell score (SCS). The designed
model consisted of a kernel-based ridge regression, which is a ridge
regression built in a higher dimensional feature space that uses a
Cosine similarity matrix (CS matrix) instead of the genomic
relationship matrix (G matrix). The difference between these two
matrices is that the CS matrix measures the cosine of the angle
between two projected vectors, and the G matrix in an
m-dimensional feature space where m is the number of SNP
markers. For comparison purposes, a 20-fold cross-validation
approach was used to evaluate the prediction accuracy of KcRR
to that of GBLUP, BayesB, and SVR. The authors have also
simulated for the quantitative traits different heritabilities, and
genetic architectures, including one major gene and a large
number of genes with minor effects, a number of genes with
moderate effects and many genes with small effects, and finally a
large number of genes with small effects, in order to assess the
performance and consistency of these methods. Overall, KcRR had
the best prediction accuracy among the methods, in addition, it
performed stably for all traits and genetic architectures, which
confirms its reliability and robustness. Therefore, An et al. (2021)
suggested the use of KcRR and the CS matrix as a potential
alternative in future GP. Zhao et al. (2020) investigated the
performance of SVM in a pig dataset containing 3,534 samples
with a different number of SNPs for each trait respectively 45,025,
45,441, 44,190, 44,151, and 44,037 SNPs for T1, T2, T3, T4, and T5.
For training the SVM model, a suitable kernel function was
selected. The authors tested the prediction ability of four
commonly used kernel functions namely, the Radial Basis
Function (RBF), the Polynomial Kernel Function, the Linear
Kernel Function, and the Sigmoid Kernel Function in
previously published pig and maize datasets. The findings
demonstrated that SVM-RBF had the best performance, the
SVM-sigmoid and the SVM-poly models had similar accuracies,
and the SVM-linear had the lowest accuracy. As a result, the
authors chose using the SVM-RBF model to adjust the
hyperparameters of the final SVM model. Afterwards, the
authors evaluated the performance of SVM-RBF, GBLUP and
BayesR in fitting the five pig datasets, using a 10-fold cross-
validation approach. Overall, the performance of the trained
models was similar. However, the SVM model performed better
than BayesR but worse than GBLUP in terms of time, and better
than GBLUP but worse than BayesR in terms of memory.

Ensemble learning has been broadly used in the genomic
prediction of animal breeding values. Naderi et al. (2016) studied
the use of RF for genomic prediction of binary disease traits using
simulated data from 20,000 cows with different disease incidence
scenarios, different heritability (h2 = 0.30 and h2 = 0.10), and
different genomic architecture (725 and 290 QTL, populations
with high and low levels of linkage disequilibrium). The training
set contained 16,000 healthy cows, and the testing data contained the
remaining 4,000 sick cows. Afterwards, the number of sick cows was
increased progressively by moving 10% of the sick individuals to the
training data, ensuring that the size of both the training and testing
data remained constant. This study compared the performance of
RF and GBLUP using the correlations between estimated genomic
breeding values and true breeding values, and the area under the
curve (AUROC). The results confirmed that RF had a great
advantage in the binary classification for scenarios with a larger
marker density. In addition, the best prediction accuracies of RF
(0.53) and GBLUP (0.51), and the highest values of AUROC for RF
(0.66) and for GBLUP (0.64), were achieved using 50,025 SNPs, a
heritability of 0.30, 725 QTL, and a disease incidence similar to the
population disease incidence (0.20). The authors also noted that the
genetic makeup of the population had an impact on the performance
of RF and GBLUP. However, the variability was more pronounced
for RF than for GBLUP.

A boosting algorithm called L2-Boosting was suggested by
González-Recio et al. (2010) to forecast the progeny test
predicted transmitting abilities for the length of productive life
(PL) in a dairy cattle dataset, and the average food conversion
rate records in a broiler dataset. The dairy cattle data set consisted of
4702 Holstein sires with a total of 32611 SNPs, and the broiler
dataset comprised 394 sires of a commercial broiler line with
3,481 SNPs. The L2-Boosting algorithm proceeds by combining
two weak learners, namely, ordinary least squares (OLS) and non-
parametric (NP) regression. The performance of OLS-Boosting and
NP-Boosting was compared to Bayesian LASSO (BL) and Bayes A
regression. The results showed that OLS-Boosting had the lowest
bias and mean-squared errors (MSEs) in both the dairy cattle
(0.08 and 1.08, respectively) and the broiler (0.011 and 0.006,
respectively) data sets. The authors concluded that L2-Boosting
with a suitable learner represents a good alternative for genomic
prediction, providing high accuracy and low bias in a short
computational time.

In another study, a bagging approach using GBLUP (BGBLUP)
was performed to predict the genomic predicted transmitting ability
(GPTA) of young Holstein bulls for three traits: protein yield (PY),
somatic cell score (SCS), and daughter pregnancy rate (DPR)
(Mikshowsky et al., 2017). The dataset consisted of
17276 Holstein bulls with a total of 57169 SNP markers, and it
was split into a reference population set used to train the model and
a testing set for the evaluation. The aim of the proposed bagging
approach was to create 50 bootstraps containing bulls selected
randomly, with replacement, from the reference population, until
each bootstrap reaches the same number of individuals as the
original reference population. GBLUP was applied to predict the
GEBVs of individuals for each trait. According to the results,
GBLUP outperformed BGBLUP in the genomic prediction for
PY, SCS, and DPR, the correlations between the real and
predicted values of each trait for GBLUP were 0.690, 0.609, and
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0.557, and 0.665, 0.584, and 0.499 for BGBLUP. In summary, the
authors found no advantage to using BGBLUP over GBLUP for
genomic prediction.

For comparison purposes, several studies have deployed various
machine learning methods to forecast and compare their predictive
accuracies when trained using genomic data. For example, Ogutu
et al. (2011) compared the performance of three machine learning
models, namely RF, stochastic gradient boosting, and SVMs, in
estimating genomic breeding values. A simulated dataset of
2326 genotyped and phenotyped individuals and 900 individuals
who lacked phenotypic records was used. As a performance metric,
Pearson correlations were used between the simulated values and the
predicted values from the validation set, as well as between the
predicted and real breeding values for non-phenotyped individuals.
The results showed that stochastic gradient boosting and SVM had
better correlations between the simulated values and predicted
values compared to RF. However, RF provided reasonable
rankings of the SNPs, which can be useful for identifying
markers for further testing. In conclusion, stochastic gradient
boosting and SVM are found to be able to accommodate
complex relationships and interactions in marker data such as
epistasis. They have also outperformed RF in the genomic
prediction of the quantitative trait, however, SVM was
computationally intensive due to the grid search for tuning the
hyper-parameters. In contrast, Srivastava et al. (2021) found
different conclusions when evaluating the performance of RF,
XGB, and SVM in predicting four traits namely, carcass weight
(CWT), marbling score (MS), backfat thickness (BFT) and eye
muscle area (EMA) of 7234 Hanwoo cattle. According to this
study, XGB yielded higher correlations for CWT, MS, (0.43, 0.44,
respectively) compared to GBLUP (0.41, 0.42), and lower (0.23, and
0.31) than GBLUP (0.35, and 0.38) for BFT, and EMA. Meanwhile,
GBLUP delivered the lowest MSE for all traits. Among the ML
methods, XGB had the lowest MSE for CWT and MS, and SVM
provided the lowest MSE for BFT and EMA. Despite the good
performance of XGB and SVM, the authors still concluded that there
was no advantage to using ML methods over GBLUP.

Liang et al. (2021), compared the performance of Adaboost.RT,
SVR, KRR, RF to the conventional GBLUP in predicting breeding
values for cattle growth traits in Chinese Simmental cattle (carcass
weight, live weight, and eye muscle area), using a dataset of
1,217 young bulls with a total of 671990 SNPs. Contrary to the
previous study, the authors recommended using ML methods over
GBLUP. Indeed, the predictive accuracies of SVR, KRR, RF,
Adaboost.RT and GBLUP were 0.346, 0.349, 0.315, 0.349, and
0.290 respectively. In other words, ML methods improved the
predictive accuracy by 12.8%, 14.9%, 5.4%, and 14.4%,
respectively, over GBLUP. In summary, Liang et al. (2021) found
a great advantage in using ML algorithms for GP in Simmental beef
cattle, especially Adaboost.RT due to its reliability. However, the
authors pointed out that ML models were sensitive to data, which
means that two different datasets may have significant differences in
predictive accuracy. Wang et al. (2022) used a pig dataset of
2566 Chinese Yorkshire pigs to compare the same models. The
study concentrated on estimating the genomic breeding values of
these individuals for two reproductive traits: the total number of
piglets born (TNB) and the number of piglets born alive (NBA). The
GEBVs were also estimated using classical methods [GBLUP,

ssGBLUP, and Bayesian Horseshoe (BayesHE)]. Overall, ML
methods outperformed conventional ones, and the degree of
improvement over GBLUP, ssGBLUP, and BayesHE was 19.3%,
15.0% and 20.8% respectively. Furthermore, results showed that ML
methods had the lowest MSE and MAE in all case scenarios. SVR
and KRR provided the most consistent prediction abilities including
higher accuracies and lower MSE and MAE. The findings of this
study showed that ML methods are more efficient and had better
performance in predicting GEBVs for reproductive traits, which can
provide new insights for future GP. In another report, Sahebalam
et al. (2019) evaluated the predictive ability of RF, SVM, the
semiparametric model reproducing kernel Hilbert spaces (RKHS),
and two parametric methods, namely, ridge regression and Bayes A.
The ability of the above methods to predict was tested by estimating
genomic breeding values for traits with different combinations of
QTL effects, QTL numbers, three scenarios of heritability, and two
training sets with 1,000 and 2,000 individuals. A genome of four
chromosomes was simulated, and four generations were considered
in the study. In the various simulation scenarios, the parametric
methods outperformed semi-parametric (RKHS) and non-
parametric ones (RF and SVM). However, the superiority of
parametric models compared to semi-parametric ones was not
statistically significant. In summary, Bayes A had the best
prediction accuracy among all tested models.

Deep learning algorithms are found to be powerful in
discovering intricate patterns and nonlinearity in large, messy
datasets. Their application in genomic prediction has been
investigated, however, the number of reports on DL application
in animal breeding is small, and thus their potential should be
further investigated. Gianola et al. (2011) evaluated the predictive
ability of an artificial neural network to predict three quantitative
traits, namely, milk, fat, and protein yield. In Jersey dairy cows. The
dataset contained records of the milk yield of 297 Jersey dairy cows
with a total of 35,798 SNPS. The authors conceived different
Bayesian neural networks (BNN) with various architectures that
differed in terms of the number of neurons, the type of activation
function, and the source of the input variables, whether they were
derived from pedigree or molecular markers. According to the
results, BNNs with at least two neurons in the hidden layer had
better performance. Moreover, results also showed that Bayesian
regularization helped reduce the number of weights, which helped
prevent overfitting. However, an overfitting problem still occurred
in the Jersey training set, where large correlations between observed
and predicted data were observed in the training set (0.90–0.95) and
much lower correlations in the testing set. In another study,
Beskorovajni et al. (2022) developed a multi-layer perceptron for
predicting yield and fertility traits of 92 genotyped Holstein heifers,
using several “Key traits” as input variables. These traits consist of
Milk Yield, Fat Yield, Protein Yield, Somatic Cell Score (SCS),
Productive Life (PL), Daughter Pregnancy Rate (DPR), Daughter
Calving Ease (DCE), Final Type (PTA Type) and Genomic Future
Inbreeding (GFI). An iterative method called the Broyden-Fletcher-
Goldfarb-Shanno algorithm, which proceeds by minimizing the
validation error, was used for optimization while training the
ANN model. The authors obtained one optimal ANN for each
target variable. The obtained ANN contained three layers,
11 neurons in the hidden layer and 276 weights and biases due
to the high nonlinearity of the observed system. These hyper-
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parameters led to the highest values of r2 (0.951, 0.947, 0.989, 0.985,
0.902, 0.887, 0.676, 0.953, 0.590, 0.647, and 0.444) for these traits
respectively; fat percentage, protein percentage, cheese merit, fluid
merit, cow livability, sire calving ease, sire calving ease, heifer
conception rate, cow conception rate, daughter stillbirth, sire
stillbirth, and gestation length. In the end, Beskorovajni et al.
(2022) found that the ANN (network MLP 9-11-11) based on
the Broyden-Fletcher-Goldfarb-Shanno optimization algorithm
did a good job of fitting the data and predicting yield and
fertility traits. Waldmann et al. (2020) combined a one-
dimensional CNN model with l1-norm regularization, Bayesian
optimization and ensemble prediction within Genome Wide
Prediction framework (CNNGWP) using simulated data with
additive and dominance genetic effects and real pig data of
808 Australian Large White and Landrace sows with a total of
50174 SNPs. In comparison to findings achieved with GBLUP and
the LASSO, the results demonstrate that CNNGWP does indeed
reduce prediction error by more than 25% on simulated data and by
about 3% on real pig data. In summary, Waldmann et al. (2020)
pointed out that CNNGWP appears to offer a promising approach
for GWP, however the degree of improvement depends on the
genetic architecture and the heritability. A detailed guide about the
implementation of DL for GP may be found in (Zingaretti et al.,
2020).

In order to compare the performance of ensemble learning
methods and deep learning algorithms, Abdollahi-Arpanahi et al.
(2020), compared the performances of RF and GB with MLP and
CNN, and two conventional tools, namely, GBLUP and Bayes B, in
predicting quantitative traits using both simulated and real Holstein
datasets. The simulated dataset was used to assess the performance
of ML methods in different scenarios of genetic architectures. A
quantitative trait was simulated and two scenarios of QTN number
were considered: [small (100) and large (1,000)]. QTNs were located
across the genome in two different ways: clustered or randomly, and
gene action were either purely additive or a combination of additive,
dominance and epistasis effects. On the other hand, real data from
11790 US Holstein bulls with a total of 57749 SNPs were used to test
how well ML approaches can predict complex phenotypes like SCR,
which is affected by both additive and non-additive effects.
Abdollahi-Arpanahi et al. (2020) found that results differed
depending on the genetic architecture of the trait. When pure
additive actions controlled the trait, classic statistical models had
better predictive accuracies compared to MLmethods. However, the
number of loci controlling the trait of interest appears to be an
important factor in how well the models predicted outcomes when
non-additive genetic effects occurred. The performance of ML
algorithms, and in particular, GB, surpassed that of traditional
statistical methods when the traits were controlled by a small
number of QTN. The researchers finally came to the conclusion
that, since Waldmann (2018) had already shown that loci are
clustered, ML approaches work well for predicting traits with
complex gene action and a small number of QTN (Abdollahi-
Arpanahi et al., 2020).

Genomic prediction in animal breeding usually involves small
reference population issues, especially when it concerns a novel trait,
which can be costly and labor-intensive to measure. Machine
learning models can be deployed to tackle these challenges. For
example, Yao et al. (2016) developed a self-trainingmodel, which is a

semi-supervised algorithm wrapped around SVM to encounter the
challenge of genomic prediction of residual feed intake (RFI). The
model uses 792 animals with both genotypes and phenotypes to
train a base predictor, which is used to estimate the “self-trained
phenotype” of 3,000 animals with genotypes only. To train a new
predictor that is utilized to generate the final genomic predictions,
both of these datasets are integrated. A total of 57491 SNPs were
used for the analysis. The results showed that indeed, the self-
training algorithm increased the accuracy of genomic prediction,
however, this improvement was small when the dataset already
contained more individuals with measured phenotypes.
Additionally, the correlation between predicted and measured
phenotypes increased by adding more self-trained phenotypes,
however, it reached a plateau at a certain level. In summary, Yao
et al. (2016) concluded that semi-supervised learning is a powerful
tool for enhancing the accuracy of genomic prediction for novel
traits and for small reference populations. However, choosing an
adequate sample size and an adequateML algorithm are necessary to
prevent poor predictions. As an example, the predictive ability of RF
models with a set-up similar to this study was assessed, and the
authors found no improvement in accuracy from using self-training
models (Yao et al., 2016).

5.2 Feature selection

Feature selection techniques are vital in genomic prediction.
They allow us to identify the most informative genetic markers,
mostly SNPs, that contribute to the traits of interest. In genomics,
the massive amount of markers data poses a challenge in terms of
computational efficiency and interpretability. By eliminating
irrelevant markers, feature selection methods reduce noise and
dimensionality, and increase the accuracy and performance of
ML models. In addition, feature selection procedures enable the
identification of key genetic variants, providing valuable insights
into the biological mechanisms underlying traits of interest.
Therefore, several studies have investigated the potential of ML
models in performing feature selection using SNPs datasets of
multiple animal species. Li et al. (2018a) applied three machine
learning methods, namely, RF, GBM and XgBoost, for ranking the
top 400, 1,000, and 3,000 SNPs directly related to the body weight of
Brahman cattle to generate genomic relationship matrices (GRMs)
for estimating genomic breeding values (GEBVs). The database used
consisted of the body weight records of 2093 animals with a total of
38082 SNP markers. According to the results, RF and GBM
outperformed XgBoost in identifying a subset of SNPs related to
the growth trait. Furthermore, the top 3,000 SNPs identified by RF
and GBM provided similar GEBV values to those of the whole SNP
panel. In summary, the authors highly recommend the use of RF and
GBM for identifying subsets of potential SNPs related to traits of
interest. Besides, this approach could be very useful in animal
breeding since the vast majority of research suffers from small
reference population issues, whether it is due to genotyping cost
constraints or to the nature of the target variable, which could be
costly and labor-intensive to measure, such as feed efficiency. In this
sense, Chen et al. (2021) compared the performance of two
conventional methods, t-test and edgeR and three ensemble
learning models, namely, RF, XGBoost, and a combination of
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both RF and XGBoost (RX) in identifying subsets of potential
predictor genes in different tissues related to feed efficiency in
Nellore Bulls. The dataset contained RNA sequences of five
tissues (adrenal gland, hypothalamus, liver, skeletal muscle, and
pituitary) from nine high-feed efficiency (HFE) and nine low-feed
efficiency (LFE) bulls. Using the SVM model, the predictor genes
that had been found using the abovemethods were used to divide the
animals in the testing set into HFE and LFE. The performance of the
classifier was evaluated using four metrics: overall accuracy,
precision, recall and F1-score. The results showed that RX
provided the best prediction accuracy yet with the smallest subset
of genes (117). RF, in contrast, had the worst performance despite
the fact that it had identified the largest number of candidate genes,
contrary to what has been found in Naderi et al. (2016). The authors
emphasize the idea that ML methods demonstrate great potential in
identifying biologically relevant genes that can be used in classifying
individuals accurately. In another study, Piles et al. (2021)
implemented three types of feature selection methods: filter
methods (tree-based methods), embedded methods (elastic net
and LASSO regression), and a combination of both. Ridge
regression, SVM, and GB were used after the pre-selection of
relevant SNPs with filter methods. The results showed that using
small subsets (50-250 SNPs), the feature selection method had a
significant impact on prediction accuracy. In addition, filter
methods demonstrated good performance and stability, indicating
their potential for designing low density SNP chips for evaluating
feed efficiency based on genomic information (Piles et al., 2021).

5.3 Genotype imputation

Genotype imputation plays a crucial role in animal genomics
by inferring genotypes at specific positions in a genome by
leveraging patterns and correlations within the data. Machine
learning can be deployed to perform genotype imputation. For
example, Sun et al. (2012) investigated the performance of
Adaboost in imputing moderate-density genotypes from low-
density panels in order to reduce genotyping costs. The
proposed model works, in fact, by combining the imputation
results of preexisting software packages. The database included
3059 registered genotyped Angus cattle and 51911 SNPs across the
whole genome. The missing genotypes were first imputed by
previously available packages, of which three were family-based
and the others were population-based. Consequently, the possible
combinations of the six packages resulted in 720 unique ensemble
systems. The proposed Adaboost-based systems attribute a weight
to each imputation method as a weak classifier. During the iterative
training, the weights of classifiers that provided good predictions
remained constant, whereas the weights of the misclassified
samples were increased, which emphasized the focus on difficult
samples. Finally, the final imputation of the genotype is the one
with the majority of votes from all classifiers in the ensemble
system. The results showed that indeed the ensemble method
improved the accuracy of imputation in the data, however, the
degree of improvement was limited by the fact that the packages
used as weak classifiers had already provided highly accurate
imputation results. Nevertheless, the authors highlighted the
potential of ensemble learning to provide robust systems to

address inconsistencies among different imputations of the
preexisting methods.

6 Potential for ML applications to
genomic prediction in animal breeding
in developing countries

The majority of developing countries are grappling with
satisfying the nutritional demands of an increasing human
population. Meeting the demand for animal protein in a context
of difficult environmental conditions and the predominance of
smallholder systems in a sustainable manner is a challenging
task. In addition, the introduction of highly productive dairy
cows and the use of elite AI bulls’ semen to inseminate national
dairy herds resulted in low productivity due to unfavorable
genotypes by environment interaction. Moreover, it is delicate for
developing countries to implement a consistent conventional
genomic selection breeding scheme due to the lack of reliable
phenotypes and pedigree data recording (Mrode et al., 2019).
Therefore, in order to improve national livestock systems
productivity, developing countries should find alternatives to the
aforementioned bottlenecks. The development of genomic
technologies and the remarkable decrease in genotyping costs can
be valuable for low- and middle-income countries, as they can tackle
pedigree error problems by using the genomic relationship matrix
(G) instead of the relationship matrix (A) or combining both
information in a matrix H. However, the size and structure of
the reference population is the biggest struggle for adopting GS in
developing countries, the number of genotyped animals is limited,
usually between 500 and 3,000 animals, predominated by females
due to the non-existence of AI bulls (Mrode et al., 2019).
Collaborations with developed nations, as Li et al. (2016)
describe, could therefore be advantageous for implementing GS
in these nations. Also, the use of a mixture of high-density (HD) and
low density (LD) chips followed by imputation to the HD could be
an alternative for reducing even more the genotyping costs in order
to increase the size of the reference population (Lashmar et al.,
2019).

Considering indigenous breeds in breeding programs is
indispensable in developing countries. First of all, the majority of
smallholder systems’ dairy cows are either indigenous dairy cattle or
crossbreds. Second, the conservation of genetic resources of local
breeds that are adapted to specific agro-ecologies is crucial for the
sustainability of the breed and biodiversity (Bulcha et al., 2022).
Several countries, such as Kenya, Senegal, East Africa, Ethiopia, etc.,
have already implemented genomic technologies for indigenous
breeds in Africa. Some studies used SNP data to determine the
most adequate breed-type for different production environments.
Others used genomic technologies to enhance breeding programs by
increasing the accuracy of relationships among individuals. In other
words, they have adopted genomic procedures to tackle the lack of
pedigree recording. Finally, researchers investigated the potential of
genomics for creating new breed-types that combine the adaptation
and resilience of local breeds with the high productivity of exotic
breeds. Genomic procedures and technologies have also been shown
to be useful in discovering valuable genes in indigenous breed
genomes, with significant effects due to the high levels of genome
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diversity of local breeds compared to exotic ones (Marshall et al.,
2019).

Adopting GS in developing countries could benefit from the
implementation of machine learning algorithms. First of all, given
that indigenous breeds always have small reference populations,
machine learning has shown great advantage in increasing the
accuracy of breeding values estimation in small populations, as
previously seen in Yao et al. (2016). In addition, ML models
increased the accuracy of SNP imputation from low-density (LD)
panels to high density (HD) chips, as investigated by Sun et al.
(2012). This could result in reducing genotyping costs and
increasing the size of genotyped animals (if the reference
population is small due to genotyping costs). Overall, the
potential of applying machine learning models for animal
breeding in low- and medium-income countries is remarkable, as
it could provide insightful findings. However, one of the biggest
challenges would be the lack of data. Machine learning models
typically require a massive amount of data in order to achieve high
accuracy, while low- and middle-income countries often struggle
with limited access to reliable data. Nonetheless, efforts should be
directed toward exploring alternative techniques to enhance
genomic prediction accuracy using a small reference population
and promoting data sharing through collaborations among
institutes and countries. As far as we know, the combination of
machine learning models and genomic prediction in developing
countries has not been used in any of the published studies, and thus
their potential in enhancing breeding programs in low- and middle-
income countries should be investigated in future experiments.

7 Conclusion

Machine learning algorithms have proven their high flexibility
and ability to extract patterns in large, messy datasets in various
fields such as natural language processing, robotics, speech
recognition, image processing, etc. Genomic prediction is indeed
a field of study where the main challenge is dealing with an ever-
increasing marker dataset and capturing interactions and non-
additive effects between genotypes. Consequently, investigating
the potentiality of ML algorithms in GP is gaining a lot of buzz
in the animal breeding community. Here, we reviewed studies that
applied ML models to GP, whether they concerned estimating the
GEBVs for production traits, health traits, or novel traits. In
addition, several studies used ML algorithms for feature selection
(FS) and moderate-density genotype imputation from low-density
panels. It can be observed that ML algorithms outperformed
conventional methods in some studies but were less accurate in
others, which indicates that there’s no universal method that can be
applied to enhance the accuracy of prediction regardless of the
domain of application. As a prerequisite, one should pay attention to
several factors in order to successfully apply ML algorithms. For
instance, the nature of the task, whether it consists of classification,
clustering, regression, or dimensionality reduction, the type of the
target variable (continuous or discrete), and the quality of the data
(redundant, noisy, existence of outliers, missing values). ML models

are indeed flexible and powerful, but they also have several
drawbacks. One of the most common problems encountered in
ML is overfitting. Additionally, finding the optimal hyperparameters
can be challenging, and the size of the training data needs to be very
large, especially for training deep learning algorithms. It is indeed
true that incorporating ML algorithms and biological knowledge
provides valuable results. However, marker datasets tend to be very
heterogeneous and redundant, which can lower the predictive ability
of these models. Moreover, the interpretability of non-parametric
ML models is also questionable. Even though the algorithm’s
prediction for a particular target variable is accurate, the
relationship between the input and output variables is not simple
to understand. In fact, DLmodels are broadly known for their “Black
Box” nature, which means that their interpretation cannot extract
relevant information about variables in the dataset. In summary, ML
algorithms showed great potential for fitting and extracting patterns
from large, noisy datasets. However, their adoption in livestock
breeding is still in its infancy, and hence more research must be done
in order to find new insights for GP. The limited number of
applications of ML in animal breeding did not allow researchers
to clarify the huge potential for these models to improve the genomic
prediction of important traits. Therefore, more iterative
experimentation needs to be conducted.

Author contributions

BB and NC conceived and designed the work. NC wrote the
manuscript. BB, NC, IsH, and IcH interpreted the results and revised
the manuscripts. All authors contributed to the article and approved
the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1150596/
full#supplementary-material

Frontiers in Genetics frontiersin.org16

Chafai et al. 10.3389/fgene.2023.1150596

162

https://www.frontiersin.org/articles/10.3389/fgene.2023.1150596/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1150596/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150596


References

Abdollahi-Arpanahi, R., Gianola, D., and Peñagaricano, F. (2020). Deep learning
versus parametric and ensemble methods for genomic prediction of complex
phenotypes. Genet. Sel. Evol. 52, 12–15. doi:10.1186/s12711-020-00531-z

An, B., Liang, M., Chang, T., Duan, X., Du, L., Xu, L., et al. (2021). Kcrr: A nonlinear
machine learning with a modified genomic similarity matrix improved the genomic
prediction efficiency. Briefings Bioinforma. 22 (6), bbab132. doi:10.1093/bib/bbab132

Bayer, P. E., Petereit, J., Danilevicz, M. F., Anderson, R., Batley, J., and Edwards, D.
(2021). The application of pangenomics and machine learning in genomic selection in
plants. Plant Genome 14 (3), e20112. doi:10.1002/tpg2.20112

Belyadi, H., and Haghighat, A. (2021). Machine learning guide for oil and gas using
Python: A step-by-step breakdown with data, algorithms, codes, and applications. Gulf
Prof. Publ., 169–295. doi:10.1016/B978-0-12-821929-4.00004-4

Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V. (2001). Support vector
clustering. J. Mach. Learn. Res. 2, 125–137. Available at: https://www.jmlr.org/papers/
v2/horn01a.

Beskorovajni, R., Jovanović, R., Pezo, L., Popović, N., Tolimir, N., Mihajlović, L., et al.
(2022). Mathematical modeling for genomic selection in Serbian dairy cattle. Genetika
53 (3), 1105–1115. doi:10.2298/GENSR2103105B

Bircanoğlu, C., and Arıca, N. (2018). .A comparison of activation functions in
artificial neural networks. 2018 26th signal processing and communications
applications conference (SIU). IEEE, 1–4. doi:10.1109/SIU.2018.8404724

Boichard, D., Ducrocq, V., Croiseau, P., and Fritz, S. (2016). Genomic selection in
domestic animals: principles, applications and perspectives. Comptes rendus Biol. 339
(7-8), 274–277. doi:10.1016/j.crvi.2016.04.007

Botchkarev, A. (2018). Performance metrics (error measures) in machine learning
regression, forecasting and prognostics: properties and typology. arXiv Prepr. arXiv:
1809, 03006.

Breiman, L. (1996). Bagging predictors. Mach. Learn. 24, 123–140. doi:10.1007/
bf00058655

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification
algorithms and regression trees. Classif. Regres. trees 15 (2), 246.

Breiman, L. (2001). Random forests.Mach. Learn. 45, 5–32. doi:10.1023/A:1010933404324

Bühlmann, P. (2012). Bagging, boosting and ensemble methods. Handb. Comput.
statistics Concepts methods, 985–1022. doi:10.1007/978-3-642-21551-3_33

Bulcha, G. G., Dewo, O. G., Desta, M. A., and Nwogwugwu, C. P. (2022). Indigenous
knowledge of farmers in breeding practice and selection criteria of dairy cows at chora
and gechi districts of Ethiopia: an implication for genetic improvements. Veterinary
Med. Int. 2022, 3763724. doi:10.1155/2022/3763724

Carter, J. V., Pan, J., Rai, S. N., and Galandiuk, S. (2016). ROC-Ing along: evaluation
and interpretation of receiver operating characteristic curves. Surgery 159 (6),
1638–1645. doi:10.1016/j.surg.2015.12.029

Chen, W., Alexandre, P. A., Ribeiro, G., Fukumasu, H., Sun, W., Reverter, A., et al.
(2021). Identification of predictor genes for feed efficiency in beef cattle by applying
machine learning methods to multi-tissue transcriptome data. Front. Genet. 12, 619857.
doi:10.3389/fgene.2021.619857

Choudhary, R., and Gianey, H. K. (2017). Comprehensive review on supervised
machine learning algorithms. 2017 International Conference on Machine Learning and
Data Science (MLDS). IEEE, 37–43. doi:10.1109/MLDS.2017.11

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,
273–297. doi:10.1007/BF00994018

Crisci, C., Ghattas, B., and Perera, G. (2012). A review of supervised machine learning
algorithms and their applications to ecological data. Ecol. Model. 240, 113–122. doi:10.
1016/j.ecolmodel.2012.03.001

David, L., Arús-Pous, J., Karlsson, J., Engkvist, O., Bjerrum, E. J., Kogej, T., et al.
(2019). Applications of deep-learning in exploiting large-scale and heterogeneous
compound data in industrial pharmaceutical research. Front. Pharmacol. 10, 1303.
doi:10.3389/fphar.2019.01303

Eggen, A. (2012). The development and application of genomic selection as a new
breeding paradigm. Anim. Front. 2 (1), 10–15. doi:10.2527/af.2011-0027

Ehret, A., Hochstuhl, D., Krattenmacher, N., Tetens, J., Klein, M. S., Gronwald, W.,
et al. (2015). Short communication: use of genomic andmetabolic information as well as
milk performance records for prediction of subclinical ketosis risk via artificial neural
networks. J. Dairy Sci. 98 (1), 322–329. doi:10.3168/jds.2014-8602

Freund, Y., and Schapire, R. E. (1996). July). Experiments with a new boosting
algorithm. icml 96, 148–156.

Gianola, D., Okut, H., Weigel, K. A., and Rosa, G. J. (2011). Predicting complex
quantitative traits with bayesian neural networks: A case study with Jersey cows and
wheat. BMC Genet. 12, 87–14. doi:10.1186/1471-2156-12-87

Goddard, M. E., Hayes, B. J., and Meuwissen, T. H. (2010). Genomic selection in
livestock populations. Genet. Res. 92 (5-6), 413–421. doi:10.1017/S0016672310000613

González-Recio, O., Gianola, D., Long, N., Weigel, K. A., Rosa, G. J., and Avendano, S.
(2008). Nonparametric methods for incorporating genomic information into genetic
evaluations: an application to mortality in broilers. Genetics 178 (4), 2305–2313. doi:10.
1534/genetics.107.084293

González-Recio, O., Weigel, K. A., Gianola, D., Naya, H., and Rosa, G. J. (2010). L2-
Boosting algorithm applied to high-dimensional problems in genomic selection. Genet.
Res. 92 (3), 227–237. doi:10.1017/S0016672310000261

Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS
Tech. Rep. 14 (1), 5–16.

Hay, E. H. A., Utsunomiya, Y. T., Xu, L., Zhou, Y., Neves, H. H. R., Carvalheiro, Ro,
et al. (2018). Genomic predictions combining SNPmarkers and copy number variations
in Nellore cattle. BMC Genomics 19 (1), 441. doi:10.1186/s12864-018-4787-6

Henderson, C. (1984). Applicatıons of lınear models ın animal breedıng. Guelph:
University of Guelph Press, 11, 652–653.

Hoffmann, F., Bertram, T., Mikut, R., Reischl, M., and Nelles, O. (2019).
Benchmarking in classification and regression. Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 9 (5), e1318. doi:10.1002/widm.1318

Jiang, T., Gradus, J. L., and Rosellini, A. J. (2020). Supervised machine learning: A
brief primer. Behav. Ther. 51 (5), 675–687. doi:10.1016/j.beth.2020.05.002

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey. J. Artif. Intell. Res. 4, 237–285. doi:10.1613/jair.301

Kang, M., and Jameson, N. J. (2018). “Machine learning: fundamentals,” in
Prognostics and health management of electronics. Editors G. P. Michael and
K. Myeongsu (Chichester, UK: John Wiley and Sons Ltd), 85–109. doi:10.1002/
9781119515326.ch4

Kingsford, C., and Salzberg, S. L. (2008). What are decision trees? Nat. Biotechnol. 26
(9), 1011–1013. doi:10.1038/nbt0908-1011

Kramer, O. (2013). Dimensionality reduction with unsupervised nearest neighbors.
Berlin: Springer, 51, 13–23. doi:10.1007/978-3-642-38652-7_2

Lashmar, S. F., Muchadeyi, F. C., and Visser, C. (2019). Genotype imputation as a
cost-saving genomic strategy for South African sanga cattle: A review. South Afr.
J. Animal Sci. 49 (2), 262–280. doi:10.4314/sajas.v49i2.7

LaValley, M. P. (2008). Logistic regression. Circulation 117 (18), 2395–2399. doi:10.
1161/CIRCULATIONAHA.106.682658

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521 (7553),
436–444. doi:10.1038/nature14539

Li, B., Zhang, N., Wang, Y. G., George, A. W., Reverter, A., and Li, Y. (2018a).
Genomic prediction of breeding values using a subset of SNPs identified by
three machine learning methods. Front. Genet. 9, 237. doi:10.3389/fgene.2018.
00237

Li, X., Lund, M. S., Zhang, Q., Costa, C. N., Ducrocq, V., and Su, G. (2016). Short
communication: improving accuracy of predicting breeding values in Brazilian Holstein
population by adding data from Nordic and French Holstein populations. J. Dairy Sci.
99 (6), 4574–4579. doi:10.3168/jds.2015-10609

Li, Y., Wu, F. X., and Ngom, A. (2018b). A review on machine learning principles for
multi-view biological data integration. Briefings Bioinforma. 19 (2), 325–340. doi:10.
1093/bib/bbw113

Liang, M., Miao, J., Wang, X., Chang, T., An, B., Duan, X., et al. (2021). Application of
ensemble learning to genomic selection in Chinese simmental beef cattle. J. Animal
Breed. Genet. 138 (3), 291–299. doi:10.1111/jbg.12514

H. Liu and H. Motoda (Editors) (2007). Computational methods of feature selection
(CRC Press).

Ma, W., Qiu, Z., Song, J., Li, J., Cheng, Q., Zhai, J., et al. (2018). A deep convolutional
neural network approach for predicting phenotypes from genotypes. Planta 248,
1307–1318. doi:10.1007/s00425-018-2976-9

Mahesh, B. (2020). Machine learning algorithms-a review. Int. J. Sci. Res.
(IJSR).[Internet] 9 (1), 381–386.

Manton, J. H., and Amblard, P.-O. (2014). A primer on reproducing kernel hilbert
spaces. Available at: http://arxiv.org/abs/1408.0952 (Accessed June 18, 2019).

Marshall, K., Gibson, J. P., Mwai, O., Mwacharo, J. M., Haile, A., Getachew, T., et al.
(2019). Livestock genomics for developing countries–African examples in practice.
Front. Genet. 10, 297. doi:10.3389/fgene.2019.00297

Matthews, B. W. (1975). Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica Biophysica Acta (BBA)-Protein Struct.
405 (2), 442–451. doi:10.1016/0005-2795(75)90109-9

Maulud, D., and Abdulazeez, A. M. (2020). A review on linear regression
comprehensive in machine learning. J. Appl. Sci. Technol. Trends 1 (4), 140–147.
doi:10.38094/jastt1457

Metz, C. E. (1978). Basic principles of ROC analysis. Seminars Nucl. Med. 8, 283–298.
WB Saunders. doi:10.1016/S0001-2998(78)80014-2

Frontiers in Genetics frontiersin.org17

Chafai et al. 10.3389/fgene.2023.1150596

163

https://doi.org/10.1186/s12711-020-00531-z
https://doi.org/10.1093/bib/bbab132
https://doi.org/10.1002/tpg2.20112
https://doi.org/10.1016/B978-0-12-821929-4.00004-4
https://www.jmlr.org/papers/v2/horn01a
https://www.jmlr.org/papers/v2/horn01a
https://doi.org/10.2298/GENSR2103105B
https://doi.org/10.1109/SIU.2018.8404724
https://doi.org/10.1016/j.crvi.2016.04.007
https://doi.org/10.1007/bf00058655
https://doi.org/10.1007/bf00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-642-21551-3_33
https://doi.org/10.1155/2022/3763724
https://doi.org/10.1016/j.surg.2015.12.029
https://doi.org/10.3389/fgene.2021.619857
https://doi.org/10.1109/MLDS.2017.11
https://doi.org/10.1007/BF00994018
https://doi.org/10.1016/j.ecolmodel.2012.03.001
https://doi.org/10.1016/j.ecolmodel.2012.03.001
https://doi.org/10.3389/fphar.2019.01303
https://doi.org/10.2527/af.2011-0027
https://doi.org/10.3168/jds.2014-8602
https://doi.org/10.1186/1471-2156-12-87
https://doi.org/10.1017/S0016672310000613
https://doi.org/10.1534/genetics.107.084293
https://doi.org/10.1534/genetics.107.084293
https://doi.org/10.1017/S0016672310000261
https://doi.org/10.1186/s12864-018-4787-6
https://doi.org/10.1002/widm.1318
https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/10.1613/jair.301
https://doi.org/10.1002/9781119515326.ch4
https://doi.org/10.1002/9781119515326.ch4
https://doi.org/10.1038/nbt0908-1011
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.4314/sajas.v49i2.7
https://doi.org/10.1161/CIRCULATIONAHA.106.682658
https://doi.org/10.1161/CIRCULATIONAHA.106.682658
https://doi.org/10.1038/nature14539
https://doi.org/10.3389/fgene.2018.00237
https://doi.org/10.3389/fgene.2018.00237
https://doi.org/10.3168/jds.2015-10609
https://doi.org/10.1093/bib/bbw113
https://doi.org/10.1093/bib/bbw113
https://doi.org/10.1111/jbg.12514
https://doi.org/10.1007/s00425-018-2976-9
http://arxiv.org/abs/1408.0952
https://doi.org/10.3389/fgene.2019.00297
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.38094/jastt1457
https://doi.org/10.1016/S0001-2998(78)80014-2
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150596


Meuwissen, T., Hayes, B., and Goddard, M. (2016). Genomic selection: A paradigm
shift in animal breeding. Anim. Front. 6 (1), 6–14. doi:10.2527/af.2016-0002

Meuwissen, T. H., Hayes, B. J., and Goddard, M. (2001). Prediction of total genetic
value using genome-wide dense marker maps. genetics 157 (4), 1819–1829. doi:10.1093/
genetics/157.4.1819

Mikshowsky, A. A., Gianola, D., and Weigel, K. A. (2017). Assessing genomic prediction
accuracy for Holstein sires using bootstrap aggregation sampling and leave-one-out cross
validation. J. Dairy Sci. 100 (1), 453–464. doi:10.3168/jds.2016-11496

Montesinos-López, O. A., Montesinos-López, A., Pérez-Rodríguez, P., Barrón-López, J. A.,
Martini, J. W., Fajardo-Flores, S. B., et al. (2021). A review of deep learning applications for
genomic selection. BMC genomics 22, 19–23. doi:10.1186/s12864-020-07319-x

Morota, G., and Gianola, D. (2014). Kernel-based whole-genome prediction of
complex traits: A review. Front. Genet. 5, 363. doi:10.3389/fgene.2014.00363

Mrode, R., Ojango, J. M. K., Okeyo, A. M., and Mwacharo, J. M. (2019). Genomic
selection and use of molecular tools in breeding programs for indigenous and crossbred
cattle in developing countries: current status and future prospects. Front. Genet. 9, 694.
doi:10.3389/fgene.2018.00694

Naderi, S., Yin, T., and König, S. (2016). Random forest estimation of genomic
breeding values for disease susceptibility over different disease incidences and genomic
architectures in simulated cow calibration groups. J. Dairy Sci. 99 (9), 7261–7273.
doi:10.3168/jds.2016-10887

Naser, M. Z., and Alavi, A. H. (2021). Error metrics and performance fitness
indicators for artificial intelligence and machine learning in engineering and
sciences. Archit. Struct. Constr., 1–19. doi:10.1007/s44150-021-00015-8

Nasteski, V. (2017). An overview of the supervised machine learning methods.
HORIZONS.B 4, 51–62. doi:10.20544/HORIZONS.B.04.1.17.P05

Nayeri, S., Sargolzaei, M., and Tulpan, D. (2019). A review of traditional and machine
learning methods applied to animal breeding. Animal health Res. Rev. 20 (1), 31–46.
doi:10.1017/S1466252319000148

Neftci, E. O., and Averbeck, B. B. (2019). Reinforcement learning in artificial and
biological systems. Nat. Mach. Intell. 1 (3), 133–143. doi:10.1038/s42256-019-0025-4

Nick, T. G., and Campbell, K. M. (2007). Logistic regression. Top. Biostat. 404,
273–301. doi:10.1007/978-1-59745-530-5_14

Ogutu, J. O., Piepho, H. P., and Schulz-Streeck, T. (2011). A comparison of random
forests, boosting and support vector machines for genomic selection. Biomed. Cent. 5,
S11–S15. doi:10.1186/1753-6561-5-S3-S11

Pereira, F. C., and Borysov, S. S. (2019). “Machine learning fundamentals,” inMobility
patterns, big data and transport analytics (Elsevier), 9–29. doi:10.1016/B978-0-12-
812970-8.00002-6

Piles, M., Bergsma, R., Gianola, D., Gilbert, H., and Tusell, L. (2021). Feature selection
stability and accuracy of prediction models for genomic prediction of residual feed intake in
pigs using machine learning. Front. Genet. 12, 611506. doi:10.3389/fgene.2021.611506

Rosenblatt, F. (1957). The perceptron-a perceiving and recognizing automaton. Ithaca,
NY, Project PARA: Cornell Aeronautical Laboratory, Rep, 85–460.

Sahebalam, H., Gholizadeh, M., Hafezian, H., and Farhadi, A. (2019). Comparison of
parametric, semiparametric and nonparametric methods in genomic evaluation.
J. Genet. 98, 102–108. doi:10.1007/s12041-019-1149-3

Sharma, D., and Kumar, N. (2017). A review on machine learning algorithms, tasks
and applications. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 6 (10), 2278–1323.

Srivastava, S., Lopez, B. I., Kumar, H., Jang, M., Chai, H. H., Park, W., et al. (2021).
Prediction of Hanwoo cattle phenotypes from genotypes using machine learning
methods. Animals 11 (7), 2066. doi:10.3390/ani11072066

Sun, C., Wu, X. L., Weigel, K. A., Rosa, G. J., Bauck, S., Woodward, B., et al. (2012). An
ensemble-based approach to imputation of moderate-density genotypes for genomic
selection with application to Angus cattle. Genet. Res. 94 (3), 133–150. doi:10.1017/
S001667231200033X

Tadist, K., Najah, S., Nikolov, N. S., Mrabti, F., and Zahi, A. (2019). Feature selection
methods and genomic big data: a systematic review. J. Big Data 6, 79. doi:10.1186/
s40537-019-0241-0

Vieira, S., Pinaya, W. H. L., Garcia-Dias, R., and Mechelli, A. (2020). “Deep neural
networks,” in Machine learning (Academic Press), 157–172. doi:10.1016/B978-0-12-
815739-8.00009-2

Waldmann, P. (2018). Approximate Bayesian neural networks in genomic prediction.
Genet. Sel. Evol. 50, 70–79. doi:10.1186/s12711-018-0439-1

Waldmann, P., Pfeiffer, C., and Mészáros, G. (2020). Sparse convolutional neural
networks for genome-wide prediction. Front. Genet. 11, 25. doi:10.3389/fgene.2020.
00025

Wang, X., Shi, S., Wang, G., Luo, W., Wei, X., Qiu, A., et al. (2022). Using machine
learning to improve the accuracy of genomic prediction of reproduction traits in pigs.
J. Animal Sci. Biotechnol. 13 (1), 60–12. doi:10.1186/s40104-022-00708-0

Weigel, K. A., VanRaden, P. M., Norman, H. D., and Grosu, H. (2017). A 100-year
review: methods and impact of genetic selection in dairy cattle—from daughter–dam
comparisons to deep learning algorithms. J. dairy Sci. 100 (12), 10234–10250. doi:10.
3168/jds.2017-12954

Xiao, T., Xia, T., Yang, Y., Huang, C., and Wang, X. (2015). Learning from massive
noisy labeled data for image classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 2691–2699).doi:10.1109/CVPR.2015.
7298885

Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K. (2018). Convolutional neural
networks: an overview and application in radiology. Insights into imaging 9, 611–629.
doi:10.1007/s13244-018-0639-9

Yang, L., Xu, L., Zhou, Y., Liu, M., Wang, L., Kijas, J. W., et al. (2018). Diversity of
copy number variation in a worldwide population of sheep. Genomics 110 (3), 143–148.
doi:10.1016/j.ygeno.2017.09.005

Yao, C., Zhu, X., and Weigel, K. A. (2016). Semi-supervised learning for genomic
prediction of novel traits with small reference populations: an application to residual
feed intake in dairy cattle. Genet. Sel. Evol. 48, 84–89. doi:10.1186/s12711-016-0262-5

Zeng, S., Mao, Z., Ren, Y., Wang, D., Xu, D., and Joshi, T. (2021). G2PDeep: A web-
based deep-learning framework for quantitative phenotype prediction and discovery of
genomic markers. Nucleic acids Res. 49 (W1), W228–W236. doi:10.1093/nar/gkab407

Zhang, Z. (2016). Introduction to machine learning: K-Nearest neighbors. Ann.
Transl. Med. 4 (11), 218. doi:10.21037/atm.2016.03.37

Zhao, W., Lai, X., Liu, D., Zhang, Z., Ma, P., Wang, Q., et al. (2020). Applications of
support vector machine in genomic prediction in pig and maize populations. Front.
Genet. 11, 598318. doi:10.3389/fgene.2020.598318

Zingaretti, L. M., Gezan, S. A., Ferrão, L. F. V., Osorio, L. F., Monfort, A.,
Muñoz, P. R., et al. (2020). Exploring deep learning for complex trait genomic
prediction in polyploid outcrossing species. Front. plant Sci. 11, 25. doi:10.3389/
fpls.2020.00025

Frontiers in Genetics frontiersin.org18

Chafai et al. 10.3389/fgene.2023.1150596

164

https://doi.org/10.2527/af.2016-0002
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.3168/jds.2016-11496
https://doi.org/10.1186/s12864-020-07319-x
https://doi.org/10.3389/fgene.2014.00363
https://doi.org/10.3389/fgene.2018.00694
https://doi.org/10.3168/jds.2016-10887
https://doi.org/10.1007/s44150-021-00015-8
https://doi.org/10.20544/HORIZONS.B.04.1.17.P05
https://doi.org/10.1017/S1466252319000148
https://doi.org/10.1038/s42256-019-0025-4
https://doi.org/10.1007/978-1-59745-530-5_14
https://doi.org/10.1186/1753-6561-5-S3-S11
https://doi.org/10.1016/B978-0-12-812970-8.00002-6
https://doi.org/10.1016/B978-0-12-812970-8.00002-6
https://doi.org/10.3389/fgene.2021.611506
https://doi.org/10.1007/s12041-019-1149-3
https://doi.org/10.3390/ani11072066
https://doi.org/10.1017/S001667231200033X
https://doi.org/10.1017/S001667231200033X
https://doi.org/10.1186/s40537-019-0241-0
https://doi.org/10.1186/s40537-019-0241-0
https://doi.org/10.1016/B978-0-12-815739-8.00009-2
https://doi.org/10.1016/B978-0-12-815739-8.00009-2
https://doi.org/10.1186/s12711-018-0439-1
https://doi.org/10.3389/fgene.2020.00025
https://doi.org/10.3389/fgene.2020.00025
https://doi.org/10.1186/s40104-022-00708-0
https://doi.org/10.3168/jds.2017-12954
https://doi.org/10.3168/jds.2017-12954
https://doi.org/10.1109/CVPR.2015.7298885
https://doi.org/10.1109/CVPR.2015.7298885
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1016/j.ygeno.2017.09.005
https://doi.org/10.1186/s12711-016-0262-5
https://doi.org/10.1093/nar/gkab407
https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.3389/fgene.2020.598318
https://doi.org/10.3389/fpls.2020.00025
https://doi.org/10.3389/fpls.2020.00025
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150596


Using the community-based
breeding program (CBBP) model
as a collaborative platform to
develop the African Goat
Improvement Network—Image
collection protocol (AGIN-ICP)
with mobile technology for data
collection and management of
livestock phenotypes

M. Jennifer Woodward-Greene1,2,3*, Jason M. Kinser4,
Heather J. Huson5, Tad S. Sonstegard6, Johann Soelkner7,
Iosif I. Vaisman3, Paul Boettcher8, Clet W. Masiga9†,
Christopher Mukasa10, Solomon Abegaz11, Morris Agaba12,
Sahar S. Ahmed13, Oliver F. Maminiaina14, Tesfaye Getachew15,
Timothy N. Gondwe16, Aynalem Haile15, Yassir Hassan17,
Absolomon Kihara18, Aly Kouriba19, Hassan A. Mruttu20,
Denis Mujibi18, Wilson Nandolo16, Barbara A. Rischkowsky15,
Benjamin D. Rosen2, Brian Sayre21, Maria Taela22 and
Curtis P. Van Tassell2

1National Agricultural Library, USDA Agricultural Research Service, Beltsville, MD, United States, 2Animal
Genomics Improvement Laboratory, USDA Agricultural Research Service, Beltsville, MD, United States,
3Bioinformatics and Computational Biology Program, School of Systems Biology, College of Science,
George Mason University, Manassas, VA, United States, 4School of Physics, Astronomy, and
Computational Sciences, College of Science, George Mason University, Fairfax, VA, United States,
5Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY,
United States, 6Acceligen Inc., Eagan, MN, United States, 7Department of Sustainable Agricultural Systems,
Division of Livestock Sciences, BOKU—University of Natural Resources and Life Sciences, Vienna, Austria,
8Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome,
Italy, 9Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA),
Entebbe, Uganda, 10National Animal Genetic Resource Centre and Data Bank, Entebbe, Uganda,
11Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia, 12Nelson Mandela African Institution
of Science and Technology, Arusha, Tanzania, 13Cell Biology Department, Biotechnology Research
Institute, National Research Centre, Giza, Egypt, 14Department of Zootechnical, Veterinary and
Piscicultural Research (DRZVP), National Center for Applied Research in Rural Development
(CENRADERU), Antananarivo, Madagascar, 15International Center for Agricultural Research in the Dry
Areas (ICARDA), Addis Ababa, Ethiopia, 16Department of Animal Science, Lilongwe University of
Agriculture and Natural Resources, Lilongwe, Malawi, 17Department of Animal Genetic Resources
Development, Animal Production Research Center, Ministry of Animal Resources, Khartoum North,
Sudan, 18International Livestock Research Institute, Nairobi, Kenya, 19Institut d’Économie Rurale, Bamako,
Mali, 20Ministry of Livestock and Fisheries, Dodoma, Tanzania, 21Department of Biology, Virginia State
University, Petersburg, VA, United States, 22Agrarian Research Institute of Mozambique, Directorate of
Animal Science, Maputo, Mozambique

OPEN ACCESS

EDITED BY

Isidore Houaga,
University of Edinburgh, United Kingdom

REVIEWED BY

Pramod Kumar Rout, Indian Council of
Agricultural Research, India
Tiago Bresolin,
University of Illinois at Urbana-
Champaign, United States

*CORRESPONDENCE

M. Jennifer Woodward-Greene,
jennifer.woodward@usda.gov

†Present address:
Clet W. Masiga,
Tropical Institute of Development
Innovations (TRIDI), Kampala, Uganda

RECEIVED 05 April 2023
ACCEPTED 25 July 2023
PUBLISHED 06 September 2023

CITATION

Woodward-Greene MJ, Kinser JM,
Huson HJ, Sonstegard TS, Soelkner J,
Vaisman II, Boettcher P, Masiga CW,
Mukasa C, Abegaz S, Agaba M, Ahmed SS,
Maminiaina OF, Getachew T,
Gondwe TN, Haile A, Hassan Y, Kihara A,
Kouriba A, Mruttu HA, Mujibi D,
Nandolo W, Rischkowsky BA, Rosen BD,
Sayre B, Taela M and Van Tassell CP
(2023), Using the community-based
breeding program (CBBP) model as a
collaborative platform to develop the
African Goat Improvement
Network—Image collection protocol
(AGIN-ICP) with mobile technology for
data collection and management of
livestock phenotypes.
Front. Genet. 14:1200770.
doi: 10.3389/fgene.2023.1200770

COPYRIGHT

© 2023 Woodward-Greene, Kinser,
Huson, Sonstegard, Soelkner, Vaisman,
Boettcher, Masiga, Mukasa, Abegaz,
Agaba, Ahmed, Maminiaina, Getachew,
Gondwe, Haile, Hassan, Kihara, Kouriba,
Mruttu, Mujibi, Nandolo, Rischkowsky,
Rosen, Sayre, Taela and Van Tassell. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 06 September 2023
DOI 10.3389/fgene.2023.1200770

165

https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://www.frontiersin.org/articles/10.3389/fgene.2023.1200770/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2023.1200770&domain=pdf&date_stamp=2023-09-06
mailto:jennifer.woodward@usda.gov
mailto:jennifer.woodward@usda.gov
https://doi.org/10.3389/fgene.2023.1200770
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2023.1200770


Introduction: The African Goat Improvement Network Image Collection Protocol
(AGIN-ICP) is an accessible, easy to use, low-cost procedure to collect phenotypic
data via digital images. The AGIN-ICP collects images to extract several phenotype
measures including health status indicators (anemia status, age, and weight), body
measurements, shapes, and coat color and pattern, from digital images taken with
standard digital cameras or mobile devices. This strategy is to quickly survey,
record, assess, analyze, and store these data for use in a wide variety of
production and sampling conditions.

Methods: The work was accomplished as part of the multinational African Goat
Improvement Network (AGIN) collaborative and is presented here as a case study in
the AGIN collaboration model and working directly with community-based
breeding programs (CBBP). It was iteratively developed and tested over 3 years,
in 12 countries with over 12,000 images taken.

Results and discussion: The AGIN-ICP development is described, and field
implementation and the quality of the resulting images for use in image analysis
and phenotypic data extraction are iteratively assessed. Digital bodymeasures were
validated using the PreciseEdge Image Segmentation Algorithm (PE-ISA) and
software showing strong manual to digital body measure Pearson correlation
coefficients of height, length, and girth measures (0.931, 0.943, 0.893)
respectively. It is critical to note that while none of the very detailed tasks in the
AGIN-ICP described here is difficult, every single one of them is even easier to
accidentally omit, and the impact of such a mistake could render a sample image, a
sampling day’s images, or even an entire sampling trip’s images difficult or unusable
for extracting digital phenotypes. Coupled with tissue sampling and genomic
testing, it may be useful in the effort to identify and conserve important animal
genetic resources and in CBBP genetic improvement programs by providing
reliably measured phenotypes with modest cost. Potential users include
farmers, animal husbandry officials, veterinarians, regional government or other
public health officials, researchers, and others. Based on these results, a final AGIN-
ICP is presented, optimizing the costs, ease, and speed of field implementation of
the collection method without compromising the quality of the image data
collection.

KEYWORDS

image analysis, phenotype, body weight, coat, color, one health, FAMACHA, tooth age

Introduction

The African Goat Improvement Network Image Collection
Protocol (AGIN-ICP) was developed systematically over a 3-year
period in conjunction with the AdaptMap project (Stella et al., 2018)
and the African Goat Improvement Network (AGIN) (USDA,
2020). These are coordinated, multi-national efforts to
characterize, evaluate, and conserve goat population genetic
resources globally, and in Africa respectively. This paper
describes the development of AGIN-ICP as a case study in the
application of the AGIN collaboration model working directly with
community-based breeding programs (CBBP) for multi-level
(farmers and local students, animal husbandry officials, junior
and seasoned researchers) and multi-national capacity
development in human, and technological resources in the
developing and the developed worlds (Van Tassell et al., 2023).
Images collected in the last stage of AGIN-ICP development were
used to establish the Precise Edge Image Segmentation Algorithm
(PE-ISA) and software which was used to validate that digital
phenotypes could be extracted from AGIN-ICP collected images

that reflected accurate phenotypic body measures for height (0.931),
length (0.943), and girth 0.893) measures (Woodward-Greene et al.,
2022).

A major objective of the AGIN collaborative model is that it is
led from the community level. Farmers and students, when guided
by animal husbandry officials, researchers, and other specialists, are
critical to finding original, yet practical solutions. Each AGIN
participant, therefore, has a stake and an important role to play
in innovation. Individually, that has a rallying effect—that through
mutual respect and a sincere need for all perspectives—gives energy
and purpose to the work. The development of digital livestock
phenotyping provided an opportunity for many AGIN
participants to develop, experience, and discover cutting edge
technology. Researchers in 12 sampling teams employed the
collection method in 11 African countries, in addition to the US,
sampling approximately 2,000 goats and collecting over
12,000 images.

The purpose of AGIN-ICP and the testing was to determine if
sufficiently high-quality digital images could be collected under field
sampling conditions such that accurate phenotype data could be
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extracted from the images. The first draft, original protocol method,
included five poses: 1) rear view, 2) sign view (Figure 1C), 3) front
view, 4) teeth close-up, and 5) FAMACHA (eye) close-up.
Specialized equipment included three novel calibration signs
to include in the image - one to hang from the goat’s back
and two smaller ones to hang from the neck of the goat and the
animal handler, respectively. In the sign view, the right side of the
animal is photographed (animal head facing to the right in the
image), so the (often protruding) rumen on the left-side does not
interfere with digital measurements. The iterative process with
AGIN collaborators focused on the following three areas to
optimize collection procedures and image quality for data
extraction:

1. The method itself (posing, set-up),
2. Communication with—and training of—sampling teams, and
3. Development and refinement of the photo sampling equipment

and sampling kit.

As the protocol and its evolution are described in detail in
this paper, one may be struck with the simplicity of the tasks
involved and question the level of detail included here. However,
the iterative development of the final AGIN-ICP and the
constant review of images coming from the field that drove
most of the changes, show that these details are easy to overlook.
It is also easy to misinterpret how these seemingly obvious steps
need to be performed in a precise manner, or why they are
critical for ultimate image quality. Sampling teams, and in
particular the photographer, must remain focused on the
many seemingly minor details as the sampling days wear on
and vigilant that all procedures are completed with precision and
attention to detail. A lack of attention to these details, as we have
seen in the development of AGIN-ICP process, can make
rendering the images captured much more difficult and
potentially unusable for digital phenotype extraction.
Considering the expense in time, equipment, travel, and
logistical planning required for sampling trips, it is
imperative that sampling teams understand the rationale for
each step, the correct manner of performing it, and the ultimate
purpose to ensure the highest quality data collection. To that
end, we include examples of the images after extraction—which

were not available to sampling teams throughout the stages of
AGIN-ICP development.

Global food security

An important goal for CBBPs is to breed resilient, productive
food animals. This will enhance food security and income of African
goat farmers. Two key aspects of this goal are 1) establishing
sustainable and efficient production and health management
systems, and 2) identifying, conserving, and selecting traits that
ensure productivity, disease and parasite resistance, and adaptability
to climate change and other stressors. This will allow farmers to
provide high-quality nutritious food for their families and generate
income. Collection of phenotypic data is considered critically
important by the Food and Agriculture Organization (FAO) of
the United Nations to further animal genetic resources
characterization and conservation (Commission on Genetic
Resources for Food and Agriculture, 2007). The FAO specifically
notes the critical need for consistent collection methods of
phenotypic data across animal populations (FAO, 2011). This
consistency in capturing phenotypes is required to inform
genomic science in the research and development of state-of-the-
art genomics tools for genome to phenome prediction. This digital
phenotype collection method may enable even the poorest countries
to take advantage of this advancing science. It may ultimately
identify and conserve their most important adapted animal
genetic resources. The AGIN-ICP includes images to collect
phenotypic data on health status predictions for anemia, weight,
age, and coat color and pattern. It may also have applications in the
One Health (One Health, 2023) approach to public health, which
considers the connection between animal and human public health
in disease outbreaks. One Health identifies zoonotic disease
surveillance in animal populations as an important tool in
preventing human disease outbreaks (World Bank, 2012; One
Health, 2023). Phenotype and health data may be collected using
the AGIN-ICP. It can be accumulated in regional or global data
repositories for open data sharing by researchers and health officials.
The original user (farmer or veterinarian) may also have access for
animal record keeping or real-time decisions on disease status or
treatment, production, nutrition, and breeding, etc.

FIGURE 1
Novel calibration sign and harness (A,C), and sample identifier sign (B) for AGIN-ICP images.
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Body weight prediction

Weight prediction from images is not a new concept (Phillips
and Dawson, 1936; Schofield et al., 1999; Ozkaya, 2013). Body
weight is important for many decisions in livestock health,
production, and marketing (Mahieu et al., 2011). The expense
and inconvenience of using livestock scales to record weights have
fueled decades of research into alternative methods to obtain
reasonably accurate values (Muhammad et al., 2006; Mahieu
et al., 2011; Takaendengan et al., 2012). Weight gain is
dependent on age, stage of lactation or gestation, nutritional or
disease status, and breed (World Bank, 2012), and may inform
breeding and production decisions. In genomics and genomic tool
development, physical measurements such as size, shape, and coat
color and pattern, can be associated with productivity or with
adaptive genes for traits such as milk production, fertility, disease
and parasite resistance, or growth rate. Animals are often priced in
the marketplace by weight or age. Using a scale to measure body
weight is the most consistent and accurate method. However,
many producers, in particular goat or sheep producers or those
in developing countries, do not have ready access to scales (Abegaz
and Awgichew, 2009; Mahieu et al., 2011). The least expensive
scales are hanging or bathroom scales. These devices are
cumbersome to use because they require lifting or holding the
animal, making those scales useful for smaller animals only.
Alternatively, physical measurements of size have long been
used to estimate weight cheaply. Several formulas have been
developed and tested for accuracy on particular animal types or
breeds (Muhammad et al., 2006; Sowande and Sobola, 2008;
Abegaz and Awgichew, 2009; Ozkaya et al., 2009; Mahieu et al.,
2011; Takaendengan et al., 2012). Weight prediction formulas
generally use some combination of chest girth (CG), body
length (BL), and/or height at the withers (HW) to predict body
weight (BW) (Abegaz et al., 2013; Horner, 2021). Body
measurements are taken with calipers (Touchberry and Lush,
1950; Calipers, 2014) or taken with a cloth measuring tape that
is either designed for sewing or designed specifically as a goat
weigh tape with predicted weights (based on chest girth) printed
on the tape. Conversion tables are available online for producers to
predict body weights based on chest girth measures (Campbell,
2002; Bar None Meat Goats, 2021; Horner, 2021).

Teeth to determine animal age and health

Tooth age is a long established method used to estimate the
live-animal-age or age-at-death of an animal based on
permanent tooth eruption (ARC, 1999; Greenfield and
Arnold, 2008; Matika et al., 1992; Fias Co Farm, 2023). In
livestock operations, the best method to determine an
animal’s age is by keeping accurate individual birth records.
However, in many operations, especially in limited resource
areas, records may be incomplete or altogether unavailable
(Timon, 1992; Ephrem, 2013). For animal groups without
birth records, age can be estimated by examining the teeth to
identify the number of adult teeth erupted (Oltenacu and
Stanton, 1999; Soltero-Rivera, 2022; Fias Co Farm, 2023).
While not exact, tooth age estimation is a relatively quick and

easy method for farmers and veterinarians to approximate the
productive stage of an animal, i.e., growth (mostly deciduous or
milk teeth present), maintenance and breeding age (mostly or all
permanent adult teeth present), or expected remaining
productive life (amount of wear on adult teeth) (Oltenacu
and Stanton, 1999). At a livestock market, tooth age can be
used to assess the carcass market value (younger animals are
assumed to have higher quality meat) (Matika et al., 1992), or to
comply with export requirements (Canadian Food Inspection
Agency, 2014). Archeologists use tooth age to determine the age
of death of livestock and to infer the type of production systems
the animals were reared in. For example, if mainly young
animals were slaughtered, leaving lactating females without
offspring, it may be assumed that the economy was based on
milk production (Baker and Worley, 2019). This assumption
could also be employed to characterize and assess current
production systems in resource poor regions where animal
birth, growth, health, or sales/market records are lacking.
Finally, teeth can be an indicator of current or future health.
Goats need their teeth to be able to tear the grass as they graze,
and an animal with broken teeth may not thrive. This
‘soundness’ of the mouth has long been an observation to
determine the health, and value of grazing livestock
(eXtension Goat Community of Practice, 2023).

FAMACHA anemia score

The FAMACHA card is a simple tool developed in South
Africa to estimate the level of anemia in sheep and goats by
comparing the conjunctiva color of the animal to a series of five
color categories associated with a blood anemia values (Malan
et al., 2001; Kaplan et al., 2004). It was named after the South
African parasitologist, Francois “Fafa” Malan who created it
(Comis, 2010). The FAMACHA card is laminated and includes
an image of an animal eye to show the proper way to examine the
conjunctiva, along with 5 boxes of varying shades of pink to
designate the 5 categories of anemia. The FAMACHA method
enables producers to identify animals within groups that are
most likely infested with worms, as indicated by anemia.
Resistance to worming medications is a critical problem in
the livestock industry (Leask et al., 2013). By treating only
those animals with heavy worm infestation, producers can
save time, money, and critically—help to inhibit the
development of resistance to anthelmintics (Shoenian, 2023).
The FAMACHA method has been validated in numerous studies
across many breeds and regions around the world, proving to be
effective in sheep and goats in a wide range of climates and
production systems (Malan et al., 2001; Vatta et al., 2001; Van
Wyk and Bath, 2002; Kaplan et al., 2004; Ejlertsen et al., 2006;
Moors and Gauly, 2009; Idika et al., 2012; Sotomaior et al., 2012;
Leask et al., 2013).

Coat color and pattern

Coat color and pattern are important to livestock breeders for
the value that preferred animal characteristic coat colors may bring
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in the market. Preferences may be based on the association of
desired production traits such as growth rate, milk production,
twinning, or heat tolerance with a particular breed that is also known
for its coat color and patterns. Preferences for color also can be
cultural, and could include risks for negative selection (selecting for
traits that lower production) (Getachew et al., 2020). Color
preferences are also often associated with compliance with
purebred standards, and directly impact the market value of
animals. Coat color has long been studied as a visible breeding
objective for livestock (Martin et al., 2016).

PreciseEdge Image Segmentation Algorithm
and software

The objective of developing AGIN-ICP was to generate images
that meet the requirements for successfully producing an image
analysis process and software capable of extracting accurate
phenotypes from digital images. To provide accurate
measurements, digital images require software that can identify
the parts of the goat to be measured, or features, in the images.
This demands the highest possible precision to isolate these features.

TABLE 1 AGIN-ICP Input Images (left). Body size phenotypes extracted using the PreciseEdge Image Segmentation Algorithm embedded in software to record
measurements, and mark them on the images (right).
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This challenge led to the development of the PreciseEdge Image
Segmentation Algorithm (PE-ISA), developed using images
collected in a highly controlled manner in the final stage of
AGIN-ICP development, when the protocol iteration was the
most mature. This approach allowed for validation that the
images could in fact, be used for the digital extraction of
phenotypes directly from the images. The AGIN-ICP has been
validated by extracting digital body measures from collected
images. The correlation between manual body measures and
digital measures were found to be high with Pearson correlation
coefficients 0.931 for height, 0.943 for length, and 0.893 for girth
(Woodward-Greene et al., 2022). Key aspects of the PE-ISA
development included processing of input images using portable
network graphics (PNG) compression for increased precision. The
PreciseEdge Algorithm also reduces user input for image processing,
reducing labor costs on the analysis phase of the phenotype
collection with AGIN-ICP (Woodward-Greene et al., 2022).
Additionally, software needed to deploy the algorithm and
provide output data files with digital phenotype measures, as well
as labeled images for further analyses, has been developed
(manuscript in process). This software requires no special
facilities or advanced skills; and users need only a laptop and
mouse to process collected images. Examples of input and output
images from the software, using the PreciseEdge Algorithm, are
shown for bodymeasurements in Table 1, and for health phenotypes
(teeth and FAMACHA score) in Table 2.

Materials and methods

The AGIN-ICP was iteratively developed over five stages, 1)
Developmental, 2) Filed Test (early), 3) Field Test (late), 4) Field Test
(advanced), and 5) Controlled Test. Issues were reviewed while
implementing the protocol iterations at each stage. The solutions
developed were applied and tested in each subsequent developmental
stage or protocol iteration. Images collected at each stage were carefully
reviewed for any protocol procedure, instruction, or supporting
documentation that could impact the quality of images for
subsequent image analysis, and the protocol modified as needed.

Initial testing and refinement of the original protocol, which
included tissue collection for DNA analyses, was conducted on goat
farms in the US. Early field testing then followed in Ethiopia and
Kenya. Multiple African AGIN research teams subsequently tested
iterations of the AGIN-ICP, including taking the photos at the time
of blood, tissue, or hair collection for DNA extraction, genotyping,
and DNA sequencing; manual phenotype measures of body size;
global position system (GPS) data; and demographic data including
breed and birth date. Sampling teams sponsored by the FAO and
Sudan joined the AGIN for the advanced field-testing phase, Stage 4.
Ongoing review of field sample images to assess their quality for
image analysis, led to iterative changes in the protocol (original,
prototype, modified, and final versions) to improve and enhance the
collection method for optimal sampling efficiency and quality of
images for data extraction. Finally, images without tissue samples

TABLE 2 AGIN-ICP Input Images (left). Health (teeth, FAMACHA score) phenotypes extracted using the PreciseEdge Image Segmentation Algorithm embedded in
software to record measurements, and mark them on the images (right).

Frontiers in Genetics frontiersin.org06

Woodward-Greene et al. 10.3389/fgene.2023.1200770

170

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1200770


were collected under highly controlled conditions in the final
developmental stage from US goats. These images were used to
develop the PE-ISA (Woodward-Greene et al., 2022) and the
software to extract animal measurements directly from the
images as a proof of concept.

Original protocol

The original protocol was named the AdaptMap Digital
Phenotype Collection Method. It included the design and
fabrication of calibration signs and a harness to be included in
the images. Three calibration signs with a black outline for easy
detection in RGB (red, green, blue) images, and color blocks of
“pure” red, green, and blue, were fabricated of sturdy, light weight
metal. They were designed for use with dry-erase pens to easily
record sample data for each animal and capture that information
directly in the images. Sample ID was recorded on all signs.
Additional information recorded on the large sign only, included
sex, birth date, owner, breed, sample date, location, country, camera
distance from goat, and camera height. The larger sign was affixed to
a harness and placed on the back of the animal for the third
photograph in the series (sign view). The sign view (right side
view) employs the large sign harness placed on the back of the
animal. The large sign must be positioned above the underline of the
belly, below the topline of the goat, and it must not obscure the joints
of the front or rear legs. Finally, it must be placed perpendicular to
the ground on the right side to avoid being skewed by a potentially
protruding rumen. The large sign will thus be in the same plane as
the goat, providing a higher quality calibration than the small sign
alone. For small goats, it may be too large to place correctly, so the
handler can hold it in the plane of the goat’s right side. Initially, two
smaller signs were made for the goat and the handler to wear around
their necks as sample identifiers in each image with the large sign
only visible in the sign view. Each of these signs, and how they are
meant to be used in the AGIN-ICP are shown in Figure 1.

Demographic data collected on the large sign for the
prototype method was also recorded on paper, and direct
physical body measures were recorded for validation of the
photo measures. Physical measures included chest (heart)
girth (CG), which is the circumference of the body measured
just behind the elbows and at the point of the withers (shoulder
bones, scapulae, at the top of the animal) (Siddiqui et al., 2008),
height at the withers (HW), which is the distance perpendicular
from the ground to the top of the withers (Abegaz and Awgichew,
2009), body length (BL), which is measured from the point of
shoulder in the front of the animal to the point of the pin bone
(tuber ischii, point of bone next to the anus) (Hopkins et al.,
1970), width of the pin bones (PB) as an indicator of potential
birthing difficulty, and the width between points of shoulder
bones (SB) in the front as another measure of body width. A
description and illustration of the body length, height at the
withers, and chest girth body measures are shown in Figure 2.
Body weights were recorded as references for US samples by
caged pallet (walk on) scales and, wherever possible in African
countries, using small portable hanging scales and slings.

The poses for the image sequence were designed to minimize
stress on the animal. The goat walks directly into the photo set and

only makes two right one-quarter turns to achieve the body
measures photos. The final two photos are for the health
indicators, and are close-ups taken with the animal remaining in
the final body pose (front view) position. The position of the camera
and photographer is important to ensure the images have the proper
perspective. This can be achieved with proper camera distance and
height. The camera must be perpendicular to the goat and not closer
than 3 m (10 feet). The camera height must be at the level of the
goat’s eye as shown in Figure 3. A simple 3-m (10-foot) calibration
rope to place on the ground between the goat and the photographer
serves as a visual reminder for the photographer to identify the
correct distance, and ensures the distance is maintained throughout
sampling. To achieve goat eye level, the photographer must crouch
or bend down (Figure 4). Alternatively they may use a tripod or sit
on a small camp or milking stool. If a stool is desired, the milking
stool is recommended as it can be fastened to the photographer’s
body for maximum mobility, and both hands can be on the camera
during sampling.

Cameras may vary, but the production of RGB images with
1,600 × 2000 resolution is preferred if possible. Higher resolution
will provide greater quality images for analysis, but will require more
space for storage and transfer, which can become important when
working across the globe. The camera should have global position
system (GPS) or global information system (GIS) capability to
capture longitude, latitude, and altitude. This will enable
geographic analysis, which would be valuable in assessing
impacts of adaption, politico-/socioeconomics, or climate in
sample populations. Cameras incorporated into mobile devices,
such as smart phones or tablets would likely be adequate.
Cameras used to develop the AGIN-ICP included Android based
cell phones and RGB digital cameras from manufacturers such as
Canon, Sony, and Ricoh. Other comparable manufacturers and
systems would also work. The device or camera model and
settings should be recorded. However, this data is often
automatically included in the metadata of each digital image,
along with GPS/GIS data, and day and time stamps.

FIGURE 2
Manual (traditional) body measures taken during AGIN-ICP
development.
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Results

Results for each of 5 AGIN-ICP developmental stages (Stage 1:
developmental, Stage 2: early field test, Stage 3: late field test, Stage 4:
advanced field test, and Stage 5: controlled test) are summarized in
Table 3. The summary includes the leader and test locations for each
stage, and the changes and reasons for the changes resulting from
testing in each stage. Field Testing sampling teams for Stage 3 were
given a demo of AGIN-ICP at the AGIN II Meeting in Uganda as
part of the field visit activities for all participants (Figure 5). Training
and one-on-one discussions were also done with Stage 4 field
sampling teams at the AGIN III Meeting in Ethiopia in advance
of Stage 4. In Stage 3, communications were done through CWM,
while in Stage 4, with leader PB coordinating, direct
communications with sampling teams in the form of training
and documentation, and ongoing emails and phone calls were
predominant. The final AGIN-ICP is included as a supplement,

as well as the Quick Start Guide developed out of Stage 3. This guide
was provided to sampling teams in English and French in Stage 4.
The AGIN-ICP sampling kit is pictured in Figure 6.

Discussion

AGIN-ICP is fit for purpose—Simple to
perform, and digital extractions validated as
accurate

The main objective of the AGIN-ICP sample collection is to
enable reliable isolation of goats in the images collected for analysis
using digital image software. The image analysis strategy involves
isolating the region of interest (ROI) containing the goat or the sign
in the image, creating an image mask, and calibrating the pixel
values for size and color using image feature detection techniques.
Stage 5 was designed to collect images under precise conditions
using the most mature iteration of the protocol. These images were
used to validate that the AGIN-ICP could meet this objective.

Regarding the overall importance of the many detailed
procedures in the final AGIN-ICP, they meet the stated objective
of being simple to implement. However, this simplicity may belie
their critical importance. It is crucial to follow these steps precisely to
obtain the highest quality images for digital phenotype extraction.
Stage 3 revealed many subtle variations in interpretation of the
protocol tasks by different sampling teams, and the negative impact
these variations had on image quality. This made it more difficult,
and in some cases impossible to obtain digital measurements. The
lack of full understanding of the purpose of each step led to poor site
selection, and the failure to understand the need to keep the tarps
clean, and thus blue in color, led to reduced contrast of the blue
background, and reduced image quality for data extraction.

Considering the time, expense, and materials devoted to field
sample collections, combined with the importance of this type of
data collection, sampling teams must have a solid understanding of
the protocol steps and their purpose for image data extraction.
Ultimately, while performing the AGIN-ICP correctly under field

FIGURE 3
Distance and height of the camera from the goat to ensure proper perspective.

FIGURE 4
AGIN-ICP in action (Ethiopia). Note the photographer position
and distance from the goat.
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TABLE 3 Complete results summary for the African Goat Improvement Network Image Collection Protocol (AGIN-ICP) developmental stages.

Developmental
Stagea,b

Protocol
iteration

Test location Iterative protocol changes Reasons for changes

1. Developmental Original United States 1. Add blue backdrop and stand 1. Blue backdrop and stand to increase color
differential of goat to the background

Lead: MJWc, CMa 2. Add 10 foot, or 3-m calibration rope 2. Ten-foot rope ensuring proper camera distance

3. Timing sequence of demographic, tissue,
and image collection

3. Timing to reduce difficulty in sampling, and
inconvenience to farmers, animal handlers

2. Field Test (early) Prototype Ethiopia, Kenya 1. Add blue drop cloth (ground cloth) 1. Blue drop cloth to increase color differential of
goat legs to the background

Lead: MJW, DMb 2. Affix blue backdrop to vehicle, fence,
barnetc.

2. Back drop stand is heavy, and inconvenient

3. Drop small sign on animal’s neck 3. Neck sign only on handler, due to small goats

4. Add the ‘naked’ or ‘side’ pose 4. To provide an unobscured side view (without
the sign) to extract coat color and pattern

5. Change crayon markers for identifying the
pin bones (rear pose) and points of shoulder
(front pose) to bright duct tape

5. Bright duct tape to increase visibility of the
marks in the images for isolation, and due to
melting of crayons in the heat

3. Field Test (late) Prototype Uganda, Malawi,
Tanzania, Mozambique,
Zimbabwe

1. Interactions with multiple field sampling
teams showed common questions, confusion,
or field issues

1. This stage clarified the need for enhanced
protocol documentation, and on accounting for
field sampling conditions impacting image quality

Lead: CWMd 2. Iterative image review saw issues not
apparent to field sampling teams, i.e., site
selection, the need to avoid ‘goat like’ objects
(large rocks, other equipment), cleaning the
drop cloth to maintain the blue coloretc.

2. Improving field sampling team’s understanding
of image processing would improve protocol
implementation, leading to the development of
the Quick Start Guide showing a high-quality
example of each pose - connected to the
phenotypic measurement to be extracted from it

3. AGIN-ICP demo at AGIN II meeting in
Uganda (ref AGIN paper)

3. Visualize method and equipment; and a
question-and-answer opportunity

4. Field Test (advanced) Modified Burundi, Egypt, Mali,
Madagascar, Tanzania,
Sudan

1. Quick Start Guide produced in English and
French

1. Quick Start Guide was designed to accompany
the protocol, a one-page (front and back)
graphical summary of the full protocol

Lead: PBe 2. AGIN-ICP update and informal training at
the AGIN III meeting in Ethiopia (ref AGIN
paper)

2, 3. Opportunity for field sampling teams in this
stage to ask questions directly, examine sampling
kit equipment. This connection to the lead
protocol developer provided a personal
connection, and a comfort level to contact her for
ongoing support

3. Ongoing support for field sampling teams
was provided by email, or phone call as
needed

5. Controlled Test Modified United States 1. Drop the marking of pin bones (rear pose)
and points of shoulder (front pose) with
either crayons or tape

1, 2. Image processing confirmed little value from
the front pose, pin bones, or point of shoulder

Lead: MJW 2. Drop the front pose 3. Highly controlled collection, with resulting
images used to develop the PreciseEdge Image
Segmentation algorithm (PE) to extract digital
body measurements directly from AGIN-ICP
images. This showed AGIN-ICP image measures
are highly correlated to real-world animal
measurements (Woodward-Greene et al., 2022).
The PE algorithm is integrated into user software
to return AGIN-ICP digital phenotypic measures
in csv, xlsx, and xml, and labeled images for use in
machine learning training set data (manuscript in
process) for modeling more sophisticated and
automated digital phenotype extraction tools

3. Images collected in this stage were collected
in a highly controlled manner, and used to
develop and design the image segmentation
algorithm and software to accompany the
AGIN-ICP for extracting digital phenotypes
from the images

aC. Mukasa led preliminary tests in Uganda, Nigeria.
bD.M. led a team in Kenya.
cM.J. Woodward-Greene.
dC.W. Masiga.
eP. Boettcher.
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conditions is not difficult, it is also very easy to get it wrong if
attention to detail is lacking. To address this issue, explanatory
images were added to the AGIN-ICP to demonstrate problematic
images and how to correct them in the field. Additionally, the Quick
Start Guide clearly explained the purpose for each pose. Moving
forward, examples of output images may prove extremely helpful,
but these were not available during the AGIN-ICP development as
the software was created using the images taken in Stage 5.

Companion software to process and extract digital phenotypes
from AGIN-ICP images was created for this critical step in the
development of AGIN-ICP process and for practical application
(manuscript in process) of AGIN-ICP. The PE-ISA was developed
and embedded in the software to find and then isolate the ROI
(i.e., remove all background from image) and produce an
intermediate labeled image of the ROI. The supporting software
was designed to take the intermediate labeled image from the PE-
ISA as input. The software automatically measures and calibrates the
ROI in AGIN-ICP images, and seamlessly returns digital data to
users in Excel (xlsx), comma separated (csv), or extensible markup
language (xml) formats, as well as providing the intermediate, and
final labeled images for review or presentation (see the final labeled
output images on the right column in Tables 1, 2).

The PE-ISA and the associated software developed, allowed us to
validate that the AGIN-ICP does in fact, deliver images that can
provide data for precise digital phenotypic measurements from the
images; and that the extracted digital measurements are highly
correlated with real-world (traditional) livestock measurements.
Manual versus digital extracted body measurements Pearson
correlation coefficients for height, length, and girth measures
were 0.931, 0.943, and 0.893, respectively (Woodward-Greene
et al., 2022). These extracted phenotypic values may in turn be
further analyzed to return a body weight prediction, coat color, coat
pattern, or other values. The output labeled images and data files
describing the labels could be used for machine learning training and
test sets to develop models for automated prediction, decision, or
image processing tools.

The AGIN collaboration platform addresses
multi-national collaboration challenges

Challenges encountered in implementing and developing the
AGIN-ICP internationally included differences in time, distance,
and language. The overall coordination and organization of the

FIGURE 5
AGIN-ICP demo at AGIN II in Uganda.
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AGIN, provided resources, collaborators, visibility, and support
from AGIN, as well as support from AGIN organizational
members such as the USDA and the FAO. In combination with
the AdaptMap project (Stella et al., 2018), resources, and expertise
from across a broad spectrum of biological, social, and political
domain experts, were readily available to address technical and
logistical challenges in Africa, and formed solid and lasting
relationships. The AGIN provided opportunities for students,
mid and senior level researchers, farmers, and government and
local officials frommany countries to interact as equals, facilitating a
free flow of information and exchange of ideas that became a
hallmark of AGIN, and key to many of its successes. In this
example of the image collection protocol development, the
technical vision for AGIN-ICP was grounded in these broad
perspectives, ensuring a protocol that was practical, while also
delivering the technical requirements to provide accurate
phenotypes from digital images.

Each iteration of the AGIN-ICP process included improved
instructions for collecting demographic data, taking manual body
measurements, and collection and storage of DNA samples (blood,
tissue, or hair). Sampling team leaders communicated predominantly by
email to clarify how to implement all aspects of the protocol. Together
with these ongoing enhancements to AGIN-ICP and equipment,
methods for communication and training on best practices for
optimal implementation of the AGIN-ICP were steadily improving as
well. These enhancements included the creation of a Quick Start Guide
in English and French on a single page, and a graphic of the Digital
Analysis Workflow on the reverse of that page. The Quick Start Guide
was applied in Stage 4 and included images to demonstrate the poses
used in the AGIN-ICP alongwith brief explanatory captions. TheDigital
Image Analysis Workflow is a diagram explaining the purpose of each
pose, i.e., what digital phenotype(s) are extracted from each image pose.
Development and evolution of the sampling kit with everything needed
except the camera or cell phone camera, was also an iterative and
collaborative process, with a kit provided to each sampling team, shown
in Figure 6. A listing of the photo sampling kit contents is found on the
next to last page of the AGIN-ICP. The AGIN-ICP, the Quick Start

Guides with the Digital Image Analysis Workflow, and the Hair
Collection Procedure adapted for AGIN-ICP are included in the
Supplementary Material.

Moving the goat

The goat to be sampled requires minimal preparation. Demographic
information is collected for each sample as described in the section on
calibration signs. Goats are led into the photo shoot area by hand, neck
chain, or halter. Animal identification may include ear tags, tattoos, or
farmer memory. Generally, sampling teams did not have difficulty
working with the animals to apply the AGIN-ICP; however, the
FAMACHA and the tooth poses were the most difficult, as they
required a higher degree of human—animal interaction compared to
the rear, side, and sign, or ‘bodymeasures’ poses. For the bodymeasures
photos, the disposition of the goats was judged to be overwhelmingly
cooperative in all Stages ofAGIN-ICPdevelopment, with few exceptions.

Stage 1 developmental in the US—Order of
operations and site set-up

Stage 1 developmental testing for the original protocol was led by
MJWand conducted in theUS. This stage confirmed the efficiency of the
method in conjunction with tissue sampling for DNA. Two teams
working concurrently, but the tasks were staggered, as the tasks of each
team took the same amount of time to complete. One team consisted of
the photographer (MJW) and a goat handler. This team was responsible
for recording demographics, marking pin bones and shoulders, and
taking photos. The second team (HJH) recorded body measures and
collectedDNA. The timing of the two teams, and the order of operations
was determined to minimize animal stress and maximize overall
efficiency. The first sampling (photograph) team would record the
demographic data, mark the pin bones and shoulders, and take the
photo series. Next, that same animal was moved to the second team for
body measures recording, with DNA collected last, as it may involve
stressful tissue (ear punch) sampling, hair pulling, or needle insertion for
a blood draw. While the first animal moved on to the second team, the
next goat would begin sampling by the photography team, and thus two
goats were sampled simultaneously. The full sample group would start
with a single goat recorded by the photography team, and end with
another single goat with the DNA and bodymeasuring team. Two goats
were being sampled concurrently at all other times (Figure 7). Review of
Stage 1 images demonstrated that isolating the goats in the images would
be difficult because of the similarity of the goat, background, and handler
clothing and skin colors. Thus, a blue backdrop was added to the
protocol to aid in image analysis. These issues were further addressed in
Stage 2.

Stage 2 field testing (early) Ethiopia and
Kenya—Site set-up, equipment, add the side
pose

Stage 2 began with MJW, HJH, JS, AH, BAR, SA, TG, and other
AGIN participants working with local farmers and leadership to
conduct field sampling in Ethiopia, followed by MJW and HJH

FIGURE 6
AGIN-ICP equipment kit with newly designed stationary small
sign (lower right).
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sampling with DM, AbK and other AGIN participants and
communities in Kenya. Stage 2 focused on method modification
and refinement of the equipment needed. The Stage 1 had confirmed
the efficacy of the order of operations and procedures discussed
above, and included the addition of a blue backdrop, and a blue lab
coat for the handler to enhance image analysis isolation of the region
containing goat. In general terms, the isolation of the goat in the
image at this stage, and thus iterations from this point relied on three
main image features integral to the image collection method,

• The goat, surrounded by a blue background, can be more
easily isolated in image analysis because the goat does not have
any blue regions.

• The goat has a limited range of size, and
• The goat and the tarp are in the center of the image.

A portable, free-standing device was constructed in the US and
transported to Ethiopia and Kenya to hang the blue backdrop added in
Stage 1. The kit for the stand included tripods, ropes, blue tarps, and
weights to keep tarps from blowing away. While portable, at roughly
200 pounds, the portable stand kit was burdensome, and was quickly
tossed aside. A photograph of it is included in the AGIN-ICP if anyone
would see a need to use such a tool. The AGIN-ICP and kit provides a
simple rope for more convenient tying of the blue backdrop to
buildings, trees, or fences, etc. Ultimately, it was found in Stage
2 that the vehicle transporting the sampling teams and equipment
often proved to be a reliable place to affix the backdrop in a variety of
situations, thus the stand was not included in the sampling kit provided
to subsequent teams. This simplification enhanced the convenience,
and reduced costs, and minimized the size and weight of the overall
AGIN-ICP equipment kit.

After testing the backdrop on the first sampling group in
Ethiopia, daily review of the images showed that a blue floor
drop cloth would also be needed, as the lower portion of the goat
would blend in with the soil and dust. Extra tarps were available

and employed immediately for the remaining Stage 2 Ethiopian
and Kenyan samples. Similarly, it was discovered from the
images that the blue lab coat was effective, however, the legs,
trousers or skirt of the handlers may still blend in with the goat
in some situations, potentially interfering with isolating the goat
in image analysis. It was determined while sampling in Ethiopia
and Kenya for Stage 2, that blue surgical scrubs (shirt and pants
or skirt) would provide more complete coverage. However, these
items were not available, and thus the blue scrubs were not
employed until subsequent field sampling by collaborators in
Stage 3.

The small sign meant to hang from the goat’s neck for
calibration did not work well, especially in African goats when
comparing to Stage 1 in the US. The African goats were generally
smaller than the US goats. The small sign hanging on the goat’s neck
obscured most of the front of the goat’s body. The small sign
continued to be worn around the handler’s neck, to ensure the
sample identification number was in all the photos. Finally, the large
calibration sign was fastened into a harness to be laid over the goat’s
back, with the sign on the right side. A counterweight on the left side
of the harness was added to keep it in place. It lies on the back of the
goat, like a saddle, so the sign can be adjusted to the correct position
with the top of the sign below the backbone and bottom of the sign
above the bottom of the belly, for the sign pose image. Also because
of the smaller size of the African goats compared to the US goats
originally tested, the inside of the large sign harness, which was black
in color, would sometimes be visible hanging down on the opposite
(left) side of the goat below the belly, which could interfere with
isolating the goat in image analysis. Thus, the harness was modified
to have the backside of the harness completely covered in blue tape
to eliminate this noise from the image analysis. The signs and their
placement are shown in Figure 1.

Finally, it became clear that the sign view pose of the animal with
the calibration harness in place, covers up distinctive patterns or
colors in the coat which are of interest in phenome and genome
research. Thus, a sixth photo of the right side without the large
calibration sign, named the ‘naked’ or ‘side’ view, was added to the
protocol starting with the Stage 2 Kenyan samples. This addition
made a total of four poses to obtain body measures, coat color and
coat pattern, plus the two close-up images used for the teeth age and
soundness, and the FAMACHA score.

Stage 3 field testing (late) in 5 African
countries—Identify communication,
training, support needs

Stage 3 involved six sampling teams in Uganda, Malawi, Tanzania,
Mozambique, and Zimbabwe implementing the prototype iteration of
AGIN-ICP. The blue scrubs were included in the kit for all but the first
team. The focus continued to be method modification and equipment
refinement, with a strong communications and training development
element added. The Stage 3 lead, CWM, was able to meet with MJW
and HJH in Kenya before their sampling for a one-on-one review and
discussion of the procedures and equipment and to discuss how the
field testing was going in Stage 2. CWMpicked up the first sampling kit
there, and so did not have the blue scrubs as subsequent Stage
3 teams did.

FIGURE 7
Ethiopia, HJH, SA, TG prepare for manual body measurements
and DNA collection as the first goat is photographed by MJW, AH, B.
Rischkowsky and local farmers assist.
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Communication with Stage 3 sampling teams were through the
Stage 3 lead, CWM, and done by email with an occasional phone or
Skype (video-telecommunication) call. In person training, including
DNA sampling occurred when the AGIN-ICP prototype was
demonstrated at a Ugandan livestock market as part of the
second conference and workshop for AGIN members at AGIN II
(Figure 5). This demonstration included the blue back and floor
tarps, the blue scrubs, the small sign worn by the handler, and the
added naked view for a total of 6 images per goat. Discussions and
presentations of the protocol Field Testing progress were also shared
at the AGIN III workshop in Ethiopia. Stage 3 offered much in terms
of understanding needed improvements in communications, in
particular clarity in the protocol instructions and support
documentation for field sampling teams. Ongoing assessment of
field images being collected revealed gaps in the instructions, and
several training handouts were developed.

Stage 3 ongoing images review also revealed the importance of
the handler posing with the goat correctly, i.e., standing away from
the goat especially if the handler is unable to wear the blue clothing.
Figure 8 shows early attempts to isolate the goat using color feature
detection. Note that any part of the handler not covered in blue can
interfere with the isolation of the goat from the background. The
final image analysis software has been improved, and is robust to
handle such noise due to varying image quality in terms of goat pose,
handler position, lighting, or camera settings. However, an
important part of an efficient solution is to communicate clearly
that the highest quality images are produced when there is nothing
between the goat and the blue background. This problem is solved
completely by the handler taking one or two steps away from the
goat’s body if possible; and if this can be done, the blue scrubs may
not be necessary. Sampling goats can be tiring work, and
maintaining precision in collecting the images per the AGIN-ICP
a challenge. The steps again are easy to do, but also easy to forget as
the sampling day wears on. If the handler would do both, that is to
wear all blue, and step away from the body of each goat, this would
provide redundancy to ensure nothing except the goat is in the
center of all the images.

Equally important and impacting the image analysis is site
selection and set-up. Stage 3 images were sometimes taken in
less-than-ideal conditions. For example, the photography site

should be free of unnecessary, large, or goat sized objects. The
location should be as level as possible. The light source should be
behind the photographer. Example images of poor vs. high quality
collection site, set-ups, and execution of the photos, including
FAMACHA images, were compiled and shared with sampling
teams, and added to the AGIN-ICP, as shown in Tables 1, 2 of
the protocol (Supplementary Material). This graphical
communications approach was helpful, as it was not as
dependent on trainer and trainee speaking the same language.

Additionally, photographers were strongly encouraged to
take practice photos and return them to MJW for review and
comment prior to going out on a sampling tour. This interactive
approach was effective; however, it was still difficult to anticipate
all the varied questions and situations that would come about
under field conditions. Stage 3 sampling teams sometimes had
difficulty troubleshooting unexpected sampling site or
equipment issues to the extent needed to maintain image
quality for analyses. To provide an example, one sampling
team set up the blue ground cloth tarp on uneven ground that
was littered with large rocks, despite having a nearly level surface
available, as was seen in the images taken that day. The uneven
site was selected so that the backdrop could be easily hung from a
building, rather than giving preference to level ground. The
resulting images had the goats correctly positioned with all
blue in the background, but they were standing behind the
rocks, which obscured their feet and legs, making automated
extraction of the goat body height from these images impossible.
This challenge in trouble shooting the site selection stemmed
from a lack of full understanding of how each image pose would
ultimately be analyzed, and it inspired the development of the
AdaptMap Quick Start Guide, and the Digital Image Analysis
Workflow graphic (Supplementary Material).

Stage 4 field testing (advanced) 6 African
countries–communication, training,
support needs

The Quick Start Guide was provided to sampling teams in Stage
4. Additionally in Stage 4, a face-to-face update, training, and

FIGURE 8
Early mask generation and implementation showing effectiveness of blue tarp and clothing, and importance of handler standing away from the goat
to remove non-goat features (human arms, shoes). Testing of the images revealed any variety of human skin and goat colors are over 90% similar.
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discussions of the modified protocol iteration, and image analysis
was completed as part of the third AGIN workshop in Ethiopia.
This direct training and informal discussions, along with the
protocol modifications and the Quick Start Guide, proved the
most effective training and communication approaches to date to
obtain high quality images. Specific protocol and equipment
modifications coming out of Stages 2 and 3 and implemented
in Stage 4, included the need to increase visibility of the pin bone
and shoulder bone markings, and to address issues in using the
small sign on the handler’s neck, which was often skewed, not
fully visible, or omitted altogether. The visibility of the livestock
crayon markings on the pin bones and shoulder bones in the
Stage 2 and 3 images was also not adequate. In addition, some
sampling teams had the crayons melt in the heat, rendering them
useless for any remaining samples.

To address the issues with the livestock crayons, a method
was devised during Stage 4, on how to prepare duct tape strips to
mark the pin bones and points of shoulder bones instead of
crayons. A few field sampling teams in Stage 4 were provided
these instructions, and bright pink duct tape. The continual
review of the images collected by sampling teams showed that
despite communication efforts, many sampling teams were
unable to properly locate or mark the pin or shoulder bones
with either duct tape or livestock crayons. This problem created
inconsistency in the digital measurements like what had been
seen in manual body measures. These inconsistencies were
precisely what the AGIN-ICP aimed to overcome. The issues
addressed in the protocol iterations up to this Stage, i.e., the
effects of the addition of blue tarps and clothing, and improving
communication on site selection, and proper or optimal use of
the equipment and other procedures over the developmental
stages are shown in Figure 9.

Stage 5 controlled testing US final collection
of images to develop image phenotype
extraction

Stage 5 occurred concurrently with Stage 4, and allowed for
careful, highly controlled testing of new or modified procedures and
equipment as the final African sampling progressed. The addition of
the sixth pose image, the ‘naked’ or ‘side’ view to extract coat color
and pattern, was fully implemented in Stage 5. The modifications to
the AGIN-ICP tested were a direct result of issues revealed in Field
Testing Stages 2, 3, and 4, and included low visibility of pin bone and
shoulder bone markings. Additionally, Stage 5 included testing of
multiple cameras and light levels. To address the pin bone and
shoulder bone marking, blue painter’s tape, and bright pink duct
tape were tested as possible alternatives to the livestock crayons. The
blue tape was not sticky enough to stay in place through the photo
series, and did not work with the approach to eliminate the blue
background with the software. The pink duct tape proved to be far
superior in visibility compared to the crayons, and it stayed in place
on the animals better as compared to the blue painter’s tape
(Figure 10).

To facilitate using the duct tape, a procedure was added to the
prototype protocol, describing how to prepare small strips of tape in
advance by scoring deep into the duct tape roll with a razor at 1-cm
intervals, and this procedure was shared with some of the Stage
4 sampling teams. This allowed easy and quick access to the strips
during sampling. Sampling teams were cautioned that the tape
should be removed from the goat’s body when finished sampling,
so the goats would not consume it. Despite the clear improvement
seeing the markings with duct tape, persistent issues of proper
placement of the marks rendered the value of this step negligible,
and it was ultimately eliminated in the final AGIN-ICP. The width

FIGURE 9
Modification examples and impact on implementation quality through developmental stages.
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and volume of the animal’s body is instead determined by isolating
and calibrating the rear pose using the PE-ISA developed for AGIN-
ICP images. The prototype protocol used in Stage 4 and Stage
5 demonstrated a stringent, yet easily applied method that can
collect high enough quality digital images under field sampling
conditions, such that the subject ROI can be isolated in image
analysis for extraction of phenotypic data. The final AGIN-ICP is
presented in the Supplementary Material, and takes into
consideration all the issues overcome, lessons learned, with
advice and feedback from sampling teams, farmers, and others,

especially AGIN members, who were updated at each AGIN
gathering of the AGIN-ICP development progress and status.

AGIN-ICP sustainability, future, and the
legacy of the AGIN collaboration model

The AGIN-ICP is just one example success story that is a direct
product of the AGIN multi-national collaboration platform, and
though the USAID funding has ended for AGIN, it has set a

FIGURE 10
Kenya Stage 2 bone marking with livestock crayons (A–C), and United States Stage 5 testing of duct (pink) and painter’s (blue) tape (D,E). Both tapes
were more visible, but painter’s tape did not stay on the goat. Bone marking was deemed ineffective for properly locating bones, and the markings were
also difficult to pick up in image analysis. It was dropped from the AGIN-ICP.

FIGURE 11
Preliminary software development for coat color calibration (A,B) and coat pattern (C) recognition.
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precedent for collaboration that is being repeated by other research
groups. Further, the relationships and the capacity built both in
terms of human resources and technical innovations ensure that the
work of AGIN will be sustained, and continue to evolve (Van Tassell
et al., 2023). The software development for processing AGIN-ICP
images has demonstrated proof of concept for accurate digital
animal body measurements of height, length, and chest girth.
Software development continues with teeth and FAMACHA
measurements extracted (Table 2), and validation studies for
these phenotypes are planned. Work is also ongoing to calibrate
coat color for a numerical value meaningful across varied samples
and settings, and to extract and vectorize coat pattern (Figure 11).

As the AGIN-ICP is used in more and more sampling settings,
its history of evolution is likely to continue. Going forward, MJW
has redesigned some of the equipment to better address known
issues or to simplify the protocol. For example, the small calibration
sign that was too big for the goats, and too unstable for wearing by
animal handlers, has been redesigned for standalone use, as shown
in Figure 12. Extensive work extracting body measures data from
AGIN-ICP images shows that only two photos (a rear view and sign
view) are needed to extract accurate body measurements. Sampling
teams who do not need the other measurements may eliminate the
other poses in that case.

Finally, automated extraction of GPS data embedded in the
images is a feature planned for a future version of the software.
Record keeping and analyses such as growth rate over time, would be
a helpful feature for farmers or others selecting animals for breeding,
marketing, or to monitor health. These data, combined with the
phenotype data could prove valuable for researchers, farmers, and
veterinarians who wish to assess their stock in the context of the local

climate and production systems, so they can make informed
decisions based on accurate and relevant information.

Conclusion

The African Goat Improvement Network Image Collection
Protocol (AGIN-ICP) has shown that it is an efficient, easily
deployable, inexpensive method to collect digital images from
livestock without causing the animals, or the handlers undue
stress. The resulting images collected with the AGIN-ICP were
used to develop the PreciseEdge Image Segmentation Algorithm
(PE-ISA), which returns digital phenotypes from AGIN-ICP
collected images that are highly correlated to analogous, real-
world (traditional) animal phenotype values, with Pearson
correlation coefficients for height (0.931), length (0.943), and
girth (0.893) (Woodward-Greene et al., 2022). Sampling teams
using the AGIN-ICP must understand that despite the simplicity
of the protocol, attention to detail and an understanding of the
purpose for each step is critical to obtaining images that can be used
to extract digital phenotypes as intended.

The phenotypic data from this process is ‘born digital’ and thus
can save time, effort, and errors because data entry is not needed.
The accompanying user software that embeds the PE-ISA for easy
processing of images was developed using images collected by the
AGIN-ICP in Stage 5. It will provide users with a variety of data
formats for subsequent phenotypic analyses; as well as labeled digital
images that could be used in artificial intelligence machine learning
test sets, for data modeling to advance decision tool innovations
(manuscript in process). The AGIN-ICP is a case study in the AGIN

FIGURE 12
Re-fabricated small calibration sign for stand-alone use will minimize its skewing or omission in body measure photos.

Frontiers in Genetics frontiersin.org16

Woodward-Greene et al. 10.3389/fgene.2023.1200770

180

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1200770


multi-level collaborative model to empower all levels of stakeholders
in a CBBP. This work, and all of the authors benefitted significantly
from the breadth of expertise and synergy of shared purpose fostered
and supported by the AGIN structure, members, partners, and
sponsors. Workers engaged in the CBBP, from farmers, to
students, to junior and senior researchers, as well as local,
regional, and national government officials and sponsors from
multiple countries all had a significant role in the success of the
AGIN-ICP.
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Several factors, including breed, lead to divergent performance of pigs for
production and reproduction traits in different environments. A recent
genomics study showed that Modern European (ME) pig breeds contribute to
the ancestry of smallholder pigs in the Hoima and Kamuli districts, Uganda. These
pigs were also involved in a longitudinal study with several traits recorded,
including 540 body weights (WT) of 374 growing pigs, 195 records of total
number of piglets born alive (TBA) of 157 sows, and 110 total number weaned
(TNW) records of 94 sows. Linear mixed-effects models were used to test for the
significance of environmental effects, including housing system, geographic
location, and the season when the events occurred as well as animal-specific
effects like age, sex, parity, and farrow-to-weaning interval. Stepwise model
reduction starting from models with all main effects and pairwise interactions
was applied. The final models were then expanded to include proportions of
Modern European (ME) ancestry for the subset of animals genotyped, following
genomic ancestry analysis based on a Porcine 50K SNP Chip. ME ancestry
proportions ranged from 0.02 to 0.50 and were categorized into three classes
(low/medium/high ME) based on 33.3% quantiles. The effects of ME classes onWT
and TBA were not significant. ME showed a significant effect on TNW. Sows with a
high proportion of ME weaned 2.4 piglets more than the low group, the medium
ME group being intermediate. This study used genomic data to investigate the
effects of genetic ancestry on the performance of smallholder pigs in Uganda. The
proportion of Modern European ancestry did not exceed 0.50, therefore not
allowing for the comparison of local versus pure “exotic” types of pigs. For the
range of ancestries observed, which is the relevant one for current smallholder
systems in Uganda, differenceswere small for the bodyweight of growing pigs and
the number of piglets born alive, while higher proportions of ME ancestry resulted
in significantly more piglets weaned. The availability of genotypes of a higher
number of growing pigs would have been beneficial for drawing conclusions on
the effect of ME ancestry on the growth rates of smallholder pigs in Uganda.
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1 Introduction

Pork is an important source of animal protein and represents 30%–
40% of the meat consumed globally (FAO, 2014). The top pork-
producing countries in Africa include Nigeria, Malawi, and Uganda
(FAOSTAT, 2021). The national herd of Uganda is estimated at
4.2 million pigs (UBOS, 2020), and the per capita consumption of
pork is 3.4 Kg (FAOSTAT, 2018). Smallholder farmers represent the
majority of pig producers and pigs are kept for savings/insurance and
income (Babigumira et al., 2019). Small herds of variable size are kept
from which piglets, slaughter animals, or both are produced (Ouma
et al., 2015; Ouma, 2017). Pig breeding is unstructured, and services like
artificial insemination are not commonly used.Most farmers rely on the
services of a village boar for a fee to breed their sow (Dione et al., 2014).
Performance traits related to reproduction (litter size), growth, and
disease resistance are important to smallholder farmers (Babigumira
et al., 2019). All these constraints have implications on the performance
of pigs in these typically low-input smallholder systems.

Previous studies on the performance of pigs in Africa have been
done under differing production conditions and have, to a great extent,
relied on pig breed composition as reported by farmers or research
stations, that is, local, crossbred, and exotic (Adebambo and Dettmers,
1982; Affentranger et al., 1996; Ajala, 2007; Kagira et al., 2010;
Muhanguzi et al., 2012; Okello, 2015; Dotche et al., 2020a). However,
there is consensus that local pigs in Africa were introduced and are of
European and Asian ancestries (Blench, 2000; Ramirez et al., 2009; Noce
et al., 2015; Dotche et al., 2020a; Babigumira et al., 2021). Additionally, it
becomes difficult, missing pedigree informationwithstanding, to account
for genetic effects on an animal’s performance, more so in admixed
populations. Nevertheless, advances in bioinformatics and sequencing
technologies havemade it possible to overcome such hurdles. To the best
of our knowledge, the study by Babigumira et al. (2021) is the first in
Uganda to both decipher and quantify the ancestry of smallholder pigs
using SNP Chip data (Babigumira et al., 2021). Babigumira et al. (2021)
analyzed the ancestries of pigs kept by smallholder households in
Uganda with Old British, Modern European, Iberian, Duroc, and
Chinese pigs as potential ancestral populations and found that the
pigs were mostly a mix of Old British and Modern European (ME)
types. The current study is a follow-up to the study by Babigumira et al.
(2021). Both studies were conducted as part of a longitudinal survey of
smallholder pig herds in the districts of Hoima and Kamuli, Uganda,
under a larger project. Here, we incorporated genomic information and
statistically tested the effects of ME ancestry (ranging from 2%–50%) on
phenotypes recorded on these smallholder pigs in Kamuli and Hoima
districts, Uganda. Our results highlight the role of the environment in the
performance of pigs in smallholder herds and imply a holistic approach
when intervening in smallholder pig production.

2 Materials and methods

2.1 Study sites and households

The study sites selected were Hoima and Kamuli districts due to
the importance of pig-keeping to smallholder’s livelihoods in these

districts. Household selection proceeded as follows. For selected sub-
counties within Hoima and Kamuli districts, a full list of pig-keeping
households was obtained in collaboration with the district extension
staff. From here, 300 households were randomly selected and
surveyed for key information on their household pig enterprise
type, including the main breed type of pig kept (local, cross-bred of
local and exotic, and exotic) and type of pig housing (free-range and
tethered versus housed). Households’ pig enterprises were then
classified based on combinations of main breed-type kept and
housing practiced (as local-tethered, cross-breed-tethered, exotic-
tethered, cross-bred-housed, and exotic-housed) with the final set of
200 project households purposively selected from these groups, such
that each enterprise type had approximately an equal number of
households. The 200 households were in 30 villages in 26 parishes
across 8 sub-counties in the 2 districts.

2.2 Ethics statement

This research was approved by the Uganda National Council of
Science and Technology (UNCST), the Research Ethics Committee
of the Vector Division of the Ministry of Health (VCD-REC),
Uganda, the Research Ethics Committee (IREC), and the
Institute Animal Care and Use Committee (IACUC) of the
International Livestock Research Institute (ILRI). Farmers’
participation in the study was voluntary.

2.3 Genotypes

The breed composition (genotypes) of the pigs used in the
current study had been inferred by admixture analysis in a
related study (Babigumira et al., 2021). Briefly, the genotyping
process in Babigumira et al. (2021) proceeded as follows. Hair
samples were taken from a random sample of pigs kept by
148 of the 200 smallholder households in the districts of Hoima
and Kamuli. Further, pigs phenotypically representative of “local”
pigs were also sampled from smallholder households in three other
districts, namely, Soroti, Kumi, and Paliisa. Genotyping was done
using the Geneseek Genomic Profiler Porcine 50k SNP chip and
ancestry proportions were inferred by admixture analysis using
ADMIXTURE 1.3 (Alexander et al., 2009). The pigs were found
to have a mix of Old British and Modern European (ME) ancestries.
Large White and Landrace pig breeds contributed to most of the ME
ancestry proportions which were between 0.02 and 0.5 (Babigumira
et al., 2021).

2.4 Data collection

Data were collected on all pigs present within the project
household at the time of the survey visit. Initially, a pig census
survey was performed (October to November 2018) with all pigs
within the households tagged and demographic data on each pig
obtained (including age, sex, and breed, and for sows their parity, as
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per farmer recall) using a structured survey. From here the
household pig herds were longitudinally monitored (December
2018 to March 2020). During the longitudinal monitoring, the
households were visited eight times at intervals between 1 and
3 months depending on the weather and related field activities,
and information on their household pig enterprises and pigs was
recalled to the previous visit, using a structured survey. Data
captured during the longitudinal monitoring included (amongst
others) farrowing and weaning events, health, nutrition (feeds and
feeding practices), herd dynamics (entries and exits), pig
transactions (sales and purchases), housing systems, and
morphometric and body weight measurements.

This study focused on an analysis of growth and fertility traits
[total number of piglets born alive (TBA) and total number of piglets
weaned (TNW)]. Body weight (WT) measurements were taken at
birth, when possible; otherwise, the birth date was recalled by the
farmer and the weight of the pig was measured during the visit. Pigs
were weighed every subsequent visit until the animal exited the farm
(through sale or death) or until the end of the survey. The WT was
measured using a digital weighing scale (Brand: Crane, range of
measurement: 1–200 Kg and accuracy: 0.12 kg). Heart girth (HG)
and body length (BL) measurements were taken at the time of
weighing each pig. Sow fertility data collected included farrowing
and weaning dates and litter sizes at birth (TBA) and weaning
(TNW). The data was entered into the Census and Survey
Processing System (CSPro) (U.S. Census Bureau, 2019) and
reposited in a SQL database on the ILRI data portal (Rutto et al.,
2019).

2.5 Data analysis

We analyzed the influence of a range of effects (described
below) on variation in growth and litter size of pigs. All effects and
their possible pairwise interactions were tested at a significance
level of 0.05 by a linear mixed effects model using the lme4 package
in the R environment (Bates et al., 2014; R Core Team, 2020).
Results from the lme4 package were visualized using the lmerTest
R package (Kuznetsova et al., 2017). Further, to account for
population structure, we generated a genomic relationship
matrix and included it in the mixed model analysis using the R
package lme4qtl (Ziyatdinov et al., 2018). Least-squares means
(LSM) were estimated and compared pairwise by the Kenward-
Roger method and Tukey p-value adjustment method for
comparing multiple estimates using the lsmeans R package
(Lenth, 2016).

2.5.1 Description of variables
Body weight (WT) and litter size at farrowing (TBA) and

weaning (TNW) were continuous dependent variables. The
independent variables of interest were the housing system,
geographic location of the farm, season, sex (for growers),
farrow-to-weaning interval, and parity (for sows). The pigs in
each household were managed under one of three housing
systems: free-range (only for growers), tethered, and housed. The
proportion of Modern European (ME) was inferred in a previous
study (Babigumira et al., 2021) and was categorized into low,
medium, and high classes based on 33.3% quantiles. The season

was defined as dry or wet based on the seasons of Uganda to which
the month of farrowing or weaning (for sows) or weighing (for
growers) belonged. Uganda majorly has two wet seasons: March to
May and September to December (Caffrey et al., 2013; Mubiru et al.,
2018). Parity was defined as “1” for a primiparous and “2+” for a
multiparous sow. The farrow-to-weaning interval was a continuous
variable computed in days and then categorized based on 33.3%
quantiles. Age was a continuous variable while sex was a categorical
variable (female or male). Genotypes were available on only 11.0% of
growing pigs with body weights (43 of 374) due to the inability to
hair sample very young pigs and their absence at the next survey visit
(e.g., due to sale or death). In contrast, 66% (103 of 157) of the sows
were genotyped. The 43 genotyped growing animals with 94 records
on WT were assigned to three ME classes on 33.3% quantiles (low ≤
0.181, 0.181 > medium < 0.28, and high ≥ 0.28). The sows were
assigned to three ME classes based on 33.3% quantiles (low ≤ 0.153,
0.153 >medium < 0.289, and high ≥ 0.289). The number of animals
in each category of the variables is presented in Table 1.

2.5.2 Statistical models
A range of effects potentially affecting the traits under study,

including geographical location, housing system, and season, was
included in the linear mixed effects statistical models employed. As
only part of the animals with phenotypes were also genotyped for the
prediction of levels of ME ancestry, the following strategy of analysis
was employed.

First, mixed linear models with fixed environmental effects and
all their pairwise interactions as well as the random effect of animals,
accounting for repeated measurements, were tested. A stepwise
procedure for model reduction was followed, excluding non-
significant interaction terms one by one and then excluding non-
significant main effects not involved in any of the interactions. The
model reduction was based on Pearson’s chi-square (ꭓ2) statistic
with a threshold of 0.05.

Second, the resulting model was then employed adding the
proportion of Modern European ancestry (ME: low, medium, and
high) as well as its pairwise interactions with the other fixed effects in
the final environmental effects model. Non-significant pairwise
interaction terms of these environmental effects and ME were
also excluded in a stepwise manner to arrive at the final model.
Therefore, the results for the fixed environmental effects presented
here are derived from the initial dataset with more observations
while the effects of ME ancestry and its interactions come from the
smaller dataset of genotyped animals (Ziyatdinov et al., 2018). We
run the final models fitting ME as a categorical variable and a
continuous variable.

2.5.2.1 Grower performance
A total of 540 WT records from 374 animals with indicators of

age, geographic location, sex, pig housing system, and season were
available. The number of animals with one, two, three, and four
records was 252, 83, 34, and 5. For the 374 animals, the ranges of
WT, HG, BL, and age were 0.7–49.0 Kg, 5.0–73.0 cm, 14.0–91.0 cm,
and 7.0–210 days, respectively. The correlations between WT and
the two morphometric measurements (HG and BL) ranged from
0.74 to 0.92 (Table 2).

The significance of the environmental effects on WT and all
pairwise interactions were investigated using model (Eq. 1).
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WTijklmn � Ai + Gj + Sk +Hl +Wm + ANn

+ all pairwise interactions + ∈ijklmn (1)

WhereWTijklmn is the body weight of the nth animal;Ai is the ith age
in days (covariate); Gj is the jthgeographical location; Sk is the kth

sex;Hl is the lth pig housing system;Wm is the mth season in which
the animal’s body weight was measured; ANn is nth grower (random
effect); ∈ijklmn random residual effect.

2.5.2.2 Sow performance
The effect of season, geographic location of the farm, pig

housing system, and parity as fixed effects and the sow as a
random effect on the total number of piglets born (TBA) which
is 195 observations from 157 sows, and on the total number of
piglets weaned (TNW) which is 110 observations from 94 sows was
investigated using model (Eq. 2).

TBAijkln, TNWijklmn � Si + Gj +Hk + Pl + Im + ANn

+ all pairwise interactions + ∈ijkln, ∈ijklmn

(2)
Where TBAijkln is the total number of piglets born alive and
TNWijklmn is the total number of piglets weaned; Si is the ith

farrowing or weaning season; Gj is the jth geographic location of
the farm; Hk is the kth housing system; Pl is the lth parity; Im is the
mth farrow-to-weaning interval; ANn is the nth sow (random effect);
∈ijklmn is a random residual effect.

3 Results and discussion

3.1 Description of body weight and litter size

Most growing animals (92.5%) weighed less than 10 Kg (for HG,
BL, and age, the weights were less than 68 cm, 79 cm, and 200 days,
respectively) due to heavier animals being sold from the household
prior to the time of visits (Figure 1).

Note that the WT of eight animals with missing WT
measurements but available HG and BL measurements were
predicted using a multiple linear regression equation based on
(Eq. 3).

WT � −9.45091 + 0.40756 × HG + 0.02152 × BL (3)

TABLE 1 Number of animals in each category of environmental and genetic effects.

Characteristic Levels Sows (N) Growers (N)

Farrow Wean

Geographic location Kamuli 91 61 319

Hoima 66 34 55

Season Dry 59 32 226

Wet 107 67 254

Housing system Housed 43 26 110

Tethered 109 69 70

Free-range 0 0 131

Parity 1 98 58 NA

2+ 77 43 NA

Sex Male NA NA 172

Female 157 95 191

ME Genotyped 103 67 43

ME classes Low 37 21 13

Medium 34 24 13

High 32 22 17

Farrow-to-weaning interval Low NA 35 NA

Medium NA 35 NA

High NA 38 NA

TABLE 2 Correlation between WT, HG, and BL.

WT (Kg) HG (cm) BL (cm)

WT (Kg) 1.00

HG (cm) 0.74 1.00

BL (cm) 0.75 0.92 1.00
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HG and BL explained 61% of the variation of WT
(R-squared = 0.61)

The relationship between body weight and age is shown in Figure 2.
The WT was very variable with age with some animals at either end of
the spectrum. Variability in WT of growing pigs has also been reported
in the Philippines (More et al., 1999) and Kenya (Mutua et al., 2011), as
well as in commercial herds (López-Vergé et al., 2018).

For sows, a total of 195 litters with a mean ± standard deviation
of 7.2 ± 2.3 (with a range from 1 to 13) had been farrowed by
157 sows between July 2018 and March 2020. The TBA values are
comparable to those reported in India and Nigeria (Kumaresan
et al., 2007; Abah et al., 2019) but lower than those reported in
commercial herds in Uganda (Okello, 2015). A total of 110 litters of
94 sows had weaning records on the total number of piglets weaned,

the season of farrowing, parity, geographic location of the farm, and
the pig housing system practiced on the farm. The average size of
weaned litters was 6.1 ± 2.2 (with a range from 1 to 11) piglets. The
TNW values reported here are lower than those reported by Okello
(2015). The litters were weaned between October 2018 and March
2020. The distribution of TBA and TNW is shown in Figure 3.

3.2 Models including environmental effects

3.2.1 Grower performance
The final (reduced) model for growth performance contained

the main effects and interaction terms presented in Table 3.
The variances of the random effects, namely, animal and residuals

were 7.762 and 11.521, respectively, translating to a repeatability of
0.67 of the body weight measurements. The average daily gain (ADG)
derived from linear regression of weight on age was 55.2 g/day. The
least-square means forWT by housing system are presented in Table 4.
Pairwise comparisons showed significant differences between housing
systems (free-range vs housed).

The housing system had a significant effect on WT, and this could
be attributed to the intensified management of housed pigs. Pigs in
Tanzania were found to gain between 68 g/d when left to free-range,
and 72 g/day when confined/housed (Lipendele et al., 2015). The ADG
reported in our study is close to those reported in Benin (Kouthinhouin
et al., 2009) but lower than the 77 g/day that was reported for
smallholder pigs elsewhere in Uganda (Lule and Lukuyu, 2017).
Furthermore, the ADG found in our study was much lower than
those reported for pigs in Kenya (Mutua et al., 2011; Carter et al., 2013),
Ghana (Darfour-Oduro et al., 2009), Zimbabwe (Chimonyo et al.,
2010), and India (Kumaresan et al., 2007); the latter was mostly
derived from feeding trials. Smallholder pigs are fed energy-rich but
protein-deficient crop residues comprising root tubers and their vines
or leaves, e.g., sweet potato and cassava (Carter et al., 2015). Feed
shortages and poor-quality forages in the tropics contribute to slower
pig growth (Mutua et al., 2012; Mutua et al., 2012; Levy, 2014; Levy,
2014). Age (Carter et al., 2013) was found to have a significant effect on
WT as reported in our study.

3.2.2 Sow performance
3.2.2.1 Total number of piglets born alive

For TBA, the only significant effect retainedwas parity (χ2 = 5.8916;
p = 0.01521). The variance components for the random effects, namely,
animal and residual were 0.728 and 4.294, respectively, translating to a
repeatability of 0.17. The least-square means for TBA by parity are
shown in Table 5. Pairwise comparisons showed significant differences
between classes of parity (p = 0.0173).

Multiparous sows farrowed 0.77 piglets more than their
primiparous cohort. Litter size increased with each parity till
around the fourth (Dotche et al., 2020b).

3.2.2.2 Total number of piglets weaned
The significant fixed effects and interaction terms were retained

stepwise (Table 6) from model (Eq. 3). The significant main effects
and interaction terms are presented in Table 6.

Sows that farrowed in the wet season weaned 0.54 piglets less.
The wet season rather than cold weather is associated with piglet
mortality (Chiduwa et al., 2008). Multiparous sows weaned

FIGURE 1
Distribution of body weight (WT).

FIGURE 2
Weight-for-age of growing pigs.
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1.6 piglets (p = 0.0013) more and this is attributed to the
improvement in the mothering ability of the sow. The least-
square means of TNW by geographic location, housing system,
and parity are presented in Table 7. Pairwise comparison showed
significant differences between different levels of each variable.

3.3 Testing effects of the proportion of
Modern European (ME) ancestry

We tested the effects of ME on only the genotyped animals with
the GRM (using the lme4qtl package) and without the GRM (using
the lme4 package). Given that we obtained the same results in either
case, here, we report the results obtained using the lme4 R package
(Bates, 2010).

3.3.1 Grower performance
A total of 94 WT records from 43 genotyped growing animals

were available. The analysis of the effect of ME classes on WT
showed that ME did not have a significant effect on WT (χ2 =
0.104, p = 0.949), and none of the pairwise interaction terms of
ME with the other main effects was significant (p = 0.083 or
higher). Figure 4 shows the least-square means and 95%
confidence intervals of ME classes. Pairwise comparisons
revealed non-significant (p < 0.05) differences between the ME
classes. Further analysis with ME as a regressor also revealed
neither it (χ2 = 0.001, p = 0.973) nor its interactions with the
other effects (p = 0.489 or higher) in the model had a significant
effect on WT.

It is generally accepted that exotic pigs weigh heavier than
their indigenous counterparts. However, we found no significant

FIGURE 3
Distribution of (A) total number of piglets born alive (TBA) and (B) total number of piglets weaned (TNW).

TABLE 3 Significance of effects and interaction terms retained in the reduced
model for WT.

χ2 DF p-value

Age 196.095 1 <0.0001

Housing system 9.583 2 0.00830

Season 2.416 1 0.12011

Geographic location 0.629 1 0.42771

Age: season 17.751 1 0.00003

Age: geographic location 5.162 1 0.02308

TABLE 4 The least-square means for WT by housing system.

Housing system LS mean SE

Free-range 6.31a 0.52

Tethered 7.36a,b 0.50

Housed 8.11a 0.42

(a, b) LS means with different superscripts are significantly different.

TABLE 5 The least-square means of TBA by parity.

Parity LS mean SE

1 6.85a 0.23

2+ 7.62b 0.24

(a, b) LS means with different superscripts are significantly different.

TABLE 6 Significance of fixed effects and their pairwise interaction terms
on TNW.

Effect χ2 DF p-value

Season 0.011 1 0.9166

Geographic location 3.486 1 0.0619

Housing system 5.584 1 0.0181

Parity 6.742 1 0.0094

Season: Geographic location 7.255 1 0.0071

Season: Parity 5.157 1 0.0232
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differences in the effects of ME class on WT. It is likely that ME
effects are confounded by other effects such as the housing
system. Pig sties are usually provided by farmers capable of
intensifying production, for example, by using improved
breeds and providing better management (Dione et al., 2014;
Ouma et al., 2015). This may partly explain the trend in body
weight across the ME classes.

3.3.2 Sow performance
3.3.2.1 Total number of piglets born alive (TBA)

As only parity was significant after the reduction of model
(Eq. 3) with the full phenotype data, the proportion of Modern
European and its interaction term with parity was added for the

analysis of data of genotyped animals. A total of 135 farrowing
records that belonged to 103 genotyped sows were available for
analysis. ME (χ2 = 3.2163; p = 0.20026) nor its interaction with
parity (χ2 = 0.64804; p = 0.64804) had significant effects on TBA.
The least-square means of ME and their 95% confidence
intervals for TBA are presented in Figure 5. Sows in the ME
medium and high groups farrowed 0.86 and 0.14 piglets more
than those in the low group. Pairwise comparisons were
significant between low and medium ME classes. A study in
Cameroon that compared primiparous local versus exotic sows,
e.g., Large White, reported lower litter size for the local sows
though the breed effects were non-significant. However, the
breed had a significant effect on the litter size of multiparous
sows (Kouamo et al., 2015).

TABLE 7 The least-square means for TNW by geographic location, housing system, and parity.

Geographic location LS mean SE

Hoima 7.80a 0.41

Kamuli 6.57b 0.31

Housing system

Housed 7.74a 0.43

Tethered 6.63b 0.28

Parity

1 6.39a 0.29

2+ 7.98b 0.42

(a, b) LS means with different superscripts are significantly different.

FIGURE 4
Effects of ME classes on WT, least square means (standard error),
and their 95% confidence intervals.

FIGURE 5
Effects of ME classes on TBA, least squaremeans (standard error),
and their 95% confidence intervals.
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3.3.2.2 Total number of piglets weaned (TNW)
For TNW, a total of 80 weaning records that belonged to 67 sows

were available for analysis. ME had a significant effect (χ2 = 10.3928;
p = 0.005537) on TNW as were the interactions between ME and
geographic location (χ2 = 6.8424; p = 0.032673). The LSMs for TNW
by the interaction betweenME and geographic location are shown in
Table 8. The least-square means of ME classes and their 95%
confidence intervals for TNW are shown in Figure 6. There was
a clear ranking, with higher proportions of Modern European
ancestry being associated with higher TNW. Pairwise significance
testing indicated that medium levels of ME were significantly
different from low ME. The findings are similar to a study that
compared local versus exotic pigs in Benin and showed the latter
weaned more piglets (Dotche et al., 2020b). Further, crossbred pigs
weaned around three piglets more than local pigs in a study in India
(Nath et al., 2013).

4 Conclusion

Genetic and environmental factors influence phenotypes. In this
study, we analyzed the effects of the proportion ofModern European
ancestry of smallholder pigs in Uganda on growth and litter size
traits. The variation in ancestry levels was limited, with none of the
animals having more than 50%Modern European (LargeWhite and
Landrace) ancestry. The growth rates of pigs were extremely low,
being around 55 g per day for an age range from 7 to 210 days.
Further, while ME did not have a significant effect on growth,
growth was significantly affected by the housing system as reported
in this study. These findings underscore the role of appropriate
management interventions for improved growth performance. Sow
reproductive performance was influenced by parity for both TBA
and TNW. Additionally, ME had a significant effect on TNW, such
that sows with high ME ancestry weaned close to three piglets more
than sows with low ME ancestry. These findings underscore the role
of genetics and appropriate management for improved productivity
of pigs in smallholder herds in Uganda.
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TABLE 8 The least square means for TNW for the interaction between ME and
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ME Geographic location LS mean SE

Low Hoima 7.39a 0.98

Kamuli 4.10b 0.96

Medium Hoima 7.13a 1.20

Kamuli 6.74a 1.24

High Hoima 10.4a 1.55

Kamuli 5.94b 0.54

aLS, means with different superscripts in each ME, category are significantly different.
bLS, means with different superscripts in each ME, category are significantly different.

FIGURE 6
Effects of ME classes on TNW, least square means (standard
error), and their 95% confidence intervals.
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Transcriptomic and metabolomic
analyses of the ovaries of Taihe
black-bone silky fowls at the peak
egg-laying and nesting period
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The poor reproductive performance of most local Chinese chickens limits the
economic benefits and output of related enterprises. As an excellent local breed in
China, Taihe black-bone silky fowl is in urgent need of our development and
utilization. In this study, we performed transcriptomic and metabolomic analyses
of the ovaries of Taihe black-bone silky fowls at the peak egg-laying period (PP)
and nesting period (NP) to reveal the molecular mechanisms affecting
reproductive performance. In the transcriptome, we identified five key
differentially expressed genes (DEGs) that may affect the reproductive
performance of Taihe black-bone silky fowl: BCHE, CCL5, SMOC1, CYTL1, and
SCIN, as well as three important pathways: the extracellular region, Neuroactive
ligand-receptor interaction and Cytokine-cytokine receptor interaction. In the
metabolome, we predicted three important ovarian significantly differential
metabolites (SDMs): LPC 20:4, Bisphenol A, and Cortisol. By integration
analysis of transcriptome and metabolome, we identified three important
metabolite-gene pairs: “LPC 20:4-BCHE”, “Bisphenol A-SMOC1”, and “Cortisol-
SCIN”. In summary, this study contributes to a deeper understanding of the
regulatory mechanism of egg production in Taihe black-bone silky fowl and
provides a scientific basis for improving the reproductive performance of
Chinese local chickens.

KEYWORDS

Taihe black-bone silky fowl, ovary, transcriptome, metabolome, reproductive
performance

1 Introduction

Eggs are an important food resource that contains a large amount of essential nutrients
for the human body. Egg production is an important indicator of the reproductive
performance of chickens, which affects the profits and productivity of the laying hen
industry (Mu et al., 2021). The ovary is a key organ of the reproductive system of poultry and
is critical to their reproductive performance. In recent years, most studies have focused on
the ovaries of mammals, and relatively few studies have been conducted on the ovaries of
poultry (Lin et al., 2021). Therefore, in-depth studies on poultry ovaries further provide a
theoretical basis for the egg-laying mechanism of poultry.
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Improving the reproductive performance of poultry is an
important breeding goal, but traditional breeding methods have
progressed slowly and it has been difficult to identify specific genetic
improvements (Biscarini et al., 2010). We performed transcriptome
sequencing and metabolome sequencing of ovaries from Taihe
black-bone silky fowls, and performed integration analysis of the
transcriptome and metabolome to reveal the molecular mechanisms
involved in egg production performance. Transcriptome sequencing
technology is a high-throughput sequencing technology that allows
differential gene analysis at the genome-wide level; metabolomics is
closely related to phenomics and can reflect the physiological state of
an organism more directly and accurately (Li et al., 2022). Lin et al.
(2021) performed transcriptome sequencing of Muscovy duck
ovaries and predicted six genes that may regulate ovulation:
CTNNB1, IGF1, FOXO3, HSPA2, PTEN, and SMC4; and four
important pathways: the Adhesion-related pathway, mTOR
pathway, TGF-β signaling pathway and FoxO signaling pathway.
Yuan et al., 2020) performed a metabolomic analysis of stearoyl-
CoA desaturase (SCD) during goose follicle development and
identified cholesterol and pantothenic acid as potential biomarker
metabolites of goose granulosa cells. Transcriptomic and
metabolomic integration analysis can correlate genes and
metabolites (Tohge et al., 2005). Therefore, the use of
transcriptomic and metabolomic integration analysis can provide
a more comprehensive understanding of ovarian performance in the
Taihe black-bone silky fowl. Wu et al. (2022) performed a
transcriptomic and metabolomic integration analysis to reveal the
effect of light supplementation on sternal calcification in ducks. (Ma
et al. (2022) performed a transcriptomic and metabolomic
integration analysis to reveal the modulation of fructo-
oligosaccharide on ileum metabolism of Taiping chickens.

Nesting is an instinct of hens to reproduce, and during nesting, the
ovarian function of hens will degenerate, and nesting is common in
Chinese local chickens. The Taihe black-bone silky fowl is a Chinese
local breed originated from Wangbantu village, Taihe County, Jiangxi
Province, with good meat quality and flavor, which is worthy of our in-
depth study (Mi et al., 2018). Most Chinese local breeds of chickens
have low egg production, and their reproductive performance needs to
be improved. In this study, we performed transcriptomic and
metabolomic integration analyses on ovaries of Taihe black-bone
silky fowls at the peak egg-laying period and nesting period, and
identified key differentially expressed genes, significantly differential
metabolites and related pathways that may affect the reproductive
performance of Taihe black-bone silky fowl, and we also predicted
important metabolite-gene pairs. These findings will provide a new
perspective on the molecular mechanism of ovarian egg production in
the Taihe black-bone silky fowl, as well as a theoretical basis for
improving its reproductive performance.

2 Materials and methods

2.1 Animal and sample collection

Twelve Taihe black-bone silky fowls were purchased from the
Taihe county in the Jiangxi province from the Taihe Aoxin black-
bone silky fowl Development Co. Among them, six each were peak
egg-laying period (203-day-old chickens, PP) and nesting period

(394-day-old chickens, NP), and all sample chickens were randomly
selected. Ovarian tissues from these 12 chickens were collected,
rinsed with PBS (phosphate buffer saline), and immediately
preserved in liquid nitrogen.

2.2 Ethical statement

All the animals used in this experiment conform to the standards
in the Chinese Animal Welfare Guidelines and are approved by the
Animal Experimentation Ethics Committee of Zhejiang University
(approval number:ZJU20190149).

2.3 Transcriptome sequencing and data
analysis

Beijing Novozymes Technology Co., Ltd. was responsible for the
transcriptome sequencing and library construction of the collected
Taihe black-bone silky fowl ovaries. Subsequently, the illumina
NovaSeq 6000 sequencing platform was used to sequence and
construct the gene library. The raw data were processed to obtain
clean data to ensure the quality and reliability of data analysis. For
the clean data, Q20, Q30 and GC content were calculated, and we
used HISAT2 v2.0.5 to construct the index of the reference genome,
while comparing the clean reads with the reference genome.
FeatureCounts (1.5.0-p3) is used to calculate the number of reads
mapped to each gene and FPKM. Differential expression analysis
was performed using DESeq2 software (1.20.0), and those with p <
0.05 were identified as differentially expressed genes by statistical
procedures; p-values were adjusted using Benjamini and Hochberg
methods to control the incidence of errors. GO (Gene Ontology)
enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and
Genomes) enrichment analysis of differentially expressed genes
were performed by clusterProfiler (3.8.1) software. GO is a
comprehensive database describing gene functions, and KEGG is
a comprehensive database integrating genomic, chemical and
systematic functional information.

2.4 Metabolome sequencing and data
analysis

Beijing Novozymes Technology Co., Ltd. was responsible for the
metabolomic analysis of the collected ovaries of Taihe black-bone
silky fowls. We used Vanquish UHPLC chromatograph and Q
Exactive™ HF mass spectrometer for LC-MS/MS analytical
processing. Compound Discoverer 3.1 (CD3.1; Thermo Fisher)
was used for data pre-processing and metabolite identification.
The identified metabolites were annotated using the KEGG
database, HMDB database and LIPIDMaps database. Partial least
squares discriminant analysis (PLS-DA) and principal component
analysis (PCA) were performed on the processed data using metaX
software to calculate VIP values; and based on t-tests to calculate
p-values and fold change (FC value). In order to identify the
significantly different metabolite (SDM) between the PP and NP,
the Variable Importance in the Projection (VIP) of the first principal
component of the PLS-DAmodel, the difference fold change (FC) of
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each metabolite in the comparison group, and the p-value obtained
by t-test were used to identify the significantly different metabolite.
The screening criteria for significantly differential metabolites were
VIP >1, p-value <0.05 and FC ≥ 2 or FC ≤ 0.5. Cluster heat maps of
significantly differential metabolites were drawn using R language
and correlation analysis was performed. Enrichment analysis of
metabolites was performed using the KEGG database.

2.5 Transcriptome and metabolome
integration analysis

Based on Pearson correlation coefficient, correlation analysis
was performed on differentially expressed genes and significantly
differential metabolites to measure the degree of association between
them. When the correlation coefficient is less than 0, it is called
negative correlation; when it is greater than 0, it is called positive
correlation. We mapped all the differentially expressed genes and
significantly differential metabolites obtained simultaneously to the
KEGG pathway database to determine their common pathway
information.

3 Results

3.1 Transcriptomic analysis of differentially
expressed genes

A total of 391 differentially expressed genes (DEGs) were
identified by transcriptome analysis of the ovaries of Taihe black-

bone silky fowls at the peak egg-laying period (PP) and nesting
period (NP). The threshold for screening was p < 0.05. Among them,
136 genes were upregulated and 255 genes were downregulated. The
following are the volcano plot of differentially expressed genes and
hierarchical cluster analysis (Figures 1A, 1B; Supplementary Table
S1). By relative expression levels of differentially expressed genes
and pathways related to reproductive performance, we screened five
differential expressed genes that may affect the egg-laying
performance of Taihe black-bone silky fowl, they are
BCHE,CCL5,SMOC1,CYTL1, and SCIN.

3.2 Transcriptome GO and KEGG
enrichment pathway analysis

In order to gain a deeper understanding of ovarian
development, we performed GO and KEGG (pathway
enrichment analysis on DEGs in the PP and NP. In the GO
pathway enrichment, a total of 314 differentially expressed genes
were enriched into 330 pathways, and we listed the top 30 GO-
enriched pathways (Figure 2A; Supplementary Table S2). Among
them, molecular function regulator, signaling receptor binding
and extracellular region are the three most enriched pathways,
and extracellular region is the most representative pathway. In
KEGG pathway enrichment, a total of 76 differentially expressed
genes were enriched into 72 pathways, and we listed the top
20 KEGG-enriched pathways (Figure 2B; Supplementary Table
S3). Among them, Neuroactive ligand-receptor interaction and
Cytokine-cytokine receptor interaction were the two most
enriched and representative pathways.

FIGURE 1
Volcano plot of differentially expressed genes (A), horizontal coordinate X-axis indicates the log2FoldChange, vertical coordinate Y-axis indicates
the significance level of the difference (-log10 p-value). Red dots: upregulated genes; green dots: downregulated genes; blue dots: non-differential
genes. Hierarchical clustering analysis of the DEGs (B).
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3.3 Quality control and partial least squares
discriminant analysis (PLS-DA) in
metabolomics

In this study, we performed metabolomic analyses of ovaries
from the PP and NP of the Taihe black-bone silky fowl. By partial
least squares discriminant analysis (PLS-DA), there was a
significant difference between the PP and NP(Figures 3A, C).
At the same time, the parameters R2 and Q2 of the PLS-DA
model were replaced with 200 trials, and their regression lines
could be obtained based on the R2 and Q2 values after
200 disruptions and modeling, and the PLS-DA model was
not overfitted when the R2 value was greater than the
Q2 value and the intercept of the Q2 regression line with the
Y-axis was less than 0, indicating that our data were reliable
(Figures 3B, D).

3.4 Metabolomics differential metabolite
analysis

By setting the thresholds VIP >1.0, FC > 1.2 or FC < 0.833 and
p < 0.05, a total of 39 SDMs were identified, of which 25 SMDs in
the positive model and 14 SDMs in the negative model. We
screened three significantly differential metabolites that may
affect the egg production performance of Taihe black-bone
silky fowl, they are LPC 20:4, Bisphenol A, and Cortisol. The
following are the volcano map and hierarchical cluster analysis of
SDMs (Figures 4A–D; Supplementary Tables S4, S5).

3.5 Integrative analysis of transcriptomics
and metabolomics

Based on Pearson correlation analysis, the correlation
between transcriptomic DEGs and metabolomic SDMs was
revealed. When the correlation coefficient is less than 0, it is
called negative correlation; when it is greater than 0, it is called
positive correlation. We plotted the correlation heat map of all
significantly differential metabolites and Top 100 differentially
expressed genes (Supplementary Figures S1, S2). The results
indicate that the transcriptome and metabolome are strongly
correlated. Furthermore, we correlated specific metabolites and
genes that may regulate ovarian development and reproductive
performance in laying hens, searching for important
metabolite-gene pairs to explore further potential roles. We
considered metabolite-gene pairs that satisfied both
correlation >0.8 and p < 0.05 as strongly correlated
metabolite-gene pairs, and plotted the correlation network
using Cytoscape_v3.9.1 (Figures 5A–C; Supplementary Tables
S6, S7). We identified three metabolite-gene pairs that may
affect egg-laying performance in Taihe black-bone silky fowl:
“LPC 20:4- BCHE”, “Bisphenol A- SMOC1” and “Cortisol-
SCIN”.

Both DEGs in the transcriptome and SDMs in the
metabolome were significantly enriched to the Neuroactive
ligand-receptor interaction pathway, indicating that
Neuroactive ligand-receptor interaction is a very important
pathway affecting the egg production performance of Taihe
black-bone silky fowl (Figure 6).

FIGURE 2
(A) GO enrichment analysis of DEGs; (B) KEGG enrichment analysis of DEGs.
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4 Discussion

Eggs are an important food resource for humans, and
improving egg production is an important goal for the poultry
industry. The ovary is an important reproductive organ of
poultry, and the health and normal development of the ovary
is crucial to the egg production performance of poultry. In-depth
studies on ovaries can help to further improve the egg production
performance of poultry. In this study, transcriptomic and
metabolomic techniques were used to study and analyze the
ovaries of Taihe black-bone silky fowls at the PP and NP. We
identified five differentially expressed genes, three important
pathways and three significant differential metabolites that
may affect the egg production performance of Taihe black-
bone silky fowl. The differentially expressed genes are BCHE,
CCL5, SMOC1, CYTL1, and SCIN; the important pathways are
extracellular region, Neuroactive ligand-receptor interaction and
Cytokine-cytokine receptor interaction; the significant
differential metabolites are LPC 20:4, Bisphenol A and
Cortisol. In addition, we identified three metabolite-gene pairs
that may affect egg-laying performance in Taihe black-bone silky
fowl, namely, “LPC 20:4-BCHE”, “Bisphenol A-SMOC1” and

“Cortisol-SCIN”. We believe that our study will provide new
insights into the egg-laying mechanism in poultry.

4.1 Transcriptomic analysis

In this study, in order to find out the key genes that affect the
egg production performance of Taihe black-bone silky fowls,
391 DEGs were identified in the ovaries of Taihe black-bone silky
fowls during the PP and NP. We screened five differentially
expressed genes that may affect the egg production
performance of Taihe black-bone silky fowls, they are BCHE,
CCL5, SMOC1, CYTL1, and SCIN. Butyrylcholinesterase (BCHE)
has several physiological functions and is an enzyme that can be
involved in the cholinergic system (Glombowsky et al., 2017).
The concentration of BCHE increases significantly in sows during
parturition, suggesting that BCHE may help sows to complete
parturition (Contreras et al., 2021). It has been shown that BCHE
can influence embryonic developmental processes (Paraoanu
et al., 2006). In addition, BCHE plays an important role in the
development of the nervous system in poultry (Layer et al., 1991).
In this study, we found that the expression of this gene was

FIGURE 3
(A) PLS-DA analysis in the positive model; (B) PLS-DA alignment test in the positive model; (C) PLS-DA analysis in the negative model; (D) PLS-DA
alignment test in the negative model.
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significantly higher in the PP than in the NP, it may affect egg
formation through the nervous system and we predict that this
gene has an important role in the egg production performance of
poultry. The C-C chemokine ligand 5 (CCL5) is a member of the
chemokine family, and CCL5 has a chemotactic effect on immune
cells and induces activation of immune cells to fight infection
(Choi et al., 2020). It has been suggested that CCL5 may mediate
autocrine and paracrine secretion to regulate ovarian activity
during ovulation (Skinner et al., 2008). In addition, CCL5 plays
an important role in the luteolysis process (Witek et al., 2020).
The expression of this gene is significantly higher in the PP than
in the NP and may regulate the immune response during egg
production to ensure ovarian health. Secreted modular calcium-
binding protein 1 (SMOC1) is an extracellular glycoprotein that
is involved in a variety of physiological functions. It has been
suggested that SMOC1 may mediate cell type-specific
differentiation and intercellular signaling during fetal gonadal
and reproductive tract differentiation (Pazin et al., 2009). Bao
et al. (2021) found that SMOC1 has an important regulatory role
in the egg production performance of muscovy duck. In addition,
SMOC1 has an important regulatory role in embryonic
development (Gao et al., 2019). SMOC1 is expressed in the
zona pellucida of oocytes (Vannahme et al., 2002), and the
expression of this gene is significantly higher in the PP than

in the NP. We hypothesize that SMOC1 can mediate the
maturation of oocytes and has an important role in the egg
production performance of poultry. Cytokine-like protein 1
(CYTL1) is a functional secreted protein. In the ovary,
elevated concentrations of progesterone or estradiol lead to
enhanced CYTL1 expression; in the uterus, CYTL1 expression
is significantly enhanced in endometrial cells with increasing
concentrations of progesterone and estrogen, suggesting that
CYTL1 is a candidate marker of endometrial tolerance and
that upregulation of CYTL1 leads to significant proliferation of
endometrial cells (Ai et al., 2016). In addition, it has been
reported that CYTL1 can mediate the regulation of different
stages of folliculogenesis (Moura et al., 2021). The tolerance of
the endometrium is important for the reproduction of offspring
in females, in the study, we hypothesized that the high expression
of this gene during the PP contributes to ovarian maintenance
and has an important role in egg production. Scinderin (SCIN)is
a Ca2+-dependent protein belonging to the gelsolin superfamily.
Sperm capacitation and acrosome reaction are key steps in
mammalian fertilization, and SCIN is one of the key binding
proteins that control this polymerization (Breitbart et al., 2005).
It has been suggested that SCIN may have a regulatory role in the
fertility of pigs (Liang et al., 2020). SCIN can produce circSCIN,
which can bind to MiR-133 and MiR-148b, MiR-133 can regulate

FIGURE 4
Volcano plots of differential metabolites in PP andNP, horizontal coordinates indicate log2FoldChange, vertical coordinates indicate -log10p-value,
red dots indicate significantly upregulated metabolites, green dots indicate significantly downregulated metabolites, (A) positive model of differential
metabolites, (B) negative model of differential metabolites. (C) Heat map of significantly different metabolite clusters in the positive model, and (D) heat
map of significantly different metabolite clusters in the negative model, with vertical clusters representing different metabolites and horizontal
clusters representing different samples.
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oocyte meiosis and MiR-148b can mediate estrogen secretion
(Yao et al., 2010; Song et al., 2014; Wu et al., 2018). We speculate
that SCIN has an important regulatory role in oocyte
development and estrogen secretion. The expression of this
gene was significantly higher in the PP than in the NP and
may have an important role in egg production performance.
In summary, the expression of these five genes was significantly
higher in the PP than in theNP and may have an important role in
ovarian and egg production performance. Other differentially
expressed genes may also have important effects on egg
production performance, and their functions will be further
explored in subsequent studies.

In order to further understand the possible functions
involved in DEGs, we performed GO annotation (Gene
Ontology) and KEGG analysis (Kyoto Encyclopedia of Genes
and Genomes) on DEGs. We screened three pathways that may
affect egg production performance in Taihe black-bone silky
fowls: extracellular region, Neuroactive ligand-receptor
interaction and Cytokine-cytokine receptor interaction. It has
been suggested that the extracellular region may have an effect on

pig pregnancy (Samborski et al., 2013). Ge et al. (2017) ound that
the extracellular region can mediate the maturation process of
zebrafish oocytes. Sun et al. (2022) found that the extracellular
region plays a key role in follicle development in chickens. In the
study, the extracellular region was the most enriched and
representative pathway of the GO pathway, and we
hypothesized that it might have an important role in the egg
production performance of the Taihe black-bone silky fowl. We
found significant differences in the expression of DEGs in the
Neuroactive ligand-receptor interaction between the PP and NP,
with the Neuroactive ligand-receptor interaction being the most
enriched pathway in the KEGG pathway. Transcriptomic studies
in zebrafish (Chen et al., 2019), goats (Su et al., 2018) and pigs
(Xu et al., 2015) have shown that Neuroactive ligand-receptor
interactions have important effects on reproductive performance.
Mu et al. (2021) found that Neuroactive ligand-receptor
interactions may be the most important pathway leading to
significant differences in egg production rates between high-
laying and low-laying hens. In addition, it has been shown
that Neuroactive ligand-receptor interactions have important

FIGURE 5
(A) Correlation network diagram of LPC 20:4 and differentially expressed genes; (B) Correlation network diagram of Bisphenol A and differentially
expressed genes; (C) Correlation network diagram of Cortisol and differentially expressed genes. Circles indicate significantly different metabolites,
squares indicate differentially expressed genes, red lines indicate positive correlations (red squares indicate the differentially expressed genes we
screened), green lines indicate negative correlations, and the thickness of the lines indicates the strength of the correlation.
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effects on egg production performance in ducks (Tao et al., 2017)
and geese (Ouyang et al., 2020). In the study, the Cytokine-
cytokine receptor interaction pathway was significantly enriched,
coinciding with a related report in the Nandan-Yao domestic
chicken (Sun et al., 2021). Quan et al. (2019) found that this
pathway has important effects on follicle development and
pregnancy establishment in goats. In addition, transcriptome
studies in pigs (Yang et al., 2018) and geese (Zhao et al.,
2022) showed that Cytokine-cytokine receptor interactions
have an important role in ovarian development and ovulation.
Briefly, the three pathways of extracellular region, Neuroactive
ligand-receptor interaction and Cytokine-cytokine receptor
interaction are considered to be closely related to the
reproductive performance of Taihe black-bone silky fowl and
have important effects on the egg production performance of
Taihe black-bone silky fowl. Some pathways that are not
significantly enriched may also have important effects on egg
production performance, and their functions will be further
explored in subsequent studies.

4.2 Metabolomics analysis

Metabolomics is closer to phenomics, which is an extension
of transcriptomics and proteomics, and can reflect the

physiological state of an organism more directly and
accurately. In the study, we identified 39 significantly different
metabolites in the ovaries of Taihe black-bone silky fowl during
the PP and NP, including 25 significantly different metabolites in
the positive model and 14 significantly different metabolites in
the negative model. We screened three significantly different
metabolites that might affect the egg production performance of
Taihe black-bone silky fowl: LPC 20:4, Bisphenol A, and Cortisol.
LPC 20:4 is an isoform of lysophosphatidylcholine (LPC), and it
has been shown that LPC not only affects the acrosome response
of sperm and eggs, but also mediates paracrine actions in oocytes
(Gomez-Torres et al., 2015). Yang et al. found that LPC can
mediate follicular development and is a predictor of follicular
development (Yang et al., 2022a). Lysophosphatidylcholine
(LPC) can be converted to lysophosphatidic acid (LPA) by the
action of enzymes, and LPA has important effects on the
maintenance of ovarian function, embryonic development and
pregnancy maintenance, which is sufficient to show the
important role of LPC on female reproductive performance
(Ye et al., 2008). In addition, it has been shown that LPC has
an inhibitory effect on the cell viability of mouse ovarian
granulosa cells (Yang et al., 2022b). From this, we inferred
that LPC 20:4 may affect ovarian function in Taihe black-bone
silky fowl. Bisphenol A is a chemical with endocrine disrupting
properties that affects ovarian estrogen and steroid hormone

FIGURE 6
Transcriptome and metabolome integration analysis of KEGG pathway enrichment.
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secretion (Bloom et al., 2016). Bisphenol A can bind to estrogen
receptor and has estrogen effect, which has certain influence on
oocyte maturation (Rochester et al., 2013). Bisphenol A can affect
primordial follicle formation by promoting the progression of
meiosis in oocytes (Yu et al., 2018). It has been shown that
Bisphenol A may adversely affect follicle formation and affect the
healthy development of reproductive organs in chickens (Mentor
et al., 2020; Eldefrawy et al., 2021). In addition, it has been shown
that Bisphenol A may impair the reproductive adaptations of
zebrafish ovaries (Biswas et al., 2020). Cortisol is a glucocorticoid
with several physiological functions, such as: response to stress,
regulation of apoptosis and lipid metabolism. It has been shown
that Cortisol can affect folliculogenesis and oocyte maturation in
cows, support embryo implantation, and improve pregnancy
rates in cows (da et al., 2015; Duong et al., 2012). Lack of
cortisol causes infertility in female mice, and high cortisol
levels affect granulosa cell function, leading to a decrease in
estradiol (Mullins et al., 2009; Prasad et al., 2016). Xiao et al.
found that cortisol can protect oogenesis by promoting follicular
cell survival (Xiao et al., 2022). In addition, it has been shown that
cortisol can affect sexual development and reproductive function
in zebrafish (Zhang et al., 2020). In conclusion, the above three
significantly different metabolites may be essential metabolites in
the egg-laying process of Taihe black-bone silky fowl, they may
affect the health of the ovaries, the viability of ovarian granulosa
cells and the process of oogenesis in Taihe black-bone silky fowl
Some metabolites were not significant differential metabolites,
but they may also have important effects on egg production
performance, and we will explore these metabolites further in
subsequent studies.

4.3 Transcriptome and metabolome
integration analysis

We performed integrated transcriptomic and metabolomic
analyses of ovaries from the PP and the NP in Taihe black-bone
silky fowls. Based on Pearson correlation analysis, specific
metabolites and genes that may regulate ovarian development
and reproductive performance of laying hens were correlated,
and important metabolite-gene pairs were searched for to explore
further potential roles. LPC 20:4, Bisphenol A and Cortisol may be
significant differential metabolites with important effects on egg
production performance, BCHE, SMOC1 and SCIN may be
differentially expressed genes with important effects on egg
production performance, LPC 20:4 and BCHE, Bisphenol A and
SMOC1, Cortisol and SCIN all have strongly correlated. In
summary, we identified three important metabolite-gene pairs,
which are LPC 20:4-BCHE, Bisphenol A-SMOC1 and Cortisol-
SCIN. There is a very important relationship between metabolites
and genes, and we will further explore their connection in
subsequent studies.

5 Conclusion

In the study, we performed transcriptome and metabolome
sequencing analysis on the ovaries of Taihe black-bone silky fowl

at the PP and NP, and identified a total of 391 differentially
expressed genes and 39 significantly differentially metabolites.
Through screening and discussion, we identified five key genes
that may affect egg production performance in Taihe black-bone
silky fowl: BCHE, CCL5, SMOC1, CYTL1, and SCIN; and three
important ovarian significantly differentially metabolites: LPC 20:4,
Bisphenol A and Cortisol; through integration analysis of
transcriptome and metabolome, we identified three important
metabolite-gene pairs: LPC 20:4-BCHE, Bisphenol A-SMOC1 and
Cortisol-SCIN. In addition, based on GO and KEGG enrichment
analysis, we identified three important pathways that affect egg
production performance in Taihe black-bone silky fowls:
extracellular region, Neuroactive ligand-receptor interaction and
Cytokine-cytokine receptor interaction. This study contributes to
a deeper understanding of the regulatory mechanism of egg
production in the Taihe black-bone silky fowl and provides a
theoretical basis for the improvement of the reproductive
performance of the Taihe black-bone silky fowl.
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Transcriptome analysis of
divergent residual feed intake
phenotypes in the M. longissimus
thoracis et lumborum of Wannan
Yellow rabbits

Dongwei Huang†, Yuanlang Wang†, Pingping Qi, Haisheng Ding
and Huiling Zhao*

Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal
Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China

Introduction: Feed efficiency is an important economic trait in rabbit meat
production. The identification of molecular mechanisms and candidate genes
for feed efficiency may improve the economic and environmental benefits of the
rabbit meat industry. As an alternative to the conventional feed conversion ratio,
residual feed intake (RFI) can be used as an accurate indicator of feed efficiency.

Methods: RNA sequencing was used to identify the differentially expressed genes
(DEGs) in theM. longissimus thoracis et lumborum of eight Wannan Yellow rabbits
with excessively high or low RFIs (HRFI or LRFI, respectively). Thereafter, Gene
Ontology (GO) analysis, enrichment using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, gene set enrichment analysis (GSEA), and
protein–protein interaction (PPI) network analysis was conducted.

Results: In total, 445 DEGs were identified in the M. longissimus thoracis et
lumborum of rabbits with high and low RFIs. The significantly enriched GO terms
identified in these two groups were primarily involved in energy andmitochondrial
metabolism and oxidation–reduction processes. KEGG analysis identified
11 significantly enriched pathways, including oxidative phosphorylation, PI3K-
Akt signaling, and extracellular matrix-receptor interaction pathways. According
to GSEA, the expressions of genes and pathways related tomitochondrial function
were upregulated in HRFI rabbits, whereas genes with upregulated expressions in
LRFI rabbits were related to immune response and energy metabolism.
Additionally, PPI network analysis revealed five potential candidate genetic
markers.

Conclusion: Comparative analysis of the M. longissimus thoracis et lumborum
transcriptomes in HRFI and LRFI rabbits revealed FOS, MYC, PRKACB, ITGA2, and
FN1 as potential candidate genes that affect feed efficiency in rabbits. In addition,
key signaling pathways involved in oxidative phosphorylation and PI3K-Akt and
ECM-receptor interaction signaling impact rabbit feed efficiency. These findings
will aid in breeding programs to improve feed efficiency and optimize RFI selection
of rabbits for meat production.

KEYWORDS

feed efficiency, residual feed intake, rabbit production, transcriptome, differentially
expressed gene, signaling pathway, M. longissimus thoracis et lumborum, meat quality
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1 Introduction

Rabbit meat is considered an excellent nutritional source owing
to its high protein and low fat contents, high proportion of
unsaturated fatty acids, and low cholesterol and sodium levels
(Siddiqui et al., 2023). Feed cost accounts for 60% of total rabbit
breeding costs and is therefore an important factor affecting overall
rabbit production costs (Molette et al., 2016). Feed efficiency is one
of the most economically and environmentally relevant aspects in
rabbit meat production (Cesari et al., 2018). First proposed in 1963,
residual feed intake (RFI) is defined as the difference between actual
and predicted feed intake and expected feed requirements for the
maintenance and growth of an animal over a specific period. RFI is
generally considered the most suitable parameter for evaluating feed
efficiency (Koch et al., 1963) and has been utilized for the artificial
selection of feed efficiency in dairy cows (Connor et al., 2013), pigs
(Barea et al., 2010), and poultry (Fathi et al., 2021). Previous research
has identified RFI as a moderately inherited characteristic, which
can improves feed efficiency in modern breeding (Sell-Kubiak et al.,
2017). In rabbits, the genetic correlation between feed efficiency and
growth rate is lower than that in other species. RFI can substantially
increase rabbit growth rate within a few years (Blasco et al., 2018);
therefore, identification of effective biomarkers to facilitate RFI
selection is needed to shorten the selection process.

Feed efficiency is closely linked to energy metabolism (Patience
et al., 2015; Fischer et al., 2018; Lancaster, 2021; Mota et al., 2022).
Skeletal muscle is considered to be the main energy metabolic tissue
in rabbits and plays an important role in regulating systemic
homeostasis (Fan et al., 2021). Rabbit meat quality is dictated by
muscle fiber type and characteristics that arise during skeletal
muscle development (Du et al., 2022). The M. longissimus
thoracis et lumborum is the largest erector spinae muscle and is
commonly used for meat quality assessments in rabbits and other
animals (Zotte et al., 2022), thus providing an ideal model to study
feed efficiency.

Next-generation sequencing facilitates the screening of
mechanisms underlying RFI to accelerate the breeding process.
RNA sequencing (RNA-seq) is a widely applied and highly
effective method used in livestock studies for comparing
individuals with extreme trait phenotypes and identifying
differentially expressed genes (DEGs) and pathways among
groups of domesticated animals (Ramayo-Caldas et al., 2012; Ge
et al., 2019; Xiao et al., 2021). However, most transcriptome studies
on the molecular mechanisms underlying RFI differences have
focused on cows (Salleh et al., 2017), pigs (Hou et al., 2020), and
chickens (Xiao et al., 2021), whereas related studies on rabbits are
scarce.

The Wannan Yellow rabbit, an indigenous Chinese breed native
to the southern region of Anhui Province, China, is popular in the
meat industry because of its high daily weight gain performance and
feed efficiency in the early growth stage. Currently, indigenous
rabbit farming for meat consumption is primarily conducted in
rural areas. This provides economic opportunities for farmers and
favorably impacts population maintenance in marginal areas
(Siddiqui et al., 2023). Strategies to improve feed efficiency are
essential for increasing the competitiveness of the rabbit breeding
industry. In addition, the selection of feed-efficient rabbits helps
maintain meat protein output while decreasing grain consumption

and nutrient excretion to address the global food shortage. Thus,
improving rabbit feed efficiency traits is an important strategy to
increase the economic gain of farmers. Our three primary study
objectives were: 1) Identify the divergence of the skeletal muscle
transcriptomic profile in rabbits with extreme RFIs, 2) Elucidate the
underlying biology of RFI by investigating key genes and pathways
implicated in RFI divergence, and 3) Provide new insights into
biomarkers for RFI selection in rabbits.

2 Materials and methods

2.1 Ethics statement

All animal experiments and study procedures were conducted in
strict accordance with protocols approved by the Animal Care
Advisory Committee of the Anhui Academy of Agricultural
Sciences (AAAS 2022-17) and the “Guidelines for Experimental
Animals” of the Ministry of Science and Technology (Beijing,
China).

2.2 Rabbits and RFI calculation

All Wannan Yellow rabbits were bred at the Anhui Academy of
Agricultural Sciences Experimental Farm, Jixi, China according to
the standard breeding program. A total of 110 rabbits (same male
and female) with similar body weight (BW) of approximately 500 g
were selected and transferred to three-layered individual metal cages
(40 cm × 35 cm × 50 cm) at 35 days of age. The main experiment
began 65–95 days after the 30-day pre-experiment (the dietary
adaption periods). Rabbits were fed daily with a basal diet for
growing rabbits (10.5 MJ metabolizable energy/kg diet, including
crude protein 16%, crude fiber 18%, crude ash 12%, calcium 1%,
phosphorus 0.4%, lysine 0.6%, and H2O 14%) (The Composition of
experimental diets is shown in the Supplementary Table S1)
formulated without antibiotics and water was provided ad libitum.

The feed intake (FI) and BW of rabbits were measured at
65–95 days of age. The feed conversion ratio (FCR) was
calculated using FI and body weight gain (BWG). Metabolic
body weight (MBW0.75), BWG, and average daily body weight
gain (ADG) and average daily feed intake (ADFI) per individual
were calculated according to rabbit BW at 65 and 95 days. The RFI
value was used to measure the feed efficiency using Equation (4):

RFI � ADFI – b0 + b1 ADG + b2 MBW0.75( )

where b0, b1, and b2 represent the regression intercept, partial
regression coefficient of ADFI on MBW0.75, and the partial
regression coefficient of ADFI on ADG, respectively. The RFI
values were calculated using the regression procedure in SAS
(version 9.4, SAS Inst. Inc., Cary, NC). Outliers were excluded
from the data. All experimental groups were ranked by RFI, with
the eight most extreme samples from the high (n = 4) and low (n = 4)
RFI female rabbits selected as the high residual feed intake (HRFI)
and low residual feed intake (LRFI) groups for RNA extraction,
respectively. Animal performance data was expressed as the least
square means ± standard error of the mean. A Student’s t-test was
used to analyze the difference in feed efficiency between the HRFI
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and LRFI groups. A p-value <0.05 was considered statistically
significant.

2.3 RNA extraction and RNA-seq

Rabbits in the HRFI and LRFI groups were humanely
euthanized. The M. longissimus thoracis et lumborum were
immediately collected, frozen in liquid nitrogen, and stored
at −80°C until RNA extraction. Total RNA was extracted using
TRIzol™ reagent (Invitrogen, Carlsbad, CA, United States)
according to the manufacturer’s instructions. RNA quality was
assessed using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States) and verified using
RNase-free agarose gel electrophoresis. Verified total RNA was
sent to Gene Denovo Biotechnology Co., Ltd. (Guangzhou,
China) for cDNA library construction and sequenced on an
Illumina HiSeq 2500 platform; 125 bp paired-end reads were
generated. The acquired data were submitted to the Sequence
Read Archive (National Institute of Health, Bethesda, MD,
United States) under the accession number PRJNA978018.

2.4 RNA-seq data analysis

FastQC software (version 11.5; http://www.bioinformatics.
Babraham. ac. uk/projects/fastqc) was used to re-evaluate raw
sequence read quality before read alignment. Clean reads were
obtained by discarding adaptors, poly N, or low-quality reads. An
index of the reference genome was built and paired-end reads were
mapped to the Oryctolagus cuniculus genome sequence (OryCun 2.
0) in the Ensembl database (http://www.ensembl.org/). Transcripts
were quantified in fragments per kilobase million (FPKM), which
was used to indicate gene expression patterns. Cufflinks v2.2.1
(Ghosh and Chan, 2016) was used to calculate the expected
number of FPKM for each gene.

2.5 Identification of DEGs and bioinformatics
analysis

The expression values and DEGs were determined using
DESeq2 software (Love et al., 2014). Genes with a |fold-
change| ≥ 1.5 and a p-value <0.05 were assigned as differentially
expressed. Gene Ontology (GO) annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed using the Database for Annotation, Visualization,
and Integrated Discovery (https://david.ncifcrf.gov/) for exploration
of DEG functions. A corrected p-value of <0.05 was considered
statistically significant.

2.6 Gene set enrichment analysis (GSEA)

All expressed genes in both groups were analyzed via GSEA
software (http://software.broadinstitute.org/gsea/downloads.jsp),
based on C5. CC, C5. BP, C5. MP, and C2. CP KEGG gene set
collections (MSigDB v7.1, broad institute, Cambridge, MA,

United States) (https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp). All expressed genes were ranked according to the fold-
change (HRFI/LRFI) between the HRFI and LRFI groups. For
each gene set, the enrichment score was calculated with a full
ranking that reflected gene set distribution in the list and the
normalized enrichment score (NES) was determined using the
signal-to-noise normalization method (Ma et al., 2011). Gene sets
with an absolute NES values of >1 and false discovery rates
(FDR) ≤0.05 were considered significantly enriched.

2.7 Protein–protein interaction (PPI) analysis
of DEGs

DEGs were submitted to the Search Tool for Retrieval of
Interacting Genes (STRING) database (https://string-db.org/) to
predict gene interaction relationships (Szklarczyk et al., 2021);
confidence scores >0.7 were defined as significant. The DEG PPI
networks were generated using the open-source software Cytoscape
v3.7.2 (Shannon et al., 2003). The CytoHubba application in
Cytoscape was used to screen hub genes.

2.8 RNA-seq validation

Eight genes were selected at random to quantify their
expression levels using real-time quantitative polymerase chain
reaction (RT-qPCR) in the HRFI (n = 4) and LRFI (n = 4) groups.
Transcript expression pattern reliability obtained via RNA-seq was
subsequently validated. Total RNA from the M. longissimus
thoracis et lumborum of rabbits was extracted using TRIzol
(Invitrogen, Carlsbad, CA, United States) and reverse-
transcribed into cDNA using a PrimeScript™ RT-PCR Kit
(Takara, Dalian, China) according to the manufacturer’s
instructions. The eight primer pairs used in this study are listed
in Supplementary Table S2. The synthesized cDNA was used as a
template for RT-PCR using the CFX96 Touch™ Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, United States). The RT-
PCR reaction was performed by heating at 95°C for 3 min, followed
by 40 cycles at 95°C for 5 s and 60°C for 30 s. Quantitative variation
and relative fold changes were calculated according to the 2−ΔΔCT

method normalized with GAPDH (Livak and Schmittgen, 2001).
Significant differences were analyzed using Student’s t-test in the
SAS software v9.0 (SAS Institute, Inc., Cary, NC, United States);
statistical significance was set at a p-value <0.05. All analyses were
performed in triplicate.

3 Results

3.1 Animal performance and feed efficiency

Differences in RFI, FCR, ADFI, MBW0.75, and ADG are shown
in Table 1. The RFI and FCR of the LRFI group were significantly
lower than those of the HRFI group (p-value <0.05). The ADFI and
ADG of the LRFI group were significantly higher than those of the
HRFI group (p-value <0.05). Moreover, there was no significant
difference in MBW0.75 between the two groups (p-value >0.05).
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3.2 Summary of RNA-seq data

The HRFI and LRFI groups had 41,233,136 to 46,620,708 and
43,761,150 to 50,540,362 raw reads, respectively (Table 2).
Filtering resulted in the following clean reads: (HRFI:
41,059,578 to 46,420,846; LRFI: 43,572,142 to 50,540,362 (for

each library, per group)). The general Q30 (Phred quality
score >30 and error rate <0.1%) percentage of the clean data
was >94%. The average number of clean reads for each library
was mapped using the O. cuniculus (OryCun 2.0) genome
assembly, which resulted in a mean mapping efficiency of
68.48%.

TABLE 1 Characterization of performance and feed efficiency traits (Least square means and SEM).

HRFI LRFI p-value

RFI, g/d 14.99 ± 1.52 −14.04 ± 1.24 <0.001

FCR, g:g 9.63 ± 0.52 7.72 ± 0.64 <0.001

ADFI, g/d 219.50 ± 2.98 234.77 ± 4.83 <0.05

MBW0.75, g 359.22 ± 11.14 391.79 ± 12.93 0.093

ADG, g/d 19.79 ± 0.93 33.24 ± 2.63 <0.001

RFI, residual feed intake; FCR, feed conversion ratio; ADFI, average daily feed intake over the assessed feeding period; MBW0.75.

Mean of metabolic body weight; ADG, average daily gain over the assessed feeding period.

TABLE 2 Characteristics of the reads from eight rabbits with high and low RFI.

Sample id Raw reads Clean reads Clean ratio (%) Clean reads Q30 (%) Total mapped ratio (%)

HRFI1 44,548,910 44,320,546 99.49 94.59 70.74

HRFI2 45,697,988 45,501,938 99.57 94.72 69.49

HRFI3 41,233,136 41,059,578 99.58 94.49 69.10

HRFI4 46,620,708 46,420,846 99.57 94.55 68.65

LRFI1 43,761,150 43,572,142 99.57 94.16 69.24

LRFI2 50,540,362 50,307,108 99.54 94.03 68.40

LRFI3 44,001,962 43,802,348 99.55 94.52 65.50

LRFI4 46,836,370 46,586,534 99.47 93.93 66.75

FIGURE 1
Analysis of differentially expressed genes (DEGs) between the HRFI and LRFI groups. Volcano dots of DEGs. The red dots indicate upregulated DEGs,
the orange dots indicate downregulated DEGs, and the blue dots shows genes not significantly altered.
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3.3 Identification of DEGs

The gene expression levels for the eight sequencing libraries are
listed in Supplementary Table S2. Genes were detected in all samples
(FPKM >1), and 45 DEGs were identified; the expressions of 229 and
216 genes were upregulated and downregulated, respectively, in the
HRFI group (Figure 1).

3.4 GO and KEGG analysis

The results of the GO enrichment and KEGG pathway analyses
are displayed in Supplementary Tables S4, S5. Forty-nine GO terms
related to biological processes were significantly enriched, including
metabolic, oxidation–reduction, ribonucleotide, ribose phosphate,
and nucleoside triphosphate metabolic processes. Furthermore,

FIGURE 2
Enrich gene ontology (GO) terms based on DEGs between the HRFI and LRFI groups. The first lap indicates the top 20 terms, and the number of the
genes corresponds to the outer lap. The second lap indicates the number of genes in the genome background and p-value for enrichment of the
differentially expressed genes (DEGs) for the specified GO terms. The third lap indicates the DEG number. The fourth lap indicates the rich factor of each
GO term.

FIGURE 3
Significantly enriched KEGG pathways from DEGs between the HRFI and LRFI groups.
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number of GO terms related to molecular function and cellular
components (such as the mitochondrial envelope, mitochondrion,
and oxidoreductase activity) were significantly enriched (Figure 2).
KEGG pathway analysis identified 11 significantly enriched
pathways, including oxidative phosphorylation and PI3K-Akt
signaling pathways, and ECM-receptor interactions that are
closely related to energy metabolism (Figure 3).

3.5 GSEA

GSEA provided insufficient evidence to determine the molecular
mechanisms of feed efficiency. Therefore, GSEA was performed to
study the functions of all genes using gene sets from GO and KEGG-

based lists (Supplementary Table S6). Overall, 445 GO and
39 KEGG-based gene sets were significantly enriched (|NES|>1,
FDR<0.05). Positive and negative NES values represent higher
expression levels in the HRFI and LRFI groups, respectively. The
GO-based list showed that the higher expression gene sets in the
HRFI group were primarily related to mitochondria and adenosine
triphosphate (ATP) synthesis, whereas those in LRFI group were
involved in ECM structural constituents, actin cytoskeleton
reorganization, and growth factor binding. The KEGG-based list
showed that the high expression gene sets in the HRFI group were
primarily related to oxidative phosphorylation and the tricarboxylic
acid (TCA) cycle, and those in the LRFI group were related to
carbohydrate metabolism, signal transduction, and immune
response (Figure 4; Table 3).

FIGURE 4
Gene set enrichment analysis (GSEA). GSEA was performed in the HRFI and LRFI groups. The GSEA algorithm calculates an enrichment score
reflecting the degree of overrepresentation at the top or bottom of the ranked list of the genes included in the gene set in a ranked list of all genes present
in the RNA-seq dataset. A positive enrichment score (ES) indicates gene set enrichment at the top of the ranked list; a negative ES indicates gene set
enrichment at the bottom of the ranked list. The analysis demonstrates that (A)mitochondrial part, (C)Oxidative phosphorylation, (D) Ribosome are
enrich in HRFI groups, while (B) actin cytoskeleton reorganization are enrichment in LRFI groups.
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3.6 PPI networks of DEGs

The STRING database (https://string-db.org/) and Cytoscape
v3.7.2 (Shannon et al., 2003)were used to integrate a potential
network of DEGs in rabbit skeletal muscle that may lead to RFI
differences. The PPI network comprised 127 nodes and 183 edges
(Figure 5). The CytoHubba plugin was used to identify the top hub

genes and the top 10 DEGs evaluated in the PPI were identified
using two centrality methods (Degree and EPC). The intersections
of these two algorithms were combined and a Venn plot was
generated to identify hub genes (jvenn (inra.fr)) (Figure 6). The
five hub genes that exhibited the highest degree of biological
regulation between LRFI and HRFI rabbits were FOS, MYC,
PRKACB, ITGA2, and FN1.

TABLE 3 Gene set enrichment analysis (GSEA) between HRFI and LRFI.

Gene set NES FDR Higher expression in HRFI or LRFI

GO-based list (C5, CC, C5.BP, C5.MP) (Top 20)

GO:0044455 mitochondrial membra`ne part 2.4360373 <0.001 HRFI

GO:0022900 electron transport chain 2.4230578 <0.001 HRFI

GO:0098798 mitochondrial protein complex 2.387794 <0.001 HRFI

GO:0098800 inner mitochondrial membrane protein complex 2.3862855 <0.001 HRFI

GO:0070469 respiratory chain 2.3428142 <0.001 HRFI

GO:0019236 response to pheromone 2.3026083 <0.001 HRFI

GO:0005743 mitochondrial inner membrane 2.296939 <0.001 HRFI

GO:0005740 mitochondrial envelope 2.2783267 <0.001 HRFI

GO:0031966 mitochondrial membrane 2.2694876 <0.001 HRFI

GO:0019866 organelle inner membrane 2.2621088 <0.001 HRFI

GO:0005746 mitochondrial respiratory chain 2.2349386 <0.001 HRFI

GO:0044429 mitochondrial part 2.2178912 <0.001 HRFI

GO:1990204 oxidoreductase complex 2.1585555 9.21E-05 HRFI

GO:0098803 respiratory chain complex 2.1450255 1.71E-04 HRFI

GO:0016503 pheromone receptor activity 2.109333 2.00E-04 HRFI

GO:0005747 mitochondrial respiratory chain complex I 2.1084182 1.87E-04 HRFI

GO:0022904 respiratory electron transport chain 2.106282 1.76E-04 HRFI

GO:0030964 NADH dehydrogenase complex 2.0895336 2.33E-04 HRFI

GO:0009055 electron carrier activity 2.0749488 2.52E-04 HRFI

GO:0005201 extracellular matrix structural constituent −2.22948 <0.001 LRFI

KEGG-based list (C2.CP:KEGG)

KO00190 Oxidative phosphorylation 2.423335 <0.001 HRFI

KO05012 Parkinson disease 2.3917017 <0.001 HRFI

KO04714 Thermogenesis 2.1306872 <0.001 HRFI

KO05016 Huntington disease 2.0541394 <0.001 HRFI

KO05010 Alzheimer disease 1.9485307 4.36E-04 HRFI

KO04932 Non-alcoholic fatty liver disease 1.8222557 0.006488033 HRFI

KO03010 Ribosome 1.8059274 0.006924233 HRFI

KO00020 Citrate cycle (TCA cycle) 1.7520487 0.015041439 HRFI

KO00250 Alanine, aspartate and glutamate metabolism 1.7237763 0.019311652 HRFI

KO00640 Propanoate metabolism 1.6465011 0.04506531 HRFI

Note: NES, normalized enrichment score; FDR, false discovery rate.

A positive NES indicates gene set enrichment in the HRFI group; a negative NES, indicates gene set enrichment in the LRFI group.
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3.7 Validation of RNA-seq results

Eight DEGs, NID2, ARID5B, FGL2, MT-ND4L, ATP5MF,
GADL1, GATM, and HBB1, were selected at random to validate
the RNA-seq expression profiles via RT-qPCR using RNA samples
from the HRFI (n = 4) and LRFI (n = 4) groups. The expressions of
NID2, ARID5B, and FGL2 were upregulated in the LRFI group,
whereas those of MT-ND4L, ATP5MF, GADL1, GATM, and HBB1
were upregulated in the HRFI group (Figure 7). The RT-qPCR
expression patterns of these genes were consistent with those
observed via RNA-seq.

4 Discussion

Our analyses of two groups of rabbits with excessive HRFI and
LRFI revealed that rabbits in the LRFI group consumed less feed at
the same growth rate, were more feed efficient, and had a lower FCR
than the rabbits in the HRFI group. However, there were no
differences in initial and final BW, ADG, or MBW between the
two groups, consistent with the findings of previous studies on cattle
(Nkrumah et al., 2004), lambs (Zhang et al., 2023), chickens
(Metzler-Zebeli et al., 2017; Yang et al., 2020a) and ducks (Bai

et al., 2022). Our results indicated that RFI selection in rabbits
increased feed efficiency by reducing feed consumption without
affecting rabbit growth performance. RFI is independent of BW and
ADG, therefore can be used as an accurate, sensitive index to assess
feed efficiency and improve animal genetic programs by eliminating
the effects of different growth stages.

We identified 445 DEGs in the M. longissimus thoracis et
lumborum of the two groups (229 with upregulated expressions
and 216 with downregulated expressions) from the sequencing data.
Several biological terms related to mitochondrial parts, energy
metabolism, and immune function were revealed following GO
annotation of the DEGs. Arguably, most genes associated with
these terms are key influencers of feed efficiency in rabbits.
Further, KEGG pathway analyses indicated that oxidative
phosphorylation, the PI3K-Akt signaling pathway, and the ECM-
receptor interaction signaling pathway were critical for mediating
body metabolism. ECM-receptor interactions primarily regulate
intracellular signal transduction and mediate interactions with
cell adhesion receptors to modulate epithelial cell adhesion,
motility, and growth (Levental et al., 2009). The ECM is a crucial
component of tissue architecture and plays a key role in
adipogenesis and meat quality (Taye et al., 2018; San et al., 2021;
Shao et al., 2022). The PI3K-Akt signaling pathway is activated by

FIGURE 5
Protein-protein interaction (PPI) networks of DEGs between the HRFI and LRFI groups. The node represents the DEGs. Node size indicates the level
of degree of each gene.
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various cellular stimuli or toxic insults and may regulate
fundamental cellular functions, including transcription,
translation, proliferation, growth, and survival (Peltier et al.,
2007) and is involved in RFI variation in cattle (Yang et al.,
2021) and shrimp (Dai et al., 2017). This study identified
COL1A, COL2A, FN1, and RELN genes in the focal adhesion
parts, which considered to be part of ECM components that
mediate certain mechanisms involved in the PI3K-Akt signaling
pathway.

The GSEA results of the GO list showed that all genes with high
expression in the HRFI group were predominantly related to
mitochondria and ATP synthesis. Thus, changes in the expression of
genes associated withmitochondrial function are potential main drivers
of rabbit feed efficiency. Over 95% of the cellular energy is produced by
mitochondria via the TCA cycle and oxidative phosphorylation
(Tzameli, 2012). Similarly, oxidative phosphorylation and the TCA
cycle were significantly enriched in gene sets with high expression in the
HRFI group based on the KEGG-based list. Thus, we propose that

FIGURE 6
Venn plot identify significant hub genes generated by two centrality methods. Two methods—Degree and EPC were applied to identify significant
hub genes. Different colors denote divergent algorithrns. The intersections indicate the common DEGs. The elements common to all methods were
identified as the 5 core genes: FOS, MYC, PRKACB, ITGA2, and FN1.
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HRFI rabbits need more energy than LRFI rabbits to maintain normal
life activities, leading to ATP synthesis, and that mitochondria number
was potentially higher in the HRFI group than that in the LRFI
group. LRFI rabbits may be more efficient than HRFI rabbits owing
to the downregulation of mitochondrial function. These results are
consistent with those obtained in previous transcriptome sequencing of
skeletal muscle tissues from high- and low-RFI pigs (Vigors et al., 2019).
Meanwhile, the high expression gene sets in the LRFI groupweremostly
involved in actin cytoskeleton reorganization, cell proliferation, and
differentiation based on the GO-based list. Furthermore, carbohydrate
metabolism, signal transduction, and immune response were the most
significantly enriched gene sets according to the KEGG-based list,
indicating that LRFI rabbits may be more efficient than HRFI
rabbits in terms of energy utilization during muscle growth, which
is consistent with the findings of previous studies (Horodyska et al.,
2019; Yang et al., 2020b; Hou et al., 2020). Recent literature
demonstrates that immune response is strongly associated with feed

efficiency. For example, pigs with high feed efficiency have been shown
to induce a more effective hepatic response to inflammatory stimuli
than pigs with low feed efficiency (Horodyska et al., 2019). Cows
selected for feed efficiency may have improved stress-coping abilities
and immune responsiveness (Aleri et al., 2017). Similarly, LRFI pigs
have an increased energy-saving mechanism in the intestinal innate
immune response to immune challenges (Vigors et al., 2016). Therefore,
our findings demonstrate that LRFI rabbits may be more robust and
may better respond to infection than HRFI rabbits, consistent with the
reports of previous studies.

The PPI networks constructed with DEGs in the current study
identified the RFI candidate markers. The top centrality hub genes
were FOS,MYC, PRKACB, ITGA2, and FN1. FOS is a proto-oncogene
in mammals that forms the heterodimer complex Activator Protein-1
(AP-1) with c-Jun (Hou et al., 2019). FOS plays a vital role in the
regulation of cell growth, division, proliferation, and differentiation
and programmed cell death (Milde-Langosch, 2005). FOS/AP-1 is one

FIGURE 7
Validation of the RNA-seq results of eight DEGs via quantitative RT-PCR. (A) Verification of eight randomly selected DEGs via qRT-PCR (data are
presented as means ± SEM; * means p-value <0.05, ** means p-value <0.01). (B) Comparison between the qRT-PCR results and sequencing results.
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of the earliest known transcriptional effectors in adult muscle stem
cells. FOS accelerates the transition of stem cells from quiescence to
activation via an early activated FOS/ART1/mono-ADP-ribosylation
pathway, that is, essential for stem cell regenerative responses
(Almada et al., 2021). Further, FOS gene phenotypic variation may
be considered a marker of skeletal muscle fiber and metabolic traits in
pigs (Reiner et al., 2002). MYC transcriptionally regulates many
cellular processes and pathways, including cell growth,
proliferation, and differentiation (Adhikary and Eilers, 2005). In
mouse skeletal muscle, MYC overexpression stimulates skeletal
muscle ribosome biogenesis and protein synthesis. In contrast,
decreased MYC expression in mice reduces BW and growth rates
(Mori et al., 2021). In the present study, we found that FOS andMYC
were highly expressed in the LRFI group, thus confirming that LRFI
rabbits may have more active proliferation and differentiation of
skeletal muscle cells.PRKACB is a key effector of cAMP/PKA-induced
signal transduction, which is involved in numerous cellular processes
such as cell proliferation, apoptosis, metabolism, and differentiation
(Chen et al., 2013). In addition, PRKACB serves as a potential
biomarker of adipocyte lipolysis (Ji et al., 2020). ITGA2 is an
oncogene that may be important in cell migration, invasion,
survival, and angiogenesis (Lian et al., 2018). In T cells, ITGA2
may affect T-cell growth and proinflammatory cytokine expression
(He et al., 2021) and it is overexpression may induce the activation of
the PI3K/Akt signaling pathway (Liu et al., 2022). Similarly, FN1 is
known for its pivotal role in activating the PI3K/Akt signaling
pathway. Fibronectin 1 (encoded by FN1) is a macromolecular
glycoprotein that plays a vital role in cell adhesion, migration,
proliferation, and differentiation (Ma et al., 2023). The FN1 gene is
involved in signaling pathways associated with immune processes (Li
et al., 2022).

This study had some limitations. First, a larger sample size should
be used for RNA-seq. Second, additional functional experiments
should be conducted for verification of this study’s findings.

In conclusion, comparative analysis of the transcriptomes ofM.
longissimus thoracis et lumborum from HRFI and LRFI rabbits
revealed FOS, MYC, PRKACB, ITGA2, and FN1 as potential
candidate genes that affect feed efficiency in rabbits. Several
biological GO terms related to mitochondrial function, energy
metabolism, and immune function were significantly enriched.
Moreover, oxidative phosphorylation and the PI3K-Akt and
ECM-receptor interaction signaling pathways were identified as
the key signaling pathways for feed efficiency in rabbits.
Additionally, the expressions of genes and pathways related to
mitochondrial function were upregulated in HRFI rabbits,
whereas those of genes and pathways related to immune
response and energy metabolism were upregulated in LRFI
rabbits. Our results explain the differences in RFI between the
two RFI groups and will help improve feed efficiency in Wannan
Yellow rabbits to ultimately enhance meat production.
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Background: The use of breed-informative genetic markers, specifically coding
Single Nucleotide Polymorphisms (SNPs), is crucial for breed traceability,
authentication of meat and dairy products, and the preservation and
improvement of pig breeds. By identifying breed informative markers, we
aimed to gain insights into the genetic mechanisms that influence production
traits, enabling informed decisions in animal management and promoting
sustainable pig production to meet the growing demand for animal products.

Methods: Our dataset consists of 300 coding SNPs genotyped from three Italian
commercial pig populations: Landrace, Yorkshire, and Duroc. Firstly, we analyzed
the genetic diversity among the populations. Then, we applied a discriminant
analysis of principal components to identify the most informative SNPs for
discriminating between these populations. Lastly, we conducted a functional
enrichment analysis to identify the most enriched pathways related to the
genetic variation observed in the pig populations.

Results: The alpha diversity indexes revealed a high genetic diversity within the
three breeds. The higher proportion of observed heterozygosity than expected
revealed an excess of heterozygotes in the populations that was supported by
negative values of the fixation index (FIS) and deviations from the Hardy-Weinberg
equilibrium. The Euclidean distance, the pairwise FST, and the pairwise Nei’s GST

genetic distances revealed that Yorkshire and Landrace breeds are genetically the
closest, with distance values of 2.242, 0.029, and 0.033, respectively. Conversely,
Landrace and Duroc breeds showed the highest genetic divergence, with distance
values of 2.815, 0.048, and 0.052, respectively. We identified 28 significant SNPs
that are related to phenotypic traits and these SNPs were able to differentiate
between the pig breeds with high accuracy. The Functional Enrichment Analysis of
the informative SNPs highlighted biological functions related to DNA packaging,
chromatin integrity, and the preparation of DNA into higher-order structures.

Conclusion: Our study sheds light on the genetic underpinnings of phenotypic
variation among three Italian pig breeds, offering potential insights into the
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mechanisms driving breed differentiation. By prioritizing breed-specific coding
SNPs, our approach enables a more focused analysis of specific genomic regions
relevant to the research question compared to analyzing the entire genome.

KEYWORDS

single nucleotide polymorphisms, informative markers, discriminant analysis of principal
components, pig breeds, genetic diversity, functional enrichment analysis

1 Introduction

The domestic pig is an important livestock animal that is widely
used for redmeat, lard, and cured goods. It is a key player in themeat
industry, particularly in Europe (OECD, 2022). Previous studies
have suggested that the European domestic pig (Sus scrofa
domesticus) is primarily descended from European wild boars
(Giuffra et al., 2000). However, recent research has challenged
this notion by identifying Asian mitochondrial DNA (mtDNA)
haplotypes in European Yorkshire, Duroc, and Landrace pigs.
This finding suggests that there may have been some
interbreeding or genetic exchange between the two populations
in the past (Giuffra et al., 2000; Larson et al., 2005). Throughout
history, Italy has developed various breeds of pigs, each with unique
characteristics and uses, such as Cinta Senese (Tuscany region),
Nero Siciliano (Sicily region), and Mora Romagnola (Emilia-
Romagna region) (Franci and Pugliese, 2007). The Yorkshire
breed is one of the most commonly used commercial pig breeds
and was introduced to Italy in the early 20th century due to its fast
growth rate and high efficiency in converting feed into meat. The
Landrace breed was introduced to Italy in the mid-20th century and
has since been utilized in industrial pork production. The Duroc
breed originated in the United States in the 19th century and has
been exported to many countries, including Italy. This breed is often
used in crossbreeding programs to produce hybrid pigs with
desirable traits such as meat quality and growth rate (https://
www.thepigsite.com/).

Both genetic and environmental factors have an impact on the
phenotypic characteristics of commercial pig breeds, such as meat
quality and disease resistance (Rosenvold and Andersen, 2003).
Therefore, understanding the genetic diversity of these breeds is
crucial for enhancing animal production, conserving animal genetic
resources, and evaluating breed performance (Bovo et al., 2020;
Dadousis et al., 2022). This research can help find breeds with better
phenotypic traits and the ability to adapt to difficult conditions
(Bovo et al., 2020). It can also support the sustainable growth of
animal production in different settings and make it easier to reach
evolutionary breeding goals rapidly (Notter, 1999).

The use of genome-wide panels of single nucleotide
polymorphisms (SNPs) has transformed the study of pig breeds
by allowing for the examination of complex relationships among
them (Muñoz et al., 2019). However, processing such vast amounts
of data can be challenging, leading to the need for a more efficient
approach. One potential solution is to create less dense panels using
a smaller set of markers specific to each breed based on a reduced
number of SNPs. This approach would require less time and effort
for analysis, thus making it more feasible. Breed-specific SNPs are
frequently used in conservation biology to manage and protect
livestock resources (Ozerov et al., 2013; Huisman, 2017), as well

as for breed identification and authentication of meat and dairy
products (Russo et al., 2007; Fontanesi et al., 2010).

The use of breed-informative SNPs has shown promising results
in improving desired traits in pig breeding programs. A recent study
on Italian Yorkshire pigs found that selecting SNPs associated with
production traits, such as lean meat content, daily gain, and feed/
gain ratio, can increase the frequency of desirable alleles over time,
leading to faster improvement of these traits (Fontanesi et al., 2015).
Genome-wide association studies (GWAS) have also become a
popular way to find genetic variants linked to important
production traits like meat and carcass quality, growth, and teat
number in European pig breeds (Tang et al., 2019; Fabbri et al., 2020;
Bovo et al., 2021). To identify breed-informative SNPs, various
analytical tools, such as Random Forests, Principal Component
Analysis, Regression, allele frequency differences, and
Discriminant Analysis of Principal components, have been
developed (Wilkinson et al., 2011; Schiavo et al., 2020; Hayah
et al., 2021; Dadousis et al., 2022). These tools can help
researchers identify key genetic markers and gain a deeper
understanding of the genetic basis of production traits in pig breeds.

The aim of this study is to identify a breed-informative SNPs
panel with high power to facilitate breed traceability and
preservation efforts while also supporting breeding programs that
prioritize desirable traits in these pig breeds. We anticipate that the
identified SNPs will provide a useful tool for researchers and
breeders alike, enabling them to make more informed decisions
in animal management and breeding programs. By focusing on
coding SNPs, we hope to identify genetic markers that are
potentially functional, allowing for a better understanding of the
underlying genetic mechanisms governing desirable production
traits in commercial pig breeds. Ultimately, our research may
contribute to the long-term sustainability of pig production,
ensuring that we are able to meet the growing demand for
animal products while preserving animal genetic diversity.

2 Materials and methods

2.1 Description of the dataset

2.1.1 Source of data and SNP
The data utilized in this research is part of the MISAGEN

project’s preexisting database (Botti et al., 2006; Biffani et al.,
2011). This initiative gathered and archived a comprehensive
dataset including pedigree information, clinical symptomatology,
and health-related phenotypes from a commercial pig breeding
population, which was sampled in Northern Italy. The initial
dataset contained records from 2908 weaning piglets representing
four distinct breeds: Yorkshire, Landrace, Duroc, and Pietrain. DNA
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extraction was carried out using nasal swabs as the source material.
The subsequently extracted DNA was subjected to genotyping
procedures employing the Illumina PorcineSNP60 BeadChip,
designed to target a broad spectrum of over 60,000 Single
Nucleotide Polymorphisms (SNPs) distributed across the pig
genome.

2.1.2 Quality control and SNP extraction
The genotyped data underwent rigorous quality control utilizing

the quality control module within the GenABEL package of the R
statistical software (Aulchenko et al., 2007). Specific criteria were set
to exclude individual single nucleotide polymorphisms (SNPs):

▪ Exclusion of SNPs with a call rate less than 99% (i.e., SNPs
not detected in at least 99% of all genotyped individuals).

▪ Removal of SNPs with a Minor Allele Frequency (MAF) in
all individuals less than 0.05.

▪ Exclusion of individuals with a call rate less than 99%
(i.e., individuals with more than 1% missing genotypes).

▪ Furthermore, individuals were excluded due to excessively
high Identity By State (IBS) and sex discrepancies.

After applying these filters, a total of 14,967 SNPs (24.8% of
the available 60,123 SNPs) and 77 individuals (0.063% of the
total) were excluded from the analysis. In this study, a set of
300 coding SNP were chosen considering their physical
proximity to genes linked to pig immunity. Plink software
(Purcell et al., 2007) was used to extract those 300 coding
SNPs from the three distinct pig populations: Yorkshire (YO),
Landrace (LA), and Duroc (DU). Each breed was represented by
100 animals, resulting in a total of 300 animals analyzed in the
study.

2.2 Data analysis

2.2.1 Genetic diversity estimates
In this study, we used a range of genetic diversity metrics to

analyze our dataset; all of the analyses were conducted in R
software (R Core Team, 2020). All of the population genetics
estimates reported in this work, including allele frequencies,
expected (HE) and observed (HO) heterozygosity, the
inbreeding coefficient (FIS), alpha (α) diversity indexes, exact
tests for Hardy-Weinberg Equilibrium (HWE), under selection
variants, and fixed alleles, were implemented using the “dartR”
package (Gruber et al., 2022) and its dependencies from R
statistical software. The genetic distances between breeds were
implemented using the “dartR” package (Gruber et al., 2022) and
its dependencies from R statistical software. The graphics were
created using the “ggplot2” and “Graphics” packages (Hadley,
2016; R Core Team, 2020).

HE, HO, and FIS were estimated according to Nei (Nei, 1987).
Alpha diversity indexes for allelic richness (q = 0), Shannon
information (q = 1), and heterozygosity (q = 2) were estimated
according to Sherwin (Sherwin et al., 2017). The exact p-values for
the HWE test were calculated using the method described by
Wigginton (Wigginton et al., 2005), and the results were
visualized using a ternary plot. We used the OutFlank method

(Whitlock and Lotterhos, 2015) to find variants that were subject
to selection pressures. This method involves figuring out the neutral
fixation index (FST) distribution from the actual data and then
centering the distribution by fitting it to a chi-square model. Loci
with a p-value of less than 0.05 were considered FST outliers and
indicative of selection pressure. To estimate the pairwise FST values
for genetic distances between pig breeds, we used Weir and
Cockerham update of Wright’s approach (Wright, 1951; Weir
and Cockerham, 1984), while we used Nei’s approach (Nei, 1987)
to estimate the pairwise GST values for genetic distances between
populations.

2.2.2 Discriminant analysis of principal
components (DAPC)

Our study implemented the Discriminant Analysis of Principal
Components method with a three-fold purpose. Our first objective
was to assess the discriminatory power of individual SNPs in
distinguishing the three breed clusters. We aimed to optimize the
separation of individuals into predefined groups using discriminant
functions of principal components by maximizing between-group
diversity and minimizing within-group diversity. Our second
objective was to investigate the genetic structure of the
population, considering the existing knowledge about the pig
breeds and their genetic variation. Finally, our third objective was
to determine the probability of animals joining a particular
population based on their genetic background.

After identifying SNPs of significant importance, we utilized the
Variant Effect Predictor (VEP) tool from the Ensembl database
(McLaren et al., 2016) to compare them with the “Pig Reference
(Sus_scrofa)” database. This comparison aimed to uncover the genes
and biological pathways associated with these SNPs. Additionally,
we conducted a search in the “NCBI database” using the SNPmarker
names as keywords to investigate their involvement in biological
processes.

To analyze the population structure, we employed the
“adegenet” package in the R software (Jombart, 2008) to
perform Discriminant Analysis of Principal Components.
Subsequently, we employed the “pca3d” package (Weiner,
2020) to visualize how the most significant SNPs segregated
individuals into different clusters.

2.2.3 Functional enrichment analysis (FEA) of the
most discriminating SNPs between the pig breeds

To determine the crucial biological functions that differentiate
our three pig breeds, we performed a Functional Enrichment
Analysis on a gene list comprising the genes housing the most
significant breed informative SNPs. We utilized the “gprofiler2” R
package (Kolberg and Raudvere, 2021), which employs various
databases such as the Gene Ontology (GO) database, Kyoto
Encyclopedia of Genes and Genomes (KEGG), WikiPathways
(WP), Human phenotype ontology (HP), and micro-RNA target
(MIRNA) databases, among others. The gene list was automatically
generated from our informative SNP set identifiers and served as the
input for the “gost” function within the “gprofiler2” R package. This
function conducts Functional Enrichment Analysis, utilizing the
Gene Ontology database. Our analysis included a thorough
statistical enrichment assessment using the hypergeometric test,
and we applied multiple testing corrections to enhance result
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reliability. To minimize the potential for false positives, we
established a user-defined threshold of 0.05.

3 Results

3.1 Genetic diversity within population and
among pig breeds

3.1.1 Genetic diversity within population
The population sample shows a nearly equal proportion of the first

and second alleles, with a slight preference towards the second allele
(frequencies of 0.48 and 0.52, respectively). The observed proportion of
heterozygotes in all three breeds is higher than expected, indicating a
possible excess of heterozygotes. Our analysis of alpha diversity indexes
reveals variability among different q-values, indicating a deviation from
HWE. The average values of allelic richness, Shannon information, and
heterozygosity are 2, 1.96, and 1.92, respectively (Figure 1). The negative
value of the overall fixation index (FIS = −0.03) supports this deviation
from HWE. We conducted statistical tests to identify loci that deviate
fromHWE, and 46 SNPs showed statistically significant deviations (see
Supplementary Table S1). These deviations are primarily concentrated
at the vertex that represents heterozygotes (AB). The results of the chi-
square test for selection pressure suggest that there is no evidence of
selection acting on any of the loci, and the absence of fixed alleles in any
of the three breeds supports this conclusion. The exact p-values of the
test of HWE deviations are reflected in a ternary plot (Figure 2), with
significant deviations indicated by pink dots. The blue parabola
represents the expected genotype frequencies under HWE, and the
space between the green lines indicates deviations that are not
statistically significant.

3.1.2 Genetic diversity/distance among the pig
breeds

We used Euclidean distance, pairwise FST, and pairwise Nei’s
GST to look at the genetic differences between the three groups of
pigs. The heat maps in Figure 3 show the results. The heat maps
indicate genetic divergence in red and genetic similarity in blue. Our
analysis showed that the LA and DU breeds are the most genetically
different from each other. Their estimated Euclidean distances are
2.815, their pairwise FST is 0.048, and Nei’s pairwise GST is 0.052, all
of which show that they are very different genetically. Conversely,
the YO and LA breeds were found to be the most genetically similar,
with estimated Euclidean distances of 2.242, pairwise FST of 0.029,
and Nei’s pairwise GST of 0.033, indicating a close genetic
relationship between these two breeds.

3.2 Discriminant analysis of principal
components (DAPC) to explore the pig
populations structure

To further explore the population structure, we generated a
DAPC plot based on the first and second Principal Components
(PCs) (Figure 4A). We used the alpha-score optimization method
(Jombart and Collins, 2015) to determine the necessary number of
PCs. The clusters in the DAPC plot were defined by prior knowledge
of population membership (K = 6). We retained 30 PCs, explaining
40% of the overall genetic variability, as input to the Discriminant
Analysis.

The DAPC plot showed clear clustering of individuals by breed,
with the separation between breeds being more distinct in the first
discriminant function (Figure 4B). The average assignment
probability was 99% for DU and 100% for YO and LA breeds.
We identified 28 SNPs that contributedmost to breed differentiation
based on a threshold of 0.01, and their names are listed in
Supplementary Table S2. We performed a PCA on the 300-pig
population using these 28 SNPs as variables, and the resulting plot
showed clear clustering of individuals by breed (Figure 5). The
reduced dataset’s overall assignment probability was 74%, with YO
breeds having the highest assignment rates (90%), LA breeds coming
in second (73%), and DU breeds coming in third (60%). The
assignment rate using the whole dataset was higher compared to
using only the most contributing SNPs. However, it is worth noting
that the assignment rate achieved using the most informative SNPs
remained notably high, standing at no less than 60% (Figure 6).

3.3 Functional enrichment analysis (FEA) of
the most discriminating SNPs between the
pig breeds

The functional Enrichment Analysis of the genes harboring the
most breed informative SNPs revealed three important biological
functions: (1) nucleosome, (2) DNA packaging complex, and (3)
structural component of chromatin (Figure 7). These functions are
crucial for regulating gene expression and maintaining DNA’s
structural stability within the nucleus (Alberts et al., 2002).
Nucleosomes are integral components of chromatin that organize
and compact DNA into a condensed structure. The DNA packaging

FIGURE 1
Alpha diversity q-profiles for the three populations. Allelic
richness (q = 0), Shannon information (q = 1), and heterozygosity
(q = 2).
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complex plays a crucial role in assembling and disassembling
nucleosomes and regulating chromatin structure and function.
The structural constituents of chromatin provide mechanical
support to the chromatin fiber, maintaining its integrity. Table 1
presents the short names of these functions and their corresponding
p-values, sorted in decreasing order of significance following
hypergeometric testing and multiple testing adjustments.

4 Discussion

Through our study, we have uncovered the genetic diversity
present in three commercially important pig breeds, namely,

Landrace, Yorkshire, and Duroc. These findings hold significant
implications for breeding programs and conservation initiatives
focused on preserving the genetic diversity within pig populations.

During our investigation, we observed notable genetic variability
in our coding variants across the three breeds. Additionally, the
Hardy-Weinberg equilibrium test revealed deviations from the
expected population equilibrium. We also noted variations in the
diversity q-values and an overall negative FIS value. The presence of
an excess of heterozygosity in our dataset likely contributed to the
observed HWE imbalance at 46 loci. It is noteworthy that our
population does not appear to be subjected to selective pressure, and
the deviations may be attributed to random mating among pig
individuals, resulting in an isolate-breaking effect (Hamilton, 2021).

FIGURE 2
Ternary plots illustrating the patterns of Hardy-Weinberg (HW) proportions. Each vertex on the plot represents a different genotype: homozygous
for the reference allele (AA), heterozygous (AB), and homozygous for the alternative allele (BB). The plots highlight loci that deviate significantly from
Hardy-Weinberg equilibrium, and these loci are indicated in pink. The blue parabola on each plot represents Hardy-Weinberg equilibrium, while the area
between the green lines represents the acceptance zone. The plots provide a visual representation of the distribution of the SNPs in relation to the
Hardy-Weinberg equilibrium and allow for the identification of loci that may be under selection or experiencing other evolutionary forces.
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The identification of informative SNPs, particularly those located in
coding regions, is crucial for developing cost-effective SNP panels to
facilitate efficient genotyping and breeding selection. This approach can
improve the accuracy and effectiveness of pig breeding programs,
leading to the development of more robust and productive pig
breeds (Fontanesi et al., 2015). Investigating coding SNPs is
important for preventing genetic diseases caused by mutations in
specific genes. By identifying these mutations and integrating them
into breeding programs, the prevalence of these diseases in pig
populations can be reduced, resulting in improved animal welfare
and decreased economic losses for farmers (Mellencamp et al., 2008).

Previous research has identified informative SNPs for
differentiating among various species, including cattle breeds
(Cheong et al., 2013; Zwane et al., 2016; Bertolini et al., 2018) as
well as wild boars and domestic pigs (Lorenzini et al., 2020). While
previous studies have focused on identifying informative SNPs
among commercial pig breeds (YO, DU, and LA) using non-
coding SNPs (Schiavo et al., 2020; Hayah et al., 2021), our study
aimed to identify informative SNPs using only coding variants.

In our study, we found 28 genetic markers (SNPs) that help
distinguish the three pig breeds. Of these, six specific markers did
not match what we expected based on the Hardy-Weinberg test.

FIGURE 3
Distance measures between pig populations. (A) Pairwise FST, (B) Pairwise GST, and (C) Euclidean Distance. The warmer the color, the more the two
breeds concerned are genetically distant.

FIGURE 4
Visualization of the distribution of the 300 individuals according to the 300 SNPs (A) considering the first two discriminant functions, and (B)
considering the first discriminant function only.
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The presence of these deviating SNPs highlights their
importance as potential markers for distinguishing between the
various pig breeds. However, it is essential to underscore that
further comprehensive research and studies are imperative to
validate and elucidate the precise roles and contributions of these
SNPs in breed differentiation.

It is important to highlight that previous studies have already
provided valuable insights into the implications of specific SNPs that
we have identified in our research. For instance, a previous genome-
wide association study (Große-Brinkhaus et al., 2015) demonstrated
a significant association between the SNP ALGA0039432 and boar
taint as well as testes size parameters. This finding underscores the
relevance of this particular SNP in relation to these specific traits.

Moreover, our analysis identified two SNPs, namely,ALGA0060925
and DRGA0005996, as key contributors to breed differentiation.
ALGA0060925 is positioned downstream on chromosome 11 and is
responsible for encoding a long non-coding RNA (lncRNA). In
contrast, DRGA0005996 is located on SSC5 and corresponds to the
CPNE8 gene, which is responsible for producing the copine-8 protein.
Copine-8 is a calcium-dependent phospholipid-binding molecule that
plays a crucial role in calcium-mediated intracellular processes. It is
worth noting that dysregulation of CPNE8, a member of the Copine
family, has been associated with various diseases such as prion disease
and gastric cancer in previous studies (Lloyd et al., 2013; Zhang et al.,
2022). These findings suggest that CPNE8may have multifaceted roles
beyond breed differentiation and warrants further investigation in
relation to its potential involvement in disease pathways.

Furthermore, several other SNPs within our dataset have been
previously associated with various phenotypic traits. For example, the
intergenic variant ASGA0077916 has demonstrated a significant
correlation with the fatty acid composition of the Longissimus dorsi
muscle (Sambache Tayupanta, 2016). Another SNP of interest,
ASGA0072056, is located on SSC16 within the RETREG1 gene,
responsible for encoding the reticulophagy regulator 1.

FIGURE 5
Two-Dimensional visualization of pig individuals distribution based on the 28 most informative SNPs using the first and second principal
components.

FIGURE 6
Comparison of the overall reassigning probability to actual breed
estimated with DAPC using the initial 300 SNPs and the breed-
informative selected 28 SNPs.
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Dysregulation of the RETREG1 gene has been linked to the
development of numerous diseases (Islam et al., 2018). In the
context of viral diseases, other studies have highlighted the
relationship between the absence of the RETREG1 protein and
heightened replication of Dengue and Zika viruses (Lennemann and
Coyne, 2017). ASGA0008283 is an intergenic variant on SSC1.
ASGA0072056 and ASGA0008283 have been shown to be
determinant factors in tracing the breeding farm of domesticated
pigs (Kwon et al., 2017).

Lastly, ALGA0078229 is situated on SSC14 within the RET
gene, which encodes the proto-oncogene tyrosine-protein kinase
receptor RET. Dysregulation of RET has been implicated in the
development of various tumor types (Zhao et al., 2023).
Additionally, a previous study found a significant association

between ALGA0078229 and meat quality in German Landrace
pigs (Ponsuksili et al., 2014).

Moreover, we conducted a comprehensive investigation to identify
the biological processes associated with the SNPs that exhibited
deviations from Hardy-Weinberg equilibrium. Notably, one genome-
wide association study demonstrated a significant association between
ALGA0077162 and immune-relevant traits in the Landrace breed
(Dauben et al., 2021). Additionally, ASGA0050304 was identified as
a quantitative trait locus strongly linked to intramuscular fat (IMF) in
the gluteus medius (GM) and longissimus dorsi (LD) muscles of Duroc
pigs (González Prendes, 2017).

Regarding the Functional Enrichment Analysis, our results have
revealed three enriched functions that involve three important parts: the
nucleosome, the DNA packaging complex, and the structural

FIGURE 7
A graphical representation of the adjusted p-values in the negative log10 scale for enriched functions obtained from various databases, including
Gene Ontology Molecular Functions (GO:MF), Gene Ontology Cellular Components (GO:CC), Gene Ontology Biological Processes (GO:BP), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Reactome Pathway (REAC), micro-RNA target (MIRNA), Human phenotype ontology (HP), and
WikiPathways (WP). The enriched functions, namely, (1) nucleosome, (2) DNA packaging complex, and (3) structural component of chromatin, are
plotted against their respective databases.

TABLE 1 Top 3 significantly enriched functions according to their p-values.

ID Sourcea Term IDb Term namec Term sized p-value

1 GO:CC GO:0000786 Nucleosome 111 9.3 e−03

2 GO:CC GO:0044815 DNA packaging complex 144 2.0 e−02

3 GO:MF GO:0030527 Structural constituent of chromatin 82 1.8 e−02

aThe abbreviation of the data source for the term (Gene Ontology Molecular Functions (GO:MF), Gene Ontology Cellular Components (GO:CC)),
bUnique term identifier,
cThe short name of the function,
dNumber of genes that are annotated to the term.

The p-values are below 0.01 which indicate that the observed enrichment is statistically significant.
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components of chromatin. These components play crucial roles in
DNA packaging, organization, and gene expression, thereby ensuring
the efficient functioning of critical nuclear processes such as
transcription, replication, and DNA repair (Alberts et al., 2002).
Nucleosomes were identified as the most significant function with
the lowest p-value. Previous studies have demonstrated a correlation
between increased circulating nucleosomes and inflammation as well as
autoimmune diseases (Schwarzenbach et al., 2011; Pisetsky, 2012).
Therefore, nucleosomes are believed to have the potential to initiate
immune responses (Rönnefarth et al., 2006).Moreover, the activation of
chromatin is vital for the immune response, with receptor engagement
triggering reaction cascades that activate transcription factors and the
chromatin template (Paz and Josefowicz, 2021). This synergistic
activation of select genes is particularly evident in macrophages
during inflammation, where they can rapidly express hundreds of
genes (Paz and Josefowicz, 2021), thus highlighting the intricate
relationship between chromatin dynamics and immune processes.
Investigating these functions and their underlying molecular
mechanisms could offer new insights into the regulation of gene
expression associated with chromatin abnormalities.

In summary, our study highlights the effectiveness of DAPC in
evaluating the genetic structure and admixture levels of pig breeds. The
obvious breed-specific separation of individuals seen in the DAPC and
PCAplots supports our findings that these three pig breeds have distinct
genetic backgrounds. Despite using only coding variants, the SNPs
selected by the DAPC approach were able to assign individuals to their
respective breeds with a 74% probability of correct assignment.
Although this may not match the assignment rate achieved with the
full dataset, it is still a significant accomplishment and highlights the
importance of carefully selecting impactful genetic markers for analysis.
As a result, targeting coding regions associated with traits of interest
provides a more straightforward analysis of genome-wide variants and
yields more explicit results.

The SNPs discovered in this study have the potential to be used as
markers for pig breed identification and conservation initiatives.
Further research with larger sample sizes can provide a more
comprehensive understanding of the genetic structure of these pig
breeds and identify additional coding SNPs that contribute to breed
differentiation. By conducting further investigations and experiments,
we can gain a deeper understanding of the functional significance and
underlying mechanisms of these identified SNPs.

5 Conclusion

This study highlights the significant genetic variation present in
gene-coding regions among three Italian pig breeds. The Landrace
and Duroc breeds were found to be highly divergent, while the
Landrace and Yorkshire breeds exhibited closer genetic similarities.

Notably, we identified 28 coding SNPs that were particularly
informative in differentiating between these breeds, with enough
genetic information to form distinct clusters of individuals.
Investigating the signaling pathways and functional implications
of these SNPs could provide valuable insights into the underlying
genetic mechanisms that contribute to breed differentiation. While
whole-genome analysis can determine genetic diversity, focusing on
breed-specific coding SNPs can streamline the analysis by targeting
specific regions relevant to the research question.
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Cattle contribute to the nutritional needs and economy of a place. The
performance and fitness of cattle depend on the response and adaptation to
local climatic conditions. Genomic and genetic studies are important for advancing
cattle breeding, and availability of relevant reference genomes is essential. In the
present study, the genome of a Vechur calf was sequenced on both short-read
Illumina and long-read Nanopore sequencing platforms. The hybrid de novo
assembly approach was deployed to obtain an average contig length of
1.97 Mbp and an N50 of 4.94 Mbp. By using a short-read genome sequence of
the corresponding sire and dam, a haplotype-resolved genome was also
assembled. In comparison to the taurine reference genome, we found
28,982 autosomal structural variants and 16,926,990 SNVs, with 883,544 SNVs
homozygous in the trio samples. Many of these SNPs have been reported to be
associated with various QTLs including growth, milk yield, and milk fat content,
which are crucial determinants of cattle production. Furthermore, population
genotype data analysis indicated that the present sample belongs to an Indian
cattle breed forming a unique cluster of Bos indicus. Subsequent FST analysis
revealed differentiation of the Vechur cattle genome at multiple loci, especially
those regions related to whole body growth and cell division, especially IGF1,
HMGA2, RRM2, andCD68 loci, suggesting a possible role of these genes in its small
stature and better disease resistance capabilities in comparison with the local
crossbreeds. This provides an opportunity to select and engineer cattle breeds
optimized for local conditions.
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Introduction

Cattle contribute to the nutritional needs and economy of a
place. The demand for food from animal sources has been rapidly
increasing, especially in developing countries. According to OECD-
FAO (Organisation for Economic Co-operation and Development
and the Food and Agricultural Organization) of the United Nations
Agricultural Outlook 2023–2032, global consumption of milk and
dairy products is expected to increase by 0.8% per annum to 15.7 kg
milk solid equivalents by 2032. To meet this demand, significant
improvement in milk yield is required in developing countries, and
improvements in feed, health, and genetics will contribute toward
that goal in a sustainable manner. Adopting of new technologies or
customization of existing technologies is being carried out in many
countries. In general, crossbreeding between a highly adapted but
with low-productivity indigenous breed and a poorly adapted but
highly productive exotic breed and further selection is conducted to
develop a high-yielding well-adapted crossbreed. Cross-breeding
under better management has shown a manifold increase in milk
yield, thereby leading to substantial increase in household income
and reduction of greenhouse gas emission. In recent times, the
application of genomics has become increasingly helpful and
important for implementation of meticulously planned breeding
programs for breed improvement exercises, including breed
composition assignment. Genomics-based approaches have been
successful in developing economical genotyping panels and/or
assays for use during genomic selection, including ancestry
proportion determination, which is important during breed
selection (Meuwissen et al., 2021; Strandén et al., 2022). Genomic
information is used in genomic selection, which helps in more
accurate prediction of phenotypes at a young age, utilization of
information available for distant breeds, and in reduction of cost,
time, and number of crosses as compared to traditional breeding
methods (Hayes et al., 2013). Recently, climate change has led to
increased incidences of higher-intensity heat waves, which leads to
another challenge to the cattle breeding efforts as adaptation to heat
stress leads to lower efficiency of production and, thus, is
unfavorable to the goal of reducing GHG (Strandén et al., 2022).
Indicine breeds are known for their resistance to drought, better
tolerance to heat and sunlight (Beatty et al., 2006), and disease
resistance (Fernandes Júnior et al., 2020). Thus, crossbreeding using
indicine breeds with genomic selection approaches offers a high
potential to achieve yield improvement goals. However, the lack of
genome sequences of indicine cattle becomes a limiting factor in
carrying out genomic-based breeding using indicine breeds. The
only available previous reference-based genome assemblies of Bos
indicus cattle (Nellore breed) and other indicine breeds were done
using a short-read sequencing platform. For B. indicus cattle
(Nellore breed), reference-based genome assembly was performed
using the SOLiD sequencing platformwith very short read lengths of
25 and 50 bases. The recent reference-based genome assembly was
carried out using the Illumina platform with read lengths of
150 bases (Canavez et al., 2012; Chakraborty et al., 2023), while
there is a high-quality reference genome for taurine cattle breeds
(Rosen et al., 2020). Therefore, a quality reference genome of the
indicine breed is still lacking.

The biological and economic output efficiency is very important for
dairy farmers, and it has been reported that lighter cows provide a

comparatively higher economic value based on land (Thompson
et al., 2020). It has also been reported that feed efficiency (milk
yield per kg feed) was negatively correlated, ranging from −0.18 for
wither height to −0.33 for body weight, with body weight and the
body measurements ranging from −0.18 for wither height
to −0.33 for body weight (Sieber et al., 1988). Thus, an indicine
breed with known history in dairy farming and small size would be
an important one to study and for crossbreed development. There
are around 75 breeds of indicine cattle majorly split between
African breeds and Indian breeds. According to the animal
genetic resources portal (https://nbagr.icar.gov.in/en/registered-
cattle/), there are 53 registered cattle breeds in India. There are
phenotypic variations among these breeds. The Vechur breed
found in the south-western state of Kerala, where crossbreeding
with taurine breeds of cattle has been practiced over the last
6 decades to improve milk production, is a small sized, well-
adapted cattle breed with an average weight of about 133.6 ± 3.7
and 173.5 ± 6.8 kg and a height of 89.0 ± 0.7 and 99.8 ± 1.4 cm for
cows and bulls, respectively. This was the most popular dairy breed,
producing 2–3 L ofmilk per day in the region before it was replaced by
high milk-yielding crossbreeds (Iype, 2013). These cattle are also well-
known for their resistance to viral, bacterial, and parasitic diseases
compared to the exotic cattle and their crossbreds (Radhika et al.,
2018; Shivakumara et al., 2018).

In the present study, we have collected a family trio (sire, dam,
and calf) of Vechur cattle. The calf genome was sequenced using
both short-read Illumina and long-read nanopore platforms to
assemble a genome using a hybrid de novo assembly approach.
Using short read sequences of the sire and dam, a haplotype-
resolved genome was also assembled. Furthermore, genetic
variants were analyzed using the taurine breed reference genome
to find an association with various QTLs. FST analysis was carried
out using the new genome sequence data and other available
genotyping data to find genetic loci that may differentiate Vechur
from the rest of the indicine breed and may explain its short
stature too.

Results

Samples and sequencing

Blood DNA samples of a family trio consisting of a dam
(MT435), a sire (MT436), and its calf (MT434) were collected
and sequenced on a short-read Illumina sequencing platform.
The calf DNA was also sequenced using the Nanopore long-read
sequencing platform. The sequencing details are given in Table 1.

De novo genome assembly

A hybrid de novo hybrid assembly was performed for the sample
MT434 (calf) using CLC Genomics workbench 22.0.5 using both
Nanopore and Illumina reads. For this sample, sequencing by both
Illumina and Oxford Nanopore NGS platforms generated raw data
of 135 GB and 159 GB, respectively, corresponding to 50.3x and
58.89x coverage, respectively. It was performed in two steps, as
depicted in Figure 1B: i) de novo assembly of a genome using long,
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TABLE 1 Details of sequencing.

Short-read Illumina platform sequencing details

Sample Average read length
(bp)X2

#Raw reads (forward/
reverse)

#Total Raw data (bp) %
GC

Coverage

Name Reads

MT434 (calf) 151 449742276x2 899,484,552 135,822,167,352 44 50.3

MT435 (dam) 432569400x2 865,138,800 130,635,958,800 44 48.4

MT436 (sire) 559344678x2 1,118,689,356 168,922,092,756 44 62.6

Long-read Nanopore platform sequencing details

Sample
Name

Mean read length (bp) # Total reads (single end) Raw data (bp) %GC Coverage

MT434 4,273 37,211,638 159,011,500,107 43.73 58.89

FIGURE 1
(A) A picture of mature Vechur. (B) Schematic diagram showing the hybrid de novo genome assembly pipeline. (C) Schematic diagram of the trio
binning haplotype-resolved genome assembly. (D) Pie chart showing the percent of structural variants with each predicted consequences of sample
MT434 (calf) obtained using the ensembl variant effect predictor (VEP). (E) Histograms showing chromosome-wise structural variant rate. (F) Pie chart
showing percent of single nucleotide variants (SNVs) with VEP predicted consequences. (G) Pie chart showing percent of copy number variants
(CNVs) with VEP.

Frontiers in Genetics frontiersin.org03

Muthusamy et al. 10.3389/fgene.2024.1338224

230

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1338224


error-prone reads and ii) improve the de novo assembly from long
reads by polishing with short, high-quality Illumina reads. The
refined assembly results in a genome of 2,693,805,279 bp, and
the assembly statistics are given in Table 2. To assess the genome
completeness further, the Benchmarking Universal Single-Copy
Orthologs (BUSCO) (Simão et al., 2015) was used, which has a
predefined and expected set of single-copy marker genes as a proxy
for genome-wide completeness. The assembled genome was used,
and the genome mode was selected, and for lineage, Eukaryote was
selected to run just on eukaryote trees to find optimum lineage. The
results have been summarized in Table 2.

Haplotype-resolved assembly

Haplotype-resolved assemblies were generated using the
TrioCanu module of the Canu assembler (Koren et al., 2018).
To enable haplotype-resolved assembly of the calf, we performed
short-read sequencing of the dam and sire using the Illumina
platform with a coverage of 32.58 x and 37.67 x, respectively.
These reads were quality-trimmed and filtered. Haplotype
binning (trio binning) was conducted which takes the short
reads from the parental genomes to partition long reads from
the offspring into haplotype-specific sets as depicted in Figure 1C.
Details of the binned reads are summarized in Table 3. Using the
binned reads, each haplotype was then assembled independently
using the Long Read Support (beta) plugin of CLC Genomics
workbench 22.0.5. These resulted in a paternal haplotype
assembly of 2,556,074,938 bp with an N50 of 1.4 Mbp and a
maternal haplotype assembly of 2,618,152,939 bp with an N50 of
2.0 Mbp, as summarized in Table 4.

Structural and single-nucleotide
variant analysis

In comparison to the taurine reference genome ARS-UCD 1.2.15,
we detected 30,434 structural variants with 28,982 autosomal
structural variants ranging from 50 bp to 9.97 kbp, with an
average of one structural variant for every 86,363 bp with the
highest and lowest mutation rate on chromosome 19 and 20,
respectively (Figure 1E). Most of the variants (~90%) are in the
intergenic and intronic regions, while 529 variants (~1.2%) are in the
coding regions (Figure 1D). In addition, there are 16,926,990 single-
nucleotide variants with 1,521,747 novel and 15,405,243 existing
variants: 5,634,648 (33.3%) in the coding region, 51,390 missense,
754 nonsense variants, and 11 read-through variants (Figure 1F).
When analyzed using CNVnator 4.0 (Abyzov et al., 2011), we also
detected 3,395 copy number variations (2,470 deletions and
925 duplications), and the VEP analysis predicts 22% feature
truncation, 6% feature elongation and 7% coding sequence variant,
as seen in Figure 1G. When the PANTHER database (https://www.
pantherdb.org/) was used to functionally annotate the 712 genes
found in the inferred CNV regions, the most enriched pathways
were the IGF pathway-mitogen-activated protein kinase/MAP kinase
cascade, T-cell activation, gonadotropin-releasing hormone receptor
pathway, and interleukin signaling pathway.

Furthermore, statistical analysis was carried out using the
GALLO R package (Fonseca et al., 2020), which gives enriched
QTLs of statistical significance. For this, variants at QTL loci in
GALLO R were called, and the variants which are homozygous in
both the sire and damwere subject to enrichment analysis. As shown
in Figure 2E, QTLs related to milk yield, milk quality, metabolic
body weight, dry matter intake, etc., were significantly enriched.

TABLE 2 Assembly statistics and BUSCO analysis summary.

Sample: MT434

Contigs 1,367

Minimum length 10,281

Maximum length 27,791,687

Average length 1,970,596

N50 4,946,819

N90 1,163,082

Total 2,693,805,279

BUSCO analysis

BUSCO summary C: 90.4% [S: 85.1%, D: 5.3%],F: 2.3%, M: 7.3%, n: 303

Complete BUSCOs C 274

Complete and single-copy BUSCOs S 258

Complete and duplicated BUSCOs D 16

Fragmented BUSCOs F 7

Missing BUSCOs M 22

Total BUSCO groups searched 303
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Population analysis

Vechur cattle are well known for its disease resistance, better
adaptation for tropical extreme climates, and small stature. Classical
multidimensional scaling (MDS) based on pairwise identical-by-state
(IBS) distance was performed to understand or validate genetic
relatedness and population stratification i) between Vechur and
different breeds of cattle worldwide using the data published earlier
(Bahbahani et al., 2017) and ii) between Vechur and other Indian
indicine breeds using the data published earlier (Dixit et al., 2021) with
details of the breeds listed in Table 5. As depicted in Figure 2A, Vechur
(Ind_VC) and the present trio (blue squares) cluster together with the
other Indian indicine breeds, whereas African zebu (AZs in Figure 2A)
breeds and taurine breeds (ETs in Figure 2A) form the other two
clusters. Further resolution of the MDS analysis among the Indian
indicine breeds, Vechur (ind_VCs, purple circle in Figure 2B) along
with the trio (MTxxx, blue squares in Figure 2B), forms a unique
subcluster, as depicted in Figure 2B, indicating the presence of a unique
selection genetic feature. Admixture analysis also supports the above
observation as shown in Figure 2C.

Fixation index (FST) tests were performed to identify SNPs
which are highly differentiated in Vechur as compared to other
Indian cattle breeds. This analysis would likely reveal SNPs or
genomic regions which are involved in controlling body size. As
reported earlier, FST analysis results show 35 SNPs (listed in Table 6)
with high FST values (>0.7) clustered mainly in certain regions of
chromosomes 5, 11, and 18 (Figure 2D), and house protein-coding

genes: IGF1, HMGA2, SRGAP1, APOB, ENSBTAG00000020828,
RRM2, ZNF276, and CD68 (listed in Table 7).

IGF1 is involved in growth, and dysfunction of HMGA2 results in
autosomal dominant growth retardation phenotype (Leszinski et al.,
2018).HMGA2 regulates IGF2which is a paralog of IGF1 and known to
regulate growth (Abi Habib et al., 2018). Using the sequence data of the
present family trio that has been generated during this study, variants
were called for these chromosomal locations listed in Table 7. A total of
2,324 variants were detected, with 520 being homozygous in all the
members of the family with 27 missense (22 in APOB and one each in
HMGA2, RRM2, IGF1, and SRGAP1 and ENSBTAG00000048587), five
splice site variants (two in APOB, one each in RRM2, SRGAP1, and
HMGA2), and four 5′UTR and 13 3′UTR (one in IGF1, six in RRM2,
and six in ENSBTAG00000048587). We also performed a QTL
enrichment analysis on variants with higher FST values, showing
greater differentiation in Vechur compared to other Indian cattle
breeds (Dixit et al., 2021), using the GALLO R package (Fonseca
et al., 2020). Figure 2F shows that QTLs associated with carcass
weight, milk quality, and inhibin levels were highly enriched in Vechur.

Discussion

A haplotype-resolved genome of an indicine breed has been
assembled in this study. There is a significant improvement of the
indicine cattle genome as compared to the presently available
reference genome, as reported earlier in Canavez et al. (2012)
and recently built short-read sequencing-based genome
(Chakraborty et al., 2023). The use of relevant reference genomes
is important and could have a large impact on studies, especially on
detecting signatures of selection, as has been reported earlier (Lloret-
Villas et al., 2021). Among 53 cattle breeds of India listed at https://
nbagr.icar.gov.in/en/registered-cattle/, Vechur is one of the smallest
indicine breeds in the world with exceptional adaptation to the
tropical weather conditions. Thus, this genome would help in
unraveling genetic factors involved in such adaptation.

MDS plot and admixture analysis revealed that Vechur is one of the
indicine breeds and its haplotype-resolved genome would serve as a
better reference genome for the local and pan-Indian indicine breed.
Most of the dairy cattle breeds in India are crossbreeds between taurine
breeds like Jersey and Indian breeds. The availability of an indicine breed
reference genome would help in genetic studies related to milk
production and local environment adaptation phenotypes using state-
of-the-art genomic selection procedures. Moreover, a better
understanding of genetic factors may help in applying targeted

TABLE 3 Summary of haplotype binning (trio binning).

MT434

Reads Bases

Haplotype 1 (paternal) 11,227,111 68,338,934,720

Haplotype 2 (maternal) 12,768,257 77,999,737,705

No haplotype 3,250,033 7,046,060,552

Ignored (short) 9,966,237 5,626,767,130

Unassigned Fewer than 5% of bases in unassigned reads; not including them in assemblies

TABLE 4 Summary of haplotype-resolved assemblies.

MT434_Haplotype1 MT434_Haplotype2

Contigs 4,217 2,956

Minimum 10,055 10,035

Length

Maximum 10,270,387 10,894,072

Length

Average 606,136 885,708

Length

N50 1,373,887 2,074,774

N90 300,353 438,793

Total 2,556,074,938 2,618,152,939
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FIGURE 2
(A) Multidimensional scaling (MDS) analysis of various cattle breeds including indicine breeds to show the clustering of Vechur cattle with the
indicine breeds. Breed abbreviation as follows: (i) ET_XXX: European taurine breeds, (ii) Ind_xxx: Indian indicine breeds, (iii) MT434/435/MT436 are the trio
Vechur being used in this study, (iv) KEASZ: Kenya Small EASZ, (v) AT: African taurine, (vi) AZ_xx: African zebu breeds, (vii) AO: Sanga (viii) KR: Uganda large
EASZ, and (ix) ZS: Uganda small EASZ. (B)Multidimensional scaling (MDS) analysis of various Indian cattle breeds showing the formation of a separate
cluster of Vechur cattle. Breed abbreviation as follows: Ind_TP: Tharparkar, Ind_SW: Sahiwal, Ind_GIR: Gir, Ind_OG: Ongole, Ind_VC: Vechur, Ind_Hr:
Hariana, and Ind_KG: Kangayam. (C) Admixture analysis of six cattle breeds ranging from K = 2 to K = 5. Breed abbreviation as follows: BRM01, Brahman;
NEL01 (Nellore) Indicus; HOL01, Holstein; TAU01, Hereford; JER01, Jersey; MT434 (calf); MT435 (dam); and MT436 (sire) of Vechur breed. (D)Manhattan
plot of genome-wide FST values (cut-off value > 0.7) comparing Vechur cattle vs. rest of the Indian breeds. (E) Bubble plot depicting QTL enrichment
analysis for variations that are homozygous in both the dam and sire. A darker red shade in the circles indicates more significant enrichment, and the area

(Continued )
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genome editing technologies to introduce desirable trait-related genetic
variants in the genome.

We also found high genetic differentiation in multiple regions of
the Vechur breed genome as compared to the other indicine breeds.
These regions host genes including IGF1, HMGA2, SRGAP1, APOB,
ENSBTAG00000020828, RRM2, ZNF276, and CD68. IGF1 is a
known growth promoting gene and has been reported to
contribute 30%–45% of growth in mice (Liu et al., 1993;
Stratikopoulos et al., 2008). HMGA2-deficient mice, zebrafish,
and horse also show reduced growth (Frischknecht et al., 2015;
Lee et al., 2022). The HMGA2 deficiency phenotype for reduced
growth may be explained by its regulation of IGF2 (Abi Habib et al.,

2018), which is again related to IGF1. There is one missense IGF1
variant (T151M) andHMGA2 (G41C) variant homozygous in all the
members of the family. These and other variants in these genes are
likely to contribute majorly in the small stature phenotype of this
cattle breed. CD68 is a macrophage marker and is reported to be
involved in inflammatory reactions (Holness and Simmons, 1993).
We believe this Vechur genome assembly will provide genomic
resources for evolutionary studies in combination with the other
bovine species. Overall, a haplotype-resolved genome of an Indian
indicine cattle is reported in this study and will help in genomic
selection studies related to improvedmilk yield, improved efficiency,
and better adaptation.

FIGURE 2 (Continued)

of the circles is proportional to the number of associated QTLs. The x-axis represents the richness factor, calculated as the ratio of annotated QTLs
to the total number of each QTL in the reference database. (F) Bubble plot depicts the enrichment analysis of quantitative trait loci (QTL) for variants
identified through FST, showing higher differentiation in Vechur compared to other Indian cattle breeds.

TABLE 5 List of different breeds for which genotype or genomic sequence data was used in this study.

Population abbreviation Population name Number of samples Reference

ET_HOL European taurine-Holstein-Friesian 63 Bahbahani et al., 2017

ET_JER European taurine-Jersey 36 Bahbahani et al., 2017

Ind_TP Indian-Tharparkar 17 Dixit et al., 2021

Ind_SW Indian-Sahiwal 13 Dixit et al., 2021

Ind_VC Indian-Vechur 16 Dixit et al., 2021

Ind_GIR Indian-Gir 45 Dixit et al., 2021

Ind_Hr Indian-Hariana 18 Dixit et al., 2021

Ind_KG Indian-Kangayam 16 Dixit et al., 2021

Ind_OG Indian-Ongole 17 Dixit et al., 2021

Ind_NEL Indian-Nelore 35 Dixit et al., 2021

MT434 Kerala-Vechur 1 This study

MT435 Kerala-Vechur 1 This study

MT436 Kerala-Vechur 1 This study

KEASZ Small East African shorthorn zebu 92 Bahbahani et al., 2017

AT_NDM African taurine-N’Dama 24 Bahbahani et al., 2017

AZ_AG African zebu-Adamawa gudali 25 Bahbahani et al., 2017

AZ_AZ African zebu-Azawak 2 Bahbahani et al., 2017

AZ_BJ African zebu-Bunaji 22 Bahbahani et al., 2017

AZ_OR African zebu-Red bororo 22 Bahbahani et al., 2017

AZ_SO African zebu-Sokoto gudali 19 Bahbahani et al., 2017

AZ_WD African zebu-Wadara 3 Bahbahani et al., 2017

AZ_YK African zebu-Yakanaji 12 Bahbahani et al., 2017

AT_MT African taurine-Muturu 8 Bahbahani et al., 2017

AO Sanga-Ankole 25 Bahbahani et al., 2017

KR Karamojong Zebu 16 Bahbahani et al., 2017

ZS Serere zebu 13 Bahbahani et al., 2017
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Materials and methods

DNA isolation from blood samples

Twomillilitres of blood samples were taken in a 15-mL Falcon tube,
and 4mL of chilled lysis buffer (150 mM NH4Cl, 10 mM 1M KHCO3,
and 0.1 mM EDTA) was added. It was kept on ice for 10 min after
mixing. It was then centrifuged at 7,000 rpm for 10min at 4°C. The
supernatant was discarded, and the process was repeated until the pellet
is clear of RBC (washing two to three times is sufficient). A total of
300 μL of extraction buffer (400mMNaCl, 2 mMEDTA, 10 mMTrisCl
pH 8.0) was added and mixed well. A total of 100 µL of proteinase K

(0.2 mg/mL) and 125 µL of 20% SDS was added, mixed, and incubated
at 56°C for 6 hours or overnight. Phenol chloroform extraction was
performed by adding 500 µL of phenol–chloroform–isoamylalcohol (25:
24:1) to the mixture and mixed well by gently inverting the tube up and
down for 10 min to get a milky emulsion. Then, the mixture was
centrifuged at 10,000 rpm for 6 mins, and the upper aqueous phase was
gently extracted again with 500 µL of chloroform–isoamylalcohol (24:1).
The DNA was precipitated by adding 1/10th volume of 3M sodium
acetate (of an aqueous layer) and 2.5 times volume of chilled absolute
alcohol followed by centrifugation first at 10,000 rpm for 5 min and then
at 12,000 rpm for next 5 min and finally at 14,000 rpm for 10min at 4°C.
The pelleted DNA was washed two times with 300 µL of 70% ice cold

TABLE 6 List of SNPs (in the HDbeadchip) with FST values > 0.7.

Chr Pos Weir_and_Cockerham_FST Gene Chr Pos Weir_and_Cockerham_FST Gene

2 8,61,80,784 0.700374 11 8,23,32,335 0.753475

3 91,32,647 0.798089 11 6,55,70,076 0.751379

5 4,80,08,400 0.75717 11 8,54,54,517 0.733433

5 6,64,88,531 0.753664 11 4,93,93,563 0.725848 ENSBTAG00000020828

5 6,64,99,710 0.753664 11 4,93,61,395 0.723943

5 6,65,45,432 0.750791 IGF1 11 8,74,66,344 0.700458

5 5,76,396 0.734675 11 8,74,72,407 0.700458 RRM2

5 6,65,47,981 0.729853 IGF1 11 8,57,72,933 0.700374

5 6,65,52,462 0.729853 IGF1 11 8,57,82,922 0.700374

5 6,65,57,413 0.729853 IGF1 11 8,57,89,132 0.700374

5 6,65,62,687 0.729853 IGF1 17 2,54,05,683 0.750791

5 4,80,57,883 0.729551 HMGA2 18 1,47,60,377 0.773436

5 5,40,754 0.723949 18 1,46,47,288 0.725848 ZNF276

5 4,99,54,556 0.703359 SRGAP1 18 1,46,88,492 0.702313

9 1,46,80,303 0.702501 18 1,46,92,912 0.702313

11 7,79,88,513 0.815351 APOB 18 1,43,27,200 0.701693

11 8,23,38,187 0.80554 19 2,79,21,934 0.702313 CD68

11 8,56,00,438 0.774

Gene names are maintained italicised.

TABLE 7 Summary of the list of all loci differentiated in the Vechur breed.

Chromosome Co-ordinates Gene

5 5:66,532,877–66,604,734 Insulin-like growth factor 1 (IGF1)

5 5:48,053,846–48,199,963 High mobility group AT hook2 (HMGA2)

5 5:49,812,166–49,969,012 SLIT ROBO Rho GTPase activating protein 1 (SRGAP1)

11 11:77,953,380–78,040,118 Apolipoprotein B (APOB)

11 11:49,390,250–49,396,081 ENSBTAG00000020828

11 11:87,466,581–87,473,817 Ribonucleotide reductase regulatory subunit M2 (RRM2)

18 18:14,635,302–14,649,693 Zinc finger protein 276 (ZNF276)

19 19:27,921,927–27,923,997 CD68

Gene names are maintained italicised.
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ethanol and dried at room temperature. It was then dissolved in 100 µL
nuclease-free water or 1x TE buffer by incubating at 56°C for 10 min.
The DNA was then stored at −20°C until further use.

Sequencing

Extracted DNA was sequenced on both the Illumina and Oxford
Nanopore platforms. The short reads produced by Illumina
technology were used to estimate genome size and correct errors
in the assembled genome. Long reads from the Oxford Nanopore
device, on the other hand, were used in the actual genome assembly
process. For the Illumina platform, the library was prepared using
the Illumina DNA Prep kit 20060060 and sequenced on the Illumina
Novaseq 6000 sequencer using S4 flowcell and Novaseq 6000 S4
reagent kit v1.5 (300 cycles). In addition, another library with an
average length of 20 kilobases was created using the Oxford
Nanopore platform in line with the manufacturer’s instructions.
The library was prepared using the Nanopore Ligation sequencing
kit and sequenced on the PromethION 24 (P24) platform using
FLO-PRO002 R9.4.1 as well as FLO-PRO112 R10.4.

Genome assembly

The “De Novo Assemble Long Reads” tool within CLC Genomics
Workbench version 22.0.5 was used with a specialized plugin for de novo
hybrid assembly. This tool is designed for processing long, error-prone
reads, like those from Oxford Nanopore Technologies. It uses open-
source components: minimap2, miniasm, raven, and racon. The hybrid
assembly involves twomain steps: first, the de novo assembly of a genome
using long, error-prone reads and second, the refining of the initial de
novo assembly produced from long reads using short, high-fidelity reads.

The uncorrected nanopore reads were used directly. The process
begins with finding overlap alignments among the input reads using
miniasm/minimap2. These overlaps are preprocessedwith pile-o-grams,
creating an assembly graph, which is then simplified to produce contigs
using the raven assembler. The default settings (k = 15, w = 5, minimum
contig size = 1000) and two rounds of racon polishing were applied.
Contig polishing is performed twice using racon/minimap2, which
improves a partial order alignment (POA = 500) of the reads against
the contigs and contig quality through rapid consensus calling.

The assembly was further polished with high-quality Illumina short
reads using racon and enhancements from minipolish. Racon uses a
divide-and-conquer strategy for rapid consensus calling. Trimmomatic
0.39 was used to trim and filter Illumina reads for quality and length.
These reads were then mapped to assembled contigs to refine them.
Most contigs had roughly 40 x coverage or higher. The binned reads for
individual contigs were retrieved and used for polishing. The partial
order alignment (POA) window was set to 500 bp, and the minimum
sequence length for output was 10,000 bp, as all contigs were longer.
The remaining settings remained consistent.

Haplotype-resolved assembly

Haplotype-resolved assemblies were also prepared using the
TrioCanu module of the Canu assembler (Koren et al., 2018). Prior

to assembly, haplotype binning (trio binning) was conducted, which
takes the short reads from the parental genomes to partition long reads
from the offspring into haplotype-specific sets. Each haplotype is then
assembled independently, resulting in a complete diploid
reconstruction. For MT434, the parental reads MT435-dam and
MT436-sire were quality-trimmed and filtered and then are used for
trio binning using the long reads of their offspring MT434. The trio
binning divides the total reads into paternal andmaternal groups on the
basis of the presence of the haplotype-specific k-mers in those bins.
These haplotypes were then assembled using the Long Read Support
(beta) plugin of CLC Genomics workbench 22.0.5.

Structural variant analysis

The initial draft assembly was aligned using NUCmer (l = 100,
c = 500) against the reference genome Bos taurus (cattle)–Hereford
breed (ARS-UCD 1.2; GCF_002263795.1) to obtain a delta file, which
was then uploaded to Assemblytics to analyze alignments. The input
file (OUT.delta.gz) has been provided for loading on the Assemblytics
web server and can be used to view the results dynamically. An
Ensembl Variant Effect Predictor (McLaren et al., 2016) was used to
predict the consequences of the structural variants.

Alignments and variant identification

Prior to mapping, adapter sequences and low-quality reads were
removed using Trimmomatic 0.39, and high-quality reads were aligned
to the UMD3.1 bovine reference genome assembly using the BWA-
MEM option of Burrows–Wheeler Alignment program (BWA) version
0.7.5a with default parameters (Li, 2013). Following alignment,
SAMtools (version 1.9) (Danecek et al., 2021) was used to convert
the SAM files to binary format (BAM, Binary Alignment Map) sorting
of the mapped reads according to chromosome position. Duplicate
reads were filtered from the sorted BAM files using the Picard tool’s
MarkDuplicates program (v2.17.11). The single-nucleotide
polymorphisms (SNPs) were discovered using the HaplotypeCaller
function of the Genome Analysis Toolkit (GATK, version 3.8). All
SNPs were filtered using GATK’s “VariantFiltration” with preliminary
filter settings of “QUAL <30.0, QualByDepth (QD) < 2.0, Fisher’s exact
test (FS) > 60.0, RMSMapping Quality (MQ) < 40.0, StrandOddsRatio
(SOR) > 3.0, MappingQualityRankSumTest (MQRankSum) < −12.5,
and ReadPosRankSumTest (ReadPosRankSum) < −8.0>”.

QTL enrichment analysis

To better understand the unique traits of Vechur cattle, we
developed an in-house script to identify genetic variations based on
homozygosity in both the dam (MT436) and sire (MT435).
Additionally, we used the ‘GALLO’ package in R (Fonseca et al.,
2020) for QTL enrichment analysis of homozygous altered allele
SNPs in both the dam and sire. QTL annotations for these SNPs
were obtained using the ‘find_genes_qtls_around_markers’ function
with a GFF file from The Animal QTL Database aligned to the ARS_
UCD1.2 reference genome. QTL boundaries were set within 100 kB
upstream and downstream of each significant SNP. The enrichment
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analysis involved computing adjusted p-values (Padj values) through
a false discovery rate (FDR) with a chromosome-based technique.
Traits associated with specific chromosomes and with a Padj value
below 0.05 were considered. Visualization of chromosome-enriched
traits with significant Padj values was facilitated using the
“QTLenrich_plot” function.

Copy number variation (CNV) detection

The read depth-based CNVnator approach (Abyzov et al., 2011)
was employed to determine genomic CNVs between the Vechur
sample (MT434) and the ARS-UCD 1.2 bovine reference assembly.
According to the author’s recommendations, CNVnator was run on
sorted BAM files with a bin size of 100 bp. Following calling, raw
CNVs were subjected to quality control to retain confident CNVs.
The filtering criteria were p-value <0.001 (calculated using t-test
statistics) and q0 (fraction of mapped reads with zero quality) < 0.5.
The genes found in the inferred CNV regions were retrieved and
functionally annotated using PANTHER (https://www.pantherdb.
org/) (Nikolsky and Bryant, 2009).

Population structure analysis

To validate genetic relatedness and population stratification,
along with our samples, previously reported data comprising
112 individuals of various B. indicus breeds were used as the
reference (Dixit et al., 2021). These reference populations include
Sahiwal (13), Tharparkar (17), Gir (15), Ongole (17), Hariana (18),
Kangayam (16), and Vechur (16). Both the datasets were merged
using the “vcf merge” tools of VCFtools (Danecek et al., 2011), and
only common SNPs in both datasets were preserved. Then, using the
program PLINK (version 1.07) (Purcell et al., 2007), we performed
classical MDS based on pairwise IBS distance and rendered the plot
using the R package MDS plot.

Linkage pruning was also performed for Admixture analysis
using PLINK (Purcell et al., 2007), with parameter: indeppairwise =
50 10 0.1, which performs linkage pruning with a window size of
50 kb, window step size of 10 bp, and r2 threshold of 0.1 (i.e., the
linkage acceptable threshold). This stage chose a group of
independent variants to reduce redundancy. Admixture v1.3.0
(Alexander et al., 2009) was then used to read the PLINK bed
file with the default parameters (cross-validation, cv = 5) and cluster
number k) ranging from 2 to 5. The findings are plotted using
R script.

Screening of differentially selected regions

We employed FST to detect positive selection signatures in the
Vechur genome based on whole-genome SNPs, and other
individuals of various B. indicus breeds were used as the
reference from previously published data (Dixit et al., 2021).
First, the mean FST value according to Weir and Cockerham’s
pairwise estimator approach (Weir and Cockerham, 1984) was
determined in autosomal chromosomes using VCFtools (v.0.1.13)
(Danecek et al., 2011) with default parameters. Genes in the

genomic regions with high Z-transformed FST value (>7.5)
were used to identify their functions in terms of Gene
Ontology. The results of population differentiation were
visualized in the form of a Manhattan plot by the qqman R
package (Turner, 2018).
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Information on the genetic architecture of the production traits of indigenous
African chicken is limited. We performed a genome-wide association study using
imputed Affymetrix Axiom

®
600K SNP-chip genotypes on 1,113 chickens from

three agroecological zones of Ghana. After quality control, a total of 382,240
SNPs remained. Variance components and heritabilities for some growth, carcass
and internal organ traits were estimated. The genetic and phenotypic correlations
among these traits were also estimated. The estimated heritabilities of body
weight at week 22 (BW22), average daily gain (ADG), dressed weight, breast
weight, thigh weight, wing weight, drumstick weight, and neck weight were high
and ranged from 0.50 to 0.69. Estimates of heritabilities for head weight, shank
weight, and gizzard weight were moderate (0.31–0.35) while those of liver
weight, back weight, dressing percentage, and heart weight were low
(0.13–0.21). The estimated heritabilities of dressed weight, breast weight, wing
weight, drumstick weight, neck weight, shank weight, and gizzard weight,
corrected for BW22, were moderate (0.29–0.38), while the remaining traits
had low heritability estimates (0.13–0.21). A total of 58 1-Mb SNP windows on
chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 13, 18, and 33 each explained more than 1% of
the genetic variance for at least one of these traits. These genomic regions
contained many genes previously reported to have effects on growth, carcass,
and internal organ traits of chickens, including EMX2, CALCUL1, ACVR1B,
CACNB1, RB1, MLNR, FOXO1, NCARPG, LCORL, LAP3, LDB2, KPNA3, and
CAB39L. The moderate to high heritability estimates and high positive genetic
correlations suggest that BW22, ADG, dressed weight, breast weight, thigh
weight, wing weight, drumstick weight, and neck weight could be improved
through selective breeding.
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1 Introduction

Several indigenous African chicken ecotypes, including the
Forest (FO), Interior savanna (IS) and Costal savanna (CS)
ecotypes of Ghana have been reported (Walugembe et al., 2020).
These chickens are hardy and thrive quite well in severe climates and
environments (Pius et al., 2021). They are a major source of protein
and play very important roles in sustaining the livelihoods of many
households in Africa. Furthermore, there is also a perception that the
meat of indigenous chicken ecotypes is very tasty, thus contributing
in a large part, to a high demand for the meat of indigenous chickens
in Ghana and many other parts of Africa (Asante-Addo andWeible,
2020; Ragasa et al., 2020).

The ability of indigenous chickens to thrive in different
agroecological zones of Africa can in part be attributed to the
variety of adaptive traits they possess, including thermotolerance,
ability of escape predation, resistance to several endemic diseases
(Mpenda et al., 2019), and a capacity to thrive under conditions of
feed and water scarcity. Notwithstanding these important adaptive
traits, indigenous African chicken ecotypes tend to have
comparatively lower growth rates and body sizes (Munisi et al.,
2015; Birteeb et al., 2016). As a result, many subsistence farmers tend
to breed them with other breeds of chicken with the objective of
increasing their body weights, a situation that can occasion the loss
of their adaptive traits.

Some studies on the production traits of indigenous African
chicken are available (Osei-Amponsah et al., 2013; Dekkers et al.,
2018) but very few comprehensive genome-wide association studies
(GWAS) on their production traits have been carried out. It is
therefore imperative to unravel the genetic architecture of the
production traits of indigenous chicken populations of Ghana to
provide better insights for the genetic improvement of these traits in
future. This GWAS therefore sought to examine the genetic
architecture of the growth, carcass, and internal organ traits of
the Forest, Interior and Coastal Savanna chicken ecotypes of Ghana.

2 Materials and methods

2.1 Experimental design

A total of 1,113 chickens, made up of the CS, the IS, and FO
chicken ecotypes were used in this study. These are chickens whose
parents have been described inWalugembe et al., 2020. Each ecotype
was housed separately in deep litter pens. The dimensions of each
pen were 2.54 m × 2.2 m × 2.2 m and housed a maximum of
40 birds. From day 1 to week 8, all birds were fed a standard
chick starter mash, while from week 9 to week 22 they were fed a
standard chick grower mash. Water was available on an ad libitum
basis. Vaccination, feeding, and all other management practices were
the same for all the chickens in the study.

At hatch, the body weight of every bird was measured and
thereafter measured fortnightly until 22 weeks of age. From this
data, average daily gain (ADG) was calculated as the linear
regression of body weight on days of age. At week 23, the birds
were euthanized and several carcass and internal organ traits
including breast, thigh, wing, drumstick, neck, back, shank, head,
gizzard, heart, liver and dressed weights were measured. Except for

the gizzard, heart, and liver, the rest of the parts
contained some skin.

2.2 Genotyping

Blood samples were collected from the wing veins of the chicks
at 5 weeks of age using Whatman FTA cards (Sigma-Aldrich, St.
Louis, MO, United States). Genomic DNA was isolated from the
FTA cards for genotyping by sequencing (GBS) using a 5K GBS
panel which was developed specifically for local Ghanaian and
Tanzanian chicken ecotypes. A total of 5,238 SNPs were included
in the SNP panel. Details on the development of the GBS panel are
given in Walugembe et al. (2022). The genome sequences obtained
were subjected to a customized SNP-pipeline that resulted in 5K
SNP genotypes of each bird. These genotypes were then imputed to
382,240 SNPs that remained after quality control of high-density
genotype data of relatives using Affymetrix Axiom® 600K SNP chip
[the high-density genotype data are described in Walugembe et al.
(2020)]. Imputation was performed using Fimpute (Sargolzaei
et al., 2014).

2.3 Population structure

The FO, CS, and IS chicken ecotypes of Ghana that were used in
this study are reported to originate from three ancestral populations
(Walugembe et al., 2020). To deduce the proportion of ancestral
subpopulations in each chicken, we carried out admixture analyses
on the imputed genotypes using the Admixture software (Alexander
et al., 2009), with the number of sub-populations set to three. These
ancestral subpopulation proportions were used as covariates in the
downstream genetic analyses.

2.4 Genetic parameters

Variance components and heritabilities were estimated using the
following univariate linear model: y � Xb + Zaa + e, (Model 1),
where y is the vector of phenotypes (Body weight at week 22,
ADG, breast weight, drumstick weight, thigh weight, wing
weight, dressed weight, dressing percentage, head weight, neck
weight, shank weight, back weight, gizzard weight, liver weight,
and heart weight); b is the vector of the fixed effects (replicate, sex,
and pen by replicate), and covariates (three ancestral subpopulation
proportions obtained from the admixture analysis); a is the vector
for random animal genetic effect; e is the residual effect;X and Za are
the incidence matrices for the effects in the b and a vectors
respectively.

Body weight at week 22 (BW22) was also fixed as a covariate
(Model 2) for some of the traits, i.e., breast, thigh, wing, drumstick,
neck, back, shank, head, gizzard, heart, liver and dressed weight. The
covariate explains out some of the variation in these traits due to
body weight.

The genetic and phenotypic correlations between traits were
estimated by fitting pairwise bivariate models with the same effects
as in the univariate linear models. All models were implemented in
ASReml 4 (Gilmour et al., 2015).
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2.5 Genome-wide association and
bioinformatics analyses

Genome-wide association analysis was performed using Bayes B
(Meuwissen et al., 2001; Cheng et al., 2015), as implemented in the
JWAS package (Cheng et al., 2015), to estimate the genetic variance
accounted for by each 1-megabase (Mb) SNP window across Gallus
gallus 6 genome build. Both Models 1 and 2 were used. 1-Mb SNP
regions that explained more than 1% of the genetic variance in a trait
were considered significant. To identify genes within significant 1-
Mb SNP windows, we resorted to the Genome Data Viewer in
NCBI—https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?
id=GCF_000002315.6.

3 Results

3.1 Population structure

The admixture analysis based on identity by state as shown in
Figure 1, indicates that notwithstanding the evidence of admixture,
all the three ecotypes appeared to have come from three distinct
ancestral populations. The IS ecotype had a high proportion of
subpopulation 1 (0.83) but with lower proportions of
subpopulations 2 (0.11) and 3 (0.05). The CS ecotype had a
higher proportion of subpopulation 2 (0.74) and lower
proportions of subpopulations 1 (0.09) and 3 (0.16), while the
FO ecotype had a higher proportion of subpopulation 3 (0.63)
and lower proportions of subpopulation 1 (0.22) and
subpopulation 2 (0.15).

3.2 Genetic parameters

The heritabilities and correlations of the growth, carcass,
and internal organ traits of the FO, CS, and IS chicken ecotypes
of Ghana, i.e., body weight at 22 weeks of age (BW22), average

daily gain (ADG), breast weight (BrW), drumstick weight
(DW), thigh weight (TW), wing weight (WW), dressed
weight (DrW), and dressing percentage (DP) were estimated.
These are presented in Tables 1, 2, while the estimated
heritabilities and correlations of other body parts and
internal organs, i.e., head weight (HW), neck weight (NeW),
shank weight (ShW), back weight (BaW), gizzard weight (GzW),
liver weight (LiW), and heart weight (HeW), are presented in
Tables 3, 4.

For Model 1 (without BW22 as a covariate), as shown in
Tables 1, 3, the estimated heritabilities of DP, LiW, HeW and
BaW were low (0.13–0.21), while those for the other traits ranged
from medium to high (0.31–0.69). Estimates of the genetic
correlation between DP and BW22 and between DP and ADG
were low. DP also had low phenotypic correlations with BW22,
ADG, and TW. HW had low phenotypic correlations with GzW
and LiW, while GzW also had a weak correlation with HeW. The
rest of the traits had positive medium to high genetic and
phenotypic correlations with each other.

For Model 2 (with BW22 as a covariate), as shown in Tables 2,
4, the estimated heritabilities for TW, LiW, and BaW were low
(0.13–0.21), while the estimated heritabilities for some other
traits were moderate and ranged from 0.29 for BrW to
0.38 for WW. GzW had negative estimates of genetic
correlations with HW and NeW. LiW also had negative
genetic correlation estimates with HW, NeW and ShW. The
phenotypic correlation between BaW and ShW, and between
GzW and LiW was negative. In addition, HW also had negative
phenotypic correlations with GzW and LiW. Among the traits,
ShW and NeW, BaW and NeW, GzW and LiW, and HeW, and
NeW had high genetic correlation estimates, while HW and
NeW, and HW, and BaW had high phenotypic correlations.
The rest of the traits had low estimates of genetic and
phenotypic correlations.

The effects of the ancestral subpopulation proportions as
covariates in the downstream genetic analysis were statistically
not significant.

FIGURE 1
Admixture plot showing mixed ancestry among birds from the three Ghanaian chicken ecotypes.
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3.3 Genome-wide association study

After quality control, a total of 1,113 birds and 382,240 SNPs
were used for the GWAS. The percentage of genetic variance
explained by 1-Mb genomic regions that are associated with the
growth, carcass, and internal organ traits, with and without
BW22 as covariate, are shown in Table 5 and the genes that are
within significant 1-Mb windows are shown in Tables 6, 7.

Eight 1-Mb windows of SNPs that explained more than
1% of the genetic variance of body weight at week 22 were
found. Two of these windows on chromosomes 1 and
4 explained more than 10% of the genetic variance of this
trait (see Supplementary Figure S1A). These regions
contained several annotated genes including SLIT2, LCORL,
NCARPG, LAP3, MED28, INTS6, DLEU7, CKAP2, KPNA3, and
CAB39L (Table 6).

TABLE 1 Estimates of heritabilities (along diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations for growth and carcass
traits from Model 1 (without BW22 as a covariate).

Trait BW22 ADG DrW DP BrW TW WW DW

BW22 0.58 (0.07) 0.96 (0.01) 0.95 (0.02) 0.24 (0.17) 0.86 (0.04) 0.92 (0.03) 0.88 (0.03) 0.88 (0.03)

ADG 0.90 (0.006) 0.69 (0.07) 0.91 (0.02) 0.22 (0.16) 0.79 (0.04) 0.86 (0.04) 0.83 (0.04) 0.82 (0.04)

DrW 0.87 (0.0008) 0.82 (0.01) 0.60 (0.07) 0.53 (0.13) 0.94 (0.02) 0.95 (0.02) 0.93 (0.02) 0.91 (0.02)

DP 0.004 (0.03) 0.06 (0.03) 0.41 (0.03) 0.15 (0.06) 0.61 (0.13) 0.47 (0.16) 0.44 (0.15) 0.38 (0.16)

BrW 0.72 (0.02) 0.67 (0.02) 0.87 (0.008) 0.43 (0.03) 0.52 (0.07) 0.84 (0.0.5) 0.86 (0.04) 0.79 (0.05)

TW 0.78 (0.01) 0.73 (0.02) 0.82 (0.01) 0.27 (0.03) 0.65 (0.02) 0.51 (0.07) 0.89 (0.04) 0.94 (0.03)

WW 0.78 (0.01) 0.73 (0.02) 0.87 (0.009) 0.30 (0.03) 0.73 (0.02) 0.73 (0.02) 0.62 (0.07) 0.94 (0.03)

DW 0.82 (0.01) 0.71 (0.02) 0.85 (0.009) 0.35 (0.03) 0.68 (0.02) 0.72 (0.02) 0.80 (0.01) 0.55 (0.07)

BW22, Body weight at 22 weeks of age; ADG, average daily gain; BrW, breast weight; DW, drumstick weight; TW, thigh weight; WW, wing weight; DrW, Dressed weight and DP, Dressing

percentage. Standard errors are in parenthesis.

TABLE 2 Estimates of heritabilities (along diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations for growth and carcass
traits from Model 2 (with BW22 covariate).

Trait DrW BrW TW WW DW

DrW 0.30 (0.07) 0.77 (0.08) 0.75 (0.1) 0.71 (0.09) 0.61 (011)

BrW 0.74 (0.01) 0.29 (0.07) 0.39 (0.17) 0.48 (0.13) 0.22 (0.18)

TW 0.58 (0.02) 0.30 (0.03) 0.21 (0.07) 0.58 (0.14) 0.76 (0.12)

WW 0.67 (0.02) 0.45 (0.03) 0.43 (0.03) 0.38 (0.08) 0.75 (0.09)

DW 0.67 (0.02) 0.35 (0.03) 0.42 (0.03) 0.57 (0.02) 0.29 (0.07)

BW22, Body weight at 22 weeks of age; BrW, breast weight; DW, drumstick weight; TW, thigh weight; WW, wing weight; and DrW, Dressed weight. Standard errors are in parenthesis.

Bold values represent Estimates of Heritabilities.

TABLE 3 Estimates of heritabilities (along diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations for carcass traits and
internal organs from Model 1 (without BW22 as a covariate).

Trait BaW HW NeW ShW GzW LiW HeW

BaW 0.17 (0.06) 0.35 (0.03) 0.51 (0.02) 0.45 (0.03) 0.36 (0.03) 0.39 (0.03) 0.53 (0.02)

HW 0.72 (0.1) 0.31 (0.07) 0.76 (0.08) 0.67 (0.09) 0.34 (0.13) 0.35 (0.17) 0.61 (0.11)

NeW 0.89 (0.06) 0.57 (0.02) 0.50 (0.07) 0.67 (0.07) 0.48 (0.1) 0.60 (0.12) 077 (0.07)

ShW 0.62 (0.09) 0.44 (0.03) 0.58 (0.02) 0.34 (0.07) 0.47 (0.07) 0.58 (0.12) 0.65 (0.09)

GzW 0.54 (0.1) 0.15 (0.03) 0.34 (0.03) 0.66 (0.08) 0.35 (0.07) 0.75 (0.1) 0.63 (0.1)

LiW 0.58 (0.12) 0.16 (0.03) 0.33 (0.03) 0.36 (0.08) 0.37 (0.03) 0.13 (0.05) 0.66 (0.12)

HeW 0.77 (0.08) 0.45 (0.03) 0.52 (0.02) 0.39 (0.03) 0.25 (0.03) 0.35 (0.03) 0.21 (0.06)

HW, head weight; NeW, neck weight; ShW, shank weight; GzW, gizzard weight; LiW, liver weight; HeW, heart weight; BaW, Back weight. Standard errors are in parenthesis.
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Five 1-Mb windows of SNPs explained more than 1% of
the genetic variance of ADG (Supplementary Figure S1B). One of
these windows located on chromosome 4 explained more than 10%
of the genetic variance of ADG. This window contained several
genes including SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3,
MED28, and MIR218-1 (Table 6).

For breast weight, seven 1-Mb SNP windows on chromosomes
1, 4, and 33 reached the level of significance (see Supplementary
Figure S2C). These windows together explained about 20.5% of the
genetic variance of this trait. Many genes including RNASEH2B,
INTS6, SERPINE3, DLEU7, WDFY2, NEK3, NEK5, CKAP2, TPTE 2,
SLC25A15, FOXO1, SLIT2, LCORL, NCARPG, LAP3, SCN8A,
FIGNL2, ANKRD33, ACVRL1, and ACVR1B were found in these
regions (Table 6). With BW22 included as a covariate (Model 2), the
number of significant SNP windows decreased from seven to three
and explained only about 6.63% of the genetic variance of this trait.
Within these SNP windows, several genes, including SCN8A,
FIGNL2, ANKRD33, ACVRL1, ACVR1B, MYH10, ELAC2,
DNAH9, TRNAM-CAU, PIRT, SHISA A6, RNF222, NDEL1,
CCDC42, PIK3R5, PIK3R6 were co-located on chromosome 1,
chromosome 18 and chromosome 33 (Table 7).

Two SNP windows on chromosomes 1 and 4 explained 32.5% of
the genetic variance of drumstick weight (Supplementary Figure
S2D). These windows contained 34 annotated genes including
SLIT2, LCORL, NCARPG, LAP3, MED28, CLRN2, MIR218-1,
KPNA3, CAB39L, CDADC1, RCBTB1, ARL11, SPRYD7, TRIM13,
KCNRG, MIR15-A, SETDB2, LPAR6, and MED4 (Table 6).
However, with BW22 as a covariate, the number of significant
SNP windows increased from two to three, but they explained
only 4.43% of the genetic variance of this trait. Seventy-two
genes on chromosomes 1, 7, and 15 were observed. These
include MBD5, ACVR2A, ORC4, EPC2, KIF5C, LYPD6,
MMADHC, MIR1C, DERL3, SLC2A11, MYO7A and
CAPN5 (Table 7).

One SNP window on chromosome 4 and three SNP windows on
chromosome 1 explained about 40.9% of the genetic variance of
WW (Supplementary Figure S3E). These regions contained many
genes some of which are UVRAG, LRRC32, GUCY2F, ENSY,
THAP12, TRNAP-AGG, TRNAP-UGG, WNT11, ART1, ART7B,
ART7C, MADPRT1, IL18BP, RNF121, RNF169, TRPC2L,
NUMA1, LAMTOR1, LRTOMT, ANAPC15, WDR73, ADAM15,
SLCO2B1, TPBGL, PGM2L1, KCNE3, LIPT2, POLD3, CHRDL2,

and XRRA1 (Table 6). With BW22 as a covariate, four SNP windows
on chromosomes 1, 2, 4 and Z were significant, and together they
explained 10.21% of the genetic variance of WW (Table 7).

Four SNP windows on chromosomes 1 and 4 explained 31.8% of
the genetic variance of thigh weight (Supplementary Figure S3F).
Many annotated genes, including LSAMP, EPHAS, CADM2,
ROBO1, DSCAM, DMD, GPC5, PCDH9, NBEA, CNTNS, FAT3,
DLG2, TENM4, IL1RAPL1, FAM155A, RNASEH2B, INTS6,
FAM124A, SERPINE3, DLEU7, WDFY2, DHRS12, TMEM272,
ATP7B, ALG11, NEK3, NEK5, CKAP2, VPS36, THSD1, FGL1L,
TPTE2, SLC25A15, MRPS31, and FOXO1 were observed within
these regions (Table 6). With the inclusion of BW22 as a covariate,
only 1 SNP window on chromosome 1 was significant and explained
about 1.01% of the genetic variances for thigh weight. This genomic
region contained OLFM4 (Table 7).

One SNP window on chromosome 4 explained about 14% of the
genetic variance of dressed weight (Supplementary Figure S4G).
This region contained SLIT2, LCORL, FAM184B, NCARPG, QDPR,
LAP3, MED28, MIR218 (Table 6).

Three SNP windows, two on chromosome 4 and one on
chromosome 1, explained about 11% of the genetic variance of
back weight (Supplementary Figure S4H). These genomic regions
contained many genes as shown in Table 6. With BW22 as a
covariate, only 2% of the genetic variance was explained by one
SNP window on chromosome 4.

A total of three SNP windows on chromosomes 1, 4, and
8 explained about 5.5% of the genetic variance of head weight
(Supplementary Figure S5I). The genes in these genomic regions
can be seen in Table 6. The inclusion of BW22 as a covariate had two
SNP windows on chromosomes 3 and 10 explaining 4.45% of the
genetic variance of this trait and the genes in these genomic regions
are shown in Table 7.

About 14.6% of the genetic variance of neck weight was
explained by four SNP windows. Two of these SNPs were on
chromosome 1 while the rest were on chromosomes 4 and 9
(Supplementary Figure S5J). The inclusion of BW22 as a
covariate increased the amount of genetic variance explained by
the same SNP windows to 19.45%. The annotated genes located in
these genomic regions are shown in Tables 6, 7.

Two SNP windows on chromosome 1 and one SNP window on
chromosome 4 explained about 44.5% of the genetic variance of
shank weight (Supplementary Figure S6K). The inclusion of

TABLE 4 Estimates of heritabilities (along diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations for carcass traits and
internal organs from Model 2 (with BW22 as a covariate).

Trait BaW HW NeW ShW GzW LiW HeW

BaW 0.17 (0.06) 0.08 (0.03) 0.14 (0.03) 0.03 (0.03) 0.08 (0.03) 0.11 (0.03) 0.24 (0.03)

HW 0.32 (0.24) 0.20 (0.06) 0.47 (0.16) 0.28 (0.18) −0.20 (0.19) −0.37 (0.26) 0.15 (0.21)

NeW 0.65 (0.21)< 0.43 (0.03) 0.29 (0.07) 0.09 (0.17) −0.10 (0.17) −0.08 (0.24) 0.33 (0.18)

ShW −0.27 (0.21) 0.25 (0.03) 0.30 (0.03) 0.34 (0.07) 0.33 (0.14) −0.03 (0.22) 0.07 (0.18)

GzW −0.15 (0.21) −0.05 (0.03) 0.09 (0.03) 0.24 (0.03) 0.35 (0.07) 0.47 (0.18) 0.25 (0.18)

LiW −0.38 (0.31) −0.05 (0.03) 0.06 (0.03) 0.12 (0.03) 0.21 (0.03) 0.13 (0.05) 0.13 (0.25)

HeW 0.19 (0.2) 0.28 (0.03) 0.26 (0.03) 0.09 (0.03) 0.01 (0.03) 0.14 (0.03) 0.21 (0.06)

HW, head weight; NeW, neck weight; ShW, shank weight; GzW, gizzard weight; LiW, liver weight; HeW, heart weight; BaW, Back weight. Standard errors are in parenthesis.
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TABLE 5 Percentage of genetic variance explained by 1-Mb genomic regions that are associated with growth, carcass, and internal organ traits (≥1.0% of
genetic variance) based on the Bayes-B method, using Model 1 (without BW22 as covariate) and Model 2 (with BW22 as covariate).

Trait Chr 1-Mb window No. of markers in window % Genetic variance explained by window

Model 1 (without BW22 as covariate)

BW22 1 169–170 383 1.4

1 170–171 345 10.4

1 171–172 376 2.1

2 22–23 305 2.7

2 39–40 319 1.3

2 110–111 290 1.1

4 75–76 263 19.7

5 27–28 410 1.2

ADG 1 133–134 357 1.1

1 170–171 345 9.6

1 171–172 376 1.0

4 75–76 263 11.6

33 3.2–3.3 17 1.0

DrW 1 170–171 345 2.5

1 171–172 376 3.7

4 75–76 263 14.0

18 7.0–8.0 713 1.9

BrW 1 18–19 312 1.0

1 170–171 345 1.7

1 171–172 376 1.4

1 180–181 372 1.0

1 182–183 404 2.1

4 75–76 263 12.2

33 3.2–3.3 17 1.1

DW 1 170–171 345 11.9

4 75–76 263 20.6

TW 1 169–170 383 1.0

1 170–171 345 9.8

1 171–172 376 1.4

4 75–76 263 19.6

WW 1 170–171 345 12.8

1 171–172 376 1.2

1 195–196 404 1.7

4 75–76 263 25.2

BaW 1 171–172 376 4.6

4 66–67 358 1.0

4 75–76 263 5.3

(Continued on following page)
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TABLE 5 (Continued) Percentage of genetic variance explained by 1-Mb genomic regions that are associated with growth, carcass, and internal organ traits
(≥1.0% of genetic variance) based on the Bayes-B method, using Model 1 (without BW22 as covariate) and Model 2 (with BW22 as covariate).

Trait Chr 1-Mb window No. of markers in window % Genetic variance explained by window

HW 1 170–171 345 1.9

4 75–76 263 1.4

8 27–28 479 2.2

NeW 1 12–13 438 1.1

1 170–171 345 5.2

4 75–76 263 6.4

9 2.0–3.0 524 1.9

ShW 1 164–165 346 1.2

1 170–171 345 9.4

4 75–76 263 33.9

GzW 1 170–171 345 7.4

4 75–76 263 15.0

4 22–23 288 1.3

LiW 4 75–76 263 20.5

HeW 1 155–156 370 1.1

1 170–171 345 2.1

4 75–76 263 2.7

6 30–31 444 1.2

7 18–19 440 2.2

13 6.0–7.0 471 1.1

33 3.2–3.3 17 1.4

Model 2 (with BW22 as covariate)

BrW 1 114–115 349 1.54

18 1.0–2.0 632 1.02

33 3.1–3.2 17 4.07

DW 1 194–195 359 1

7 34–35 451 2.09

15 8.0–9.0 608 1.34

TW 1 166–167 356 1.08

WW 1 111–112 363 1.02

2 129–130 254 3.13

4 75–76 263 4.92

Z 14–15 284 1.14

BaW 4 68–69 349 2

HW 3 17–18 379 3.44

10 3.0–4.0 579 1.01

NeW 1 12–13 348 1.16

1 147–148 418 1.22

(Continued on following page)
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BW22 as a covariate increased the amount of genetic variance
explained by the same SNP windows to 49.1%. Tables 6, 7 show
the annotated genes that are found in these genomic regions.

Two SNP windows on chromosome 4 and one SNP window on
chromosome 1 explained about 23.7% of the genetic variance of
gizzard weight (Supplementary Figure S6L). The inclusion of
BW22 as a covariate decreased the amount of genetic variance
explained by the same SNP windows to 20.95%. Tables 6, 7 show
the annotated genes that are found in these genomic regions.

One SNP window on chromosome 4 explained 20.5% of the
genetic variance of liver weight (Supplementary Figure S7M). The
inclusion of BW22 as a covariate increased the amount of genetic
variance explained by this SNP windows to 24.43%. This window
contained several genes (see Tables 6, 7).

About 12% of the genetic variance of heart weight was explained
by seven SNP windows. Two of these were on chromosome 1 while
the rest were on chromosomes 4, 6, 7, 13, and 33 (Supplementary
Figure S7N). With the inclusion of BW22 as a covariate, the above-
mentioned SNP windows, except for the SNP window on
chromosome 13, explained 9.44% of the genetic variance of this
trait. The annotated genes located in these genomic regions can also
be seen in Tables 6, 7.

4 Discussion

4.1 Population structure

The admixture analysis based on identity by state (Figure 1),
indicates that notwithstanding the evidence of admixture, all the
three chicken ecotypes of Ghana appeared to have come from three

distinct ancestral populations. Similar observations have been
reported by Osei-Amponsah et al. (2010b). In another study
involving the same chicken ecotypes, some of which were related
to those used in this study, Walugembe et al. (2020) also arrived at
the same conclusion. The IS ecotype appeared distinct from the CS
and FO ecotypes, which, on the other hand, appeared to have a
somewhat similar ancestry. The admixture of the CS and FO
ecotypes could be a result of significant gene flows between the
forest and coastal agroecological zones due to their proximity to
each other.

4.2 Genetic parameters

Estimates of heritabilities for the growth and carcass traits of the
three chicken ecotypes of Ghana, without BW22 as a covariate, as
shown in Tables 1, 3 ranged from a low of 0.17 for BaW to a high of
0.69 for ADG. These estimates generally agree with the findings of
several authors, including Rance et al. (2002), Venturini et al. (2014),
El-Attroun et al. (2017), and El-Attroun et al. (2021). On the other
hand, estimates of heritability for the internal organs ranged from a
low of 0.13 for LiW to a medium of 0.35 for GzW. Heritability
estimates for HeW and GzW are similar to those reported by Gaya
et al. (2006), Venturini et al. (2014), and Dou et al. (2019) while the
estimate of heritability for LiW was also similar to the findings of
Moriera et al. (2019) but different from those of Venturini et al.
(2014) and Dou et al. (2019). Growth traits of unselected chicken
populations tend to have relatively high heritability. For example,
Walugembe et al. (2020) also found a heritability for growth rate
even after a challenge with La Sota Newcastle Disease Virus strain of
above 0.4, and a pre-challenge heritability of 0.55.

TABLE 5 (Continued) Percentage of genetic variance explained by 1-Mb genomic regions that are associated with growth, carcass, and internal organ traits
(≥1.0% of genetic variance) based on the Bayes-B method, using Model 1 (without BW22 as covariate) and Model 2 (with BW22 as covariate).

Trait Chr 1-Mb window No. of markers in window % Genetic variance explained by window

1 170–171 345 7.75

4 75–76 263 7.57

9 2.0–3.0 524 1.75

ShW 1 164–165 346 1.21

1 170–171 345 11.27

4 75–76 263 36.61

GzW 1 170–171 345 6.84

4 22–23 288 1.25

4 75–76 263 12.86

LiW 4 75–76 263 24.43

HeW 1 170–171 345 2.52

4 75–76 263 2.54

6 30–31 444 1.17

7 18–19 440 1.92

33 3.2–3.3 17 1.29

BW22, Body weight at week 22; ADG, Average daily gain; DrW, Dressed weight; BrW, Breast weight; DW, Drumstick weight; TW, Thigh weight; WW, Wing weight; BaW, Back weight; HW,

Head weight; NeW, Neck weight; ShW, Shank weight; GzW, Gizzard weight; LiW, Liver weight; HeW, Heart weight; Chr, Chromosome.
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TABLE 6 Positions and genes located in 1-Mb windows that explained ≥ 1% of genetic variance for growth, carcass, and internal organ traits (Model 1:
without BW22 as a covariate).

Trait Chr 1-Mb window Genes

BW 22 1 169–170 LSAMP, EPHAS, CADM2, ROBO1, ROBO2, DSCAM, DMD, GPC5, GPC6, PCDH9, NBEA, CNTNS, FAT3, DLG2, TENM4,
IL1RAPL1, FAM155A

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

1 171–172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7,WDFY2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2, VPS36,
THSD1, FGL1L, TPTE2, SLC25A15, MRPS31, FOXO1

2 22–23 CDK6, CDK14, FZD1, AKAP9, CYP51A1, KRIT1, NK1B1, GATAD1, ACCSL, PEX1, RBM48, EFCAB1, FAM133B, MIR1650,
SAMD9L, HEPACAM2, VPS50

2 39–40 RBMS3, TGFBR2, GADL1

2 110–111 XKR4, RGS20, TCEA1, LYPLA1, MRPL15, SOX17, RP1, RB1CC1, NPBWR1, ATPV61H, QPRK1

4 76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

5 27–28 SMOC1, COX16, SLC8A3, SIPA1L1, RGS6, PCNX1, MAP3K9, TTC9, MED6, SYNJ2BP

ADG 1 133–134 ATP10A, UBE3A, CNGA3, VWA3B, COA5, UNC50, MGAT4A, KIAA1211L, TSGA10, LIPT1, MITD1, MRPL30, LYGL, LYGL2,
TXNDC9, EIF 5B, REV1, AFF3

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

1 171–172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7,WDFY2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2, VPS36,
THSD1, FGL1L, TPTE2, SLC25A15, MRPS31, FOXO1

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

33 3.2–3.3 SCN8A, FIGNL2, ANKRD33, ACVRL1, ACVR1B

DrW 1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

1 171–172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSD1, FGL1L, TPTE2, SLC25A15, MRPS31, FOXO1

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

18 7.0–8.0 CEP112, NOL11, PITPNC1, PSMD12, HELZ, CACNG1, CACNG4, CACNG5, PRKCA, TRNAR-CCG, APOH, AXIN2, RGS9,
GNA13, ARSG, SLC16A6, WIPI1, PRKAR1A, FAM20, ABCA5, ABCA8, ABCA9, MAP2K6

BrW 1 18.0–19.0 BRD1, ZBED4

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

1 171–172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSD1, FGL1L, TPTE2, SLC25A15, MRPS31, FOXO1

1 180–181 ZMYM2, LATS2, XPO4, EEF1AKMT1, IL17D, IFT88, CRYL1, GJB2, GJA3, PSPC1, MIR6641, MPHOSPH8, PARP4, CENPJ,
RNF17, ARHGAP20, FDX1, RDX, ZC3H12C

1 182–183 CWF19L2, VMO1, GUCY1A2, MIR1709, AASDHPPT, KBTBD3, MSANTD4, GRIA4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

33 3.2–3.3 SCN8A, FIGNL2, ANKRD33, ACVRL1, ACVR1B

DW 1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

TW 1 169–170 LSAMP, EPHAS, CADM2, ROBO1, ROBO2, DSCAM, DMD, GPC5, GPC6, PCDH9, NBEA, CNTNS, FAT3, DLG2, TENM4,
IL1RAPL1, FAM155A

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

1 171–172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSD1, FGL1L, TPTE2, SLC25A15, MRPS31, FOXO1

(Continued on following page)
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TABLE 6 (Continued) Positions and genes located in 1-Mb windows that explained ≥ 1% of genetic variance for growth, carcass, and internal organ traits
(Model 1: without BW22 as a covariate).

Trait Chr 1-Mb window Genes

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

WW 1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

1 171–172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSD1, FGL1L, TPTE2, SLC25A15, MRPS31, FOXO1

1 195–196 UVRAG, LRRC32, GUCY2F, ENSY, THAP12, TRNAP-AGG, TRNAP-UGG, WNT11, ART1, ART7B, ART7C, MADPRT1, IL18BP,
RNF121, RNF169, TRPC2L, NUMA1, LAMTOR1, LRTOMT, ANAPC15, WDR73, ADAM15, SLCO2B1, TPBGL, PGM2L1, KCNE3,
LIPT2, POLD3, CHRDL2, XRRA1

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

BaW 1 171–172 RNASEH2B, INTS6, FAM124A, SERPINE3, DLEU7, WDFY 2, DHRS12, TMEM272, ATP7B, ALG11, NEK3, NEK5, CKAP2,
VPS36, THSD1, FGL1L, TPTE2, SLC25A15, MRPS31, FOXO1

4 66–67 SGCB, SPATA18, OCIAD1, LRRC66, DCUN1D4, CWH43, FRYL, CORIN, GABRA4, TEC, SLAIN2, CNGA1, NFXL1, NIPAL1,
TXK, ZAR1, SLC10A4, ATP10D, COMMD8

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

HW 1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

8 27–28 CYP2J 19, CYP2J24P, CYP2J21, CYP2J22, CYP2J23, NFIA, TM2D1, PATJ, USP1, KANK4, ANGPTL3, DOCK7

NeW 1 12–13 MAGI2, TMEM60, PTPN12, PHTF2, RSBN1L, GSAP, LRRC17, CCDC146, FAM185A, FGL2

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

9 2–3 ARHGEF4, PLEKHB2, FAM168B, CLDN15, PARL, AMER3, MAP6D1, YEATS2, DUSP28, GPC1, KLHL6, KLHL24, GPR148

ShW 1 164–165 PCDH17

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

GzW 1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 22–23 RAPGEF2, C4H4ORF45, FSTL5

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

LiW 4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

HeW 1 155–156 SLAIN1, EDNRB, SCEL, MYCBP2, FBXL3, ES1ML1, ACOD1, KCTD12, CLN5

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

6 30–31 HTN1, SLC18A2, VAX1, KCNK18, PDZD8, EMX2, RAB11FIP2, FAM204A, CACUL1, PRLHR, GRK5, EIF3A, FAM45A, NANOS1,
PRDX3, SFXN4

7 18–19 TLK1, DCAF17, CYBRD1, GAD1, GORASP2, SP5, MYO3B, CCDC173L, METTL5, SSB, UBR3, KLHL23, PHOSPHO2, KLHL41,
FASTKD1, PPIG, BBS5, LRP2, ABCB11, G6PC2, RDH7L, SPC25, MIR1733

13 6–7 TENM2

33 3.2–3.3 SC8A, FIGNL2, ANKRD33, ACVR1B, ACVRL1

BW22, Body weight at week 22; ADG, Average daily gain; DrW, Dressed weight; BrW, Breast weight; DW, Drumstick weight; TW, Thigh weight; WW, Wing weight; BaW, Back weight; HW,

Head weight; NeW, Neck weight; ShW, Shank weight; GzW, Gizzard weight; LiW, Liver weight; HeW, Heart weight; Chr, Chromosome.

Italic represent Names of Genes.
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TABLE 7 Positions and genes located in 1-Mb windows which explain ≥1% of genetic variance for growth, carcass, and internal organ traits (Model 2, with
BW22 as a covariate).

TRAIT Chr 1 Mb window Genes

BrW 1 114–115 TSPAN7, MID1TP1, OTP, RPGR, SRPX, SYTL5, DYNLT3, CYBB, XK, LANCL3, PRRG1, C1HXORF59

18 1.0–2.0 MYH10, ELAC2, DNAH9, TRNAM-CAU, PIRT, SHISA A6, RNF222, NDEL1, CCDC42, PIK3R5, PIK3R6

33 3.2–3.3 SCN8A, FIGNL2, ANKRD33, ACVRL1, ACVR1B

DW 1 194–195 USP35, KCTD14, KCTD21, ALG8, NDUFC2, THRSP, THRSPB, INTS4, AAMDC, RSF1, CLN1A, AQP11

7 34–35 MBD5, ACVR2A, ORC4, EPC2, KIF5C, LYPD6, LYPD6B, MMADHC, MIR1C

15 8.0–9.0 BCR, SMARCB1, DERL3, SLC2A11, SLC2A11L1, SLC2A11L2, SLC2A11L3, SLC2A11L4, MIF, DDX51, GSTT1L, DDT, CABIN1,
CRKL, KLHL22, MED15, SMPD4, GGT5, GTT1, GGT2, LRRC75B, SNRPD3, GUCD1, UPB1, ADORA2A, SPECC1L, RAB36,
RSPH14, GNAZ, ZNRF3, XBP1, KREMEN1, SUSD2, SBSPONL, GSC2, DGCR2, CA15L, IGLL1, VPS29L, VPREB3, CHCHD10,
MMP11, TBX6

TW 1 166–167 OLFM4

WW 1 111–112 CBS, U2AF1, CRYAA, SIK1, HSF2BF, RRP1B, PDXK, AGPAT3, TRAPPC10, PWP2, C1H21ORF33, VTCN1L, ICOSLG, MIR221,
MIR222

2 129–130 RIMS2, SLC25A32, DCSTAMP, DPYS, LRP12, UBR5, ODF1, KLF10, AZIN1, ATP6V1C1, BAALC, FZD6, CTHRC1

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

Z 14–15 HCN1, MRPS30, FGF10, EMB, PARP8

BaW 4 68–69 ATP8A1, GRXCR1, SLC30A9, BEND4, SHISA3, PHOX2B, TMEM33, APBB2, UCHL1, LIMCH1, RBM47, NSUN7, CHRNA9

HW 3 17–18 LIN9, C3H1orf95, PARP1, TRMT6, CRLS1, ACBD3, MIXL1, TEM63A, SDE2, ENAH, H3F3C, LEFTY2, SRP9, EPHX1, LBR,
DNAH14, CNIH3, CNIH4, WDR26, NVL, TP53BP2, FBXO28, CAPN2, CAPN8, DEGS1, TLR5, SUSD4

10 30–40 NEIL1, ZP3, ZP3L1, ISLR.ISLR2, ISL2, PML, PMLL, CCDC33, COMMD4, PTPN9, STOML1, CYP11A1, SIN3A, LINGO1, CSPG4,
MAN2C1, SNX33, SNUPN, HMG20A, PEAK1, TSPAN3, SCAPER, RCN2, PSTPIP1, ETFA, TMEM266, NRG4, FBXO22, UBE2Q2

NeW 1 12–13 MAGI2, TMEM60, PTPN12, PHTF2, RSBN1L, GSAP, LRRC17, CCDC146, FAM185A, FGL2

1 147–148 HS6ST3, UGGT2, DZIP1, DNAJC3, TRNAF-GAA, ABCC4, CLDN10, GPR180, DCT, TGDS, SOX21

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

9 2–3 ARHGEF4, PLEKHB2, FAM168B, CLDN15, PARL, AMER3, MAP6D1, YEATS2, DUSP28, GPC1, KLHL6, KLHL24, GPR148

ShW 1 164–165 PCDH17

1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

GzW 1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 22–23 RAPGEF2, C4H4ORF45, FSTL5

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

LiW 4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

HeW 1 170–171 KPNA3, CAB39L, CDADC1, RCBTB1, RCBTB2, ARL11, SPRYD7, TRIM13, KCNRG, MIR16-1, MIR15-A, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, MED4

4 75–76 SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3, MED28, MIR218-1

6 30–31 HTN1, SLC18A2, VAX1, KCNK18, PDZD8, EMX2, RAB11FIP2, FAM204A, CACUL1, PRLHR, GRK5, EIF3A, FAM45A, NANOS1,
PRDX3, SFXN4

7 18–19 TLK1, DCAF17, CYBRD1, GAD1, GORASP2, SP5, MYO3B, CCDC173L, METTL5, SSB, UBR3, KLHL23, PHOSPHO2, KLHL41,
FASTKD1, PPIG, BBS5, LRP2, ABCB11, G6PC2, RDH7L, SPC25, MIR1733

33 3.2–3.3 SC8A, FIGNL2, ANKRD33, ACVR1B, ACVRL1

BrW, breast weight; DW, drumstick weight; TW, thigh weight; WW, Wing weight; BaW, Back weight; HW, Head weight; NeW, neck weight; ShW, Shank weight; GzW, Gizzard weight; LiW,

Liver weight; HeW, Heart weight; Chr, Chromosome.

Italic represent Names of Genes.
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Inclusion of BW22 as a covariate did not significantly affect
heritability estimates of any of the internal organ traits (Table 4).
However, with BW22 as a covariate, estimates of heritabilities of the
carcass traits (Table 2) ranged from 0.21 for TW to 0.38 for WW.
Direct selection could therefore be effective in improving some of
these traits in Ghanaian local chicken populations.

High positive genetic and phenotypic correlations were found
between most of the traits, except between DP and BW22 and
between DP and ADG, which had low genetic and phenotypic
correlation estimates. HW also had low phenotypic correlations
with GzW and LiW. Estimates of the genetic correlation of
BW22 with ADG, DrW, BrW, TW, WW, and DW were positive
and high, suggesting that these traits could make indirect genetic
gains when selection is directed at increasing BW22. Furthermore,
the estimate of the genetic correlation between LiW and HeW was
also high and similar to the findings of Rance et al. (2002) and Gaya
et al. (2006). Inclusion of BW22 as covariate did not change the
magnitude and direction of estimates of the phenotypic and genetic
correlations for most carcass traits but led to a reduction in
correlation estimates between the internal organ traits. Moderate
to strong positive genetic and phenotypic correlations of body
weight with carcass traits of chicken have also been reported by
Venturini et al. (2014), Bungsrisawat et al. (2018), and El-Attrouny
et al. (2021) but these conclusions are at variance with those of Osei-
Amponsah (2010a), who reported weak to moderate negative
phenotypic correlations between live weight and most carcass
traits of Forest and Savannah chicken populations of Ghana. The
small differences between estimates of the phenotypic versus the
genetic correlations suggest that the environmental correlation was
of similar magnitude as the genetic correlation. Furthermore, the
medium to strong positive genetic correlation estimates between
some of the growth, carcass, and internal organ traits of local
chicken ecotype populations in Ghana suggests that selection
based on body weight could enhance some of the carcass traits.

4.3 Positional candidate genes for growth
traits of local chicken

Body weight is a polygenic trait, and chromosomes 1 and 4 of
the chicken genome have been widely reported to harbour QTL
for growth (Podisi, et al., 2013; Mebratie et al., 2019; Wang et al.,
2022). In this study, a 1-Mb SNP window on chromosome
4 explained 19.7% and 11.6% of the genetic variance for
BW22 and ADG, respectively, while another SNP window on
chromosome 1 also explained 10.4% and 9.6% of the genetic
variance of BW22 and ADG. These two chromosomal regions
contain many genes, some of which have previously been
reported to be associated with growth and carcass traits in
chicken and other farm animals (Yang et al., 2021; Wang
et al., 2022). The genes in these genomic regions include
ligand dependent nuclear receptor corepressor like (LCORL)
and non-SMC condensin I complex subunit G (NCAPG),
which play an important role in arginine metabolism and are
linked with growth in animals (Wu et al., 2009; Tetens et al., 2013;
Tiensuu et al., 2019); leucine aminopeptidase 3 (LAP3) and LIM
domain binding 2 (LDB2) genes which have an influence on
growth traits of chicken (Gu et al., 2011). SNPs in karyopherin

subunit alpha 3 (KPNA3) and RCBTB1 genes are also associated
with growth in chicken (Wang et al., 2022; Zhu et al., 2023).
Calcium binding protein 39 like (CAB39L) which is on
chromosome 1 plays an important role in the regulation of
food intake by activating AMP-activated protein kinase
through the process of phosphorylation (Proszkowiec et al.,
2006) and regulates body weight in chicken (Li et al., 2021;
Zhang et al., 2021; Zhu et al., 2023). Some SNPs in the deleted
lymphocytic leukemia 7 (DLEU7) gene have also been reported
by Abdalhag et al. (2015) to be associated with growth traits in
Jinghai yellow chickens. Forkhead box O1 (FOXO1) is another
gene that has also been widely reported to influence average daily
intake and the formation of adipose tissue and skeletal muscle of
chickens (Xie et al., 2012). Xie et al. (2012) also observed that
some SNPs in INTS6 are significantly associated with body weight
of chicken at 90 days of age.

4.4 Positional candidate genes for carcass
traits of local chicken

Carcass traits in chickens are also influenced by many genes
with small individual effects. Genes associated with breast muscle
weight, drumstick weight, thigh weight, wing weight, dressed
weight, head weight, back weight, neck weight, and shank
weight were mainly located on chromosomes 1 and 4. Some of
these genes have been reported in the literature, including FOXO1,
which plays an important role in muscle development by
mediating PI3K-AKT-MAPK and PI3K-AKT-mTOR pathways
(Xie et al., 2012; Jia et al., 2017). LCORL, a gene on
chromosome 4, is reported to be expressed at higher levels in
the breast muscle of high-muscle-weight chickens than in low-
muscle-weight chickens (Liu et al., 2015). SLIT2 plays a regulatory
role in the differentiation of osteoblast (Sun et al., 2009) and the
inhibition of bone resorption (Park et al., 2019) and
KPNA3 influences growth and muscle quality in chicken
(Pértille et al., 2015; Li et al., 2022). LAP3 and FAM184B have
been associated with organ weight in cattle and sheep (An et al.,
2018; La et al., 2019). SERPINE3, one of the serine proteinase
inhibitor (serpin) gene family members, and INTS6 are associated
with bone quality (Guo et al., 2017) while Mediator Complex
Subunit 4 (MED4) regulating vitamin D metabolism also affects
development and maintenance of mineral ion homeostasis and
skeletal integrity (Sutton and MacDonald, 2003). MLNR gene
encodes a motilin receptor that promotes the release of growth
hormone. In chicken, motilin receptor is largely involved in
gastrointestinal functions including increments in Ca+2 levels
and is associated with bone traits (Takahashi et al., 2014; Li
et al., 2021). FNDC3A is also associated with bone traits (Li
et al., 2021).

4.5 Positional candidate genes for internal
organ traits of local chicken

The internal organs of animals are highly nutritious and
contain high levels of bioavailable protein, amino acids,
vitamins, and micronutrients (Fayemi et al., 2018). They are
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relatively cheaper than other meats and are easily available. As a
result, their consumption among low-income and food insecure
households in developing countries is quite high. Selective
breeding aimed at improving the internal organ traits of
chicken could therefore play a significant role in improving
nutritional outcomes amongst children and low income-
households in developing countries.

Chromosomes 1 and 4 contained several genes that exhibited
a pleiotropic effect in gizzard, liver, and heart weights. These
include SLIT2, LCORL, NCARPG, QDPR, LAP3, MED28, KPNA3,
CAB39L, SPRYD7, TRIM13, KCNRG, SETDB2, MLNR,
CRSLTR2, LPAR6, RB1, ITM2B, FNDC3A, and MED4. Other
significant genes that are associated with internal organ traits of
chicken include Empty spiracles homeobox 2 (EMX2) which is on
chromosome 6 and is associated with heart weight. This gene plays
a major role in transcriptional regulation of the slow myosin heavy
chain 2 (MyHC2) gene in fast/slow embryonic muscle fibers
(Weimer et al., 2013). Other genes that were found to be
associated with heart weight include: CDK2 Associated Cullin
Domain (CALCUL1) which is on chromosome 6 and is
implicated in positive regulation of cell population proliferation
and protein kinase activity (Kong et al., 2009; Zhang et al., 2021);
Activin A receptor type 1B (ACVR1B) gene which encodes an
activin A type IB receptor. Activins are dimeric growth and
differentiation factors which belong to the transforming growth
factor-beta (TGF-beta). SNPs in (TGF)-β2, 3, and 4 have been
reported by Hosnedlova et al. (2020) to be associated with growth,
skeletal and body composition traits of chicken; SLAIN motif
family member 2 (SLAIN2) is involved in cytoplasmic
microtubule organization (van der Vaart et al., 2011);
Retinoblastoma 1 (RB1) is associated with body weight and
bone traits in chicken (Zhang et al., 2011); Motilin receptor
(MLNR) gene which encodes a motilin receptor and is also
associated with growth and bone traits in chicken (Takahashi
et al., 2014). Some significant positional genes for gizzard
weight include the Follistatin like 5 (FSTL5) which is predicted
to facilitate calcium ion binding activity and cell differentiation
(Zhang et al., 2017); Calcium voltage-gated channel auxiliary
subunit beta 1 (CACNB1) which affects skeletal muscle
development in mice (Chen et al., 2011); SLAIN2; RB1; MLNR;
SAMD9 and FNDC3A. A SNP window on chromosome 4 which
explained about 21% of the genetic variance of liver weight
contained SLIT2, LCORL, FAM184B, NCARPG, QDPR, LAP3,
MED28, MIR218-1 genes.

5 Conclusion

We estimated genetic parameters and performed GWAS for
several growth, carcass, and internal organ traits in local Ghanaian
chicken ecotypes. The results show that heritabilities for growth and
carcass traits were moderate to high, while the genetic correlations
between these traits were generally positively high. The moderate to
high heritabilities of BW22, ADG, dressed weight, drumstick weight,
thigh weight, breast weight, wing weight, head weight, neck weight,
shank weight, and gizzard weight indicates that these traits could be
improved in these populations through selective breeding.

A total of 58 1-Mb SNP windows each of which explained more
than 1% of the genetic variance of the growth, carcass, and internal
organ traits studied contained many genes including EMX2,
CALCUL1, ACVR1B, CACNB1, RB1, MLNR, FOXO1, NCARPG,
LCORL, LAP3, LDB2, KPNA3, DLEU7 and CAB39L. These genes,
which are reported to be associated with growth, carcass, and
internal organ traits of chickens, could play important roles in
future genetic improvement efforts targeted at the chicken
ecotypes of Ghana.
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Community-based breeding
programs can realize sustainable
genetic gain and economic
benefits in tropical dairy
cattle systems
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1Ethiopian Institute of Agricultural Research, Holetta Center, Holetta, Ethiopia, 2Department of Animal
Science, Haramaya University, Harar, Ethiopia, 3Woldia University, Woldia, Ethiopia, 4International Center
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Implementing an appropriate breeding program is crucial to control fluctuation in
performance, enhance adaptation, and further improve the crossbred population
of dairy cattle. Five alternative breeding programs (BPs) were modeled
considering available breeding units in the study area, the existing
crossbreeding practices, and the future prospects of dairy research and
development in Ethiopia. The study targeted 143,576 crossbred cows of
54,822 smallholder households in the Arsi, West Shewa, and North Shewa
zones of the Oromia Region, as well as the North Shewa zone of the Amhara
Region. The alternative BPs include conventional on-station progeny testing
(SPT), conventional on-farm progeny testing (FPT), conventional on-station and
on-farm progeny testing (SFPT), genomic selection (GS), and genomic progeny
testing (GPT). Input parameters formodeling the BPswere taken from the analysis
of long-term data obtained from the Holetta Agricultural Research Center and a
survey conducted in the study area. ZPLAN+ software was used to predict
estimates of genetic gain (GG) and discounted profit for goal traits. The
predicted genetic gains (GGs) for milk yield (MY) per year were 34.52 kg,
49.63 kg, 29.35 kg, 76.16 kg, and 77.51 kg for SPT, FPT, SFPT, GS, and GPT,
respectively. TheGGs of the other goal traits range from0.69 to 1.19 days per year
for age at first calving, from 1.20 to 2.35 days per year for calving interval, and from
0.06 to 0.12 days per year for herd life. Compared to conventional BPs, genomic
systems (GPT andGS) enhanced the GGofMY by 53%–164%, reduced generation
interval by up to 21%, and improved the accuracy of test bull selection from
0.33 to 0.43. The discounted profit of the BPs varied from 249.58 Ethiopian Birr
(ETB, 1 USD = 39.55696 ETB) per year in SPT to 689.79 ETB per year in GS.
Genomic selection outperforms SPT, SFPT, and FPT by 266, 227%, and 138% of
discounted profit, respectively. Community-based crossbreeding accompanied
by GS and gradual support with progeny testing (GPT) is recommended as the
main way forward to attain better genetic progress in dairy farms in Ethiopia and
similar scenarios in other tropical countries.

KEYWORDS

accuracy, community-based breeding, discounted profit, generation interval, genetic
gain, smallholder
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1 Introduction

Ethiopia has a large cattle population with an estimated
66.26 million head (CSA, 2022). Most (97%) of these cattle are
indigenous. This report revealed that the milk yield performance of
indigenous cows is generally low (1.45 kg per day). As a result,
crossbreeding has been practiced as a novel intervention for the
development of dairy cattle in central Ethiopia. The performance
and economic contributions of crossbred dairy cattle for smallholder
farmers were substantial (Aynalem et al., 2011; Kefena et al., 2013;
Direba et al., 2022). They noted that crossbred dairy cows perform
better than indigenous cows by 3 to 7 folds of milk yield per
lactation. Crossbred cows attain their age at first calving
(35–37 months) earlier than indigenous cows (42–60 months) in
Ethiopia. Smallholder farmers with crossbred dairy cattle generate
significantly higher income (40%) than those who keep only
indigenous cattle (Agajie et al., 2016).

The better results of crossbred dairy cattle than indigenous cattle
are mainly due to the additive gene contribution of dairy breeds and
the heterosis effect (Direba et al., 2022). However, continued up-
grading toward exotic dairy breeds resulted in an adaptive problem.
Loss of heterosis in the inter-se generations of crossbred cattle led to
a decline in performance (Gradiz et al., 2009; Hatungumukama and
Detilleux, 2009; Aynalem et al., 2011). For instance, the milk yields
of F2 and F3 50% Friesian × Boran cows decreased by 26% and 30%,
respectively, compared to F1 cows (Direba et al., 2022). Several
countries have practiced breeding programs that resulted in
noticeable genetic progress toward the breeding goal traits of
dairy cattle (Weller et al., 2017; Van Marle-Köster and Visser,
2018). According to Weller et al. (2017), the mean annual milk
production of dairy cows has increased from 7,000 kg to 13,000 kg
per cow since the 1970s in Israel. A few crossbreeding programs have
been implemented in tropical countries, including Ethiopia at the
on-station level (research institutes), to tackle the problems
associated with adaptation and decreased performance in the
next generations. However, no substantial improvement or
sustainable breeding program has been implemented for
crossbred dairy cattle at the smallholder level in Ethiopia. Thus,
studies and strategic documents have recommended designing and
implementing appropriate breeding programs to control fluctuation
in performance, enhance adaptation, and further improve the
population (FAO, 2010; Philipsson et al., 2010; EIAR, 2017;
MOA, 2019). There are large crossbred cattle populations
(2 million), sufficient genetic variance, and medium-to-good
heritability for breeding goal traits to improve crossbred dairy
cattle through selection in Ethiopia (Gebregziabher et al., 2013;
CSA, 2017; Direba et al., 2022). The objective of this study was to
evaluate alternatives and develop an appropriate breeding program
for crossbred dairy cattle of smallholder farmers in central Ethiopia.

2 Materials and methods

2.1 Study area

The study area for simulating alternative breeding programs
(BPs) focused on smallholder farmers owning crossbred cattle in
specific zones of the Oromia Region (Arsi, West Shewa, and North

Shewa) and the North Shewa zone of the Amhara Region, Ethiopia.
These areas are home to a significant cattle population, estimated at
7,958,831 head [2,253,959 in West Shewa, 1,676,748 in north shewa
zone of oromia region (NSHORO), 2,545,778 in Arsi, and
1,482,346 in north shewa zone of Amhara region (NSHAMA)]
according to CSA (2017). Crossbreeding practices have been
widely adopted in these areas over the past 4 to 5 decades,
resulting in approximately 377,729 crossbred cattle, accounting
for 35.2% of the national crossbred cattle population (CSA,
2017). The geographical proximity of the study areas, within a
150 km radius of the capital city, Addis Ababa, facilitates the
supply of inputs and outputs. For further details on the study
area’s geographic references and climate information, refer to
Direba et al. (2020).

2.2 Simulation of alternative
breeding programs

The simulation of alternative breeding programs (BPs) involved
considering genetic parameters, economic values of breeding goal
traits, biological and technical parameters, and cost parameters. The
goal traits included lactation milk yield (MY), age at first calving
(AFC), calving interval (CI), and herd life (HL). Five different BPs
were designed and compared within the study area while taking into
account the available breeding unit at Holeta Research Center,
existing crossbreeding practices, and future prospects of dairy
research and development in Ethiopia. These breeding programs
included conventional on-station progeny testing (SPT),
conventional on-farm progeny testing (FPT), conventional on-
station and on-farm progeny testing (SFPT), genomic selection
(GS), and genomic progeny testing (GPT). The first three
conventional BPs were simulated without utilizing genomic
information. A total of 143,576 crossbred cows were assumed to
model the alternative BPs. The data collection and selection were
presumed only in the breeding unit (BU), and no data were collected
from cattle in production units (PUs) in all BPs.

In the FPT, SFPT, GS, and GPT breeding programs, smallholder
farmers are expected to participate by providing cows for progeny
testing, allowing selected cows or male calves for genotyping, selling
the selected male calves to the breeding program, and maintaining
records. An on-farm survey indicated that smallholder farmers own
an average of 2.65 cows (Direba et al., 2020); approximately
1,000 farmers would participate in implementing the progeny
testing scheme. Additionally, around 25 to 27 data recorders
should be employed to gather data from the cows in a breeding
unit. Over time, the responsibility of data recording in the BU can be
transferred to the cattle owners through training and creating
awareness about the potential advantages of the breeding program.

The level of exotic inheritance for sires was set at 75% for all
alternative BPs. As a result, crossbred generations will be stabilized
at 75% exotic inheritance, and thus, adaptive and productive
synthetic breeds will be developed in the long term. The
comparison of these BPs considered predicted genetic gain,
generation interval, the accuracy of selection, and discounted
cost, return, and profit.

The alternative BPs were modeled using ZPLAN+ software
(Täubert et al., 2011; Vit Verden, 2011). The program follows the
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deterministic approach that considers population mean and
variance. The evaluation of the BP was based on the gene flow
method and selection index procedure. That means the fraction of
the genes of bulls and cows in successive generations and its
associated contribution of breeding values will be considered.
ZPLAN+ predicts the genetic gain for the breeding goal traits. In
addition, from an economic perspective, the program calculates the
discounted cost, return, and profit of BP during the investment. The
program requires phenotypic and genetic parameters of breeding
goal traits, economic value of traits, fixed and variable costs of
selection groups, and other biological coefficients of the study
population as input.

2.2.1 Conventional on-station progeny testing
This BP was designed with a focus on two main populations: the

dairy research herd (tier 1) maintained at the Holeta Agricultural
Research Center (HARC) and the crossbred population owned by
smallholder farmers in central Ethiopia (tier 2). The HARC has been
actively evaluating crossbred dairy cattle and developing synthetic
dairy cattle breeds for the past 50 years. However, the program faces
challenges due to the small population at the on-station level and the
lack of a connection with the larger crossbred population of
smallholder farmers. Furthermore, crossbreeding practices among
smallholder farmers have not been supported by appropriate
breeding programs. Therefore, the SPT aims to bridge these two
populations and assist smallholder farmers in developing more
adaptive and productive crossbred cattle populations.

The SPT selects high-grade bulls (with 75% exotic inheritance)
born from on-station cows at the HARC BU and uses these bulls to
mate with the crossbred cattle population of smallholder farmers
(the PUs) in the study areas. Table 1 presents the gene transmission
matrix for the selection groups. Following the gene flow method,
gene transfer occurs from the selection group in the column to the
selection group in the row. Information regarding growth,
production, reproduction, and survival was collected exclusively
from the BU. The selection groups consist of exotic dairy breeds,
zebu, and their crosses, with nine selection groups (18 paths). Exotic
semen is used as the sire, while zebu cows are the dam breed for this
breeding program simulation. The F1 crossbred cows are then

backcrossed with an exotic sire to generate 75% dairy inheritance
test bulls and cows. The sire selection process follows a two-stage
selection procedure, utilizing information (performance data) from
the progeny, dam, and the dam’s half-siblings (Willam et al., 2008;
Vit Verden, 2011).

The HGTB is progeny tested within the same herd by mating
with HGCF1 cows to produce second-generation cows (HGCF2).
Information from the dam and the dam’s half-siblings is used to
evaluate the HGTB. The best high-grade bulls (HGSB) are selected
from the HGTB using information from the progeny (3–4 daughters
per sire), the dam, and the dam’s half-siblings. Finally, semen
collected from the HGSB (progeny-tested selected bulls) is used
to inseminate the crossbred cattle population owned by
smallholder farmer PUs.

The number of cattle in the BU is based on the average fixed
herd size at HARC over the past 5 years. Table 2 summarizes the
total number of study animals in each selection group, the
number of proven animals (animals with information), and
the number of cows and bulls selected per year. Imported
semen or semen produced by the Ethiopian Livestock
Development Institute (LDI) can be used for the practical
implementation of the breeding program.

2.2.2 Conventional on-farm progeny testing
This BP represents a traditional breeding scheme (progeny

testing scheme based on pedigree records) commonly used in
developed countries for the improvement of dairy breeds
(Mulder et al., 2005; Hayes et al., 2009; Täubert et al., 2011;
Mrode et al., 2019). Although there is currently no recording
system in place at the smallholder level in Ethiopia, it is possible
to establish a community-based recording system with the help of
progressive farmers.

This breeding program has two tiers: the breeding unit (BU) and
the production unit (PU). The BU includes selected crossbred cows
(CBU) from the smallholder farmers’ crossbred cattle population
based on breeding values of desired traits. The remaining crossbred
cows in the study areas are the cows in the production unit (CPU)
within the PU (Table 3). All necessary performance records and
production of sires were undertaken at on-farm BUs. The number of

TABLE 1 Transmission matrix for the on-station bull selection program.

Genetic group ES ED ZS ZD F1C1 HGTB HGSB HGCF1 CPU

ES ES > ES ED > ES

ED ES > ED ED > ED

ZS ZS > ZS ZD > ZS

ZD ZS > ZD ZD > ZD

F1C1 ES > F1C1 ZD > F1C1

HGB ES > HGB F1C1>HGB

HGCF1 ES > HGCF1 F1C1> HGCF1

HGCF2 HGTB > HGCF2 HGCF1> HGCF2

CPU HGSB > CPU CPU > CPU

ES, exotic dairy sire; ED, exotic dairy dam; ZS, zebu sire; ZD, zebu dam; F1C1, first-generation crossbred cow of exotic dairy sire and zebu dam; HGTB, high-grade test bull (crosses of ES and

F1C1); HGSB, high-grade selected bull (crosses of ES and F1C1 and progeny tested); HGB, indicate logical selection group as HGSB is selected fromHGTB (two-stage selection); HGCF1, high-

grade cows (crosses of ES and F1C1); HGCF2, second-generation high-grade cows; CPU, cows in production unit.
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cows in the BU was set at 40 daughters per sire for progeny testing
(Taneja, 1999).

Initially, approximately 2,500 CBU were selected from the
smallholder farmers’ cattle population based on their own
phenotypic records. Over time, pedigree records can be
developed to select cows and bulls using estimated breeding
values for desired traits. Of the 800 male calves born from the
CBU (2,500 cows × 0.5 sex ratio × 0.8 conception rate × 0.8 survival
rate), 500 young male calves were recruited each year, considering
non-genetic factors, including physical dairy characteristics. Sire
selection followed a two-stage procedure. Twenty test bulls were
selected from the 500 male calves recruited based on performance
data from the dam and half-siblings of the dam. These selected
20 test bulls, with 75% exotic inheritance, were purchased from
farmers and raised at the station (HARC) until they reached the age
for semen collection. The cows in the BU were then mated with
semen collected from the test bulls for progeny testing. Of the 20 test
bulls, 10 progeny-tested sires were selected based on information

from the progeny, dam, and half-siblings of the dam. The genetic
gain in the BUwill be transferred to cows in the PU through artificial
insemination using semen collected from the selected bulls. The
number of cows and sires in each selection group for FPT is provided
in Table 4.

2.2.3 Conventional on-station and on-farm
progeny testing

This breeding programwas proposed as an alternative to address
the potential gap between SPT and FPT. In SPT, the number of cows
available at HARC did not meet the standard required for progeny
testing. Taking into account factors such as sex ratio, conception
rate, and survival rate, only around 20 male calves were obtained for
testing per year. Additionally, the number of available cows (24 per
year) for producing sire progeny was very low. This limited number
of daughters per sire (approximately 3–4) raised concerns about the
accuracy of estimation. Tomeet the standard for progeny testing and
achieve reasonable accuracy (Taneja, 1999; Archer et al., 2004;

TABLE 2 Number of bulls and cows proven and selected per year for simulation of the on-station bull selection program.

Genetic group Number Selected Proven

Exotic sire (ES) 8 7 8

Exotic dam (ED) 98 13 31

Zebu sire (ZS) 8 7 8

Zebu dam (ZD) 98 13 31

First-generation exotic × zebu crossbred cows (F1C1) 100 17 33

75% exotic × 25% zebu crossbred test bull (HGTB) 20 10 20

75% exotic × 25% zebu crossbred old/selected bull (HGOB) 10 5 10

75% exotic × 25% zebu F1 crossbred cows in the breeding unit (HGCF1) 75 13 32

75% exotic × 25% zebu F2 crossbred cows (progeny of HG bull) in the breeding unit (HGCF2) 56 11 24

Cows in production unit (CPU) 143576 25456 45944

TABLE 3 Transmission matrix for the on-farm progeny testing scheme.

Genetic group TBBU SBBU CBU CPU

BBU TBBU > BBU CBU > BBU

CBU TBBU > CBU CBU > CBU

CPU SBBU > CPU CPU > CPU

BBU, in this alternative breeding program indicate selected bulls (SBBU) were choosen from test bullest (TBBU) which is called logical selection group (two stage selection) by the wombat

software. TBBU and SBBU should have common name in the column (gene receiver).

TABLE 4 Number of bulls and cows used for the simulation of the on-farm progeny testing scheme.

Genetic group Number Selected Proven

Cows in breeding unit (kept by farmers and selected for progeny testing) (CBU) 2500 2500 3125

Test bull used for progeny testing (TBBU) 500 20 500

Progeny-tested bull (SBBU) 10 10 20

Cows in production unit (CPU) 141,076 25,013 45,144
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Mulder et al., 2005; Täubert et al., 2011), it was necessary to explore
options to maximize the number of cows for progeny testing. At the
same time, there was no established recording system at the farmer
level to initiate the breeding program directly from FPT, and it
would take a longer time to establish pedigree records. Additionally,
determining the level of exotic inheritance of bulls for FPT required
pedigree records or admixture analysis. Therefore, this breeding
program combines elements of both SPT and FPT.

The simulated SFPT program was structured with three tiers,
consisting of two BUs and one PU. The first BU comprised the
crossbred cattle population at HARC, which served as the bull dam
to produce and select bulls with 75% exotic inheritance. The number
of dams at the HARC station was increased to obtain 100 young
calves per year. The second tier (sub-nucleus) included
2,500 crossbred cows (CBU) selected from smallholder farmers’
cattle, forming the second BU for progeny testing purposes. Test bull
production was conducted exclusively at the HARC station, while
the actual progeny testing took place on-farm within the CBU. The
gene transmission matrix and the number of cows and sires in each
selection group for SFPT are presented in Table 5 and Table 6,
respectively. Similar to SPT, this program had nine selection groups.
Exotic dairy sire semen was used as the sire, while zebu cows served
as the dam line. The F1 crossbred cows were backcrossed with an

exotic sire to generate 75% exotic dairy inheritance test bulls. Sire
selection involved a two-stage procedure. The 20 test bulls were
progeny tested within the CBU, and the top 10 bulls were selected.
Each progeny-tested bull was evaluated using information from the
dam, half-siblings of the dam, and 40 progenies. Finally, semen
collected from the selected bulls was used to inseminate the
remaining crossbreds owned by smallholder farmers (CPU) in
the study areas (tier 3) to transfer genetic gain. Unlike SPT, there
was no on-station progeny testing within the SFPT program.

2.2.4 Genomic selection
In the past two decades, the implementation of genomic

selection has brought significant advancements in dairy genetic
gain. Various studies have demonstrated that this system has
effectively doubled the rate of genetic improvement in dairy traits
compared to traditional progeny testing schemes (Schaeffer, 2006;
Hayes et al., 2009; Garcia et al., 2016). Genomic selection involves
the selection of bulls based on their genomic breeding values
(GEBV), which are estimated using single nucleotide
polymorphisms (SNPs). The effect of each SNP is determined
through analysis of a reference population, where animals are
genotyped, and their phenotype information is collected (Hayes
et al., 2009; Al Kalaldeh et al., 2021). The genomic selection program

TABLE 5 Transmission matrix for on-station bull selection and on-farm progeny testing program.

Genetic group ES ED ZS ZD F1C HGTB HGSB CBU CPU

ES ES > ES ED > ES

ED ES > ED ED > ED

ZS ZS > ZS ZD > ZS

ZD ZS > ZD ZD > ZD

F1C ES > F1C ZD > F1C

HGB ES > HGB F1C > HGB

CBU HGTB > CBU CBU > CBU

CPU HGSB > CPU CPU > CPU

ES, exotic dairy sire; ED, exotic dairy dam; ZS, zebu sire; ZD, zebu dam; F1C, first-generation crossbred cow of exotic sire and zebu dam; HGTB, high-grade test bull (crosses of ES and F1C);

HGSB, high-grade selected bull (crosses of ES and F1C and progeny tested); HGB, indicate logical selection group as HGSB is selected fromHGTB (two-stage selection); CBU, cows in breeding

unit (kept by farmers and selected for progeny testing); CPU, cows in production unit.

TABLE 6 Number of bulls and cows used to simulate on-station bull selection and on-farm progeny testing program.

Selection group Number Selected Proven

Exotic sire (ES) 8 7 8

Exotic dam (ED) 98 20 31

Zebu sire (ZS) 8 7 8

Zebu dam (ZD) 200 27 64

First-generation exotic × zebu crossbred cows (F1C) 315 55 64

75% exotic × 25% zebu crossbred test bull (HGTB) 100 20 100

Cows in breeding unit (CBU) 2500 2500 3125

75% exotic × 25% zebu crossbred old/selected bull (HGSB) 10 10 20

Cows in production unit (CPU) 141,076 25,013 45,144
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offers three main advantages: 1) it enhances the accuracy of
estimation by avoiding errors that can occur in pedigree records
for the relationship matrix, 2) it reduces the generation interval as
bulls can be selected at a younger age, and 3) it lowers the cost of the
breeding program by eliminating expenses associated with progeny
testing. Therefore, genomic selection was simulated to harness the
potential of genomic technology for dairy development in Ethiopia.

The simulated GS program consists of two tiers with three
selection groups (six paths). Tier 1 includes genotyped bulls (BBU)
and genotyped cows in the reference population (CBU), while tier
2 comprises the cows in the production unit (CPU), representing the
remaining crossbred cow population in the study areas.
Approximately 2,500 cows (CBU) were selected from smallholder
farmers’ cattle based on their own phenotypic records and then
genotyped to establish the reference population (breeding unit).
Information from the genotyped population, along with their
phenotypic records, was used to estimate the allelic effects of
SNPs and select bull dams. Each year, around 500 young male
calves born from CBU were recruited, utilizing non-genetic
information collected from the dam and half-siblings of the dam.
From the pool of 500 genotyped male calves, 20 bulls (BBU) were
selected based on their GEBV. These top 20 bulls (BBU) were
purchased from farmers and raised at HARC or LDI until they
reached the age for semen collection. The semen collected from
these bulls (with 75% exotic inheritance) was used to inseminate
cows in the breeding and production units. In the GS scheme, there
was no progeny testing or on-station cow production. The gene flow
matrix and the number of animals in each selection group for GS are
indicated in Table 7 and Table 8, respectively.

2.2.5 Genomic progeny testing
Several studies have indicated that combining GS with progeny

testing can significantly improve the accuracy of selection (Hayes
et al., 2009; König et al., 2009; Täubert et al., 2011). Building upon
this knowledge, the GPT approach was developed as an additional
alternative. The GPT combines GS and progeny testing, where bull
selection is conducted through a two-stage selection process. The
key distinction from GS is the inclusion of progeny testing. The
assumptions underlying GPT are as follows: Similar to GS, a

reference population (breeding unit) consisting of 2,500 cows
(CBU) was formed by selecting cattle from smallholder farmers
based on their own phenotypic records. These cows were then
genotyped to establish the reference population. Each year,
500 young male calves born from CBU were recruited,
incorporating non-genetic information obtained from the dam
and half-siblings of the dam. Of the 500 genotyped male calves,
20 test bulls were selected based on their genomic estimated
breeding values (GEBV). These 20 test bulls, with 75% exotic
inheritance, were purchased from farmers and raised at a station
until they reached the age for semen collection.

The cows in the reference population (CBU) were inseminated
with semen collected from test bulls for progeny testing.
Subsequently, of the 20 test bulls, the 10 best sires were selected
based on their progeny performance, as well as information from the
dam and half-siblings of the dam. Semen collected from the selected
bulls was used to inseminate the cows in the production unit. The
transmission matrix and the number of animals in different
selection groups align with those of the conventional on-farm
progeny testing (FPT) approach (Table 3; Table 4).

2.3 Genetic parameters and economic value
of breeding goal traits

The genetic parameters and economic values of breeding goal
traits were determined for the study. Estimates for economic value,
phenotypic standard deviation, correlations, heritabilities, and
repeatability were obtained from survey data collected in the
study areas and long-term data on dairy cattle at the HARC
(Table 9; Table 10). More detailed genetic parameter information
can be found in Direba et al. (2022). For genomic information, input
parameters were sourced from relevant literature reports due to the
absence of estimates for the target population. The accuracy of
polygenic breeding values and the number of animals in the
reference population for MY were taken from Erbe et al. (2012).
Accuracy estimates for AFC, CI, and HL, along with associated
numbers of animals in the reference population, were obtained from
the studies of Boison et al. (2017) and Haile-Mariam et al. (2013).

TABLE 7 Transmission matrix for the genomic selection program without progeny testing.

Genetic group BBU CBU CPU

BBU BBU > BBU CBU > BBU

CBU BBU > CBU CBU > CBU

CPU BBU > CPU CPU > CPU

BBU, genotyped high-grade bull; CBU, cows in breeding unit (kept by farmers and selected for reference population); CPU, cows in production unit.

TABLE 8 Number of bulls and cows used for simulation of the genomic selection program practiced without progeny testing.

Selection group Number Selected Proven

Genotyped cows used as reference population (CBU) 2500 2500 3125

Genotyped bull (BBU) 500 20 500

Cows in production unit (CPU) 141,076 25,013 45,144
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Productive life, reproductive cycle, age at first reproduction, and
survival rate for both zebu and crossbred cows with different levels
of exotic inheritance were also derived from long-term data collected
at HARC (Direba et al., 2022). Notably, zebu cows exhibited a longer
productive life (7.44 years) than crossbred cows, which could be
attributed to the adaptive qualities of indigenous breeds and the
specific objectives of the farming systems. Differences in
reproductive cycles were observed among the selection groups,
with the F1 generation displaying a shorter cycle (1.26 years)
than other groups. This indicates performance variations within
the different selection groups (Table 11). Biological parameters

based on 75% exotic inheritance were applied to the CBU and
CPU, as admixture analysis revealed a similar level of exotic
inheritance (78%–79%) for cows managed by smallholder
farmers (Strucken et al., 2017; Netsanet et al., 2021).

2.4 Variable and fixed costs

Table 12 provides a detailed breakdown of the annual variable
and fixed costs per animal for the simulated alternative BPs. The
study assumed a 25-year investment period, with a 9.5% interest rate

TABLE 9 Economic value per unit change, phenotypic standard deviation (SDP), genetic parameters of the crossbred cattle, and genomicmeasures (1 USD=
39.55696 ETB).

Traits Economic value in ETB SDP* h2 r2 N r (TI)

MY 13.38 830.98 0.30 0.52 1897 0.58

AFC −16.19 188.27 0.19 - 1582 0.475

CI −33.58 125.28 0.09 0.19 1783 0.51

HL 79.55 2.79 0.28 - 1883 0.34

MY, lactation milk yield; AFC, age at first calving; CI, calving interval; HL, herd life; *SDP, phenotypic standard deviation of lactation milk yield in kg; *SDP phenotypic standard deviation of

AFC, CI, and HL, in days; h2, heritability; r2, repeatability; N, number of animals in the reference population; r(TI) = accuracy of the polygenic breeding value. Proportion of genetic variance

explained by markers (Q) = 0.7666 and number of independently segregating QTLs (K) = 1000, QTLs = quantitative trait loci.

Source: Direba et al., 2022; Erbe et al., 2012; Boison et al., 2017; Haile-Mariam et al., 2013.

TABLE 10 Genetic and phenotypic correlation of production, reproduction, and herd life traits.

Trait Traits

MY CI AFC HL

MY 0.64 ± 0.12 0.37 ± 0.13 0.64 ± 0.18

CI 0.23 ± 0.02 0.61 ± 0.19 0.78 ± 0.14

AFC 0.17 ± 0.04 0.02 ± 0.04 0.15 ± 0.21

HL 0.07 ± 0.00 0.14 ± 0.03 −0.01 ± 0.04

MY, lactation milk yield; CI, calving interval; AFC, age at first calving; HL, herd life; Above diagonal, genetic correlation; below diagonal, phenotypic correlation.

Source: Direba et al., 2022.

TABLE 11 Biological coefficients used for breeding programs.

Input parameter Unit Value Input parameter Unit Value

Productive life of test bull Year 1 Reproductive cycle of F1 cows Year 1.26

Productive life of high-grade cows, CBU, and CPU Year 5.64 Reproductive cycle of CBU genotyped bulls and CPU Year 1.32

Productive life of F1 cows Year 5.77 Reproductive cycle of high-grade cows and bulls raised at on-station Year 1.42

Productive life old/selected bull Year 2 Reproductive cycle of Zebu and Friesian sire and dam Year 1.44

Productive life of Friesian cows Year 3.5 Sex ratio % 0.5

Productive life of Zebu cows Year 7.44 Conception rate % 0.8

Age at first reproduction of Friesian and F1 cows Year 3.15 Survival rate % 0.8

Age at first reproduction of high-grade cows, CBU, and CPU Year 3.52 Interest rate to calculate discounted cost and return % 0.095

Age at first reproduction of Zebu cows Year 3.57 Investment duration Year 25

CBU, cows in breeding unit; CPU, cows in production unit.

Source: Direba et al., 2022.
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applied to both costs and returns. It is important to note that all the
costs, returns, and profits estimated in this study were specifically
related to the additional expenses incurred and profits obtained as a
direct consequence of implementing the breeding program (Nitter
et al., 1994; Tadele et al., 2011; Kahsa et al., 2012). Fixed costs were
defined as constant expenses related to salaries, overhead costs, and
computers. These costs encompassed the purchase of computers,
overhead expenses (including training and monitoring costs), and
salaries for labor, veterinarians, recorders, artificial insemination
(AI) technicians, and animal breeders. Variable costs represented
the total expenses incurred for selecting, testing, and choosing
animals for the breeding program (Täubert et al., 2011; Vit
Verden, 2011). Additional costs for items such as feed,
genotyping, bull purchases, ear tags, veterinary services, and
other administrative expenses that arose due to the BP were
considered variable costs.

The costs associated with the BPs varied depending on the
specific scenarios. For example, in the case of conventional on-SPT
and conventional on-SFPT, the cost of feed for cows was included
because these cows were entirely used for the breeding program.
However, in other BPs, where cows were part of normal dairy
business processes, no additional feed costs were considered. The
cost of feed for bulls was included in all BPs because bulls were
recruited from the on-station breeding unit or purchased from on-
farm breeding units and managed at the station until sufficient
semen was collected.

In terms of genotyping, the cost for genotyping cows and bulls
was 1,916.35 ETB per animal (1 USD = 39.55696 ETB) for GS and
GPT. Human resources required for data collection, animal health
management, supervision, and data analysis were also factored into

the costs. For BPs with on-farm data gathering components (FPT,
GS, and GPT), the cost included 25 data recorders (6,500 ETB per
person per month) and three animal breeders (16,437 ETB per
person per month). In the simulation of SPT, the cost included
20 daily laborers (1,500 ETB per person per month), two data
recorders (1,890 ETB per person per month), and three animal
breeders (16,437 ETB per person per month). The cost of veterinary
services per animal was 94.04 ETB per year for all BPs. Additionally,
the salaries of two veterinarians (16,437 ETB per person per month)
and two AI technicians (6,500 ETB per person per month) were
assumed for the analysis of SPT and SFPT, as these programs
required full-time animal health management and AI services.

Approximately 500,000 ETB per year were assumed for training,
monitoring, and other administration costs for SPT. This cost was
escalated to 1,000,000 ETB per year for each of the remaining BPs, as
more supervision was required to mobilize farmers and provide
training for data recorders and farmers participating in on-farm
breeding units. However, only the cost of AI service was included for
CPU because the genetic transfer was through AI, and all farmers
should use AI for the practical implementation of BP.

Costs related to the price of animals, animal health services, and
AI services were obtained from the survey conducted with
smallholder farmers (Direba et al., 2020). The price to purchase
bulls/male calves was enhanced by 25% for non-genotyped and 50%
for genotyped bulls/male calves to provide better market value for
genetically merited bulls and encourage farmers to sell selected
young bull/male calves to the BP. Estimates of daily labor and
salaries were taken from the HARC payment standard. Feed
requirements and associated costs were derived from the HARC
feeding standards and market costs of 2021.

TABLE 12 Costs of inputs considered per animal per year in ETB (1 USD = 39.55696 ETB).

Input SPT FPT SFPT GS GPT

Cost of feed/cows (to on-station breeding unit) 29,200 - 29,200 - -

Cost of feed/bulls 18,250 18,250 18,250 18,250 18,250

Cost of genotyping/bull - - - 1437.26 1437.26

Cost of genotyping/cow - - 339.78 339.78

Cost of purchasing genotyped bull - 27,150 27,150

Cost of purchasing selected bull - 22625 - - -

Cost of animal health/cow 106.06 - 106.06 - -

Cost of animal health/bull 106.06 106.06 106.06 106.06 106.06

AI cost/cow 410 94.06 *410 + 94.04 94.04 94.04

Cost of ear tag/cow 100 100 100 100 100

Cost of salary/wages/cow 3624.31 1157.99 1123.54 1157.99 1157.99

Overhead cost (training, supervision, and other administration)/animal 1170.96 400 321.23 400 400

Variable cost/cow 29,816.11 194.04 *29716.11 + 194.04 533.82 533.82

Variable cost/sire 18,456.11 41,081.06 18,356.11 47,043.32 47,043.32

Fixed cost/animal 4818.69 1575.99 1459.23 1575.99 1575.99

Total annual cost required for BU 15,154,059 5,009,597 22,073,307 6,668,175 6,668,175

SPT, conventional on-station progeny testing; FPT, conventional on-farm progeny testing; SFPT, conventional on-station and on-farm progeny testing; GS, genomic selection; GPT, genomic

progeny testing; *, cost for on-station + on-farm; BU, breeding unit.
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3 Results

3.1 Genetic gain

The results in Table 13 show estimates of genetic gain (GG) of
breeding goal traits per year and per generation. The GGs predicted
for lactationMY per year were 34.52 kg, 49.63 kg, 29.35 kg, 76.16 kg,
and 77.51 kg for SPT, FPT, SFPT, GS, and GPT, respectively. The
corresponding GGs per generation were 209.27 kg for SPT,
273.22 kg for FPT, 174.30 kg for SFPT, 362.33 for GS, and
426.71 for GPT. The genomic BPs attain at least 26.53 kg more
GG per year than the conventional BPs.

The GGs calculated for age at first calving (AFC) were 1.19 and
7.22 days for SPT, 0.97 and 5.37 days for FPT, 0.69 and 4.12 days for
SFPT, 1.11 and 5.26 days for GS, and 0.90 and 4.94 days for GPT per
year and generation, respectively. A lower GG of calving interval (CI)
was recorded in SFPT (1.20 days per year and 7.13 days per generation)
than other BPs (varied from 1.57 to 2.35 days per year). The value of GG
obtained for CI was almost similar among FPT, GS, and GPT. The
estimates of GG for herd life (HL) were very low (0.06–0.12 days per
year) and almost similar among all alternative BPs.

3.2 Generation interval and accuracy

Generation interval (GI) refers to the age of parents when their
replacement offspring is born. When the GI is low, the transfer of
genetic gain from generation to generation becomes rapid. Hence, there
will be higher return and genetic progress in breeding goal traits for the
target population. The values of predicted GI for conventional BPs were
close to each other and ranged from 5.51 years to 6.06 years (Table 14).
However, GI was reduced by 21% in GS compared to SPT and reduced
by 19% compared to SFPT. Table 14 summarizes the accuracy of
selection for test and progeny-tested bull in different BPs. The accuracy
of selection calculated for test bulls was 0.33 for SPT, 0.34 for FPT,
0.37 for SFPT, and 0.43 for both genomic BPs. Furthermore, the
accuracies of the selection of progeny-tested bull estimated here
were 0.85 for SPT and 0.99 for other BPs.

3.3 Discounted profit of alternative
breeding programs

The ultimate goal of the BP is to ensure the profitability and
sustainability of the dairy business for the target population. As

indicated in Table 12, the total costs calculated for breeding units
varied among simulated BPs. The annual cost for BUs in ETB was
approximately 15.15 million for SPT, 5.00 million for FPT,
22.07 million for SFPT, and 6.67 million for each genomic BP.
ZLAN+ distributes costs and returns for the entire cow
population included in the BP as the genetic gain obtained at
the breeding unit is transmitted to the whole population (Täubert
et al., 2011; Vit Verden, 2011). Furthermore, the program
discounted the cost of BP considering the interest rate,
generation interval, and number of animals in different
selection groups.

Table 15 contains discounted cost, return, and profit per
animal per generation and year. The discounted costs of BPs per
animal per generation in ETB were 45.85, 52.71, 71.51, 190.28,
and 172.57 for SPT, FPT, SFPT, GS, and GPT, respectively. The
corresponding discounted returns were ETB 1,559.07 for SPT,
2,475.83 for FPT, 1,765.54 for SFPT, 5,741.69 for GS, and
3,969.88 for GPT. The discounted profit of the BPs ranged
from ETB 1,513.22 in SPT to 5,551.40 in GS per cow per
generation.

4 Discussion

4.1 Genetic gain

Among the trait goals, milk yield had the highest GG in all
BPs. This could be attributed to the availability of higher genetic
variance of this trait in the study population and better
heritability than other traits. Furthermore, the higher GG of
MY recorded in this study could create a good opportunity for
the future sustainability of BPs as MY accounts for 69% of the
relative economic value of the dairy business in the study area.
The result revealed that GG was positive for all BPs. However,
the positive GG obtained for AFC and CI is undesirable. The
overall results indicated that the application of any of the five BP
could bring genetic progress in the crossbred population of
the study area.

Genetic gain for MY estimated in the present study concurred
with the report of other studies on different dairy breeds (Börner and
Reinsch, 2012; García et al., 2016; Fedorovych et al., 2021). Opoola
et al. (2020) and Tobias et al. (2010) predicted 245 kg–734 kg and
366 kg–410 kg MY GG per generation by modeling different BPs for
dairy cattle in South Africa, Zimbabwe, and Kenya, respectively.
Kudinov et al. (2018) calculated 56 kg–59 kg MY GG per year for

TABLE 13 Estimated genetic gain per year (per generation in bracket) for breeding programs.

Trait SPT FPT SFPT GS GPT

MY (kg) 34.52 (209.27) 49.63 (273.22) 29.35 (174.30) 76.16 (362.33) 77.51 (426.71)

AFC (day) 1.19 (7.22) 0.97 (5.37) 0.69 (4.12) 1.11 (5.26) 0.90 (4.94)

CI (day) 1.57 (9.49) 2.06 (11.34) 1.20 (7.13) 2.35 (11.18) 2.29 (12.63)

HL (day) 0.07 (0.44) 0.11 (0.59) 0.06 (0.36) 0.12 (0.55) 0.12 (0.65)

MY, milk yield; AFC, age at first calving; CI, calving interval; HL, herd life; SPT, conventional on-station progeny testing; FPT, conventional on-farm progeny testing; SFPT, conventional on-

station and on-farm progeny testing; GS, genomic selection; GPT, genomic progeny testing.
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black and white dairy cattle in Russia. However, a higher estimate
(512 kg per generation) was reported by Mulder et al. (2005) using
genetic evaluation data collected from different breeds.

Further comparison among BPs indicated that genomic
systems noticeably increase the GG of MY. A better GG was
obtained by GPT and GS than by conventional BPs. The results
imply that the genetic progress of MY can be enhanced by 53%–

164% by supporting the BP with genomic information. Scott et al.
(2021) estimated that the rate of genetic gain increased by about
160% in Holsteins and 100% in Jersey cattle when genomic
information was included in the progeny testing scheme in
Australia. Consistent with the present study, the substantial
contribution of genomic BPs was reported by several authors
(Panigrahi and Parida, 2012; Thomasen et al., 2014; Boisonn
et al., 2017).

Values calculated for AFC and CI are lower than the report of
Opoola et al. (2020), who found 41–65 days for AFC and 20–42 days
for CI GG per generation using data from Zimbabwe and South
Africa. Similarly, Tobias et al. (2010) noted higher genetic response
(90–101 days per generation) for AFC in Kenya than our estimate.
Even though it was low, the GG obtained for AFC and CI is
undesirable, as the economic value of these traits was negative
when their GG became positive. Furthermore, selection only for
MY may adversely prolong CI and AFC as the genetic correlation of
MY with these two traits is positive. Consistent with our findings,
García et al. (2016) calculated a GG of 0.03–0.88 days for HL per
year for Holstein cows in the United States. It can be noted that the
variation observed among BPs for AFC, CI, and HL looks
insignificant. Although the GGs of AFC and CI were low, care

should be taken in the selection index to further reduce the GG of
these two traits.

4.2 Generation interval and accuracy

Genomic selection (GS) reduces the generation interval (GI) by
up to 21% compared to conventional BPs. This is mainly because
bulls in GS were selected and transferred genetic merit at an early
age. Estimates of GI in the present study were higher than those of
other studies in developed countries. Täubert et al. (2011) calculated
5.02, 3.44, and 4.64 years for conventional, genomic, and combined
conventional-genomic breeding programs, respectively. Similarly,
Garcia et al. (2016) discussed a reduction of GI from 7 years to
2.5 years by implementing genomic selection in dairy cattle in the
United States. The difference with the current result might be due to
the lack of application of appropriate genetic improvement
programs in Ethiopia and farming practices, as the herd life of
dairy cows was longer in the Ethiopian condition.

The accuracy of selection calculated for test bulls is comparable to
the report of Brown et al. (2016), who found 0.28 to 0.41 prediction
accuracy for the selection of crossbred dairy cattle in East Africa.
However, Täubert et al. (2011) found better accuracy (0.54) for test
bulls in Germany than the present study in conventional BPs. The
improvement of accuracy from 0.3 to the 0.43 obtained in the present
study is attributed to the increase in number of cows (2500) in the BU or
the reference population. The result also indicated that genotyping bulls
could enhance the accuracy of the selection of test bulls by 16%–30%.
Similar conclusions are reported by other authors (Haile-Mariam et al.,

TABLE 14 Accuracy of selection index and generation interval for the alternative breeding program.

Breeding program Accuracy of selection index Generation interval

Test bull Selected bull

SPT 0.33 0.85 6.06

FPT 0.34 0.99 5.51

SFPT 0.37 0.99 5.94

GS 0.43 4.76

GPT 0.43 0.99 5.51

SPT, conventional on-station progeny testing; FPT, conventional on-farm progeny testing; SFPT, conventional on-station and on-farm progeny testing; GS, genomic selection; GPT, genomic

progeny testing.

TABLE 15 Discounted cost, return, and profit per animal in ETB (1 USD = 39.55696 ETB).

Parameter SPT FPT SFPT GS GPT

Cost per generation 45.85 52.71 71.51 190.28 172.57

Return per year 257.15 449.74 297.32 1206.91 721.14

Return per generation 1559.07 2475.83 1765.54 5741.69 3969.88

Profit per year 249.58 422.00 285.28 1166.92 689.79

Profit per generation 1513.22 2323.12 1694.03 5551.40 3797.30

SPT, conventional on-station progeny testing; FPT, conventional on-farm progeny testing; SFPT, conventional on-station and on-farm progeny testing; GS, genomic selection; GPT, genomic

progeny testing.

Frontiers in Genetics frontiersin.org10

Hunde et al. 10.3389/fgene.2024.1106709

263

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2024.1106709


2013; Garcia et al., 2016; Aliloo et al., 2018). The values of accuracy of
selection of progeny-tested bulls in this study (0.85–0.99) are close to the
0.89 estimated for Holstein cattle in Germany (Täubert et al., 2011).
Hayes et al. (2007) also reported a 0.84 accuracy using marker-assisted
(haplotype) selection with phenotype records for cattle in Australia.

4.3 Discounted profit of alternative
breeding programs

The discounted cost in genomic BPs looks higher than that of
conventional systems, but it was offset by the high return in these
systems. Among conventional progeny testing schemes, FPT
generated 53% more profit than SPT and 37% more than
SFPT. The genomic systems enhanced the profit by at least
63% compared to the conventional counterparts. The GS
outperformed the SPT, SFPT, and FPT by 266%, 227%, and
138%, respectively. Similarly, the profit obtained from GPT
was better than that of all conventional BPs. On the other
hand, the profitability of GS was reduced by 31% when it was
supported by progeny testing. The substantial difference in profit
observed among BPs is attributed to the BP scenario. The costs of
SPT and SFPT were inflated mainly due to the cost of animal feed
and salary, as these BP maintained many cows at the station. The
other BPs (FPT, GS, and GPT) kept about 20 sires at the station,
which significantly reduced the cost required for animal feed and
labor. However, considering the contribution of the BPs to the
entire population, the calculated cost looks reasonable.

The higher profitability of genomic systems probably resulted
from lower feed and labor costs for animal management and a lower
generation interval, which leads to rapid genetic gain. The
contribution of progeny testing BPs and further enhancement by
genomic BPs for better profitability of the dairy business was
inferred in several reports (Börner and Reinsch, 2012; Weller
et al., 2017; Mrode et al., 2019; Newton and Berry, 2020; Scott
et al., 2021). For instance, discounted profits of 18–26 USD per
generation in Kenya (Kahi and Nitter, 2002), 29.92 euros per year for
Danish Jersey dairy cattle (Thomasen et al., 2014), and 238 to
532 euros per generation for Holstein dairy cattle in Germany
(Täubert et al., 2011) were reported for different BPs. The
difference in profit and values of other parameters of the present
result with other reports could be due to variations in economic
values and the number of traits included in BPs, the size of the
population included in the BPs, and parameters fitted in the model.

4.4 Comparative advantages and limitations
of alternative breeding programs

All suggested BPs showed a positive profit. However, each has its
own advantages and limitations. The SPT is highly suitable for
record keeping and selection of animals as the BU is maintained at
the station. However, the number of cows in the BU was very low to
produce and recruit test bulls. This highlighted that sires were
evaluated with a very low number of daughters (3–4 daughters
per sire). As a result, the selection accuracy of test bulls and selected
bulls was lower than other BPs. On the other hand, the annual total
cost of SPT was also higher than FPT and genomic BPs.

The result showed that the GG and profit obtained by FPT were
better than SPT and SFPT. Likewise, the accuracy of sire selection
was better than SPT and comparable with SFPT. This BP was
superior to SPT and SFPT by 53% and 37% discounted profit,
respectively. Furthermore, farmers practicing FPT participate in a
community that can enhance the success of a BP. The practical
limitations of this BP are 1) lack of a record-keeping system at the
farmer level and establishing pedigree record may take longer; 2) in
the absence of a pedigree record, selection based on phenotypic
performance may not bring genetic progress; and 3) it was difficult
to estimate the level of exotic inheritance for sires as there were no
pedigree records at the farmer level.

The combined on-SFPT could solve the shortcomings of SPT and
FPT. The on-station part supports the BP by a pedigree record, and
the on-farm part avails a sufficient number of cows for progeny
testing. Community participation in this BP could also create a
smooth environment (enhance cooperation of farmers) for
practical implementation of this BP as farmers provide cows for
progeny testing and support recording and benefit from the BP.
Increasing the number of cows for progeny testing by participating
dairy farmers has improved the accuracy of test bull selection from
0.33 to 0.37 and selected bulls from 0.85 to 0.99. The profit was
increased by 11% compared to SPT.However, it was decreased by 37%
compared to FPT. The GIs of SPT and SFPT were greater than all BPs.
In addition, the annual cost of SFPT was also much higher than
all other BPs.

As expected, the potential advantages of genomic systems were
enormous. This system overtakes the conventional counterpart by at
least 63% profit in GPT and 138% when GS was compared. The
annual cost of genomic BPs was decreased by about 56%–69%
compared to SPT and SFPT. The GI was reduced by up to 21%
by using genomic BPs. Furthermore, the accuracy of test bull
selection was improved to 0.43 in genomic BPs. The practical
challenge of genomic BPs could be the establishment, phenotype
data collection, and genotyping of the reference population.

In conclusion, all alternate BPs produced a profit and contributed to
MY’s genetic gain. These imply that implementing any of the alternative
BPs can bring genetic progress. Genomic BPs overtake the conventional
BPs in terms of genetic gain, generation interval, accuracy of sire
selection, and discounted profit. Hence, establishing GS and
gradually supporting it with progeny testing (GPT) are
recommended in that order as the main way forward to attain
better genetic progress in dairy farms in Ethiopia and similar
scenarios in other tropical countries. However, until compulsory
conditions are in place for genome selection, SFPT can be
considered more practical. For the success of the breeding program,
relevant governmental and non-governmental institutes should be
engaged, and their roles and responsibilities in the implementation
of the breeding program should be defined. It is also crucial to enhance
community participation through training and supervision, as well as
build the capacity of a biotechnology laboratory to facilitate the
genotyping of the reference population and test bulls.
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