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Nacional de Medicina Genomica (INMEGEN), Mexico
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Since the discovery of the Warburg effect in the 1920s cancer has been tightly associated with 
the genetic and metabolic state of the cell. One of the hallmarks of cancer is the alteration of the 
cellular metabolism in order to promote proliferation and undermine cellular defense mecha-
nisms such as apoptosis or detection by the immune system. However, the strategies by which 
this is achieved in different cancers and sometimes even in different patients of the same cancer 
is very heterogeneous, which hinders the design of general treatment options.

Recently, there has been an ongoing effort to study this phenomenon on a genomic scale in order 
to understand the causality underlying the disease. Hence, current “omics” technologies have con-
tributed to identify and monitor different biological pieces at different biological levels, such as 
genes, proteins or metabolites. These technological capacities have provided us with vast amounts 
of clinical data where a single patient may often give rise to various tissue samples, each of them 
being characterized in detail by genomescale data on the sequence, expression, proteome and 
metabolome level. Data with such detail poses the imminent problem of extracting meaningful 
interpretations and translating them into specific treatment options. To this purpose, Systems 
Biology provides a set of promising computational tools in order to decipher the mechanisms 
driving a healthy cell’s metabolism into a cancerous one. However, this enterprise requires 
bridging the gap between large data resources, mathematical analysis and modeling specifically 
designed to work with the available data. This is by no means trivial and requires high levels 
of communication and adaptation between the experimental and theoretical side of research.
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Editorial on the Research Topic

Systems Biology and the challenge of deciphering themetabolic mechanisms underlying cancer

Cancer is one of the major causes of mortality worldwide. One of the particular challenges in
battling the disease is that cancers manifest in many different forms each with their own specific
genotype and phenotype. Specifically, there is a large variety of genetic andmetabolic strategies that
cancers employ in order ensure proliferation, metastasis and escape from the immune system of the
host. Understanding this mixture of common and specific alterations pose a particular challenge for
Science as there are many scales on which to study the disease, ranging frommetabolic mechanisms
common to all cancers to patient-specific alteration affecting treatment. The intrinsic complexity
is astonishing and in order to defeat the disease, we still have a long road to travel. With this
purpose in mind, it is crucial to propose new quantitative schemes to gain a better understanding
of the mechanisms that underlie modern cancer treatments. Here, Systems Biology approaches
have the potential to characterize the metabolic and regulatory mechanisms that support the
cancer phenotype and may provide new hypotheses that can cut down the malignant phenotype
in clinical treatments. In this context, the works presented in this Research Topic and EBook paint
a representative picture of the research landscape and address cancer on various levels of details
and mechanisms.

One of the most studied alterations in cancer is the Warburg effect, a switch toward aerobic
glycolysis, marked by lactate secretion and a decreased entry of glycolytic intermediates into the
citric acid cycle even with an excess of oxygen. Using kinetic models of glycolysis Molavian et
al. show how large amounts of oxidative stress byproducts make aerobic glycolysis favorable and
Marín-Hernández et al. identify efficient knockout strategies for the increased aerobic cancer
glycolysis. Addressing the question which regulatory events may induce the Warburg effect
Beltran-Anaya et al. review the impact on non-coding RNAs on glycolysis and related pathways.
Those studies are complemented by a set of cancer type-specific works where the inclusion of
specific metabolic pathways and transcriptional regulation gives additional perspectives. Roy and
Finley use a detailed kinetic model of glycolysis, glutaminolysis, tricarboxylic acid cycle and the
pentose phosphate pathway in KRAS-mediated pancreatic cancer in order to reproduce known
large-scale knockdown experiments and suggest novel targets to combat pancreatic cancer and
Enciso et al. employ a Boolean model to describe a loss of intercellular communication in the
molecular regulatory network involved in the development of Acute Lymphoblastic Leukemia.
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One of the challenges in studying a disease as diverse as
cancer is the integration of novel large-scale data in order
to increase our understanding of the etiology and progression
of the disease, identify proper biomarkers to diagnosis, and
promote computational models with higher capacities to predict
clinical outcomes in personalized medicine. In this context,Shin
et al. review how metabolomics data have helped to characterize
particular metabolic mechanisms in the development of head
and neck cancers whereas Contreras et al. review the interplay
between the microbiota profile and the development of
several subtypes of cancer. In our own study (Diener and
Resendis-Antonio) we show how large-scale genomic data
sets from cell lines and cancer biopsies can be combined in
order to improve knowledge about the phenotype of individual
biopsies and how this strategy can unravel individual metabolic
alterations in a personalized manner.

Additionally, it is important to note that many local
alterations in cancer cells take place in tight interplay with the
microenvironment and many complex regulatory programs in
the surrounding tissues. Thus, one has to be aware that human
diseases are not isolated units and one disease can promote or
coexist with other diseases in the organism. Altman reviews the
interplay between cancer and the circadian cycle in affected cells
and its importance in studying metabolic alterations in cancer,
whereas Gutierrez Najera et al. suggest a standardization of the
phenotypes in neuropsychiatric diseases and their interplay with
other diseases such as cancer.

In total, the presented works span a wide variety of approaches
to study the metabolic alterations in cancer, showing how
methods from Systems Biology can be used in order to formulate
more stringent hypotheses about the alterations causing cancer
and their potential remedies. Furthermore, there is a clear
agreement that any metabolic modeling approach has to be
combined with experimental data obtained from various sources.
This imposes large possibilities but also challenges for the

coming years. As more and larger data sets, sometimes spanning
hundreds of thousands of samples, are available this creates
a large demand for strategies that can create knowledge and
optimized treatment suggestions. Systems Biology will play a
large role in addressing those challenges and will have to find
novel approaches in order to extend its applicability from
general to specific models that may address metabolic alterations
in a patient- or sample-specific manner. Finally, we perceive
that the near future may bring a breakthrough to the health-
care sectors by combining new high-throughput technologies,
Bioinformatics and Systems Biology to implement Leroy Hood’s
and Stephen H. Friend’s proposal for a precision medicine
capable of being predictive, personalized, preventive and
participatory.
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High Concentrations of H2O2 Make
Aerobic Glycolysis Energetically
More Favorable for Cellular
Respiration
Hamid R. Molavian, Mohammad Kohandel and Sivabal Sivaloganathan*

Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada

Since the original observation of the Warburg Effect in cancer cells, over 8 decades ago,

the major question of why aerobic glycolysis is favored over oxidative phosphorylation

has remained unresolved. An understanding of this phenomenon may well be the

key to the development of more effective cancer therapies. In this paper, we use a

semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis

is in fact energetically more favorable than oxidative phosphorylation for concentrations

of peroxide (H2O2) above some critical threshold value. The fundamental reason for

this is the activation and high engagement of the pentose phosphate pathway (PPP)

in response to the production of reactive oxygen species (ROS) H2O2 by mitochondria

and the high concentration of H2O2 (produced by mitochondria and other sources). This

makes oxidative phosphorylation an inefficient source of energy since it leads (despite

high levels of ATP production) to a concomitant high energy consumption in order to

respond to the hazardous waste products resulting from cellular processes associated

with this metabolic pathway. We also demonstrate that the high concentration of H2O2

results in an increased glucose consumption, and also increases the lactate production

in the case of glycolysis.

Keywords: cancer cell metabolism, warburg effect, glycolysis, oxidative phosphorylation, pentose phosphate

pathway, reactive oxygen species

INTRODUCTION

Increased aerobic glycolysis (theWarburg Effect) in proliferating cancer cells has been a perplexing
puzzle that has remained unresolved for more than 80 years (Warburg, 1930, 1956; Gatenby
and Gillies, 2004; Vander Heiden et al., 2009; Cairns et al., 2011; Schulze and Harris, 2012). The
observation that cancerous cells are dominated by aerobic glycolysis is confounded by the fact that
this metabolism produces far less energy compared to oxidative phosphorylation—generating 2
ATP from one molecule of glucose when compared to oxidative phosphorylation which generates
36 ATP (in the ideal case; Warburg, 1930, 1956). Initially, it was conjectured that defects in
mitochondria might be the main reason for the increased aerobic glycolysis (Gatenby and Gillies,
2004; Vander Heiden et al., 2009; Cairns et al., 2011; Schulze and Harris, 2012), but successive
experimental investigations have failed to confirm this scenario (Warburg, 1930, 1956).
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Mitochondria produce reactive oxygen species (ROS)
H2O2 in non-cancerous and cancerous cells during oxidative
phosphorylation (Turrens, 2003). Moreover, in cancerous cells
the concentration of H2O2 is also enhanced by the production
of H2O2 through tumor suppressor and oncogenic agents
(Szatrowski and Nathan, 1991; Vafa et al., 2002; Turrens, 2003;
Sablina et al., 2005; Nogueira et al., 2008; Bensaad et al., 2009).
The accumulation of H2O2 results in a toxic environment for cell
compartments; moreover, mitochondria, as a source of H2O2, are
much more vulnerable to H2O2 and as a result the development
of conducible intracellular conditions can trigger tumor necrosis
factors (TNF; Comporti, 1987; Schulze-Osthoff et al., 1993). As
a defense mechanism, mitochondria import reduced glutathione
(GSH), which is produced mainly through the activation of the
pentose phosphate pathway (PPP) in the cytoplasm to detoxify
the H2O2 (Deneke and Fanburg, 1989; Fernandez-Checa et al.,
1997; Anastasiou et al., 2011). The removal of ROS is critical
for cell survival since under high concentrations of H2O2, cell
metabolism pathways are shut down in order to drive the flow
of glucose to the PPP and thus produce enough GSH to detoxify
the H2O2 (Anastasiou et al., 2011). However, the activation and
maintenance of the PPP requires ATP hence an active, ramped
up, productive cell metabolism is needed in order to produce
more ATP when PPP is highly activated.

To understand the mechanism behind aerobic glycolysis and
the role of ROS, we consider the following major metabolisms
and detoxification pathway: oxidative phosphorylation,
glycolysis, and the PPP. We assume that ATP, GSH, and H2O2

are the major players in the cell metabolism dynamics and the
three chemical reactions involved are therefore (Supplementary
Information),

Glucose + 6O2 → 6CO2

+ 6H2O (energy = 36 ATP) Respiration (1)

Glucose→ 2Lactate− + 2H+ (energy = 2 ATP) Glycolysis (2)

Glucose + ATP + H2O+2 GSSG → R5P + 4GSH + CO2

+ ADP Detox (3)

In reaction (3), R5Pmay be used for synthesis of nucleotides and
nucleic acids, which are necessary for cell proliferation, and GSH
is used in the following equation to detoxify H2O2

H2O2 + 2GSH
GPx
−→ GSSG + 2H2O (4)

This reaction involves intermediate steps in which GPxr interacts
directly with H2O2 and GSH is a co-factor which produces
GPxr (Supplementary Information). The concentration of GSH
and GPxr in cells are respectively about 0.1–7mM (Deneke
and Fanburg, 1989; Li et al., 2000; Ng et al., 2007; Anastasiou
et al., 2011) and 10 nM–5µM (Antunes and Cadenas, 2001;
Stone, 2004), hence it seems that there is always enough GSH
to detoxify H2O2. However, at high concentration levels of
H2O2, H2O2 primarily modulates the concentration levels of

GSH. Cells respond to these elevated levels by producing more
GSH to detoxify the accumulated H2O2 (Bellomo et al., 1992).
Therefore, at high concentrations of H2O2, the production rate
of GSH depends in turn on the concentration level of H2O2

(Li et al., 2000; Ng et al., 2007). A good indication of this
behavior is the full diversion of glucose flux into the PPP
when cells are contaminated with high concentrations of H2O2

(Fernandez-Checa et al., 1997). Increasing the concentration of
H2O2 further, eventually results in cell death. Thus, we can
define an upper limit for the concentration of H2O2 above which
cells go through apoptosis and we call this the cell sensitivity
concentration (CSC) level. For concentrations of H2O2 much
lower than CSC the production rate of GSH is very low. As
the concentration of H2O2 becomes comparable to CSC, cells
start to activate the PPP to produce more GSH. The produced
H2O2 by cell mitochondria is a major player in this response,
since they are at the center of H2O2 production and they, if
functional, can activate TNF. At high concentrations of H2O2,
the H2O2 produced by mitochondria does not diffuse into the
cell cytoplasm and accumulates instead around the mitochondria
which, as a result, activate TNF.

We include these observations in the form PGSH =

βPmt
ROS + γPextROS where PGSH , P

mt
ROS, and PextROS are respectively

the production rates of GSH, H2O2 by mitochondria and
H2O2 by external sources, and β and γ are functions of the
concentration of GSH and, the difference between CSC (C0) and
the concentration of H2O2 (CROS). We choose β and γ to be
different since, in general, the response of mitochondria to the
accumulation of H2O2 differs from that of the rest of the cell. β
and γ are very small for low concentrations of H2O2 and start
to increase as the concentration of H2O2 increases. Close to C0

they become very large in order to drive most of the consumed
glucose to the PPP pathway. Since mitochondria can activate
TNF in their oxidative phosphorylation state (Schulze-Osthoff
et al., 1993), there is a stronger response at high concentrations
of H2O2, hence β should be significantly larger than γ .

We assume that both oxidative phosphorylation and glycolysis
are activated to produce energy for cell needs and for the PPP
and investigate the production rate of ATP in the presence of
H2O2. The net production of ATP is the sum of the production
of ATP by oxidative phosphorylation and glycolysis minus the
consumption of ATP by the PPP (which primarily detoxifies
the generated H2O2 by mitochondria and other sources). We
obtain the production and consumption as functions of the
oxygen and glucose consumption and GSH production (PGSH =

βPmt
ROS + γPextROS). Using Pmt

ROS = αqO, where α is the
fraction of oxygen consumption (qO) converted to H2O2 by
mitochondria [about 1/100−2/100 Turrens, 2003], thus we have
(Supplementary Information):

PATP =

(

17
3 − 3

4 αβ
)

(qG −
γ
4 P

ext
ROS)

1 +
rαβ
4

r + 2 qG −
3γPextROS

4
(5)

where qG is the total consumption of glucose and r is the ratio
between oxygen and metabolic glucose consumptions. We now
consider the case when the net production rate of ATP exactly
balances the energy requirements of the cell and derive the
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following result for the consumption of glucose in terms of
the concentration and production rate of H2O2 (Supplementary
Information):

qSSG =
(9+ 17r)γ

24+ 68r − 3rαβ
PextROS +

12+ 3rαβ

24+ 68r − 3rαβ
qcellATP (6)

where qcellATP and qSSG are respectively the ATP and glucose
consumption by the cell in the equilibrium state. Also, the total
amount of lactate production for the case of pure glycolysis (r =
0) reads:

Pr = 0
Lact = qcellATP +

γ

4
PextROS

We first consider the special case of zero external production
and low concentrations of H2O2 (αβ is very small). In this case,
and for a purely glycolytic metabolism (r = 0), PATP = 2qG
which implies that 2ATP are produced for each molecule of
glucose—this is the well-known case of pure glycolysis. In the
case of dominant respiration (r = 6) PATP = 36qG, which is
again the net energy production rate for a cell under oxidative
phosphorylation. A simple comparison of 2–36 ATP production
leads to the superficial, albeit prominent conclusion that, for the
case of low H2O2 concentrations, oxidative phosphorylation is
the most efficient metabolism.

We now search for the most efficient metabolism in the
presence of H2O2 by finding the maximum production rate
of ATP (PATP) as a function of r. For αβ < αT , where
αT = 68/9 the maximum production of ATP arises at r = 6.
This is in agreement with the well-known fact that oxidative
phosphorylation is the most efficient way for ATP production.
However, rather interestingly, for αβ > αT the maximum
production rate of ATP occurs at r = 0 and the transition point is
independent of PextROS. This implies that for some concentrations
of H2O2, glycolysis is in fact energetically more efficient than
oxidative phosphorylation, which directly contradicts current
prevailing explanations. To illustrate this metabolic transition in
terms of the concentration of H2O2 we choose two functions
β = 100

1−CROS/C0
and γ = 10

1−CROS/C0
and substitute these into

Equation (5). These functions mimic the real behavior of the
system in which the production rate of GSH increases as the
concentration of H2O2 increases. The coefficient β is chosen to
be larger because (a) TNF is activated by mitochondria and (b) at
high concentrations of H2O2, the produced H2O2 cannot diffuse
into the cell and accumulates in the vicinity of the mitochondria
which occupy a much smaller space within the cell. In Figure 1

we plot the normalized PATP (PATP is normalized to be one for
any given concentration of ROS) as a function of CROS and r. For
CROS < 0.87C0, which corresponds to β < αT , the maximum
production rate arises at r = 6 and for CROS > 0.87C0, which
corresponds to αβ > αT , it transitions to pure glycolysis (r = 0).

As a first step to better understand the nature of the
transition from oxidative phosphorylation to glycolysis, we
first take note that the inefficiency observed in oxidative
phosphorylation is fundamentally due to the fact that for some
concentrations of H2O2, a cell must expend most of its produced
ATP in detoxifying its self-generated H2O2 (by mitochondria).

FIGURE 1 | ATP production as functions of CROS and r. The production

of ATP is normalized to one for any given concentration of ROS. Here

Pext
ROS

=
qG
50 .

This is supported by the fact that for α = 0 (i.e., no
production of H2O2 by mitochondria), it is respiration that is
the more efficient metabolism for any concentration of H2O2.
In contrast, for α 6= 0, no matter how small α is, the shift
in metabolism (from respiration to glycolysis) occurs when
concentrations of H2O2 exceed some critical threshold value. At
these concentration levels of H2O2, the net produced energy by
oxidative phosphorylation for onemolecule of glucose is less than
that produced through glycolysis. To gain a more quantitative
understanding of this phenomenon, we first observe that α is
a property of mitochondrial efficiency. It can safely be assumed
that this remains constant independent of H2O2. Meanwhile β

changes through either an increase in the concentration levels
of H2O2 or a decrease in the concentration levels of GSH and
thus results in a crossing of the transition point to glycolysis.
In non-cancerous cells and under normal conditions, H2O2 is
mainly produced by mitochondria and diffuses through the cell.
In this case, the low production of GSH and other antioxidants
are sufficient to detoxify the H2O2, hence normal cells function
in the αβ < αT regime. In this case, oxidative phosphorylation
is the most efficient mechanism for ATP production. However,
in proliferating cancer cells, H2O2 is produced by growth factors
and mitochondria that work at higher rates to compensate for
the increased energy needs of proliferating cells. Hence, the
concentrations of H2O2 are much higher and this can push the
cell into the regime αβ > αT in which glycolysis is the more
efficient metabolism.

In Figure 2 we plot the glucose consumption as functions of
CROS for the two cases r = 0 and r = 6 under constant cell needs.
These plots show the significant increase in glucose consumption
as functions of the concentration of H2O2. Therefore, the
generated H2O2 by growth factors and other sources is one of
the major reasons for the increase in glucose consumption. Also,
the two plots intersect for CROS = 0.87C0, which means that
for a given cell glucose requirement, the energy expended for
the consumption of glucose through oxidative phosphorylation
exceeds the corresponding expenditure when the cell has shifted
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FIGURE 2 | Glucose consumption as a function of the concentration of

H2O2 for r = 0 and r = 6. Here, Pext
ROS

=
qG
50 , α = 1

100 , and qSS
G

is in the

dimension of qcell
ATP

. The inset shows the glucose consumption as functions of

CROS for r= 0.

to a glycolysis metabolism and this is due to the production of
H2O2 by mitochondria.

In Figure 3 we plot the lactate production for r = 0
as a function of CROS assuming that qcellATP remains constant.
An increased concentration of H2O2 leads to enhanced lactate
production. This suggests that the observed high lactate
production in cancer cells does not occur solely because of
the cell needs, but may also be related to the increase in the
concentration levels of H2O2. We plot in the inset of Figure 3
the ratio between lactate production and glucose consumption
against ROS concentration levels. This figure demonstrates
that the larger portion of glucose is consumed by the cell
metabolism, however, the corresponding share consumed by
the PPP increases with elevations in the ROS concentration
levels.

Notice that the presented results are qualitatively independent
of the form of β and γ and we can derive the obtained results for
any β and γ as long as they increase with increasing H2O2. These
functions could bemeasured in vitro by putting different cell lines
in a steady state flow of H2O2 and measuring the production rate
of GSH for different concentrations of GSH. We also note that,
at the same concentration of H2O2, glycolytic cells produce less
GSH than cells that use oxidative phosphorylation.

In Shi et al. (2009) showed that by enhancing H2O2 in
hepatoma cells, glycolysis activity increases, and by reducing
H2O2 levels, this activity decreases. These observations are
consistent with our prediction of a concomitant increase in
glycolysis activity with increase in H2O2 and vice versa. We
also note that Brand and Hermfisse (1997) observe that for
proliferating rat thymocytes, cells switch to glycolysis to protect
themselves against H2O2.

In Figure 4 we illustrate how the different dominant
mechanisms in cell metabolism and detoxification evolve as the
concentrations of oxygen and H2O2 vary. For concentrations
of oxygen less than the hypoxic concentration (CH) and
CROS less than the critical value for transition from oxidative
phosphorylation to glycolysis (COG), the metabolism is anaerobic

FIGURE 3 | Production of lactate as a function of the concentration of

H2O2. The inset shows the ratio between lactate production and glucose

consumption. PLact is in the dimension of qcell
ATP

, and Pext
ROS

=
qG
50 . In the inset,

the ratio between lactate production to glucose consumption is plotted.

FIGURE 4 | A schematic of cell behavior under different concentrations

of oxygen and H2O2. COG, CGP are respectively the critical concentration

for transition from oxidative phosphorylation to glycolysis and from Glycolysis

to PPP and CH is the transition point to hypoxia. The scales are for purely

illustrative proposes and do not correspond to experimental values.

glycolysis. When the concentration of oxygen passes the hypoxic
concentration levels, cells transit to oxidative phosphorylation
or aerobic glycolysis depending on whether CROS is less or
greater than COG. As the concentration of H2O2 increases and
exceeds CGP, cells close all their metabolic pathways to drive
the whole consumption of glucose toward PPP in order to
reduce cell damage by H2O2. However, this process cannot
continue indefinitely because changing glucose to G6P is ATP-
dependent. Thus, cells need to keep their glycolytic metabolism
active in order to continue the process of generating GSH and for
detoxification of H2O2.When the concentrations of H2O2 exceed
the critical concentration C0 tumor cells undergo apoptosis.
Notice that this diagram is based on themost efficientmechanism
of producing ATP and the availability of oxygen. It is possible that
mutated cells activate less dominantmetabolic pathways in any of
these regions.
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When some cells adopt the glycolytic phenotype, they have
chosen the most efficient way of generating energy under
H2O2 stress and are more resistant to ROS. Hence, at high
concentrations of H2O2, they have a higher survival advantage
as compared to cells that rely on respiration. As a result,
the glycolytic phenotypic population becomes the dominant
population under ROS stress. Switching to the glycolytic
phenotype may be realized through overexpression of glycolytic
agents. In fact, experimental results report that PKM2 is activated
in cancer cells which serves to shift the metabolism from
oxidative phosphorylation to aerobic glycolysis (Christofk et al.,
2008; Hitosugi et al., 2009). Interestingly, as the concentration
of H2O2 gets close to the CSC (at which cell damage may
occur), PKM2 is inhibited to drive the whole glucose flux to
the PPP pathway and thus minimize the adverse effects of
ROS (Anastasiou et al., 2011). Hence, PKM2 maybe be one of
the primary candidates driving the described transition from
oxidative phosphorylation to glycolysis.

We anticipate that there are other physiological and
pathological situations in which our results might be pertinent
and might help to explain certain biological behaviors. Two such
examples are the observation of the glycolysis metabolism in
embryos (Kondoh et al., 2007) and skeletal muscle (Richardson
et al., 1998) which could well be described and understood based
on our proposed model. Another example is the observation of
the transition between glycolysis and oxidative phosphorylation
in yeast (Chen et al., 2007). However, further investigations and
more detailed discussion of these systems is beyond the scope of
the current manuscript.

In conclusion, we have demonstrated that aerobic glycolysis
is energetically more favorable than oxidative phosphorylation
when the concentration levels of H2O2 exceed a certain critical
value. This is because the energy generated by mitochondria
is consumed by PPP to respond to the production and high
concentrations of H2O2, generated by mitochondria. This makes

oxidative phosphorylation an inefficient source of energy since it
results in high energy consumption in order to respond to the
production of H2O2 by mitochondria under high concentrations
of H2O2. We have also shown that by increasing H2O2 levels,
cells need to increase their glucose consumption via the glycolysis
metabolism and PPP in order to satisfy their nutritional needs
and for the purposes of removing H2O2. Thus, we propose
that H2O2 is the major player behind the observed shift toward
aerobic glycolysis in proliferating cancer cells.
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Inhibition of Non-flux-Controlling
Enzymes Deters Cancer Glycolysis
by Accumulation of Regulatory
Metabolites of Controlling Steps
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Sara Rodríguez-Enríquez, Rafael Moreno-Sánchez and Emma Saavedra *
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Glycolysis provides precursors for the synthesis of macromolecules and may contribute
to the ATP supply required for the constant and accelerated cellular duplication in
cancer cells. In consequence, inhibition of glycolysis has been reiteratively considered
as an anti-cancer therapeutic option. In previous studies, kinetic modeling of glycolysis
in cancer cells allowed the identification of the main steps that control the glycolytic
flux: glucose transporter, hexokinase (HK), hexose phosphate isomerase (HPI), and
glycogen degradation in human cervix HeLa cancer cells and rat AS-30D ascites
hepatocarcinoma. It was also previously experimentally determined that simultaneous
inhibition of the non-controlling enzymes lactate dehydrogenase (LDH), pyruvate kinase
(PYK), and enolase (ENO) brings about significant decrease in the glycolytic flux of cancer
cells and accumulation of intermediate metabolites, mainly fructose-1,6-bisphosphate
(Fru1,6BP), and dihydroxyacetone phosphate (DHAP), which are inhibitors of HK and
HPI, respectively. Here it was found by kinetic modeling that inhibition of cancer
glycolysis can be attained by blocking downstream non flux-controlling steps as
long as Fru1,6BP and DHAP, regulatory metabolites of flux-controlling enzymes, are
accumulated. Furthermore, experimental results and further modeling showed that
oxamate and iodoacetate inhibitions of PYK, ENO, and glyceraldehyde3-phosphate
dehydrogenase (GAPDH), but not of LDH and phosphoglycerate kinase, induced
accumulation of Fru1,6BP and DHAP in AS-30D hepatoma cells. Indeed, PYK, ENO, and
GAPDH exerted the highest control on the Fru1,6BP and DHAP concentrations. The high
levels of these metabolites inhibited HK and HPI and led to glycolytic flux inhibition, ATP
diminution, and accumulation of toxic methylglyoxal. Hence, the anticancer effects of
downstream glycolytic inhibitors are very likely mediated by this mechanism. In parallel, it
was also found that uncompetitive inhibition of the flux-controlling steps is a more potent
mechanism than competitive and mixed-type inhibition to efficiently perturb cancer
glycolysis.

Keywords: cancer glycolysis, metabolic regulation, uncompetitive inhibition, feed-back inhibition, enolase

inhibition, pyruvate kinase inhibition, oxamate
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INTRODUCTION

In recent years it has been extensively documented that oxidative
phosphorylation (OxPhos) is predominant for supplying ATP
in cancer cells under aerobic conditions (Zu and Guppy, 2004;
Moreno-Sánchez et al., 2007; Ralph et al., 2010). However,
cancer glycolysis becomes prevalent when OxPhos is down-
regulated by long-term hypoxia or high incidence of mutations
in mitochondrial DNA (Carew and Huang, 2002; Gatenby
and Gillies, 2004; Rodríguez-Enríquez et al., 2010; Hernández-
Reséndiz et al., 2015). Glycolysis also provides precursors for the
synthesis of the macromolecules required for the constant and
accelerated cellular duplication of cancer cells (Bauer et al., 2005).
In addition, the enhanced lactic acid (a glycolytic end-product)
production and secretion by cancer cells has been proposed
to promote evasion of the immune system and induction of
angiogenesis and metastasis (Lardner, 2001; Fischer et al., 2007).
In consequence, glycolysis inhibition has re-emerged as an
alternative therapeutic option for cancer (Warmoes and Locasale,
2014). In addition, cancer cells may induce oxidative stress on
neighboring stromal fibroblasts triggering mitophagy and hence
re-directing their energymetabolism toward glycolysis. In return,
the lactate produced and expelled by fibroblasts, as well as ketone
bodies, are now taken up and actively oxidized by cancer cells
to drive OxPhos, which presumably favors tumor growth. This
cell-cell interplay has been called reverseWarburg effect (Pavlides
et al., 2009; Martinez-Outschoorn et al., 2011).

By applying the fundamentals of metabolic control analysis
(Fell, 1997; Moreno-Sánchez et al., 2008, 2010), the enzymes
and transporters that control the glycolytic flux of cancer cells
have been identified. These are indeed the targets with the
highest therapeutic potential because their inhibition will have
greater negative effects on tumor glycolysis than inhibition of
low- or negligible flux-controlling steps. It was determined by
both, elasticity analysis and kinetic modeling (experimental
strategies of metabolic control analysis and bottom-up Systems
Biology, respectively), that the main controlling steps of cancer
glycolysis are the glucose transporter (GLUT), hexokinase (HK),
hexose phosphate isomerase (HPI), and glycogen degradation,
regardless the environmental conditions to which the cells were
exposed (normoxia/normoglycemia, hypoxia/hyperglycemia,
and normoxia/hypoglycemia; Marín-Hernández et al., 2006,
2011, 2014). Although the degree of flux control exerted by these
controlling steps slightly changes among the different conditions,
the main controlling steps remain the same, which emphasizes
the fact that cancer glycolysis is also tightly regulated despite its
flux enhancement.

However, non-flux-controlling glycolytic steps such as
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate
kinase (PYK), and lactate dehydrogenase (LDH) have been also
proposed as suitable targets for inhibition of cancer glycolysis

Abbreviations: DHAP, dihydroxyacetone-phosphate; ENO, enolase; Ery4P,

erythrose-4-phosphate; Fru1,6BP, fructose-1,6-biphosphate; GAPDH,

glyceraldehyde 3-phosphate dehydrogenase; Glc6P, glucose 6-phosphate; GLUT,

glucose transporter; HK, hexokinase; HPI, hexosephosphate isomerase; LDH,

lactate dehydrogenase; 6PG, 6-phosphogluconate; PYK, pyruvate kinase; TPI,

triosephosphate isomerase.

(Ganapathy-Kanniappan et al., 2012; Ganapathy-Kanniappan
and Geschwind, 2013; Daniele et al., 2015). Inhibition of any
of these three non-controlling enzymes induces a moderate
decrease in the growth of cancer cells (Tang et al., 2012;
Daniele et al., 2015). However, this anticancer effect could
be rather linked to inhibition of the “moonlighthing” or
accessory functions of glycolytic enzymes which include roles in
cancer development and promotion and cell cycle progression
(Ganapathy-Kanniappan and Geschwind, 2013; Hu et al., 2014).

On the other hand, the glycolytic metabolites glucose-6-
phosphate (Glc6P) and fructose-1,6-bisphosphate (Fru1,6BP)
and the pentose phosphate pathway metabolites erythrose-4-
phosphate (Ery4P) and 6-phosphogluconate (6PG) can modulate
the activities of the controlling enzymes HK and HPI through
competitive and mixed-type inhibitions. Furthermore, some
metabolites that at low, physiological concentrations are
innocuous, at high concentrations may become inhibitors of the
controlling steps HK (Fru1,6BP) and HPI (dihydroxyacetone-
phosphate; DHAP), inducing significant inhibition of the
glycolytic flux in cancer cells (Moreno-Sánchez et al., 2016).
Elevated levels of Fru1,6BP and DHAP in cancer cells can be
achieved by inhibiting, simultaneously, down-stream enzymes
with negligible flux-control such as enolase (ENO), PYK, and
LDH. Therefore, inhibitors of these latter enzymes may also
function as anti-glycolytic drugs because they may indirectly
induce inhibition of the high flux-controlling HK and HPI.
To understand the mechanistic basis of why inhibition of
down-stream non-controlling glycolytic enzymes may affect the
pathway flux, it appears necessary to determine which are the
down-stream steps with high control on the concentrations of
the regulatory metabolites Fru1,6BP and DHAP (i.e., metabolite
concentration control coefficients).

Such a goal was pursued and resolved in the present paper
by using our published AS-30D and HeLa cells glycolysis
kinetic models (Marín-Hernández et al., 2011, 2014; Moreno-
Sánchez et al., 2016). Previous theoretical studies have suggested
that uncompetitive inhibition induces more severe toxic
effects on a metabolic pathway than competitive inhibition
(Cornish-Bowden, 1986; Eisenthal and Cornish-Bowden, 1998).
Therefore, in silico simulations of how different mechanisms
of inhibition (competitive, mixed-type, uncompetitive) on
controlling enzymes impact the pathway systemic properties
(fluxes and metabolite concentrations) were also carried out
using the kinetic glycolysis models.

It was concluded that (i) inhibition of GAPDH with
iodoacetate, or PYK/ENO with oxamate but not LDH, PGK,
or PGAM, induces Fru1,6BP and DHAP accumulation and
methylglyoxal production, leading to significant suppression
of glycolysis; and (ii) uncompetitive inhibition of the most
controlling pathway steps is the most direct and potent
mechanism to efficiently perturb cancer glycolysis.

MATERIALS AND METHODS

Chemicals
HK, Glc6PDH, HPI, aldolase, α-glycerophosphate
dehydrogenase, triosephosphate isomerase (TPI), LDH, and
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Fru6P were purchased from Roche (Mannheim, Germany).
Glucose, iodoacetate, methylglyoxal, NADH, NAD+, NADP+,
and oxamate were from Sigma Chemical (St Louis, MO, USA).

Isolation of Tumor Cells
AS-30D hepatocarcinoma cells were propagated in 200–250 g
weight female Wistar rats by intraperitoneal inoculation of 3mL
of ascitic liquid containing ∼4–6 × 108 cells/mL. After 5–6
days, the intraperitoneal cavity liquid was extracted and tumor
cells were isolated by centrifugation as previously described
(López-Gómez et al., 1993). Animal manipulation was carried
out in accordance with the recommendations of Mexican Official
Standard NOM-062-ZOO-1999. This study did not require
approval by the Ethics Committee of the Instituto Nacional de
Cardiología de México.

Glycolytic Fluxes and Metabolite
Concentrations
Hepatocarcinoma AS-30D cells (15mg cell protein/mL) were
incubated in saline Krebs-Ringer medium supplied with oxamate
(10 or 20mM) or iodoacetate (2 or 4mM) for 60min under
orbital shaking at 150 rpm and 37◦C; under such conditions cell
viability was always higher than 90%. Thereafter, a cell sample
was withdrawn (time 0) and 5mM glucose was added; after
further 10min of incubation another cell sample (time 10) was
withdrawn. The cell samples were immediately mixed with ice-
cold perchloric acid (final concentration of 3% v/v), vortexed
and centrifuged at 1800 × g for 1min at 4◦C. The supernatants
were neutralized with 3M KOH/0.1M Tris, further incubated in
ice for at least 30min and then centrifuged. The supernatants
were stored at −72◦C until use for determination of Glc6P,
Fru6P, Fru1,6BP, G3P, DHAP, ATP, ADP, and L-lactate contents
as described by Bergmeyer (1974). The rate of the glycolytic flux
was estimated from the difference in L-lactate contents from the
t = 0 and t = 10min samples. As glycogen degradation and
glutaminolysis are negligible in AS-30D cells (Marín-Hernández
et al., 2006), total L-lactate production did not require correction
provided by 2-DOG inhibition.

Methylglyoxal was determined by gas chromatography in a
ShimadzuGC2010 apparatus (Shimadzu; Kyoto, Japan) equipped
with a capillary column HP-PLOT/U of 30m length, 0.32mm
I.D. and 10µm film (Agilent, USA), and flame ionization
detector. A methylglyoxal standard curve was carried out in the
range of 0.3–30 nmoles, and the time of retention was 4.7min.
The equipment conditions were FID temperature 200◦C, column
temperature 180◦C, oven temperature 180◦C, and linear velocity
26.4 cm/s. He (10ml/min) and H2 (40ml/min) mix was used
as carrier gas. The cell sample (15mg/ml) was withdrawn after
time 10 and centrifuged at 1800 × g for 2min. 0.5mL of the
supernatant was removed and the cell pellet was resuspended in
the remaining supernatant. The suspension was sonicated with a
Branson sonicator three times for 15 s at 60% of maximal output
with 1min rest, in an ice bath. The sonicate was centrifuged at
20 800 × g for 5min. The supernantant was filtered and 1–2µl
were injected in the gas chromatograph. The limit of detection of
methylglyoxal was lower than 0.3 nmoles. The concentration in
the stock solution of methlyglyoxal was enzymatically calibrated
by using human ALDH2 and saturating NAD+.

Kinetic Modeling
The previous kinetic models of glycolysis built for HeLa
and AS-30D cells (Marín-Hernández et al., 2014; Moreno-
Sánchez et al., 2016) using the metabolic simulator GEPASI
version 3.3 (Mendes, 1993) were modified for the HK, HPI,
TPI, and GAPDH rate equations as described below. The
other rate equations remained unaltered, however, they are
here fully described (Supplementary Table 1) because model
updates previously developed are scattered in several papers
(Marín-Hernández et al., 2011, 2014; Moreno-Sánchez et al.,
2016). The models and simulations were also run in COPASI
software (Hoops et al., 2006) with no significant differences to
those of GEPASI (SBML files are included in Supplementary
Presentation 1). The great majority of the kinetic parameter
values used in the models were determined under the same
experimental conditions (K+-based medium at pH 7.0 and 37◦C;
Marín-Hernández et al., 2006, 2011, 2014; Rodríguez-Enríquez
et al., 2009; Moreno-Sánchez et al., 2012, 2016).

In the AS-30D model, kinetics of GLUT was defined as a
monosubstrate reversible Michaelis-Menten equation [Haldane
equation (Equation 1)] as it was previously determined
(Rodríguez-Enríquez et al., 2009; Marín-Hernández et al., 2011):

v =
Vmf

(

[

Glcout
]

−
[Glcin]
Keq

)

KGlcout

(

1+ [Glcin]
KGlcin

)

+ Glcout

(1)

in which Glcout and Glcin and KGlcout and KGlcin are the extra-
and intra-cellular glucose concentrations and the Km values,
respectively; Keq is the equilibrium constant; and Vmf is the
maximal velocity in the forward reaction.

In the HeLa model, the rate-equation for GLUT was
changed to a double mono-substrate reversible Michaelis-
Menten equation (Equation 2), representing the co-existence of
two isoforms (Marín-Hernández et al., 2014),

v = Vmf









f 1
(

[

Glcout
]

−
[Glcin]
Keq

)

KGlcout1

(

1 +
[Glcin]
KGlcin1

)

+ Glcout





+





f 2
(

[

Glcout
]

−
[Glcin]
Keq

)

KGlcout2

(

1 +
[Glcin]
KGlcin2

)

+ Glcout









(2)

in which KGlcout1 and KGlcout2 are the Km values for extracellular
glucose of each GLUT isoform; and KGlcin1 and KGlcin2 are
the Km values for intracellular glucose of each GLUT isoform.
f 1 and f 2 are the fractional isoform contents determined by
Western blot analysis and enzyme kinetics (Marín-Hernández
et al., 2014). This two-components equation was proposed in
the previous study because cells grown in low glucose express
significant contents of both isoforms, GLUT1 and GLUT3
(Marín-Hernández et al., 2014).

The HK rate equation (Equation 3) used for the present
updated AS-30D model was a random Bi-Bi system (Segel,
1975) with mixed type inhibition by Fru1,6BP based on previous
experimental kinetic analysis (Moreno-Sánchez et al., 2016):
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v =

Vmf
α1KaKb

(

[A] [B]− [P][Q]
Keq

)

1 +
[A]
Ka +

[B]
Kb

+
[A][B]
α1KaKb

+
[P]
Kp +

[Q]
Kq +

[P][Q]
KpKq +

[A][Q]
KaKq +

[P][B]
KpKb

+
[I]
Ki +

[A][I]
α2KaKi

+
[A][I][B]

α1KaKbα2Ki

(3)

where A = [Glcin], B = [ATP], P = [Glc6P] and Q = [ADP].
Ka, Kb, Kp, and Kq are the Km values for the corresponding
substrates and products. α1 and α2 values are the factors by
which Ka (Kmglc) changes when B (ATP) and I (Fru1,6BP) are
bound to the enzyme, respectively. Ki is the inhibition constant
for Fru1,6BP (KiFru1,6BP).

In the HeLa model, the HK rate equation (Equation 4) was a
double random-bisubstrate Michaelis-Menten to also represent
the coexistence of two enzyme isoforms as previously reported
(Marín-Hernández et al., 2014),

v = Vmf









f 1
Ka1Kb

(

[A] [B] −
[P][Q]
Keq

)

1 +
[A]
Ka1 +

[B]
Kb

+
[A][B]
Ka1Kb

+
[P]
Kp +

[Q]
Kq +

[P][Q]
KpKq +

[A][Q]
Ka1Kq +

[P][B]
KpKb





+





f 2
Ka2Kb

(

[A] [B]− [P][Q]
Keq

)

1 +
[A]
Ka2 +

[B]
Kb

+
[A][B]
Ka2Kb

+
[P]
Kp +

[Q]
Kq +

[P][Q]
KpKq +

[A][Q]
Ka2Kq +

[P][B]
KpKb









(4)

in which Ka1 and Ka2 represent the Km values for Glcin of
each isoform; f 1 and f 2 are the fractional isoform contents
experimentally determined from the activities of HKI and HKII
in HeLa cellular extracts (Marín-Hernández et al., 2014).

The HPI rate equation in the HeLa model was considered
as a monoreactant reversible Michaelis-Menten equation
(Equation 5) with (a) competitive (Marín-Hernández et al.,
2011, 2014), (b) uncompetitive (Segel, 1975), and (c) mixed type
inhibition (Segel, 1975) by Ery4P, 6PG, and Fru1,6BP.

(a) v =
Vmf

[Glc6P]
Kglc6p

− Vmr
[Fru6P]
Kfru6p

1 +
[Glc6P]
Kglc6p

+
[Fru6P]
Kfru6p

+
[ERY4P]
Kery4p

+
[Fru1,6BP]
Kfru1,6bp

+
[6PG]
K6pg

(b) v =

Vmf
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Glc6P
]

− Vmr
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[Fru6P]
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)
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∗
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+
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)

(c) v =

Vmf [Glc6P]

Kglc6p

(

1 +
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Kery4p

+
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+
[6PG]
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) − Vmr [Fru6P]
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(

1 +
[ERY4P]
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+
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+
[6PG]
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1 +

(

[Glc6P]
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)

∗

(

1 +
[ERY4P]
∝Kery4p

+
[Fru1,6BP]
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+
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∝K6pg

1 +
[ERY4P]
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+
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)

+

(

[Fru6P]
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∗

(

1 +
[ERY4P]
∝Kery4p
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∝K6pg

1 +
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Kery4p
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+
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)

(5)

The HPI rate equation in the AS-30D model was a monoreactant
reversible equation (Equation 6) with competitive inhibition
by four modulators: Ery4P, 6PG, Fru1,6BP and DHAP as
experimentally determined (Moreno-Sánchez et al., 2016):

v =
Vmf [

Glc6P]
Kglc6p

− Vmr [Fru6P]Kfru6P

1+ [Glc6P]
Kglc6p

+
[Fru6P]
Kfru6p

+
[ERY4P]
Kery4p

+
[Fru1,6BP]
Kfru1,6bp

+
[PG]
K6pg

+
[DHAP]
Kdhap

(6)

The rate equation for PFK-I (Equation 7) in all kinetic models
was the concerted transition model of Monod, Wyman and
Changeux for exclusive ligand binding (Fru6P, activators, and
inhibitors) together with mixed-type activation and simple
Michaelis–Menten terms for ATP and reverse reaction (Marín-
Hernández et al., 2011, 2014) as established by experimental
kinetic analysis (Moreno-Sánchez et al., 2012). ATP and citrate
are the allosteric inhibitors. L is the allosteric transition
constant; KaFru26BP is the activation constant for Fru26BP;
KiCIT and KiATP are the inhibition constants for citrate and

ATP; α and β are the factors by which KFru6P and Vmax
change when a mixed-type activator is bound to the active
enzyme.

Probably derived from the high complexity of the PFK1
rate equation, the algorithms used by COPASI to generate the
ordinary differential equations to calculate the variation in the
metabolite concentrations assign the role of the first substrate (or
product) to that defined in the reaction specification window.
If the order of substrates and products in the reaction does not

match with that stated in the rate equation, then the computer
program mix-up the identity of the ligands in the ordinary
differential equations. Therefore, to correct for this type of errors
both the syntax reaction and the rate equation have to be
displayed in the same order of substrates and products; then one
should be aware that the reaction syntax does not necessarily
reflect the order of binding in the enzyme, which defines the type
of reaction mechanism.

Reaction: ATP+ Fru6P= ADP+ Fru1,6BP
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v = Vm
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(7)

The ALDO rate equation was the reversible Uni-Bi random
Michaelis-Menten equation (Equation 8) in all kinetic models as
was reported in previous kinetic models (Marín-Hernández et al.,
2011, 2014).

v =
Vmf [Fru1,6BP]Kfru1,6bp

− Vmr [DHAP][G3P]KDHAPKG3P

1 +
[Fru1,6BP]
Kfru1,6bp

+
[DHAP]
KDHAP

+
[G3P]
KG3P

+
[DHAP][G3P]
KDHAPKG3P

(8)

Kinetics for TPI in the AS-30D model was here depicted by
a mono-substrate simple reversible Michaelis-Menten equation
(Equation 9) with mixed type inhibition by Fru1,6BP as it was
previously determined (Moreno-Sánchez et al., 2016):

v =

Vmf [S]

Ks

(

1 +
[I]
Ki

) − Vmr [P]

Kp
(

1 +
[I]
Ki

)

1 +
[S]

Ks

(

1 +
[I]
Ki

1 +
[I]
∝Ki

) +
[P]

Kp

(

1 +
[I]
Ki

1 +
[I]
∝Ki

)

(9)

α value is the factor by which Ks andKp change when Fru1,6BP is
bound to the enzyme; Ki is the inhibition constant for Fru1,6BP
(KiFru1,6BP).

In the HeLa model, the TPI rate equation (Equation 10) was
a mono-substrate simple reversible Michaelis-Menten equation
as it was previously determined (Marín-Hernández et al., 2011,
2014) with no inhibitors:

v =
Vmf [S]Ks − Vmr [P]Kp

1+ [S]
Ks +

[P]
Kp

(10)

GAPDH kinetics in the AS-30D model was here described
by a simplified ordered Ter-Bi Michaelis-Menten equation
(Equation 11) with mixed type inhibition by Fru1,6BP as
previously determined (Moreno-Sánchez et al., 2016):

v =
Vmf [A][B][C]

KaKbKc
− Vmr [P][Q]KpKq

1 +
[A]
Ka +

[A][B]
KaKb

+
[A][B][C]
KaKbKc

+
[P][Q]
KpKq +

[Q]
Kq +

[I]
Ki +

[A][B][I]
KaKb∝Ki

+
[A][B][C][I]
KaKbKc∝Ki

+
[P][Q][I]
KpKq∝Ki

(11)

where A = [NAD+], B = [G3P], C = [Pi], P = [BPG], Q =

[NADH] with their respective affinity constants (Ka, Kb, Kc, Kp,
and Kq). Ki is the inhibition constant for Fru1,6BP (KiFru1,6BP). α
value is the factor by which Kb (KmG3P) changes when Fru1,6BP
is bound to the enzyme.

In the HeLa model, the GAPDH rate equation (Equation 12)
was a simplified ordered Ter-Bi Michaelis-Menten equation as
was previously determined and used in previous models (Marín-
Hernández et al., 2011, 2014).

v =
Vmf [A][B][C]

KaKbKc
− Vmr [P][Q]KpKq

1 +
[A]
Ka +

[A][B]
KaKb

+
[A][B][C]
KaKbKc

+
[P][Q]
KpKq +

[Q]
Kq

(12)

In all models the rate equations for PGAM and ENO were
depicted by mono-substrate simple reversible Michaelis-Menten
equation (Equation 13):

v =
Vmf [S]Ks − Vmr [P]Kp

1+ [S]
Ks +

[P]
Kp

(13)

in which [S] and [P] are the respective concentrations of
substrates and products and their respective Km values (Ks and
Kp) which were experimentally determined in previous works
(Marín-Hernández et al., 2011, 2014).

The PYK rate equation (Equation 14) in all models was
defined as simple random-bisubstrate Michaelis-Menten that
represents the kinetics of the prevalent PYK isoform in cancer
cells with no cooperativity or allosteric modulation by typical
metabolites, as experimentally determined for AS-30D cells
(Marín-Hernández et al., 2014; Moreno-Sánchez et al., 2016). A,
B, P, and Q are PEP, ADP, Pyr, and ATP, respectively; Ka, Kb, Kp,
and Kq are the Km values for the corresponding substrates and
products.

v =

Vmf
KaKb

(

[A] [B]− [P][Q]
Keq

)

1+ [A]
Ka +

[B]
Kb

+
[A][B]
KaKb

+
[P]
Kp +

[Q]
Kq +

[P][Q]
KpKq +

[A][Q]
KaKq +

[P][B]
KpKb

(14)

In all models, the rate equations (Equation 15) for PGK and
LDH were defined by random Bi-Bi reversible Michaelis-Menten
for non-interacting substrates (α and β = 1) according to the
reported literature (Marín-Hernández et al., 2011, 2014; Moreno-
Sánchez et al., 2016);Ka,Kb,Kp, andKq are theKm values for the

corresponding substrates and products previously determined
(Marín-Hernández et al., 2011, 2014; Moreno-Sánchez et al.,
2016). In the case of PGK, A, B, P, and Q are 1,3BPG, ADP,

3PG, and ATP, respectively whereas for LDH they are NADH,

Pyr, Lactate and NAD+, respectively.

v =
Vmf [A][B]

αKaKb
− Vmr [P][Q]

βKpKq

1+ [A]
Ka +

[B]
Kb

+
[A][B]
αKaKb

+
[P][Q]
βKpKq +

[P]
Kp +

[Q]
Kq

(15)
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In the HeLa model the rate-equation (Equation 16) for the
monocarboxylate transporter (MCT) activity was incorporated
(Marín-Hernández et al., 2014) since it catalyzes the expulsion
of lactate and H+. With the inclusion of this reaction, it can be
visualized why HeLa cell cultures become rapidly acidic. This
was a mono-substrate reversible Michaelis-Menten equation in
which Lacin and Lacout are the intra- and extra-cellular lactate
concentrations; KLacin and KLacout are the Km values for the intra
and extracellular lactate; Keq is the equilibrium constant of the
reaction. The equation only included lactate as a ligand because
kinetic parameters for the proton are not available.

v =
Vmf

(

[Lacin]−
[Lacout]
Keq

)

KLacin

(

1+ [Lacout]
KLacout

)

+ Lacin

(16)

Molecular Docking Analysis
Crystal structures of human HK type I, TPI and GAPDH, and
mouse HPI, were obtained from the protein data bank (accession
numbers 4FOI, 1HTI and 3PFW, and 1U0F, respectively). The
three dimensional models of the ligands used in the study were
obtained from different crystal structures found in the protein
data bank or downloaded from PubChem (https://pubchem.ncbi.
nlm.nih.gov/). The models were optimized using the ArgusLab
4.0.1 (Planaria Software LLC, Seattle, WA) available at: http://
www.arguslab.com and Maestro, version 9.1 (Schrodinger, LLC,
New York, NY, 2010) softwares. For docking analysis, the
ligands from the above protein crystal structures were removed
using the software UCSF Chimera package 1.6 (Resource for
Biocomputing, Visualization, and Informatics at the University
of California, San Francisco, CA; supported by NIH P41
RR001081; Pettersen et al., 2004). The protein structure and
ligandmodels were prepared for docking using the software ADT
1.5.2 (Sanner, 1999; Morris et al., 2009). Docking analysis of
the enzyme structures and ligands were carried out using the
software Autodock 4.2.5.1 (Huey et al., 2007) available at http://
autodock.scripps.edu/. After docking, 100 conformations for
each ligand were obtained, and then clustered for analysis using
ADT 1.5.2 software. The conformations selected corresponded
to the lowest values of binding energy and Ki. Analysis of the
resulting structures and generation of the figures were achieved
with PyMOL (The PyMOL Molecular Graphics System, Version
1.2.r1, Schrodinger, LLC).

RESULTS

Effect of Metabolic Inhibition of Low
Flux–Controlling Enzymes in the Pathway
Flux
Inhibition of a low- or non-flux controlling step might be
regarded as a mishap or misleading option to decrease the
pathway flux because it requires almost complete inhibition (a
“pharmacological knock out” or >80% inhibition) of the activity
to decrease the pathway flux to the levels reached by inhibiting a
flux-controlling step. However, there are experimental evidences
indicating that oxamate and iodoacetate, presumed specific

inhibitors of LDH and GAPDH, i.e., two non-controlling
glycolytic enzymes, do affect the glycolytic flux of cancer,
and non-cancer cells (Goldberg et al., 1965; Elwood, 1968;
McKee et al., 1968; Coe and Strunk, 1970; Chatham et al.,
1988; Moreno-Sánchez et al., 2016). Remarkably, this inhibition
induces accumulation of Fru1,6BP and DHAP, being the former
an inhibitor of HK (controlling enzyme), TPI, and GAPDH,
whereas the latter is an inhibitor of HPI (another controlling
enzyme; published data summarized in Supplementary Table 2).

The effect of oxamate on the activities of LDH, GAPDH,
ENO, and PYK, which in turn affected the Fru1,6BP and DHAP
concentrations (Moreno-Sánchez et al., 2016), was here in silico
examined focusing on the concentration control coefficients for
Fru1,6BP and DHAP by using the updated and modified kinetic
models of AS-30D and HeLa glycolysis. These models were
further refined (described in Section Kinetic Modeling) with
respect to the models previously published (Marín-Hernández
et al., 2014; Moreno-Sánchez et al., 2016). Enzymes that produce
a metabolite have positive concentration control coefficients
whereas those that consume it have negative ones (Fell, 1997).
For glycolysis of AS-30D hepatocarcinoma cells, the model
simulations indicated that GLUT, HK, and HPI have high
positive concentration control coefficients values (from 1 to 2.3),
whereas ENO (−0.57 and −0.99), PYK (−0.4 and −0.7), and
GAPDH (−0.16 and −0.27) have high negative concentration
control coefficients values on Fru1,6BP and DHAP, respectively
(Table 1). For HeLa cells cultured for 24 h under different glucose
concentrations (normo-, hypo-, or hyper-glucemic conditons)
kinetic model simulations showed that GLUT, HK, and HPI
also exert control on the synthesis of the same two metabolites,
whereas GAPDH (−0.7 and −1.3) and PYK (−1.3 and −3)
control their consumption (Table 1). Hence, in both types of
cancer cells, the enzymes with high positive concentration
control coefficients on Fru1,6BP and DHAP were those that
also exerted the main control on the glycolytic flux (GLUT, HK,
and HPI) and hence, their inhibition should decrease Fru1,6BP
and DHAP concentrations. In contrast inhibition of GAPDH,
ENO, and PYK, which have high negative concentration control
coefficients should increase the levels of Fru1,6BP and DHAP.
It is worth noting that without kinetic modeling it would not
have been possible to unveiled the important role of GAPDH,
ENO, and PYK on the indirect modulation of the flux-controlling
enzymes by Fru1,6BP andDHAP. By the present in silico analysis,
these other metabolic regulatory mechanisms of cancer glycolysis
became apparent and were further analyzed.

In the AS-30D kinetic model it was evaluated the effect of
LDH, ENO or PYK inhibition on the levels of Fru1,6BP and
DHAP. LDH showed low control on their concentrations (−0.4
and −0.02; Table 1) since an 80% decrease in its activity only
induced a marginal increase in their concentrations (Figure 1);
identical results were attained with PGK and PGAM (data
not shown). In contrast, a similar inhibition of ENO and
PYK activities led to marked accumulation of Fru1,6BP and
DHAP (Figures 1A,C). Similar results were obtained with the
HeLa model under hypoglycemia when modulation of the
GAPDH, PYK, PGK, PGAM, and LDH activities were simulated
(Figures 1B,D). These analyses strongly suggested that the
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TABLE 1 | Concentration control coefficients of glycolytic steps on Fru1,6BP, and DHAP obtained in silico using the updated kinetic models of glycolysis

in AS-30D and HeLa cells (see Section Materials and Methods) under normoxia (20% O2).

Enzymes AS-30D cells HeLa cells

Hyperglycemia Normoglycemia Hypoglycemia

Fru1,6BP DHAP Fru1,6BP DHAP Fru1,6BP DHAP Fru1,6BP DHAP

GLUT 1.9 1 0.66 0.36 0.72 0.4 2.5 1.5

HK 2.3 1.3 2.3 1.3 2.4 1.4 1.9 1.1

HPI 1.9 1.1 1.5 0.8 1.3 0.7 0.8 0.4

PFK1 0.2 0.1 0.7 0.4 0.9 0.5 0.7 0.4

ALDO −0.4 −0.003 −0.3 0.0007 −0.4 −0.0007 −0.6 0.001

TPI −0.06 −0.06 −0.004 −0.004 −0.004 −0.004 −0.008 −0.008

GAPDH −0.27 −0.16 −1.3 −0.7 −1.2 −0.7 −1.2 −0.7

PGK −0.1 −0.08 −0.01 −0.008 −0.02 0.01 −0.02 −0.01

PGAM −0.09 −0.05 −0.05 −0.03 −0.06 −0.03 −0.07 −0.04

ENO −0.99 −0.57 −0.06 −0.03 −0.06 −0.03 −0.07 −0.05

PYK −0.7 −0.4 −3 −1.7 −2.5 −1.5 −2.0 −1.3

LDH −0.04 −0.02 −0.03 −0.02 −0.02 −0.01 −0.03 −0.02

MCT −0.2 −0.1 −0.2 −0.1 −0.1 −0.07

FIGURE 1 | Dependence of Fru1,6BP and DHAP concentrations on the

activity of different pathway enzymes of cancer glycolysis. The
reference 100% enzyme activity values were those corresponding to the
respective Vmax values for the forward reaction whereas Fru1,6BP and DHAP
concentrations were those predicted by each model (A,C for AS-30D cells;
B,D for hypoglycemic HeLa cells). When two enzymes were simultaneously
titrated, identical variation in the activities was applied. In the case of LDH,
ENO, and GAPDH, a decrease of the Vmaxf value was accompanied by a
proportional decrease in the Vmaxr value.

increase in Fru1,6BP and DHAP levels reported in AS-30D,
Ehrlich ascites, sarcoma 37 ascites and HeLa cells treated with
oxamate (Goldberg et al., 1965; Elwood, 1968; Coe and Strunk,
1970; Moreno-Sánchez et al., 2016), was a consequence of ENO
and PYK inhibition rather than of LDH inhibition, contrary to
the most common interpretation.

To further establish the influence in the glycolytic flux
and ATP concentration of the inhibitory effect of Fru1,6BP
and DHAP on flux-controlling (HK and HPI) and not

flux-controlling (TPI and GADPH) enzymes, several simulations
were made with the AS-30D model (Figure 2). When inhibition
of Fru1,6BP and DHAP was not included in the rate equations
of HK, HPI, TPI and GAPDH, the decrease of ENO and PYK
activities still increased the levels of Fru1,6BP and DHAP but
the concentration of ATP and glycolytic flux were not modified
(Figure 2). A similar effect was observed when inhibition
of Fru1,6BP on the TPI and GAPDH rate equations was
included (data not shown). These last observations indicated that
inhibition of ENO and PYK activities per-se was not sufficient
to decrease the glycolytic flux. Only when the Fru1,6BP and
DHAP inhibitions on the HPI and HK rate equations were
included, the glycolytic flux and ATP concentration decreased
(Figure 2).

Furthermore, the Fru1,6BP andDHAP levels indeed increased
in cells treated with oxamate (reported by Moreno-Sánchez et al.,
2016) or iodoacetate (Table 2). These experimentally determined
metabolite concentrations were also closely simulated by kinetic
modeling when decreasing by ∼75% the ENO+PYK activities,
and including the Fru1,6BP and DHAP inhibition of HK, or
HPI, or both HK+HPI, or HPI+HK+TPI+GAPDH (Figure 2).
Hence, the interactions of these metabolites with HK and HPI
are apparently also involved in themechanisms of control of their
own intracellular levels. Incubation with oxamate or iodoacetate
promoted a severe decrease (3.5–4.6 times vs. control) in the
intracellular ATP (Table 2). Although cell viability remains high
(>90%), it may be possible that these inhibitors also affect
the mitochondrial function thus perturbing the cell ATP levels
(Martin-Requero et al., 1986; Cano-Ramírez et al., 2012). Since a
significant HK fraction in cancer cells is bound to mitochondria,
OxPhos also provides ATP for this glycolytic reaction. However,
this interplay between glycolysis and OxPhos through the
ATP/ADP ratio has not been included in the present kinetic
models because the subcellular distribution of the HK isoforms
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FIGURE 2 | Effect of ENO and PYK inhibition on Fru1,6BP, DHAP, and

ATP concentrations and glycolytic flux. The kinetic model for AS-30D
glycolysis was used. ENO plus PYK activities were modulated and the effects
on Fru1,6BP (A), DHAP (B), glycolytic flux (C), and ATP (D) were determined.
Several simulations were made with or without enzyme inhibition by Fru1,6BP
and DHAP on no enzyme (a); on HPI (b); on HK (c); on both HPI and HK (d);
and on HPI, HK, TPI, and GAPDH (e). The respective HPI, HK, TPI, and
GAPDH rate equations with Fru1,6BP and DHAP inhibition are depicted in the
Methods Section.

has not been determined under the different O2 and glucose
culture conditions.

Accumulation of Toxic Metabolites
Contributes to Decrease Cancer Glycolysis
Another possible consequence of DHAP accumulation is
the production of methylglyoxal, which can also inhibit the
glycolytic flux in cancer and normal cells (Leoncini et al., 1989;
Halder et al., 1993; Biswas et al., 1997). In this regard, cells
treated with oxamate showed increased methylglyoxal levels
(Table 2). Similarly, significant increases in Fru1,6BP, DHAP and
methylglyoxal were observed in cells treated with iodoacetate
(Table 2). This last inhibitor primarily affects GAPDH (Sabri and
Ochs, 1971), which also exerts control on the concentrations of
Fru1,6BP and DHAP (Table 1). In addition, in the iodoacetate-
treated cells, significant decreases in the ATP concentrations
and glycolytic flux were observed with respect to control cells,
whereas the Glc6P and Fru6P levels did not change (Table 2). All
these changes in metabolites and glycolytic flux were similar to
those previously observed in cells treated with oxamate (Table 2;
and Moreno-Sánchez et al., 2016). Therefore, it is suggested
that iodoacetate induces glycolysis inhibition mainly through
accumulation of Fru1,6BP and DHAP.

Methylglyoxal affects PYK and GAPDH activities (Leoncini
et al., 1989; Halder et al., 1993; Biswas et al., 1997). However,
in cells treated with iodoacetate (2mM) or oxamate (20mM)
no changes were attained in these enzyme activities (data
not shown). This discrepancy may be attributed to the high
concentrations of methylglyoxal (2.5mM) used in previous
papers (Leoncini et al., 1989; Halder et al., 1993). Alternatively,
the glyoxalase system in AS-30D cells might be highly efficient

TABLE 2 | Fru1,6BP and DHAP concentrations in AS-30D cells treated with

oxamate or iodoacetate.

Metabolite/

flux

Control Iodoacetate (mM) Oxamate (mM)

2 4 10 20

Glc6P 10 ± 5 (3) 3.9 ± 2 (4) 3.5 ± 2 (3) 4a 4a

Fru6P 2 ± 1 (3) 1.5 ± 0.3 (3) 1.6 ± 0.5 (3) 1.2a 1.3a

Fru1,6BP 2.4 ± 1.7 (3) 7 ± 1 (3)* 8 (2)c 23a 22a

DHAP 1.8 ± 0.4 (5) 33 ± 9 (3)** 17 (2)c 11a 11a

ATP 6 ± 2 (3) 1.4 ± 0.5 (3)* 1.3 ± 0.3 (3)* 1.7a 1.4a

Glycolytic
flux

8 ± 3 (3) 2 ± 2 (4)* 1 (2)c 4.3a 4.2a

Methylglyoxalb < 0.3 (4)d 2.2 ± 0.6 (3) N.M. N.M. 3.6 ± 1.6 (4)

Cells were incubated in Krebs-Ringer medium with no glucose added at 37◦C for 1 h with

the indicated inhibitor concentrations. Then, 5mM glucose was added and the metabolite

concentrations and glycolytic flux were determined after 10min. Metabolites in mM. Fluxes

in nmol/min*mg protein.
aFor comparison, these values were taken from Moreno-Sánchez et al. (2016).
bMethylglyoxal in nmol/mg protein.
cThe independent experiment values showed a 15% difference between them.
dThe limit of methylglyoxal detection was ∼0.3 nmoles.

Asterisks indicate statistically significant differences compared with control (*P ≤ 0.05,

**P ≤ 0.0005) using Student’s t-test for non-paired samples. The data shown represent

the mean ± standard deviation with the number of independent preparations assayed

between parentheses. N.M. not measured.

for methylglyoxal detoxification, a hypothesis that remains to be
experimentally determined.

Effect of the Inhibition Mechanism of HPI
on Pathway Properties
In the previous sections it was shown that it is indeed
possible to significantly inhibit glycolysis by affecting non-flux
controlling enzymes. Traditionally, competitive inhibitors have
been studied or designed for drug therapy. However, such type
of inhibitors induces substrate accumulation which in turn
eventually displaces the inhibitor from the enzyme binding site,
attenuating its inhibitory impact. Therefore, it was interesting to
test with the present kinetic model the effect of different types
of inhibition mechanisms on the pathway flux. This is relevant
because the experimental results above showed accumulation
of metabolites that affect the activities of the main controlling
enzymes. Therefore, the kinetics of a flux-controlling step such
as HPI was analyzed. This enzyme catalyzes a monosubstrate
reaction and is strongly regulated by Fru1,6BP, Ery4P, and
6PG (Supplementary Table 2) which are competitive inhibitors
(Marín-Hernández et al., 2011). In these simulations, DHAP
was not included as HPI inhibitor because it only affects at
high concentrations (KiDHAP = 9.4mM and in HeLa cells
physiological concentrations of DHAP are 0.5–0.8mM; Marín-
Hernández et al., 2014).

The first versions of the kinetic model of cancer glycolysis
previously published predicted low levels of Glc6P and high
glycolytic flux which were in disagreement with the experimental
values. The model refinement process indicated that HPI activity
should be inhibited to properly simulate the experimental values
(Marín-Hernández et al., 2011). Thus, it was experimentally
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determined that physiological levels of Ery4P, 6PG, and Fru1,6BP
competitively inhibited HPI activity vs. Fru6P or Glc6P
(Marín-Hernández et al., 2011; Moreno-Sánchez et al., 2016;
published data summarize in Supplementary Table 2). Then,
multiple competitive-type inhibition was incorporated in the
HPI rate-equation to accurately simulate the experimental Glc6P
concentrations and glycolytic flux (Marín-Hernández et al.,
2011). Here it was now explored the effect that different types
of HPI inhibition have on pathway metabolite concentrations
and flux to establish which kind of inhibitor is more efficient in
blocking controlling steps and glycolytic flux.

For competitive inhibition, the effect of changing the affinities
(1/Ki) of HPI inhibitors was modeled. A decrease of 90% in theKi
value (i.e., the affinity values for inhibitors were increased by 10-
fold) increased the HPI flux-control coefficient to a value of 0.27
(Figure 3A). The reason for this behavior was that accumulation
of Glc6P (Figure 3C) attenuated the binding of the physiological
inhibitors to HPI and also exerted strong inhibition on HK.
Furthermore, the HPI flux control remained unchanged (0.25)
when the Ki value was decreased 100-fold (Ki= 0.01; Figure 3A),
but the glycolytic flux drastically decreased as a consequence of
HK inhibition by accumulated Glc6P.

When HPI inhibitors were all considered as uncompetitive
or mixed type inhibitors in the kinetic model of hypoglycemic
HeLa cells, it was necessary to decrease their affinities by 6–
10 times (i.e., their Ki values were increased 6–10) to keep
unaltered the HPI flux-control coefficient, pathway flux and
Glc6P concentration (Figures 3A–C, respectively). However, it
was noted that with uncompetitive inhibition, an increase in the
Ki values by only three-fold yielded a high flux control coefficient
of 0.65 with concomitant remarkable suppression of pathway
flux and accumulation of Glc6P. This enhanced accumulation of
substrates of the inhibited enzyme by uncompetitive inhibitors
(vs. competitive inhibitors) was envisioned three decades ago
(Cornish-Bowden, 1986), but perhaps because examples of
uncompetitive inhibition have not been profusely found, studies
on this issue have not been developed. With mixed-type
inhibition, the three-fold increase in Ki values brought about
milder effects on HPI flux control, pathway flux and Glc6P
concentration.

These in silico simulations suggested that both uncompetitive
and mixed-type inhibition can perturb the pathway flux, at a
significantly greater extent than competitive inhibition, because
these types of inhibition affect Vmax (which is not altered by
competitive inhibitors) and catalytic efficiency (Vmax/Km). It
is recall that the Vmax value is directly linked to the content
of active enzyme (Vmax = kcat × [enzyme]total) and hence to
transcriptional/translational regulation and protein degradation.
The design of new inhibitors should consider the uncompetitive
and mixed-type inhibition mechanisms to generate potent drugs
against cancer glycolysis.

Docking Analysis Predicts Potency of
Regulatory Metabolites of HPI
To explore why regulatory metabolites may have different
potencies, a docking analysis of metabolic inhibitors was

FIGURE 3 | Effect of changing the Ki value and inhibition mechanism of

tumor HPI on (A) HPI flux control coefficient; CJ
HPI

, (B) pathway flux

and (C) Glc6P concentration. Using the kinetic model for hypoglycemic
HeLa cells, increasing Ki values for Ery4P, Fru1,6BP, and 6PG were simulated
with competitive, uncompetitive or mixed type inhibition mechanisms. In the
case of mixed type inhibition, α = 2. The dashed line indicates the normalized
Ki value which was experimentally determined (KiEry4P = 1µM; KiFru1,6BP =

60µM; Ki6PG = 15µM).

performed on HPI. This analysis showed that the HPI
competitive inhibitors can indeed adequately bind to the
substrate binding site and be stabilized by the same amino acids
in the active site (Figure 4). The binding energies were −5.62
(Ery4P), −4.57 (6PG), −3.63 (Fru1,6BP), and −2.64 (DHAP)
Kcal/mol. The estimated Ki values (in mM) were 0.076 (Ery4P),
0.45 (6PG), 2.2 (Fru1,6BP), and 11.6 (DHAP) which indicated
that Ery4P and 6PG bind more tightly to the enzyme active
site compared with the other two metabolites. These results
correlated with previous data indicating that the most potent
HPI inhibitors are Ery4P (Ki = 0.8–2.5µM) and 6PG (Ki =
6.8–18µM; Marín-Hernández et al., 2011). The discrepancy
between the theoretical and experimental Ki values may be due
to limitations in the docking procedure since for the analysis,
the enzyme structures were considered rigid whereas only the
ligands were flexible (for the limitation in the number of rotating
bonds that can be assigned). However, enzyme structures are
flexible and upon substrate or modifier binding, the active sites
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FIGURE 4 | Docking of metabolic inhibitors into mouse hexose phosphate isomerase active site. (A) Structure of the dimer of mouse HPI showing the
substrate Glc6P (red spheres) bound to one of the active sites. The active site of each monomer is formed by a cleft between two domains at the dimer interface.
(B) Backbone representation of the residues located within 4 Å of the ligands (shown as sticks) bound in the active site. Residues colored cyan belong to subunit B of
the dimer.

have in general conformational changes that in most cases favor
tighter ligand coupling. However, despite these limitations, the
docking data analysis predicted the order of binding efficiency

and potency of the HPI inhibitors. Also, docking analysis showed
that Fru1,6BP can bind to the active sites of HK, TPI, and
GAPDH (Supplementary Figure 1).
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DISCUSSION

Feedback Inhibition by Glycolytic
Intermediaries on Flux Controlling
Enzymes
A recent study by our group (Moreno-Sánchez et al., 2016)
showed that oxamate inhibition of cancer glycolysis was
mediated by the direct moderate inhibition of several pathway
sites such as LDH, PYK, and ENO. The simultaneous oxamate
inhibition of these non-controlling enzymes induced the
accumulation of Fru1,6BP and DHAP, which behaved as
inhibitors of HK, HPI, TPI, and GAPDH. In the present
study, it was shown that inhibition of down-stream non-
controlling enzymes may affect pathway flux only if Fru1,6BP
and DHAP are accumulated. It was also shown that the
mechanistic basis of this glycolysis suppression was to
specifically block the steps with predominant control on
the Fru1,6BP and DHAP concentrations, which were PYK,
ENO, and GAPDH, but not LDH or PGK. Perturbation
of other pathways by inhibiting non-controlling steps may
occur as long as the ensuing accumulation of metabolites
affects the activities of the main controlling steps. For
instance, inhibition of malate dehydrogenase, a Krebs cycle
non-controlling step, brings about accumulation of NAD+,
malate, fumarate, and succinate. And high levels of these
metabolites may alter the activities of isocitrate and 2-
oxoglutarate dehydrogenases, the main controlling steps of
Krebs cycle.

Although iodoacetate is an unspecific drug that may
covalently alkylates thiol groups at the active sites of many
enzymes and hence may show toxicity, treatment of Ehrlich
ascites carcinoma-bearing mice with iodoacetate significantly
increases the median cumulative survival time and percentage
of survivors, as well as decreases the tumor size (Fahim
et al., 2003). Similarly, oxamate is able to inhibit the
chondrosarcoma and nasopharyngeal carcinoma growth in
nude mice (Li et al., 2013; Hua et al., 2014). It should
be noted that the observed improvement in tumor-bearing
animals treated with these compounds is the result of several
combined processes including abolishment of tumor glycolysis
and activation of several rescue pathways such as immune system
(Rheins et al., 1975) and antioxidant defense (Fahim et al.,
2003).

Although the drugs tested (oxamate and iodoacetate) might
have similar effects on non-cancer cells, both inhibitors are well-
tolerated in animals and human non-cancer cell lines, suggesting
that normal cells are less sensitive to glycolysis inhibition, likely
due to a lower dependence on glycolysis for their proliferation
with respect to tumor cells. In addition, glycolysis inhibition
of tumor associated fibroblasts (reverse Warburg effect) may
be also beneficial to deter tumor growth (Pavlides et al., 2009;
Martinez-Outschoorn et al., 2011).

As suggested by the data of the present study, the anticancer
effect observed of these unspecific drugs (Fahim et al., 2003; Li
et al., 2013; Hua et al., 2014) may be associated with the inhibition
of glycolysis mediated by (i) the accumulation of Fru1,6BP
and DHAP which in turn inhibit the main flux-controlling

FIGURE 5 | Glycolysis inhibition by accumulation of

fructose-1,6-bisphosphate and dihydroxyacetone phosphate. Inhibition
of ENO and PYK by oxamate, GAPDH inhibition by iodoacetate, induces
accumulation of Fru1,6BP and DHAP, which behave as inhibitors of HK, HPI,
GAPDH, and TPI at high concentrations, leading to a decrease in the L-lactate
production (glycolysis inhibition). High levels of DHAP produce methylglyoxal
that is converted in D-lactate by the glyoxalase system. PPP, pentose
phosphate pathway.

enzymes HK and HPI (Figure 5); and (ii) the accumulation of
methyglyoxal. For cancer treatment, this mechanism may help
in the design of new strategies to inhibit essential metabolic
pathways such as OxPhos, the antioxidant system and anabolic
routes.

Based on the in silico kinetic modeling analysis indicating
that both uncompetitive and mixed-type inhibitors can perturb
at a significantly greater extent the pathway flux and metabolite
concentrations than competitive inhibitors, it is concluded
that elevation of the Fru1,6BP levels will have a more severe
depressing effect on the glycolytic flux of cancer cells than that
of DHAP levels because the former behaves as a mixed-type
inhibitor of HK whereas the latter competitively inhibits HPI
(Moreno-Sánchez et al., 2016).

Synthesis of Toxic Metabolites for Cancer
Glycolysis
Fru1,6BP is a product of the PFK-1 reaction and a weak
inhibitor of HK, HPI, GAPDH, and TPI (Marín-Hernández
et al., 2011; Moreno-Sánchez et al., 2016). In addition of
being an activator of PYKM2, Fru1,6BP may indirectly inhibit
oxidative phosphorylation (Mazurek et al., 2002; Díaz-Ruiz
et al., 2008). On the other hand, DHAP is one of the two
products of Fru1,6BP breakdown, it is a weak HPI inhibitor
(Moreno-Sánchez et al., 2016) and together with glyceraldehyde-
3- phosphate represent the most important endogenous source
of methylglyoxal (Allaman et al., 2015). The latter compound
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is one of the most potent glycating agents naturally produced
within cells; it reacts with proteins, lipids and nucleic acids to
form advanced glycation end products (AGEs; Allaman et al.,
2015). High levels of this metabolite can be reached when
the concentrations of their precursors are elevated, such as in
impaired glucose utilization and TPI deficiency (Ahmed et al.,
2003). The glyoxylase system is the main ubiquitous pathway
for methylglyoxal detoxification (Figure 5) and is involved
in tumor development, growth, migration, apoptotic evasion,
and multidrug resistance. Increased levels and activities of
glyoxylases 1 and 2 in diverse types of cancer (bladder, breast,
colon, lung, and prostate) have been observed (Thornalley and
Rabbani, 2011; Geng et al., 2014). Therefore, they have been
considered as malignancy biomarker and potential anti-cancer
target.

One attractive novel approach for targeting cancer cells,
derived from the present study, which deserves further
experimental assessment, is the use of inhibitors of GAPDH,
ENO, and PYK together with glyoxylase inhibitors, which
at relatively low doses do not perturb host homeostasis.
This particular multi-drug treatment would induce DHAP
accumulation which in turn would lead to enhanced levels of
methylglyoxal, severely compromising cancer cell growth and
viability. Although, methylglyoxal has several toxic effects, it has
shown anticancer activity in tumor-bearing mice and slight side-
effects (Ghosh et al., 2006). Furthermore, high concentrations
of methylglyoxal (2–7.5mM) strongly inhibits OxPhos and
glycolysis, drastically decreasing the ATP level in cancer cells and
apparently showing no effect on normal cells and tissues (Ray
et al., 1991; Biswas et al., 1997). In tumor-bearing animals similar
high levels of methylglyoxal concentrations in blood (13–19mM)
had no apparent toxic effect on vital organs (liver, kidney) but
increased their life span by inhibiting tumor growth (Ghosh
et al., 2006). This therapeutically exciting difference has been
attributed to alterations in complex I and GAPDH of tumor
cells that increase sensitive to methylglyoxal with respect to non-
tumor enzymes (Biswas et al., 1997; Ray et al., 1997). Other
reports indicate that methylglyoxal (30µM) inhibits complex III
and ATP synthesis in vascular smooth A-10 cells (Wang et al.,
2009).

Uncompetitive Inhibition Is the Most
Potent Mechanism to Block Glycolytic Flux
There are three mechanisms by which a reversible inhibitor may
interact with an enzyme: competitive, uncompetitive, and mixed
type inhibition (Segel, 1975); the non-competitive inhibition
should be considered as a special, non-common case of mixed-
type inhibition. A molecule that is structurally similar to the
natural substrate may reversible bind to the enzyme active site
and act as a competitive inhibitor. In this regard, docking
simulations were performed to support this assumption for
HPI since the regulatory metabolites Fru1,6BP, Ery4P, 6PG,
and DHAP readily bind to the substrate binding site and are
stabilized by the same amino acids involved in the Glc6P
and Fru6P binding (Figure 4). Thus, competitive inhibitors
are common in metabolic pathways because the products of

each reaction and several other pathway intermediaries have
structural similarity with the substrate. As a consequence,
Fru1,6BP, Ery4P, and 6PG behave as competitive inhibitors of
HPI vs. the substrate Glc6P and product Fru6P, regulating the
supply of Glc6P for pentose phosphate and glycogen synthesis
pathways.

Nevertheless, competitive inhibitors can be also readily
displaced from the active site by high substrate concentrations,
thereby restoring enzyme activity. Thus, the physiological effect
of competitive inhibitors is to provide an immediate response of
the targeted enzyme/transporter which will be attenuated in the
medium term. Then, although competitive inhibitors are easier
to find in nature or be designed and manufactured, they are not
pharmacologically efficient drugs.

In contrast, the effects of the uncompetitive and mixed-type
inhibitors cannot be overcome by increasing the substrate
concentration; in fact, for uncompetitive inhibition it becomes
more significant at increasing substrate concentrations
(Cornish-Bowden, 1986). Using a kinetic model of the
parasite Trypanosoma brucei glycolysis it was concluded
that inhibition of the pyruvate transport would be more
effective for perturbing the pathway with an uncompetitive
inhibitor (followed by mixed-type) than with a competitive
one (Eisenthal and Cornish-Bowden, 1998). Although,
uncompetitive inhibitors are not common, there are
recent reports about the identification of uncompetitive
inhibitors of human γ-glutamyl transpeptidase and P-
glycoprotein, proteins that can play an important role in
drug-resistance in cancer (Wickham et al., 2013; Teng et al.,
2015).

Uncompetitive and mixed-type inhibitions modify the Vmax
value, which is a kinetic parameter that has a strong influence on
the degree of control that each pathway enzyme exerts (Marín-
Hernández et al., 2014). GLUT was the main controlling step of
glycolysis in HeLa hypoglycemic cells and T. brucei because its
activity (i.e., Vmax) was the lowest (Bakker et al., 1999; Marín-
Hernández et al., 2014). In contrast, PFK-I has low activity in
tumor cells but it has no control on the pathway flux because
Fru2,6BP activation increases several-fold its activity (Moreno-
Sánchez et al., 2012).

CONCLUSION

Kinetic modeling studies have shown that only the simultaneous
inhibition of several flux-controlling steps will have significant
impact on glycolytic flux and ATP concentration in cancer
cells. This can be accomplished by direct inhibition using,
preferentially, uncompetitive specific drugs or indirectly
through the accumulation of regulatory metabolites of the
flux-controlling steps by inhibiting enzymes that exert low
flux-control.
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Insights into the Regulatory Role of
Non-coding RNAs in Cancer
Metabolism
Fredy O. Beltrán-Anaya, Alberto Cedro-Tanda, Alfredo Hidalgo-Miranda* and
Sandra L. Romero-Cordoba*

Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico

Cancer represents a complex disease originated from alterations in several genes
leading to disturbances in important signaling pathways in tumor biology, favoring
heterogeneity that promotes adaptability and pharmacological resistance of tumor
cells. Metabolic reprogramming has emerged as an important hallmark of cancer
characterized by the presence of aerobic glycolysis, increased glutaminolysis and fatty
acid biosynthesis, as well as an altered mitochondrial energy production. The metabolic
switches that support energetic requirements of cancer cells are closely related to
either activation of oncogenes or down-modulation of tumor-suppressor genes, finally
leading to dysregulation of cell proliferation, metastasis and drug resistance signals.
Non-coding RNAs (ncRNAs) have emerged as one important kind of molecules that can
regulate altered genes contributing, to the establishment of metabolic reprogramming.
Moreover, diverse metabolic signals can regulate ncRNA expression and activity at
genetic, transcriptional, or epigenetic levels. The regulatory landscape of ncRNAs
may provide a new approach for understanding and treatment of different types of
malignancies. In this review we discuss the regulatory role exerted by ncRNAs on
metabolic enzymes and pathways involved in glucose, lipid, and amino acid metabolism.
We also review howmetabolic stress conditions and tumoral microenvironment influence
ncRNA expression and activity. Furthermore, we comment on the therapeutic potential
of metabolism-related ncRNAs in cancer.

Keywords: metabolic reprogramming, cancer metabolism, ncRNA regulation, miRNAs

METABOLIC REPROGRAMMING: CANCER METABOLISM
CHANGING THE ENERGETIC STATE TO FULFILL CELLULAR
REQUIREMENTS

Deregulation of cellular energetics has been pointed out as one of the emerging hallmarks of
cancer, both during early cellular transformation and as a driving phenotype of several tumorigenic
programs (Kroemer and Pouyssegur, 2008; Munoz-Pinedo et al., 2012). Under physiological
conditions, cells maintain regulated and complex metabolic homeostasis by diverse signaling
pathways that function as energetic sensors. Metabolic sensors act under a network of cooperative
signaling cascades, not only to fulfill the energetic requirements of the cells, but also to influence
cellular pathways like cell growth, proliferation, and death (Dumortier et al., 2013). In contrast,
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cancer cells loose this regulated homeostasis in several ways,
including alterations in intrinsic and extrinsic molecular
mechanisms that govern cellular metabolism, in order to
provide the basic metabolic requirements of tumoral cells,
such as quick biosynthesis of ATP, accelerated biosynthesis
of macromolecules, and maintenance of optimal redox status
(Cairns et al., 2011). To satisfy their metabolic needs, cancer
cells also present changes in energetic pathways such as elevated
glucose uptake, aerobic glycolysis and altered lipid and fatty-
acid metabolism (Newsholme et al., 1985; Vander Heiden
et al., 2009). This advantageous bioenergetic state is not only
related to the metabolic requirements imposed by the higher
biological activity of the tumoral cells, it can also promote a
proliferative phenotype and facilitate cell survival and movement
under adverse conditions like hypoxia or glucose and nutrient
deprivation, becoming a major player in the development and
evolution of a tumor (Jones and Thompson, 2009).

This metabolic shift, known as metabolic reprogramming,
has been correlated with the activity of oncogenes and loss
of tumor suppressor molecules (Esquela-Kerscher and Slack,
2006). Furthermore, once a tumor has developed and reached a
certain volume, it becomes difficult to maintain optimal oxygen
levels in its cells, creating a hypoxic environment. This also
promotes a metabolic reprograming which includes an elevated
glycolytic rate, preferentially through oxidative phosphorylation
and suppression of gluconeogenesis, creating complex glucose-
lactate fluxes, as well as a pro-tumorigenic environment (Reyes
et al., 2014).

Non-coding RNAs (ncRNAs), mainly, microRNAs (miRNAs)
and long non-coding RNAs (lncRNAs), have been defined as
important regulators of several metabolic pathways. miRNAs
are small ncRNAs (between 19 and 22 nt), with an important
role as post-transcriptional regulators (Bartel, 2009). LncRNAs
are transcripts from 200 nt to 100 kilobases (kb) lacking
an open reading frame and without evident protein-coding
function (Rinn and Chang, 2012). Both of them participate
in many physiological processes through the modulation of
gene expression at the epigenetic, transcriptional, and post-
transcriptional levels (Figure 1).

ncRNAs can actively regulate energetic signaling by targeting
key metabolic transporters and enzymes, or by directly or
indirectly controlling the expression of tumor suppressors or
oncogenes (Iorio and Croce, 2012). Analysis of the correlation
between oncogenic programs, metabolic reprograming and
aberrant ncRNA expression has highlighted the crucial role of
these metabolic aspects in initiation, promotion, and progression
of cancer (Arora et al., 2015).

Several lines of evidence suggest that ncRNA plays an

important role in the establishment of metabolic reprogramming

in cancer cells, as well as the feedback regulation between
alterations in energetic signaling and ncRNA expression or
activity. In this review, we will discuss the evidence that describes
the roles of ncRNAs as modulators of cancer metabolism and as
molecules which contribute to the establishment of a diversity of
mechanisms that govern the heterogeneity and plasticity of the
energetic metabolism of cancer cells.

ncRNAs REGULATE GLYCOLYTIC FLUXES:
A SWEET STORY

One of the most significant changes induced by cancer metabolic
reprogramming involves the bypass of oxidative phosphorylation
(Tricarboxylic Acid cycle) to a non-oxidative pathway lead by
aerobic glycolysis and lactate production, in order to satisfy the
energetic demands of the tumor cells (Vander Heiden et al.,
2009). One of the better characterized metabolic phenotypes
present in tumor cells is the Warburg effect, which gives
preference to ATP generation through glycolysis, even under
normal oxygen concentrations, over ATP synthesis through the
electron transport chain in the mitochondria (Warburg, 1956;
Gatenby and Gillies, 2004; Kim and Dang, 2006). Consequently,
most of the glucose in the cell is converted to lactate, rather
than being metabolized through the Krebs cycle (Warburg, 1956;
Semenza et al., 2001; Gatenby and Gillies, 2004). Although
the energetic balance established by glycolysis is less efficient
(lower quantity of ATP generated per unit of glucose) than
oxidative phosphorylation, it is quicker. However, oxidative
phosphorylation is not completely abolished and still functions at
a low level (Figure 2A). Therefore, this abnormal and accelerated
metabolism meets the energetic needs for cellular functions and
construction of biological blocks (fatty acids, lipids, nucleotides,
and proteins) for cancer cells (Zheng, 2012).

The first step in energy metabolism is the entry of glucose into
the cells through glucose transporters (GLUTs). Until now, 14
isoforms of GLUTs have been identified, of which GLUT1, 2, 3,
and 4 are well-characterized and expressed in different tissues,
some of them in a specific manner (Thorens and Mueckler,
2010). ncRNAs actively regulate the intracellular glucose levels by
modulating gene expression of glucose transporters. For instance,
GLUT1 is targeted by miR-340, which is up-regulated in oral
squamous cell carcinoma (Xu et al., 2016). In renal cell tumors,
miR-199a, miR-138, miR-150, and miR-532-5p down-regulate
GLUT1 expression, whereas miR-130b, miR-19a/b, and miR-
301a increase GLUT-1 (Chow et al., 2010). Additionally, loss of
miR-1291 enhances the development of renal tumors through
targeting GLUT1 (Yamasaki et al., 2013). In prostate tumors, the
PCGEM1 lncRNA promotes the expression of GLUT1. Similarly,
lncRNA-p21 expression is related to HIF-1α and its responsive
genes, such as GLUT1, promoting its expression in diverse
cancer cell lines (Yang et al., 2014). In bladder cancer, down-
modulation of miR-195-5p allows the expression of GLUT3 (Fei
et al., 2012; Peschiaroli et al., 2013). Additionally, reduced levels
of miR-150 negatively regulate GLUT4 expression in pancreatic
cancer cells (Srivastava et al., 2011). Such alterations in the
expression of ncRNAs and their effect over GLUT expression,
represent possible mechanisms through which tumors may
bypass regulatory energetic checkpoints by promoting glycolysis,
as well as other oncogenic pathways like proliferation, migration,
and invasion (Figure 2B).

ncRNAs can also affect the patterns and mechanisms of
glucose uptake and glucose/lactate fluxes in cancer cells,
promoting aggressive behavior through the establishment of
a glycolytic phenotype. The CRNDE (Colorectal Neoplasia
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FIGURE 1 | Biological and mechanical overview of non-coding RNAs. (1, 2) Biogenesis of microRNAs and their main mechanisms of action. The pri-miRNA is
transcribed by pol II polymerase and digested by the RNase DROSHA originating a pre-miRNA (70 nt), which is exported to the cytoplasm by exportin 5. Then,
another RNase, Dicer, digests the pre-miRNA to generate a mature duplex miRNA (∼22 nt). One strand of this duplex is then incorporated in the miRISC complex
(Ago2-microRNA) to target mRNA by perfect complementarity producing transcript degradation (1) or an imperfect one promoting translation repression (2).
Conversely, (right side), general functions of lncRNAs are described. (3) Recruitment of transcription factors to promote transcription of target genes or (4) recruitment
of chromatin modifiers and thus (6) promoting remodeling of the chromatin architecture. Other functions of lncRNAs are (5) control of alternative splicing of mRNA, and
(7) control of translation rates favoring or inhibiting polysome loading to mRNAs, (8) acting as a decoy to preclude access of regulatory proteins to DNA. (9) The
interaction between microRNAs and endogenous competent RNAs (ceRNAs) is a redundant system to regulate mRNA expression by lncRNAs-microRNAs; this
mechanism is known as sponge function by lncRNAs. Thus, microRNA sequestration by lncRNA prevents microRNA functions on its target.

Differentially Expressed) lncRNA responds to insulin-like growth
factors (IGF) promoting glucose uptake in colorectal cancer
(Ellis et al., 2014). Furthermore, the over-expression of the
ceruloplasmin lncRNA (NRCP) in ovarian and breast cancer
cells, along with the LINK-A lncRNA in triple negative breast
cancer, promotes glucose uptake, favoring lactate production
and consequently, enhancing tumor progression (Rupaimoole
et al., 2015; Lin et al., 2016). In breast tumors, ncRNAs can also
function as modifiers of the tumor microenvironment. Under
metastatic conditions, tumor cells secret vesicles that carry high
levels of miR-122 to non-tumor cells, repressing glucose uptake
in the normal cells and facilitating metastasis by increasing

nutrient availability for the cancer cells (Fong et al., 2015;
Figure 2B).

After glucose uptake, numerous enzymes take part in the
catabolism of trioses, pyruvate, and finally lactate. Regulation of
glycolytic enzymes by ncRNAs further increases this biological
complexity. Hexokinases (HK) catalyze ATP-dependent
phosphorylation of glucose to glucose-6-phosphate (Robey
and Hay, 2006). Interestingly, HK2 is overexpressed in various
tumors and contributes to the establishment of aerobic glycolysis
(Mathupala et al., 2009; Vander Heiden et al., 2011). In lung,
colon, prostate and head, and neck squamous cell cancers,
loss of miR-143 allows HK2 expression (Fang et al., 2012;
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FIGURE 2 | Overview of glycolysis, OXPHO, and lipid metabolism. (A) This figure describes the connections between metabolic sub-products that take
part in different metabolic process, as well as enzymes and substrates that maintain the normal metabolic environment. Glycolysis occurs in the cytosol when D-glucose is

(Continued)
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FIGURE 2 | Continued

internalized into the cell through the membrane transporters GLUT1, 2, 3, and 4. Through a system of coupled enzymatic reactions, D-glucose is converted into
pyruvate, which enters into the TCA cycle, and OXPHO. When the amount of oxygen is limited, pyruvate is converted into lactate. Conversely, in the mitochondria, the
TCA cycle is coupled to OXPHO which represents the largest source of metabolic energy. Pyruvate is oxidized and converted into acetyl coenzyme A, which enters
the TCA cycle that generates reducing molecules (NADH and FADH2) to produce ATP by oxidative phosphorylation. Finally, fatty acids can be converted into acetyl
coenzyme A by ß-oxidation to then generate energy through the TCA cycle and OXPHO (B). Glycolysis regulation by miRNAs and lncRNAs under oncogenic
conditions. Expression of the GLUT transporter family is regulated by ncRNAs, thus altering the internalization rate of glucose. Other molecules are under ncRNAs
regulation pathways, such as hexokinase-2 enzyme, which mediates the transformation of glucose to glucose 6-phosphate, PKM2 enzyme involved in pyruvate
synthesis, LDHB and LDHA enzymes that convert pyruvate into lactate, and PDHK, responsible for the synthesis of Acetyl coenzyme A from pyruvate.

Peschiaroli et al., 2013). Similarly, miR-143 locus is deleted in
other malignancies (Volinia et al., 2010), and has also been found
down-regulated in cervical tumors (Michael et al., 2003; Lui
et al., 2007). In bladder cancer cells, miR-155 repress miR-143,
allowing up-regulation of HK2 (Jiang et al., 2012). Moreover,
the up-regulation of hipoxia factors suppresses the expression
of miR-199a-5p and promotes glycolysis in liver cancer, since
the miRNA normally interferes with the expression of HK2
(Guo et al., 2015). The Urothelial Cancer-Associated 1 lncRNA
(UCA1) modulates HK2 by activation of STAT3 through the
repression of miR-143 (Li Z. et al., 2014). Another member of
the hexokinases, HK1 is also regulated by miR-138 (Peschiaroli
et al., 2013). Additionally, in colorectal cancer rosmarinic acid
suppress miR-155 repressing the Warburg effect through the
mechanism of inactivating the IL-6/STAT3 pathway (Xu et al.,
2015).

Another important intermediate step in glycolysis is the
conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-
phosphate by the aldose enzyme, which is a direct target of
miR-122 in liver cells (Fabani and Gait, 2008).

Pyruvate kinase (PKM) regulates the final rate-limiting step
of glycolysis, which catalyzes the generation of two molecules
of pyruvate and two molecules of adenosine triphosphate
(ATP; Mazurek, 2011). MiR-124, miR-137, and miR-340 regulate
alternative splicing of the PKM gene in colorectal cancer. The
switch from isoform PKM2 to PKM1 inhibits the glycolysis
rate and promotes oxidative phosphorylation (Sun et al., 2012).
PKM2 is also regulated by miR-326 which is down-modulated
in glioblastoma cells (Kefas et al., 2010). Furthermore, pyruvate
dehydrogenase kinase (PDHX) catalyzes the conversion of
pyruvate to acetyl coenzyme A and is down-modulated by
miR-26a in colorectal cancer, thus impairing mitochondrial
metabolism (Chen et al., 2014). Let-7 is a microRNA that
is commonly down-regulated in several cancer types. Since
PDK1 is a physiological target of let-7, its down-regulation
in tumors facilitates aerobic glycolysis. Furthermore, PDK1 is
critical for Lin28A/B-mediated cancer proliferation, establishing
a precise mechanism by which Lin28/let-7 facilitates the
Warburg effect to promote cancer progression (Ma et al., 2014;
Figure 2B).

Under aerobic glycolysis conditions, oncogenic lesions
convert pyruvate to lactate through lactate dehydrogenase (LDH)
to fulfill their energetic needs (Hatziapostolou et al., 2013).
LDHB is a target of miR-375, which is down-regulated in
esophageal squamous cell and maxillary sinus squamous cell
carcinomas (Isozaki et al., 2012; Kinoshita et al., 2012). Another
important enzyme is the LDHA, frequently overexpressed in

tumor cells, and targeted by miR-34a, miR-34c, miR-369-
3p, miR-374a, and miR-4524a/b, that are down-modulated in
colorectal cancer tissues (Wang J. et al., 2015). Moreover,
lncRNA-p21 positively modulates LDHA, Enolase 1, PDHX,
Isozyme 4 (PDK4), Phosphoglyceratemutase (PGAM2), Glucose-
6-Phosphate Isomerase (GPI), and Pyruvate Kinase (PKM2) in
diverse tumors (Hung et al., 2014). The ability of cells to maintain
optimal lactate fluxes depends on monocarboxylate transporters
(MCTs). Specifically,MCT1 is targeted by miR-29a, miR-29b, and
miR-124 in pancreatic cancer (Pullen et al., 2011). Additionally,
let-7b, usually inhibited in tumors, has been shown to target
basigin (BSG) which interacts with MCT1 (Fu et al., 2011;
Figure 2B).

Cancer cells reprogram their metabolism, based on complex
regulatory networks involving diverse oncogenic and tumor
suppressor genes, including PI3K/Akt, Myc, hypoxia inducible
factor (HIF), Ras, Src, p53, and PTEN that promote an increase
glucose uptake and glycolysis (Dang et al., 2009; Luo and
Semenza, 2011). Those genes are targets of ncRNAs regulation
networks in cancer (Table 1).

Not only can the human genome-encoded ncRNAs modulate
glucose metabolism in cancer cells. Kaposi’s sarcoma-associated
herpesvirus (KSHV), the etiological agent of Kaposi’s sarcoma,
has been shown to express microRNAs in its genome that
collaborate to induce aerobic glycolysis in infected cells, mainly
through the down-regulation of EGLN2 and HSPA9, which
cooperate to form the glycolytic phenotype (Yogev et al., 2014).

LIPID METABOLISM: A FAT STORY

Lipids constitute a mayor building block for organelles and
cells to maintain cellular function and structure provide energy
and orchestrate different cellular pathways. As part of lipid
metabolism (anabolism and catabolism) a variety of biological
intermediators are generated as second messengers (Huang and
Freter, 2015), which manage multiple signaling pathways like
cell growth, proliferation, differentiation, survival, apoptosis,
inflammation, motility, and membrane homeostasis (Mattes,
2005; Krycer et al., 2010; Zechner et al., 2012). Alterations
in lipid metabolism can affect cell function, promoting the
establishment, and development of cancer (Santos and Schulze,
2012). In fact, lipid biosynthesis is limited to a subgroup
of tissues and organs, including adipose, liver, and breast,
but its reactivation or reprogramming is commonly observed
in tumor cells (Menendez and Lupu, 2007; Abramson, 2011;
Beloribi-Djefaflia et al., 2016). The activation or inhibition of
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TABLE 1 | ncRNAs and their participation in cancer metabolic processes through oncogenic or tumor suppressor pathways.

Pathway ncRNA Biological activity Cancer References

PI3K/AKT signaling: leads to an
increase in HIF-1α and thus,
enhances the expression of
glycolytic enzymes (LDH-B,
PKM2, GLUT1; Zha et al., 2011).

miR-126 Targets the p85b subunit of PI3K. CC, gastric,
BRCA.

Guo et al., 2008; Feng et al.,
2010; Zhou et al., 2014

miR-199 Repress mTOR1 and c-met. HCC Guo et al., 2008; Fornari
et al., 2010

miR-21 Activates PI3K/AKT/mTOR pathway. BLACA Yang et al., 2015

miR-181a Induces a metabolic shift by inhibiting the expression of
PTEN, leading to an increase in phosphorylated Akt.

CC Wei et al., 2014

Akt: stimulates glycolysis by
increasing expression of glucose
transporters and glycolytic
enzymes

miR-451 Regulates AMPK signaling in response to glucose levels
by targeting the binding partner of LKB1, CAB39
(MO25a).

GC Elstrom et al., 2004;
Godlewski et al., 2010

IGF-I/insulin signaling: increased
expression of genes involved in
the regulation of glucose
metabolism and mitochondrial
function

miR-7 Inhibits cellular growth and glucose metabolism by
regulating the IGF-1R/Akt signaling pathway.

GC Wang B. et al., 2014

miR-126 Negatively regulates IRS1, an adaptor protein mediating
IGF-I/insulin signaling, leading to activation of the PI3K,
Akt and Ras-MAPK pathways.

Mesothelioma,
HCC

Ryu et al., 2011; Tomasetti
et al., 2014

miR-33a/b Controls the expression of Irs2 affecting Akt
phosphorylation. Also, represses AMP-activated kinase
1 (Ampkα1) and sirtuin 6 (Sirt6), involved in the regulation
of lipid and glucose metabolism.

BRCA Davalos et al., 2011

c-Myc: The oncogene
deregulates glycolysis through
the activation of several
components of the glucose
metabolic pathway.

miR-23 c-Myc transcriptionally represses miR-23a/b, which
targets glutaminase (GLS) inducing mitochondrial
dysfunction.

Lymphoma and
PCA

Gao et al., 2009

lncRNA
PCGEM1

Stimulates the uptake of glucose by aerobic glycolysis
and interacts directly with c-Myc, and enhances its
transactivation activity by its recruitment to chromatin.

PCA Dang et al., 2009; Hung
et al., 2014

HIF signaling: key transcription
factor mediating responses to
hypoxia, and HIF-target genes,
implicated in deregulated tumor
metabolism.

miR-199a
and
miR-125b

Directly targets HIF-1α and other miRNAs, enhancing
tumor angiogenesis.

OC He et al., 2013

miR-424 Hypoxia-inducible miRNA, that targets cullin (CUL2),
which stabilizes HIF-1α.

OC (endothelial
cells)

Ghosh et al., 2010

miR-17-92 Down-regulates HIF-1α, leading to evasion of apoptosis. LC Taguchi et al., 2008

miR-451 Reduces activation of the LKB1/AMPK pathway,
facilitating unrestrained mTOR activity.

GB Godlewski et al., 2010

P53: Its down-modulation
provides a selective advantage
for cancer cells by increasing
glycolysis.

miR-34 Loss of its expression interrupts p53/miR34 feedback
resulting in lower activity of both molecular actors,
leading to the over-expression of glycolytic enzymes
(HK1/2, GPI, and PDH1).

Most tumors Voorhoeve et al., 2007;
Kumar et al., 2011; Kim
et al., 2013

miR-25, 30d,
504, and
125b

Directly target p53 and impairs p53 response. Gastric, brain and
LC

miR-372 and
373.

Neutralizes p53-mediated CDK inhibition, by silencing
LATS2.

Testicular germ
cell tumors

lncRNA
MEG3

Down-modulation of MEG3 disturbs the activation of
MDM2 and p53.

Non-small cell LC Lu et al., 2013

LC, lung cancer; HCC, hepatocellular carcinoma; BlaCa, Bladder cancer; CC, colon cancer; BRCA, breast cancer; PCA, prostate cancer; GC, glioblastoma cancer.

lipid signaling pathways is aimed at fulfilling the cell energy
requirements and responds to environmental changes. There are
numerous enzymes regulating lipid metabolism in the cells and
recently, diverse data show that expression of many of these
enzymes are regulated by ncRNAs (Huang and Freter, 2015;
Figure 3).

In prostate cancer cells, miR-185 and miR-342 control
lipogenesis and cholesterol synthesis by down-modulating the
expression of sterol regulatory element binding protein 1 and 2
(SREBP-1, SREBP-2), repressing their responsive genes, including
fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl CoA
reductase (HMGCR; Li X. et al., 2013). In lymphocytic leukemias,
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FIGURE 3 | Landscape of lipid and amino acid metabolism regulated by ncRNAs in tumors. Micro and lncRNAs can regulate the metabolism of amino acids
through the regulation of enzymes related with these metabolic pathways, favoring the disposition of amino acids as important sources of energy. There is also a fine
regulatory loop between microRNAs and lncRNAs than can actively impact metabolic networks.

metabolic enzymes related with lipid biosynthesis, such as
lipase A (LIPA) and pyruvate dehydrogenase lipoamide kinase
isozyme 1 (PDK1), are targets of miR-125b (Tili et al., 2012).
Recently, miR-205 has been associated with lipid metabolism
de-regulation in hepatocellular carcinoma, acting on acyl-
CoA synthetase long-chain family member 1 (ACSL1), a lipid
metabolism enzyme in liver (Liu et al., 2012; Cui M. et al.,
2014). Additionally, the loss of miR-122, an abundant liver-
specific miRNA, alters fat and cholesterol metabolism through
modulation of genes involved in lipid synthesis, including
Agpat1, Mogat1, Agpat3, Agpat9, Ppap2a, Ppap2c (Hsu et al.,
2012; Tsai et al., 2012).

Over-expression of miR-27a in hepatitis C virus-infected
liver cells vs. hepatitis B virus-infected cells has been recently
described. MiR-27a targets the lipid synthetic transcription factor
RXR and the lipid transporter ATP-binding cassette subfamily

A member 1 in hepatocarcinoma. Moreover, miR-27a down-
modulates the expression of several lipid metabolism-related
genes (FASN, SREBP1, SREBP2, PPAR, PPAR, ApoA1, ApoB100,
and ApoE3), some of which also participate in the production of
infectious viral particles (Shirasaki et al., 2013).

The over-expression of HULC contributes to the malignant
development of hepatocellular carcinoma by supporting
abnormal lipid metabolism via activation of the acyl-CoA
synthetase subunit ACSL1. This results in promotion of
lipogenesis and the accumulation of intracellular triglycerides
and cholesterol in experimental models. HULC induces
methylation of the miR-9 promoter, regulating its expression
and favoring alterations in lipid metabolism (Cui et al., 2015).
LncRNA SPRY4-IT1 was first identified in adipose tissue
(Ota et al., 2004) and was recently found up-regulated
in melanoma (Khaitan et al., 2011). Expression of this
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lncRNA shows a strong correlation with lipid metabolism
alterations, including the increase of acyl carnitine, fatty acyl
chains, and triacylglycerol, as well as the down-modulation of
phosphatidic acid, phosphatidylcholine, phosphatidylinositol,
and phosphatidylserine. It is probable that the significant changes
in lipid profiles are correlated with the oncogenic modulation of
SPRY4-IT1 over the lipid phosphatase lipin 2, an enzyme that
converts phosphatidate to diacylglycerol (Mazar et al., 2014).

The oncogene ANRIL is up-regulated in gastric, lung,
hepatocellular, cervical, melanoma, ovarian, bladder cancer,
among other tumors (Li Z. et al., 2016). Interestingly, ANRIL
regulates genes involved in glucose and fatty acid metabolism
(Bochenek et al., 2013), such as ADIPOR1. Furthermore,
ANRIL can epigenetically regulate the expression of miRNAs
in gastric cancer cells, particularly miR-99a/miR-449a, which
target CDK6/E2F1 andmTOR pathways (Zhang et al., 2014), that
regulate lipid metabolism and adipose tissue function (Cai et al.,
2015).

The steroid receptor RNA activator gene is an unusual gene
that expresses two different transcripts by alternative splicing
of the first intron: (1) the lncRNA SRA and (2) the SRAP
protein gene (Hube et al., 2006). SRA co-activates PPAR-gamma,
inducing adipogenesis (Xu et al., 2010; Liu et al., 2014) and it
may also regulate lipid metabolism (Marion-Letellier et al., 2015).
Interestingly, the over-expression of SRA has been associated
with poor prognosis in endometrial cancer (Smolle et al.,
2015). The lncRNA-DYNLRB2-2 responds to oxidized-LDL to
promote ABCA1-mediated cholesterol efflux (Hu et al., 2014). In
prostate cancer, the ox-LDL/lncRNA-DYNLRB2-2 circuit might
be involved in the promotion of proliferation, migration and
invasion rates (Wan et al., 2015). Experiments in animal models
showed that the lncLSTR (lncRNA-liver-specific triglyceride
regulator), a liver-enriched lncRNA, physiologically contributes
to triglyceride metabolism by enhancing Cyp8b1 expression, a
molecule involved in bile acid synthesis. Furthermore, Cyp8b1
is down-modulated in primary hepatocytes in which lncLSTR is
depleted, suggesting a regulatory activity over Cy8b1 as one of its
downstream responsive genes (Li et al., 2015a).

AMINO ACID METABOLISM

Apart from other energetic sources, amino acids are important
substrates that sustain mitochondrial metabolism and support
the biosynthesis of proteins, lipids, and other macromolecules.
Alterations in amino acid metabolism are also common in cancer
cells (Figure 3).

Glutamine metabolism seems to have a critical role in cancer
programs, and has been implicated in tumor formation and
metastasis (DeBerardinis and Cheng, 2010), as well as being an
important source of tumor energy (Li and Zhang, 2016). miRNAs
have also been reported to regulate amino acid catabolism, for
example, in kidney cancer miR-23b∗ regulates proline oxidase,
which is the first enzyme involved in the conversion of proline to
glutamic acid (Liu et al., 2012). Interestingly, the lncRNA CCAT2
participates in the alternative splicing of glutaminase (GLS), an
enzyme that catalyzes the hydrolysis of glutamine to glutamate

(Redis et al., 2016), where glutamate can be further deaminated
to a-Ketoglutarate by glutamate dehydrogenase (GDH) and
incorporated into the tricarboxylic acid cycle (Li and Zhang,
2016). Another lncRNA involved in glutamine metabolism is
PCGEM1 an androgen-induced prostate specific lncRNA, which
regulates expression of enzymes such as GLS, Glutathione
Reductase (GSR), and type I gamma-glutamyltransferase (GGT1)
in prostate tumors (Hung et al., 2014).

Redundant regulation by ncRNAs reveals that metabolic
pathways in cancer are finely regulated, acting at different cellular
levels. Consequently, understanding these processes will enable
future development of anti-metabolite therapies to target specific
energetic signals altered in oncogenic lesions.

MITOCHONDRIAL METABOLISM IN
CANCER AND ITS RELATION WITH ncRNA

The partial maintenance of mitochondrial function in glycolytic
cells appears essential for cancer cell development. Thus,
the tumor must balance the bioenergetic requirements to
grow, proliferate, and survive within the energetic restrictions
and metabolic pathways. Mitochondria are in fact, the main
intracellular producers of reactive oxygen species (ROS) as part
of adenosine triphosphate (ATP) production through oxidative
phosphorylation (OXPHOS). This organelle is responsible for
converting available nutrients into the fundamental blocks
required for cell maintenance (Ahn and Metallo, 2015), such as
fatty acids, cholesterol and proteins (Kamphorst et al., 2013).
Therefore, mitochondrial alterations have been implicated in
the etiology of many diseases including cancer. The metabolic
reprogramming of the mitochondrial network in tumoral
programs is achieved through several mechanisms, including
ncRNAs transcribed both in the nuclear and in the mitochondrial
genome (mtDNA). ncRNAs can actively regulate mitochondrial
metabolism by controlling structural and functional mechanisms
that respond to changes in energy requirements or environmental
conditions (Benard et al., 2010; Figure 4).

For example, miR-210 is up-regulated by hypoxia (Dang
and Myers, 2015), and can block mitochondrial respiration
through down-modulation of the electron transport chain
(ETC) complexes (Huang and Zuo, 2014). Particularly, miR-
210 targets ISCU1 and ISCU2, suppressing mitochondrial
function and disrupting iron homeostasis in colon, breast,
and esophageal cancer (Chen et al., 2010; Favaro et al.,
2010). In breast cancer cells, miR-378∗ promotes a metabolic
shift by inhibiting the expression of important regulators
of energy metabolism such as estrogen-related receptor-γ
and GA-binding protein transcription factor. This reduces
the tricarboxylic acid cycle (TCA) rates, decreasing the
dependency on OXPHOS, and increasing lactate production
(Eichner et al., 2010). Similarly, in hepatocellular carcinomas
miR-23a modulates a metabolic switch from OXPHOS to
anaerobic glycolysis by targeting the glucose-6-phosphatase
catalytic subunit (G6PC), which plays an important role in
mitochondrial respiration (Wu et al., 1999; Wang et al.,
2012). Likewise, overexpression of miR-125b in lymphocytic
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FIGURE 4 | Overview of ncRNA regulatory network over OXPHO in cancer. In this picture we show how ncRNAs are involved in the regulation of OXPHOS,
generation of ROS, or mediating alternative splicing of mitochondrial enzymes.

leukemia models represses many transcripts implicated in
energetic and lipid metabolism including phosphatidylcholine
transfer protein, lipase A, lysosomal acid, cholesterol esterase,
glutathione synthetase, acyl-CoA synthetase short-chain family
member 1, HK2, stearoyl-CoA desaturase 1, AKT2, and pyruvate
dehydrogenase kinase 1 (PDK1; Tili et al., 2012).

Some of the most important by-products of the electron
transport chain in the mitochondria are reactive oxygen species
(mROS). Increased production of ROS can lead to activation
of tumorigenic signaling and metabolic reprogramming.
This tumorigenic signaling includes mechanisms to prevent
imbalances in the production of mROS maintaining redox
homeostasis (Sullivan and Chandel, 2014). Emerging evidence
shows that control of ROS levels is mediated in part by
ncRNAs. One of the first evidence was the cluster miR-17–92,
overexpressed in small-cell lung cancer, which reduce DNA
damage to a tolerable level and consequently lead to the
accumulation of genetic instability (Ebi et al., 2009). miR-141
and miR-200a, contribute to ovarian tumorigenesis by targeting

p38α and modulating oxidative stress response in mouse
models (Mateescu et al., 2011). In addition, miR-21 and miR-34a
promote tumor malignancy by the formation of ROS through the
mediation of SOD3 and TNFα expression in cancer cells (Zhang
et al., 2012). In medulloblastoma, miR-128a regulates ROS by
specific inhibition of the Bmi-1 oncogene, which participates
in maintaining mitochondrial function and redox homeostasis
(Venkataraman et al., 2010). Let-7a promotes OXPHOS in breast
cancer (Serguienko et al., 2015) and hepatocellular carcinoma
by directly modulating PDK1, which as mentioned previously,
is a negative regulator of OXPHOS activity (Ma et al., 2014).
In bladder cancer, the lncRNA UCA1 participates in ROS
formation and promotes mitochondrial glutaminolysis by its
sponge effect on miR-16 (Li H. J. et al., 2015). SOD2, which has
response elements for NF-κB, wipes out the superoxide anion
radicals generated by OXPHOS and coverts them into hydrogen
peroxide in cancer cells. Although it is know that the lncRNA
Lethe prevents binding of NFκB to NFκB response elements
resulting in the suppression of SOD2 (Rapicavoli et al., 2013), the
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impact of Lethe on energetic metabolism of cancer cells is poorly
understood.

Apart from glucose, cancer cells exhibit increased glutamine
intake and glutamine metabolism (glutaminolysis). The
accelerated glutamine metabolism provides enough substrate
to increase lipogenesis and nucleic acid biosynthesis, necessary
for the proliferative phenotype of the cancer cells (Gao et al.,
2009). Of particular importance, mitochondrial enzymes
participate in the metabolism of glutamine and other metabolites
(glutamate, proline, aspartate, and alanine) as part of the
tumor programs (Dang, 2010). One of the major regulators of
glutaminolysis is MYC. Along the same line the suppression
of miR-23A/B by MYC enhances mitochondrial glutaminase
expression and glutamine metabolism in prostate cancer
(Gao et al., 2009). Additionally, the deregulation of the
HOTTIP lncRNA by miR-192 and miR-204 can produce an
abnormal glutaminolysis through positive regulation of GLS1
in hepatocellular tumors (Ge et al., 2015). Furthermore, the
CCAT2 lncRNA modulates GSL alternative splicing through
an allele-specific regulatory mechanism (Redis et al., 2016).
Moreover, in bladder cancer cells the UCA1 lncRNA promotes
glutamine metabolism through its sponge function over miR-16,
allowing the expression of GLS2, enzyme that participates
in the hydrolysis of glutamine to glutamate (Li H. J. et al.,
2015).

The involvement of mitochondrial miRNAs (mitomiRs) and
mitochondrial lncRNAs in regulating the OXPHOS system is of
particular interest. These regulatory molecules have either a pro-
oxidant or antioxidant effect (Bai et al., 2011; Aschrafi et al.,
2012; Li P. et al., 2012). Therefore, mitochondrial ncRNAs may
participate in the fine-tuning of the mitochondrial energy supply.
A recent study identified 13 miRNAs significantly enriched in
mitochondria of HeLa cells, which actively participate in cell
cycle and apoptosis through regulation of mitochondrial activity
(Bandiera et al., 2011; Demongeot et al., 2013). The lncRNAs
encoded by mtDNA, ASncmtRNA-1/2, are down-regulated in
cancer cells and take part in the mitochondrial reprograming
of oncogenic pathways (Burzio et al., 2009). Biological activity
of ASncmtRNAs results in survivin inhibition at the RNA
level, probably mediated by microRNAs (Vidaurre et al., 2014).
Survivin enhances the stability of oxidative phosphorylation
complex II, which promotes cellular respiration (Rivadeneira
et al., 2015).

Another type of non-coding RNA, the Plement-induced

wimpy testis (PIWI)-interacting RNAs (piRNAs), have

been recently recognized to be relevant in cancer metabolic

reprogramming. piRNAs are small non-coding RNAs (26–31
nt) that form the piRNA-induced silencing complex (piRISC).
The main function of piRNAs is to silence transposable elements

(TEs) in the germ line, but also in cancer cells (Siomi et al., 2011),
mainly through epigenetic regulation, genome re-arrangement,
and stem cell self-renewal (Ross et al., 2014). piRNA expression

has been detected in mitochondrial RNAs of HeLa cells, and
are possibly implicated in diverse functions related to energetic
homeostasis, bioenergetics and cell growth (Kwon et al.,
2014).

INTERPLAY BETWEEN ncRNAs, TUMOR
MICROENVIRONMENT, AND METABOLIC
CONDITIONS

Novel data suggest that the regulatory role of ncRNAs during
carcinogenesis is not limited to cancer cells they are also
implicated in the activation of the tumor stroma and in
its transition into a cancer-associated microenvironment. In
fact, tumor development involves a fine interplay between
malignant and stromal cells. Secreted ncRNAs can serve as
regulatory signals promoting cancer cell proliferation, migration,
communication, and stromal modification, thereby enhancing
an optimal microenvironment for oncogenesis (Soon and
Kiaris, 2013). The tumor microenvironment presents a complex
architecture, comprising fibroblasts, vascular endothelial cells,
immune cells, adipocytes, and extracellular matrix, conforming
the stromal tissue that surrounds and interacts tumor cells
(Hanahan and Weinberg, 2011).

Importantly, cancer-associated fibroblasts (CAFs) can modify
the metabolism of the adjacent cancer cells, as a consequence, its
activity can promote tumor growth, invasion and angiogenesis
(Franco et al., 2010). CAFs are originated from normal fibroblasts
(NFs) that are in contact with tumor cells, receiving and sending
signals to co-evolve with the tumor cells and support their
biological requirements. Communication pathways between
CAFs and neoplastic cells include ncRNA mediated signaling
(Table 2; Erez et al., 2010).

Additionally, the metabolic status in cancer lesions is also
balanced by different micro-environmental components. For
instance, surrounding immune cells present active alternative
pathways to overcome tumor energetic limitations. In particular,
the metabolic switch in tumor cells promotes the presence
of tumor-infiltrating lymphocytes (T cells) which is a crucial
tumoral adaptation to dampen antitumor immunity (Molon
et al., 2016; Zhao et al., 2016). Maintaining tumor metabolic
homeostasis requires a balanced immune response, which is
achieved by extracellular signals that can be induced or repressed
by ncRNA activity (Table 2; Dumortier et al., 2013).

Another important component of the tumor
microenvironment are the adipocytes, that are considered as
an energy storage depot, as well as endocrine cells that produce
hormones, growth factors, cytokines, and adipokines (Rajala and
Scherer, 2003). Therefore, mature adipocytes influence tumor
behavior through heterotypic signaling processes, providing
fatty acids for rapid tumor growth, and also promoting homing,
migration, and invasion of tumor cells (Nieman et al., 2011).
ncRNAs can actively participate as important modulators of
the lipid metabolism in tumors where adipocytes represent the
major component of the tumoral microenvironment (Table 2).

Emerging data suggest a fine regulatory loop between the
HIF system, microenvironment and tumor cells, governed by
diverse regulatorymolecules like ncRNAs. Given the fact that HIF
target genes include many metabolism-induced genes, such as
ncRNAS (Semenza, 2010; Masson and Ratcliffe, 2014), and both
tumor and stromal hypoxia, along with deregulated metabolism,
characterize aggressive cancer phenotypes, it is tempting to
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TABLE 2 | ncRNAs and tumor microenvironment.

ncRNA Microenvironment component and its activity References

CANCER-ASSOCIATED FIBROBLASTS (CAFs)

miR-149 Inhibits fibroblast activation by targeting IL-6. It is suppressed in gastric cancer. Li et al., 2015b

miR-424 Regulates IDH3α expression in melanoma and colon cancer cell line models triggering the metabolic switch
from oxidative phosphorylation to glycolysis in CAFs.

Zhang et al., 2015

miR-133b In prostate cancer (PCA), its overexpression modulates IL6-activation, and other miRNAs, including miR-210,
miR-143, and miR-590-5p, that coherently up-modulate CAF activation. miR-133b is also released into the
media and its incorporation into PCa cells, may contribute to the establishment of mesenchymal phenotype.

Doldi et al., 2015

ZEB2NAT In bladder cancer, CAFs induces EMT and invasion through the TGFβ1-ZEB2NAT-ZEB2 axis. Zhuang et al., 2015

IMMUNOLOGICAL ENVIRONMENT

miR-21 It suppresses antitumor T-cell-mediated immunity and density in colorectal carcinoma. Mima et al., 2016

miR-142 Regulates proliferative responses and maturation of T cell cycling by mediating E2F transcription factors (Sun
Y. et al., 2015). In hepatic and colon cancer, miR-142 is down modulated, while in breast cancer it is
over-expressed.

Shen et al., 2013; Chai et al., 2014;
Isobe et al., 2014

miR-101 and
26a

In ovarian tumors, the overexpression of the miRNAs imposed glucose restriction on T cells, limiting the
expression of the methyltransferase EZH2.

Zhao et al., 2016

lnc-DILC IL-6 autocrine signal in hepatome depends on lnc-DILC and consequently, its expression enhances the
activation of IL-6/STAT3 pathway.

Wang et al., 2016

ADIPOCYTES

miR-27a Its excretion from adipose tissue leads liver cancer cells to proliferate through the down-regulation of the
transcription factor FOXO1. FOXO1 in particular, plays a significant role in regulating energy metabolism and
gluconeogenic enzymes (Gross et al., 2008).

Sun B. et al., 2015

miR-143 Its down-modulation promotes adipocyte differentiation in cancer cell lines. Its expression level may be a
cause or a consequence of the undifferentiated state of the tumor cells.

Esau et al., 2004

lncRNA SRA It responds to insulin, and its altered expression in tumor cells may allow both glucose uptake and
phosphorylation of Akt and FOXO1 in adipocytes.

Xu et al., 2010

conclude that activation and regulation of HIF pathways by
complex signaling processes is one of the most important causes
for deregulated tumor metabolism (Höckel and Vaupel, 2001;
Table 3). A more detailed overview about hypoxia and lncRNA
is discussed in Chang et al. (2016).

Endogenous and exogenous hormone-signaling pathways
serve as metabolic regulatory networks that control fuel and
energy metabolism on both tumor and stromal cells, and
connects nutrient availability with cell growth and proliferation.
Currently, ncRNA modulation by hormones can reenforce
hormone-signaling activity. For example, insulin, a major
hormone in the homeostasis of energy and metabolism, has
been implicated in the regulation of miRNA expression (Granjon
et al., 2009). Additionally, the estrogen receptor activates
autophagic fluxes as a response to metabolic damage, in
part by regulating ncRNA expression (Bernales et al., 2007;
Table 3).

nC-RNAs MEDIATING METABOLIC
STRESS RESPONSES: AUTOPHAGY, EMT,
ANGIOGENESIS, AND INFLAMMATION

When metabolic stress triggers energetic and nutritional changes
in tumor cells, the metabolic stress responses collaborate
to maintain homeostasis. Metabolic changes take place in
reaction to stress in the tumor and stromal cells through
the activation of several mechanisms, including autophagy,

epithelial-mesenchymal transition (EMT), angiogenesis, and
inflammation.

Autophagy is a catabolic process indispensable for the
maintenance of cellular homeostasis. Alterations of autophagy
are described in cancer and are due to alterations in the
expression of various genes that promote or suppress it (Lozy and
Karantza, 2012). Autophagic programs consist of the degradation
of cellular organelles, cytoplasmic proteins and lipids, allowing
recycling of the resulting catabolites for biosynthesis and
energy metabolism, in order to satisfy nutrient, energy and
hormonal demands of the tumor cells (Jing et al., 2015). The
metabolic requirements of cancer cells are maintained, in part, by
autophagy pathways present in tumor or stroma cells (Martinez-
Outschoorn et al., 2011; Mathew and White, 2011). Considering
the vast implications if ncRNAs in stress responses, their activity
might contribute to the dynamics of autophagy during cancer
progression (Leung and Sharp, 2010; Table 4).

Metabolism, mainly hypoxic conditions, can drive EMT
through NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and
Hedgehog signaling pathways (Fan et al., 2013). EMT refers
to a complex molecular and cellular program by which
epithelial cells lose their epithelial attributes such as cell–cell
adhesion, planar-basal polarity, and limited motility, but acquire
mesenchymal features, including increased motility, invasiveness
and development of escape routes for apoptosis (Polyak and
Weinberg, 2009). Modulation of EMT pathways by ncRNAs has
been described in several tumors (Table 4). Another important
feature that characterizes the most advanced and aggressive
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TABLE 3 | ncRNA regulation by hypoxia and hormone environment.

ncRNA Activity References

HYPOXIA: HYPOXIA FACTORS REGULATED BY ncRNAs

miR-17-92 cluster, 107,
20b and 22

They modulate tumor growth by inhibiting HIF-1α expression in cancer models. Yamakuchi et al., 2011

miR-519c Its overexpression reduced HIF-1α levels, followed by tumor angiogenesis, growth, and metastasis
suppression.

Cha et al., 2010

miR-138 Directly targets HIF-1α, reversing HIF-1α-mediated induction of ovarian cancer cell invasion. Ye et al., 2014

miR-33a HIF-1α is a direct target in melanoma, where miR-33a has a lower expression and could promote cell
proliferation, invasion, and metastasis.

Zhou et al., 2015

ENST00000480739 Its down-modulation abolished pancreatic ductal adenocarcinoma cell invasion and metastasis by
indirectly targeting HIF-1α.

Sun et al., 2014

HYPOXIA: ncRNAs REGULATED BY HYPOXIA

miR-210, 193b, 145,
125-3p, 708, and 517a

Induced by hypoxic conditions in bladder cancer. Particularly, miR-145 is a direct target of HIF-1α (it
presents 2 hypoxia response elements in its promoter) and its up-regulation contributes to increased
apoptosis.

Blick et al., 2015

miR-124 and miR-144 Hypoxia induced miRNAs, their expression may contribute to a pro-survival mechanism of prostate
cancer cells to hypoxia and irradiation.

Gu et al., 2016

Circulating exosomal
miR-21

Its expression level is associated with HIF-1α/HIF-2α expression, T stage, and lymph node metastasis in
oral squamous cell carcinoma. The hypoxic microenvironment may stimulate tumor cells to generate
miR-21-rich exosomes that are delivered to normoxic cells to promote prometastatic behaviors.

Li L. et al., 2016

miR-338-3p Targeted by HIF-1α in nasopharyngeal cancer, acting in the initiation and progression of the tumor. Shan et al., 2015

UCA1 Up-regulated by HIF-1 facilitating proliferation, migration, invasion, and apoptosis resistance in bladder
cancer cells.

Xue et al., 2014

lnRNA-LET Its down-regulated expression was associated with metastasis in hepatocellular carcinoma (HCC). Yang et al., 2013

lincRNA-p21 Takes part in a positive feedback loop to stabilize hypoxia-induced HIF-1α expression. lncRNA-p21
excludes the binding of HIF-1α to VHL (an ubiquitin E3 ligase) in prostate cancer.

Yang et al., 2014

AK058003 Frequently up-regulated in gastric cancer as a hypoxia-induced gene, which promotes migration and
invasion in vivo and in vitro.

Wang Y. et al., 2014

lncRNA-NUTF2P3-001 Over-expressed in pancreatic cancer cells under hypoxia. NUTF2P3-001 regulates KRAS expression
through competing endogenous RNA (ceRNA) function with miR-3923 contributing to oncogenesis.

Li X. et al., 2016

NEAT1 In breast cancer cells, hypoxia induces its expression by enhancing the establishment of active histone
marks.

Choudhry et al., 2015

HORMONES

H19, HOTAIR, and
MALAT-1

Inducible lncRNAs of estrogens or estradiol in breast cancer. Zhao et al., 2014; Sun H. et al.,
2015; Bhan and Mandal, 2016

NEAT1 In estrogen receptor-positive breast cancer showed greater expression compared to the non-positive
tumors.

Choudhry et al., 2015

miR-378* Regulated by Erb-B2 receptor tyrosine kinase 2 and insulin, induce a metabolic shift in breast cancer
cells.

Eichner et al., 2010

miR-135b Direct regulator of androgen receptor levels in prostate cancer. Its expression is lower in ERα-positive
breast tumors vs. ERα-negative samples, since ERα is a direct target of the miRNA. miR-135b also
inhibits the HIF1α.

Aakula et al., 2015

miR-32, 148a, 99a, 21,
and 221

Showed an enrichment in ChIP-seq data of AR-binding sites in androgen-responsive prostate cancer
LNCaP cells.

Jalava et al., 2012

tumors is angiogenesis; meaning the development of tumor
neovasculature. This mechanism is crucial to satisfy nutrient and
oxygen demands, as well as to provide routes for metabolic waste
excretion (Carmeliet and Jain, 2000). To achieve this oncogenic
hallmark, tumor cells induce pro-angiogenic factors or block
anti-angiogenic signals, in part by modulating ncRNA expression
profiles (Table 4). For a more detailed overview about ncRNAs
implicated in EMT and angiogenesis refer to Wang W. et al.
(2015) and Choudhry et al. (2016).

Finally, inflammation is considered as an oncogenic
feature that allows the acquisition of carcinogenic capacities
by the provision of biomolecules to the tumor and to
the cells of the microenvironment, such as transcription
factors which can enhance proliferative signaling, pro-
angiogenic factors, invasion and metastasis (Hanahan
and Weinberg, 2011; Table 4). A more detailed overview
of ncRNAs implicated in inflammation is discussed in
(O’connell et al., 2012).
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TABLE 4 | ncRNAs and their contribution to events in the metabolic changes in cancer.

ncRNA Activity/Target Cancer type References

AUTOPHAGY

miR-30a Autophagy induction/BECN1 CML Yu et al., 2012

miR-17 Vesicle nucleation and elongation/BECN1 and ATG7 Lung, GBM Comincini et al., 2013; Chatterjee
et al., 2014

miR-101 Vesicle elongation/ATG4 BRCA Frankel et al., 2011

miR-204 Vesicle elongation/LC3 RCC Mikhaylova et al., 2012

miR-375 Vesicle elongation/ATG7 Hepatic Chang et al., 2012

miR-23b Vesicle elongation/ATG12 Pancreatic Wang et al., 2013

miR-130a Retrieval fusion/ATG2B CLL Kovaleva et al., 2012

miR-34a Retrieval fusion/ATG9 BRCA Li L. et al., 2013

miR-182 BCL-2 Melanoma Yan et al., 2012

miR-210 BCL-2 Neuroblastoma Chio et al., 2013

miR-100 mTOR pathway genes Hepatic Ge et al., 2014

miR-224b The miRNA is removed by the autophagosome-lysosome pathway Hepatic Lan et al., 2014

lncRNA MEG3 Suppressed autophagy activation Bladder Ying et al., 2013

ANGIOGENESIS

miR-382↑, 21↑,
17–92↓, 467↑

Pro-angiogenic: PTEN, RhoB, TSP-1 GC, PCA,
OvCa, BRCA

Fish et al., 2008; Ramøn et al., 2011;
Bhattacharyya et al., 2012; Seok
et al., 2014

miR-218↓, 18a↑,
145↓, 22↓, 107

Anti-angiogenic: PLCγ1/ARAF, mTOR, p70S6K1, HIF-1α, HIF-1β GBM, GC,
CCC

Yamakuchi et al., 2010, 2011; Zheng
et al., 2013; Mathew et al., 2014

MVIH Inhibited activation of angiogenesis phosphoglycerate kinase 1 (PKK1) Yuan et al., 2012

EMT

miR-9 It’s regulated by c-myc and targets E-cadherin BRCA Martello et al., 2010

miR-135b It’s regulated by hypoxia and regulates cell proliferation by modulating the hippo
signaling pathway

CCC, HNSCC Nagel et al., 2008; Lin et al., 2013

miR-210 Both miRNAs are being regulated by hypoxia and modulate TGF-β Signaling
Pathway

BRCA, CRC Huang et al., 2009; Volinia et al., 2012

miR-21

miR-138 Modulates cell migration and invasion through targeting RhoC (Rho-related
GTP-binding protein C) and ROCK2 (Rho-associated, coiled-coil-containing
protein kinase 2)

HNSCC Liu et al., 2011

MALAT1 Promotes activation of LTBP3, which at the same time regulates the
bioavailability of TGF-β, a transduction signaling pathway for the transition. Also
serves as sponge of miR-205.

Myeloma Li B. et al., 2014

lncRNA H19 Modulates the expression of multiple genes involved in EMT by competing with
miRNAs such as miR-138 and miR-200a, antagonizing their functions and
stimulating the over-expression of Vimentin, ZEB1, and ZEB2.

CCC Liang et al., 2015

INFLAMMATION

miR-146b Physiologically, is a target of STAT3, but in cancer its promoter is methylated,
and consequently its down-modulation alters microRNA-mediated
anti-inflammatory circuit.

BRCA Xiang et al., 2014

lncRNA Lethe Induced by pro-inflammatory cytokines via NF-κB or glucocorticoid receptor
agonists, and functions in a negative feedback signaling with NF-κB.

Rapicavoli et al., 2013

lnc-IL7R Diminishes the LPS-induced inflammatory response (E-selectin, VCAM-1, IL-6,
and IL-8)

Cui H. et al., 2014

CCC, Colorectal cancer; GBM, glioblastoma; HNSCC, Head and neck squamous cell carcinoma; PCA, Prostate Cancer; CML, Chronic myeloid leukemia; OvCa, Ovary cancer; BRCA,

Breast cancer; GC, Gastric Cancer; ↑, up-expression; ↓, down-expression.
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FIGURE 5 | ncRNAs as novel therapeutic strategies in cancer metabolism. Targeting cancer metabolism represents a novel resource to develop anti-cancer
therapies. Now a days, there are different techniques developed to specifically modulate metabolic pathways, some of them are dedicated to silencing (LNA) or
re-expressing (miRNA mimic) ncRNA transcripts (Phan et al., 2014). These systems can be delivered by intratumoral, intraperitoneal, and intravenous injections,
through systemic adenovirus-associated virus (AAV), or in complexes with neutral lipid emulsions (Drakaki et al., 2013). In addition to these technologies,
cholesterol-modified miRNAs (chol-anti-miRs) exhibit improved pharmacokinetics and antitumor efficacy. Human (1) The development of hepatocellular carcinoma
(HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem. A phase II trial of the LNA anti-miR-122 is being carried out for
treatment of HCV infection (Lindow and Kauppinen, 2012). Xenograft mouse models (2) chol-anti-miR-221 effectively suppresses liver tumor growth (Park et al.,
2011). (3) Systemic administration of miR-124 suppresses liver cancer growth through suppression of the IL6/STAT3 inflammatory pathway (Hatziapostolou et al.,
2011). (4) AAV delivery of miR-26a or miR-122 suppresses MYC-driven liver carcinogenesis without affecting normal hepatocytes (Kota et al., 2009; Hsu et al., 2012).
(5) Neutral lipid emulsions (NLE) to deliver let-7 which targets RAS and MYC oncogenes, as well as miR-34, reduces tumor size in lung cancer (Trang et al., 2011). (6)
miR-101 and miR-376b are miRNAs, which negatively regulate the autophagy pathway (Frankel et al., 2011; Korkmaz et al., 2012). Furthermore, overexpression of
miR-101 suppressed tumor development and efficiently reduced tumor size in liver cancer (Su et al., 2009). (7) Over-expression of miR-101 can effectively reduce
tamoxifen-induced autophagy and enhance the sensitivity of breast cancer cells to tamoxifen treatment (Frankel et al., 2011). (8) Recombinant lentivirus administration
of miR-30a (inhibitor of autophagy by down-modulating BECN1), can enhance sensitivity to imatinib cytotoxicity in chronic myeloid leukemia, increasing tumor cell
apoptosis (Yu et al., 2012). In vitro (cell line models). (9) Up-regulation of miR-125a in cervical cancer (CC) models sensitized to paclitaxel by down-regulating STAT3
(Fan et al., 2016). (10) Re-expression of miR-30a can sensitize tumor cells to cisplatin via mediating autophagy in HeLa, MCF-7 and HepG2 (Zou et al., 2012). (11)
Over-expression of miR-101 sensitized human lung carcinoma cells to radiation treatment (Yan et al., 2010).

NOVEL INSIGHTS: nCRNAs AS
THERAPEUTIC TOOLS IN CANCER
METABOLISM

The advent of novel knowledge and high throughput
technologies, such as RNA-seq, Chip-seq, and metabolomic
analysis, has allowed us to gain insight into the versatility of the
mechanism that regulate metabolism and how the disturbance
of specific factors, in particular ncRNAs, might impact the
altered phenotypes of cancer cells. During the past years, we
have gained important understanding about the biological
activity of ncRNAs, although more research is needed to
better understand the complex mechanisms that orchestrate
tumor metabolism. Furthermore, pharmacological intervention
of cell metabolism is emerging as a potential therapeutic
strategy in some cancers (Ahn and Metallo, 2015) giving us the

opportunity to explore new sources for biomarker discovery
and development of new targeted drugs. The crucial role of
ncRNAs in metabolism and associated mechanisms raises the
possibility of developing ncRNA-targeted therapies. miRNA and
lncRNAs mimics or inhibitors can be used to elevate or block
the activity of metabolic-related genes to drive cancer initiation
and/or progression programs. Figure 5 summarizes some of the
actual and future therapeutic applications of metabolism-related
ncRNAS in cancer treatment.
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Reprogramming of energy metabolism is a hallmark of cancer that enables the cancer

cells to meet the increased energetic requirements due to uncontrolled proliferation. One

prominent example is pancreatic ductal adenocarcinoma, an aggressive form of cancer

with an overall 5-year survival rate of 5%. The reprogramming mechanism in pancreatic

cancer involves deregulated uptake of glucose and glutamine and other opportunistic

modes of satisfying energetic demands in a hypoxic and nutrient-poor environment. In

the current study, we apply systems biology approaches to enable a better understanding

of the dynamics of the distinct metabolic alterations in KRAS-mediated pancreatic

cancer, with the goal of impeding early cell proliferation by identifying the optimal

metabolic enzymes to target. We have constructed a kinetic model of metabolism

represented as a set of ordinary differential equations that describe time evolution

of the metabolite concentrations in glycolysis, glutaminolysis, tricarboxylic acid cycle

and the pentose phosphate pathway. The model is comprised of 46 metabolites

and 53 reactions. The mathematical model is fit to published enzyme knockdown

experimental data. We then applied the model to perform in silico enzyme modulations

and evaluate the effects on cell proliferation. Our work identifies potential combinations

of enzyme knockdown, metabolite inhibition, and extracellular conditions that impede

cell proliferation. Excitingly, the model predicts novel targets that can be tested

experimentally. Therefore, the model is a tool to predict the effects of inhibiting

specific metabolic reactions within pancreatic cancer cells, which is difficult to measure

experimentally, as well as test further hypotheses toward targeted therapies.

Keywords: metabolic modeling, systems biology, kinetic model, sensitivity analysis, parameter optimization

1. INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a particularly aggressive and challenging form of
cancer (Hidalgo, 2010; Oberstein and Olive, 2013; Siegel et al., 2013; Blum and Kloog, 2014)
that is highly resistant to conventional chemotherapy. Mutations mediated by the KRAS or MYC
oncogenes, found in 95% of cases of PDAC (Almoguera et al., 1988; Uemura et al., 2004; Löhr et al.,
2005; Hezel et al., 2006; Kimmelman, 2015), promote reprogramming of the cellular metabolism,
enabling the cancer cells to optimally use available resources (Ying et al., 2012). Specifically, KRAS
promotes glucose uptake (Donahue and Dawson, 2016) and rewiring of glucose and glutamine
metabolism (Kerr et al., 2016) to satisfy the excess demand for nutrients and cellular resources
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needed to sustain proliferation. The cells use glycolysis (glucose
metabolism) to generate cellular resources needed to produce
more cells. Similarly, increased glutamine consumption enables
the cells to meet the larger demand for nitrogen needed to
generate building blocks such as amino acids and lipids (Eagle,
1955; Vasseur et al., 2010; Pavlova and Thompson, 2016). The
cells exhibit high survival and minimal death, even when the
primary nutrients and energetic resources are scarce, suggesting
that the cells adapt to the challenging conditions by altering their
metabolism (Yoshida, 2015). This reprogramming of metabolic
pathways is considered to be an emerging hallmark of most
cancers (Hanahan and Weinberg, 2011) and is a driver of
malignant growth. Moreover, the metabolic stress that occurs
as a result of KRAS-mediated metabolic alterations can lead to
further mutations and continued cell proliferation and tumor
progression (Cairns et al., 2011; Misale et al., 2012). For these
reasons, the dysregulated metabolic pathways can be used to
identify biomarkers to support cancer diagnosis (Chung et al.,
2003; Serkova and Boros, 2005; Pelicano et al., 2006). The
altered metabolism also represents potential therapeutic targets
(Macheda et al., 2005).

Pancreatic cancer cells are particularly reliant on glutamine
to sustain proliferation and promote cell survival. Glutamine is
a conditionally essential amino acid that fuels the tricarboxylic
acid (TCA) cycle. Upon being taken up by the cell, glutamine
is converted to glutamate by the glutaminase (GLS) enzyme,
and then enters the TCA cycle as α-ketoglutarate (Wise and
Thompson, 2010). Interestingly, PDAC has been characterized
by non-canonical metabolism of glutamine, whereby the
enzyme glutamic-oxaloacetic transaminase (GOT1) catalyzes
the conversion of cytosolic aspartate to oxaloacetate. This
enzyme is used in pancreatic cancer, instead of the glutamate
dehydrogenase enzyme (GLUD1) used by normal cells to convert
glutamate derived from glutamine to α-ketoglutarate in the
mitochondria (McGivan and Chappell, 1975; Newsholme et al.,
2003).

Glutamate, α-ketoglutarate, and aspartate are all important
glutamine metabolism intermediates needed for cell
proliferation. Glutamate-pyruvate transaminase (GPT), also
known as alanine amino-transferase, transfers nitrogen from
glutamate to pyruvate to make alanine and α-ketoglutarate.
This nitrogen supports amino acid synthesis needed to produce
cellular building blocks (i.e., lipids and nucleic acids). The α-
ketoglutarate obtained by the conversion of glutamate promotes
citrate production and lipid biosynthesis (Wise et al., 2011;
Metallo et al., 2012). Aspartate is converted to oxaloacetate
(Cohen et al., 2015), which is further converted to malate and
then to pyruvate through the action of malic enzyme (ME1).
The action of ME1 increases the NADPH/NADP ratio to
maintain the redox balance and to replenish the glutathione
(GSH) pool to quench the reactive oxygen species (ROS)
(Gaglio et al., 2011). Given the importance of glutamine in
pancreatic cancer, the enzymes that catalyze its metabolism,
including GLS, GOT1, and ME1, are potential targets for
impeding cell growth (Weinberg et al., 2010; Gross et al.,
2014). For example, knocking down GOT1 activity alters
the cells reductive capacity and is shown to inhibit cell

proliferation in vitro and tumor growth in vivo (Son et al.,
2013).

Pancreatic cancer cells also utilize the glycolytic pathway to
metabolize glucose. Glycolysis converts glucose to pyruvate, most
of which is used to form lactate, producing some ATP, rather
than incorporated into the TCA cycle for ATP production. The
increased reliance on glycolysis, despite the fact that oxidative
phosphorylation is more efficient in generating ATP is termed the
“Warburg effect” (Warburg, 1956) and has been widely studied
(Vander Heiden et al., 2009). However, glycolysis enables the
cells to meet their demand for precursors needed for biomass
synthesis, which outweighs their energetic demands for ATP or
NADH from the TCA cycle. The demand for the generation
of amino acids, lipids, and nucleic acids is further satisfied by
branching pathways that exploit the elevated glucose uptake,
including the pentose phosphate pathway (PPP) (DeBerardinis
et al., 2008; Weinberg et al., 2010; Patra and Hay, 2014). The
PPP provides NADPH for macromolecule biosynthesis and
quenching of reactive oxygen species (ROS), termed reductive
biosynthesis. It also generates ribose-5-phosphate (R5P) required
as a precursor for DNA and RNA biosynthesis (Recktenwald
et al., 2008; DeNicola et al., 2011). Glucose metabolism has
been targeted in attempts to inhibit cancer cell proliferation
(El Mjiyad et al., 2011), and it remains a target in pancreatic
cancer (Vander Heiden, 2011).

Mathematical modeling is necessary to understand metabolic
reprogramming in cancer cells. Predictive mathematical models
can incorporate the many metabolites, enzymes, and regulatory
mechanisms that characterize cellular metabolism to enable a
better understanding of the metabolic pathways (Vazquez et al.,
2010; Alberghina et al., 2012; Cazzaniga et al., 2014; Le Novère,
2015). Many published metabolic modeling techniques have
focused on constraint-based approaches in which certain
physical, chemical, or biological constraints are applied to
predict the metabolic phenotypes (Resendis-Antonio et al., 2010;
Bordbar et al., 2014). These are steady state stoichiometric
models that can predict the flux distributions, but fail
to capture the kinetic aspects (time course of metabolite
concentrations) in the system or time-varying heterogeneities
that arise due to environmental fluctuations. When considering
processes that are inherently transient, such as the effects
of reprogramming of cancer metabolism, kinetic modeling
is required to understand the dynamic relationship between
metabolic fluxes and metabolite concentrations (Markert and
Vazquez, 2015). Therefore, models that represent the metabolic
pathways using a system of nonlinear ordinary differential
equations (ODEs) are of particular importance. These kinetic
models provide a mechanistic description of the transient
dynamics of the system (Machado et al., 2012; Cazzaniga et al.,
2014), as well as provide steady state measurements. When
constructed and validated using experimental measurements,
kinetic models can be used to perform in silico experiments
to predict the dynamic effects of perturbing the metabolic
network. In this way, the models are a valuable alternative to wet
experiments that can be expensive and time-consuming.

In this study, we construct such a kinetic model of pancreatic
cancer cell metabolism. Given the importance of glutamine
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and glucose metabolism in promoting pancreatic cancer cell
proliferation, we apply the model to identify effective metabolic
targets for impeding proliferation. The model is used to simulate
the effects of altering specific metabolic enzymes and is a valuable
tool to quantitatively understand the dynamics of cancer cell
metabolism.

2. MATERIALS AND METHODS

2.1. Model Structure and Numerical
Implementation
We constructed a kinetic model of pancreatic cancer cell
metabolism using previously published models of metabolism
from various cell types (Mulukutla et al., 2010; Marín-
Hernández et al., 2011; Mulukutla et al., 2012; Marín-Hernández
et al., 2014; Shestov et al., 2014; Mulukutla et al., 2015).
Our model is comprised of a total of 46 metabolites and
53 enzymatic reactions including glycolysis, glutaminolysis,
the TCA cycle, the PPP, and malate-aspartate-ketoglutarate-
glutamate shuttles between the cytosolic and mitochondrial
compartments (Figure 1). Each step in the metabolic pathway
is modeled according to known enzymatic reactions, which
include reaction mechanisms ranging from simple Michaelis-
Menten to complicated random bi-bi kinetics, expressed as
different mathematical formulations. Rate laws for each reaction
mechanism are incorporated into a system of 46 nonlinear
ordinary differential equations (ODEs) that describe how the
metabolite concentrations evolve over time. There is a single
ODE for each metabolite, representing the rate of change of
the species concentration, which depends on the rates at which
the species is produced and consumed in the reaction network.
We used an implicit differential equation solver in MATLAB
(Guide, 1998) to numerically integrate the equations and
solve for the metabolite concentrations. This is a deterministic
model, which simulates the concentrations in a homogeneous
ensemble of cells that experience, on average, similar intra-
and extra-cellular environmental conditions. By integrating
the ODEs, we calculate the average dynamics of the cell
population.

We briefly summarize the model equations below, and the full
set of ODEs is provided in the Supplementary Material (model
files: “S1.m” and “S2.xml”). Abbreviations for the metabolites
and reaction names are given in Supplementary File S3 and the
values of the fixed parameters are listed in Supplementary File S4.
The detailed rate equations for glycolysis and their corresponding
kinetic constants are primarily based on the glycolysis model for
HeLa cells (Marín-Hernández et al., 2011, 2014). This glycolysis
reaction network was extended to include reactions from the
TCA cycle and PPP using kinetic rate laws and parameters from
Mulukutla and coworkers (Wu et al., 2007; Mulukutla et al.,
2010, 2012, 2015). Reactions that involve ATP consumption and
production in the cytoplasm were defined as in the model of
Shestov et al. (2014), and the ATP and ADP concentrations in
mitochondrial compartment were kept constant as in Mulukutla
et al. In addition, glutamine transport parameters were obtained
from Pingitore et al. (2013).

AKT is a strong promoter of KRAS-mediated pancreatic
cancer tumorigenicity (Asano et al., 2004) due to its influence
on the rates of metabolic reactions in glycolysis. It is known that
PDAC cells have increased glucose uptake (Ying et al., 2012),
which is mediated by upregulation of specific glycolytic enzymes,
including the glucose transporter-1 (GLUT1), hexokinase (HK),
and lactate dehydrogenase A (LDHA). Additionally, AKT
promotes increased glucose uptake by activating GLUT1, HK,
and the phosphofructokinase (PFK) enzyme (Rathmell et al.,
2003; Elstrom et al., 2004). We have incorporated the effect
of AKT in our metabolic model, simulating AKT-mediated
enhanced glycolytic activity. Specifically, the activities of the
GLUT1, HK, and PFK enzymes (represented by their individual
Vmax values) are modeled to have 20% basal activity, while 80%
of their activity is due to activation by AKT (Mosca et al., 2012;
Mulukutla et al., 2012).

In order to predict how the intracellular metabolic pathways
influence cell growth, we incorporate cell number with the
enzyme-catalyzed reactions. Specifically, the model is augmented
to include a 47th ODE that describes the time evolution of the
number of cancer cells, CN . Cell growth is implemented as a
logistic equation (Enderling and Chaplain, 2014) that accounts
for themaximal carrying capacity of the tumor,KCC (Equation 1).

d(CN)

dt
= [λ(1−

CN

KCC
)CN]− αdCN (1)

The number of cancer cells is directly linked to the
metabolism, where the growth rate depends on the intracellular
concentrations of three primary metabolites known to
influence cell proliferation: glucose, glutamine and ATP
(Venkatasubramanian et al., 2008; Zhu et al., 2012). The
dependence on these three metabolites is modeled assuming
Monod-type functions (Higuera et al., 2009) (Equation 2).

λ = αatp(
ATP

kap + ATP
)+ αglc(

Glcin

kgc + Glcin
)+ αgln(

Glnin

kgn + Glnin
)

(2)
The growth and death parameters αatp, αglc, αgln, and αd are in

the units of min−1. The concentration parameters kgc, kgn, and
kap have units of mM.

2.2. Initial Conditions
We simulated the model with multiple sets of starting metabolite
concentrations to identify the appropriate range of initial
conditions. There is limited information regarding the initial
intracellular metabolite concentrations in pancreatic cancer
cells. Therefore, we allowed the initial concentration for each
metabolite to vary within a specified range. We specified
the concentration ranges based on published measurements
obtained from various cell lines, including human cervical cancer
(Marín-Hernández et al., 2011, 2014), diseased and surrounding
normal tissue samples from stomach and colon cancer patients
(Hirayama et al., 2009), breast cancer cell extracts (Le Guennec
et al., 2012), PDAC cancer patient samples (Fontana et al., 2016)
and mouse myeloma and CHO cell lines (Mulukutla et al., 2012,
2015). Additional uncertainty for pancreatic cancer cells was
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FIGURE 1 | Model schematic. The metabolic network is comprised of 46 metabolites interacting through 53 enzymatic reactions. The major pathways involve

glycolysis, glutaminolysis, the TCA cycle, the PPP, and shuttle reactions between mitochondrial (shaded rectangle) and cytoplasmic compartments. The abbreviations

for the metabolites, cofactors, and enzymes are given in Supplementary File S3. The colored nodes represent the metabolites for which the fold-change has been

measured experimentally during the knockdown of enzyme GOT1 (shown in red). The arrows represent the direction of the reaction fluxes in the baseline model at the

initiation of the simulation.

considered by increasing and decreasing the upper and lower
bounds, respectively, by 20%. Due to the lack of measurements
that distinguish the metabolite levels in different cellular
compartments, the initial concentrations of metabolites that
were present in both mitochondrial and cytosolic compartments
were assumed to be the same. The ranges of metabolite
concentrations given in Table 1 account for variability in
literature measurements as well an additional uncertainty for
unknown intracellular concentration of pancreatic cancer cell
lines in particular.

Latin Hypercube Sampling (McKay et al., 2000; Oguz et al.,
2013) was applied to sample within the ranges selected for
each metabolite. LHS separates the range of concentrations
for the metabolites into multiple intervals and samples from

each interval exactly once, thereby efficiently exploring the
entire possible range of initial conditions for each metabolite.
We selected to obtain 100 sets of initial conditions for each
metabolite for parameter identifiability analysis (Section 3.1.1),
and then randomly selected 50 of those sets to be used in
parameter estimation (Section 3.1.3). This procedure adequately
explores the possible ranges of initial conditions while balancing
the computational resources required for global parameter
optimization.

2.3. Parameter Estimation
The baseline model, adapted from literature, has a total of 372
parameters, which includes 71 reaction velocities (the forward
and reverse rates,Vf andVr , respectively). The reaction velocities
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TABLE 1 | Bounds for initial conditions used in the model simulations.

Metabolite Lower (mM) Upper (mM) Metabolite Lower (mM) Upper (mM)

GLC 2.5×100 1.4× 101 GSH 9.9× 10−2 3.4×100

ATP 1.4×10−2 1.4× 101 mPYR 1.2× 10−2 1.4×101

G6P 6.1×10−3 2.1× 100 mAcCoA 1.7× 10−4 1.7× 10−1

ADP 2.6×10−3 4.8× 100 mCIT 6.4× 10−3 1.2×100

F6P 3.4×10−4 8.4× 10−1 mICIT 1.0× 10−2 5.6× 10−2

FBP 8.5×10−3 4.5× 10−1 mAKG 5.8× 10−3 2.3× 10−2

DHAP 2.9×10−3 1.2× 100 mSCoA 1.6× 10−1 3.0× 100

G3P 8.0×10−4 1.2× 100 mSUC 1.7× 10−1 2.8×100

NAD 1.8×10−2 2.2× 100 mFUM 1.7× 10−2 2.2× 10−1

13BPG 8.0×10−4 1.2× 10−1 mMAL 9.6× 10−2 2.4×100

3PG 8.4×10−3 4.9× 10−1 mOAA 9.6× 10−2 2.4×100

2PG 5.6×10−3 6.0× 10−2 mASP 2.3× 10−1 7.8×100

PEP 1.8×10−3 3.8× 10−1 mGLU 5.6× 10−3 6.6×100

PYR 1.2×10−2 1.4× 101 ASP 2.3× 10−1 7.8×100

LAC 8.0×10−2 7.3× 101 GLU 5.6× 10−3 6.6×100

AMP 3.6×10−5 3.4× 100 OAA 9.6× 10−2 2.4×100

6PG 3.2×10−3 1.1× 10−2 MAL 9.6× 10−2 2.4×100

Ru5P 9.4×10−3 7.8× 10−2 AKG 5.7× 10−3 2.3× 10−2

Xyl5P 8.0×10−5 1.9× 10−2 CIT 6.4× 10−3 1.2×100

R5P 3.0×10−3 2.2× 10−2 GLN 1.6× 10−1 5.6×100

E4P 8.0×10−5 2.7× 10−1 NADH 8.0× 10−4 1.0× 10−1

S7P 6.5×10−3 8.1× 10−2 NADPH 9.6× 10−4 6.9× 10−2

NADP 3.7×10−3 4.4× 10−1 GSSG 1.0× 10−1 1.1×100

reflect the amount of enzyme present and the corresponding
enzyme activity. Conventionally, the reaction velocities are
thought to distinguish the metabolism across different cell types.
Therefore, of the many kinetic parameters included in the
reaction rate equations, only the reaction velocities were fit to
the training data, and the other rate constants were held at their
literature values. We also fit the cell growth parameters shown
in Equations (1) and (2). Below, we describe the experimental
data used to train the model and the method used to perform
the parameter estimation.

The model is fit to experimental measurements from
Son et al. (2013), who measured the concentrations of 14
intracellular metabolites using targeted metabolomic analysis.
Son and coworkers sought to understand the non-canonical
glutamine metabolism in pancreatic cancer cells following
the knockdown of GOT1, a major enzyme in glutamine
metabolism. Themetabolite concentrations were measured when
the GOT1 enzyme was knocked down, relative to the no
knockdown condition. Thus, they quantified the fold-change in
the metabolite concentrations.

The experimental protocol used by Son and coworkers is
illustrated in Figure S1. We simulated the same sequence of
steps to predict the fold-change in the concentrations of the
14 metabolites. Since the relative enzyme expression level can
be correlated with the regulation of enzyme activity levels, we
simulate enzyme knockdown by multiplying the Vf by the factor
(1 - α) (Nolan and Lee, 2012). We take the value of α to be

0.85, based on the average GOT1 expression level from two
knockdown experiments reported in Son et al. (2013). The model
is simulated for GOT1 knockdown to predict the fold-change
in the concentration of the 14 metabolites relative to the no
knockdown case. We sought to minimize the weighted sum of
the squared error (WSSR) between the experimental data and the
model predictions.

Additionally, Son and colleagues use in vitro cell culture
to investigate how intracellular metabolism influences cell
proliferation. They measure the number of cells with and
without GOT1 knockdown and in the presence of varying
extracellular nutrient concentrations. We also simulate their
experimental protocols and compare the model predictions to
their experimental measurements.

Particle swarm optimization (PSO) was used to identify the
parameter values needed to enable the model predictions to
best fit the data and minimize the WSSR. PSO (Iadevaia et al.,
2010; Kennedy, 2010; Tashkova et al., 2011) is a biologically-
inspired stochastic global optimization technique developed by
Kennedy and Eberhart (1995). It is based on the concept of
the social behavior observed in nature. In PSO, many particles,
sets of parameters, are constantly updated from their random
starting values to identify the parameter values that best fit the
experimental data. Each particle has a position, representing the
location in themulti-dimensional parameter space, and a velocity
with which it moves toward a local minimum in the WSSR. The
particles communicate with one another to update their position
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and velocity, ultimately moving toward the global minimum
in the WSSR. We used PSO to estimate the reaction velocities
for the baseline model. Each particle represents a vector of all
reaction velocities to be optimized where the initial parameter
values are taken from awell sampled space with the given bounds.
To specify the bounds, the reaction velocities were allowed to
vary 100-fold up and down from their starting values (taken
from the literature, see Materials and Methods). Each run of the
PSO algorithm executes 2, 500 iterations, a user-defined value to
balance the computational expense of the parameter search. We
performed the parameter estimation twice for each set of initial
conditions (i.e., a total of 5, 000 iterations per initial condition)
and, for each case, selected the set of parameters that generated
the lowest error. This gave a total of 50 best-fit parameter sets,
one set for each initial condition.

Estimating the reaction velocities for each initial condition
was the first step of model fitting. In the second step of
model fitting, we sought to estimate the growth parameters
by minimizing the WSSR. Since there fewer parameters to
fit compared to the first fitting step, we used nonlinear least
squares optimization. We performed the fitting 100 times for
each initial condition to approach the global minimum in the
model error. Given limited prior knowledge of the range of base
values for growth parameters (Higuera et al., 2009), we searched
over a parameter space spanning seven orders of magnitude
for each parameter. The model simulations to optimize for cell
growth were conducted such that the same set of seven growth
parameters could fit the experimental growth curve for both no
knockdown and GOT1 knockdown conditions.

2.4. Data Extraction
Experimental data for model training and validation was
extracted from Son et al. (2013) using the MATLAB GRABIT
program (Guide, 1998). Training data includes the fold-change
in metabolite concentrations and cell number under GOT1
knockdown. Validation data includes the cell number under
nutrient deprivation.

2.5. Parameter Identifiability Analysis
We used structural parameter identifiability analysis (Maly
and Petzold, 1996; Ascher and Petzold, 1998; Shampine
et al., 1999; Finley et al., 2011; Berthoumieux et al., 2013)
to reduce the number of model parameters being fit to
the training data. Parameter identifiability determines implicit
dependencies among parameters. If two parameters are found
to be correlated, we can specify a mathematical relationship
between the parameters and only fit one in the parameter
estimation procedure. Here, we only specify the relationship
between correlated forward and reverse reaction velocities, where
the reverse reaction velocity, Vr , is expressed as a function of the
forward reaction velocity, Vf , with the equilibrium constant, Veq:
Vr = Vf /Veq. In these cases, only the forward reaction velocity is
fit to the experimental data, thereby reducing the number of fitted
parameters. TheVeq is calculated using the published works from
which our model is derived (Wu et al., 2007; Mulukutla et al.,
2010, 2012, 2015; Marín-Hernández et al., 2011, 2014).

2.6. Sensitivity Analysis
We applied global sensitivity analysis (Saltelli et al., 2008) to
determine which of the model parameters most significantly
influence the predicted metabolite concentrations. Specifically,
we used the extended Fourier Amplitude Sensitivity Test (eFAST)
method (Marino et al., 2008), a variance-based approach, to
understand the robustness of the model outputs (metabolite
concentrations) given variance in the model inputs (the reaction
velocities) (Zi, 2011). We allowed the model inputs to vary
two orders of magnitude up and down from their literature
values. The eFAST method calculates two indices that provide
an estimate of the sensitivity of the model outputs with respect
to the model parameters. The first order index, Si, quantifies the
variance of the model output with respect to the variances of
each individual input, and the total FAST index, Sti, quantifies
the variance of the model output with respect to the variances of
each input and covariances between combinations of inputs. The
Si, then, is a measurement of local sensitivity of the model output
to each individual input, whereas Sti is a measure of the global
sensitivity, accounting for the interactions or correlations among
multiple inputs.

3. RESULTS

We have constructed a kinetic model that predicts the
dynamics of cellular metabolism in pancreatic cancer cells.
The model is based on a priori knowledge of the molecular
species involved and the reactions and interactions between
the species. The complete model describing the metabolic
network dynamics incorporates enzymatic reactions involved in
glycolysis, glutaminolysis, the TCA cycle, and the PPP (Figure 1).
We represent the cell using a cytoplasmic compartment and
the mitochondria. Through glycolysis, glucose is metabolized
to pyruvate, which enters the tricarboxylic acid cycle (in the
mitochondria), or pyruvate can form lactate (in the cytoplasm),
which is excreted from the cell. Glycolysis and pentose phosphate
pathway take place in the cytoplasm and are linked through
three metabolites: G6P, F6P and G3P. The TCA cycle in the
mitochondrial compartment takes the influx of cytoplasmic
pyruvate from glycolysis. Additionally, the following metabolites
are exchanged between the cytoplasm and the mitochondria:
malate, aspartate, citrate, glutamate and alpha-ketoglutarate. In
total, the model includes 46 metabolites interacting through
53 enzymatic reactions where the evolution of the metabolites’
concentrations are calculated by solving a set of nonlinear ODEs.
The complete set of model reactions and the baseline parameter
values from literature are included in the Supplementary
Material.

3.1. Training of the Complete Kinetic Model
We performed parameter estimation to fit the model to
quantitative experimental data and estimate the reaction
velocities (Vf and Vr) that allow the model predictions to best
match the available experimental data. As described in the
Methods, the complete model is constructed using equations
from multiple sources, each of which contains parameters that
characterize the rates of the metabolic reactions. Therefore, we fit
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the model to data specific to pancreatic cancer in order to obtain
a validated model that can be used to predict the dynamics of
metabolism in pancreatic cancer cells.

3.1.1. Parameter Identifiability Analysis
Wefirst performed parameter identifiability (PI) to determine the
pairs of correlated parameters. Specifically, we aimed to identify
which of the total 71 forward and reverse reaction velocities are
mathematically correlated. Completing this analysis allowed us
to fit the forward rate, and calculate the reverse rate using the
equilibrium constant. Initially 100 sets of initial conditions are
chosen from Latin Hypercube Sampling. We sum the calculated
correlation coefficients for each of the 100 initial conditions and
subsequently normalized the estimated correlation coefficients.
When the forward and reverse reaction velocities (Vf and Vr ,
respectively) for a particular reaction are shown to be highly
correlated for multiple sets of initial conditions, we fit the Vf and
calculate Vr using the equilibrium constant, Veq. We performed
the PI analysis once using the baseline model and all 71 reaction
velocities, identifying 10 correlated pairs (“round 1”). We then
performed the analysis again, after specifying the Vr values
found to be correlated in round 1, which identified another two
correlated pairs (“round 2"). Through this analysis, we reduced
the number of reaction velocities to be fit from 71 to 59. The
results of the parameter identifiability are shown in Figures
S2–S4.

3.1.2. Global Sensitivity Analysis
Next, we performed global sensitivity analysis to determine
which of the reaction velocities most significantly influence the
model outputs. Ideally, estimating the sensitivity of the predicted
concentrations of the 14 metabolites to variance in the reaction
velocities reduces the number of fitted parameters, where only
the values of the most influential parameters are estimated.
Therefore, we applied the eFAST method (see Section 2) to
calculate the sensitivity of the fold-change in the metabolite
concentrations given variance in the 59 reaction velocities
included in the model, for each set of initial conditions. The
cumulative result of the sensitivity analysis is shown in Figure S5,
where we sum the sensitivity coefficients for the 50 sets of initial
conditions. However, the results show that each of the parameters
influence at least one of the predicted fold-changes for each set of
initial conditions. Therefore, we moved forward with fitting all
59 parameters, so as not to omit any parameter that affects the
predicted fold-changes.

3.1.3. Parameter Estimation
Finally, we used particle swarm optimization (PSO) to find the
optimal values for each reaction velocity that allow the fold-
changes in the metabolite concentrations predicted by the model
to accurately match the fold-changes measured experimentally.
By performing the model training, the predicted fold-changes
match very closely to the experimental data, as shown in Figure 2.
As a result, we estimated the values of the reaction velocities for
each set of initial conditions. The estimated parameter values are
given in the Supplementary Material (“S5.xlsx”).

We incorporated growth kinetics with the trained metabolic
model to predict the number of cells over time. The cell growth is

simulated in the presence of complete media (35 mM of glucose
and 6 mM of glutamine) for a total time period of 5 days. The
model is able to match the training data for the growth curves
measured by Son et al. (2013) (Figure 3A). By training themodel,
we estimated the cell death rate and growth parameters that
characterize how the concentrations of glucose, glutamine, and
ATP contribute to the rate of cell proliferation (Equations 1 and
2). As a result, four initial conditions out of the total 50 starting
initial conditions obtained from LHS were able to fit the data
equally well (Figure 3A).

3.2. Model Validation
We validated the model with available experimental
measurements for cell proliferation under conditions of nutrient
deprivation. The validation step confirms that the model is
able to predict data not used in the model training. Two initial
conditions with their corresponding fitted parameters (reaction
velocities and growth parameters) could successfully validate the
experimental growth curves measured under minimal glucose
and glutamine concentrations (Figure 3B). These validated sets
of initial conditions (Table 2) represent physiologically possible
intracellular levels of metabolites present in pancreatic cancer
cells. We therefore used only these sets of initial conditions
and their corresponding fitted parameters in simulating various
conditions and generating predictions that provide novel insight
into pancreatic cancer metabolism.

The best-fit parameter sets estimated using these two initial
conditions are remarkably consistent. A total of 69 and 71% of
the reaction velocities and growth parameters, respectively, are
within 100-fold of one another, as highlighted in Supplementary
File S3. This consistency confirms the robustness of the
identified parameter values and their physiological possibility
within the intracellular environment of a pancreatic cancer
cell, which is difficult to determine experimentally. However,
given the large number of parameters that needed to be
optimized, along with their interdependence due to upstream
and downstream metabolite concentrations, some parameters
showed high variability, as is common in systems biology models.
Specifically, two growth parameters, αglc and kgc, vary as widely
as seven orders of magnitude between the two sets of best-
fit parameter values estimated using the two validated initial
conditions. These parameters characterize the contribution of
glucose to the overall rate of cell proliferation. However, the
ratio of α to k for glucose is very similar across the two sets
of initial conditions, again pointing to the robustness of the
estimated parameter values. The occurrence of high variability
in the best-fit parameters is to be expected in highly nonlinear
and complex kinetic models (Bellu et al., 2007). However, the
strength of the model optimization lies in the fact that despite
high variability in certain parameters, the model validation for
both initial conditions is highly comparable, as evident from
Figure S6.

3.3. Model Robustness
To test the robustness of the model predictions, we predicted
how the number of cancer cells increase for varying metabolite
initial conditions.We performed aMonte Carlo analysis, running
the model with 1,000 different values of initial conditions
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FIGURE 2 | Model fit to experimental data. The model predictions for the fold-change in the metabolite concentrations (orange bars) match the experimental

measurements from Son et al. (2013) (gray bars). Error bars for the predicted fold-change represent the standard deviation in the model predictions for the best fit

from each of the 50 initial conditions. The simulated values of the metabolites derived from the mitochondria and cytoplasm are summed together to determine the

total cellular metabolite pool, which was measured in the experiments.

FIGURE 3 | Model training and validation using cell proliferation data.

The model is used to estimate the relative number of cells. (A) Simulated cell

proliferation with complete media (35 mM glucose and 6 mM glutamine) for 5

days with no knockdown (black) and under GOT1 knockdown (red). Results

are shown for the four initial conditions that match the training data. (B)

Simulated cell proliferation when cells are grown in complete media for 5 days

(black) or in complete media for 24 h, followed by glucose and glutamine

deprivation for 4 days (blue). Results are shown for the final two initial

conditions that match the validation data. In both (A,B), triangles and squares

represent the experimental data with error bars as available. The solid lines

indicate the mean of predicted results for the given sets of initial conditions,

and the shading shows the standard deviation.

randomly selected from a Gaussian distribution. The baseline
initial condition for each metabolite is allowed to vary 50%
up and down. Here, the mean is the baseline value for the
initial condition, and the standard deviation is 1/6 of the mean.
This ensures that all of the values selected from the Gaussian
distribution are within three standard deviations of the mean.
The predicted results for one of the validated sets of initial

conditions are shown in Figure 4. The simulations indicate
that cell proliferation is fairly sensitive to the initial metabolite
concentrations. Therefore, our careful procedure of identifying
an appropriate set of initial conditions is important in generating
valid model predictions.

3.4. Predicted Effects of Nutrient
Availability
We applied the model to investigate the effects of the availability
of glucose and glutamine in the extracellular environment.
The cell proliferation rate is explicitly dependent on the
concentrations of glucose and glutamine (Ramanathan et al.,
2005; Yun et al., 2009), as well as the ability to convert the
nutrient sources into ATP. Therefore, we explored how the
cell count varied given changes in the extracellular levels of
glucose and glutamine. We simulated the model under varying
conditions of both glucose and glutamine (Figure 5). The model
predicts that nutrient availability influences cell proliferation in a
nonlinear manner. Additionally, the number of pancreatic cells
is predicted to be more dependent on glutamine availability,
as compared to glucose, particularly given longer times for cell
growth. This result, which holds true for both validated sets of
initial conditions, is consistent with experimental observations
(Gaglio et al., 2011).

3.5. Predicted Effects Metabolic Fluxes
The model predicts the dynamic reaction fluxes under varying
conditions, providing insight into the metabolic phenotype of the
pancreatic cancer cells. The flux through the enzyme-catalyzed
reactions indicates the functional impact of each connection
in the metabolic network (Sauer, 2006). Therefore, we applied
the model to predict the dynamic reaction fluxes through
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TABLE 2 | Final sets of initial conditions that fit the training data and match the validation data well.

Metabolite IC #1 (mM) IC #2 (mM) Metabolite IC #1 (mM) IC #2 (mM)

GLC 1.4× 101 3.1× 100 GSH 2.1×100 3.1×100

ATP 7.7× 100 9.9× 100 mPYR 7.9×100 6.9×100

G6P 1.2× 100 1.8× 100 mAcCoA 1.2× 10−1 1.0× 10−1

ADP 1.9× 100 1.0× 100 mCIT 9.8× 10−2 5.0× 10−1

F6P 2.1× 10−1 2.8× 10−2 mICIT 1.7× 10−2 2.49× 10−2

FBP 1.0× 10−1 3.8× 10−1 mAKG 2.0× 10−2 1.57× 10−2

DHAP 8.8× 10−1 7.7× 10−1 mSCoA 7.2× 10−1 1.5×100

G3P 5.7× 10−1 4.4× 10−2 mSUC 2.5×100 1.8×100

NAD 3.1× 10−1 8.1× 10−1 mFUM 1.6× 10−1 1.6× 10−1

13BPG 6.7× 10−3 1.4× 10−2 mMAL 1.2×100 2.2×100

3PG 3.4× 10−1 9.9× 10−2 mOAA 1.9×100 1.7×100

2PG 4.9× 10−2 4.5× 10−2 mASP 4.3×100 3.2×100

PEP 5.4× 10−2 2.1× 10−1 mGLU 2.0×100 3.0× 10−1

PYR 8.1× 100 4.4× 100 ASP 7.0×100 6.7×100

LAC 1.9× 101 6.3× 101 GLU 2.8×100 3.2×100

AMP 2.5× 10−1 1.3× 100 OAA 1.2×100 1.2×100

6PG 4.5× 10−3 9.4× 10−3 MAL 1.9×100 2.1×100

Ru5P 2.7× 10−2 7.6× 10−2 AKG 6.1× 10−3 2.1× 10−2

Xyl5P 1.3× 10−2 1.3× 10−2 CIT 5.1× 10−1 1.7× 10−1

R5P 1.4× 10−2 6.0× 10−3 GLN 4.3×100 5.5×100

E4P 1.8× 10−1 5.2× 10−2 NADH 6.1× 10−2 9.7× 10−3

S7P 5.7× 10−2 7.1× 10−2 NADPH 5.6× 10−3 3.3× 10−2

NADP 3.8× 10−1 7.2× 10−2 GSSG 3.2× 10−1 9.1× 10−1

FIGURE 4 | Model robustness. Model simulation using 1,000 random initial

conditions selected from a Gaussian distribution, as described in Section 3.3.

(A) Simulations under no knockdown (black) and GOT1 knockdown (red). (B)

Simulations with complete media (black) and nutrient deprivation after 24 h

(blue). In both (A,B), triangles and squares represent the experimental data

with error bars as available. The solid lines indicate the mean of predicted

results for 1,000 sets of initial conditions, where the shading shows the

standard deviation.

the metabolic reactions both in the baseline model with no
GOT1 knockdown (Figure 6A) and under GOT1 knockdown
(Figure 6B). The differences in the reaction fluxes between these
two conditions provide mechanistic insight into how altering a
single enzyme-catalyzed reaction has a systemic effect on the
metabolic network. The model predicts that GOT1 knockdown

influences the magnitude and direction of the adenylate kinase
(AK) reaction. The AK enzyme catalyzes the production of ADP
from ATP and AMP, and in the baseline model, this reaction
mostly proceeds in the reverse direction (i.e., there is a net
production of ATP). With GOT1 knockdown, the flux through
the AK reaction switches after 24 h of cell growth. In this case, less
ATP is available to be consumed for proliferation, hence lower
cell growth is observed. Additionally, GOT1 knockdown causes
the glutamate-pyruvate transaminase (GPT) reaction to proceed
in the opposite direction, as compared to the no knockdown case.
This means that with GOT1 knockdown, the GPT reaction works
to produce glutamate rather than consume it, compensating for
the lower glutamate production that occurs when the GOT1
enzyme is not fully active.

3.6. Predicted Response to Metabolic
Perturbations
The model predicts the systems-level response to various
metabolic perturbations. With the ability to predict the number
of pancreatic cancer cells over time and the dynamic reaction
fluxes, the model can help identify the enzyme-catalyzed
reactions that are effective therapeutic targets to inhibit tumor
metabolism and impede cell growth. Therefore, we applied the
model to predict the effects of inhibiting various enzymes in
the metabolic network. We implemented enzyme knockdowns
by decreasing the forward reaction velocity (Vf ) by 85%, either
alone or in combination with GOT1 knockdown. We first
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FIGURE 5 | Predicted effects of varying nutrient availability. Predicted relative number of pancreatic cancer cells with varying extracellular concentrations of

glucose and glutamine at: (A) 1 day and (B) 5 days.

FIGURE 6 | Predicted metabolic fluxes. Dynamic fluxes predicted by the model for: (A) no knockdown and (B) GOT1 knockdown. The color bar indicates the

magnitude of the flux on a log scale. Black triangles denote the time points at which the flux is in the opposite direction (i.e., negative flux), compared to the baseline

model shown in Figure 1.

targeted enzymes that directly influence the three metabolites
involved in the cell proliferation rate (glucose, glutamine,
and ATP). These enzymes include GLUT1, which catalyzes
glucose uptake by the cell, GLS, the enzyme that converts
glutamine to glutamate, and OXPHOS, the reaction simulating
oxidative phosphorylation. The model predicts that inhibiting
these enzymes influences cell growth to varying degrees. GLUT1
knockdown alone is not as effective in reducing cell growth
as GOT1 knockdown (Figure 7A). Moreover, knockdown of
both GLUT1 and GOT1 is as effective in reducing cell growth
as GOT1 knockdown alone. Thus, the model indicates that
GLUT1 is not an optimal target, as compared to GOT1.
In comparison, OXPHOS knockdown leads to lower cell
proliferation compared to GOT1 knockdown (Figure 7B).
Also, under GLS knockdown, cell growth is significantly

reduced (Figure 7C), alone or in combination with GOT1
knockdown.

The model predicts novel strategies to reduce pancreatic
cancer cell metabolism that lead to reduced cell proliferation.
After targeting enzymes that directly influence the metabolites
whose concentrations influence the cell proliferation rate, we
examined the effects of altering other enzymes in the metabolic
network, individually and in combination. We conducted a
local sensitivity analysis by varying the reaction velocities
and predicting the effects on the relative cell number. We
systematically reduced each of the 59 fitted reaction velocities in
the trained model from 5% knockdown up to complete knockout
(Burgard et al., 2003; Meister et al., 2013). In this way, the
model is used to specifically pinpoint which enzyme-catalyzed
reactions contribute most to cell growth inhibition. Reducing
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FIGURE 7 | Predicted response to metabolic perturbations. The model predicts the relative number of pancreatic cancer cells when the activity of the target

enzyme was reduced by 85% alone or in combination with 85% GOT1 knockdown. The targets investigated were (A) GLUT1, (B) OXPHOS, (C) GLS, (D) MALPi, (E)

GAPDH, and (F) GOT2.

the reaction velocity in the GOT1 reaction showed an expected
direct correlation of decrease in cell growth with increasing effect
of knockdown (Figure S7). However, it is more interesting to
apply themodel to identify combination therapies, i.e., systematic
combinations of knockdown of essential enzymatic reactions.
Therefore, we identified how knockdown (reducing the reaction
velocity by 85%) for a target enzyme influences the predicted cell
growth, alone and in combination with GOT1 knockdown. The
model predicts three relevant classes of behaviors that lead to
a reduction in cell proliferation, as described below. We show
the relative cell count for a representative example from each
case in Figure 7D, MALPi; Figure 7E, GAPDH; and Figure 7F,
GOT2.

1. Knockdown of the target enzyme alone is not as effective as
GOT1, but its knockdown synergizes with GOT1 knockdown to
further decrease cell count.We identified themalate-phosphate
shuttle (MALPi) as a representative example. MALPi is
responsible for phosphate shuttle across the cytoplasmic and
mitochondrial compartment and hence for the conversion
of ATP and ADP. MALPi, in conjunction with the citrate
malate shuttle (CITMAL), generates citrate required for lipid
synthesis. Therefore, targeting MALPi exhibits is expected to
reduce tumor growth, which the model predicts (Figure 7D).

2. Knockdown of the target enzyme reduces cell proliferation as
much as GOT1 knockdown alone, and is even more effective
when combined with GOT1 knockdown. This behavior is
illustrated in the case of targeting GAPDH, the enzyme
responsible for converting G3P to BPG, accompanied by the

reduction of NAD to NADH. Interestingly, over-expression
of GAPDH has been observed in many types of cancers
(Norris et al., 2008; Ganapathy-Kanniappan et al., 2012;
Krasnov et al., 2013). Inhibiting GAPDH would decrease
the production of downstream metabolites, hence reducing
the formation of lipids and amino acids, which are required
for cell proliferation (Pereira et al., 2009). As expected, the
model predicts reduced cell proliferation upon inhibiting the
GAPDH enzyme (Figure 7E).

3. Knockdown of the target enzyme alone is very effective
in reducing cell proliferation, and combining it with
GOT1 knockdown does not have any additional effect. A
representative example of this behavior is shown by targeting
glutamate oxaloacetate transaminase 2 (GOT2). This enzyme
promotes synthesis of OAA by AKG via glutamate. The
expression level and activity of the GOT2 enzyme has been
found to be highly elevated in pancreatic and breast cancer
cells (Chakrabarti et al., 2015; Korangath et al., 2015; Yang
et al., 2016). The model predicts that targeting GOT2 activity
is a potential lethal approach to target glutamine metabolism
to inhibit tumor growth (Figure 7F).

4. DISCUSSION

4.1. Robust and Predictive Computational
Model
We present a predictive model that enables quantification of the
kinetics of the intracellular metabolism of pancreatic cancer cells.
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The model provides an understanding of how the cells depend
on the extracellular conditions (Vander Heiden et al., 2009) and
the resulting dynamic reaction fluxes. The ultimate goal is to use
the model to tackle this aggressive disease by identifying novel
strategies to alter the reprogrammed metabolism within cancer
cells (Hanahan and Weinberg, 2011).

The model is predictive of pancreatic cancer cell metabolism
in particular, as we carefully calibrated the model to pancreatic
cancer-specific data from the 8988T cell line. The calibrated
model predicts the metabolite concentrations, reaction fluxes,
and number of pancreatic cells over time. As a result of
model calibration and validation to data not used in training,
we identify feasible sets of initial conditions and kinetic
parameters that together provide a model that is specific to
pancreatic cancer. We apply the validated model to predict the
effects of perturbing specific metabolic reactions, alone and in
combination. Interestingly, the model simulations show that
targeting the PPP, TCA cycle, or mitochondrial-cytoplasmic
shuttle reactions presents an equally important and synergistic
role with targets to regulate tumor metabolism.

Computational modeling offers a powerful tool to incorporate
the complexity and robustness of the interconnected metabolic
pathways and predict how individual and subsets of metabolic
reactions give rise to the systemic behavior of the cells. Through
parameter identification, sensitivity analyses, and parameter
estimation, we obtained a predictive computational model that
matches experimental data and can be used to predict metabolic
phenotypes of pancreatic cancer. We utilized a quantitative
approach to predict how altering nutrient availability and enzyme
activity inhibits cancer cell metabolism, and ultimately, cancer
cell proliferation. In this way, the model is a valuable framework
that generates hypotheses regarding novel therapeutic strategies.
The model provides quantitative insight into how the dynamics
of metabolism are affected by strategic knockdown of enzyme
activity. The strategies that we implemented computationally can
be tested experimentally using shRNA to selectively reduce the
activity of the targeted enzyme(s). Thus, when combined with
experimental studies, the model can prove useful in designing
and understanding pre-clinical trials.

Our approach of fitting the model with different sets
of initial conditions to generate multiple parameter sets is
akin to ensemble modeling for metabolic systems (Tran
et al., 2008; Srinivasan et al., 2015; Saa and Nielsen, 2016).
The ensemble modeling approach, which has been applied
to build dynamic genome-scale models, generates multiple
parameter sets (an ensemble of models) that produce the same
steady state conditions. Given additional data, such as the
distributions of the reaction fluxes under certain perturbations,
the number of feasible models can be reduced. The ensemble
of models is produced by sampling the parameter space for
the kinetic rates, given certain constraints (i.e., thermodynamics
or growth requirements). Analogously, we have sampled the
space of possible initial metabolite concentrations and trained
the model for each set of initial conditions to generate a
set of possible kinetic parameters. We then use the cell
proliferation data to further identify the sets of appropriate
parameters and initial metabolite concentrations. This procedure

resulted in two possible models, which are then evaluated to
determine their robustness, and finally applied to generate novel
predictions.

4.2. Comparison to Other Studies
The metabolic model constructed in this work is a significant
expansion beyond existing kinetic models of cancer metabolism.
Previously published kinetic models in the context of cancer
have mostly focused on the glycolytic pathway. Such models
have successfully identified enzymes that are associated with
tumor growth and malignancy and are important targets
in inhibiting metabolism, including GLUT, HK, PFK-1, and
GAPDH (Marín-Hernández et al., 2011, 2014; Shestov et al.,
2014). However, the enzymes involved in the TCA cycle
and glutaminolysis also significantly contribute to cancer cell
proliferation, particularly in case of pancreatic cancer. Our paper
is the first to combine these pathways, along with cell growth,
in a model for pancreatic cancer, thereby advancing the field of
dynamic metabolic modeling of cancer. The impact of enzymes
that catalyze glutaminolysis and TCA cycle reactions was proven
experimentally by Son et al. (2013) and our simulations also
confirm their importance.

We can compare the model predictions to experimental
studies published in the literature. Over-expression of GLUT
has been identified in almost all types of cancer and hence
is a key signature of malignancy (Ganapathy-Kanniappan and
Geschwind, 2013). Targeting GLUT has been shown to inhibit
glucose transport and reduce cell growth(Liu et al., 2012; Granchi
et al., 2014). However, due to the ubiquitous expression of GLUT
in all cell types, blockage of GLUT remains a critical challenge.
Using the model, we could successfully confirm the presence of
alternative targets described in the literature, as well as identify
novel targets. The model predicts the effects of targeting other
pathways by which tumor cells metabolize nutrients and produce
building blocks needed for cell proliferation. For example, the
model predicts that targeting oxidative phosphorylation (via
the OXPHOS enzyme) can significantly reduce cell growth, in
combination with inhibition of the GOT1 enzyme. Indeed, the
literature has shown that targeting this pathway by which the
cell generates ATP in the mitochondria (Caro et al., 2012; Haq
et al., 2013; Vazquez et al., 2013; Viale et al., 2014; Weinberg
and Chandel, 2015), synergistically with optimal inhibition of
glycolysis and glutaminolysis may increase effectiveness of cancer
therapeutics (Lu et al., 2015; Yadav et al., 2015). Another example
is inhibition of glutaminase (GLS), the enzyme responsible for
converting glutamine to glutamate. The glutamate produced in
this reaction subsequently enters in the TCA cycle to ultimately
generate metabolites such as OAA, AKG, acetyl-CoA, and citrate
for lipid production and nitrogen for DNA synthesis (Chen
and Cui, 2015). The GLS enzyme is reported to have a positive
correlation with cancerous tumor growth from normal cells due
to enhanced glutaminolysis (Lora et al., 2004; Xiang et al., 2015),
making it is a potential target for effective cancer therapeutic.
The model predicts a synergistic effect when GLS is inhibited
in combination with GOT1. Interestingly, inhibitors of GLS are
being explored: BPTES (DeLaBarre et al., 2011; Hartwick and
Curthoys, 2012) and CB839 (Gross et al., 2014) have been shown
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to induce apoptosis in cancer cells. These predicted effects of
targeting OXPHOS and GLS, along with those described in
Section 3.6 and illustrated in Figure 7 demonstrate the utility of
the model and confirm its validity. Excitingly, this comparison
of the model results and known experimental studies lends great
confidence to the model’s predictions.

4.3. Model limitations
Our model accurately reproduces, both quantitatively and
qualitatively, experimental data used for training and validation.
However, there are certain limitations that can be addressed as
additional quantitative data become available for model fitting.
Currently, the model only considers cancer cells; however, it is
important to consider additional cell types within the tumor.
We can extend the model to predict the effects of interactions
between multiple cell types and to understand the dynamics
of exchange of nutrients between the cells. Expanding the
model in this way could enable a better understanding of
the symbiosis between cells (Mendoza-Juez et al., 2012) and
how the tumor microenvironment can alter the cells’ metabolic
dependencies and induce apoptosis (Phipps et al., 2015). Another
limitation is that the model does not include intracellular
recycling pathways or scavenging mechanisms such as autophagy
(organelle degradation by autophagosomes) or macropinocytosis
(engulfing the nutrients followed by lysosomal degradation).
Additionally, the model assumes that the concentrations of
glucose, glutamine, and ATP directly correlate to the cellular
resources required for biomass production and cell proliferation.
Therefore, we do not include the steps toward amino acid
synthesis or nucleotide synthesis through the non-oxidative arm
of the PPP or the hexosamine biosynthesis pathway. These are
processes that enable cancer cells to promote biomass synthesis
and could be added as future extensions to the existing model.
Finally, given additional data, themodel can be adapted to predict
the metabolism in a range of cancer cell types beyond pancreatic
cancer.

5. CONCLUSION

The metabolic model presented here is a novel computational
tool for investigating the metabolism of pancreatic cancer

cells. The model includes enzyme-catalyzed reactions in
central metabolic pathways and is trained and validated using
quantitative experimental measurements, specific to pancreatic
cancer lines. As a result, we have constructed the first kinetic
model of pancreatic cancer metabolism. The model predicts
the effects of both intracellular and extracellular perturbations,
providing the metabolic fluxes and the number of cancer cells
over time. With a successful identification of appropriate initial
conditions and parameter values for pancreatic cancer, the model
serves as a good starting point to predict the dynamicmetabolism
in other pancreatic cancer cell lines as well as a template for
studying cell growth in other cell types. Additionally, using
model simulations, we can design novel in silico combinatorial
therapies toward impeding cancer cell proliferation. Thus, the
model can be used to complement in vitro and in vivo pre-clinical
studies.
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Lineage fate decisions of hematopoietic cells depend on intrinsic factors and

extrinsic signals provided by the bone marrow microenvironment, where they reside.

Abnormalities in composition and function of hematopoietic niches have been proposed

as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous

experimental findings strongly suggest that pro-inflammatory cues contribute to

mesenchymal niche abnormalities that result in maintenance of ALL precursor cells

at the expense of normal hematopoiesis. Here, we propose a molecular regulatory

network interconnecting the major communication pathways between hematopoietic

stem and progenitor cells (HSPCs) andmesenchymal stromal cells (MSCs) within the BM.

Dynamical analysis of the network as a Boolean model reveals two stationary states that

can be interpreted as the intercellular contact status. Furthermore, simulations describe

the molecular patterns observed during experimental proliferation and activation.

Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1

interactions following microenvironmental perturbation due by temporal signaling from

Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced

by intrinsic or extrinsic factors may contribute to create a tumor microenvironment

where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular

communication axes allows for the maintenance of malignant cells.

Keywords: cancer systems biology, acute lymphoblastic leukemia, tumor microenvironment, CXCL12,

pro-inflammatory bone marrow, early hematopoiesis, network modeling, dynamical systems

INTRODUCTION

Cancer is currently considered as a global child health priority (Gupta et al., 2014). The
application of effective treatments to decrease overall childhood cancer mortality requires a
comprehensive understanding of its origins and pathobiology, along with accurate diagnosis and
early identification of high-risk groups (reviewed in Vilchis-Ordoñez et al., 2016). Strikingly, the
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clinical, molecular and biological heterogeneity of malignant
diseases indicating an unsuspected multiclonal diversity has
highlighted their complexity and the uncertainty of their
cell population dynamics. Novel theoretical and experimental
integrative strategies have changed our perspective of cancer,
from a hierarchical, deterministic and unidirectional process to a
multi-factorial network where genetics interacts with micro and
macro environmental cues that contribute to the etiology and
maintenance of tumor cells (Notta et al., 2011; Davila-Velderrain
et al., 2015; Tomasetti and Vogelstein, 2015). Furthermore,
stochastic effects associated with the number of stem cell
divisions have been proposed as major contributors, often even
more significant than hereditary or external factors (Tomasetti
and Vogelstein, 2015).

B-cell acute lymphoblastic leukemia (B-ALL) is largely the
result of a growing number of cooperating genetic and epigenetic
aberrations that corrupt hematopoietic developmental pathways
and ultimate lead to uncontrolled production of malignant
B lymphoid precursor cells within the bone marrow (BM)
(Pelayo et al., 2012; Purizaca et al., 2012). Leukemic cell
infiltration and treatment failure worsen the outcome of the
disease and remain the foremost cause of relapse. Recent
advances suggest the ability of leukemia initiating cells to create
abnormal BM microenvironments, promoting high proliferation
and early differentiation arrest at the expense of normal cell
fate decisions (Colmone et al., 2008; Raaijmakers, 2011; Vilchis-
Ordoñez et al., 2015). Intrinsic damage and/or remodeling of cell
compartments that shape the distinct BM niches may account
to microenvironmental regulation of quiescence, proliferation,
differentiation and blastic cell migration. Leukemic cells compete
for niche resources with their normal hematopoietic counterparts
(Wu et al., 2009), culminating in the displacement of the
latter, as observed in xenotransplantation mice models (Colmone
et al., 2008). Moreover, the marrow microenvironment provides
leukemic precursors with dynamic interactions and regulatory
signals that are essential for their maintenance, proliferation
and survival. Although, the underlying molecular mechanisms
are poorly defined, these niches protect tumor cells from
chemotherapy-induced apoptosis, showing a new perspective on
the evolution of chemoresistance (Ayala et al., 2009: Shain et al.,
2015; Tabe and Konopleva, 2015), and emphasizing the need
for new models that theoretically or experimentally replicate the
interplay between tumor and stromal cells under normal and
pathological settings.

As suggested by our previous findings, ALL lymphoid
precursors have the ability of responding to pathogen- or
damage- associated molecular patterns via Toll-like receptor
signaling by secreting soluble factors and altering their
differentiation potentials (Dorantes-Acosta et al., 2013). The
resulting pro-inflammatory microenvironment may expose them
to prolonged proliferation, contributing tumor maintenance
in a self-sustaining way while prompting the NF-κB-associated
proliferation of normal progenitor cells (Vilchis-Ordoñez
et al., 2015, 2016). Some hematopoietic growth factors and
pro-inflammatory cytokines, including granulocyte-colony
stimulating factor (G-CSF), IFNα, IL-1α, IL-1β, IL-7, and TNFα
were highly produced by ALL cells from a conspicuous group of

patients co-expressing myeloid markers (Vilchis-Ordoñez et al.,
2015). Of note, mesenchymal stromal cells (MSCs) from ALL
BM have shown atypical production of pro-inflammatory factors
whereas disruption of the major cell communication pathway
is apparent by detriment of CXCL12 expression and biological
function (Geay et al., 2005; Colmone et al., 2008; van den Berk
et al., 2014).

Considering that the CXCL12/CXCR4 axis constitutes the
most critical component of the perivascular and reticular BM
niches supporting the hematopoietic stem and progenitor cells
(HSPCs) differentiation and maintenance within the BM, as
well as the early steps of B cell development (Ma et al., 1998;
Tokoyoda et al., 2004; Sugiyama et al., 2006; Greenbaum et al.,
2013), an obstruction of the HSPC-MSC interaction may have
substantial implications in the overall stability of these processes.
Whether the inflammation-derived signals provide a mechanism
for leukemic cells to survive, to induce changes in lineage cell fate
decisions, or to prompt niche remodeling in leukemia settings,
are currently topical questions.

Mathematical model strategies have become powerful
approaches to complex biological systems and may contribute
to unravel the hematopoietic-microenvironment interplay
that facilitates tumor cells prevalence (Altrock et al., 2015;
Enciso et al., 2015). Through continuous dynamic modeling
with differential equations we have learned seminal aspects
of multi-compartment and multi-clonal behavior of leukemic
cell populations (Stiehl and Marciniak-Czochra, 2012; Enciso
et al., 2015), leading to novel proposals on disease development
driven by unbalanced competition between normal and pre-
leukemic cells (Swaminathan et al., 2015). Both stochastic and
deterministic models have been useful to simulate cell fate
decisions and predict clonal evolution (reviewed in Enciso et al.,
2015). Certainly, incorporating tumor microenvironment in
cancer modeling is expected to change our vision of biochemical
interactions in niche remodeling-dependent hematopoietic
growth, as recently demonstrated for myeloma disease (Coelho
et al., 2016).

By developing and simulating a dynamic Boolean
system, we now investigate the biological consequences of
microenvironmental perturbation due by temporal TLR
signaling on crucial communication networks between
stem/progenitor cells (HSPCs) and MSCs in ALL. We propose
that NF-κB dependent tumor-associated inflammation co-
participate in malignant progression concomitant to normal
hematopoietic failure through disruption of CXCL12/CXCR4
and VLA4/VCAM-1 communication axes.

MATERIALS AND METHODS

Manual Curation Strategy
Based on the crucial and unique role of the CXCL12/CXCR4
axis in the regulation of maintenance, biological activity, and
niche communication-derived cell fate decisions of seminal cells,
including pluripotent embryonic stem cells and multipotent
hematopoietic stem cells, construction and updating ofmolecular
interactions of relevance involved careful manual curation
of primary hematopoietic cell research. Moreover, of special
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interest was the attention to the hematopoietic malignancies,
which in contrast to solid tumors, display a distinct CXCL12-
mediated microenvironmental behavior. Thus, although the
modeled signaling pathways could be considered generic to all
tissues, the organ, stage of cell differentiation and surrounding
microenvironment may influence the net result of interactions.
Taking into account this considerations, most published work
that has been used for the reconstruction of our proposed
model, include data from molecular interactions in HSPCs.
Some of the interactions have been reported in a number
of different tissues and predicted to be conserved in the
hematopoietic system. Finally, as there is not enough data
to model hematopoietic-microenvironment restricted to Homo
sapiens and some interactions might be crucial for the molecular
connectivity of the model, we have used information from
different species when needed. A detailed referencing of all
reports used for the model reconstruction is provided as
Supplemental Material (Tables S1, S2, and reference list).

Molecular Basis for the Network
Reconstruction
The connectivity among key molecules involved in the
communication between HSPCs and MSCs within the BM
was inferred through the curated experimental literature.
Specifically, we were interested in recovering the network
components, their interactions, and the nature of the interactions
(activation/positive or inactivation/negative). The resulting
general network incorporates transcriptional factors, kinases,
membrane receptors, interleukines, integrins, growth factors, and
chemokines from Homo sapiens and Mus musculus species.
Importantly, to simplify the modeling process, some groups
of molecules were considered as single functional modules,
thus encompassing a series of sequential steps that lead to the
activation or inactivation of a certain node (e.g., PI3K/Akt).
The following paragraphs summarize the principle evidence
used to reconstruct the HSPC-MSC network and infer the
logical rules for computational simulation of the system as a
discrete dynamical model. A detailed referencing is provided as
Supplemental Material (Tables S1, S2, and reference list).

The CXCR4/CXCL12 chemokine pathway was considered as
the central axis for the network construction considering its
essential role in homeostasis maintenance (Sugiyama et al., 2006;
Tzeng et al., 2011) and B lineage support (Ma et al., 1998;
Tokoyoda et al., 2004). Furthermore, recent observations suggest
that this axis is disrupted by up-stream molecular deregulations
both in MSC and leukemic blasts harvested from ALL patients,
affecting the maintenance of hematopoietic cells within their
regulatory niches (Geay et al., 2005; Colmone et al., 2008; van
den Berk et al., 2014). Besides the well-studied CXCR4/CXCL12
chemotactic interaction, CXCR4 activation increases the affinity
between vascular cellular adhesion molecule-1 (VCAM-1)
expressed on the surface of MSC and its receptor VLA-4 on
HSPC. Both pathways, CXCR4/CXCL12 and VLA-4/VCAM-1,
are known to play coordinately a central role in HSPCmigration,
engraftment and retention within the BM (Peled et al., 2000;
Ramirez et al., 2009), converge in triggering the PI3K/Akt and

ERK signals, and share common up-stream regulators involving
molecular factors guiding inflammatory responses.

As mentioned in the Introduction, recent evidence indicates
the secretion of high levels of pro-inflammatory cytokines
by a conspicuous group of ALL patients (Vilchis-Ordoñez
et al., 2015), thereby presumably contributing to remodeling of
the normal hematopoietic microenvironment (Colmone et al.,
2008). Of note, interleukin-1α (IL-1α) and IL-1β, which were
substantially elevated, play an amplification role on inflammation
increasing the expression of other cytokines, like G-CSF
(Majumdar et al., 2000; Allakhverdi et al., 2013), and setting
a positive feedback loop with the PI3K co-activation of NF-
κB (Reddy et al., 1997; Sizemore et al., 1999; Carrero et al.,
2012; Bektas et al., 2014). IL-1 and G-CSF, inhibit directly and
indirectly the CXCR4/CXCL12 axis. G-CSF negatively regulates
CXCL12 transcription and increases the secretion of matrix
metalloproteinase-9, showing the ability to degrade both CXCL12
(Lévesque et al., 2003; Semerad et al., 2005; Christopher et al.,
2009; Day et al., 2015) and CXCR4 (Lévesque et al., 2003).
Moreover, G-CSF promotes up-regulation of Gfi1 that at the
time inhibits the transcription of CXCR4 (Zhuang et al., 2006;
De La Luz Sierra et al., 2007; de la Luz Sierra et al., 2010).
Thus, by considering this information from experimental data,
we have included IL-1 and G-CSF as key elements of the BM
microenvironment in the HSPC-MSC communication network.

In concordance, we incorporated as a “positive control
condition” an input node representing the Toll-like receptor
ligand (lTLR) lipopolysaccharide (LPS), that binds TLR4
and triggers the conventional and well-known NF-κB-
dependent pro-inflammatory response, promoting, among
other transcriptional targets, the transcription of pro-IL-1β
(Jones et al., 2001; Tak and Firestein, 2001; Wang et al., 2002;
Khandanpour et al., 2010; Higashikuni et al., 2013).

Downstream NF-κB, the expression of CXCR7 has been
shown to be upregulated (Tarnowski et al., 2010), which in
turn, down-regulates CXCR4 by heterodimerization, promoting
its internalization and further degradation. In parallel, activated
CXCR7 presents a higher affinity for CXCL12 and β-arrestin,
reducing CXCR4 signaling in CXCR7 and CXCR4 expressing
cells (Uto-Konomi et al., 2013; Coggins et al., 2014). However,
CXCR7 is unable to couple with G-protein, transducing through
recruitment of β-arrestin and leading to MAP kinases Akt and
ERK activation (Tarnowski et al., 2010; Uto-Konomi et al.,
2013; Torossian et al., 2014). As with CXCR4, CXCR7, and
VLA-4 activation in HSPC, PI3K/Akt pathway is activated on
HSPC and MSC, via G-CSF receptor signaling (Liu et al., 2007;
Vagima et al., 2009; Ponte et al., 2012; Furmento et al., 2014),
and after LPS stimulation (Guha and Mackman, 2002; Wang
et al., 2009; McGuire et al., 2013). Apparently, PI3K/Akt acts
at overlapping levels on the modulation of inflammation. On
the one hand, it increases the production of IL-1 antagonist
molecules (Williams et al., 2004; Molnarfi et al., 2005; Li and
Smith, 2014) and inhibits secretion of mature IL-1β (Tapia-
Abellán et al., 2014). On the other hand, it promotes nuclear
translocation of the transcriptional factor Foxo3a (Brunet et al.,
1999; Miyamoto et al., 2008; Park et al., 2008), down-regulating
indirectly the transcription of antioxidant enzymes and enabling
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reactive oxygen species (ROS) accumulation, which in turn
promotes maturation of pro-IL-1β and IL-1β secretion (Hsu and
Wen, 2002; Yang et al., 2007; Gabelloni et al., 2013).

At the mesenchymal counterpart, in addition to a number
of molecules participating in the MSC-subsystem sensitivity
to microenvironmental cues, we incorporated an input
node representing Gap-junction conformed by connexin-43
(Cx43) that mediates direct intercellular communication
between mesenchymal cells. Strikingly, its integral activity as
calcium channel conductor has been shown to be a potent
positive regulator of CXCL12 transcription and secretion
(Schajnovitz et al., 2011). Furthermore, Cx43 expression
appears to be critically disregulated in the BM stromal
cells from acute leukemia patients, suggesting an important
role in the hypothetic disregulation of the hematopoietic-
stromal intercellular communication (Liu et al., 2010; Zhang
et al., 2012). The inclusion of GSK3β and β-catenin in both
subsystems was relevant due to their roles as intermediates
of signaling transduction and regulation of the main
intracellular communication elements proposed for our network
reconstruction. The model is available in XML format (GINML)
on GINsim Model Repository page (http://ginsim.org/models_
repository) (Chaouiya et al., 2012), under the title “HSPCs-
MSCs. Communication pathways between Hematopoietic Stem
Progenitor Cells (HSPCs) and MSCs.”

Dynamical Modeling of the HSPC-MSC
Network
For the computational modeling of the HSPC-MSC complex
system, we followed the standard steps to convert it into a discrete
dynamical system, as described by Albert and Wang (2009) and
Assman and Albert (2009). The Boolean approach is useful when
quantitative and detailed kinetic information is lacking. In such
a case, each node of the network is represented as a binary
element, allowed only to have an “active” (ON) or “inactive”
(OFF) state, numerically represented by 1 and 0, respectively.
The activation state of each node is dependent on the activation
state of its regulators, as described by Boolean functions, also
called logical rules. The classical Boolean operators employed
in Boolean functions are AND (&), OR (|) and NOT (!).
The AND operator is used to represent the requirement of
the conjunction of two or more nodes participating in the
regulation of a certain node (e.g., VLA-4 = CXCR4 & VCAM-
1 representing that VLA-4 optimal activation requires its ligand
VCAM-1 and the signaling due to CXCR4 activation). When
there is more than one node able to regulate another, but only
one of them is sufficient to exert the effect, the OR operator
is applied (e.g., PI3K/Akt = GCSF | ROS | TLR representing
that the activation of the G-CSF receptor, the increase of
intracelular ROS concentration or the binding of a TLR ligand
may activate PI3K/Akt signaling). Finally, the NOT operator
represents repression of a node over another (e.g., IL-1 =

(NF-κB & ROS) & !PI3K/Akt meaning that IL-1 requires the
transcriptional activation of pro-IL-1 promoted by NF-κB and
the post-transcriptional maturation mediated by ROS, but its
signaling is inhibited by the presence of PI3K/Akt). Detailed

compiling of reviewed references for the network reconstruction
and the development of the logical rules can be found in Tables
S1, S2.

Given that each node in the network has an activation
state, then the general state of a network at a given time
t can be represented by a vector of n elements, where n
is the number of nodes in the network. For example, the
vector (00000010000000000100001000), represents a network
state where only the 7th, 18th, and 23rd elements are active.
In our model, this particular state represents the pattern of
activation where only GSK3B_H, GSK3B_M, andVCAM1_M are
active. Now, since we are implementing a dynamical system, it is
necessary to specify how the network may evolve from a time t to
t+1.

There are two possible implementations to model the
transition from one state of the network to another. On one
side, the synchronous scheme update the activation state of
all the nodes each time-step, assuming that all the biological
processes involved in the model occur at similar time scales.
And on the other side, asynchronous scheme update only one
of the logical rules per time step, considering a more complex
behavior of biological processes where molecular signaling is
likely to change at different time points depending on the
nature of the interaction (Albert and Wang, 2009). Either one
or another update scheme, take an initial combination of the
nodes (initial state) and update the logical rules successively
through an established number of time steps or until an steady
state or attractor is reached. Attractors may be of a single state
(fixed point attractors) or a set of states (cyclic or complex
attractors depending if they have one or more possible transition
paths among their constituent states). The analysis of the nodes
activation pattern in the attractors give the biological significance
of the computational simulations of the models (Albert and
Wang, 2009; Assman and Albert, 2009).

The dynamical behavior of the network was analyzed
implementing the logical rules into BoolNet (R open-source
package), and obtaining its attractors (stationary states) by
applying asynchronous update strategies (Müssel et al., 2010).
Under the asynchronous updating scheme, the simulation was
performed using 50,000 random initial states, updating the
network until either a fixed point attractor or a complex attractor
was reached. Confidence of the model was tested through
the simulation of all possible mutants (constitutive and null
activation of every node) and the comparison of the resultant
attractors with experimental reports about the biological effects
in vivo or in vitro after the use of antagonists or the generation of
knock-in and knock-out models.

Dynamical Multicellular Approach
Assuming that every simulation beginning at a certain initial
state of the network represents the dynamical profile of a
single cell, Wu and collaborators proposed a “population-like”
analysis for a discrete model (Wu et al., 2009). Similarly, we
asynchronously ran the simulations of the network from 50,000
random initial states, and then updated for 2000 time-steps,
followed by calculation of the average activation value from
50,000 simulations for each node in each time-step. Such data was
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plotted as multi-cellular average activation graphs. Furthermore,
we evaluated the effect of a short (1 time-step) and a sustained
(699 time-steps) temporary induction of lTLR in time-step 700
and 1400, and analyzed the dynamical effects in the wild type
network and in some relevant mutant networks.

RESULTS

Network Reconstruction
The inferred HSPC-MSC network (Figure 1) constitutes
the first attempt to model relevant interaction axes
between undifferentiated hematopoietic cells and the BM
microenvironment, that may approach us to a deeper
understanding of the numerous molecular signals influencing
the hematopoietic system regulation during normal and
malignant processes. Our current ALL network has 26 nodes
and 80 interactions. Among them, twelve nodes correspond

to molecules that are expressed in HSPC and involved in
intracellular signaling (PI3K/Akt, Gfi1, NF-κB, GSK3β, FoxO3a,
ERK, β-catenin, and ROS) or cell-membrane receptors for
communication with the microenvironment (CXCR4, CXCR7,
VLA-4, and TLR). Eleven nodes conform the MSC subsystem,
integrated by intracellular signaling molecules (PI3K/Akt,
NF-κB, GSK3β, FoxO3a, ERK, β-catenin, and ROS), a gap-
junction protein regulating communication among MSC (Cx43),
communication ligands with HSPC (VCAM-1 and CXCL12)
and TLR. Common internal nodes in both HSPC and MSC
systems are representative molecules from the most studied
pathways influencing proliferation, migration, survival, and
-some of them- differentiation. Finally, the microenvironmental
compartment is represented by G-CSF secreted by myeloid
and stromal cells (Majumdar et al., 2000; Allakhverdi et al.,
2013; Tesio et al., 2013; Boettcher et al., 2014), its inductor
IL-1 which is secreted by MSC and HSPC, and lTLR so as

FIGURE 1 | Regulatory HSPC-MSC network. The network is constituted by three compartments represented with different geometric shapes: HSPC, MSC, and

microenvironmental soluble factors. HSPC and MSC have intracellular nodes regulating the response and expression of elements mediating the communication

between them. CXCR4-CXCL12 and VLA-4/VCAM-1 axes are suggested to be the most crucial communicating elements. HSPC and MSC are both susceptible of

TLR stimulation with lTLR input. HSPC, hematopoietic stem and progenitor cell; MSC, mesenchymal stromal cell.
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TABLE 1 | Logical rules used for HSPC-MSC modeling as a Boolean

system on BoolNet.

Node Logical rule

Bcatenin_H !GSK3B_H

CXCR4_H CXCL12_M & !(CXCR7_H | GCSF | Gfi1_H)

CXCR7_H CXCL12_M & NfkB_H

ERK_H ((CXCR4_H & PI3KAkt_H) | CXCR7_H | GCSF | Gfi1_H | ROS_H |

VLA4_H ) & !(FoxO3a_H | GSK3B_H)

FoxO3a_H (Bcatenin_H | ROS_H) & !(ERK_H | PI3KAkt_H)

Gfi1_H (GCSF | TLR_H) & !Gfi1_H

GSK3B_H !PI3KAkt_H

NfkB_H (TLR_H | ROS_H | (IL1 & PI3KAkt_H)) &

!(FoxO3a_H)

PI3KAkt_H ((CXCR4_H & CXCR7_H) | GCSF | ROS_H | TLR_H | VLA4_H) &

!FoxO3a_H

ROS_H IL1 & TLR_H & (!FoxO3a_H)

TLR_H lTLR

VLA4_H VCAM1_M & CXCR4_H

Cx43_M Cx43_M

Bcatenin_M !(FoxO3a_M | GSK3B_M | NfkB_M)

CXCL12_M Cx43_M & !(Bcatenin_M | GCSF | NfkB_M)

ERK_M GCSF | ROS_M | TLR_M

FoxO3a_M (Bcatenin_M | ROS_M) & !(ERK_M | PI3KAkt_M)

GSK3B_M !PI3KAkt_M

NfkB_M (IL1 & PI3KAkt_M) | (ROS_M & ERK_M) | TLR_M

ROS_M IL1 & TLR_M & (!FoxO3a_M)

PI3KAkt_M GCSF | ROS_M | TLR_M

TLR_M lTLR

VCAM1_M !Bcatenin_M | NfkB_M | PI3KAkt_M

lTLR lTLR

IL1 ((ROS_M | NfkB_M) & !PI3KAkt_M) | ((ROS_H | NfkB_H) &

!PI3KAkt_H)

GCSF IL1

Nodes representing molecules in HSPC are denoted with “_H” at the end of the node

name, while nodes representing molecules in MSC are denoted with “_M.” Logical rules

were constructed using the logical operators AND ( & ), OR ( | ) and NOT ( ! ). The

corresponding common names and genes ID are found in Table S3.

to model a homeostasis disruption that is known to drive a
pro-inflammatory signaling. Model inputs are Cx43 and lTLR,
while the activation value of the other 24 nodes is dependent on
the network topology and the initial state of the input nodes. All
logical rules used for the computational simulation with BoolNet
are shown in Table 1. Note that the logical rules for the input
nodes include self-regulations, but these are for computational
purposes to represent their sustained activation, rather than a
biological reality.

Attractors of the Wild-Type Network:
Searching for the Relevance of TLR in the
Biology of CXCL12
The asynchronous simulation of the Boolean model returned
4 attractors: 2 fixed points and 2 complex attractors
(Figure 2). The first two attractors, fixed point attractor
1 and 2, were identified with the physiological detached

and attached state of the HSPC with its MSC counterpart,
respectively.

Both fixed point attractors will depend on the initial states of
both, TLR and Cx43. Thus, in the absence of lTLR, the final fates
will depend on the initial activation state of Cx43. However, once
TLR is activated, final fates are not contributed anymore from the
activation state of Cx43.

Loss of HSPC-MSC communication corresponding to a
detachment state, is due to the absence of Cx43 and the
consequent inactivation of CXCL12. In the activation pattern of
this attractor, only VCAM-1 accompanied by GSK3β in both sub
systems remained active (Tabe et al., 2007). On the contrary,
when Cx43 is active (as in fixed point attractor 2), CXL12
is expressed by the MSC, which in turn positively regulates
the CXCR4 receptor required for the activation of the VLA-
4/VCAM-1 axis. The pattern in HSPC, correspond to ERK
and PI3K/Akt activation, well-described elements downstream
CXCR4 and VLA-4 (Tabe et al., 2007). β-catenin, a subject of
debate about its function on stem cell maintenance, is turned
on as a consequence of the GSK3β inhibition by PI3K/Akt (Dao
et al., 2007).

Complex attractors 1 and 2 share the same activation values
in all nodes, except for the initial state of Cx43 which is an
input and therefore may be consistently either active or inactive
through simulation. Importantly, these two attractors have the
node for ITLR active, so that under induced pro-inflammatory
conditions the resultant perturbation of CXCR4/CXCL12 and
VLA-4/VCAM-1 is exclusively dependent on CXCL12 down
regulation in MSC by NF-κB. The network attractors are
concordant with experimental observations (Ueda et al., 2004;
Wang et al., 2012; Yi et al., 2012) with the exception of IL1
and GCSF inactivation although lTLR-induced NF-κB signaling
in hematopoietic and mesenchymal compartments. In order
to explain this discrepancy we may remark that an attractor
is a stable network state or set of states, reached after the
network went through a sequence of transient states where, in
most biological systems, there is cross-pathway communication
for modulating cellular response (Williams et al., 2004; Tapia-
Abellán et al., 2014), so IL1 and GCSF could be activated in
some transient states but down-regulated by other pathways
responding to lTLR activation. Due to the existence of regulatory
circuits among pathways, in the presence of ITLR there is an
oscillatory behavior of ERK and Gfi1. Therefore, we applied
the dynamic multicellular approach described by Wu et al.
(2009) in order to have a deeper understanding of the HSPC-
MSC model upon perturbations. The average activation value of
50,000 simulations for all nodes within the HSPC-MSC network
was plotted and presented in Figure 3. The plots represent a
qualitative approach for the analysis of the cell population trend
under specific conditions. Considering that the initial activation
values are randomly chosen, with exception of lTLR, TLR_M,
and TLR_H which activation value was set to 0, the average
initial activation value for the rest of the nodes correspond to 0.5.
From time-step 0 to time-step 499 correspond to the stabilization
of the dynamics. Of note, the plateau obtained around time-
steps 500-699 corresponds to the average of the two fixed point
attractors.
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FIGURE 2 | Asynchronous attractors from the wild type network. Dark color denotes an activation value of 1, while light color represents an activation value =

0. The blue, orange, and yellow colors distinguish the nodes in the three compartments in the HSPC-MSC network corresponding to HSPC, MSC, and

microenvironmental factors, respectively. The last two attractors obtained when the initial states for the asynchronous simulation had lTLR value = 1, have two nodes

(ERK_H and Gfi1_H) whose activation values oscillate and are responsible of the complex attractor. Oscillatory values are represented by intermediate blue color.

Nodes representing molecules in HSPC are denoted with “_H” at the end of the node name, while nodes representing molecules in MSC are denoted with “_M.”

Analysis of Transitory States Applied to a
Multicellular Approach: from
Pro-inflammatory Signals to CXCL12
Downregulation
The short lTLR stimulation at time-step 700 and 1400
(Figures 3A–C) induces up-regulation of Gfi1 in HSPC
(Figure 3A), and of NF-κB and PI3K/Akt in bothHSPC andMSC
compartments (Figures 3A,B). These nodes maintain a sustained
activation as long as the lTLR is present (Figures 3D–F). In
contrast, ERK, ROS and FoxO3a showed an increase but are
regulated by other nodes, providing a feedback to basal values.
Accompanying the cross-regulation of intracellular pathways, a
decrease on CXCR4, CXCL12, VLA-4, and VCAM-1 activation
is observed. As expected, there is positive signaling of the pro-
inflammatory cytokines with a parallel co-increase of CXCR7,
signals damped by PI3K/Akt and CXCL12 down-regulation,
respectively.

Model Validation by Mutant Analysis
Listed in Table 2 are the observations from comparisons
between the resultant attractors of simulations with null
(“loss of function”) and constitutive expression mutants (“gain
of function”), against the wild-type model. We focused on
the activation value changes in the two axes of interest –
CXCR4/CXCL12 and VCAM-1/VLA-4. Even though the nodes
included in the reconstruction of the present model are
well-studied elements of cell fate related-pathways, there is
a lack of experiments correlating their perturbation with
microenvironment modifications that impact HSPC behavior
(Table 2, Table S4). Due to this missing data, and in order to
validate the model, we now used available information of general
alterations in hematopoiesis in the presence of lTLR.

MSC ERK, FoxO3a, and PI3K/Akt nodes participating in
CXCR4/CXCL12 and VCAM-1 VLA-4 axes regulation were not
found in the revised literature. β-catenin in MSC has a role
on osteoblastogenesis and its constitutive induced expression in

osteoblasts in a mice model results in acute myeloid leukemia
(AML) induction (Kode et al., 2014). The constitutive expression
of β-catenin showed an outcome where, under non-induced
inflammation, the CXCR4/CXCL12 axis is disrupted. This gives
support to our hypothesis that CXCR4/CXCL12 is probably
involved in the maintenance of leukemic cells. Furthermore, the
dynamic multicellular approach in the gain of function of β-
catenin in MSC, reproduced the recovery of VCAM-1 expression
upon stimulation of lTLR as reported by Kincade in OP9 cells
(Figure S1; Malhotra and Kincade, 2009).

GSK3β inhibition in MSC has been known to function in the
regulation of osteoblast and adipocyte differentiation. Besides,
experimental effect of a GSK3β-inhibitor on osteoblastogenesis
has shown that the decrease of this kinase induces down-
regulation of CXCL12 expression (Satija et al., 2013). The model
is consistent with the unsteadiness of CXCL12 activation in the
simulation of the mutant (Figures S2A,B).

According to our hypothesis, a pro-inflammatory-induced
CXCR4/CXCL12 disruption results in leukemic progression
support. In the proposed model, overexpression of NF-κB
disrupts the HSPC-MSC communication (Figure S2C). This is
in agreement with the reported leukocytosis associated to up-
regulation of NF-κB within BM MSCs from a mice model of
high-fat diet (Cortez et al., 2013). Finally, modeling of a gain of
function mutation in ROS resulted in the blocking of CXCL12
activation (Figure S2D). This is also in accordance of the recent
report of oxidative damage induced by iron in MSC, resulting
in down-regulation of CXCL12 expression and reduction of
their hematopoietic supporting function (Zhang et al., 2015).
Moreover, the iron-induced hematopoietic alterations previously
observed by other groups, are attenuated by the treatment with
ROS inhibitors (Lu et al., 2013).

Nodes in HSPC which have been experimentally reported
as dispensable for hematopoiesis, which did not show any
alterations in the CXCR4/CXCL12 and VLA-4/VCAM-1 axes on
the mutant simulations, are β-catenin (Figures S3A–D; Cobas
et al., 2004; Jeannet et al., 2008) and CXCR7 (Figures S3E,F).
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FIGURE 3 | Average activation value for intracellular HSPC nodes (A,D), intracellular MSC nodes (B,E) and communication axes among HSPC, MSC,

and microenvironment (C,F). (A–C) Correspond to simulations with a short (1 time-step) stimulation of lTLR at time-steps 700 and 1400. (D–F) Correspond to

simulations with lTLR stimulation at time-step 700 with a length of 699 time-steps. Nodes representing molecules in HSPC are denoted with “_H” at the end of the

node name, and nodes representing molecules in MSC are denoted with “_M.” Gray area covers the stabilization time steps until attractors are reached.

However, even though in vivo β-catenin null mutant HSPC does

not lose long-term reconstitution capacity or multipotentiallity,

its overexpression produces lose of stemness and differentiation

blockage to erythroid and lymphoid lineages (Kirstetter et al.,
2006; Scheller et al., 2006). Simulations of the gain of function

of β-catenin resulted in the appearance of additional attractors
where FoxO3a and GSK3β are increased (Figures S4A,B,
S5B), suggesting a reduction in proliferation and/or apoptosis
induction (Maurer et al., 2006; Yamazaki et al., 2006). In turn,
the simulation of overexpression of FoxO3a showed a down-
regulation of ERK and PI3K (Figures S4C, S5C). Also reported
as proliferative repressors in HSPC (Hock et al., 2004; Zeng
et al., 2004; Holmes et al., 2008), Gfi1 and GSK3β overexpression
mutants inhibited ERK activation, and additionally Gfi1 induce
the downregulation of PI3K/Akt node, CXCR4/CXCL12 and
VLA-4/VCAM-1 axes (Figures S4 and S5). Disagreeing with
experimental data (Holmes et al., 2008), GSK3β null mutant
outcome result in an additional attractor where PI3K/Akt and

ERK are inactive, notwithstanding CXCR4 and VLA4 activation
(Figure S6).

Of interest, NF-κB (Figure 4) and ROS (Figures S4F,
S5F) constitutive expression in HSPC induce additional
attractors with activation of IL-1 and G-CSF, and inhibition
of axes regulating HSPC-MSC contact. A number of
investigations on cancer cells report a correlation of NF-
κB increased levels and CXCR4 (Richmond, 2002; Ayala
et al., 2009; Shin et al., 2014). Nonetheless, a recent
study in human leukemic cell lines has shown that LPS
treatment increases MMP-9 activity, a metalloproteinase
known to efficiently degrade CXCR4 and CXCL12
(Hajighasemi and Gheini, 2015).

NF-κB Gain of Function Mutant as ALL
Simplified Model
How common alterations in ALL cells may induce BM
microenvironment remodeling, regardless of the underlying
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TABLE 2 | Results from the model outcome for single node mutations.

Loss of function

Node Model outcome Experimental evidence

Bcatenin_H, CXCR7_H, ERK_H, FoxO3a_H, NfkB_H,

ROS_H, Bcatenin_M, ERK_M, FoxO3a_M, NfkB_M,

ROS_M, IL1, GCSF

No changes in the CXCR4/CXCL12 and VLA-4/VCAM-1 axes

with respect to the attractors from the wild-type model.

Cobas et al., 2004; Jeannet et al., 2008; Sierro

et al., 2007

CXCL12_M, CXCR4_H Loss of CXCR4/CXCL12 and VLA-4/VCAM-1 in the fixed point

attractor with active Cx43_M.

Greenbaum et al., 2013; Sugiyama et al., 2006;

Tzeng et al., 2011

Gfi1_H No changes in the CXCR4/CXCL12 and VLA-4/VCAM-1 axes.

Stabilization of lTLR-dependent complex attractors with no

activation of ERK_H .

Hock et al., 2004; Zeng et al., 2004

GSK3B_H Additional fixed point attractor when Cx43 is active, where

FoxO3a_H is up-regulated and repressing PI3K_H and ERK_H.

Also, are additional complex attractor in the presence of lTLR

where FoxO3a_H inhibits PI3KAkt_H, ERK_H and NfkB_H

activation.

Holmes et al., 2008

PI3KAkt_H, PI3KAkt_M No changes in CXCR4/CXCL12 and VLA-4/VCAM-1 axes with

respect to the attractors from the wild-type model. Under lTLR

stimulation, pro-inflammatory cytokines turned on and in

consequence ROS_H. In PI3KAkt_H null mutant, ERK_H is

inhibited in every condition and FoxO3a_H is intermittently

activated under lTLR stimulation.

Williams et al., 2004; Champelovier et al.,

2008; Xu et al., 2012

VLA-4, VCAM1_M PI3KAkt_H and ERK_H are turned off even if CXCR4/CXCL12

axis is active.

Wang et al., 1998; Scott et al., 2003

GSK3B_M Fixed point attractors are lost and became complex attractors.

Activation of Cx43, leads to two complex attractors of which one

activates CXCR4/CXCL12 and VLA-4/VCAM-1 axes

intermittently. In the absence of Cx43, two complex attractors are

generated, and one of them unsteadily activate IL1 and GCSF.

Satija et al., 2013

Gain of function

Node Model outcome

GSK3B_M, ERK_M, VCAM1_M, FoxO3a_M No changes in the CXCR4/CXCL12 and VLA-4/VCAM-1 axes

with respect to the attractors from the wild-type model.

NE (Not experimental evidence found)

CXCR7_H, NfkB_H, Bcatenin_M, NfkB_M, PI3KAkt_M,

GCSF, IL1

Loss of CXCR4/CXCL12 and VLA-4/VCAM-1 in the fixed point

attractor with active Cx43_M.

Cortez et al., 2013; Kode et al., 2014

Bcatenin_H Under the activation of Cx43_M, an alternative steady state is

reached where PI3KAkt_H and ERK_H are not expressed and

instead, FoxO3a_H and GSK3B_H are active despite the

activation of CXCR4_H and VLA4_H.

Kirstetter et al., 2006; Champelovier et al.,

2008

CXCL12_M Under lTLR stimulation, the complex attractors show a sustained

activation of CXCR7_H.

NE

FoxO3a_H Bcatenin_H, ERK_H and PI3KAkt_H inactivation under any

condition.

Yamazaki et al., 2006

Gfi1_H Loss of CXCR4/CXCL12 and VLA-4/VCAM-1 in the fixed point

attractor with active Cx43_M. Stabilization of lTLR-dependent

complex attractors.

Hock et al., 2004; Khandanpour et al., 2013

GSK3B_H Inhibition of ERK_H and Bcatenin_H when CXCR4_H or lTLR are

active.

NE

PI3KAkt_H Bcatenin_H remains active in the absence of Cx43 and lTLR. Wang et al., 2013

ROS_H, ROS_M Loss of CXCR4/CXCL12 and VLA-4/VCAM-1 in the fixed point

attractor with active Cx43_M. ROS_M overexpression mutant,

activates PI3K_M, which in consequence inhibits FoxO3a_M.

Lu et al., 2013; Zhang et al., 2015

VLA-4 Constitutive activation of PI3KAkt_H, ERK_H and Bcatenin_H. Schofield et al., 1998; Shalapour et al., 2011

genetic aberration, was investigated by running a dynamic
multicellular simulation using the mutant network for NF-
κB gain of function within the HSPC sub-system. The results

shown in Figure 4 confirm that NF-κB mutation in HSPC
may perturb HSPC-MSC communication in parallel with
the induction of other alterations previously reported in
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FIGURE 4 | Dynamic multicellular simulation for a ALL simplified model

addressed by NF-κB gain of function in HSPC. Average activation for

intracellular HSPC nodes (A), intracellular MSC nodes (B) and communication

axes among HSPC, MSC, and microenvironment (C). Nodes representing

molecules in HSPC are denoted with “_H” at the end of the node name, while

nodes representing molecules in MSC are denoted with “_M.” Gray area

covers the stabilization time steps until attractors are reached.

ALL cells, such as the increase of Gfi1 expression (Purizaca
et al., 2013) and a pro-inflammatory milieu (Vilchis-Ordoñez
et al., 2015). IL1 and G-CSF activation by HSPC up-
regulate ERK, NF-κB and PI3K/Akt in MSC. As consequence
of PI3K/Akt increase in MSC, β-catenin is up-regulated
through the inhibition of GSK3β. Strikingly, the sustained
activation of CXCR7 resulted as a consequence of NF-
κB constitutive expression in HSPC and CXCL12 residual
expression from MSC. CXCR7/CXCL12 axis was recently

reported to be increased in ALL cells and a possible participation
in abnormal cell migration was suggested (Melo et al.,
2014).

DISCUSSION

According to the classical model of hematopoiesis, normal
blood cells are replenished throughout life by stem and early
progenitor populations undergoing stepwise differentiation
processes in the context of intersinusoidal specialized niches
(Purizaca et al., 2012; Vadillo et al., 2013). Cell cycle status,
self-renewing capability and the central cell fate decisions
depend, in great part, on the microanatomic organization and
signals from the BM environment. Endosteal, perivascular and
reticular niches provide support by cell-cell interactions and
growth/differentiation factors that control the expression of
lineage-specific transcription factors, among other elements.
Within the reticular niche, mainly composed by CXCL12-
abundant reticular cells (CARs), a special category of MSCs,
the chemokine CXCL12 and its receptor CXCR4 play a pivotal
role in the regulation of lymphopoiesis from the earliest
stages of the pathway (Tokoyoda et al., 2004; Nagasawa,
2015). The transcription factor Foxc1 governs CXCL12
and stem cell factor expression, allowing the CAR niche
formation for maintenance of HSC, common lymphoid
progenitors, B cells, NK and plasmacytoid dendritic cells
(Omatsu et al., 2014). The net balance of its disruption is
instability of adaptive and innate immune cell production.
Recent findings suggest that elevation of cytokines and growth
factors, including G-CSF and TNFα, due to infectious stress,
substantially reduce the expression of CXCL12, SCF and
VCAM-1, further impairing primitive cell maintenance and
prompting their proliferation and migration (Kobayashi et al.,
2015, 2016).

Much remains to be unraveled about CXCL12-related
mechanisms of intercommunication damage that may
favor growth of cancer cells at the expense of healthy
hematopoiesis during biological contingencies such as
hematological malignancies and biological stress. Although,
genetic heterogeneity may be co-responsible for differences in
ALL overall survival, response to treatment, differentiation-stage
arrest or even predisposition to metastasis, a common need
might be the development of biological features that provide
pre-malignant cells decisive advantage over normal cells to
compete for the same ecological niche. Given the importance
of CXCR4/CXCL12 axis for homeostatic hematopoiesis
and of its presumptive disruption in ALL BM, we now
propose a Boolean model reconstructed with some of the
most studied elements upstream and downstream this key
communication axis. Our model shows its capacity to simulate
several phenotypes relevant to ALL. According to previous
experimental research, the major assumption made from
this model is that the integrity of CXCR4/CXCL12 signaling,
promoting the required activation of the VLA-4/VCAM-1
integrins interaction, is absolutely necessary for HSPC retention
in the mesenchymal niche and in consequence, indispensable
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for optimal hematopoiesis regulation (Lévesque et al., 2003;
Lua et al., 2012; Greenbaum et al., 2013; Park et al., 2013).
The HSPC-MSC model asynchronous simulation in the
absence of lTLR returned two attractors corresponding to
HSPC attachment and detachment to MSC. The ‘attachment’
status, represented by the induction of CXCR4/CXCL12
and/or VLA-4/VCAM-1 axes, also exhibited PI3K/Akt and
β-catenin activation within the HSPC compartment. Although
there is some controversy about the β-catenin role in HSC
regulation (Kirstetter et al., 2006; Duinhouwer et al., 2015),
the co-activation of PI3K/Akt and β-catenin is known to
promote self-renewal and HSC expansion (Perry et al.,
2011). Two core pathways downstream CXCR4/CXCL12
binding are PI3K/Akt and ERK, both promoters of cell
survival and regulators of proliferation. Considering that
the mesenchymal stromal niche has being identified as the
interface between the quiescence promoting osteoblastic niche
and the vascular niche regulating final lineage commitment
and cell migration, the signals provided by mesenchymal
cells should tightly regulate proliferation/expansion in
order to further allow differentiation. According to this
statement, the attractor representing the detached state
conducts to pro-apoptosis signaling in the absence of aberrant
expression of NF-κB, that relies on cytochrome C release-
associated normal functions of GSK3β in HSPC (Maurer et al.,
2006).

By using elegant mice disease models and controlled culture
systems, a wealth body of studies has recently highlighted the co-
participation of inflammation and infectious stress in the HSPC
exit from quiescence status, as well as in cancer etiology and
progression (Baldridge et al., 2011; Vilchis-Ordoñez et al., 2015).
Chronic inflammation and carcinogenesis have been closely
connected via either a oncogenes-derived intrinsic pathway or
through an extrinsic pathway from external factors that promote
latent inflammatory responses involving signaling pathways such
as MyD88, NF-κB, and STAT3 (Mantovani et al., 2008; Krawczyk
et al., 2014).

Interestingly, pattern recognition receptors (PRRs), including
Toll-like receptors (TLRs) are functionally expressed from
the most primitive stages of hematopoiesis and contribute to
emergent cell replenishment in response to life-threatening
infections or disease-associated cell damage (Nagai et al., 2006;
Welner et al., 2008; Dorantes-Acosta et al., 2013; Vadillo et al.,
2014). This phenomenon is called emergency hematopoiesis and
is regulated at themost primitive cell level (Kobayashi et al., 2015,
2016).

The potential relevance of this mechanism in leukemogenesis
was the focus of this investigation, and our model allowed for the
analysis of most behaviors observed under experimental settings.
The discrete simulation of NF-κB constitutive expression mutant
on HSPC, gave further support to our hypothesis on the
perturbation of CXCR4/CXCL12 communication axis induced
by pro-inflammatory microenvironment. The single mutation
of NF-κB was sufficient to remodel the dynamical behavior of
the three sub-systems represented, which was an unexpected

behavior of the model. The dynamic analysis of the ALL-
like network, also suggested the activation of an alternative
communication pathway mediated by CXCR7 binding CXCL12.
Inhibition of CXCL12 within the mesenchymal niche, may
be fundamental for cell migration to adjacent BM structures
unable to sustain proper differentiation or even to extramedullar
tissues, accounting for a predictable role of this axis in
metastasis.

CONCLUDING REMARKS

The proposed HSPC-MSC model is the first systemic
approximation to understand the intercommunication
pathways underlying primitive cell retention/proliferation
in the mesenchymal niche as a determinant factor for
progression of hematological hyperproliferative diseases.
We applied conventional discrete dynamical modeling and
non-conventional population-like approaches as an average
behavior of the network model. Future improvement of discrete
dynamical modeling for ALL system will provide a powerful tool
for investigation of unbalanced competitions between leukemic
and normal hematopoietic cells within the BM. Overall, systems
biology will advance our comprehensive view of the mechanisms
involved in the pathogenesis of leukemic niches that may
illuminate therapeutic strategies based on cell-to-cell crosstalk
manipulation.
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Metabolomics is used in systems biology to enhance the understanding of complex

disease processes, such as cancer. Head and neck cancer (HNC) is an epithelial

malignancy that arises in the upper aerodigestive tract and affects more than half a

million people worldwide each year. Recently, significant effort has focused on integrating

multiple “omics” technologies for oncological research. In particular, research has

been focused on identifying tumor-specific metabolite profiles using different sample

types (biological fluids, cells and tissues) and a variety of metabolomic platforms and

technologies. With our current understanding of molecular abnormalities of HNC, the

addition of metabolomic studies will enhance our knowledge of the pathogenesis of

this disease and potentially aid in the development of novel strategies to prevent and

treat HNC. In this review, we summarize the proposed hypotheses and conclusions from

publications that reported findings on the metabolomics of HNC. In addition, we address

the potential influence of host-microbe metabolomics in cancer. From a systems biology

perspective, the integrative use of genomics, transcriptomics and proteomics will be

extremely important for future translational metabolomic-based research discoveries.

Keywords: head and neck cancer, oral cancer, squamous cell carcinoma, metabolomics, microbiome

INTRODUCTION

The incidence of head and neck cancer (HNC) exceeds half a million cases annually worldwide
and accounts for approximately 3% of adult malignancies (Johnson et al., 2011; National Cancer
Institute, 2013). HNC is defined as epithelial malignancies that arise in the aerodigestive tract
(paranasal sinuses, nasal and oral cavity, pharynx and larynx) and can metastasize to different
locations (Rezende et al., 2010). About 75% of HNCs are oral cancers and 90% of oral cancers
are diagnosed as oral squamous cell carcinomas (OSCC) (Rezende et al., 2010; National Cancer
Institute, 2013). Despite therapeutic and technological advances, the prognosis for HNC has not
improved in decades due to its malignant and recurrent properties (Forastiere et al., 2001; Mao
et al., 2004). The most widely accepted risk factors for HNC include tobacco (smoked or chewed),
alcohol use, and human papillomavirus (HPV) infection (Gillison, 2004; Schmidt et al., 2004).
However, these risk factors alone cannot explain the observed incidence and pathogenesis of HNC,
since some patients are not in these risk categories. Thus, it is likely that other unknown factors
play important roles in tumorigenesis, tumor progression and metastasis of HNC.
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There has been an increasing trend to incorporate “omics”
technology, including metabolomics, into oncological research
(Vucic et al., 2012; Cho, 2013; Armitage and Barbas, 2014;
Yu and Snyder, 2016). Investigators have explored different
technologies and analytical methods to better understand the
metabolomic properties of cancers, includingHNC (Bathen et al.,
2010; Blekherman et al., 2011; Beger, 2013; Liesenfeld et al.,
2013; Olivares et al., 2015). As more independent reports on
metabolomics of HNC are being published, a comprehensive
meta-analysis of these large “omics” data sets will be of
potential value in the near future to enhance translational
studies. Specifically, metabolomic studies can help to potentially
identify clinically relevant biomarkers that may be useful in early
detection of cancer, to enhance the accuracy of diagnosis and
prognosis, and to aid in the development of new drug targets to
help improve therapeutic outcomes (Olivares et al., 2015; Yu and
Snyder, 2016).

The objective of this mini-review is to summarize and discuss
the published studies on HNC metabolomics. We will discuss
the different technological tools utilized in metabolomics, and
focus on the findings from studies that used different types
of patient samples (i.e., saliva, serum, blood, urine, tissues).
In addition to the host-metabolomic profiles, we discuss the
potential relationship and influence of the microbial metabolome
in cancers. By coupling metabolomics data with other omics
data, we can achieve a greater understanding of complex cancer
processes and derive new information that may help to better
target aggressive and malignant cancer types, such as HNC.

Biological Samples Used for Head and
Neck Cancer Metabolomics
A broad array of biological fluids, such as saliva, blood and urine
have been used in metabolomic-based studies (Nagana Gowda
et al., 2008; Psychogios et al., 2011; Bouatra et al., 2013; Dame
et al., 2015). These biofluids contain hundreds to thousands of
detectable metabolites that can be obtained non- or minimally
invasively (Beger, 2013). In addition, cell and tissue extracts can
be a source of samples for metabolomic-based studies (Beger,
2013). With current diagnostic procedures requiring a tissue
biopsy, a portion of the tissue samples can be harvested for
further metabolomic analyses. The following discussion will
focus on the findings, postulated hypotheses, and conclusions
from the published metabolomic studies that used different
biofluids and cell/tissue extracts to study HNC metabolomics.

Saliva Metabolomics
Saliva is an important biological fluid required for multiple
functions, including speech, taste, digestion of foods, antiviral
and antibacterial protection, to maintain adequate oral health
(Loo et al., 2010; Spielmann and Wong, 2011). Saliva is readily
available, and the collection process is simple and non-invasive.

Abbreviations: Ala, (alanine); Asp, (aspartate); Bet, (betaine); Cit, (citrate);

Cr, (creatinine); Cho, (choline); Glu, (glutamate); Gluc, (glucose); Gln,

(glutamine); Glut, (glutathione); Gly, (glycine); GPC, (glycerophosphocholine);

His, (histidine); Ile, (isoleucine); Lac, (lactate); Leu, (leucine); Lys, (lysine); PCho,

(phosphocholine); Phe, (phenylalanine); Pro, (proline); Pyr, (pyruvate); Tau,

(taurine); Thr, (threonine); Tyr, (tyrosine); Val, (valine).

Thus, saliva has been a popular medium for “omics” based
research studies (Zhang et al., 2012; Cuevas-Córdoba and
Santiago-García, 2014). Two types of saliva that can be used
for metabolomics studies are stimulated and unstimulated whole
saliva. These two saliva types vary in their chemical composition,
so it is important to identify the specific type of saliva that was
used for the study (Humphrey and Williamson, 2001; Carpenter,
2013; Cuevas-Córdoba and Santiago-García, 2014).

Amongst different HNC types, OSCC is associated with a
high morbidity rate and a poor 5-year survival rate of less than
50% (Epstein et al., 2002; Mao et al., 2004). To improve the
prognosis for HNC, investigators have proposed using saliva
metabolites to differentiate between precancerous and malignant
lesions. Using hierarchical principal component analysis (PCA)
and discriminate analysis algorithms, Yan and colleagues were
able to distinguish between OSCC and its precancerous lesions
oral lichen planus (OLP) and oral leukoplakia (OLK) (Yan et al.,
2008; Table 1). Although the OLP and OLK groups were not
as well separated in the PCA plot, the OSCC group showed a
clear separation from the healthy and precancerous groups (Yan
et al., 2008). In addition, Wei and others used ultra-performance
liquid chromatography coupled with quadrupole/time-of-flight
spectrometry (UPLC-QTOFMS) analysis to identify a signature
panel of salivary metabolites that could distinguish OSCC from
healthy controls (Wei et al., 2011; Table 1). Wei selected a
panel of five salivary metabolites, which included γ-aminobutyric
acid, phenylalanine, valine, n-eicosanoic acid and lactic acid.
This combination of metabolites accurately predicted and
distinguished OSCC from the control samples, suggesting
that metabolomic approaches could complement the clinical
detection of OSCC for improved diagnosis and prognosis (Wei
et al., 2011).

Work presented by Almadori and colleagues discovered
that salivary glutathione (antioxidant), but not uric acid
(antioxidant), was significantly increased in patients with oral
and pharyngeal SCC compared to healthy controls (Almadori
et al., 2007; Table 1). However, although there were significant
alterations in the glutathione levels potentially due to metabolism
of malignant cells, the concentrations were too inconsistent
to suggest glutathione as a definitive SCC diagnostic marker
(Almadori et al., 2007). Furthermore, Sugimoto and colleagues
identified 28 metabolites that correctly differentiated oral
cancers from control samples in their study (Sugimoto et al.,
2010). Among these differentially expressed metabolites, salivary
polyamine levels were markedly higher in oral cancer samples
compared to other cancer samples (breast and pancreatic)
and controls (Sugimoto et al., 2010). Polyamines are small
molecules derived from amino acids that are essential for
many biological functions (Dimery et al., 1987; Pegg, 2009).
Increased polyamine levels have been associated with increased
cell proliferation, decreased apoptosis and elevated expression
of genes affecting tumor invasion and metastasis (Gerner and
Meyskens, 2004). Thus, it is hypothesized that polyamine
homeostasis is important for regulation of cancer related
functions, such as cell proliferation and apoptosis.

Based on published studies that analyzed the salivary
metabolome of HNC, there is a general consensus that unique
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TABLE 1 | Summary of metabolomic-based studies on head and neck cancers.

Subjects Cancer Sample Detection

method

Metabolomic findings References

50 HNSCC

77 healthy

HNSCC Saliva HPLC Increased: Glutathione Almadori et al., 2007

20 OSCC,

20 OLP

7 OLK

11 healthy

OSCC

OLP

OLK

Saliva HPLC/MS Metabolic profiling data distinguished between OSCC,

OLP and OLK

Yan et al., 2008

69 oral cancer patients

87 healthy

Oral

cancer

Saliva CE-TOF-MS 28 differentially expressed metabolites were detected

and was used to predict oral cancer outcome

Sugimoto et al., 2010

37 OSCC

32 oral leukoplakia

34 healthy

OSCC

Oral

leukoplakia

Saliva UPLC-

QTOFMS

41 metabolites distinguished OSCC from control, 61

distinguished OSCC from OLK, and 27 distinguished

OLK from control

Wei et al., 2011

33 OSCC

5 OLK

28 healthy

OSCC

OLK

Healthy

Blood

(plasma)

1H NMR At least 17 metabolites were differentially expressed

and differentiated OSCC from healthy

Zhou et al., 2009

15 OSCC

10 healthy

OSCC Blood

(serum)

1D 1H and 2D
1H J-resolved

NMR

Altered energy metabolism:

Lipolysis (increased levels of ketone bodies)

TCA cycle (i.e., ↓citrate, succinate, formate)

Amino acid catabolism (i.e., ↑ 2-hydroxbutyrate,

ornithine, asparagine)

Tiziani et al., 2009

25 HNSCC

(Of these patients, 17 used for

serum and 19 used for tissue

analysis)

HNSCC Blood

(serum)

Tissues

GC/MS Serum:

↑ Glycolysis, ↓ Amino acids Tissues

↑ Amino acids, ↓ Glycolysis

Yonezawa et al., 2013

37 OSCC

32 OLK

34 healthy

OSCC

OLK

Urine GC-MS Increased:

Alanine, tyrosine, valine, serine, and cysteine

Decreased: Hippurate and 6-hydroxynicotic acid

Regression model based on valine and

6-hydroxynicotic acid

yielded an accuracy of 98.9%, sensitivity of 94.4%,

specificity of 91.4%, and positive predictive value of

91.9% in distinguishing OSCC from the controls

Xie et al., 2012

In vitro:

19 HNSCC

13 healthy

3 metastatic cervical lymph node

SCC cell line

In vivo:

7 HNSCC

7 healthy

HNSCC Tissues 1H MRS Mean choline/creatine ratio was higher in HNSCC

samples. Several amino acids including alanine,

isoleucine, glutathione, histidine, valine, lysine and

polyamine were differentially found in HNSCC samples

Mukherji et al., 1997

85 HNSCC

50 healthy

HNSCC Tissues 1H MRS Increased:

Taurine, choline, glutamic acid, lactic acid, lipid

El-Sayed et al., 2002

159 OSCC

(Tumor and neighboring margins

and bed tissues)

OSCC Tissues HR-MAS NMR Increased:

Acetate, glutamate, lactate, choline, phosphocholine,

glycine, taurine, leucine, isoleucine, valine, lysine, and

alanine Decreased:

Creatine, polyunsaturated fatty acids

Srivastava et al., 2011

22 HNSCC (matched samples

divided into 18NAT, 18 tumor

and 7 LN-Met)

HNSCC Tissues HR-MAS 1H

NMR

HNSCC and LN-Met tissues showed elevated levels

of lactate, amino acids and decreased levels of

triglycerides

Somashekar et al., 2011

(Continued)
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TABLE 1 | Continued

Subjects Cancer Sample Detection

method

Metabolomic findings References

5 HNSCC cell lines

3 primary normal human oral

keratinocytes from patients

HNSCC Cells 1H NMR 21 differentially expressed metabolites:

Increased:

Lactate, isoleucine, valine, alanine, glutamine,

glutamate,

aspartate, glycine, phenylalanine, tyrosine,

choline-containing compounds, creatine, taurine,

glutathione

Decreased: Triglycerides

Tripathi et al., 2012

2 cell lines (HNSCC cells and

stem-like cancer cells)

HNSCC Cells Cap IC-MS Changes in energy metabolism pathways: Glycolysis

and TCA cycle

Wang et al., 2014

Cap IC-MS, Capillary anion exchange ion chromatography-mass spectrometry; CE-TOF/MS, Capillary electrophoresis-time-of-flight mass spectrometry; GC/MS, Gas

chromatography/mass spectrometry; 1H-NMR, Proton nuclear magnetic resonance; HR-MAS; High resolution magic angle spinning; 1H-MRS, Proton magnetic resonance

spectroscopy; HPLC, High performance liquid chromatography; LC/GC, Liquid chromatography/gas chromatography; NMR, Nuclear magnetic resonance; UPLC-QTOFMS,

Ultra-performance liquid chromatography coupled with quadrupole/time-of-flight spectrometry; LN-Met, lymph node metastasis.

metabolites specific to HNC exist. However, due to differences
in detection and analytical methods, the current data still lacks
coherency, and a common HNC metabolomic signature has yet
to be identified.

Blood and Urine Metabolomics
In addition to saliva, blood and urine are commonly used for
metabolomic-based studies (Psychogios et al., 2011; Bouatra
et al., 2013). Blood is divided into plasma—a cellular portion
containing red and white blood cells and platelets, and serum—
a non-cellular protein-rich liquid separately obtained following
blood coagulation. Both plasma and serum contain a wide variety
of metabolites, and current studies suggest that plasma and
serum are similar in terms of metabolite content within the
aqueous phase (Psychogios et al., 2011). Importantly, numerous
studies have demonstrated that an altered chemical and protein
metabolic composition can now be detected in blood samples
obtained from subjects with pathology or diseases, such as
cancer (Psychogios et al., 2011; DeBerardinis and Thompson,
2012). Tiziani and colleagues reported that OSCC patients
exhibited abnormal metabolic activity in blood serum, wherein
altered activity related to lipolysis, the TCA cycle and amino
acid catabolism was detected (Tiziani et al., 2009; Table 1).
For example, there was an increased level of ketone bodies
present in OSCC samples, suggesting that increased lipolysis
was a backup mechanism for energy production (Tiziani et al.,
2009). Furthermore, a common signature for many cancers
includes a high rate of glycolysis followed by lactic acid
fermentation in the cytosol, rather than by a comparatively
low rate of glycolysis followed by oxidation of pyruvate in
the mitochondria, known as the “Warburg effect.” Similarly in
HNC, Tiziani demonstrated that OSCC tumors relied heavily on
glycolysis as a main energy source (Warburg, 1956; Tiziani et al.,
2009).

Yonezawa and others identified several metabolites that were
altered in serum and tissue samples of HNSCC patients who
experienced relapse (Yonezawa et al., 2013). The four metabolites
that were significantly altered were glucose, methionine, ribulose,

and ketoisoleucine (Yonezawa et al., 2013). Interestingly, when
the authors compared the metabolomic profiles of the OSCC
serum and tissue samples, an inverse relationship was observed
in the differentially expressed metabolites (Yonezawa et al.,
2013; Table 1). Metabolites associated with glycolytic pathways
(i.e., glucose) were lower in the tissues, whereas amino acids
(i.e., valine, tyrosine, serine, and methionine) were expressed
in higher levels in the tissues than the serum (Yonezawa
et al., 2013). In addition, the serum metabolomic profiles
differed between patients with or without HNSCC relapse
(Yonezawa et al., 2013). Several other studies further support
that serum and plasma samples from HNC subjects possess
distinct metabolomic profiles. For example, elevated levels
of choline-containing compounds were detected in OSCC
samples in numerous studies (Maheshwari et al., 2000; El-
Sayed et al., 2002; Bezabeh et al., 2005; Tiziani et al., 2009;
Zhou et al., 2009). Choline is an important constituent
of phospholipid metabolism in cellular membranes and is
considered a biomarker for cancer cell proliferation, survival and
malignancy (Ackerstaff et al., 2003; Glunde et al., 2006, 2011).
Through our comprehensive analysis, choline was identified as
one of the metabolites that was consistently over expressed in
HNC samples regardless of sample types (Figure 1B). Studies
have suggested a link between cancer feedback cell signaling and
choline metabolism (Aboagye and Bhujwalla, 1999; Ackerstaff
et al., 2003; Janardhan et al., 2006; Glunde et al., 2011;
Ridgway, 2013). Thus, an abnormal cholinemetabolism in cancer
has gained much attention and is regarded as a metabolic
hallmark for tumor development and progression (Glunde et al.,
2011).

The use of urine samples in HNC metabolomic studies is not
as common compared to the other types of biofluids mentioned
above. However, urine is widely used by metabolomic researchers
for other conditions or diseases due to its ease of collection
and the wide coverage of metabolites that is possible with urine
samples (Bouatra et al., 2013). Thus far, there has only been a
single study reported on HNC metabolomics using urine. From
patient urine samples, Xie and colleagues identified a panel
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FIGURE 1 | Head and neck cancer metabolism. (A) Proposed schematic representation of HNC tumor microenvironment. Altered metabolism in HNC can result

in differential expression of metabolites associated with carbohydrates, lipids, amino acids, and nucleotide metabolism. The co-inhabiting microbiota of the TME can

further result in altered metabolic activity. In addition to the genomic transformation of cancer cells, diet and lifestyle (alcohol, tobacco) are risk factors contributing to

the altered cancer metabolism. (B,C) Venn diagrams showing, (B) Overlap of differentially expressed metabolites identified in HNC in saliva, blood and urine, and cells

and tissues. (C) Overlap of differentially expressed metabolites in HNC identified by different detection methods such as HPLC/GC/MS, NMR/MAS, MRS and other.

Metabolites were selected and compiled from studies in Table 1. Red, detected in increased levels; Blue, detected in decreased levels; Green, detected in increased

and decreased levels.

of differentially expressed metabolites and demonstrated their
utility by logistic regression (LR) modeling (Xie et al., 2012;
Table 1). When two metabolites, valine and 6-hydroxynicotic
acid, were inputted together in the LR prediction model,the
authors were able to identify OSCC with a 98.9% accuracy, and
a greater than 90% sensitivity, specificity and positive predictive
value (Xie et al., 2012). However, similar to saliva and blood
metabolomics, the use of urine samples for HNC metabolomics
will require further validation through more independent
studies.

Cell and Tissue Metabolomics
The current gold standard for diagnosis of HNC is a scalpel-
obtained biopsy and subsequent histopathological interpretation.
However, the current procedure is subjective and does not
capture the full heterogeneic properties of neoplastic processes,
as it is difficult to distinguish between precancerous from
cancerous and malignant lesions (Rezende et al., 2010; Yu
and Snyder, 2016). Early studies with magnetic resonance
spectroscopy (MRS) using patient tissue samples demonstrated
that a higher choline to creatine ratio was observed in HNC
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samples compared to healthy controls (Mukherji et al., 1997; El-
Sayed et al., 2002; Table 1). In addition, Mukherji and colleagues
reported that elevated levels of amino acids, such as alanine,
glutathione, histidine, isoleucine, valine, lysine, and polyamines
were more likely found in tumors compared to controls, and
similar metabolites, such as glutathione and polyamines were
also elevated in saliva associated with HNC (Mukherji et al.,
1997; Almadori et al., 2007; Sugimoto et al., 2010). Srivastava
and others used proton high-resolution magic angle spinning
magnetic resonance (HR-MAS MR) spectroscopy to identify
the metabolic perturbations of OSCC tumors compared to
healthy controls. The data revealed higher levels of lactate,
phosphocholine, choline and amino acids, and decreased levels
of PUFA and creatine in OSCC samples compared to non-
malignant samples (Srivastava et al., 2011). As previously
mentioned, higher levels of detected choline in HNC tissues
may indicate increased cancer cell proliferation and membrane
biosynthesis, as a result of reciprocal interactions between
oncogenic signaling and choline metabolism (Glunde et al.,
2011). The reduced level of creatine could also be an indication
of increased energy metabolism in tumors (Mukherji et al., 1997;
El-Sayed et al., 2002).

Somashekar and colleagues reported that tumorous tissues
biopsied from different anatomical locations (tongue, lip, oral
cavity, and larynx) displayed similar metabolomic profiles
between one another, suggesting that HNSCC tissues share
similar metabolic activity during malignant transformation
(Somashekar et al., 2011; Table 1). Primary and metastatic
HNSCC tissues both showed increased/altered levels of branched
chain amino acids, lactate, alanine, glutamine, glutamate,
glutathione, aspartate, creatine, taurine, phenylalanine,
tyrosine and choline compounds, with decreased levels of
triglycerides (Somashekar et al., 2011; Table 1). In addition,
Tripathi and others demonstrated that the cell extracts of
HNSCC displayed comparable metabolic phenotypes as
observed in the HNSCC tissues (Tripathi et al., 2012; Table 1).
Thus, based on published reports, the metabolites associated
with malignant transformation of HNC are associated with
multiple dysregulated metabolic pathways, including glycolysis,
glutaminolysis, oxidative phosphorylation, energy metabolism,
TCA cycle, osmo-regulatory and anti-oxidant mechanisms
(Figure 1; Somashekar et al., 2011; Tripathi et al., 2012; Wang
et al., 2014).

Influence of Microbial Metabolomics
The human body is a host to taxonomically diverse multi-
species microbial communities. In particular, the oral cavity
and the gut are home to hundreds of transient and resident
microbial species (Eckburg et al., 2005; Dewhirst et al., 2010).
Several publications suggest that the microbiota that colonize
the human body (particularly the oral cavity and gut) contribute
to the etiology of different types of cancers because of
their ability to alter the community composition and induce
inflammatory reactions, DNA damage and apoptosis, and an
altered metabolism (Meurman, 2010; Chen et al., 2012; Farrell
et al., 2012; Louis et al., 2014). Thus, when considering cancer-
associated metabolomics, the influence of the microbiota and its

repertoire of metabolites should also be considered, since the
microbiota are profoundly abundant in the human body and
cancerous tissues.

Colorectal cancer (CRC), like HNC, is associated with risk
factors that include diet and lifestyle (Gingras and Béliveau,
2011). Specific bacterial genera, like Fusobacterium, are found in
greater abundance in patients diagnosed with CRC, colorectal
adenomas, pancreatic cancer and HNC (Castellarin et al.,
2012; Farrell et al., 2012; Kostic et al., 2012; McCoy et al.,
2013). Accumulated data suggest that diverse polymicrobial
communities can produce a wide range of metabolites
by metabolic fermentation (Tang, 2011). For instance, gut
microorganisms can secrete a variety of metabolites that may
play a role in the etiology and prevention of complex diseases
(Heinken and Thiele, 2015). These microbial metabolites can
directly regulate and modulate the host-tumor cell metabolism
(Figure 1A); bacteria isolated from the gut can produce
metabolites that are protective or detrimental to the host tissues
and cells. For example, short-chain fatty acids (SCFAs) like
butyrate, acetate, and propionate function in the suppression
of inflammation and cancer, whereas other metabolites, such as
polyamines, are toxic and cancer-promoting at high levels (Louis
et al., 2014). Alterations in microbial diversity and function
due to known risk factors for HNC (alcohol and tobacco
use) and unknown factors could actively contribute to HNC
tumorigenesis (Schwabe and Jobin, 2013; Figure 1A).

CONCLUDING REMARKS

The complement of “omics” based approaches could significantly
enhance our understanding of the complex processes of HNC
tumorigenesis. Although, it is extremely complex, progress has
been made in integrating two or more omics data sets to
study cancer (Cho, 2013). For example, studies have examined
the molecular differences between HPV+ and HPV− HNCs
by comparing the differences in their genomic, transcriptomic,
and proteomic profiles (Sepiashvili et al., 2015). Since Otto
Warburg’s first hypothesis of the altered metabolism of cancer
cells, the field of cancer metabolomics has rapidly expanded
and revealed intriguing new data regarding metabolic pathways
associated with cancers (Warburg, 1956). With fast-moving
advancements in technology and bioinformatics, the quality of
data output and the ability to detect small molecular metabolites
has significantly improved. Thus, investigators will likely soon
be able to transition from untargeted global metabolomic
approaches to more focused targeted and mechanistic-based
metabolomic studies. In addition, with the availability of growing
public databanks, investigators can now search for specific
omics variations that characterize different types of cancers and
phenotypes of a cancer (Cho, 2013).

From the clinical perspective, understanding the metabolic
pathways associated with life threatening conditions, such as
cancer, could be extremely valuable in decreasing the burden of
disease. With saliva-based DNA screening tests already available
for chair-side use in dentistry for HNC, we can envision a saliva-
based screening or diagnostic test that incorporates omics that
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replaces the surgical biopsy and provides a more individualized
and robust patient health, disease, or risk profile. Here, we
discussed the metabolomics of both the host (normal and
cancerous conditions) and co-existing microbiota (Figure 1A).
In addition, we organized the differentially expressed metabolites
from previous publications by sample types (saliva, blood and
urine, cells and tissues) and detection methods (Figures 1B,C).
The full integration and routine inclusion of metabolomics
in the clinic has yet to be implemented, however, continued
research and translational efforts will reinforce the promise
of this evolving technology and science. Studies to date have
been conducted with relatively small patient sample sizes, with
different sample types and detection methods. In the future, it
will be critical to follow up with larger, more comprehensive
population studies to confirm the validity of the current
findings. In addition, sharing detailed sample collection and
analytical methods between investigators will be essential to
conduct sound HNC metabolomics research. From the systems
biology perspective, the integration of other omics data with

metabolomics data will be required for a greater understanding
of cancer biology.
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It has been experimentally shown that host-microbial interaction plays a major role in

shaping the wellness or disease of the human body. Microorganisms coexisting in human

tissues provide a variety of benefits that contribute to proper functional activity in the

host through the modulation of fundamental processes such as signal transduction,

immunity and metabolism. The unbalance of this microbial profile, or dysbiosis, has been

correlated with the genesis and evolution of complex diseases such as cancer. Although

this latter disease has been thoroughly studied using different high-throughput (HT)

technologies, its heterogeneous nature makes its understanding and proper treatment

in patients a remaining challenge in clinical settings. Notably, given the outstanding

role of host-microbiome interactions, the ecological interactions with microorganisms

have become a new significant aspect in the systems that can contribute to the

diagnosis and potential treatment of solid cancers. As a part of expanding precision

medicine in the area of cancer research, efforts aimed at effective treatments for various

kinds of cancer based on the knowledge of genetics, biology of the disease and

host-microbiome interactions might improve the prediction of disease risk and implement

potential microbiota-directed therapeutics. In this review, we present the state of the art

of sequencing and metabolome technologies, computational methods and schemes in

systems biology that have addressed recent breakthroughs of uncovering relationships or

associations between microorganisms and cancer. Together, microbiome studies extend

the horizon of new personalized treatments against cancer from the perspective of

precision medicine through a synergistic strategy integrating clinical knowledge, HT data,

bioinformatics, and systems biology.

Keywords:microbiome, cancermetabolism, systems integration,metabolome, next generation sequencing (NGS),

precision medicine

INTRODUCTION

Our body is integrated by a legion of microorganisms that coexist in all our tissues and, notably,
with a symbiotic functional purpose. Furthermore, host-microbial interactions are beginning to
be recognized for their outstanding influence on well-being or the emergence of diseases such as
cancer. The advent of high-throughput (HT) technologies has allowed significant advancements in
uncovering these correlations through the diversity and abundance of microorganisms in samples
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of normal and dysfunctional cohorts of human tissues associated
with complex diseases such as obesity, type 2 diabetes, and
cancer. For instance, in 2015, Mitra and co-workers reported
the characterization of the microbiota at different stages of
development of cervical intraepithelial neoplasia, and they
observed a strong association between the severity of the
disease and the vaginal microbiota diversity (Mitra et al., 2015).
Furthermore, the association of the microbiota and obesity has
also been explored, with observations of changes in the balance
and relative abundances of Bacteroidetes and Firmicutes (Ley
et al., 2006). Overall, these and other studies provide a glimpse
of the central role that the microbiome has in a variety of
biological processes in the human body such as in the regulation
of fat storage, lipogenesis, fatty acid oxidation and energy balance
(Gérard, 2016).

These findings that associate microbiome and phenotype
dysfunctional states have contributed to a change in
paradigms regarding the relationship between human body
and microorganisms, and suggest elucidating the rules by which
this interaction can confer wellness or disease. To this end, some
challenges must be overcome. For instance, the development of
new computational paradigms that contribute to the coherent
interpretation of heterogeneous HT technologies, such as Next
Generation Sequencing (NGS) and Metabolomics, and the
construction of quantitative schemes capable of influencing
clinical decisions in precision medicine.

In this review, we present the forefront of HT technologies
and conceptual schemes in bioinformatics and systems biology
for surveying the host-microbiome association and cancer
progression. We expect that our review will be used as a technical
and conceptual guide in human microbiome studies, present and
discuss the advances in the field, and establish an introspective
analysis of the next steps for linking microbiome studies and
precision cancer medicine.

CHARACTERIZATION OF THE
MICROBIOME USING
HIGH-THROUGHPUT TECHNOLOGIES

The advent of HT technologies has positively impacted the
elucidation of the metabolic and regulatory mechanisms by
which hosts and microbes interact to determine a health or
disease state in the host. In particular, NGS and techniques
related to metabolome analysis such as mass spectrometry
(MS) are valuable technologies for analyzing the microbiota
composition and exploring the genetic, functional, andmetabolic
activity of the microbial community. Moreover, the use of these
technologies enables us to explore the implications of the human
microbiome to induce functional and dysfunctional states in a
variety of human tissues. Here, we present the state of the art of
these technologies and discuss some key findings to elucidate the
relationship between the human microbiome and cancer.

Next Generation Sequencing
Sanger sequencing, the first-generation of DNA sequencing
technology developed by Frederick Sanger based on the selective

incorporation of chain-terminating dideoxynucleotides by DNA
polymerase, established the methodological principles for DNA
sequencing (Sanger et al., 1977). The Sanger sequencing
technique constituted the main part of the Human Genome
Project in 2001 and was the principle for the first automatic
sequencing machine (AB370) produced by Applied Biosystems
(Liu et al., 2012). However, limitations in throughput and the
high cost of Sanger DNA sequencing reduced the potential of
sequencing for other applications, such as for the characterization
of personal genomes and cancer whole-genome sequencing. In
fact, the cost of the Human Genome Project was estimated
to be approximately 1–3 billion dollars over a 15-year period
(International Human Genome Sequencing Consortium, 2004).
After 2004, when the International Human Genome Sequencing
Consortium published the completed sequencing process of the
human genome, different HT sequencing technologies emerged,
promoting decreasing costs and increasing potential applications
for human health (Reuter et al., 2015).

Through automated DNA sequencing instruments that
use an attractive interaction among chemistry, engineering,
software and molecular biology, dramatic improvements in
sequencing technology have allowed revolutionary advances in
our understanding of health and disease (Mardis, 2011, 2013).
The launch of the Genome Sequencer system by 454 Life Sciences
in 2005 highlighted the use of second-generation sequencing
techniques employing massively parallel analysis. The second-
and third-generation sequencing platforms, collectively known
as NGS, are characterized by high data throughput, which can
be used for a diverse range of scientific applications by changing
the sample type and the manner of its preparation.

Many commercial second-generation sequencing
platforms are now available, which follow a similar protocol:
library/template preparation, clonal amplification and massively
parallel sequencing. In terms of throughput per run, read length
and accuracy, each platform has different specific features that
make them useful for particular applications. Moreover, the
newly emerged third-generation sequencing techniques, such as
PacBio (Brown et al., 2014) and MinION (Quick et al., 2014), are
performed on a single-molecule basis with no necessary initial
DNA amplification step. These newer technologies can produce
much longer reads compared with the second-generation
sequencing platforms and have the potential to be less costly and
less time-consuming.

Several reviews have covered these major platforms in high
detail (Metzker, 2010; Mardis, 2013; Reuter et al., 2015). Of
particular interest for this review is the application of NGS as
an important tool that can provide detailed information about
the taxonomic composition and the functional capabilities of
the human microbiome for modern biomedical research. Some
platforms are not discussed in this review, including Roche-454’s
pyrophosphate Genome Sequencer and ABI’s SOLiD; instead,
we attend to the platforms most commonly used today as
technological tools in microbiome analysis as well as recent
development (Table 1).

The appropriate selection of one platform depends on the
particular aim and design of the study. Illumina’s technology
has had tremendous advances in output and reduction in

Frontiers in Physiology | www.frontiersin.org December 2016 | Volume 7 | Article 606 | 88

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Contreras et al. Microbiome-Cancer-Systems Biology

TABLE 1 | Comparison of next generation sequencing systems used in microbiome analysis.

Illumina Ion torrent Pacific biosciences Oxford nanopore

Template

preparation

Amplification of adaptor-ligated

DNA fragments on a solid phase.

Amplification of adaptor-ligated

DNA fragments by emulsion-PCR.

Ligation of a double-stranded

region (the insert) onto a

single-stranded hairpin loop on

either end (SMRT-bell templates).

Ligation of DNA fragments to two

adaptors; the first adaptor is bound with a

motor enzyme and a molecular tether, and

the second one is a hairpin oligonucleotide

bound by a second protein (HP motor).

Sequencing

chemistry

Sequencing by synthesis using

reversible terminators.

Sequencing by synthesis coupled

proton detection.

Sequencing by a strand

displacing polymerase

positioned in zero-mode

waveguides (ZMWs) that

incorporates phosphate-labeled

nucleotides.

Sequencing by measuring electric current

fluctuations when bases along the DNA

strand translocate through a nanopore

under an applied electric field.

Read length MiSeq: Up to 300 bp NextSeq

500: Up to 150 bp HiSeq 2500:

Up to 125 bp

Ion PGM System: 200- or 400-base

reads Ion Proton System: Up to

200-base fragment reads Ion 5S:

200- or 400-base reads

PacBio RS II System: >20 kb MinION: Median and maximum read

lengths of ∼6 and 65 kb, respectively

Throughput

per run

MiSeq: Up to 13.2–15 Gb

NextSeq 500: Up to 100–120 Gb

HiSeq 2500: Up to 900–1 Tb

Ion PGM System: 600 Mb-1 Gb Ion

Proton System: Up to 10 Gb Ion

5S: Up to 10–15 GB

PacBio RS II System: 500 Mb- 1

Gb

MinION: ∼90 Mb

Advantages The overall error rates are below

1%. Different sequencers

optimized for a variety of

throughputs.

The sequencing process does not

require fluorescence and camera

scanning, resulting in a fast method.

Direct sequencing of DNA

without clonal amplification.

Sequencing of the DNA molecule

multiple times, increasing

accuracy.

Direct sequencing of DNA without clonal

amplification. Available device as

USB-powered portable sequencer.

Limitation The most common error is

substitution.

The most common error types are

insertions and deletions (indels).

Homopolymer repeats longer than

6 bp lead increasing error rates.

The predominant errors are

insertions (12%) and deletions

(2%).

Error rates estimated for insertion, deletion

and substitution are 4.9, 7.8, and 5.1%.

References Dohm et al., 2008; Reuter et al.,

2015

Rothberg et al., 2011; Liu et al.,

2012

Travers et al., 2010; Carneiro

et al., 2012

Quick et al., 2014; Ashton et al., 2015;

Jain et al., 2015; Reuter et al., 2015

costs over the last few years and, as a consequence, currently
dominates the NGS market (Dohm et al., 2008; Reuter et al.,
2015). Illumina’s sequencing technology has been widely used in
microbiome projects (Evans et al., 2014; Lambeth et al., 2015;
Yasir et al., 2015), including the Human Microbiome Project
(HMP Consortium, 2012a).

Although both the Illumina and Ion Torrent systems offer a
number of advantages in terms of utility for generating usable
sequences, its feature to obtain short read length makes them
less suited for some particular scientific questions, including
genome assembly, gene isoform detection, and methylation
detection (Rothberg et al., 2011). Single-molecule real-time
(SMRT) sequencing (third-generation sequencing platforms)
offers an available approach to overcome these limitations.
De novo genome assembly is one of the main applications of
PacBio sequencing because long reads can provide large scaffolds
(Travers et al., 2010; Carneiro et al., 2012; Rhoads and Au,
2015). In addition, using the direct sequencing protocol without
library preparation offers the advantage of requiring a small
quantity of DNA, just 1 ng for small genomes, over the other
protocols that require 400–500 ng (Coupland et al., 2012).
Moreover, SMRT sequencing methods can be used to study

molecules other than DNA, for instance ribosomes (Uemura
et al., 2010).

DNA sequencing using nanopore technology is another
alternative method for producing long-read sequence data.
The recent distribution of the MinION by Oxford Nanopore
Technologies has made it possible to evaluate the utility of
long-read sequencing using a device that resembles a USB
memory stick (Ashton et al., 2015; Jain et al., 2015). Speed,
single-base sensitivity and long read lengths make nanopore-
based technology a promising method for HT sequencing. The
MinION system has been used to sequence genomes of infectious
agents, such as the influenza virus (Wang J. et al., 2015), to
identify the position and structure of a bacterial antibiotic
resistance island (Ashton et al., 2015), and as part of a genomic
surveillance system of Ebola virus in which the sequencing
process took as little as 16–60min (Quick et al., 2016).

Rapid advances in sequencing technologies present
widespread opportunities for microbiome studies using
different platforms; however, the performance of the sequencing
should be considered for the study design. Loman et al. reported
that MiSeq had the highest throughput per run (1.6Gb/run,
60Mb/h) and the lowest error rates compared with 454 GS
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Junior or Ion Torrent PGM (Loman et al., 2012). In addition,
Clooney et al. compared Illumina HiSeq, MiSeq and Ion PGM
shotgun sequencing on six human stool samples, and found
that optimal assembly values for the HiSeq were obtained for
10 million reads per sample, whereas the MiSeq and PGM
sequencing depths were not sufficient to reach an optimal level
of assembly (Clooney et al., 2016). Furthermore, MiSeq and
PGM technologies provide a better functional categorization for
predicting core genes from assembled contigs, possibly due to
their longer read lengths (Clooney et al., 2016). Therefore, in
some cases a combination of platforms could provide a more
complete coverage of the studied genome.

The current sequencing assay protocols allow for two
types of microbiome studies: (a) marker gene sequencing
community identification, which surveys and counts microbes
using amplicon sequencing of a single marker gene that is usually
the 16S rRNA gene, and taxonomic assignment by bioinformatic
methods; and (b) shotgun metagenomic sequencing, which
surveys the entirety of all microbial DNA present in a sample
using a collection of ad-hoc bioinformatic methods for gene and
species identification purposes (Brown, 2015).

Amplicon Sequencing
Classic microbiology methods are limited to the study of
microbes that grow under specific sets of culture conditions;
however, most microbial species are difficult or impossible to
culture in vitro. For that reason, their full genetic spectrum
was unknown until the advent of HT sequencing technologies,
expanding our knowledge of themicrobial world. The similarities
and distinctions among bacterial species have become complex
(Konstantinidis et al., 2006), so that, instead of a “species,” the
term “operational taxonomic unit” (OTU) is used to characterize
and infer the phylogenetic relationships between organisms
grouped by sequence similarity (Blaxter et al., 2005; Koeppel
and Wu, 2013; Schmidt et al., 2014). Usually, the 16S rRNA
gene, which is a highly conserved gene in all prokaryotes,
is amplified to analyze prokaryotic taxonomic composition in
samples. However, this gene is approximately 1550 base pairs
long making it difficult to sequence the whole gene through HT
sequencing methods without an assembly step (Di Bella et al.,
2013).

Instead of sequencing the entire 16S gene, one or more
of its nine variable (V) regions are amplified using particular
sets of primers. The choice of which variable region to use
and amplify depends on factors related to the sample and
experiment. For instance, evidence suggests that the V1–V3
region is better for taxonomical classification of species; however,
some predictive studies show that the V3–V5 region results in
a better classification of microbiota from disease vs. healthy
specimens (Statnikov et al., 2013). Kim et al. analyzed different
variable regions and recommended targeting of the V1–V3 and
V4–V7 regions for the analysis of archaea and the V1–V3 and
V1–V4 regions for the analysis of bacteria (Kim et al., 2011).

Shotgun Metagenomic Sequencing
Although the 16S rRNA is the most frequent gene used for
studies of microbial community membership and structures, it

has some limitations. The use of a particular set of primers for
amplification of 16S and its PCR conditions can favor some
taxa over others, creating bias in abundance counts (Statnikov
et al., 2013). In addition, the 16S primers do not capture viruses
and eukaryotes. Then, the shotgun metagenomic sequencing
approach is commonly used to describe microbial communities
without the biases inherent to PCR amplification of a single
gene. In principle, shotgun sequencing provides robust estimates
to identify the whole genomes present in a biological sample,
including genome sequences of viruses and other functional
DNA elements (Brown, 2015).

Metagenomic analysis is much more challenging than
amplicon sequencing due to the consideration of whole
genomes instead of a particular gene. Indeed, hundreds of
millions of reads must be generated and analyzed for each
sample, taking advantage of very deep sequencing on the
Illumina HiSeq or similar instruments. In addition to shotgun
metagenomic analysis, metatranscriptomic analysis using direct
cDNA sequencing, which is known as RNA sequencing (RNA-
seq), allows for the analysis of all of the RNA of a sample
to determine which genes are transcribed and for monitoring
gene regulation over time, which is particularly interesting when
studying changes in the microbiota in response to perturbations
(Valles-Colomer et al., 2016).

Due to technical difficulties such as isolation of high
quality RNA from biological samples or the presence of
mRNA from the host, the application of RNA-seq to the
study of the human microbiota in cancer is still limited.
To date, a couple of interesting studies related to the
metatranscriptome and the microbiome have been published.
In 2014, Franzosa and coworkers reported the correlation
between the metagenome and metatranscriptome of the healthy
human gut microbiome. These findings showed that 41% of
microbial transcripts are in concordance with their genomic
abundances, while sporulation and some pathways of amino
acid biosynthesis are underexpressed, and methanogenesis and
ribosome biogenesis are up regulated. Interestingly the subject-
specific metatranscriptomic variation was more significant than
the metagenomic variation (Franzosa et al., 2014). In 2015,
Versluis and coworkers explored the gut metatranscriptomes for
the expression of antibiotic resistance genes. Their results showed
that resistance gene expression could be constitutive or could
have different roles other than antibiotic resistance (Versluis
et al., 2015).

After sequence data have been obtained, the next step in
the NGS pipeline is the bioinformatics analysis of the reads,
which include quality control, assembly and, finally, microbiome
profiling (Figure 1). In each step of the bioinformatic pipeline,
there are diverse computational methods that can be applied
based on the organisms, the biological question being explored,
and the technology applied to the samples. There are three
initial steps in common when the 16S rRNA gene is used for
prokaryotes, the nuclear ribosomal internal transcribed spacer
region (ITS) for fungi or shotgun sequencing: (1) data acquisition
or generation of FASTQ files (a common format for sharing
sequencing read data); (2) quality control; and (3) assembly of
the reads (Figure 1).
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FIGURE 1 | Bioinformatics workflow of microbiome profiling. The first step is the data acquisition that can be derived from any NGS technology (Illumina,

IonProton, PacBio) and generating of the FASTQ file to proceed with the analysis. In the quality control step, the aim is to clean and eliminate possible errors in data,

for example, to discard low quality score and very short reads, quimeric and adapter sequences. In addition, it is important to evaluate the presence of some

contaminants from other organisms, specific GC content bias or repeated sequences that may interfere with the assembly step. The following steps depend on the

nature of data, whether the aim is to sequence a marker gene, such as the 16S rRNA gene or ITS, or to perform shotgun metagenomic sequencing. OTU clustering is

a critical step and many algorithms and strategies have emerged to accomplish a proper classification of sequences for a more accurate determination of taxa

proportions and diversity indexes (diversity assessment). Good assemblies and alignments are an important aspect to reach correct gene predictions in the whole

genome pipeline. In the functional assignment step, we gather a biological understanding for regulation and gene pathway reconstruction, obtaining finally the

microbiome profiling.

Data Acquisition
The NGS methodologies provide data files in different formats
depending on the platform used. For instance, the Illumina
platform generates ∗.bcl binary files containing base call and
quality for each tile in each cycle, while Oxford Nanopore
Technologies provide the data in binary files in HDF5/FAST5
format, which contains a number of hierarchical groups, datasets
and attributes (Watson et al., 2014). However, to proceed with the
analysis, both data files need to be converted to FASTQ format.
The FASTQ files have four lines per sequence: sequence identifier,

raw sequence, quality score identifier and quality scores encoded
in Phred format. Phred quality scores are a measure associated
with the assurance of each nucleotide in the sequence.

Quality Control
Routinely, before starting a data analysis, a primary sequence
analysis should be performed, where various data parameters
are evaluated such as the quality scores of the sequences,
global CG content, and the repeat abundance and the
proportion of duplicated reads. The main tool to perform
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this is the FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) or the FASTX-Toolkit, which is a collection
of command line tools. Parameters for good quality data
include a Phred quality score above 28, low percentage of
duplicated sequences, no adapter content, and GC count per
read close to the theoretical distribution. Another useful tool
for quality assessment and processing of HT DNA sequence
data is the Bioconductor’s package ShortRead (Morgan et al.,
2009).

Assembly
The assembly processing of contigs consists of searching
for overlapping reads, alignment and merging sequences to
reconstruct the entire original sequence. There are two main
approaches for genome assembly: de novo and reference guide.
In the novo assembly approach, there are currently two main
methods: Overlap-Layout-Consensus (OLC) and De Bruijn
Graph (BG). OLC methods are based on overlap graphs, and
their process has three steps: (1) searching for overlapping reads
comparing all-against-all, (2) construction and manipulation of
an overlap graph leading to an approximate read layout, and
(3) constructing the consensus sequence using multiple sequence
alignments (Miller et al., 2010). The BG method involves the
definition and alignment of K-mers, where the K parameter
denotes the length in bases of these sequences; the overlap is
between k-mers, not between reads.

In the context of obtaining the microbiome profile of a sample
using the 16S rRNA gene, three phases can be distinguished:
OTU clustering, OTU classification and diversity assessment.
The metrics for microbiota description include species richness
and phylogenetic diversity, distance matrices of samples, alfa
and beta diversity, rank abundance distributions and statistical
analysis of ordering and classification. OTU clustering is a key
step for de novo OTU construction that has an important efect
on the estimation of species abundance and diversity. There are
some recent comparisons of several of these clustering methods
(Chen et al., 2013; Kopylova et al., 2016). Alternatively, to the
direct construction of OTU clusters, more recently, DADA2
addresses the sequencing errors and its correction to properly
identify the sequence variants at the strain level (Callahan et al.,
2016). Further taxonomic assignment to the sequence table
can be accomplished via Greengenes (DeSantis et al., 2006),
SILVA (Quast et al., 2013) or a dedicated human intestinal
16S database (Ritari et al., 2015). There are different software
options to analyze this kind of data from end to end such as
QIIME or Mothur (Schloss et al., 2009; Caporaso et al., 2010;
Navas-Molina et al., 2013), MICCA (Albanese et al., 2015) or
phyloseq developed in R language (Mcmurdie and Holmes, 2013;
Heazlewood et al., 2015).

While amplification of the 16S rRNA gene is performed
to determine the diversity of and quantify the abundance of
bacteria, metagenomic shotgun sequencing aims to recover
genomes (Smits et al., 2015), describe the genomic structure and
survey the metabolic capabilities of the different microorganism
in a community. The most common strategy to reconstruct
genomes and recover global functional pathways from
metagenomic data from reads involves: (1) gene prediction,

(2) functional assignment, and (3) pathway reconstruction
(Abubucker et al., 2012).

Accurate gene prediction is critical for functional assignment.
With the intent of increasing the accuracy of prediction, some
authors recommend using algorithms that take into account
significant differences between coding and non-coding sequences
to identify open reading frames, di-codons frequency, GC
content of coding sequences, preference bias in codon usage and
patterns in the use of start and stop codons (Escobar-Zepeda
et al., 2015).

From a practical point of view, there are several packages
and suites to perform metagenomic analysis taking into account
a variety of statistical tools (Supplementary Table 1). For
instance, MetaGeneMark uses direct polynomial and logistic
approximations of oligonucleotide frequencies, and it evaluates
the dependencies between the frequencies of oligonucleotides
with different lengths and the GC%of a nucleotide sequence (Zhu
et al., 2010); Glimmer-MG, which is based on Glimmer, uses the
interpolated Markov models with variable-order for capturing
sequence compositions of protein-coding genes (Kelley et al.,
2012); FragGeneScan incorporates sequencing error models and
codon usages in a hiddenMarkov model to predict ORFs in short
reads (Rho et al., 2010); and Orphelia is a gene finder based on
the machine learning approach (Hoff et al., 2008).

A common strategy in metagenomics pipeline is the
partitioning or clustering of reads (for example, for the exclusion
of rRNA, tRNA or other specific DNA) by alignment methods
(Kopylova et al., 2012; Wood and Salzberg, 2014). This allows
taxonomy assignment and classification of reads. Improvements
in terms of speed and accuracy of these tasks have been reached
by various methods implemented in Phymm and PhymmBL
(Brady and Salzberg, 2009), LMAT (Ames et al., 2013), mOTUs
(Sunagawa et al., 2013), and more recently Kraken (Wood and
Salzberg, 2014), MetaPhlAn2 (Truong et al., 2015), and SMART
(Lee et al., 2016). For a better estimation of gene abundances,
methods that uses amachine learning approach, such asMUSiCC
(Manor et al., 2015). All these methods rely on a reduced
database search of single copy genes, wide coverage phylogenetic
markers or hidden Markov models using training sets. Others
use combined methods of genomic signatures, marker genes
and optional contig coverages (Lin and Liao, 2016). Peabody
and coworkers present a recent comprehensive evaluation of
metagenomic classification methods (Peabody et al., 2015).

Functional assignment is performed on the predicted open
reading frame or predicted proteins by sequence similarity
search to well-cured databases, using tools such as BLAST (local
alignments), FASTA (global alignment) or HMMER (hidden
model Markov profiles) when sequence identity is low. These
analyses can be performed using locally installed software;
alternatively, for users with no bioinformatic training, there
are different suites for analysis, such as MG-RAST (Wilke
et al., 2016), IMG/M (Markowitz et al., 2012; Wilke et al.,
2016), JCVI and Metagenomics Reports (METAREP) (Goll
et al., 2010; Markowitz et al., 2012; Wilke et al., 2016) or
MEGAN (Huson and Weber, 2013), MetAMOS (Treangen
et al., 2013), MOCAT2 (Kultima et al., 2016), and MetaTrans
(Martinez et al., 2016) which are software designed to simplify all
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metagenomics or metatranscriptomics pipeline; preprocessing,
assembly, annotation and analysis.

Having obtained a high quality functional annotation, the
process of metabolic pathway reconstruction is extremely useful
to identify, at a systemic level, those pathways with a primary
role in supporting the phenotype. For mapping each gene in a
metabolic pathway and analyzing missing enzymes (due to an
analogous enzyme that is performing the same function), two
different databases can be used: KEGG (Ogata et al., 1999) and
MetaCyc (Karp, 2002). For instance, KEGG has implemented
GhostKOALA as a tool for metagenomic analysis, which is based
on a non-redundant dataset of pangenome sequences (Kanehisa
et al., 2016).

Metabolomics
Host-microbiome interactions encompass an exchange of
metabolites and signaling molecules, some of them with an
essential role to establish a proper functionality in the host
and the microbial community. This crosstalk depends on a
variety of factors such as the microbiome composition and
external ambiances. Understanding the metabolic activity of
these communities and how impacts the host has been the focus
of many studies. Some of them associating metabolic biomarkers
with the development of disease.

With the aim of disentangling this complex metabolic
communication and surveying the metabolic pathways that
actively participate in the community, metabolomics–embracing
the massive quantitative measurement of intracellular or
extracellular metabolites in biological samples such as human
stool (Weir et al., 2013)–has been established as the more

suitable HT technology to characterize the phenotype and
dynamic response of living systems (Nicholson and Lindon, 2008;
Marcobal et al., 2013; Diener et al., 2016).

Metabolomic studies can be performed by using three
basic approaches: (1) fingerprinting or endo-metabolome,
searching for metabolites within the organisms under study;
(2) footprinting or exo-metabolome, analyzing metabolites from
the environment around the organism under study; and (3)
metabolome profiling, where the goal is to screen one or more
specific compounds (Patel et al., 2015). A typical metabolic
study has four basic steps: sample collection, data acquisition,
bioinformatic analyses and biological interpretation (Briefly
described in Figure 2).

Currently, two main technologies are used in metabolomics;
MS and nuclear magnetic resonance spectroscopy (NMR). MS
is a highly sensitive method for detection, quantification and
structure elucidation of hundreds of metabolites. Given the wide
spectrum of molecular weights of metabolites in samples, it is
necessary to separate metabolites to improve the sensitivity and
accuracy of detection. Thus, MS is often coupled with different
separation techniques such as gas chromatography (GC-MS),
liquid chromatography (LC-MS) and capillary electrophoresis
(CE-MS) (Gowda and Djukovic, 2014). All of these techniques
have been used for clinical studies, and each has advantages and
limitations. For instance, GC-MS has high-resolution capability,
but it requires volatile compounds or compounds made volatile
by chemical derivatization. LC-MS is a very sensitive technique,
and it has the advantage of not requiring chemical derivatization
of compounds; however, it has poor resolution. Also, the high
capacity of CE-MS to separate compounds allows its use as a

FIGURE 2 | Workflow for metabolomics analysis. Metabolomic studies involve four general steps: (1) sample collection method, which depends on the type of

tissue and must consider the type of storage, preservation and preparation of each sample, (2) data acquisition, involves sample analysis and quality control, (3)

analysis data, includes normalization and identification of metabolites using specialized software for statistical analysis, and (4) data interpretation, which must be

integrated and modeled to raise new hypotheses.
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platform for multiplexing samples (Johanningsmeier et al., 2014;
Nagana Gowda and Raftery, 2015).

On the other hand, NMR spectroscopy is a technique with
high reproducibility and is able to absolutely quantify metabolites
using a single reference; because it is a non-destructive technique,
the samples can be used for re-analyses using other methods
(Nagana Gowda and Raftery, 2015). NMR spectroscopy has two
variations: 1H-NMR and high-resolution magic angle spinning
NMR (HR-MAS-NMR).

After analyzing samples, it is necessary to interpret the data.
Common analysis procedures involves data conversion, detecting
signal peaks, alignment (i.e., comparison between different
datasets to eliminate migration times shifts) (Katajamaa and
Orešič, 2007), normalization and identification of metabolites.
Processed data requires multivariate statistical analysis to find
samples or variables accounting most of the variability between
datasets and potential biological roles; therefore, methods such
as partial least square discriminant analysis (PLS-DA), principal
component analysis (PCA), hierarchical clustering analysis
(HCA) and orthogonal partial least square discriminant analysis
(OPLS-DA) are widely used. A number of free software packages
and databases for metabolic analysis are available, and these
are summarized in Supplementary Table 1. Visualizing tools
can leverage the interpretation of results, both heatmaps and
pathways are widely used to perform this task (Supplementary
Table 1).

Finally, it is important to standardized data to share it in
public databases, this could facilitate experimental replication
between laboratories and maximize the value of metabolomic
data (Fiehn et al., 2006). Additionally, the Human Metabolome
Database (HMDB) is a metabolome project, analogous to
the Human Genome Project, which aims to provide a
comprehensive database of detected and biologically expected
human metabolites. Currently, the HMDB has more than 40,000
metabolite entries (Wishart et al., 2012). The enrichment of
these valuable tools can provide a better understanding of the
characteristics of health and disease states when combined with
other clinical andmodeling approaches to fill the gap between the
genotype and phenotype relationship (Diener et al., 2016).

To study the metabolic changes in health and disease, we
can analyze the metabolites produced solely by the host, those
produced or modified by the microbiome, or the metabolites
jointly contributed from host-microbiome interactions (Guo
et al., 2015). In cancer metabolomic research, there are different
types of samples to study, including fluids such as urine, blood,
saliva, breath condensate, cerebrospinal fluid, and pancreatic
juices or tissue, and in each case require of particular method
for storing and preparing the sample for processing (Spratlin
et al., 2009). Additionally, metabolomics can help us to track
those metabolites found in our environment that can influence
the phenotype, such as diet, chemical exposure, xenobiotics,
supplements or drugs (de Raad et al., 2016). Here, we briefly
review some studies related to cancer metabolomics and host-
microbiome co-metabolism.

Cancer cells have a specific metabolic demand to proliferate,
increase their growth and sustain their malignant phenotype
(Resendis-Antonio et al., 2015). Notably, this physiological state

is represented by changes in the metabolic profile of human
tissue. The identification of these metabolic alterations is a crucial
point to define the phenotype, design new therapeutic targets and
explore the evolution of the disease (Locasale et al., 2009; Yun
et al., 2009; Ramirez et al., 2013).

Metabolomic studies have led us to search for new biomarkers
in cancer, and these findings have had important implications for
surveying the mechanisms of a variety of cancers such as bladder
(Rodrigues et al., 2016), breast (Jobard et al., 2014), pancreatic
(Di Gangi et al., 2015), gastroesophageal (Abbassi-Ghadi et al.,
2013), gastric (Abbassi-Ghadi et al., 2013; Chan et al., 2016), and
oral (Mikkonen et al., 2015) cancer. For instance, in the case of
gastric cancer, three potential biomarkers, 2-hydroxyisobutyrate,
3-indoxylsulfate and alanine, were identified in urine samples
using 1H-NMR spectroscopy. Revealing that those patients have
a particular metabolic profile (Chan et al., 2016).

Other more comprehensive approaches involve the study of
microbiome metabolites and their interactions with the host, i.e.,
synthesis, absorption, and potential physiological effects on the
host. There are several studies that have been able to discern
the different metabolites in the human gut microbiome and
their relationships with health and disease (Sharon et al., 2014).
Additionally, there are in vivo studies observing the effects of
the human gut microbiota on the metabolism of biofluids of
humanized mice (Marcobal et al., 2013; Smirnov et al., 2016). By
characterizing, discerning and associating metabolite levels with
genetics and external factors such as diet and the microbiome,
metabolomics can aid in diagnostics and expand the clinical
scope toward the realization of precision medicine (Beebe and
Kennedy, 2016).

For instance, Guo et al. analyzed the plasma metabolites
from healthy volunteers, identifying 600 metabolites covering 72
biochemical pathways, ranging from biosynthesis, catabolism,
gut microbiome activities, and xenobiotic metabolism.
Also, the metabolome profiles were associated with whole-
exome sequencing and clinical records to identify metabolic
abnormalities associated with disease (Guo et al., 2015). This
approach exemplifies how complementing genetic and metabolic
analysis can help to improve diagnosis and medical interventions
such as dietary changes, evaluate drug response and the discovery
of biomarkers.

ELUCIDATING THE HOST-MICROBIOME
INTERACTIONS AND CANCER
DEVELOPMENT

In the emergence of complex diseases such as cancer, the
relationship between the environmental influence, the
microbiome and cancer appearance can be very entangled.
The body offers a suitable and nutrient-rich microenvironment
to resident microbes, while the microbiome assists humans
in metabolic or immune tasks. Additionally, the microbiota
provides humans with non-nutrient essential factors, such as
vitamins, and impedes pathogens from establishing (Zitvogel
et al., 2015). Differences in microbial and possibly viral
compositions between healthy subjects and those affected by
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diseases have been identified (Blumberg and Powrie, 2012; Koeth
et al., 2013; Bultman and Jobin, 2014; Clavel et al., 2014; Tilg
and Moschen, 2014). Broadly defined, this imbalance, referred
as dysbiosis, imply deviations in the composition of resident
commensal communities from the ones found in healthy
individuals (Petersen and Round, 2014).

Most of the current research exploring the effects of
host-microbe interplay in cancer is focused on colorectal
cancer (CRC). By using genomic approaches, some studies
have compared the mucosal surface and the intestinal lumen
microbiota between healthy patients and those with CRC
(Chen et al., 2012; Kostic et al., 2012; Sanapareddy et al.,
2012). Although there is no consensus between studies, some
taxa are associated with a protective function (e.g., Roseburia)
while others are associated with potentially detrimental effects
(e.g., Fusobacterium, Klebsiella, and Escherichia/Shigella) (Jobin,
2013; Thomas and Jobin, 2015). This suggests a dysbiotic
or differential community composition correlated with CRC
development. However, among the open issues about host-
microbiome interactions in disease, we ignore the role of the
microbiome as a driver or consequence of cancer development
(Tjalsma et al., 2012).

Altered cellular metabolism and inflammation are proposed
host dependent hallmarks of cancer (Hanahan and Weinberg,
2011). Even when host-microbiome interactions might not
be considered essential for cancer appearance, or its effects
are indirect, some cancers, such as CRC, might have an
important microbial component. In vitro studies have reported
a signaling process between bacterial quorum-sensing peptides
(QSPs) and cancer cells. Bacillus derived QSPs are synthesized
when there are bacterial stressors and are able to induce tumor
cell invasiveness in a process called epithelial-mesenchymal-like
(EMT-like) process (involved in CRC metastasis) (Wynendaele
et al., 2015). The QSPs contributed both to metastatic and
angiogenesis behaviors under these settings (De Spiegeleer et al.,
2015; Wynendaele et al., 2015). Furthermore, in other kinds
of cancer, the result of microbial activities can reduce the
effectiveness of chemotherapy (Wallace et al., 2010) or influence
the development of tumors distant from the gut (Iida et al.,
2013).

Genetic and environmental factors disrupting the healthy
relationship between hosts and microbiomes can provoque
dysbiosis and promote cancer development (Figure 3). Lifestyle,
diet, and early exposure have been recognized as major players
in determining the microbiome composition. Additionally,
different metabolites produced by the intestinal microbiota
are proposed to play both cancer-promoting and cancer-
protecting roles; however, factors determining different outcomes
are not completely understood (Bultman and Jobin, 2014).
Characterizing bacterial OTUs consistently altered across studies,
and attributing to them the presence of specific diseases can
be difficult given the inter-individual variations (Zackular et al.,
2013). This suggests the need to understand what are the possible
roles of the microbiome in this process. In this regard, we will
review three major factors that can promote microbial dysbiosis
and cancer development: (1) infectious agents, (2) diet- and
microbial-derived metabolites; and (3) inflammatory mediators.

FIGURE 3 | Host-microbiome interactions implicated in cancer

development. Differences in microbial composition between healthy

individuals and those affected by cancer have been identified. Genetic and

environmental factors can disrupt the healthy condition of human microbiome

and promote microbial dysbiosis. Infectious agents are one of the main

contributors to dysbiosis and cancer development, in addition to diet, which

has been recognized as one of the major players in determining microbiome

composition. Moreover, microbes associated to cancer appear to activate

pro-inflammatory pathways on host tissues.

Infectious Agents in Cancer
Infectious agents are one of the main contributors to cancer
development. The linkage of infection with some biological
agents and carcinogenesis in humans started more than a
century ago when Francis Peyton Rous began his famous cancer
virus transmission experiments at the Rockefeller Institute, USA
(Moore and Chang, 2010). Eleven biological agents have been
identified as group 1 carcinogens by the International Agency
for Research on Cancer (IARC) (Bouvard et al., 2009). These
include Epstein-Barr virus (EBV), hepatitis B and C viruses (HBV
and HCV, respectively) Kaposi sarcoma herpesvirus (KSHV,
also known as human herpesvirus type 8, HHV-8), human
immunodeficiency virus type 1 (HIV-1), human papillomavirus
(HPV) type 16 (HPV-16), human T-cell lymphotropic virus
type 1 (HTLV-1), Helicobacter pylori (H. pylori), Clonorchis
sinensis (C. sinensis), Opisthorchis viverrini (O. viverrini), and
Schistosoma haemotobium (S. haemotobium). Although HIV
does not directly cause cancer, its infection strongly increases
the incidence of many different human cancers. Among these
cancers, those associated with the herpesviruses KSHV and EBV
are themost strongly enhanced by immunosuppression (Bouvard
et al., 2009).

Specific infections represent major cancer risk factors with an
estimated 2.1 million (16.4%) of the 12.7 million new cases in
2008 attributable to infection. This fraction is substantially higher
in less developed regions of the world (23.4% of all cancers) than
inmore developed regions (7.5%). Themost important infectious
agents are H. pylori, hepatitis B and C viruses and HPV, which
together are responsible for 1.9 million cases of gastric, liver and
cervix uteri cancers, respectively (de Martel et al., 2012). A better
understanding of the role of infectious agents in the etiology of
cancer is an essential element for precision medicine, because
such cancers are theoretically preventable by proper vaccination
or early treatment of infection (IARC Working Group on the
Evaluation of Carcinogenic Risks to Humans, 2012).
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The IARC estimates that one in five cancer cases worldwide
are caused by infection, with most being caused by viruses
(Bouvard et al., 2009). The first human tumor virus, Epstein-
Barr virus, also known as human herpesvirus 4 (HHV-4), was
described in 1964 in cell lines from African patients with Burkitt’s
lymphoma (Epstein et al., 1964). EBV is invariably associated
with the non-keratinizing type of nasopharyngeal carcinoma
(NPC), which represents 80% of NPC cases, and new evidence
points to a role for EBV in 5–10% of gastric carcinomas. EBV
infection is observed to occur mostly in the upper middle
portions of the stomach rather than in the lower part of the
stomach (Shah and Young, 2009).

Chronic infection with Hepatitis B virus (HBV) and hepatitis
C virus (HCV) is known to cause hepatocellular carcinoma
(Song et al., 2016). Several epidemiological studies suggest that
HCV may be involved in the pathogenesis of several B-cell
lymphoproliferative disorders. In particular, sufficient evidence
is available to indicate that chronic infection with HCV can also
cause non-Hodgkin lymphoma (Hermine et al., 2002). Evidence
of HTLV-1 infection was initially found in at least 90% of
adult T-cell leukemia and lymphoma (ATLL) cases; subsequently,
HTLV-1 infection became part of the diagnostic criteria for
ATLL (Oh and Weiderpass, 2014). KHSV is a causal factor for
Kaposi sarcoma and, more recently, MCV, a novel member of
the polyomavirus family, has been identified. There is some
evidence that MCV has an important role in the development
of Merkel cell carcinoma, a rare skin cancer arising in elderly
and chronically immunosuppressed individuals (Shuda et al.,
2008).

It is very well established that infection with specific types of
HPV can cause cervical cancer. Global epidemiological studies
identified HPV 16, 18 and a few others as major risk factors for
cervical cancer (zur Hausen, 2009). In addition, there is strong
epidemiological evidence for the involvement of HPV infection
in the carcinomas of the cervix, penis, vulva, vagina, anus, upper
aerodigestive tract, and head and neck. The majority of HPV-
related head and neck cancers are located in the oropharynx
(Hettmann et al., 2015). Multiple meta-analyses support the
discovery of a higher HPV detection rate in regions associated
with high risk for esophageal squamous cell carcinoma (ESCC),
compared to low-risk areas. Additionally, a potential role of
HPV in the rise of esophageal adenocarcinoma (EAC) was
proposed recently; however, future studies are required (Xu et al.,
2015).

The prevalence of H. pylori infection varies widely by
geographic area, age and socioeconomic status. In less developed
regions, it may reach 80%, while, in more developed regions, the
prevalence is 40% or less (Brown, 2000). H. pylori infection is
limited to the distal part of the stomach, and chronic infection
is associated with non-cardia gastric carcinoma. H. pylori yields
various virulence factors that may dysregulate host intracellular
signaling pathways, controlling the immune response associated
with the induction of carcinogenesis. Of all virulence factors,
cagA (cytotoxin-associated gene A), and its pathogenicity island
(cag PAI), and vacA (vacuolating cytotoxin A) are the major
pathogenic factors (Ahn and Lee, 2015). H. pylori can modulate
the immune response through activating growth factors and

cytokines (Amedei et al., 2009). For instance, the H. pylori
secreted peptidyl prolyl cis, trans-isomerase, HP0175, is one
of bacterial antigens recognized by sera of H. pylori infected
patients, that is able to activate both epidermal growth factor
receptor and NF-κB pathway, and drives gastric T helper 17
(TH17) responses in patients with distal gastric adenocarcinoma
(Amedei et al., 2014).

Regarding helminth infections, chronic infections with
the liver flukes C. sinensis and O. viverrini are associated
with cholangiocarcinoma. Liver fluke antigens stimulate both
inflammatory and hyperplastic changes in the infected bile
ducts, which undergo severe pathological transformations. The
relative risk for this adenocarcinoma is estimated to be 7.8 for
individuals infected with O. viverrini and 7.7 for those infected
with C. sinensis (IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans, 2012). Approximately 5–10% of
cholangiocarcinoma is caused by chronic C. sinensis infection
in endemic areas, which are located in China, Korea, Thailand,
Laos, Vietnam, and Cambodia (Oh and Weiderpass, 2014). On
the other hand, S. haematobium is a parasitic flatworm associated
with bladder cancer that infects millions of people, mostly in the
developing world. In in vitro models exposed to total antigens
Botelho et. al. found increased cell proliferation, decreased
apoptosis, up-regulation of the anti-apoptotic molecule Bcl-
2, down-regulation of the tumor suppressor protein p27, and
increased cell migration and invasion (Botelho et al., 2010).

Infectious agents can be direct carcinogens, such as the HTLV-
1 and the KSHV, which express viral oncogenes that directly
contribute to cancer cell transformation, or indirect carcinogens
by causing chronic inflammation, which eventually leads to
carcinogenic mutations in host cells, such as H. pylori, the major
cause of gastric carcinogenesis. In addition, carcinogenesis would
result from the interaction of multiple risk factors including
those related to the infectious agent itself (virulence factors,
variants, or subtypes), host-related factors (gene polymorphisms
and immune system status) and environmental aspects (smoking,
chemicals, ionizing radiation, immunosuppressive drugs, or
another infection that may lead to reactivation of latent
oncogenic viruses such as EBV or KSHV) (IARCWorking Group
on the Evaluation of Carcinogenic Risks to Humans, 2012).
Further studies should be conducted to elucidate in detail the
contribution of these additional factors to the development of
cancers associated with infectious agents.

Diet and Microbial-Derived Metabolites in
Cancer
Microbiome-derived metabolites are gaining recognition for
their potential participation in cancer development (Louis et al.,
2014). Clearly, diet is a major source for the production of
those metabolites and has to be taken into account along
with microbiome composition and activities. For example, high
fat and high protein consumption is characteristic of modern
western diets (Hughes et al., 2000; Albenberg and Wu, 2014),
and this particular dietary composition is currently recognized
as a risk factor for cancer occurrence (Bouvard et al., 2015;
Gallagher and LeRoith, 2015). In this section, we will present
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some example in vitro and in vivo studies of microbiome-
derived metabolites related to cancer development, and explore
its possible application as biomarkers.

Secondary Bile Acids
In the liver, enzymatic oxidation of cholesterol generates bile
acids (BA) that function as detergents that facilitates digestion
and absorption of lipids; while also acting as signaling molecules
related to metabolic homeostasis (de Aguiar Vallim et al.,
2013). The presence BAs in the colon promotes its subsequent
conversion to secondary bile acids (SBA) by means of bacterial
enzymes. Species with 7-α-dehydroxylating enzymes, can convert
the host’s BA into SBA (Ou et al., 2013) and those can act as
carcinogens (Bernstein et al., 2005).

In vitro studies have shown that 1-h exposure to SBAs
Deoxycholic Acid (DCA) or Lithocholic Acid (LCA) causes
extensive DNA damage at physiological concentrations in a
dose-dependent manner (Booth et al., 1997). Moreover, those
compounds induced the production of reactive oxygen species
(ROS) by acting as detergents on membrane enzymes, such as
phospholipase A 2, resulting in the formation of prostaglandins
and leukotrienes (Bernstein et al., 2005).

Pro-cancerous activity derived from SBA has also been
described in vivo. In a mouse model, treatment with a carcinogen
at the neonatal stage and posterior feeding under a high fat-diet
induced the appearance of hepatocellular carcinoma, showing
a senescence-associated secretory phenotype (SASP) in hepatic
stellate cells (Yoshimoto et al., 2013). The level of DCA produced
by enteric bacteria was increased under these conditions, and
OTU analysis revealed an increase in DCA-producing bacteria
belonging to Firmicutes from Clostridium cluster XI (Yoshimoto
et al., 2013).

Human studies indicate that African Americans have a higher
incidence of and higher mortality from CRC than other ethnic
population in the USA (O’Keefe et al., 2007). In a search
for possible mechanisms, microbiome compositions between
African Americans and native Africans were analyzed; the former
group were enriched in Bacteroides spp., whereas the later was
dominated by Prevotella spp. (Ou et al., 2013). This reflected the
differences in bacterial enrichment between western and fiber-
rich diets. Additionally, genes coding for SBA and fecal SBA
concentrations were higher in African Americans, whereas short-
chain fatty acids were higher in native Africans (Ou et al., 2013).
This scenario suggests that similar genetic backgrounds differ
in phenotype and proclivity to develop a certain disease, and
this difference is mainly driven by diet and different microbiome
conformations.

Short Chain Fatty Acids
Consumption of dietary fiber stimulates saccharolytic
fermentation by diverse gut microbes that produce short-
chain fatty acids (SCFA), mainly acetate, propionate, and
butyrate (Holmes et al., 2012). Bacteroidetes produce high levels
of acetate and propionate, whereas Firmicutes bacteria produce
high amounts of butyrate. Acetate and propionate are found
in portal blood and are eventually metabolized by the liver
or peripheral tissues (Honda and Littman, 2012). Butyrate is

considered a pleiotropic metabolite, functioning as the primary
energy source for colonocytes, reducing oxidative stress and
inhibiting inflammation (Hamer et al., 2008).

Some anticancer activities have been attributed to butyrate.
By functioning as an inhibitor of histone deacetylase (HDAC),
butyrate induces hyperacetylation of core histone proteins (H3
and H4) when compared with other SCFA. Among its effects as
an HDAC inhibitor, butyrate can induce in vitro S-phase arrest
of colorectal adenocarcinoma cells and inhibit its growth by
inducing apoptosis and the expression of the cell cycle regulators
p21 and cyclin B1 (Hinnebusch et al., 2002).

Interestingly, those effects depend on cell status, i.e., normal
vs. cancer. In the former, butyrate stimulates proliferation
(functioning as an energy source); while in cancerous cells,
butyrate inhibits proliferation and induce apoptosis (Comalada
et al., 2006). Donohoe et al. analyzed these context-dependent
effects from the perspective of theWarburg effect (Donohoe et al.,
2012). Due to the Warburg effect, cancer cells primarily depend
on aerobic glycolysis instead of oxidativemetabolism for survival.
In this context, butyrate is not used as an energy source and
its accumulation is allowed inside the nuclei, inhibiting HDAC
in cancer cells. Experimental inhibition of the Warburg effect
in cancerous colonocytes induced cell proliferation, suggesting
that the Warburg effect is necessary for observing the butyrate
antiproliferative effect (Donohoe et al., 2012).

On the other hand, CRC-prone mice revealed a paradoxical
effect of butyrate on colonic cancer cells. By using a mouse model
with mutations in the adenomatous polyposis coli (APC) and
DNA mismatch repair (MMR) genes (as commonly observed in
humans), Belcheva et al. observed an anomalous proliferation of
colonic epithelial cells and formation of polyps (Belcheva et al.,
2014). Furthermore, using antibiotics or lowering carbohydrates
in diet reduced the development of tumors. This indicates
an involvement of microbial metabolism and diet in cancer
development under this particular host’s genetic background. The
authors identified butyrate as a causative of disease onset, and the
sole administration of butyrate was sufficient to increase polyp
number and epithelial cell proliferation. Given the apparently
paradoxical effects of butyrate on cancerous phenotypes, there
is a potential therapeutic modification of bacterial activities with
antibiotics and/or diet modifications for cancer patients in order
to improve the outcome.

Proteins and Red Meat Diet-Associated Compounds
When carbohydrates get depleted from the proximal colon,
protein fermentation can occur in the distal colon (Windey
et al., 2012). This activity is mainly driven by colonic bacteria
and results in the production of noxious metabolites such as
ammonia, amines, phenols and sulfides. Western diets, provide
metabolites like fats, heme and heterocyclic amines, and those
are suggested to play a role in CRC development (Windey et al.,
2012).

Amino acids fermented by colonic bacteria include lysine,
arginine, glycine, and the branched chain amino acids (BCAA)
leucine, valine, and isoleucine. This generates a diversity of end
products including ammonia, SCFA, and branched-chain fatty
acids (BCFA) valerate, isobutyrate, and isovalerate. Microbial
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metabolism of amino acids can also produce biogenic amines by
decarboxylation of amino acids (Windey et al., 2012; Neis et al.,
2015).

Bacterial metabolism of aromatic amino acids results in the
production of phenolic and indolic compounds that are excreted
as p-cresol. In vitro studies in epithelial colonic cells have shown
detrimental effects and genomic DNA damage by ammonia,
sulfides, p-cresol and phenolic compounds (Pedersen et al., 2002;
Attene-Ramos et al., 2010; Windey et al., 2012). Hydrogen sulfide
also inhibits cellular respiration, at least in part by acting as an
inhibitor of cytochrome c oxidase, which participates in the final
step to produce ATP. These noxious effects have been associated
with Inflammatory bowel disease and cancer (Medani et al.,
2011).

Additionally, epidemiological and experimental studies have
shown that red meat induces more genetic damage than
white meat (Toden et al., 2007). By studying the characteristic
compound of red meat, heme molecules, Ijssennagger et al.
reported that the colon microbiota facilitates, heme-induced
epithelial injury and hyperproliferation as a result of the activity
of hydrogen sulfide-producing and mucin-degrading bacteria.
They observed that the microbiota facilitates heme-induced
hyperproliferation by opening the mucus barrier. Bacterial
hydrogen sulfide can reduce the S-S bonds in polymeric mucin,
thereby increasing the mucus layer permeability for mucin-
degrading bacteria and cytotoxic micelles (Ijssennagger et al.,
2015). Antibiotic treatment prevented the heme-induced cell
damage and diminished the expression of cell cycle genes.

It has been shown that a small set of metabolites can
modify host physiology; however, numerous metabolites in
humans have not been investigated (da Silva et al., 2015).
Therefore, further research to categorize new metabolites;
transport mechanisms and characterize the biotransformation
processes by the microbiome, is a top priority to identify
biomarkers such as compounds, specific taxonomic components
or metagenomic-enriched functions. Integrating these studies
with epidemiological, clinical or nutritional data can provide
clues for the search for these biomarkers.

Microbiota-Mediated Inflammation in
Cancer
The symbiotic nature of the intestinal host-microbial relationship
poses health challenges. The immune system has developed
adaptations to contain the microbiome while preserving
the symbiotic relationship (Hooper et al., 2012). However,
opportunistic invasion of host tissue by resident bacteria has
serious health consequences including inflammation. Chronic
inflammation and inflammatory factors, such as reactive oxygen
and nitrogen species, cytokines, and chemokines, can contribute
to tumor growth and spread (Garrett, 2015).

Increasing evidence indicates that colonizing microbes can
drive cancer development and progression by direct or indirect
effects on host tissues (Gagliani et al., 2014). Pattern recognition
receptors (PRR) recognize specific conserved microbial patterns
(bacterial cell walls, nucleic acids, motility apparatuses). The
most studied PRR related to CRC belongs to the group of

intracellular Nod-like receptors (NLR) and Toll-like receptors
(TLR). Following microbial sensing, these PRR engage a
complex set of signaling proteins that shape the host immune
and inflammatory response (Jobin, 2013). Some NLR family
members, such as NOD-2, NLRP3, NLRP6, and NLRP12 may
play a role in mediating CRC (Garrett, 2015). Mice deficient
in NOD-2 showed a proinflammatory microenvironment that
enhanced epithelial dysplasia following chemically induced
injury (Couturier-Maillard et al., 2013), and those deficient in
NLRP6 showed enhanced inflammation-induced CRC formation
(Hu et al., 2013).

Activation of TLR results in feed forward loops of activation of
NF-κB. Microbes associated with cancer appear to activate NF-
κB signaling within the tumor microenvironment. NF-κB was
more activated (increased nuclear translocation of the p65 NF-
κB subunit) in tumors with a high Fusobacterium nucleatum (F.
nucleatum) abundance in human colorectal cancer (Kostic et al.,
2013). NF-κB is a master regulator of the inflammatory response,
and it acts in a cell type-specific manner, activating survival
genes within cancer cells and inflammation-promoting genes in
components of the tumor microenvironment. NF-κB activation
is prevalent in carcinomas and is mainly driven by inflammatory
cytokines within the tumor microenvironment (Didonato et al.,
2012). The FadA adhesin of F. nucleatum has also been shown to
bind to E-cadherin, activate β-catenin signaling and differentially
regulate the inflammatory and oncogenic responses in the
colon tissue from patients with adenomas and adenocarcinomas
(Rubinstein et al., 2013). In vitro studies have also revealed that
the Fap2 protein from F. nucleatum can help tumor cells evade
the immune system by binding the inhibitory receptor TIGIT in
natural killer cells and inhibiting their cytotoxic activities (Gur
et al., 2015). These observations of tumor zones enriched in
Fusobacterium indicate that the local microbiome conformation
is not random and can play an important role in the pro-
cancerous phenotype.

The immune system within the tumor microenvironment
is not restricted to the innate cells, which present infectious
agents to cells of the adaptive immune system for responding
selectively and specifically to them. Some adaptive immune
responses can be protumorigenic; for instance, upon contact
with specific bacteria, CD4+T cells can produce cytokines that
promote tumor progression (Gagliani et al., 2014). IL-23, is a
cytokine mainly produced by tumor-associated myeloid cells
activated bymicrobial products such as flagellin, promotes tumor
growth and progression and development of a tumoral IL-17
response (Grivennikov et al., 2012). Enterotoxigenic Bacteroides
fragilis, which secretes B. fragilis toxin, causes inflammation in
humans and triggers colitis and strongly induces colonic tumors
in multiple intestinal neoplasia (Min) mice. The enterotoxigenic
B. fragilis induces STAT3 signaling characterized by a selective
TH17 response for colonic hyperplasia and tumor formation (Wu
et al., 2009). TH17 cells produce other cytokines besides IL-17,
such as IL-22, another cytokine linked to human colon cancer by
activation of STAT3 (Jiang et al., 2013).

Notably, inflammation can be associated with other malignant
phenotypes that can synergistically act as risk factors for
cancer development. For instance, obesity can also generate
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overrepresentation of bacterial species that produce pro-
carcinogenic metabolites, such as SBAs (Louis et al., 2014).
Dysbiosis present in obese individuals alters the gut epithelial
barrier, making it more permeable to microbial products that
activate immune cells in the lamina propria; and reach the liver
via the portal circulation, this contributes to the production of
proinflammatory cytokines, such as TNF and IL-6 (Font-Burgada
et al., 2016). Barrier deterioration was shown to be a major
contributor to colorectal tumorigenesis by microbial products
that trigger tumor-elicited inflammation (Grivennikov et al.,
2012).

INTEGRATIVE ANALYSIS AND THE
CHALLENGES IN SYSTEMS BIOLOGY

Given that cancer can be produced by a myriad of genetic
and environmental factors, understanding its mechanisms and
designing optimal treatments calls for computational schemes
capable of integrating heterogeneous HT data to move toward
personalized and predictive medicine. Among these factors, the
microbiome composition in patients constitutes an important
component to induce carcinogenesis or other dysfunctional states
in human tissues (Thomas and Jobin, 2015).

An explanation of how the microbiome contributes to the
physiological state in the host emerged by noticing that microbes
are metabolic partners, for which the nutritional habits of the
host can induce the dysregulation of biological processes and
consequently alter the phenotypic state. For instance, foods
enriched in phosphatidylcholine, choline or carnitine, such as
red meat and fatty foods, can be metabolized by gut microbes to
produce trimethylamine. The liver enzymes can further produce
trimethylamine-N-oxide (TMAO), and this metabolite has
proatherogenic properties (Koeth et al., 2013). Knowledge about
the microbiome composition and levels of its derived metabolite
TMAO predicted the probability of suffering a cardiovascular
problem, by means of platelet hyperresponsiveness. Even more,
the thrombosis potential was transmissible as a microbiome-
dependent trait (Zhu et al., 2016). In the case of type 2 diabetes,
fasting plasma concentrations of branched chain (BCAA) and
aromatic amino acids were higher in people who developed
diabetes, and this signature was predictive of developing the
disease for more than a decade later (Wang et al., 2011).
Interestingly, a metagenomic signature identified in fecal samples
from patients with diabetes was the enrichment in metabolic
pathways for transport of BCAA and oxidative stress (Qin et al.,
2012). It to expect in the near future, that identification of cancer
biomarkers, microbiome signatures and its implementation in
mechanistic models will also aid in predicting cancer risk and
prognosis.

Thus, microbiota metabolism is a cornerstone for maintaining
human and microbial symbiosis, whose involvement in signaling
transduction and transcriptional regulation is capable of
inducing wellness or disease in the human body (Chubukov
et al., 2014). More importantly, the heterogeneous composition
observed in individual microbiota provides evidence for
the usefulness of personalized studies in terms of genetic

backgrounds, lifestyle, nutrition and environmental factors. Even
though these findings are currently supported with experimental
evidence, the understanding of how a community of organisms
consume and interchange their metabolic and cross-signaling
products and how this dynamical behavior influences the
phenotypic state of the human host is still an open question.

To decode this bewildering complexity and uncover their
underlying mechanisms, combined strategies with available
data coming from different HT technologies and conceptual
schemes from systems biology have been employed. Currently,
in systems biology, some paradigms have been suggested to reach
this combined description, including genome scale metabolic
reconstructions and constraints-based modeling (Bordbar et al.,
2014). The implementation of this paradigm has made it possible
to explore the metabolic phenotypes of isolated microorganisms
and has successfully contributed to areas such as in vitro
microbial evolution and organisms with biotechnological and
therapeutic applications (Resendis-Antonio et al., 2007; Bordbar
et al., 2014). More fundamentally, these schemes have served as
a guide to characterize the metabolic activity of human tissues
and explore the metabolic phenotypes in cancer (Resendis-
Antonio et al., 2010; Lewis et al., 2012). Remarkably, genome
scale metabolic reconstruction and computational modeling
have extended the scope. Currently, it is possible to model
the metabolic interaction between different tissues in the
human body (Bordbar et al., 2011), and new approaches are
currently pointing toward the integration of models for human-
microbiome interaction to explore the metabolic activity in
a community of microorganisms (Heinken and Thiele, 2015;
Shoaie et al., 2015). Notably, these approaches pave the path
toward quantitative models able to predict the metabolic
profile in a community of microorganisms and exploring the
mechanisms by which their metabolic products could drive the
development of cancer.

Although this is a titanic enterprise, systems biology is
a cornerstone in precision medicine for moving toward: (1)
the coherent interpretation of heterogeneous HT data; (2)
identification of potential biomarkers in cancer; and (3) the
optimal design of personalized treatments in clinical trials (Wang
R.-S. et al., 2015). Among the immediate challenges needing
to be overcome to materialize those aims, the development
of integrative conceptual schemes of HT data is important.
Nonetheless, its capacity to provide meaningful biological insight
will be the proof of concept. The development of methods for a
coherent interpretation of data is particularly important in cancer
studies where massive genome characterization of a variety of
cancers have been reported (Cancer Genome Atlas Network,
2015). The accumulation of enormous quantities of molecular
data has led to the emergence of systems biology as a set of
principles that underlie the base functional properties of living
organisms, evaluating and interpreting interactions between
molecules (Kristensen et al., 2014). From a systems biology
perspective, the use of genomic technologies and computational
procedures may provide molecular approaches to early disease
detection and opportunities for identifying high-risk individuals,
thus contributing to opportune diagnosis (Stewart et al., 2015).
In terms of cancer and the microbiome, the computational
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platform from systems biology should be able to integrate
HT data such as metagenome and metatranscriptome data for
building hypotheses of host-microbiota metabolic activity, and
eventually evaluate its role in cancer development (Bäckhed
et al., 2012). The hypothesis generated using this approach can
be contextualized with the nutritional information of patients,
genetic variability, immune status or clinical record. As stated
before, integrating microbiome analysis and host data has the
potential to predict the disease outcome and has recently been
explored in microbiome-related diseases.

Studying the microbiome variation over time offers an
exceptional window to understand the properties leading to
health and disease states. To date few longitudinal microbiome
studies have been conducted on humans, mainly using 16S rRNA
sequencing and observing changes in microbial diversity for over
a year (Caporaso et al., 2011; David et al., 2014). Results from
whole shotgun metagenomics over time are consistent with 16S
studies, indicating both small taxonomic and functional variation
over time in the absence of perturbations (Voigt et al., 2015).
Although those whole shotgun metagenomic studies are scarce,
it is expected that price reduction on sequencing will promote
their application. From early exposition at birth to adulthood,
factors such as diet, immunological tolerance, environment and
microbe-microbe interactions can account preferred taxonomic
compositions (Wu et al., 2011; Costello et al., 2012; Nutsch et al.,
2016). Despite these factors can include an stochastic component,
robustness is observed in tissue-specific microbiome identities
maintained over time (Caporaso et al., 2011). Notably, when the
community suffers a perturbation, taxonomically related bacteria
are preferred as substitutes and subject-specific proportions are
maintained within the same taxa (David et al., 2014).

Understanding the principles that rule the microbiome
dynamics is an important challenge for system biology,
nonetheless new paradigms capable to integrate data bases (Hood
et al., 2014; Integrative HMP Research Network Consortium,
2014), empirically dissected patterns (Caporaso et al., 2011;
David et al., 2014), and computational models (Stein et al., 2013;
Mcgeachie et al., 2016) can aid to reach this enterprise. An
hypothesis to explore in future is the idea of early warning signals
that could link the dynamical microbiome behavior preceding the
progression of a human disease (Faust et al., 2015). The advance
in this aim will have a strong impact to translate basic knowledge
into precision medicine.

In summary, systems biology suggests that human diseases
are fundamentally a system issue at which our phenotype
(functional or dysfunctional) is an emergent property that results
from host-microbiome interactions. Understanding how this
property emerges at a molecular level is valuable to reach one
of the aims in precision medicine: the desire for more effective
treatments in cancer based on personalized genetic background
and lifestyle. In this context, HT technologies and biochemical,
physiological and clinical data can be organized and evaluated
using a network approach that can be useful for predicting disease
expression or response to therapies (Loscalzo and Barabasi,
2011). Finally, addressing these aims will contribute positively to
understanding the biological mechanisms in human diseases, and
providing the right treatment for the right patients at the right

moment with clinical strategies based on genomic, proteomics,
metabolomics, and taking into account the behavioral and
environment background information of individual patients. All
these schemes aim to improve diagnostic power.

TOWARD THE CLINICAL APPLICATIONS
OF HOST-MICROBIOME INTERACTIONS
IN CANCER

The development of diagnostic tests using biomarkers to be
applied for early detection is likely a key aspect for precision
medicine. For example, the immunosignature approach leverages
the response of antibodies to disease-related changes and can
be used for the simultaneous classification of multiple cancers
(Stafford et al., 2014). In addition, researchers have evaluated the
potential of the fecal microbiota for early-stage detection of CRC
and as a screening tool to differentiate between healthy, adenoma,
and carcinoma clinical groups (Zackular et al., 2014). Using
metagenomic sequencing, it is possible to identify microbiome
signatures able to distinguish CRC patients from tumor-free
controls (Zeller et al., 2014).

Conversely, germ-free status and treatment with antibiotics
has been shown to lead to a reduction of the numbers of
tumors in genetic experimental models of CRC, suggesting the
use of antibiotics to knock out cancer-promoting gut microbes
(Schwabe and Jobin, 2013; Thomas and Jobin, 2015). For
instance, cefoxitin treatment resulted in complete clearance
of enterotoxigenic Bacteroides fragilis, a microbe that causes
IL17A-dependent colon tumors. Bacteroides fragilis eradication
reduced tumorigenesis and decreasedmucosal IL-17A expression
(DeStefano Shields et al., 2016). Nonetheless, clinical studiesmust
be developed to probe the clinical effectiveness and the potential
effect on the whole human microbiome.

Other players must be taken into account in shaping the
microbiome. From environmental studies, it has been established
that bacteriophages shape bacterial community structure and
function via predation and gene transfer (Chibani-Chennoufi
et al., 2004). In contrast to antibiotics, lytic phages are fairly
specific, usually only targeting a subgroup of strains within
one bacterial species, for treating bacterial human diseases.
For instance, when a bacteriophage cocktail was used to treat
Shigella sonnei in a mouse model, bacteriophage administration
significantly reduced Shigella colonization without deleterious
side effects and distortions in the gut microbiota (Mai et al.,
2015). Taking this into account, using bacteriophages has been
proposed to target specific strains of bacteria that are implicated
in cancer, while leaving the rest of the microbiome unchanged
(DeWeerdt, 2015).

In addition, with diet being a key determinant shaping
the gut microbiome, dietary interventions and probiotics that
promote the development of microorganisms providing health
benefits are an attractive way to prevent or treat diseases
such as cancer. Dietary interventions, such as a curcumin-
supplemented diet increased survival and entirely eliminated
tumor burden in a mouse model of colitis-associated colorectal
cancer. The beneficial effect of curcumin on tumorigenesis was
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associated with the maintenance of a more diverse colonic
microbial ecology (Mcfadden et al., 2015). Furthermore, dietary
intervention with polyphenol extracts modulate the human
gut microbiota toward a more healthy profile increasing the
relative abundance of bifidobacteria and lactobacilli (Marchesi
et al., 2015). The beneficial effects of natural polyphenols
and their synthetic derivatives are extensively studied in
context of cancer prophylaxis and therapy (Lewandowska et al.,
2016).

In terms of reducing gastrointestinal inflammation and
preventing CRC, beneficial roles of probiotics have been
demonstrated. Moreover, a novel probiotic mixture suppressed
hepatocellular carcinoma growth in mice; shotgun-metagenome
sequencing revealed the crosstalk between gut microbial
metabolites and hepatocellular carcinoma development (Li
et al., 2016). Probiotics shifted the gut microbial community
toward certain beneficial bacteria, including the genera Prevotella
and Oscillibacter, which are producers of anti-inflammatory
metabolites (Li et al., 2016; Figure 4).

Another area of clinical implications of themicrobiome relates
to its influence on the host’s immune system response against
pathogens and cancer (Abt et al., 2012; Belkaid and Hand,
2014). For instance, using antibiotics, the reduction of intestinal
microbes ablated the effect not only of the immunotherapy
directed to TLRs but also the effectiveness of platinum
chemotherapy (Iida et al., 2013). Another type of immunotherapy
against cancer relies on immune-checkpoint blockers (ICB). Both
Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) and Programmed
Death-1 (PD-1) are receptors that dampen T cell responses,
and blocking these receptors with antibodies is approved for
patients with advanced melanoma to enhance its recognition and
elimination (Rotte et al., 2015). In vivo studies have shown that
CTLA-4 blockade reduces tumor growth in specific pathogen-
free mice but not in germ-free mice. This effect relied on the
presence of the gut intestinal microbiota and the activation of
both CD4+ TH1 cells and dendritic cells (DCs). Moreover, in
melanoma patients who responded to anti-CTLA-4 treatment,
the abundance in the stool of Bacteroides thetaiotaomicron and

FIGURE 4 | Modulation of human microbiome composition as potential treatment in cancer. The use of HT sequencing technologies can provide detailed

information about the taxonomic composition and the functional capabilities of microbial communities found in humans. Using these technologies, it is possible to

identify those communities that are present or absent in a health condition comparing with cancer condition. The access to microbiome data, and its analysis by

bioinformatics tools, allows establishing integrative models using a systems biology approach, which offers an opportunity to propose potential strategies for

treatment in cancer. The evidence suggests that diet, bacteriophages, probiotics, prebiotics and antibiotics can modulate human microbiome to reduce microbial

dysbiosis, eliminate pathogenicity in cancer condition, and promote beneficial effects leading a health condition.
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B. fragilis correlated with the response to therapy. This protective
effect can be transferred to mice by a fecal microbial transplant
(FMT) (Vétizou et al., 2015). In addition, Sivan et al. found that
differences in the gut intestinal microbiome composition in mice
of the same strain can alter the response to PD-1 blockade, with
stool samples enriched in Bifidobacterium spp. having a robust
CD8+ T cell tumor infiltration andDC activation. The protective
effect was also transferred between mice by means of FMT (Sivan
et al., 2015).

Those results indicate an important modulatory role of
both the microbiota activities and composition on the immune
response to cancer. Importantly, the effectiveness of treatment in
those experiments depended on the integrity of the gut intestinal
microbiome, but its effects extend to the systemic level. From a
translational point of view, the manipulation of the microbiome
composition by means of probiotics, prebiotics or even FMT can
have therapeutic benefits in cancer treatment.

INFORMATION MANAGEMENT IN
PRECISION MEDICINE

Analysis of massive amounts of data generated by HT technology
and personal clinical records requires computational capacities
to handle this data, and, as a consequence, unveil the biological
information of interest. Data collection, storage, and handling,
and privacy policies of personalized genome data becomes a
central issue that must be solved. Information management
faces different challenges that can be classified into three
aspects: storage, structural organization, and safety. The storage
problems have been solved by the buying or leasing of space
in the cloud hosting systems of large technology companies
that simultaneously have been developing applications for data
analysis. The structural organization involves the appropriate
classification of personal records and HT data and the
development of an efficient and optimized mechanism to look
for the desired information through heterogeneous sources of
biological databases.

Finally, given the social, ethical and legal implications of
personalized information, it should be stored in a protected way.
To this end, the management system can include protocols for
prevention and protection, access control and a plan of action to
prevent the loss of information when some event endangers the
integrity and security of the data (https://www.whitehouse.gov/
sites/whitehouse.gov/files/documents/PMI_Security_Principles_
and_Framework_FINAL_022516.pdf).

PERSPECTIVES

Compositional and functional alterations of the human
microbiome have been related to the development of complex
diseases such as cancer, type 2 diabetes and obesity. As previously
mentioned, host-microbiome interactions play a major role
in determining the metabolic phenotype in the host, and,
more importantly, their particular composition can serve as a
potential measurement for establishing wellness and monitoring
the evolution of diseases. This notion has not only changed

our paradigm of how our body works, like a superorganism,
but also unveiled the outstanding role that microorganisms
play in establishing wellness or disease states. Although
outstanding breakthroughs have been accomplished to discover
its connection, new conceptual schemes able to integrate
innovative HT technologies and computational modeling are
required to improve our measurements and elucidate their
fundamental mechanisms.

For instance, single-cell genomics has the potential to
assemble the genomes of viruses and microorganisms that are
at low frequencies, thus contributing to a better characterization
of the biological samples (Gawad et al., 2016). There has been
extraordinary progress in single-cell DNA and RNA sequencing
for cancer research, specifically regarding evolution, diversity
of cells in tumor progression, and intra-tumor heterogeneity
depending on spatial localization of single cancer cells in tissue
sections (Crosetto et al., 2015; Navin, 2015; Gawad et al.,
2016). In the context of host-microbiome interactions, using
the spatial information of the surrounding microbiome state
and measurements of intra-tumor genetic heterogeneity might
have prognostic utility for predicting which patients will be
more likely to show poor response to therapy, higher probability
of metastasis, or poor overall survival (Burrell et al., 2013;
Murugaesu et al., 2013; Almendro et al., 2014). These and
other HT technologies permit us to characterize the microbiome
composition and open the possibility of therapeutic applications
with a focus on precision medicine: the notion of a precision
medicine with treatments applied at the right time, at the right
dose, and for the right patient.

Precision medicine based on powerful HT technologies
for characterizing patients, such as genomics, proteomics and
metabolomics, and computational tools for analyzing large sets of
data will integrate the discovery of biomarkers and the electronic
medical records to provide evidence for the improvement
of clinical practice. The big challenge of data analysis of
HT technologies is the development of new computational
algorithms to improve the integration of the information from
different platforms. In this context, deep learning and machine
learning have been proposed as good alternatives to perform
these tasks (Eddy, 2009; https://arxiv.org/pdf/1603.06430.pdf).
In addition, ambitious projects in precision medicine need to
leverage important resources, such as research cohort biobanks
for longitudinal research studies, and an efficient bioinformatics
system that aids in the translation from biomedical research
to molecular targeting and identification of biomarkers that
correlate with the disease state. Intensive investigations are being
conducted to illustrate how microbiome profiles, taking into
account relationships with the host, could be used as biomarkers
to revolutionize prognostication in cancer.

However, the interindividual variations in microbiome
composition can potentially influence cancer evolution and
the effectiveness of treatment. Cross sectional studies in large
cohorts showed no evidence of a “core” of OTUs shared among
healthy subjects (Huse et al., 2012). This highlights geography,
ancestry, diet and age as crucial factors shaping the microbiome
composition (Yatsunenko et al., 2012). On the other hand, at
the metagenomic level, several functions or pathways are more
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consistent across individuals than taxonomic composition (HMP
Consortium, 2012b; Knights et al., 2014). These evidence suggests
both a robustness in functions and membership redundancy in
the microbiome.

Harnessing the microbiome to improve cancer diagnosis and
treatment is challenging given this interindividual variation. As
we are still uncovering the mechanisms behind the emergent
phenotypes from host-microbiome interactions, profiling the
microbiome composition and its functional properties (i.e.,
metatranscriptomics and metabolomics) can provide more
insight on the significance of different compositions in different
states (Shade and Handelsman, 2012; Shafquat et al., 2014).
Nonetheless, identifying conserved or consistently altered
functions of the microbiome can also be elusive. A comparison
of functional alterations at the metagenomic level revealed some
overlapping, but no universal biomarkers between cohorts with
type 2 diabetes (Qin et al., 2012; Karlsson et al., 2013). Thus,
characterizing microbiome biomarkers should take into account
the specific traits of the populations under study.

Finally, precision medicine faces many other challenges that
will be addressed not only from a scientific point of view
but also from a social and ethical point of view, including
the proper distribution of the benefits of these technologies
across most regions of the world and the development of

reliable computational platforms that allow data to be stored
confidentially, private and protected. Likewise, coordination with
ethics committees and regulation will also be necessary for the use
of information without the risk of infringement of the patient’s
rights and to understand and regulate the legal, social, and
economic implications.
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Cancer is a heterogeneous disease and its genetic and metabolic mechanism may

manifest differently in each patient. This creates a demand for studies that can

characterize phenotypic traits of cancer on a per-sample basis. Combining two large

data sets, the NCI60 cancer cell line panel, and The Cancer Genome Atlas, we

used a linear interaction model to predict proliferation rates for more than 12,000

cancer samples across 33 different cancers from The Cancer Genome Atlas. The

predicted proliferation rates are associated with patient survival and cancer stage and

show a strong heterogeneity in proliferative capacity within and across different cancer

panels. We also show how the obtained proliferation rates can be incorporated into

genome-scale metabolic reconstructions to obtain the metabolic fluxes for more than

3000 cancer samples that identified specific metabolic liabilities for nine cancer panels.

Here we found that affected pathways coincided with the literature, with pentose

phosphate pathway, retinol, and branched-chain amino acid metabolism being the most

panel-specific alterations and fatty acid metabolism and ROS detoxification showing

homogeneous metabolic activities across all cancer panels. The presented strategy has

potential applications in personalized medicine since it can leverage gene expression

signatures for cell line based prediction of additional metabolic properties which might

help in constraining personalized metabolic models and improve the identification of

metabolic alterations in cancer for individual patients.

Keywords: systems biology, personalized medicine, proliferation, flux balance analysis, TCGA, NCI60

INTRODUCTION

Cancer is a heterogeneous disease that manifests in a wide variety of geno- and phenotypes. There is
no one treatment that works for any cancer types and even cancers of the same phenotypemay show
large genomic ormetabolic differences (Hu et al., 2013; Andor et al., 2015; Hensley et al., 2016). Due
to this, there has been an ongoing effort to characterize the particular signatures of cancer in the
genome and transcriptome (Mazor et al., 2016; Tirosh et al., 2016) and elucidate its tissue specific
consequences for cancer patients. Two of the largest projects describing genomic and expression
features of several cancers are the NCI60 and TCGA projects (Scherf et al., 2000; Shoemaker, 2006;
Koboldt et al., 2012; Zheng et al., 2016). Currently, NCI60 comprises 60 cancer cell lines and their
full genetic, transcriptomic and proteomic characterization. The Cancer Genome Atlas project has
similar goals but for cancer samples coming from several thousand patients. Detailed studies of
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those data sets have revealed the variation inherited even within a
single cancer panel and provide great potential for uncovering of
the genomic differences that drive the strong variability in cancer
phenotypes (Hoadley et al., 2014).

The NCI60 and TCGA databases concentrate on genomic
characterizations of distinct cancers which creates the
challenge to connect those data to metabolism, which itself
is closely connected to the cancer phenotype by providing
the macromolecules required for proliferation (Boroughs and
DeBerardinis, 2015). Here, the cell lines contained in NCI60 have
been characterized in more detail by providing the proliferation
rates for the majority of the 60 cancer panels (in the form
of doubling times). Due to the inherent complications in
measuring those quantities in patients, TCGA includes clinical
indicators but lacks biological characterizations of the cancer
samples outside of genomic data. In particular, TCGA lacks
quantification of cancer proliferation.

In general, inference ofmetabolic properties from genome and
gene expression data is a difficult task due to the many post-
transcriptional and post-translational regulatory mechanisms
involved in central carbon metabolism that are usually not fully
captured by sheer mRNA or protein abundance. Consequently,
there have been many attempts to infer the metabolic state by
computational methods. Here, flux balance analysis (FBA) is
the most prominent one and has proven to be helpful in the
analysis of cancer metabolism in cell lines and tissue-specific
metabolic models (Orth et al., 2010; Resendis-Antonio et al.,
2010; Agren et al., 2014; Yizhak et al., 2015). There are several
algorithms performing this task but they all aim to reconcile
gene expression or proteome data with the presence of distinct
biochemical reactions in the model in some way or another
(Becker and Palsson, 2008; Agren et al., 2012; Wang et al.,
2012). The major limit to those models are the lack of metabolic
data and the weak association between enzyme expression
and metabolic fluxes. Due to this, many of the reconstruction
methods use discretized enzyme expression values in order to
exclude biochemical reactions with a lacking enzyme (Wang
et al., 2012; Pornputtapong et al., 2015; Schultz and Qutub,
2016). This strategy has shown to be a promising approach in
constraining the feasible metabolic space in cells or tissues and
predicting the metabolic capacities of several cancers (Agren
et al., 2014). One of the challenges in using FBA-based methods
is finding sufficient constraints to identify the unique set of
metabolic fluxes for a biological sample. Here, parsimonious
FBA, where one only uses the most economic flux distribution
for a metabolic objective, has shown to reproduce experimentally
measured fluxes and may in some cases even outperform
methods based on gene expression data (Lewis et al., 2010;
Machado and Herrgård, 2014). Furthermore, it has also been
shown that knowledge of the associated proliferation rate will
yield to an improvement of those predictions making it desirable
to complement expression data with at least a limited set of
fluxome data such as growth rates or measurements of key fluxes
(Yizhak et al., 2014). Growth rates for simpler eukaryotes can be
predicted from gene expression signatures (Airoldi et al., 2009),
thus raising the question whether one can identify growth or
proliferation rates for clinical samples from gene expression data.

The combination of genome-scale metabolic modeling,
personalized reconstruction, and inference of additional
metabolic constraints forms the core of a strategy that shows
high promises in personalized medicine. Here, accurate
prediction of metabolic fluxes may help to identify distinct
metabolic alterations and the causality underlying diseases in
individual patients by identifying a patient-specific set of altered
metabolic processes (Bordbar et al., 2015; Resendis-Antonio
et al., 2015).

In this work we present a strategy capable of predicting
proliferation rates for more than 12,000 cancer samples in the
Cancer Genome Atlas by training a machine learning model for
proliferation on the NCI60 data set. We show that the predicted
proliferation rates correspond well with clinical data and employ
them to estimate the fluxes driving cancer proliferation for more
than 3500 samples from nine different cancer subtypes. Overall,
our study provides a computational strategy that is able to predict
the proliferation rate of cancer biopsies from cell line gene
expression data alone and this allows detailed surveys of the
potential metabolic activity underlying each case. As a result, our
methodology can contribute to the identification of the common
and specific metabolic alterations associated with cancers across
different tissues, which is of importance during the development
of personalized treatments for cancer.

DATA AND METHODS

Data Availability and Software
All source code and additional data needed to run the analysis
is hosted on GitHub in a dedicated paper repository at https://
github.com/cdiener/proliferation and is archived by Zenodo
(http://doi.org/10.5281/zenodo.166813). We also provide
intermediate data sets for the NCI60 (http://doi.org/10.5281/
zenodo.61980) and TCGA data (http://doi.org/10.5281/zenodo.
61982). The repository includes Rmarkdown documents
(http://rmarkdown.rstudio.com/) detailing the exact steps
to produce the reported results and this information is also
contained in the Supplementary Protocol S1 in PDF format.
Respective software versions are reported in Protocol S1
under “Software versions.” We also provide a docker image in
order to reproduce our entire analysis interactively on a local
machine or in the cloud at https://hub.docker.com/r/cdiener/
proliferation.

NCI60 and TCGA Data Sets
HuEx ST 1.0 gene expression data for the NCI60 cancer cell lines
was obtained from the GEOdatabase from experiment GSE29682
(Reinhold et al., 2010; Barrett et al., 2013). The data was read
using the oligo package from Bioconductor and normalized by
RMA (Carvalho and Irizarry, 2010). This was followed by a
summary step where we calculated the expression for each gene
in each sample as the mean log expression across all probesets
that were mapped to this gene. Here, the probeset-gene mapping
was obtained from biomart (http://www.biomart.org) and is
also provided in the paper repository (Smedley et al., 2015).
Finally, replicates for a given cell line were summarized again by
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obtaining the mean log expression values across all replicates for
a given cell line and gene.

TCGA data was obtained and parsed from the NCI
Genomic Data Commons (GDC) repository (see https://gdc-
portal.nci.nih.gov/). HuEx 1.0 ST data was obtained from
the GDC legacy archive (https://gdc-portal.nci.nih.gov/legacy-
archive). Download and parsing was performed in an automated
manner using the tcgar package for the R programming language
(https://github.com/cdiener/tcgar) which we created for that
purpose. A complete list of downloaded files can be found in
the “GDC” subfolder of the data repository (https://github.com/
cdiener/proliferation). All analysis was based on Level 3 data
(already preprocessed data) since this subset available to the
general public.

Generalized Linear Models
Generalized linear models were fitted using the glmnet package
for R (Friedman et al., 2010). Regularization was performed using
the L1 norm where the regularization strength λ was chosen as
the one yielding the smallest mean squared error during cross-
validation. In order to improve regularization we also discarded
very small coefficients in the final step of feature selection. Thus,
for the final model we included only coefficients larger than the
25% quartile of the non-zero absolute coefficients (see Protocol
S1). The resulting fits were analyzed using a set of 5 metrics,
namely mean squared error (mse), root mean squared error
(rmse), mean absolute error (mae), mean relative error (mre) and
R2. Those metrics were calculated for the training set as well as
for leave-one-out cross validation. Here, predictive power was
evaluated by the leave-one-out cross validation alone.

Flux Analysis
Flux analysis was performed using the Python programming
language (https://python.org) and the COBRApy package
(Ebrahim et al., 2013). Metabolic models were obtained from
theHumanMetabolic Atlas (https://metabolicatlas.org) using the
available cancer models which contain a proliferation objective
function (Gatto et al., 2014). Given the predicted proliferation
rates rp, fluxes for themodels were obtained by parsimonious flux
balance analysis (pFBA) by first splitting each reversible reaction
into its forward and backward reaction and then solving the
resulting linear programming problem for each sample (Lewis
et al., 2010):

Minimize
∑

i vi
Sv = 0
vi ≥ 0
vp = rp

(1)

Here, S denotes the stoichiometric matrix of the respective
irreversible metabolic model, vi denotes the flux with index
i and vp denotes the the flux of the proliferation objective.
Note that, given the proliferation rate rp this does not
require constraints for the fluxes other than positivity. Given
the large number of optimization problems we employed a
strategy similar to FastFVA during optimization where each
optimization was performed once de novo for each model
and subsequent optimizations on the same model recycled the

previous solution basis which allows for fast computation of the
fluxes (Gudmundsson and Thiele, 2010). Optimization was only
performed for samples with a positive proliferation rate and we
only used fluxes in further analysis which were non-zero for at
least one sample, yielding a total of 1026 used fluxes.

Specificity for a given cancer subtype was scored for each flux
as the relative difference of the mean flux within the cancer panel
vs. all other cancer panels.

sip = log2µ
i
p − log2µ

i
o (2)

Here µi
p denotes the mean of flux vi across all samples in cancer

panel p and µi
o the mean of flux vi in all other samples. Thus, the

resulting specificity score sip described the log-fold change of the
target flux between the target cancer panel and the rest of all the
samples.

Pathway enrichment was obtained by using an enrichment
score similar to GSEA (Mootha et al., 2003; Subramanian et al.,
2005). First, specificity scores sip were sorted from highest to
lowest absolute value across all panels and fluxes, yielding the
ranked list R containing n elements. Then we calculated a raw
enrichment score for a metabolic pathway mp mapping to nh
elements in R as

ES = maxi/mini Ph (i) − Pm (i)

where Ph (i) =
∑

vi ∈mp, j ≤ i
Rj/nr , nr =

∑

j∈mp
Rj (3)

and Pm
(

i,mp
)

=
∑

vi not ∈mp, j≤ i
1/ (n− nh)

ES will be large when the respective pathway is enriched in the
beginning of R (specific fluxes are enriched in the pathway),
and will be negative when the the pathway occurs in the
tail of R (specific fluxes are depleted in the pathway). The
score was then normalized by randomly permuting the pathway
labels 100 times for each pathway, obtaining the respective
mean permuted enrichment score ESperm, and calculating the
normalized enrichment score as NES = ES/ESperm. Empirical
p-values for the normalized enrichment scores were obtained
from the 100 random permutations separately for the positive
and negative tails. Thus, the normalized enrichment score NES
denotes the fold change between the real pathway mapping and a
randomly generated one. If NES is larger than one this denotes an
enrichment of the given pathway in the specific fluxes, whereas a
NES smaller than one denotes absence of the given pathway in the
specific fluxes. Hence, NES> 1 identifiesmetabolic pathways that
are active in cancer cell panel-specific manner whereas NES < 1
identifies metabolic pathways that are underrepresented in the
panel-specific fluxes and thus form a set of core pathways whose
activity does not vary across the cancer panels.

RESULTS

Identification of Stable Gene Signatures
Across Technologies and Cell Types
One of the major challenges when studying two large data sets
such as NCI60 and TCGA together is the conservation of gene
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expression across different technologies and cell types. In the
NCI60 data set gene expression was measured by microarrays
with the HuEx 1.0 ST arrays being the most recent technology
used. TCGA howevermostly used RNA-seq for the quantification
of gene expression and provides microarray data for only a small
subset of cancer panels. For instance, TCGA includes HuEx 1.0
ST data for 1211 samples across 3 cancer panels but RNA-seq
data for 11,093 samples across all 33 cancer panels. In order to
include the majority of cancer panels in TCGA into the analysis,
we thus tried to identify a subset of genes that showed similar
global expression across NCI60 and TCGA.We first obtained the
mean log expression values for all genes contained in the NCI60
HuEx 1.0 ST data as well as in the TCGA RNA-seq and HuEx
1.0 ST data. For the NCI60 data set this mean log expression
was calculated across all cell lines for which proliferation rates
were available (57 of 60), whereas the mean log expression for the
TCGA data set was obtained by averaging over all samples.

Within the NCI60 and TCGA sample subsets that were

measured by the HuEx microarrays sets expression values were

similar (correlation 0.82, p < 2.2e-16, compare Figure 1A),
indicating that the used cell lines are an adequate model system

for human cancer cells. Comparing themicroarray log expression

values fromNCI60 to RNA-seq log expression values fromTCGA

we found a more complex relation. Here, genes that showed a

high expression in the RNA-seq data showed a linear relationship

with the NCI60 microarray log expression values (compare
Figure 1C). However, most of the genes with low expression

in the TCGA RNA-seq data showed almost random expression

values in the NCI60 HuEx data and a similar behavior could be

observed when comparing the TCGA microarray data with the
TCGA RNA-seq data (see Figure 1B). There are several possible
explanations for this discrepancy, such as a the low dynamic
range of microarrays, cell line-specific expression of some genes,
or technical errors. Thus, we aimed at selecting only those genes
that showed a globally correlated expression between the NCI60
microarray data and the TCGA RNA-seq data. Genes, whose

expression was conserved across both platforms were identified
by a linear model relating mean log gene expression values from
the NCI60 HuEx experiments (eiN) and and the TCGA RNA-Seq
experiments (eiT) as

eiT = αeiN + β (4)

Here, α denotes a platform-specific factor that describes the
mapping from microarray to RNA-seq expression values for the
same samples, whereas β denotes a sample parameter which
adjusts for different sample quantities between the NCI60 and
TCGA data set. One could fit those parameters directly using the
NCI60 Huex and TCGA RNA-Seq data, however, we chose to use
a more robust approach in which each of the two parameters was
obtained individually from other data set combinations. Here, α
was obtained by fitting the HuEx and RNA-Seq data contained in
TCGA to a zero-intercept linear model (same samples implies β

= 0), whereas β could be obtained by calculating the difference
between the mean log expression values of the HuEx data from
NCI60 and TCGA (same platform implies α = 1). The full model
was then validated using the NCI60 Huex and TCGA RNA-
Seq and showed good agreement with the data as is shown in
Figure 1. As a consequence the fitted model could be used to
correct the NCI60 log expression values to its respective TCGA
RNA-seq log expression value.

Following the model fit, genes with conserved expression
across both data set could be obtained by enforcing the linear
relationship described before. In detail, genes were considered
acceptable for further analysis if

• The gene ID (mapped to its Ensembl ID) was contained in
the NCI60 HuEx data, the TCGA HuEx data and the TCGA
RNA-seq data

• The distance between the corrected mean log expressions of
the gene in the NCI60HuEx data set and the TCGAHuEx data
set was less than one (corrected maximal difference of 2-fold)

FIGURE 1 | Gene expression across NCI60 and TCGA. In all figures the red dots denote the gene that were used in the final predictor for proliferation rates and

dashed lines enclose the area used for filtering viable gene candidates. (A) HuEx expression data cross NCI60 and TCGA. The blue solid line denotes a 1:1

relationship offset by the parameter beta. (B) Gene expression between microarray and RNA-Seq data within TCGA. The solid blue line denotes the slope given by

alpha and passes through the origin. (C) Gene expression between microarray and RNA-Seq data across NCI60 and TCGA. The solid blue line is given by the slope

alpha and intercept beta which were obtained individually from the data shown in (A,B).

Frontiers in Physiology | www.frontiersin.org December 2016 | Volume 7 | Article 644 | 113

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Diener and Resendis-Antonio Personalized Prediction of Proliferation Rates

• The distance between the corrected mean log expressions of
the gene in the NCI60 HuEx data set and the normalized
TCGA RNA-seq data set was less than one (corrected maximal
difference of 2-fold)

Of the 14,943 genes contained in all three data sets, 7799 passed
the filter and showed a correlation of 0.91 (Pearson correlation, p
< 2.2e-16) between NCI60 HuEx 1.0 ST and TCGA RNA-seq log
expression values. Consequently, the filtered genes could now be
used to construct a predictor for proliferation rates.

Expression Interactions Enable a Strong
Predictor for Cancer Proliferation
The statistical model chosen for the prediction of the NCI60
proliferation rates was a LASSO generalized linear model
(Friedman et al., 2010). Here, we aimed at obtaining a predictor
which would not only have good prediction properties on the
training data, but would also be able to generalize to new data.
Thus, all models were evaluated in a training and validation
setting. In the training setting the models were trained using
the entire NCI60 data set as in usual linear regression. For the
validation step, in each iteration one of the 57 data points was
removed from the data set, the model trained on the remaining
56 data points and the proliferation rate predicted for the
omitted data point. The strategy of predicting and evaluating
each data point by a model trained on all other data points is
commonly known as leave-one-out cross-validation or LOOCV.
Performance was evaluated across a set of five different metrics
shown in Table 1.

We observed that a simple linear model (1st order model)
yielded good performance in the training step but poor
performance in the validation step denoting a strong overfitting
to the training data and poor generalization (see Figure 2). To
alleviate this limitation we increased the order of the model
by allowing for products between 1 and 2 genes as variables.
This increases the computational complexity of the model
training drastically since one would now have to consider more
than 30 million possible combinations of the more than 7700
input genes. However, we found that it was sufficient to only
consider combinations of those genes that had obtained non-
zero coefficients in the 1st order case. Because merely 54 genes
showed clearly non-zero regression coefficients in the 1st order
model the number of tested combinations could be reduced to

1485 (1431 combinations between 2 genes and 54 squares of the
individual genes). Training a pure 2nd order model with those
1485 interaction variables yielded amuch stronger predictor than
the first order case, particularly in the validation step where the
R2 was raised from 0.2 to 0.85 compared to the 1st order model
(see Figure 2, Table 1). Adding the original 1st order variables to
the second order ones however did not improve the performance
of the model further and we thus decided to continue with
the pure 2nd order model. In a final step we tried to further
improve the generalization of the predictor by removing those
gene combinations with only very small regression coefficients
to avoid overfitting. This was achieved by removing the 25%
smallest non-zero absolute coefficient values from the model.
This gave a slight improvement in the validation step to an
R2 of 0.98 which now allowed stable prediction of the NCI60
proliferation rates with a relative error of 4% (Figure 2, Table 1).

Using the trained model we now predicted proliferation rates

for all 11,483 tumor tissue and all 756 normal tissue samples

in TCGA having either associated RNA-seq or HuEx data (see
Figure 3). Since the prediction is bound to make some errors it
is possible that some of the proliferation rates are predicted to
be negative which has no clear interpretation. In our analysis
more than 98% of the predicted proliferation rates were larger
than zero and negative proliferation rates were in the order of
the absolute error predicted by the leave-one-out cross-validation
(LOOCV 8e-3 vs. 9e-3 observed) suggesting that the negative
proliferation rates actually were from samples that did not
proliferate (proliferation rate is zero). As shown in Figure 3

proliferation rates were heterogeneous within and across the
different cancer panels. Interestingly the separation between
normal and tumor samples was only pronounced in some of
the cancer panels. This is consistent with previous studies that
have found large heterogeneities in proliferation rates where
proliferation rates may differ even more between different cancer
panels than between normal and tumor cells within the same
panel (Burrell et al., 2013; Wang et al., 2013; Tomasetti and
Vogelstein, 2015). For instance, the predicted proliferation rates
for normal and tumor tissue samples separated well for lung
squamous cell carcinomas, but not for lung adenocarcinomas.

Unlike for cancer cell lines, there are no reported proliferation
rates across the analyzed cancer panels. Thus, we looked for
alternative strategies to validate the predicted proliferation
rates and studied their association with clinical data. Here,

TABLE 1 | Several performance metrics evaluated for the models shown in Figure 2.

mse rmse mae mre R2 strategy order

2.00e-07 0.0004688 0.0003391 0.0163479 0.9960625 train 1st

4.49e-05 0.0067003 0.0052876 0.2611128 0.1958045 validation 1st

2.00e-07 0.0004420 0.0003570 0.0169304 0.9965005 train 2nd

8.10e-06 0.0028480 0.0022301 0.1047906 0.8547042 validation 2nd

2.00e-07 0.0004420 0.0003570 0.0169304 0.9965005 train 1st and 2nd

8.10e-06 0.0028480 0.0022301 0.1047906 0.8547042 validation 1st and 2nd

1.00e-07 0.0003543 0.0002643 0.0132028 0.9977519 train 2nd + cutoff

1.00e-06 0.0010053 0.0008111 0.0398894 0.9818972 validation 2nd + cutoff
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FIGURE 2 | Predictors for proliferations rates. Panels above the figures denote the order of the model where 1st order means just the log expression values and

2nd order products between two log expression values. Black lines denote a hypothetical perfect fit (1:1 relation between measurement and prediction). “Cutoff”

denotes a model where variables with very small fitted coefficients were removed from the model. Panels to the right denote the used predictions where “train” means

performance on the training set and “validation” the predictions obtained from leave-one-out cross validation (LOOCV).

FIGURE 3 | Predicted proliferation rates across 33 cancer panels. Cancer panels are ordered by their mean proliferation rate. Red triangles denote tumor

samples and blue dots normal samples.

12,111 samples had reported clinical data from 10,706 unique
individuals. Comparing the Kaplan-Meier survival curves of
the lower and upper quartiles of predicted proliferation rates
(Figure 4A) we found a clear protective effect of lower
proliferation rates on patient survival which could also be
confirmed by a Cox proportional hazards model (β = 16.7, p
<2.2e-16). This indicates that, for instance, an increase of 0.01
in predicted proliferation rate leads to a 19% in risk. This is
consistent with the expectation that more proliferative cancer

should be more aggressive in general. Because cancer is mostly
characterized by its ability for uncontrolled proliferation we also
hypothesized that the tumor samples should show globally higher
predicted proliferation rates than the normal tissue samples.
This was indeed the case with tumor samples having 75%
higher proliferation rates than normal tissue samples in average
(Figure 4B, Wilcoxon rank sum test p <2.2e-16, see Protocol
S1). Finally, we also tested the association of the predicted
proliferation rates with the cancer TNM staging system. Here,
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FIGURE 4 | Relationship between predicted proliferations with survival

and sample type. (A) Kaplan-Meier plots showing survival for the patients

with samples falling in the lowest 25% of proliferation rates (blue) and top 25%

of proliferation rates (red). (B) Proliferation rates between normal and tumor

samples.

we found a significant association of the predicted proliferation
rates with 3 of the 4 substages (Kruskal-Wallis rank sum test for
T, N, stage with all p-values smaller 2.2e-16, see Protocol S1),
however, this was accompanied by large variations. Proliferation
rates across the subclasses of the staging system are shown
in Figure 5. Predicted proliferation rates seemed to increase
linearly across the T subclass between classes T1-T4 (associated
with tumor size) and general tumor stage between stages I-IV
(Figures 5A,D). Interestingly, subclasses such as T0, N0, or Stage
0 which are carcinomas in situ or tumor that were to small to
be classified showed higher proliferation rates than many of the
higher classes (compare for instance T0 and T1) suggesting that
correct diagnosis of those small tumors is important since they
might be more aggressive than tumors in the other low stages.

Flux Analysis Suggests the Metabolic
Liabilities of Cancer
As mentioned earlier, one of the prevalent methods to study
metabolism in cancer patients is the use of metabolic modeling
and FBA. One of the usual limitations in trying to obtain
the flux distribution for a specific tissue or sample is that
even under knowledge of the model there is some uncertainty
about the upper and lower flux bounds which may strongly
influence the solution. One method to overcome this limitation
is parsimonious FBA which looks for the most economic
flux distribution yielding a predefined metabolic target (Lewis
et al., 2010). In cancer proliferation this target can be set
to be the measured or predicted proliferation rate of the
cancer. Parsimonious FBA can then be used to obtain the flux
distribution yielding the given proliferation rate and minimizing
the sum of absolute flux values. Since this is a minimization
problem it can be obtained from a model with infinitely large
upper bounds and, thus, requires no knowledge about constraints
in an irreversible model. Here the limiting factor is the availability
of tissue reconstructions that allow for the required metabolic
function (in our case proliferation). Unfortunately, many
previously published reconstructions obtained by mCADRE or
tINIT tissue reconstructions do not use a growth objective and

are therefore not suitable for parsimonious FBA with known
proliferation rates (Wang et al., 2012; Pornputtapong et al., 2015).
However, there are some cancer-specific reconstructions which
do allow for proliferation and have been validated qualitatively
validated with experimental data (Gatto et al., 2014). Those
models were reconstructed using proteome data specific for the
cancer panel, thus representing the inclusion of an additional
data source next to the gene expression data used to predict the
proliferation rates.

Here, we used parsimonious FBA to obtain the flux
distributions for 3825 samples from nine cancer panels across
unique five tissues. Fluxes were split up into their forward and
reverse reaction respectively and we only considered fluxes that
were non-zero in at least one sample (1026 fluxes, see Figure 6A).
We observed varying usage of Glycolysis/Gluoneogenesis,
Oxidative phosphorylation and the TCA cycle across the nine
cancer panels (shown in Figure S1). Here, bladder cancers and
breast cancers showed the highest fluxes in Glycolysis, whereas
breast cancers showed diminished fluxes in the TCA cycle
compared to bladder cancers. All other panels showed relatively
low metabolic fluxes compared to bladder and breast cancers.
Fluxes varied considerably within and across different samples
(compare Figure 6A). Within a single cancer panel, this is
expected since all samples in a panel used the same metabolic
model constrained by the predicted proliferation rates which
show strong variations as shown in Figure 3. However, the
clearest pattern could be observed in the presence of absence
of particular fluxes across cancer panels, indicating that the
model reconstruction has more impact than the exact flux values.
Direct comparison of fluxes or metabolic processes between
normal and tumor conditions is difficult because of the lack
of reconstructions for normal tissues with the ability to grow.
Thus, we rather tried to find metabolic processes that were either
regulated specifically in one cancer panel or homogeneously
across all cancer panels. In order to identify pathways which were
specific for a particular cancer panel we calculated a specificity
score sip as the log fold-change of the mean for each flux vi
between the target panel and all other panels (see Data and
Methods). A value of 0 marks fluxes that are homogeneous
across all cancer panels, whereas a high positive or negative
value denotes fluxes which are higher (or lower, respectively)
in the target cancer panel. The distribution of specificity score
across different metabolic pathways and cancer panels is shown
in Figure S2.

Finally, cancer panel-specificity of the fluxes was mapped
to the metabolic pathway level by calculating an enrichment
score as used by GSEA (Subramanian et al., 2005) for metabolic
pathways based on the specificity scores (shown in Figure 7).
Here, an enrichment score of 1 denotes that the pathway is
not enriched in any manner, whereas scores larger than one
denotes pathways whose fluxes are specific across cancer cell
panels and a score smaller than one denotes pathways which are
homogeneous across panels and define a set of core pathways (see
Data andMethods). Themost specific pathways were the Pentose
phosphate pathway, retinol metabolism and the metabolism
of branched amino acids whose specificity scores are shown
in Figures 6B–D. Our results suggest that pentose phosphate
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FIGURE 5 | Proliferations rates across the TNM cancer staging system. Predicted proliferation rates across subclasses of the TNM staging system. The

shaded area denotes the distribution (density) for the proliferation rates in the staging subclass. Shown are the subclasses for the size and extent of the main tumor

(A), number of affected lymph nodes (B), distant metastasis (C), and overall stage (D).

FIGURE 6 | Fluxes and metabolic specificity forn nine cancer panels. (A) Fluxes as predicted by metabolic modeling incorporating the predicted proliferation

rate across 3825 samples from nine cancer panels. Rows denote samples, columns denote non-zero fluxes (1026 in total) and colors the flux value. Cancer panels

are indicated by color annotations on the rows and have the same colors and order (from top to bottom) as the panels in (B). (B) Specificity scores for each of the

fluxes of the pentose phosphate pathway. Each point denotes a single flux. A specificity score of 0 means the flux has the same value in samples within the panel as in

samples outside the panel. Positive and negative values denotes a higher (or lower respectively) flux within the panel than outside the panel. (C) Specificity scores for

each of the fluxes of retinol metabolism. (D) Specificity scores for each of the fluxes of branched-chain amino acid (BCAA) metabolism.

activity is highly heterogeneous across the studied cancer panels
with metabolic fluxes being specifically up-regulated in breast
cancer, cholangiocarcinoma, hepatocellular carcinoma and lung
cancers (Figure 6B). The observed heterogeneity of pentose
phosphate pathway activity is consistent with the literature
(Cancer Genome Atlas Research Network, 2013; Du et al., 2013;
Li et al., 2014; Patra and Hay, 2014; Dick and Ralser, 2015).
Retinol metabolism has been shown to be altered in breast
cancer and, as shown in Figure 6C, we find its fluxes specifically
up-regulated in the breast and bladder cancer panel (Chen
et al., 1997; Wei et al., 2015). Similarly, branched amino acid
metabolism was specifically up-regulated in the bladder cancer
panel (Figure 6C). Branched chain amino acid metabolism is
known to be affected in cancers as well (Mayers et al., 2014; Chang
et al., 2016), however, its relation to cancers is complex since it
may also indicate a prior diabetic condition (O’Connell, 2013).
Pathways showing homogeneous activity across the cancer cell

panels all fell in the category of fatty acid metabolism-related
pathways or reactive oxygen species detoxification. This is not
surprising since fatty acid metabolism and oxidative stress have
long been known to be involved in various cancers (Moreno-
Sánchez et al., 2007; Reuter et al., 2010; Carracedo et al., 2013;
Currie et al., 2013; Sosa et al., 2013; Camarda et al., 2016; Yang
et al., 2016).

DISCUSSION

In this study we extended the gene expression profiling data
contained in the Cancer Genome Atlas with predictions of
proliferation rates for more than 12,000 samples. Our results
suggest that the heterogeneity between and within different
cancer panels is also found on the level of proliferation. Even
though there is a tendency for certain cancer types to have
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FIGURE 7 | Enrichment scores between metabolic pathways and

specificity. Enrichment for each metabolic pathway in relation to its specificity

score. Scores are split into positive (enriched in specific fluxes) and negative

(enriched in homogeneous fluxes). Colors denote the empirical p-value

obtained from 100 random permutations of pathway labels.

higher proliferation rates, there is a large overlap in proliferative
capabilities between different cancers. As we show the predicted
proliferation rates are connected with patient survival and in
differentiating normal from tumor samples and thus might be
consequential for clinical investigations, particularly in early
cancer stages where pathological classification is difficult.

This opens the door for more complex schemes where
phenotypic traits frommodel systems such as cancer cell lines can
be extrapolated to individual patients. However, the proliferation
rate is only one of many features that determines the outcome
of a particular cancer. Additionally, metabolic fluxes seem to
dependmore on the presence or absence of biochemical reactions
than the bounds imposed by achieving a particular proliferation
rate. In this analysis we used the same metabolic model for
all samples of a given cancer panel. This is obviously only
an approximation, albeit a recent study found sample-specific
metabolic reconstructions to differ only moderately within a
single cancer panel (preprint, http://dx.doi.org/10.1101/050187).
There may exist many additional metabolic constraints that vary
across different cancer cell samples and cancer panels such as
availability of metabolites in the microenvironment, mutations
of metabolic enzymes and the required metabolic capacities to
resist the immune system or apoptosis. Therefore, it would be
worthwhile to predict several additional phenotypic traits for the
samples of The Cancer Genome Atlas. This could for instance
be based on particular metabolic indicators such as the redox
balance, the level of oxidative stress or the balance between the
Glycolysis and the TCA cycle. As we have shown, data obtained
from cell lines can be an acceptable alternative and has the
potential to further constrain the solution space of metabolic
modeling.

The advantages of having predictions for distinct biological
phenotypes for single patient data lie in its ability to predict
metabolic alterations in a more complex fashion than just
analyzing the gene expression and mutations of metabolic
enzymes. Particularly, it allows the inclusion of additional
data through the metabolic model such as the fulfillment of
metabolic requirements such as the maintenance of a viable
redox balance and the uptake of the necessary nutrients
from the microenvironment. As shown in Figure 4, this
allows to identify the metabolic liabilities within and across
cancer panels and could also be used to find metabolic
alterations specifically for a single patient. Here, we found that
identified metabolic liabilities were consistent with previous
publications in predicting alteration in lipid metabolism as
a general theme across different cancers and identifying
several specific metabolic alterations in the pentose phosphate
pathway, retinol metabolism, and branched chain amino acid
metabolism as alterations. As more reconstructions for normal
tissues become available this list is likely to be extended by
comparisons between normal and tumor tissues, however that
would require the inference of metabolic constraints beyond
proliferation or growth rates as many normal tissues do not
grow significantly. Additionally, themethodology could probably
be improved by using patient-specific reconstructions for the
metabolic models that better capture the inherent heterogeneity.
However, that would require fast reconstruction methods in
order to produce personalized models in a high-throughput
fashion.

Finally, after initial model training, prediction for new
samples is very efficient and can help to reduce the amount of
required data. In our study we only required gene expression
levels for 38 unique genes in order to predict proliferation rates
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with an accuracy of 96%. Additionally, all of those genes were
consistently expressed across all cancer panels and cell lines and
had sufficiently high expression values to be quantified reliably
by RNA-Seq and microarrays. This enables cost efficient clinical
probing in order to quantify phenotypic traits that can usually
not be observed directly.
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Figure S1 | Fluxes for the major metabolic pathways across the 9 used

cancer panels. Each point denotes a single flux value for a specific sample.

Shown are 141,525 individual flux values.

Figure S2 | Specificity scores across all metabolic pathways in the 1026

non-zero fluxes stratified by cancer panel.
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Circadian rhythms are 24-h oscillations present in most eukaryotes and many

prokaryotes that synchronize activity to the day-night cycle. They are an essential feature

of organismal and cell physiology that coordinate many of the metabolic, biosynthetic,

and signal transduction pathways studied in biology. The molecular mechanism of

circadian rhythm is controlled both by signal transduction and gene transcription as well

as by metabolic feedback. The role of circadian rhythm in cancer cell development and

survival is still not well understood, but as will be discussed in this Review, accumulated

research suggests that circadian rhythm may be altered or disrupted in many human

cancers downstream of common oncogenic alterations. Thus, a complete understanding

of the genetic and metabolic alterations in cancer must take potential circadian rhythm

perturbations into account, as this disruption itself will influence how gene expression and

metabolism are altered in the cancer cell compared to its non-transformed neighbor. It

will be important to better understand these circadian changes in both normal and cancer

cell physiology to potentially design treatment modalities to exploit this insight.

Keywords: circadian rhythm, oncogenes, metabolism, cancer metabolism, molecular clock, oscillation, gene

expression regulation

INTRODUCTION: THE CIRCADIAN CLOCK CONTROLS GENE
EXPRESSION AND METABOLISM

The majority of eukaryotes possess a circadian clock to optimize gene expression and metabolism
to the day-night cycle. Cancer cells may disrupt normal circadian oscillation to release cells from
control of gene expression and metabolism and provide a growth advantage. In mammals, many
familiar processes such a sleep/wakefulness, feeding, blood pressure, and body temperature are
synchronized by the circadian clock (Millar-Craig et al., 1978; Spiteri et al., 1982; Cagnacci et al.,
1992; Bass, 2012). The “central clock” is governed by blue-light sensing in the eye and subsequent
processing in the hypothalamic suprachiasmatic nucleus (Moore and Eichler, 1972; Liu et al., 1997;
Ruby et al., 2002), while “peripheral clocks,” which will be the focus of this Review, are present
in virtually all organs and individual cells in the body, and are synchronized by the central clock
through signals such as hypothalamic-pituitary-directed release of adrenal corticosteroids, but
can also operate independently of central clock input (Buijs et al., 1999). Peripheral clocks are
strongly entrained by the time of feeding, and misalignment of feeding and the central clock has
recently been shown to lead to metabolic syndrome (Mukherji et al., 2015a,b). Synchronization
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of the peripheral clock can be simulated in cell culture by
treatment with the corticosteroid dexamethasone (Balsalobre
et al., 2000), or the simple act of changing culture media (Yeom
et al., 2010), and thus, circadian oscillations are likely common in
most non-transformed cells lines and many cancer lines as well.

The molecular circadian clock is governed by several
feedback loops (Figure 1) that lead to 24-h oscillations of
target gene expression, defined by their amplitude (height),
phase (position), and period (length). Several well-described and

FIGURE 1 | The feedback loops that form the molecular clock. The molecular clock is controlled by the master transcription factor heterodimer CLOCK-BMAL1,

which is regulated by two major negative feedback loops that generate 24-h oscillation of clock activity and target genes (Gallego and Virshup, 2007; Mohawk et al.,

2012). In the first and most important loop, CLOCK-BMAL1 upregulates PER and CRY through binding to E-box DNA elements. Unbound PER and CRY proteins are

phosphorylated by casein kinase 1 ε/δ (CK1ε/δ) and AMPK (AMP-kinase), respectively, to lead to degradation. GSK3 (glycogen synthase kinase 3, not pictured) can

also phosphorylate PER and CRY to promote their degradation (Harada et al., 2005; Iitaka et al., 2005). Otherwise, PER and CRY form a complex with CK1, which

translocates to the nucleus to repress CLOCK-BMAL1 activity. PER and CRY are then eventually degraded in a CK1-dependent manner (not pictured), and the time

delay in the first loop forms an approximately 24-h cycle which is particularly dependent on dynamics of PER regulation (D’alessandro et al., 2015). In the second

loop, CLOCK-BMAL1 upregulates the negative transcription factors REV-ERBα and β (gene names NR1D1 and NR1D2) and the positive transcription factors RORα,β,

or γ (not pictured), which repress or activate BMAL1 (gene name ARNTL) transcription, respectively, through binding to RRE (R-response element) DNA sequences.

The importance of this second loop is underscored by the fact that mice lacking REV-ERBα and β, which form a complex and act together, lack normal circadian gene

oscillation in the liver (Bugge et al., 2012; Cho et al., 2012). Several accessory loops exist; in one that will be highlighted in this review, SIRT1 (sirtuin 1) deacetylase

tunes CLOCK-BMAL1 activity by opposing the histone acetyl-transferase (HAT) activity of CLOCK (Asher et al., 2008; Nakahata et al., 2008, 2009; Ramsey et al.,

2009). SIRT1 is regulated by the metabolite NAD, which in turn is produced by the NAD-salvage enzyme NAMPT (nicotinamide phosphoribosyltransferase), the

rate-limiting enzyme of the NAD salvage pathway involved in NAD recycling and synthesis from dietary nicotinamide or niacin. Together, these primary and accessory

loops lead to the 24-h expression of target genes and oscillation of downstream metabolic processes. Figure reprinted and modified from Altman et al. (2015), with

permission from Elsevier.

detailed mathematical models of this molecular oscillation exist,
which have been used to make predictions about perturbations
of the molecular clock (Leloup and Goldbeter, 2003; Relogio
et al., 2011; Hirota et al., 2012; Kim and Forger, 2012). The best-
characterized organ with respect to circadian rhythm is liver,
where more than 20% of mRNAs oscillate (Panda et al., 2002;
Storch et al., 2002; Ueda et al., 2002; Koike et al., 2012). In the
whole mammal, up to 50% of protein-coding RNAs and 30%
ofnon-coding RNAs oscillate in at least one organ, with the liver,
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kidney, and lung being the most “circadian”; however, there is
little overlap in circadian gene expression between organs, with
only 10 genes oscillating in all examined cell types (Zhang et al.,
2014). Ribosome occupancy of mRNA and protein translation
also demonstrate rhythmicity (Jang et al., 2015; Janich et al., 2015;
Lipton et al., 2015), and thus, circadian rhythm strongly controls
gene expression and translation, though the specific identity of
oscillating genes may vary.

Circadian control of metabolism has been extensively studied
on the level of organs.Many specificmetabolites, including lipids,
amino acids, and glycolytic intermediates, oscillate in mouse
liver and human blood, saliva, and even breath (Dallmann et al.,
2012; Eckel-Mahan et al., 2012; Kasukawa et al., 2012; Martinez-
Lozano Sinues et al., 2014). Anabolic pathways in liver, including
nucleotide biosynthesis and ribosomal biogenesis, also showed
circadian oscillation (Fustin et al., 2012; Jouffe et al., 2013). On
the other hand, appreciation of the oscillation of metabolism
on a cell-autonomous level (as observed in tissue culture) is
just becoming appreciated. Two studies demonstrated that NAD
(nicotinamide adenine dinucleotide) oscillates in cell culture and
liver (Figure 1) (Nakahata et al., 2009; Ramsey et al., 2009),
which controls rhythmic mitochondrial oxidation (Peek et al.,
2013). More recently, we observed in U2OS osteosarcoma cells,
a commonly used model of circadian rhythm, that intracellular
glucose showed circadian oscillation (Altman et al., 2015). This
finding is supported by another study showing oscillation of
NADH/NAD+ ratio in epidermal stem cell culture, which may
reflect oscillation in glucose metabolism (Stringari et al., 2015).
An unbiased metabolomic analysis is still needed to determine
the extent of cell-autonomous metabolic oscillations.

Metabolism itself may also control the clock. Several nearly-
simultaneous studies uncovered that the NAD- and NAMPT-
regulated deacetylase SIRT1 opposes the acetylytansferase
activity of CLOCK protein activity (Doi et al., 2006) to
deacetylate PER2, BMAL1, and histones, leading to alterations in
both phase and amplitude of circadian gene oscillation (Asher
et al., 2008; Nakahata et al., 2008, 2009; Ramsey et al., 2009).
NAD availability may also influence circadian rhythm through
regulation of PARP (poly-ADP-ribose polymerase) to regulate
CLOCK-BMAL1 protein and DNA binding (Asher et al., 2010).
Emerging evidence suggests that glucose availability may affect
circadian rhythm, in part by contributing to O-GlcNAcylation
of PER2 to control its activity (Kaasik et al., 2013; Oosterman
and Belsham, 2016). It has long been observed that cancers
have altered metabolism (Warburg, 1956; Vander Heiden et al.,
2011; Stine and Dang, 2013), and that many cancers may have
disrupted circadian rhythm (Levi et al., 2008); however, the
significance and mechanism of the circadian dysrhythmia in
cancer are poorly understood.

ONCOGENIC ALTERATION OF CIRCADIAN
RHYTHM

Mutations in molecular clock genes, including promoter
methylation, coding region mutation, deletion, or rare
amplification, have been documented at a low frequency

(less than 20% incidence per tumor type) across many different
types of cancer (Cerami et al., 2012; Savvidis and Koutsilieris,
2012; Gao et al., 2013; Uth and Sleigh, 2014). Given that these
mutations disrupt normal oscillation, it has been suggested that
the clock may be tumor suppressive. Many proto-oncogenes
and tumor suppressors are normally under circadian control
(Sahar and Sassone-Corsi, 2009), and so disruption of oscillation
could potentially release these proteins to be constitutively
overexpressed or suppressed. This Review will focus on several
notable examples of oncogenic pathways that are often mutated
in cancer and have a well-described relationship to circadian
rhythm. Given the frequency of mutation in the pathways
detailed below, it can be speculated that many cancers with these
and perhaps other oncogenic mutations have altered or disrupted
circadian rhythm and altered oscillation of gene expression and
metabolism.

RAS

The RAS family of GTP-ases (H-, K-, and N-RAS) is mutated in
many cancers to constitutively activate their GTPase function and
hyperstimulate downstream mitogen-activated kinase (MAPK)
signaling. Oncogenic RAS is known to promote transformation
and altered cell metabolism (Pylayeva-Gupta et al., 2011;
Kimmelman, 2015), and work spanning decades suggests that
wild-type RAS is both influenced by and influences the circadian
clock, and thus, mutated oncogenic RAS may potentially
alter circadian rhythm. RAS is highly conserved among lower
organisms in Animalia, and it was shown in Drosophila that
RAS and the MAPK signaling family mediated circadian rhythm,
and inversely that the MAPK pathway itself was governed by
circadian oscillation (Williams et al., 2001). Further studies in
Drosophila revealed that ERK (a critical downstream target of
RAS) could directly phosphorylate CLOCK and thus increase
the output of clock-controlled genes (CCGs) (Weber et al.,
2006). Similarly, clock-controlled genes were increased by active
RAS in the bread mold Neurospora crassa (Belden et al., 2007).
In mammals, RAS and downstream MAPK signaling oscillate
in neurons and in the liver, suggesting circadian control in
both the central and peripheral clocks (Tsuchiya et al., 2013;
Serchov et al., 2016). Neuronal constitutively activated RAS
dramatically disrupted circadian gene oscillation and mouse
circadian activity through upregulation of CCGs, in a pathway
that was dependent on downstream activity of GSK3β (Serchov
et al., 2016), and another study further implicated RAS in
disruption of CCGs downstream of GSK3 (Spengler et al.,
2009). As discussed in the Figure 1 legend, GSK3 is a regulator
of CRY and PER stability. While little work has been done
to demonstrate this mechanism in cancer, one recent study
identified mutated RAS as a mediator of circadian rhythm
disruption in colon cancer cells, potentially through upregulation
of CRY1 (Relogio et al., 2014). Thus, while strong evidence exists
in multiple organisms and model systems that active RAS can
alter circadian rhythm, specifically by upregulating CCGs, the
potential role in cancer cell metabolism and physiology remains
unclear.
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LKB1/AMPK

The AMP-kinase (AMPK) is an ancient protein complex
conserved in nearly all eukaryotes that responds to metabolic
stress (Hardie, 2014) by sensing increases in the AMP:ATP
ratio, and inhibiting biosynthetic processes while upregulating
catabolic metabolism to restore ATP levels (Hardie and Alessi,
2013). The chief upstream kinase responsible for phosphorylating
and activating AMPK downstream of metabolic stress, LKB1
(liver kinase B1), is mutated or lost in many cancers, including
up to 35% of non-small-cell lung carcinomas (Shackelford and
Shaw, 2009). Thus, AMPKmay function as a tumor suppressor in
some cancers, and indeed, AMPK-promoting compounds such
as the widely used complex-I inhibitor metformin and related
biguanides have been investigated in preclinical and clinical
models (Pollak, 2012).

AMPK plays a strong role in controlling circadian rhythm,
and regulates the clock by directly phosphorylating and
promoting the degradation of CRY1 (Lamia et al., 2009), and
promoting the degradation of PER2 through CK1ε activation
(Eide et al., 2005; Um et al., 2007), which both lead to
upregulation of CCGs; however, whether this led to a shortening
or lengthening of the period was unclear. Underscoring
the importance of CK1ε downstream of AMPK, metformin
was shown to upregulate Csnk1 (protein CK1) isoforms in
the mouse and alter oscillation of circadian and metabolic
genes (Barnea et al., 2012). In a separate pathway, AMPK
increases NAD+ levels to activate SIRT1, leading to additional
clock modulation (Fulco et al., 2008; Canto et al., 2009;
Um et al., 2011; Brandauer et al., 2013). Cancer treatments
that activate AMPK, including metformin or anti-metabolic
therapies such as the lactate dehydrogenase A inhibitor FX11
(Le et al., 2010), would be expected to alter the molecular
clock in affected cells. Strikingly, loss of either LKB1 or
of both catalytic subunits of AMPK completely abrogated
circadian oscillation, even in the absence of metabolic stress,
in several models such as MEFs or mouse liver (Lamia
et al., 2009; Um et al., 2011). This raises two interesting
possibilities: first that AMPK is an integral accessory regulator
of the circadian clock, and second, that cancers deficient in
AMPK activity through loss of LKB1 may have a deficient
clock.

p53

The p53 tumor suppressor protein is mutated or lost in a large
number of cancers, leading to dysregulation of metabolism, cell
cycle, and apoptosis (Berkers et al., 2013; Chen, 2016). Recent
evidence suggests an interdependent relationship exists between
p53 and PER2, which has fascinating implications for circadian
rhythm andmetabolism. PER2may directly regulate p53 activity:
inactivation of PER2 bymutation delayed p53 accumulation after
ionizing radiation, sensitizing mice to both cancer development
and death (Fu et al., 2002). Supporting these data, two studies
showed that high levels of PER2 in cancer cell lines and glioma
xenografts correlated with increased p53 induction and apoptosis
(Hua et al., 2006; Zhanfeng et al., 2016). However, the possible

molecular mechanism of p53 activity regulation by PER2 was not
well described in these studies.

This relationship is bidirectional, as p53 can influence PER2
both at the gene expression and protein level. p53 can antagonize
PER2 expression by directly binding to the PER2 promoter
and blocking CLOCK-BMAL1 transactivation of the gene (Miki
et al., 2013). Either loss of p53 or accumulation of p53 protein
caused phase shifts in mouse circadian behavior, suggesting that
both basal and induced p53 can regulate the clock through
PER2 modulation. Adding another layer of complexity, two
complementary studies demonstrated that PER2 protein can
form a dimer with p53 in the cytoplasm to stabilize p53 and
allow translocation to the nucleus, either under basal conditions
or genotoxic stress (Gotoh et al., 2014, 2015). Once in the nucleus,
PER2-p53 also binds its E3 ubiquitin ligase MDM2 (mouse
double minute 2 homolog), and this trimeric complex prevents
p53 ubiquitination and degradation, allowing for increased
transactivation of p53 targets. The authors hypothesized that
PER2 may exist in two pools: one bound to p53, and one bound
to CRY and CK1ε for control of circadian rhythm and subsequent
degradation (Gallego and Virshup, 2007).

Several interesting conclusions can be made from the above
findings. First, given that PER2 strongly controls p53 gene
expression, stability, and localization, and that PER2 levels
oscillate in the cell, wild-type p53 protein and activity itself
must oscillate, making these cells more or less sensitive to DNA
damage at certain times. p53 mRNA and protein oscillation
was observed in several studies (Horiguchi et al., 2013; Miki
et al., 2013), and in fact, circadian sensitivity to p53 activity was
demonstrated in several older studies that identified circadian
variation in radiation toxicity in rodents (Pizzarello et al.,
1964; Lappenbusch, 1972). However, it remains unclear whether
oscillation of p53 activity was due to TP53 mRNA oscillation, or
oscillation of the upstream E3 ubiquitin ligase MDM2 to control
p53 protein stability (Horiguchi et al., 2013). Since p53 feeds back
to suppress PER2 expression and alter protein localization, the
above pathway may be an as-of-yet uncharacterized accessory
loop of endogenous clock control. Additionally, it has been
appreciated in recent years that DNA damage induces oscillatory
p53 activity and protein levels, with a period of about 6 h and
dependent on phosphorylation of both p53 and MDM2 (Lahav
et al., 2004; Geva-Zatorsky et al., 2010). It is likely that, after DNA
damage, this inherent p53 oscillation, circadian control of p53,
and p53 control of PER2 interact in some significant way, but this
has not yet been studied.

Another upshot of this relationship is that altered p53 status
should disrupt circadian oscillation. DNA damage and other
insults induce and stabilize p53 (Chen, 2016), and p53 can control
circadian rhythm through its modulation of PER2 transcription,
protein stability, and protein localization (Miki et al., 2013; Gotoh
et al., 2014, 2015), so it can be hypothesized that under stress
p53 induction will dramatically alter the circadian clock through
its modulation of PER2, which may perhaps be an adaptive
pro-survival process. On the other hand, p53 mutation loss or
mutation in cancer would dramatically affect circadian rhythm,
both by allowing for increased PER2 gene expression (Miki et al.,
2013) and by altering the availability of PER2 protein to bind
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to other partners such as CRY (Gotoh et al., 2014, 2015). One
interesting question is how mutant p53 that has acquired novel
DNA-binding and transactivation functions would affect PER2
and circadian rhythm (Muller and Vousden, 2013). Thus, loss or
mutation of p53 in cancer may alter or disrupt circadian rhythm,
with unknown consequences to cancer physiology.

MYC

The MYC and related MYCN oncogenes (encoding MYC and
N-MYC) are translocated, amplified, or mutated in many
cancers, and can dramatically upregulate genes involved in
glucose and glutamine metabolism, ribosomal, lipid, and
nucleotide biogenesis, and cell cycle progression (Stine et al.,
2015). Given that MYC recognizes and binds to E-Box
DNA promoter elements identical to those recognized by
CLOCK-BMAL1, it was theorized that CLOCK-BMAL1 could
bind to MYC target genes (Fu et al., 2002; Fu and Lee,
2003), an idea later borne out by observation that CLOCK-
BMAL1 could inhibit N-MYC-dependent gene transactivation
(Kondratov et al., 2006). Given that the MYC gene itself
contains multiple E-box elements (Battey et al., 1983), it
was shown that CLOCK-BMAL1 regulates endogenous MYC

circadian oscillation and oscillation of MYC-target genes, both
by direct BMAL1 binding to the MYC promoter, as well
as by additional translational and posttranslational control
by the molecular clock machinery (Fu et al., 2002, 2005;
Okazaki et al., 2010; Repouskou et al., 2010; Repouskou and
Prombona, 2016). It is also likely that endogenous MYC
influences the clock, but this potential role has not been
elucidated.

Given that MYC rewires the cell for altered metabolism and
growth, we hypothesized that hyperactivated oncogenic MYC
could disrupt the molecular clock and thus alter circadian
oscillation of metabolism. We found that overexpressed MYC
and N-MYC upregulated many clock family members, including
PER2, CRY1, and most notably, REV-ERBα (Altman et al., 2015),
leading to a dramatic suppression of BMAL1 expression and
oscillation, which could be rescued by knockdown of REV-
ERBα and its binding partner REV-ERBβ (Bugge et al., 2012;
Altman et al., 2015). Our study also showed that oncogenic
MYC dramatically altered and disrupted circadian oscillation
of glucose and AMPK phosphorylation (Altman et al., 2015),
thus suggesting that oncogenic mutation may disrupt circadian
gene expression, metabolic oscillations, and oscillation of cellular
bioenergetics.

FIGURE 2 | Interdependent relationship of oncogenesis, metabolism, and the circadian clock. Oncogenesis (defined as hyperactivation of pro-growth

pathways downstream of mutations or alterations in RAS or MYC, or loss of normal function in growth-suppressive pathways as p53 or LKB1/AMPK, that lead to

uncontrolled cell growth and transformation) is well known to alter cell metabolism, and these metabolic changes are necessary to support oncogenesis (Hirschey

et al., 2015). As discussed in the Introduction, circadian rhythm strongly influences metabolism, and several metabolic pathways can feed back to control circadian

rhythm. This Review demonstrates that oncogenic pathways, such as RAS, LKB1/AMPK, p53 (in part through p53 regulation of PER2), or MYC (in part through MYC

activation of REV-ERBα), may disrupt or alter the normal peripheral circadian clocks of organs and individual cells. On the other hand, it has been shown that

endogenous RAS, p53 (through PER2 regulation), and MYC oscillate on the genetic and functional level, and so it has been suggested that the clock itself is tumor

suppressive (by regulating these oncogenes and tumor suppressors) and thus can prevent oncogenesis. What is still unknown is the extent to which altered

metabolism downstream of cancer (and pathways such as RAS, LKB1/AMPK, p53, and MYC) contributes to suppression of the molecular clock. Red slash indicates

pathways and proteins that are often lost in cancer, making them tumor-suppressive pathways.
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Interestingly, MYC alteration of circadian gene expression
seems to be highly cell-type specific. For instance, a recent
study in HEK-293 and colon cancer cells showed that
overexpressed MYC bound the PER1 promoter exclusively,
and rather than transactivating expression, this binding led
to a downregulation of PER1 due to competitive inhibition of
CLOCK-BMAL1 promoter occupancy, which would presumably
also lead to circadian disruption (Repouskou and Prombona,
2016). Alternately, MYC overexpression in embryonic stem cells
led to PER cytoplasmic accumulation rather than upregulation
(Umemura et al., 2014). Another study identified CSNK1e
(protein CK1ε) as a synthetic lethal target of MYC and N-
MYC upregulated in neuroblastoma and other human cancers
(Toyoshima et al., 2012), and upregulation of CK1ε would
be expected to destabilize the clock through its promotion
of PER degradation and activation of BMAL1 (Gallego and
Virshup, 2007). It remains to be determined in what contexts
overexpressed MYC in cancer deregulates clock genes through
either promoter co-occupancy, competition with CLOCK-
BMAL1 to trasactivate or repress target genes, or through
forming novel complexes with either CLOCK or BMAL1.
Nonetheless, all of the above studies documented a role for
overexpressed MYC in disruption of circadian oscillation, which
as we showed has consequences for metabolic oscillation and cell
physiology (Altman et al., 2015).

CONCLUSIONS AND PERSPECTIVES:
CONNECTIONS BETWEEN ONCOGENIC
MUTATION, METABOLISM, AND
CIRCADIAN RHYTHM, WITH AN EYE
TOWARD CHRONOTHERAPY

Circadian rhythm is an essential part of cell physiology
that underlies many biological processes. Common pathways
involved in oncogenesis alter the molecular clock through
a diverse set of mechanisms, and RAS, p53, and MYC are
strongly regulated by the circadian machinery, suggesting a deep
interdependent relationship that is lost when these genes are
altered in cancer. The manner by which circadian oscillation is
altered is varied: active RAS causes increases in amplitude, p53
loss causes phase shifts, and MYC seems to cause a suppression
of overall oscillation. Adding another layer of complexity, both
oncogenic alterations and circadian rhythm regulate metabolism,
and metabolism itself can feed back to control circadian rhythm.
An interesting consequence is that oncogenic alterations can
potentially disrupt circadian rhythm both through direct effects
on gene expression and protein regulation, and also through
alteration of metabolism (Figure 2). However, the potential role
of altered cancer metabolism in disruption of circadian rhythm
has not been addressed. Additionally, it is not clear how potential
oncogenic alterations of circadian rhythm respond to or modify
synchronizing signals from the central clock.

Several unanswered questions arise from the work reviewed
here. First, why do many cancers potentially disrupt circadian
rhythm? One can imagine that circadian oscillation, which

imposes a “rest” phase every 24 h, is maladaptive to cancer
cells, and so altering or destroying this rhythm might
allow transformed cells to outcompete their non-transformed
neighbors. The clock may be upstream of normal tumor
suppressors and proto-oncogenes (Sahar and Sassone-Corsi,
2009) to regulate normal metabolism and growth, and as shown
above, these pathways seem to form feedback mechanisms with
the clock that are lost in cancer, perhaps releasing oncogenes,
tumor suppressors, and even metabolism from circadian
control.

Second, how can the cancer research community use this
knowledge of circadian disruption to better treat cancer? The
answer may lie in chronotherapy, or timed administration of
treatment to patients, based on circadian rhythm, to increase
efficacy and reduce toxicity of drugs or radiation. Dozens of
traditional cancer therapeutics, including the anti-metabolite
folate pathway antagonist methotrexate, have known circadian-
dependent toxicity (Levi et al., 2010). Excitingly, recent research
indicates that several targeted therapies currently in clinical use
have strongly circadian-dependent efficacy depending on the
time of day given, including but not limited to erlotibin (inhibits
EGFR, used in lung cancer), lapatinib (inhibits HER/Neu and
EGFR, used in breast cancer), and evirolimus (inhibits mTOR,
used in some breast cancers and pancreatic neuroendocrine
tumors), and in fact there are several chronotherapy dosing
schedules under clinical trial (Dallmann et al., 2016). Better
knowledge of how specific oncogenes disrupt normal oscillation
of tumor cells could lead to more effective strategies in delivery
of targeted or metabolic therapies. Circadian disruption is
potentially an essential part of the evolution of cancer, and further
study will allow us to better understand both the benefits to
cancer of this disruption, and how this knowledge can be used
to help patients.
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The integration of different sources of biological information about what defines a

behavioral phenotype is difficult to unify in an entity that reflects the arithmetic sum of

its individual parts. In this sense, the challenge of Systems Biology for understanding

the “psychiatric phenotype” is to provide an improved vision of the shape of the

phenotype as it is visualized by “Gestalt” psychology, whose fundamental axiom is that

the observed phenotype (behavior or mental disorder) will be the result of the integrative

composition of every part. Therefore, we propose the term “Gestaltomics” as a term

from Systems Biology to integrate data coming from different sources of information

(such as the genome, transcriptome, proteome, epigenome, metabolome, phenome,

and microbiome). In addition to this biological complexity, the mind is integrated through

multiple brain functions that receive and process complex information through channels

and perception networks (i.e., sight, ear, smell, memory, and attention) that in turn

are programmed by genes and influenced by environmental processes (epigenetic).

Today, the approach of medical research in human diseases is to isolate one disease

for study; however, the presence of an additional disease (co-morbidity) or more than

one disease (multimorbidity) adds complexity to the study of these conditions. This

review will present the challenge of integrating psychiatric disorders at different levels

of information (Gestaltomics). The implications of increasing the level of complexity, for

example, studying the co-morbidity with another disease such as cancer, will also be

discussed.

Keywords: systems biology, psychiatry, lung cancer, diagnosis, omics

INTRODUCTION

According to the World Health Organization (WHO), the frequency of psychiatric diseases has
been steadily increasing (World Health Organization, 2011). Furthermore, many patients do
not fully respond to therapy. There is a currently limited knowledge on the pathophysiology of
neuropsychiatric disorders, which in turn diminishes the ability to identify clinical biomarkers for
the early diagnosis of patients at risk (Martins-de-Souza, 2014; Sethi and Brietzke, 2015).

Abbreviations: CSF, cerebrospinal fluid; RBC, red blood cells; CNV, copy number variation; SNV, single nucleotide variation.
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The classical approach for psychiatric diagnosis includes
an essential evaluation on the mental health of the patient,
by means of an interview, to determine the presence of a
series of signs and symptoms (Fatemi and Clayton, 2008). For
instance, paranoid schizophrenia is diagnosed by the presence
of delirium, hallucinations, self-inflicted injuries, personality
disorders, lack of substance abuse, and the continuity of this
clinical frame for more than 6 months. In addition, the
Diagnostic Interview for Genetic Studies (DIGS) is widely used
in the diagnosis of schizophrenia, validated for both USA
and non-USA populations, along with additional sources of
information such as the Family Interview for Genetic Studies
(Contreras et al., 2009). In this case, laboratory studies such
as urine drug screens or sleep-deprived electroencephalograms
are used to exclude stimulant-induced psychosis or complex
partial (temporal lobe) seizures (Lishman, 1987). A positive
familiar history provides further support in the diagnosis of
schizophrenia. Thus, the diagnostic process in psychiatry is
analogous to other branches of medicine where personal and
familiar history, physical examination, and laboratory tests
constitute essential steps. Regardless, it is difficult to obtain
an accurate description without careful and skillful probing
during face-to-face interviews. However, this phenomenology
can be interpreted under different theoretical frames of reference
pertaining to the formulation of the case but not to diagnosis
(Fatemi and Clayton, 2008).

Although the Diagnostic and Statistical Manual of Mental
Disorders (DSM) is often useful in classical diagnoses, it is
not designed to facilitate the development and integration of
biomedical knowledge. Therefore, the National Institute of
Mental Health has developed an alternative tool known as the
research domain criteria (RDoc). This multidimensional
approach utilizes units of information beyond clinical
phenotypes, i.e., imaging, behavior, etc. Thus, a matrix is
developed with constructs that can be related to different
elements of information ranging from imaging to genetics
(American Psychiatric Association).

The Human Genome Project, along with high throughput
technologies, has increased the biological knowledge of several
human illnesses. The genome sequencing and analyses of
physiological states have further contributed to this purpose.
However, the genome as a whole is difficult to interpret and in
the case of several multi-factor diseases such as diabetes, cancer
and neurological disorders, which often involve the function of a
large number of genes, biological pathways, and environmental
factors, can further convolute an assessment. Therefore, the
combination of genomic information with a detailed molecular
analysis will be important in the prediction, diagnosis and
treatment of diseases, also allowing the understanding of
initiation, progression, and prevalence of disease states (Williams
et al., 2004; Shi et al., 2009). In this regard, metabolomics is
the newest of the “omics” sciences; it provides a comprehensive
approach to understanding the biochemical regulation of
metabolic pathways and networks in a biological system.
Metabolomics is able to complement the data from genomics,
transcriptomics, and proteomics to provide a potentially systemic
approach in the study of central nervous system (CNS) diseases

(Weckwerth and Morgenthal, 2005). However, there are few
currently available studies in neuroscience regarding the data
integration from different “omics” sciences.

Often, neuropsychiatric diseases are biologically difficult to
define partly because the brain is more difficult to access
than other parts of the body. Moreover, research in psychiatry
is compounded by the complexity of the brain and the
heterogeneity of phenotypes in psychiatric disorders. Brain
imaging, genotyping, and immune system testing are important
approaches in understanding the biology of psychiatric illness.
The advances in technology have made possible the analysis of
whole units of cellular components. Regardless, the study of
protein and metabolic function in the CNS is made difficult
because of intricate cellular heterogeneity with a complex
neuronal morphology that includes cellular compartments
such as neural dendrites, postsynaptic dendritic spines, axons
and presynaptic terminals. Another factor contributing to the
difficulty in studying the metabolome of CNS in humans is the
limited access to either tissue or fluids, such as cerebrospinal
fluid (CSF), in order to study molecular alterations in psychiatric
disorders. Due to ethical considerations, it is often preferable to
analyze peripheral samples such as plasma, serum, leukocytes
and platelets, which are more easily available (Hayashi-Takagi
et al., 2014). An “omics” approach has the potential to accelerate
the discovery of markers for CNS diseases (Niculescu et al.,
2015a). As an example, there is already the use of Systems Biology
in the analysis of data from several “omics” technologies, such
as proteomics, improving the discovery of pathophysiological
mechanisms and biomarkers for brain injuries that could lead
to Alzheimer’s and Parkinson diseases (Abou-Abbass et al., 2016;
Jaber et al., 2016a,b).

The tendency today is to integrate the data from clinical and
“omics” studies to obtain a final behavioral phenotype (phenome)
(Williams et al., 2004; Monteith et al., 2015; Sethi and Brietzke,
2015). Genome-wide association (GWA) studies with metabolic
measurements have shown that genetic variation in metabolic
enzymes and transporters lead to concentration changes of their
respective metabolites (Suhre et al., 2011; Krumsiek et al., 2012).
The main goal of these studies is to identify new interactions
between genomic and metabolic systems, yielding valuable
insight for basic research and clinical application. The analysis
of metabolic data is often the result of several processes where
a substance can be identified as unique in the sample but the
specific process from which it was derived is unknown. This
concept is similar to the identification of a fingerprint: each one is
identifiable as unique, but it needs to be registered in a database,
that way we know who owns that print. The association with
genetics provides evidence of the metabolic pathway wherein
such a metabolite is involved and the process from which it
originates (Suhre et al., 2011; Krumsiek et al., 2012).

From the point of view of Gestalt psychology, the first
biological response is organized as units or structures, these
organized units or “gestalten” correspond to the exchange of
information and interactions between environmental stimuli and
the individual. The resulting “gestalten” are different than the
sum of their factors so “there is a tendency not only to perceive
the gestalten but also to complete and reorganize them according
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to biological principles, which will vary in the different levels of
maturation or growth and the pathological states” (Bender, 1938).
Currently, the approach based on systems biology methods
is the most suitable for data integration from different levels
of information (genome, transcriptome, proteome, epigenome,
metabolome, phenome, and microbiome), in order to unify and
reorganize these “gestalten” (organized units of biological or
clinical data) in an integrated view of the psychiatric patient.
Therefore, “Gestaltomics” is an integrated view of different levels
of information ranging from clinical to “omics” data, proposing
the diagnosis of neuropsychiatric diseases. Early diagnosis of
these disorders could reduce the risk of developing chronic
diseases such as obesity, diabetes, cancer, etc. Past research has
proposed that affective disturbances involving mood alterations,
anxiety, and irritability may be signals of medical conditions
along with psychiatric diseases (Cosci et al., 2015). In this regard,
depressive symptoms are of first occurrence in approximately 38–
45% of pancreatic carcinoma cases and symptoms of a major
depressive illness may precede the diagnosis of lung cancer
(Jacobsson and Ottosson, 1971; Hughes, 1986). These studies
conclude that the development of psychiatric illness early in the
course of a medical condition could affect the prognosis and
therapy for patients diagnosed with the same medical disease.

On the other hand, addictive disorders are a class of chronic,
relapsing mental disorders that often result in death. In fact,
tobacco dependence is related with a higher risk for disease
and premature death because of its association with several
major health problems including respiratory and cardiovascular
diseases, and cancer. There is a current initiative to test the
Smokescreen genotyping array, a research tool for the significant
advance in understanding addiction and the development of
predictive models for personalized treatment strategies. This
array includes markers related to addiction and, interestingly, it
also has an additional set of comorbidity markers for lung cancer
and other psychiatric disorders (Baurley et al., 2016).

Therefore, understanding the molecular factors contributing
to psychiatric illness and identifying new biomarkers is essential
in the proposal of alternative tools for diagnosis, prognosis,
screening, or therapeutic targets. This manuscript describes some
examples on the current knowledge of the “omics” field in
three psychiatric conditions and their correlation with complex
diseases, mainly cancer.

“Omics” Technologies Applied in
Schizophrenia
Schizophrenia was described by Emil Kraepelin as “dementia
praecox, separated frommanic-depressive psychosis” (Kraepelin,
1893). The current criteria for schizophrenia diagnosis has been
compiled from years of empirical testing and recorded in the
Diagnostic and Statistical Manual, 5th edition (DSM-5). The
existence of different types of schizophrenia has been proposed,
each one with its own phenotype and genotype. Most research
has been focused on loci in chromosomes 6, 8, 13, and 22. Of
these chromosomes, chromosome 22 calls for attention since it
contains the comt (catechol o-methyltransferase) gene, involved
in dopaminemetabolism. Therefore, individuals with a particular

comt genotype (e.g., val/val allele) are at risk developing
schizophrenia (Combs et al., 2012). Research conducted on
samples from schizophrenia patients, both peripheral and
postmortem brain samples, revealed a correlation, although
low, in the results obtained from peripheral samples (blood,
plasma, serum, and platelets) compared to CNS samples (CFS,
prefrontal cortex and other brain tissues). In one of these
studies using DNA microarrays, postmortem analyses detected
177 genes in schizophrenia related brains. From these genes, only
6 correlated with the obtained blood results (Glatt et al., 2005). In
another study, half of the genes found related to schizophrenia
in the prefrontal cortex were also found in blood from the
same patients (Sullivan et al., 2006). The hypomethylation of
st6galnac1 in the blood and brain of schizophrenia patients has
been previously reported (Dempster et al., 2011). Allele copy
number variations (CNVs) seems to be the most relevant risk
factor for schizophrenia, and the 15q11.2 (BP1-BP2) deletion
confers the risk for developing schizophrenia (Stefansson et al.,
2013). Using metabolomics, an increment in free fatty acids and
ceramide in blood and brain samples was observed (Schwarz
et al., 2008). Proteomics experiments using SELDI-TOF MS
showed that the ApoA1 protein was downregulated in CFS
and blood (red blood cells; RBC) (Huang et al., 2007). On the
other hand, current advances in schizophrenia physiopathology
research and the molecular effects of anti-psychotic drugs have
made clear the need of biomarkers for this disease. Metabolomics
techniques are not only useful in this purpose but also in
monitoring the effect of these types of drugs in psychiatric
patients.

A metabolomics study of serum using mass spectrometry
(MS) reported 20 metabolites in patients with schizophrenia
whose levels were modified when compared with the controls.
These metabolites include citrate, palmitic acid, allantoin, and
mio-inositol (Xuan et al., 2011). He et al. (2012) performed a
nuclear magnetic resonance (NMR) study in the plasma from
schizophrenia patients. In this study, the patients were diagnosed
before starting the treatment. There was also a group of subjects
under medication. Both groups were compared to the control
group (no schizophrenia), identifying different metabolites from
to the study performed by Xuan.

“Omics” Technologies Applied in Autism
Autism spectrum disorders (ASDs) are highly hereditary and
genomic studies have revealed that a substantial proportion of
ASD risk resides in rare variations ranging from chromosome
abnormalities (CNV) to single-nucleotide variations (SNV).
These studies highlight a striking degree of genetic heterogeneity,
implicating both de novo germline mutation and rare inherited
ASD variations (Pinto et al., 2014). De novo CNVs are observed
in 5–10% of screened ASD-affected individuals, and after further
follow-up studies, some of them have been shown to alter high-
risk genes. De novo or transmitted CNVs, such as 15q11.2–q13
duplications of the affected region in Prader-Willi and Angelman
syndromes, the 16p11.2 deletion, 16p11.2 duplication, and X-
linked deletions, including the PTCHD1-PTCHD1AS locus, have
also been found to contribute to this risk (Stefansson et al., 2013).
Exome and whole-genome sequencing studies have estimated at
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least another ∼6% contribution to ASD and an additional 5%
conferred by rare inherited recessive or X-linked loss-of-function
(LoF) SNVs (Pinto et al., 2014 and references therein). A genetic
overlap between ASD and other neuropsychiatric conditions
has been increasingly recognized. Informative studies on the
metabolome of ASD individuals showed alterations in the levels
of amino acids in plasma, platelets, urine and CSF (Ming et al.,
2012). Further, it has been reported that the neurotransmitter and
hormone metabolism of serotonin, catecholamines, melatonin,
oxytocin, GABA, and endorphins, for example, are altered.
In a case-control study, changes in the levels of succinate
and glycolate in urine were observed (Emond et al., 2013).
Therefore, alterations in metabolism are common features of
ASD. In this regard, gut microbiota has important effects in the
development of behavioral symptoms relevant to ASD and other
neurodevelopmental disorders in a mouse model (Hsiao et al.,
2013).

“Omics” Technologies Applied in Suicide
In the area of mental health, suicide is a particular prevention
priority as it accounts for an estimated 804,000 deaths in 2012
(World Health Organization, 2015b). An objective of WHO
Mental Health Action Plan calls for a 10% reduction in the rate
of suicide by 2020. Men are four times more likely to commit
suicide than women. However, women make more nonfatal
suicide attempts than men. There are several factors involved
in suicide and suicide attempts, the most important of which is
having a psychiatric disorder. More than 90% of suicides have
a diagnosable psychiatric disorder at the time of death, mood
disorders being the most common (Fatemi and Clayton, 2008).
The origin of suicidal behavior is multifactorial and includes
genetic, biological, and psychosocial factors. The slc6a4 gene has
been associated with suicide but only in women (Gaysina et al.,
2006). The gene comt has been related to suicide in both women
and men, but the degree of association differs between genders
(Kia-Keating et al., 2007). GWAs have found gene markers
for suicidal ideation such as polymorphisms rs11628713 and
rs109030324 of genes papln and il28ra, respectively (Laje et al.,
2009). A study addressing the relationship between genotype
and brain transcriptome reported that the GABA A receptor
gamma 2 (gabrg2) had lower postmortem expression in the
brains of suicide cases and was thus associated with suicide
(Yin et al., 2016). Amongst the polygenes implicated with 590
suicide attempts (SA) were several associated with important
development functions (cell adhesion/migration, small GTPase
and receptor tyrosine kinase signaling), and 16 of these SA
polygenes have previously been studied in suicidal behavior
(bdnf, cdh10, cdh12, cdh13, cdh9, creb1, dlk1, dlk2, efemp1,
foxn3, il2, lsamp, ncam1, ngf, ntrk2, and tbc1d1) (Sokolowski
et al., 2016). A recent study sought biomarkers for suicidal
ideation using functional genomics. The authors identified genes
involved in neuronal connectivity and schizophrenia, and the
biomarkers validated for suicidal behavior included a wide
number of genes involved in neuronal activity and mood.
The 76 biomarkers validated for suicidal behavior map to
biological pathways involved with the immune and inflammatory
response, mTOR signaling, and growth factor regulation. Further,

other potential therapeutic targets or biomarkers for drugs
known to mitigate suicidality were identified, such as omega-
3 fatty acids, lithium, and clozapine. These biomarkers are also
involved in psychological stress response and in programmed
cell death (apoptosis) (Niculescu et al., 2015b). A proteomics
study of prefrontal cortex tissues showed that alpha crystalline
chain B (CRYAB), glial fibrillary acidic protein (GFAP), and
manganese superoxide dismutase (SOD2) appear only in suicide
victims (Schlicht et al., 2007). Despite the vast amount of
information from suicide “omics,” it has not been possible to
integrate the data to provide a “gestalt” view of the individual,
allowing the prevention of this behavior and its outcome.
Thus, the integration of this knowledge will provide new
methods for the diagnosis and treatment of this complex
behavior.

Adding One Level of Complexity:
Comorbidity of Cancer and Psychiatric
Disorders
To impulse the advance toward a new era of precision
medicine, in 2015 President Obama proposed a research initiative
(www.whitehouse.gov/precisionmedicine). Precision medicine
includes prevention and treatment strategies taking individual
variability into account. This concept has been improved by
the development of large-scale biological databases, powerful
methods for characterizing patients, and computational tools for
the analysis of large data sets. The proposed initiative has two
main components: a near-term focus on cancer and a long-term
aim to generate applicable knowledge for the whole range of
health and disease (Collins and Varmus, 2015).

Cancer is a major public health problem and a challenge that
needs to be solved by amultidisciplinary approach (WorldHealth
Organization, 2015a). Its appropriate control includes health care
education to improve prevention and early detection programs;
and optimizing diagnosis to determine specific treatment and
provide palliative care improving the patients’ quality of life
(Mohar et al., 2009).

The need for psychiatric services in hospitals can be observed
by the high prevalence of psychiatric disorders. In oncology
hospitals, the prevalence of these disorders is approximately 50%
(Citero Vde et al., 2003). A study evaluating the prevalence
of psychiatric illness in cancer patients reported that 47% of
cancer patients diagnosed with mental disorders, amongst them
85% with anxiety and depression, 8% with cerebral organic
disorders, and 7% with personality disorders (Citero Vde et al.,
2003). Another study reported this type of disorder in 11–21%
of patients at the hospital (Razavi et al., 1990). Delirium is
often found in patients at the general hospital. The prevalence
is 25% in cancer patients, and 85% in terminally ill patients.
Psychoses and cognitive impairment have demonstrated a key
role in slowing down the progress of cancer treatment in these
patients (Citero Vde et al., 2003). A psychiatric comorbidity
between smoking and psychosis has severe effects in the morbi-
mortality in those patients and results in an increased number
of deaths by suicide. It has been estimated that schizophrenia
patients are addicted to nicotine in 80% of cases compared to
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22% in the healthy population (Brown, 2000). On the other hand,
obsessive-compulsive disorder seems to be a protective pathology
against nicotine addiction (Dell’Osso et al., 2015).

Cancer is a disease whose treatment has high personal,
financial, and social costs. These factors influence the
development of anxiety and depression disorders in the
cancer patient. Even cancer treatments such as chemotherapy,
which produces serious secondary effects, affect this condition.
For instance, breast cancer comorbidity with depression
is associated with a poorer quality of life, poor treatment
adherence, impaired physical and cognitive function, and cancer
progression or survival. Understanding depression etiology
associated with breast cancer is a major concern. Depression in
breast cancer patients is often the result of several contributing
biological factors; amongst them are hormonal, inflammatory,
and genetic mechanisms, and psychological factors such as
bodily disfigurement and impaired sexual function. Genetic
risk is important in the etiology of depression precipitated by
medical conditions like cancer, which has been proposed as an
environmental risk factor (Caspi et al., 2010). Smoking is one
of the main risk factors within these environmental factors.
In fact, the WHO global initiative for Framework Convention
on Tobacco Control (Deland et al., 2003) is one of the first
strategies for primary prevention of cancer, because tobacco is
related to 16 different types of cancer and smoking is the cause
of 71% of deaths due to lung cancer (2015). The knowledge from
the biological, molecular, and clinical data could improve the
outcome for this disease and help avoid the behavior increasing
the susceptibility for cancer development. A broad research
program to improve creative approaches to precision medicine,
test them rigorously, and use them to build the evidence base
needed to guide clinical practice is essential (Collins and Varmus,
2015). A clear example for this is the relation between smoking
and lung cancer.

Nicotine Addiction and Lung Cancer
The clearest example of how a psychiatric disorder influences
the development of cancer is the relation between smoking and
lung cancer. Smoking is an addictive disorder and a major public
health concern. It is the primary cause of death worldwide, as
actively smoking causes different chronic diseases, several types
of cancer, and respiratory and cardiovascular diseases (World
Health Organization, 2008).

There is evidence presented in the 2014 Surgeon General’s
Report (US Health Department) modifying cancer care. The
detrimental consequences of smoking in patients with cancer
are mediated by the activation of tumorigenic pathways and
physiological alterations, including the complications associated
with cancer treatment and development of comorbidities.
However, no cancer treatment has been proved more effective in
cancer patients who smoke compared to non-smoking patients,
neither are there any prognostic biomarkers for cancer patients
who continue to smoke (US Department of Health, 2014).

If both processes share the samemolecular basis, and therefore
the same biological pathways, it is important to highlight the need
to study psychiatric diseases along with other co-morbidities
such as cancer. The neuronal acetylcholine nicotinic receptors

(nAChRs), a protein family of pentameric ion channels regulated
by ligands, are potential candidates. These receptors can mediate
signal transmission through the synapse as well as release of
several neurotransmitters. The receptor subtype in the brain is
the α4β2 form. Some α4β2 receptors also contain subunit α5,
which is regulatory, inactivating the receptor. Nicotine is an
exogenous agonist of these receptors. Seconds after starting to
smoke, nicotine produces a physical response. Recent studies
show that nicotine, despite not being carcinogenic, promotes
cell proliferation, metastasis, angiogenesis, and resistance to
apoptosis (Warren et al., 2014, and references therein). These
processes, mediated by nAChRs, may influence the effectiveness
of anti-cancer treatment (chemotherapy, radiotherapy, or
targeted therapy). The evidence indicates that smoker patients
have lower survival rates than those patients giving up smoking
before starting treatment; suggesting that nicotine supplemented
for smoking cessation treatment reduces the response to anti-
cancer drugs (Czyzykowski et al., 2016).

Nicotine and its metabolites activate nAChRs and β-
adrenergic receptors that in turn activate several pathways, such
as the Ras/Raf/MEK/MAPK and PI3K/Akt oncogenic pathways,
and causing cross-activation of these pathways producing a
tumor-promoting phenotype. Furthermore, nicotine and the
activation of nAChRs decrease the therapeutic response to
chemotherapy and radiotherapy both in vitro and in vivo
(Dasgupta et al., 2006; Warren et al., 2010; Momi et al., 2012).

Genetic variations in nAChRs have been proposed as strong
risk factors for nicotine dependence and susceptibility to lung
cancer. GWAS involving human addictions in lung cancer
patients have reported the same variants in the gene cluster
chrna5/a3/b4, previously associated with nicotine dependence
and lung cancer susceptibility (Wang et al., 2009). This gene
cluster plays a key role in nicotine dependence, lung cancer and
loss of lung function when the allele A of the polymorphism
rs16969968 is present (Gabrielsen et al., 2013). Moreover,
nicotine was suggested as an intermediary factor between
variants at the chrna5/a3/b4 region and lung cancer (Tseng et al.,
2014). Although it was previously considered that rare non-
synonymous variants in this region played a protective role,
the variant rs56501756, encoding for R336C, confers a risk for
nicotine dependence, lung cancer and other smoking-related
diseases (Thorgeirsson et al., 2016).

Moreover, there is evidence that smoking cessation treatments
are affected by genetics. The chrna5/chrna3/chrnb4 cluster
defines haplotypes of low, intermediate and high risk of cessation
treatment failure, according to the presence of polymorphisms
rs16969968 and rs680244 (Chen and Bierut, 2013). Therefore, the
identification of smokers with different haplotypes implies the
need for personalized smoking cessation treatments.

However, research is not limited to genetic data only; there
is research on nicotine metabolism and genotype association
as well. One example of this concerns the cyp2a6 gene coding
for P450 2A6, the major nicotine metabolizer enzyme. Genetic
variations in the cytochrome cyp2a6 gene contribute greatly to
the observed differences in nicotine metabolism, thus influencing
smoking habits in different populations (Park et al., 2016).
Differences in nicotine metabolism and risk of nicotine addiction
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have been attributed to functional allelic variation in cyp2a6
(Mwenifumbo and Tyndale, 2009; Al Koudsi and Tyndale, 2010).
The meta-analysis of samples from the ENGAGE consortium
proved the association between SNP’s in this locus and the
number of cigarettes smoked per day (Thorgeirsson et al., 2010).
Further evidence on the association of cyp2a6 with the number of
cigarettes smoked per day and nicotine dependence is observed in
the synergic effects of the chrna5/chrna3/chrnb4 cluster and this
gene, showing independent and additive effects of allelic risk for
these two chromosomal regions in two phenotypes (Wassenaar
et al., 2011).

Active smoking is an established critical factor for epigenetic
modification. Methylation changes were detected studying
the association of active smoking exposure with methylation
patterns; amongst these studies were epigenome-wide association
studies (EWASs) and gene-specific methylation studies (GSMSs)
(Gao et al., 2015). At molecular level, epigenetic factors such as
DNA methylation have been proposed as biomarkers for both
psychiatric disease and cancer (Ai et al., 2012). The correlation
between methylation in leukocytes from patients with Parkinson
disease and in neurons from the same patient has been reported
(Masliah et al., 2013). In breast cancer, methylation of the bdnf
gene (brain-derived neurotrophic factor) has been studied in
relation with depression in mastectomy patients (Kim et al.,
2013; Kang et al., 2015). In fact, the onset of smoking has been
associated with bdnf, a neurotrophin identified as a possible
candidate gene (Tobacco Genetics Consortium, 2010).

Systems Biology and the Challenges in
Understanding the Underlying
Mechanisms of Human Behavior
Data-intensive science consists of three basic activities: capture,
curation, and analysis. These phases raise a challenge in systems
biology science. These challenges entail not only their size but
also their increasing complexity. Curation and analysis become
important after capturing data from several experiments. It
includes storage, retrieval, dissemination, and data filtering and
integration. Algorithms and software tools developed for the
analysis of biological data also face the problem of scalability
when data become larger. However, several big databases have
been created around the world for the curation and analysis
of biological data, and their data volume and performance
are gradually improving. These databases include GeneBank
and Gene expression omnibus (GEO) from NCBI (Altaf-Ul-
Amin et al., 2014). Recently, other projects have been initiated
such as ENCODE (Encyclopedia of DNA Elements), a project
supported by an international collaboration of research groups
funded by the National Human Genome Research Institute
(NHGRI/NIH). ENCODE aids the biologist using human and/or
animal genetic data to study disease with a comprehensive list of
functional elements in the human genome, including elements
that act at protein and RNA levels, and regulatory elements that
control cells and the circumstances in which a gene is active.
Further, global metabolomics are used for the identification of
metabolic pathways altered due to disturbances in biological
systems. The statistical analysis involves an extensive process

that sometimes may lead to the identification of a very narrow
range of metabolites as biomarkers. In this regard, The Human
Metabolome Project, funded by Genome Canada, was launched
in 2005. The purpose of the project is to facilitate metabolomics
research by providing a linkage between the human metabolome
and the human genome. The project mission is to identify,
quantify, catalog and store all metabolites that can potentially be
found in human tissues and biofluids at concentrations greater
than one micromolar. These data are free to access through the
Human Metabolome Database (www.hmdb.ca) (Wishart, 2007;
Wishart et al., 2009, 2012). The application of metabolomics in
cancer research has led to a renewed appreciation of metabolism
in cancer development and progression. It has also led to the
discovery of biomarkers and novel cancer-causing metabolites.
However, with so many cancer-associated metabolites being
identified, it is often difficult to associate these compounds
with their respective cancer type. It is also challenging to track
down the information on the specific pathways that particular
metabolites, drugs or drug metabolites may be affecting (Wishart
et al., 2016).

The ENIGMA Consortium is an initiative seeking to integrate
genetics, genomics and brain imaging (http://enigma.ini.usc.
edu); it is a global alliance of over 500 scientists spread across 200
institutions in 35 countries collectively analyzing brain imaging,
clinical and genetic data. ENIGMA has grown to over 30 working
groups studying 12 major brain diseases, pooling and comparing
brain research data. In some of the largest neuroimaging studies
to date, such as in schizophrenia andmajor depression, ENIGMA
has found replicable disease effects that are consistent worldwide,
as well as common factors that modulate disease effects in
different populations (Thompson et al., 2015, 2016).

Systems biology is being used to analyze data from different
levels of information in psychiatric disease. In a study of CNVs
and SNVs in genes related to ASD, chromatin remodeling
and transcription regulation were inferred on functional gene
networks related to neuronal signaling, development synapse
function, chromatin regulation, MAPK, and other signaling
pathways (Pinto et al., 2014). Other studies in systems
biology suggest that the interplay between sleep, stress, and
neuropathologies emerge from genetic influences on gene
expression and their collective organization through complex
molecular networks relating to underlying sleep mechanisms,
stress susceptibility and neuropsychiatric disorders (Jiang et al.,
2015). In animal models, a systems biology study based on
proteomic and metabolomic research developed a schematic
model summarizing the most prominent molecular network
findings in the Df(16)A± mouse (a model of the 22q11.2
deletion syndrome). Interestingly, the implicated pathways
were linked to one of the proteomic candidates, O-Linked
N-acetylglucosaminyltransferase (OGT1), a predicted miR-185
target and a new mechanism associated with 22q11DS, which
may be linked to a cognitive dysfunction and an increased risk
of developing schizophrenia (Wesseling et al., 2016).

An analysis comparing proteome and biological pathways
and their involvement with different psychiatric illnesses
showed molecular similarities across all major neuropsychiatric
disorders. These results, analyzed by systems biology methods,
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proved an overlapping of pathways affecting protein expression
in a similar manner in these disorders. This supports the
hypothesis that major neuropsychiatric disorders represent a
disease of the brain with a spectrum of phenotypes derived of the
genotype and the effect of the environmental stimuli (Figure 1;
Gottschalk et al., 2014).

One of the best efforts to materialize the integration of the
phenome with the genome is exemplified by the Consortium
for Neuropsychiatry phenomics, at the University Of California
in LA (UCLA) (Bilder et al., 2009b). Besides making available
a brain imaging database of healthy individuals and patients
with neuropsychiatric disorders such as schizophrenia, bipolar
disorder and attention deficit/hyperactivity disorder, it also
provides bioinformatics tools to visualize and analyze these
dataset in a “systematic study of phenotypes on a genome-wide
scale,” including basic and clinical information (Poldrack et al.,
2016). The concept of phenome is evolving to phenomics or
“the discipline to enable the development and adoption of high-
throughput and high-dimensional phenotyping” (Bilder et al.,
2009a; Houle et al., 2010). The “phenomics” proposal of the
Consortium of Neuropsychiatry includes an integrative vision of
data in other complex biological systems and is already achieving
that integrating vision (Bilder et al., 2013). We wish to convey
this vision in medical practice, one that will also consider the
socio-cultural issues and comorbidities of the patients. Of course,
conveying the idea that “phenomics” applied to patient-centered
medical practice will be “gestaltomics” in the near future.

Despite the efforts to integrate several networks of
information, it has not been possible to personalize medicine
through an integrative view of the individual through different
levels of information; therefore, “gestaltomics” is an unifying
vision of different sources of information through a systems

FIGURE 1 | Disease spectrum of Psychiatric illnesses. The definition of

neuropsychiatric phenotypes has been difficult to limit into a series of signs

and symptoms overlapping the different psychiatric diseases. This issue is

usually observed beyond clinical level; however, “omics” data have facilitated

the contemplation of psychiatric illnesses as a disease spectrum of the brain.

Genetics is an important component in the origin of the disease and the

resulting phenotype is determined by several intermediate phenotypes derived

from the influence of epigenetic factors (environmental stimuli).

biology approach that is not limited to a biological understanding
of the disease and instead follows an old medical principle from
Hippocrates “It is far more important to know what person
the disease has than what disease the person has.” The onset
of symptoms identify the clinical stage of the disease at the
time of diagnosis. The disease can progress to mild, severe or
fatal, i.e., “the spectrum of disease.” The disease process results
in recovery, disability or death, which is the reason why it is
important to identify the individuals at risk (The Center for
Disease Control and Prevention, US Department of Health
Human Services, 1992). The early screening of a high-risk group,
such as smokers, during the subclinical stage of the disease could
identify a difference in the development of a disease such as
cancer or influence the outcome to this disease. These screenings
could involve the analysis of blood and urine samples, which are
easy to obtain. It could involve the genotyping of genes, such
as the cluster chrna5/chrna3/chrnb4. Further, the appropriate
diagnosis of the psychiatric disease at the onset of symptoms
could lead to an adequate treatment or therapy for the patient.

During the development of psychiatric illness-cancer, the
complexity of both diseases becomes increased. Thus, the global
view of the individual is vital for cancer survival. Figure 2

shows a diagram describing the major levels of information
regarding both psychiatric diseases and cancer implicated in
the “gestaltomics” approach for disease diagnosis, prognosis,
and discovery of therapeutic targets. The mechanistic view of
these diseases, obtained from clinical and biological information,
seems to be unified by common genetic factors leading to
the activation of major biological pathways, in turn influenced
by environmental factors (epigenetics), regulating the signal
intensity causing several phenotypes of psychiatric illnesses as
a disease spectrum (Figure 1). The task of systems biology is to
unravel the complex mechanisms orchestrating such behavior.
The construction of ontologies, whose principles could be applied
to the systems biology of complex diseases, has been proposed in
order to cope with this biological complexity.

The formation of ontologies that introduced human agents
and software to organize information and execute a common
goal in healthcare was proposed in 1998 (Falasconi et al., 1998;
Falasconi and Stefanelli, 1998). This began with computer-
based patient record (CPR) prototypes (Webster, 2001). However
to achieve this goal, the problem of harmonizing data from
one database to another had to be solved, this problem
consisted in the definition of concepts or entities using the
unification or integration of different data. The purpose of a
medical ontology library is to analyze, integrate, and formalize
medical terminologies of different areas or applications (Pisanelli
et al., 2004), as an example, the concept of cancer can be
defined from several points of view, morphological, biochemical,
pathological, etiological, etc. The ontology library would serve as
an informatics platform including every definition according to
specified parameters. Therefore, the following principles must be
followed in the construction of ontologies: (a) logical consistency
(logical language and explicit formula semantics), (b) semantic
coverage (all entities of its domain and all entity types of its
domain), (c) modeling precision (only represents the intended
models to accomplish the task of the ontology), (d) strong
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FIGURE 2 | Gestaltomics, as an integrated view of an individual, is obtained by unifying different levels of information from ranging from genetics to

clinical data. The data networks originate from different biological and clinical sources influenced by the presence of two or more diseases; such is the case of the

comorbidity psychiatric disease, cancer and the social environment, which is reflected at a biological level.

modularity (to organize the domain into different descriptions),
and (d) scalability (the language used expresses the intended
meaning according to the domain or tasks to accomplish)
(Pisanelli et al., 2004).

The increasing amount of data derived from genomics led
to the development of biological ontologies (Fernández-Bries
et al., 2004), introducing also an integrative approach using
bioinformatics (Gopalacharyulu et al., 2008). Afterwards,
cognitive ontologies, based on the structure–function data
from neurologically affected patients, integrated cognitive, and
anatomical models and organized the cognitive components
for diverse tasks into a single framework (Price and
Friston, 2005). Currently, ontologies serve as “a means to
standardize terminology, to enable access to domain knowledge
representation, cognitive science, to verify data consistency and
to facilitate integrative analysis over heterogeneous biomolecule
data” (Hoehndorf et al., 2013).

The ontology proposed by the Consortium of
Neuropsychiatric Phenomics continues with the sequence
of platforms being implemented to improve the definition of
psychiatric phenotypes through different levels or domains of

knowledge (syndrome, symptom, cognitive phenome, neural
systome, cellular-signalome, Proteome, genome) seeking to
define a disease more accurately, including the data derived from
each domain, and focusing mainly on defining the cognitive
phenome of psychiatric diseases. The multivariate definition of a
phenotype can lead to advances in the face of complex diseases,
such as cancer and psychiatric diseases. This not only improves
the definition of phenotypes but also establishes connections
between intermediate phenotypes (Bilder et al., 2009a). Together
with the initiative of the National Mental Health Research
Domains Criteria (RDoC), it will have a direct impact on the
improvement of the diagnostic taxonomy of mental disorders
based on brain biology (Bilder et al., 2013).

It is interesting that, in some of the ontologies available on
the web, the harmonization of different formats of bioinformatics
data or reservoirs of information is being achieved. Since the
principles that construct these ontologies can be applied to
the bioinformatics of complex diseases, this type of initiatives
from multidisciplinary groups can be a more effective approach,
through Systems Biology, to address the complexity issue of
diseases such as cancer and psychiatric disorders in an organized
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framework that would provide an integral picture of the
individual and his illness.

“Omics” Studies on Neuropsychiatric
Disorders and Cancer
There few studies regarding the association of psychiatric diseases
and cancer, such as schizophrenia and breast cancer (Catts
et al., 2008; Bushe et al., 2009), or Alzheimer’s disease with
reduced risk for cancer (Roe et al., 2005), addressing a potential
opportunity for biomedical research (Catalá-López et al., 2017).
A promising field in “omics” studies is the association between
alcohol drinking behavior and cancer.

Alcohol abuse has been recognized as a common component
in different types of cancer (World Health Organization, 2014).
Alcoholism is accepted as a disease and though DMS-V criteria
distinguish between alcohol dependence and alcohol abuse,
the diagnosis criteria is evolving. There is also a variety
of phenotypes of alcoholism. Polymorphisms of the alcohol
dehydrogenase (ADH1BArg48His) and aldehyde dehydrogenase
(ALDH2 Glu487Lys) genes are commonly associated with
alcohol consumption and cancer.

The ADH1B gene and its alleles, Arg48His (rs1229984) and
Arg370Cys (rs2066702), are associated with alcohol metabolism
and drinking behavior, cancer, and human phenomes (Polimanti
and Gelernter, 2017). Esophageal cancer is associated with an
Arg/Arg genotype of ADH1B Arg48His, although its 48His
allele has been proved to have a protective effect against this
type of cancer (Mao et al., 2016). The association of ADH1B

with colorectal cancer risk in Chinese population has been
reported (Zhong et al., 2016). It has also been shown that
this gene is correlated with gastric cancer (Chen et al., 2016).
In addition, the ADH1B Arg48His allele increases lung cancer
risk in carriers (Álvarez-Avellón et al., 2017). ALDH2 and
ADH1B polymorphisms are associated with a higher risk for
bladder cancer and alcohol abuse (Masaoka et al., 2016). Alcohol
abuse also mediates the ADH1B effect on hepatitis B-related
hepatocellular carcinoma risk (Liu et al., 2016), and head and
neck squamous cell carcinoma (Ji et al., 2015). There are few
omics studies on the field; however, a noteworthy study on the
microbiome in fecal samples of alcoholic individuals could help
to understand the phenotype of individuals at risk of developing
colorectal cancer (Tsuruya et al., 2016).

There is yet an enormous task to be undertaken in the “omics”
field of comorbidity of psychiatric diseases and cancer. The
knowledge gathered from this exciting field will contribute to
the successful development of personalizedmedical care for these
patients.

CONCLUSION AND PERSPECTIVES

The present review highlights how the vast amount of
information from omics technologies in complex diseases, such
as schizophrenia, present several challenges regarding data
management and format harmonization of output data. Despite
the challenge, some studies have performed successful analyses
starting from different technological platforms (See Table 1).

TABLE 1 | Important findings in psychiatric disorders by using “omics” technologies described in this review.

Disease Discovery according to “omics” data References

SCHIZOPHRENIA

Genome Loci 6, 8, 12, and 22 associated to schizophrenia Combs et al., 2012

Hundred and seventy-seven genes related to schizophrenia in brain Glatt et al., 2005

Allele copy number variation implicated in the development of schizophrenia Stefansson et al., 2013

Metilome Hypomethylation of st6galnacl in brain and blood Dempster et al., 2011

Proteome Apo1 was downregulated in CSF and RBC Huang et al., 2007

Metabolome and lipidome Twenty metabolites and fatty acids in serum and plasma changed in patients, changes were also observed in

patients with drug treatment

Xuan et al., 2011; He et al.,

2012

AUTISM

Genome ASD risk is conferred by rare variations from CNVs to SNVs Pinto et al., 2014

15q11.2-q13 duplications, 16p11.2 deletion, 16p11.2 duplication, and X-linked loss-of function SNVs

associated to autism

Metabolome Changes in the levels of aminoacids in plasma, CSF, and urine. The levels of neurotransmitters and hormones

are altered

Ming et al., 2012

Succinate and glycolate in urine changed Emond et al., 2013

Microbiome Gut microbiota has important effects in the development of symptoms Hsiao et al., 2013

SUICIDE

Genome The slc6a4 gene associated to suicide in women Gaysina et al., 2006

comt gene also related to suicide Kia-Keating et al., 2007

papln and il28ra (rs11628713 and rs109030324) markers of suicidal ideation Laje et al., 2009

Transcriptome garbrg2 expression was lower in brain of suicides Yin et al., 2016

Seventy-six genes for suicide are involved in neural connectivity, immune, and inflammation responses Niculescu et al., 2015b

Proteome CRYAB, GFAP, and SOD2 proteins expressed only in prefrontal cortex tissues from suicides Schlicht et al., 2007

CSF, cerebrospinal fluid; RBC, red blood cells; CNV, copy number variation; SNV, single nucleotide variation.
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Because most studies in the “omics” field are separate
entities and do not integrate other levels of information,
only a few have taken this approach (van Eijk et al.,
2014). van Eijk et al. attempted an “omics” analysis with
different levels or “layers” of genomic information (such as
SNPs, methylation, and gene expression), identifying disease
susceptibility loci for neuropsychiatric traits due to the
enrichment of disease-specific signals when combining different
genomic layers prioritizing genomic loci. This approach
supported the use of whole blood for the study of brain-
related diseases (van Eijk et al., 2014). This issue could be
solved also for other peripheral samples through integrative
studies.

Systems Biology must be able to provide proper quantitative
schemes that will contribute to the understanding of underlying
mechanisms and phenotype prediction in psychiatric diseases,
as well as its association with other comorbid diseases such
as cancer. Some groups have developed mathematical analyses
using model systems exploring feasible metabolic phenotypes in
human cancer cell lines and tissues (Lewis and Abder-Haleem,
2013). In this regard, a metabolic phenotypemodeling performed
by Diener et al. (2016) used metabolome and expression data
to infer the metabolic phenotype of HeLa cancer cells. The
mathematical modeling, based on the metabolite concentrations
in this study, set the basis for inferring affected enzymes
in a diseased state when it is not evident at genomic level.
Another important advance in exploring metabolic phenotypes
is the Human Metabolic Atlas database containing a set of
tissue specific genome scale metabolic reconstructions of human
tissues (Pornputtapong et al., 2015). Therefore, advances in
multiscale modeling promises the inference of the metabolic
phenotype from a cell to a whole organism. Notably, this
type of studies could have the potential to improve the
decision-making process regarding the type of chemotherapy
administered to a cancer patient (Diener and Resendis-Antonio,
2016).

Ontologies are an excellent proposal for the integration of
clinical, biological and behavioral information enabling a precise
description of the disease presented by an individual. The
use of multidisciplinary platforms, integrating the intermediate
phenotypes contributing to the global phenotype, will provide
the necessary tools for data analyses. We have already discussed
the existence of different databases and software available from
various platforms, which can be used to analyze experimental
data derived from patient samples. We propose the development
of a network derived from each type of data; the elements of
such a network should be shared with the other networks of
biological information. The convergence of evidence provided
by bioinformatics analyses will allow the visualization of
a characteristic phenotype pattern exhibited by psychiatric
patients. Such evidence will lead to personalized diagnosis for
each patient and, if appropriate, will also contribute to disease
prognosis.

However, there is yet much work to do in order to (i)
integrate clinical and “omics” data, (ii) integrate the networks
from different “omics” technologies, (iii) complete data analyses
from different levels of information, and (iv) compare different
networks from two or more diseases affecting one individual
to improve the description of his health/disease states. In this
regard, the concept of “gestaltomics” will be developed by a better
understanding of complex Systems Biology.
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