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Editorial: MYC as a disease target
beyond cancer

Jonathan R. Whitfield*

Models of Cancer Therapies Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron
Barcelona Hospital Campus, Barcelona, Spain
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Editorial on the Research Topic
MYC as a disease target beyond cancer

MYC is a highly pleiotropic transcription factor involved in multiple cellular and
developmental processes, but it is most renowned for its role in driving tumorigenesis. Hence,
it is currently subject to intense efforts towards its targeting for the treatment of cancer, andwhile it
was long considered undruggable, there are now 3 direct inhibitors in clinical trials, one of which
recently successfully passed Phase I. There are many existing reviews on its role in cancer and
strategies for its targeting, therefore here we focus on all the other diseases and conditions to which
its inhibition–or activation or overexpression in some cases–could be applied.

There are a significant number of publications linkingMYC to a wide variety of diseases,
some with only preliminary data showing modulated MYC expression in disease models or
patient samples, while others describe inhibition, knock-down or overexpression of MYC to
demonstrate a key role in disease development or progression. As MYC inhibitors advance
in their clinical testing, one can hope that they will soon be applied beyond cancer patients.
It is curious that some of the earliest trials were indeed in a non-oncological setting, using
MYC antisense for the treatment of heart restenosis.

With this intense focus onMYC inhibition in cancer, it is easy to lose track of all the other
diseases in which MYC is key. The objective of this Research Topic was to bring together
reviews and original research papers that link non-oncological pathologies with MYC.

This Research Topic kicks off with a review of the literature linking MYC to various
diseases and conditions beyond cancer (Zacarías-Fluck et al.). This is an overview of MYC and
its multiple physiological functions, which are also described in more detail in an additional
review in this Research Topic by Kumar Jha et al., that extensively discusses the MYC amplifier
model. Our introductory review (Zacarías-Fluck et al.) then describes howMYC often becomes
a central hub used by oncogenic drivers to modulate many cellular processes, and that these
samemultiple and pleiotropic functions ofMYC implicate it in the aetiology of a wide variety of
diseases. These range from conditions of ‘normal development gone wrong’, as in the case of
bone development disorders, to those where mutations in upstream signalling pathways drive
de-regulated MYC expression or activation and the development of a pathological condition.

Then, the Research Topic dives into specific conditions, with reviews on MYC’s role in
regeneration, aging, mitochondrial diseases, obesity, and endometriosis. Indeed, MYC has a
well-known role in regeneration across the animal kingdom, and this is discussed by
Ascanelli et al. along with the potential to activate MYC in non-regenerative tissues for
therapeutic purposes. This is extended toDrosophila in a review by Serras and Bellosta, who
focus on the regenerative process in flies, and the utility of this model for understanding
human tissue repair (Serras and Bellosta).
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MYC in aging is a rather more controversial topic with
seemingly contrasting data between MYC haploinsufficient and
MYC KO models, mentioned in the review by Zacarías-Fluck
et al., and with the MYC KO data discussed at length in an
additional review by Prochownik and Wang.

MYC also plays a role in stem cell renewal, and the MYC-SIRT1
axis is described by Fan and Li to have a part to play both in cancer
and normal embryogenesis, the latter suggesting that MYC could be
a therapeutic target in developmental diseases.

In addition, a perspective piece by Nothnik et al. discusses
MYC’s role in endometriosis, a disease that affects many women,
causing pain and reduced quality of life, and presents some
preliminary data showing that MYC inhibition reduces
endometriotic cell proliferation and viability in vitro.

Another article of the Research Topic sheds light on the
relatively unexplored role of MYC in mitochondrial diseases. In
fact, while the association of MYC upregulation with mitochondrial
dysfunction is quite clear, Purhonen et al. review 2 decades of
literature and the role of MYC in various mitochondrial diseases,
identifying key questions that are still unanswered.

Two articles in the Research Topic discuss obesity. Nevzorova
and Cubero refer to “moonlighting” MYC due to its many jobs
within a cell, and describe mechanisms for the development of
obesity and the implication of MYC in them. Given the rapidly
increasing incidence of obesity–and the subsequent impact on
health and healthcare systems–it is provocative to think that
MYC inhibitors could have a place in its treatment. However, an
original research paper included in this Research Topic suggests that
inhibition of MYC is associated with weight gain. In this article,
knockout of MYC in mouse endothelial cells leads to progressive
increase in body weight during aging, while overexpression of MYC
attenuates diet-induced obesity (Machi et al.). On the other hand,
oral administration of the small molecule MYC inhibitor 10058-F4
to obese mice was previously shown to reduce obesity (Luo et al.,
2021). It appears that further studies with additional obesity models
and MYC inhibitors are still needed to clarify this topic.

Additional original research papers in the Research Topic also
provide new data pointing to a role for MYC in polycystic kidney
disease and neonatal lung disease, as well as to its involvement in the
process of self-renewal, and the control of nucleolar function and the
somatotropic axis. The study by Harafuji et al. for example, relates to
autosomal recessive polycystic kidney disease, a severe hepato-renal
disorder that causes childhood morbidity. The authors show that
MYC is overexpressed in kidneys from disease patients and find an
association between MYC expression levels and renal cyst
development in mouse models. The next step will be to show
that MYC inhibitors can modulate disease progression.

Intra-amniotic inflammation is associated with morbidity at an
even earlier age, causing pre-term births and chronic lung disease of
prematurity. In a research article, Tan et al. use the MYC inhibitor
10058-F4 to treat a model of intra-amniotic inflammation in
pregnant rats caused by LPS. Here, MYC expression is associated

with the intra-amniotic inflammation in neonatal tissues, and
treatment with the MYC inhibitor ameliorates many of the
effects of LPS.

Furthermore, roles of MYC in additional processes may hint at
new disease applications, for example, its control of nucleolar
function could be linked to cancer and ribosomopathies (Manara
et al.), while a role in self-renewal of oesophogeal epithelium basal
cells (Hishida et al.) could link to regeneration after injury or for
repair, as also mentioned above.

Finally, a role in the regulation of the somatotropic axis through
miRNA-mediated IGF1 downregulation suggests that the link
between MYC, aging and several diseases (such as cancer,
cardiovascular disease, diabetes, osteoporosis, and
neurodegeneration) is a convoluted one and requires further
investigation to more clearly define it (Petrashen et al.).

Overall, it is an exciting and optimistic time for cancer researchers
in the MYC inhibitor field, and hopefully clinical success there will
soon lead to the application ofMYC inhibitors in multiple and diverse
diseases. There has so far been far less focus on MYC overexpression
or activation for disease modulation, but as described in the Research
Topic, this may be therapeutic in conditions requiring tissue
regeneration, and as such may be a new challenge for the MYC
field. We are eagerly looking forward to seeing all the research into
MYC making a difference for as many diseases as possible.
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Myc Supports Self-Renewal of Basal
Cells in the Esophageal Epithelium
Tomoaki Hishida1,2, Eric Vazquez-Ferrer1, Yuriko Hishida-Nozaki1, Yuto Takemoto3,
Fumiyuki Hatanaka1, Kei Yoshida3, Javier Prieto1, Sanjeeb Kumar Sahu1†, Yuta Takahashi1,
Pradeep Reddy1, David D. O’Keefe1, Concepcion Rodriguez Esteban1, Paul S. Knoepfler4,
Estrella Nuñez Delicado5, Antoni Castells6, Josep M. Campistol 6, Ryuji Kato3,
Hiroshi Nakagawa7,8 and Juan Carlos Izpisua Belmonte1*†

1Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States, 2Laboratory of Biological
Chemistry, School of Pharmaceutical Sciences, WakayamaMedical University, Wakayama, Japan, 3Department of Basic Medical
Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan, 4Department of Cell Biology and
Human Anatomy, University of California, Davis, Davis, CA, United States, 5Universidad Católica San Antonio de Murcia (UCAM),
Campus de los Jerónimos, Murcia, Spain, 6Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of
Barcelona, Barcelona, Spain, 7Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, Philadelphia,
PA, United States, 8Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States

It is widely believed that cellular senescenceplays a critical role in both aging and cancer, and that
senescence is a fundamental, permanent growth arrest that somatic cells cannot avoid. Herewe
show that Myc plays an important role in self-renewal of esophageal epithelial cells, contributing
to their resistance to cellular senescence. Myc is homogeneously expressed in basal cells of the
esophageal epithelium and Myc positively regulates their self-renewal by maintaining their
undifferentiated state. Indeed, Myc knockout induced a loss of the undifferentiated state of
esophageal epithelial cells resulting in cellular senescence while forced MYC expression
promoted oncogenic cell proliferation. A superoxide scavenger counteracted Myc knockout-
induced senescence, therefore suggesting that a mitochondrial superoxide takes part in
inducing senescence. Taken together, these analyses reveal extremely low levels of cellular
senescence and senescence-associated phenotypes in the esophageal epithelium, as well as a
critical role for Myc in self-renewal of basal cells in this organ. This provides new avenues for
studying and understanding the links between stemness and resistance to cellular senescence.

Keywords: MYC, cancer, senescence, aging, mitochondria highlights

HIGHLIGHTS

• Esophageal epithelia show resistance to senescence in mice.
• c-Myc is homogeneously expressed in basal cells of the esophageal epithelium.
• Myc is required for stemness-associated inhibition of senescent characteristics in basal cells of
the esophageal epithelium.

• Basal cells of the esophageal epithelium have low levels of mitochondrial activity.

INTRODUCTION

Most cells do not proliferate indefinitely, but instead enter cellular senescence, a permanent cell cycle
arrest triggered by excessive rounds of cell division, oncogenic stimuli, or genotoxic stresses
(Kuilman et al., 2010). Senescence is thought to be a fundamental feature of somatic cells, and
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is known to contribute to organismal aging and prevention of
cancer initiation (Hanahan, 2022). However, there are cell-type
specific differences in the induction and effectiveness of
senescence (Lopez-Otin et al., 2013). For example, rodent glia
cells (rat Schwann cells) do not exhibit replicative senescence
in vitro (Mathon et al., 2001), nor do cultured epidermal stem
cells that have been derived from the footpad (Stern and
Bickenbach, 2007; Doles et al., 2012). Thus, some cell types,
such as adult/tissue stem cells and progenitors, show resistance to
senescence. However, it is unknown whether there is tissue in vivo
that can similarly evade senescence.

Here we found that the esophagus did not exhibit aging
features in mice. Forced-expression of MYC induced
oncogenic cell proliferation while MYC knockout reduced the
self-renewal capacity of esophageal epithelial cells, which resulted
in cellular senescence, indicating the importance of MYC in
preserving their self-renewal. It was also suggested that MYC
is necessary for proliferating cells to keep an undifferentiated state
and maintain a low level of mitochondrial superoxide. Taken
together, these data revealed an essential role of MYC on the
stemness of esophageal epithelial cells, which are highly resistant
to senescence.

MATERIALS AND METHODS

Mice
MycMyc-GFP/Myc-GFP (Huang et al., 2008), Sox2CreER/WT (Arnold
et al., 2011), Sox2GFP/WT (Arnold et al., 2011), ROSALSL-GFP/LSL-

GFP (Mao et al., 2001), tetO-MYC (Felsher and Bishop, 1999) and
ROSALSL-rtTA-IRES-GFP/LSL-rtTA-IRES-GFP (Belteki et al., 2005) have
been previously described. LMNAG609G mice were generated by
Carlos López-Otín at the University of Oviedo, Spain and kindly
donated by Brian Kennedy at the Buck Institute. We generated
Myc cdKO mice from Myc cdKO ESCs (Varlakhanova et al.,
2010). Genotyping was performed by using the primer set which
are suggested to be used in The Jackson Laboratory. Genotyping
for Myc was performed as described previously (Varlakhanova
et al., 2010). We used both male and female mice for this study
but the same gender was used for each experiment unless
otherwise stated. To activate Cre in the mice carrying CreER,
TAM, dissolved in corn oil, was given orally (50 mg/ml) to 3- to
12-week-old animals for 3 consecutive days, if not otherwise
stated. Dox was administered in drinking water (0.5 mg/ml),
starting with TAM treatment. All animal experiments were
approved by the Salk Institute for Biological Studies IACUC
and conform to regulatory standards.

Ki67 Immunostaining and Cell
Quantification
Esophagi and small intestines were dissected from young, old and
LMNA G609G mice and washed with PBS, followed by fixation
with 4% paraformaldehyde for 24 h at 4°C. The tissues were then
soaked in 15% sucrose in PBS for at least 12 h and 30% sucrose in
PBS for 24 h before being embedded in optimal cutting
temperature (OCT) (Tissue-Tek) prior to cryo-sectioning. The

prepared sections (8–10 μm) were washed twice in Tris-buffered
saline (TBS, pH = 7.0) to remove OCT followed by antigen
retrieval using HistoVT One (Nacalai tesque) according to
manufacturer’s instructions. Sections were then blocked for
1–2 h in 6% normal horse serum in TBST (TBS + 0, 5%
Triton X-100) and incubated overnight at 4°C with primary
antibodies anti-Ki67 (Cell signaling, 12,202, 1:100). Alexa
Fluor 488-conjugated donkey anti-Rabbit IgG (Molecular
Probe, 1:200) was used as a secondary antibody and nuclei
were stained with 4′6-diamidino-2-phenylindole (DAPI).
Images were acquired using a Zeiss LSM 780 laser-scanning
microscope (Carl Zeiss Jena) at 10×, 20×, and 63×
magnification. For the quantification, several images were
taken at 20× or 63× and underwent the stitching function of
ImageJ (National Institute of Health) to reconstruct the whole
tissue. At least, three sections per tissue from three animals were
used for the analyses. Cells positive for each marker were counted
in a blinded manner using ImageJ. For the esophagus, the
percentage of Ki67+ cells was assessed on nine sections from
three mice of each group (young, old and LMNA G609G mice).
For the small intestine, the number of Ki67+ cells was counted
from at least 16 crypts from three mice of each group.

IHC and SA-βGal Staining
For IHC, tissues were harvested, fixed in 10% neutralized
Formalin for 2 days and then stored in 70% ethanol until
further processing. H&E staining, PAS staining and IHC on
paraffin-section were performed following standard protocols.
The following antibodies were used for IHC: anti-GFP (Abcam,
6673, 1:200; Clontech, JL-8, 1:100); Ki67 (Cell signaling, 12202, 1:
200). SA-βgal staining was performed as previously described
(Debacq-Chainiaux et al., 2009).

RNA Isolation and Quantitative-PCR
Total RNAs were isolated using TRIzol reagent (Invitrogen) and
RNeasy Mini kit (Qiagen) according to the manufacturer’s
instructions. RNA samples were treated with RNase-Free
DNase Set (Qiagen). RT was performed with SuperScript III
(Invitrogen) followed by qPCR using Platinum SYBR Green
quantitative PCR super mix (Invitrogen) in a thermocycler.
The levels of expression of respective genes were normalized
to corresponding GAPDH values or Nat1 values, and the
normalized values were divided by those of the corresponding
standard samples (Young Esophagus for Figures 1D,F; Untreated
(-4OH) samples for Figure 4F; Control samples for
Supplementary Figure S2). Primer sequences are listed in
Supplementary Table S1.

Esophageal Cell Culture
mEPCs were derived as previously described (Kalabis et al., 2008).
Briefly, the esophagi were isolated, opened longitudinally, washed
in PBS followed by Dispase (1 U/ml) for 15–20 min at 37°C. The
opened esophagi were minced with forceps and incubated with
trypsin for 10 min at 37°C. After inactivation of trypsin with FBS,
the cell suspension was filtrated through 100-μm and 40-μm cell
strainers. The obtained cells were centrifuged and re-suspended
in SAGM (LONZA) containing 1 μM A-83-01, 1 μM DMH-1,
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FIGURE 1 | No visible senescence of esophageal epithelial cells expressing pluripotency factors. (A) Representative immunofluorescent pictures of Ki67 (green)
staining and H&E staining in the esophagus and small intestine for young (3 months old), old (22 months old) and LMNA G609G HGPS mouse model (3 months old).
Scale bars, 100 μm. (B) Proliferative index of the esophagus and small intestine. We quantified Ki67+ cells in the esophagus and small intestine from three mice for each
group. Data represent the mean with SD. ns = non-significant, *p < 0.01, **p < 0.001, ***p < 0.0001. (C) SA-βgal staining in the esophagus, small intestine and
kidney for both young (3 months old) and LMNA G609G HGPS mouse models (3 months old). Scale bars, 100 μm. (D) qPCR analysis for aging markers. SI: Small
Intestine. Data represent the mean with SE (n = 3). (E) qPCR analysis for the esophagus and the skin from young and old mice. Krt1 and krt13 were used as specific
keratins for the skin and the esophagus, respectively. Data represent the mean with SE (n = 3). (F)Western blotting for pluripotency factors. Epithelial cells were isolated
from the indicated tissues and cultured for 1 week before cell lysate preparation.
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3 μM CHIR99021 and 10 μM Y-27632, followed by plating on
matrigel-coated plates. To activate CreER or ER-RasV12, the cells
were treated with 0.1 μM 4OH. For cell cycle analysis, EdU-647
was used together with cell-cycle 405 according to manufacture’s
protocol (ThermoFisher). Human primary esophageal epithelial
cells were described in previous papers (Harada et al., 2003;
Takaoka et al., 2004). 10058-F4 (Sigma) was used as a Myc
inhibitor as needed.

Plasmid Constructions and Viral Production
The ORF of ER-RasV12 was amplified from pLNCX2-ER-RasV12

(Addgene, #67844) and subcloned to pMX-IB with In-Fusion
(Clontech). pMX-retroviral plasmids were transfected to PLAT-E
cells using Lipofectamine 3000 (Invitrogen) according to
manufacturer’s instructions. For tetO-MYC-2A-puro, the
amplified ORF of MYC was subcloned to ptetO-2A-puro
lentiviral vector, generated from pTetO-Ngn2-puro (Addgene,
#52047). Viral supernatants were collected around 48 h after
transfection and passed through a 0.45 μm filter to remove
cellular debris and then the supernatants freshly prepared
were incubated for 1 h while spinning at 800 × g, followed by
changing to fresh medium. Two days after infection, the cells
were selected with 20 μM blasticidin or 2 μg/ml puromycin for
6 days.

Nanostring
Differential gene expression profiling was carried out with
purified RNA using the Nanostring nCounter Pan Cancer
Profiling Panel (Nanostring, Seattle, WA) according to
manufacturer’s instructions.

Live-Imaging and Image Analysis
Cell tracking experiments was performed using IncuCyte
imaging system (Essen Bioscience). Images were
automatically acquired from 6-well plates at ×10
magnification every 30 min for 80 h. Raw images were
processed with two types of filter sets according to time
period. For 0–40 h, the filter set 1 for non-confluent cells
were applied as follows: (Step 1) Contrast enhancement by
original source code in R (version 3.1.0) (R Development Core
Team, https://www.r-project.org/). Pixel higher than 140 were
converted into 255. (Step 2) Texture enhancement, (Step 3)
Segmentation, (Step 4) Removal of small objects, and (Step 5)
Fill holes (under area 20) were processed. Then recognized
cellular objects were counted. During this period, individual
cells were recognized sharply for cellular region. However, flat
enlarged cells can only be recognized with their center nuclei
area, and the cell recognition accuracy for their edge was not
sharp. Therefore, during this period, only the total cell counts
were used as measurement data. For the period after 40 h, the
filter set 2 for confluent cells were applied as follows: From Step
1 to Step 3, the same processing was applied as filter set 1. (Step
4) Fill hole (under 20), (Step 5) Erode (2 pixels) were added to
the processed images. Finally the recognized cellular objects
were counted, labeled, and measured for their area size. The
image processing was applied by CL-Quant (Nikon corp.
Tokyo, Japan). To illustrate time-course growth, bar-

whisker plots, and the size distribution in measured cells,
original source code by R was applied.

For the detailed morphological analysis on four conditions
(Control, +Ca, −ADCY, and −ADCY + Ca), the phase contrast
images taken by phase contrast microscopy (OLYMPUS, IX51)
were manually traced to measure the accurate morphology in
both normal and flat enlarging cells. The detailed image
processing is described in Supplementary Note S2.

For SA-βgal positive cell measurement, SA-βgal-stained color
image and phalloidin-stained fluorescent image from the same
FOV by fluorescent microscopy (OLYMPUS, IX51) were
processed by CL-Quant. First, the SA-βgal stained images were
converted into Blue image, and binalized (threshold > 100
intensity). From the binalized image, their stained area was
constructed as a image mask. Second, the phalloidin stained
fluorescent images were binalized (threshold 120), and
remaining intensity = 96 pixels were converted by 255 to
enhance the regional contrast per cells. Then the binalized
images were constructed as the second image mask. These two
image masks were merged, and recognized for cell labeling. In
each cellular object, the SA-βgal stained area, covered by the first
mask, were measured to calculate the SA-βgal positive area per
cells. From the recognized cells, 300 cellular objects were
randomly selected in the data processing, and used for their
distribution analysis. All data analysis was done by original source
code by R.

Mitochondrial Analysis
Isolated, trypsinized cells were incubated with 100 nM TMRM
(ThermoFisher) and 500 nM MitoSpy Green FM (BioLegend) at
37°C for 30 min in PBS containing 0.5% BSA and washed with
PBS once, followed by FACS analysis.

Statistic Analysis
For comparisons, unpaired t test or one-way ANOVA with
Tukey’s post hoc analysis were used with GraphPad Prism 8
unless otherwise stated. Values with p < 0.05 are considered
statistically significant.

RESULTS AND DISCUSSION

A Lack of Senescence in the Esophagus
Recent deep- and micro-sequencing-based mapping of genetic
mutations has revealed that normal esophageal epithelial cells
exhibit age-dependent expansion of mutated clones, as well as
higher levels of mutations than seen with sun-exposed skin cells.
This suggests that esophageal epithelial cells robustly proliferate
and survive long enough to accumulate many somatic mutations
without cellular senescence (Martincorena et al., 2018; Yokoyama
et al., 2019). We have also observed that basal esophageal
epithelial cells continue to proliferate after exposure to
oncogenic insults, namely KrasG12D (Hishida et al., 2019) and
PIK3CAH1047R (data not shown). Based on these data, we
speculated that esophageal epithelial cells may possess a
unique ability to resist senescence. To address this hypothesis,
we analyzed the proliferative capacity of esophageal cells in aged

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 7860314

Hishida et al. Myc Mediates Esophageal Self-Renewal

10

https://www.r-project.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


wild-type (WT) mice (24 months old), and in a murine model of
Hutchinson-Gilford Progeria Syndrome, a human condition that
results in premature aging. These mice carry the c.1827C>T;
G609G mutation in the Lamin A gene, which causes aberrant
splicing and accumulation of a truncated form of Lamin A called
progerin (Osorio et al., 2011). We analyzed the small intestines as
a control. In the small intestinal crypt, the number of cells
expressing Ki67, a marker of proliferation, was reduced in
aged and G609G mice compared with young WT mice
(2 months old). In contrast, age did not affect the number of
Ki67+ cells in the esophagus (Figures 1A,B). Similar results were
obtained using another premature agingmousemodel, PolGmice
(Kujoth et al., 2005) (data not shown). We next analyzed
senescence-associated beta-galactosidase (SA-βgal) activity, a
canonical marker of senescence. Although SA-βgal activity was
detected in the small intestines and kidneys of G609G mice, none
was detected in the esophagus (Figure 1C). Moreover, age-
associated induction of aging-related cyclin-dependent kinase
inhibitors (p16 and p21), a p53-responsible, stress-inducible
gene (GADD45b) and senescence associated secretory
phenotype-related factors (Cxcl7, IL1β, and IL6) were not
observed in the esophagus (Figure 1D). Notably, esophageal
cells expressed pluripotency factors, regardless of the age of
the mouse. Among these factors, SOX2 and NANOG proteins
were quite specific to esophageal cells (Figures 1E,F), consistent
with previous reports (Liu et al., 2013; Piazzolla et al., 2014). As
reported, NANOG protein levels was lower in skin compared to
those in the esophagus although mRNA levels seem differently
regulated, which may reflect the complexity of post-
transcriptional regulations of Nanog (Saunders et al., 2013;
Piazzolla et al., 2014). Taken together, these results indicate
that the esophageal epithelium expresses pluripotency factors
and does not undergo aging-associated senescence in vivo.

The Role of Myc in Self-Renewal of
Esophageal Epithelial Cells In Vitro
We next derived primarymouse esophageal progenitor/basal cells
(mEPCs) to analyze their ability to resist senescence in detail
(Extended Data Supplemenary Figure S1). We optimized culture
conditions based on previous reports (DeWard et al., 2014; Mou
et al., 2016) and found that mEPCs could be homogeneously
cultured on matrigel for > 50 passages (100 days) in SAGM
medium that included A-83-01 (an ALK4/5/7 inhibitor),
DMH-1 (an ALK2 inhibitor), CHIR99021 (a GSK-3β
inhibitor), and Y-27632 (a ROCK inhibitor), hereafter referred
to as ADCY. When cultured in ADCY, mEPCs propagated and
expressed pluripotency factors. Withdrawal of ADCY resulted in
rapid morphological changes and downregulation of markers of
undifferentiation (Sox2, Nanog, and p63, a marker of basal
epithelial cells), and telomere-related factors (mTert and
mTerc), as well as the induction of Involucrin, a
differentiation marker (Extended Data Supplementary Figure
S2). These changes were seen in the presence or absence of Ca2+,
which is known to induce keratinocyte differentiation, while a
combination of Ca2+ addition and ADCY withdrawal
synergistically induced Involucrin. We were able to derive

mEPCs even from 24-month-old mice without any noticeable
difference in derivation efficiency and cell morphology,
compared to those derived from 2-month-old mice. This was
not the case for skin keratinocytes and tongue epithelial cells,
which were difficult to derive from aged mice (Extended Data
Supplementary Figure S3). These results suggest that mEPCs do
not exhibit replicative senescence. However, when challenged
with Ras activation [via the retroviral overexpression of an
activated form of Ras fused to the estrogen receptor (ER:
RasV12) and administration of the ER ligand, 4-
hydroxytamoxifen (4OH)], mEPCs exhibited reduced levels of
proliferation, larger cell size, loose cell-cell contacts, and a more
differentiated state (Extended Data Supplementary Figures
S4A–C). This observation implies that an oncogenic insult can
trigger a senescence program, namely oncogene-induced
senescence (OIS), which is in agreement with a previous
report (Takaoka et al., 2004). The negative impact of Ras
activation on cell proliferation was reversed by partial
inhibition of the MAPK pathway, which was achieved by
treating cells with of 0.01 μM PD0325901, a potent MEK
inhibitor (Bain et al., 2007). Strong inhibition of the MAPK
pathway (by treating cells with 1 μM PD0325901) dramatically
impeded cell proliferation, suggesting that fine-tuning of MAPK,
at least in part, contributes to EPC self-renewal (Extended Data
Supplementary Figure S4D).

To determine whether pluripotency factors play an important
role in mEPC self-renewal, we next manipulated the levels of
Nanog, which was abundantly expressed in the esophagus and
reported to have an oncogenic function in stratified epithelia
(Piazzolla et al., 2014). RNAi-mediated knockdown of Nanog
resulted in the poor propagation of mEPCs (Extended Data
Supplementary Figure S5), as has been seen with Sox2
(DeWard et al., 2014). Thus, pluripotency factors are
important for EPC self-renewal. Taken together, these results
indicate that mEPCs express pluripotency factors and are
deficient for replicative senescence, but are still capable of
protecting themselves from tumor initiation via OIS.

We next sought to understand the mechanism by which
esophageal basal cells avoid replicative senescence. Using a
Myc-GFP knock-in mouse model, we noticed that Myc is
expressed in adult stem cells and progenitor cells associated
with several tissues, including the esophagus and forestomach
(Figure 2A, data not shown). Myc expression was relatively
homogeneous in the basal layer of the esophageal epithelium,
even though it is widely believed that Myc is transiently expressed
during the G1 to S transition (Blackwood et al., 1991) and is
relatively unstable. The MYC protein localizes to human
esophageal basal cells at higher levels than seen in skin cells
[according to the public data set from the Human Protein Atlas
(Uhlen et al., 2015)] (Figure 2B). Myc is known to regulate self-
renewal of pluripotent stem cells (PSCs) (Smith et al., 2010;
Varlakhanova et al., 2010; Hishida et al., 2011). Notably, Myc
depletion was reported to induce a pluripotent dormant state,
indicating that Myc determines cell proliferation and growth
arrest in PSCs. In addition, previous reports showed that c-Myc
inactivation is associated with senescence in some cancer cells
(Wu et al., 2007; Tabor et al., 2014; Alimova et al., 2019).
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FIGURE 2 | Loss-of-function and gain-of-function of Myc in the esophagus. (A) IHC for GFP on paraffin-embedded sections of the esophagus and forestomach
from GFP-Myc Knock-in (KI) mice. Scale bars, 100 μm. Two mice were analyzed. (B) IHC image of MYC staining for the human esophagus and skin. MYC is largely
expressed in esophageal basal layer. The data were kindly provided by the Protein Atlas Project publicly available (www.proteinatlas.org). (C) Schematic representation
of Sox2+ cell-specific Myc conditional double knockout mice, Sox2CreER/WT; cMycFlox/Flox; nMycFlox/Flox; ROSALSL-GFP/WT (Myc cdKO). GFP can be used for lineage
tracing purpose. (D) H&E staining for esophagi from Myc cdKO mice treated with TAM. Two mice were analyzed for each condition. (E) Cell size of esophageal basal
cells. Twomice were used for each condition. Data represent the mean with SE. *p < 0.05, **p < 0.0001. (F)Clonogenic colony-forming assays. After cell isolation, 2,500
live cells were seeded per well in 6-well plate in ADCY medium. Twelve days after seeding, the cells were stained with Leishman’s stain to count the number of colonies.
Each culture was derived from each indicated mice. Left, representative image of each condition. Right, quantification of colony number. Data represent the mean with
SD (n = 3). (G) Schematic representation of Sox2CreER/WT; tetO-MYC; ROSALSL-rtTA-GFP/LSL-Luc mouse. TAM treatment eliminates STOP cassette in front of rtTA-IRES-
GFP in ROSA26 locus, which can activate transgenic MYC expression in a tetracycline- or doxycycline (Dox)-dependent manner. GFP expression allows for lineage
tracing. Themice were collected 10 days after 2-days TAM treatment. Dox was administered to the mice in their drinking water (0.5 mg/ml). (H,I)H&E (H) and IHCs (I) on
paraffin-embedded sections of the indicated tissues corrected from SMPWT/WT. Three mice were analyzed. Scale bars, 100 μm. (J) Inflammation along with tumor
invasion in forestomach. Scale bars, 100 μm.
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Collectively, these results encouraged us to further investigate
Myc’s function in supporting stemness.

To understand Myc’s role in inhibiting replicative senescence
in mEPCs, we combined inducible Myc loss-of-function alleles
[both c-Myc and N-Myc, as they are functionally redundant
(Smith et al., 2010; Varlakhanova et al., 2010)] with Sox2-CreER
(Figure 2C). We then treated Sox2+ cell-specific Myc conditional
double knockout mice [Sox2CreER/WT; cMycFlox/Flox; nMycFlox/Flox

(Myc cdKO)] with tamoxifen (TAM). Treated mice were dead
within 7 days when TAM was administered continuously (data
not shown).We therefore administered TAM for 3 days, collected
esophagi, and performed H&E staining (Figure 2D). Esophageal
basal cells were more sparsely larger in TAM-treated mice
compared with untreated controls (Figure 2E and Extended
data Supplementary Figure S6), which may reflect the loss of
undifferentiated state as stated below. Further detailed analysis
may provide deeper insight into contribution of Myc to
differentiation and loss of stemness. To test whether Myc
deletion affects self-renewal, we performed clonogenic colony-
forming assays (Figure 2F). Only a few colonies were observed
following Myc deletion, unlike that seen with controls, indicating
that Myc is important for EPC self-renewal. We next examined
whether Myc overexpression enhances mEPC proliferation,
leading to tumors. To do so, we generated Sox2CreER/WT; tetO-
MYC; ROSALSL-rtTA-GFP/LSL-Luc mice (Figure 2G) and treated
them with TAM for 2 days and doxycycline (Dox, a
tetracycline derivative) for 10 days, resulting in overexpression
ofMYC in Sox2+ cells. GFP was used to labelMYC overexpressing
cells in this mouse model. Ten days following Dox treatment, we
observed the proliferation of GFP+ cells with abnormal
morphologies in the esophagus and forestomach (Figures
2H,I). Invasive tumors were observed in the forestomach, with
these invasive regions containing inflammatory cells, as assessed
by H&E staining and localization of CD45, a marker of
inflammatory cells (Figure 2J). An oncogenic role for Myc is
also supported by the Oncoprint plot generated by cBioPortal
(Cerami et al., 2012; Gao et al., 2013) (https://www.cbioportal.
org/) from the Cancer Genome Atlas (TCGA), which indicates
that MYC is frequently amplified (27%) in esophageal cancers
(Extended data Supplementary Figure S7). Taken together, these
results indicate that Myc is required for mEPC self-renewal while
overexpression of Myc results in tumor formation.

The Role of Myc in Self-Renewal of
Esophageal Epithelial Cells In Vitro
We next sought to understand Myc’s role in EPC self-renewal
in more detail by deriving mEPCs from Myc cdKO mice. We
confirmed that 4OH treatment induced recombination at both
the c-myc and N-myc loci, effectively knocking out both Myc
genes (Figures 3A,E,F). Live-imaging experiments using the
IncuCyte system revealed that 4OH-treated cells showed less
proliferation (Figure 3B). As observed in vivo, enlarged cells
(>1,000 μm2) also appeared and became more prevalent after
several rounds of cell division (Figures 3C,E and Extended
data Supplementary Figure S8). Enlarged cells were largely
positive for SA-βgal staining (Figures 3D,F) and most of them

could not undergo cell division (Extended Data
Supplementary Figure S9). Western blotting revealed
decreased levels of pluripotency factors, such as Sox2 and
Nanog, whereas p63 levels were not affected (Figure 3G). We
did not detect an accumulation of p53 protein, nor an increase
in Caspase-3 cleavage, implying that apoptosis was not
induced by Myc deletion. Rather, cyclin-dependent kinase
inhibitors, as well as Cyclin D and E, were upregulated,
whereas Cyclin A and B were downregulated (Figure 3H),
as assessed by gene expression profiling using Nanostring
technology. These analyses also showed that Myc deletion
affected genes associated with MAPK and PI3K (Extended
Data Supplementary Figure S10). In agreement with the
dysregulation of cell cycle-associated genes, cell cycle
analysis revealed fewer cells in S-phase and more
endoreplication (Figure 3G), which is consistent with the
emergence of multinuclear cells (Figure 3C). These
multinuclear cells were not able to undergo cell division, as
revealed by live-imaging (data not shown). Endoreplication
with an enlarged morphology is typical of differentiated
keratinocytes (Gandarillas et al., 2000). Multinuclear
enlarged cells were also found in the absence of 4OH
treatment, albeit in small numbers, and may therefore
reflect spontaneous differentiation. Thus, the emergence of
these cells cannot be attributed to Myc knockout, but may
result from loss of an undifferentiated state after 4OH
treatment. The dependence on Myc for self-renewal was
also observed in human esophageal epithelial cell lines
(EPC1 and EPC2) (Extended Data Supplementary Figure
S11). Taken together, these results indicate that Myc is
required for EPC self-renewal associated with the resistance
to senescence.

The Role of Mitochondria in Esophageal
Cells on Suppressing Cellular Senescence
We next investigated the mitochondrial status within esophageal
cells, as mitochondria play important roles in the induction of
senescence (Gallage and Gil, 2016). Esophageal epithelial cells
had lower membrane potential than skin epidermal epithelial
cells (Extended Data Supplementary Figure S12), as assessed
using TMRM, an indicator of membrane-potential-dependent
mitochondria mass. This result encouraged us to analyze
mitochondria in mEPCs. FACS analysis using MitoSpy and
TMRM (for membrane potential-independent and -dependent
mitochondria mass, respectively), showed that mEPCs had less
mitochondrial membrane potential compared to Myc-deleted or
Ca2+-treated cells (Figure 4A and Extended Data Supplementary
Figure S13). Increases in membrane potential are known to
produce reactive oxygen species and therefore we assessed
mitochondrial superoxide levels following 4OH treatment.
4OH treatment increased mitochondrial superoxides, as
assessed by MitoSox indicator (Figure 4B). Importantly,
Mitotempo, a mitochondria-targeted antioxidant, reduced the
number of SA-βgal positive cells, and resulted in smaller cells,
while it did not affect total cell number (Figures 4C,D).
Mitotempo did not affect loss of the undifferentiated state
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FIGURE 3 | Requirement of Myc for preserving self-renewal of esophageal epithelial cells. (A) Genotyping to confirm Myc knockout. The cells were treated with
0.1 μM 4OH for 3 days and lysed for genomic DNA purification. PCR reactions were performed using purified genomic DNA for WT, Flox and deleted (Δ) alleles of c-myc
and N-Myc. (B) Live-imaging of Myc cdKO mEPCs. Left, image acquisition scheme. Right, image-based cell count. (C) Image of untreated and the Myc cdKO mEPCs
treated with 4OH for 9 days. White arrow indicates multinuclear cells. (D) SA-βgal staining in Myc cdKO mEPCs treated with 4OH for 9 days. Data represent the
meanwith SE (n = 6). *p < 0.0001. (E)Quantification of total cell number in (D). Data represent themeanwith SE (n = 6). *p < 0.0001. (F)Quantification of SA-βgal-positive
cells in (D). Data represent the mean with SE (n = 6). *p < 0.0001. (G)Western blotting for Myc cdKO mEPCs treated with 4OH for 6 days. (H) Nanostring-based gene
expression analysis. Myc cdKO mEPCs were treated with 4OH and samples were collected at the indicated time-points. RNAs were isolated and subjected to
Nanostring RNA detection. (I) Cell cycle analysis of Myc cdKO mEPCs by FACS.
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FIGURE 4 |Mitochondrial analysis in Myc cdKO mEPCs. (A)Mitochondrial quantity and activity in Myc cdKO mEPCs treated for 2 days. Data represent the mean
with SD (n = 3). *p < 0.0001. (B) Mitochondrial superoxide levels in 4OH-treaed cells. Data represent the mean with SD (n = 3). *p < 0.0001. (C) Rescue effect of
Mitotempo. Left, representative image of each condition. Right, quantification of total cell number. Data represent the mean with SE. ns = non-significant, *p < 0.05, **p <
0.0001. (D) Rescue effect of Mitotempo on cell size. *p < 0.0001. (E) Histogram of the cell size distribution. (F) qPCR analysis for Mitotempo-rescued cells. Data
represent the mean with SD (n = 3). (G) Proposed model of Myc function supporting self-renewal of the esophageal basal cells.
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(Figure 4E), suggesting that an increase in mitochondrial
membrane potential may be a consequence of the loss of an
undifferentiated state, while helping to induce cellular senescence.

Senescence was thought to be a fundamental cellular process;
however it has gradually been recognized that susceptibility to
senescence is cell-type specific and indeed stem cells and
progenitors are highly resistant to senescence. Our findings
have revealed that esophageal epithelia are deficient for
replicative senescence in vivo. Epithelial stem cells themselves
are known to be resistant to aging; however skin epithelial stem
cells do exhibit senescence in aged mice. Thus, esophageal
epithelial cells may possess distinct mechanisms of self-
renewal, which needs to be clarified. A previous report showed
that human esophageal epithelial cells do not exhibit telomere
shortening during aging, partly because of telomerase activity
(Takubo et al., 1999). This supports our finding of the resistance
to senescence in the esophageal epithelium. It is tempting to
speculate that esophageal cells may have evolved characteristics of
“perpetual youth” because they are turned over rapidly and must
face damage and stress caused by continuous exposure to food
and drink.

Of interest, Myc is homogeneously expressed in esophageal
basal cells. This is a unique feature because Myc expression
largely depends on the cell-cycle phase (Blackwood et al.,
1991). Similar to MYC, Sox2 and Nanog are also expressed
in esophageal epithelial cells, as reported (Liu et al., 2013;
Piazzolla et al., 2014). These pluripotency factors might be key
to sustaining the negligible senescence feature of esophageal
epithelial cells. Indeed, Sox2 deletion lost self-renewing
propensity (DeWard et al., 2014). It needs to be elucidated
how MYC expression is homogenously sustained in basal cells
of the esophageal epithelium.

Mechanistically, Myc inhibited senescence in the
esophagus, and thereby functions as a double-edged sword,
both inhibiting senescence and promoting tumorigenesis when
overexpressed. This study is the first to show the physiological
role of Myc (and Nanog) on preserving stemness in the
esophageal epithelia by loss-of-function studies, presumably
by working cooperatively with other pluripotency factors in
this physiological context (Figure 4G), thus revealing a link
between stemness and cellular aging.
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The SIRT1-c-Myc axis in
regulation of stem cells

Wei Fan* and Xiaoling Li*

Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle
Park, Durham, NC, United States

SIRT1 is the most conserved mammalian NAD+-dependent protein deacetylase.
Through deacetylation of transcriptional factors and co-factors, this protein
modification enzyme is critically involved in metabolic and epigenetic
regulation of stem cells, which is functionally important in maintaining their
pluripotency and regulating their differentiation. C-Myc, a key member of Myc
proton-oncogene family, is a pivotal factor for transcriptional regulation of genes
that control acquisition and maintenance of stemness. Previous cancer research
has revealed an intriguing positive feedback loop between SIRT1 and c-Myc that is
crucial in tumorigenesis. Recent literature has uncovered important functions of
this axis in regulation of maintenance and differentiation of stem cells, including
pluripotent stem cells and cancer stem cells. This review highlights recent
advances of the SIRT1-c-Myc axis in stem cells.

KEYWORDS

c-Myc, SIRT1, stem cells, deacetylation, pluripotency, differentiation, c-Myc/Max
heterodimer, positive feedback loop

1 Introduction

Stem cells, including pluripotent stem cells (PSCs), adult stem cells (ASCs), and cancer
stem cells (CSCs), possess the ability to self-renew and to differentiate to give rise to all cell
types in organs, tissues, or tumors. Embryonic stem cells (ESCs) and induced pluripotent
stem cell (iPSCs) are two types of PSCs. ESCs are derived from the inner cell mass of a
blastocyst (early stage of preimplantation embryos). iPSCs can be induced in vitro from adult
somatic cells, such as murine embryonic fibroblasts (MEFs) or human somatic cells, through
simultaneous overexpression of core pluripotent factors including OCT4, SOX2, KLF4, and
c-Myc (Takahashi and Yamanaka, 2006; Smith and Dalton, 2010). These cells can be
unlimitedly expanded in vitro while maintaining their pluripotency indefinitely.

C-Myc is one of the key pluripotent factors. C-Myc was firstly discovered as an oncogene
that belongs to the Myc family of proton-oncoproteins. This family of proton-oncoproteins
contains three main transcription factors, c-Myc, N-Myc, and L-Myc. They are basic-helix-
loop-helix/leucine zipper (bHLH) DNA binding proteins and are known to be
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fundamentally important for a number of cellular activities, such as
metabolism, apoptosis, proliferation and differentiation
(Prendergast, 1999; Meyer and Penn, 2008; Dang, 2013; Bretones
et al., 2015). In healthy cells, maintaining an appropriate abundance
and activity of MYC proteins is critical for these cellular programs.
Aberrations or upregulation of MYC-related pathways by alternate
mechanisms are observed in the vast majority of cancers
(Dhanasekaran et al., 2021). Specifically, dysregulations of MYC
proteins are associated with 70% of human cancers, and a wealth of
evidence suggests that aberrantly expressed MYC proteins are
closely related with both tumor initiation and maintenance
(Llombart and Mansour, 2022). As the first member discovered
in Myc family, c-Myc contributes to the genesis of many human
cancers and is associated with alteration of cellular metabolism
(Dang et al., 2009). Mechanistically, c-Myc controls global gene
expression, especially genes involved in the biogenesis of ribosomes
and mitochondria. These actions in turn impact cell proliferation,
differentiation, cell cycle, apoptosis, as wells as metabolism of
glucose and glutamine in cancer cells (Dang et al., 2009). In
PSCs, c-Myc also acts as a transcriptional factor to regulate
several thousand genes involved in cell reprogramming as well as
maintenance and establishment of the pluripotent state (Chappell
and Dalton, 2013). Additionally, c-Myc is important in
embryogenesis. Its expression is maintained at the highest level
during embryonic stage, declines over development, and eventually
stays relatively low in mature organs (Elbadawy et al., 2019).

The activation of c-Myc is modulated by post-translational
modifications, such as phosphorylation, de/acetylation and
ubiquitination (Gregory and Hann, 2000; Faiola et al., 2005). For
instance, c-Myc is acetylated by HATs (histone acetyltransferase)
and its acetylation status has a complex impact on its protein
stability and subsequent transcriptional activity (Faiola et al.,
2005). SIRT1, a highly conserved nicotinamide adenosine
dinucleotide (NAD+) dependent class III histone deacetylase, is
able to interact with and deacetylate c-Myc in cancer cells, which
in turn increase its stability and activity (Mao et al., 2011; Menssen
et al., 2012).

SIRT1 is the most conserved mammalian member of the Silent
Information Regulator 2 (Sir2) family known as sirtuins (Calvanese
et al., 2010; Vassilopoulos et al., 2011). The deacetylation activity of
sirtuins is strictly dependent on NAD+, a cofactor for hundreds of
metabolic reactions in all cell types. Sirtuins deacetylate target
proteins by transferring a wide range of lipid acyl-groups, such
as acetyl, succinyl, malonyl, glutaryl, or long-chain acyl-groups,
from their protein substrates to the ADP-ribose moiety of NAD+(He
et al., 2012; Choudhary et al., 2014; Wagner and Hirschey, 2014;
Imai and Guarente, 2016). This exclusive NAD+ requirement makes
SIRT1 an important cellular metabolic sensor and regulator. It can
sense the alteration of cellular energy status to modulate the
functions of a wide range of protein substrates, including
transcription factors and co-factors, histones, metabolic enzymes,
and cell membrane proteins (Fang et al., 2019).

SIRT1 is highly expressed in both mouse ESCs (mESCs) and
human ESCs (hESCs) (Calvanese et al., 2010; Vassilopoulos et al.,
2011; Tang et al., 2017). Recent studies have shown that through
deacetylation of transcription factors and co-factors, particularly
c-Myc, SIRT1 plays important roles in normal embryogenesis and
mouse embryonic stem cell pluripotency maintenance (Tang et al.,

2017; Fan et al., 2021). Intriguingly, activation of c-Myc can enhance
expression, stability, and activation of SIRT1. SIRT1 and c-Myc
thereby form a positive feedback loop for regulation of
tumorigenesis (Menssen et al., 2012). This review article
summarizes the latest knowledges on the SIRT1-c-Myc axis in
regulation of acquisition and maintenance of stemness, the
capability of self-renewal potential and multi-lineage
differentiation, differentiation of stem cells, and embryogenesis.

2 C-Myc is critical for the self-renewal
and pluripotency of ESCs and normal
embryogenesis

C-Myc is a critical regulator of normal embryogenesis in mice.
Early studies showed that mouse embryos derived from the
homozygous c-myc mutant mESCs display the embryonic
lethality between 9.5 and 10.5 days of gestation. The homozygous
N-myc mutant mESCs derived mouse embryos are also embryonic
lethal at around 11.5 days of gestation. Both c-myc and N-myc
mutant embryos have severe multi-organ development defects
(Yoshida, 2018). In mESCs, although neither c-myc nor N-myc is
required for their maintenance and functions, mESCs with c-myc
and N-myc genes simultaneously knocked out exhibit severe
disruption in their self-renewal and pluripotency. These cells
have reduced survival, along with enhanced differentiation
(Varlakhanova et al., 2010). Consistently, chimeric embryos
generated by injection of c-myc and N-myc doubly KO mESCs
most often completely fail to develop or, in rare cases, survive but
with severe defects (Varlakhanova et al., 2010). Therefore, c-myc and
N-myc together are important in maintaining the pluripotency of
mESCs by suppressing early stage differentiation (Yoshida, 2018).

At the molecular level, c-Myc is important for maintaining self-
renewal and pluripotency of mESCs by interacting with leukemia
inhibitory factor (LIF)/Signal transducer and activator of
transcription 3 (STAT3) signal pathway (Cartwright et al., 2005).
Specifically, LIF actives c-Myc via two mechanisms (Figure 1):
elevates the transcription of c-myc through the Janus kinase
(JAK)-STAT3 pathway and prevents GSK3β-mediated
phosphorylation of c-Myc T58 and subsequent degradation
(Cartwright et al., 2005). Moreover, the stability of c-Myc is
sensitive to growth factors such as fibroblast growth factor 4
(FGF-4), which activates extracellular signal-regulated kinase
(ERK1/2), a mitogen-activated protein kinase (MAPK). ERK
phosphorylates c-Myc at Ser 62, leading to its stabilization (Sears
et al., 2000; Lee et al., 2008; Ying et al., 2008). The phosphorylated
c-Myc then interacts with Myc-associated protein X (Max) to form a
heterodimer complex. This complex then binds to the “E-box”
sequence in the target gene promoter region, thereby activating
or repressing the transcription of target genes (Yoshida, 2018).
Importantly, the c-Myc/Max heterodimer complex acts as a
central node of the regulatory network which prevents loss of
stemness of mESCs and subsequent apoptosis (Figure 1). Firstly,
this complex inhibits the p-ERK, which forms a negative feedback
loop to prevent the MARK signaling induced loss of stemness
(Hishida et al., 2011). Secondly the c-Myc/Max complex can
directly suppress expression of primitive endoderm master
regulator, GATA6, to maintain stemness (Smith et al., 2010).
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Consistently, depletion of Max gene in mESCs results in loss of the
undifferentiated state, upregulation of linage markers, and induction
of apoptosis/death with Caspase-3 activation (Hishida et al., 2011).
All these are primarily caused by activation of MAPK signaling,
because inhibiting MAPK kinase signaling significantly blocks the
decline of pluripotency genes and eliminates differentiated cells
(Hishida et al., 2011).

3 SIRT1 regulates stem cell
maintenance and embryogenesis at
multiple levels

SIRT1 is highly expressed in the pre-implantation embryos and
ESCs compared with adult tissues/cells (Tang et al., 2017). It plays an
important role in maintaining normal embryogenesis and animal
development. Mice with germline deletion of Sirt1 display severe
development defects, such as neonatal lethality, defective germ cell
differentiation, developmental defects of the retina and heart, bone
developmental delay, and intrauterine growth retardation (Cheng
et al., 2003; McBurney et al., 2003; Wang et al., 2008; Tang et al.,
2014; Liu et al., 2017).

Accumulating evidences indicate that SIRT1 regulates
embryogenesis, animal development, and ESC pluripotency
maintenance through multilevel mechanisms, which strictly rely
on its protein deacetylation activity (Fang et al., 2019). The
deacetylation substrates of SIRT1 in stem cells include a key
component of core pluripotency network OCT4, tumor repressor
p53, histones, and epigenetic regulator DNA methyltransferase 3-
like (DNMT3L). For instance, it has been shown that SIRT1-
mediated deacetylation of OCT4 is required to maintain the
naïve state of mESCs, whereas SIRT1 reduction-induced
acetylation of OCT4 leads to naïve-to-primed transition (Zhang
et al., 2014; Williams et al., 2016). SIRT1 also modulates DNA
methylation in stem cells through antagonizing Dnmt3l
transcription and protein stability by deacetylation of histones
and DNMT3L itself (transcriptionally and post-transcriptionally)
(Heo et al., 2017). These actions of SIRT1 control the expression of
imprinted and germline genes and the differentiation potential of
mESCs, which are important in maintaining the normal
neurogenesis and spermatogenesis (Heo et al., 2017). Moreover,
SIRT1 represses the transcription of differentiation genes in ESCs
through direct deacetylation of histones. Consequently, the
reduction of SIRT1 reactivates those development genes during

FIGURE 1
C-Myc is critical for the self-renewal and pluripotency of ESCs. LIF promotes the transcription of c-myc through JAK-STAT3 pathway and prevents
GSK3β-mediated phosphorylation of c-Myc T58 and subsequent degradation. In parallel LIF and FGF4 activate the ERK1/2 signaling cascade, resulting in
phosphorylation of c-Myc at S62. The phosphorylation enhances the stability of c-Myc, thereby promoting its interaction with Max and the formation of
c-Myc/Max heterodimer complex. The c-Myc/Max complex in turn prevents loss of stemness of mESCs by feedback inhibition of p-ERK and
suppression of GATA6 and suppresses subsequent apoptosis. Figures were created using images downloaded and adapted from Service Medical ART:
SMART (https://smart.servier.com/image-set-download/). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported
License (https://creativecommons.org/licenses/by/3.0/).”
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embryo developments (Calvanese et al., 2010). Furthermore,
SIRT1 suppresses retinoic acid receptor (RAR)-mediated
activation of differentiation genes in mESCs by deacetylation of a
cellular retinoic acid binding protein II (CRABPII). Deacetylation
recycles CRABPII from the nucleus out to the cytosol, thereby
terminating the retinoic acid signaling (Tang et al., 2014).
Additionally, SIRT1 is important to maintain healthy pluripotent
ESCs. In response to endogenous reactive oxygen species (ROS),
SIRT1 deacetylates p53 and promotes its mitochondrial
translocation from the nucleus. This action of SIRT1 sensitizes
mESCs to mitochondrial p53-induced apoptosis while inhibiting
nuclear p53-mediated suppression of Nanog expression (Han et al.,
2008). Together, by deacetylation of key regulators, SIRT1 acts as a
pivotal regulator to orchestrate metabolic and epigenetic signal
pathways to maintain pluripotent ESCs and normal embryogenesis.

4 The SIRT1-c-Myc feedback loop in
regulation of tumorigenesis in cancer
cells

The link between SIRT1 and c-Myc was first observed in
cancer cells. It has been previously shown that both c-Myc and
SIRT1 are highly elevated in major types of cancer cells, where
c-Myc may elicit apoptosis or premature senescence through
p53-dependent pathway (Vafa et al., 2002; Dominguez-Sola et al.,
2007; Menssen et al., 2007; Campaner et al., 2010). Since SIRT1 is
known to inhibit p53 through deacetylation (Luo et al., 2001;
Vaziri et al., 2001; Langley et al., 2002), SIRT1 may regulate
c-Myc activation through p53. Subsequent studies revealed that
SIRT1 could directly activate the transactivation activity of
c-Myc. To activate the transcription of its target genes, c-Myc
needs to form a heterodimer with Max to recognize the E-box
sequence in the target promoters (Yoshida, 2018; Singh et al.,
2022). Mao et al. (2011) showed that SIRT1 binds to and
deacetylates the C-terminal bHLH-ZIP motif containing
region of c-Myc, which is directly involved in the formation of
c-Myc/Max heterodimer. Deacetylation of c-Myc by
SIRT1 increases its binding affinity to Max, presumably due to
deacetylation induced conformation changes. The enhanced
c-Myc/Max dimerization consequently facilitates the
transcription of c-Myc target genes, such as human telomerase
reverse transcriptase (hTERT), cyclinD2 (CCND2) and Lactate
Dehydrogenase A (LDHA), thereby promoting cell proliferation
(Mao et al., 2011). Deacetylation of c-Myc by SIRT1 also affects
its stability in immortalized or cancer cells. Previous reports have
shown that acetylation of c-Myc by PCAF and TIP60 inhibits its
ubiquitination and subsequently increases its stability (Vervoorts
et al., 2003; Patel et al., 2004). Consistently, Yuan et al. (2009)
reported that SIRT1 deacetylates c-Myc at K323 and decreases its
stability in immortalized cells. However, Menssen et al. (2012)
reported that deacetylation of c-Myc by SIRT1 increases its
stability and enhances its transcriptional activity. C-Myc can
be conjugated with both lysine-48 (K48)- and lysine-63 (K63)-
linked polyubiquitin chains, and K63-linked ubiquitination of
c-Myc does not lead to its degradation. Instead, it is required for
recruitment of the coactivator p300, transactivation of multiple
target genes, and induction of cell proliferation by c-Myc

(Adhikary et al., 2005). Menssen et al. (2012) showed that
SIRT1-mediated deacetylation increases the conjugation of
K63-linked ubiquitin chains to c-Myc, which in turn stabilizes
c-Myc by competing with K48-likned degradative ubiquitination.
The reasons for the discrepancies between studies of Yuan et al.
(2009) and Menssen et al. (2012) are still not completely clear.

Conversely, c-Myc has also been reported to enhance the activity
of SIRT1 through several different mechanisms. Firstly, c-Myc
increases the NAD+/NADH ratio by transcriptional activation of
nicotinamide-phosphoribosyltransferase (NAMPT), the rate-
limiting enzyme of the amidated NAD+ salvage pathway
(Menssen et al., 2012). Menssen et al. (2012) showed that the
NAMPT promoter contains “E-box” binding motifs of c-Myc in
the vicinity of the transcription start site (TSS). Activation of c-Myc
transcriptionally increases the mRNA levels of NAMPT, which
elevates cellular NAD+ salvage and subsequently promotes the
activity of SIRT1. Secondly, c-Myc can enhance the activity of
SIRT1 by sequestering its inhibitor deleted in breast cancer 1
(DBC1) (Menssen et al., 2012). DBC1 binds to the active site of
SIRT1 and inhibits SIRT1–substrate interaction (Kim et al., 2008;
Zhao et al., 2008). c-Myc also interacts with DBC1, which protects
SIRT1 from interaction with DBC1, resulting in reduced inhibition
of SIRT1 (Koch et al., 2007; Menssen et al., 2012). Finally, c-Myc can
directly binds to the conserved “E-box” DNA binding motif on the
Sirt1 promoter and induces its transcription (Yuan et al., 2009).
Interestingly, this transcriptional activation can be inhibited by p53,
as p53 shares the response element with c-Myc and blocks the c-Myc
recruitment on the Sirt1 promoter (Yuan et al., 2017).

Collectively, in cancer cells, SIRT1 and c-Myc could form a
positive feedback loop, in which activation of c-Myc increases the
expression and activity of SIRT1 to deacetylate c-Myc. Deacetylation
of c-Myc increases its stability and transactivation activity (Figure 2).
This axis of SIRT1-c-Myc positive feedback may orchestrate cellular
response to endogenous or exogenous stimulations.

5 The SIRT-c-Myc axis is important in
metabolic and epigenetic regulation of
mESCs and mouse embryonic
development

Given the importance of SIRT1 and c-Myc in regulation of stem
cell self-renewal, pluripotency, and differentiation, it is not
surprising that the SIRT1-c-Myc axis revealed in cancer research
is also functionally important in stem cell biology and animal
embryonic development.

The stemness of PSCs, including ESCs, is sustained by their
specific metabolic programs and epigenetic status (Folmes et al.,
2012; Zhang et al., 2012; Ito and Suda, 2014; Teslaa and Teitell,
2015). These special metabolic programs, including high glycolytic
flux under aerobic condition, consumption of high levels of
exogenous glutamine, as well as high dependence on one-carbon
catabolism, are required to produce precursors and ATP for the high
proliferation of PSCs. Moreover, the intermediate products of these
metabolic processes, such as acetyl-CoA, NAD+, α-ketoglutarate,
and S-adenosylmethionine (SAM), can also act as cofactor or co-
substrates of enzymes which participate epigenic regulation of
chromatin and gene expression in PSCs (Takahashi and
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Yamanaka, 2006; Wellen et al., 2009; Cai et al., 2011; Xu et al., 2011;
Shyh-Chang et al., 2013; Moussaieff et al., 2015). Consequently, the
distinctive metabolic programs in PSCs are directly linked to their
unique epigenetics and gene expression profiles, thereby strongly
influencing the self-renewal and pluripotency of PSCs (Folmes et al.,
2011; Carey et al., 2015).

One metabolic pathway that is critically involved in epigenetic
regulation of stem cell pluripotency is methionine metabolism. As a
sulfur-containing essential amino acid, methionine is a key
component of dietary proteins important for protein synthesis,
sulfur metabolism, epigenetic modification, antioxidant defense,
and signaling (Mato et al., 2008). Specifically, SAM, the methyl-
donor for histone methyltransferases, is produced from methionine
by oligomeric enzyme methionine adenosyltransferase (MAT2) in
ESCs (Halim et al., 1999; Shiraki et al., 2014). It has been shown that
altered methionine or threonine metabolism induce the fluctuation
of intracellular SAM. Such fluctuation influences histone
methylation in both mESCs and hESCs, thereby modulating their
fate (Shyh-Chang et al., 2013; Shiraki et al., 2014). Through a large
scale unbiased metabolomic analysis of SIRT1 KO and control WT
mESCs, Tang et al. (2017) discovered that one of primary metabolic
defects in SIRT1 deficient mESCs is methionine metabolism,
particularly the conversion of methionine to SAM. As a result,
SIRT1 deficient mESCs have a reduced cellular SAM abundance and
decreased histone methylation levels. Particularly, the levels of

H3K4me3, a histone activation mark that is sensitive to
methionine deprivation/restriction, is significantly reduced in
SIRT1 KO mESCs. This reduction is associated with a dramatic
alteration of global gene expression profiles, including reduced
expression of a number of pluripotent genes (e.g., Nanog). It is
also associated with a hypersensitivity to methionine depletion/
restriction-induced differentiation and apoptosis. Mechanistically,
Tang et al. (2017) showed that SIRT1 promotes SAM production in
part through Myc-mediated transcriptional activation of Mat2a,
which encodes the catalytic subunit of Mat2. Deletion of SIRT1 leads
to hyperacetylation of both N- and c-Myc proteins.
Hyperacetylation in turn leads to instability of c-Myc and
reduced recruitment of both factors to the promoter of Mat2,
and thereby reducing expression of this enzyme (Figure 3). In
support of this notion, adding back MAT2A rescues the
reduction of H3K4m3 and Nanog mRNA, enhances
differentiation, and increases apoptosis upon methionine
restriction in SIRT1 KO mESCs. Therefore, the epigenetic
homeostasis of mESCs, comprising the methylation status of core
histone protein (H3K4me3) and profiles of gene expression, is
maintained by the SIRT1-c-Myc axis through regulation of
methionine metabolism. Importantly, SIRT1 KO mouse embryos
have reduced Mat2a expression and histone methylation and are
sensitive to maternal methionine restriction-induced lethality.
Conversely, maternal methionine supplementation increases the

FIGURE 2
The SIRT1-c-Myc positive feedback loop in cancer cells. SIRT1-mediated deacetylation of c-Myc increases its binding affinity to Max. Deacetylation
of c-Myc by SIRT1 also increases K63-linked polyubiquitination while repelling degradative K48-linked polyubiquitination, enhancing the stability of
c-Myc and increasing recruitment of p300. Both mechanisms facilitate the transactivation of c-Myc target genes, including genes involved in
metabolism, cell cycle and cell proliferation. Conversely, c-Myc also enhances the activity of SIRT1. Firstly, c-Myc increases the cellular NAD+ by
transcriptional activation of NAMPT, the rate-limiting enzyme in the amidated NAD+ salvage pathway. Increased NAD+ enhances the deacetylase activity
of SIRT1. Secondly, c-Myc sequesters the SIRT1 inhibitor DBC1, thereby increasing SIRT1-substrate interaction. Finally, c-Myc directly increases
the transcription of SIRT in p53 deficient cells. Figures were created using images downloaded and adapted from Service Medical ART: SMART
(https://smart.servier.com/image-set-download/). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported
License (https://creativecommons.org/licenses/by/3.0/).”
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survival of SIRT1 KO newborn mice. All those observations suggest
that the defective methionine metabolism is partially responsible for
SIRT1 deficiency-induced developmental defects in mice (Tang
et al., 2017).

Metabolomic analysis revealed that SIRT1 deficient mESCs also
exhibit dramatic accumulation of sphingomyelin independently of the
defects in methionine metabolism as previously reported by Tang
et al. (2017). Sphingomyelin is a type of sphingolipids, which is a class
of natural lipids enriched in central nervous system (Merrill et al.,
2007; Chen et al., 2010; Rao et al., 2013). In addition to be main
structural components of cell membrane, sphingolipids act as
important signaling molecules controlling many cellular events
such cell growth, differentiation, and apoptosis (Hannun and
Obeid, 2008; van Meer et al., 2008). The significance of
sphingolipids for human health is best demonstrated by the
observation that many neurodegenerative diseases, such as
Niemann-Pick’s, Alzheimer’s, and Parkinson’s, are associated with
defects in sphingolipids degradation enzymes and impaired
sphingolipid metabolism (Brice and Cowart, 2011; Czubowicz
et al., 2019). Particularly, sphingolipids are bioactive lipids critical
for survival and differentiation of stem cells (Bieberich, 2008). Fan
et al. confirmed that different SIRT1 deficient mESC lines have
significantly increased levels of sphingomyelin, primarily due to a

marked reduction of sphingomyelin phosphodiesterase acid like 3B
(SMPDL3B) (Fan et al., 2021). SMPDL3B is a GPI-anchored plasma
membrane bound sphingomyelin phosphodiesterase that degrades
sphingomyelin into ceramide. Utilizing ChIP-qPCR assay, promoter
analysis, luciferase reporter assay, and sgRNA/dCas9-mediated in situ
gene expression perturbation, they further found that the Smpdl3b
promoter is located within a bivalent chromatin domain targeted by
c-Myc and EZH2, a H3K27me3 transferase. SIRT1 actively modulates
this bivalent domain, primarily through deacetylation and
stabilization of c-Myc. Loss of SIRT1 decreases c-Myc binding to
the Smpdl3 promoter, which in turn increases EZH2 recruitment and
H3K27me3, resulting in silencing of Smpdl3b (Figure 3). Functionally,
accumulation of sphingomyelin in SIRT1 KO mESCs disrupts the
integrity of cell membrane and subsequently increases the membrane
fluidity. The increase of cell membrane fluidity does not significantly
impact pluripotency of mESCs, but instead markedly delays and
impairs in vitro differentiation of mESCs into neural progenitors
and mature neurons (Fan et al., 2021). When analyzed in vivo, Fan
et al. (2021) showed that maternal high-fat diet feeding elevates
sphingomyelin contents in all brain regions of SIRT1 KO embryos.
This metabolic defect is associated with reduced expression of many
markers of intermediate progenitors and mature neurons and
delaying intrauterine growth of embryos. This study uncovers a

FIGURE 3
The SIRT1-c-Myc axis in regulation of stem cells. Both SIRT1 and c-Myc are highly expressed in stem cells, including mESCs, iPSCs, and LSCs. In all
three types of stem cells, SIRT1 deacetylates c-Myc, which increases stability, presumably via reported exchange of K63-linked vs. K48-linked
polyubiquitination chains. Increased stability of c-Myc enhances the transcription of c-Myc target genes in stem cells, including Mat2a, Smpdl3b, Tert,
and Usp22. In mESCs, increased expression of MAT2A induces the production of SAM from methionine, which in turn increases H3K4me3 on
pluripotent genes and induces their expression. This action is important for the maintenance of pluripotent stem cells. C-Myc in mESCs also induces the
expression of SMPDL3B to remodel sphingolipids on the plasma membrane, which impacts membrane fluidity and signaling pathways involved in
neuronal differentiation. In post-reprogrammed iPSCs, c-Myc activates the transcription of Tert to promote telomere elongation. In LSCs, c-Myc
posttranscriptionally induces overexpression of USP22, a protein deubiquitinating enzyme that can stabilize the SIRT1. This regulation enhances SIRT1-
mediated inhibition of p53 while stimulating PGC-1α-mediatedmitochondrial biogenesis, promoting LSC survival and proliferation. Figures were created
using images downloaded and adapted from Service Medical ART: SMART (https://smart.servier.com/image-set-download/). Servier Medical Art by
Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).”
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novel function of the SIRT1-c-Myc axis in maintaining sphingolipid
homeostasis and normal neural differentiation of mESCs, which are
important for normal mouse embryonic development.

Both studies highlight the importance of the SIRT1-c-Myc axis
in metabolic and epigenetic regulation of mESC pluripotency,
differentiation, and mouse embryogenesis.

6 The SIRT1-c-Myc axis promotes
telomere elongation of iPSCs

In vertebrates, telomeric repeats (TTAGGG tandem repeats), which
constitute a telomere, are synthesized by telomerase expressedmainly in
the period of embryonic development and in adult stem cells (de Lange,
2005; Flores et al., 2006a; Liu et al., 2007). During reprogramming of
MEFs into iPSCs, telomeres are elongated, and telomere elongation has
been recognized as a hallmark of an iPSC (Takahashi and Yamanaka,
2006). The SIRT1-c-Myc axis has been reported to promote telomere
elongation of iPSCs (De Bonis et al., 2014).

SIRT1 is extremely highly expressed in mESCs compared with
adult stomatic cells and differentiated cells such as MEFs (Calvanese
et al., 2010; Tang et al., 2017). De Bonis et al. (2014) showed that
during reprogramming from MEFs to iPSCs, the expression of
SIRT1 is continuously induced and eventually reaches to a
comparable level with that in mESCs. The increased expression of
SIRT1 is coupled with the formation of the hyper-long telomeres.
Specifically, utilizing loss-of-function (Sirt1−/−) and gain-of-function
(Sirt1Super) MEFs, they showed that the expression level of SIRT1 does
not affect the reprogramming ofMEFs. However, telomeres in Sirt1−/−

iPSCs are significantly shorter than those in Sirt1+/+ iPSCs, whereas
the length of telomeres in Sirt1Super is 20% in average longer than that
in Sirt1−/− iPSCs. Moreover, telomeres in Sirt1+/+ iPSCs elongate more
progressively in the stage of post-reprogramming than those in
Sirt1−/− iPSCs. Therefore, SIRT1 is required for telomere
elongation in the stage of post-reprogramming.

In cancer cells, c-Myc activates the transcription of mouse
telomerase reverse transcriptase (mTert), the catalytic subunit of
telomerase (Wang et al., 1998; Flores et al., 2006b). De Bonis et al.
showed that in late-passage iPSCs, SIRT1 increases the stability of
c-Myc, which in turn promotes the transcription of mTert and
telomere elongation (De Bonis et al., 2014). Consequently,
SIRT1 deficient iPSCs accumulate chromosomal aberrations and
display a derepression of telomeric heterochromatin. Therefore,
SIRT1 positively regulates the expression of TERT by enhancing
the stability of c-Myc protein (Figure 3).

7 The SIRT1-c-Myc axis promotes the
maintenance and drug resistance of
leukemia stem cells

In acute myeloid patients (AML), self-renewing leukemic
stem cells (LSCs) generate a bulk of leukemic cells and correlate
with low prognosis (Eppert et al., 2011; Patel et al., 2012). In
AML patients containing the internal tandem duplication (ITD)
in the Fms-like tyrosine kinase (FLT3) gene, lack of elimination
of LSCs due to their strong drug resistance is presumably
responsible for failed treatment with the small molecules of

FLT3 tyrosine kinase inhibitors (TKIs) (Levis, 2011; Horton and
Huntly, 2012; Smith et al., 2012).

Li et al. (2014) reported that the positive feedback between
SIRT1 and c-Myc contributes to the maintenance and drug
resistance of FLT3-ITD AML LSCs. Li et al. (2014) found that
SIRT1 is overexpressed in the primary human FLT3-ITDAML LSCs
due to c-Myc induced overexpression of USP22, a protein
deubiquitinating enzyme that can stabilize SIRT1 (Lin et al.,
2012). Increased SIRT1 protein in LSCs in turn inhibits p53 and
enhances PGC-1α-mediated mitochondrial biogenesis, promoting
LSC survival and proliferation (Li et al., 2014). Conversely,
SIRT1 knockdown or inhibition by its inhibitor Tenovin-6 (TV6)
increases c-Myc acetylation, enhancing its degradation and
subsequent reduction in transcriptional activity in FLT3-ITD cells
(Figure 3). In support of the notion that the positive SIRT1-c-Myc
feedback loop contributes to partial maintenance of FLT3-ITDAML
LSCs after treatment with TKI, inhibition of SIRT1 expression or
activities reduces their growth and significantly enhances their
sensitivity to TKIs (Li et al., 2014). The findings from this study
suggest that targeting the SIRT1-c-Myc axis using the small
molecule inhibitors of SIRT1 could potentially improve outcomes
of TKI-based treatment of FLT3-ITD AML.

8 Concluding remarks

While c-Myc is a well-known oncoprotein, the impact of
SIRT1 on tumorigenesis is distinct at different stages depending
on its deacetylation substrates, which include both tumor
suppressors and oncogenic proteins (Garcia-Peterson and Li,
2021). The positive feedback loop between SIRT1 and c-Myc
has been reported to suppress senescence and apoptosis in
established cancer cells (Menssen et al., 2012). Recent studies
revealed that this positive feedback loop is particularly important
in maintenance, proliferation, and stress resistance of stem cells,
including PSCs and CSCs. In PSCs, these actions are crucial for
the maintenance of their pluripotency, self-renewal, and
differentiation, which are ultimately important for normal
embryogenesis. In CSCs, the impacts of SIRT1-c-Myc axis
could result in drug resistance, relapse, and metastasis of
tumors, thereby directly influencing therapeutic outcomes.
Future studies are still needed to better understand the
functional importance of the SIRT1-c-Myc axis in different
type of stem cells. In particular, the maintenance and early
lineage specification of primed hESCs are regulated by
signaling pathways such as FGF and Activin/Nodal signaling
(Brown et al., 2011; Fathi et al., 2017). Yet the potential role of the
SIRT1-c-Myc axis in regulation of these signaling in hESCs
remains unknown. Future research along this line could
provide molecular basis for novel therapeutic strategies against
developmental diseases and cancers.
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Despite MYC being among the most intensively studied oncogenes, its role in
normal development has not been determined as Myc−/− mice do not survival
beyond mid-gestation. Myc ± mice live longer than their wild-type counterparts
and are slower to accumulate many age-related phenotypes. However, Myc
haplo-insufficiency likely conceals other important phenotypes as many high-
affinity Myc targets genes continue to be regulated normally. By delaying Myc
inactivation until after birth it has recently been possible to study the
consequences of its near-complete total body loss and thus to infer its normal
function. Against expectation, these “MycKO” mice lived significantly longer than
control wild-typemice butmanifested amarked premature aging phenotype. This
seemingly paradoxical behavior was potentially explained by a >3-fold lower
lifetime incidence of cancer, normally the most common cause of death in
mice and often Myc-driven. Myc loss accelerated the accumulation of
numerous “Aging Hallmarks”, including the loss of mitochondrial and ribosomal
structural and functional integrity, the generation of reactive oxygen species, the
acquisition of genotoxic damage, the detrimental rewiring of metabolism and the
onset of senescence. In both mice and humans, normal aging in many tissues was
accompaniued by the downregulation of Myc and the loss of Myc target gene
regulation. Unlike most mouse models of premature aging, which are based on
monogenic disorders of DNA damage recognition and repair, the MycKO mouse
model directly impacts most Aging Hallmarks and may therefore more faithfully
replicate the normal aging process of bothmice and humans. It further establishes
that the strong association between aging and cancer can be genetically
separated and is maintained by a single gene.

KEYWORDS

cancer, glycolysis, MLX, mitochondria, progeria, ribosomes, ROS, senescence

1 Introduction

1.1 TheMYC oncogene and its role as a transcription factor in
cancer

MYC bears the distinction of being among the first transforming retroviral oncogenes
(v-myc) that was discovered before it cellular counterpart (c-Myc) (Duesberg and Vogt,
1979; Roussel et al., 1979; Sheiness et al., 1980; Hayward et al., 1981; Ramsay et al., 1990). Its
long and storied history, combined with its well-documented involvement in many human
cancers, provides ample reason as to why it persists after nearly 50 years as being among the
most intensely studied of all mammalian oncogenes (Meyer and Penn, 2008). Myc’s
widespread role in human cancer pathogenesis also explains why efforts to identify and
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develop effective inhibitors remain a major priority despite the
frustratingly difficult nature of this task (Weber and Hartl, 2023).

The Myc protein is a bHLH-ZIP transcription factor that
regulates thousands of downstream target genes or perhaps even
the entirety of the genome by serving as a more general
transcriptional amplifier of gene expression (Eilers and Eisenman,
2008; Nie et al., 2012; Carroll et al., 2018; Patange et al., 2022).
Positive regulation is achieved upon Myc’s association with its
bHLH-ZIP partner protein, Max, and binding of the heterodimer
to consensus “E box” elements that are typically located in the
proximal promoters of its direct target genes (Figure 1) (Eilers and
Eisenman, 2008; Carroll et al., 2018; Prochownik, 2022). The general
consensus is that the extent to which a gene is upregulated by Myc is
determined largely, although not exclusively, by several independent
and non-mutually exclusive factors. These include the intrinsic
affinity of the Myc-Max heterodimer for the target gene’s
associated E box (es); the E box’s epigenetic modification; the
degree to which neighboring chromatin is itself epigenetically
altered and relaxed to allow access of Myc-Max to the E box; the
presence of other unrelated factors that may bind nearby and hinder
or promote Myc-Max binding and the extent to which Myc-Max
must compete with other E box-binding transcription factors
including those between Max and members of the Mxd family,
which actively oppose Myc by transcriptionally suppressing its
target genes (Figure 1) (Prendergast and Ziff, 1991; Conacci-
Sorrell et al., 2014; Dolezal et al., 2017; Carroll et al., 2018;
Prochownik, 2022; Prochownik and Wang, 2022). Collectively the
integrated interplay and cooperation among these various factors

serve to define the “functional affinity” of a binding site. This
operative definition allows for changes in these affinities in ways
that reflect different cell types, states of proliferation or
differentiation and the dynamic nature of intracellular conditions
and cues.

Among the most critical determinants of whether and to what
extent Myc will upregulate a target gene is the absolute level of Myc
protein itself (Dolezal et al., 2017;Wang et al., 2022b). This led to the
concept of “physiologic” and “pathologic” targets (Fernandez et al.,
2003; Soucek and Evan, 2010; Dolezal et al., 2017; Prochownik, 2022;
Prochownik and Wang, 2022) with the former being defined as
genes that respond to levels of Myc that can be achieved in normal
cells during, for example, periods of log-phase growth. The binding
sites in such targets might therefore be considered as being of
moderate-high affinity based on the above definition. In contrast,
pathologic targets bind and/or respond to the high Myc levels that
are only observed in tumors or in untransformed cells with
experimentally enforced Myc over-expression (Coller et al., 2000;
Nesbit et al., 2000; Zeller et al., 2006; Sabo et al., 2014). These may
include previous physiologic targets that are now induced to even
higher levels or targets that bind Myc-Max and respond to it only
when it is over-expressed. The binding sites in these targets might
therefore be considered as being low-affinity. The relevance of
pathologic targets is dramatically underscored in vivo where
high-level conditional Myc induction can rapidly induce
aggressive tumors and the expression of unique transcriptomes
whereas subsequent Myc inactivation causes complete tumor
regression and transcriptomic normalization even before the

FIGURE 1
Transcriptional regulation via the Myc Network. When Myc is abundant, such as during proliferation, it heterodimerizes with the bHLH-ZIP protein
Max, binds to consensus E box elements, usually located in the proximal promoters of its target genes and facilitates transcription. When Myc levels are
low such as in quiescent cells, Max is more likely to heterodimerize with members of the Mxd family, comprised of the related bHLH-ZIP factors Mxd1-4
and the more distantly related Mnt and Mga. These can compete with and displace Myc-Max heterodimers from E boxes and silence gene
expression. Negative regulation of Myc target genes is achieved indirectly as a result Myc-Max heterodimers binding to and suppressing the positively-
acting transcription factors Sp1/3 and Miz1/ZBTB17.
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tumor itself shows any objective gross or histologic response
(Karlsson et al., 2003; Shachaf et al., 2004; Wu et al., 2007;
Dolezal et al., 2017). Despite these distinctions, it is likely that
both physiologic and pathologic targets contribute to
transformation (Soucek and Evan, 2010; Prochownik, 2022;
Prochownik and Wang, 2022).

In contrast to Myc’s positive transcriptional regulation, an equal
or somewhat smaller fraction of its target gene repertoire is
negatively regulated via more indirect mechanisms. This is
accomplished by interactions between Myc-Max heterodimers
and the transcription factors Miz1, Sp1 and Sp3, thereby
preventing the upregulation of target genes bearing Miz1 and/or
Sp1 sites in their promoters (Figure 1) (Gartel et al., 2001; Gartel and
Shchors, 2003; Eilers and Eisenman, 2008; Herkert and Eilers, 2010).
While there is less direct evidence that Myc’s negative targets are
subject to the same types of physiologic and pathologic regulation as
positive targets, this does appear to be the case as evidenced by data
showing much larger numbers of Miz1 and Sp1 binding sites being
co-occupied by Myc and an expansion of negative target gene
responses during peaks of high physiologic or pathologic Myc
expression (Encode Project Consortium, 2012; Diehl and Boyle,
2016; Wang et al., 2018; Wang et al., 2022a).

2 Myc target genes and the
consequences of Myc inhibition in vitro
and in vivo

The proteins encoded by Myc target genes can be broadly
classified into several general functional categories (Zeller et al.,
2006; Kim et al., 2008; Anczukow and Krainer, 2015; Wang et al.,
2022a; Wang et al., 2022b; Prochownik, 2022). Their duties include
promoting the cell cycle; overseeing the structure and function of
mitochondria; regulating translation, notably, the synthesis of
ribosomal subunits, tRNA, rRNAs and translation/initiation
factors; coordinating non-mitochondrial metabolic pathways,
particularly glycolysis, glutaminolysis, and lipid and nucleotide
biosynthesis; the control of mRNA splicing and the recognition
and repair of various types of DNA damage (Grandori et al., 2000;
Felton-Edkins et al., 2003; Grandori et al., 2005; Li et al., 2005;
Gomez-Roman et al., 2006; Mannava et al., 2008; Dang, 2010; van
Riggelen et al., 2010; Dang, 2011; Carroll et al., 2018; Singh et al.,
2019; Singh et al., 2021; Wang et al., 2022a; Wang et al., 2022b;
Prochownik, 2022). In primary murine embryonic fibroblasts
(MEFs), which undergo immediate cell cycle arrest in response to
Myc inactivation, 2 additional sets of genes related to aging and
senescence have also been recently identified (Wang et al., 2022b).

Regardless of whether MYC is silenced genetically or
pharmacologically, its inhibition in vitro is almost always
associated with an immediate cessation of proliferation that
usually coincides with G0/G1 arrest, although in cancer cells this
may occur in other stages of the cell cycle or even in all stages
simultaneously (Trumpp et al., 2001; Huang et al., 2006; Wang et al.,
2008; von Bueren et al., 2009; Wang et al., 2015; Scognamiglio et al.,
2016; Wang et al., 2022b). In vivo, total deletion of Myc in the
embryo is uniformly lethal at ~e10.5 (Davis et al., 1993). Embryos of
Myc hypomorphs engineered to express progressively lower Myc
levels show dose-related reductions in body size as Myc levels

decline and MEFs derived from these mice also show a gradual,
and eventual total loss of proliferative capacity (Trumpp et al., 2001).
Examination of individual cell populations from these mice showed
their overall smaller organ size to be due to reductions in the total
cellular content rather than decreases in cell size (Trumpp et al.,
2001). Similar defects have been demonstrated in isolated Myc-
depleted T lymphocytes whose activation did not affect cell growth
but did severely impair their ability to proliferate (Wang et al., 2011).

In contrast, and for unknown reasons, transient inhibition of
Myc in vivo in older mice rarely has such dramatic effects. For
example, body-wide induction in adult mice of the dominant-
negative Myc inhibitor known as OmoMyc was entirely
compatible with survival but did cause mild and transient bone
marrow hypoplasia and flattening of the intestinal mucosa, both of
which were reversible despite continued Myc suppression (Soucek
et al., 2008). Neither the degree to which OmoMyc inhibited the
function of endogenous Myc nor any long-term follow up of these
mice was reported. On the other hand, Myc inhibition was sufficient
enough to promote the regression of pre-existing Ras-driven lung
tumors indicating that certain neoplasms and their responsible
oncogenes can display a high Myc-dependency both in vivo and
in vitro (Sklar et al., 1991; Karlsson et al., 2003; Shachaf et al., 2004;
Wu et al., 2007; Soucek et al., 2008; Dolezal et al., 2017). In contrast
to these findings, the hepatocyte-specific elimination of Myc did not
alter the time needed for mice to regenerate a normal liver mass
following 2/3rd partial hepatectomy (Baena et al., 2005; Li et al.,
2006; Sanders et al., 2012). Concerned that this procedure did not
provide a sufficiently strong or lengthy proliferative demand,
Edmunds et al. employed the “FAH” mouse model of hereditary
tyrosinemia to show that the long-term ability of transplanted wild
type and Myc−/− donor hepatocytes to repopulate the liver, replace
the diseased hepatocyte population and cure the recipient mice were
in all cases equivalent (Overturf et al., 1996; Edmunds et al., 2016).
Indeed, not even subtle differences were observed in the long-term
repopulation by the 2 donor hepatocyte populations when they were
allowed to compete in the same recipient.

The above findings raised questions as to Myc’s role in initiating
and/or supporting neoplastic hepatocytes proliferation mediated by
other oncogenes. This was examined in a mouse model of
hepatoblastoma (HB) in which tumors could be rapidly and
efficiently induced via the hydrodynamic tail vein-mediated
delivery of Sleeping Beauty plasmids encoding mutant forms of
β-catenin and the Hippo pathway effector YAP (Tao et al., 2014; Bell
et al., 2017; Zhang et al., 2019). When these vectors were delivered to
the previously mentioned mice lacking Myc in their hepatocytes,
tumor initiation remained at 100% although the ensuing growth was
markedly slowed and survival was prolonged (Wang et al., 2016). It
was concluded that, at least within this model neoplastic framework,
endogenous Myc was not necessary to initiate tumorigenesis but was
necessary to maintain maximal tumor growth rates. This was
supported by the finding that, relative to Myc+/+ HBs, Myc−/−
HBs expressed lower levels of transcripts encoding proteins involved
in the structure and function of mitochondria and the translational
machinery, including most ribosomal proteins andmany translation
factors. Consistent with a less pronounced Warburg effect, Myc−/−
tumors also showed an attenuated induction of transcripts encoding
glycolytic enzymes and lower levels of fatty acid β-oxidation (FAO).
Perhaps as testimony to a less pronounced upregulation of Myc
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target genes, global histone H3K9 acetylation was reduced in tumors
from Myc−/− mice (Martinato et al., 2008; Wang et al., 2016).
Together with the previously mentioned findings, these studies
provided a more nuanced role for Myc in both normal and
neoplastic development and suggested that Myc’s role in the
generation of these tumors was not to participate in tumor
initiation (or at least in its most critical aspects) but rather to
provide the necessary translational and metabolic support needed
to achieve maximal rates of tumor growth.

3 Embryonal Myc heterozygosity
extends lifespan and improves
healthspan

The embryonic lethality of Myc−/− mice (Davis et al., 1993;
Trumpp et al., 2001; Dubois et al., 2008) has until recently precluded
an evaluation of Myc’s role in growth and development beyondmid-
gestation. Attempting to make the best of a bad situation, Hofmann
et al. studied the life-long consequences of mice that had been
rendered heterozygous for Myc (Myc ± mice) at the time of
conception (Hofmann et al., 2015). These mice displayed several
unanticipated phenotypes. First, and perhaps most importantly,
they lived on average about 15% longer than their Myc+/+ (wild-
type) counterparts with significant differences being noted between
the sexes (20.9% longer for females and 10.7% longer for males). Like
previously described Myc hypomorphs, Myc ± mice were also
smaller at the time of birth and remained so, with the
proportional mass of their individual organs being reduced
accordingly so as to maintain the same relationship to total body
mass as seen in wild-type mice. Both groups of mice showed a
similar incidence of cancer during their lifetimes, the vast majority
of which were lymphomas as has been reported in most strains of
mice (Ward, 2006; Snyder et al., 2016). Thus, the increased longevity
of Myc ± mice did not appear to be related to a lower cancer
incidence, although they were reported to have smaller tumors with
less extensive spread, thus perhaps reflecting the experience ofWang
et al. in generating HBs in Myc−/− hepatocytes.

Relatively few gene expression changes were noted in the
3 tissues that were examined in both young and old Myc ± mice
by microarray analysis, namely, liver, skeletal muscle and white
adipose tissue (Hofmann et al., 2015). Indeed, the gene expression
differences that were attributable to the 50% loss of Myc expression
were ~10-fold fewer in number than those associated with aging. In
retrospect this is perhaps not surprising given that, as discussed
above, the most functionally important Myc target genes in non-
neoplastic tissues might be expected to be those with the highest
affinity E boxes and thus unlikely to be particularly impacted by a 2-
fold loss in Myc expression. However, among the most significant
and important functional classes of genes to be downregulated in
Myc ± tissues based on gene set enrichment were those related to
ribosome biogenesis and rRNAs (Hofmann et al., 2015).

Despite the relatively modest impact on Myc target gene
expression, Hoffmann et al. identified a number of phenotypic
changes in Myc ± mice that, in addition to the lifespan
extension, were consistent with delayed aging and an extended
health span. These included lower levels of age-related cardiac
fibrosis, osteoporosis, hepatic lipid accumulation, serum

cholesterol and loss of motor coordination as measured by
rotarod testing. The age-related exhaustion of long-term
hematopoietic stem cells was also delayed in Myc ± mice
(Hofmann et al., 2015). Importantly, neither overall body
adiposity not the proportion of senescent cells were impacted in
Myc ± animals. Double-stranded DNA breaks (DSBs), as measured
by the accumulation of 53BP1 foci in livers also increased equally
with aging in the livers of both wild-type and Myc ± mice. This
suggested that the reduced rate of aging ofMyc ± mice could not be
attributed to a lower rate of DNA damage (or at least of DSBs).

Metabolic cage studies pointed to Myc ± mice as having
significantly higher metabolic rates, as measured by total oxygen
consumption (Nie et al., 2015). Although CO2 production rates were
not reported, the implication of these studies was that the respiratory
exchange ratio (RER), as determined by the VCO2/VO2 ratio, was
lower and thatMyc ± mice were more reliant on fatty acid oxidation
as an energy source. Finally, consistent with the previously
mentioned reduction in transcripts related to ribosomes and
rRNAs, Hoffman et al. found evidence for a decreased rate of
total liver protein synthesis as measured by the in vivo
incorporation of radio-labeled phenylalanine (Hofmann et al.,
2015).

4 Post-natal deletion of Myc is
associated with premature aging,
increased lifespan and a lower cancer
incidence

Not all findings inMyc ± mice pointed to a slowing of the aging
process and an overall healthier lifespan (Hofmann et al., 2015). For
example, the reduced rates of ribosomal biogenesis, rRNA
production and translation described by Hofmann et al. are
actually common properties of aging whereas the presumptive
increased reliance on FAO as an energy source might be
indicative of another age-related phenomenon, namely glucose
intolerance and the switch to fatty acids as an alternate energy
source (Chang and Halter, 2003; D’Aquila et al., 2017; Gonskikh and
Polacek, 2017; Woodward and Shirokikh, 2021). Although FAO
normally declines with age (Toth and Tchernof, 2000), this might
not be the case with Myc ± mice whose defects in glycolysis and
mitochondrial structure and function might have forced an
unnatural over-reliance on FAO, which is a more efficient means
of energy extraction (Li et al., 2005; Prochownik, 2022).

As mentioned above, the most critical Myc target genes may well
be those with the highest affinity binding sites that would be
impacted minimally, if at all, by a 50% decline in Myc levels.
Thus the phenotypes described by Hofmann et al. (Hofmann
et al., 2015) may well represent only the “tip of the iceberg” and
may even be quite different from those associated with a more
thorough loss of Myc expression. Therefore, in response to these
considerations, Wang et al. performed 2 studies in parallel, with each
informing the other, that sought to characterize the long-term
consequences of a more extensive and potentially more
consequential body-wide knockout of Myc (Wang et al., 2022b;
Wang et al., 2023). The second study in particular asked whether it
was possible to achieve a more extensive loss of Myc in vivo while
avoiding the lethality associated withMyc−/− embryos (Davis et al.,
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1993; Trumpp et al., 2001). The question was partly motivated by the
findings that OmoMyc induction in adult mice had been previously
found to be compatible with at least short-term survival as well as by
the observation that the viability of Myc−/− embryos could be
extended by 2 days if Myc expression was preserved in the
placenta (Dubois et al., 2008; Soucek et al., 2008). Concerns as to
whether high-levels of Myc knockout could be achieved without
compromising viability remained however given that both
OmoMyc-expressing mice and Myc−/− embryos showed marked
hematopoietic compromise (Trumpp et al., 2001; Dubois et al., 2008;
Soucek et al., 2008).

In both studies undertaken by Wang et al., mice bearing
2 “floxed” Myc alleles were crossed with a strain bearing a CreER
transgene under the control of the ubiquitously expressed
Rosa26 promoter (Wang et al., 2022b; Wang et al., 2023). In the
first study, e14-16MEFs were isolated from these mice, expanded for
2-3 passages and then exposed to 4-hydroxytamoxifenn (4OHT) for
7–10 days. This resulted in a >95% excision of the Myc gene, a
comparable loss ofMyc protein expression and proliferative arrest in
G0/G1, which, over the ensuing week became permanently
consolidated in G2/M. These “MycKO” cells appeared to be
larger, flatter and less spindle-shaped, all of which mimicked the
previously noted characteristics of senescent primary fibroblasts and
of a unique immortalized Myc−/− rat fibroblast line that grows at
~20% the rate of its Myc ± counterparts (Mateyak et al., 1997; Zhao
and Darzynkiewicz, 2013; Kumari and Jat, 2021).

Growth-arrested primary MycKO MEFs shared additional
features with Myc−/− rat fibroblasts and cancer cell lines in
which Myc function was inhibited genetically or by structurally
diverse small molecule Myc inhibitors (Graves et al., 2012). These
included increases in mitochondrial-derived reactive oxygen species
(ROS) and neutral lipid content suggesting that MycKO MEFs
contained functionally defective mitochondria. However, unlike
the above cancer cell lines and Myc−/− rat fibroblasts, which
cannot sustain adequate ATP levels, an ~2-fold increase in
mitochondrial mass observed in MycKO MEFs was postulated to
represent a means of compensating for energy generating defects as
often occurs in association with aging, senescence and various
mitochondrial stresses and diseases (Trifunovic et al., 2004;
Barrientos, 2012; Miwa et al., 2022). Thus, rather than
completely mimicking the properties of immortalized Myc−/−
fibroblasts, MycKO MEFs more closely recapitulated the
behaviors of aging and/or senescence primary fibroblasts, whose
proliferation declines and eventually ceases with continued in vitro
passage and whose mitochondrial content increases in parallel
(Hayflick, 1974; Korolchuk et al., 2017; Popay et al., 2021;
Martini and Passos, 2023). Like senescent cells, growth-arrested
primaryMycKOMEFs also showed increased lysosomal content and
glucose uptake, higher levels of senescence-associated β-
galactosidase and decreased translation as measured by
puromycin incorporation into elongating polypeptide chains
(Bittles and Harper, 1984; Sharpless and Sherr, 2015; Payea et al.,
2021; Popay et al., 2021; Wang et al., 2022b).

RNAseq performed on WT primary and MycKO MEFs within
10 days ofMyc excision revealed >4300 gene expression differences,
about equally divided between up- and downregulated transcripts
and with nearly 2/3rds of them being encoded by previously
identified direct Myc target genes (Wang et al., 2022b). Gene set

enrichment analysis (GSEA) categorized these into a small number
of functionally-related categories that were consistent with some but
not all previously described Myc target gene classifications. These
functions included those dedicated to mitochondrial and ribosomal
structure and function, cell cycle regulation, aging, senescence and
the recognition and repair of multiple types of DNA damage. In
follow-up to this latter observation, immuno-staining showed that
MycKO primary MEFs expressed higher levels of the DNA damage
recognition and response proteins p53, 53BP1, γ-H2AX,
RAD51 and Ku80 while also showing increased staining in a
TUNEL assay, which, like γ-H2AX staining, identifies DSBs.
Furthermore, whereas treatment of WT MEFs with the DSB-
inducing chemotherapeutic drug etoposide elicited a coordinated
response of the above factors, the response in MycKO MEFs was
suppressed and dysregulated. These findings suggested thatMycKO
MEFs displayed more evidence of baseline genotoxic stress, not only
as a result of their increased ROS production but also due to their
inability to properly marshal and sustain a well-regulated DNA
damage response.

While aging and senescence are thought to be at least partially
driven by the accumulation of DNA damage, it is also true that old
and/or senescent cells are less capable of DNA damage repair and
therefore generate genotoxic lesions at faster rates than younger cells
and maintain them longer (Chen et al., 2007; Collin et al., 2018;
Schumacher et al., 2021; Yousefzadeh et al., 2021). To test the idea
thatMycKO cells might be more prone to DNA damage, Wang et al.
took advantage of the unexpected finding that SV40 T antigen-
immortalized MycKO MEFs could escape proliferative arrest in
response to Myc inactivation and continue to replicate at about
half the normal rate (Wang et al., 2022b). The RNAseq profiles of
these cells also showed that they retained evidence of numerous
DNA damage recognition and repair pathway defects. As a result,
these cells were significantly more resistant than wild-type
immortalized MEFs to genotoxic insults that, in addition to
DSBs, included single-stranded breaks, oxidative base lesions and
both inter- and intra-strand cross-links. Wang et al. contrasted this
seemingly paradoxical behavior to that associated with monogenic
disorders of DNA repair such as Fanconi’s anemia and xeroderma
pigmentosum, which are exquisitely sensitive to DNA damage
(Black, 2016; Taylor et al., 2019). They suggested that the non-
repairable lesions associated with these inherited conditions initiate
a robust apoptotic response since the pathways that mediate this
remain intact. In contrast, the multiple defects inMycKO MEFs are
so extensive that any new DNA damage is neither recognized,
repaired nor able to elicit a coordinated apoptotic response. A
similar loss of sensitivity to cis-platinum and etoposide has been
observed in medulloblastoma cell lines following the siRNA-
mediated knockdown of Myc (von Bueren et al., 2009).

The second study reported by Wang et al. utilized the above-
described MycloxP/loxP x Rosa26-CreER mouse strain in which
individuals of both sexes were treated with 5 daily injections of
tamoxifen beginning on the day of weaning (Wang et al., 2023). The
timing of these injections was critical as preliminary studies had
shown that treating younger mice or those weighing <15–16 grams
was associated with a high incidence of fatal aplastic anemia. qPCR
and qRT-PCR analysis performed with over a dozen tissues from
treated mice showed that Myc gene excision frequencies exceeded
75%–95% in nearly all tissues with a notable exception being brain

Frontiers in Cell and Developmental Biology frontiersin.org05

Prochownik and Wang 10.3389/fcell.2023.1244321

32

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1244321


where it was 40%–60%. The observation that these “MycKO” mice
not only survived the major cause of embryonic mortality (Davis
et al., 1993; Trumpp et al., 2001; Dubois et al., 2008) but also
remained seemingly healthy allowed for other previous findings to
be confirmed and further extended. For example, while >90% of
mice survived and eventually normalized their peripheral counts,
bone marrows remained hypoplastic and, by 4–5 months of age,
resembled those of middle-aged mice (~50% cellularity). Like the
OmoMyc-treated mice described by Soucek et al. MycKO mice also
displayed transient intestinal epithelial flattening and loss of crypt
structure (Soucek et al., 2008; Wang et al., 2023). Yet, despite these
obvious morphological changes, the mice showed no evidence of
steatorrhea or failure to thrive indicating that the changes had
minimal physiologic impact. These findings, as well as well as
additional ones described below, are summarized in Table 1
where they are compared and contrasted with those from Myc−/
− embryos and Myc ± mice (Davis et al., 1993; Trumpp et al., 2001;
Dubois et al., 2008; Hofmann et al., 2015).

Although the body weights of MycKO and wild-type mice
were initially indistinguishable, the former began to acquire
significantly higher fat:lean mass ratios after 5–6 months such
that by 10 months of age these ratios resembled those of
~20 month old wild-type mice (Pappas and Nagy, 2019). Both
groups then began to lose weight and to reduce their fat:lean mass
ratios at similar rates, although both parameters remained high in
MycKO mice for the remainder of their lives. MycKO mice also
developed premature graying and loss of fur beginning at
3–5 months of age that resembled, albeit to a lesser degree,
the phenotype of old mice or those with melanocyte-specific
embryonal excision of Myc (Pshenichnaya et al., 2012). Skin
samples from the alopecic regions showed epidermal thickening,
hyperkeratinization and focal peri-follicular staining for
senescence-associated β-galactosidase.

Testing of MycKO mice for strength, fitness and coordination
showed them to be generally inferior to age-matched wild-type mice,
although these differences became noticeable at different times

TABLE 1 Notable phenotypic differences among mice with varying degrees of myc inactivation vs. WT controls.

Genotype (references)

Myc−/− Davis et al. (1993); Trumpp et al. (2001); Dubois et al.
(2008)

Myc ± Hofmann et al. (2015) MycKO Wang et al. (2023)

Timing of knockout Embryonal Embryonal Post-natal

Extent of knockout 100% 100% Variable (~70%–100%)

Lifespan embryonal lethal Extended Extended

Lifetime cancer incidence NDa Normal 3.4-fold lower

Size of mice Reduced Reduced Normal

Major organ structural defects placenta, BMb, vasculature None BM, intestine Fat:lean mass
ratio

Fat:lean mass ratio ND ND Prematurely Increased

Hepatic steatosis ND No Yes

Alopecia ND No Yes

Achromotricia ND No Yes

Hyperkeratinization ND ND Yes

Overall strength, endurance,
balance

ND Better Worse

Glucose tolerance ND ND T2D-like GTT

Serum cholesterol ND Reduced ND

Cardiac fibrosis ND Less severe ND

Osteoporosis ND Less severe ND

CD4:CD8 T cell ratio ND Less pronounced decline ND

Increased genotoxic stress ND No Yes

Oxygen consumption ND Increased: day time + night
time

Increased: night time only

Rate of protein translation ND Decreased Decreased

Energy deficit ND Yes ND

aND, not determined.
bBM, bone marrow.
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throughout life. In older MycKO females (~20 months), even
normal, diurnal ambulatory activity was reduced.

A number of metabolic abnormalities consistent with premature
aging also distinguished wild-type and MycKO mice. Nonalcoholic
fatty liver disease (NAFLD or hepatic steatosis) commonly
accompanies aging, particularly in the face of co-existing
conditions such as dyslipidemia, obesity and insulin resistance
(Honma et al., 2011; Bertolotti et al., 2014). Although a NAFLD-
like picture was previously identified in mice with Myc−/−
hepatocytes, neither its maximal severity nor its life-long
consequences were evaluated (Edmunds et al., 2016). Wang et al.
confirmed that the degree of NAFLD in 5 month old MycKO mice,
as measured by neutral lipid and triglyceride content, was 3-4-fold
higher than that of comparably aged wild-type mice and matched
that of 22 month old individuals from the latter cohort (Wang et al.,
2023). Thus, although the maximal levels of lipid that were
accumulated by MycKO mice never exceeded the highest levels
attained in the oldest wild-type mice, the rate of accumulation was
more rapid.

Metabolic cage studies were also performed during the lifetimes
of wild-type and MycKO mice while being maintained on normal
diets, during fasting and after re-feeding with either normal or high-
fat diets. Young wild-type mice tended to possess very high
nocturnal respiratory exchange ratios (RERs) indicating that,
during active feeding, they were almost totally reliant on glucose
as an energy source. RERs exceeding 1.0 were observed in some cases
and indicated that these mice were engaged in high levels of fatty
acid synthesis, which is commonly observed in juvenile animals
undergoing rapid growth (Bruss et al., 2010; Houtkooper et al.,
2011). In contrast,MycKOmice demonstrated a significantly greater
reliance on FAO and their RERs never exceeded 1.0. These findings
were interpreted as indicating one or more of at least 3 non-mutually
conditions. First, the absence of Myc may have reduced the animals’
ability to metabolize glucose sinceMyc positively regulates glycolysis
(Dang, 2010; Dang, 2011; Stine et al., 2015; Prochownik, 2022).
Second, it may also have impaired the efficiency of mitochondria,
making themmore reliant on FAO to maintain normal energy levels
as had been described in MycKO MEFs and other Myc-
compromised cells (Wang et al., 2015; Wang et al., 2022a; Wang
et al., 2022b). Increased FAO dependency may also explain the
neutral lipid accumulation of MycKO mice, MEFs and other cells
with compromised Myc function, in which energy-rich fatty acids
are taken up in excess of what is needed to maintain energy stores
with the difference being stored (Edmunds et al., 2016). Other ways
to explain the greater reliance of MycKO cells on FAO include a
reduced supply of glycolytically-derived pyruvate for the TCA cycle
and/or its diversion into other, non-acetyl coenzyme A-generating
pathways (Stine et al., 2015; Prochownik and Wang, 2021). Third,
younger MycKO animals may have either already aged beyond the
point where increased fatty acid synthesis would have been observed
and/or may have compromised Myc-regulated fatty acid synthetic
function (Morrish et al., 2010; Singh et al., 2021). Irrespective of
cause(s), the RERs of younger MycKO mice tended to more closely
mimic those of older wild-type mice with the differences between the
2 groups becoming more erratic and tending to converge as the
2 cohorts aged.

Consistent with their high utilization of fatty acids as an energy
source, but also indicating that they may be insulin resistant,MycKO

mice were mildly ketotic although fasting glucose and lactate levels
were normal. Glucose tolerance testing and the quantification of
peripheral insulin levels inMycKOmice showed that they resembled
those associated with Type 2 diabetes, with exaggerated
hyperglycemia and hyperinsulinemia in response to a glucose
challenge. However, these defects became progressively less
pronounced with aging, thus indicating that MycKO mice
metabolically adapted in a Myc-independent manner while also
reflecting their age-dependent tendency toward RER normalization.

Mitochondrial structural and functional compromise as a result
of Myc’s loss could explain the above-discussed metabolic
abnormalities and would be consistent with the previously
documented MEF results (Wang et al., 2022b). The examination
of partially purified mitochondria from age-matched wild-type and
MycKO livers and adipose tissues showed that, even when pyruvate
was non-rate-limiting, the oxygen consumption rates of the latter
were blunted, thus strongly suggesting a defective in Complex I
function with Complex II responses to succinate being similar in
wild-type and MycKO tissues (Wang et al., 2023).

The transport of free fatty acids across the outer mitochondrial
membrane requires that they first be converted to fatty acyl-CoAs
and then conjugated to carnitine via the rate-limiting enzyme
carnitine palmitoyl transferase I (CPTI). They are then
transported across the inner mitochondrial membrane, re-
transformed via CPTII into a fatty acyl coenzyme A in the
matrix and enter the FAO pathway (El-Gharbawy and Vockley,
2018). Complex I defects and the ensuing inefficient oxidation of
long chain fatty acids are associated with elevated serum levels of 3-
hydroxy-C14-carnitine (C14-OH), which is used as a clinical marker
of these disorders (El-Gharbawy and Vockley, 2018). Wang et al.
measured the serum levels of 51 acyl carnitines by mass
spectrometry (MS) and indeed were able to document significant
elevations of C14-OH in 5 month old MycKO mice. As these mice
aged, C14-OH levels normalized but were replaced by 12 new
changes mostly involving higher levels of longer chain serum
acylcarnitines (Wang et al., 2023). This suggested a progressive
loss of normal FAO that is observed in aging humans with Type
2 diabetes (Mihalik et al., 2010). It was suggested that the
normalization of C14-OH in older MycKO mice cohort
resulted from a reduced C14 pool due to the accumulation of
the longer chain fatty acyl CoA precursors and their defective
oxidation to shorter chain acylcarnitines. Collectively, the
findings were consistent with the previous ones indicating that
MycKO animals were more insulin-resistant, more dependent on
FAO and prematurely developed NAFLD. Interestingly, although
the above findings indicated some normalization of the
mitochondrial defects that were initially observed in the
youngest MycKO mice, older mice from this cohort were
noted to have elevated levels of C5 carnitine, which is
generally considered as being diagnostic of errors in
branched chain amino acid (BCAA) catabolism (Gibson
et al., 1994). This suggested that, as MycKO mice aged, their
mitochondrial defects worsened and/or broadened so as to
increase their utilization of valine, leucine and isoleucine as
alternate energy sources. Indeed, a comparison of RNAseq data
from the livers of 5 and 20 month old MycKO mice showed
enrichment for gene sets involved in FAO at both ages and
BCAA catabolism in the older group, thus mirroring the results
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of serum MS-based measurements and findings from aging
humans with Type 2 diabetes (Mihalik et al., 2010).

Perhaps the most unexpected finding from the above studies was
that, despite the MycKO mice displaying so many attributes of
premature aging, they actually lived significantly longer than the
wild-type cohort (median survival 32.7 months vs. 28.3, p = 1.2 ×
10−7) with the longevity difference being particularly notable among
females (median survival 33.5 months vs. 27.3 months, p = 1.5 ×
10−8). Indeed, these findings were virtually identical to those of
Myc ± mice (Hofmann et al., 2015). Careful documentation of the
various pathologies observed at the time of death revealed MycKO
mice to have a more than 3-fold lower incidence of cancer during
their lifetimes but with no change in the tumor spectrum, which was
largely comprised of high-grade lymphomas (Ward, 2006; Snyder
et al., 2016; Wang et al., 2023). Analysis of lymphomas from
3 MycKO mice showed that Myc re-expression could be detected
in at least 2 cases and that theMyc gene was intact or even modestly
amplified in all 3. These results were interpreted as indicating that
the rare tumors arising in MycKO mice likely originated from a
small minority population of bone marrow cells that failed to
completely excise the Myc gene during the initial period of
tamoxifen treatment (Wang et al., 2023). It also emphasized that,
unlike previously described Myc−/− and Myc ± mice that were
generated at the time of fertilization, allMycKO tissues were almost
certainly genetically mosaic, with varying proportions of Myc+/+,
Myc ± and Myc−/− genotypes.

Additional RNAseq studies were performed on liver, skeletal
muscle and abdominal white adipose tissues from 5 to 20 month old
wild-type andMycKOmice in order to obtain both a broad overview
of the genes under Myc’s purview in each of these tissues and an
appreciation for how these responded to aging relative to those
expressed in wild-type tissues. These tissues were chosen because of
previously reported Myc-related changes and because they alter
their gene expression profiles during normal aging (Short et al.,
2005; Tchkonia et al., 2010; Honma et al., 2011; Hofmann et al.,
2015; Uchitomi et al., 2019). The results, which largely agreed with
those previously documented in MEFs (Wang et al., 2022b), showed
enrichment for at least 7 categories of genes that pointed to their
functions being coordinately downregulated and/or compromised
in tissues from youngMycKO tissues and in aging tissues from both
wild-type and MycKO mice.

Transcripts encoding proteins with roles in ribosomal and
mitochondrial structure and function tended to be prominently
downregulated in younger MycKO tissues and older wild-type
tissues although the exact identities of the individual genes and
their degree of dysregulation differed in tissue-specific ways (Kim
et al., 2008; Edmunds et al., 2016; D’Aquila et al., 2017; Dolezal et al.,
2017; Wang et al., 2022b; Wang et al., 2023). Consistent with these
findings as well as previous ones pointing to mitochondrial
dysfunction in Myc-compromised cells and tissues (Graves
et al., 2012; Wang et al., 2016; Wang et al., 2022a; Wang
et al., 2022b), a third category of gene sets with roles in the
response to oxidative stress was noted to be mostly upregulated in
MycKO issues. This was consistent with the previously
mentioned increased ROS production resulting from Complex
I dysfunction, preference for the use of fatty acids as a source of
energy and the increase in mitochondrial mass in at least some
tissues (Wang et al., 2022a; Wang et al., 2022b).

Two additional and related gene set categories whose directions
of regulation were largely consistent with the premature aging
phenotypes of MycKO mice were those specifically associated
with aging and senescence. Specifically, members of a 79 member
gene set previously shown to be nearly universally dysregulated in
response to aging in both mice and humans were largely expressed
in opposite directions in wild-type and MycKO mice, with the
overall signature pointing to an “older” profile in livers and
adipose tissues from the latter group. Several large gene sets
previously identified as being enriched in tissues of patients with
Type 1 and 2 diabetes, were also dysregulated in all 3 tissues of
younger MycKO mice in ways that would have been expected for
individuals with these conditions and consistent with the previously
documented Type 2 diabetes-like insulin resistance of these animals.
In contrast, gene sets found to be enriched in patients with cancer
were regulated in opposite ways in young wild-type and MycKO
mice with the latter being consistent with the lower life time cancer
incidence associated with this group.

The sixth functional category of gene sets that was selectively
enriched in youngMycKOmouse tissues pertained to DNA damage
recognition and its repair, with the directions of dysregulation
tending to reflect those seen previously in MycKO MEFs which,
as mentioned above, showed much higher levels of ongoing DNA
damage despite being highly resistant to a wide variety of genotoxic
agents (Wang et al., 2022b). Like MycKO MEF, MycKO livers
demonstrated much higher levels of DSBs as documented by
immuno-histochemical staining for γ-H2AX (Wang et al., 2023).
These studies established that the dysregulation of genes associated
with premature aging syndromes due to defective DNA repair
pathways were recapitulated in MycKO mice only on a much
larger scale.

The final category of gene sets that was significantly enriched
between wild-type and MycKO tissues, although only in the liver,
pertained to splicing and mRNA processing that includes
maturation steps such as intron-exon recognition, lariat
formation and excision and exon-exon ligation (Yan et al., 2019).
A search for an excess of incorrectly or incompletely spliced
transcripts, which have been reported to accompany aging
(Meshorer and Soreq, 2002; Deschenes and Chabot, 2017; Bhadra
et al., 2020) did not reveal any differences until 20 months of age at
which time liver transcripts from MycKO mice contained ~3-fold
more non-canonically spliced transcripts than those of wild-type
livers. It was speculated that, like the above-described heterogeneous
causes of DNA damage, splicing defects would not only be another
sign of premature aging but might also contribute to the highly
mutagenic environment of the MycKO background that could be a
major contributor to the aging and pro-senescence phenotypes the
cells from these animals (Koh et al., 2015; Deschenes and Chabot,
2017; Bhadra et al., 2020; Wang et al., 2022b; Wang et al., 2023).

Several features of the gene expression differences between
young and old wild-type and MycKO mice lent further credibility
to the notion that the premature aging of the latter actually
represented an acceleration of otherwise normal processes. First,
the gene set differences between the 2 groups were greater in the
young mice than in older mice. This suggested that the same
transcriptional changes were occurring between the 2 groups
except that they accumulated faster in the MycKO group. Second,
the previously noted “universal” 79member collection of age-related
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genes was less dysregulated between the 20 month old groups of
mice than it was between the 5 month old groups. The changes in
expression were somewhat different for this gene set than for the
previously described transcript sets associated with Types 1 and
2 diabetes and cancer where the differences between the wild-type
and MycKO groups were detected in the youngest mice and the
numbers and identities of the gene set transcript members changed
somewhat between the younger and older cohorts.

The remarkable degree to which a broad range of age-related
phenotypes and genes was altered in both Myc ± and MycKO mice
suggested that these models were more fully integrated into the
physiologic networks that oversee normal aging than were the
monogenic disorders associated with DNA damage recognition
and repair that are commonly used as models of aging (Kalb
et al., 2006; Brosh and Bohr, 2007; Opresko and Shay, 2017;
Rizza et al., 2021). Thus, using data from their own MycKO
mice, the ENCODE and Tabula Muris Consortia and elsewhere,
Wang et al. next focused on Myc and its direct target genes in an

assortment of tissues from normal aging mice and humans (Encode
Project Consortium, 2012; Diehl and Boyle, 2016; Tabula Muris
Consortium, 2020; Wang et al., 2023). Initially using RNAseq results
from young and old normal mice, they first identified highly
significant age-related declines in Myc expression in 12 of
90 single-cell populations isolated from 23 different tissues. Even
more impressive declines in more than 60% of direct Myc target
gene sets were seen in one or more of the single cell populations from
most of the above tissues. In those cases where the directionality of
gene expression could be ascertained, it was highly correlated with
age-related reductions in Myc. These studies thus documented age-
related loss of Myc expression in normal aging mouse tissues and
even more extensive effects on direct Myc target genes.

Myc levels in in vitro propagated primary human fibroblasts
decline with time, and the inevitable onset of senescence and growth
inhibition can be delayed or reversed by sustaining Myc expression
(Dean et al., 1986; Benanti et al., 2007; Wang et al., 2022b). In
addition, a previous study with cultured primary fibroblast samples

FIGURE 2
Model depicting the cooperation between normal aging and Myc. (1). Normal aging is associated with the accumulation of Myc-independent
defects in a number of important cellular functions and/or an inability to maintain the regulation associated with youth. Examples include losses in
translational efficiency, impairedmitochondrial function, increased ROS production, the accumulation of DNA damage and splicing (Meshorer and Soreq,
2002; Balaban et al., 2005; Park and Gerson, 2005; Short et al., 2005; Gonskikh and Polacek, 2017; Opresko and Shay, 2017). In turn, these functions
may impact one another. For example, the high levels of ROS generated as a result of mitochondrial dysfunction can inhibit translation and induce
oxidative DNA damage (Kirkinezos and Moraes, 2001; Vafa et al., 2002; Prochownik and Li, 2007; Rosca et al., 2012; Ghosh and Shcherbik, 2020;
Molenaars et al., 2020). (2). The above-mentioned functions are also needed to maintain normal rates of aging. For example, defined defects in
mitochondrial function and DNA damage recognition/repair pathways can accelerate aging (Opresko and Shay, 2017; Hahn and Zuryn, 2019; Rizza et al.,
2021; Miwa et al., 2022; Shcherbakov et al., 2022). (3). Normal aging is associatedwith gradual declines inMyc and the ensuing dysregulation ofMyc target
gene expression (green box) (Wang et al., 2023). (4). As a result of declining Myc levels (3), normal aging leads to gradual declines in the expression of
positively-regulated Myc target genes and increases in the expression of negatively-regulated Myc target gene (green box) (Wang et al., 2023). (5).
Oncogenic activation of Myc deregulates its target genes leading to the constitutive up- or downregulation of its target genes (Figure 1), thereby driving
increases in ribosome content, translation, mitochondrial mass and function, ROS production and DNA damage (Coller et al., 2000; Vafa et al., 2002;
Felton-Edkins et al., 2003; Dang et al., 2006; Prochownik and Li, 2007; Prochownik, 2022). (6) The dysregulation of Myc target genes shown in (5)
stabilizes or reverses the normal age-related changes in their expression and instead can drive and/or support the cellular processes necessary to
maintain high levels of cancer-associated gene expression. (Shachaf et al., 2004; Dolezal et al., 2017; Prochownik, 2022). (7). Myc target genes not
necessarily included in the yellow box, such as those which maintain cell cycle and impair apoptosis and senescence may independently contribute to
tumor evolution when they are dysregulated as a result of Myc over-expression (Dang, 2011, 2012; Gabay et al., 2014; Prochownik, 2022). Some of these
are likely to be “pathological targets”with low-affinity Myc binding sites and are activated only Myc levels exceed a certain threshold (Prochownik, 2022;
Prochownik and Wang, 2022). (8). MycKO mice fail to properly regulate their target genes. They therefore lose the ability to maintain the functions
depicted in the yellow box. This lead to an accelerated aging phenotype, particularly in collaboration with the normal age-related declines in Myc-
independent function (2). At the same time, the los of Myc eliminates major oncogenic pathways (4,5, and 7) thereby leading to an overall lifetime
reduction in cancer susceptibility that contributes to longer survival even in the face of co-morbidities that are normally associated with shorter lifespans
such as lipid accumulation and defective DNA damage recognition and repair. Created with BioRender.com.
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from >650 young and old humans had shown that replicative
senescence occurred more rapidly in the latter group (Trumpp
et al., 2001; Smith et al., 2002; Wang et al., 2008; Wang et al.,
2022b). Based on the above findings, Wang et al. therefore examined
RNAseq data from a large number of normal human tissues from
the Broad institute’s GTEx data base and divided these into young
and old cohorts (~20–40 years of age vs.~60–80 years of age).
Although variable, Myc levels were on average lower in several
aged tissues, most notably sigmoid colon, adipose tissue and
peripheral leucocytes. As was true for murine tissues, a collection
of direct Myc target gene sets from the MSigDB data base showed
that the expression of positive Myc targets declined in older tissues
and negative Myc targets increased.

Taken together, the studies of Wang et al. demonstrate that the
abnormal findings associated with body-wide Myc knockout
initiated shortly after birth are the consequence of a combination
of the loss of this gene, dysregulation of its direct targets and the
normal aging process (Wang et al., 2023). As such, these results and
the previous ones obtained from Myc ± mice allow for the
conclusion that Myc and its downstream target genes oversee the
timing of many if not all of the most important aspects of normal
aging (Figure 2) (Hofmann et al., 2015). It also showed that many of
the findings previously associated with tissue-specific Myc
inactivation could be recapitulated with body-wide knockout that
included multiple tissue components rather than just a single one
(Pshenichnaya et al., 2012; Edmunds et al., 2016; Wang et al., 2018).
On the other hand, some of the most pronounced findings
associated with Myc ± and Myc−/− mice such as growth
retardation and smaller body size were not seen in MycKO mice
indicating that these phenotypes are determined prior to birth and
that the substantial growth that occur post-natally is much less
impacted byMyc loss (Davis et al., 1993; Trumpp et al., 2001; Dubois
et al., 2008). On the other hand, even the low levels of Myc
expression in some tissues of MycKO mice may have been
sufficient to rescue some of the more severe consequences that
have been attributed to the total MycKO and that is achievable only
with embryonal targeting.

Aging and cancer are intimately linked, with advanced age being
among the strongest predictors of cancer development (Pettan-
Brewer and Treuting, 2011; White et al., 2014; Snyder et al.,
2016). This relationship is particularly notable among individuals
with monogenic disorders of DNA damage recognition and repair,
known as progeroid syndromes, who despite their young
chronological age, show signs of pronounced premature aging
that can be reproduced in animal models (Blasco, 2005; Park and
Gerson, 2005; Brosh and Bohr, 2007; Knoch et al., 2012; Opresko
and Shay, 2017; Folgueras et al., 2018; Rizza et al., 2021; Rossiello
et al., 2022). These disorders resemble normal aging in the sense that
“aging” and the predisposition to cancer remain connected
phenotypically if not chronologically. In contrast, a possible
lower incidence of cancer in Myc ± mice described by Hofmann
et al. (2015), might have been due to their overall healthier life span,
such that this aspect of aging and cancer remained phenotypically
linked as well. MycKO mice, with a more than 3-fold lower cancer
incidence despite their premature aging and increased lifespans,
therefore represent a unique example in which chronological age
and cancer incidence can be genetically separated and attributed to a
single gene, namely Myc. The inextricable association between Myc

and its role in driving and/or maintaining cancer, even when it is not
needed to initiate tumors, likely explains the significantly lower
cancer incidence of MycKO mice (Karlsson et al., 2003; Wu et al.,
2007; Meyer and Penn, 2008; Stine et al., 2015; Dolezal et al., 2017;
Wang et al., 2023). This is underscored by the observation that the
rare tumors that did arise in these animals tended to express Myc
and contained at least a diploid or pseudo-diploid Myc DNA
content, indicating that cells with incomplete Myc excision were
selected for neoplastic transformation in aged individuals.
Interestingly, an example of a human progeria syndrome that is
not associated with a high incidence of cancer early in chronological
life is Hutchinson-Guilford progeria (HGP), which is caused by
mutations in the laminin A (LMNA) gene (Sarkar and Shinton,
2001; Sinha et al., 2014). While these individuals do show evidence
of genomic instability and defective DNA repair, the primary LMNA
mutations in HGP cause an abnormal nuclear architecture and loss
of heterochromatin organization and its contact with the nuclear
envelope (Arancio et al., 2014). We examined the catalogued
RNAseq data from 2 studies that analyzed the differences
between HGP and normal human fibroblast transcriptomes and
found no evidence for the dysregulation of Myc or its target genes
(Kohler et al., 2020; San Martin et al., 2022). Nor did the authors of
these reports identify irregularities in the expression of any of the
major Myc target gene categories. Thus, although aging and cancer
can be dissociated in HGP as it can in MycKO mice, it appears
unrelated to any changes in the expression ofMyc or its target genes.

5 The MycKO mouse as a new (and
improved?) model for premature
aging?

Mouse models of the above-discussed progeroid syndromes
have long been used as surrogates for normal human aging
(Harkema et al., 2016; Koks et al., 2016; Folgueras et al., 2018;
Rizza et al., 2021). However, these models are based on exceedingly
rare monogenic disorders that are of questionable relevance to
normal aging aside from recapitulating some of its associated
phenotypes. This is because they directly impact only one or 2 of
aging’s so-called “Hallmarks”, namely those pertaining to genomic
stability and telomere maintenance (Figure 3) (Lopez-Otin et al.,
2023). Thus they likely over-emphasize the roles of these 2 hallmarks
while discounting the roles of others. While the MycKO model is
also monogenic, it differs importantly from progeroid syndrome
models primarily because the loss of Myc, which is a transcription
factor, is more consequential by virtue of directly impacting the vast
majority of aging’s hallmarks (Figure 2). As discussed above, for
example, 4 of the 7 major categories of gene sets that are impacted in
MycKOmice and MEFs (i.e. ribosomal/mitochondrial structure and
function, DNA damage response/repair and splicing directly impact
4 of the Aging Hallmarks (Figure 3) (Meshorer and Soreq, 2002;
Short et al., 2005; Tchkonia et al., 2010; D’Aquila et al., 2017;
Deschenes and Chabot, 2017; Gonskikh and Polacek, 2017;
Bhadra et al., 2020). The categories pertaining to senescence and
aging are directly related to 2 additional Aging Hallmarks and the
dysregulation of the transcripts within these categories reflects the
declines of Myc and its direct target genes that accompany normal
aging in both mice and humans (Dean et al., 1986; Smith et al., 2002;
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Benanti et al., 2007; Wang et al., 2023). In addition, the category
pertaining to oxidative stress, which is associated with high levels of
ROS and ROS-mediated damage in MycKO cells and tissues
(Edmunds et al., 2016; Wang et al., 2022b) can accelerate the
onset of other Aging Hallmarks, including genomic and
mitochondrial DNA instability and impaired translation
(Gonskikh and Polacek, 2017; Hahn and Zuryn, 2019; Payea
et al., 2021; Renaudin, 2021; Woodward and Shirokikh, 2021;
Wang et al., 2022b). While gene categories involved in nutrient
sensing, stem cell maintenance and epigenetic regulation were not
among the top ones identified in the tissues of MycKO of mice
(Wang et al., 2022b; Wang et al., 2023), Myc has long been known to
play important roles in these processes; indeed Myc positively
regulates transcription via its ability to recruit epigenetic
modifiers to its bound sites in chromatin (Amati et al., 2001; Ba
et al., 2018; Kalkat et al., 2018). Moreover, its age-related decline is
likely to play some role in determining the pace at which these
functions deteriorate (Figure 3) (Chappell and Dalton, 2013; Kalkat
et al., 2018; Prochownik and Wang, 2022). Finally, 2 of the Aging
Hallmarks pertaining to intercellular communication and chronic
inflammation are likely to be indirectly regulated by Myc, which

controls the expression of a number of cytokines, chemokines and
immune checkpoints that contribute to these processes (Hayashi
et al., 1998; Yi et al., 2003; Singh et al., 2006; Casey et al., 2018;
Piddock et al., 2018). TheMyc-dependent re-organization of glucose
and glutamine metabolism has been shown to be essential for the
expansion of activated T cells (Dang, 2010; Wang et al., 2011).

The wide-ranging consequences of Myc inactivation make it
highly unlikely that, as is true for normal aging, its impact on any
single Aging Hallmark can fully explain the premature aging profile
of MycKO mice (Figure 3). Just as genotoxic damage and telomere
attrition drive some aspects of premature aging in progeria
syndromes, so too can the interference with protein synthesis,
mitochondrial DNA integrity and stem cell regulation, all of
which are Myc-dependent to varying degrees (Hiona and
Leeuwenburgh, 2008; Vilas et al., 2018; Shcherbakov et al., 2022).
While the general categories of gene sets that are dysregulated in
MycKO mice are similar, the degree to which their component
transcripts are enriched as well as their individual identities differ
among the limited number of tissues and cell types that have been
thus far surveyed, namely MEFs, liver, skeletal muscle and adipose
tissues (Wang et al., 2022b; Wang et al., 2023). These seemingly

FIGURE 3
The impact of Myc on the Hallmarks of Aging. Depicted here are the major molecular, cellular and whole body changes that represent the common
denominators of aging and how they are impacted by Myc (Lopez-Otin et al., 2023). Many previously described direct Myc target genes are involved in
maintaining the structure and function of ribosomes, translation factors and mitochondria (Li et al., 2005; Gomez-Roman et al., 2006; Ruggero, 2009;
Morrish et al., 2010; van Riggelen et al., 2010; Morrish and Hockenbery, 2014; Dolezal et al., 2017; Singh et al., 2021; Prochownik, 2022). Myc also
regulates glutamine metabolism and its anaplerotic entry into the TCA cycle, while also promoting glycolysis by directly up-regulating the genes
encoding most enzymes in the glycolytic pathway, particularly the rate-limiting ones (Dang, 2011; Stine et al., 2015; Prochownik, 2022; Prochownik and
Wang, 2022). Both the over- and under-expression of Myc can promote genomic instability via the regulation of genes involved in DNA damage
recognition and repair, telomere maintenance, the generation of genotoxic ROS and the promotion of tetraploidy (Yin et al., 1999; Vafa et al., 2002;
Prochownik and Li, 2007; Wang et al., 2022b; Solvie et al., 2022; Wang et al., 2023). Myc’s transcriptional control over genes involved in mRNA splicing,
together with Myc-induced genomic instability, can contribute to a higher background of neo-antigen production and inflammation while altering rates
of aerobic and anaerobic respiration by, for example, altering splicing choices for genes such as that encoding pyruvate kinase (Meshorer and Soreq,
2002; David et al., 2010; Koh et al., 2015; Wang et al., 2022b; Prochownik, 2022; Wang et al., 2023). Myc can also suppress senescence and maintain the
stem cell niche (Dean et al., 1986; Wu et al., 2007; Dubois et al., 2008; Zhuang et al., 2008; Vilas et al., 2018) and can also impact intercellular
communication by regulating the expression of cytokines, chemokines and immune checkpoints (Hayashi et al., 1998; Yi et al., 2003; Singh et al., 2006;
Piddock et al., 2018). Myc’s control over its target genes largely involves epigenetic re-programming, primarily at the level of histone H3/H4 acetylation
and/or methylation (Knoepfler et al., 2006; Kalkat et al., 2018; Tu et al., 2018). Finally, Mycmay be involved indirectly in the regulation of macroautophagy
given that Miz1 appears to be involved in this process (Wolf et al., 2013). Created with BioRender.com.
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subtle distinctions may well exert significant influence over which
tissues display signs of premature aging, what these signs are, when
they first appear and their severity. Finally, it should be kept in mind
that, unlike the generation of Myc−/− and Myc ± mice, which
provide consistent levels of Myc knockout in each tissue (Davis
et al., 1993; Trumpp et al., 2001; Hofmann et al., 2015), the degree of
Myc loss in MycKO mice varies both among and within tissues and
individual mice, while also showing some age-related recovery
(Wang et al., 2023). Indeed, even the 80%–90% levels of
knockout routinely achieved may still be sufficient to allow
normal or near-normal regulation of certain direct target genes
with the highest affinity Myc binding sites. Considerable growth and
development normally continue beyond the time of weaning that
marks the point in time of Myc gene deletion (Wang et al., 2023). It
thus remains to be determined whether even higher gene knockout
efficiencies would have remained compatible with the prolonged
survival noted by Wang et al. and whether other phenotypes might
have emerged.

Yet to be fully explained is why mice with a 50% normal level of
Myc and those with ~80->90% knockout have such different aging
phenotypes (Hofmann et al., 2015;Wang et al., 2023). Here too there
may be no single answer but at least 2 major and non-mutually
exclusive reasons may pertain to the timing of Myc gene knockout
and dose-related effects. The first may be related to the fact that,
when Myc inactivation is initiated in the embryo, gene dose
determines the resultant body size whereas when Myc is
inactivated post-natally, no effect on overall body size is observed
(Trumpp et al., 2001; Hofmann et al., 2015; Wang et al., 2023). The
relationship between body size and longevity is well-known, with
smaller members of the same species ranging from flies to humans
tending to have longer average lifespans (Samaras et al., 2003;
Khazaeli et al., 2005; Blagosklonny, 2013). Whether the increased
longevity of Myc ± mice arises simply as a consequence of their
smaller body size and is thus not a direct Myc gene dosage effect
could be determined by engineering a precise 50% knockout ofMyc
post-natally so as to genotypically mimicMyc ± mice while avoiding
the size disparities previously noted when haplo-insufficiency is
generated in the embryo (Hofmann et al., 2015). The second reason
pertaining to gene dosage involves the phenomenon of
“heterozygous advantage” whereby possessing a single mutant or
inactive allele can confer a selective survival advantage whereas
mutational homozygosity can be deleterious or even lethal (Hedrick,
2012). Examples of such genes include those encoding the cystic
fibrosis transmembrane conductance regulator, the α- and β-globins
and triose phosphate isomerase (Cuthbert et al., 1995; Jones, 1997;
Destro-Bisol et al., 1999; Ralser et al., 2006).

6 Questions for the future

The studies reviewed, compared and summarized here have
clearly indicated that Myc plays a significant role in balancing the
overall health and wellness of mice and probably of humans as well.
Myc is also involved in the development and timing of tumors that
appear to impact their natural life spans. However, a number of
questions remain unanswered. For example, the high mortality rate
associated with inactivating theMyc gene prior to about 1 month of
age leaves open the question of its role in the considerable amount of

growth and development that occurs prior to this time. The work of
Wang et al. and the earlier work of Soucek et al. showed that the
initial inhibition of Myc, even in adult mice, is accompanied by
significant changes in the gastrointestinal and hematopoietic
compartments (Soucek et al., 2008; Wang et al., 2023). What
limits the severity of these changes and why is the latter so much
more severe prior to weaning and particularly so in the embryo
(Davis et al., 1993; Trumpp et al., 2001; Dubois et al., 2008)? Perhaps
an even more fascinating question is what factor(s) contribute to the
reversal of these initial changes and allow these highly proliferative
tissues to remain so over the course of a lifetime in the face of little to
no expression of Myc?

This last question remains particularly germane when
considering the nearly universal requirement for Myc in
maintaining the proliferation of non-transformed cells in vitro
(Mateyak et al., 1997; Wang et al., 2022b). The critical
contribution of Myc to maintaining rapid tumor cell growth and/
or viability both in vitro and in vivo has also been demonstrated in
many transformed cell types and a variety of neoplasms, including
those arising in bone, the lymphatic system and the liver (Shachaf
et al., 2004; Wu et al., 2007; Wang et al., 2008; Gabay et al., 2014;
Dolezal et al., 2017). Yet, there are clear exceptions to this rule, most
notably in the case of the liver where the short-term regeneration of
the organ following partial hepatectomy and its longer-term
repopulation by transplanted hepatocytes are entirely Myc-
independent (Baena et al., 2005; Khazaeli et al., 2005; Sanders
et al., 2012; Edmunds et al., 2016). In the hepatoblastoma model,
where Myc is not one of the driver oncogenes, but is expressed at a
high level, tumor initiation remains highly effficient in Myc’s
absence although survival is markedly prolonged due to slower
tumor growth (Wang et al., 2016). Although no comparative studies
have been done, it would appear that, both in vitro and in vivo, Myc
in many cases is required to maintain cellular growth at maximum
rates, particularly for tumors and even more so for those tumors in
which Myc is the actual driver oncogene. Cells that proliferate
relatively slowly and are not transformed may therefore be less
reliant on Myc to maintain this state.

The extent to which different functions that are impacted by
Myc’s loss contribute to premature aging (Wang et al., 2023) also
remains a major question. Impaired mitochondrial function,
metabolism and translation have all been described in association
with aging and all of these are dependent upon Myc to balance and
maintain their normal function (Li et al., 2005; van Riggelen et al.,
2010; Barrientos, 2012; Graves et al., 2012; Edmunds et al., 2016;
D’Aquila et al., 2017; Gonskikh and Polacek, 2017; Miwa et al., 2022;
Prochownik and Wang, 2022). The degree to which these drive the
premature aging phenotypes of MycKO mice may well be impacted
by and synergize with one another. An example of this is the
relationship between what are arguably the 2 major drivers of
aging, namely ROS and DNA damage, which are inextricably
linked by virtue of the fact that both Myc over- and under-
expression can drive ROS production which in turn can cause
oxidative DNA damage (Vafa et al., 2002; Balaban et al., 2005;
Brosh and Bohr, 2007; van Riggelen et al., 2010). Virtually all the
major pathways that are under Myc’s control are known to be
associated with or to drive aging and senescence when they are
deregulated (Figures 2, 3) (van Riggelen et al., 2010; Popay et al.,
2021; Prochownik, 2022; Prochownik and Wang, 2022).
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Two additional and related issues worth examining in future studies
are whether the inactivation ofMyc later in life also accelerates aging and
whether normalizing Myc expression can reverse this process or at least
“reset” the aging clock. These are important practical questions given the
long-standing interest in inhibiting Myc as a general chemotherapeutic
strategy for cancer (Llombart and Mansour, 2022). The finding that
Myc ± mice showed both increased longevity and improved overall
health initially suggested that the use of Myc inhibitors to treat various
cancers might actually have additional secondary benefits and even hold
promise as anti-aging therapies akin to those provided by caloric
restriction or metformin (Kebbe et al., 2021). However, the more
recent work of Wang et al. (2023) suggests that this might not be the
case (at least in cancer) given that total Myc inhibition would be the
desired therapeutic goal in treating cancer and would more likely than
not accelerate rather than slow aging as one of its potential side effects.
This consideration might have particular relevance for older adults who
in many cases are already frail at the time they begin chemotherapy and
who can ill afford to age any more rapidly (Ness and Wogksch, 2020;
Shafqat et al., 2022). Perhaps evenmore deserving of considerationwould
be whether Myc inhibitors should be used in children in whom even
relatively short courses of standard cancer chemotherapy can elicit
features of premature aging and might collaborate with agents that
deliberately loweredMyc levels (Smitherman et al., 2020; Kruseova et al.,
2023). Similar concerns may be warranted over the use of such agents
solely as potential lifespan and/or healthspan extenders or in the long-
term treatment of non-malignant conditions associated with other Myc-
dependent hyperproliferative states (Prochownik and Vogt, 2010).
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The mitochondrion is a major hub of cellular metabolism and involved directly or
indirectly in almost all biological processes of the cell. In mitochondrial diseases,
compromised respiratory electron transfer and oxidative phosphorylation
(OXPHOS) lead to compensatory rewiring of metabolism with resemblance to
the Warburg-like metabolic state of cancer cells. The transcription factor MYC (or
c-MYC) is a major regulator of metabolic rewiring in cancer, stimulating glycolysis,
nucleotide biosynthesis, and glutamine utilization, which are known or predicted
to be affected also inmitochondrial diseases. Albeit not widely acknowledged thus
far, several cell and mouse models of mitochondrial disease show upregulation of
MYC and/or its typical transcriptional signatures. Moreover, gene expression and
metabolite-level changes associated with mitochondrial integrated stress
response (mt-ISR) show remarkable overlap with those of MYC overexpression.
In addition to being ametabolic regulator, MYC promotes cellular proliferation and
modifies the cell cycle kinetics and, especially at high expression levels, promotes
replication stress and genomic instability, and sensitizes cells to apoptosis.
Because cell proliferation requires energy and doubling of the cellular biomass,
replicating cells should be particularly sensitive to defective OXPHOS. On the
other hand, OXPHOS-defective replicating cells are predicted to be especially
vulnerable to high levels of MYC as it facilitates evasion of metabolic checkpoints
and accelerates cell cycle progression. Indeed, a few recent studies demonstrate
cell cycle defects and nuclear DNA damage in OXPHOS deficiency. Here, we give
an overview of key mitochondria-dependent metabolic pathways known to be
regulated by MYC, review the current literature on MYC expression in
mitochondrial diseases, and speculate how its upregulation may be triggered
by OXPHOS deficiency and what implications this has for the pathogenesis of
these diseases.

KEYWORDS

electron transport chain, oxidative phosphorylation, respiratory complex III,
mitochondrial integrated stress response, Warburg effect, cellular senescence

1 Introduction

MYC (c-MYC, avian MYeloCytomatosis viral oncogene homolog) is a Basic-Helix-
Loop-Helix-Leucine Zipper (bHLHZip)-family transcription factor that regulates a broad
range of cellular functions including metabolism, growth, proliferation, differentiation, and
survival (Figure 1) (Hartl, 2016). It is a major driver of cancer, being frequently
overexpressed but rarely mutated. Transgenic overexpression of MYC in mice leads to
increased proliferation and tumor development in multiple tissues. Conversely, inhibition or
removal of MYC consistently causes growth arrest of cancer cells both in culture and in vivo
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(Dave et al., 2017). In mammals, the MYC family also includes
MYCN (N-MYC) and MYCL (L-MYC) proteins, which are highly
homologous to MYC but expressed spatially differently. MYC is
expressed widely but at a very low level in non-proliferating
(quiescent) or postmitotic cells, whereas it is typically much
more abundant in proliferating cells. Semsei et al. studied the
tissue expression of Myc throughout mouse development and life
span (Semsei et al., 1989). Its expression was highest in prenatal and
newborn tissues and then decreased, reaching its lowest levels at
about 6 months. The spleen and liver consistently showed the
highest Myc expression at all ages. Interestingly, Myc expression
did not continue to decline upon further ageing but instead
progressively increased in the brain, liver, skin, and small intestine.

In contrast to the broad but low-level expression of MYC,
MYCN expression mainly limits to neuronal and reproductive
tissues, whereas MYCL expression restricts to the gastrointestinal
tract, including pancreas and dendritic cells (Das et al., 2023). MYC
and MYCN germline knockouts are embryonic lethal, whereas mice
lacking MYCL do not have an overt phenotype. All three MYC
family members heterodimerize with MAX (MYC-Associated factor
X) to exert their transcriptional functions. MAX can homodimerize
or heterodimerize with other proteins than MYC family, and these
dimers compete for a common DNA sequence element called the E
box, providing a complex transcriptional regulation system. After
DNA binding, the MYC-MAX dimers can recruit further
transcriptional cofactors and chromatin modiflers that license
RNA polymerase II activation and transcription. The MYC-
driven transcriptional programs are complex and almost genome
wide because MYC acts as a global transcriptional amplifier that
binds and increases expression at active promoters (Nie et al., 2020).
Thus, MYC disproportionally upregulates highly expressed genes.
Notwithstanding that its modes of conducting transcriptional
activation are still somewhat obscure despite intensive research,
MYC has been estimated to control the expression of at least 15% of

all genes in humans, some of the most prominent categories being
genes involved in cell cycle progression, metabolism, ribosomal
biogenesis, and translation (Hartl, 2016).

The MYC-MAX dimerization domain function is conserved
from human to zebrafish (Schreiber-Agus et al., 1993) and fruit fly
(Schreiber-Agus et al., 1997). The discovery of MYC and MAX
homologs in the unicellular organisms choanoflagellates revealed
that MYC evolved even before the metazoa (animals) (Young et al.,
2011). In Hydra (polyp), Myc mRNA is highly expressed in stem
cells and other rapidly proliferating cell types, whereas in terminally
differentiated cells, its expression is not detectable, suggesting an
overall conserved role in cell proliferation (Hartl et al., 2010). The
fruit fly (Drosophila melanogaster) MYC homolog (dMyc,
diminutive) (Schreiber-Agus et al., 1997) has been studied quite
extensively in the context of normal physiology. Loss of dMyc
function impedes growth and reduces cell size, whereas dMyc
overexpression boosts growth and cell size and promotes G1/S
progression but not G2/M progression or cell division (Johnston
et al., 1999). It also increases genomic rearrangements, typical of
erroneous DNA double-strand break repair, and shortens lifespan.
Conversely, dMyc haploinsufficiency decreases mutation load and
extends lifespan (Greer et al., 2013), similarly to in mice (Hofmann
et al., 2015), as we shall see in the next section.

2 Insight into normal MYC function and
regulation from genetic models

Despite the extensive knowledge about the roles of MYC in
carcinogenesis and cultured cancer cells accumulated during the
past 4 decades, much less is still known about its roles in normal
development and tissue homeostasis (Figure 1). Greatly aiding
studies on the latter, the homologous recombination-based gene
knockout (KO) technology allowed the development of several

FIGURE 1
The cartoon illustrates some central physiological processes in mammalian cells and tissues to which MYC-regulated transcriptional programs
contribute as driver, modulator, or adaptor. The abbreviationmt-ISR stands formitochondrial integrated stress response. See sections 3-5 in themain text
for elaboration.
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invaluable genetic models to assess MYC function during
ontogenesis (Table 1). In the early 1990s, it turned out that
homozygous Myc knockout in mice is lethal by embryonic day
10.5 due to developmental defects in the placenta, hematopoietic
system, and vasculature (Davis et al., 1993). Embryonic fibroblasts
(MEFs) isolated from E9.5 KO embryos are viable but flattened and
do not proliferate (Trumpp et al., 2001). A highly useful early Myc
KO in vitromodel was developed via homologous recombination in
rat fibroblasts (Mateyak et al., 1997). These cells are highly abnormal
and divide 2 to 3 times more slowly than controls, are very flattened,
and show dramatically decreased or delayed cyclin D, E and A
expression during the cell cycle. Their mitochondria are less
abundant, much smaller in size, and show disrupted cristae
patterns, indicating that MYC plays a role in the maintenance of
mitochondria. Furthermore, Myc KO fibroblasts show decreased
glycolysis, mitochondrial membrane potential and respiration, and
low levels of oxidative phosphorylation (OXPHOS) machinery
enzymes, likely explaining their 3-fold decreased ATP level.

In contrast to complete or near-complete Myc loss-of-function,
Myc haploinsufficiency (Myc+/−) brings no adverse effects but about
20% decrease in adult body mass and increased lifespan in mice
(20% in females, 10% in males) (Hofmann et al., 2015). This
increased longevity is accompanied by a lower incidence of age-
associated pathologies such as osteoporosis, cardiac fibrosis, and
immunosenescence. Compared to wild-type mice, the Myc+/− mice
are also more active and have a higher metabolic rate. Upregulation
of ribosome biogenesis is a canonical MYC-driven process, and
indeed the Myc+/− mice have slightly reduced ribosomal RNA
content and protein translation. The mice also have reduced
serum IGF-1, increased AMPK activity, and decreased AKT and
mTOR activities, altogether indicating a marked suppression of
anabolic metabolism.

Despite the importance of MYC for embryonic and cancer
growth, several studies have shown that MYC is largely
dispensable for normal tissue growth and homeostasis in juvenile
and adult stages. In adult human and mouse tissues, MYC
expression is highest in rapidly proliferating compartments like
the intestinal crypts and skin (Dave et al., 2017). However,
conditional deletion of Myc in these compartments in mice does

not result in a noticeable proliferation defect. For example, quite
unexpectedly, MYC is dispensable for postnatal liver growth and
regeneration (Edmunds et al., 2016). Nevertheless, transient
induction of MYC occurs upon induced liver regeneration in
various rodent liver injury models such as partial hepatectomy
and hepatotoxic drug treatment (Prochownik, 2022). However,
MYC’s role in such experimental models of liver regeneration is
less clear. In some models, the pace of liver mass restoration was
unaffected by conditional loss of MYC in hepatocytes (Li et al., 2006;
Sanders et al., 2012), while others claim that regeneration is
compromised (Baena et al., 2005). Utilizing fumaroylacetoacetate
hydrolase (FAH) mutant mice, a genetic liver disease model
mimicking human type I hereditary tyrosinemia, subjected to
transplantation of WT and Myc−/− hepatocytes, Edmunds et al.
showed convincingly that MYC is dispensable for liver
regeneration in this model (Edmunds et al., 2016).

To assess the regulation of Myc transcription in normal tissues
and upon tumorigenesis, Dave et al. generated a series of alleles with
large deletions in theMyc 5’ regulatory sequences (Dave et al., 2017).
The mice carrying the largest (>500 kb) of these (Myc△2–540) show a
50%–80% decrease in basal Myc expression but are homozygous
viable and fertile, with no overt phenotype and only a slight decrease
in the number of B lymphocytes. These mice fail to induce MYC
overexpression during early tumorigenesis, and cultured fibroblasts
from these mice grow slowly and are unable to upregulate MYC in
response to serum stimulation. In a recent paper, Wang et al. revisit
the question of MYC functions in postnatal development and tissue
homeostasis by generating a mouse line with tamoxifen-inducible
Cre-mediated loss ofMyc (Wang et al., 2023). Their system allowed
near-complete (75%-95%) elimination of Myc expression with a 5-
day tamoxifen regimen started at 4 weeks of age. Somewhat
surprisingly, the resulting mice with extreme but not complete
loss of MYC display some premature aging features, like alopecia
and graying of the hair as early as 3-4 months of age, increased
adiposity, and hepatic steatosis. However, the mice live significantly
(median 4.6 months) longer than wild-type controls, probably due
to a 4-5-fold lower cancer incidence. Transcriptional profiling of the
liver, white adipose tissue and skeletal muscle showed changes
related to mitochondrial and ribosomal function, cellular

TABLE 1 Models with genetic MYC manipulation and their effect on mitochondria.

Model/allele Effect on MYC Phenotype Mitochondria-related changes References

Myc KO in rat normal
fibroblasts

KO Decreased growth rate, doubling time 4-
5 days (WT 18-24 h)

Decreased number, size, membrane
potential, OXPHOS, ATP level, CI, ATP
synthase, SCs, fusion

Mateyak et al. (1997),
Graves et al. (2012)

Heterozygous exon
2&3 excision (Myc+/−) in vivo

mRNA, protein 50%
of WT

Increased longevity and health span,
unaltered cancer incidence

Decreased fatty acid and cholesterol
synthesis

Hofmann et al.
(2015)

Excised exons 2&3 with Alb-
Cre in vivo

>90% KO in hepatocytes No overt phenotype Mild respiration defect in liver
mitochondria. Increased FAO.

Edmunds et al.
(2016)

Excised exons 2&3 with
ROSA26-CreER

Whole body 75%-95%
loss of mRNA
expression

Signs of accelerated aging, fatty liver
disease, decreased incidence of tumours

Increased whole-body FAO, decreased CI
activity, increased ROS in MEFs

Wang et al. (2023)

(tamoxifen) in vivo

Excised exons 2&3 with
ROSA26-CreER (tamoxifen) in
MEFs

>95% loss of MYC
protein

Poor proliferation, Go/G1 arrest,
flattened senescent morphology, DNA
damage response

Increased mitochondrial mass, ROS
production

Wang et al. (2022)

CI, complex I; SCs, supercomplexes; FAO, fatty acid oxidation; ROS, reactive oxygen species; MEFs, mouse embryonic fibroblasts.
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senescence, DNA damage recognition and repair, and mRNA
splicing upon loss of MYC (Wang et al., 2023). The results from
both hypomorphic mouse models indicate that MYC is an
important metabolic regulator but not critical for the normal
physiology of adult mice.

3 Regulation of normal mitochondrial
homeostasis and metabolism by MYC

As the main cellular site of energy metabolism and biosynthesis,
mitochondria are highly dynamic and respond to the selection of
available nutrients and requirements for biomass production to
ensure sufficient resources for cell proliferation, tissue growth,
homeostasis, and mechanical work. MYC is a major driver of
cellular proliferation and growth, so it is obvious that the
transcriptional programs driven by it must be tightly connected
to mitochondrial homeostasis, energy metabolism and biosynthesis
(O’Connell et al., 2003; Morrish and Hockenbery, 2014; Goetzman
and Prochownik, 2018). To understand why and howMYCmight be
needed in response to mitochondrial dysfunction, such as in
mitochondrial diseases, we will take a brief look at what is
known about how MYC regulates some key mitochondria-related
functions. It is worth bearing in mind, however, that most of these
findings were made in cancer studies, or at least using cancer cell
lines as a model.

3.1 Mitochondrial dynamics and biogenesis

Mitochondrial biogenesis generates new mitochondria to
maintain or increase mitochondrial number and mass in a cell
(Morrish and Hockenbery, 2014). It is a massive undertaking
requiring the transcription, translation, mitochondrial import,
and assembly of over 1,000 nuclear genome-encoded proteins
and 13 proteins encoded by the mitochondrial genome
(mtDNA). Numerous studies employing MYC-overexpressing or
MYC-deleted cell systems have shown that nearly half of the nuclear
genes encoding mitochondrial proteins can be transcriptionally
upregulated by MYC (Li et al., 2005; Kim et al., 2008; Graves
et al., 2012; Morrish and Hockenbery, 2014). In addition to
transcript level analyses, Li. et al. demonstrated, utilizing a
human lymphoblastoid cell line carrying tetracycline-repressible
ectopic MYC and estradiol-inducible endogenous MYC, that
MYC overexpression increases mitochondrial mass and lack of
MYC has the opposite effect (Li et al., 2005).

Mitochondria cannot be built from scratch, but “new”
mitochondria are always generated from existing ones by
means of fission and fusion of the organelle coupled to
mtDNA replication, transcription and translation. A generally
accepted purpose of fusion is to mitigate stress and maximize
function by mixing the contents of damaged and healthy
mitochondria. In contrast, fission is a means to create new
mitochondria and a quality control mechanism to remove
damaged mitochondria via mitophagy (Goetzman and
Prochownik, 2018). Expression of many mitochondrial proteins
controlling fission and fusion, such as the mitofusins Mfn1 and
Mfn2, is low inMyc−/− fibroblasts compared to the cells rescued by

Myc transfection (Graves et al., 2012). MYC-deficient cells also
have twofold lower rates of mitochondrial fusion compared to
MYC-expressing cells, suggesting that the normally proliferating
MYC-expressing cells were under pressure to ensure
mitochondrial quality for sufficient energy and biosynthetic
precursor production (Wang et al., 2022).

One of the first identified transcriptional targets of MYC
encoding a mitochondrial protein was SURF-1, an assembly
factor for respiratory complex IV (cytochrome c oxidase, CIV)
(Vernon and Gaston, 2000). Direct MYC target genes also
involve several other respiratory complex assembly factors, the
TIM/TOM (Translocase of the Inner/Outer Membrane) proteins,
and practically all mitochondrial ribosomal proteins (Morrish and
Hockenbery, 2014). Most of the major transcription factors that
drive mitochondrial biogenesis in response to metabolic cues are
transcriptional targets of MYC, at least in some systems (Seitz et al.,
2011). The best-characterized ones are TFAM (Transcription factor
a, mitochondrial, a key regulator of mtDNA transcription and
replication), PPARGC1A (Peroxisome proliferator-activated
receptor γ coactivator 1-α, also known as PGC-1α), ESRRA/B/G
(Estrogen-related receptors α/β/γ, also known as ERRα/β/γ),
PPARA/D/G (Peroxisome proliferator-activated receptors α/δ/γ),
NRF1 (Nuclear respiratory factor 1), GABPB1 (also called Nuclear
respiratory factor 2), and PPRC1 (PPARG-related coactivator 1).
Because of several reviews on the roles of these TFs in mitochondrial
biogenesis (Dinkova-Kostova and Abramov, 2015; Gureev et al.,
2019; Popov, 2020; Vernier and Giguère, 2021), it suffices to say here
that their interplay with MYC in the context of OXPHOS
dysfunction is an understudied but exciting topic.

3.2 Energy metabolism and biosynthesis

Cellular metabolism can be divided into catabolic (degradative)
and anabolic (biosynthetic) branches that intertwine widely.
Catabolism is the collective term for breaking complex molecules
into simpler ones with concomitant release of energy from chemical
bonds to drive cellular functions and to produce biosynthetic
precursors. Uncovering the central role of MYC as a regulator of
both catabolism and anabolism started with studies on cancer cells
in the mid-1980s. To begin with, MYC plays a crucial role in the
regulation of glycolysis by upregulating glucose transporters and
nearly all the glycolytic enzymes and by regulating pyruvate kinase
splicing (Haikala et al., 2017; Goetzman and Prochownik, 2018;
Dong et al., 2020). Indeed, the basal rate of glycolysis in the
aforementioned Myc−/− fibroblasts is about 50% of that of
parental wild-type cells (Graves et al., 2012). An example of a
canonical anabolic process driven by MYC is the upregulation of
ribosome biogenesis and protein synthesis (van Riggelen et al.,
2010).

Proliferating cells require a continuous supply of amino acids,
nucleotides, and lipids as building blocks of cell mass. Apart from
tumor cells this goes for embryonic and adult stem cells as well as
differentiated cells, such as hepatocytes, that can enter the cell cycle
for tissue regeneration. All these cell types share a reliance on
glucose and glutamine to support their anabolism (Haikala et al.,
2017; Goetzman and Prochownik, 2018). Glutamine is the most
abundant amino acid in human blood, and proliferating cells use it
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for energy production and as a carbon and nitrogen source for
biosynthesis. MYC promotes glutamine metabolism directly and
indirectly via diverse mechanisms, for example, through
upregulation of glutamine synthesis, uptake, transport, and
consumption. A recent review thoroughly covers the genetic and
biochemical mechanisms of regulation of glutamine uptake and
metabolism by MYC (Tambay et al., 2021). As the first step of
glutaminolysis, the hydrolase enzymes glutaminase 1 and 2 (GLS-1,
GLS-2) convert glutamine to glutamate. MYC can upregulate GLS-1
via miR-23a/b-dependent posttranscriptional mechanisms (Gao
et al., 2009) and also more directly via binding to the GLS-1
transcription start site near the 5′UTR (Haikala et al., 2018). In
the cytosol, glutamate serves as a substrate for the synthesis of
several amino acids (serine, alanine, aspartate, and ornithine),
whereas it mainly undergoes conversion to α-ketoglutarate in the
mitochondria to fuel the Krebs cycle (Haikala et al., 2017).

In contrast to proliferating cells, many differentiated permanently
postmitotic tissues prefer to utilize fatty acid oxidation (FAO) over
glycolysis for energy production. Loss or inhibition of MYC leads to
exaggerated reliance on FAO as an energy source in several cell and
tissue models (Graves et al., 2012; Zirath et al., 2013; Edmunds et al.,
2014; 2016). Finally, one canonical target of MYC is nucleotide
metabolism, and MYC directly binds the regulatory regions of many
genes encoding enzymes involved in purine and pyrimidine nucleotide

biosynthesis (Liu et al., 2008). Moreover, MYC upregulates pathways
such as de novo serine synthesis and one-carbon metabolism that
support nucleotide biosynthesis (Sun et al., 2015).

3.3 The Warburg effect

In mitochondrial diseases, cells unavoidably rewire their
metabolism to compensate for the compromised OXPHOS
(Figure 2). In cancer cells, glycolysis coupled to lactate production is
often favored over OXPHOS even in the presence of sufficient oxygen,
an effect first observed byOttoWarburg in the 1920s. Such “fermenting
glycolysis” was initially suggested byWarburg to be caused by defective
mitochondria (Warburg, O. et al., 1924; Warburg, 1956). His
contemporary Herbert Crabtree suggested an opposite explanation:
that cancer cells downregulate OXPHOS in response to increased
glycolysis (Crabtree, 1929). The Warburg effect is now known to
occur in both rapidly proliferating normal cells and cancer cells
without any impairment in OXPHOS (Senyilmaz and Teleman,
2015; Goetzman and Prochownik, 2018; Vaupel and Multhoff,
2021). Instead, it is essentially a metabolic reprogramming resulting
from characteristic normal and/or malignant proliferation-associated
transcriptional and signaling alterations, such as hypoxia-inducible
factor-1 (HIF-1) stabilization, oncogene activation (MYC, Ras), loss

FIGURE 2
Cartoon showing connections between OXPHOS deficiency, MYC, cellular metabolism, and cell fates. Mitochondrial diseases are genetic diseases,
in which a mutation in either the nuclear or mitochondrial genome compromises directly or indirectly mitochondrial ATP production by the oxidative
phosphorylation (OXPHOS) machinery (A). OXPHOS deficiency triggers a retrograde (mitochondrion-to-nucleus) signal (B, C) to adjust gene expression
to restore homeostasis (anterograde signals, (C, D)) and to allow cell survival and tissue regeneration and repair (E). The nature of the retrograde
signal (B) triggering MYC expression in OXPHOS deficiency remains uncertain. Beneficial or neutral compensatory changes induced by OXPHOS
deficiency are shown in text boxes with blue font (C–E). Known or hypothetical adverse consequences of MYC induction concomitantly with OXPHOS
deficiency are listed in text boxes with red font (F, G). These include hypermetabolism (F, increased demand for energy and biosynthesis), potentially
leading to nucleotide depletion, cell cycle arrest, genomic instability, and senescence (G) with senescence-associated secretory phenotype (SASP).
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of function of tumour suppressors (P53, PTEN), activated (PI3K-Akt-
mTORC1, RAS-RAF-MEK-ERK, Jak-Stat3), or deactivated (LKB1-
AMPK) energy signaling pathways (Senyilmaz and Teleman, 2015;
Goetzman and Prochownik, 2018; Vaupel and Multhoff, 2021). At the
molecular level, some of the key features of the Warburg effect are
accelerated glycolytic flux, diversion of glycolytic intermediates to the
biosynthesis of nucleotides, non-essential amino acids, lipids, and
hexosamines, inhibition of pyruvate entry into mitochondria,
increased production of lactate from pyruvate, secretion of lactate
through lactate–proton symporters, and increased carbonic
anhydrase activity to hydrate CO2 from oxidative metabolism into
H+ and bicarbonate. Excessive lactate-proton export results in
extracellular acidification, which may drive further malignant cancer
progression (Cassim et al., 2020; Vaupel and Multhoff, 2021). In the
case of mitochondrial disease, decreased tricarboxylic (Kreb’s) cycle
activity may decrease pyruvate oxidation, force its reduction to lactate,
and result in the relatively common manifestation lactic acidemia
(Hikmat et al., 2021). Even though mutations compromising
OXPHOS do not underlie the Warburg effect in cancer cells,
mutations causing mitochondrial diseases lead to metabolic changes
that are overlapping with it. Whether this might have implications for
the pathogenesis of these diseases, particularly those affecting
proliferating or regeneration-competent tissues, remains to be
studied. In the next section, we shall turn to what is currently
known about MYC in experimental OXPHOS dysfunction and
mitochondrial disease models.

4 Upregulation of MYC in OXPHOS
dysfunction

Even though not widely acknowledged, mRNA expression data
from several cell andmouse models of mitochondrial dysfunction show

upregulation of MYC (summarized in Table 2). In the earliest of these,
Miceli and Jawlinski studied the response in nuclear gene expression to
loss of mtDNA (ρ0 or “rho zero” cells) in two human cell lines (T143B
osteosarcoma and ARPE19 retinal pigment epithelium) and fibroblasts
from an individual with Kearns-Sayre syndrome (KSS, mitochondrial
myopathy due to inherited mtDNA deletions). MYC was among the
genes commonly induced due to the loss of mtDNA in all 3 cell models.
RNA interference experiments in the ARPE19 cells suggested that the
induction ofMYC was related to the upregulation of glycolysis (Miceli
and Jazwinski, 2005). Cortopassi et al. performed amicroarray profiling
of 22 different cell lines (including lymphoblasts, fibroblasts, myoblasts,
muscle, and osteosarcoma cybrids) representing five mitochondrial
diseases: Leber’s Hereditary Optic Neuropathy (LHON), Friedreich’s
ataxia (FRDA), Mitochondrial encephalomyopathy, lactic acidosis and
stroke-like episodes (MELAS), KSS, and Neurogenic ataxia and retinitis
pigmentosa (NARP). The authors reported a median 1.5-fold
upregulation of MYC in 5/22 groups of cells. They also reported
upregulation of cell cycle progression- and ribosomal biogenesis-
associated genes and speculated that MYC may be driving these in
mitochondrial dysfunction caused by ischemia or mutations
(Cortopassi et al., 2006). Ten years on and with major technical
advances in high-throughput technologies (“omics”), Kühl et al.
moved to in vivo level. They performed an impressive
transcriptomics and proteomics study of the heart tissue from five
conditional knockout mouse strains that develop OXPHOS deficiency
and cardiomyopathy due to impaired mtDNA gene expression (Twnk,
Tfam, Polrmt, Lrpprc and Mterf4 cKO alleles). The survival of these
mice varied from 6 to 21 weeks. In end-stage hearts of all five
cardiospecific knockouts, c-Myc was induced 4-12-fold. The authors
also reported the upregulation of several known target gene sets of
MYC, the most highly upregulated of them being related to the one-
carbon metabolism. Kühl et al. did not study the role of MYC beyond
mRNA expression but devoted a chapter to discussing the implications

TABLE 2 Current evidence for MYC upregulation in models of mitochondrial disease or dysfunction.

Model/modified gene Tissue/cell line OXPHOS activity MYC expression/targets References

Chemical depletion of mtDNA (ρ0

cells)
T143B and ARPE19 cell
lines, KSS fibroblasts

n.d. but presumed
total loss

MYC mRNA up ~1.5-fold (qPCR); targets n.d Miceli and
Jazwinski (2005)

FRDA, KSS, LHON, MERRF, NARP
mutations

primary patient
fibroblasts

n.d MYC mRNA up 1.5-fold (qPCR); targets n.d Cortopassi et al.
(2006)

OXPHOS inhibitor treatment U2OS cells n.d. but presumed loss MYC protein up (WB) Gleyzer and
Scarpulla (2016)

Twnk, Tfam, Polrmt, Lrpprc and
Mterf4 cardiospecific KO mice
(Ckmm-Cre)

heart n.d Myc mRNA up 4-12-fold (transcriptomics); targets n.d Kühl et al. (2017)

Uqcrfs1 conditional KO (Vav-iCre) fetal hematopoietic stem
cells

Decreased by ~80% in
fetal liver Lin− cells

MYC targets the most highly upregulated gene signature Ansó et al. (2017)

Tamoxifen-induced Cre-mediated
loss of Uqcrq

primary lung endothelial
cells

n.d MYC targets the most highly upregulated gene set Diebold et al.
(2019)

Bcs1lp.S78G and Bcs1lp.S78G;mt-
Cybp.D254N mice

liver, kidney, heart,
skeletal muscle (P21-150)

CIII activity 10%-50%
of WT

MYC mRNA and protein up 2-40-fold (transcriptomics,
qPCR, WB); cell cycle, nucleotide and one carbon
metabolism up

Purhonen et al.,
2017 (2023)

Clpp and Fgf21 DKO mice heart Mild decrease Myc mRNA up 2.5-fold (transcriptomics) Croon et al.
(2022)

Mitochondrial ribosomal protein
S5 (Mrps5) cardiospecific KO

heart n.d ~30% increase in MYC protein Gao et al. (2023)
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of this finding. In brief, they propose that MYC contributes to the
remodeling of metabolism under severe mitochondrial dysfunction
(Kühl et al., 2017).

Chandel’s group studied the role ofOXPHOS in hematopoietic stem
cell maintenance in mice by deleting the respiratory complex III (CIII)
subunit UQCRFS1 from mid-gestation (Ansó et al., 2017).
Transcriptome analysis of isolated fetal liver hematopoietic stem cells
revealed that MYC targets were the most significantly upregulated
pathway upon the loss of CIII function. However, the authors did
not discuss the implications of this finding. MYC came up also in
another study by this group, investigating the role of endothelial cell
energy metabolism in angiogenesis. To this end, they generated a mouse
model with endothelial cell-specific tamoxifen-inducible loss of the CIII
subunit UQCRQ. Induction of Cre expression immediately after birth
resulted in lethality between 2 and 4 weeks of age due to impaired
angiogenesis. Transcriptomics from CIII-deficient primary lung
endothelial cells isolated from these mice revealed significant
upregulation in pathways associated with anabolism and cellular
proliferation, including MYC target genes (Diebold et al., 2019).
Additional circumstantial evidence for the involvement of MYC in
mitochondrial disease pathogenesis came from a study assessing the
regulation of the mitochondrial integrated stress response by the
mitokine FGF21 in mitochondrial cardiomyopathy (Croon et al.,
2022). In mitochondrial matrix protease Clpp KO heart, showing
mild OXPHOS deficiency, Myc mRNA was ~2.5-fold upregulated
and this was blunted by FGF21 loss.

We first noted several years ago that in transcriptomics data
from 6-week-old CIII-deficient Bcs1lp.S78G knock-in mice, Myc
expression was highly upregulated (12-fold) and that it was the
top predicted transcriptional regulator explaining the overall gene
expression changes induced by CIII deficiency in the liver
(Purhonen et al., 2017). These mice carry the GRACILE
syndrome patient mutation, causing one of the most severe
known OXPHOS deficiency phenotypes with fetal onset (Fellman
et al., 1998; Hikmat et al., 2021). In five months-old Bcs1lp.S78G mice,
the Myc induction wanes, but the mRNA is still significantly
upregulated in the liver (5.4-fold), kidney (4.1-fold), and heart
(2.3-fold), the three tissues studied. Notably, the heart is
presymptomatic at this age, dilating cardiomyopathy developing
by postnatal day 200 (P200) (Rajendran et al., 2019). We recently
(Purhonen et al., 2023) extended the studies on the MYC
upregulation into juvenile (postanal day 21–35) Bcs1lp.S78G mice
and found a staggering level of MYC induction, 30-40-fold, in
the P30 liver (symptomatic) at both mRNA and protein level. In
the P30 kidney (symptomatic), Myc mRNA was upregulated about
10-fold. In the skeletal muscle, which has very low CIII activity
(~25% of wild-type) but no clear myopathy (Purhonen et al., 2020),
Myc mRNA was upregulated more modestly, about 2-fold
(Purhonen et al., 2023). Interestingly, MYC was induced
presymptomatically, immediately after weaning (P18-P25) in the
liver and possibly also in the other tissues. MYC is known to be
transiently induced in liver regeneration, but the level of induction
in the CIII-deficient mice was at least an order of magnitude higher
than in typical liver injury models, such as 2/3 hepatectomy and bile
duct ligation (Sekine et al., 2007; Zhang et al., 2019), despite that
their liver disease is relatively mild when the MYC upregulation first
appears. This suggests a mechanism for the MYC induction by CIII
deficiency that is not solely related to the tissue regeneration need.

5 Is MYC a component of the
mitochondrial retrograde signal and/or
the integrated stress response
(mt-ISR)?

MYC is seldom mutated in cancer but rather upregulated via
transcriptional induction due to chromosomal translocation or gene
copy number amplification. Alternatively, MYC can be activated by
excessive growth factor signaling due hyperactivating mutations in or
amplification of growth factor receptors (such as the epidermal growth
factor receptor, EGFR) or signaling proteins such as Ras (Hartl, 2016).
Again, much less is known about the induction mechanism of MYC in
non-cancerous diseases but, presumably, the above-mentioned
mitogenic signaling mechanisms, hijacked by cancer cells, are at
play. How and why would mitochondrial dysfunction lead to MYC
induction? In the liver of the juvenile Bcs1lp.S78Gmice, we see 50- to 600-
fold upregulation of the EGFR ligand amphiregulin (AREG) (Purhonen
et al., 2023), a recently identified mitokine (Hino et al., 2022). A simple
explanation would be that upregulation of EGFR ligands due to tissue
growth and regeneration pressure drives Ras-MAPK signaling and the
MYC induction in the CIII-deficient tissues (Figure 2).

Aside from the canonical growth factor signaling paradigm, there
are some other possibilities for how mitochondria could communicate
more directly with the nucleus to regulate MYC expression (Figure 2).
Retrograde signaling refers to the process where a signal travels
backwards from an organelle to the nucleus (Bilen et al., 2022). For
example, signals from the mitochondria are relayed to the nucleus via
small molecules and/or proteins and/or protein modifications to
regulate nuclear gene expression. The mitochondrion-nucleus
retrograde signaling has been thoroughly characterized in the yeast
(Saccharomyces cerevisae). In this organism, Retrograde regulation
protein 1 (Rtg1), the key conveyor of mitochondrial stress signals to
the nucleus, has been suggested to be a MYC homolog (Jazwinski and
Kriete, 2012). The yeast Rtg1 and Rtg3 proteins are bHLH/zip
transcription factors that heterodimerize analogously to MYC and
MAX (Jia et al., 1997b). Although their overall sequence similarity is
low, structural modeling revealed conservation of key bHLH/zip
residues between Rtg1 and MYC and Rtg3 and MAX (Srinivasan
et al., 2010). In support of involvement of MYC in mammalian
mitochondrial retrograde signaling, Gleyzer and Scrapulla found
concurrent upregulation of the mitochondrial biogenesis-related
transcription factor PGC-1-related coactivator (PRC) and MYC
upon loss of OXPHOS, mainly induced by the protonophore CCCP
in a human osteocarcinoma cell line U2OS (Gleyzer and Scarpulla,
2011; Gleyzer and Scarpulla, 2013; Gleyzer and Scarpulla, 2016). They
also found that MYC induction is largely required for PRC stabilization
and accumulation in response to mitochondrial stress (Gleyzer and
Scarpulla, 2016). Furthermore, they showed that AKT phosphorylation-
dependent steps are involved. Other key upstream players in MYC
upregulation and universality of the findings of Gleyzer and Scrapulla in
other cell lines and in vivo remain, however, yet to be clarified.

Various mitochondrial insults trigger a common transcriptional
program called mitochondrial integrated stress response (mt-ISR)
(Costa-Mattioli and Walter, 2020; Mick et al., 2020; Bilen et al.,
2022). It has a resemblance to the more general integrated stress
response (ISR), which is launched, for example, by amino acid
starvation or ER stress. A convergent event in all integrated stress
responses is the phosphorylation of Ser51 of the alpha subunit of
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eukaryotic initiation factor 2 (eIF2α), blocking 5′cap-dependent
translation initiation. This results in suppressed global translation
but increased translation of selected mRNAs that contain inhibitory
upstream open reading frames, leading to translation of ISR mediators
such as ATF4, ATF5, and CHOP (DDIT3). Noteworthily,MYCmRNA
contains an internal ribosomal entry segment and an alternative in-
frame start codon, enabling MYC translation under cellular stressors
that suppress global protein synthesis (Subkhankulova et al., 2001).
Four distinct serine/threonine kinases can perform the eIF2α
phosphorylation: PKR (interferon-induced double-stranded RNA-
dependent eIF2α kinase, induced by viral infection), PERK (PKR-
like endoplasmic reticulum resident kinase, induced by endoplasmic
reticulum stress), GCN2 (general control nonderepressible 2, induced
by amino acid starvation), and HRI (heme-regulated inhibitor kinase,
induced by heme deficiency but also by various other stressors) (Costa-
Mattioli and Walter, 2020; Bilen et al., 2022). Of these, HRI undergoes
activation in mitochondrial stress by OMA1-cleaved and
retrotranslocated mitochondria-resident DELE1 protein (Fessler
et al., 2020; Guo et al., 2020; Sekine et al., 2023). In addition,
mitochondrial complex I (CI) inhibition can activate GCN2 due to
asparagine depletion (Mick et al., 2020).

Mt-ISR drives an adaptive rewiring of metabolism to restore
homeostasis. The most notable cellular processes that mt-ISR drives
are de novo serine biosynthesis, one-carbon metabolism, and the
transsulfuration pathway (Bao et al., 2016; Khan et al., 2017; Quirós
et al., 2017). These processes are important, for example, for the
synthesis of nucleotides, and phospholipids, and for the
maintenance of redox balance. Not surprisingly, cancer cells
exploit similar metabolic rewiring for survival and growth (Yang
and Vousden, 2016). Most transcriptional programs driven by mt-
ISR have been attributed to the transcription factor ATF4 (Quirós
et al., 2017). However, very similar changes occur upon upregulation
of MYC (Liu et al., 2008; Sun et al., 2015), which frequently
accompanies mt-ISR (Table 2). Moreover, these two transcription
factors share a high proportion of overlapping DNA-binding sites
(Tameire et al., 2019). Observations from cancer cells that MYC-
driven excessive anabolic metabolism can trigger ISR brings
additional complexity into decoding ATF4- and MYC-driven
transcriptional responses (Tameire et al., 2019).

Our data from the Bcs1lp.S78G mice with progressive loss of CIII
function showed that, similar to cancer cell lines, MYC upregulation
precedes eIF2-α phosphorylation (Purhonen et al., 2023). This
observation suggests that MYC is not necessarily part of mt-ISR
but potentially a component of a separate retrograde signaling and
potential augmenter or even a trigger of ISR in these mice. In this
study, we utilized transgenic Ciona intestinalis alternative oxidase
(AOX) to interrogate the OXPHOS-dependent mechanisms. AOX is
a mitochondrial enzyme from lower animals like yeasts, sea squirt
(C. intestinalis) and plants and can transfer electrons directly from
the coenzyme Q (CoQ) pool to oxygen when the CIII-CIV segment
of the respiratory electron transfer is defective (Banerjee et al., 2021;
Jacobs and Ballard, 2022). Surprisingly, we found that AOX robustly
blunted the MYC-induction and mt-ISR—a highly paradoxical
finding given that AOX did not improve any parameters directly
linked to OXPHOS system such as ATP production and levels,
mitochondrial membrane potential, or NADH/NAD+ ratio
(Purhonen et al., 2023). Improved growth, prevention of liver
and kidney pathology, and tripling of survival accompanied the

suppressed MYC induction and mt-ISR in the AOX-expressing
CIII-deficient mice. AOX also suppressed the MYC induction in
the skeletal muscle, indicating that the mechanism is general also for
postmitotic tissues.

6 Does MYC drive excessive anabolism
and aberrant cell proliferation in
mitochondrial diseases?

What are the consequences of MYC upregulation in tissues affected
by mitochondrial disease? Some adaptive responses driven by MYC,
such as mitochondrial biogenesis and enhanced glutaminolysis and
glycolysis likely help cells to cope with defective OXPHOS.
Nevertheless, in some sense, MYC upregulation is a paradoxical
response to compromised energy metabolism due to the many
energy-consuming processes it promotes. Elucidation of MYC’s
beneficial adaptive and potentially pathological roles in
mitochondrial diseases requires in vivo modulation of MYC. Very
limited experiments to that end, however, exist. The most robust
evidence for potential pathological role of MYC induction in
mitochondrial disease comes from our studies on the CIII-deficient
Bcs1lp.S78G mice, as reviewed above (Purhonen et al., 2023). A common
feature of excessive MYC levels in both cancerous and normal cells is
facilitated evasion of metabolic checkpoints, replication stress, DNA
damage, and genomic instability (Felsher et al., 2000; Rohban and
Campaner, 2015). Indeed, we showed that affected parenchymal cells in
tissues that renew via cell cycle entry of differentiated cells, such as
hepatocytes in the liver, induce a DNA damage response upon loss of
CIII activity (Purhonen et al., 2023). As expected from the degree of
MYC upregulation, severe nucleotide depletion did not suppress cell
cycle entry or progression to the S-phase in the liver or kidney of
Bcs1lp.S78G mice, suggesting MYC-driven illicit cell cycle progression.
Similar to serum-starved fibroblasts forced to proliferate by MYC
overexpression (Felsher et al., 2000), proliferating CIII-deficient
hepatocytes of Bcs1lp.S78G mice showed cell cycle arrest at G2 phase
and almost never reachedmitosis. Those CIII-deficient hepatocytes that
entered mitosis showed frequent aberrations such as multipolar mitotic
spindles and anaphases, anaphase bridges, and lagging or dispersed
chromatin, in other words cytological hallmarks of genomic instability.
Suppression of MYC function with the dominant negative mutant
fragment of MYC called Omomyc was sufficient to alleviate the DNA
damage in CIII-deficient hepatocytes.

Inevitably, the replication issues in Bcs1lp.S78G mice led to
widespread cellular senescence (Purhonen et al., 2023). Cellular
senescence is often accompanied by senescence-associated secretory
phenotype (SASP), which involves secretion of a variety cytokines,
chemokines, growth factors, and proteases by the senescent cells (Xu
et al., 2019). One possible driver or amplifier of the MYC
upregulation in the Bcs1lp.S78G mice are the SASP-related EGFR
ligands, the excessive secretion of which could lead to a circle of
mitogenic stimulation (Figure 2). Mitochondrial stress as such can
also induce the expression of the EGFR ligand amphiregulin
(AREG) (Hino et al., 2022). Areg is one of most upregulated
genes in the liver and kidney of the Bcs1lp.S78G mice (Rajendran
et al., 2019; Purhonen et al., 2023).

Presumably, the blockade of mt-ISR and MYC induction by
AOX prevented the CIII deficiency-induced changes in the
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expression of proliferation-associated genes, plunged proliferation
markers to belowWT level, and abolished DNA damage and cellular
senescence. These findings indicate that limiting cell cycle entry can
prevent tissue pathology caused by CIII deficiency (Purhonen et al.,
2023). Intriguingly, we found that also low carbohydrate-high fat
ketogenic diet, which we previously showed to have an unexpected
beneficial effect on the liver disease in the Bcs1lp.S78G mice (Purhonen
et al., 2017), dampened the MYC induction, limited the DNA
damage, and moderated excessive hepatocyte proliferation
(Purhonen et al., 2023). Further studies are, however, needed to
elucidate therapeutic effects of MYC inhibition in this model. In the
whole organism, the above-described pathological issues of cellular
proliferation result in a premature aging (progeroid) disease similar
to laminopathic and DNA repair-deficient juvenile progeroid
syndromes. Interestingly, several other progeroid phenotypes due
to mutations in genes encoding mitochondrial proteins have been
reported relatively recently (Ehmke et al., 2017; Writzl et al., 2017;
Elouej et al., 2020; Garg et al., 2022).

The Bcs1lp.S78G mice are a very severe model of OXPHOS
deficiency. It is an interesting question whether MYC
upregulation has pathological and perhaps targetable roles in
less severe mitochondrial diseases and their experimental
models. Proliferating, proliferation-capable, and terminally post-
mitotic cells are necessarily very differently affected by MYC
upregulation. In post-mitotic cells, such as in skeletal muscle of
mitochondrial myopathy patients, MYC upregulation potentially
drives adaptive metabolic rewiring and cellular hypertrophy but
would not lead to replication issues and DNA damage. One
potential consequence of MYC upregulation is a hypermetabolic
state. Intriguingly, a recent study identified hypermetabolism and
increased energy expenditure as common features of patients with
mitochondrial diseases (Sturm et al., 2023). The contribution of
potential MYC upregulation to this hypermetabolic state of
OXPHOS dysfunction remains, however, speculative at present.
MYC is a notorious oncogene, yet mitochondrial disease patients
do not show increased cancer risk (Lund et al., 2015). Further
studies on the Bcs1lp.S78G mice, displaying in some tissues by far the
most staggering “cancer-like” MYC upregulation of all
mitochondrial disease models, could shed light on the role
OXPHOS dysfunction in carcinogenesis if crossed with mice
carrying mutant alleles of major tumor suppressor pathways
such as p53 or APC (Adenomatosis Polyposis Coli tumor
suppressor).

7 Concluding words

Here, we argue that MYC could be a functionally important player
in mitochondrial diseases, hoping to stimulate researchers of
mitochondrial medicine and physiology to study MYC in their
models. Given the overarching roles of MYC as a regulator of energy
metabolism in cancer and in normal tissue homeostasis, this proposition
is not that surprising and has perhaps been hiding in plain sight during
the almost 3 decades that mitochondrial diseases have been studied with
modern molecular biology tools and methods. What is less clear at this
point is the role of MYC in cell proliferation with respect to the widely
varying manifestations of mitochondrial diseases in continuously
proliferating (e.g., bone marrow) versus regeneration-capable (e.g.,

liver) versus permanently postmitotic (e.g., skeletal muscle, brain)
tissues that are also metabolically quite different. Our recent findings
in the Bcs1lp.S78G knock-inmousemodel of severe CIII deficiency provide
evidence that MYC forces illicit cell cycle entry against depletion of
energy and biosynthetic precursors like nucleotides—with catastrophic
consequences leading to cellular senescence and progeroid disease.
However, the clinical phenotypes of CIII deficiencies caused by other
BCS1L mutations or by mutations in other genes differ markedly from
each other, and there is currently no knowledge about similar
mechanisms in these phenotypes. Some key questions that remain to
be studied are 1) What signals induce MYC in OXPHOS deficiency, 2)
How does MYC contribute to the metabolic shift upon OXPHOS
deficiency, and 3) Are the potentially harmful effects of MYC
induction a general phenomenon in mitochondrial diseases or do
they restrict to those diseases affecting proliferating or regenerating
tissues? If MYC-driven DNA damage and cellular senescence occur also
as a consequence of other mitochondrial disease mutations than those
causing severe CIII deficiency, understanding the role of MYC could
enable several novel therapeutic options.WhileMYC has a reputation of
being an undruggable target in cancer, severalMYC inhibitors have been
developed and some of them have proceeded to clinical trials.
Understanding the upstream factors leading to MYC upregulation
would further diversify the options to target MYC in mitochondrial
disease and potentially also in cancer.
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Regulation of the somatotropic
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The transcription factor MYC is overexpressed in many human cancers and has a
significant causal role in tumor incidence and progression. In contrast, Myc+/−

heterozygous mice, which have decreased MYC expression, exhibit a 10–20%
increase in lifespan and a decreased incidence or progression of several age-
related diseases. Myc heterozygous mice were also reported to have decreased
mTOR and IGF1 signaling, two pathways whose reduced activity is associated with
longevity in diverse species. Given MYC’s downstream role in these pathways, the
downregulation of mTOR and IGF1 signaling in Myc heterozygotes suggests the
presence of feedback loops within this regulatory network. In this communication
we provide further evidence that the reduction of Myc expression in Myc+/−

heterozygous mice provokes a female-specific decrease in circulating IGF1 as
well as a reduction of IGF1 protein in the liver. In particular, reduced Myc
expression led to upregulation of miRNAs that target the Igf1 transcript,
thereby inhibiting its translation and leading to decreased IGF1 protein levels.
Using Argonaute (AGO)-CLIP-sequencing we found enrichment of AGO binding
in the Igf1 transcript at the target sites of let-7, miR-122, and miR-29 in female, but
not maleMyc heterozygotes. Upregulation of the liver-specific miR-122 in primary
hepatocytes in culture and in vivo in mice resulted in significant downregulation of
IGF1 protein, but not mRNA. Reduced levels of IGF1 increased GH production in the
pituitary through a well-documented negative-feedback relationship. In line with
this, we found that IGF1 levels in bone (where miR-122 is not expressed) were
unchanged, consistent with the decreased incidence of osteoporosis in femaleMyc
heterozygotes, despite decreased circulating IGF1.

KEYWORDS

MYC proto-oncogene, miRNA regulation, IGF1 signaling, somatotrophic axis, gender
effects, osteoporosis

Introduction

MYC is a transcription factor that directly regulates 20%–30% of the genome, and indirectly
influencesmanymetabolic processes (Fernandez et al., 2003; Li et al., 2003; Patel et al., 2004; Dang
et al., 2006). Deregulation of MYC is implicated in 60%–70% of all human cancers, including
Burkitt’s lymphoma, breast cancer, osteosarcoma, and hepatocellular carcinoma (Greer et al.,
2013). MYC has been proposed to act as a master regulator of metabolism, cell growth, and cell
division (Miller et al., 2012). MYC thus appears to be a central point of metabolic regulation,
integrating intrinsic growth factor signals with nutrient signals from the environment in order to
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determine whether the cell should grow, divide, differentiate, or
undergo apoptosis (Grandori et al., 2000).

While upregulation of MYC has been extensively implicated in
the context of cancer, downregulation of MYC is associated with
increased health span and lifespan (Greer et al., 2013; Hofmann
et al., 2015). Homozygous deletion of MYC is embryonic lethal;
however, Myc heterozygous (Myc+/−) mice show a 10% lifespan
extension in males, and 20% in females (Hofmann et al., 2015).
These findings are in agreement with other lifespan extending
interventions which have shown that reduction of translation,
energy production, oxidative phosphorylation, and ribosome
biogenesis, all of which are under positive regulation by MYC,
extend lifespan (Brown et al., 2008; Gems and Patridge, 2013;
Johnson et al., 2013). Furthermore, upregulation of MYC results
in increased generation of reactive oxygen species (ROS) and DNA
damage, which are both associated with aging (Vafa et al., 2002;
Hoeijmakers, 2009). Together, this large body of evidence indicates
that MYC upregulation promotes cancer and aging, while
downregulation promotes healthy aging and increased lifespan.

Myc+/− mice are 10%–20% smaller than their wild-type siblings,
but show no changes in developmental timing or reproductive
ability despite an approximately 50% reduction in MYC levels
across all analyzed tissues (Hofmann et al., 2015). Myc+/− mice
have increased health span, evidenced by significant amelioration of
age-related phenotypes such as cardiac fibrosis, bone density loss,
dysregulation of lipid metabolism and immunosenescence, and
increased rotarod performance. They also display significantly
higher metabolic rates and activity at both young and old ages
(Hofmann et al., 2015). These observations indicate a strong impact
of decreased MYC activity on age-regulated pathways.

Interestingly, liver gene expression patterns in Myc+/− mice do
not overlap strongly with other life-extending interventions such as
caloric restriction, resveratrol, and metformin (Hofmann et al.,
2015; Ma and Gladyshev, 2017). However, several age-associated
pathways are downregulated in Myc+/− mice, including insulin-like
growth factor 1 (IGF1), protein kinase B (AKT), and mechanistic
target of rapamycin (mTOR) signaling pathways. While these
pathways are canonically upstream of MYC activity, we recently
showed that MYC regulates mTOR activity by modulating
glutamine uptake through direct transcriptional regulation of the
amino acid transporters Slc1a5 and Slc7a5, suggesting that negative
feedback loops are present within these systems (Zhao et al., 2019).

IGF1 is a downstream effector of the somatotropic axis which
regulates organismal growth and development in response to
environmental clues such as nutrient availability, sleep, daylight,
and exercise through modulation of growth hormone levels (Kato
et al., 2002). IGF1 modulates somatic growth and cellular
proliferation through both endocrine and autocrine/paracrine
effects, with most of the endocrine-functioning hormone
produced in the liver in response to growth hormone stimulation
(Sullivan et al., 2002). IGF1 produced in the liver is secreted into the
serum where it is found in circulation in a complex with one of seven
IGF binding proteins (IGFBP1-7) and the acid-label subunit (ALS)
(Rosenfeld et al., 2000). IGF1 is also produced by other tissues in
both a growth hormone dependent and independent manner, but
this tissue-specific production does not contribute significantly to
overall IGF1 serum levels, suggesting an alternative purpose for
extrahepatic IGF1 production (Le Roith et al., 2001).

Reduced IGF1 signaling is associated with increased longevity in
many animal models, including nematodes, Drosophila, and mice,
and has been correlated with longer lifespan in humans (Kenyon
et al., 1993; Clancy et al., 2001; Tatar et al., 2001; Junnila et al., 2013).
Decreased IGF1 signaling is however also associated with several
age-related diseases such as osteoporosis, cardiovascular disease,
skeletal muscle wasting and atrophy, as well as neurological ailments
such as dementia (Liu et al., 2008; Elis et al., 2011). Many of these
aging-related diseases can be alleviated through administration of
either growth hormone or IGF1, suggesting a causal link between
IGF1 decrease and development of these diseases (Yakar and
Isaksson, 2015). This seeming contradiction between decreased
IGF1 being simultaneously associated with increased lifespan and
increased risk of age-related diseases has not been resolved but
suggests that optimal health and lifespan rely on tight regulation
of IGF1.

Myc heterozygous mice have decreased serum IGF1 levels, are
long-lived, and are resistant to the development of osteoporosis, thus
presenting a unique model system to address whether reducing
IGF1 signaling can increase lifespan without deleterious effects on
health span. We provide evidence that this effect is caused by the
upregulation of specific miRNAs, which are normally repressed by
Myc, and that increased levels of these miRNAs reduce the
translation of the IGF-1 mRNA.

Methods

Use and treatment of animals

Mice were produced and housed in a specific pathogen-free
AAALAC-certified barrier facility. All females used in studies were
virgins. Animals of both genotypes and the same sex were housed
together. Animals were kept on a 12 h light, 12 h dark light cycle
with free access to food and water. The generation of Myc+/+ mice
was described (Hofmann et al., 2015). Animals for all experiments
were produced by mating Myc+/− males with C57BL/6NCrl females
purchased from Charles River. Females were purchased at 12 weeks
of age and bred immediately. No animals were lost to fighting or
accidental death. Dermatitis did occur in very few of the animals but
was successfully treated. 48 animals (12 Myc+/+ males, 12 Myc+/+

females, 12 Myc+/− males and 12 Myc+/− females) were sacrificed at
approximately 4 months of age, and another 48 animals (12 Myc+/+

males, 12 Myc+/+ females, 12 Myc+/− males and 12 Myc+/− females)
were sacrificed at approximately 24 months of age for the collection
of tissue specimens, at which time they were in apparent good
health.

Harvesting of tissues

Mice were euthanized between 11 a.m. and 1 p.m. Animals were
euthanized one by one prior to dissection. Animals were first
anesthetized by IP injection of ketamine/xylazine. Cardiac
puncture was performed, and blood was collected into tubes
containing heparin. Animals were then immediately euthanized
by cervical dislocation. Blood samples were centrifuged at
2,200 rpm for 10 min and plasma was collected into fresh tubes
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and flash frozen in liquid nitrogen. Liver, pituitary, and
hypothalamus tissues were quickly dissected, and flash frozen in
liquid nitrogen. Soft tissue was removed from femurs and tibia, the
bones were cut crosswise, and marrow was removed by
centrifugation. Marrow and bone tissue were flash frozen
separately. The entire dissection of each mouse was performed in
under 10 min by several trained staff members working in concert
on one mouse. All flash-frozen samples were subsequently stored
at −80°C.

Cell lines and culture conditions

AML-12 cells were cultured under normoxic conditions (air
supplemented with 5% CO2), in a 1:1 mixture of Dulbecco’s
modified Eagle’s medium (DMEM) (Hyclone, SH30243.01) and
Ham’s Nutrient Mixture F12 (Hyclone, SH30026.01),
supplemented with 10% FBS (Hyclone, SH30071.03), ITS
supplement containing 0.005 mg/mL insulin, 0.005 mg/mL
transferrin, 5 ng/mL selenium (Corning, 354350), and 40 ng/mL
dexamethasone (MP Biomedicals, 0219456125).

Hepatocyte isolation, growth hormone
stimulation, and transfection

Hepatocyte isolation was performed using a two-step
perfusion method as previously described with some
modification (Klaunig et al., 1981). Mice were anesthetized
using IP injection of ketamine/xylazine mixture as described
in section 2.4. Perfusion was done through cannulation of the
inferior vena cava with drainage through the portal vein. First,
approximately 40 mL at a flow rate of 6 mL/min of HBSS with
0.5 mM EGTA (without calcium or magnesium) was perfused to
flush the liver. Second, 40 mL of digestion media (low-glucose
DMEM with 200 mg/mL calcium, 20 mM HEPES, and 80 U/mL
collagenase IV (Worthington)) was perfused until liver was
digested. Liver was then excised, and the cells liberated from
the capsule through gentle mincing. Hepatocytes were then
filtered through a 70 µm filter and washed three times with
cold isolation media (high-glucose DMEM with 10% FBS, pen/
strep, 200 mM glutamine). Cell viability and number was assessed
with Trypan blue staining, and cells were plated at 600,000 cells/
well in 6-well Primaria plates (Corning). After a 2 h incubation to
allow cells to attach, media was replaced with culture media (low-
glucose DMEM, pen/step, 200 mM glutamine, insulin,
transferrin, selenium, dexamethasone, epidermal growth
factor) with or without transfection reagents. Transfection was
carried out using Fugene HD according to manufacturer’s
protocol with a 4:1 ratio of DNA to reagent in RNase and
DNase-free sterile water using a 10 min incubation time to
allow for the formation of complexes prior to addition into
cell media. miRNA miRcury mimics (Qiagen) were added at
20 nM concentration with DNA carrier for a total DNA
concentration of 1 ug. After 4 h of incubation with
transfection reagents, media was replaced with culture media
to reduce cytotoxicity and cells were incubated for 24 h prior to
harvesting. Growth hormone stimulation (where performed) was

carried out in the final 2 hours or incubation by replacement of
media with culture media containing 50 nM mouse recombinant
growth hormone. For harvesting, cells were washed twice with
ice-cold PBS, then lifted with a cell scraper and pelleted by
centrifugation at max speed for 2 minutes. Cell pellets were
stored at −80°C.

Preparation of RNA

20–50 mg fragments of tissue were removed from −80°C,
weighed, and homogenized in 1 mL Trizol reagent (Invitrogen)
using a Fisher PowerGen 125 motorized homogenizer at room
temperature. 200 μL chloroform was added, the samples were
vortexed, and incubated at room temperature for 2–3 min (as per
manufacturer’s protocol). Samples were then centrifuged at 12,000 x
G for 15 min, and the resulting aqueous layer was further purified
using the RNeasy Mini Kit (Qiagen) according to manufacturer’s
instructions. RNA quality and concentration was accessed using a
NanoDrop 2000 spectrophotometer. For RNA used in RNA-
Sequencing experiments, RNA quality was further accessed using
an Agilent 2100 Bioanalyzer. Only samples with a RIN of greater
than 9 were used in sequencing experiments.

RT-qPCR

1 µg of RNA was reverse transcribed into cDNA in 50 µL
reactions using the Taqman kit (Applied Biosystems), according
to the manufacturer’s protocol. 1 μL of this reaction was used in
subsequent qPCR reactions for the assessment of mRNA abundance,
which were performed using the SYBR Green system (Applied
Biosystems) on the ABI 7900 Fast Sequence Detection
instrument, according to manufacturer’s specifications. All primer
sequences are listed in Supplementary Table S1. mRNA expression
was normalized to GAPDH (primer pair 4) and verified using beta
actin (primer pair 5) and Beta-2 microglobulin (primer pair 6).
miRNA RT-qPCR was performed as described previously (Busk
2011 BMC Biotechnology). Briefly, 500 ng of RNA was reverse
transcribed into cDNA in 50 µL reactions containing 5 µL 10x
Poly(A) polymerase buffer, 0.1 mM ATP, 1 µM of RT primer
(was 5′-CAGGTCCAGTTTTTTTTTTTTTTTVN, where V is A,
C and G and N is A, C, G and T.), 0.1 mM of each deoxynucleotide
(dATP, dCTP, dGTP, and dTTP), 500 units MuLV reverse
transcriptase (New England Biolabs), and five units of poly(A)
polymerase (New England Biolabs). The reaction was incubated
for 1 h at 42°C, followed by enzyme inactivation at 95°C for 5 min
qPCR was performed using the Sybr Green system as above. Snord
70 (primer pair 42) was used for normalization.

Assessment of miRNA abundance using the
nanostring platform

Total RNA was isolated as above and diluted to a concentration
of 33.3 ng/uL. 3 uL of each sample was run on the Nanostring
platform using the nCounter Mouse v1.5 miRNA panel according to
manufacturer’s instructions.
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FIGURE 1
IGF-1 Expression in Myc+/+ and Myc+/− mice at young and old ages. (A) Total plasma IGF1 protein levels as assayed by ELISA. n = 10–12, 3 months,
males and females. (B) Total plasma IGF1 protein levels as assayed by ELISA. n = 10–12, 24 months, males and females. (C) Total liver IGF1 protein levels as
assayed by ELISA. n = 10–12, 3 months, males and females. (D) Total liver IGF1 protein levels as assayed by ELISA. n = 10–12, 24 months, males and
females. (E) Igf1mRNA levels (primer pair 7) as measured by RT-qPCR in liver. n = 10–12, 3 months, males and females. (F) Igf1mRNA levels (primer
pair 7) as measured by RT-qPCR in liver. n = 10–12, 24 months, males and females. (G, H) Myc mRNA levels (primer pair 3) as measured by RT-qPCR
relative to corresponding liver IGF1 protein levels assessed as in (B) in females (G) and males (H). n = 9–11, 3 months. (I) Polysome-associated mRNA was
isolated by sucrose-gradient centrifugation. Transcript abundance in the polysome-bound mRNA fraction was quantified by RT-qPCR for Igfbp3 (primer
pair 5), Igf1r (primer pair 6), and Igf1 (primer pair 7), and expressed as fraction of transcript abundance in total mRNA, relative to GAPDH (primer pair 4). n =

(Continued )
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Protein extraction for enzyme-linked
immunosorbent assays

Liver and pituitary protein extracts were prepared by homogenizing
5–10 mg of tissue in 60 μL/mg of tissue extraction buffer containing
100 mMTris (pH 7.4), 150 mMNaCl, 1 mM EGTA, 1 mM EDTA, 1%
Triton X-100, 0.5% sodium deoxycholate, 1 mM phenylmethylsulfonyl
fluoride (PMSF), and 1X cOmplete mini protease inhibitor cocktail
(Sigma-Aldrich 11836153001). Samples were homogenized using either
the Fisher PowerGen 125 motorized homogenizer, or by passage
through a 26 G needle. Homogenized extracts were incubated on ice
for 20 min, then centrifuged at maximum speed for 10 min at 4°C in a
microcentrifuge. The resulting supernatant was diluted 1:20 withMilliQ
water prior to assessment of concentration using the Qubit Protein
Assay kit (Qiagen Q33211).

Immunoblotting

Liver protein extracts used for immunoblotting were prepared
by homogenizing 30–50 mg of tissue in 1 mL laemmli sample buffer
(60 mM Tris (pH 6.8), 2% SDS, .05% bromphenol blue, 10%
glycerol, 100 mM DTT, and 1X cOmplete mini protease inhibitor
cocktail (Sigma-Aldrich 11836153001)). Samples were homogenized
using the Fisher PowerGen 125 motorized homogenizer, then boiled
for 5 min, cooled, and centrifuged at maximum speed for 10 min at
4°C. Protein concentration in the resulting supernatant was
quantified using the Qubit Protein Assay kit (Qiagen Q33211),
samples were diluted to 10 μg/μL protein, and stored at −80°C.
For the assessment of IGF binding protein abundance, samples were
boiled for 5 min, then run at 100 µg protein/well on 15%
polyacrylamide gels. Gels were transferred to low-fluorescence
PVDF membrane (Invitrogen, 22860). Membranes were blocked
in PBS containing 5% BSA with 0.2% Tween-20, then stained with
the following primary antibodies; ribosomal protein S6, S6K (Cell
Signaling Technologies #2317), insulin-like growth factor binding
protein 3, IGFBP3 (Santa Cruz sc-9028), enhancer of zeste
homologue 2, EZH2 (Cell Signaling Technologies # 5246), and
glyceraldehyde-3-phosphate dehydrogenase GAPDH (Millipore
#G8795).

Quantification of IGF1 protein by enzyme-
linked immunosorbent assay

Liver and plasma total IGF1 protein abundance was quantified
using the Abcam IGF1 ELISA kit (Abcam ab100695) as per
manufacturer’s protocol. Liver and cell extracts (Figures 1B, E;
Figures 3C, G) and plasma samples (Figures 1A, D; Figure 3I)

were diluted 1:1 and 1:100, respectively, in assay buffer. All samples
were run in duplicate. Absorbance readings were normalized to a
standard curve generated from readings of standard solutions of
known IGF1 concentration. IGF1 measurements for liver extracts
were normalized to protein concentration as determined by the
Qubit Protein Assay kit (Qiagen Q33211).

Quantification of growth hormone by
enzyme-linked immunosorbent assay

Pituitary and plasma growth hormone abundance was
quantified using the EMD Millipore Rat/Mouse Growth
Hormone ELISA kit (EMD Millipore, EZRMGH-45 K). All
samples were run in duplicate. Pituitary extracts were prepared
as described above and diluted 1:5000 in sample buffer for the assay.
Blood was collected every 48 h for a total of three time points
between 10 and 11a.m. by saphenous vein blood collection. Samples
were centrifuged at 2,200 rpm for 10 min at 4°C, and plasma was
removed to a clean tube. 10 uL of undiluted plasma per mouse per
timepoint was used in the assay. Absorbance readings were
normalized to standard curve generated from readings of
standard solutions of known growth hormone concentration.
Pituitary growth hormone measurements were normalized to
protein concentration as determined by the Qubit Protein Assay
kit (Qiagen Q33211).

Bone density measurements

L4 vertebrae were scanned using a Scanco Medical Micro-CT
40 system to acquire approximately 250 slices per sample at 10 μm
resolution. The volume containing trabecular bone (cortical bone
was omitted) was selected by someone blind to the age or genotype
of the mouse. The morphometric parameters of bone volume per
total volume, trabecular spacing, and trabecular number, were
computed for each vertebra, and the average, standard error, and
p-value (Student’s t-test) were determined for each cohort.

Polyribosome profiling

Polysome enriched fractions were obtained by dounce
homogenizing 1 g of liver tissue per animal in 3 mL
homogenization buffer (50 mM HEPES pH 7.4, 250 mM KCl,
5 mM MgCl2, 250 mM sucrose, 200 U/mL RNasin, and 1 μg/mL
microcystin). Samples were cleared by centrifugation at 3,000 X G,
4°C, for 15 min. For each mL of supernatant, 100 µL of 10% Triton
X-100 and 100 µL of 13% sodium deoxycholate (NaDOC) was

FIGURE 1 (Continued)
five to six, females, 4 months. (J) Igf1 mRNA expression (primer pair 7) as measured by RT-qPCR in primary mouse hepatocytes (MHC) ofMyc+/− and
Myc+/+ mice with and without treatment with 100 nM recombinant mouse growth hormone for 2 h n = 3, females, 6–8 weeks. (K) IGF1 protein
expression as measured by ELISA in primary mouse hepatocytes (MHC) ofMyc+/− andMyc+/+ mice with and without treatment with 100 nM recombinant
mouse growth hormone for 2 h. Normalized to total protein. n = 3, females, 6–8 weeks. Statistical significance was computed using Student’s t-test
(A–F and I–K). Correlation for (G, H) was computed using Pearson’s product-moment correlation sample estimate. Error bars represent SEM.
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added. Samples were loaded onto 10%–50% sucrose gradients and
centrifuged at 22,500 rpm for 19 h, 9 min in a Beckman SW-28 rotor
at 4°C (acceleration and deceleration set to 7). Columns were
fractionated using an Isco Density Gradient Fractionator at a
flow rate of 2 mL/min while absorbance at 254 nm was
monitored using an Isco UA-5 Absorbance/Flourescence
Detector. Fractions determined from the spectral graph to
contain polyribosomes were then pooled for RNA extraction. To
each sample 500 mM EDTA was added to achieve a final
concentration of 20 mM, prior to incubation for 5 min at room
temperature. 20% SDS was added to a final concentration of 0.5%,
and samples were incubated for 10 min at room temperature. An
equal volume of RNase-free water was added, followed by an equal
volume of acid phenol:chloroform (Ambion, 9722). Samples were
then centrifuged at 12,000 X G for 30 min at 4°C, and the aqueous
layer reserved. RNA was precipitated overnight at −80°C using
2.5 volumes of 100% ethanol and 0.1 volume of 5M NH4Oac
(Ambion, 9071), washed twice with 75% ethanol, and
resuspended in water. RT-qPCR was conducted as described
above and compared to RNA from unfractionated liver.

Argonaut crosslinking immunoprecipitation
followed by sequencing sample preparation

Argonaute CLIP-Sequencing libraries were prepared as
previously described (Moore et al., 2014). Frozen liver samples
were ground under liquid nitrogen in a mortar and pestle to a
fine powder. A small fraction of powder was reserved for total RNA
extraction. Ground tissue was then irradiated on dry ice at 400 mJ
per cm2 and then again at 200 mJ per cm2 using a Stratlinker XL-
1500 (Stratagene) UV cross-linker and stored at −80°C until further
use. Cross-linked tissue was resuspended in three times volume of
PXL buffer (1X PBS containing 1% Igepal/NP-40, 0.5% sodium
deoxycholate, and 0.1% SDS) and incubated on ice for 10 min.
Samples were then treated first with 30 µL of DNase I per mL of
lysate (5 min at 37°C with agitation at 1,000 rpm) then with 10 uL
per mL of lysate of 1:10,000 dilution of RNase A (5 min at 37°C with
agitation at 1,000 rpm). RNase digestion was stopped with 2.5 µL per
mL of lysate of RNAsin Plus. Lysates were then centrifuged at
maximum speed for 20 min at 4°C. Beads for immunoprecipitation
were prepared by washing 200 µL (per sample) of Dynabeads A
three times in PBS with 0.02% Tween-20, incubating with 50 µg of
rabbit anti-mouse IgG bridging antibody for 30 min at room
temperature with end-to-end rotation, repeating the wash steps,
then incubating with 4 µL anti-Ago 2A8 antibody in PBS with 0.02%
Tween-20 with end-to-end rotation. Beads were then washed three
times in PXL buffer prior to addition of cross-linked tissue lysates.
Lysate/bead mixtures were then rotated end-to-end for 2 h at 4°C.
Beads were then washed three times with cold PXL buffer, then twice
with 5 PXL buffer (PXL buffer with 5X PBS), then twice with PNK
buffer (50 mM Tris-HCL pH 7.5, 10 mM MgCl2, and 0.05% Igepal/
NP40). To prepare RNA 3′ ends for linker ligation, beads were
resuspended in 80 µL of dephosphorylation buffer containing 3 U of
CIAP and RNAsin Plus inhibitor and incubated for 20 min at 37°C
with shaking at 1,000 rpm for 15 s every 2 min. Beads were washed
once with PNK buffer, once with PNK buffer plus 20 mM EGTA,
then twice with PNK buffer. Radiolabeled 3′ linkers were prepared

using T4 polynucleotide kinase following manufacturer’s instruction
using 25 µL 32P-γ-ATP and 200 pmol of a dephosphorylated and
3′inverted ddT blocked L32 RNA linker (sequence:
GUGUCAGUCACUUCCAGCGG/3InvdT/, IDT) and incubated
for 30 min at 37°C. 2 μL of 1 mM ATP was added and the
mixture incubated for another 5 min to drive the reaction to
completion. To purify the reaction from free nucleotides, the
reaction was passed through a G-25 column following
manufacturer’s instructions. To ligate the radiolabeled linker,
beads were resuspended with T4 RNA ligase as per
manufacturer’s instruction with 12 pmol of radiolabeled linker
and incubated at 16°C with shaking at 1,000 rpm for 15 s every
2 min. After 1 hour, an additional 60 pmol of unlabeled,
phosphorylated linker was added and the reaction allowed to
proceed overnight. Following 3′ linker ligation, beads were
washed twice with PXL, twice with 5X PXL, and twice with PNK
buffers. To restore the 5′ phosphate, beads were resuspended in
80 µL of T4 PNK phosphorylation mix according to manufacturer’s
instruction and incubated for 20 min at 37°C with shaking at
1,000 rpm for 15 s every 2 min. The beads were then washed
three times with PNK plus 20 mM EGTA buffer. To elute
protein:RNA complexes, beads were resuspended in 100 µL of
LDS sample buffer with 10% reducing agent, then incubated at
70°C for 10 min with constant shaking at 1,000 rpm. Samples were
then loaded onto an 8% Novex NuPAGE Bis-Tris gel in SDS-MOPS
buffer run at 175 V, and transferred to Protran BA-85 nitrocellulose
using a Criterion blotter at 90 V in NuPAGE transfer buffer
containing 10% (vol/vol) methanol. Nitrocellulose membrane was
rinsed in PBS and exposed to Biomax MR film (Kodak) at −80°C
overnight. Regions corresponding to 110–150 kd were then excised
and RNA liberated from the nitrocellulose by incubation with 4 mg/
mL proteinase K in PK buffer (100 mM Tris-HCl, pH 7.5, 50 mM
NaCl, and 10 mM EDTA) for 20 min at 37°C with constant agitation
at 1,000 rpm. 200 μL of 7M urea in PK buffer was added and the
incubation proceeded for another 20 min. RNA was then extracted
using acid phenol:chloroform and precipitated overnight at −20°C
with two times volume of 1:1 ethanol:isopropanol. RNA was
pelleted, washed twice with 75% ethanol, and resuspended in
6 µL water. A T4 RNA ligase 5′ ligation reaction was prepared
according to manufacturer’s protocol with 20 pmol of RL5D linker
(sequence:/5InvddT/AGGGAGGACGAUGCGGNNNNG, IDT) in
a total volume of 10 µL and allowed to proceed overnight at 16°C.
DNase digestion was then performed using RQ1DNase according to
manufacturer’s instructions with an incubation of 20 min at 37°C in
a total reaction volume of 100 µL. RNA was then reprecipitated as
described above. RT-PCR of was carried out using SuperScript III
(Invitrogen) following the manufacturer’s instructions using the
DP3 primer for reverse transcription (sequence: CCGCTGGAA
GTGACTGACAC). PCR was performed immediately after RT
using 27 µL Accuprime Pfx (Invitrogen), and 333 pmol each of
DP3 and DP5 (sequence: AGGGAGGACGATGCGG) primers for
each 2.5 µL of RT reaction. PCR conditions were 95°C for 2 min, 27
cycles of 95°C for 20 s denature, 58°C for 30 s anneal, and 68°C for
30 s extension. PCR reactions were cleaned up using PureLink Quick
PCR Purification Kit (Invitrogen, K310001) and eluted in 30 µL of
elution buffer. Next, sequencing adapters were added by PCR using
Accuprime Pfx with 333 pmol each of TSP5 and TSP7.1-TSP7.12
primers for each 2 µL of sample. DNA was then size selected by gel
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purification on 10% polyacrylamide gels. Regions between
190–300 kd were excised and DNA was extracted using the
Qiaquick Gel Extraction kit and eluted in 30 µL. Library quality
and concentration was analyzed using an Agilent 2100 Bioanalyzer.
Multiplexed sequencing was performed on a NextSeq550 High
Throughput Benchtop Sequencer (Illumina) as 75 bp single-end
reads with 15% PhiX spike.

Argonaute CLIP-Seq bioinformatic analysis

Bioinformatic analysis of CLIP-Seq data was performed using
the galaxy suite of bioinformatic tools (http://galaxyproject.org/
(Goecks et al., 2010)). FASTQ files were filtered for reads with
quality score of 20 or greater in 80% or more base pairs. Reads were
then collapsed to eliminate sequencing and PCR duplicates.
Cutadapt was used to trim 3′ and 5′ linker sequences, as well as
discard reads shorter than 18 nucleotides. Reads were aligned to the
mm10 genome with STAR using default parameters and a
permissible mismatch rate of 0.3 per read. miRNA target sites in
the Igf1 transcript were downloaded from TargetScan and reads
overlapping these sites were counted. Counts at each miRNA seed
sequence were determined by FeatureCounts, and differential
abundance and significance was assessed by DeSeq2.

In vivo miRNA delivery

For assessment of the in vivo effects of miRNA upregulation,
3 month-old female C57Bl/6N mice purchased from Charles River
were tail vein injected with Qiagen miRcury miRNAmimics of let-7i
(Catalog #YM00471739-AGA), miR-122 (Catalog #YM00470430-
AGA) or scrambled control 5 (Catalog #YM00479904-AGA).
Injections were prepared by combining 1 nmol of each miRNA
mimic or scrambled control with invivofectamine complexation
buffer prior to addition to an equal volume of invivofectamine
(Catalog #IVF3005, ThermoFisher). Complexes were allowed to
form by incubation for 30 min at 50°C according to
manufacturer’s instructions. Complexes were then diluted with
PBS to achieve a final volume of 200 µL and the full volume was
injected via the tail vein. Mice were euthanized at 4 days post-
injection, liver was perfused with PBS via cannulation of the IVC
and snipping of the portal vein, and tissues were harvested and flash
frozen as described above.

Statistical analysis

Data are shown as means with SEM (unless stated otherwise). N
indicates the number of animals per test group; age and sex are also
noted.

Results

In circulation, ~95% of IGF1 is bound by one of seven IGF
binding proteins (IGFBPs) and the acid-labile subunit (ALS)
(Rosenfeld et al., 2000). This tight binding of IGF1 to IGFBPs

impedes detection by antibodies used in common ELISA assays,
thus additional steps are required to assess total IGF1 levels. In order
to assess whether total IGF1 levels were decreased inMyc+/−mice, we
prepared sample dilutions in a buffer containing an excess of IGF2,
which is not expressed at significant levels in adulthood, but has
equal affinity for IGFBPs. This allows for IGF2 to outcompete
IGF1 in binding to the present IGFBPs, thus freeing IGF1 to
allow detection by anti-IGF1 antibodies. Using this approach, we
determined that consistent with previously published results
(Hofmann et al., 2015), total plasma IGF1 levels were decreased
in young and old femaleMyc+/− mice by ~20%–30% (Figures 1A, B).

Interestingly, we observed no difference in IGF1 plasma levels in
male Myc+/− mice, suggesting a sexual dimorphism in the effect of
MYC on IGF1.We next analyzed Igf1 transcript and protein levels in
liver, which is the main site of synthesis of circulating IGF1 (Sjogren
et al., 1999). Consistent with the plasma data, we saw an ~20%
decrease in IGF1 protein levels in young and old female Myc+/−

mouse liver tissue compared to Myc+/+ mice, and no significant
change in male Myc+/− mouse liver (Figures 1C, D). However, Igf1
transcript levels were unchanged in either sex in both young and old
mice (Figures 1E, F). In line with this, IGF1 protein corresponded to
Myc transcript abundance in female, but not male, mice in both
Myc+/− and Myc+/+ genotypes (Figures 1G, H). While we find that
Myc transcript levels exhibit significant overlap between the two
genotypes, particularly in males, our previously published data
shows that Myc+/− mice exhibit an approximately 50% decrease
in MYC protein levels in liver of male and female mice (Hofmann
et al., 2015). Taken together, these results suggest that MYC
positively regulates IGF1 protein levels post-transcriptionally in a
sex-specific manner, and that decreased MYC expression in female
Myc+/− mice results in lower IGF1 protein levels in the liver, which
results in decreased levels of circulating IGF1.

To assess whether IGF1 translation is regulated in female Myc+/−

mice, we isolated polysome-bound mRNA from liver extracts using
sucrose density centrifugation.We found that while related transcripts
such as Igfbp3 and Igf1r showed no changes in polysome association,
the Igf1 transcript was reduced by ~20% in the polysome-associated
mRNA fraction in the Myc+/− mice (Figure 1I). This result suggests
that MYC regulates IGF1 by inhibiting its translation. MYC is a
known regulator of genes involved in translation, andMyc+/− mice do
show a slight decrease in overall rates of translation (Hofmann et al.,
2015). However, the lack of significant translational repression on
transcripts related to and regulated by the same pathways as Igf1, such
as its binding proteins and receptor, suggests that the regulation of Igf1
translation by MYC is a targeted effect, rather than a global one.

To determine whether hepatocytes from female Myc+/− mice
respond to growth hormone stimulation as efficiently as Myc+/+

hepatocytes, mouse primary hepatocytes (MHC) were isolated
using a two-step perfusion protocol and allowed to adhere for
24 h in cell culture. Hepatocytes from both genotypes were then
treated with 100 nM of mouse recombinant growth hormone for
2 h prior to harvest and extraction of mRNA and protein. We
found that Igf1 transcript levels were upregulated to a similar
extent in Myc+/− and Myc+/+ hepatocytes (Figure 1J). However,
while Myc+/+ hepatocytes show a 30% increase in IGF1 protein
in response to growth hormone stimulation, treatment of
Myc+/− hepatocytes with growth hormone did not result in
significant IGF1 upregulation (Figure 1K). Together, these
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FIGURE 2
Regulation of miRNA expression by MYC (A, B) Heatmaps showing relative expression of candidate miRNA genes quantified by the Nanostring
platform on total RNA extracted from liver of female and male mice are shown reflecting global levels of expression (A), or for each miRNA across
conditions (rowmin-max (B)). n = 4, 3 months old, males and females. (C)miRNA gene expression in table format showing the significant changes (FDR-
corrected p-value <0.25). (D, E) Enrichment of miRNA target sequences in the Igf1 transcript as determined by sequencing of AGO-bound RNA
isolated from liver ofMyc+/− andMyc+/+ female (D) and male (E)mice. n = 3–4, 3 months old. (F) Expression of let-7i as determined by RT-qPCR (primer
pair 11) in liver ofMyc+/− andMyc+/+mice. Normalized to Snord70 (primer pair 13). n = 10–12, females andmales, 3 months old. (G) Expression of miR-122
as determined by RT-qPCR (primer pair 12) in liver of Myc+/− and Myc+/+ mice. Normalized to Snord70 (primer pair 13). n = 10–12, females and males,
3 months old. (H) Enrichment of miR-122 target sequence in the Igf1 transcript in WT and miR-122 KOmouse liver, dataset originally generated by (Luna
et al., 2017). n = four to five, females andmales, 5 months old. (I) Percentage of candidate miRNA gene promoters (defined as ± 1,000 bp of transcription
start site) with enrichment for H3K27me3, EZH2 and H3K27ac (ENCODE datasets doi:10.17989%2FENCSR000AOL, doi:10.17989%2FENCSR000ARI and
doi:10.17989%2FENCSR000AMO, respectively) as well as proximity to CpG islands as determined by analysis of available ChIP-Seq datasets in
HepG2 cells. (J) EZH2 liver and muscle protein levels were determined by immunoblot and quantified using ImageJ. Expression normalized to GAPDH.
n = 3, 30-month old, females. The image of the immunoblot is shown to the right of the graph. Statistical significance was computed using Student’s
t-test and followed by FDR correction in the case of multiple comparisons (C–E). Error bars represent SEM.
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data suggest that low MYC levels impede the translation of the
Igf1 transcript.

Given the known role of MYC in regulating the expression of
miRNA genes, as well as the ~6 kb length of the Igf1 3′UTR, we next
assessed whether MYC-regulated miRNAs could target the Igf1
transcript. TargetScan prediction identified 117 conserved
miRNA binding sites in the Igf1 3′UTR, including those of 11 of
the most expressed miRNAs (Lewis et al., 2005). 56 of these miRNAs
have been previously shown to be repressed by MYC and are thus
predicted to be downregulated in Myc+/− mice (Chang et al., 2008).
To assess whether miRNAs known to be repressed by increased
MYC levels and predicted to target the Igf1 transcript are indeed
upregulated in Myc+/− mice, we analyzed their expression in total
RNA extracts from livers of 3-month-old Myc+/− and Myc+/+ mice
using the Nanostring platform.

Of the 56 candidate miRNAs identified above, 45 were found to
have detectable expression in liver tissue of 3-month-old mice
(greater than five counts in at least one sample). We found
10 candidate miRNAs to be significantly (FDR-adjusted
p-value <0.05) upregulated in female, but not male Myc+/− mice
(Figures 2A–C). Interestingly, no downregulated miRNAs were
found for either sex. These results are consistent with the
literature on miRNA regulation by MYC, which documents that
the majority of miRNA genes are downregulated in the context of
MYC overexpression (Chang et al., 2008).

In order to validate that upregulated candidate miRNAs in
Myc+/− female mice lead to increased targeting of the Igf1
transcript in vivo, we performed AGO CLIP-Seq on liver tissue
of both genotypes and sexes (Moore et al., 2014). Briefly, flash frozen
liver was pulverized and cross-linked using UV-light prior to protein
extraction in the presence of RNase inhibitors. Argonaute
immunoprecipitation was then carried out, and Argonaute:
miRNA:mRNA complexes were isolated by gel electrophoresis
using a radiolabeled 3′ linker for visualization. A 5′ linker
containing a degenerate sequence was ligated to the isolated RNA
tags to allow for PCR amplification and subsequent sequencing and
filtering of duplicate reads. After filtering for duplicate and low-
quality reads, sequences were aligned to the mm10 genome, and
MACS was used to call peaks (Zhang et al., 2008). miRNA seed
sequences were identified within 50 bp of peak centers using
Targetscan (Lewis et al., 2005).

We found that in female Myc+/− mice, AGO binding of the Igf1
transcript was significantly enriched at the target sites of miR-122,
let-7, and to a more modest degree miR-29 (Figures 2D, E). These
three miRNA families are among the most highly expressed
miRNAs in the liver, and all three were found to be significantly
upregulated in femaleMyc+/−mice in our Nanostring analysis. Given
these results, we validated our Nanostring results of let-7i and miR-
122 expression by RT-qPCRmodified for miRNA detection (Balcells
et al., 2011; Busk, 2014). We found that both let-7i and miR-122 are
upregulated by ~30% in liver of female, but not male Myc+/− mice
(Figures 2F, G), consistent with our previous analysis.

miR-122 is a liver-specific miRNA that compromises ~70% of
the total miRNA species in mouse liver (Jopling, 2012).
Furthermore, as decreased miR-122 expression has been linked to
hepatocellular carcinoma, its effects have been investigated in the
liver, and an AGO CLIP-Seq dataset is available from a miR-122
liver-specific knockout mouse model (Luna et al., 2017). We

analyzed this available dataset and found that miR-122 knockout
significantly reduces AGO binding at the predicted miR-122 target
site in the Igf1 transcript, thus further validating this site as a bona
fide miR-122 target (Figure 2H). Given that our AGO-CLIP-Seq
data identified the target sites for let-7 and miR-122 as the most
enriched for AGO binding in female Myc+/− mouse liver, we chose
these two miRNAs for further analysis.

MYC has previously been implicated as a positive regulator of
the enhancer of zeste homologue 2 (EZH2) (Ito et al., 2018). EZH2 is
a methyltransferase that, as part of the Polycomb Repressive
Complex 2 (PRC2), di-/tri-methylates histone 3 lysine 27
(H3K27) to promote the heterochromatization of target regions
(Bracken andHeln, 2009).We thus analyzed available Encode ChIP-
Seq datasets from the human HepG2 hepatocyte cell line and found
that the promoter regions of Igf1-targeting miRNAs (including
members of the let-7 family and miR-122) are enriched for
EZH2 and H3K27me3, and are frequently found in CpG-rich
chromatin regions (Figure 2I). These results suggest that many of
the miRNAs that target Igf1 might be regulated by polycomb group
repression. Quantification of EZH2 protein levels in aged females
showed decreased EZH2 expression in liver, but not muscle in
Myc+/− versus Myc+/+ mice (Figure 2J). Although these results
point to a possible involvement of EZH2 in the regulation of
miRNA genes by MYC, more work remains to be done to
confirm this hypothesis.

To further elucidate the effects of upregulatingmiR-122 and let-7 in
the liver, we transfected LNA-modified miRNA mimics of these
miRNAs, both alone and in combination, into primary hepatocytes
isolated from wild type C57Bl/6 mice. Transfection resulted in a
significant intracellular increase in both let-7i and miR-122 as
measured by RT-qPCR. Specifically, transfection with 20 nM
miRNA mimics resulted in a 30 to 40-fold increase in let-7i
(Figure 3A). Transfection with miR-122 increased its expression to
1.7-fold over scrambled control, though due to the very high expression
of miR-122 in hepatocytes, this increase translates to a significant
upregulation of themiR-122miRNA (Figure 3B). Transfectionwith let-
7i or miR-122 decreased IGF1 protein levels by ~20% but did not
achieve significance, while transfection with both let-7i and miR-122 in
combination significantly decreased IGF1 protein levels by ~40%
relative to scrambled control (Figure 3C). Transfection with let-7i,
miR-122, or let-7i/miR-122 combined did not affect Igf1 transcript
levels as assessed by RT-qPCR in primary hepatocytes (Figure 3D).
These results are consistent with our in vivo data in Myc+/− vs. Myc+/+

female mice which showed a decrease in IGF1 protein, but not
transcript, levels (Figures 1A–C). Together, these results show that
upregulation of let-7i and miR-122 can decrease IGF1 protein levels
while not significantly affecting Igf1 mRNA levels.

To assess whether upregulation of let-7 or miR-122 in vivo can
mediate translational repression of Igf1we injected wild-type C57Bl/
6 mice with 1 nmol of each miRNA either alone or in combination
by tail-vein injection using invivofectamine as a carrier. Tissues were
harvested at 4 days post-injection, with retrograde perfusion of the
liver prior to harvest. Injection of 1 nmol of let-7i increased its
expression 12-fold relative to scrambled control, while injection of
the same amount of miR-122 increased its expression 1.2-fold
(Figures 3E, F). In line with our data in primary hepatocytes,
upregulation of let-7i alone resulted in a slight decrease in
IGF1 protein levels which did not achieve statistical significance.
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Compared to scrambled control, injection of miR-122 either alone
or in conjunction with let-7i significantly reduced IGF1 protein
levels by almost 50% in the liver, without significantly affecting Igf1
transcript levels (Figures 3G, H). Furthermore, treatment of mice
with miR-122 or combined let-7i/miR-122 significantly decreased
plasma levels of IGF1 (Figure 3I). In turn, growth hormone levels

were increased in the pituitary, in line with the known negative-
feedback loop between these two hormones (Figure 3J).

While decreased IGF1 levels have been associated with longevity in
numerous model organisms, as well as in humans, decreased
IGF1 expression with age has also been correlated with increased risk
of osteoporosis, muscle-wasting, and dementia (Obermayr et al., 2005;

FIGURE 3
Upregulation of miR-122 inhibits IGF-1 translation in vitro and in vivo in females. (A) Let-7i expression in primary mouse hepatocytes (MHC) post
transfection with 20 nMmimics as indicated, measured by RT-qPCR (primer pair 11), normalized to Snord 70 (primer pair 13). n = 3, females, 6–8 weeks.
(B)miR-122 expression in MHC post transfection with 20 nMmimics as indicated, measured by RT-qPCR (primer pair 12), normalized to Snord 70 (primer
pair 13). n = 3, females, 6–8 weeks. (C) IGF1 protein levels as assessed by ELISA in MHC) transfected with 20 nM of indicated miRNA mimics. n = 6,
females, 6–8 weeks. (D) Igf1 mRNA levels (primer pair 7) as assessed by RT-qPCR normalized to GAPDH (primer pair 4) in primary MHC transfected with
20 nMof indicatedmiRNAmimics. n= 6, females, 6–8 weeks. (E) Let-7i expression in liver tissue ofmice injectedwith 1 nmol indicatedmiRNAmimics via
the tail vein, measured by RT-qPCR (primer pair 11), normalized to Snord 70 (primer pair 13). n = 5, 3 months old, females. (F)miR-122 expression in liver
tissue of mice injected with 1 nmol indicated miRNA mimics via the tail vein, measured by RT-qPCR (primer pair 12), normalized to Snord 70 (primer pair
13). n = 5, 3 months old, females. (G) IGF1 protein levels as assessed by ELISA normalized to total protein in liver tissue of mice injected with 1 nmol
indicated miRNAmimics via the tail vein. n = 5, 3 months old, females. (H) Igf1mRNA levels (primer pair 7) as assessed by RT-qPCR normalized to GAPDH
(primer pair 4) in liver tissue of mice injected with 1 nmol indicated miRNA mimics via the tail vein. n = 5, 3 months old, females. (I) IGF1 protein levels as
assessed by ELISA in plasma of mice injected with 1 nmol indicated miRNA mimics via the tail vein. n = 5, 3 months old, females. (J) GH protein levels as
assessed by ELISA in pituitary extracts of mice injected with 1 nmol indicated miRNA mimics via the tail vein. n = 5, 3 months old, females. Statistical
significance was computed using one-way ANOVA followed by Dunnett’s post hoc test. Bars represent mean, minimum, and maximum values.
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Perrini et al., 2010; Westwood et al., 2014). Several mouse models with
decreased growth hormone (and consequently IGF1) levels have been
shown to have decreased bone mineral density, as well as increased
trabecular spacing in old age (Palmer et al., 2009; Yakar Isaksson, 2015).
Interestingly, mice with a liver-specific Igf1 deletion that was essentially
complete by 10 days of age did not show decreased femoral or body
length (Sjogren et al., 1999; Yakar et al., 1999), suggesting that local,
rather than endocrine, levels of IGF1 may be more important for the
preservation of bone health into old age. In contrast to this data, Igf1
liver-specific deletion at 1 year of age reduced circulating IGF1 levels by
70% and significantly reduced trabecular number, but not bone density

(Gong et al., 2014). Together, these results suggest that the decrease of
circulating IGF1 levels with age, rather than decreased lifetime levels of
IGF1, may be responsible for age-related bone loss while low levels of
circulating IGF1 from birth do not significantly impair skeletal health.

Female Myc+/− mice, with decreased IGF1 at all ages, show a
remarkable resistance to age-related bone loss, and in fact show no
decrease in bone density, trabecular number, or trabecular spacing at
22 months of age compared to Myc+/+ mice (Hofmann et al., 2015).
Though osteoporosis is a disease which typically affects females, we
nevertheless extended our analysis to include a measurement of
these parameters in male Myc+/− mice. While micro-CT analysis of

FIGURE 4
Growth hormone is upregulated through known negative-feedback loops by reduced liver IGF1 inMyc+/− relative toMyc+/+mice. (A) Bone density in
young and old male mice measured by micro-CT. n = 4–5, 3 and 24 months. (B) Trabecular spacing (mm) in young and old male mice measured by
micro-CT. n = 4–5, 3 and 24 months. (C) Trabecular number (per mm2) in young and old male mice measured by micro-CT. n = 4–5, 3 and 24 months.
(D) Representative images used for micro-CT analysis in panels (B, C, E) Femur IGF1 protein levels assayed by ELISA in young and old females. n =
5–8, 3 and 24 months. (F) Femur IGF1 protein levels assayed by ELISA in young and old males. n = 7–9, 3 and 24 months. (G) Ghrh mRNA levels (primer
pair 10) assayed by RT-qPCR normalized to GAPDH (primer pair 4) in the hypothalamus. n= 8, 3 months,males and females. (H)GhihmRNA levels (primer
pair 9) assayed by RT-qPCR normalized to GAPDH (primer pair 4) in the hypothalamus. n= 8, 3months,males and females. (I)GhmRNA levels (primer pair
8) assayed by RT-qPCR normalized to GAPDH (primer pair 4) in the hypothalamus. n = 8, 3 months, males and females. (J) GH protein levels assayed by
ELISA in the pituitary. n = 6–8, 3 months, males and females. (K)GH protein levels assayed by ELISA in plasma. Three blood samples harvested 48 h apart
were averaged for each animal. Readings greater than 3 standard deviations higher than average were discarded. n = 5, 4 months, males and females.
Statistical significance was computed by Student’s t-test (A–C and G–K), and one-way ANOVA followed by Tukey’s post hoc test (E, F). Error bars
represent SEM.

Frontiers in Cell and Developmental Biology frontiersin.org11

Petrashen et al. 10.3389/fcell.2023.1269860

67

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1269860


the L4 vertebrae in wild-type male mice showed small trends for a
decrease in bone density, increase in trabecular spacing, and
decrease in trabecular number, none reached significance (Figures
4A–D). In contrast, these changes were exacerbated male Myc+/−

mice and reached significance in two out of three parameters. Thus,
while reduced levels of MYC positively impact skeletal health with
age in females, the opposite was true for males.

To assess whether local levels of IGF1 in bone tissue were
affected by Myc heterozygosity, we extracted protein from femurs
of male and female Myc+/+ and Myc+/− mice at 3 and 24 months of
age. Interestingly, in both sexes,Myc+/− mice IGF1 levels in the bone
tended to be higher, as opposed to the decreases we found in the liver
(above), although these trends were not significant (Figures 4E, F).
The lack of decreased IGF1 expression inMyc+/− mouse bone tissue
suggests that MYC regulation of IGF1 is liver-specific. However, we
found a significant decrease of IGF1 protein levels in males
(Figure 4F), which might explain the decrease in bone health.

Mice with liver-specific ablation of Igf1, resulting in greater than
70% reduction in circulating IGF1, show significantly increased
levels of circulating growth hormone (Gong et al., 2014).
Although the details of this negative feedback mechanism remain
unclear, it has been reported that both growth hormone releasing
hormone (GHRH) and growth hormone inhibiting hormone
(GHIH) are regulated by IGF1 levels (Obal et al., 1991; Romero
et al., 2012). We thus assessed the expression of these two factors in
the hypothalamus at the mRNA level, and found a modest but
significant increase in Ghrh in the hypothalamus of female, but not
male,Myc+/− mice (Figure 4G), whereas Ghih levels were unaffected
(Fig. 7H). Consistent with this, transcript and as well as protein
levels of growth hormone in the pituitary were significantly
increased in female but not male Myc+/− mice (Figures 4I, J).

Circulating growth hormone levels are difficult to assess in vivo
due to their circadian as well as feeding-dependent fluctuations, the
pulsatile, time of day-dependent fluctuations, which can range by as
much as 100-fold in a matter of hours. However, through repeated
measurement at consistent timepoints, it is possible to determine an
average baseline level for each animal (Steyn et al., 2011). We thus
collected blood via the saphenous vein at 10 a.m. every other day for
a total of 3 time points from each animal and GH concentrations in
each sample were measured by ELISA. We found that average
growth hormone levels were significantly increased in female, but
not male, Myc+/− mice (Figure 4K). These results indicate that
decreased liver production of IGF1 in female Myc+/− mice, and
thus reduced circulating IGF1, through a negative feedback loop
increase GHRH levels in the hypothalamus, and consequently
increase growth hormone production and secretion by the pituitary.

Discussion

Myc+/− mice show global upregulation of miRNA expression, in
line with other reports showing thatMYC represses most of its target
miRNA genes. Many of these miRNAs have been implicated in
various human diseases, including Alzheimer’s, osteoporosis,
muscle wasting, and hepatocellular carcinoma. As upregulation of
MYC has been associated with more than 50% of all tumors, as well
as other aging-related diseases, the modulation of miRNA
expression by MYC is likely a significant mechanism by which

MYC dysregulation leads to impaired human health (Levens, 2010).
Interestingly, caloric restriction has also been shown to globally
increase miRNA expression, suggesting that miRNAs may play a
significant role in the regulation of lifespan (Zhang et al., 2019).
Here, we have shown that downregulation of MYC in female mice
induces the expression of multiple miRNAs that target the Igf1
transcript, and that at least one of these, miR-122, significantly
reduces IGF1 translation upon ectopic upregulation in vivo.

While the mechanisms by which MYC affects transcriptional
activation are well characterized, those mediating its role in
transcriptional repression are more poorly understood. Several
hypotheses have been proposed and supported by experimental
results, including that MYC can upregulate the expression of some
transcriptional repressors (Philipp et al., 1994; Lee et al., 1996), that
MYC is recruited to the promoters of its repression targets through
protein-protein interactions with transcriptional regulators such as
TFII-I, YY-I, Sp-I, and MIZ-1 (Schneider et al., 1997; Seoane et al.,
2001), and that MYC can regulate the expression of chromatin
silencing factors such as the Polycomb Repressive Complex (PRC)
(Knoepfler et al., 2006).

MYC has been found to regulate both the transcription of Ezh2
and EZH2 protein activity through phosphorylation (Bhandari et al.,
2011; Neri et al., 2012), but the genes that are regulated through this
PcG mechanism are not fully characterized. In line with MYC’s role
as a chromatin regulator, genes repressed by MYC show
considerable overlap with PcG and HDAC repressed genes (Kaur
and Cole, 2013; Bhadury et al., 2014). Furthermore, knockdown of
Ezh2 in glioma cells was found to upregulate 85 miRNA genes, many
of which are also known to be repressed byMYC (Wang et al., 2013).
In fact, many of the miRNAs upregulated in Myc+/− mice have
already been documented to be regulated by EZH2 (So et al., 2011;
Liu et al., 2013; Vella et al., 2015).

We found that, consistent with literature showing that MYC
overexpression upregulates EZH2, female Myc+/− mice showed
reduced liver EZH2 protein levels compared to Myc+/+ mice.
Analysis of available Encode ChIP-Seq datasets from the human
HepG2 hepatocyte cell line showed that the promoter regions of
Igf1-targeting miRNAs, including most members of the let-7 family
and miR-122, are enriched for EZH2 and H3K27me3. These results
suggest that many of the miRNAs that target Igf1 may be regulated
by PcG repression, which is regulated by MYC.

While EZH2-mediated repression is a plausible mechanism for
MYC-mediated repression of miRNA genes, it was unclear why
these miRNA genes were upregulated specifically in female Myc+/−

mice. Many miRNA genes have been shown to be regulated in a
sexually dimorphic manner. For example, in rat liver the IGF1-
targeting miR-193a, miR-29b, and miR-122 miRNAs were found to
be expressed at higher levels in females relative to males (Cheung
et al., 2009). Another group found that 37% of miRNA genes were
differentially expressed whenMCF-7 human breast cancer cells were
exposed to estrogen (Hah et al., 2011). These results were
corroborated by another group which showed that estrogen
induces the expression of 21 miRNAs while down-regulating 7 in
MCF-7 cells (Bhat-Nakshatri et al., 2009). The miRNAs upregulated
by estrogen in these cell types (the let-7, miR-30, miR-23 families),
also overlap extensively with the miRNAs that target the Igf1
transcript, as well as those upregulated in Myc+/− females.
Interestingly, it has been shown that EZH2 can be recruited to
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target gene promoters through estrogen receptor alpha, and that
testosterone administration to female mice, which downregulates
ER-alpha expression, results in the upregulation of several miRNAs,
including members of the let-7 family, miR-122, andmiR-30d (Delic
et al., 2010; Ariazi et al., 2017).

Estrogen also plays a significant role in the regulation of MYC
targets, and miR-122 expression has been previously shown to be
upregulated in females compared to males (Cheung et al., 2009).
miR-122 is the predominant miRNA expressed in liver tissue,
compromising more than half of the total miRNA pool in the
liver, according to our analyses and those of others (Jopling,
2012). miR-122 is regulated by multiple liver-enriched
transcription factors, including HNF3b (FOXA2), HNF4a, and
HNF6 (Xu et al., 2010). The miR-122 regulating liver-enriched
transcription factor FOXA1/2 alternatively regulates MYC
depending on the presence of estrogen or androgen (Li et al.,
2012). This sex-hormone specific regulation is believed to be an
important contributor to the sexual dimorphism of
hepatocellular carcinoma, which has a prevalence in males
2–4 times higher than in females (Hsu et al., 2012; Li et al.,
2012). In fact, downregulation of several oncogenic genes by
FOXA1/2 is dependent on the presence of estrogen (Li et al.,
2012). While estrogen-dependent regulation of miR-122 by
FOXA1/2 has not been explicitly described, it is a plausible
explanation for the sex-specific upregulation of miR-122 in
Myc+/− female mice.

Of the many miRNAs that are predicted to target the Igf1
transcript, our results showed that miR-122 had the most
profound effects on IGF1 translation in Myc+/− female mice.
Given that miR-122 is a liver-specific miRNA, this suggests that
MYC regulates IGF1 in a liver-specific manner. In line with this, we
found that femaleMyc+/− mice did not have decreased IGF1 levels in
bone tissue, in contrast to the significant reduction seen in the liver.
In fact, IGF1 levels in femur tissue of Myc+/− mice trended towards
increased expression both at young and old age.

IGF1 and its main regulator, growth hormone, function in a
negative feedback loop such that reduced IGF1 levels in the
circulation trigger an increase in growth hormone levels in the
pituitary, and its secretion into circulation (Romero et al., 2012). We
found increased GH expression and circulating levels in Myc+/−

female mice, which is likely explained by the known negative-
feedback loop between circulating IGF1 and GH. Increased
growth hormone in circulation of Myc+/− female mice may then
signal to peripheral tissues such as the bone to stimulate local
production of IGF1, thereby mitigating bone loss with age, and
possibly explaining the remarkable resistance ofMyc+/− female mice
to age-related bone loss.

Together, these results suggest that liver-specific reduction in
IGF1 does not affect local production of IGF1 in peripheral tissues,
and that in fact it may enhance it. Several mouse models with liver-
specific disruption of IGF1 have been generated. Constitutive liver-
specific Igf1 knockout resulted in a >60% reduction in circulating
IGF1 levels and had minimal effects on body weight, organ weight,
and femoral length (Yakar et al., 1999). Liver-specific ablation of
IGF1 at 3 weeks of age resulted in a ~75% decrease in circulating
IGF1 levels, extended lifespan by 16% in females, but resulted in
only minor reduction in femoral length (Sjogren et al., 1999;
Svensson et al., 2011). Unfortunately, local IGF1 levels were not

measured in bone tissue of either mouse model, nor was trabecular
morphology assessed with age. However, the results of these
studies are consistent with our data, and suggest that liver-
specific disruption of IGF1 at young age does not significantly
affect bone health.

In aggregate, we propose a model in which MYC-mediated
activation of EZH2 causes the upregulation of multiple miRNAs
(namely, miR-29, let-7, and miR-122), in an estrogen-dependent
manner, which then target the Igf1 transcript and reduce its
translation. The regulation of Igf1 translation by miR-122, which
is a liver-specific miRNA that showed themost pronounced effect on
Igf1 translation, results in the reduction of IGF1 protein levels in the
liver of female Myc+/− mice. Since circulating IGF1 is produced
predominantly in the liver, the systemic effect of decreased MYC
expression is reduced plasma levels of IGF1. Given that IGF1 and
GH function in a negative feedback loop, such that reduced
circulating IGF1 triggers an increased production and secretion
of GH by the pituitary, decreased MYC expression concomitantly
increases plasma levels of GH. Increased GH expression, in turn,
increases the local production of IGF1 in tissues such as the bone,
thereby evading some of the negative consequences of global
IGF1 reduction.
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MYC function and regulation in
physiological perspective

Rajiv Kumar Jha, Fedor Kouzine and David Levens*

Gene Regulation Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute
(NCI), Bethesda, MD, United States

MYC, a key member of the Myc-proto-oncogene family, is a universal
transcription amplifier that regulates almost every physiological process in a
cell including cell cycle, proliferation, metabolism, differentiation, and
apoptosis. MYC interacts with several cofactors, chromatin modifiers, and
regulators to direct gene expression. MYC levels are tightly regulated, and
deregulation of MYC has been associated with numerous diseases including
cancer. Understanding the comprehensive biology of MYC under physiological
conditions is an utmost necessity to demark biological functions of MYC from its
pathological functions. Here we review the recent advances in biological
mechanisms, functions, and regulation of MYC. We also emphasize the role of
MYC as a global transcription amplifier.

KEYWORDS

MYC, transcription, transcription-amplifier, MYC function,MYC regulation, MYC-inhibitors,
DNA-topology

Introduction

TheMyc gene was first identified in the early 1980s as a cellular homolog of the retroviral
v-Myc oncogene (Duesberg et al., 1977; Sheiness et al., 1978; Conacci-Sorrell et al., 2014). Its
discovery led to intense research efforts to understand its function and deregulation in
cancer. MYC deregulation was soon associated with genomic rearrangements including
translocations in Burkitt lymphoma, gene amplification and chromosomal circles in
leukemia and carcinoma, and deregulation by HPV insertion in cervical carcinoma
(Dalla-Favera et al., 1982; Taub et al., 1982; Spencer and Groudine, 1991; Wasylishen
and Penn, 2010; Adey et al., 2013). Subsequently, mutations that stabilize MYC protein and
mRNA were recognized in malignancy (Dang, 2012). Because all these situations occur in an
oncogenic setting, thousands of studies explored the cellular consequences of MYC
overexpression. Upon discovering that the basic-helix-loop-helix (bHLH) protein MYC
dimerizes with its bHLH partnerMyc-associated factor-X referred to asMAX and binds with
E-boxes (5′-CACGTG-3′) and presumed to activate transcription, the principal focus of
studies to define the pathologic role of MYC revolved upon the identification of its
transcriptional targets (Blackwood and Eisenman, 1991; Grandori and Eisenman, 1997;
Eilers and Eisenman, 2008; Dang, 2012). The notion was that MYC programmed the
expression of a discrete set of mRNAs that bypassed normal growth control leading to
unrestrained proliferation. Most of these studies exploited a variety of transformed and
tumor cell lines to explore pathologic MYC function. Fewer studies focused on physiological
role of MYC. In the untransformed, non-oncogenic situation, MYC was found to be an
immediate early gene, turned off during the G0-stationary phase of the cell cycle, but
upregulated transiently during the transition to G1/S (Kelly et al., 1983; Armelin et al., 1984;
Wang et al., 2008). Upon entering steady-state cell-cycle growth, MYC was stably expressed
at lower levels until growth once again arrested. Survey of mRNA expression indicated that
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while MYC upregulated the expression of many genes involved in
cell cycle progression, it also repressed a small number of cell-cycle
antagonists (Bretones et al., 2015). Sustained high level expression of
MYC elicited apoptosis in non-transformed cells and so could not be
maintained (Evan et al., 1992; Murphy et al., 2008). In the bulk of
this review, we will consider the biological mechanisms and
functions of MYC in non-transformed cells, tissues, and
organisms. A description of this physiology is essential to
distinguish whether the oncogenic actions of MYC arise due to
an exaggeration of its normal functions or whether high level
expression conjures new modes and mechanisms of MYC activity
otherwise unseen.

MYC domain organization and function

The MYC family of proteins consists of three paralogs, MYC
(c-MYC), MYCN (N-MYC) and MYCL (L-MYC) (Brodeur et al.,
1984; Kohl et al., 1984; Nau et al., 1985). Although MYC family
genes encode proteins with similar structural architecture and
function, each MYC paralog is located on a different
chromosome (MYCL, MYCN and MYC are in chromosomes
1, 2, and 8 respectively) and expressed at distinct times and
locations during cellular differentiation (Dalla-Favera et al.,
1982; Schwab et al., 1984; Zelinski et al., 1988; Ruiz-Pérez
et al., 2017; Llombart and Mansour, 2022). MYCN and MYCL
have tissue-specific function. MYCL is expressed and functions in
dendritic cells, gastrointestinal cells, and lung cells. MYCN is
expressed in neural and neuroendocrine tissue and is critical for
the development of nervous system (Llombart and Mansour,
2022). MYC is composed of 439 amino acids and contains an
N-terminal transactivation domain (TAD), and a C-terminal
DNA-binding domain. The TAD (residue 1-143) forms an
intrinsically disordered domain and is necessary for biological
activity of MYC and MYC-mediated transcriptional activation
(Kato et al., 1990). The C-terminal domain comprises
~80 residues and consists of a bHLH -leucine zipper (bHLH-
ZIP) segment from residues 357-439. The bHLH-ZIP domain
forms specific heterodimers with MAX (Blackwood and
Eisenman, 1991; Amati et al., 1992; Amati et al., 1993; Kato
et al., 1992). This interaction facilitates the ability of MYC’ to
bind DNA with preference, but not absolute specificity, for
binding to the canonical E-box (5′-CACGTG-3′) (Blackwood
and Eisenman, 1991; Guo et al., 2014; Carroll et al., 2018). Besides
sequence recognition, a major component of MYC recruitment to
the DNA are its interactions with the transcription machinery at
accessible promoters (Guo et al., 2014). Initially MYC seemed to
bind a wide range (2,500–25,000) of sites throughout the genome
that varied according to cell type (Cawley et al., 2004).
Classification and functional assessment of the programs
regulated by MYC between different tissues and cells seemed
complex and somewhat incoherent. The number of MYC peaks
was significantly affected by the arbitrary threshold chosen to
distinguish real peaks from the background and experimental
conditions that most often lacked an internal control, such as
“spike” chromatin from a heterologous genome, to improve
quantitation (Bonhoure et al., 2014). Moreover, the
normalization of gene mRNA output obscured the observation

of global transcription amplification by MYC, with sensitivity to
the artificial threshold used to differentiate “real” from non-
specific binding (Lovén et al., 2012).

Upon binding at promoters, the transregulatory domains of
MYC and its isoforms, are believed to project its influence onto
target genes through patches of amino acids that share high
sequence homology among the three MYC isoforms. These
patches are referred to as MYC boxes (MBs). From the amino-
to carboxyl terminus, there are six conserved MBs: MB0, I, II, IIIa,
IIIb, and IV. They are generally unstructured and can adopt
specific conformations induced upon partner-protein binding.
The degree of plasticity for each MB upon complexing with
different partners has not been explored. The inventory and
functional roles for MB-interacting partners that have been
most intensively investigated are involved in transcription and
chromatin process, or control MYC turnover, has recently been
reviewed (Das et al., 2023).

A sampling of the MYC-interactome shows MB0 interactions
with general transcription factor TFIIF (Kalkat et al., 2018). MBI and
MBII reside within the TAD and are critical for transcriptional and
cell-transforming functions of MYC. MYC box I controls its
proteasome mediated degradation of MYC proteins (Farrell and
Sears, 2014). Aurora A, independent from its kinase activity,
interacts with MBI to stabilize MYC (Dauch et al., 2016). MBII
plays a crucial role in recruiting MYC transactivation coactivators
such as TRRAP, GCN5, TIP48, TIP49, TIP60, CBP/p300, and SKP2
(Adhikary and Eilers, 2005; Conacci-Sorrell et al., 2014; Tu et al.,
2015; García-Gutiérrez et al., 2019). Because TRRAP is a protein that
participates in multiple large protein complexes engaged in
chromatin remodelling and histone acetylation (Zhang et al.,
2014), it may impart multiple functions when joined with a
promoter-bound MYC. The central region of MYC containing
MBIII and MBIV starts with a proline-rich PEST segment,
followed by a calpain cleavage site (CAPN); the N-terminal
fragment of this cleavage, known as “MYC-nick,” lacking the
nuclear localization signal (NLS) situated to the C-terminal side
of the cleavage site, resides in the cytoplasm and participates in
interactions and functions of the cytoskeleton (Conacci-Sorrell et al.,
2010; Anderson et al., 2016). MBIII is important for transcriptional
repression (Kurland and Tansey, 2008; Garcia-Sanz et al., 2014), but
also interacts with WDR5 (a scaffolding protein that nucleates the
assembly of histone modifier complex) and facilitates histone
H3 Lys4 (H3K4) methylation which is thought to increase the
interaction of MYC with active promoters (Thomas et al., 2015).
MBIV is necessary for transcriptional activity of MYC and induction
of apoptosis (Cowling et al., 2006) and has been shown to interact
with the transcriptional coregulator HCF-1 (Thomas et al., 2016).
Although each of the MBs interact with multiple partners and have
been shown to modulate MYC activity, the precise role of individual
MBs has not been fully ascribed.

MYC, an amplifier of transcription

Transcription activation involves the binding of transcription
factors to specific DNA sequences, which recruit the transcriptional
machinery, coactivators, and chromatin modifiers to form a
transcriptional complex that initiates gene transcription.
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Transcription factors can recruit coactivators such as CBP/p300,
which possess histone acetyltransferase activity and can acetylate
histones to promote an open chromatin structure that allows for
gene transcription. In addition, transcription factors can recruit
chromatin modifiers such as SWI/SNF, which can remodel
chromatin to allow access to the transcriptional machinery
(Bannister and Kouzarides, 2011). Unlike transcription activation,
transcription amplification refers to the process by which
transcription factors globally enhance the expression of all active
genes in the cell (Lin et al., 2012; Nie et al., 2012; Li et al., 2013).
Transcription amplification is different from gene amplification
where the number of copies of a specific gene increases without
an increase in the transcription output of each copy. Gene
amplification can result from DNA replication errors,
chromosome translocations or gene rearrangements (Albertson,
2006; Beroukhim et al., 2010; Matsui et al., 2013; Schaub et al.,
2018). In contrast, transcription amplification occurs through the
recruitment of coactivator complexes or other factors that enhance
the efficiency of transcriptional reinitiation and elongation, and so
increase the number of RNA polymerases (RNAP) that are engaged
in transcription (Wolf et al., 2015). Transcription amplification
enhances the expression of a gene beyond what would be
expected based on the level of transcription factor binding alone.
While it was initially believed that MYC acted as a sequence-specific
transcription factor, turning on genes via E-boxes (Blackwell et al.,
1990; Halazonetis and Kandil, 1991; Kerkhoff et al., 1991;
Prendergast and Ziff, 1991), an alternate model has been posed
in which MYC acts as a global amplifier of all active genes (Lin et al.,
2012; Lovén et al., 2012; Nie et al., 2012; Nie et al., 2020; Wolf et al.,
2015).

When viewed a transcriptional activator, the expectation and
goal were to identify specific, direct MYC target genes to provide
insights into the crucial downstream targets and biological processes
responsible for mediating the physiological functions and oncogenic
pathology of MYC. Numerous studies were undertaken to identify
MYC-regulated genes by employing techniques such as microarray
or next-generation sequencing to compare RNA expression profiles
and genome-wide mapping of MYC-bound chromatin. The notion
that MYC and MYC-MAX complexes regulate a limited and well-
defined set of target genes for their various roles has been largely
challenged (Orian et al., 2003; Ji et al., 2011; Lee et al., 2012; Hurlin,
2013; Sullivan et al., 2022). Studies aimed to establish a universal
signature of MYC target genes across cell types have been
unsuccessful (Lee et al., 2012; Sullivan et al., 2022). Investigations
across various cell types consistently revealed the presence of MYC
proteins at nearly all promoters located in open chromatin regions
(Chen et al., 2008). Moreover, a strong correlation between MYC
binding and the presence of histone marks associated with open
chromatin, particularly H3K4Me3 and H3K27Ac was observed (Nie
et al., 2012). Conversely, MYC was excluded in the regions
exhibiting repressive histone modifications. These results argued
against the role of MYC as selective target (E box-dependent)
transcription activator and led to further consideration of the
transcription amplifier model, where MYC acts to globally
enhance the expression of transcriptionally active genes in a
nonlinear manner (Figure 1) (Lin et al., 2012; Nie et al., 2012).
The transcriptional response of an active gene rises until output at
the affected promoter saturates. This amplification is more efficient
on highly transcribed genes, effectively raising their expression
ceilings. MYC exhibited widespread binding to all promoters

FIGURE 1
MYC is an amplifier of transcription. Schematic representation of the role of MYC as transcription amplifier is depicted. MYC exerts its influence on
actively transcribed genes in the presence of activators, rather than being involved in transcriptional processes at silent genes. WhenMYC is not involved,
activator can start transcription albeit with low outputs. Participation ofMYC leads to an augmentation of gene expression beyondwhatwould be typically
anticipated solely based on the binding of transcription factors.
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associated with RNAP II activity, resulting in a significant
enhancement of transcription for a diverse repertoire of genes.
MYC action does not entail the activation of novel genes;
instead, it amplifies the expression levels of transcribed genes and
so accelerates and amplifies ongoing cellular programs. Highly
expressed MYC target genes tend to harbor canonical E boxes,
but this is not obligatory and there is no strict correlation between
MYC binding and the presence of E boxes for MYC- amplified genes
in non-transformed cells (Nie et al., 2012).

The complexity of transcription amplification can be influenced
biologically by input signals, cis-elements, other transcription
factors, and analytically by the algorithms and pipelines used for
analysis. These factors can highlight or obscure the relationship
between MYC binding and promoter output in omics studies. To
exclude such interfering or biased factors, minimal promoter and
the reporter-based assay was designed to interrogate MYC function
(Nie et al., 2020). Basal reporter expression was insensitive to MYC,
and an initial activator signal was required to sensitize the promoter
to MYC amplification to achieve increased transcriptional output.
MYC boosted reporter gene expression to much higher levels than
was attainable solely with saturating levels of transactivators.
Further, MYC-mediated transcription amplification was severely
attenuated by mutations in MBI and MBII but augmented by
mutations in MBIII. This suggests that the MB regions
coordinate with various proteins to control the chromatin
opening and progression through the transcription cycle to
achieve transcription amplification. The amplifier model for

MYC functions is supported by the observation that MYC
promotes transcription elongation by recruiting P-TEFb, PAF1c
and super-elongation complexes (Jaenicke et al., 2016; Chen et al.,
2017; Endres et al., 2021; Aoi et al., 2022). Increased MYC
occupancy consequently led to increased P-TEFb with elevated
levels of Serine 2 phosphorylation at RNAP II (a modification
linked to elongation), escalated levels of elongating RNAP II, and
augmented mRNA levels for active genes. Therefore, the main
consequence of increased MYC is the amplification of
transcription (Figure 2) (Rahl et al., 2010).

Although, it has been suggested that the binding of transcription
factors to enhancer elements, super-enhancers, or other regions that
drive the recruitment and activity of the transcription machinery
plays a critical role in the non-linear mode of transcriptional
amplification (Hnisz et al., 2016), the direct mechanism/s how
MYC increases the output of expressed genes demands further
investigation. A new report argues that a DNA-binding
independent function of MYC helps it to function as a global
amplifier (Guan et al., 2023). These authors report that MYC
regulates P-TEFb availability through the inhibition of
CDK9 sumoylation. CDK9 interacts with UBC9 and the PIAS
family E3 ligase, specifically PIAS1, to promote
CDK9 sumoylation. This modification impedes the binding
between CDK9 and Cyclin T1, leading to the disruption of active
P-TEFb assembly. MYC, through its independent interaction with
CDK9 and UBC9/PIAS1, inhibits the association between
CDK9 and UBC9/PIAS1, thereby preventing CDK9 sumoylation

FIGURE 2
Current model for factors involved in transcription amplification by MYC. MYC interacts with essential transcription regulators involved in critical
events at promoters, either coincidently or through regulated processes. MYC recruits key activators such as general transcription factors, Mediator,
PAF1c, P-TEFb, DSIF, and exosome (other components omitted for simplicity). Once transcription starts, pausing factors interact with RNAP II near the
start site, causing it to pause around 50 bp downstream from the initiation site. Together with cofactors like BRD4, MYC recruits P-TEFb which
phosphorylates the pausing factors and RNAP II. MYC suppresses CDK9 sumolyation, facilitating active P-TEFb formation. MYC also recruits PAF1c and in
association with HUWEI1-mediated ubiquitylation of MYC, PAF1c is transferred to RNAP II. These events collectively trigger the release of the paused
transcription complex and initiate transcription elongation. Moreover, torsional stress generated due to transcription elongation is resolved by the MYC-
Topoisome complex. It activates the catalytic activity of both TOP1 and TOP2A, helping tomaintain DNA supercoiling homeostasis. MYC also extends the
duration of residence times of transcriptionmachinery like TBP, SPT5 and RNAP II and this leads to the extension of transcriptional bursts (gene ON time).
These events help to explain the role of MYC as an amplifier of transcription.
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(Figure 2). By facilitating the formation of the P-TEFb complex,
MYC enhances the phosphorylation of Ser2 on the RNAP II CTD,
promoting global transcription amplification through
transcriptional elongation (Figure 2). The full extent of
transcriptional functions of MYC depends on both its local and
global effects, as well as its interactions with various transcriptional
cofactors. In addition, the differences in transcriptional profiling and
transformation potency observed between full-length MYC and
truncated MYCs (Yu et al., 2018; Guan et al., 2023). MYC also
indirectly amplifies transcription by inducing the expression of
GCN5 that acetylates histones (chromatin opening) and
PRPS2 that promotes nucleotide biosynthesis (McMahon et al.,
1998; McMahon et al., 2000; Knoepfler et al., 2006; Cunningham
et al., 2014).

A recent report (Patange et al., 2022) investigated the
transcriptional kinetics and mechanisms through which MYC
enhances gene expression in living cells. A light-controlled MYC
protein was translocated from the cytoplasm to the nucleus upon
blue light illumination, thereby controlling MYC activity in human
cells. Photo-activation and RNA imaging enabled precise
measurements of gene regulation and the MYC action on
transcription factor dynamics and transcription amplification.
Single-molecule fluorescence in situ hybridization (smFISH) in
fixed cells and MS2-tagging of RNA in live cells were used to
assess the immediate impact of MYC on transcription bursting.
The findings demonstrate that MYC influences the length of time
that other core transcriptional factors reside at promoters. Elevated
MYC levels uniquely influence the dwell time of various
transcriptional machinery complexes. The glucocorticoid receptor
(GR) remained unchanged, while SPT5, TBP, and RNAP II
exhibited increased dwell time, and MED1, a mediator
component, showed decreased dwell time. Elevated MYC
enhanced RNA output from its target genes and alterations in
burst duration were attributed to changes in the residency of
transcriptional machinery and hence altered transcription output.
Overall, MYC universally extended the duration of transcriptional
bursts (increased gene ON time, i.e., transcriptionally active state),
without altering their frequency (Figure 2) (Patange et al., 2022).
Although bursting duration was preferentially enhanced for genes
with lower expression, it should be noted that the highly expressed
genes, most likely, were pre-saturated with endogenous MYC.

MYC is primarily associated with transcription amplification,
however, many reports have revealed that it also represses several
genes. Most repression may represent an algorithmic artefact of
RNA normalization by programs such as DE-seq2 when comparing
samples. Yet a small number of MYC repressed targets survive the
normalization correction and are truly repressed. The precise
mechanism underlying transcriptional repression of MYC is not
fully understood. However, it seems that MYC uses surrogates to
affect repression. For example, MYC exploits transcription factors
like MIZ-1 (Myc-interacting zinc-finger protein 1) or SP1 that
recruit corepressor, or changes in chromatin accessibility driven
by epigenetic modifications which lead to the displacement of DNA-
bound coactivators to ultimately achieve gene repression (Seoane
et al., 2001; Kurland and Tansey, 2008; Wiese et al., 2013; Walz et al.,
2014; Lourenco et al., 2021). Further, interaction of MYC with
PAF1c forms a repressive complex, inhibiting function of PAF1c as
an elongation factor (Jaenicke et al., 2016). It is important to rule out

the potential involvement of indirect mechanisms of repression that
involve ability of MYC to amplify the expression of negative
regulators of transcription, such as repressor genes and other
repressive components such as microRNAs (Wolf et al., 2015;
Poole and van Riggelen, 2017). Consequently, the activation of
these repressive components could ultimately result in the
repression of target genes. For instance, MYC has been shown to
repress p53 by targeting p53-MDM2-ARF (Kung andWeber, 2022).
MYC activates the expression of SENEBLOC, a lncRNA that acts as
a scaffold to facilitate the binding of MDM2 with p53, leading to the
downregulation of p53 (Xu et al., 2020). Furthermore, MYC also
drives the expression of MILIP, another lncRNA that represses
p53 by promoting p53 turnover by reducing p53 sumoylation (Feng
et al., 2020). Therefore, it is essential to consider the indirect effects
mediated by MYC-induced transcription amplification when
studying the repression of MYC target genes (Lin et al., 2012;
Nie et al., 2012).

Role of MYC in embryogenesis, cell
cycle, proliferation, and apoptosis

As discussed above, MYC is an integral part of transcription
progression, acting as a global amplifier, it is indispensable for both
embryonic development and the maintenance of self-renewing
tissues in adults (Yoshida, 2018). MYC proteins exert crucial
functions mostly during embryogenesis and in tissue regenerative
programs in adults (Dang, 2013; Asami et al., 2022; Asami et al.,
2023). MYC was absolutely required for the immediate embryonic
gene activation (iEGA). Inhibiting MYC during iEGA resulted in
acute developmental arrest and caused a failure in activating
approximately 95% of the upregulated genes. Further, it also
changes the morphology of the embryo, and hindered the
process of cytokinesis (Asami et al., 2023). In the absence of
MYC, the failure of activation of 95% upregulated genes supports
the notion that MYC acts as a global amplifier in developmental
contexts (Lin et al., 2012; Nie et al., 2012; Nie et al., 2020). Studies
have shown that knockouts of either MYC or MYCN do not survive
embryonic development, whereas mice lackingMYCL are fertile and
appear to develop normally (Charron et al., 1992; Stanton et al.,
1992; Davis et al., 1993; Hatton et al., 1996). Mouse embryos lacking
MYC experience prenatal mortality at E10.5 due to placental defects
(Davis et al., 1993). However, whenMYCwas deleted in epiblast, the
embryos demonstrate normal growth and survive until E11.5, and
later develop hematopoiesis and die (Dubois et al., 2008). MYC is
typically expressed at low levels, and elevated expression is almost
always transient in normal cells (Levens, 2013). Deletion of certain
enhancer regions that regulate MYC expression (discussed in
regulation section) have examined a role for MYC in
embryogenesis (Dave et al., 2017). Upon deletion of an enhancer
region, MYC levels reduce by approximately 50%, but are still
sufficient for normal development and tissue growth suggesting
that the deleted regions were dispensable for MYC function in the
placenta development and during early hematopoiesis. These mice
were resistant to tumor formation suggesting that tumors demand
elevated MYC levels (Dave et al., 2017). Moreover, the enhancer
region known as BENC that regulates MYC abundance, plays a
crucial role in precisely regulating hematopoiesis (Bahr et al., 2018).
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These results support that physiological levels of MYC are a crucial
factor in regulating embryogenesis.

MYC helps to regulate the cell-cycle and determine the rate of
proliferation. Low MYC promotes growth of quiescence cells and
controls cell cycle entrance and exit. The G1 and G2 phases of the
cell cycle are lengthened in MYC-deficient rat fibroblasts compared
to wild-type cells (Mateyak et al., 1997). MYC depletion using
antisense oligodeoxynucleotides in human lymphoid and myeloid
cells hinders entry into S-phase (Heikkila et al., 1987; Wickstrom
et al., 1988). Depletion of MYC using short-hairpin RNA (sh-RNA)
led to cell-cycle arrest in the G0/G1 phase in all non-transformed
cells, whereas barring few, most transformed cells showed arrest in
either the S phase or the G2/M phase (Wang et al., 2008). MYC
regulates the expression of genes involved in cell-cycle control by
activating the expression of positive regulators of cell-cycle such as
Cyclin D, CDK (CDK1, 2, 4, 6), Cyclin E, Cyclin B. MYC also
activates E2F target genes (Bretones et al., 2015; García-Gutiérrez
et al., 2019). In addition, MYC also exerts its effect by inhibiting the
negative regulators of the cell cycle, such as p15, p21, and p27
(Bretones et al., 2015; García-Gutiérrez et al., 2019). MYC represses
p15 by forming a repressor complex with SP1 and SMAD in the
presence of TGF-β (Seoane et al., 2001; Feng et al., 2016). Another
prominent target of MYC is p21. The Interaction between MYC and
MIZ-1 leads to the displacement of the transcriptional coactivators,
resulting in the inhibition of MIZ-1 target genes like p21 (Wiese
et al., 2013; Walz et al., 2014). Further, MYC induces the bHLH-LZ
transcription factor AP4 which binds to p21 promoter and facilitates
the transcriptional repression of p21 (Jung et al., 2008). It also
represses p21 by activating the expression of microRNA miR-17-92
(Wong et al., 2010). MYC represses p27 at both the transcriptional
and post-transcriptional levels reviewed in Ahmadi et al., 2021.
MYC induces the expression of D-type cyclin, CDK4, CDK6, and
components of the SCFSKP2 ubiquitin ligase complex, which direct
the phosphorylation, degradation, and proteasome-mediated
turnover of p27 (Montagnoli et al., 1999; Keller et al., 2007;
Bretones et al., 2011). It should be noted that in no case has
MYC been shown to directly block the expression of a cell-cycle
repressor other than in specific combination with other
transcription factors. Mostly simply, MYC regulates the cell-cycle,
growth, and proliferation as a general amplifier of preexisting
transcriptional programs inducing the expression of required
genes in a timely manner.

Beyond its role in cell cycle growth and proliferation, MYC also
plays a part in apoptosis. The involvement of MYC in apoptosis first
became apparent in a study where elevated MYC led to apoptosis of
growth factor-deprived fibroblasts (Evan et al., 1992). MYC controls
apoptosis by modulating the balance between pro-survival and pro-
apoptotic signals in the BCL pathway (McMahon, 2014). While
modest increases in MYC levels led to increased cellular
proliferation, higher MYC levels provoked apoptosis (Murphy
et al., 2008). Even in normal physiological contexts, endogenous
MYCwas found to be an essential factor for apoptosis of self-reactive
lymphocytes (Shi et al., 1992). Further, it has been shown that
endogenous MYC is required for p53-mediated apoptosis in
intestinal epithelial cells of mice (Phesse et al., 2014). These
studies highlighted that endogenous levels of MYC maybe
sufficient to induce apoptosis and based on cellular
demands, nutrient levels, growth factors, etc. MYC can activate

both p53-dependent and -independent apoptosis (Topham et al.,
2015). In situations where pro-apoptotic genes are silent, the
transcription of those pro-apoptotic genes must be primed before
MYC further amplify their expression leading to apoptosis (Lin
et al., 2012; Nie et al., 2012; 2020).

MYC in transcription and replication

MYC binds the genes transcribed by all three RNAPs- I, II, and
III although with relatively lower binding to rRNA promoters
(Gomez-Roman et al., 2003; Grandori et al., 2005; Oskarsson and
Trumpp, 2005). MYC regulates the expression of non-coding
transcripts by RNAP I and III, and most prominently mRNA
expression by RNAP II (Baluapuri et al., 2019). The chromatin
landscape of MYC binding sites indicates that it tends to bind
primarily to active promoters or promoters linked to a preoccupied
basal transcription apparatus. MYC exhibits a strong association
with factors regulating RNAP II activity, including both promoter
recruitment and activation of the polymerase. It directly binds to the
TATA-binding protein (TBP), an essential component of the TFIID
complex responsible for promoter recognition and pre-initiation
complex assembly at the transcriptional start site (Wei et al., 2019).
This interaction suggests a potential mechanism for TBP
recruitment to MYC targets lacking a TATA box.

The rate-limiting step of transcriptional initiation, which
involves the phosphorylation of Ser5 in the RNAP II C-terminal
domain, is regulated by the recruitment of SPT5/SPT6, the two
components of DSIF, through the influence of MYC. MYC interacts
with SPT5, facilitating its recruitment to promoters and subsequent
CDK7-dependent transfer to the RNAP II prior to transcription
elongation. This process enables SPT5-loaded RNAP II to efficiently
generate full-length transcripts through fast, continuous, and
directed transcription (Baluapuri et al., 2019). When MYC is low
(quiescent cells), the recruitment of SPT5 at RNAP II is insufficient,
leading to a loss of directionality and processivity in RNAP II, which
results in elevated production of antisense and abortive transcripts.
However, it remains to elucidate the biological consequence of these
antisense and abortive transcripts.

Further, MYC facilitates the formation of the P-TEFb complex
and phosphorylation of Ser2 on the RNAP II CTD, to promote
transcription elongation (Yu et al., 2018; Guan et al., 2023). MYC-
dependent transcription activation also requires ubiquitination of
MYC. It was shown that ubiquitylation of MYC is required to
transfer of the PAF1c from the MYC to transcription elongation
complex (otherwise repressive complex) onto RNAP II (Jaenicke
et al., 2016). However, it remained unclear whether MYC
ubiquitination alone was sufficient for the transfer or if it also
required the involvement of P-TEFb. Excitingly, recently it has
been shown that MYC recruits the PAF1c complex, and in
conjunction with HUWE1-mediated ubiquitylation of MYC at
the promoter, facilitates the transfer of PAF1c from MYC to
RNAP II (Figure 2). This event triggers promoter escape and
enables continuous elongation, which occurs downstream of the
P-TEFb-dependent release of RNAP II from NELF inhibition
(Endres et al., 2021). The elimination of MYC from genes is
facilitated by E3-directed poly-ubiquitin pathways, which could
be closely linked to its role in regulating transcription activation
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and amplification. A recent study proposes that increased MYC
leads to its invasion of super-enhancers (See et al., 2022). MYC
utilizes various members of the KLF/SP transcription factor family,
such as MAZ, ZBTB17, and EGR2 at super-enhancers. MYC
interaction with super-enhancers increased the chromatin contact
frequency across TADs boundaries. Further, increased MYC levels
strengthen chromatin interactions between MYC binding sites at
promoters and enhancers.

With MYC-driven transcription amplification, torsional stress
builds up. If torsional stress is not resolved, it would quickly hinder
the movement of RNAP II and stop bursts of transcription, as in
bacteria (Chong et al., 2014). To maintain a high level of
transcription, it is crucial to promptly reduce torsional stress (Jha
et al., 2022). If MYC-driven transcription were accompanied by an
increase in torsional resistance, the speed of transcription would
slow down or even stop, counteracting any efforts made by MYC to
boost transcription output. MYC topoisome, a recently discovered
complex is a crucial regulator for the maintenance of transcription-
induced torsional stress in such situations. MYC interacts with
TOP1 and TOP2A and forms the MYC topoisome complex
(Figure 2) in which the catalytic activities of both TOP1 and
TOP2A are increased to facilitate transcription (Das et al., 2022).
NotablyMYCN forms a distinct topoisome incorporating TOP1 and
TOP2B.

Apart from torsional stress, MYC-driven transcription
amplification can also increase the chance of transcription-
replication conflict. A recent finding shows that MYC forms
multimers, which suppress transcription-replication conflicts
(T-R conflicts) and DNA damage (Solvie et al., 2022). Through
super-resolution microscopic analysis of the MYC distribution in
cells revealed foci of MYC multimers. These multimers consisted of
a dense MYC shell surrounding a weakly stained core. Regulators of
proteasome inhibition, ubiquitylation, splicing, and transcription
elongation were found to influence the formation of MYC
multimers. MYC multimers drive away SPT5 from RNAP II,
attenuating MYC-dependent transcription. FANCD2 and BRCA1,
associated with stalled replication forks in multimers were localized
near replication forks to prevent T-R conflicts. Further, HUWE1-
mediated MYC polyubiquitylation drove multimerization,
suppressing antisense transcription, replication-fork degradation,
and double-strand DNA break formation (Solvie et al., 2022).

MYC has been shown to regulate rDNA transcription. MYC
interacts with components of the SL1 complex, enhancing the
association of TBP and TAF complex with the promoter and
recruiting HATs to facilitate RNAP I recruitment and
transcription at rDNA promoters. Consequently, the upregulation
of UBF expression mediated by MYC positively influences the
transcriptional activity of RNAP I, ultimately resulting in
enhanced rRNA synthesis (Grandori et al., 2005; Grewal et al.,
2005; Oskarsson and Trumpp, 2005). Sumoylation of MYC has been
shown to regulate the MYC-mediated transcription by RNAP I as
well. Sumoylation marks MYC for degradation through the
proteasome pathway (Peng et al., 2019), this degradation
mechanism counteracts the potential transcriptional MYC-
mediated activation of RNAP I. It has been speculated MYC
functions as a coordinator during differentiation, aligning the
pool of active rRNA genes with the levels of RNAP I factors to
tightly regulate rDNA transcription. This orchestration of gene

expression ensures the proper synthesis of ribosomes to meet the
changing needs of the cell throughout its differentiation process
(Poortinga et al., 2011).

MYC proteins are intrinsically disordered proteins (IDPs). They
tend to interact with different proteins simultaneously and has been
speculated that MYC forms liquid-liquid phase separation when
present at high concentration (Ann Boija et al., 2018). It has been
reported that MYCN can form condensates that may be
transcriptionally active, and the IDR and DNA binding domain
of MYCN seem to be critical for such condensates in neuroblastoma
cells (Yang et al., 2022). However, the impact of MYCN condensates
on the transcriptome appears to be limited, as fewer than 6% of
genes were altered among the numerous transcripts dependent on
MYCN. Overall, further investigation is warranted to determine
mechanisms involved for MYC condensate formation and explore
its effect on gene regulation, and involvement in disease conditions
if any.

Regulation of MYC

Due to its relatively unstable mRNA and protein, MYC acts as a
highly efficient regulator of rapid cellular responses. MYC has one of
the shortest mRNA half-lives, approximately 10–20 min (Dani et al.,
1984) and protein half-lives, approximately 20 min (Hann and
Eisenman, 1984), there are various mechanisms that have been
shown to regulate MYC level. The regulation of MYC expression
involves signalling pathways that operate at the transcriptional,
post-transcriptional, and protein levels by a range of upstream
and downstream mechanisms (Figure 3) (Levens, 2013). The
MYC gene is transcribed from multiple promoters (P0, P1, P2,
and P3), and uses different initiation sites, alternative
polyadenylation sites, and the production of antisense transcripts
(Nepveu et al., 1987; Chung and Levens, 2005). The mRNA
transcribed by the P1 promoter represents 10%–25% of all myc
mRNA transcripts, while the P2 promoter accounts for 75%–90% of
the transcripts (Figure 3). Promoter P2 requires the presence of
specific elements for initiating c-myc gene transcription (Hay et al.,
1987; Moberg et al., 1991; Liu and Levens, 2006). The regulation of
the c-myc locus involves DNA-level modulation through alternate
non-B DNA structures (Levens, 2010). In the typical cellular
environment, DNA primarily adopts the B-form, which is a
classical right-handed double helix. However, a variety of non-B
DNA structures have been reported both in vitro and in vivo with
evident regulatory potential (Zaytseva and Quinn, 2018). One such
example includes the Far Up Stream Element (FUSE) of the human
MYC gene, the FUSE in the MYC promoter responds to negative
supercoiling forces during transcription (Figure 3). Dynamic
changes in DNA conformation are coupled with promoter output
and are recognized by transcriptional factors, FIR (FUBP interacting
repressor) and FUSE-binding protein (FUBP1). Transcription-
generated DNA supercoiling induced melting of the FUSE
region, recruits FUBP1 and the FIR to regulate the advancement
of the transcription machinery through TFIIH activation. As
transcription levels increase, FUBP1 facilitates progression
through pausing, while further melting of FUSE recruits FIR,
ultimately restoring MYC expression to basal levels (Figure 3)
(Liu et al., 2006; Kouzine et al., 2008). Apart from FUBP1-FIR

Frontiers in Cell and Developmental Biology frontiersin.org07

Jha et al. 10.3389/fcell.2023.1268275

78

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1268275


mediated regulation, the negative supercoiling generated during
transcription can induce dynamic changes and facilitate the
formation of G-quadruplexes (G4s) in the CT element region of
the MYC promoter. G4 structure forms in the MYC promoter
region and may impede MYC transcription by obstructing the
binding of transcriptional factors, including double-stranded
factor SP1, single-stranded factors CNBP, and hnRNPK
(Figure 3) (Michelotti et al., 1996a). A study shows that DDX5, a
potent resolvase of DNA and RNA G4s structures, unfold G4 at the
MYC promoter and hence increases the MYC transcription in the
cell (Wu et al., 2019, PNAS). However, the role of G4 is uncertain as
it has also been claimed to activate MYC transcription (Hänsel-
Hertsch et al., 2016).

These multiple transcription factors and chromatin regulators
have been shown to regulate MYC expression in response to
various signals. Fine-tuned control of MYC expression is

dependent on sets of enhancers positioned both upstream and
downstream of the gene. The c-myc gene is positioned within
approximately a 3 Mb region that lacks other protein-coding genes
and corresponds to a single topologically associating domain
(MYC-TAD). The MYC-TAD harbors a multitude of super-
enhancer regions that intricately regulate the expression of the
MYC (Sur et al., 2012; Kieffer-Kwon et al., 2013; Uslu et al., 2014;
Yashiro-Ohtani et al., 2014). These enhancers include tissue-
specific enhancers that respond to diverse stimuli, along with
super-enhancers (Lancho and Herranz, 2018). Removal of an
enhancer present over half a megabase of DNA upstream of the
c-myc gene (one of several different regions that have been called
super-enhancers) led to a ~50% reduced MYC level (Dave et al.,
2017). A MYC super-enhancer located approximately 1.7 Mb
downstream of the transcription start site plays a critical role in
tightly controlling MYC expression and promoting increased

FIGURE 3
Regulation of MYC. Schematic depicting the various layers in regulation of MYC cellular levels. At the transcription level, multiple promoters (P0, P1,
P2 and P3, not drawn on scale) participate inmyc transcription. Primarymyc transcription predominantly initiates from two major promoters, P1 and P2,
contributing to roughly 10%–25% and 75%–90% of myc mRNA, respectively. The MYC promoter is regulated by two noncanonical cis-regulatory
elements: FUSE and the CT element, induced by negative supercoiling generated during transcription activation. The FUSE element is located 1.7 kb
upstream of P2, while the CT element is located between −100- and −150 bp upstream of P1. The FUSE element, which is AT-rich, melts in response to
torsional stress caused by transcription activation. FUSE melting facilitates sequence-specific FUBP1 binding. Dynamic changes in DNA supercoiling
regulates FUBP1 and FIR binding to the FUSE element with FUBP1 positively (Green arrow) and FIR negatively (Red dotted line) influencing myc
transcription. The CT element which is GC-rich, facilitates the formation of alternate DNA structures. Numerous transcription factors like SP1, NM23H2,
CNBP, HNRNPK, and DDX5 bind to CT element and regulate MYC transcription. Non-B DNA structures, such as G-quadruplex can form at CT elements
and negatively regulate myc transcription. The binding of BRD4 throughout the promoter regions positively regulates myc transcription. Factors like
Brg1 and BRD4 regulatemyc transcription by influencing the interaction between enhancer and promoter regions. The binding of p53 to a distal region of
MYC repress myc transcription. Multiple factors including RNA, RNA binding proteins and long noncoding RNAs (as indicated), regulate post-
transcriptional regulation of myc mRNA. MYC levels are further regulated by various factors (as listed) and post-transcriptional modifications. MYC
phosphorylation by known or unknown kinases at specific site sets the stage for MYC degradation. Phosphorylation of indicated sites recruit FBW7 dimer
and forms the SCF complex consisting of Skp1, Cul1 and Rbx1 proteins followed by polyubiquitination of MYC and degradation by the 26s proteosome.
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chromatin accessibility (Shi et al., 2013; Mifsud et al., 2015; Bahr
et al., 2018; Jia et al., 2019). The enhancer region (termed BENC) is
required for MYC expression, it consists of enhancer modules that
are specific to cell lineages. When these modules are deleted, it
results in the downregulation of MYC expression in a cell-type-
specific manner precisely correlating with gene expression (Bahr
et al., 2018).

It has been shown that p53 (tumor-suppressor) regulates the
expression of MYC by binding to ~50 kb downstream of the c-myc
locus. It has been suggested that p53 binding at this site represses MYC
through the involvement of a MYC enhancer (Figure 3) (Porter et al.,
2017). A recent study shows that ATM represses MYC expression by
promoting transcriptional-induced DNA repair at the MYC enhancer
region (Najnin et al., 2023). Further, MYC regulation through enhancers
appears to be a complex process and involves multiple regulatory
elements, chromatin remodeling factors, RNA, and RNA binding
proteins (Figure 3). For instance, FXR1 (RNA binding protein) binds
to the AU rich elements (ARE) within the 3′ UTR of myc mRNA and
improves its stability (George et al., 2021). The RGG domain of
FXR1 interacts with eIF4A1 and eIF4E and facilitates recruitment of
the eIF4F complex to translation initiation sites for cMYC translation
ultimately increasing the total level of MYC in the cells (George et al.,
2021). Another RNA binding protein, IGF2BP, can recognize and bind
m6Amodified-mycmRNA to regulate its translation (Huang et al., 2018).
MTAR1, a long noncoding RNA has been shown to facilitate IGF2BP-
meditated MYC translation (Gao et al., 2022). Further, a point mutation
within the intron of long noncoding RNA CCDC26 plays a role in
regulating MYC expression (Yanchus et al., 2022). A risk SNP allele in a
brain specific enhancer almost 2 megabase 3’ of MYC, rs55705857(G),
disrupts OCT2/4 binding that otherwise decreases interactions with the
MYC promoter. Consequently, this SNP positively influences the
regulation of MYC expression (Yanchus et al., 2022). The RNA-
binding protein Argonaute 2, known for its involvement in the RNA-
induced silencing complex, has been found to directly bind and stabilize
myc mRNA (Zhang et al., 2020). RNA-binding protein hnRNPK, also
controls MYC expression by directly binding to the CT-element and
interacting with the transcription machinery (Figure 3) (Michelotti et al.,
1996a; Michelotti et al., 1996b). Further, a recent study shows that RNA
molecules originating from both MYC enhancers and promoter interact
with the hnRNPK. Through its oligomerization, hnRNPK brings the
MYC enhancer and promoter in proximity, thereby facilitating the
elevated level of MYC (Cai et al., 2020).

TheMYC amplifier role is dependent on cellularMYC levels. Slight
increases inMYC levels have been shown to release cells from cell-cycle
arrest, promote proliferation or trigger apoptosis.MYC levels have been
observed to show an inverse correlation with cell cycle length and a
direct correlation with organism size within a species (Murphy et al.,
2008; Shachaf et al., 2008). Studies utilizing genetic approaches in
Drosophila have demonstrated using developmental compartments
containing a mixture of normal cells with cells expressing either
double or half the normal levels of MYC, elimination of the lower
MYC cells. High-MYC cells then expand, refill the compartment, and
undergo normal development (De La Cova et al., 2004; Moreno and
Basler, 2004; Johnston, 2014; Topham et al., 2015). The elimination of
low-MYC cells in favor of high-MYC cells is termed supercompetition
and underscores the critical importance of MYC levels in determining
cellular fate. A recent study using exogenously expressed MYC tagged
with the fluorescent protein mNeonGreen (mNG) showed that MYC

expression is pulsatile, heterogeneous, and dependent on MAPK and
Wnt signaling pathways (Liu et al., 2023). The heterogeneous
expression of MYC leads to variable gene transcription and variable
cell-cycle progression rates. Cells with high MYC, progress to S-phase
rapidly and cells with low MYC have increased G0/G1 length, and so
transcriptome diversity arises in the previously homogenous
population. MYC, which regulates G0/G1 length and other
processes, influences sensitivity to chemotherapy drugs. Reduction
in MYC protein levels during doxorubicin (a chemotherapeutic
agent that target topoisomerase II) treatment increased the number
of surviving cells. Cells with transiently low MYC levels at the time of
drug treatment weremore likely to survive and proliferate. Even among
cells that remained in G0/G1 throughout drug treatment, those with
lowerMYC immediately after treatment had higher chances of survival
and proliferation. This indicates that low MYC levels limit DNA
damage during gene expression. It is suggested that increasing
heterogeneity of MYC may be advantageous for cancers (Liu et al.,
2023). However, whether normal cells also possess heterogeneity in
MYC expression and the consequences of that heterogeneity in normal
physiological conditions is a matter of investigation.

The level of MYC in cells is also controlled by post-
translational mechanisms such as MYC phosphorylation
which plays a crucial role in controlling its turnover and
degradation as recently reviewed (Sun et al., 2021). The highly
conserved serine and threonine residues in MBI T58, S62,
S64 and S67 undergo phosphorylation (Welcker et al., 2004).
ERK kinase phosphorylates S62 within the MYC transactivation
domain and enhances the stability of MYC. In contrast, GSK3β or
BRD4 kinases phosphorylates MYC at threonine 58 (T58)
promotes degradation of MYC (Sears et al., 2000). The dually
phosphorylated form of MYC, with both S62 and
T58 phosphorylation, is recognized by the phosphatase PP2A
which removes S62 phosphorylation, and this event primes the
recruitment of an E3 ubiquitin ligase called FBW7 (F-box/WD
repeat-containing protein 7). FBW7 recognizes phosphorylated
MYC and facilitates its ubiquitination, marking it for
proteasomal degradation (Sears et al., 2000; Yeh et al., 2004;
Arnold and Sears, 2006). However, this long-standing model for
MYC degradation has been countered by a recent finding, where
authors show phosphorylation of S62 does not stabilize MYC by
preventing FBW7 from binding to it (Welcker et al., 2022).
Instead, it enhances the interaction between MYC and FBW7,
leading to degradation of MYC. Furthermore, a previously
unknown dephosphorylated degron at residues T244/T248 was
identified that also promotes MYC binding to FBW7. This
additional degron acts alongside the T58/S62 phosphorylation
to regulate MYC protein levels (Figure 3) (Welcker et al., 2022).
This finding supports that stabilizing effects of pS62 may be
independent of FBW7 binding (Vaseva et al., 2018) and highlight
the complexity of MYC regulation and suggest that
S62 phosphorylation has multiple roles beyond FBW7 binding,
influencing MYC stability and function. BRD4 also regulates
MYC levels by both degradation and transcriptional activation
of MYC (Figure 3) (Devaiah et al., 2020). Given the significant
impact of MYC levels on cellular behavior, it is crucial to
understand the underlying mechanistic processes and how
MYC levels are regulated. These questions remain a subject of
intense investigation.
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Approaches to tackle MYC

MYC is elevated in most cancers and several other
pathological conditions, and so has been proposed as a drug
target for decades. However, due to MYC being a general
transcription amplifier in both normal and cancerous cells,
directly targeting it has proven challenging. Further, MYC has
“undruggable characteristics” such as the absence of an
enzymatic pocket for small molecules to bind, and its
predominantly nuclear localization hinders antibody access.
Recent promising studies highlighted that partial depletion or
inhibition of MYC may be sufficient for treatment of MYC-
dependent cancers and other diseases (Hofmann et al., 2015;
Wang et al., 2021). The current approaches to tackle MYC-
dependent pathogenesis fall into various categories such as
downregulating MYC at the transcriptional or post-
transcriptional levels, and hindrance of MYC-MAX interaction.

There are many approaches to inhibit MYC at the
transcription level. Inhibitors like QN-1, a difluoro-substituted
quinoxaline, APTO-253, a selective p21 inducer, and CX-3543,
quarfloxin, are G-quadruplex stabilizers. These inhibitors
specifically stabilize the G-quadruplex at the MYC promoter
and in turn repress MYC expression (Cercek et al., 2015;
Local et al., 2018; Hu et al., 2019; Paul et al., 2020). Although,
APTO-253 was in clinical trial for acute myeloid leukemia and
high-risk myelodysplastic syndrome, it was terminated due to it
lack efficacy in a phase 1. MYC expression can be targeted by
inhibiting factors that activate MYC transcription, such as
DDX5, BRD4, and SWI/SNF. DDX5 has been shown to
activate MYC transcription by resolving G-quadruplex
formation at the MYC promoter (Wu et al., 2019), thus
inhibiting DDX5 might have a favorable effect on MYC-
dependent diseases. Inhibitors like AZD5153, GSK525762,
JQ1, and dBET1 repress MYC expression by targeting BRD4
(Wang et al., 2021). Brg1, an ATPase subunit of SWI/SNF
positively regulates MYC expression by binding to an
enhancer region of MYC (Shi et al., 2013). Knockdown of
Brg1 or its inhibition with an ATPase inhibitor
BRM014 disrupts the BENC enhancer cluster and represses
MYC expression (Shi et al., 2013; Bahr et al., 2018; Rago et al.,
2022; Chambers et al., 2023). These results promise continued
development of SWI/SNF inhibitors in the treatment of MYC-
dependent cancers and other diseases.

Another approach is to target MYC protein by direct binding-
ligands. Despite, MYC lacking a precise ligand binding pocket, a recent
study has emphasized the effectiveness of covalent ligand compounds
that target IDR regions of MYC. For instance, EN4 is a compound that
primarily interacts with cysteine (C171) within the IDR region of MYC,
thereby reducing the thermal stability of MYC-MAX dimerization and
subsequently its function (Boike et al., 2021). MYC functions have been
indirectly challenged by targeting MYC- MAX heterodimerization. KI-
MS2-008 is a drug that stabilizes theMAXhomodimer to preventMYC-
MAX interaction (Struntz et al., 2019). Similarly, Omomyc (bHLH-zip
domain of MYC with 4 mutations) binds to MYC bHLH-zip domain
and prevents its interactions. MYCi975 is a small molecule inhibitor,
which binds MYC directly to disrupt MYC-MAX interaction and
increases the proteasomal degradation of MYC, and thus leads to
decreased tumor growth (Han et al., 2019; Truica et al., 2021).

Further, MYCi975 alters the binding of MYC as well as MYC
network proteins like MAX to chromatin (Holmes et al., 2022).
While the prospect of disrupting the MYC-MAX heterodimer, either
by dismantling it or occupying the binding interface between the two
proteins, holds promise as an alternative strategy for targeting MYC, it is
important to note that the complete inhibition of MYC function by
dimerization inhibition could have adverse effects on normal cells.
Therefore, another approach could be the targeting of the MYC-
partners that mediate its function. Recently, a specific TFIIS
N-terminal domains (TNDs) and unstructured TND-interacting
motifs (TIMs) binary interaction module has been established, and
this module is conserved for many transcription factors including
PP1-PNUTS5 (Cermakova et al., 2021; Cermakova et al., 2023).
MYC protein is stabilized by the PP1 phosphatase and its regulatory
subunit PNUTS. It has been shown that PNUTS interacts withMB0, and
controls MYC phosphorylation, chromatin eviction, and MYC
degradation. Disrupting the PNUTS-MYC interaction would enhance
MYC degradation (Wei et al., 2022). This could be a new avenue to
explore to limit MYC function and MYC-dependent pathological
activity.

Future perspective

MYC protein is a crucial transcription regulator that plays a
central role in regulating gene expression in different cellular
situations. Its capacity to amplify transcriptional responses
contributes to the precise control of cellular processes and the
maintenance of a balanced state within cells. It is not known
whether MYC exerts its pathological action from an
augmentation of its normal transcription amplifier role or
whether MYC neopathologic functions are elicited at
supraphysiological levels. It is important to understand
mechanistically how MYC regulates different kinetic steps of
transcription by all three RNAPs. A deeper understanding of the
mechanisms through which MYC amplifies transcription, and the
factors that influence this process in physiological and pathological
conditions will enhance our knowledge of gene regulation and offer
valuable insights for developing targeted therapeutic approaches for
MYC-related disorders.
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Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is a severe,
hereditary, hepato-renal fibrocystic disorder that leads to early childhood
morbidity and mortality. Typical forms of ARPKD are caused by pathogenic
variants in the PKHD1 gene, which encodes the fibrocystin/polyductin (FPC)
protein. MYC overexpression has been proposed as a driver of renal
cystogenesis, but little is known about MYC expression in recessive PKD. In the
current study, we provide the first evidence that MYC is overexpressed in kidneys
from ARPKD patients and confirm that MYC is upregulated in cystic kidneys from
cpk mutant mice. In contrast, renal MYC expression levels were not altered in
several Pkhd1 mutant mice that lack a significant cystic kidney phenotype. We
leveraged previous observations that the carboxy-terminus of mouse FPC (FPC-
CTD) is proteolytically cleaved through Notch-like processing, translocates to the
nucleus, and binds to double stranded DNA, to examine whether the FPC-CTD
plays a role in regulating MYC/Myc transcription. Using immunofluorescence,
reporter gene assays, and ChIP, we demonstrate that both human and mouse
FPC-CTD can localize to the nucleus, bind to the MYC/Myc P1 promoter, and
activate MYC/Myc expression. Interestingly, we observed species-specific
differences in FPC-CTD intracellular trafficking. Furthermore, our informatic
analyses revealed limited sequence identity of FPC-CTD across vertebrate
phyla and database queries identified temporal differences in PKHD1/Pkhd1
and CYS1/Cys1 expression patterns in mouse and human kidneys. Given that
cystin, the Cys1 gene product, is a negative regulator of Myc transcription, these
temporal differences in gene expression could contribute to the relative
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renoprotection from cystogenesis in Pkhd1-deficient mice. Taken together, our
findings provide new mechanistic insights into differential mFPC-CTD and hFPC-
CTD regulation of MYC expression in renal epithelial cells, whichmay illuminate the
basis for the phenotypic disparities between human patients with PKHD1
pathogenic variants and Pkhd1-mutant mice.

KEYWORDS

ARPKD, MYC, FPC, cystin, PKHD1, Cys1

1 Introduction

The MYC proto-oncogene, encoding the MYC transcription
factor, was first identified in patients with Burkitt’s lymphoma
(Taub et al., 1982). MYC contributes to the regulation of multiple
cellular signaling pathways involved in cell proliferation
(Gearhart et al., 2007). Aberrant MYC expression induces
malignant transformation of several tumor types (Dang, 2012;
Gabay et al., 2014). In addition, MYC increases the expression of
inflammatory and fibrotic factors, which may significantly
contribute to the pathogenesis of cystic kidney diseases
(Nevzorova et al., 2013; Karihaloo, 2015; Shen et al., 2017).
MYC overexpression in renal epithelia has been reported in
several mouse ADPKD models as well as in cpk mice (Cowley
et al., 1991; Burtey et al., 2008; Kurbegovic and Trudel, 2013; Wu
et al., 2013). Elevated MYC appears to be a signature of renal
cystic disease and may define a causative pathway (Trudel, 2015;
Parrot et al., 2019). However, the role of MYC activation in the
initiation and progression of autosomal recessive polycystic
kidney disease (ARPKD; MIM#263200) remains incompletely
understood.

ARPKD is a hereditary hepato-renal fibrocystic disorder with an
estimated incidence of 1 in 26,500 live births (Guay-Woodford et al.,
2014; Alzarka et al., 2017). Pathogenic variants in the polycystic
kidney and hepatic disease 1 (PKHD1) gene, located on
chromosome 6p21.1, cause all typical forms of human ARPKD.
The longest PKHD1 (MIM#606702) open reading frame (ORF)
contains 67 exons, which encode a 4,074 amino acid protein called
fibrocystin/polyductin (FPC) (Onuchic et al., 2002; Ward et al.,
2002). Full length FPC is a single transmembrane (TM) domain
protein predicted to have several immunoglobulin-like IPT/TIG
conserved domains, two G8 domains, and multiple parallel beta-
helix 1 (PbH1) repeats in a long extracellular segment (3,858 amino
acids), and a short (192 amino acids) cytoplasmic C-terminal
domain (CTD) (Supplementary Figure S5A) (Sharp et al., 2005;
Wang et al., 2007). The PKHD1mRNA is primarily expressed in the
kidney, liver, lung, and pancreas (Onuchic et al., 2002; Ward et al.,
2002; Xiong et al., 2002). In adult and fetal human tissues, FPC is
expressed in renal collecting ducts, thick ascending limbs of loops of
Henle, bile ducts, pancreatic ducts, epididymis, and testis (Ward
et al., 2003; Menezes et al., 2004). Pathogenic sequence variants in
the PKHD1 gene account for more than 80% of human ARPKD
cases (Bergmann, 2017). Less than 1% of ARPKD patients have
pathogenic sequence variants either in DZIP1L or CYS1 genes (Lu
et al., 2017; Yang et al., 2021), and the molecular cause of ARPKD in
remaining patients remains to be determined (Bergmann, 2017).

Pkhd1 is the mouse ortholog of PKHD1. The longest ORF of
mouse Pkhd1 also contains 67 exons and encodes a 4,059 amino acid

protein. The mouse and human FPC sequences are 73% identical
overall but the CTD share only 55% identity (Nagasawa et al., 2002).
Mouse FPC is also a single TM domain protein with 3,872 amino
acid N-terminal segment and a short (187 amino acids) cytoplasmic
CTD. Mouse FPC has the same numbers of conserved IPT/TIG and
G8 domains as human FPC (Nagasawa et al., 2002; Bergmann,
2017). The intracellular domain of mouse FPC (mFPC-CTD),
contains an 18-residue long ciliary targeting signal (CTS) that
facilities delivery to the primary cilium (Follit et al., 2010). The
mFPC-CTD, encoded by exons 65-67, undergoes Notch-like
processing followed by regulated membrane-release and
translocation to the nucleus (Kaimori et al., 2007), which is
facilitated by the 25-residue long nuclear localization signal
(NLS) (Hiesberger et al., 2006). Single particle electron
microscopy analysis revealed that FPC-CTD forms a ring-like
protein complex that binds to double stranded DNA, suggesting
a role in gene expression regulation (Cameron Varano et al., 2017).
Yet, the function of FPC-CTD in the nucleus remains poorly
understood. Numerous rodent models of ARPKD with mutations
and multiple exon deletions in Pkhd1 have been generated.
However, these models express minimal or no renal disease
(Katsuyama et al., 2000; Ward et al., 2002; Masyuk et al., 2004;
Moser et al., 2005; Garcia-Gonzalez et al., 2007; Woollard et al.,
2007; Gallagher et al., 2008; Kim et al., 2008; Williams et al., 2008;
Hu et al., 2011; Outeda et al., 2017; Ishimoto et al., 2023).

The most widely studied mouse model of ARPKD, the cpk
mouse carries a spontaneous insertion/deletion (indel) mutation in
the Cys1 gene, encoding the cystin protein (Hou et al., 2002; Guay-
Woodford, 2003; Nagao et al., 2012). The renal phenotype of cpk
mice closely resembles human ARPKD. Mouse cystin, the product
of the Cys1 gene, is a 145-amino acid, cilia-associated protein that is
mainly expressed in mouse kidney and liver ductal epithelium as
early as embryonic day 14.5 (Tao et al., 2009). Mouse cystin contains
a predicted N-myristylation motif (MGSGSSR) and a NLS located in
the first 27 amino acids at the N-terminus. Amino acids 28-35 of
mouse cystin contain a cilium-targeting motif (AxEGG) that is
required for cystin trafficking to the primary cilium (Tao et al.,
2009). Our previous demonstration that cystin suppresses Myc
transcription by binding to necdin, an activator of the Myc
P1 promoter, links renal cystogenesis in cpk mice to Myc
activation and enhanced MYC levels (Wu et al., 2013; Yang
et al., 2021).

Human CYS1 encodes Cystin-1, a 158-amino acid protein
(Fliegauf et al., 2003). Sequence comparison of human and
mouse orthologs Cystin-1 and cystin shows 57% identity and
64% similarity (Fliegauf et al., 2003). Initial analysis of CYS1
expression in adult human tissues revealed high CYS1 mRNA
abundance in the kidney and pancreas (Fliegauf et al., 2003).
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Subsequent RNA-seq analysis of human tissues consistently revealed
high CYS1 mRNA levels in the kidney and lower expression in
several other tissues including ovary, gall bladder, endometrium,
pancreas, and lung (Fagerberg et al., 2014). The function of Cystin-1
is not understood, although we have reported the first genetic defect
in human CYS1 that causes the renal ARPKD phenotype (Yang
et al., 2021).

In the current study, we employed immunofluorescence imaging
as well as bioinformatic, molecular, and biochemical analyses to
comparatively evaluate the roles of human and mouse FPC-CTDs in
the regulation of MYC expression in human and mouse renal
epithelia.

2 Materials and methods

2.1 Human samples

All human studies were approved by the Institutional Review
Board at the Children’s National Hospital or the University
Hospital of Cologne. Human kidney samples were obtained
from the NIDDK-funded UAB Childhood Cystic Kidney
Disease Center Translational Resource at the University of
Alabama at Birmingham and the University Hospital of
Cologne. Kidney samples were obtained from patients ranging
from 26 weeks of gestation age to 3 years of age (Supplementary
Table S1).

2.2 Animal study approval

All mouse experiments were approved by the Institutional
Animal Care and Use Committees at Children’s National
Research Institute, and experiments were carried out in
accordance with relevant guidelines and regulations. Mouse
colonies were maintained in the animal facility at Children’s
National Research Institute. All mouse kidneys were harvested
from 14-day-old, 10- and 12-month-old mutants and age-
matched wild-type (WT) littermates. Genetic background
information for all mouse lines used in this study is shown in
Supplementary Table S2.

2.3 Antibodies

All antibodies used for this study are listed in the Supplementary
Table S3, unless specified in the text.

2.4 Immunohistochemistry (IHC)

Immunohistochemical staining for MYC was performed on
formalin-fixed, paraffin embedded tissues using heat induced
epitope retrieval solution (BOND Epitope Retrieval Solution 2,
Leica Biosystems, Cat. No. AR9640) and an automated stainer
(Bond-Max, Leica Biosystems). Tissues were incubated with anti-
MYC antibody (Recombinant Anti-c-Myc antibody [Y69] - ChIP
Grade, Abcam) at 1:25 dilution for 120 min.

2.5 Immunoblotting

Cultured cells and kidney tissues were collected, homogenized,
and processed for immunoblotting as previously described (Wu
et al., 2013; Dafinger et al., 2020). Immuno-reactive protein bands
were visualized using SuperSignalWest FemtoMaximum Sensitivity
Substrate (Thermo Fisher Scientific, Cat. No. 34095) and images
were obtained with ChemiDoc Imaging System (Bio-Rad
laboratory). Densitometry was performed using Image Lab
software (Bio-Rad laboratory, Version 6.0).

2.6 RNA extraction and qRT-PCR

Kidney tissue samples from 14-day-old male mice were snap
frozen, transferred to a gentleMACS M tubes (Miltenyi Biotec,
Cat. No. 130-093-236, RRID:SCR_020269) in Buffer RLT plus 2-
Mercaptoethanol (as per RNeasy Mini Kit instructions, Qiagen,
Cat. No. 74104), and homogenized using a gentleMACS
Dissociator (Miltenyi Biotec) per the manufacturer’s program
RNA-02. Homogenized samples were transferred to
microcentrifuge tubes for total RNA extraction using the
RNeasy Mini Kit according to the manufacturer’s instructions.
Total RNA from both 5-day-postconfluent mIMCD-3 cells stably
expressing FPC-CTD and hTERT-immortalized human renal
epithelial cells (hTERT-HRE) transiently transfected with
FPC-CTD were isolated using the RNeasy Mini Kit (Qiagen)
according to the manufacturer’s instructions. Isolated total RNA
was treated with RQ1 RNase-Free DNase (Promega, Cat. No.
M6101), and then repurified using the RNeasy Mini kit. RNA
samples were reverse-transcribed using SuperScript III First-
Strand Synthesis SuperMix (Thermo Fisher Scientific, Cat. No.
18080400) and oligo dT primers as described in the
manufacturer’s instructions.

Quantitative RT-PCR was performed on a QuantStudio 7 Flex
Real-Time PCR System (Thermo Fisher Scientific) using the default
program. The PCR was performed with cDNA templates using
Power SYBR Green PCRMaster Mix (Thermo Fisher Scientific, Cat.
No. 4368706) and mouse primers specific for sequences of Myc
(forward: 5′- GCC CCC AAG GTA GTG ATC CT -3’; reverse: 5′-
GTG CTC GTC TGC TTG AAT GG -3′). Peptidylprolyl isomerase
A (PPIA) was used for normalization (forward: 5′- AGC ACT GGA
GAG AAA GGA TT -3’; reverse: 5′- ATT ATG GCG TGT AAA
GTC ACC A-3′) (Arensdorf and Rutkowski, 2013). Overexpression
of FPC-CTD in cell lines was confirmed with Pkhd1 exon
66–67 specific primers (forward: 5′-CCA GAA GAC ATA TCT
GAA TCC CAG GC-3’; reverse: 5′-AGC AAG AGA TCC TGG
AACACAGGT-3′). Results were analyzed using QuantStudio Real-
Time PCR Software and the ΔΔCt method (Livak and Schmittgen,
2001).

2.7 Conservation analysis of vertebrate
Pkhd1 gene products (fibrocystin/
polyductin (FPC)) using bioinformatics tools

Protein sequences of FPC were collected from NCBI protein
database (https://www.ncbi.nlm.nih.gov/protein/) using an

Frontiers in Cell and Developmental Biology frontiersin.org03

Harafuji et al. 10.3389/fcell.2023.1270980

89

https://scicrunch.org/resolver/SCR_021999
https://www.ncbi.nlm.nih.gov/protein/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1270980


advanced search with gene name, Pkhd1 and taxonomic groups
Mammalia, Aves, Reptilia, Amphibia, Caecilians, and Fish. This
resulted in 102 FPC sequences from mammals, birds, reptiles,
amphibians, and fish (Supplementary Table S4). FPC sequence
from each species was verified by protein alignment with human
FPC; the protein sequences that were significantly shorter than
human FPC sequence were removed. WebLogo 3 (Crooks et al.,
2004) was used to visualize FPC sequence alignment
(Supplementary Figure S1) that was generated with Clustal
Omega (Sievers et al., 2011). The conservation scores of FPC
amino acids were extracted from the WebLogo 3 raw data
(Supplementary Table S5). Conserved domains in FPC were
mapped by Conserved Domain Database (CDD) (Lu et al., 2020).

Prediction of nuclear localization signals (NLSs) were performed
with the human and mouse FPC-CTD construct sequences using
SeqNLS (Lin et al., 2012) with 0.86 as the cut-off score.

2.8 Plasmid construction

pcDNA5/FRT/TO (pcDNA5) was obtained from Thermo Fisher
Scientific (Cat. No. V652020).

pcDNA5/FRT/TO-mPkhd1-CTD-V5 (pcDNA5-mFPC-CTD): the
cytoplasmic tail of mouse FPC (Follit et al., 2010) expression
construct was generated from pcDNA5/FRT/TO-mPkhd1 (full
length) -V5 (gift from Dr. Feng Qian) with site-directed
mutagenesis (SDM) using 5′- GCT AAC TGG ACA TGA TGC
TTT GCT GCT GGT TTA AGA AAA GC -3′ and 5′- GCT TTT
CTT AAACCAGCAGCAAAGCAT CATGTC CAG TTAGC -3′
primer set.

pcDNA5/FRT/TO-mPkhd1-CTDdelCTS-V5 (pcDNA5-mFPC-
CTDdelCTS): the ciliary targeting sequence (Follit et al., 2010)
deleted mFPC-CTD expression construct was made from
mFPC-CTD by SDM with 5′- GCT AAC TGG ACA TGA TGC
TTG ACA TAT CTG AAT CCC AGG CT -3′ and 5′- AGC CTG
GGA TTC AGA TAT GTC AAG CAT CAT GTC CAG TTA GC
-3′ primer set.

pcDNA5/FRT/TO-hPKHD1-CTD-V5 (pcDNA-hFPC-CTD): the
expression construct containing the hFPC-CTD, comparable to
mFPC-CTD (Follit et al., 2010), and fused to V5-tag was made
by LifeSct LLC. The hFPC-CTD coding sequence was cloned
between KpnI and NotI sites in pcDNA5/FRT/TO.

pcDNA5/FRT/TO-hPKHD1-CTDdelCTS-V5 (pcDNA-hFPC-
CTDdelCTS): the ciliary targeting sequence deleted hFPC-CTD
expression construct was made from hFPC-CTD by SDM using
5′- CCG TGG ACA GAA TGA CTG CCG AGA TTC CTG AAT
CCC AGA C -3′ and 5′- GTC TGG GAT TCA GGA ATC TCG
GCA GTC ATT CTG TCC ACG G -3′ primer set.

pGL4.22 [luc2CP/Puro] vector was purchased from Promega
(Cat. No. E6771).

pRL-TK vector was purchased from promega (Cat. No. E2241).
pGL4.22-mouse Myc P1 (pGL4.22-mMyc P1): the mouse Myc

P1 promoter (chr8:127735983-127736125, GRCm38/mm10 mouse
genome assembly) construct was described previously (Wu et al.,
2013).

pGL4.22-humanMYC P1 (pGL4.22-hMYC P1): the humanMYC
P1 promoter (chr15:61985298-61985433, GRCh38/hg38 human
genome assembly), which is comparable to the mouse Myc

P1 promoter, was amplified by PCR from HEK293 genomic
DNA and cloned into pGL4.22 vector at XhoI and HindIII sites
using 5′- CCG CTC GAG GAG GGC GTG GGG GAA AAG A-3′
and 5′- CCC AAG CTT AGC CAG GGA CGG CCG G -3′ primer
set. Sequence alignment of human and mouse MYC/Myc
P1 promoter shown in Supplementary Figure S2 was created by
Clustal Omega (Sievers et al., 2011).

2.9 Cell culture and generation of stable cell
lines expressing FPC-CTDs

Mouse TERT immortalized cortical collecting duct (mTERT-
CCD) cells (Steele et al., 2010) were cultured in TERT culture
medium [DMEM/F-12 medium (Thermo Fisher Scientific, Cat.
No. 11330057) containing 5% heat-inactivated fetal bovine serum
(FBS) (Atlanta Biologicals, Cat. No. S11050H), 1% penicillin/
streptomycin (Thermo Fisher Scientific, Cat. No. 15140163), 1x
Insulin-Transferrin-Selenium solution (Thermo Fisher scientific,
Cat. No. 41400045), 0.2 μg/mL dexamethasone (Sigma-Aldrich,
Cat. No. D8893) and 10 nM 3,3′,5-Triiodo-L-thyronine sodium
salt (Sigma-Aldrich, Cat. No. T6397)] at 37°C in 5% CO2.

Mouse inner medullary collecting duct (mIMCD)-3 cells were
purchased from American Type Culture Collection (ATCC, Cat. No.
CRL-2123) and cultured in complete growthmedium (CGM) [DMEM/
F-12medium (Thermo Fisher Scientific, Cat. No. 11330057) containing
10% heat-inactivated fetal bovine serum (Atlanta Biologicals, Cat. No.
S11050H) and 1% penicillin/streptomycin (Thermo Fisher Scientific,
Cat. No. 15140163)] at 37°C in 5% CO2.

mIMCD-3 mFPC-CTD stable cell lines were generated by
transfection of either pcDNA5-mFPC-CTD or pcDNA5 into
mIMCD-3 cells with Lipofectamine2000 transfection reagent
(Thermo Fisher Scientific, Cat. No. 11668019). At 48 hrs post-
transfection, cells with spontaneously integrated plasmids were
selected with hygromycin (1 mg/mL) (Thermo Fisher Scientific,
Cat. No. 10687010) for 1 week. The mFPC-CTD stably
overexpressing cells and the control empty vector cells were then
maintained in CGM with hygromycin (200 μg/mL).

2.10 Generating human TERT-immortalized
renal epithelial cell line (hTERT-HRE)

Human kidney sections were minced and immediately placed in
1% collagenase type I (Sigma, Cat. No. C0130-1G) in DMEM/F12
(Thermo Fisher, Cat No. 11330032) and incubated on a rotator for
30 min at room temperature (RT). Renal epithelial cells and tubule
fragments were then transferred to a conical tube containing
DMEM/F12 and centrifuged at 750 g for 10 min. The
supernatant was removed, and the tissue was resuspended in a
complete medium, containing 0.2 mg/mL dexamethasone (Sigma,
Cat. No. D8893-1 MG), 5% heat inactivated FBS (Hyclone, Cat. No.
SH30396-03), 2 mM glutamate (Thermo Fisher, Cat. No. 25030081),
1x insulin-transferrin-sodium selenite (ITS) (Thermo Fisher, Cat.
No. 1400045), 100 U/mL penicillin/streptomycin (Thermo Fisher,
Cat. No. 15140122), and 10 nM triiodothyronine (Sigma, Cat. no.
T6397-100 MG) in DMEM/F12. No antibiotics were added to the
complete medium in preparation for the transduction with the
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hTERT lentiviral expression construct. Cells were maintained in a
37°C humidified incubator with 5% CO2.

Lenti-hTERT-Neo Virus (Cat. No. LV622), Lenti-p53 siRNA
Virus (Cat. No. G219), and Polybrene (Cat. No. G062) were
purchased from Applied Biological Materials (Richmond, BC,
Canada). One day prior to transfection, primary human renal
epithelial cells were plated at 20%–30% confluency in a 6 well
plate. The next day, the complete medium was replaced with
1 mL of transfection medium, which contained 6 μg/mL of
polybrene in the complete medium. Then, 1.54 × 108 transducing
units (TU)/ml of Lenti-hTERT-Neo Virus and 1 × 106 TU/mL of
Lenti-p53 siRNA Virus were added to the transfection medium at a
multiplicity of infection (MOI) of 7. The plate was centrifuged at
200 g for 30 min and then placed back in the incubator at 37°C. After
24 h culture at 37°C, 1 mL of the complete medium was added to
each 6 well and cultured for an additional 24 h. Cells immortalized
with the hTERT gene then were selected at 48 h post transduction,
using 800 μg/mL G418 in the complete medium.

Characterization of the hTERT-HRE cells was performed using
immunoblotting of E-cadherin as an epithelial marker, ZO-1 as a
tight junction marker, α-ENaC as a renal epithelial cell marker,
AQP1 as a renal tubule cell marker, and Keratin 17/19 as an
epithelial cell marker (Supplementary Figure S3A). In addition,
RT-PCR was performed for PKHD1 as a renal epithelial marker
(Supplementary Figure S3B).

2.11 Immunocytochemistry

For MYC immunofluorescence staining, cells stably overexpressing
mFPC-CTDwere seededonto coverslips in 6-well plates and cultureduntil
confluent. For FPC-CTD localization assay, mTERT-CCD or hTERT-
HRE cells were transiently transfected with pcDNA-mFPC-CTD and
pcDNA-mFPC-CTDdelCTS, or pcDNA5-hFPC-CTDandpcDNA5-hFPC-
CTDdelCTS, respectively. Forty-8 hrs. after transfection, cells were washed
with PBS and fixed with 4% paraformaldehyde (PFA) for 10min at RT
and thenpermeabilizedwith 0.5%TritonX-100 inPBS for 5min, followed
by three washes with PBS before blocking with 1% BSA for 30min. The
cells were incubated with primary antibodies (anti-V5 or anti-Myc)
overnight at 4°C followed by incubation with secondary antibody
(Alexa Fluor 488 at 1:400 dilution) for 1 h at RT. The cells were then
washed three times with PBS and mounted with ProLong Gold + DAPI
(Life Technologies, Cat. No. P36935). Fluorescently labeled cells were
analyzed on an Olympus FV1000 scanning laser confocal microscope
configuredwith both anArgonLaser (5mW, 488 nm), and aGreenHeNe
(10mW, 543 nm) laser. Images were analyzed using Olympus FV10-
ASW 3.0 Viewer software.

2.12 Reporter gene assay

Cells were seeded in 24-well plate, grown to ~90% confluence, and
then transfected with pGL4.22-mMyc P1 or pGL4.22-hMYC P1): (0.3
µg/well) and pcDNA5-mFPC-CTD (0.6 μg or 1.2 μg/well) or pcDNA5-
hFPC-CTD (0.6 µg/well) using Lipofectamine 2000. The differences in
transfection efficiency were normalized by co-transfecting with 15 ng/
well pRL plasmid that expressed Renilla luciferase (Promega) and
adjusting the total amount of plasmid DNA to 1.5 ug/well by

adding pcDNA5. The transfected cells were incubated for 48 h, lysed
in 100 µL/well passive lysis buffer (Promega) and shaken for 20 min at
RT. Firefly and Renilla luciferase activities were measured with Dual-
Luciferase Reporter Assay System (Promega, Cat. No. E1910). The
luminometer (FLUOstar OPTIMA, BMG LABTECH) was
programmed using OPTIMA software to perform a 0 s delay,
followed by a 5-s measurement period for each reporter assay. The
20 μL cell lysate was transferred into 96-well plate (Costar, Cat. No.
3912; white flat bottom), followed by the addition of 100 µL Luciferase
Assay Reagent II and luminescence reading. After measurement of
firefly luciferase activity, 100 µL of Stop&Glo reagent was added and
quickly put back for reading of the Renilla luciferase activity. Data were
collected from three independent transfections and processed using
GraphPad Prism version 9.1.2 for Windows, GraphPad Software, San
Diego, California United States of America, www.graphpad.com.

2.13 Chromatin immunoprecipitation (ChIP)
assay

To determine the binding of FPC-CTD to theMyc P1 promoter,
experiments were performed using Magna ChIP A/G Chromatin
Immunoprecipitation Kit (MilliporeSigma, Cat. No. 17-10085),
according to the manufacturer instructions and our previously
published protocol (Wu et al., 2013). Because ChIP-grade anti-
FPC-CTD antibodies were not available, we generated mIMCD-3
cells stably overexpressing mFPC-CTD-V5 and control cells stably
transfected with empty vector and used ChIP-grade anti-V5
antibody (Abcam, Cat. No. ab15828) for immunoprecipitation.
Cells were grown to 80%–90% confluence prior to experiments
and processed according to the Magna ChIP A/G protocol.
Following immunoprecipitation with anti-V5 antibody that
recognized mFPC-CTD-V5 bound to the chromatin and
subsequent protease digestion, we amplified Myc P1 using PCR
primers specific to the full-lengthMyc P1 (forward primer: 5′- CGC
TCG AGG AGA GAG GTG GGG AAG GGA GAA AG -3’; reverse
primer: 5′- CCC AAG CTT AGT GAG GCG AGT CGG ACC CGG
CA -3′) using the following PCR program: 94°C 3 min; 94°C 20 s,
62°C 20 s, 72°C 15 s, repeat for 40 cycles, 72°C 5 min, 10°C holding.

2.14 Visualization of gene expression
profiling across developmental stages and
species

Gene expression profiles of PKHD1/Pkhd1, CYS1/Cys1, NDN/
Ndn, and MYC/Myc across kidney developmental stages in humans
and mice, were downloaded from Evo-devo mammalian organs
portal (https://apps.kaessmannlab.org/evodevoapp/) (Cardoso-
Moreira et al., 2019). RPKM (reads per kilo base of transcript
per million mapped reads) values were normalized using the
highest value as 1 and the lowest value as 0 for each gene.

2.15 Statistical analysis

Non-parametricWilcoxon sign rank test was used for analysis of
qRT-PCR data normalized to control samples (Figure 1C, and 2D).

Frontiers in Cell and Developmental Biology frontiersin.org05

Harafuji et al. 10.3389/fcell.2023.1270980

91

http://www.graphpad.com/
https://apps.kaessmannlab.org/evodevoapp/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1270980


All other data were analyzed using either two-way Student’s t-test or
nonparametric test with GraphPad Prism version 9.1.2 for
Windows, GraphPad Software, San Diego, California
United States, www.graphpad.com.

4 Results

4.1 Elevated MYC expression in the kidneys
of patients with ARPKD and in cpkmice with
ARPKD-like kidney phenotype

MYC overexpression is a signature feature of cystic renal
epithelia in human ADPKD and various mouse PKD models
(Trudel, 2015). However, MYC expression in ARPKD has not
been reported. In the current study, we analyzed MYC
expression in ARPKD kidneys by immunoblotting. While

MYC expression was marginally detectable in adult kidneys
and a kidney from an infant without kidney disease
(Supplementary Figure S4), we observed higher MYC
abundance in all kidneys from patients with defined
pathogenic variants in PKHD1 (Figure 1A), with the highest
MYC levels detected in kidneys from patients with PKHD1
truncating pathogenic variants (Supplementary Table S1),
resulting in the loss of FPC-CTD (AR1, AR2, AR3, and AR8)
(Figure 1A and Supplementary Figure S4).

We then evaluated MYC expression in mouse models of
ARPKD. Using IHC, we confirmed increased nuclear
expression of mouse MYC protein in dilated collecting ducts
from cpk kidneys (Figure 1B). Quantitative analysis confirmed
11-fold higher levels of MYC protein and 1.8-fold higher levels of
Myc mRNA in the kidneys from cpk mice compared to WT mice
(Figure 1C). In contrast, MYC protein levels were not elevated in
kidneys from four different Pkhd1 mutant mouse model lines

FIGURE 1
MYC/Myc overexpression is associated with renal cystic disease in human and mouse ARPKD. (A) Kidney lysates from normal human and ARPKD
patients (Supplementary Table S1) were probed with anti-MYC and control anti-GAPDH antibodies. Relative MYC expression was normalized to GAPDH.
Experiments were repeated twice independently. t-test *p < 0.05. Error bar indicates S.E.M. (B) Immunohistochemistry showing MYC expression (brown)
in 14-day-old renal epithelial cells from wild-type (WT) and cpkmice. (C) Kidney lysates from 14-day-old WT and cpk mice were probed with anti-
MYC and control anti-GAPDH antibodies. GAPDH was used for normalization (cpk mice, n = 6, t-test **p < 0.01). In parallel, Myc mRNA expression was
quantified by qRT-PCR. The error bars indicate S.E.M. *indicates p < 0.05 (D) Kidney lysates from 14-day-old Pkhd1mutant mice (except 1 month old for
cyli) and WT littermates were probed with anti-MYC and control anti-GAPDH antibodies, respectively. No significant differences were observed between
groups. cyli (n = 3), del3-4 (n = 5), del3-67 (n = 5) and del67 (n = 3). The error bars indicate S.E.M.
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(Pkhd1cyli, Pkhd1del3-4, Pkhd1del3-67, or Pkhd1del67) that did not
exhibit a cystic kidney phenotype (Figure 1D). These data
indicate an association between high MYC expression and the
renal cystic phenotype in both human ARPKD and mice with an
ARPKD-like kidney phenotype. Furthermore, the lack of
enhanced MYC expression in Pkhd1 mutant mice without
cystic kidney phenotype suggests differences in the function of
mouse and human FPC-CTDs.

4.2 Testing the phylogenetic conservation of
extracellular and intracellular FPC domains
in vertebrates

We note that in each of our mouse mutant lines, the
predicted Pkhd1 translated products would be missing the
FPC-CTD. Furthermore, while the mouse and human FPC
sequences are 73% identical overall, the CTDs share only
55% identity (Nagasawa et al., 2002). Therefore, we analyzed
phylogenetic conservation of FPC in vertebrates to better
understand potential differences in the regulation of MYC
expression in renal epithelia derived from patients with
ARPKD and cpk and Pkhd1 mutant mice. We hypothesized
that the low sequence conservation of the FPC-CTDs may
contribute to functional differences among FPC orthologs; an
important consideration given that mouse FPC undergoes
Notch-like processing that releases the FPC-CTD, which can
translocate to the nucleus.

To understand phylogenetic changes in Pkhd1, we queried the
NCBI protein database for PKHD1 orthologs and collected FPC
protein sequences of 66 mammalian, 27 bird, 5 reptile, 3 amphibian,
and 1 fish (Supplementary Table S4). The large variance in the
number of FPC proteins in each class may in part reflect the number
of sequenced vertebrate genomes in the NCBI data base. However,
while genomic data are available for multiple fish, a PKHD1 ortholog
was identified only in the genome of Latimeria chalumnae (a
coelacanth).

After alignment of 102 vertebrate FPC protein sequences, we
used the WebLogo 3 entropy scores to evaluate FPC conservation
across species (Supplementary Figure S1 and Supplementary Table
S5). First, we compared the WebLogo 3 entropy scores for each of
the conserved domains in the extracellular portion of FPC: five IPT
domains, three TIG domains, two G8 domains, two PbH1 domains,
and the TM domain with entropy scores from three regions of FPC
that do not correspond to any conserved domains (Supplementary
Figure S5B). Since the average WebLogo 3 entropy scores were
similar (Supplementary Figure S5B), we then compared the
WebLogo 3 entropy scores of FPC extracellular and cytoplasmic
domains. Consistent with different protein sequence identities
between human and mouse extracellular and cytoplasmic
portions of FPC (Nagasawa et al., 2002) the WebLogo 3 entropy
scores of vertebrate FPC extracellular domain were higher than
entropy scores of FPC-cytoplasmic domains (Supplementary Figure
S5C). This analysis supports the hypothesis that lower sequence
conservation of mouse and human FPC cytoplasmic domain
compared to extracellular domain may be functionally significant
and potentially contribute to the phenotypic variability observed
between PKHD1 vs Pkhd1 mutants.

4.3 Subcellular localization of mouse and
human FPC-CTD and their effects on MYC
expression

Both human and mouse, FPC-CTD are encoded by PKHD1/
Pkhd1 exons 65, 66 and 67 (Supplementary Figure S5D). Overall,
human and mouse FPC-CTD share 55% sequence identity,
(Nagasawa et al., 2002). However, the CTS, localized in the
human and mouse FPC-CTDs, are highly conserved (Figure 2A,
red and blue highlights). Prior studies have experimentally validated
one NLS in the mouse FPC-CTD (Figure 2A, purple highlight)
(Hiesberger et al., 2006). However, using the web-based NLS
prediction tool, SeqNLS (Lin and Hu, 2013), we identified two
NLSs in mouse FPC-CTD (score >0.86), one of which
overlapped with the experimentally identified NLS (Figure 2A,
red bold text for predicted and purple highlight for
experimentally validated NLS) (Hiesberger et al., 2006). On the
other hand, human FPC-CTD had only one predicted NLS
(score >0.86) (Figure 2A, red bold text). Interestingly, the two
mouse, and the one predicted human NLS showed low sequence
similarity.

While it has been determined that the mouse FPC-CTD
translocates to the nucleus (Hiesberger et al., 2006), the
intracellular trafficking of human FPC-CTD has not been
determined and the nuclear function of FPC-CTD is not fully
understood. Therefore, we compared intracellular localization of
human and mouse FPC-CTD and tested their functions in the
nucleus, concentrating on MYC/Myc regulation. Sequences the
human and mouse FPC-CTD included the V5 tag and both the
mouse and human FPC-CTDs contained the intracellular portion of
the CTS (Figure 2A, blue highlight). The NLS sequences are shown
in Figure 2A (red bold text).

By immunofluorescence, the mFPC-CTD localized primarily to
the nucleus and was essentially absent from the cytoplasm
(Figure 2B, left column). In contrast, the hFPC-CTD was largely
excluded from the nucleus, localized to the cytoplasm and decorated
the cell membrane (Figure 2B, second column from left). We
suspected that nuclear trafficking of the hFPC-CTD construct
with only one NLS was confounded by the CTS. Therefore, we
deleted the CTS from both human and mouse constructs to generate
plasmids expressing hFPC-CTDdelCTS and mFPC-CTDdelCTS

respectively. Overexpression of these proteins showed strong
nuclear localization for both human and mouse FPC-CTDs,
although a fraction of hFPC-CTDdelCTS was retained in the
cytoplasm (Figure 2B, right two columns).

We then investigated whether mFPC-CTD can regulate Myc
expression in mIMCD-3 cells stably expressing the intact mFPC-
CTD mouse construct. mIMCD-3 cells stably expressing the empty
vector (pcDNA5) served as a control. This experimental approach
allowed evaluation of the effect of mFPC-CTD onMyc expression in
non-proliferating cells, 5 days post-confluence. The intensity of
MYC immunostaining was higher in mIMCD-3 cells expressing
mFPC-CTD than in the control cells (Figure 2C). BothMyc mRNA
and MYC protein levels were higher in mIMCD-3 cells stably
expressing mFPC-CTD, compared to control cells (Figure 2D).
Taken together, our data provide the first evidence that
overexpression of mFPC-CTD enhances MYC expression in
cultured renal epithelial cells.
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FIGURE 2
Subcellular localizationofmFPC-CTDandhFPC-CTDandregulationofMYCexpressionbymFPC-CTD. (A)ThealignmentsofhumanandmouseFPC-CTD.The red
highlight indicates TM and blue highlight indicates the CTS. Predicted nuclear localization signals (NLSs) are shown in the red bold typeface. The purple highlight indicates
experimentally testedNLS (Hiesberger et al., 2006). Blue line above the alignment indicates amino acids deleted fromFPC-CTD to generate the FPC-CTDdelCTS constructs.
(B) Transient transfection of V5-tagged mFPC-CTD, mFPC-CTDdelCTS, hFPC-CTD, and hFPC-CTDdelCTS, in mTERT-CCD or hTERT-HRE cells. Immunofluorescent
staining was performed using anti-V5 antibody. White arrows—nucleus; yellow arrowheads—cytosol; white arrowheads—cell membrane; scale bars = 50 µM. (C)
Immunofluorescent staining showing increased MYC expression in mIMCD-3 cells stably expressing mFPC-CTD. Green—MYC; blue—DAPI; scale bars = 20 µM. (D)
Mouse Myc mRNA and MYC protein levels were increased in mIMCD-3 cells stably expressing mFPC-CTD. Myc mRNA expression was quantified by qRT-PCR. MYC
protein expression was analysed with anti-MYC and normalized to GAPDH expression (N = 2, n = 3, t-test **p < 0.01, ***p < 0.001). Error bar indicates S.E.M.

Frontiers in Cell and Developmental Biology frontiersin.org08

Harafuji et al. 10.3389/fcell.2023.1270980

94

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1270980


FIGURE 3
Activation of the Myc/MYC P1 promoter by m/hFPC-CTDs and binding of mFPC-CTD to the Myc P1 promoter (A) Schema of mouse (upper) and
human (lower)Myc/MYC P1 luciferase reporter assay constructs. (B) The overexpression of mFPC-CTD increasedMyc P1 promoter activity in mIMCD-3
cells in a dose-dependent manner. (C)Overexpression of mFPC-CTD and mFPC-CTDdelCTS increasedMyc P1 promoter activity in mTERT-CCD cells. (D)
hFPC-CTDdelCTS increased theMYC P1 promoter activity ~1.6 fold in hTERT-HRE cells while hFPC-CTD only increased activity ~1.1 fold. Experiments
were repeated 3 times independently (N = 3) with 3 technical replicates (n = 3). The data were statistically analysed by combining all technical replicates
(total n = 9) and *p < 0.05, ***p < 0.001, ****p < 0.0001. Error bar indicates S.E.M. (E) ChIP assay showing FPC-CTD binding to the endogenous Myc
P1 promoter in mIMCD-3 cells. Asterisk indicates mFPC-CTD immunoprecipitation with endogenous Myc P1 promoter. PC indicates PCR amplification
product using Myc P1 plasmid DNA as a template. NTC indicates negative, no template control. Experiments were repeated independently twice.
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Efforts to perform these experiments with hFPC were
confounded by the inability to generate an hTERT-HRE cell line
that stably overexpressed either hFPC-CTD or hFPC-CTDdelCTS. We
observed that expression of hFPC-CTD was silenced after several
passages of hTERT-HRE cells under selection, suggesting that stably
expressed hFPC-CTD may be cytotoxic.

4.4 Mouse and human FPC-CTD bind to the
MYC/Myc promoter and increase MYC/Myc
expression

Themechanisms that governMyc transcription are complex and
involve multiple promoters (P0, P1, P2, and P3) and transcription
start sites (Battey et al., 1983; Bentley and Groudine, 1986; Ray et al.,
1987). The P1 and P2 promoters are the predominant Myc
regulatory elements (Albert et al., 2001). In disease states, Myc
overexpression primarily is driven from the P1 promoter (Wierstra
and Alves, 2008). Therefore, we cloned the mouse Myc P1 and
human MYC P1 promoter into a pGL4.22 reporter gene construct
(Figure 3A). Co-transfection of mIMCD-3 cells with constructs
expressing mFPC-CTD and Myc P1 promoter driven reporter
gene showed dose-dependent activation of the Myc P1 promoter
bymFPC-CTD (Figure 3B).Myc P1 promoter activation in mTERT-
CCD cells was not affected by deletion of the CTS (Figure 3C). In
comparison, co-transfection of hTERT-HRE cells with constructs
expressing hFPC-CTD and MYC P1 reporter plasmid showed only
minimal, though statistically significant activation of the MYC
P1 promoter (Figure 3D). However, deletion of the CTS from the
hFPC-CTD, which enhanced its nuclear localization, resulted in a
1.6-fold activation of theMYC P1 promoter (Figure 3D). These data
demonstrate that both human and mouse FPC-CTDs can activate
theMyc/MYC P1 promoter in cultured cells. Furthermore, we tested
hFPC-CTD activation of MYC P1 promoter in mIMCD-3 cell line
and found comparable activation in this mouse line as in the human
cell line, hTERT-HRE (Supplementary Figure S6). However, we note
that hFPC-CTD nuclear trafficking is regulated by the CTS.

To confirm the binding of mFPC-CTD to theMyc P1 promoter,
we performed ChIP assays.We found that mFPC-CTD-V5 bound to
the endogenous Myc P1 promoter in non-proliferating cells
(Figure 3E, asterisk). As noted above, corresponding ChIP
experiments with hFPC-CTD were confounded by our inability
to generate an appropriate hTERT-HRE cell line.

4.5 Temporal expression of PKHD1/Pkhd1,
CYS1/Cys1, NDN/Ndn andMYC/MycmRNAs
during pre- and post-natal kidney
development in human and mouse

Considering the observed differences in the nuclear trafficking
and function of human and mouse FPC-CTDs, we sought to better
understand how species-specific regulation ofMYC/Myc expression
may contribute to the divergent renal phenotypes in human ARPKD
and the Pkhd1 mouse models. Therefore, we analyzed cystogene
expression patterns in human and mouse kidneys during
intrauterine and postnatal development using the Evo-devo
mammalian organs portal (http://evodevoapp.kaessmannlab.org)

(Cardoso-Moreira et al., 2019). We specifically focused on genes
that are known to be mutated in human ARPKD (PKHD1/Pkhd1),
in cpk mice (CYS1/Cys1), as well as necdin (NDN/Ndn), which we
have previously shown regulates Myc expression (Wu et al., 2013).
We normalized the kidney developmental stages of mouse and
human during pre- and postnatal development. RPKM of
PKHD1/Pkhd1, CYS1/Cys1, NDN/Ndn, and MYC/Myc genes were
graphed at the corresponding developmental stages of human and
mouse kidneys (Figure 4). These analyses demonstrated different
timing of PKHD1/Pkhd1 and CYS1/Cys1 mRNA expression peaks
during human and mouse kidney development (Figure 4, top
panels). In the fetal human kidney, PKHD1 mRNA levels
progressively increase and reach maximal expression prior to
birth, whereas the progressive increase in CYS1 mRNA lags,
reaching maximum expression in the post-natal period.
Conversely, in the mouse kidney, maximum expression of Cys1
mRNA precedes the peak of Pkhd1 mRNA expression. Expression
patterns of NDN/Ndn mRNA during human and mouse kidney
development were similar (Figure 4, middle panels), with expression
peaking in early developmental stages (6–8 weeks post conception
and e12.5–14.5 in human and mouse kidney, respectively) and
decreasing thereafter. Expression of MYC/Myc mRNA also
peaked during early nephrogenesis and gradually decreased
thereafter in both human and mouse kidneys (Figure 4, bottom
panels).

With the assumption that mRNA expression serves as an
appropriate proxy for protein levels, the species-specific
differences in the PKHD1/Pkhd1 and CYS1/Cys1 developmental
expression patterns and the observation that cystin may be
protective of MYC/Myc activation suggest a mouse-specific
renoprotective mechanism in mice lacking functional FPC.
Therefore, we hypothesized that limiting cystin protein in
kidneys from Pkhd1 mutant mice may evoke dilatation of renal
tubules and/or collecting ducts. To address this hypothesis, we
crossed the cpk allele into mice that are homozygous for the
Pkhd1cyli mutation (cyli), an indel in Pkhd1 exon 48 that causes
premature termination of protein translation (Yang et al., 2023).
Kidneys from 10- and 12- month-old cyli/cyli;cpk/+mice on a mixed
genetic background (D.B/11Ei; C57BL/6J, Supplementary Table S2)
had mild tubular dilations that were absent in kidneys from age-
matched cyli/cyli;+/+ mice (Supplementary Figure S7).

5 Discussion

Previous studies have demonstrated an association between
MYC expression and renal cyst development in both human
ADPKD and mouse PKD models (Trudel, 2015). MYC is
overexpressed in cystic renal epithelial cells derived from
ADPKD kidneys (Lanoix et al., 1996). Gene expression profiling
studies demonstrated that the genes and pathways regulated by
MYC are upregulated in kidneys from ADPKD patients (Husson
et al., 2004; Song et al., 2009). Similar observations have been
reported in mouse models of PKD (Trudel et al., 1998; Burtey
et al., 2008; Kurbegovic and Trudel, 2013). Causality between MYC
overexpression and renal cystogenesis is further suggested by
observations in the SBM mouse model, in which a Myc transgene
is driven by a β-globin promoter and SV40 enhancer (Trudel et al.,
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1991). Cystic kidney disease developed in transgenic mice
overexpressing MYC, whereas mice that spontaneously lost the
transgene did not develop renal cysts (Trudel et al., 1994).
Additionally, cpk mice treated with Myc-antisense oligo exhibited
reduced MYC protein expression, fewer renal cysts and improved
renal function (Ricker et al., 2002).

In this study, we provide the first evidence that MYC is
overexpressed in kidneys from patients with PKHD1-related
ARPKD and confirm previous observations that MYC is
upregulated in cystic renal epithelial cells from cpk kidneys
(Ricker et al., 2002). In contrast, renal MYC expression levels
were not altered in any of the Pkhd1 mutant mice that lack a
significant renal cystic phenotype. Our findings extend the
proposition that MYC upregulation is a driver of the renal
cystogenesis (Kurbegovic and Trudel, 2020).

Loss of functional FPC has different phenotypic consequences in
human and mouse kidneys. In patients with pathogenic PKHD1
sequence variants, even partial loss of FPC function can result in
dramatic renal cystic disease (Cordido et al., 2021), suggesting that
human FPC functions to maintain tubular integrity. In the absence
of FPC, expression of MYC is aberrantly high leading to renal
epithelial cell proliferation and cystogenesis. On the other hand, in
mice lacking functional FPC, we show that Myc expression is not
elevated and renal cysts are absent. A simple explanation could be
that human PKHD1 gene is important for kidney development and
MYC homeostasis, while mouse Pkhd1 plays a minimal role in
nephrogenesis and Myc transcriptional regulation. This thesis is
supported by a novel mouse line that was engineered to delete exon
67, which encodes most of the C-terminus, including the nuclear
localization signal. Homozygous Pkhd1del67mice do not have a cystic

FIGURE 4
Temporal expression of PKHD1/Pkhd1, CYS1/Cys1, CYS1/Cys1 andMYC/MycmRNAs during pre- and post-natal kidney development in human and
mouse were obtained from Evo-devo mammalian organs (https://apps.kaessmannlab.org/evodevoapp/), normalized, and graphed using GraphPad
Prism. Y-axis shows normalized gene expression levels. X-axis shows kidney developmental stages that correspond to each other in humans and mice
(human/mouse).
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phenotype (Outeda et al., 2017). In addition, a recent report
describes a new model derived from the Pkhd1del67 line such that
exons 3-67 are deleted. Similar to homozygous Pkhd1del67 mice,
homozygous Pkhd1del3-67 mutants do not express a renal cystic
phenotype (Ishimoto et al., 2023). But is the explanation for the
mouse-human phenotypic disparity so simple?

We and others have shown that mouse FPC-CTD is
proteolytically cleaved through Notch-like processing (Kaimori
et al., 2007; Follit et al., 2010; Cameron Varano et al., 2017). The
FPC-CTD traffics into the nucleus and binds to double stranded
DNA as a member of a ring-structure protein complex (Kaimori
et al., 2007; Follit et al., 2010; Cameron Varano et al., 2017).
However, it is not clear how FPC-CTD regulates gene expression,
or which genes are regulated. To address this question and to explain
the phenotypic disparity across species, we hypothesized that
nuclear functions of hFPC-CTD and mFPC-CTD differ,
particularly with respect to transcriptional regulation of MYC/
Myc expression. As our experimental model, we employed
in vitro overexpression to compare the nuclear trafficking and
function of the human and mouse FPC-CTD.

Using immunofluorescence, reporter gene assays, and ChIP, we
demonstrate that the mFPC-CTD traffics into the nucleus, binds to
the Myc P1 promoter, and when overexpressed can activate Myc
expression. In reporter gene assays, hFPC-CTD and mFPC-CTD
have comparable functions; both activate MYC/Myc P1 promoter.
However, we observed differences in cellular trafficking of these
intracellular FPC fragments. While mFPC-CTD largely localized to
the nucleus, hFPC-CTD remained associated with plasma
membrane and localized in the cytoplasm, with translocation into
nucleus only upon removal of CTS. This indicates that hFPC-CTD
has the functional ability to activate MYC P1 promoter similar to
mFPC-CTD, but the nuclear transport of these two proteins differs,
suggesting that intracellular transport may in part explain the
species-specific differences in function.

Our experimental findings regarding the FPC-CTD nuclear
function raises a new conundrum about recessive PKD
pathogenesis. We show that in ARPKD loss of function of
human FPC-CTD (patients AR1, AR2, AR3, and AR8:
Supplementary Table S1) is associated with aberrant
overexpression of MYC in the cystic kidneys, suggesting that
FPC functions as a negative regulator of MYC to prevent
cystogenesis, as was previously shown for the pro-proliferative
STAT3 (Dafinger et al., 2020). But our reporter assays indicate
that hFPC-CTD upregulates MYC. It is important to note that this
apparent paradox may reflect the difference between in vivo
mechanisms where FPC-CTD-associated proteins may dictate
specific regulatory function and reductionist reporter assays
demonstrating the activation of a specific promoter by an
overexpressed protein. Further studies will be necessary to
decipher MYC/Myc transcriptional activation and inhibition
during kidney development and how FPC-CTD, or the lack of it
may contribute to MYC/Myc expression regulation.

While our studies provide novel information about the nuclear
trafficking and function of human and mouse FPC-CTDs, a recent
study identified mitochondrial targeting sequences in both mFPC-
CTD and hFPC-CTD and demonstrated the trafficking of these
proteins into the mitochondria (Walker et al., 2022). These
developments imply that understanding both the nuclear and

mitochondrial functions of human and mouse FPC-CTDs will be
necessary to better define their roles in kidney cystogenesis.

Another key to human-mouse phenotype paradox may involve
the CYS1/Cys1 gene. In the mouse, cystin negatively regulates MYC
expression through binding to mouse NDN and preventing its
activation of Myc expression (Wu et al., 2013). While the
mechanism of negative regulation is not completely understood,
cystin could either compete with mouse NDN for binding to theMyc
P1 promoter, or alternatively, cystin and mouse NDN could form a
complex that binds to the Myc P1 promoter and inhibits its activity
(Wu et al., 2013). Our data mining revealed that Cys1 expression is
upregulated before Pkhd1 during mouse kidney development. In cpk
mice, cystogenesis is initiated in the distal portion of developing
proximal tubules at e16.5–17.5 and continues after birth (Preminger
et al., 1982; Nidess et al., 1984; Avner et al., 1987). The activation of
Cys1 expression before Pkhd1 in the developing mouse kidney and
suppression ofMyc expression by cystin could explain the absence of
renal cystic phenotype in mice with mutant Pkhd1.

To better understand FPC function during development, we
extended our study to analyze gene orthologs encoding FPC across
phyla. These analyses suggest that the CTD may be evolutionary
innovation associated with vertebrate transition from aquatic to
terrestrial life. We found a Pkhd1 orthologue in only one fish
genome, the coelacanth L. chalumnae. This observation is
consistent with a previous study that suggested the Pkhd1
paralogue, Pkhd1l1, is the ancestral gene because Pkhd1l1 gene is
present in the Fugu (puffer fish) genome, but Pkhd1 is not (Hogan
et al., 2003). PKHD1L1 and PKHD1 are similar; both encode proteins
that have a large extracellular segment with similar arrangement of
conserved structural domains (Supplementary Figure S5A) and 41.5%
protein sequence identity (Hogan et al., 2003). However, their
cytoplasmic segments are quite different: human and mouse
PKHD1L1-encoded proteins have very short cytoplasmic tails,
eight and six amino acids, respectively, while hFPC-CTD and
mFPC-CTD have 192 and 184 amino acids (Hogan et al., 2003).

In addition, our informatic analysis revealed higher sequence
conservation of the FPC extracellular than intracellular domain across
phyla, which may in part explain the difference in nuclear trafficking
between mFPC-CTD and hFPC-CTD. The mFPC-CTD has two
predicted canonical NLSs, one of which has been experimentally
validated (Hiesberger et al., 2006). In contrast, hFPC-CTD has only
one predicted NLS. The difference in the number of NLSs in human
andmouse FPC-CTD could explain the differences in the distribution
of hFPC-CTD andmFPC-CTD in the nucleus versus other subcellular
compartments, e.g., mitochondria. This finding raises an intriguing
possibility that will require further study.

Finally, we used data mining to compare the temporal
expression of PKHD1/Pkhd1 and CYS1/Cys1 in developing
human and mouse kidneys respectively. In human kidneys,
maximal expression of PKHD1 preceded CYS1. However, during
mouse kidney development, Cys1 expression is upregulated before
Pkhd1 (Figure 4). Assuming similar regulation of MYC/Myc gene
expression by human and mouse cystin in association with NDN,
our data suggest that 1) MYC/Myc expression can be activated by
human and mouse NDN during early kidney development and
factors that regulate MYC/Myc expression in later stages of kidney
development differ in humans and mice; and 2) during middle to
late stages of mouse nephrogenesis, Myc gene expression is
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downregulated by cystin in the mouse kidney but much less than in
the human kidney. Therefore, the differences in the temporal
expression pattens of CYS1/Cys1 could contribute to the relative
renoprotection from cystogenesis in Pkhd1-deficient mice.

In summary, we provide the first report of elevated MYC levels in
PKHD1-deficient human kidneys. In contrast, we show that MYC
abundance is unaltered in non-cystic kidneys from Pkhd1-deficient
mice. We demonstrate several key differences between human and
mouse thatmay explain the relative renoprotection in Pkhd1-deficient
kidneys: 1) differences in the number of NLS in the FPC-CTD; 2)
differential impact of the human and mouse CTS on intracellular
trafficking and subcellular distribution of the FPC-CTD; and 3)
differences in the temporal expression of PKHD1/Pkhd1 and
CYS1/Cys1 during nephrogenesis. In addition, we observed that
reduced cystin levels in Pkhd1-deficient mice lead to renal tubular
dilatation, suggesting that in mice both cystin and FPC-CTD are
necessary to maintain renal tubular architecture. Given the limited
sequence identity of human vs mouse FPC-CTD, we speculate that
the cytosolic cleavage peptides may have different protein interacting
partner(s) and these protein complexes may differentially regulate
MYC/Myc expression in vivo. Taken together, our data extend
previous observations and indicate that MYC dysregulation is a
central driver of renal cystogenesis in both ARPKD and ADPKD.
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Endometriosis is a benign gynecological disease in which eutopic endometrial
tissue composed of glands and stroma grow within the pelvic cavity. The disease
affects females of reproductive age and is characterized by pelvic pain, infertility
and reduced quality of life. The majority of pharmacologic treatment modalities
for endometriosis focus on suppression of estradiol production and/or action; an
approach associated with adverse side effects. c-MYC is elevated in eutopic
endometrium and endometriotic lesion tissue in patients with endometriosis
and the disease shares many similar pathological characteristics with that of
endometrial carcinoma. While targeting of c-MYC with Omomyc has recently
gained substantial interest in the field of cancer research, there has been no recent
attempt to evaluate the potential utility in targeting c-MYC for endometriosis
treatment. The following perspective article compares the similarities between
endometriosis and endometrial cancer and presents preliminary data suggesting
that targeting c-MYC with Omomyc reduces endometriotic cell proliferation and
viability in vitro. Future application of targeting c-MYC in endometriosis treatment
and potential pros and cons are then discussed.

KEYWORDS

c-Myc, endometrial cancer, endometriosis, Omomyc, treatment

1 Introduction

Endometriosis is a chronic inflammatory disease in which endometrial tissue grows
outside the uterine cavity, predominantly within the pelvic cavity (Giudice and Kao, 2004).
The disease affects approximately 10%–15% of women of reproductive age and is associated
with pelvic pain, dysmenorrhea, infertility, and reduced quality of life (Giudice and Kao,
2004). The etiology of endometriosis is not clear although retrograde menstruation is widely
accepted (Sampson, 1927). It is postulated that menstrual overflow leaves the uterine cavity
through the fallopian tubes and implants into the peritoneal cavity and the ovaries. However,
most women experience retrograde menstruation, yet not all women develop the disease
(Jenkins et al., 1986). Therefore, multiple factors contribute to the development and
progression of endometriosis such as aberrant immune response and altered hormonal
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balance (Sourial et al., 2014; MacLean and Hayashi, 2022). Given
that the growth of endometrial lesions is estrogen-dependent,
common pharmacologic treatments target estrogen production
and subsequent estrogen action and include oral contraceptive
pills (OCPs), gonadotropin-releasing hormone (GnRH) agonists,
GnRH antagonists, levonorgestrel (progestin)-releasing intra-
uterine devices and aromatase inhibitors (Nothnick et al., 2018).
We discuss below the current pharmacologic approaches for
endometriosis treatment and their limitations. We then discuss
the similarities between endometriosis and endometrial cancer
and review targeting of Myc as a therapeutic approach in cancer
treatment. Lastly, we provide preliminary evidence supporting the
potential of targeting c-MYC as a non-hormonal treatment option
for endometriosis.

2 Current approaches to endometriosis
treatment

Oral contraceptive pills (OCPs), which contain low dose
estrogens and high dose progesterone, are often the first line
approach in treating endometriosis/endometriosis-associated pain
(Menakaya et al., 2013; Dunselman et al., 2014). Low levels of
estrogen are postulated to induced progesterone receptor
expression and the progesterone/progestins contained within the
OCP preparations inhibit estrogen production by the ovaries via
suppression of gonadotropin release as well as via reduction of the
inflammatory milieu associated with the disease. Progestins such as
medroxyprogesterone acetate (MPA) are also effective in controlling
pain, but a drawback associated with their use is side effects such as
menstrual irregularities and weight gain (Brown et al., 2012).
Levonorgestrel-releasing intrauterine system (LNG-IUS) is a
popular treatment option effective in reducing dysmenorrhea,
pelvic pain, deep dyspareunia as well as reducing lesion burden
(Fedele et al., 2001; Bayoglu et al., 2011; Kim et al., 2022) and can be
used as a long-term treatment option (Kim et al., 2022). While LNG-
IUS offers many benefits, limitations include irregular uterine
bleeding, vaginal bleeding and vaginal discharge. In summary,
LNG-IUS treatment is an effective and feasible method to control
pain as a long-term postoperative maintenance therapy for
endometriosis patients. While progestin-based therapies are
effective in many women, a substantial percentage of
endometriosis patients exhibit progesterone resistance and
therefore have insufficient therapeutic responses to these treatments.

The fact that endometriosis is an estrogen-dependent disease led
to targeting production of this hormone as a means of treating the
disease. Targeting gonadotropin release at the level of the
hypothalamus to reduce circulating estrogen levels has proven
effective and overcomes the issue of progesterone resistance.
Gonadotropin hormone releasing analogs includes the use of
both gonadotropin-releasing hormone (GnRH) agonists and,
more recently antagonists. Both classes of drugs suppress ovarian
estrogen production leading to a hypo-estrogenic state which is
detrimental to endometriotic lesion survival. GnRH analogs are
often prescribed when oral contraceptives and/or progestin
analogues fail to produce successful outcomes. These compounds
are effective in some, but not all women with endometriosis (Shaw,
1990). Further, GnRH agonist use is associated with significant side

effects including altered lipid profile, hot flushes, loss of libido and
reduction in bone mass/bone health (Prentice, 2001). The loss of
bone mass can be overcome by estrogen add-back/hormone
replacement therapy (Surrey, 2010) but this must be balanced to
avoid estrogen action upon lesion survival and potential recurrence
of disease and its symptomology.

One of the most common and successful therapies for
endometriosis pain management is the GnRH agonist, leuprolide
acetate (Geisler et al., 2004). However, while this is an advantage of
GnRH agonist therapy, a disadvantage is the induction of a hypo-
estrogenic state and negative impact on overall patient health. GnRH
antagonists have also been used for treatment of endometriosis.
Unlike GnRH agonists, they do not exhibit agonistic effects inducing
estrogen “flare-up” prior to suppressing estrogen levels. Elagolix,
relugolix, and linzagolix are three recent GnRH antagonist being
used for endometriosis treatment (Rzewuska et al., 2023). Unlike
earlier formulations, these three antagonists are taken orally, with
both elagolix and relugolix already approved by the FDA and
linzagolix currently under review. These GnRH antagonists may
offer several benefits over older drug formulations which include
lower levels of analgesics taken, significant reduction in pain scores
and little to no irregular uterine bleeding. However, these GnRH
antagonists are still associated with side effects including reduction
in bone mineral density and risk of developing osteopenia and
osteoporosis due to their induction of a hypoestrogenic state which
limits their treatment regime duration (Rzewuska et al., 2023). It
should be noted that combination therapy of relugolix with estradiol
and norethisterone acetate for 24 weeks minimizes bone density loss
and vasomotor symptoms while significantly reducing
endometriosis associated pelvic pain (Giudice et al., 2022).

The use of aromatase inhibitors in the treatment of
endometriosis have gained attention based upon the observation
that endometriotic lesions express aromatase and are able to
synthesize their own estrogen (Bulun et al., 2000). Current
aromatase inhibitors prescribed include anastrozole and letrozole.
Letrozole in combination with the synthetic progesterone analog,
norethindrone acetate, was first reported to reduce disease burden at
second look laparoscopy as well as significantly reduce pelvic pain
scores in 2004 by Ailawadi and colleagues. Subsequent studies
continue support the efficacy of letrozole in treatment of
endometriosis-associated pelvic pain. Like letrozole, anastrozole,
also inhibits estrogen production but the former is more potent
in reducing levels of this steroid (Geisler et al., 2002). Anastrozole
therapy combined with oral contraceptives was reported to
significantly reduce pain in as little as 1 month after treatment
initiation and this treatment regime was associated with minimal
side effects (Amsterdam et al., 2005). However, the safety of
aromatase inhibitors might be an issue especially since a recent
systematic review and meta-analysis suggested an increased risk of
cardiovascular events during endocrine therapy for early breast
cancer (Yoo et al., 2023). None the less, aromatase inhibitors
offer an additional treatment modality which is effective in
treating endometriosis-associated pelvic pain.

In summary, the majority of currently prescribed endometriosis
treatments rely upon reduction of estrogen production and/or
estrogen action. As emphasized earlier in this article, while these
treatments are effective in many women, they are not effective or
well-tolerated in a large proportion of women suffering from
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endometriosis. These observations coupled with limitations due to
side-effects and potential health complications emphasize the need
for the development of novel, estrogen-sparing endometriosis
treatments. In searching for such novel treatment targets, we
next evaluate and compare the common mediators and
mechanisms between endometriosis and cancer with the goal of
identifying potential druggable targets which may be capable of
reducing disease burden and symptomology associated with
endometriosis.

3 Endometriosis and cancer

Both endometriosis and endometrial cancer share numerous
risk factors and common pathophysiological characteristics
(Figure 1). Endometrial cancer is the most commonly diagnosed
form of gynecological cancer in developed nations, accounting for
approximately 5% of all cancers diagnosed in women (Contreras
et al., 2022). Similar to the origins of endometriotic lesions,
endometrial cancer originates in the endometrium and
development and progression of both diseases is associated with
estrogen exposure (Yu et al., 2015). With respect to endometrial
cancer, onemechanism by which estrogenmay promote progression
of endometrial cancer is through the activation of the
NLPR3 inflammasome (Liu et al., 2019), which has also recently
been proposed to play a role in the pathophysiology of
endometriosis (Irandoost, et al., 2023). Like endometriosis
(Ailawadi et al., 2004; Patel et al., 2017), endometrial cancer also
exhibits progesterone resistance (Gunderson et al., 2012) and
displays altered expression of progesterone receptors (Saito et al.,
2006; Jongen, et al., 2009).

It is further postulated that the hyper-estrogen and hypo-
progesterone milieus associated with both disease contribute to
the enhanced proliferation and invasiveness of the endometriotic
lesions/endometrial cancer. Epithelial to mesenchymal transition
(EMT) is a process by which epithelial cells lose polarity and cell-to-

cell contacts, undergo remodeling of the cytoskeleton, and acquire
migratory abilities and a mesenchymal-like gene expression
program. The EMT process is proposed to play a role in the
pathophysiology of both endometrial cancer (Colas et al., 2012;
Mirantes et al., 2013) and endometriosis (Yang and Yang, 2017;
Konrad et al., 2020) as both diseases are associated with the
migration of endometrial cells into surrounding tissues as the
diseases progress. One transcription factor whose overexpression
induces EMT (Qiu et al., 2016) as well as immune evasion,
angiogenesis, ECM remodeling, cell migration and invasion
(Masso-Valles and Soucek, 2020) is c-MYC which is
overexpressed in both endometriosis and endometrial cancer.

4 c-MYC overexpression in
endometriosis and endometrial cancer

The Myc family of transcription factors is composed of c-MYC,
N-MYC and L-MYC (Adhikary and Eilers, 2005) whose expression
is dysregulated in over 70% of human cancers and associated with
poor prognosis (Wang et al., 2021). Like other cancer types, c-MYC
is highly expressed in endometrial tumors (Kim et al., 2013) and
immunohistochemical localization studies revealed a 78.3% positive
rate of c-MYC in endometrial cancer tissues with amplified c-MYC
in 25% of the cases (Zhang et al., 2018; Buchynska et al., 2019). From
a functional standpoint, upregulation of c-MYC in endometrial
cancer cells in vitro was shown to induce EMT, drug resistance
and invasion (Lv et al., 2012; Liu et al., 2015). Qiu and colleagues
(2016) used a small molecule bromodomain 4 (BRD4) inhibitor,
JQ1, to target c-MYC in endometrial cancer cells using both cell
culture and tumor tissue xenograft models. In that study,
JQ1 inhibited endometrial cancer growth in both models and this
was associated with a reduction in c-MYC protein expression as well
as reduced expression of c-MYC downstream targets. Additional
studies demonstrated that inactivation of c-MYC resulted in tumor
regression and was associated with cellular differentiation and

FIGURE 1
Localization of endometriotic implants and endometrial carcinoma within the female reproductive tract and major similarities between both
diseases. Both endometrical cancer and endometriosis originate from the endometrial lining of the uterus. Endometrical cancer which remains confined
to the endometrial lining is classified as stage IA while that which spreads into the myometrial smooth muscle (Myo) of the uterus is classified as stage IB.
Endometriotic lesions develop outside of the uterus on the surface of the Fallopian tube, ovary and perimetrium of the uterus. Both diseases are
characterized by inflammation, estrogen dominance, progesterone resistance, epithelial-mesenchymal transition and elevated expression of the
oncogene. c-Myc.
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apoptosis in transgenic mouse models (Jain et al., 2002; Tansey,
2014). Lastly, a more recent study using JQ1 demonstrated that JQ1-
mediated reduction of c-MYCwas associated with suppressed tumor
growth in a xenograft mouse model as well as reduced proliferation
and enhanced apoptosis of endometrial carcinoma cell lines in vitro
(Pang et al., 2022). Thus, in addition to being a well-established
target in multiple types of cancer, c-MYC also appears a plausible
target for endometrial carcinoma.

Similar to expression levels in endometrial carcinoma, c-MYC
expression is also elevated in endometriotic lesion tissue as well as
matched eutopic endometrium from women with endometriosis
(Schenken et al., 1991; Schneider et al., 1998; Johnson et al., 2005;
Pellegrini et al., 2012; Proestling et al., 2015). Unfortunately, outside
of these descriptive studies, little advancement has beenmade on our
understanding as to why c-MYC is elevated in endometriotic lesion
tissue and if this overexpression contributes to the pathophysiology
of the disease. Based upon the similarities between endometrial
cancer and endometriosis and the fact that c-MYC appears to a
common transcription factor with augmented expression and
signaling in both endometrial cancer and endometriosis, it may
also be a viable, non-hormonal treatment for endometriosis. To
date, the potential utility of targeting c-MYC as a therapeutic
approach for endometriosis treatment has not been reported.

5 c-MYC as a therapeutic target for
endometriosis treatment

Given the aforementioned similarities between endometrial cancer
and endometriosis and the necessity to identify novel, non-hormonal
targets for endometriosis treatment, we conducted the following
preliminary studies. To begin to evaluate potential targeting of
c-MYC in endometriosis therapy, we utilized the well-characterized
human endometriotic epithelial cell line, 12Z which expressed eGFP
(Bulun et al., 2000) to evaluate the impact of blocking c-MYC signaling
on cell proliferation and survival. To do so, 12Z-eGFP cells were
transduced with lentiviral particles expressing a doxycycline (DOX)-
inducible pTRIPZ-Omomyc-RFP (Omomyc) plasmid (Annibali et al.,
2014) and were then subjected to puromycin-selected. Puromycin

resistant Omomyc plasmid-infected 12Z cells (25,000 cells/mL) were
cultured in Dulbecco’s Minimum Essential Medium (DMEM)/Ham’s
F12 (Fisher Scientific, Pittsburgh, PA) containing 10% TET-FBS and
Pen-Strep for 24 h in 10 cm tissue culture dishes after which the media
was replaced with fresh media containing 2% TET-FBS with or without
doxycycline (DOX, 2.0 μg/mL; Takara Bio catalog# 631311) to induce
Omomyc expression. Cells were incubated for 48 h after which they
were trypsinized and cell counts determined using a hemocytometer
and all counts were conducted on duplicate dishes for 3 separate trials
(N = 3). Compared to controls (-DOX), DOX induction (+DOX) of
Omomyc resulted in a significant reduction in number of cells after 48 h
of treatment. Figure 2 depicts representative immunofluorescence for
Omomyc localization with white arrows highlighting nuclear
expression of Dox-induced Omomyc expression. Based upon these
preliminary studies, Omomyc reduces endometriotic epithelial cell
survival in vitro. These preliminary observations are encouraging
and may warrant further investigation into use of Omomyc to treat
endometriosis and its associated symptomology using three-
dimensional in vitro cell culture models and in vivo mouse models
of experimental endometriosis routinely employed in our laboratory
(Alali et al., 2020).

6 Potential c-MYC signaling pathways
common to endometrial cancer and
endometriosis

To interrogate potential down-stream pathways relevant to c-MYC
signaling in the pathogenesis of endometriosis, we generated a list of
c-MYC targets which have been reported in cancer (Zeller et al., 2003)
and endometrial adenocarcinoma; Peterson et al., 2023) to those
reported to be dysregulated in a similar manner in endometriosis.
Down-stream targets of c-MYC relevant to endometriosis
pathophysiology may include upregulated targets such as cyclin E1
(CCNE1; Park et al., 2019; Park et al., 2020), enolase 1 (ENO1; Nabeta
et al., 2009), fatty acid synthase (FASN; Turathum et al., 2022), lactate
dehydrogenase A (LDHA; Zheng et al., 2021), microsomal glutathione
S-transferase 1 (MGST1; Ferrero et al., 2019), 60S acidic riboprotein 1
(RPLP1; Alali et al., 2020), and tumor protein p53 (TP53; Toki and

FIGURE 2
Induction of Omomyc in endometriotic epithelial 12Z cells reduces cell viability. 12Z cells were plated at 25,000 cells/mL of media for 24 h then
cultured in the absence of doxycycline - DOX; (A) or presence of + DOX; (B) doxycycline to induce Omomyc expression (detected by the RFP tag). Red
boxed area in panel B is enlarged and displayed in (C)with white arrows highlighting nuclear expression ofOmomyc. Cell counts were then determined by
manual counting and results are depicted in (D). Cell count data were analyzed by unpaired t-tests on three separate replicates independent
experiments (N = 3) and are displayed as the mean +/- SEM with P < 0.01.
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Nakayama, 2000). c-MYC targets which are downregulated in cancer
(Zeller et al., 2003) and endometriosis include cyclin dependent kinase
1A (CDKN1A; Kim et al., 2009) and fibronectin 1 (FN1; Holzer et al.,
2020).

7 Discussion

c-MYC has long been proposed to play a functional role in the
pathophysiology of cancer. However, due to c-MYC’s unique
properties with respect to a lack of a defined three-dimensional
structure, nuclear localization and absence of a targetable
enzymatic pocket, targeting c-MYC for cancer treatment has
presented a challenge. Omomyc is a mutant basic helix–loop–helix
leucine zipper (bHLHZip) domain which acts as a dominant negative
and sequesters c-MYC in complexes preventing active transcription of
c-MYC target genes while also allowing transcriptional repression
(Masso-Valles and Soucek, 2020). Omomyc has been shown to be a
potent inhibitor of tumor growth in multiple cancer types in both
in vitro and in vivo studies (Soucek et al., 2004; Soucek et al., 2008;
Sodir, et al., 2011; Soucek et al., 2013;Whitfield, et al., 2014; Fiorentino
et al., 2016; Alimova et al., 2019; Sodir et al., 2020). Considering the
similarities between cancer and endometriosis (Figure 1) and the
limitations with current, anti-estrogen based treatment options for
endometriosis, we evaluated the potential utility of Omomyc for
endometriosis treatment. To do so, we transduced 12Z cells (a
well-characterized endometriotic epithelial cell line) with lentiviral
particles containing pTRIPZ-Omomyc-RFP (Omomyc) plasmid and
treated them with DOX to induce Omomyc expression. Induction of
Omomyc was associated with a reduction in cell viability (as reflected
in total cell counts) compared to cells not treated withDOX. Although
preliminary, these studies are encouraging and warrant further, more
detailed studies. One limitation of current endometriosis treatments is
the induction of a hypo-estrogenic state and unwanted side effects
associated with it. For Omomyc to be an advancement over current
therapies, it will be essential to assess if Omomyc could reduce disease
burden and symptomology in vivo while concurrently avoiding
induction of a hypo-estrogenic state. This would be one critical
necessary first step in evaluating this c-MYC inhibitor for
endometriosis treatment.
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The moonlighting protein c-Myc is a master regulator of multiple biological
processes including cell proliferation, differentiation, angiogenesis, apoptosis
and metabolism. It is constitutively and aberrantly expressed in more than 70%
of human cancers. Overwhelming evidence suggests that c-Myc dysregulation is
involved in several inflammatory, autoimmune, metabolic and other non-
cancerous diseases. In this review, we addressed the role of c-Myc in obesity.
Obesity is a systemic disease, accompanied bymulti-organ dysfunction apart from
white adipose tissue (WAT), such as the liver, the pancreas, and the intestine.
c-Myc plays a big diversity of functions regulating cellular proliferation, the
maturation of progenitor cells, fatty acids (FAs) metabolism, and extracellular
matrix (ECM) remodeling. Moreover, c-Myc drives the expression of a wide range
of metabolic genes, modulates the inflammatory response, induces insulin
resistance (IR), and contributes to the regulation of intestinal dysbiosis.
Altogether, c-Myc is an interesting diagnostic tool and/or therapeutic target in
order to mitigate obesity and its consequences.

KEYWORDS

c-Myc, obesity, MASLD, gut-liver axis, T2DM

Introduction

Obesity is defined by the World health organization (WHO) as an excessive fat
accumulation that impairs health with a diagnosis of a body mass index (BMI) ≥30 kg/m2.

Since 1975, the global prevalence of obesity has almost tripled and has continued to
increase at an epidemic rate. In the past decades, obesity has been revisited and now it is
considered a multisystemic disease affecting many multiple organs. Since it is a chronic,
systemic and relapsing disorder, obesity triggers a significant number of metabolic disorders
and co-morbidities. Obesity considerably elevates the risk of suffering type 2 diabetes
mellitus (T2DM), metabolic-associated steatotic liver disease (MASLD), hypertension,
myocardial infarction, stroke, obstructive sleep apnoea, dementia, osteoarthritis, and
several cancers, thereby decreasing both quality and life expectancy (Bluher, 2019;
Gjermeni et al., 2021; Lin and Li, 2021).

Recent studies revealed a clear link between obesity and urbanisation, demonstrating the
crucial role that environment plays in the development of this disease. However, the
considerable variation in body weight between individuals, further suggests that obesity
is influenced by complex interactions between environmental developmental, behavioural,
epigenetics and genetic stimuli (Thaker, 2017; Zaiou, 2022).

In recent years, it has become evident that the highly pleiotropic, multifunctional super-
transcription factor (TF) c-Myc controls a variety of cellular functions by targeting up to 15%
of all genes, with broad effects on cell proliferation, differentiation, apoptosis, angiogenesis,
adhesion and metabolism (Dang, 2012). Different cytokines and hormones can promote
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stabilization of c-Myc protein levels and subsequently activate
nuclear transactivation of c-Myc-dependent target genes. Among
these, genes involved in cell cycle regulation such as cyclins D1, D2,
B1, cyclin-dependent kinase 4 (CDK4) and p21, p27 inhibitors of
CDK (Dang, 2012).

Additionally, c-Myc also attenuates the differentiation of a great
number of cell types during development, thus preserving the
“stemness” of these cells (Leon et al., 2009). In spite of its
association with cell proliferation and differentiation, c-Myc also
promotes apoptosis and provides an additional level of regulation
against uncontrolled cell growth or when the growth factors are
limited (McMahon, 2014; Madden et al., 2021).

Metabolism is regulated by c-Myc through enolase A, lactate
dehydrogenase A, phosphofructokinase, hexokinase II, and glucose
transporter I. c-Myc expression stimulates glutaminolysis and
glycolysis (Goetzman and Prochownik, 2018). Both pathways
promote cellular proliferation by increasing the synthesis of
nucleotides, ATP and fatty acids (FA) that serve as building
blocks for cells (Dang, 2013).

Through the activation of peroxisome proliferator-activated
receptor gamma coactivator 1 (PGC-1), protein kinases,
mitochondrial TF, and mitochondrial receptors, c-Myc
encourages mitochondrial biogenesis and enhances mitochondrial
function (Dang, 2013).

In order to increase cell mass before division, c-Myc stimulates
global protein expression, via the activation of RNA polymerase I, II,
and III and of genes that participate in ribosomal, tRNA and rRNA
biosynthesis (Dang, 2013; Rosselot et al., 2021).

Therefore, c-Myc carries out a great number of biological
functions that are essential for survival, expansion, and normal
cell function. Generally, c-Myc expression is tightly regulated;
however, its deregulation is often observed in human cancer and
is considered a poor prognostic factor. Therefore, it was termed “the
oncogene from hell”, given its ability to induce genomic instability,
accelerate tumour progression and coordinate the crosstalk with
microenvironment, thus inducing tumor growth (Whitfield and
Soucek, 2012).

Additionally to its role in carcinogenesis, c-Myc appears to be
involved in the control of multiple metabolic pathways from
glycolysis and glutaminolysis, to nucleotide and lipid synthesis
across many different cell types, especially as almost all cells
basally express metabolic genes (Stine et al., 2015). Emerging
evidence also suggests that c-Myc is pivotal in driving the
expression of a broad range of immune cell metabolism,
regulating their development, differentiation, activation and
coordination of metabolic programs to support immune
functions (Gnanaprakasam and Wang, 2017). As a master
regulator of immunity and metabolism, c-Myc is implicated in
autoimmune, inflammatory, metabolic and other non-cancerous
disorders (Zheng et al., 2017), even though this is still a poorly
understood topic with a huge unmet need for preclinical and clinical
research (Madden et al., 2021).

In this review, we aimed to highlight and summarize the
potential roles of multifunctional moonlighting c-Myc in obesity
and its related metabolic diseases, including T2DM and MASLD.
Indeed, the complexity of the etiopathogenesis of obesity is
responsible for the dysfunction of multiple tissues and organs,
including the white adipose tissue (WAT), pancreas, liver and

intestine. All of the above makes the understanding of the
complex role of c-Myc in the development of obesity increasingly
challenging. Here, we provide a comprehensive view of c-Myc-
related disturbances present in obesity and their direct and indirect
effects on the different organs of the body.

WAT –holding the key of obesity

White adipose tissue (WAT) is crucial for the regulation of lipid
homeostasis and energy balance. In a healthy state, WAT serves a
variety of purposes, including storing energy as fat, protecting vital
organs, and assisting with the endocrine system and immune
response. The adipose tissue consists of adipocytes, endothelial
cells, fibroblasts, immune cells, and adipose stem cells (ASCs)
(Richard et al., 2000).

Obesity is the result of storing excess energy intake, thus
bringing about an enlargement of the adipose tissue. Diet,
genetics, and their interaction contribute to obesity (Jo et al.,
2009). The expansion of the WAT associated with obesity is
linked to an elevation of the adipogenesis activity. The
coordinated activation of TFs and epigenetic modifications
control the lipogenic and adipogenic programmes. The
complicated regulatory mechanisms, however, are not yet fully
understood (Longo et al., 2019).

The increase in size of existing adipocytes (hypertrophy) or in
number (hyperplasia) (Jo et al., 2009) is characteristic of WAT
expansion. An imbalance in caloric intake versus expenditure leads
to the accumulation of hypertrophic and dysfunctional adipocytes.
While hypertrophic growth is more closely linked to obesity-
associated metabolic complications, expansion through
hyperplasia is associated with a benign metabolic profile.
Numerous adipogenic processes, such as the proliferation,
recruitment, and/or differentiation of new fat cells, are
responsible for mediating hyperplasic WAT, whereas hypertrophy
is mainly governed by size increase of already present adipocytes
(Choe et al., 2016). Adipogenesis and transition of adipose tissue
mesenchymal stem cells to mature adipocytes is regulated by an
extensive cooperative network of transcription factors (TFs), that
control the expression of dozens of downstream protein-coding
genes and long noncoding RNAs (Ambele and Pepper, 2017; Bjork
et al., 2021).

The stromal vascular fraction of subcutaneous WAT is the
source of human ASCs. ASCs are multipotent, fibroblast-like
mesoderm lineage cells with the ability to differentiate into
multiple lineages, much like bone marrow-derived mesenchymal
stem cells. In adult WAT, the turnover of adipocytes at
approximately a rate of ~10% of cells per year maintains the
balance between cell renewal and death. In accordance to several
studies, ASCs play an essential role in the development of obesity
and obesity-related metabolic disorders (Hajer et al., 2008).
Furthermore, ASC quantity and function can also change in an
obese state due to adipocyte dysfunction, which can result in
abnormal adipose tissue remodeling and affect the
microenvironment of expanded WAT (Choe et al., 2016).

The positive energy balance provokes the proliferation of ASCs,
and when adipocytes reach a volume limit, the newly formed ASCs
are utilized for de novo adipogenesis to further increase energy
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storage capacity of adipose tissue (Wang et al., 2013; Jeffery et al.,
2015). The capacity of mature white adipocytes to dedifferentiate
into multipotent ASCs is another feature. The functions of ASCs
change in an obese condition, which causes a rise in the production
of white fat and a whitening of thermogenic brown and beige fat
(Shin et al., 2020). Additional research is still required to uncover the
mechanism how ASCs generate new adipocytes in obesity, and the
impact of environmental and genetic factors on this response.

It has been shown that c-Myc is positive regulator of ASCs fate
and plays a crucial role in regulating adipocyte differentiation.
Deregulated c-Myc expression prevents adipocytes and other cell
types from achieving terminal differentiation (Spalding et al., 2008).

The expression of the c-Myc protein and transcript rises during
the early stages of ASC differentiation and is thought to be involved
in adipogenesis and the maintenance of a terminal phenotype.
siRNA mediated knockdown of c-Myc in ASCs lead to inhibition
of adipogenesis and dysregulation of pathways related to cytoskeletal
remodelling and cell adhesion. These findings show that c-Myc is
essential for driving multipotent ASCs into the adipogenic lineage
(Deisenroth et al., 2014).

Overexpression of c-Myc in 3T3-L1 preadipocytes facilitates
normal expression of early response regulators CCAAT/enhancer
binding proteins C/EBPβ and C/EBPδ during the course of
differentiation. However, the expression of downstream
regulators, C/EBPα, peroxisome proliferator-activated receptor γ2
(PPARγ2), and later markers of differentiation is suppressed (Heath
et al., 2000b). This suggests that c-Myc may act by blocking C/EBPβ-
and C/EBPδ-directed activation of C/EBPα and PPARγ2 expression
and demonstrates that c-Myc specifically inhibits the terminal stages
of the adipogenic program. However, the particular molecular
mechanism is not fully understood, yet (Heath et al., 2000b;
Deisenroth et al., 2014). Interestingly, comparable outcomes were
shown in hematopoietic stem cells, where c-Myc maintains the
balance between stem cell differentiation and self-renewal via the
regulation of cell-ECM interactions (Wilson et al., 2004).
Importantly, c-Myc’s role in cell cycle progression and
transformation is functionally different from the way it induces
the suppression of adipocyte differentiation (Heath et al., 2000a).

There is still a lack of clarity in the associated signaling pathways
that could be used as potential therapeutic targets for c-Myc-driven
adiposity. The mammalian Sirtuins (SIRT1–7) are a family of
conserved NAD+-dependent protein deacetylases. A growing body
of evidences has shown that Sirtuins and their prominent substrates
participate in a variety of physiological and pathological processes,
including cell cycle regulation, glucose and lipid metabolism,
mitochondrial biogenesis and function, energy homeostasis insulin
action and inflammatory responses (Guarente, 2006; Chen et al.,
2022). The nuclear sirtuins (SIRT1, SIRT6, and SIRT7), the
mitochondrial sirtuins (SIRT3, SIRT4, and SIRT5), and the
cytosolic sirtuin (SIRT2) regulate diverse metabolic functions. For
example, SIRT1 controls several physiological processes in adipose
tissue, such as inflammatory responses, mitochondrial biogenesis,
cellular senescence, and apoptosis/autophagy (Hwang et al., 2013).
SIRT2 regulates adipocyte development, gluconeogenesis, insulin
action, and inflammatory responses (Gomes et al., 2015). By
regulating mitochondrial biogenesis and function, SIRT3 plays
regulating roles in a variety of metabolic processes, including
acetate metabolism and thermogenesis (Shi et al., 2010).

It has been reported that Sirtuins are affected by HFD and
environmental stress (Jokinen et al., 2017). In WAT of mice, pigs,
and humans, restriction of nutrients causes SIRT1 upregulation,
leads to changes in NAD+ levels and act by deacetylating forkhead
box protein (FOXO), peroxisome proliferator activated receptor
gamma coactivator1 (PGC-1α), PPARγ and Nuclear factor kappa b
(NF-κB). In contrast obesity is linked to lower levels of
SIRT1(Lakhan and Kirchgessner, 2011). For instance, in
comparison to obese women, thin women exhibited over two
times the SIRT1 expression (Pedersen et al., 2008). In WAT of
obese HFD-fed mice and db/db mice SIRT1 expression is low
(Chalkiadaki and Guarente, 2012). Mechanistically, adipogenesis
is boosted when SIRT1 is downregulated in WAT. In contrast,
adipogenesis is suppressed and lipolysis is promoted when
SIRT1 expression in WAT is high (Picard et al., 2004).

Whole-body SIRT1 overexpression protects against genetically-
induced obesity and from age-induced glucose intolerance (Herranz
et al., 2010). Genetic deletion of SIRT1 from adipocytes leads to
increases adiposity, exaggerated insulin resistance, glucose
intolerance, inflammation and predisposes to metabolic
disfunction in mice on short-term HFD (Mayoral et al., 2015).
Less inflammation, improved glucose tolerance, and virtually total
protection against hepatic steatosis are the advantages of
SIRT1 over-expression, indicating that SIRT1 is crucial in
preventing the adverse metabolic effects of obesity (Banks et al.,
2008). Furthermore, SIRT1 activation causes weight loss without a
reduction in calorie intake (Feige et al., 2008; Pfluger et al., 2008).

3T3-L1 preadipocytes from SIRT1-deficient mice differentiate
into tiny, dysfunctional, inflamed, hyperplastic adipocytes with
increased proliferative potential. Remarkably, in SIRT1-silenced
preadipocytes c-Myc is hyperacetylated and activated leading to,
uncontrolled cell proliferation and the development of hyperplastic,
defective adipocytes. Additionally, SIRT1-silenced human
SW872 preadipocytes and proliferating SIRT1 knockdown MEFs
have shown the increased proliferation. Preadipocytes’ inability to
undergo hyperplasia when both SIRT1 and c-Myc expression were
simultaneously reduced suggests that SIRT1 controls adipocyte
hyperplasia through c-Myc regulation. Therefore, the SIRT1/
c-Myc axis controls the quantity of adipocytes and their
functional integrity (Abdesselem et al., 2016). It seems that
c-Myc and SIRT1 form a negative-feedback loop that inhibits
c-Myc-induced cellular transformation. On one hand, c-Myc
binds to the SIRT1 promoter and induces SIRT1 expression.
However, SIRT1 in turn deacetylates and downregulates c-Myc,
resulting in decreased c-Myc stability, reduced target gene
expression and cellular transformation (Yuan et al., 2009). The
functional relationships between SIRT1 and c-Myc in the control
of adipocyte proliferation and differentiation will be intriguing to
further explore.

Another surprising and important functional link has been
described between c-Myc and mammalian target of rapamycin
(mTOR) (Pourdehnad et al., 2013). mTOR regulates eukaryotic
cell growth and metabolism in response to environmental variables
including nutrition and growth factors. It is an important regulator
of lipid metabolism and obesity (Ricoult and Manning, 2013).
mTOR complex 1 (mTORC1) has been implicated in the
regulation of adiposity since the discovery that genetically- or
diet-induced obese mice display elevated activity of this complex
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in adipose tissue. Consequently, either WAT-specific knock-out of
mTORC1 (Polak et al., 2008) or pharmacological
mTORC1 inhibition (Houde et al., 2010) with rapamycin reduces
adiposity and protect mice from diet-induced obesity. Additionally,
mTORC1 is necessary for the maturation of 3T3-L1 preadipocytes
and the activation of pro-lipogenic Sterol Regulated Element-
Binding Protein (SREBP1).

Importantly, moderate, in contrast to full mTORC1 inhibition,
aggravates HFD-induced obesity and adipogenesis raising the
hypothesis that chronic mTORC1 overactivation in adipocytes is
inhibitory to fat accretion and adiposity (Laplante et al., 2012).
Accordingly, mice with constitutive mTORC1 activation in
adipocytes induced by tuberous sclerosis complex (TSC1)
deletion in differentiated, mature adipocytes significantly reduces
visceral adiposity. Mechanistically, this phenomenon can be
connected, at least in part, to a reduced adipocyte size and
number, increased lipolysis, mitochondrial oxidative activity and
browning (Magdalon et al., 2016).

Given the significance of c-Myc and mTOR in the regulation of
growth, the presence of a direct regulatory link between them is
probably crucial. Indeed, c-Myc is a direct repressor of TSC
expression. In turn, TSC loss de-represses c-Myc protein,
creating feed-forward regulatory loop (Schmidt et al., 2009).
Downstream effectors of c-Myc-Cyclin D-CDK4/6- also
phosphorylates and inactivates TSC2, resulting in mTORC1-
activation. Conversely, inhibition of CDK4/6 led to decreased
mTORC1 activity and reduced protein synthesis. Consistent with
this, the anti-proliferative effect of CDK4/6-inhibition was reduced
in cells lacking TSC2 (Romero-Pozuelo et al., 2020). It should be
noted that the relevance of these various mechanisms in the context
of human obesity and obesity-related comorbidities is unclear and
requires further studies to elucidate the full-range of the dynamic
molecular interaction. The possible clinical application of small-
molecule Cyclin D-CDK4/6 inhibitors in metabolic disorders is
another largely unexplored area (Fassl et al., 2022).

A mechanistic link between glucocorticoid signalling and c-Myc
expression has been demonstrated. Dexamethasone, a synthetic
glucocorticoid hormone, is a crucial adipogenic in vitro component
that induces c-Myc transcription (Deisenroth et al., 2014). It appears
that glucocorticoid stimulation is crucial for c-Myc induction in a
concentration-dependent manner. Interestingly, dexamethasone
treatment of 3T3-L1 preadipocytes was previously connected to the
regulation of wingless-type MMTV integration site family (WNT) and
transforming growth factor beta (TGF- β) genes and the induction of
C/EBPα and PPARγ (Pantoja et al., 2008). This shows a molecular
link between glucocorticoid signaling and c-Myc expression.
Glucocorticoids might stimulate the differentiation of ASC into
adipocytes, alter the lipid metabolism through reduced lipogenesis
and increased lipolysis in mature adipocytes. These effects ultimately
increase the adipose cell number, thereby leading to obesity, and
inducing imbalance in the lipid metabolism of adipose tissue, which
contributes to the development of IR (Ayala-Sumuano et al., 2013).

In fact, Cushing’s syndrome-related elevation of endogenous
glucocorticoid cortisol is linked to obesity (Chaudhry and Singh,
2023). In addition, a characteristic side effect of long-term
glucocorticoid therapy is an increase in central adiposity, which
is partly attributed to an increase in hyperplasia inside adipose
depots (Ayala-Sumuano et al., 2013).

These results are particularly intriguing because it has previously
been demonstrated that glucocorticoids can cause lymphoid cell
G1 arrest acting in part via inhibition of c-Myc expression. Similar
effects have been reported in some fibroblastic cells (Ma et al., 2000).
In fact, different cell types preferentially employ different modes of
c-Myc control depending on their physiological status. Additionally,
the cellular and tissue environment controls the functional activities
of glucocorticoids. For instance, glucocorticoids are powerful anti-
inflammatory agents in the immune system, whereas in the
developing lung they are essential for normal maturation. If we
understand the mechanisms of how this tissue specific activity is
achieved, we should be able to develop more targeted therapeutic
interventions with fewer side effects for a wide range of diseases that
are either resistant to current therapy or for which glucocorticoid
therapy produces unacceptable side effects (Feldman, 2009).
Undoubtedly, the interaction between glucocorticoids and c-Myc
is an area that need more study.

Key points

• c-Myc is essential in ASCs adipogenesis.
• c-Myc inhibits the terminal stages of adipocyte differentiation.
• The SIRT1/c-Myc axis regulates both the quantity and
functional integrity of adipocytes.

• Dexamethasone induces the transcriptional activity of c-Myc
in adipocytes.

MASLD- the nexus with obesity

MASLD, formerly known as non-alcoholic fatty liver disease
(NAFLD), is linked to an increased risk of obesity (Rinella et al.,
2023). The key feature of MASLD, steatosis, develops when the rate
of hepatic FA intake from plasma and de novo synthesis is higher
than the rate of FA oxidation and export (as triglycerides within very
low-density lipoproteins (VLDL)) (Polyzos et al., 2019). Massive
lipid accumulation in the liver leads to an imbalance of lipid
metabolism inducing protein unfolding and ER stress,
mitochondrial dysfunction and, ultimately, cell death that
subsequently causes chronic inflammation and extended liver
damage (Parthasarathy et al., 2020; Powell et al., 2021).

In Spain, it is estimated that MASLD affects, at least, 25.8% of
the population aged between 15 and 85 years. The risk of developing
more advanced stages of MASLD increases for patients older than
45 years. Moreover, the societal costs of this epidemics are estimated
between €3.625 and €5.571 million (Higado, 2021).

Patients with MASLD frequently eat large quantities of
processed foods heavy in fat, refined sugars, and carbohydrates,
lead sedentary lifestyles, and engage in little physical activity.
However, in addition to these exogenous or environmental
factors, numerous other factors frequently influence the
progression of MASLD and end-stage carcinogenesis. For
instance, 42% of MASLD patients develop steatotic liver disease
(SLD) and only 2.4%–12.4% finally develop liver cancer (White
et al., 2012). Overall, large variety in the predisposition to develop
MASLD demonstrates that among risk factors, endogenous
(i.e., genetic) factors are particularly important (Guo et al., 2021).
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Recent research from our lab has demonstrated that transgenic
mice, bearing overexpression of c-Myc only in hepatocytes (Alb-
myctg) and fed a standard chow diet are predisposed to moderate
obesity and aberrant hepatic lipid accumulation with ageing
(Nevzorova et al., 2013; Guo et al., 2021).

Gene array analysis of the liver tissue of Alb-myctg mice
consistently showed significant changes in FA metabolism. The
overproduction of FA in c-Myc transgenic hepatocytes serves as
a substrate and an inducer of P-450 (CYP)2E1 microsomal
cytochrome FA oxidation systems (e.g., Cpt1, Adcam), which
results in increased production of reactive oxygen species (ROS)
and oxidative stress. The hepatic parenchyma becomes inflamed and
infiltrated by immune cells triggered by ROS and lipid peroxidation
products. Hepatic stellate cells (HSCs) are further activated by
inflammatory cytokines released by immune cells (Arab et al.,
2018). This prompts HSCs to produce collagen fibres and
extracellular matrix (ECM) deposition in the hepatic
parenchyma, which results in liver fibrosis (Nevzorova et al.,
2013; Guo et al., 2021). Mechanistically, c-Myc overexpression in
hepatocytes, caused by gene amplification or the inflammatory
response to liver injury, initiates PDGF-B expression. The close
proximity of dying PDGF-expressing hepatocytes pre-activates
resident quiescent HSC, and encourages their transdifferentiation
into myofibroblasts that produce collagen (Nevzorova et al., 2016;
Zheng et al., 2017).

The excess FA produced by Alb-myctg liver is exported and
transported to WAT for storage. This was linked to the enhanced
deposition of VLDL particles high in triglycerides in the serum of
middle-aged Alb-myctg animals (Alves-Bezerra and Cohen, 2017).
As a result, compared to control littermates, c-Myc transgenic mice
at 36 weeks of age gain significantly more weight, have higher BMIs,
and have more WATs. Adiposity and low-grade WAT
inflammation, which are demonstrated by the presence of
macrophage crown-like structures (CLS), cause IR and
hyperglycemia in transgenic mice (Bigornia et al., 2012; Zatterale
et al., 2019). IR results in high level of blood glucose, and further
contributes to metabolic disorders in the liver. Altogether, excessive
c-Myc overexpression only in hepatocytes alters the body’s
metabolism and causes moderate obesity, spontaneous
hyperlipidemia, glucose intolerance, and mild steatohepatitis/
fibrosis (Guo et al., 2021). Additionally, in various mouse
MASLD (Fang et al., 2023) and hepatocellular carcinoma (HCC)
models, c-Myc-induced metabolic alterations further increase
hepatocarcinogenesis (Ma et al., 2000). In fact, this closely
resembles human MASLD, where a combination of endogenous
(such as oncogenes) and external (such as dietary habits) factors
work together to promote the development of HCC. As proof of
clinical significance, c-Myc expression is elevated in MASLD
patients (Younes et al., 2022) and MASLD-related HCC
(Freimuth et al., 2010; Guo et al., 2021).

In agreement with several studies (Akinyeke et al., 2013; Shen et al.,
2018; Wang et al., 2021b), we reported (Guo et al., 2021) c-Myc
inhibition by metformin. We demonstrated that Alb-myctg mice on
a chow diet rich in metformin were resistant to obesity, showed modest
improvements in hyperglycemia and dyslipidemia, and had less liver
steatosis and fibrosis. We found that metformin had a strong inhibitory
effect on de novo lipogenesis and particularly on SREBP1 expression in
a Alb-myctg animals. Our observation is also consistent with prior

report that c-Myc orchestrates the induction of lipogenesis, activates its
master regulators SREBP1 and they collaborate to activate FA synthesis,
and drive FA chain elongation from glutamine and glucose.
Importantly, after inhibition of FA synthesis c-Myc-induced
tumorigenesis is blocked and tumors regress in both xenograft and
primary transgenic mouse models, revealing the vulnerability of Myc-
induced tumors to the inhibition of lipogenesis (Gouw et al., 2019).

However, in our experimental conditions despite a notable
improvement in steatohepatitis in Alb-myctg mice treated with
metformin, we were unable to find any significant alterations in
c-Myc-induced hepatic proliferation (Guo et al., 2021). However,
several studies indicate that metformin can lower the risk of cancer
(including HCC) in people with T2DM in a dose-dependent manner
(Hassan et al., 2010; Bo et al., 2012; Chen et al., 2013).

There is also evidence that statins might lower the frequency of
HCC. In fact, statins have anti-inflammatory and immunomodulatory
properties; they prevent the generation of cell growth mediators and
encourage programmed cell death (Islam et al., 2020). It has been
showed (Rao and Rao, 2021) that simvastatin, atorvastatin, and
lovastatin prevent c-Myc activation, which in turn inhibits growth
of cancer cells (Shachaf et al., 2004). MiR-33b, a specific inhibitor of
c-Myc, is oftenmissing in medulloblastomas. Its overexpression causes
c-Myc downregulation. It has been demonstrated that lovastatin
elevated mi-R-33b expression, which in turn inhibited cell
proliferation (Takwi et al., 2012).

Tumour growth in orthotopically xenografted cells is also
inhibited by lovastatin administration. The objective of statins as
a pharmacological modulator of c-Myc via miRNA-based
treatments may benefit from this research. This indicates that
statins can be used as a pharmacological modulator of c-Myc via
miRNAbased therapeutics (Di Bello et al., 2020).

Despite constant exposure to microbial-derived and food
products from the gut, the liver is a crucial immune organ that is
sterile and tolerogenic. One of the largest populations of T cells in
liver are mucosal-associated invariant T (MAIT) cells, an innate
T-cell that may quickly respond to stimulation, start proliferation,
and produce cytokines and lytic molecules (Kurioka et al., 2016).
MAIT cells are essential for the host’s defence against bacterial and
viral infections. c-Myc is required for the proliferation of
MAIT cells. Upon activation, MAIT cells significantly upregulate
c-Myc target proteins, regulating amino acid transport, glycolysis,
and cell division. Obesity has been linked to impaired MAIT cell
proliferation and reduced functional responses due to an impaired
Myc-SLC7A5-glycolysis metabolic axis. Reduced MAIT cell
proliferation in obese persons may increase host sensitivity to
infection and malignancies (Kedia-Mehta et al., 2022).

Key points

• Middle-aged transgenic mice with c-Myc overexpression in
hepatocytes (Alb-myctg) develop mild obesity and abnormal
hepatic lipid accumulation upon standard chow feeding.

• Metformin partly attenuates the spontaneous obesity and
MASLD in Alb-myctg mice.

• c-Myc overexpression is a hallmark of MASLD and MASLD-
related HCC, highlighting the pivotal role it plays in the
development of the disease.
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• c-Myc is required for MAIT cells proliferation and is
dysfunctional in obesity.

β-CELLS of the langerhans islets–the
pancreatic player in obesity-linked T2DM

Obesity-linked T2DM is a disease of encompassing IR in
combination with pancreatic β-cell dysfunction (Abdullah et al.,
2010). The risk of T2DM is 93 times greater in patients with a BMI
over 35 kg/m2 (Barnes, 2011). Obesity is nowadays an epidemic of
unforeseen proportions. In 2000, 9% of people in Spain had T2DM,
while 15% of the population was obese. If the trend continues, 12%
of the nation’s population will have T2DM by 2030 (Huerta et al.,
2013).

In early stages of obesity, β-cells increase their mass and function
to compensate for peripheral IR. However, if the condition becomes
more chronic and severe, the adaptability of β-cell declines, resulting
in a reduction in β-cell mass. TD2M arises if the endocrine pancreas
fails to secrete sufficient insulin to handle the metabolic demands
caused by β-cell secretory disfunction and/or relative decreased β-
cell mass (Chen et al., 2017). The fact that obesity-linked T2DM
develops in only 25%–30% of obese individuals raises the possibility
that a genetic predisposition plays a role in individual susceptibility
(Lingohr et al., 2002).

A dynamic balance between cellular growth and death
determines the number of β-cells required to maintain proper
glucose homeostasis in mammals (Rhodes, 2005; Rosselot et al.,
2021). Pancreatic β-cell mass is increased due to at least three
mechanisms: i) β-cell neogenesis (differentiation from precursor
cells); ii) β-cell proliferation; and iii) β-cell hypertrophy (increased
cell size). In turn, β-cell death, primarily by apoptosis or β -cell
atrophy (decreased cell size), reduces the number of β-cell (Bonner-
Weir, 2000; Ackermann and Gannon, 2007; Saisho et al., 2013).

The signal transduction pathways controlling the proliferation
and survival of β-cells hold particular significance (Lingohr et al.,
2002). c-Myc seems to have an important physiological impact on
these processes (Jonas et al., 2001). In β-cells, c-Myc is typically
expressed at very low basic levels. However, in response to glucose, it
may transiently and moderately rise, promoting the replication of β-
cells (G1/S transition). The proliferative silence of β-cells can be
successfully overcome by the ectopic expression of c-Myc. Even in
the absence of replication, c-Myc plays a significant role in cell
growth (size) (Collier et al., 2003). Therefore, c-Myc transiently and
moderately increases during the growth of β-cells, acting as a
metabolic regulator (Karslioglu et al., 2011).

Interestingly, plasma insulin does not induce c-Myc in
pancreatic islets. Exogenous insulin added to primary rat β-cells
failed to alter c-Myc expression, as demonstrated by numerous
in vitro and in vivo experiments (Elouil et al., 2005). Additionally,
the inhibitor clonidine reduces insulin release but does not stop the
rise in c-Myc mRNA caused by glucose (Plant et al., 1991).
Therefore, during hyperglycemia, glucose rather than insulin
induces elevated c-Myc levels.

Chronic hyperglycemia, or high blood glucose levels, is the
definition of T2DM. Consequently, β-cell exposed to high glucose
concentrations in diabetic conditions. Moreover, pancreatic β-cells
have substantially greater glucose concentrations than many other

cell types because they are surrounded by a dense network of
fenestrated capillaries that facilitates better blood glucose
exchange (Veld and Marichal, 2010). Thus, c-Myc expression in
β-cells in vivo is significantly impacted by hyperglycemia (Rosselot
et al., 2021).

Short-term HFD feeding in young mice increases body weight,
IR and glucose intolerance. After HFD feeding, c-Myc protein
abundance in β-cell is increased and compensatory β-cell
proliferation, expansion and cell function are induced.
Mechanistically, c-Myc upregulation in pancreatic islets is
mediated by a PKCζ, ERK1/2, mTOR, and PP2A pathway and
target genes mediate cell cycle pathways (Rosselot et al., 2019).
Consistently, glucose intolerance and hypoinsulinemia after short
HFD feeding in mice with c-Myc deficiency in β-cells indicates that
c-Myc is crucial for the adaptive response of islets to acute metabolic
insults (Rosselot et al., 2021).

Due to restrictions in cell replication, adults’ ability to increase
their β-cell mass is limited. In contrast, the proliferation of neonatal
functionally immature β-cells is robust. Juvenile β-cells undergo
functional maturation in the early postnatal period and develop the
glucose-responsive, insulin secretory phenotype. Importantly,
c-Myc regulates β-cell proliferation and immaturity. Rodent
juvenile islets have elevated levels of c-Myc, which promotes the
rapid proliferation of neonatal β-cells. The number of proliferating
cells in postnatal stages decreases when endogenous c-Myc in β-cells
is deleted in vivo (Rosselot et al., 2021). Consistently, stabilisation of
c-Myc not only encourages replication but also directs β-cells
towards functionally immature phenotypes, simulating postnatal
β-cell functionality. Ablation of c-Myc in neonatal β-cells
consistently results in impaired cell cycle progression and
proliferation, and reduced functional β-cell mass (Puri et al.,
2018). In vitro studies using rodent and human cell lines, have
revealed that the bidirectional shift between fully functional, mature,
non-proliferative β-cells and proliferative, functionally immature β-
cells is reversible (Scharfmann et al., 2014). Overall, the ability of β-
cells to replicate impairs its function. However, if just a small
percentage of cells replicate, as happens in adult islets, transitory
loss of function in β-cells is adequate. When a larger fraction of β-
cell divides, overall β-cell function deteriorates and the insulin
processing and release are dysregulated (Liu and Hebrok, 2017;
Puri et al., 2018). Consistently, the analysis of the active chromatin
marks on human genomes confirms that c-Myc activity is increased
at younger ages (Puri et al., 2018).

In both humans and rodents, the ability of β-cells to replicate
decreases with age (Tschen et al., 2009). Ageing reduces both the
adaptive responses to mitogens like HFD as well as the basic
proliferative mitogenic response of β-cell. In contrast to young
mice, older animals fed with HFD had diminished c-Myc action
in their islets. Mechanistically, epigenetic-mediated c-Myc resistance
restricts, at least partially, the adaptive proliferation of β-cell in the
context of increased insulin demand during aging (Rosselot et al.,
2021). “c-Myc resistance” in metabolically stressed aged β-cells can
possibly explain why aging population are generally more prone to
developing T2DM (Rosselot et al., 2021).

Overall, c-Myc is essential for the regeneration of for β-cells
under basal or metabolically stressed conditions. From a therapeutic
perspective, agents that promote human β-cell replication may be
helpful if such activity is reversible. This, of course, provoke the
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interest for c-Myc as potential therapeutic target in regenerative
therapy for diabetic patients.

Mice with constitutive or inducible transgenic overexpression of
c-Myc in β-cells were created by different groups (Pelengaris and
Khan, 2001; Laybutt et al., 2002; Pelengaris et al., 2002; Cano et al.,
2008; Murphy et al., 2008) to clarify whether c-Myc might be able to
stimulate proliferation with therapeutic potential. Although
remarkable β-cell proliferation was induced by c-Myc
overexpression, this proliferation was very apparent, brief, and
obviously carcinogenic, making these results disappointing.
Moreover, β-cell proliferation was associated by immediate β-cell
dedifferentiation and/or death, leading to diabetes. Indeed, in pIns-
c-MycERTAM mice upon tamoxifen stimulation β-cell destruction
was so extensive that these transgenic mice were even used as a
model of complete β-cell ablation (Cano et al., 2008). In islets from
c-Myc-overexpressing mice, gene expression analysis revealed
stabilisation of p53 and activation of the intrinsic apoptotic and
DNA-damage checkpoint mechanisms (Cheung et al., 2010; Robson
et al., 2011).

Overall, studies with transgenic mice show that high (estimated
in the 20- to 50-fold range) and persistent overexpression of c-Myc
in β-cells results in cell dysfunction and death. Certainly, c-Myc
plays a critical role in glucotoxicity-induced β-cell death in chronic
hyperglycemia and diabetes (Karslioglu et al., 2011).

Despite the fact that excessive c-Myc expression is harmful for β-
cells, low physiological levels of Myc are necessary for normal β-cell
functionality. Recent research has demonstrated that the usage of
harmine (β-carboline alkaloid) mildly upregulates c-Myc expression
and stimulates adult human β -cell cycle entry at rates that are in the
physiological and potentially therapeutic range (Wang et al., 2015).
In addition, harmine combined with GLP-1R agonists (Ackeifi et al.,
2020) or TGFß inhibitors dramatically increases human β-cell
proliferation (5%–8%), indicating that combination treatments
targeting multiple signalling pathways may be more effective for
islet regeneration in T2DM patients (Wang et al., 2019). Further
approaches to optimize the use of harmine (Title et al., 2022). and
the development of methods to specifically target β-cells, present an
important translational challenge (Rosselot et al., 2021).

The great majority of research on β-cell proliferation was
conducted on rodents, which has increased our understanding of
murine rather than human β-cell replication. However, there are
significant differences between human and rodent islets in terms of
their function, composition, structure, and in proliferative capacity.
These differences highlight the need to focus future research on
human islets proliferation and partially explain whymost substances
that have been shown to increase β-cell proliferation in rodent islets
have not been successful in humans (Wang et al., 2021a).

Key points

• Glucose rapidly stimulates c-Myc expression in β-cells.
• c-Myc is an inverse dual regulator of β-cell maturation and
proliferation.

• Proliferation of β-cell is induced by mild physiologic
upregulation of c-Myc.

• High and persistent c-Myc overexpression results in β-cells
dysfunction and cell death.

Intestine–the gatekeeper of diet-induced
obesity

While unhealthy diets and sedentary lifestyles synergistically
with polygenetic risks represent major causes of obesity, a big
plethora of data suggest that the intestine also plays a part as a
crucial organ participating in glucose and lipid metabolism (Hur
and Lee, 2015). In fact, the gastrointestinal tract is the first organ to
be exposed to dietary components. Unhealthy diets interact with gut
microbiota (GM) to promote early intestinal inflammation which
favor obesity and IR. The altered epithelial permeability, bacterial
products translocation, upregulation of proinflammatory cytokines
and intestinal endocrine hormones are the main pathophysiological
mechanisms (Ding and Lund, 2011).

Epithelium in the gastrointestinal tract has a precise
architecture, formed by invaginations, or crypts, and finger-like
lumenal protrusions, or villi. These ‘‘folds’’ create an enormous
surface area, allowing efficient nutrient absorption from the
intestinal space. The self-renewing intestinal stem cells (ISCs) are
located in crypts and intervilli areas and continuously produce a
population of rapidly proliferating progenitor cells that migrate
towards the intestinal lumen. As they migrate, cells undergo cell
cycle arrest and commit to different cell lineages by terminal
differentiation (Marshman et al., 2002). In the small intestine
and colon, cells develop into three functional cell types: 1. the
predominant enterocyte; 2. the mucus-secreting Goblet cells and;
3. the peptide hormone secreting enteroendocrine cells. Moreover,
cells that descend to the base of the crypt in the small intestine
convert into the Paneth cells, the fourth cell type. Differentiated cells
carry out their specific tasks and then after induction of apoptosis,
discarded into the lumen (Allaire et al., 2019).

c-Myc plays an important role in regulating homeostasis,
proliferation, differentiation, and transformation in the adult gut
(Marshman et al., 2002; Sancho et al., 2003). All intestinal epithelial
cells (IEC) of the crypt-villus unit, with the exception of Paneth cells,
express c-Myc. Cell cycle arrest and the upregulation of the cell cycle
inhibitor inhibitor p21cip/waf coincide with the differentiation of
proliferative IEC, which is also accompanied by a decrease in
c-Myc expression (Pinto et al., 2003). In gastric and colonic
tissue c-Myc overexpression is associated with inflammation as
well as with potentially neoplastic hyperproliferative states.
Overall, c-Myc is crucial for maintaining control of intestinal
crypt homeostasis and cellular proliferation. Wnt signalling
pathway is a most likely upstream regulator that controls these
processes (Bettess et al., 2005). Inhibition of the Wnt pathway in the
intestinal mucosa of mice, via overexpression of Dkk1 inhibitor
leads to diminished number of crypts, concomitant with a loss of cell
proliferation (Kuhnert et al., 2004). In turn, the loss of c-Myc
expression and a rise in p21cip/waf expression are linked to a
reduction in proliferation (Pinto et al., 2003).

In adult mice, c-Myc is dispensable for homeostasis and IEC
proliferation but essential for the development of intestinal crypts.
Tamoxifen-inducible depletion of c-Myc in the mucosa of adult and
juvenile mice at the onset of crypt morphogenesis causes the failure
to form normal numbers of crypts in the small intestine. Yet, mice
are able to recover from this insult and form and maintain a normal
IEC and without compensation by n-Myc or l-Myc (Bettess et al.,
2005). Knock-out mice of c-Myc specifically in IEC under the
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control of a cre promoter (c-MycΔIE) die before adulthood. However,
c-MycΔIE/+ heterozygous mice, with reduced c-Myc expression, are
complete viable, metabolically fit and display normal intestinal
morphology (Luo et al., 2021).

HFD overnutrition, induces IEC proliferation by stabilizing β-
catenin. Activation of the β-catenin pathway stimulates the
expression of downstream genes including cyclin D, that, in turn,
prompts IEC proliferation, further contributing to the increased
absorption of nutrient and obesity development (Petit et al., 2007;
Mao et al., 2013). c-Myc is a β-catenin target gene and key TF
regulating the cell cycle. Hence, a significant induction of intestinal
c-Myc expression was shown in C57BL/6N mice fed with HFD (Luo
et al., 2021). Higher c-Myc expression was also seen in the distal
ileum biopsies of the obese patients, which is consistent with mouse
results. Additionally, c-Myc expression had a positive correlation
with BMI and ALT levels in serum (Luo et al., 2021).

Importantly, c-MycΔIE/+ heterozygous mice are protected against
HFD-induced obesity, IR, hepatic steatosis and fibrosis.
Mechanistically, reduced expression of c-Myc in the intestine
increases ChREBP and GLUT2/SGLT1 expression, thus
promoting glucagon-like peptide-1 (GLP-1) production and
secretion. GLP-1 is one of the crucial gut-derived peptide
hormones that stimulates insulin secretion and thereby controls
glucose homeostasis (Andersen et al., 2018). Increased GLP-1
synthesis in c-MycΔIE/+ mice improves IR and boosts insulin
release in response to glucose (Luo et al., 2021).

Furthermore, intestinal c-Myc enhances levels of ceramides by
targeting Cers4, a crucial enzyme of de novo ceramides synthesis
(Luo et al., 2021). Ceramides are bioactive lipids that have an impact
on inflammation, apoptosis, oxidative and ER stress, IR, and energy
metabolism. There are three different ways to synthesize ceramides:
the de novo pathway, the sphingomyelinase pathway and the salvage
pathway (Aburasayn et al., 2016). Through genetic or
pharmacological modification of ceramide biosynthesis and
catabolism in mouse models, a crucial role for ceramides in
metabolic disorders was demonstrated (Chaurasia et al., 2016).
Mice with decreased intestinal c-Myc expression are resistant to
dietary-induced metabolic disorders, and this resistance has a strong
correlation with lower blood ceramide levels (Luo et al., 2021).

Whether the c-Myc–GLP-1 pathway and the c-Myc–ceramide
pathway in the intestine co-operate with each other is unknown and
requires further investigation. Besides, the roles of intestinal cell-
type-specific c-Myc in metabolic diseases are worth investigating
thoroughly in the future.

Interestingly, oral administration of 10058-F4, a c-Myc-Max
interaction inhibitor, to obese mice greatly reduces obesity, IR,
steatosis, and liver fibrosis. The metabolic benefits are mostly
mediated by changes in GLP-1 and ceramide levels. Taking into
account the absence of the current therapy for MASLD, the
intestinal c-Myc pathway may be an attractive new area of
investigation. Given the lack of a current MASLD treatment,
research into the intestinal c-Myc pathway would be an
appealing new field (Luo et al., 2021).

The dynamic equilibrium between ISC self-renewal and
differentiation is crucial for maintaining intestinal homeostasis.
Infiltration of macrophages and other immune cells as well as a
persistent low-grade inflammation are linked to obesity.
Macrophages infiltrating in the colonic mucosa contribute

directly to the production of colonic TNF-α. Additionally, TNF-α
secreted by the immune cells in the adipose tissue is also found
circulating in the colonic mucosa. TNF-α can induce the
phosphorylation of GSK-3 and reduce the Apc complex’s ability
to phosphorylate and degrade β-catenin. In turn, this triggers the
production of the Wnt target genes c-Myc and cyclin D1, which in
turn promotes the growth of ISCs and the development of obesity-
related colorectal cancer (Liu et al., 2012). Although the particular
mechanisms causing the low-grade inflammation caused by obesity
are not entirely understood, increased palm oil consumption may be
one of the initial causes of gastrointestinal alterations (Ghezzal et al.,
2020).

In addition to being a complex of various organs and systems,
the human body also carries more than 500–1000 different species of
microbes. Numerous studies have been lately done on the
complexity and variety of the GM in relation to human health
and disorders. Growing evidences have underlined the importance
of GM dysbiosis for the development and progression of metabolic
diseases and obesity-related carcinogenesis (Kobyliak et al., 2016).

A thinner mucous layer, uneven localization of tight junction
proteins (TJP), an abnormal immunological response involving
immunoglobulin A (IgA), and antimicrobial peptides like
lipopolysaccharides (LPS) can all contribute to intestinal disbiosis
in obese people. Collectively, these defects cause LPS leakage, which
eventually leads to TLR4/MyD88 and NF-κB activation and
inflammation (Singh et al., 2023).

Numerous tumorigenic pathways, including members of the STAT
family (particularly STAT3), can be stimulated by inflammation.
STAT3 enhances the expression of anti-apoptotic genes, which lead
to cellular survival and growth by promoting cyclin D family members
and c-Myc. Therefore, GM obesity-related alterations may accelerate
the development of colorectal cancer (CRC) by triggering inflammatory
pathways (Kolb et al., 2016; Singh et al., 2023).

The identification of specific microbial taxa associated with
obesity and T2DM still remains difficult. However, specific
bacteria may be essential in triggering metabolic inflammation
during the course of a disease. For example, HFD results in the
enrichment of the Enterobacteriaceae family, which is
predominately represented by Escherichia coli (E. coli), and has a
strong association with poor glucose homeostasis (Ju et al., 2023).
Certain E. coli strains with the polyketone acid synthetase (pks)
island have the ability to produce the colibactin toxin and cause a
proliferative effect linked to colorectal cancer (CRC). c-Myc is
activated in pks + E. coli-infected CRC cells, which causes miR-
20a-5p upregulation. Upregulation of miR-20a-5p can subsequently
cause the translational silencing of target SENP1. SENP1 is a crucial
enzyme that prevents the modification of p53 patterns, which is a
key regulator of cellular senescence. The senescence of IEC in pks +
E. coli–infected CRC cells stimulates the secretion of growth factors,
essential for the initiation of tumour growth (Xing et al., 2022).

The secretion of different metabolites plays a major role in
mediating the beneficial effects of GM. Acetate, propionate, and
butyrate are three small organic metabolites called short-chain fatty
acids (SCFAs) that are formed when resistant starch and dietary
fibres are fermented. SCFA showed a variety of beneficial effects on
immunological responses, energy metabolism, and intestinal
homeostasis. Obesity and metabolic disorders have been
associated with an abnormal SCFAs production. Butyrate is one
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of the SCFAs that has lately gained attention due to its ability to
alleviate obesity and its associated comorbidities. Lower butyrate-
producing microbial abundance in humans has been linked to a
higher risk of metabolic disorders, demonstrating its potency in
obesity prevention (Coppola et al., 2021). Interestingly, butyrate
rapidly suppresses c-Myc levels in human CRC cells, which, in turn,
reduces the levels of the miR-17–92 cluster miRNAs and decreases
angiogenesis, metastasis, and cell proliferation (Hu et al., 2015).
These indicate that butyrate may decrease the progression of CRC by
altering the expression of tumour miRNAs, which causes changes in
a number of critical signalling pathways, including c-Myc (Yuan and
Subramanian, 2019).

Key points

• c-Myc is crucial for the control of homeostasis and the
proliferation of IEC.

• Improvements in HFD-induced obesity, IR, and
steatohepatitis are seen in mice with intestine-specific
reduction of c-Myc.

• Obesity-associated changes of GM may activate c-Myc and
cause progression of the colorectal cancer.

Conclusion and future perspectives

Nowadays, due to its alarming prevalence, obesity has emerged as
the most dangerous nutritional disease and a significant health risk for
people. In order to regulate the occurrence of this disease, it is
necessary to control the nutritional habits and avoid sedentary life

style. Yet the development of obesity is inseparable from epigenetics,
which together with genetic factors play a pivotal role in its
pathogenesis. Various TFs are critical participants in obesity and
associated metabolic disorders such as T2DM and MASLD (Huang
et al., 2018). In the present review, we show, that c-Myc is an
important player in the multisystemic pathogenesis of obesity and
its dysregulation is involved in inflammatory, metabolic, proliferative
disorders inmultiple organs. c-Myc is a typical moonlighting protein -
a protein with a great number of functions that is unrelated and
independent to each other. In WAT, liver, intestine, and pancreas, it
controls the expression of genes involved in cell proliferation and
growth, apoptosis, organogenesis, and metabolism. Additionally, it
influences the nucleus’ general structure, gene and microRNA
expression, and genomic amplification (Lv and Lei, 2021).

Consequently, targeting c-Myc may open up novel strategies to
combat obesity. However, the inactivation of amaster regulator protein
essential to normal cell proliferation and survival is thought to have
substantial adverse effects, making c-Myc a dangerous therapeutic
target (Dang et al., 2017). For instance, c-Myc is essential for potential
regeneration strategies of the β-cells under baseline or metabolically
stressed conditions. Furthermore, it is crucial for controlling intestinal
cellular proliferation. All of this points to the urgent need for targeting
c-Myc activity that is more cell-type specific, and taking into account
the negative effects of its aberrant expression.

Over the last decades, several approaches have attempted to
suppress c-Myc directly or indirectly at all levels of its regulation.
Omomyc, for instance, has demonstrated promising properties in pre-
clinical testing; it can induce apoptosis (Soucek et al., 2002) in cancer
cells but not in normal cells, prevent proliferation and invasion
(Beaulieu et al., 2019), stop the communication between the tumour
and its microenvironment and recruit immune cells to the tumour site

FIGURE 1
The complex role of moonlighting c-Myc for the development of obesity. Alterations in multiple c-Myc-related pathways in white adipose tissue
(WAT), pancreas, liver and intestine in obesity. Created with BioRender.
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(Demma et al., 2019; Madden et al., 2021). Omomyc is a 90 amino acid
Myc mini-mutant that comprises the bHLH-LZ domain and competes
with c-Myc, n-Myc and l-Myc for binding to DNA and preventing the
transcription of the target genes (Soucek et al., 1998). In vivoOmomyc-
mediated c-Myc inhibition resulted in sustained tumour regression and
a strong anti-proliferative effect, with no negative effects on healthy
tissue. Despite its short effective half-life, a phase I/II clinical trial started
in 2021makingOmomyc (OMO-103) the first direct c-Myc inhibitor to
reach clinical phase studies in patients with advanced solid tumors
including non-small cell lung, colorectal and triple-negative breast
cancer (Demma et al., 2019). Altogether, Omomyc taught us that
c-Myc inhibition is a practicable approach and a safe and effective
therapeutic strategy (Masso-Valles and Soucek, 2020). In a future,
Omomyc and related polypeptide inhibitors of c-Myc function can
potentially be a viable alternative therapeutic strategy for a wide variety
of c-Myc-related disorders in obesity (Madden et al., 2021).

Another significant aspect is that obesity is a risk factor for a
number of serious malignancies, such as CRC, HCC, and pancreatic
cancer. In addition to altered FA metabolism, ECM remodelling, IR,
GM dysbiosis, changed microenvironment, poor progenitor
maturation, and chronic inflammation, the link between obesity
and the development of cancer is not fully understood (Pati et al.,
2023). As we summarized in this review, c-Myc actually plays a crucial
part in each of these processes, contributing to multisystemic
pathogenesis of obesity (Figure 1). Although the specific
mechanisms for c-Myc and high risk of obesity and cancer are
elusive, the correlation is definite. Hence, the evaluation of the
molecular mechanisms underlying the dangerous liaisons between
c-Myc, obesity, and obesity-associated cancers are of high priority for
the identification of novel therapeutic targets. Importantly, c-Myc can
be used as a diagnostic target to identify the “high risk” obese patients
who require serious consideration for preventative measures like
routine screening and personalized counselling.
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Glossary

ASCs Adipose stem cells

ATP Adenosine triphosphate

Alb-myctg transgenic mice with overexpression of c-Myc in hepatocytes
under the control of albumin promoter

BMI Body mass index

c-MycΔIE Knockout mice of c-Myc specifically in intestinal epithelial cells
under the control of a cre promoter

C/EBP CCAAT/enhancer binding protein

CRC Colorectal cancer

CLS Crown-like structures

CDK Cyclin-dependent kinase

NAFLD Non-alcoholic fatty liver disease

ECM Extracellular matrix

ER stress Endoplasmic reticulum stress

FA Fatty acids

GLP-1 Glucagon-like peptide-1

GM Gut microbiota

HSCs Hepatic stellate cells

HCC Hepatocellular carcinoma

HFD High fat diet

IR Insulin resistance

IEC Intestinal epithelial cells

ISCs Intestinal stem cells

LPS Lipopolysaccharides

mTORC Mammalian target of rapamycin complex

MAIT Mucosal-associated invariant T

MASLD metabolic dysfunction-associated steatotic liver disease

NF-κB Nuclear factor kappa b

PPARγ2 Peroxisome proliferator-activated receptor γ2

PGC-1 Peroxisome proliferator-activated receptor gamma coactivator 1

pIns-c-MycERTAM Tamoxifen inducible transgenic mice with overexpression of
c-myc in pancreatic β cells under the control of an insulin
promoter

Pks Polyketone acid synthetase

ROS Reactive oxygen species

SCFAs Short-chain fatty acids

SREBP1 Sterol Regulated Element-Binding Protein

SIRT1 Sirtuin-1

SLD Steatotic liver disease

TGF-β Transforming growth factor beta

TJP Tight junction proteins

TF Transcription factor

TG Triglycerides

TSC1 Tuberous sclerosis complex

T2DM Type 2 diabetes mellitus

VLDL Very-low-density lipoprotein

WNT wingless-type MMTV integration site family

WAT White adipose tissue

WHO World Health Organization
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NOC1 is a direct MYC target, and
its protein interactome dissects its
activity in controlling nucleolar
function

Valeria Manara1†, Marco Radoani1†, Romina Belli1†,
Daniele Peroni1†, Francesca Destefanis1,2, Luca Angheben1,
Gabriele Tome1, Toma Tebaldi1,3 and Paola Bellosta1,4*
1Department of Computational, Cellular, Integrative Biology CIBIO, University of Trento, Trento, Italy,
2Institute of Evolutionary Biology CSIC Universitat Pompeu Fabra, Barcelona, Spain, 3Department of
Internal Medicine, Yale School of Medicine, NewHaven, CT, United States, 4Department of Medicine, NYU
Langone Medical Center, New York, NY, United States

The nucleolus is a subnuclear compartment critical in ribosome biogenesis and
cellular stress responses. These mechanisms are governed by a complex interplay
of proteins, including NOC1, a member of the NOC family of nucleolar proteins
responsible for controlling rRNA processing and ribosomal maturation. This study
reveals a novel relationship between NOC1 and MYC transcription factor, known
for its crucial role in controlling ribosomal biogenesis, cell growth, and
proliferation. Here, we demonstrate that NOC1 functions as a direct target of
MYC, as it is transcriptionally induced through a functional MYC-binding E-box
sequence in the NOC1 promoter region. Furthermore, protein interactome
analysis reveals that NOC1-complex includes the nucleolar proteins NOC2 and
NOC3 and other nucleolar components such as Nucleostemin1 Ns1 transporters
of ribosomal subunits and components involved in rRNA processing and
maturation. In response to MYC, NOC1 expression and localization within the
nucleolus significantly increase, suggesting a direct functional link between MYC
activity and NOC1 function. Notably, NOC1 over-expression leads to the
formation of large nuclear granules and enlarged nucleoli, which co-localize
with nucleolar fibrillarin and Ns1. Additionally, we demonstrate that
NOC1 expression is necessary for Ns1 nucleolar localization, suggesting a role
for NOC1 in maintaining nucleolar structure. Finally, the co-expression of
NOC1 and MYC enhances nucleolus size and maintains their co-localization,
outlining another aspect of the cooperation between NOC1 and MYC in nucleolar
dynamics. This study also reveals an enrichment with NOC1 with few proteins
involved in RNA processing, modification, and splicing. Moreover, proteins such as
Ythdc1, Flacc, and splenito are known to mediate N6-methyladenosine (m6A)
methylation of mRNAs in nuclear export, revealing NOC1’s potential involvement
in coordinating RNA splicing and nuclear mRNA export. In summary, we
uncovered novel roles for NOC1 in nucleolar homeostasis and established its
direct connection with MYC in the network governing nucleolar structure and
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function. These findings also highlight NOC1’s interaction with proteins relevant to
specific RNA functions, suggesting a broader role in addition to its control of
nucleolar homeostasis and providing new insight that can be further investigated.

KEYWORDS

NOC1, MYC, E-box, nucleolus, mass spectrometry, interactome

1 Introduction

MYC is a transcription factor crucial in the regulation of
factors controlling ribosomal biogenesis and protein synthesis,
which occurs primarily through its ability to regulate the
transcription of genes required for ribosome assembly and
function (van Riggelen et al., 2010; Campbell and White, 2014;
Destefanis et al., 2020). MYC promotes the transcription of its
target genes, such as ribosomal proteins and co-factors, by
binding to specific DNA sequences known as E-boxes (5′-
CACGTG-3′) within their promoter region (Fernandez et al.,
2003; Orian et al., 2003; Hulf et al., 2005). MYC also promotes the
transcription of ribosomal RNA (rRNA) genes, which are
transcribed by RNA polymerase I to generate the precursor
rRNA transcripts. Since ribosomes are central to protein
synthesis and cell growth, MYC’s role in promoting ribosomal
biogenesis largely contributes to protein synthesis, necessary for
cell growth and proliferation, a function that is conserved both in
flies and vertebrates (Schlosser et al., 2003; Arabi et al., 2005;
Grandori et al., 2005; Grewal et al., 2005; Van Riggelen et al., 2010;
Destefanis et al., 2020).

NOC1 is a nucleolar protein that, together with NOC2 and
NOC3, plays a critical role in the maturation of rRNA and the
transport of the pre-ribosomal subunits (Sailer et al., 2022; Dorner
et al., 2023). NOC1 in yeast works as a heterodimer with
NOC2 during the initial maturation of the ribosomal RNA
(rRNA) and in the transport of the pre-60S ribosomal subunit,
a process that is completed by NOC2/NOC3 heterodimers
(Milkereit et al., 2001). Studies on the distribution of affinity-
tagged NOC1 and, more recently, proteomics and crosslinking
coupled to mass spectrometry, confirmed the presence of NOC1 in
the early pre-60S complex (Sailer et al., 2022; Dorner et al., 2023),
while cryo-EM studies showed its role in the formation of
heterodimers with NOC2, essential for the quality-control
checkpoint of the maturation of the large ribosome subunit
(Sanghai et al., 2023).

We recently characterized NOC1 function in flies and showed its
role in controlling polysome abundance, rRNA maturation, protein
synthesis, and cell survival (Destefanis et al., 2022). Furthermore,
lowering NOC1 levels in different contexts, such as whole animals or
specific organs, results in various developmental and functional
impairments (Destefanis et al., 2022). Our initial transcriptomic
analysis revealed NOC1 as a potential direct target of MYC (Hulf
et al., 2005); thus, we further analyzed this critical function in the
context of ribosomal biosynthesis directed by MYC.

Here, we show that NOC1 is a direct transcriptional target of
MYC, and its activation is mediated by a functional E-box sequence
located in the promoter region of theNOC1 gene.We then used HA-
NOC1 as bait to perform Mass Spectrometry (MS) analysis to
determine the NOC1 interactome to characterize NOC1 function

and connect its activity with biological processes, mainly focusing on
components that control nucleolar homeostasis.

Bioinformatic analysis using the STRING database identified
clusters of NOC1 protein interactors, and the most significant was
on ribosome biogenesis. These data showed a significative
enrichment of NOC2 and NOC3 (p < 0.05) strongly aligning
with data published previously in yeast (Milkereit et al., 2001;
Hierlmeier et al., 2013), and a significant cluster of nucleolar
proteins, such as fibrillarin (fib) and nucleostemin 1 (Ns1), and
others, like Novel nucleolar proteins (Non1 and Non3) and
mushroom body miniature (mbm), involved in the 60S subunit
biogenesis. Moreover, we found an enrichment of nucleolar and
nuclear proteins, like Nnp (Hulf et al., 2005), and peter pan (ppan)
(Migeon et al., 1999; Zielke et al., 2022), involved in pre-rRNAs
production and RNA maturation, and modulo (mod) (Perrin et al.,
2003), that were previously identified as direct targets of MYC,
emphasizing the relation between NOC1 and MYC.

In addition, these studies also identified enrichment of the
nuclear m6A “reader” YTH domain RNA Binding Protein C1
(Ythdc1) (Roundtree et al., 2017), Flacc (Fl(2)d-associated
protein), and spenito (nito) (Knuckles et al., 2018). Remarkably,
these proteins are part of the complex that mediates the N6-
Methyladenosine methylation of mRNAs for their nuclear export
(Knuckles et al., 2018; Shi et al., 2021). We could outline a novel
function for the MYC-NOC1 axis in regulating mRNA m6A
modification and transport.

Finally, the observation that NOC1 controls the nucleolar
localization of Ns1, together with those indicating that MYC
enhances NOC1-induced large granular structures in the nucleus,
further sustains the functional relationship between MYC and
NOC1 in maintaining nucleolar homeostasis.

In summary, these findings will provide significant insights into
the role of NOC1 and its interactome that may contribute to the
control of nucleolar functions, supporting the crucial role of MYC in
regulating growth, proliferation, and protein synthesis.

2 Materials and methods

2.1 Fly stocks and husbandry

Fly cultures and crosses were raised at 25°C on a standard
medium containing 9 g/L agar (ZN5 B and V), 75 g/L corn flour,
60 g/L white sugar, 30 g/L brewers’ yeast (Fisher Scientific), 50 g/L
fresh yeast and 50 mL/L molasses (Naturitas), along with nipagin
and propionic acid (Fisher). The lines used were obtained by: UAS-
HA-MYC (Bellosta et al., 2005); NOC1-GFP (B51967) UAS-NOC1-
HA (Flyorf-CH)NOC1-RNAi (B25992).UAS-Ns1-GFP is a gift from
Patrick J. Di Mario University of Louisiana, LA). hsp70-Gal4 gift
from Florenci Serras (University of Barcelona, Spain).
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2.2 Cloning NOC1 E-box and molecular
biology

Site-directed mutagenesis (SDM) was carried out using the
following primers for the mutant E-box 5′ TTC GGC ACG AGT
TTG AAT AGA ATT CCG AGT TGT TTC TAA CGC CG; 5’ CGG
CGT TAG AAA CAA CTC GGA ATT CTA TTC AAA CTC GTG
CCG AA; following instructions from the SDM kit (Promega).
Promoter elements used in luciferase reporter expression analyses
were cloned into the pGL3-basic vector (Promega).

2.3 Cell culture and luciferase assays

S2 Drosophila cells were propagated in Schneider’s Drosophila
medium (Gibco), supplemented with 10% fetal bovine serum, at
24°C. S2 cell transfections were carried out using Cellfectin
(Invitrogen). NOC1 reporter constructs were added at 1 µg per
106 cells; tubulin- Renilla luciferase control DNA were co-
transfected at 0.1 µg per 106 cells and incubated with a
transfection mix for 12 h. Cells were harvested 24 or 60 h
posttransfection. Relative gene expression was determined using
the Dual-Luciferase Reporter assay system (Promega) on a
luminometer.

2.4 RNA extraction and quantitative RT-PCR
analysis

Total RNA was extracted from 8 whole larvae using the
QIAGEN RNeasy Mini Kit (Qiagen) according to the
manufacturer’s instructions. Extracted RNAs were quantified
using an ultraviolet (UV) spectrophotometer, and RNA integrity
was confirmed with ethidium bromide staining. 1 μg total RNA from
each genotype was reverse transcribed into cDNA using SuperScript
IV MILOMaster Mix (Invitrogen). The obtained cDNA was used as
the template for quantitative real-time PCR (qRT-PCR) using qPCR
Mastermix (Promega). mRNAs expression levels were normalized to
actin-5C mRNA used as the internal control. The relative level for
each gene was calculated using the 2-DDCt method (Hulf et al.,
2005) and reported as arbitrary units. Three independent
experiments were performed and cDNAs were used in triplicate.
The following primers were used for qRT-PCR:Actin5c: 5′CAGATC
ATGTTCGAGACCTTCAAC; 5′ACGACCGGAGGCGTACAG
(Parisi et al., 2013).

Fibrillarin: 5′ACGACAGTCTCGCATGTGTC; 5′ATGCGG
TACTTGTGTGGATG (this work).

MYC: 5′CATAACGTCGACTTGCGTG; 5′GAAGCTCCCTGC
TGATTTGC (Parisi et al., 2013).

NOC1: 5′CTATACGCTCCACCGCACAT; 5′GTCGCTACC
GAACTTGTCCA (Destefanis et al., 2022).

2.5 Protein extractions and Western blotting

Five larvae for each genotype were lysed in 200 μL of lysis buffer
(50 mM Hepes/pH 7.4, 250 mM NaCl, 1 mM (EDTA), 1.5% Triton
X-100 containing a cocktail of phosphatases inhibitors (PhosSTOP

04906837001, Merck Life Science) and proteases inhibitors (Roche,
cOmplete Merck Life Science). Samples were sonicated three times
for 10 s using a Branson Ultrasonic Sonifier 250 (Branson, Darbury,
CA, United States) equipped with a microtip set at 25% power.
Tissue and cell debris were removed by centrifugation at 100,00× g
for 30 min at 4°C. Proteins in the crude extract were quantified by a
bicinchoninic acid (BCA) Protein assay Reagent Kit (Pierce),
following the manufacturer’s instructions with bovine serum
albumin as the standard protein. For SDS-PAGE, samples were
incubated for 8 min at 100°C in standard reducing 1x loading buffer;
40 µg of total protein were run on an SDS-polyacrylamide gel and
transferred onto nitrocellulose membranes (GE-Healthcare, Fisher
Scientific Italia) After blocking in 5% (w/v) non-fat milk in tris-
buffered saline (TBS)-0.05% Tween (TBS-T), membranes were
incubated overnight with primary antibodies: rat monoclonal
anti-HA (1:1000, ROCHE), or Actin5c (1:200, #JL20) from
Developmental Studies Hybridoma Bank (DSHB), University of
Iowa, IA, United States. Appropriate secondary antibody was
incubated for 2 h at room temperature, followed by washing. The
signal was revealed with ChemiDoc Touch Imaging System (Bio-
Rad Lab).

2.6 Immunoprecipitation

Hsp70 (hs)-Gal4> NOC1 larvae or control hs-Gal4> w1118 were
heat-shocked at 37°C for 1 h and left to recover for 2 h at room
temperature. 20 larvae from each genotype were washed in PBS and
lysed with 750 µL of immunoprecipitation buffer (100 mM HEPES,
100 mMNaCl, 0.5% Triton, 10 mMMgCl) containing proteases and
phosphatases inhibitors. Protein lysates were incubated for 20 min
in ice and centrifuged at 13.000 rpm for 30 min a 4 °C. 500 μL of
lysates were incubated with 50 µL of Sepharose-beads-Protein-G
(Invitrogen) previously incubated with 4 µL anti-HA antibodies.
Incubation was performed for 2 h at room temperature, and beads
were washed extensively with ice cold lysing buffer. After
centrifugation, bound proteins were eluted with 100 µL of SDS-
loading buffer LDS Sample Buffer (Thermo Fisher Scientific)
containing 5% Bolt Sample reducing agent (Thermo Fisher
Scientific) at 80°C for 5 min 20 μL of the sample was run on a
Western blot and 80 µL were used for the MS analysis. Experiments
were repeated twice.

2.7 Mass spectrometry and proteomic
interaction partners analysis

Immunoprecipitated samples were loaded on 10% SDS-PAGE
and run for about 1 cm. Gels were then stained with Coomassie and
the entire stained area was excised as one sample. Excised gel bands
were cut into small plugs (~1 mm3), rinsed with 50 mM ammonium
bicarbonate and acetonitrile (ACN) solution, and vacuum dried.
Dried gel pieces were then reduced using 10 mM DTT (56°C for
30 min) and alkylated using 55 mM iodoacetamide (room
temperature for 30 min, in the dark). After sequential washing
with 50 mM NH4HCO3 and ACN, gel pieces were dried and
rehydrated with 12.5 ng/mL trypsin (Promega, Madison, WI)
solution in 25 mM ammonium bicarbonate on ice for 30 min.
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The digestion was continued at 37°C overnight. The tryptic peptides
were sequentially extracted from the gels with 30% ACN/3% TFA
and 100% ACN. All of the supernatants were combined and dried in
a SpeedVac. The tryptic peptides were resuspended in 0.1% TFA,
desalted on C18 stage tips, and resuspended in 20 μL of 0.1% formic
acid buffer.

For LC-MS/MS analysis, the peptides were separated on an
Easy-nLC 1200 UHPLC system (Thermo Fisher Scientific) using an
85-min gradient on a 25 cm long column (75 µm inner diameter)
filled in-house with C18-AQ ReproSil-Pur material (3 µm particle
size, Dr. Maisch, GmbH). The gradient was set as follows: from 5%
to 25% in 52 min, from 25% to 40% in 8 min, and from 40% to 98%
in 10 min, with a flow rate of 400 nL/min. The buffers were 0.1%
formic acid in water (A) and 0.1% formic acid in acetonitrile (B).
The peptides were analyzed with an Orbitrap Fusion Tribrid mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, United States)
in data-dependent mode. Full scans were performed in the Orbitrap
mass analyzer at a resolving power of 120,000 FWHM (at 200 m/z)
in the mass range of 350–1,100 m/z, with a target value of 1 ×
10̂6 ions and a maximum injection time of 50 ms. Each full scan was
followed by a series of MS/MS scans (collision-induced dissociation)
over a cycle time of 3 s, with a maximum injection time of 150 ms
(ion trap) and a target of 5 × 10̂3 ions. The ion source voltage was set
at +2,100 V and the ion transfer tube was warmed up to 275°C. Data
was acquired using Xcalibur 4.3 and Tune 3.3 software (Thermo
Fisher Scientific). QCloud was used for all acquisitions to control
instrumental performance during the project, using quality control
standards (Chiva et al., 2018).

For data and computational analysis, the raw files were
searched in Proteome Discoverer version 2.2 software (Thermo
Fisher Scientific). Peptide searches were performed using the
UniProt Drosophila melanogaster (fruit-fly) database digested in
silico (downloaded in July 2022) and a database containing
common contaminants. Trypsin was chosen as the enzyme with
5 missed cleavages. The static modification of
carbamidomethylation (C) was incorporated in the search, with
variable modifications of oxidation (M) and acetylation (protein
N-term). The MASCOT search engine (v.2.2 Matrix Science) was
used to identify the proteins, using a precursor mass tolerance of
10 ppm and a product mass tolerance of 0.6 Da. False discovery
rate was filtered for <0.01 at PSM, at peptide and protein levels.
Results were filtered to exclude potential contaminants and
proteins with less than two peptides.

MS downstream analysis was performed using the ProTN
proteomics pipeline (www.github.com/TebaldiLab/ProTN and
www.rdds.it/ProTN) (manuscript in preparation). Peptide
intensities were log2 transformed, normalized (median
normalization), and summarized into proteins (median sweeping)
with functions in the DEqMS Bioconductor package (Zhu et al.,
2020). Imputation of the missing intensities was executed by PhosR
package (Kim et al., 2021). Differential analysis was performed with
the DEqMS package, proteins with absolute log2 FC > 0.75 and
p-value <0.05 were considered significant.

Protein-protein interaction network was constructed using
STRING interaction database, version 12.0 (https://string-db.org/)
(von Mering et al., 2003). Medium confidence interactions (score>0.
4) were accepted as determined by the STRING database. The PPI
network was grouped into relevant protein clusters using the

Markov Cluster Algorithm (inflation parameter, 3) clustering
option provided by STRING.

2.8 Immunostaining

Dissected tissues were fixed in 4% paraformaldehyde (PFA)
(Electron Microscopy Science) in PBS for 30 min at room
temperature. After permeabilization with 0.3% Triton/PBS,
tissues were washed in Tween 0.04% in PBS, saturated with 1%
BSA in PBS, and incubated overnight with anti-fibrillarin antibodies
(1:100), anti-HA (1:100, ROCHE), anti-GFP (1:200, ThermoFisher
A11122) and anti-MYC affinity-purified antibodies (1:1000)
(Galletti et al., 2009; Destefanis et al., 2022). Relative secondary
antibodies conjugated with Alexa555 and Alexa488 were used 1:
2,000 (Invitrogen). After washing with PBST, samples were
mounted on slides using Vectashield (Vector Laboratories) and
fluorescence images were acquired using a Leica-TCS-
SP8 confocal microscope.

3 Results

3.1 NOC1 contains a functional E-box
sequence in its promoter region and is
transcriptionally induced by MYC

Our initial observation on the transcriptomic analysis of
potential MYC target genes identified NOC1 as a predicted
nucleolar gene that contains in its 5′promoter region the E-box
sequence CACGTG typically within the first 100 bp from the initial
translation initiation codon ATG (Figure 1A), and thus considered a
bona-fide MYC binding region (Hulf et al., 2005). By qRT-PCR, we
show that constitutive expression of MYC in whole Drosophila
larvae (Figure 1B) using the actin promoter resulted in
NOC1 transcriptional activation and also in the upregulation of
fibrillarin-mRNA (Figure 1C), a known MYC target that contains
functional E-boxes in its promoter region conserved both in flies and
vertebrates (Orian et al., 2003; Hulf et al., 2005; Koh et al., 2011).

The 5′promoter region of NOC1 contains a putative TATA box
sequence at about - 26 bp from the transcription start, a sequence
identified as the Transcription Start Site (TSS), and the CACGTG
sequence (E-box) at −82 bp from the ATG transcription start
(Figure 1A). To investigate whether the CACGTG sequence
responds to MYC activation, we cloned the 5′promoter region of
NOC1, containing the wildtype CACGTG sequence or the scramble
sequence GAATTC (Figure 1D), upstream of a plasmid expressing
the Firefly luciferase ORF. The reporter plasmids were co-
transfected into Drosophila S2-MT-MYC cells with a plasmid
expressing the Renilla luciferase. MYC expression was induced by
adding CuSO4 to the medium (Figure 1E). Firefly luciferase activity
was measured in the cell lysates after 5 h of induction and
normalized to the co-transfected Renilla luciferase expressed
under the control of the constitutive tubulin promoter
(Figure 1F). As shown upon MYC expression, cells expressing
the NOC1 promoter region with the mutated E-box have
significantly reduced luciferase activity compared to that from
cells expressing the wild-type NOC1 promoter, indicating that the
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sequence CACGTG in theNOC1 promoter functions as an enhancer
of MYC activity.

3.2 Interactome analysis of NOC1 associates
its expression with NOC2 and
NOC3 proteins and other components of
the nucleolus

To investigate how NOC1 might regulate nucleolus functions,
we explored its binding partners by analyzing the total interactome
through immunoprecipitation and tandem mass spectrometry
analysis (Figure 2A). Third-instar larvae expressing UAS-HA-
NOC1 under the actin-Gal4 were used first to test a few
conditions to efficiently extract NOC1 protein from the cells
(Figure 2B). As shown in the left panel, NOC1 is efficiently
expressed in lysates from third-instar larvae as a 120 KDa protein
detected by the anti-HA antibodies. We first tested three conditions
for lysing the tissues to avoid high detergent and salt concentrations
according to previous protocols for immunoprecipitation in whole
larvae (Bellosta et al., 2005). The comparative analysis of the three
lysis conditions led to selecting the buffer containing 0.5% Triton
and 200 mM NaCl, which appears to balance mild stringency
conditions and high recovery yield, making it suitable for
extracting NOC1 protein in our experimental conditions
(Figure 2; middle panel). Since we found NOC1 transcriptionally
upregulated as early as 3 h upon MYC expression (Hulf et al., 2005)
and (Figure 1C), we decided to use the inducible promoter hsp70

(heat-shock)-Gal4 to ubiquitously express NOC1 to perform our
analysis at a similar time point.Hs-Gal4; UAS-HA-NOC1 larvae and
control (hs-Gal4; w1118) were heat-shocked for 1 hour and 37 °C.
After 2 hours of recovery at room temperature, larvae were lysed to
pursue the immunoprecipitation (IP) using anti-HA antibodies.
Immunoblotting analysis showed enrichment of HA-NOC1
bands in the expected samples (Figure 2; left panel). While a
weak band of 120 KDa is also visible in the control sample, the
lower molecular weight bands characteristic of the NOC1 pattern
are not present (Destefanis et al., 2022), confirming the specificity of
the experiment.

To discover NOC1 protein partners, we used affinity
purification coupled with label-free mass spectrometry (AP-MS).
Specifically, we performed the co-immunoprecipitation of the
tagged-NOC1 protein in hs-Gal4; UAS-HA-NOC1 lysates, and the
control tissues hs-Gal4; w1118, respectively. Immunoprecipitates
(IPs) were then analyzed by LC-MS/MS using an Easy-nLC
1200 UHPLC system coupled to an Orbitrap Fusion™ mass
spectrometer. For protein identification and quantification,
acquired raw data were imported into the Proteome Discoverer
2.2 (PD) platform and searched with MASCOT (v2.6 Matrix
Science, London, United Kingdom) against the UniProtKB
Drosophila melanogaster database. The quantitative output of PD
was then further processed using the ProTN pipeline, enabling
comprehensive quality control, statistical analysis, and
interpretation of proteomic datasets. We identified a total of
239 proteins that were significantly (p < 0.05) enriched in HA-
NOC1 immunoprecipitated (IPs) relative to control, representing

FIGURE 1
NOC1 contains in its promoter a functional MYC E-box sequence. (A) DNA promoter region of the NOC1 gene showing the position of the E-box,
the putative Transcription Start Sequence (TSS) with the TATA box, and the Initiation of Transcription point (START). (B) qRT-PCR from third instar whole
larvae tissues showing the upregulation ofMYC-mRNA (B) and ofNOC1 and fibrillarin-mRNAs (C) upon MYC induction. The expression of UAS-MYCwas
induced using the actin-Gal4 promoter. (D) DNA sequences of WT and Mutant E-boxes. (E) Western blot from S2-MT-HA-MYC cells showing the
expression level of themetallothionein HA-MYC upon induction for 5 h using CuSO4. Actin was used as a control for loading. (F)Units of relative luciferase
activity in lysates of S2-MT-HA-MYC cells treated for 5 h with CuSO4 and transfected with Renilla plasmid alone (control), of with NOC1 promoter region
containing WT (WT) or Mutant (Mut) E-box.
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putative NOC1 binding partners (Supplementary List S1). The raw
data are available via ProteomeXchange with identifier PXD047564.
Results are illustrated by the volcano plot displaying the proteins
significantly enriched in NOC1-IPs in light blue, with a fold change
(FC) > 1.5 and p-value <0.05. To better characterize the
NOC1 interactome, the list of putative interacting proteins was
processed by STRING protein-protein interaction analysis, and
clusters were identified in the resulting network using the
Markov Clustering Algorithm (MCL) (Figure 2C). This analysis
outlined a few interesting clusters of NOC1 interactors (Figure 2D).
The most relevant is Cluster1, which includes NOC2 and NOC3
(Supplementary Table S1, and Volcano plot Figure 2C). The same
cluster also includes nucleolar proteins such as Fibrillarin (Fib), an
rRNA O-methyltransferase, and l(3)07882 required for the
processing of the pre-rRNAs, Novel nucleolar proteins
(Non1 and Non3) involved in the biogenesis of the 60S subunits
and needed for the assembling of the mitotic spindle, like
Nucleostemin 1 (Ns1), required for the release of the 60S
ribosomal subunit, mushroom body miniature (mbm) involved in
ribosome biogenesis. Others non nucleolar proteins, like the
CG13096, a homolog of human Ribosomal L1 domain-containing

protein (RSLD1), the CG6724, a putative homolog of
WRD12 required for the maturation of rRNAs and the formation
of the large ribosomal subunit, Nnp, and Tsr1 described for the
processing of pre-rRNAs and the control of RNA maturation.
Notably, we also found in the interactome the DEAD-box RNA
helicases pitchoune (pit) (Zaffran et al., 1998) and bel, Drosophila
homologs of MrDb (Grandori et al., 1996) and DDX3 (Liao et al.,
2019) respectively. Interestingly, few of these proteins, such as pit
(Zaffran et al., 1998), modulo (mod) (Perrin et al., 2003), Nnp
(Nnp1) (Hulf et al., 2005), and peter pan (ppan) (Zielke et al., 2022),
have been previously identified as putative direct targets of MYC
specifically in the context of controlling cell growth and
proliferation.

This analysis also found a highly represented cluster containing
Ythdc1 (YTH domain RNA Binding Protein C1), Flacc (Fl(2)d-
associated protein), and splenito (nito). Ythdc1 is a conserved
nuclear m6A “reader” protein that mediates the incorporation of
methylated mRNAs into the nuclear export pathway (Roundtree
et al., 2017; Shi et al., 2021). Interestingly, Flacc was found to be
associated with female lethal (Fl(2)d), a protein homolog of Wilms’-
tumor-1-associated protein (WTAP) (Penn et al., 2008), that was

FIGURE 2
NOC1 is associatedwith components of the nucleolus. (A) Schematic representation of the workflow used to identify NOC1 interacting proteins. hs-
Gal4; UAS-HA-NOC1 larvae and control (hs-Gal4; w1118) were lysed and subjected to immunoprecipitation using anti-HA conjugated beads.
NOC1 immunoprecipitated proteins were eluted with Laemmli sample buffer and processed by in-gel trypsin digestion before MS/MS analysis. The figure
is created with BioRender.com. (B)Western blot showing the expression of UAS-HA-NOC1 in lysates from third instar larvae and the enrichment in
the IPs using the actin > Gal4 promoter. The left panel shows a band of about 120 KDa recognized by anti-HA antibodies and present only in the total
lysates of control larvae (lane 1) or expressing HA-NOC1 (lane 2). In lanes 3 and 4 is shown the Ponceau staining relative to lanes 1 and 2. In the middle
panel is shown the expression level of HA-NOC1 upon immunoblot with anti-HA antibodies from larvae lysate with buffer containing different
concentrations of detergent and salt (lane 5–7). In the right panel is shown the immunoblot from the eluted material from the Seph-Prot-G conjugated
with anti-HA antibody upon immunoprecipitation from lysates of larvae expressing HA-NOC1 using the hsp70-heat-shock (hs) inducible promoter after
1 h of heat-shock and 2 h of recovery. Lane 8 shows the immunoblot from lysates of control larvae hs-w1118, while lane 9 shows the eluted from the
immunoprecipitation from animals expressing hs-HA-NOC1; this represents 1/5 of the material used from the MS analysis. (C) Volcano plot highlighting
all proteins enriched. The mean log2 ratio of hs-HA-NOC1 IPs versus control hs-w1118 IPs are plotted versus the corresponding p-values. 239 proteins
significantly enriched (blue dots) with a p-value below 0.05 and log2-FC >1.5 thresholds were treated as putative NOC1 binding partners. The most
representative interactors found for this analysis are indicated in the plot. (D) Schematic view of protein-protein interactions among NOC1 targets
according to the STRING database (v.12). STRING protein-protein interaction analysis indicates the most prominent clusters with a medium confidence
score of 0.4. Each node represents a protein, and each edge represents an interaction.
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isolated in complexes with Snf (Penn et al., 2008), a component of
U1 and U2 small nuclear ribonucleoproteins (snRNPs) that
contained U2AF50, U2AF38, and U1-70K (small nuclear

ribonucleoprotein 70K), which function in the regulation of the
spliceosome. Notably, we observed an enrichment of the U2A
proteins in our analysis (Supplementary Table S1), suggesting

FIGURE 3
NOC1 nucleolar expression increases with MYC induction. (A–C) Confocal images of the cells from the salivary glands showing the endogenous
fibrillarin expression in the nucleolus and its colocalization with NOC1-GFP, visualized with anti-fibrillarin (B) and anti-GFP (C) antibodies to visualize
NOC1-GFP fusion protein (otherwise too low to detect directly), with nuclei stained in blue in A. (D–F) Cells of the wing imaginal discs showing
endogenous fibrillarin (E) and NOC1-GFP expression (F), and their colocalization in D. (G–I) Cells of the wing imaginal discs expressing UAS-MYC,
using the rotund-Gal4 promoter, stained for fibrillarin (H) andNOC1-GFP (I). In (G), theymerged images with nuclei stainedwith Hoechst (blue). Note that
the nucleolus size increases by MYC expression (see also Figure 6A for quantification). (J) Analysis of the fibrillarin area in cells of the wing imaginal disc of
NOC1-GFP; rn >w1118 animals or expressingNOC1-GFP; rn >UAS-MYC. (K) Analysis of the GFP intensity relative to NOC1 expression in the nucleolus area
in cells of the wing imaginal disc of NOC1-GFP; rn > w1118 animals or expressing NOC1-GFP; rn > UAS-MYC. (L) Coefficient of localization between
NOC1 and fibrillarin in cells from control animals (NOC1-GFP; rn > w1118) or expressing MYC (NOC1-GFP; rn > UAS-MYC). This analysis was performed
using the Coloc2 plug-in of the Fiji software coloc2, and p-values calculated based on raw values that represent Manders’ colocalization coefficient (with
automatic Costes threshold). Scale bars in Figure C represent 20 μm, and in Figures F and D, 10 μm. The experiments were repeated at least three times,
and the statistical analysis among the various genotypes was examined by Student’s t-test, and p values are indicated with asterisks **** = p < 0.0001.
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that NOC1 may play a key role in RNA splicing by linking the
U1 snRNP particle to regulatory RNA-binding proteins and in the
control of nuclear export via Ythdc1.

3.3 NOC1 expression in the nucleolus
increases upon MYC induction

We previously showed that endogenous NOC1 colocalizes with
fibrillarin in the nucleolus (Destefanis et al., 2022). Here, we confirm

the co-localization of endogenous NOC1-GFP, expressed as GFP
fusion protein (NOC1-GFP) under its endogenous promoter
(Kudron et al., 2018) with fibrillarin. This is seen in the gigantic
nucleolus of the salivary gland cells (Figures 3A–C) and the
nucleolus of cells from the wing imaginal disc (Figures 3D–F).
Furthermore, expression of MYC in cells of the wing imaginal
disc, using rotund-Gal4 promoter (Figures 3G–I), significantly
increases the fibrillarin area in the nucleolus (Figure 3J) and also
the fluorescence intensity of NOC1-GFP (Figure 3K), which are both
direct transcriptional targets of MYC. However, statistical analysis

FIGURE 4
Expression of NOC1 induces extra nucleolar granules and enlargement of the nucleolus. (A–C) Confocal images of cells of the peripodium
expressing HA-NOC1 alone or with NOC1-RNAi (D–F) using the engrailed promoter. (G–L) Images of cells from the imaginal disc expressing NOC1 alone
(G–I) or with NOC1-RNAi (J–L). NOC1 and fibrillarin expression are visualized by immunofluorescence using anti-HA (red) and anti-fibrillarin (green)
antibodies, respectively. Hoechst is used to visualize the nuclei. Scale bars represent 10 μm.
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indicates that the coefficient of localization between NOC1 and
fibrillarin does not change upon MYC expression, as shown from
data in cells from control animals (NOC1-GFP; rn >w1118) compared
to that from cells expressing MYC (NOC1-GFP; rn > UAS-MYC)
(Figure 3L), indicating that MYC promotes an increase in nucleolar
size and of NOC1-GFP expression in the nucleolus.

3.4 NOC1 overexpression induces the
formation of large nuclear granules and
enlarged nucleoli that co-localize with
fibrillarin

We previously reported that ectopic expression of NOC1 results
in nucleolar morphology changes (Destefanis et al., 2022). To
analyze how the ectopic expression of NOC1 could influence
nucleolar morphology, we overexpressed the HA-tagged version
of NOC1 in cells of the wing imaginal discs using the engrailed-Gal4
promoter. Engrailed is expressed in both the columnar epithelium
forming the wing imaginal disc and in the giant cells of the
peripodium, a squamous epithelium adjacent to the columnar
epithelium of the wing discs (Pallavi and Shashidhara, 2005;
Smith-Bolton, 2016). Analysis of NOC1 expression in these cells,
by immunostaining using an anti-HA antibody, revealed in the
nucleus the presence of large granules containing HA-NOC1 and an
enlargement of the size of the nucleolus, where NOC1 is visibly
expressed. The granules are more easily distinct and visible in the
peripodium because of the gigantic size of these cells (Figures 4A, B)
and with a lower resolution also in cells of the wing imaginal discs
(Figures 4G, H). HA-NOC1 expression colocalizes with fibrillarin
mainly in the nucleolus (Figures 4A, D, G, J), while in the granules,
its expression was very low but detectable, particularly in the cells of
the peripodium (Figure 4A). Co-expression of NOC1 with NOC1-
RNAi visibly reduced both HA-NOC1 and the formation of the
abnormal enlarged structures expression in both types of cells
(Figures 3E, K). At the same time, the levels of fibrillarin in the
nucleolus did not significantly change upon expression of NOC1-
RNAi (compare Figure 4C with Figures 4F, I with Figure 4L).

3.5 NOC1 colocalizes in the nucleolus with
Nucleostemin1 (Ns1) and its reduction
affects nucleolar localization of Ns1

In the analysis of proteins that can functionally interact with
NOC1, we identified Nucleostemin 1 (Ns1) (Lo and Lu, 2010), a
nucleolar protein necessary for the transport of the 60S subunit that
shuttles between the nucleolus and the nucleoplasm, and essential
for the nucleolar organization (Rosby et al., 2009). To investigate
whether NOC1 interacts with Ns1, we first analyzed their co-
localization in wt control w1118 animals. Ns1-GFP (UAS-Ns1-
GFP) was ectopically expressed alone or in combination with
NOC1-RNAi or with NOC1-HA overexpression using the
patched-Gal4 promoter (Vegh and Basler, 2003). These data
showed that when Ns1-GFP is expressed alone, it is primarily
nucleolar, with about 7% of cells showing NS1-GFP staining
outside the nucleolar region (Figure 5B). When NOC1-RNAi was
expressed instead we observed a significant alteration in the

subcellular localization of Ns1-GFP, with a 30% increased of cells
that showed NS1 localization in the nucleoplasm (Figure 5D).
Analysis of NOC1 colocalization with Ns1, using anti HA
immunostaining, showed the presence of both proteins in the
nucleolus and also in the large granules (Figure 5F). These data
together with MS results suggest that both Ns1 and NOC1 proteins
may be part of a multi proteins complex that is necessary to keep
nucleolar integrity (MODEL).

3.6 MYC cooperates with NOC1 to increase
nucleolus size

We then analyzed if increasing the rate of protein synthesis by
overexpressingMYC could have an effect on the size of the nucleolus
or of the NOC1 granules, assuming that they might function as
storage of ribosomal factors produced in excess by
NOC1 overexpression. We examined and quantified the area of
fibrillarin expression in the nucleolus in cells of the wing imaginal
discs from control animals or expressing NOC1 or MYC alone, and
a combination of both. These analyses confirmed that the expression
of MYC or NOC1 alone significantly affects the nucleolar size
(Figures 6A–C), with their co-expression that further increases
the nucleolus size (Figures 6F–H). A more exhaustive analysis of
the immunofluorescence images shows that NOC1-HA is found
predominantly localized at the Dense Fibrillarin Center (DFC), that
is, the external layer of the Fibrillarin Center (FC), while fibrillarin is
in the center (Figures 6C–E). In the presence of MYC this effect of
their localization is ever more pronounced (Figures 6F–H). From
these experiments, we can also conclude that the granules are
maintaining the structure with the core of fibrillarin (Red) with
NOC1 surrounding the area (green), both in the condition of NOC
expression alone or in combination with MYC (Figures 6E, F). In
addition, we analyzed and found a high level of colocalization
between NOC1 and Drosophila vito protein (Supplementary
Figure S1). Nol12/vito is an RNA DNA binding protein
homologous to human Nol12 and yeast Rrp17p (Scott et al.,
2017). It was shown necessary for the processing of the 60S
ribosomal subunits in yeast (Oeffinger et al., 2009), and required
in flies for proper formation of nucleolar architecture in MYC-
induced growth (Marinho et al., 2011). The two proteins colocalize
in the nucleolus and the nuclear “granules” in cells of the wing
imaginal disc. In these experiments, NOC1-HA localizes in the DFC
of the nucleolus while Nol12-GFP is more present in the FC
(S1 panel C); similarly, it was reported for human Hela cells, that
Nol12 co-localizes with fibrillarin and was also expressed in the DFC
(Scott et al., 2017).We should mention that the pattern of expression
described for NOC1 in these experiments recapitulates the
expression of nucleophosmin, which surrounds the core-shell
architecture of fibrillarin in the center of the nucleoli (Lafontaine
et al., 2021), further supporting the localization of NOC1 within the
nucleolus.

4 Discussion

The nucleolus is a critical subcellular compartment involved in
ribosome biogenesis, and proteins like NOC1 play essential roles in
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this process. The conservation of NOC1 function across these
diverse organisms, from yeast (S.ce) Arabidopsis, Drosophila
(Milkereit et al., 2001; Li et al., 2009; de Bossoreille et al., 2018;
Destefanis et al., 2022) and to some extent humans (Barbieri et al.,
2017) (our unpublished data), indicates the fundamental role of this
nucleolar factor in controlling basic and essential processes during
ribosome biogenesis.

We have recently characterized the function of the sole nucleolar
NOC1 gene in Drosophila and show that it is necessary for proper
rRNA processing and maturation, while its downregulation reduces
protein synthesis and is detrimental to organ and animal growth
(Destefanis et al., 2022). Here, we characterized NOC1 as a bona fide
MYC target gene and demonstrated that NOC1 is transcriptionally
induced through a functional MYC-binding E-box sequence in the
NOC1 promoter region (Figure 1). We then analyzed
NOC1 interactome by MS analysis (Supplementary List S1) to
identify how NOC1 functions in controlling ribosomes and in
relation to MYC. These data reveal that NOC1 is in a complex
with the nucleolar proteins NOC2 and NOC3, confirming previous
data in yeast, and probably forms functional heterodimers necessary
for the transport of the large ribosomal subunit during ribosome
maturation (Milkereit et al., 2001; Hierlmeier et al., 2013). Our data
also evidence an enrichment in NOC1-IPs of other nucleolar
proteins, many of them such as fib, mod, nnp1, have been
previously characterized as direct MYC’s targets (Perrin et al.,
2003; Hulf et al., 2005). In support of this last observation, we
also found that in response to MYC, NOC1 expression and

localization within the nucleolus is significantly increased,
suggesting a direct functional response between MYC and
NOC1 activities in this organelle. Notably, NOC1 overexpression
leads to the formation of large nuclear granules and enlarged
nucleoli, which co-localizes with nucleolar fibrillarin and Ns1.
Additionally, we demonstrate that NOC1 expression is helping to
keep Ns1 nucleolar localization, suggesting a role for NOC1 in
maintaining nucleolar structure. Finally, the co-expression of
NOC1 and MYC enhances the size of the nucleolus and the
formation of abnormal granular structures within the nucleus
containing NOC1, outlining another aspect where NOC1 and
MYC activities may cooperate or be additive in controlling
nucleolar dynamics.

Furthermore, our study also highlights NOC1 interaction with
proteins relevant for RNA processing, modification, and splicing.
Indeed, we found highly represented Ythdc1 and Flacc (Fl(2)d-
associated protein) and spenito (nito), the flies homolog of the
nucleolar large ribosomal subunit (60S) assembly factor RBM28
(Bryant et al., 2021). Notably, all these proteins are part of the
mechanism that mediates N6-methyladenosine (m6A) methylation
of mRNAs (Shi et al., 2021; Deng et al., 2023). Ythdc1 is a conserved
nuclear m6A “reader” protein that mediates the incorporation of
methylated mRNAs for their nuclear export (Roundtree et al., 2017;
Shi et al., 2021). Flacc is a component of the complex that mediates
N6-methyladenosine methylation of mRNAs essential for mRNA
splicing efficiency of pre-mRNA targets and a key regulator of Sxl
(Sex-lethal) pre-mRNA splicing (Knuckles et al., 2018). Flacc is in

FIGURE 5
Reduction of NOC1 affects Nulceostemin1 (Ns1) nucleolar localization. Confocal images of cells from thewing imaginal disc expressing NOC1 (UAS-
HA-NOC1) and Ns1 (UAS-Ns1-GFP) using the patched-Gal4 promoter. (A,B) (A) shows a low-resolution image of the cells of thewing imaginal disc where
patched is expressed as a stripe of cells along the Dorsal Ventral axis (Johnson et al., 1995). NS1-expressing cells are visible by GFP expression. (B) higher
magnification of figure in panel A, showing expression of Ns1-GFP in the nucleolus. (C) low-resolution image of the cells expressing Ns1-GFP
together with NOC1-RNAi. (D) higher magnification of the figure in panel (C). In the parenthesis is reported the percentage of cells with NS1-GFP found
perinucleolar or in the nucleoplasm (see also MODEL). (E) low-resolution image of the cells of the wing imaginal disc expressing Ns1-GFP together with
NOC1-HA. (F) higher magnification of the figure in panel E shows HA-NOC1 that co-localizes with Ns1-GFP. This colocalization is visible in the nucleolus
and (Arrows). also in the small granules characteristic of NOC1-HA overexpression. Scale bars in A-C and E represent 20 μm, and B-D and F represent
5 μm. MODEL suggesting the functional interaction of Ns1 with NOC1 in the nucleolus and describing the nucleolus organization as FC, Fibrillar Center;
DFC, Dense Fibrillar Components; GC, Granular Center (Lam et al., 2005). GS, Granular Structures visualized by NOC1 overexpression.
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complex with female lethal (Fl(2)d), the Drosophila homolog of
Wilms’-tumor-1-associated protein (WTAP) a component of
human spliceosome (Zhou et al., 2002), and with Snf a
component of U1/U2 small nuclear ribonucleoproteins (snRNPs)
that contained U2AF50, U2AF38, and U1-70K necessary for splicing
reaction of pre-mRNAs (Penn et al., 2008). Interestingly, we found
an enrichment of these proteins in our analysis (Supplementary
Table S1). Additionally, our data may suggest a potential link
between NOC1 and snRNPs involved in regulating RNA-binding
proteins and controlling mRNA nuclear export via m6A-dependent
modifications by Ythdc1. This part highlights the complex and

interconnected processes involved in gene expression regulation,
from mRNA splicing to modifications. However, how NOC1 may
control or be part of these mechanisms is still unclear.

Our previous analysis directly assessed the impact of NOC1 on
pre-rRNA processing and cleavage and showed that its reduction
induced an accumulation of pre-rRNA precursors (ITS1 and ITS2)
(Destefanis et al., 2022). Similar data were found for the
NOC1 homolog in yeast (Noc1p) using genetic screens and
proteomic studies (Hierlmeier et al., 2013; Lebaron et al., 2013;
Khoshnevis et al., 2019). However, we should comment on some
crucial differences in the protein-interactome from our

FIGURE 6
Expression of NOC1 and MYC enhances nucleolar size and morphology. (A) Graphic of the analysis of expression of fibrillarin in the nucleolus from
cells of the wing imaginal discs, in animals expressing the indicated UAS-transgenes using the rotund-Gal4 promoter. We considered the area stained by
fibrillarin as a measurement of the nucleolar size and expressed it in pixels. These experiments were repeated at least twice, and the statistical analysis
among the various genotypes was examined by Student’s t-test, using the number of cells indicated in the graph. p values are indicatedwith asterisks
* = p < 0.05, **** = p < 0.0001 respectively. (B–H) Confocal images of cells from the wing imaginal disc in control animalsw1118 (B) and expressing MYC
(UAS-MYC) (C), NOC1 (UAS-HA-NOC1) (C–E), or both NOC1 and MYC (F–H) using the rotund-Gal4 promoter. Fibrillarin (red) and NOC1-HA (green)
expression is visualized by immunofluorescence using anti-fibrillarin and anti-HA antibodies, respectively; nuclei are stained using Hoechst and visualized
in blue. Scale bars represent 10 μm.
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experiments and those in yeast. Few reports in yeast annotated the
Noc1p protein associated with Rrp5 (Ribosomal RNA Processing
5), a factor crucial for ribosome assembly that mediates the
cleavage of the 35S pre-rRNA into the 18S rRNA, which is a
critical step in the production of the small ribosomal subunit
(Hierlmeier et al., 2013; Lebaron et al., 2013) and with Rcl1
(Ribosomal RNA Cleavage 1), another enzyme with a role in
rRNA cleavage and processing (Khoshnevis et al., 2019). Both
these proteins are conserved in flies. However, we did not find
them in our NOC1-interactome analysis, even though Rrp5 was
found in yeast bound to the pre-rRNA region of the ITS1 (Internal
Transcriber Spacers-1) using protein crosslinking following by
RNase treatment (Lebaron et al., 2013), and to interact with
Noc1p and Noc2p (Hierlmeier et al., 2013) with a Noc1p-TAP
purification system. We can explain these differences by
hypothesizing that either the levels of Rrp5 and
Rcl1 expressions are low in larvae compared to yeast or the use
of different techniques and timing of purification of the protein
used as bait in yeast compared to ours, i.e., during specific phases of
RNA maturation and using Noc1p-TAP purification systems
(Sailer et al., 2022). However, in the NOC1-interactome, we
found NOC2 and NOC3, along with Nop53 (Rrp9) among
others, described part of the Noc1p-yeast complex (Ohmayer
et al., 2013), highlighting the significance of our preliminary
studies in flies. It is important to acknowledge that studying the
precise protein-interactome of NOC1 in in vivo can be challenging,
and experimental conditions can limit the interpretation of results.
In our case, conducting experiments at a single time point and
under standard immunoprecipitation conditions may provide
valuable insights into protein interactions but might not fully
capture the dynamic and context-dependent nature of different
NOC1’s functions.

We found that NOC1 overexpression forms large granular
structures containing NOC1, along with fibrillarin and
Nucleostemin1 (Figure 4; Figure 5) and Nol12/viriato
(Supplementary Figure S1). At the moment, we do not know
the nature of these granules. We could hypothesize that these
NOC1 granules work as dynamic and multifunctional structures
regulating RNA metabolism and gene expression, including rRNA
processing and transcription. These may include RNA stress
granules formed during stress conditions to protect mRNAs
from degradation or to control their translation (Putnam et al.,
2023). This hypothesis is supported by our data that identify
proteins of the DEAD-box RNA helicases family, such as pea/
DXH8 and CG8611 pit, bel kurz, previously identified as
components of RNA stress granules (Campos-Melo et al.,
2021). This idea may also support the mechanism by which the
abnormally large structures containing NOC1 and induced when
MYC is overexpressed are the result of their synergistic effect in
promoting cellular stress induced by a high protein synthesis or
dysfunctions caused by the combination of MYC and
NOC1 targets. Overexpression of MYC can lead to increased
demand for ribosome biogenesis, and the presence of abnormal
ribosomal intermediates due to NOC1 dysregulation can
exacerbate this stress. This can result in nucleolar stress,
activation of cellular stress responses, and potentially contribute
to the insurgence of diseases.

Abnormal structures or extra nucleoli have significant implications
in human diseases, particularly in cancer, where dysregulation of
nucleolar functions is a hallmark of the disease (Orsolic et al., 2016;
Penzo et al., 2019), and in ribosomopathies, a class of rare genetic
diseases characterized by mutations in ribosomal proteins or
components that impaired RNA translation associated with various
clinical manifestations, including bone marrow failure, developmental
disorders and an increased risk of cancer (Farley-Barnes et al., 2019;
Kampen et al., 2020).

Finally, a few words about the human homolog of NOC1, called
CEBPz (CCAAT/enhancer-binding protein zeta), a transcription factor
so far associated with certain types of tumors. Notably, in acute myeloid
leukemia (AML), CEBPz was shown to promote the m6A modification
of target mRNA transcripts, enhancing their translation (Barbieri et al.,
2017; Hong et al., 2022). Thus, overexpression or downregulation of
CEBPz in humans may also affect RNA processing, leading to defective
translation. In support of this idea, the human gene rbm28, which we
found in the NOC1 interactome, is responsible for the ribosomopathy-
ane syndrome (Bryant et al., 2021), a rare genetic disorder caused by
aberrant splicing in RBM28 pre-mRNA. This, together with other
indirect information on the potential role of NOC1/CEBPz in
controlling alternative splicing, highlights the potential role of the
human counterpart in the control of nucleolar processes that may
cause genetic disorders.

Our research uses Drosophila, a simple and accessible model
system, to identify novel conserved mechanisms to better
understand MYC activity and its targets, including NOC1, in the
context of RNA translation and ribosome biogenesis. The ultimate
goal would be to identify specific targets within the translation
machinery that small molecules or drugs can modulate for use in
disease therapies.
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Background: Intra-amniotic inflammation (IAI) is associated with increased risk of
preterm birth and bronchopulmonary dysplasia (BPD), but the mechanisms by
which IAI leads to preterm birth and BPD are poorly understood, and there are no
effective therapies for preterm birth and BPD. The transcription factor c-Myc
regulates various biological processes like cell growth, apoptosis, and
inflammation. We hypothesized that c-Myc modulates inflammation at the
maternal-fetal interface, and neonatal lung remodeling. The objectives of our
study were 1) to determine the kinetics of c-Myc in the placenta, fetal membranes
and neonatal lungs exposed to IAI, and 2) to determine the role of c-Myc in
modulating inflammation at the maternal-fetal interface, and neonatal lung
remodeling induced by IAI.

Methods: Pregnant Sprague-Dawley rats were randomized into three groups: 1)
Intra-amniotic saline injections only (control), 2) Intra-amniotic
lipopolysaccharide (LPS) injections only, and 3) Intra-amniotic LPS injections
with c-Myc inhibitor 10058-F4. c-Myc expression, markers of inflammation,
angiogenesis, immunohistochemistry, and transcriptomic analyses were
performed on placenta and fetal membranes, and neonatal lungs to determine
kinetics of c-Myc expression in response to IAI, and effects of prenatal systemic
c-Myc inhibition on lung remodeling at postnatal day 14.

Results: c-Myc was upregulated in the placenta, fetal membranes, and neonatal
lungs exposed to IAI. IAI caused neutrophil infiltration and neutrophil extracellular
trap (NET) formation in the placenta and fetal membranes, and neonatal lung
remodeling with pulmonary hypertension consistent with a BPD phenotype.
Prenatal inhibition of c-Myc with 10058-F4 in IAI decreased neutrophil
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infiltration and NET formation, and improved neonatal lung remodeling induced by
LPS, with improved alveolarization, increased angiogenesis, and decreased
pulmonary vascular remodeling.

Discussion: In a rat model of IAI, c-Myc regulates neutrophil recruitment and NET
formation in the placenta and fetal membranes. c-Myc also participates in neonatal
lung remodeling induced by IAI. Further studies are needed to investigate c-Myc as
a potential therapeutic target for IAI and IAI-associated BPD.

KEYWORDS

intra-amniotic inflammation, preterm birth, bronchopulmonary dysplasia, pulmonary
hypertension, placental inflammation, fetal inflammation

1 Introduction

Approximately 15 million infants are born preterm annually
worldwide, and preterm birth is the leading cause of death in
children under the age of 5 years (Blencowe et al., 2012; Liu et al.,
2016). Survivors of preterm birth suffer a lifetime of disability and
continue to require complex multidisciplinary medical care beyond
the neonatal period and childhood years. Adult survivors of preterm
birth are at increased risks for mortality, chronic multi-organ diseases,
psychiatric disorders, and decreased quality of life (Crump et al., 2019;
Markopoulou et al., 2019; Crump, 2020; Petrou et al., 2020). Intra-
amniotic inflammation (IAI) is present in 70%–85% of preterm births
that occur before 30weeks of gestation and is the cause of up to 40% of
preterm births (Romero et al., 1998; Romero et al., 2014). Current
clinical strategies to manage IAI include the use of antibiotics and
expectant management of labor, but IAI is most often sterile, and the
poor clinical outcomes of preterm birth and neonatal morbidities are
associated with the presence of inflammation itself, regardless of
bacterial infection (Combs et al., 2014).

The presence of IAI is also associated with increased risk for
bronchopulmonary dysplasia (BPD) in preterm infants,
compounding the severe chronic morbidities that survivors of
preterm birth already face (Villamor-Martinez et al., 2019).
Moreover, the risk of BPD is inversely proportional to gestational
age. With advances in neonatology over the past decade, more
extremely low gestational age and extremely low birth weight infants
are surviving, but the prevalence and burden of long-term
impairment from prematurity and BPD have also increased.
There is a lack of effective therapies for BPD, and BPD continues
to be themost common long-termmorbidity among preterm infants
leading to lifelong respiratory impairment (Stoll et al., 2015).
Survivors of preterm birth with BPD experience more childhood
wheezing and respiratory illnesses and have more special care needs
(Stoll et al., 2015; DeMauro, 2018). Adult survivors of BPD have
altered lung structure, impaired lung function and exercise capacity,
and decreased quality of life (Caskey et al., 2016). Preterm birth and
BPD aremajor public health issues, hence there is a pressing need for
effective targeted therapies to prevent preterm birth and BPD.

The pathogenesis of BPD is multifactorial and involves multiple
pathways, posing a challenge to the development of new therapies
(Mathew, 2020). c-Myc is an oncogene and key transcription factor
that regulates multiple cellular functions including proliferation,
differentiation, cell metabolism and apoptosis. c-Myc is
downstream of multiple pathways that have been implicated in the
pathophysiology of both preterm birth and BPD such as tumor

necrosis factor-α (TNFα), Notch signaling, Wingless/Int-1 (Wnt)
signaling, and Janus Kinase/Signal transducers and activators of
transcription (JAK/STAT) signaling (Green and Arck, 2020;
Mathew, 2020). c-Myc has a basic-helix-loop-helix-leucine zipper
structure and heterodimerizes with a ubiquitous protein called
Max to become transcriptionally active (Chen et al., 2018). In
tracheal aspirates of preterm infants, the MYC/MAX complex was
overrepresented in lung macrophages of infants prone to BPD (Sahoo
et al., 2020). We hypothesize that c-Myc has a role in modulating
inflammation of the placenta and fetal membranes in IAI, leading to
fetal lung inflammation and neonatal lung remodeling. To test our
hypothesis, our first objective was to determine the kinetics of c-Myc
in the placenta, fetal membranes and lungs exposed to IAI in a
pregnant rat model of IAI using ultrasound-guided intra-amniotic
lipopolysaccharide (IA LPS) injections. We then prenatally treated
pregnant rats with IAI induced by IA LPS with a small molecule
c-Myc inhibitor 10058-F4 (Huang et al., 2006). We show that c-Myc
inhibition in a rat model of IAI decreased inflammation in the
placenta and fetal membranes, and attenuated lung parenchymal
and vascular remodeling induced by IAI, demonstrating a potential
role of c-Myc in modulating inflammation at the maternal-fetal
interface, and neonatal lung remodeling induced by IAI.

2 Materials and methods

2.1 Animal model of IAI

To determine the kinetics of c-Myc in normal lung development
and in IAI-exposed animals, time-mated Pregnant Sprague-Dawley rats
received ultrasound-guided (Vevo 3100, VisualSonics) intra-amniotic
injections of 10 μg lipopolysaccharide (E. coli O55:B5, cat. #L4525-
5MG, Sigma-Aldrich, St Louis, MO) (IA LPS) or sterile phosphate
buffered saline (PBS) at embryonic day 18 (Figure 1). A group of
animals were delivered by cesarean sections 3 h after IA LPS injections
for in vivo imaging of LPS distribution using a Cy5.5-tagged LPS (cat #
LPS-S55-1, Nanocs, Boston, MA) and imaged on IVIS Spectrum In
Vivo Imaging System (PerkinElmer Inc., Waltham, MA). For
assessment of IAI, a group of animals were delivered by cesarean
section at 24 h post-IA LPS for placenta and fetal membrane sampling.
Another group of animals were allowed to deliver naturally around
embryonic day (E) 21 and rat pup lungs were sampled at postnatal day
14. For assessment of c-Myc lung expression in postnatal development,
a subgroup of animals was sacrificed at four timepoints: day of delivery
(P0), and postnatal days (P) 3, 7 and 14.
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2.2 Treatment groups

For c-Myc inhibition experiments, time-mated pregnant
Sprague-Dawley rats were randomized into three groups: IA
saline injections (control); IA LPS injections only, or IA LPS
injections with c-Myc inhibitor (IA LPS+10058-F4) (Figure 1).

10058-F4 (MedChemExpress, NJ, United States) was diluted per
manufacturer’s instructions in 10% dimethyl sulfoxide (DMSO) and
90% sesame oil to 10 mM. One group of pregnant dams received
intraperitoneal injections of 20 mg/kg of 10058-F4 on E17. Placenta
and fetal membranes were sampled and analyzed at 24 h post-IALPS
injections after 1 dose of 10058-F4. The remaining group of

FIGURE 1
Experimental design. Pregnant time-mated Sprague-Dawley rats were randomized into 3 groups: 1) IA saline, 2) IALPS, or 3) IALPS +10058-F4. Intra-
amniotic injections were performed on E18 under ultrasound guidance. Intraperitoneal c-Myc inhibitor injections were administered on E17 only for
pregnant rats who underwent C-section for placenta and fetal membrane sampling on E19, and both E17 and E19 for pregnant rats undergoing natural
delivery of pups for neonatal lung sampling.✥subgroup of rat pups euthanized at P0, P3 and P7 for assessment of c-Myc expression over postnatal
lung development. IALPS = Intra-amniotic lipopolysaccharide, E = Embryonic day. *10058-F4 = c-Myc inhibitor.
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pregnant rats received a second dose of 10058-F4 on E19 and were
allowed to naturally deliver. Rat pups were euthanized and neonatal
lungs analyzed on P14.

2.3 Histological assessment

Whole placentas with fetal membranes and whole fetuses were
fixed with 4% paraformaldehyde overnight. Following fixation,
samples were embedded in paraffin and sectioned. Hematoxylin/
eosin (H&E) staining was performed to assess for neutrophil
infiltration in whole sections of placenta and fetal membranes.
TUNEL assay was used to assess apoptosis in placenta and fetal
membranes using a commercial kit (Click-iT Plus TUNELAssay, cat
#10617, ThermoFisher, Waltham, MA) according to the
manufacturer’s instructions. To assess differences in cell
proliferation, placenta sections were stained with Ki67 antibody
and total number of cells and number of Ki67-stained cells per high
power field (hpf) were quantified using Zeiss Axio Observer
Microscopy image processing software. Six distinct regions of two
placenta sections per sample was analyzed. Analysis was performed
by calculating ratio of cells stained with Ki67 to total number of cells
per hpf.

Neonatal lungs were inflation-fixed with 4%
paraformaldehyde at 30 cm H2O via a tracheal cannula for
5 min and then fixed overnight. Following fixation, samples
were embedded in paraffin and sectioned. To assess lung
alveolarization in the peripheral parenchymal regions of lungs,
lung sections were stained with H&E, and mean linear intercept
(MLI) was performed on six distinct regions of one lung section
per animal, avoiding large vessels and airways, and was calculated
as previously described (Knudsen et al., 2010). Radial alveolar
counts were performed on ten regions of one lung section per
animal and calculated as previously described (Cooney and
Thurlbeck, 1982). Pulmonary vascular muscularization was
assessed by calculating ratio of small pulmonary vessels
identified by endothelial cells staining with vWF that
simultaneously stained positive for smooth muscle actin (SMA)
antibody, as previously described (Ciuclan et al., 2011). Peripheral
parenchymal regions of lungs were analyzed to avoid large vessels
and airways. 4–5 animals were assessed per group. We performed
immunohistochemistry on paraffin-embedded tissue sections
with heat-assisted antigen retrieval with citrate buffer (pH 6.0).
Primary antibodies (Supplementary Table S1A) were incubated
overnight at 4°C followed by incubation with respective secondary
antibodies for 1 h at room temperature. Stained sections were
imaged on Zeiss AxioObserver microscope.

2.4 Cytokine/chemokine assay

Rat cytokine/chemokine concentrations in whole lung protein
extract from 5 animals per group was determined by rat cytokine
array/chemokines array-27 (Eve Technologies, Calgary, Canada).
Flash frozen whole lung tissues were homogenized in RIPA buffer
(Santa Cruz Biotechnology, catalog # sc-24948) and centrifuged at
12,000 rpm for 20 min at 4°C. The supernatant was transferred to a
new tube and protein concentration was measured by BCA protein

assay (Thermo Scientific, catalog # 23228 and 1859078). Samples
were then diluted for a target protein concentration of 3–4 mg/mL.
Values for samples with signal outside the curve were calculated
when feasible by the model.

2.5 Western blot analyses

Whole placentas with fetal membranes were sectioned into equal
quarters and homogenized in RIPA lysis buffer. Homogenates were
centrifuged at 18,000 × g for 5 min at 4°C and the supernatant
collected for protein analysis. An aliquot of each sample was used for
protein quantification by the Bradford method, using a commercial
kit (Bio-Rad Protein Assay Dye Reagent, Bio-Rad Laboratories Inc.,
United States). ForWestern blot analysis, 40 μg of total protein from
each sample were fractionated by SDS-PAGE on precast 4%–15%
Tris-glycine gradient gels, and then transferred to a 0.45 μm
nitrocellulose membrane (Bio-Rad Laboratories, Inc.,
United States). Total protein was stained using the Revert
700 Total Protein stain kit (LI-COR Biosciences, United States)
followed by imaging. Subsequently, the membrane was blocked
overnight at 4°C under gentle agitation in Phosphate Buffered
Saline pH 7.4 with 0.1% Tween-20 (PBS-T) supplemented with
5% nonfat dry milk (Bio-Rad Laboratories Inc., United States). After
blocking, the membrane was washed in PBS-T and incubated for 1 h
with mouse monoclonal anti-c-Myc antibody (clone 9E10, Santa
Cruz Biotechnology, Inc. United States) diluted 1:500 at room
temperature under gentle agitation. The membrane was then
washed and incubated with IRDye® 800CW Goat anti-Mouse IgG
Secondary Antibody (LI-COR Biosciences, United States). All
images were collected using the Odyssey® Infrared Imaging
System (LI-COR Biosciences, United States). Protein expression
was estimated relative to total protein using Empiria Studio
2.3 software (LI-COR Biosciences, United States). Lung lysates
were processed and analyzed in the same manner, with the
exception that secondary antibody conjugated to horseradish
peroxidase was used and proteins detected by chemiluminescence
(Amersham, Piscataway, NJ, United States). Protein expression was
estimated by densitometry analysis relative to actin expression using
Quantity One software (Bio-Rad Laboratories Inc., United States).
We analyzed 6–8 animals per group for placenta and fetal
membrane analysis, and 4–7 rat pups per group for lung analysis.

2.6 RNA isolation and real-time qPCR

Total RNA was extracted from frozen placenta and lung
tissues using the RNeasy universal Mini Kit (Qiagen, Valencia,
CA) according to the manufacturer’s instructions. Two µg of total
RNA from 4 to 7 animals per group was reverse-transcribed in a
20 µL reaction by using High-Capacity RNA-to-cDNA™ Kit
according to supplier’s protocol (Applied Biosystems, cat #43-
874-06, Foster City, CA) The real-time q-PCR was performed on
an ABI Fast 7500 System (Applied Biosystems, Foster City, CA).
Each reaction included diluted first-strand cDNA, target gene
primers, or 18S rRNA gene primers and master mix containing
TaqMan probes according to the supplier’s instruction
(Supplementary Table S1B) (Applied Biosystems, Waltham,
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MA). The expression levels of target genes were normalized to
18S rRNA.

2.7 RNA sequencing

RNA quality and integrity were verified using the Agilent
2,100 Bioanalyzer (Agilent Technologies). All samples had RNA
integrity number >8. RNA-Seq was performed by BGI genomics
with a read depth of 30 million reads per sample for 150 bp paired-
end reads. The raw sequence reads in FASTQ format were aligned to
the Rattus norvegicus genome build rno6.0 using kallisto (Bray et al.,
2016) followed by gene summarization with tximport (Soneson
et al., 2015). After checking data quality, differential expression
analyses comparing treatment groups with control and between
each other were performed using DESeq2 with false discovery
adjustment (Love et al., 2014). Genes were considered
differentially expressed based on their fold change relative to
control (≥1.5), p-value (<0.05), and q value (<0.1). PCA analysis
was performed with PCAtools (Blighe and Lun, 2023). Volcano plots
were generated using the EnhancedVolcano package (Blighe et al.,
2018) Heatmaps were generated with pheatmap (Kolde, 2019).

2.8 Functional enrichment and pathway
analysis

Lists of differentially expressed genes were used for functional
enrichment analysis of Gene Ontology (GO) and KEGG pathway
terms using the ToppCluster web server (Kaimal et al., 2010). Only
unique terms associated with either induced or suppressed genes
and at least 2 genes are reported. Negative log p values represent
terms associated with suppressed genes, and positive log p values are
associated with induced genes.

3 Results

3.1 US-guided IA LPS injections accurately
target the amniotic cavity

To verify localization of LPS after US-guided IA injections we
performed cesarean sections 3 h post-injection of Cy5.5-tagged LPS.
In vivo and ex vivo imaging showed that LPS localized to the uterus
without signal from the maternal abdominal cavity or circulation
(Figure 2). After dissection, LPS was noted to be present on the fetal

FIGURE 2
Intra-amniotic LPS localization and c-Myc expression in placenta. Distribution of LPS after intra-amniotic injections visualized by in vivo fluorescent
imaging. Ultrasound-guided injections of LPS localized to amniotic cavity, fetal lungs and gastrointestinal tract.
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FIGURE 3
Intra-amniotic LPS changes the placental transcriptome. RNA-sequencing performed on placenta and fetal membranes sampled 24 h after LPS-
exposure compared with controls showing: (A) Principal component analysis plot showing clear differentiation of gene expression between controls
(pink) vs. LPS-exposed group (blue). (B) Heatmap of differentially expressed genes and (C) Volcano plot showing differential gene expression with genes
of interest highlighted. Red–FDR<0.1 and fold change>1.5 (D) Dotplot showing related functions of genes that were differentially expressed
between groups. LPS exposure induced genes associated with inflammation and leukocyte activation (left), and suppressed genes associated with cell
proliferation (right). (E) Network plot of genes that were differentially induced (left) and suppressed (right) in LPS-exposed group compared to controls.
N = 3 per group.
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membranes and placenta as well as fetal lungs, heart, and
gastrointestinal tract (Figure 2). These findings confirm the
accuracy of US-guided injection in delivering LPS to the intra-
amniotic cavity, simulating IAI.

3.2 IA LPS exposure modulates the
transcriptome of placenta and fetal
membranes

Bulk RNA-sequencing was performed on placenta and fetal
membranes sampled 24 h post-LPS exposure and compared with
controls of the same timepoint. We used PCA to identify global
differences among samples on RNA-sequencing. PCA is a
dimensionality reduction technique that allows quicker
interpretation of the results while maintaining the maximum
amount of information on each sample. There were large
transcriptomic changes between groups with clear separation of
LPS and control samples on PCA (Figure 3A). Differential
expression analysis (Figures 3B, C, Supplementary Table S2)
showed that IA LPS induced 271 and suppressed 165 genes
relative to control. Overrepresentation analysis graphs show the
p-value represented by the circle color, the number of differentially

expressed genes belonging to each term represented by circle size,
and the x-axis represents the gene ratio. Genes that were
differentially expressed in LPS-exposed placenta and fetal
membranes were associated with inflammation (S100a8, S100a9,
IL1b, Mmp8), leukocyte activation (Ccl2, Ccl3), and decreased
proliferation (Map9, Tpx2) (Figures 3C, D). Other differentially
expressed genes were associated with regulation of angiogenesis,
extracellular matrix organization and muscle contractility
(Figure 3D). These findings confirm the induction of
inflammation at the placenta in our model and suggest altered
placental growth and development induced by IA LPS.

3.3 Prenatal c-Myc inhibition in IAI leads to
increased c-Myc protein in the placenta and
fetal membranes that are not neutrophil-
driven

To assess c-Myc expression in our model of IAI, we
performed RT-PCR, Western blot, and immunostaining for
c-Myc in the placenta and fetal membranes. There were no
significant changes in mRNA expression of c-Myc in the
placenta and fetal membranes sampled at 24 h post-LPS

FIGURE 4
Prenatal c-Myc inhibition in IAI leads to increased c-Myc protein in the placenta and fetal membranes that are not neutrophil-driven. (A) RT-PCR
performed on placenta and fetal membranes sampled at 24 h post-LPS exposure showed no significant changes. N = 4–8 per group. (B) Representative
Western blot of placenta and fetal membrane lysates showing increased protein expression of c-Myc in LPS-exposed placenta and fetal membranes.With
prenatal 10058-F4 c-Myc inhibitor treatment, c-Myc protein expression was further increased compared to both control and LPS groups. N =
6–8 per group *p < 0.05, ***p < 0.001, t-test, normalized to total protein. (C) Immunostaining of placenta sections with c-Myc antibody showing c-Myc
expression (brown staining) in neutrophils (cropped and magnified, bottom left picture in each group, marked by black arrows) in LPS-exposed placenta.
Prenatal c-Myc inhibition with 10058-F4 decreased neutrophil infiltration in LPS-exposed placenta and c-Myc was not expressed in neutrophils, but is
expressed in cytoplasm of maternal decidual cells (cropped and magnified, bottom right picture in each group, marked by red asterisks).
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exposure in both IA LPS and IA LPS+10058-F4 treatment groups
compared to controls (Figure 4A). The placenta and fetal
membranes of IA LPS-exposed rats had increased c-Myc

expression compared to controls by Western blot.
Interestingly, prenatal c-Myc inhibitor treatment in IA LPS-
exposed placenta and fetal membranes further induced c-Myc

FIGURE 5
c-Myc inhibition decreases neutrophil infiltration, NET formation and modulates inflammation in placenta and fetal membranes. (A) Hematoxylin
and eosin (H&E) staining of placenta sections showing increased neutrophil infiltration in placenta with LPS exposure when compared to controls, which
was ameliorated with c-Myc inhibitor treatment. (B) Immunofluorescent staining of placenta sections with anti-myeloperoxidase (MPO) antibody (green)
and anti-citrullinated histone (H3) antibody (red) showing increased NET formation in placenta with LPS exposure when compared to controls,
which was ameliorated with c-Myc inhibitor treatment. (C) RT-PCR performed on placenta and fetal membranes sampled at 24 h post-LPS exposure.N=
5–8 per group. LPS exposure was not associated with significant changes in IL1β, TNFα, CXCL1 and CXCL2. Prenatal c-Myc inhibition in LPS-exposed
pregnant rats induced IL1β and CXCL1 when compared to controls, and increased CXCL2 when compared to both control and LPS-exposed groups. *p <
0.05, **p < 0.01, Kruskal–Wallis test.
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protein expression compared to both controls and IALPS groups
(Figure 4B). On immunostaining, c-Myc was intranuclear and
localized to neutrophils present at the maternal-fetal interface in
the IA LPS-exposed group. In the LPS+10058F4 treatment group,
c-Myc was not expressed in scant neutrophils that were present in
the placenta and fetal membranes, but was expressed in the
cytoplasm of placental decidual cells (Figure 4C). These
findings show that c-Myc expression is induced by LPS and is
expressed in the neutrophils in IAI. However, prenatal systemic
10058-F4 inhibitor treatment did not suppress c-Myc mRNA
expression in the placenta and fetal membranes, but led to an
increase in c-Myc protein expression in the placenta and fetal
membranes which were not neutrophil-driven.

3.4 Prenatal systemic 10058-F4 treatment
ameliorates inflammation and NET
formation in placenta and fetal membranes
induced by IA LPS

IA LPS induced neutrophil infiltration of the placenta and fetal
membranes, confirming presence of histologic IAI (Figure 5A). IA
LPS also induced NET formation assessed by immunofluorescence
staining with colocalization of myeloperoxidase (MPO) and
citrullinated histone-3 (citH3) (Figure 5B). Furthermore, LPS-
exposed pregnant rats prenatally treated with 10058-F4 had
decreased neutrophil infiltration and NET formation compared
to pregnant rats exposed to IA LPS only (Figures 5A, B). Real-time
PCR performed on placenta and fetal membranes sampled at 24 h
after IA LPS injection showed no significant changes in mRNA
expression of pro-inflammatory mediators IL1β, TNFα,
CXCL1 and CXCL2 (Figure 5C). Prenatal c-Myc inhibitor
treatment in the LPS-exposed group induced increases in
mRNA expression of IL1β and CXCL1 compared to controls,
and a very variable but overall significant increase in
CXCL2 compared to both controls and the LPS-exposed group
(Figure 5C). These findings show that c-Myc modulates
inflammation of the placenta and fetal membranes.

3.5 Prenatal systemic 10058-F4 treatment
decreases apoptosis and attenuates arrest of
proliferation in the placenta induced by
IA LPS

IA LPS induced apoptosis in the placenta, assessed by TUNEL
assay performed on placental sections (Figure 6A). When pregnant
rats exposed to IA LPS were treated with c-Myc inhibitor 10058-
F4, apoptosis was decreased compared to IA LPS only groups,
similar to controls. Ki67 staining of placenta sections were used to
assess cell proliferation, which were expressed in the villous
cytotrophoblasts and most abundant in the control group
(Figure 6B). Compared to controls, Ki67 staining was
significantly decreased in placenta of pregnant rats that were
exposed to IA LPS. However, when IA LPS-exposed pregnant
rats were treated with 10058-F4, there was significantly increased
number of Ki67+ cells per hpf compared to the IA LPS only group,
and similar to controls.

3.6 IA LPS exposure modulates
inflammation, collagen synthesis and
extracellular matrix remodeling in the fetal
lungs

Bulk RNA-sequencing was performed on lung tissue obtained at
24 h. after IA LPS to characterize transcriptional changes induced by
IAI on lung inflammation and remodeling. IA LPS induced large
transcriptional changes to the lung with clear separation of groups by
PCA (Figure 7A). There were significant differences in gene
expression between controls and LPS-exposed groups with
379 genes induced and 209 genes suppressed by IA LPS
(Figure 7B, Supplementary Table S3). We used data from single-
cell RNA-seq of fetal lungs from LungMAP (Du et al., 2015; Ardini-
Poleske et al., 2017) to determine cell-type specific signature genes.
Differentially expressed genes in IA LPS exposed lungs were mapped
to the signature gene list for the different cell populations identified by
single-cell RNA-seq. IA LPS exposure induced signature genes for
airway and distal epithelium cells, proliferative mesenchymal
progenitors, and matrix fibroblasts, and suppressed signature genes
for myofibroblasts, suggesting maturation of alveolar epithelial cells
and suppression of myofibroblasts, which play a role in alveolar
septation (Figure 7C). Gene set enrichment analysis of
differentially expressed genes showed that genes suppressed by IA
LPS were associated with collagen synthesis (Col9a2, Col9a1, Col11a2,
Col11a1) and extracellular matrix organization (Cxcl1). On the other
hand, genes induced by IA LPS were associated with chemokines that
drive leukocytemigration to the fetal lung (Cxcl3, Ccl12, Cxcl1, Cxcl13,
Itgam, Lyz2, Mr1, Lgals3, Tap2, Trem1), cell killing (Cxcl3, Trem1),
and surfactant homeostasis (Sftpa1, Sftpb). Other notable genes that
were differentially expressed were related to cell proliferation (Cebpa),
angiogenesis (Bmp6) and inflammation (Apln, Pparg) (Figures 7D–F).

3.7 c-Myc is expressed in lung macrophages
and is upregulated in normal postnatal lung
development. IAI further increases c-Myc
expression in postnatal lung development

Lung sections at P14 stained with c-Myc antibody showed
c-Myc expression in lung macrophages of pups exposed to IA
LPS (Figure 8A). c-Myc was upregulated in normal postnatal
lung development, and LPS exposure further increased c-Myc
expression in postnatal lung development. Western blot analysis
of c-Myc expression in lungs of controls at various neonatal
timepoints showed upregulation of c-Myc expression over time
in the neonatal period, suggesting a role of c-Myc in postnatal
lung development. IA LPS exposure exacerbated the normal
upregulation in c-Myc expression compared to controls,
suggesting that IA LPS modulates neonatal lung c-Myc
expression (Figure 8B).

3.8 Fetal lung inflammation induced by IA
LPS is transient and is modulated by c-Myc

To determine the effect of prenatal c-Myc inhibition on fetal
lung inflammation, we performed RT-PCR and cytokine
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multiplex assay. mRNA changes in IL1β, TNFα, CXCL1 and
CXCL2 were not present at 24 h post-LPS exposure. Prenatal
c-Myc inhibition in LPS-exposed fetal lungs suppressed IL1β
and CXCL1 when compared to the LPS-exposed group, and
suppressed TNFα when compared to both LPS and
LPS+10058F4 treated groups. Similar to our findings in the
placenta and fetal membranes, there was wide variability in
mRNA expression of CXCL2 in response to
LPS+10058F54 treatment, but these changes were not
statistically significant when compared to control and LPS
groups (Figure 9). On cytokine multiplex assay on lung
lysates, LPS induced increased IL1β and CXCL10 at P0 only,
and there were no significant changes in other pro-inflammatory
mediators TNFꭤ, IL6, IL10, CXCL1, CXCL2, CX3CL1 or
CXCL5 on P0 or P3 (Figure 10). There were no significant
changes in angiogenic factor VEGF induced by LPS. These
findings demonstrate that fetal lung inflammation induced by
IA LPS is transient and resolves before postnatal day 3.

3.9 Prenatal c-Myc inhibition improves LPS-
induced changes associated with BPD

To assess alveolarization, lung sections obtained at P14 were
stained with H&E and analyzed for the mean linear intercept (MLI)
and radial alveolar count (RAC), which are measures of alveolar
septation and quantification of lung airspaces. MLI was increased in
LPS-exposed neonatal rats at P14, demonstrating alveolar
simplification relative to controls. RAC was significantly
decreased in LPS-exposed neonatal rats (Figure 11). To assess
pulmonary vascular muscularization, lung sections were double-
stained with von Willebrand factor (vWF) and smooth muscle actin
(SMA) (Figure 12A), and the ratio of number of vessels stained with
SMA-vWF to the number of vessels stained with vWFwas calculated
(Figures 12B, C). In IA LPS-exposed lungs at P14, there was an
increased ratio of SMA/vWF-stained vessels, indicating increased
pulmonary vascular remodeling, which occurs in pulmonary
hypertension. Compared to pregnant rats exposed to LPS only,

FIGURE 6
Prenatal systemic c-Myc inhibition decreases apoptosis and improves arrest of proliferation induced by LPS. (A) TUNEL assay performed on placenta
sections showing increased apoptosis induced by LPS exposure when compared to controls, which was ameliorated with c-Myc inhibitor treatment. (B)
Ki67 staining of representative placenta sections from each group showing decreased number of villous cytotrophoblasts positively stained with Ki67
(black stain) compared to controls, which improved with prenatal c-Myc inhibitor treatment. *p < 0.05, **p < 0.01, One-way Anova test. N = 4 per
group.
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prenatal treatment of LPS-exposed pregnant rats with c-Myc
inhibitor 10058-F4 led to improved alveolarization, increased
angiogenesis and decreased pulmonary vascular muscularization

induced by LPS (Figures 11, 12). These findings suggest that
c-Myc has a role in modulating impaired lung development
induced by IAI.

FIGURE 7
Intra-amniotic LPS induces fetal lung inflammation. Bulk RNA-sequencing of lungs at 24 h post-LPS exposure showing: (A) Principal component
analysis showing clear differentiation of gene expression between groups. (B)Heatmap showing distinct differences in genes that were upregulated (red)
and downregulated (blue) between control and LPS-exposed group. (C) Volcano plot showing differential gene expression with genes of interest
highlighted. Red–significant. (D) Differential expression of genes by association with cell type. Red–induced. Blue–suppressed. Air Epi–airway
epithelium, Dist Epi–distal airway epithelium, PMP–proliferative mesenchymal progenitors, MatrixF–Matrix fibroflasts, VascEndo–Vascular endothelial.
(E)Chart showing related gene functions of genes that were differentially expressed between groups. Blue–Controls, orange–LPS-exposed. (F)Network
plot of genes that were differentially induced (left) and suppressed (right) in LPS-exposed group compared to controls. N = 3 per group.
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4 Discussion

To understand the role of c-Myc on placental inflammation and
BPD induced by IAI we used ultrasound-guided IA LPS injections
and allowed natural delivery, eliminating confounding effects of
stress and inflammation induced by maternal laparotomy. This
rodent model of IAI has been validated to cause a subclinical
syndrome of IAI, which is most clinically relevant, compared to
intra-uterine or intraperitoneal injections (Gomez-Lopez et al.,
2018). We further validated this model with demonstrated uptake
of tagged LPS in the amnion, fetal lungs, and gut, confirming
exposure of the fetus to intraamniotic inflammation through the
fetal membranes, lungs, and gastrointestinal tract. These findings are
consistent with large animal models of IAI using IA LPS (Kramer

et al., 2010). Overall, our results suggest that c-Myc drives neutrophil
infiltration in IAI, and that c-Myc has a role in modulating neonatal
lung alveolar development and pulmonary vascular remodeling.

Bulk RNA-sequencing of placenta and fetal membranes showed
transcriptional changes in genes associated with inflammation
(S100a8, S100a9, Alox15, Il1b, Mmp8), leukocyte activation (Ccl2,
Ccl3), and decreased proliferation (Map9, Tpx2) in response to LPS
exposure. S100a8, S100a9, Il1b, and Mmp8 have been strongly
associated with fetal inflammatory response syndrome (FIRS),
preterm labor, and chorioamnionitis in preterm infants (Kallapur
et al., 2013; Holmstrom et al., 2019; Golubinskaya et al., 2020),
further supporting our rat model using IA LPS injections to simulate
IAI and a FIRS-like response. Alox15 encodes for arachidonic acid
through the lipoxygenase 15 (ALOX15) pathway, which participates

FIGURE 8
c-Myc is expressed in neonatal lung macrophages and is developmentally regulated. (A) Representative lung sections of rat pups at postnatal day
14 stained with c-Myc antibody showing localization of c-Myc expression to lung macrophages (brown-stained cells in magnified image on right). (B)
Representative Western blot of lung tissue lysates showing expression of c-Myc over time (N = 4–7 per group). c-Myc was significantly upregulated
during normal postnatal development, and this effect was more pronounced with exposure to LPS. *p < 0.02, **p < 0.002, ***p < 0.0002, ****p <
0.00002, ##p < 0.002.
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in glucocorticoid receptor response and modulates parturition
through prostaglandin E2 synthesis pathway, suggesting a
potential role in inflammation induced preterm labor (Zhang
et al., 2023). Ccl2 and Ccl3 code for known inflammatory
chemokines that are elevated in chorioamnionitis-exposed
preterm infants (Stepanovich et al., 2023). LPS exposure
suppressed Map9 (Microtubule-Associated Protein 9) and Tpx2
(Targeting protein Xklp2), which are protein-coding genes that
are involved in cell growth and division. Tpx2 abnormalities
result in abnormal spindles and meiosis, and chromosome
segregation errors in animal studies, which may be associated
with birth defects and pregnancy loss (He et al., 2022; Zhang
et al., 2022). These transcriptomic changes suggest a negative
impact of placental growth and development induced by IA LPS.

LPS induces inflammation in the placenta and fetal membranes
within 24 h of exposure, demonstrated by increased neutrophil
infiltration and NET formation. Neutrophil infiltration is a

hallmark of IAI, and neutrophil recruitment with NET formation
are immune defense mechanisms against infections or danger
signals (Gomez-Lopez et al., 2017). However, excessive neutrophil
infiltration and NET formation in pathologic conditions may
exacerbate tissue injury (Sorensen and Borregaard, 2016). In LPS-
exposed placenta and fetal membranes, c-Myc is expressed in the
nuclei of neutrophils. Prenatal systemic c-Myc inhibition with
10058F4 decreased LPS-induced neutrophil infiltration and NET
formation in the placenta and fetal membranes, suggesting that
c-Myc regulates inflammation in the placenta and fetal membranes
in our rat model of IAI, and that c-Mycmodulates NET formation in
the placenta. Interestingly, c-Myc was not expressed in the
neutrophils in LPS-exposed placenta treated with 10058F4 but is
expressed in the cytoplasm of maternal decidual cells. The presence
of c-Myc in the placenta has only been described in limited studies,
in human choriocarcinoma and hydatidiform moles (Diebold et al.,
1991; Cheung et al., 1993; Fulop et al., 1998). There is limited data on

FIGURE 9
Fetal lung inflammation induced by IA LPS is transient and is modulated by c-Myc. RT-PCR of fetal lungs sampled at 24 h post-LPS exposure (N =
4–7 per group). There were no significant differences inmRNA expression of IL1β, TNFα., CXCL1 or CXCL2 with LPS exposure. Prenatal c-Myc inhibition in
LPS-exposed fetal lungs suppressed IL1β and CXCL1 when compared to the LPS-exposed group and suppressed TNFαwhen compared to both LPS and
LPS+10058F4 treated groups. There were no statistically significant changes in mRNA expression of CXCL2 with either LPS exposure alone or
LPS+10058F54 treatment. *p < 0.05 Kruskal–Wallis test.
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the role of c-Myc in the placenta in normal pregnancies and in IAI.
On the other hand, the differences between intranuclear expression
of c-Myc versus cytoplasmic c-Myc expression have been described,
and the biological functions of c-Myc differ when expressed in nuclei
or cytoplasm (Conacci-Sorrell et al., 2010). The expression of c-Myc
in nuclei or cytoplasm has been used to risk stratify and
prognosticate cancers (Geisler et al., 2004; Conacci-Sorrell et al.,
2010; Gong et al., 2017).

We administered the c-Myc inhibitor 10058-F4 systemically, but
it is not known whether 10058-F4 crosses the placenta. Since we
performed ultrasound-guided intra-amniotic LPS injections to
minimize systemic effects and to mimic subclinical
chorioamnionitis, inflammation is localized to the amniotic sacs,
placenta, and fetus. LPS is a toll-like receptor 4 (TLR4) agonist, and
has been shown to prevent degradation of c-Myc via activation of the
TLR/MyD88 pathway, but the exact mechanism by which LPS
induces neutrophil-targeted c-Myc in the placenta are unknown
(Wang et al., 2014). Our findings suggest that prenatal systemic
10058F4 treatment leads to inhibition of c-Myc in the maternal
circulation, attenuating recruitment of neutrophils to the placenta
and fetal membranes in IAI. However, prenatal 10058F4 did not

inhibit c-Myc expression in the maternal decidual cells, which is
likely constitutional in the placenta and fetal membranes and likely
related to other functions regulated by c-Myc, such as cellular
proliferation. The overall increase in c-Myc expression in the
placenta and fetal membranes treated with 10058-F4 is not
neutrophil-driven and may be a compensatory mechanism to
overcome prenatal c-Myc suppression in cell types other than
neutrophils, and possibly to protect the pregnancy and fetus. The
role of c-Myc in placental and fetal development, and in IAI needs to
be further explored.

We did not observe statistically significant changes in mRNA
expression of specific inflammatory cytokines and chemokines (IL1β,
TNF-α, CXCL1 and CXCL2) induced by LPS in the placenta and fetal
membranes. This is likely due to lack of statistical power as there was
an uptrend in IL1β and TNFα which corroborates with RNA-
sequencing data. However, prenatal c-Myc inhibition in the LPS-
exposed group significantly induced IL1β, CXCL1 and CXCL2 when
compared to controls. CXCL1 and CXCL2 are members of the CXC
chemokine subfamily that participate in wound healing,
immunoregulation and neutrophil recruitment through activation
of a CXCR2 receptor (Sawant et al., 2021). CXCR2 antagonism

FIGURE 10
IA LPS induces fetal lung inflammation that resolves before postnatal day 3. Cytokine multiplex assay performed on neonatal lungs sampled on
postnatal days (P) 0 and 3. In neonatal lungs at P0, LPS significantly induced IL1β and CXCL10. There were no statistically significant changes in TNFα, IL6,
IL10, CXCL1, CXCL2, CX3CL1, CXCL5 and VEGF. N = 5 per group. *p < 0.05, **p < 0.02 Two-way Anova.
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has been shown to decrease c-Myc expression in bone marrow of
patients with chronic myeloid leukemia, through a CXCR2-mTOR-
c-Myc cascade (Kim et al., 2021). c-Myc also regulates programmed
cell death-ligand 1 (PD-L1), and c-Myc inhibition with 10058F4 in
esophageal cancer cells downregulated PD-L1 (Liang et al., 2020). PD-
L1 deficiency in neutrophils has been shown to lead to impaired
secretion of CXCL1 and CXCL2 (Yu et al., 2022). In pregnancy,
CXCL1 is produced in the placenta and participates in implantation,
placentation and decidual angiogenesis (Korbecki et al., 2022). The
dynamics between CXCL1, CXCL2 and CXCR2 receptor activation
have been shown to be complex, and together, are vital in achieving
homeostasis of inflammation and tissue healing (Sawant et al., 2021).
CXCL1 andCXCL2 elevation in pregnantmice have been shown to be
associated with massive decidual neutrophil infiltration and fetal loss
(Mizugishi et al., 2015). The mechanisms by which c-Myc directly
modulates CXCL1 and CXCL2, and their roles in IAI are unknown
and need to be further explored. In our experiments, we observed that
LPS exposure with prenatal c-Myc inhibition in a pregnant model
induces an imbalance in CXCL1 and CXCL2 expression in the
placenta and fetal membranes. Regardless, we observed reduction
of neutrophil infiltration and NET formation with prenatal c-Myc
inhibition, associated with improved neonatal lung remodeling. More
studies are required to investigate the relationship between c-Myc,
chemokine balance in pregnancy and effects on fetal development.

In fetal lungs, bulk RNA-sequencing showed that LPS exposure
induced genes associated with chemokines that drive leukocyte
migration to the fetal lung (Cx3cr1, Cxcl3, Ccl12, Cxcl1, Cxcl13,
Itgam, Lyz2, Mr1, Lgals3, Tap2, Trem1), inflammation (Angptl4,
Chi3l1), and surfactant homeostasis (Sftpa1, Sftpb, Ctsh). Cx3cr1
encodes for the receptor of fractalkine/CX3CL1, which is a
chemokine involved in adhesion and migration of leukocytes.
CX3CL1-CX3CR1 axis is strongly associated with inflammatory lung
diseases (Zhang and Patel, 2010). CX3CR1 is also a major receptor for
respiratory syncytial virus infections and has been found to modulate
airway inflammation andmucus production (Das et al., 2017), as well as
LPS-induced lung injury through NFκB activation (Ding et al., 2016).
Cxcl1, Cxcl3, Cxcl13, Itgam, Lyz2, Lgals3 encode for cytokines that are
known to be dysregulated in animal models of hyperoxia-induced BPD
(Deng et al., 2000; Rudloff et al., 2017; Hurskainen et al., 2021; Dong
et al., 2022), and Trem1 is a protein-coding gene encoding for
Triggering Receptor Expressed on Myeloid Cells 1 (TREM1) which
is upregulated in preterm infants who developed BPD (Ambalavanan
et al., 2009). Angptl4 has been shown to be dysregulated in
inflammation and may have protective anti-inflammatory and anti-
angiogenic effects throughmodulation of NF-kBp65 and IL6 expression
(Wang et al., 2013). Angptl4 gene knockout in mice models of LPS-
induced lung injury decreased inflammation and tissue damage, and
improved recovery and mortality, suggesting a significant role of

FIGURE 11
c-Myc inhibition improves alveolarization and pulmonary hypoplasia induced by IAI. Representative lung sections of rat pups at postnatal day 14 (n =
5 per group) stained with H&E to assess alveolarization. Mean linear intercept was significantly increased and radial alveolar counts were significantly
decreased in IALPS-exposed lungs compared to controls at postnatal day 14, suggesting alveolar simplification and pulmonary hypoplasia. These effects
were significantly decreased with c-Myc inhibitor treatment. *p < 0.05, **p < 0.005, ****p < 0.0001.
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Angptl4 in the mechanisms of inflammation-induced lung injury (Guo
et al., 2015; Li et al., 2015). Chi3l1 has been implicated in pulmonary
fibrosis and is expressed in lung alveolar macrophages and regulates
inflammation, cell proliferation and apoptosis in connective tissue cells
including fibroblasts (Recklies et al., 2002). Ctsh is involved in
pulmonary surfactant protein B production and plays a vital role in
lung development (Lu et al., 2007; Buhling et al., 2011). Similar to our
findings in the placenta, RT-PCR of IL1β, TNF-α, CXCL1 and
CXCL2 in the fetal lungs did not show statistically significant
differences induced by LPS. However, in fetal lungs exposed to
LPS+10058F4, we observed suppression in IL1β and
CXCL1 compared to LPS-exposed group, and suppression in TNF-α
compared to both controls and LPS-exposed group. IL1β, TNF-α and
CXCL1 dysregulation are well-associated with IAI and BPD
(Ambalavanan et al., 2009; Cappelletti et al., 2020; Heydarian et al.,
2022).

Cytokine multiplex of neonatal lungs showed that IA LPS
significantly induced IL1β and CXCL10 at P0. There were no
statistically significant changes in TNFα, IL6, IL10, CXCL1,
CXCL2, CX3CL1, CXCL5 and VEGF. IL1β is a well-known major
modulator in IAI and bronchopulmonary dysplasia (Bry et al., 2007;
Cappelletti et al., 2020). CXCL10 participates in inflammation,
specifically macrophage infiltration, and modulates migration of
vascular smooth muscular cells and endothelial cell permeability
(Li et al., 2021). It is upregulated in tracheal aspirates of preterm

infants with BPD and is strongly associated with idiopathic
pulmonary arterial hypertension in adults (Aghai et al., 2013; Li
et al., 2021; Cunningham et al., 2022). Inhibition of CXCL10 in animal
models have been shown to improve pulmonary hypertension and
LPS-induced lung injury (Lang et al., 2017; Cunningham et al., 2022).
Collectively, our RNA-sequencing data showed that IA LPS induced
inflammatory transcriptional changes in the fetal lungs which
persisted through postnatal day 0, but these inflammatory changes
appeared to be transient and resolved before postnatal day 3.
However, prenatal systemic c-Myc inhibition suppressed mRNA
expression of inflammatory cytokines in the fetal lungs.

At P14, rat pups exposed to LPS had alveolar simplification and
pulmonary hypoplasia, decreased angiogenesis, and increased
pulmonary vascular muscularization, consistent with a BPD-
phenotype. Extracellular matrix (ECM) remodeling is another
important component in the pathophysiology of BPD, and RNA
sequencing of fetal lungs at 24 h after LPS exposure showed
significant modulation of genes related to ECM remodeling (Cxcl1)
and organization, collagen synthesis (Col9a2, Col9a1, Col11a2,
Col11a1), proliferative mesenchymal progenitors and matrix
fibroblasts. These results are consistent with previously reported data
where extracellular matrix development and collagen protein synthesis
was disrupted in lungs of preterm rhesus macaques exposed to IALPS
(Schmidt et al., 2020). Targeted inhibition of extracellular matrix
proteins provides partial protection from lung injury induced by

FIGURE 12
c-Myc inhibition increases angiogenesis and decreases pulmonary vascular remodeling in IAI at P14. (A) Immunostaining of lung sections sampled at
postnatal day 14 with von Willebrand factor (vWF–green) and smooth muscle actin (SMA–red) (n = 4-8 per group) (B)Quantitative analysis of pulmonary
vascular muscularization by calculating ratio of vessels stained with both SMA and vWF (demonstrated by white arrows and magnified images of vessels
on far left), to number of vessels stained with vWF only (SMA/vWF ratio), and (C) quantitative analysis of angiogenesis using number of vessels stained
with vWF per hpf. LPS exposure decreased angiogenesis and increased pulmonary vascular muscularization. Prenatal c-Myc inhibition with 10058-F4
treatment improved angiogenesis and decreased pulmonary vascular muscularization induced by LPS.
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hyperoxia and anti-inflammatory treatment in animal models
improved changes related to BPD through modulation of collagen
and extracellular matrix protein expression and TGF-β1/Smads
pathway, suggesting potential for targeted therapy in modifying
abnormal extracellular matrix remodeling in IAI-induced BPD
(Mizikova et al., 2018; Chen et al., 2020).

c-Myc expression in rat fetal lungs have been shown to be elevated
during a period of growth, then decrease over increasing gestational age,
coinciding with the time of cell differentiation and beginning of
surfactant production (Kellogg et al., 1992). Interestingly, protein
expression of c-Myc increases postnatally in neonatal lungs of
control pups, demonstrating a role of c-Myc in normal postnatal
lung development. c-Myc is an important regulator of cell
proliferation, differentiation, and growth. When exposed to LPS,
c-Myc is overexpressed during neonatal lung development, which is
also associated with large transcriptomic differences in cell
differentiation and proliferation, airway and alveolar epithelial cell
differentiation, collagen and extracellular matrix organization, and
surfactant proteins, predicting abnormal lung development, which is
consistent with the lung parenchymal and vascular changes observed in
our 14-day old pups. In LPS-exposed rat pups, prenatal c-Myc
inhibition improved alveolarization, increased angiogenesis and
decreased pulmonary vascular muscularization, demonstrating a role
of c-Myc in IAI-associated BPD. The exact mechanisms by which
c-Myc induces neonatal lung remodeling need to be further explored.

BPD with pulmonary hypertension is highly clinically relevant. A
subset of preterm infants with moderate to severe BPD develop
pulmonary hypertension (BPD-PH), which is associated with
significantly increased morbidity and mortality (Hansmann et al.,
2021). Compared to infants without pulmonary hypertension, infants
with BPD-PH have higher rates of tracheostomy, need for tube feeds,
poorer growth and neurodevelopmental outcomes, and hospital
readmissions (Nakanishi et al., 2016; Al-Ghanem et al., 2017;
Lagatta et al., 2018). Pulmonary hypertension is independently
associated with exposure to IAI (Woldesenbet and Perlman, 2005;
Yum et al., 2018). In cord blood of newborns exposed to IAI, there is
an imbalance of angiogenic factors such as sFlt-1, VEGF, and
endothelial progenitor cells. In preterm rhesus macaque fetuses,
exposure to intra-amniotic LPS results in large transcriptional
changes of genes regulating vascular development (Schmidt et al.,
2020). In preterm lamb models, IA LPS exposure causes decreased
pulmonary blood flow and increased pulmonary arterial pressures,
suggesting a direct link between IAI and pulmonary hypertension
(Polglase et al., 2010). The mechanisms by which pulmonary
hypertension is associated with BPD and IAI are not completely
understood, and given the significant burden of BPD-PH, there is a
pressing need to investigate the mechanistic pathways and potential
interventions to improve neonatal outcomes. Our results suggest that
c-Myc regulate neonatal lung vascular remodeling in response to IAI.

We recognize limitations in our study. There is variance in RNA
sequencing data within the control animals, which may be attributed to
the fact that sterile PBS was injected in controls as a placebo under clean,
but not sterile, conditions. Thus, the procedure by itself may induce an
intra-uterine inflammatory response which may account for the data
variance. Also, we do not have RNA-sequencing available for the LPS-
exposed group treated with c-Myc inhibitor 10058-F4. Given the various
perinatal interventions and treatment, there was rejection and death of
pups in LPS-exposed and treated groups which could influence the

results. Further animals treated with 10058-F4 were done in different
days fromcontrol and IALPSonly animals, which could have introduced
batch effect in our analysis. All animals were purchased from the same
vendor and the same lot of LPS was used in all experiments.

Despite these limitations, we can conclude that the transcription
factor c-Myc is dysregulated in the placenta, fetal membranes, and
neonatal lungs in intra-amniotic inflammation and modulates
inflammation of the placenta and fetal membranes in the rat model
of IAI induced by IA LPS and modulates IAI-induced neonatal lung
remodeling. Further studies are needed to explore the mechanisms by
which c-Myc modulates NET formation, and to investigate c-Myc as a
potential therapeutic target in IAI, and IAI-induced BPD. However,
c-Myc has been challenging to target therapeutically due to its
intranuclear nature and its highly disordered structure (Llombart and
Mansour, 2022). Moreover, it is a ubiquitous transcription factor that is
involved in multiple cell processes vital to physiologic functions. The
ideal c-Myc inhibitor needs to be highly selective to diseased conditions
and normalize c-Myc levels, rather than fully inhibiting all c-Myc-
associated functions. Novel c-Myc inhibitors with such properties have
since become available and should be the focus of future studies to
investigate translational therapeutic potential of c-Myc inhibition to
improve adverse neonatal outcomes induced by antenatal inflammation.

Data availability statement

The gene expression data have been deposited in NCBI’s Gene
Expression Omnibus (GEO: https://ncbi.nlm.gov/geo/) and are
accessible through GEO Series accession numbers GSE237595
and GSE239349.

Ethics statement

The animal study was approved by University of Miami
Institutional Animal Care and Use Committee. The study was
conducted in accordance with the local legislation and
institutional requirements.

Author contributions

AT, KY, and AuS conceived and designed the study. AT, XT,
SA-C, SK, PC, VN, RI, JD-B, MB, and SW performed the
experiments or significantly contributed to the acquisition of
data. AlS and AM prepared samples and perform analyses by
Western blot. AT, KY, CR, and AuS analyzed the data, AT wrote
the first draft of the manuscript. AuS critically reviewed and edited
the manuscript. All authors contributed to the article and approved
the submitted version.

Funding

This work was funded by grants from NICHD 5K08HD102718
(AuS), Micah Batchelor Fellow Award (AuS), Micah Batchelor
Scholar Award (AT), and Micah Batchelor Award for Excellence
in Children’s Health (KY).

Frontiers in Cell and Developmental Biology frontiersin.org17

Tan et al. 10.3389/fcell.2023.1245747

153

https://ncbi.nlm.gov/geo/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1245747


Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fcell.2023.1245747/
full#supplementary-material

References

Aghai, Z. H., Saslow, J. G., Mody, K., Eydelman, R., Bhat, V., Stahl, G., et al. (2013).
IFN-gamma and IP-10 in tracheal aspirates from premature infants: relationship with
bronchopulmonary dysplasia. Pediatr. Pulmonol. 48, 8–13. doi:10.1002/ppul.22540

Al-Ghanem, G., Shah, P., Thomas, S., Banfield, L., El Helou, S., Fusch, C., et al. (2017).
Bronchopulmonary dysplasia and pulmonary hypertension: a meta-analysis.
J. Perinatol. 37, 414–419. doi:10.1038/jp.2016.250

Ambalavanan, N., Carlo, W. A., D’Angio, C. T., Mcdonald, S. A., Das, A., Schendel,
D., et al. (2009). Cytokines associated with bronchopulmonary dysplasia or death in
extremely low birth weight infants. Pediatrics 123, 1132–1141. doi:10.1542/peds.2008-
0526

Ardini-Poleske, M. E., Clark, R. F., Ansong, C., Carson, J. P., Corley, R. A., Deutsch, G.
H., et al. (2017). LungMAP: the molecular atlas of lung development program. Am.
J. Physiol. Lung Cell Mol. Physiol. 313, L733–L740. doi:10.1152/ajplung.00139.2017

Blencowe, H., Cousens, S., Oestergaard, M. Z., Chou, D., Moller, A. B., Narwal, R.,
et al. (2012). National, regional, and worldwide estimates of preterm birth rates in the
year 2010 with time trends since 1990 for selected countries: a systematic analysis and
implications. Lancet 379, 2162–2172. doi:10.1016/S0140-6736(12)60820-4

Blighe, K., and Lun, A. (2023). PCAtools: everything principal component analysis. R
package version 2.12 [Online]. Available at: https://github.com/kevinblighe/PCAtools
[Accessed].

Blighe, K., Rana, S., and Lewis, M. (2018). EnhancedVolcano: publication-ready
volcano plots with enhanced colouring and labeling. [Online]. Available: R package
version 1.18.0. Available at: https://github.com/kevinblighe/EnhancedVolcano.
[Accessed].

Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal
probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. doi:10.1038/nbt.
3519

Bry, K., Whitsett, J. A., and Lappalainen, U. (2007). IL-1beta disrupts postnatal lung
morphogenesis in the mouse. Am. J. Respir. Cell Mol. Biol. 36, 32–42. doi:10.1165/rcmb.
2006-0116OC

Buhling, F., Kouadio, M., Chwieralski, C. E., Kern, U., Hohlfeld, J. M., Klemm, N.,
et al. (2011). Gene targeting of the cysteine peptidase cathepsin H impairs lung
surfactant in mice. PLoS One 6, e26247. doi:10.1371/journal.pone.0026247

Cappelletti, M., Presicce, P., and Kallapur, S. G. (2020). Immunobiology of acute
chorioamnionitis. Front. Immunol. 11, 649. doi:10.3389/fimmu.2020.00649

Caskey, S., Gough, A., Rowan, S., Gillespie, S., Clarke, J., Riley, M., et al. (2016).
Structural and functional lung impairment in adult survivors of bronchopulmonary
dysplasia. Ann. Am. Thorac. Soc. 13, 1262–1270. doi:10.1513/AnnalsATS.201509-
578OC

Chen, H., Liu, H., and Qing, G. (2018). Targeting oncogenic Myc as a strategy for
cancer treatment. Signal Transduct. Target Ther. 3, 5. doi:10.1038/s41392-018-0008-7

Chen, X., Peng, W., Zhou, R., Zhang, Z., and Xu, J. (2020). Montelukast improves
bronchopulmonary dysplasia by inhibiting epithelial‑mesenchymal transition via
inactivating the TGF‑β1/Smads signaling pathway. Mol. Med. Rep. 22, 2564–2572.
doi:10.3892/mmr.2020.11306

Cheung, A. N., Srivastava, G., Pittaluga, S., Man, T. K., Ngan, H., and Collins, R. J.
(1993). Expression of c-myc and c-fms oncogenes in trophoblastic cells in
hydatidiform mole and normal human placenta. J. Clin. Pathol. 46, 204–207.
doi:10.1136/jcp.46.3.204

Ciuclan, L., Bonneau, O., Hussey, M., Duggan, N., Holmes, A. M., Good, R., et al.
(2011). A novel murine model of severe pulmonary arterial hypertension. Am. J. Respir.
Crit. Care Med. 184, 1171–1182. doi:10.1164/rccm.201103-0412OC

Combs, C. A., Gravett, M., Garite, T. J., Hickok, D. E., Lapidus, J., Porreco, R., et al.
(2014). Amniotic fluid infection, inflammation, and colonization in preterm labor with
intact membranes. Am. J. Obstet. Gynecol. 210, 125 e1–e125125.e15. doi:10.1016/j.ajog.
2013.11.032

Conacci-Sorrell, M., Ngouenet, C., and Eisenman, R. N. (2010). Myc-nick: a
cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and
cell differentiation. Cell 142, 480–493. doi:10.1016/j.cell.2010.06.037

Cooney, T. P., and Thurlbeck, W. M. (1982). The radial alveolar count method of
Emery and Mithal: a reappraisal 2--intrauterine and early postnatal lung growth.
Thorax 37, 580–583. doi:10.1136/thx.37.8.580

Crump, C. (2020). An overview of adult health outcomes after preterm birth. Early
Hum. Dev. 150, 105187. doi:10.1016/j.earlhumdev.2020.105187

Crump, C., Sundquist, J., Winkleby, M. A., and Sundquist, K. (2019). Preterm birth
and risk of chronic kidney disease from childhood into mid-adulthood: national cohort
study. Bmj 365, l1346. doi:10.1136/bmj.l1346

Cunningham, C. M., Li, M., Ruffenach, G., Doshi, M., Aryan, L., Hong, J., et al. (2022).
Y-chromosome gene, uty, protects against pulmonary hypertension by reducing
proinflammatory chemokines. Am. J. Respir. Crit. Care Med. 206, 186–196. doi:10.
1164/rccm.202110-2309OC

Das, S., Raundhal,M., Chen, J., Oriss, T. B., Huff, R.,Williams, J. V., et al. (2017). Respiratory
syncytial virus infection of newborn CX3CR1-deficient mice induces a pathogenic pulmonary
innate immune response. JCI Insight 2, e94605. doi:10.1172/jci.insight.94605

Demauro, S. B. (2018). The impact of bronchopulmonary dysplasia on childhood
outcomes. Clin. Perinatol. 45, 439–452. doi:10.1016/j.clp.2018.05.006

Deng, H., Mason, S. N., and Auten, R. L. (2000). Lung inflammation in hyperoxia can
be prevented by antichemokine treatment in newborn rats. Am. J. Respir. Crit. Care
Med. 162, 2316–2323. doi:10.1164/ajrccm.162.6.9911020

Diebold, J., Arnholdt, H., Lai, M. D., and Lohrs, U. (1991). C-myc expression in early
human placenta--a critical evaluation of its localization. Virchows Arch. B Cell Pathol.
Incl. Mol. Pathol. 61, 65–73. doi:10.1007/BF02890406

Ding, X. M., Pan, L., Wang, Y., and Xu, Q. Z. (2016). Baicalin exerts protective effects
against lipopolysaccharide-induced acute lung injury by regulating the crosstalk
between the CX3CL1-CX3CR1 axis and NF-κB pathway in CX3CL1-knockout mice.
Int. J. Mol. Med. 37, 703–715. doi:10.3892/ijmm.2016.2456

Dong, N., Zhou, P. P., Li, D., Zhu, H. S., Liu, L. H., Ma, H. X., et al. (2022).
Intratracheal administration of umbilical cord-derived mesenchymal stem cells
attenuates hyperoxia-induced multi-organ injury via heme oxygenase-1 and JAK/
STAT pathways. World J. Stem Cells 14, 556–576. doi:10.4252/wjsc.v14.i7.556

Du, Y., Guo, M., Whitsett, J. A., and Xu, Y. (2015). ’LungGENS’: a web-based tool for
mapping single-cell gene expression in the developing lung. Thorax 70, 1092–1094.
doi:10.1136/thoraxjnl-2015-207035

Fulop, V., Mok, S. C., Genest, D. R., Szigetvari, I., Cseh, I., and Berkowitz, R. S. (1998).
c-myc, c-erbB-2, c-fms and bcl-2 oncoproteins. Expression in normal placenta, partial
and complete mole, and choriocarcinoma. J. Reprod. Med. 43, 101–110.

Geisler, J. P., Geisler, H. E., Manahan, K. J., Miller, G. A., Wiemann, M. C., Zhou, Z.,
et al. (2004). Nuclear and cytoplasmic c-myc staining in endometrial carcinoma and
their relationship to survival. Int. J. Gynecol. Cancer 14, 133–137. doi:10.1111/j.1048-
891x.2004.14027.x

Golubinskaya, V., Puttonen, H., Fyhr, I. M., Rydbeck, H., Hellstrom, A., Jacobsson, B.,
et al. (2020). Expression of S100A alarmins in cord bloodmonocytes is highly associated
with chorioamnionitis and fetal inflammation in preterm infants. Front. Immunol. 11,
1194. doi:10.3389/fimmu.2020.01194

Gomez-Lopez, N., Romero, R., Arenas-Hernandez, M., Panaitescu, B., Garcia-Flores,
V., Mial, T. N., et al. (2018). Intra-amniotic administration of lipopolysaccharide
induces spontaneous preterm labor and birth in the absence of a body temperature
change. J. Matern. Fetal Neonatal Med. 31, 439–446. doi:10.1080/14767058.2017.
1287894

Gomez-Lopez, N., Romero, R., Leng, Y., Garcia-Flores, V., Xu, Y., Miller, D., et al.
(2017). Neutrophil extracellular traps in acute chorioamnionitis: a mechanism of host
defense. Am. J. Reprod. Immunol. 77, e12617. doi:10.1111/aji.12617

Frontiers in Cell and Developmental Biology frontiersin.org18

Tan et al. 10.3389/fcell.2023.1245747

154

https://www.frontiersin.org/articles/10.3389/fcell.2023.1245747/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2023.1245747/full#supplementary-material
https://doi.org/10.1002/ppul.22540
https://doi.org/10.1038/jp.2016.250
https://doi.org/10.1542/peds.2008-0526
https://doi.org/10.1542/peds.2008-0526
https://doi.org/10.1152/ajplung.00139.2017
https://doi.org/10.1016/S0140-6736(12)60820-4
https://github.com/kevinblighe/PCAtools
https://github.com/kevinblighe/EnhancedVolcano
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1165/rcmb.2006-0116OC
https://doi.org/10.1165/rcmb.2006-0116OC
https://doi.org/10.1371/journal.pone.0026247
https://doi.org/10.3389/fimmu.2020.00649
https://doi.org/10.1513/AnnalsATS.201509-578OC
https://doi.org/10.1513/AnnalsATS.201509-578OC
https://doi.org/10.1038/s41392-018-0008-7
https://doi.org/10.3892/mmr.2020.11306
https://doi.org/10.1136/jcp.46.3.204
https://doi.org/10.1164/rccm.201103-0412OC
https://doi.org/10.1016/j.ajog.2013.11.032
https://doi.org/10.1016/j.ajog.2013.11.032
https://doi.org/10.1016/j.cell.2010.06.037
https://doi.org/10.1136/thx.37.8.580
https://doi.org/10.1016/j.earlhumdev.2020.105187
https://doi.org/10.1136/bmj.l1346
https://doi.org/10.1164/rccm.202110-2309OC
https://doi.org/10.1164/rccm.202110-2309OC
https://doi.org/10.1172/jci.insight.94605
https://doi.org/10.1016/j.clp.2018.05.006
https://doi.org/10.1164/ajrccm.162.6.9911020
https://doi.org/10.1007/BF02890406
https://doi.org/10.3892/ijmm.2016.2456
https://doi.org/10.4252/wjsc.v14.i7.556
https://doi.org/10.1136/thoraxjnl-2015-207035
https://doi.org/10.1111/j.1048-891x.2004.14027.x
https://doi.org/10.1111/j.1048-891x.2004.14027.x
https://doi.org/10.3389/fimmu.2020.01194
https://doi.org/10.1080/14767058.2017.1287894
https://doi.org/10.1080/14767058.2017.1287894
https://doi.org/10.1111/aji.12617
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1245747


Gong, Y., Zhang, X., Chen, R., Wei, Y., Zou, Z., and Chen, X. (2017). Cytoplasmic
expression of C-MYC protein is associated with risk stratification of mantle cell
lymphoma. PeerJ 5, e3457. doi:10.7717/peerj.3457

Green, E. S., and Arck, P. C. (2020). Pathogenesis of preterm birth: bidirectional
inflammation in mother and fetus. Semin. Immunopathol. 42, 413–429. doi:10.1007/
s00281-020-00807-y

Guo, L., Li, S., Zhao, Y., Qian, P., Ji, F., Qian, L., et al. (2015). Silencing angiopoietin-like
protein 4 (ANGPTL4) protects against lipopolysaccharide-induced acute lung injury via
regulating SIRT1/NF-kB pathway. J. Cell Physiol. 230, 2390–2402. doi:10.1002/jcp.24969

Hansmann, G., Sallmon, H., Roehr, C. C., Kourembanas, S., Austin, E. D.,
Koestenberger, M., et al. (2021). Pulmonary hypertension in bronchopulmonary
dysplasia. Pediatr. Res. 89, 446–455. doi:10.1038/s41390-020-0993-4

He, Y., Peng, L., Li, J., Li, Q., Chu, Y., Lin, Q., et al. (2022). TPX2 deficiency leads to
spindle abnormity and meiotic impairment in porcine oocytes. Theriogenology 187,
164–172. doi:10.1016/j.theriogenology.2022.04.031

Heydarian, M., Schulz, C., Stoeger, T., and Hilgendorff, A. (2022). Association of
immune cell recruitment and BPD development. Mol. Cell Pediatr. 9, 16. doi:10.1186/
s40348-022-00148-w

Holmstrom, E., Myntti, T., Sorsa, T., Kruit, H., Juhila, J., Paavonen, J., et al. (2019).
Cervical and amniotic fluid matrix metalloproteinase-8 and interleukin-6
concentrations in preterm pregnancies with or without preterm premature rupture
of membranes. Fetal Diagn Ther. 46, 103–110. doi:10.1159/000493207

Huang, M. J., Cheng, Y. C., Liu, C. R., Lin, S., and Liu, H. E. (2006). A small-molecule
c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid
differentiation of human acute myeloid leukemia. Exp. Hematol. 34, 1480–1489.
doi:10.1016/j.exphem.2006.06.019

Hurskainen, M., Mizikova, I., Cook, D. P., Andersson, N., Cyr-Depauw, C., Lesage, F.,
et al. (2021). Single cell transcriptomic analysis of murine lung development on
hyperoxia-induced damage. Nat. Commun. 12, 1565. doi:10.1038/s41467-021-21865-2

Kaimal, V., Bardes, E. E., Tabar, S. C., Jegga, A. G., andAronow, B. J. (2010). ToppCluster: a
multiple gene list feature analyzer for comparative enrichment clustering and network-based
dissection of biological systems. Nucleic Acids Res. 38, W96–W102. doi:10.1093/nar/gkq418

Kallapur, S. G., Presicce, P., Senthamaraikannan, P., Alvarez, M., Tarantal, A. F.,
Miller, L. M., et al. (2013). Intra-amniotic IL-1β induces fetal inflammation in rhesus
monkeys and alters the regulatory T cell/IL-17 balance. J. Immunol. 191, 1102–1109.
doi:10.4049/jimmunol.1300270

Kellogg, C. K., Cochran, B. H., and Nielsen, H. C. (1992). FETAL LUNG C-MYC
EXPRESSION SUGGESTS A POSITIVE REGULATORY ROLE IN LUNG GROWTH.
Pediatr. Res. 32, 636. doi:10.1203/00006450-199211000-00187

Kim, J. H., Lee, S. J., Kang, K. W., Lee, B. H., Park, Y., and Kim, B. S. (2021). CXCR2, a
novel target to overcome tyrosine kinase inhibitor resistance in chronic myelogenous
leukemia cells. Biochem. Pharmacol. 190, 114658. doi:10.1016/j.bcp.2021.114658

Knudsen, L., Weibel, E. R., Gundersen, H. J., Weinstein, F. V., and Ochs, M. (2010).
Assessment of air space size characteristics by intercept (chord) measurement: an
accurate and efficient stereological approach. J. Appl. Physiol. 108, 412–421. doi:10.
1152/japplphysiol.01100.2009

Kolde, R. (2019). Pheatmap: pretty Heatmaps. [online]. Available: R package version
1.0.12. Available at: https://github.com/raivokolde/pheatmap [Accessed].

Korbecki, J., Maruszewska, A., Bosiacki, M., Chlubek, D., and Baranowska-Bosiacka,
I. (2022). The potential importance of CXCL1 in the physiological state and in
noncancer diseases of the cardiovascular System, respiratory System and skin. Int.
J. Mol. Sci. 24, 205. doi:10.3390/ijms24010205

Kramer, B. W., Kallapur, S. G., Moss, T. J., Nitsos, I., Polglase, G. P., Newnham, J. P.,
et al. (2010). Modulation of fetal inflammatory response on exposure to
lipopolysaccharide by chorioamnion, lung, or gut in sheep. Am. J. Obstet. Gynecol.
202, 77 e1–e9. doi:10.1016/j.ajog.2009.07.058

Lagatta, J. M., Hysinger, E. B., Zaniletti, I., Wymore, E. M., Vyas-Read, S.,
Yallapragada, S., et al. (2018). The impact of pulmonary hypertension in preterm
infants with severe bronchopulmonary dysplasia through 1 year. J. Pediatr. 203,
218–224 e3. doi:10.1016/j.jpeds.2018.07.035

Lang, S., Li, L., Wang, X., Sun, J., Xue, X., Xiao, Y., et al. (2017). CXCL10/IP-
10 neutralization can ameliorate lipopolysaccharide-induced acute respiratory distress
syndrome in rats. PLoS One 12, e0169100. doi:10.1371/journal.pone.0169100

Liang, M. Q., Yu, F. Q., and Chen, C. (2020). C-Myc regulates PD-L1 expression in
esophageal squamous cell carcinoma. Am. J. Transl. Res. 12, 379–388.

Li, L., Chong, H. C., Ng, S. Y., Kwok, K. W., Teo, Z., Tan, E. H. P., et al. (2015).
Angiopoietin-like 4 increases pulmonary tissue leakiness and damage during influenza
pneumonia. Cell Rep. 10, 654–663. doi:10.1016/j.celrep.2015.01.011

Liu, L., Oza, S., Hogan, D., Chu, Y., Perin, J., Zhu, J., et al. (2016). Global, regional, and
national causes of under-5 mortality in 2000-15: an updated systematic analysis with
implications for the Sustainable Development Goals. Lancet 388, 3027–3035. doi:10.
1016/S0140-6736(16)31593-8

Li, Z., Jiang, J., and Gao, S. (2021). Potential of C-X-Cmotif chemokine ligand 1/8/10/
12 as diagnostic and prognostic biomarkers in idiopathic pulmonary arterial
hypertension. Clin. Respir. J. 15, 1302–1309. doi:10.1111/crj.13421

Llombart, V., and Mansour, M. R. (2022). Therapeutic targeting of "undruggable"
MYC. EBioMedicine 75, 103756. doi:10.1016/j.ebiom.2021.103756

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. doi:10.1186/
s13059-014-0550-8

Lu, J., Qian, J., Keppler, D., and Cardoso, W. V. (2007). Cathespin H is an Fgf10 target
involved in Bmp4 degradation during lung branching morphogenesis. J. Biol. Chem.
282, 22176–22184. doi:10.1074/jbc.M700063200

Markopoulou, P., Papanikolaou, E., Analytis, A., Zoumakis, E., and Siahanidou, T.
(2019). Preterm birth as a risk factor for metabolic syndrome and cardiovascular disease
in adult life: a systematic review and meta-analysis. J. Pediatr. 210, 69–80. doi:10.1016/j.
jpeds.2019.02.041

Mathew, R. (2020). Signaling pathways involved in the development of
bronchopulmonary dysplasia and pulmonary hypertension. Child. (Basel) 7, 100.
doi:10.3390/children7080100

Mizikova, I., Pfeffer, T., Nardiello, C., Surate Solaligue, D. E., Steenbock, H.,
Tatsukawa, H., et al. (2018). Targeting transglutaminase 2 partially restores
extracellular matrix structure but not alveolar architecture in experimental
bronchopulmonary dysplasia. FEBS J. 285, 3056–3076. doi:10.1111/febs.14596

Mizugishi, K., Inoue, T., Hatayama, H., Bielawski, J., Pierce, J. S., Sato, Y., et al.
(2015). Sphingolipid pathway regulates innate immune responses at the fetomaternal
interface during pregnancy. J. Biol. Chem. 290, 2053–2068. doi:10.1074/jbc.M114.
628867

Nakanishi, H., Uchiyama, A., and Kusuda, S. (2016). Impact of pulmonary hypertension
on neurodevelopmental outcome in preterm infants with bronchopulmonary dysplasia: a
cohort study. J. Perinatol. 36, 890–896. doi:10.1038/jp.2016.108

Petrou, S., Krabuanrat, N., and Khan, K. (2020). Preference-based health-
related quality of life outcomes associated with preterm birth: a systematic
review and meta-analysis. Pharmacoeconomics 38, 357–373. doi:10.1007/
s40273-019-00865-7

Polglase, G. R., Hooper, S. B., Gill, A. W., Allison, B. J., Crossley, K. J., Moss, T. J., et al.
(2010). Intrauterine inflammation causes pulmonary hypertension and cardiovascular
sequelae in preterm lambs. J. Appl. Physiol. 108, 1757–1765. doi:10.1152/japplphysiol.
01336.2009

Recklies, A. D., White, C., and Ling, H. (2002). The chitinase 3-like protein human
cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-
tissue cells and activates both extracellular signal-regulated kinase- and protein
kinase B-mediated signalling pathways. Biochem. J. 365, 119–126. doi:10.1042/
BJ20020075

Romero, R., Gomez, R., Ghezzi, F., Yoon, B. H., Mazor, M., Edwin, S. S., et al.
(1998). A fetal systemic inflammatory response is followed by the spontaneous onset
of preterm parturition. Am. J. Obstet. Gynecol. 179, 186–193. doi:10.1016/s0002-
9378(98)70271-6

Romero, R., Miranda, J., Chaiworapongsa, T., Korzeniewski, S. J., Chaemsaithong, P.,
Gotsch, F., et al. (2014). Prevalence and clinical significance of sterile intra-amniotic
inflammation in patients with preterm labor and intact membranes. Am. J. Reprod.
Immunol. 72, 458–474. doi:10.1111/aji.12296

Rudloff, I., Cho, S. X., Bui, C. B., Mclean, C., Veldman, A., Berger, P. J., et al. (2017).
Refining anti-inflammatory therapy strategies for bronchopulmonary dysplasia. J. Cell
Mol. Med. 21, 1128–1138. doi:10.1111/jcmm.13044

Sahoo, D., Zaramela, L. S., Hernandez, G. E., Mai, U., Taheri, S., Dang, D., et al. (2020).
Transcriptional profiling of lungmacrophages identifies a predictive signature for inflammatory
lung disease in preterm infants. Commun. Biol. 3, 259. doi:10.1038/s42003-020-0985-2

Sawant, K. V., Sepuru, K. M., Lowry, E., Penaranda, B., Frevert, C. W., Garofalo, R. P.,
et al. (2021). Neutrophil recruitment by chemokines Cxcl1/KC and Cxcl2/MIP2: role of
Cxcr2 activation and glycosaminoglycan interactions. J. Leukoc. Biol. 109, 777–791.
doi:10.1002/JLB.3A0820-207R

Schmidt, A. F., Kannan, P. S., Bridges, J., Presicce, P., Jackson, C. M., Miller, L. A., et al.
(2020). Prenatal inflammation enhances antenatal corticosteroid-induced fetal lung
maturation. JCI Insight 5, e139452. doi:10.1172/jci.insight.139452

Soneson, C., Love, M. I., and Robinson, M. D. (2015). Differential analyses for RNA-
seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521. doi:10.
12688/f1000research.7563.2

Sorensen, O. E., and Borregaard, N. (2016). Neutrophil extracellular traps - the dark
side of neutrophils. J. Clin. Invest. 126, 1612–1620. doi:10.1172/JCI84538

Stepanovich, G. E., Chapman, C. A., Meserve, K. L., Sturza, J. M., Ellsworth, L. A.,
Bailey, R. C., et al. (2023). Chorioamnionitis-exposure alters serum cytokine trends in
premature neonates. J. Perinatol. 43, 758–765. doi:10.1038/s41372-022-01584-2

Stoll, B. J., Hansen, N. I., Bell, E. F., Walsh, M. C., Carlo, W. A., Shankaran, S., et al.
(2015). Trends in care practices, morbidity, and mortality of extremely preterm
neonates, 1993-2012. JAMA 314, 1039–1051. doi:10.1001/jama.2015.10244

Villamor-Martinez, E., Alvarez-Fuente, M., Ghazi, A. M. T., Degraeuwe, P.,
Zimmermann, L. J. I., Kramer, B. W., et al. (2019). Association of chorioamnionitis
with bronchopulmonary dysplasia among preterm infants: a systematic review, meta-
analysis, and metaregression. JAMA Netw. Open 2, e1914611. doi:10.1001/
jamanetworkopen.2019.14611

Frontiers in Cell and Developmental Biology frontiersin.org19

Tan et al. 10.3389/fcell.2023.1245747

155

https://doi.org/10.7717/peerj.3457
https://doi.org/10.1007/s00281-020-00807-y
https://doi.org/10.1007/s00281-020-00807-y
https://doi.org/10.1002/jcp.24969
https://doi.org/10.1038/s41390-020-0993-4
https://doi.org/10.1016/j.theriogenology.2022.04.031
https://doi.org/10.1186/s40348-022-00148-w
https://doi.org/10.1186/s40348-022-00148-w
https://doi.org/10.1159/000493207
https://doi.org/10.1016/j.exphem.2006.06.019
https://doi.org/10.1038/s41467-021-21865-2
https://doi.org/10.1093/nar/gkq418
https://doi.org/10.4049/jimmunol.1300270
https://doi.org/10.1203/00006450-199211000-00187
https://doi.org/10.1016/j.bcp.2021.114658
https://doi.org/10.1152/japplphysiol.01100.2009
https://doi.org/10.1152/japplphysiol.01100.2009
https://github.com/raivokolde/pheatmap
https://doi.org/10.3390/ijms24010205
https://doi.org/10.1016/j.ajog.2009.07.058
https://doi.org/10.1016/j.jpeds.2018.07.035
https://doi.org/10.1371/journal.pone.0169100
https://doi.org/10.1016/j.celrep.2015.01.011
https://doi.org/10.1016/S0140-6736(16)31593-8
https://doi.org/10.1016/S0140-6736(16)31593-8
https://doi.org/10.1111/crj.13421
https://doi.org/10.1016/j.ebiom.2021.103756
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1074/jbc.M700063200
https://doi.org/10.1016/j.jpeds.2019.02.041
https://doi.org/10.1016/j.jpeds.2019.02.041
https://doi.org/10.3390/children7080100
https://doi.org/10.1111/febs.14596
https://doi.org/10.1074/jbc.M114.628867
https://doi.org/10.1074/jbc.M114.628867
https://doi.org/10.1038/jp.2016.108
https://doi.org/10.1007/s40273-019-00865-7
https://doi.org/10.1007/s40273-019-00865-7
https://doi.org/10.1152/japplphysiol.01336.2009
https://doi.org/10.1152/japplphysiol.01336.2009
https://doi.org/10.1042/BJ20020075
https://doi.org/10.1042/BJ20020075
https://doi.org/10.1016/s0002-9378(98)70271-6
https://doi.org/10.1016/s0002-9378(98)70271-6
https://doi.org/10.1111/aji.12296
https://doi.org/10.1111/jcmm.13044
https://doi.org/10.1038/s42003-020-0985-2
https://doi.org/10.1002/JLB.3A0820-207R
https://doi.org/10.1172/jci.insight.139452
https://doi.org/10.12688/f1000research.7563.2
https://doi.org/10.12688/f1000research.7563.2
https://doi.org/10.1172/JCI84538
https://doi.org/10.1038/s41372-022-01584-2
https://doi.org/10.1001/jama.2015.10244
https://doi.org/10.1001/jamanetworkopen.2019.14611
https://doi.org/10.1001/jamanetworkopen.2019.14611
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1245747


Wang, J. Q., Jeelall, Y. S., Ferguson, L. L., and Horikawa, K. (2014). Toll-like receptors
and cancer: MYD88 mutation and inflammation. Front. Immunol. 5, 367. doi:10.3389/
fimmu.2014.00367

Wang, Y., Chen, H., Li, H., Zhang, J., and Gao, Y. (2013). Effect of angiopoietin-like
protein 4 on rat pulmonary microvascular endothelial cells exposed to LPS. Int. J. Mol.
Med. 32, 568–576. doi:10.3892/ijmm.2013.1420

Woldesenbet, M., and Perlman, J. M. (2005). Histologic chorioamnionitis: an occult
marker of severe pulmonary hypertension in the term newborn. J. Perinatol. 25,
189–192. doi:10.1038/sj.jp.7211240

Yum, S. K., Kim, M. S., Kwun, Y., Moon, C. J., Youn, Y. A., and Sung, I. K. (2018).
Impact of histologic chorioamnionitis on pulmonary hypertension and respiratory
outcomes in preterm infants. Pulm. Circ. 8, 2045894018760166. doi:10.1177/
2045894018760166

Yu, Y., Wang, R. R., Miao, N. J., Tang, J. J., Zhang, Y.W., Lu, X. R., et al. (2022). PD-L1
negatively regulates antifungal immunity by inhibiting neutrophil release from bone
marrow. Nat. Commun. 13, 6857. doi:10.1038/s41467-022-34722-7

Zhang, F., Lu, J. W., Lei, W. J., Li, M. D., Pan, F., Lin, Y. K., et al. (2023). Paradoxical
induction of ALOX15/15B by cortisol in human amnion fibroblasts: implications for
inflammatory responses of the fetal membranes at parturition. Int. J. Mol. Sci. 24, 10881.
doi:10.3390/ijms241310881

Zhang, J., and Patel, J. M. (2010). Role of the CX3CL1-CX3CR1 axis in chronic
inflammatory lung diseases. Int. J. Clin. Exp. Med. 3, 233–244.

Zhang, Y., Fan, B., Li, X., Tang, Y., Shao, J., Liu, L., et al. (2022). Phosphorylation of
adducin-1 by TPX2 promotes interpolar microtubule homeostasis and precise
chromosome segregation in mouse oocytes. Cell Biosci. 12, 205. doi:10.1186/s13578-
022-00943-y

Frontiers in Cell and Developmental Biology frontiersin.org20

Tan et al. 10.3389/fcell.2023.1245747

156

https://doi.org/10.3389/fimmu.2014.00367
https://doi.org/10.3389/fimmu.2014.00367
https://doi.org/10.3892/ijmm.2013.1420
https://doi.org/10.1038/sj.jp.7211240
https://doi.org/10.1177/2045894018760166
https://doi.org/10.1177/2045894018760166
https://doi.org/10.1038/s41467-022-34722-7
https://doi.org/10.3390/ijms241310881
https://doi.org/10.1186/s13578-022-00943-y
https://doi.org/10.1186/s13578-022-00943-y
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1245747


MYC: there is more to it
than cancer
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MYC is a pleiotropic transcription factor involved inmultiple cellular processes.
While its mechanism of action and targets are not completely elucidated, it
has a fundamental role in cellular proliferation, differentiation, metabolism,
ribogenesis, and bone and vascular development. Over 4 decades of research
and some 10,000 publications linking it to tumorigenesis (by searching
PubMed for “MYC oncogene”) have led to MYC becoming a most-wanted
target for the treatment of cancer, where many of MYC’s physiological
functions become co-opted for tumour initiation and maintenance. In this
context, an abundance of reviews describes strategies for potentially targeting
MYC in the oncology field. However, its multiple roles in different aspects
of cellular biology suggest that it may also play a role in many additional
diseases, and other publications are indeed linking MYC to pathologies
beyond cancer. Here, we review these physiological functions and the
current literature linking MYC to non-oncological diseases. The intense
efforts towards developing MYC inhibitors as a cancer therapy will
potentially have huge implications for the treatment of other diseases. In
addition, with a complementary approach, we discuss some diseases and
conditions where MYC appears to play a protective role and hence its
increased expression or activation could be therapeutic.

KEYWORDS

MYC, targeting, therapy, non-oncological diseases, transcription factor

1 Discovery and initial characterisation of MYC

The c-MYC gene encodes for a basic helix-loop-helix protein that acts as a
pleiotropic transcription factor. It was discovered more than 40 years ago by the
pioneering work to isolate and characterise avian retrovirus MC29, which showed its
oncogenic potential, followed by the discovery of c-MYC, its cellular homolog identified
from the chicken genome (Duesberg et al., 1977; Sheiness et al., 1978; Hu et al., 1979;
Abrams et al., 1982; Vennstrom et al., 1982; Hann et al., 1983; Dang et al., 1989). Later
studies discovered two human paralogs with overlapping roles and a more limited
tissular expression: MYCN, or N-MYC, identified in Neuroblastoma cells, and MYCL, or
L-MYC, found in Lung carcinoma cells, respectively, reviewed in (Massó-Vallés et al.,
2020). c-MYC (from now on, MYC) and its paralogs share an N-terminal transactivation
domain (TAD), capable of interacting with a plethora of proteins regulating chromatin
remodelling, transcription and MYC stability, a central region, and a C-terminus basic
helix-loop-helix (bHLH) domain (Beaulieu et al., 2020). The latter initially pointed to
MYC as a protein capable of binding DNA, although it was not until 1990 that it was
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discovered that MYC bound the sequence CACGTG (termed
the E-box) (Prendergast and Ziff, 1991). Shortly after, a MYC
dimerisation partner was identified: MYC-associated protein
X, MAX a bHLH-Zip protein, specifically associated with
c-MYC and its paralogs. Using a yeast model, DNA binding
and transcriptional transactivation by MYC were found to be
both dependent on this heterodimer (Blackwood and Eisenman,
1991; Amati et al., 1992), and a study in Drosophila, revealed
that dMyc, dMax and the Max-binding protein dMNT could bind
up to ~15% of the coding regions in the fly genome (Orian
et al., 2003).

2 Physiological processes mediated
by MYC

In this section we describe howMYC plays a key role in multiple
aspects of the biology of cells and tissues. This is also summarised
in Figure 1.

2.1 Proliferation

MYC’s most established role under physiological conditions is
to promote efficient proliferation (Jha et al., 2023). This has been
studied in many model systems and organisms from mammalian
tissues to flies. Although MYC is virtually undetectable in
quiescent cells, upon mitogenic or serum stimulation, MYC
levels are induced, and cells enter the G1 phase of the cell cycle
through MYC-dependent upregulation and/or activation of key
mediators of cell cycle progression, such as CCDN2, CDK4, and
the CyclinE2-CDK2 complex, degradation of p27 (Kip1, encoded
by CDKN1B), and repression of p21 and p15 (encoded by
CDKN1A and CDKN2B, respectively) among others (Pelengaris
and Khan, 2003). In contrast, MYC-dependent repression was
described to be mediated by MYC-MAX interaction with Miz-1
(Staller et al., 2001). Expression of MYC is necessary, and in some
cases sufficient, for inducing cell proliferation. In fact, ectopic
expression of MYC locks cells in a continuously proliferating state,
even in the absence of mitogens (Evan et al., 1994). This is probably
the evolutionary basis for the tight regulation of MYC expression,
which is in stark contrast to the ubiquitous expression of its
binding partner MAX.

MYC’s key role in proliferation and growth is highly conserved
throughout the animal kingdom, with a presence in invertebrates
such as Drosophila, where dMYC is the only paralog, whose loss
impacts on cellular growth and size. Its overexpression promotes
G1/S progression but not cell division, which is dependent on other
players (Johnston et al., 1999). Interestingly, expression of dMYC
is able to rescue the proliferation defects in mouse embryonic
fibroblasts deficient for MYC, although it does not affect cell
growth. Thus, MYC and dMYC have similar biological
functions, but their outcomes depend on specific cell targets
(Trumpp et al., 2001). Given this ancestral conservation, it is
curious that MYC itself was lost during the evolution of
C.elegans, which, instead, retains orthologous MAX and MLX
networks (Yuan et al., 1998; Gallant, 2006; McFerrin and
Atchley, 2011).

2.2 Differentiation

A key role for MYC in differentiation has been demonstrated in
many tissues. One prominent example is found in the hematopoietic
system, where MYC is involved in the expansion of committed
progenitors by controlling the balance between self-renewal and
differentiation through the modulation of stem cell migration and/
or adhesion to the niche. MYC was described as necessary to induce
the first differentiation steps in these murine stem cells, whereas in
committed progenitors, MYC is required for proliferation and
expansion (McFerrin and Atchley, 2011). Additionally, gene
expression analyses using Krüppel-like factor 1 (KLF1), a master
regulator of adult erythropoiesis (Perkins et al., 2016), and
KLF2 knockout mice identified MYC as a central node in a
network of genes controlled by both KLF1 and KLF2. Ablation of
MYC in primitive proerythroblasts showed that its absence resulted
in a block in the normal expansion of erythroid cells (Pang et al.,
2012). In addition, the master regulator of haematopoiesis GATA-1
represses MYC transcriptional activity through binding to MYC’s
promoter or through activation of miR-144/451, inducing
proliferative arrest, thus facilitating erythroid differentiation
(Rylski et al., 2003). Conversely, depletion of miR-144/451 blocks
erythroid differentiation through de-repression of MYC (Xu et al.,
2020). This GATA-1-miR144/451-MYC axis controls normal
erythroid differentiation.

Another example of MYC’s role in differentiation can be found
in murine embryonic stem cells (mESC), where MYC inhibits the
expression of differentiation-specific genes through modulation of a
set of miRNAs that attenuate their proliferation (Lin et al., 2009). Its
inhibition or deletion strongly curbs transcription, splicing and
protein synthesis, leading to a proliferative arrest, reminiscent of
embryonic diapause. Remarkably, this arrest is reversible and does
not compromise cell pluripotency (Scognamiglio et al., 2016).
Additionally, MYC maintains the pluripotent transcriptome by
amplifying the transcription of a large set of genes during the
transition from mESC to the totipotent two-cell-like state (Fu
et al., 2019), and is also important in metabolic and epigenetic
regulation of mESCs during mouse embryonic development (Fan
and Li, 2023).

In human adipose tissue, MYC was identified as a significant
regulator of adipose stem cell differentiation, which is necessary for
the maintenance and function of the tissue. MYC is induced by
glucocorticoid in the early stages of differentiation and precedes the
downregulation of key suppressor genes as well as the induction of
functional effectors (Deisenroth et al., 2014).

In crypt development in the small intestine in the mouse, MYC
signalling pathways are significantly enriched. Laser capture
microdissection followed by functional genomics analysis of
epithelial progenitors showed an enrichment, with respect to
normal crypt base epithelium, of a series of transcripts encoding
for proteins that regulate MYC transcription, protein stability, and
transactivation of its target genes (Stappenbeck et al., 2003).
Subsequent studies, however, showed that MYC is necessary for
normal crypt formation, but does not affect cell proliferation or fate
of already formed crypts (Bettess et al., 2005).

A role in differentiation is present in Drosophila too, where
dMYC is required for intestinal stem cell maintenance, proliferation,
and lineage differentiation during tissue homeostasis (Ren et al.,
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2013). Also in Drosophila, IGF2BP stabilises MYC mRNA,
increasing its protein levels, leading to larger neural stem cells
and faster division rates (Samuels et al., 2020). In line with this,
GSK3-α and -β differently regulate cortical development through
MYC (Ma et al., 2017), while MYC inhibits the differentiation of
neural progenitor cells into neurons (Wang et al., 2020).

2.3 Ribosome biogenesis and protein
translation

Ribosome biogenesis involves the synthesis and processing of
ribosomal RNA (rRNA) proteins, the assembly of ribosomal
subunits and their export to the cytoplasm, and it requires the
coordinated activities of the three nuclear RNA polymerases (RNA

pol I, II and III). Not surprisingly, MYC regulates multiple stages of
ribosomal biogenesis through RNA pol I-mediated transcription of
rRNA, RNA pol II-dependent transcription of ribosomal protein
genes and translation initiation factors, among others (reviewed in
van Riggelen et al., 2010). Using Crispr-Cas9-based reverse genetics
to dissect the transcriptional networks downstream of MYC in vivo,
it was shown that MYC’s ability to drive growth depends on its
ability to upregulate ribosome biogenesis (Zielke et al., 2022).
Consistent with this, inducible overexpression of MYC stimulates
both ribosome biogenesis and protein synthesis (Mori et al., 2021).

Intimately related to ribosome biogenesis, protein translation is
a critical process on which cell growth and division depend. It is
regulated at different levels, although the key point of control seems
to be the initiation of translation, which involves the translation
initiation factor eIF4E binding to the 7-methyl guanosine cap at the

FIGURE 1
A “Hallmarks” style representation of MYC’s physiological functions. Some of the main signalling pathways and processes modulated by MYC are
depicted, including glycolysis and mitochondrial biogenesis, development, cell cycle progression, differentiation, ribosome biogenesis and initiation of
protein translation.
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5′ end of mRNAs (Schmidt, 2004). Experiments carried out with
MYC knockout rat fibroblasts showed that levels of protein
translation, a mechanism that is under control of mammalian
TOR complex 1 (mTORC1) (Ma and Blenis, 2009), are two-to-
three fold higher in MYC wild-type when compared to MYC−/− cells
(Mateyak et al., 1997). Microarray analysis of these cells showed that
the largest category of MYC-induced genes was involved in protein
translation, where an impressive 60% of the genes were upregulated
by MYC (Guo et al., 2000). Additionally, a specific role in regulating
eIF4E was confirmed after showing its expression correlated with
and was regulated by MYC (Rosenwald et al., 1993). Indeed, MYC
binds to two canonical E-boxes in the eIF4E promoter and is
necessary for its expression. Importantly, inhibition of eIF4E was
able to block MYC-induced transformation (Lynch et al., 2004).

The link between MYC and ribosomes is conserved in flies and
even in the multicellular eukaryote Nemostella (Brown et al., 2008;
Stine et al., 2015). Indeed, in Drosophila, expression of dMYC is
necessary and sufficient to control rRNA synthesis and ribosome
biogenesis (Grewal et al., 2005) and physiological dMYC targets,
whose promoters are enriched in the E-box motif (frequently in the
first 100 nucleotides following the transcription start site), play a role
in nucleolar function and ribosome biogenesis (Hulf et al., 2005).

2.4 Metabolism and mitochondrial
biogenesis

The first evidence of the in vivo induction of glycolysis by MYC
was provided using transgenic mouse models where MYC was
overexpressed in hepatocytes under the control of
phosphoenolpyruvate carboxykinase. Transcriptional analyses of
livers from these transgenic mice revealed increased expression of
the glycolytic enzymes of glucokinase, PFKFB1, pyruvate-kinase L,
and the glucose transporter GLUT2, which resulted in increased
glycolysis compared to controls (Hulf et al., 2005). Later on, MYC
was shown to induce a collection of glycolytic genes including
ALDOA, ENO1, GAPDH, GPI, LDHA, HK2, PFKM, PGK1,
PKM, and TPI1 (Kim et al., 2004), confirming the key role of
MYC in controlling metabolism.

Importantly, MYC’s effect on metabolism becomes more
evident when MYC is absent. Even in the presence of adequate
energy-generating substrates, MYC-knockout fibroblasts remain
ATP-depleted and respond by activating AMPK, in an attempt to
remedy this energy deficit. However, since AMPK activation leads to
upregulation of glycolysis and oxidative phosphorylation, both
dependent on MYC, the AMPK response fails and the cells,
unable to correct the energy production, remain slowly
proliferating (Edmunds et al., 2014).

A final well-established role for MYC is in the mitochondria
biogenesis. Using a combination of in vitro and in vivo MYC-
modulating models, a role was shown for MYC in regulating the
expression of genes involved in mitochondrial structure, function,
and biogenesis. These include TFAM, a key mitochondrial
transcriptional factor and mtDNA replication factor. These
results point to MYC’s role as a master mitochondrial switch
coupling metabolic needs to cell growth and proliferation (Li
et al., 2005). In this line, further work suggested that
mitochondrial structure, function, and subcellular localisation are

regulated over time, responding more rapidly to inactivation of
MYC than to its activation. The increased mitochondrial mass
induced by MYC was associated with increased organelle
turnover, involving both fission and fusion proteins (Graves
et al., 2012). Overall, these results reinforce the notion that MYC
links cellular energy generation and proliferative needs.

MYC’s role in mitochondrial biogenesis is also conserved in
Drosophila, where in the ovary, it stimulates gene expression,
including that of many electron transport chain genes required
for mtDNA replication and expression (Wang et al., 2019).

2.5 Development

An increasing number of studies point to a role for MYC in the
development of multiple tissues and organs, including pancreas,
bone, and blood vessels. Given the difference in phenotypes of the
tissues, it is perhaps not surprising that the principal targets of MYC
in each case are different. In fact, development of tissues is a
phenotypic outcome of the physiological processes that MYC
helps to control, so that MYC’s regulation of proliferation,
differentiation and metabolism results in different phenotypic
outcomes depending on the cell-specific gene expression, tissue
type and body location. This highlights a reason why the
definition of a single critical list of MYC target genes across
different tissue contexts has proven impossible.

2.5.1 Pancreas
The expansion of pancreatic acinar cells, the main components

of pancreatic parenchyma, is promoted by β-catenin signalling, of
which MYC is one key effector (Murtaugh et al., 2005). MYC’s
importance in pancreas is stressed by the evidence that pancreatic
inactivation of both MYC alleles in a mouse model leads to death
after birth. Already at a late embryonic stage, these mice show a
severe pancreatic hypoplasia, with poorly branched pancreatic
ducts, disruption of exocrine pancreas formation and severe
reduction of acini, characterised by reduced MYC target
CDK4 expression and proliferation (Nakhai et al., 2008). These
results were confirmed in an independent study using a mouse
model with a 60%–70% reduction in MYC expression, in which
pancreata showed fewer proliferating progenitors at E12.5, leading
to significantly reduced pancreatic weight in two-month-old mice.
Both arborization of the exocrine tree and acinar development were
impaired at birth, but partially recovered at 2 months. Overall, MYC
inactivation impairs normal acinar development and maturation,
leading to the formation of lipid vacuoles in acinar cells, acquiring
an adipocyte phenotype with aging (Bonal et al., 2009; Zhang
et al., 2010).

2.5.2 Bone
Bone remodelling results from the balance between two tightly

regulated phenomena: osteoclastogenesis and osteogenesis. The
osteoclast is a bone-resorbing cell with an origin in the
monocyte-macrophage lineage (Yavropoulou and Yovos, 2008).
As expected, MYC is involved in bone remodelling and is
regulated by different signalling pathways. RANKL, a key
cytokine expressed by osteoblasts, mediates osteoclastogenesis
through a TRAF6-dependent NF-κB activation. Upon RANKL
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binding to monocytes, this cascade results in the induction of MYC,
which is necessary for osteoclast differentiation, since its inhibition
by the MYC dominant negative In373-Myc almost completely
inhibits osteoclastogenesis (Battaglino et al., 2002).

On the other hand, inhibition of FOXO1, whose expression
decreases upon RANKL-induced osteoclastogenesis, promotes the
expression of MYC, while 10058-F4, a small molecular inhibitor of
MYC, abrogates the osteoclastogenic effect of FOXO1 inhibition in a
dose-dependent manner (Tan et al., 2015). Additionally, RANKL-
induced expression of osteoclastogenic marker genes is significantly
reduced in MYC-deficient osteoclast progenitors in vitro, but
rescued by ectopic expression of MYC (Bae et al., 2017).

Finally, RNA-seq analysis of MYC wild-type and deficient bone
marrow cells revealed that MYC regulates mTORC1 signalling.
mTORC1 is activated at the early phases after RANKL treatment
and suppressed at later phases of osteoclastogenesis, and this
biphasic regulation is dependent on MYC. While inhibition of
mTORC1 by rapamycin prior to RANKL stimulation almost
completely prevented osteoclast formation, osteoclasts showed
enhanced resorbing activity when mTORC1 was inhibited three
days post-RANKL. In parallel, unfolded protein response (UPR)
genes were found downregulated by MYC deficiency. In line with
this, the expression of GADD34, a factor that regulates UPR and
negatively regulates mTOR signalling, is increased in wild-type cells
upon RANKL stimulation but not in MYC-deficient cells, and its
deficiency partially restores RANKL-induced mTORC1 inactivation
and suppresses osteoclastogenesis. Taken together, these data
suggest that mTORC1 is suppressed in osteoclasts through a
MYC/GADD34 axis (Bae et al., 2022). This is in stark contrast to
protein translation, where MYC and mTORC1 jointly contribute to
its regulation.

2.5.3 Vascular development
MYC’s role in vascular development was confirmed by

modulation of MYC levels. In fact, c-MYC knockout mice are
embryonic lethal and have under-developed vasculature, that can
be partially rescued by transgenic VEGF expression (Baudino et al.,
2002). On the other hand, overexpression of MYC is also embryonic
lethal due to multiple haemorrhagic lesions and defects in the
vasculature, with concomitant elevated VEGF levels (Kokai et al.,
2009). Thus, MYC and VEGF levels must be precisely controlled
during early development. One key control involves Seryl-TRNA
synthetase 1 (SARS1), which competes directly with MYC to control
VEGF expression levels, and thus enables proper vasculature
development (Shi et al., 2014). In hypoxic conditions, SARS1 is
phosphorylated by ATM/ATR, and this impairs its DNA binding
capacity, allowing MYC to induce VEGF expression (Shi
et al., 2020).

3 Physiological MYC functions hijacked
by tumour cells

To become fully transformed and tumorigenic, normal cells
must overcome several barriers imposed on cell-autonomous
programs such as cell cycle progression, DNA replication,
evasion of senescence and apoptosis, as well as cell non-
autonomous processes such as angiogenesis and immune

surveillance. These constitute many of the Hallmarks of Cancer
(Hanahan, 2022) and, as MYCmay impinge on all these programs, it
is a common target for oncogenic activation. Indeed, although its
expression is tightly regulated in normal cells, cancer cells are almost
unavoidably characterised by deregulated MYC activity. This can be
the result of many different processes such as gene amplification,
translocation (Figure 2A), epistasis, epigenetic changes, upstream
signalling, and increased protein stability (Figure 2B)
(Dhanasekaran et al., 2022). Oncogenic MYC promotes
tumorigenesis in different yet complementary ways, co-opting
many of the physiological processes described above. Its
deregulation is associated to uncontrolled proliferation, rewiring
of cellular metabolism, increased ribosomal and protein biogenesis
and chromosome instability. MYC also affects cell non-autonomous
hallmarks including reshaping of the tumour microenvironment,
angiogenesis, induction of immunosuppressive cytokine release, and
upregulation of immune checkpoint inhibitor proteins (Whitfield
and Soucek, 2012; Dhanasekaran et al., 2022).

However, the sole overexpression of MYC is not sufficient for
tumorigenesis in most cellular contexts. Indeed, MYC activation
usually induces DNA replication and S phase entry without cellular
division, hence cells become polyploid, accumulate DNA damage, and
undergo proliferative arrest, senescence, or apoptosis depending on the
cellular context (Gabay et al., 2014). This is why genetic alterations that
circumvent the hurdles imposed by cell cycle checkpoints or apoptosis/
senescence usually synergise with MYC overexpression to induce
tumorigenesis. This was shown in seminal studies with transgenic
mice harbouring tissue-specific inducible forms of MYC. For
instance, in MycERTAM mice that express switchable MYC in
pancreatic β-cells, MYC activation is sufficient to drive the cells into
cell cycle, but unfettered proliferation is constrained by subsequent
apoptosis, which quickly results in β-cell loss and diabetes. However,
solely by co-expression of the anti-apoptotic protein Bcl-XL, MYC
overexpression is then able to drive formation of pancreatic
insulinomas (Pelengaris et al., 2002). Similarly, in adult mouse
hepatocytes, conditionally expressed MYC leads to polyploidy in the
absence of cell division, but concomitant reduction of p53 levels (by
crossing with TP53+/− mice) resulted in increased tumorigenesis (Beer
et al., 2004).

In this context, MYC expression levels seem an important
determinant of the biological outcome. It was reported, for
instance, that low levels of deregulated MYC can drive
proliferation and oncogenesis by themselves, whereas apoptotic
and p53 tumour suppressor pathways are only triggered above a
certain MYC threshold (Murphy et al., 2008).

In summary, as observed in cancer but not limited to it, MYC’s
role in promoting multiple physiological processes means that its
overexpression, deregulation, or insufficiency can lead to an array of
human diseases and disorders.

4 MYC’s involvement in diseases and
conditions

4.1 Metabolic diseases

Metabolic dysfunction-Associated steatotic liver disease
(MASLD), previously known as non-alcoholic fatty liver disease,
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is strongly associated with obesity and insulin resistance (Browning
and Horton, 2004), as well as with increased mortality and
cardiovascular disease burden (Kim et al., 2021). It begins with
the aberrant accumulation of triglycerides in the liver (steatosis) and
can proceed to a Metabolic Dysfunction-Associated Steatohepatitis
(MASH), which in turn, can eventually give rise to cirrhosis and
liver cancer.

Alb-myctg mice overexpress MYC in hepatocytes, and at
36 weeks, they spontaneously develop metabolic syndrome,
characterised by obesity, hypertriglyceridemia, hyper-
cholesterolemia, glucose intolerance and insulin resistance. The
mouse livers show abnormal accumulation of lipids that leads to
compensatory increased ß-oxidation that, in turn, generates
oxidative stress. This results in, on the one hand, CD45+, F4/80+

immune infiltration, and on the other, increased hepatocyte
apoptosis and compensatory proliferation. Hence, hepatic
overexpression of MYC affects metabolism and leads to the
development of mild steatohepatitis/fibrosis that progress to liver
tumours with long latency. Moreover, MYC overexpression
provides a pro-fibrotic tissue environment characterised by
moderate but chronic hepatocyte apoptosis, pre-activation of
hepatic stellate cells (HSCs) and high basal collagen expression.
These HSCs have a high potential to proliferate and to produce
extracellular matrix, especially after a second hit. This link between
MYC and hepatic fibrosis is reinforced by the fact that MYC mRNA
expression was found to be upregulated in patients with liver
cirrhosis (Nevzorova et al., 2013).

Alcohol-associated liver disease (ALD) includes a variety of
hepatic conditions from steatosis to cirrhosis. In patients with
advanced stages of ALD, MYC is strongly upregulated and
correlates with the progression of liver fibrosis. In line with this,
wild-type mice fed with a Lieber-DeCarli (EtOH) diet showed higher
MYC expression at the initial stages of liver injury and MYC
remained elevated during the early phase of ALD progression.

MYC overexpression and alcohol consumption were further
studied with Alb-myctg mice. Following a 4-week Lieber-DeCarli
diet, these mice presented deregulation of multiple disease-related
pathways, and an increase in liver mass in the absence of
proliferation, accompanied by hepatocyte hypertrophy, enhanced
collagen deposition, increased mitochondrial oxygen radicals, and
hepatic lipotoxicity. Mitochondrial and ER dysfunction caused
metabolic effects involving glucose intolerance. Overall, MYC

overexpression in the context of alcohol consumption led to
impaired Akt-MDM2-p53 signalling that eventually may trigger
ALD progression to fibrosis (Figure 3A) (Nevzorova et al., 2016). To
our knowledge, studies to block MYC have not yet been performed
in these models.

Intestinal MYC is also increased in humans and mice with
obesity, likely due to activation of the ß-catenin pathway, of which
MYC is a downstream target. In this case, its inhibition has been
tested: intestinal-specific MYC disruption protected mice subjected
to a high-fat diet against obesity, insulin resistance, hepatic steatosis
and fibrosis (Luo et al., 2021). Overall, MYC plays multiple roles in
obesity, including the maturation of progenitor cells, fatty acid
metabolism and extracellular matrix remodelling. Of note, MYC
modulates the inflammatory response, induces insulin resistance,
and regulates intestinal dysbiosis (Nevzorova and Cubero, 2023).

Additionally, gerbils fed with a high-fat and high-cholesterol
diet showed increased hepatic USP33 expression, whose modulation
revealed a signal transduction pathway regulated by both this
enzyme and MYC, which controls activation of HSCs, the main
cells responsible for liver fibrosis (Ke et al., 2023). In this context, a
potential drug treatment of MASH was recently identified:
AZD3355, a GABA-B receptor agonist, proved to be anti-fibrotic,
anti-inflammatory and hepatoprotective, and interestingly, MYC
was identified as the top transcription factor regulated in HSCs
treated in vitro with AZD3355 (Bhattacharya et al., 2021). All these
data are all in line with a role for MYC in HSC activation and
prompt the testing of MYC inhibitors in disease models.

Intriguingly, though, MYC expression in endothelial cells was
shown to have a protective effect against diet-induced liver
inflammation and fibrosis. In vitro, knockdown of MYC in
human umbilical vein endothelial cells (HUVECs) induces
cellular senescence accompanied by a proinflammatory
senescence associated secretory phenotype (SASP) (Florea et al.,
2013). In vivo, loss of endothelial MYC induced a significant increase
in proinflammatory molecules CCL7 and osteopontin. Moreover,
under a high fat diet, mice with MYC−/− endothelial cells showed
transcriptional induction of inflammation-associated pathways
characterised by an increase in neutrophil and macrophage
infiltration and the secretion of chemo- and cytokines CCL11,
CXCL1 and IL-17, all of which have a role in liver inflammation
and MASH. Moreover, transcriptional analysis of endothelial cells
from MYC knockout mice showed functions associated with liver

FIGURE 2
MYC is deregulated by multiple mechanisms. These include chromosomal rearrangements that lead to amplification or translocation (A), and
upstream signalling that causes increased transcription or protein stabilisation (B).
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FIGURE 3
Involvement ofMYC in diseases. (A)MYCoverexpression in hepatocytes, in combination or not with alcohol consumption, leads to liver steatosis. (B)
MYC’s role in polycystic kidney disease and its potential inhibition leading to disease amelioration. (C)MYC plays a central role in naive andmemory T cell
activation in Multiple Sclerosis. (D) MYC haploinsufficiency prevents aged-related phenotypes. (E) MYC knockout after weaning leads to aging in the
absence of cancer, disrupting this biunivocal relationship. (F) Haemodynamic load or ischemia lead to MYC-dependent metabolic rewiring in the
heart. (G) Transient expression of MYC and Cyclin T1 could have regenerative therapeutic impact in the heart after myocardial infarction. (H) Proliferation
of smooth muscle cells leading to restenosis can be prevented by MYC inhibition. (I) IFN-γ-dependent MYC induction of ALP and BMP2 contribute to
Ankylosing spondylitis symptoms.
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hyperplasia/hyperproliferation and hepatocellular carcinoma. These
findings are in line with scRNA analyses showing that endothelial
MYC expression was downregulated in male cirrhotic livers
compared to those of healthy individuals (Qi et al., 2022).
Whether endothelial MYC knockdown in vivo induces
senescence, which is related to inflammation and cancer, was
not evaluated.

4.2 Polycystic kidney disease

Polycystic kidney disease (PKD) is a group of genetic disorders
characterised by the progressive development of renal cysts. It can be
autosomal dominant (ADPKD) or autosomal recessive (ARPKD),
and the dominant form affects some 1 in 500–1000 people. A role for
MYC in the pathogenesis of PKD was suggested by work using the
spontaneous congenital polycystic kidney Cys1cpk/cpk (cpk) mutant
mouse that phenocopies human ARPKD. In this model, MYC
overexpression was detected in polycystic kidneys, with only a
minimal increase in proliferation, and also in collecting duct
epithelial cells (Cowley et al., 1987; Harding et al., 1992).
Notably, in vivo treatment with a c-MYC antisense oligomer
(ASO) decreased cpk mouse kidney weight, improved their renal
function and decreased the number of cysts, pointing to a
therapeutic effect of MYC inhibition (Figure 3B) (Ricker
et al., 2002).

Cystin, encoded by Cys1, is a lipid-microdomain associated
protein found in the primary cilium of renal epithelia cells
(Yoder et al., 2002) that binds to the MYC promoter and
regulates its expression (Wu et al., 2013). While the loss of
Cystin’s proper function increases MYC expression, transgenic
complementation with Cystin-GFP expression rescues the
phenotype with concomitant normalisation of MYC levels (Yang
et al., 2021). Also, MYC is overexpressed in kidneys from ARPKD.
More in detail, fibrocystin/poliductin protein localise to the nucleus,
binds to MYC promoter P1 and activates its expression (Figure 3B)
(Harafuji et al., 2023).

Others have reported further links between MYC and PKD. The
SBM transgenic mouse model, with an SV40 promoter and beta-
globin enhancer that drives MYC overexpression in renal epithelial
cells, bears similarities with human ADPKD, which is mainly caused
by mutations in the gene PKD1, encoding for polycystin-1 (PC1).
These mice show significant upregulation of PC1 and develop PKD
with 100% penetrance that leads to fatal renal failure. Examination
of the kidneys revealed higher levels of MYC expression in the
epithelial lining of cystic and hyperplastic tubules (Trudel
et al., 1991).

SBPkd1TAG mice overexpress PKD1mRNA leading to increased
PC1 dosage in renal epithelial cells and exhibit a moderate rate of
disease progression that leads to renal failure at five to six months.
On the other hand, PC1 dosage-reduced Pkd1-cKO mice develop
enlarged cystic kidneys that become very severe by P10 and leads
to death due to renal failure. Puzzlingly, in both PC1 dosage-
increased and -reduced mice, MYC expression (along with that
of β-catenin) was found to be upregulated in renal cells with respect
to wild-type mice. Moreover, MYC was found to be enriched in
PKD1 promoter regions in adult SBM mouse kidneys, while
overexpression of MYC in HEK293 embryonic kidney cells

increased the levels of PC1. These data suggest that PKD1
expression is driven at least in part by MYC (Figure 3B) and
unveils an inter-regulatory network involving MYC and PC1 that
controls cystogenesis (Parrot et al., 2019).

While direct exogenous MYC inhibitors were not applied in these
models, either genetic renal-specific ablation of MYC (Parrot et al.,
2019), or treatment with inhibitors of BET bromodomain protein 4, an
upstream regulator of MYC, reduced disease severity or delayed PKD
progression (Zhou et al., 2015). Similarly, loss of MYC suppressed
cystogenesis in a Pkd1-KO mouse model (Figure 3B) (Cai et al., 2018).

Combined, these data point toMYC as a causal cystogenic factor
and a mediator of ADPKD. Its inhibition is therefore a potential
therapy and further testing of inhibitors is highly warranted.

4.3 Multiple sclerosis

Multiple Sclerosis (MS) is an autoimmune disease of the central
nervous system (CNS) characterised by the self-reactive T cell-induced
demyelination. T cells recognise antigens onmyelin basic protein,myelin
oligodendrocyte glycoprotein and proteolipid protein, and
immunization against these antigens induces the MS-like
experimental autoimmune encephalomyelitis disease (EAE) in mice.
More than 10 years ago, genome-wide association studies inMS patients
identified single nucleotide polymorphisms in the MYC gene
(International Multiple Sclerosis Genetics Consortium et al., 2011). In
recent years, a series of papers have linkedMYC’s transcriptional activity
to T cell activation in MS.

First, MYC, together with NF-κB and mTOR, was found to be
involved in the activation of memory Th and naïve T cells in EAE
through the induction of PRMT5, an arginine methyltransferase that
plays a crucial role in inflammatory T cell expansion and EAE
disease (Webb et al., 2017; Webb et al., 2019). This constitutes
another example of a positive interaction of MYC and mTOR, in
contrast to UPR in osteoclastogenesis. Here, MYC’s role was
demonstrated using the small molecule inhibitor 10058-F4.

Second, MYC transcriptional activation through phospho-STAT3
and RelA/NF-κB mediates T cell receptor-independent downstream
signalling from activated CD28 that leads to inflammatory T cell
responses in MS (Figure 3C) (Kunkl et al., 2019).

Finally, bioinformatic analyses of protein-protein interaction
networks in MS found common genes and biological pathways for
disease susceptibility, among which MYC was found to be a central
gene in peripheral blood mononuclear cells from MS patients
(Safari-Alighiarloo et al., 2020). A similar study confirmed the
role of MYC, along with HNF4α and SP1, as a master regulator
of CNS autoimmunity (Colombo et al., 2023). In this case, MYC was
inhibited using OTX015, an inhibitor of BET domain proteins that
indirectly decreases MYC levels. This inhibitor has been tested in
clinical trials (in oncological indications), although it is not specific
for MYC only. Further preclinical validation of the role of MYC and
the potential of MYC inhibition in MS seems warranted.

4.4 Aging

Many of the biological processes implicated in or associated with
aging have also been linked to MYC and its deregulation. These include
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the so-called hallmarks of aging (López-Otín et al., 2023): genomic
instability, epigenetic alterations, stem cell exhaustion, energy
production, protein translation, DNA damage, and inflammation.
Transgenic mice have been used to explore the impact of systemic
MYC level reduction, but so far there are contrasting results. Initially,
MYC haploinsufficiency studies showed that MYC+/− mice had
significantly extended lifespans with amelioration of aging
phenotypes across a variety of pathophysiological processes when
compared to wild-type littermates. These included healthier lipid and
cholesterol metabolism, less fibrosis and cancer progression, higher
metabolic rate and less immunosenescence. The exact mechanism(s)
behind this have not yet been established, although they are expected to
bemultifactorial, through decreased expression of directMYC targets, or
indirectly through other transcription factors and/or miRNAs regulated
by MYC. For instance, ribosomal RPL and RPS genes were found to be
reduced in MYC haploinsufficient tissues with the concomitant
reduction of in vivo translation, which is clearly associated with
longer lifespan (Figure 3D) (Hofmann et al., 2015). Additionally,
these mice showed decreased systemic levels of IGF1 through MYC-
miR122 regulation. Reduced IGF1 has been linked to the development of
age-related diseases such as osteoporosis, but female MYC
haploinsufficient mice had a decreased incidence of osteoporosis,
consistent with the finding that, in bone, IGF1 levels were unaltered
(Petrashen et al., 2023).

The current understanding of aging considers it as a
multifactorial process in which different signalling pathways
converge on autophagy genes to regulate lifespan. WIPI1, and its
C. elegans ortholog ATG-18, has been identified as one of the critical
autophagic factors involved in extending lifespan (Tóth et al., 2008).
In line with this and withMYC’s supposed role in aging, it was found
that the ABL-MYC axis represses WIPI1 gene expression.
Interfering with this axis promotes autophagy and extends C.
elegans lifespan (Sporbeck et al., 2023).

On the other hand and in contrast with the results above, transgenic
mice engineered with near-complete elimination of MYC at weaning,
named MycKO mice, aged prematurely yet lived longer with decreased
cancer incidence. The phenotypic alterations were, as expected, copious
and broad: bone marrow hypoplasia, peripheral cytopenia, alopecia,
achromotrichia, glucose intolerance and mitochondrial dysfunction.
Additionally, colonic epithelial flattening and villous atrophy were
found, although there was no effect on body weight (Prochownik
and Wang, 2023; Wang et al., 2023).

Hence, according to these latter results, aging appears to be
associated with higher cancer incidence only in the presence ofMYC
(Figure 3E). It remains to be seen what effect chronic administration
of MYC inhibitors could have on indicators of aging. Whether such
chronic treatment could also be applied as a cancer prevention
strategy (and not only to cancer treatment) is not clear beyond
preclinical models.

4.5 Cardiac metabolism after
pathological stress

Cellular oxygen concentrations are tightly regulated in
eukaryotic organisms to maintain proper mitochondrial function
and energy production. Mammalian cells adapt to oxygen
deprivation by inducing protective mechanisms. For instance, a

substantial decrease in protein biosynthesis is among the effects of
hypoxic stress on cardiomyocytes, where transcription factor IIIB
(TFIIIB) and TFIIIC-dependent RNA polymerase III (pol III) play a
key role (Kraggerud et al., 1995; Schramm and Hernandez, 2002). In
vitro experiments with neonatal rat myocytes at 1% O2 revealed that
HIF-1α induces the dissociation of MYC from TFIIIB, contributing
to the decrease in pol III transcription (Ernens, 2006). Other
pathological stressors such as haemodynamic load and ischemia
divert metabolic pathways away from fatty acid oxidation (FAO)
towards glucose metabolism (Stanley et al., 2005). In the adult heart,
this metabolic rewiring in the myocardium is mediated by MYC,
whose increased levels downregulate genes involved in FAO, while
concomitantly upregulating genesmediating glucose oxidation, such
as ENO1, PFKM, LDHA and SLC16A1 (Figure 3F). This was
associated also with an increase in the number of functional
mitochondria and represents MYC-dependent metabolic
adaptation towards a better response to ischemic insults (Ahuja
et al., 2010).

Cardiac progenitor cells (CPCs), however, become quiescent
after ischemic hypoxia, limiting their self-renewal and vasculogenic
properties, with the aim of preserving stem cell homeostasis (Guitart
et al., 2010). Being amaster regulator of the cell cycle and quiescence,
it is no surprise that MYC, after in vitro hypoxia (0.5% O2), is
downregulated in mouse CPCs isolated from the myocardium, with
a concomitant increase in the levels of the CDK inhibitor p21, a
MYC target (Bellio et al., 2017).

Neonatal cardiac proliferative potential is lost after a week,
coinciding with downregulation of multiple genes involved in cell
cycle, including MYC (Walsh et al., 2010; Quaife-Ryan et al., 2017).
Ectopic cardiac MYC-dependent transcription and cell cycle
progression in the adult heart in vivo depends on the levels of
P-TEFb, a protein complex consisting of CDK9 and Cyclin T1. In
order to effectively drive cell division in the heart, MYC expression
must be accompanied by higher levels of P-TEFb (Bywater et al.,
2020). In line with this, transient expression of both MYC and
Cyclin T1 by a single intramyocardial dose of a modified RNA
coding for both genes was shown to be a potential regenerative
therapeutic in the heart after myocardial infarction, inducing cell
cycle and division of cardiomyocytes (Figure 3G) (Boikova
et al., 2023).

Restoration of reperfusion is the most effective treatment for
myocardial infarction. Paradoxically though, reperfusion leads to
myocardial ischemia/reperfusion (MI/R) injury, which induces
cardiomyocyte apoptosis through increased oxidative stress
(Wang et al., 2017). Using an MI/R mouse model, MYC was
found to be downregulated, with consequent oxidative stress and
cardiomyocyte apoptosis (Wen et al., 2022). Notably, therefore,
recovery after ischaemia using these regenerative or protective
strategies represents one of the few conditions in which therapy
would require MYC expression or activation.

Hypertension is one of the most common pathologies of the
vascular system. It leads to overload, increasing the risk of
myocardial infarction, among others. The myocardium of
spontaneously hypertensive rats (SHRs) overexpresses MYC and
its downstream target CYP2E1, whose overexpression leads to
oxidative stress and other pathological processes. Long-term
treatment with quercetin, a flavonoid with potential
cardiovascular beneficial effects, resulted in a significant

Frontiers in Cell and Developmental Biology frontiersin.org09

Zacarías-Fluck et al. 10.3389/fcell.2024.1342872

165

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1342872


TABLE 1 Additional diseases and conditions in which MYC has been implicated. In these cases, the evidence is more preliminary than for those described in
the main text. We have indicated studies showing any links between MYC and the disease, and in particular, any data regarding MYCmodulation, either by
inhibition or overexpression.

Disease or
condition

Studies linking it to MYC MYC modulation experiments

Neurodegeneration • Phosphorylated c-MYC, c-MYC and N-MYC found in patient
samples from various neurodegenerative diseases (Ferrer and Blanco,
2000; Ferrer et al., 2001)

• MYC inhibition by mithramycin (a non-selective inhibitor) was
neuroprotective (Sleiman et al., 2011)

• Downregulation of dMyc is neuroprotective in tauopathies in
Drosophila (Chanu and Sarkar, 2017)

•Expression of Myc induces ND in transgenic models (Lee et al., 2009)

Neuropathic pain • MYC expression in mouse models (Van et al., 2010; Jiang et al., 2022) • MYC overexpression induces pain hypersensitivity while knockdown
in vivo with siRNA alleviates neuropathic pain (Jiang et al., 2022)

Acute liver failure • MYC-dependent transcriptional program orchestrates cell activation
during ALF (Kolodziejczyk et al., 2020)

• MYCi in mouse models using small molecule Kj-Pyr-9 attentuates
ALF (Kobdziejczyk et al., 2020)

Diabetic nephropathy • Increased MYC expression in endothelial cells in response to glucose,
and in DN patients and rats (Hou et al., 2022)

• MYC overexpression or siRNA knockdown impacts endothethial cell
inflammation (Hou et al., 2022)

• N-MYC stabilisation in models (Choi et al., 2023)

• MYC is one of the top Differentially Expressed Genes in glomerular
samples of patients (Hojjati et al., 2023)

Fanconi anemia • High levels of MYC mRNA in primary stem cells from patients and
bone marrow, and nuclear MYC IHC in liver sections (Rodriguez
et al., 2021)

• JQ1 inhibitor reduces MYC expression, and decreases clonogenic
potential and genotoxic stress in stem cells from FA-mice (Rodriguez
et al., 2021)

Diabetes • MYC increased in mouse and rat diabetes models (Jonas et al., 1999;
Jonas et al., 2001; Laybutt et al., 2003)

• MYC overexpression in beta-cells triggers diabetes in mouse models
(Laybutt et al., 2002)

• Upregulation of c-MYC/N-MYC networks in proteome and
transcriptome analysis of non-obese diabetic mice (Gerling et al.,
2006; Wu et al., 2013)

• MYC induction upon BCG vaccination improves glucose metabolism
(KOhtreiber et al., 2020)

• MYC gene network and protein increased in diabetic patients (Kaizer
et al., 2007; Lee et al., 2008)

• c-Myc directly induces both impaired insulin secretion (Kaneto et al.,
2002), potentially through PKC (Kaneto et al., 2002) and loss of 0-cell
mass, independently of hyperglycemia (Cheung et al., 2010)

Kefold scar • MYC gene expressed increased in microarray analysis of patient skin
(Chen et al., 2004)

• c-MYC overpexpression promotes the proliferation of keloid
fibroblasts (Feng et al., 2023; Piao and Feng, 2023)

• MYC protein expression increased in patient samples (Hu et al., 2002;
Zhang et al., 2023)

Developmental diseases • Cornelia de Lange syndrome and Roberts syndrome are linked to
misregulation of MYC (Horsfield et al., 2012)

Not found

• Feingold disease is caused by MYCN haploinsufficiency (van
Bokhoven et al., 2005; Cognet et al., 2011)

• Achondroplasia linked to MYC downregulation (Zhou et al., 2011)

Irritable Bowel Disease • MYC amplification in IBD-associated carcinoma patients (Hartman
et al., 2018)

Not found

• Some MYC IHC in IBD-associated low-grade dysplasias (Liang et al.,
2023)

(Continued on following page)
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reduction of blood pressure with concomitant downregulation of
MYC and CYP2E1, significantly improving the prooxidant-
antioxidant profile (Maksymchuk et al., 2023). Whether
downregulation of MYC alone would reduce blood pressure,
CYP2E1 expression, and curb the oxidative stress, still remains
to be seen.

4.6 Restenosis

The arterial wall response to pathophysiological stimuli, including
atherosclerosis and angioplasty procedures, involves the proliferation of
smooth muscle cells (SMC). Indeed, 25%–50% of patients undergoing
angioplasty will develop recurrent stenosis, which is essentially a
narrowing of the blood vessels, also called restenosis, that consists of
the proliferation of medial SMC and their migration to the subintima.
Because of this, considerable attention has been paid to the inhibition of
SMC proliferation as a way of preventing restenosis. Initial studies

involving antisense oligonucleotides (ASOs) targeted SMC PCNA
in vitro with significant inhibition of proliferation (Speir and Epstein,
1992). Much later studies focused on the use of a phosphorodiamidate
morpholino oligomer (PMO) antisense to the c-MYC translation
initiation site, called AVI-4126 (Resten-NG®) (Figure 3H). It was
successfully tested in a rabbit balloon injury model (Kipshidze et al.,
2002) and porcine restenosis model (Kipshidze et al., 2003; Kipshidze
et al., 2002) with promising results: significant reduction of the
neointimal area with concomitant MYC inhibition. Although this
was further validated in a Phase II trial with positive results (Philipp,
2012), the drug was not developed beyond this point.

4.7 Bone developmental disorders

Septic nonunion (SN) is a bone disorder caused by the failure of
fracture healing. It is often caused by local inflammation. Expression of
the lncRNA RUNX2-AS1 was detected in SN biopsies, along with

TABLE 1 (Continued) Additional diseases and conditions in which MYC has been implicated. In these cases, the evidence is more preliminary than for those
described in the main text. We have indicated studies showing any links between MYC and the disease, and in particular, any data regarding MYC
modulation, either by inhibition or overexpression.

Disease or
condition

Studies linking it to MYC MYC modulation experiments

Immune related diseases

Systemic lupus
erythematosus

Not found MYCi by JQ1 abolishes the pathogenic response induced by functional
Breg cells (Wang et al., 2022)

Uveitis • MYC increased in experimental autoimmune uveitis (Chen et al.,
2022)

• MYC knockdown reduces miR-181a-5p, involved in the pathogenic
Th17 immune response (Chen et al., 2022)

Arthritis • MYC expression increased in synovial tissue microarray analysis of
OA patients (Zhang et al., 2023)

• Simultaneous inhibition of both c-Myc (with 10,074-G5) and HIF-la
is efficacious for anti-inflammation in vitro and in vivo in RA model
(Lee et al., 2020)

• MYC gene expression is increased in RA patients (Harshan et al.,
2022; Fan et al., 2023)

Pancreatitis Not found • MYCi by 10,058 reduces markers of acute pancreatitis in mouse
models (Xu et al., 2020)

Asthma • MYC gene and network upregulated in patients (Troy et al., 2016;
Vargas et al., 2016; Salameh et al., 2022)

• iPSC-w/o-c-Myc transplantation had therapeutic effects in allergic
airway hyperresponsiveness (Wang et al., 2013)

• Higher MYC expression in inflammatory cells in allergic asthma
mouse model (Shen et al., 2019)

• MYC upregulation involvement in pathogenesis of ILC2 in asthma
(Ye et al., 2020)

• Wnt/p-catenin regulate asthma airway remodeling and upregulate
c-MYC (Jia et al., 2019)

Coeliac disease • MYC expression increased mouse models (Vaira et al., 2020) and
patient samples (Ciclitira et al., 1987)

Not found

infections • MYC as a hub gene in tuberculosis (Xiao et al., 2023) • MYC activation-deficient adenovirus impairs glutamine catabolism
needed for viral replication and infection of primary cells (Thai et al.,
2015)

• Wnt6 increases MYC expression in granulomatous lesions of
Mycobacterium in the lung (Schaale et al., 2013)

• MYC expression rescues Chlamydia persistence in cell lines
(Vollmuth et al., 2022)

• SARS-CoV-2 Orf7b protein upregulates MYC which mediates lung
apoptosis and ferroptosis (Deshpande et al., 2024)
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proinflammatory cytokines. RUNX2-AS1 negatively regulates RUNX2
expression and its downstream targets, which play an important role in
bone differentiation and development. It was found thatMYC associates
with MAX, p300 and NCOA2 to induce RUNX2-AS1 expression,
abrogating the expression of RUNX2 target genes, while LPS-induced
inflammation induced the expression of NCOA2 and showed a dose-
dependent increased association with MYC-MAX-p300. These results
link the inflammatory microenvironment with the downregulation of
RUNX2 and its target genes, which impairs bone differentiation and
leads to nonunion (Li and Qian, 2022).

Ankylosing spondylitis (AS) is a heritable chronic inflammatory
disease that affects the spine and pelvis, ultimately leading to joint
ankylosis due to ectopic ossification and disability. Inflammation is an
early characteristic of AS and inflammatory cytokines could promote
ossification by modulating the osteoblasts (Li et al., 2020). MYC was
found to be upregulated in AS ligament samples and in fibroblasts in an
in vitro osteogenic model. In this model, two osteogenic genes were
found to be dependent on MYC: alkaline phosphatase (ALP) and bone
morphogenetic protein 2 (BMP2). Additionally, the inflammatory
cytokines IL-23 and IFN-γ upregulate both MYC and ALP in vitro.
In AS ligament samples, a higher proportion of IL-23 positive and IFN-γ
positive cells were found with respect to osteoarthritis samples
(Figure 3I) (Jin et al., 2023). Osteoporosis has also been linked to
MYC. Based on bioinformatic analysis, a series of experiments
showed that the MYC/ERRα axis regulates mitochondrial respiration
in osteoclastogenesis, and their targeting protected mice of oestrogen
deficiency-mediated bone loss after ovariectomy, pointing to MYC as a
potential therapeutic target for osteoporosis (Bae et al., 2017).

4.8 Potential role of MYC in other diseases
and conditions

Various studies link MYC to a range of other disorders, mainly
through experiments to determine its expression in model systems

or patients. In particular—and not surprisingly—there are strong
suggestions of a role in endometriosis (Nothnick et al., 2023),
mitochondrial diseases (Purhonen et al., 2023), immune-related,
neurodegenerative and other metabolism-related diseases. These are
summarised in Table 1 with some of the data hinting at a role for
MYC. In general, more work is required to prove a clear link and
determine whether MYC is playing a role in disease causation, or
even whether modulation of its expression could be preventative.

5 Current state of MYC inhibition in the
clinical setting

There are a huge number of reviews describing the search for
MYC inhibitors and their application to cancer treatment. Here we
will only briefly describe some targeting strategies, focusing on those
reaching clinical testing, summarised in Figure 4, and refer the
reader to a number of other much more in-depth reviews regarding
MYC inhibitors, both from our group (Whitfield et al., 2017; Massó-
Vallés and Soucek, 2020; Whitfield and Soucek, 2021; Martínez-
Martín et al., 2023) and others (Ross et al., 2021; Karadkhelkar et al.,
2023; Weber and Hartl, 2023).

Strategies employed fall into two main approaches: direct and
indirect inhibitors. The latter include a much more expansive set of
possibilities, since their target can be anything that interacts with
MYC or controls its activity, expression, or localisation. These could
also include synthetic lethal targets: here, any protein or signalling
pathway that is essential for the survival of MYC-driven tumour cells
can be targeted and many such targets are in clinical development.
Direct inhibitors, on the other hand, impinge on MYC itself to
control the expression or stability of the RNA or protein, or its
interaction with DNA or dimeric partners.

Perhaps surprisingly, the earliest MYC inhibitors to be tested in
clinical trials were applied to a non-oncological indication (Kipshidze
et al., 2002). Antisense oligonucleotides (ASOs) were used for the

FIGURE 4
The current approaches to directly target MYC in clinical trials. These include four distinct strategies: MYC dominant negative OMO-103, anti-MYC
stapled peptide IDP-121, MYC degrader WBC100 and MYC epigenetic modulator OTX-2002.
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treatment of heart restenosis (NCT00244647, NCT00248066)
(Kipshidze et al., 2007). These showed some positive effects in this
coronary disease and were later tested against neoplasms, showing
significant tissue accumulation in solid tumours (Devi et al., 2005),
but to our knowledge no further development occurred.

Other more recent trials have also been discontinued, including:
Quarfloxin (CX-3543) and APTO-253, G-quadruplex stabilisers
thought to work by preventing MYC transcription (NCT00780663,
NCT02267863); INX-3280, another ASO (Kutryk et al., 2002); and
DCR-MYC, an siRNA to prevent MYC translation (NCT02110563,
NCT02314052). These were all tested as cancer therapies (reviewed in
Whitfield et al., 2017), but none was further pursued.

The first successful Phase I trial has recently concluded using
OMO-103, a MYC dominant negative mutant based on the
Omomyc mini-protein, delivered intravenously once per week. In
line with its extensive preclinical validations, OMO-103 showed a
good safety profile and some first hints at efficacy in all-comers solid
tumours (Garralda et al., 2024). In addition, biomarkers were
identified indicating MYC inhibition. A Phase Ib trial recently
started in September 2023 in metastatic pancreatic cancer
(NCT06059001).

To our knowledge, there are currently three other ongoing trials
with a direct MYC inhibitor: one uses a MYC degrader called
WBC100, in MYC-positive advanced solid tumours
(NCT05100251), another is an epigenetic controller, OTX-2002,
that downregulates MYC and is being tested in hepatocellular
carcinoma (NCT05497453), while the third is with IDP-121, a
stapled peptide MYC inhibitor being evaluated in patients with
relapsed/refractory hematologic malignancies (NCT05908409). In
addition, MYC-related indirect approaches have reached clinical
trials. For instance, MYC-induced protein translation depends on
GSPT1, and a molecular glue degrader of GSPT1 (MRT-2359) is
currently being trialled for MYC-driven and other selected solid
tumours (NCT05546268). Still, the focus remains firmly on testing
in cancer.

As discussed already, any approved inhibitor could potentially
be applied to other non-neoplastic conditions.

6 Possibilities to activate or
express MYC

As explained in the previous section, the majority of examples of
MYC involvement in diseases point to its inhibition as a therapeutic
approach. However, MYC activation could be an option to favour
regeneration in the heart after myocardial infarction or hypoxia.
Further to such repair and regeneration approaches, a recent study
highlighted the use of MYC activation by transgenic overexpression
to stimulate ex vivo platelet production from induced pluripotent
stem cells (Kayama and Eto, 2024). This could eventually provide
improved transfusion systems. Additionally, an unexpected indirect
approach could benefit Type 1 Diabetes (T1D) patients, in which the
administration of BCG vaccine resulted in long-lasting blood sugar
control with proper glucose metabolism (Li et al., 2018). A recent
study found a gradual MYC mRNA upregulation in monocytes and
CD4 T cells from T1D patients. This led to increased transcription
of MYC-dependent glucose and glutamine metabolism genes
(Kühtreiber et al., 2020).

7 Perspective

While MYC has long been considered an undruggable target, new
therapeutic options against it are becoming clinically viable, as
demonstrated by the completion of the first successful clinical trial
of a direct inhibitor, OMO-103. Most of the trials and recent focus
remains in the field of cancer treatment, and indeed the ongoing trials
of directMYC inhibitors are against PDAC, hepatocellular carcinoma,
relapsed/refractory hematologic malignancies, and MYC-positive
advanced solid tumours. As mentioned in this review, though,
MYC’s pleiotropic roles in multiple physiological processes suggest
that its modulation could be applied to many other diseases. To date,
there is preliminary data pointing to a role in a variety of diseases of
different origins and clinical presentations such as neurodegeneration,
diseases of the bone, digestive system and related organs, keloid scars,
developmental and immune-related diseases (such as asthma, coeliac
disease, and others), as well as the aging process. Further pre-clinical
testing and even clinical trials seem merited in these cases.

In general, excess or over-active MYC is detrimental, so under
physiological circumstances its levels are precisely controlled to keep
the multiple downstream processes in check. In most diseases
described so far, and as seen in cancer, where deregulation of
MYC is frequent, such excessive MYC activity drives various
processes that then lead to pathologies due to the unfettered
proliferation, changes in differentiation and altered metabolism,
among others. There is huge potential, therefore, for using MYC
inhibitors that are currently being developed in the cancer field.

Diseases in which MYC activation may instead be desired
include those where stimulation of cell proliferation and tissue
regeneration is needed, such as after ischaemic damage in the
heart, diabetes, and neuronal repair. It has been speculated that
in neurodegeneration, MYC activation may be part of a failed
neuroprotective response. Thus, extra MYC could help repair and
regenerate neurons after cell death or damage. Of note, activation of
MYC for such diseases will likely be required locally, in the affected
tissues rather than systemic, to avoid the foreseeable massive and
deleterious effects that body-wide activated MYC could have.

In summary, if we have learnt something from 40 years of
literature about MYC, it is that we still have a lot to discover.
Luckily, pharmacological tools for its modulation seem finally viable
and hold promise for a better understanding of MYC biology, while
also providing the basis for new therapeutics applicable to multiple
indications in oncology and beyond.
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Manipulating Myc for reparative
regeneration
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The Myc family of proto-oncogenes is a key node for the signal transduction of
external pro-proliferative signals to the cellular processes required for
development, tissue homoeostasis maintenance, and regeneration across
evolution. The tight regulation of Myc synthesis and activity is essential for
restricting its oncogenic potential. In this review, we highlight the central role
that Myc plays in regeneration across the animal kingdom (from Cnidaria to
echinoderms to Chordata) and how Myc could be employed to unlock the
regenerative potential of non-regenerative tissues in humans for therapeutic
purposes. Mastering the fine balance of harnessing the ability of Myc to promote
transcriptionwithout triggering oncogenesis may open the door tomany exciting
opportunities for therapeutic development across a wide array of diseases.
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1 Myc structure, function, and the proximal
Myc network

Myc belongs to a class of proto-oncogenes (comprising c-Myc, n-Myc, and l-Myc),
which are genes whose product induces cell proliferation in response to mitogenic stimuli
and that can become oncogenic upon their mutation or deregulation (Vennstrom et al.,
1982). While much Myc research has focused on its oncogenic properties, its activities as a
proto-oncogenic transcription factor positions Myc as a key downstream factor in many
signal transduction pathways important for development, tissue homoeostasis, and
regeneration (such as WNT, RAS/RAF/MAPK, JAK/STAT, TGF-β, and NF-κB) (Dang,
2012). As such, it is part of the proximal Myc network (PMN), a system of transcription
factors that consolidates signals from several distinct upstream pathways into the expression
of thousands of target genes involved in many biological processes (Grandori et al., 2000;
Conacci-Sorrell et al., 2014).

All members of the Myc family are dimerizing transcription factors that contain a basic
helix–loop–helix leucine zipper (bHLH-LZ) domain (Figure 1). The heterodimers can
interact with the DNA through recognition of an enhancer box (E-box, 5′-CACGTG-3′) via
the bHLH-LZ; this drives the recruitment of co-activators/repressors, transcriptional
regulation, and chromatin remodelling. The bHLH-LZ domain is present on the
carboxyl-terminus (C-terminus) of Myc and has been shown to have helical
conformation when unbound; it only assumes its full structure when bound to MAX
and the DNA (Nair and Burley, 2003; Sammak et al., 2019). The amino-terminus
(N-terminus) consists of a large unstructured intrinsically disordered region (IDR)
containing multiple conserved domains called Myc boxes (MB). MBs are sites of
interaction with regulators and interactors (transactivation domain—TAD, comprising
MBI-MBII) and degron motifs central to Myc degradation (Sears et al., 1999; Sears et al.,
2000; Sears, 2004). Importantly, Myc is unable to homodimerise and cannot bind DNA as a
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monomer, thus requiring its obligatory partner MAX (Amati et al.,
1992, 1993). Due to its lack of functional domains, MAX does not
possess direct transcriptional activity but rather forms
transcriptionally inactive complexes in the form of MAX
homodimers and heterodimers with MAX-binding proteins and
dimerization proteins (e.g., MNT, MGA, MAD1-4, and MXI1),
becoming functional antagonists to Myc-MAX dimers by
competing for E-box binding. Therefore, MAX is the central
node of the PMN, whereby changes in the balance between its
heterodimerisation partners determine cell fate decisions and a
switch from a proliferative or transformative state when Myc is
abundant to differentiation or quiescence when abundant MADs
outcompete Myc (Grandori et al., 2000; Conacci-Sorrell et al., 2014).

The overarching function of Myc in healthy tissues is to
integrate multiple signals derived from different pathways to
elicit global transcriptional change. The transcriptional activity of
Myc hinges on its ability to recruit RNA polymerase II and members
of histone acetylase complexes toMyc-binding sites, withMyc target
sites presenting high histone acetylation. Specifically, the region
between MBI and MBII binds the TATA-binding protein (TBP), a
member of the transcription factor IID (TFIID) complex responsible
for recruiting RNA polymerase II (RNAPII) at transcriptional start
sites (Wei et al., 2019). Through MBI, Myc recruits the cyclin T1-
CDK9 complex, which together comprise the positive transcription
factor B (P-TEFb) that elicits phosphorylation of RNAPII and

releases it from transcriptional pausing, thus initiating
transcriptional elongation (Rahl et al., 2010). The abundance of
P-TEFb is rate-limiting to Myc-driven hyper-transcription (Bywater
et al., 2020). MBII mediates Myc’s interaction with other regulators
of transcriptional activity, including transformation/transcription
domain-associated protein (TRRAP), an adaptor protein that forms
complexes with lysine (K) acetyltransferase (KATs). MBIIIb
interacts with WDR5 (WD repeat domain 5), an essential
component of H3K4 methyltransferase complex (Couture et al.,
2006; Thomas et al., 2015). Finally, Myc possesses transcriptional
repressor activity, which MBIIIa mediates, specifically through
interaction with MIZ-1, a transcriptional activator if not bound
to Myc. MIZ-1’s binding to co-activators p300 and NPM1 is
impeded in the Myc-MIZ-1 bound form (Vousden, 2002; Möröy
et al., 2011).

The result of Myc-driven transcription is the amplified
expression of genes involved in various cellular programmes
including proliferation, apoptosis (Evan et al., 1992; Kanazawa
et al., 2003), metabolism (Stine et al., 2015), and senescence
(Hydbring and Larsson, 2010; Singh et al., 2023). Myc-driven cell
cycle progression results from its combined function as a
transcriptional amplifier and repressor, with Myc mRNA and
protein levels closely correlating with proliferation rates (Kelly
et al., 1983; Dean et al., 1986; Waters et al., 1991; Bretones et al.,
2015). Myc has been shown to directly bind components of the pre-

FIGURE 1
Structure of Myc. Schematic representation of the modular amino acid sequence of the Myc transcription factor. Myc is a largely unstructured
protein with a vast intrinsically disordered region (IDR) extending from the N-terminus to the beginning of its basic region. The IDR contains the nuclear
localisation sequence (NLS) andmultiple disordered regions calledMyc boxes (MB), which are conserved betweenMyc familymembers and are key to the
function of Myc, being sites of essential protein–protein interactions. Most importantly, the transactivation domain (TAD), which contains MBI and
MBII, allows for the binding of the co-activators and repressors of Myc activity. Within this, MBI is also a binding site for most regulators of Myc stability.
Finally, essential for the ability of Myc to elicit transcription, the basic helix–loop–helix leucine zipper (bHLH-LZ) domain is essential for binding of Myc to
MAX and the DNA, as shown in the crystal structure (PDBID:1NKP).
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replicative complex (Pre-RC), necessary for DNA replication; in
early G1 phase, it binds the origin recognition complex, located at
the origin of replication (Dominguez-Sola and Gautier, 2014).
Activation of Pre-RCs to induce the functional initiation of
transcription requires cyclin-dependent kinase (CDK) activity.
Myc directly induces the expression of cyclins and cyclin-
dependent kinases, specifically cyclins A, B, and D, as well as
Cdk-4 and Cdk-6 (Bretones et al., 2015; García-Gutiérrez et al.,
2019). As mentioned above, MIZ-1-bound Myc is capable of
transcriptional repression, with two known targets of Myc-MIZ-
1’s transcriptional repression being p21Cip1 and p15Ink4b—two
cyclin-dependent kinase inhibitors (CDKIs). For both genes, the
Myc-MIZ-1 heterodimers bind the transcriptional start site, which
does not affect the basal-level expression of these genes but, rather,
their induction by anti-mitotic stimuli (Vousden, 2002; Wiese et al.,
2013). Myc also prevents CDKI expression/activity through indirect
mechanisms whereby it increases Cdk1 levels which phosphorylates
p27, leading to degradation by E3 ligase Skp2 (García-Gutiérrez
et al., 2019). Myc activity promotes ribosome biogenesis by
regulating the expression of the core subunits of the RNA
polymerase I apparatus and interacting directly to enhance pre-
rRNA processing. Myc enhances the transcription of RNA
polymerase III subunits, with which it cooperates to yield 5S
RNA and tRNA production (Campbell and White, 2014).
Furthermore, Myc-induced transcriptional amplification results in

the upregulation of genes involved in nucleotide and miRNA
synthesis, enzymes involved in RNA processing and capping, and
eukaryotic translational initiation factor 4E (eIF4E) (Stine et al.,
2015), allowing Myc to modulate cellular transcription. Myc is
essential for sustained proliferation and rate-limiting for cell
cycle progression, with cells which express high levels of Myc
progressing to S-phase more rapidly than lowly expressing cells
which present a longer G0/G1 (Liu et al., 2023). Furthermore, the
inhibition of Myc expression in a panel of human cancerous and
non-cancerous cell lines consistently results in cell cycle arrest
(Wang et al., 2008). Interestingly, the cell cycle phase at which
cell lines arrest varies according to their background, with healthy
cells exiting the cell cycle at G0/G1, while most cancer cell lines
displayed an arrest in later stages (S or G2/M) (Wang et al., 2008).
Altogether, Myc is essential for cell cycle progression where its
contribution is three-fold: coupling cell growth with cell cycle
progression, repressing cell cycle inhibitor proteins, and inducing
DNA replication, transcription, and translation (Figure 2).

2 Control of Myc activity for
safeguarding tissue integrity

To safeguard against the impact of the activation of the proto-
oncogene on promoting cell proliferation, multiple processes

FIGURE 2
Myc is a key driver of cell cycle progression. Myc-driven cell cycle progression is ubiquitous throughout the different stages of the cell cycle. Early in
G1, expression of cyclin D and cyclin-dependent kinase (Cdk) 4/6 is driven by Myc-MAX upon mitogenic sensing, concomitant with the repression of
cyclin-dependent kinase inhibitor (CDKI) p15 by Myc-MIZ-1. Similarly, later in G1, the role of Myc as transcriptional activator and repressor continues to
induce transcription of cyclin A and Cdk2 and repress CDKI p21 expression. Meanwhile, Myc also drives ribosome biogenesis through upregulation
of RNA Pol III and tRNA expression, coupling cell cycle progression with increasing cellular size. In S-phase, Myc participates in DNA replication. Finally, at
the G2/M transition, Myc induces the expression of the mitotic cyclin, cyclin B1.
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converge to restrainMyc levels and activity. Therefore, Myc is highly
regulated at the transcriptional, translational, and post-translational
levels (Figure 3). TheMyc gene is located within an approximately 3-
Mb area of chromosome 8q24 that lacks protein-coding genes. Myc
expression is regulated by a wide array of transcription factors,
including CNBP, FBP, and TCF (Levens, 2010), and by BRD4, a BET
domain-containing transcriptional regulator (Delmore et al., 2011;
Mertz et al., 2011). Additionally, non-B DNA structures are involved
in regulating Myc expression: Z-DNA, single-strand bubbles, and
G-quadruplexes, which are tertiary structures formed by guanine-
rich sequences that are present in the NHEIII region of the Myc
promoter (Brooks and Hurley, 2009; Brooks and Hurley, 2010;
Levens, 2010). This region of chromosome 8 contains tissue-
specific long-range enhancers and super-enhancers of Myc that

contribute to modulating Myc expression (Lancho and
Herranz, 2018).

The Myc gene contains three exons, with exons two and three
encoding the protein and transcription arising predominantly from
promoters P1 (25%) and P2 (75%) (Liu and Levens, 2006; Wierstra
and Alves, 2008). Myc mRNA arises from different splicing of the
three exons, and the resulting mRNA possesses a short half-life.
Multiple microRNAs, such as let-7, miR-34, and miR-145, can target
it for degradation (Sampson et al., 2007; Kim et al., 2009; Sachdeva
et al., 2009; Cannell et al., 2010; Kress et al., 2011). Ribosomal
proteins L5, L11, and S14 also bindMyc at the 3′ UTR, leading to its
degradation by the RNA-induced silencing complex (RISC) via
miR-24 (Liao et al., 2014; Spiniello et al., 2019) and miR-145
(Zhou et al., 2013). Myc mRNA contains a coding region

FIGURE 3
Transcriptional, translational, and post-translational control of Myc. Tight control of Myc expression, translation, and protein half-life is exacted to
maintain physiological levels of Myc in regenerative tissues. Transcriptional control of Myc (A) is achieved through non-B DNA structures (Z-DNA and
G-quadruplexes), binding of transcription factors (CNBP, TCF, FBP), and BET domain-containing transcriptional regulator, BRD4. This yields transcription
preferentially from two of the four promoters (P0, P1, P2, and P3), with the majority of transcripts arising from P2 and, to a lesser extent, P1. The
mRNA arising from P2 and P1 consists of three exons, with exons 2 and 3 encoding the main Myc protein isoform. The mRNA of the proto-oncogene is
also subject to tight translational regulation (B), resulting in a short-lived mRNA. The transcripts generated from P2 and P1 encode for a long 5′UTR
which contains independent ribosome entry sites (IRES) providing binding sites for RNA-binding proteins (RBP; hnRNPA1, hnRNPC, hnRNPK, PCBP1,
PCBP2, and RPS25). The coding sequence contains a coding region instability determinant (CRD)which, in the context of tRNA codon shortage, will cause
ribosomal stalling and endonucleolytic attack by an endonuclease if not protected by a CRD-binding protein (CRD-BP). At the 3′UTR of Myc mRNA,
CELF1 and ELAVL1 compete for binding to balance the transcriptional output, with CELF1 decreasing ELAVL1 association with the mRNA and, therefore,
decreased transcriptional output. Additionally, the RNA-induced silencing complex (RISC) is recruited to Myc mRNA by ribosomal proteins (RB) L5, L11,
S14, and miRNA binding at the 3′ UTR. Finally, the Myc protein is highly unstable with a short half-life, due to its many destabilising protein–protein
interactions. Illustrated here (C) is the key mechanism for Myc protein turnover via a series of post-translational modifications. Myc is bound and
phosphorylated by kinases (e.g., ERK, CDK9, and CAMKII) at S62 and likely T248, providing a priming phosphorylation that allows for GSK3β binding. This
kinase phosphorylates T58 (and probably T244), generating phosphodegron sites for E3 ligase FBW7 binding. Once bound, dimers of FBW7 can
ubiquitinate Myc, leading to its degradation by the ubiquitin proteasome pathway.
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instability determinant (CRD) region with rare codons that cause
destabilisation of the mRNA upon ribosomal stalling, thus hindering
translation when not protected from endonucleolytic attack by a
CRD-binding protein (CRD-BP, also known as insulin-like growth
factor II mRNA-binding protein-1 (IGF2BP1)). Levels of CRD-BP
are high in the foetus but decrease to low or absent in adult life
(Leeds et al., 1997; Lemm and Ross, 2002;Weidensdorfer et al., 2009;
Spiniello et al., 2019), allowing rapid Myc mRNA turnover in adult
tissues. The untranslated regions (UTRs) ofMycmRNA are sites for
regulation by RNA-binding proteins (RBPs). The long 5′ UTR
arising from P1 and P2 promoters contain internal ribosomal
entry sequences (IRESs) which interact with RBPs such as
hnRNPC, hnRNPK, PCBP1, PCBP2, hnRNPA1, and RPS25 (Kim
J. H. et al., 2003; Evans et al., 2003; Audic and Hartley, 2004).
CELF1 and ELAV1 (also named HuR) compete to bind the 3’ UTR,
resulting in a balance of translational output, with CWLF1-binding
resulting in decreased association ofMycmRNAwith ELAVL1, thus
reducing its translation (Liu et al., 2015; Spiniello et al., 2019). Many
of these interactors were recently confirmed by HyPR-MS
(hybridization purification of RNA–protein complexes followed
by mass spectrometry—Spiniello et al., 2019). Concomitantly,
novel RBPs ranging in function were identified, such as histone
variant, transcription and translation factors, structural constituents
of the spliceosome, nuclear ribonucleoproteins, and proteins
involved in nuclear export mechanisms and mRNA metabolism
(Spiniello et al., 2019); this demonstrates the complex regulation to
which Myc mRNA is subject.

Once translated, the Myc protein is subject to tight post-
translational control, resulting in a short-lived protein whose
half-life is ~15–30 min. The most well-characterised pathway for
Myc protein degradation results in the phosphorylation of
phosphodegrons that allow the recognition by E3 ligase FBW7
(F-box/WD repeat-containing protein 7), a member of the SCF
(SKP1, CUL1, and F-box proteins) complex. Specifically, the
phosphorylation of serine 62 (S62) is involved in Myc
stabilisation upon mitogen sensing and cell cycle re-entry and
has been shown to be catalysed by ERK as part of the RAS/RAF/
MAPK signalling cascade, amongst others (Sears et al., 1999;
Sears et al., 2000; Sears, 2004). Phosphorylation at S62 is a pre-
requisite for phosphorylation at threonine 58 (T58) by glycogen
synthase kinase 3β (GSK3β). S62 and T58 phosphorylation
occurs at different times of the cell cycle. Upon mitogen
sensing and cell cycle entry, the RAS/RAF/MAPK signalling
cascade is activated, leading to Myc phosphorylation and
stabilisation, and inhibition of GSK3β via the activation of the
PI(3)K/Akt signalling pathway, thus promoting early
accumulation of pS62 Myc. Later in the G1 phase, Akt activity
declines, leading to increased GSK3β activity, raising the levels of
the double-phosphorylated form of Myc, and overall
destabilising Myc, thus increasing its turnover. Recent
evidence has shown that multiple kinases (ERK (Sears et al.,
2000; Marampon et al., 2006; Hayes et al., 2016; Vaseva et al.,
2018), CDK9 (Blake et al., 2019; Hashiguchi et al., 2019), and
CAMKII (Gu et al., 2017)) phosphorylate Myc at S62 and
pharmacological inhibition of such kinases can lead to
decreased Myc protein stability. Subsequent to the
phosphorylation of both S62 and T58, a series of interactions
results in Myc with a single phosphorylated T58—the

phosphodegron motif recognised by Myc’s main E3 ligase,
FBW7. A second phosphodegron site for FBW7 has recently
been identified at T244 and T248 (Welcker et al., 2022).
According to these findings, in the context of over-expressed
Myc, FBW7 monomers can recognise either of the
phosphodegron sites, leading to the ubiquitination and
degradation of Myc. Indeed, ablation of phosphodegron at
T58 via an alanine mutation (T58A), which had been
previously reported as a version of Myc non-degradable by
FBW7, was bound and degraded by FBW7 during the
phosphorylation of T244 and T248. Conversely, in the context
of endogenous Myc, both phosphodegrons are needed to allow
FBW7 dimers to bind and degrade Myc. Other E3 ligases have
also been shown to degrade Myc, especially Skp2, whose
ubiquitination of Myc not only causes its degradation but also
increases its transcriptional activity as it acts as a transcriptional
co-activator (Kim S. Y. et al., 2003).

Finally, to safeguard against deregulated levels of Myc that
bypass its transcriptional, translational, and post-translational
control, Myc activity can trigger apoptosis in non-malignant cells
(Wyllie et al., 1987; Evan et al., 1992; Murphy et al., 2008). The
balance between the proliferative and proapoptotic activity of Myc
depends on its transcriptional control and the cellular context in
which it is activated as the proapoptotic response of Myc can be
dependent on p53 activation (Zindy et al., 1998). It is important to
highlight that Myc-induced proliferation and apoptosis are
governed by distinct thresholds and are largely thought to be
caused by Myc’s ability to engage the same set of target genes,
modulating the degree of target gene transcription in different
cellular contexts. Therefore, in most cells, modest Myc activation
can lead to increased proliferation and transformation and also to
the low-level expression of proapoptotic genes. However, in cells
already primed for apoptotic response and lacking other oncogenic
lesions, Myc can trigger proliferation but will also amplify the
proapoptotic response, leading to both p53-dependent and

FIGURE 4
Myc family of genes over evolution. Percentage of species that
have Myc family genes (Accession: TF106001), modified from http://
www.treefam.org/ (Li, 2006; Li, 2006).
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TABLE 1 Role of Myc across regenerative species.

Species Organ Uninjured
localisation
of Myc

Injured localisation
of Myc

Perturbation Author

Hydra Whole animal Interstitial stem cells No significant changes in
expression

RNAi-mediated knockdown during injury
results in abnormal tentacle morphogenesis

Hartl et al. (2010)

Nematoblast nests Lechable et al. (2023)

Gland cells Ambrosone et al.
(2012)

Hothuria glaberrima
(sea cucumber)

Digestive tube Luminal epithelium of
the intestine

Extensively in the mesothelial
epithelial cells at 3 days post-
injury

RNAi-mediated knockdown during injury
results in reduced cell proliferation in
intestinal explant

Mashanov et al.
(2015a)

Scattered individual cells
in the mesothelium

Quispe-Parra et al.
(2021a)

Mashanov et al.
(2015b)

Radial nerve
cord

Apical regions of the
neuroepithelia

Apical regions of the
neuroepithelia

RNAi-mediated knockdown during CNS
injury results in failure of radial glial
activation and dedifferentiation

Mashanov et al.
(2015a)

Scattered cell bodies in
the neural parenchyma

Glial tubes Quispe-Parra et al.
(2021b)

Radial nerve cords Mashanov et al.
(2015b)

Polyandrocarpa
misakiensis (sea squirt)

Bud
development

Proximal half of the
developing bud

RNAi-mediated knockdown results in defects
in gut formation

Fujiwara et al. (2011)

Atrial epithelium

Branchial and gut
primordia

Mesenchyme cells near
the organ primordia

Ambystoma
mexicanum (Axolotl)

Limb Little or undetected Blastema at 3 h to 3 days Stewart et al. (2013),
Géraudie et al.
(1989)Wound epidermis

Mesenchymatous-like cells

Xenopus laevis froglet
(African clawed frog)

Limb and tail Low but present in the
growing froglet limb

Wound epithelium Géraudie et al.
(1990)

Limb regenerate Lemaître et al.
(1992), Christen
et al. (2010)Mesenchymal cells in the

blastema

Regenerating tail bud

Notochord

Neural tube

Podarcis muralis (Wall
lizard)

Tail Sparse or undetected Regenerative blastema Alibardi (2017)

Basal layers of the apical-
lateral wound epidermis

Degan et al. (2021)

Mesenchymal-like cells

Danio rerio (zebrafish) Retina Low or undetected Pan-retinal at 12 h post-
injury

Morpholino knockdown or pharmacological
Myc inhibitor blocks cell proliferation and
Muller glia reprogramming in the retina

Mitra et al. (2019)

Muller glia-derived
progenitor cells and adjacent
cells

Ganglion cell layer

(Continued on following page)
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-independent cell death (Murphy et al., 2008; McMahon, 2014; Jha
et al., 2023).

3 Myc and regeneration
across evolution

The ability of Myc to orchestrate cell cycle re-entry and
proliferation makes Myc crucial for tissue regeneration. At its
simplest level, regeneration is the regulation of transcription to
drive proliferation and differentiation (cell fate changes) which lead
to renewal or restoration of tissue function. The regenerative ability
of tissues and organs varies widely across the animal kingdom, from
whole-body regeneration in hydras to complex organ (e.g., limb,
heart) regeneration in zebrafish and salamanders; more limited
regeneration is observed in mammalian species, and regeneration
is often limited to certain tissues at certain times (Yun, 2015). The
Myc family of genes arose very early during evolution, before the
diversification of metazoan evolution (Figure 4) (Young et al., 2011;
Mahani et al., 2013); however, across species, the basic biochemical
properties of Myc are very highly conserved. Therefore, the function
of Myc as a master transcriptional regulator and its role in
regeneration has been extensively studied across
regenerative models.

Hydra live in fresh water and are members of the phylum
Cnidaria. The species is one of the earliest to have evolved
complex tissues in a defined body plan (Reddy et al., 2019), and
they can regenerate their entire body following transverse and
longitudinal dissection and dissociation. Four homologues of Myc
(myc1, myc2, myc3, and myc4) and Hydra-max have been identified
in Hydra; biochemically, myc and max complex and bind to E-Boxes.
Once bound to DNA, the proteins transcriptionally regulate genes,
such as cad, leading to cell cycle progression and ribosome biogenesis
(Hartl et al., 2010; Young et al., 2011). In situ hybridization and single-
cell RNA sequencing expression analysis have determined that the
Hydra myc1 and myc2 genes are localised in all the proliferative cells
of the animal, including the continuously proliferating interstitial
cells, proliferating epithelial stem cells throughout the gastric region,
and epithelial cells during gametogenesis. Myc3 lacks the N-terminal
Myc boxes and is exclusively expressed in progenitor cells committed
to nerve and gland cell differentiation (Hartl et al., 2010, 2014;
Lechable et al., 2023). Myc expression is absent in all terminally
differentiated cell types such as nerve cells and nematocytes (Young
et al., 2011; Lechable et al., 2023).Myc has been shown to be crucial for
controlling cell proliferation and differentiation processes inHydra. It
has been hypothesized that the myc1 and 2 homologues may compete

with myc3 for max and E-boxes and regulate proliferation and
differentiation, presumably by interacting with different protein
partners, given the difference in the TADs (Lechable et al., 2023).
Importantly, RNAi-mediated knockdown of myc1 during injury
impairs the equilibrium between stem cell self-renewal and
differentiation, leading to abnormal tentacle morphogenesis
(Ambrosone et al., 2012). This suggests that Myc plays a key role
in Hydra regenerative mechanisms (Table 1).

Another regenerative phylum is the invertebrate Echinoderms,
which includes starfish, sea urchins, and sea cucumbers. Quite
remarkably, the sea cucumber, Holothuria glaberrima, can
regenerate most of its internal and external organs, following
injury (García-Arrarás et al., 2018); even major parts of its
central nervous system (CNS) can renew following severe injury.
The sea cucumber homologue of Myc, like other species, contains a
bHLH-LZ and TAD. Characterisation of H. glaberrima Myc
expression in both the intestine and CNS immediately following
injury demonstrates that Myc expression levels sharply increase, and
both organs undergo extensive cell dedifferentiation (Mashanov
et al., 2015a). This suggests that Myc is a critical transcription
factor involved in the immediate regenerative response.
Furthermore, a correlation is observed between increased Myc
expression and the expression of genes involved in ribosomal
biogenesis at the first and third days after intestinal injury
(Quispe-Parra D. J. et al., 2021). The functional role of Myc in
H. glaberrima regeneration has been determined by RNAi-mediated
knockdown of Myc during injury. Knockdown of Myc during
intestinal explant regeneration leads to reduced cell proliferation
with no effect on dedifferentiation (Quispe-Parra D. et al., 2021). In
the CNS, Myc denial at the same time as injury leads to a failure in
radial glial activation, dedifferentiation, and a decrease in cellular
apoptosis (Mashanov et al., 2015b). Together, these results indicate
that Myc is a key gene controlling the immediate proliferative
regenerative response in H. glaberrima, while the effect on
dedifferentiation may be context-specific.

Ascidians or sea squirts are marine invertebrate sessile tunicates
that belong to phylum Chordata. Ascidians present with a single
Myc gene that contains a bHLH-LZ (Vanni et al., 2022). In ascidian
species Botryllus schlosseri, Ciona savignyi, and Polyandrocarpa
misakiensis, Myc is expressed in early development and
disappears in adult tissues (Kobayashi et al., 2022; Vanni et al.,
2022). Knockdown of Myc in embryonic/larval stages via
morpholinos (modified antisense oligonucleotides), RNAi, or a
dominant negative version of Myc suppresses mesenchymal and
endodermal cell cycle and impairs organogenesis (Fujiwara et al.,
2011; Kobayashi et al., 2022).

TABLE 1 (Continued) Role of Myc across regenerative species.

Species Organ Uninjured
localisation
of Myc

Injured localisation
of Myc

Perturbation Author

Neuromast
hair cell

Undetected Supporting cells within the
boundary of mantle cells

Myc inhibition with small molecule or
peptide reduces the number of regenerated
hair cells

Lee et al. (2016)

Fin Pharmacological Myc
inhibitor blocks fin
regeneration

Mitra et al. (2019)
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Amphibian species such as Ambystoma mexicanum (axolotl)
and the African clawed frog, Xenopus laevis, have varying
regenerative capacities. Axolotls remain in their juvenile stage
throughout life and can regrow limbs and multiple internal
organs, including the brain, spinal cord, liver, skeletal muscle,
heart, and eyes. In contrast, X. laevis loses much of its
regenerative ability when they metamorphose from tadpoles to
adult frogs. There is surprisingly little research into the role of
Myc in axolotl regenerative capacity; however, RNA sequencing data
indicate that Myc is rapidly expressed at day 1 post-limb amputation
and remains enriched for 10 days (Stewart et al., 2013). Proteomics
data from limb amputation at days 1, 4, and 7 following injury
highlight Myc as one of the most highly connected transcription
factors (Jhamb et al., 2011); in agreement, regenerating axolotl limbs
express Myc (Géraudie et al., 1989). There is a strong correlation in
X. laevis between Myc expression and regeneration. In an
undamaged setting, Myc expression in juvenile froglet limbs is
low, but, following injury, Myc expression rapidly and
significantly increases, together with the expression of
proliferative marker PCNA. Myc expression then falls to a
baseline by day 5 following resection (Géraudie et al., 1990;
Lemaître et al., 1992; Christen et al., 2010). In reptiles (Podarcis
muralis) after tail amputation, Myc expression has been studied by
qRT-PCR, Western blotting, and immunohistochemical techniques
and Myc is observed in the regenerating blastema in a similar
location to the proliferating cells (Alibardi, 2017; Alibardi, 2022;
Degan et al., 2021).

Zebrafish, Danio rerio, are teleosts (bony fish) which have been
used as a regenerative model since the 1970s because of their
incredible capacity to regenerate amputated fins, brain lesions,
retinas, spinal cords, and hearts. Like mammals, the zebrafish
Myc family consists of three family members—c-myc, N-myc,
and L-myc—which complex with zebrafish max. The temporal
and spatial expression patterns of Myc in zebrafish during
development indicate that L-myc expression is limited to very
early embryonic stages, whereas c-myc and N-myc are expressed
during periods of growth and active cellular proliferation. N-myc
expression is significantly downregulated in terminally
differentiated adult tissues, whereas c-myc expression persists in
some adult tissues such as gills and liver (Schreiber-Agus et al.,
1993). The role of Myc has been studied across zebrafish
regenerative organs, and several lines of evidence across cell types
suggest that Myc is essential for an appropriate regenerative
response. In the heart, the results from transgenic chemically
induced cardiac injury and RNA sequencing have shown
dramatic increases in Myc target gene expression, including
genes involved in cell cycle and oxidative phosphorylation; this
suggests a role for Myc in the induction of cardiomyocyte cell
proliferation and mitochondrial biogenesis (Miklas et al., 2022).
However, an alternative study using cardiac cryo-injury suggested
that Myc target genes are downregulated at days 4 and 7 post injury,
which is surprising given the observed increase in G2M checkpoint
gene expression—which would normally overlap with Myc targets
(Dicks et al., 2020). In the zebrafish retina, Myc expression is
transiently upregulated following retinal injury, appearing 1 h
post-injury, peaking at 24 h, and remaining increased for 7 days
post-injury. Increased Myc expression coincides with elevated
proliferative markers PCNA and BrdU and regulates the

dedifferentiation of Muller glia to Muller glia-derived progenitor
cells. Knockdown of Myc using morpholinos or the blockade of the
Myc–Max interaction using the pharmacological inhibitor 10058-F4
abolishes proliferation and Muller glia reprogramming in the retina
(Mitra et al., 2019). Another regenerative system in zebrafish is the
sensory hair cells in the inner ear. During neuromast hair cell
regeneration following damage, sensory hair cells display a rapid
upregulation of Myc at 1 h that drops back to baseline levels by 18 h.
The inhibition of Myc with 10058F4 or a cell-permeable Myc-
specific peptide inhibitor suppresses cell cycle re-entry and hair
cell regeneration (Lee et al., 2016). Furthermore, 10058-F4, abolishes
fin regeneration (Mitra et al., 2019), demonstrating that Myc is
essential to several regenerative processes in Zebrafish.

4 Myc and regeneration in mammals

Mammals have amore limited regenerative ability than amphibians
and fish. In mammals, tissue regeneration processes are often classified
into physiological regeneration and reparative regeneration. Ongoing
physiological regeneration includes organs such as the intestinal gut
lining, skin epidermis, red blood cells, and endometrium, whereby
homoeostatic cell replacement involves stem cell differentiation or the
replication of existing cells by proliferation or trans-differentiation
(Iismaa et al., 2018). Reparative regeneration involves the restoration
of damaged tissue or lost body parts and is therefore triggered by injury.
Examples of organs that can partially or completely regenerate in adult
mammals are the liver, spleen, bone, peripheral nerve, and urinary
bladder (Mehta and Singh, 2019).

The role of Myc in maintaining tissue homoeostasis was first
reported in pancreatic β-cells where it is activated in response to
elevated levels of plasma glucose (Yamashita et al., 1988; Jonas et al.,
2001), suggesting that it plays a role in β-cell proliferation and tissue
maintenance under physiological conditions. Myc is also transiently
expressed at days 1 and 2 during pancreatic regeneration after
subtotal pancreatectomy in rats (Calvo et al., 1991). However, the
function of Myc has best been characterised in the context of
hyperglycemia, where Myc is shown to lead to altered secretory
function and loss of differentiation of β-cells. Other reports of the
role of Myc in β-cells showed that it is not necessary for the
functioning of adult β-cells in physiological conditions but plays
a key role in maintaining tissue homoeostasis in young mice under
metabolic stress, whereby knockout of Myc in mouse β-cells resulted
in β-cell dysfunction and impaired glucose tolerance. This protective
function of Myc was shown to be lost in ageing mice, possibly
through hypomethylation of the Myc response element (Rosselot
et al., 2019). Interestingly, whenMyc overexpression was explored as
a therapeutic option to rescue dysfunctional β-cells, Myc induced
cell death and differentiation (Laybutt et al., 2002; Pelengaris et al.,
2002; Cheung et al., 2010). The observed cell death may be due to the
overexpression methods chosen as a previous study demonstrated
that the expression of Myc in β-cells from two different promoters
resulted in β-cell proliferation or apoptosis, depending on the low-
or high-expression system, respectively. Indeed, when the
expression of Myc was driven from the locus that most
accurately reproduced physiological levels of the proto-oncogene,
Myc-induced apoptosis was only recorded in islets upon treatment
with a sub-apoptotic dose of doxycycline (Murphy et al., 2008).
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The involvement of Myc in the homoeostasis and wound healing
of many epithelial tissues has been well-documented. Myc plays a
vital role in the maintenance and regeneration of mammalian
intestinal crypts. In a physiologically normal setting, Wnt-
signalling in the rapidly proliferating progenitor and amplifying
cells of the intestinal crypts drives Myc expression. Once the cells
move out of the crypt niche and travel up the intestinal villi, they
stop proliferating, Myc expression is lost, and the cells become
terminally differentiated. The process of epithelia turnover takes
around 5 days. Although Myc is not essential for the homoeostatic
maintenance of juvenile and adult intestines (Bettess et al., 2005;
Muncan et al., 2006; Konsavage et al., 2012), Myc null progenitor
cells are smaller in cell size, have slowed cell cycle progression,
reduced biosynthetic activity, and result in smaller daughter cells
(Muncan et al., 2006). In a regenerating setting, following damage
with gamma irradiation, Myc plays a vital role in the repair of
intestine crypts. Wnt and c-Myc signalling is activated during
intestinal regeneration (Muncan et al., 2006; Ashton et al., 2010)
and where Myc is conditionally deleted, Myc-null crypts do not
regenerate, and intestines become completely denuded of crypts.
Therefore, Myc plays a central role in the regenerating intestine
(Ashton et al., 2010).

The research surrounding the role of Myc in skin homoeostasis
is complex and context dependent. Knockout of Myc in the basal
cells within the epidermis of mice reveals that keratinocytes can
continue to cycle, suggesting that Myc is not necessary for cell
division, but animals display defects such as tight and fragile skin
(Zanet et al., 2005). Conversely, others have shown that Myc is
dispensable for epidermal homoeostasis and that mice show no
defects in skin phenotypes (Oskarsson et al., 2006). Studies
overexpressing Myc in epidermal cells have found that Myc can
trigger proliferation and disrupt the differentiation of postmitotic
keratinocytes (Pelengaris et al., 1999). However, others have
determined that Myc overexpression can stimulate
differentiation rather than drive proliferation (Gandarillas and
Watt, 1997). To reconcile these opposing findings, it has been
proposed that the level, duration, and timing of Myc may
determine whether cells enter a proliferative or terminal
differentiation state (Watt et al., 2008). In an injury setting
following skin epidermal wounding, Myc levels significantly
increase 7 days post-injury, co-localising with the proliferative
marker BrdU. The levels of Myc then remain high during
wound closure, decreasing to near baseline levels by day
30 when wound healing is complete (Shi et al., 2015). Denial of
Myc during the wound healing process results in reduced
proliferation in healing fronts and impaired healing with fewer
layers of keratinocytes (Zanet et al., 2005). A recent eloquent study
using lineage tracing and single-cell sequencing showed that
wounding stimulates Myc-dependent dedifferentiation
(Bernabé-Rubio et al., 2023).

Further evidence of the importance of Myc in epithelial
regeneration in mammals comes from the oesophagus and lungs.
The basal cells of the oesophageal epithelium express Myc relatively
homogenously in an undamaged setting and require Myc for their
self-renewal capacity. Upon conditional knockout of Myc (c-Myc
and n-Myc), basal cells lose their undifferentiated state, leading to
senescence (Hishida et al., 2022). In the lung, the conditional
deletion of Myc in the epithelial club cells does not affect

epithelial regeneration after naphthalene-induced injury, while
the loss of Myc from the mesenchymal parabronchial smooth
muscle cells causes reduced Fgf10 expression, decreased
proliferation, and significantly impaired airway epithelial
regeneration (Volckaert et al., 2013).

The role of Myc in reparative tissue regeneration has been
extensively studied in the liver. Epithelial cell turnover in the
liver is slow and the hepatocytes are mainly quiescent, with an
estimated less than 1 in 10,000 hepatocytes in mitosis at any point in
time (Kopp et al., 2016). The level of Myc in the homoeostatic liver is
very low. During regeneration, after partial hepatectomy in rodents,
over a third of hepatocytes can be seen proliferating within 24–26 h,
and liver mass is restored to normal in around a week (Kopp et al.,
2016; Michalopoulos and Bhushan, 2021). Following partial
hepatectomy, Myc is rapidly induced within hours of damage,
and Myc expression is followed by an increase in proliferation
(Thompson et al., 1986; SOBCZAK et al., 1989; Morello et al.,
1990), indicating its important role in driving hepatic regeneration.
Similarly, following ectopic acute overexpression of Myc (low or
high level) in the liver, rapid cell cycle progression and proliferation
are observed (Murphy et al., 2008; Bywater et al., 2020).

Interestingly, Myc ablation studies have indicated that
hepatocytes are still capable of entering the cell cycle in the
absence of Myc (Baena et al., 2005; Sanders et al., 2012),
suggesting that Myc is not essential for hepatocyte proliferation.
However, the inhibition of Myc using antisense oligomers or the
ablation of Myc in the regenerating rodent liver following partial
hepatectomy leads to a reduction of proliferating cells (Arora et al.,
2000; Baena et al., 2005; Rodríguez et al., 2006). More recently,
knockout of Myc and Mlx (Max-like protein, the key node of the
Mlx network and part of the Myc extended network) in mice has
indicated that Myc denial leads to changes in the expression of
mRNA translation and energy metabolism, ultimately impeding the
regenerative potential of hepatocytes (Wang et al., 2022).

In general, data from regenerative species and regenerative
tissues in mammals indicate that Myc is predominantly
expressed in proliferating cells and that the expression of Myc
drives key transcriptional programs, including ribosomal
biogenesis, metabolism, and cell cycle progression. In normally
quiescent but regenerative tissues following an insult, Myc
expression can be observed as a short pulse, and its expression
correlates with the pattern of proliferative cells. Myc appears to be
non-essential to the homoeostatic regenerative processes of many
organs, although, repair is attenuated whenMyc is denied (Figure 5).
Therefore, it is exciting to speculate whether Myc may have the
potential to aid regeneration in tissues that do not normally have
regenerative capacity.

5 Harnessing Myc in non-
regenerative organs

Some adult mammalian tissues have strikingly little regenerative
capacity, such as the heart and CNS. However, like X. laevis, some
embryonic and neonatal mammal tissues have shown remarkable
regenerative capacity. For instance, the adult mammalian heart
cannot regenerate following injury, and loss of the contractile
cardiomyocytes leads to adverse pathological remodelling that
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ultimately results in heart failure. Conversely, following resection of
15% of the myocardium at day 1 post-birth, the neonatal mouse
heart can fully regenerate and regain normal cardiac function
(Porrello et al., 2011). However, this regenerative ability is lost by
day 7. Fate mapping has confirmed that regeneration occurs via
cardiomyocyte proliferation, which is similar to the regenerative
mechanism observed in the regenerating zebrafish heart (Porrello
et al., 2011; Senyo et al., 2013). This short cardiac neonatal
regenerative window has also been shown to exist in larger
mammals such as pigs (Ye et al., 2018; Zhu et al., 2018), and
there are some anecdotal case studies of newborn babies
exhibiting a regenerative capacity briefly after birth (Haubner
et al., 2016; Aly et al., 2021). Interestingly, the level of c-Myc and
n-Myc in the mouse heart declines sharply at birth, and it is almost
absent in the adult heart (Singh et al., 2018; Bywater et al., 2020).
Transcriptional comparisons of the regenerating mouse neonatal
heart to the adult non-regenerating heart indicate that adult
cardiomyocytes do not express Myc and therefore fail to
reactivate the neonatal transcriptional Myc programmes
following injury (Quaife-Ryan et al., 2017; Singh et al., 2018).
Even when Myc is specifically and ectopically activated in adult
myocardium, the adult heart is refractory to proliferation (Xiao et al.,
2001; Bywater et al., 2020; Chen et al., 2021). Myc instead induces
hypertrophic growth and not hyperplasia, suggesting that Myc alone
is insufficient for driving the cell cycle in cardiomyocytes (Xiao et al.,
2001). However, global ChIP sequencing has established that Myc
binds to largely overlapping promoter sites in proliferative (liver)
and non-proliferative (heart) tissues that encode classic Myc
programmes involved in ribosomal biogenesis and cell cycle,

despite the difference in response to the activation of ectopic Myc.
Interestingly, Myc-driven transcription in the heart is impeded by the
limited availability of transcriptional machinery such as the P-TEFb
complex, which allows efficient RNAPII-mediated transcriptional
amplification (de Pretis et al., 2017; Bywater et al., 2020).
Consequently, the Myc-driven transcriptional response is attenuated
in cardiomyocytes, and, while many Myc target genes are seen to be
marginally increased, hypertranscription is limited, leading to cell
growth without division. Therefore, both Myc expression and Myc-
driven transcription are limited in the adult mammalian heart. In
agreement, Nox4 overexpression has been shown to prolong the
postnatal period of cardiomyocyte proliferation via ERK1/
2 activation and an increase in Myc phosphorylation. Stabilised Myc
binds to and drives the expression of genes such as Cyclin D2, leading to
cell cycle. However, Nox4 could not continue to drive cardiomyocyte
proliferation in the adult heart, again indicating that Myc-driven
proliferation is limited in an adult setting (Murray et al., 2015).

When Myc and the limiting transcriptional machinery, Cyclin
T1, are ectopically expressed in cardiomyocytes, Myc-driven
transcription is productive and can drive efficient
cardiomyocyte proliferation with gene expression changes
related to metabolism, cell proliferation, and division, and a
reversion to the neonatal-like state (Singh et al., 2018; Bywater
et al., 2020; Boikova et al., 2022). In an injury setting following
experimental myocardial infarction, Myc together with Cyclin
T1 overexpression, specifically in adult cardiomyocytes, can
drive the functional repair of mouse hearts, so long as Myc
expression is transient and localised to the injury site (Boikova
et al., 2023). In an effort to develop a prototypical therapeutic to

FIGURE 5
Regenerative potential of Myc. Representation of species/organs with an experimentally determined association or dependence upon Myc during
regeneration (left) and non-regenerative human cell types in which the experimental use of Myc may be exploited to drive regeneration (right).
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drive endogenous regeneration in the adult mouse heart, Myc and
Cyclin T1 have been delivered via mRNA to drive a transient short
pulse of Myc and Cyclin T1 expression. Despite the short
expression time of the mRNA of less than 24 h, functional
improvement over 28 days was observed, suggesting that Myc
and Cyclin T1 could be harnessed to drive regeneration of the
heart (Table 2). A number of matters remain to be resolved. For
instance, mRNA was injected directly into the heart and will be
expressed in multiple cell types; therefore, the therapeutic would be
greatly enhanced by the use of cell-specific expression techniques
(Magadum et al., 2020a; Magadum et al., 2020b), and a catheter-
based delivery system would expand the target patient population
considerably. Furthermore, the relative functional benefit observed
from Myc-Cyclin T1 mRNA was lower than that from the
transgenic systems, so extending the expression time of Myc

and Cyclin T1 may enable greater reparative success. Finally,
while neoplasia following Myc-Cyclin T1 mRNA expression was
not observed over the course of the experiment, careful
consideration of the oncogenic potential of Myc must be
considered. Interestingly, forced expression of the
reprogramming factors Oct4, Sox2, Klf4, and Myc (OSKM) has
also been shown to re-program and drive cardiomyocyte
proliferation, ameliorate myocardial damage, and drive
functional improvement, following infarction. In this model,
prolonged expression of OSKM causes cardiac teratoma
formation, although short-term OSKM-induced cardiomyocyte
dedifferentiation was shown to be reversible (Chen et al., 2021).
Therefore, a system such as mRNA—which allows a more
physiologically normal pulse of Myc expression as observed
following acute damage in regenerative systems—which can be

TABLE 2 Evidence of mammalian regeneration by Myc.

Species Organ/cells Ectopic overexpression
technology

Injury model Findings Authors

Mouse Heart Tamoxifen-inducible MycER No injury Ectopic Myc and Cyclin T1 in
adult and juvenile
cardiomyocytes results in
cardiomyocyte proliferation

Bywater et al. (2020)
and Boikova et al.
(2022)

Tamoxifen-inducible MycER and
modified mRNA-encoding Myc
and Cyclin T1

Myocardial infarction by
occlusion of the left anterior
descending coronary artery

Transient and local expression
of Myc with cyclin T1 around
the infarct results in functional
cardiac recovery and reduced
scar size

Boikova et al. (2023)

Guinea pig Cochlea Adenoviral vector encoding Myc Acoustic trauma Smaller auditory threshold
shift at 7-day post-noise
exposure. Reduction in outer
hair cell stereocilia loss and
cilia disarray

Han et al. (2009)

Mouse Ear/explant organ culture of
the utricle

Adenoviral vector encoding
MycT58A

No injury Supporting cells re-enter the
cell cycle and proliferate.

Burns et al. (2012a)

Small number of cells
differentiate towards the hair
cell lineage

Mouse Ear/cochlea Adenoviral vector encoding Myc No injury Combined transient ectopic
Myc and Notch 1 intracelluar
domain reprograms adult
supporting cells to regenerate
hair cell-like cells

Shu et al. (2019)

Mouse Ear/cochlea Cocktail of small molecules and
siRNAs to activate Myc, Notch1,
Wnt, and cAMP pathways

Kanamycin- and
furosemide-induced hair
cell loss

Reprograming of adult
supporting cells to regenerate
hair cell-like cells

Quan et al. (2023)

Mouse Eye/optic nerve Adeno-associated virus serotype 2
(AAV2) encoding Myc and
tamoxifen-inducible MycER

Optic nerve injury by
crushing

Increased survival of retinal
ganglion cells and axonal
regeneration following injury.
Synergistic effects of ectopic
Myc, PTEN, and
SOC3 deletion

Belin et al. (2015)

Mouse Eye/optic nerve pEX4-c-Myc DNA plasmid Optic nerve injury by
crushing

Myc is both necessary and
sufficient for sensory axon
regeneration via the Myc-
TERT-p53 signalling pathway

Ma et al. (2019)

Mouse CNS/oligodendrocytes
progenitor Cells (OPCs)

Dual-AAV system targeting Pdgfra
endogenous locus resulting in
ectopic Myc in all Pdgfra-
expressing OPCs

No injury Reprogramming of mature
OPCs, increased OPC
proliferation, and ability to
differentiate into myelinating
oligodendrocytes

Neumann et al. (2021)
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localized and has no issues surrounding genetic integration should
be employed.

The inner ear sensory hair cells are essential in detecting sound
from the external environment. However, they lack the regenerative
capabilities to replace damaged cells upon acoustic trauma, leading
to permanent hearing loss. In contrast, lower invertebrates retain the
ability to regenerate damaged hair cells by driving the proliferation
of supporting cells (Corwin, 1981; Ryals and Rubel, 1988; Janesick
et al., 2022). This ability has been shown to exist in neonatal mice,
where supporting cells can re-enter the cycle and transdifferentiate
into hair cells (White et al., 2006). It has been postulated in mouse
utricles that 51% of hair cells that have arisen after birth are from
proliferating supporting cells that transdifferentiate into hair cells
(Burns et al., 2012a). In zebrafish, Myc has been shown to be
essential for hair cell regeneration as it drives the proliferation of
hair cell precursors (supporting cells) and is upregulated during the
regeneration process (Lee et al., 2016). Both c-Myc and n-Myc have
been found to be expressed in the mammalian inner ear during
development, and n-Myc plays an essential role in morphogenesis,
patterning, and proliferation during development (Domínguez-
Frutos et al., 2011; Kopecky et al., 2011). The expression of
n-Myc and c-Myc declines postnatally and they are expressed at
low levels in the adult inner ear (Domínguez-Frutos et al., 2011).
Myc has been shown to play a protective role against noise damage.
Guinea pigs inoculated with an adenoviral vector-encoding Myc
prior to exposure to noise damage had a smaller auditory threshold
shift 7-days post-noise exposure. Furthermore, morphological
assessment of the cochlea indicated that Myc expression reduced
the outer hair cell stereocilia loss and cilia disarray. These results
indicate that the ectopic expression of Myc reduces the loss of hair
cells, following acoustic trauma (Han et al., 2009).

The overexpression of Myc in a cultured adult mouse utricle
can reverse the quiescent and post-mitotic state of the supporting
cells and allow them to re-enter the cell cycle and drive
proliferation. Some of these cells have acquired the ability to
differentiate towards the hair cell lineage by expressing the hair
cell marker myosin VIIA (Burns et al., 2012b). Furthermore, Myc
and Cyclin A2 were reported to be downregulated during
cochlear development and the overexpression of both genes
was shown to enhance the proliferation of cochlear progenitor
cells (Zhong et al., 2015). In vivo, the combined over-expression
of Myc and Notch 1 intracellular domain in the adult mouse
inner ear drives the proliferation of supporting and inner hair
cells in the cochlea. Furthermore, when the Myc and Notch
1 intracellular domains were transiently activated for 3 days,
the adult supporting cells were able to proliferate and then,
following Myc downregulation, transdifferentiate into hair cell
(HC)-like cells through the induction signal of Atoh1. Therefore,
the transient nature of Myc and Notch and their subsequent
downregulation are vital for the trans-differentiation process
(Shu et al., 2019), further highlighting the need for transient
Myc expression in regeneration systems. More recently, in an
attempt to generate a clinically applicable regenerative
therapeutic of Myc and Notch overexpression, Quan et al.
(2023) used a cocktail composed of small molecules and
siRNAs injected into the middle ear space, following injury
and demonstrated regeneration of HC-like cells in response to
Atoh1. However, the regeneration efficiency was attenuated

compared to that achieved by ectopic Myc expression from a
transgenic allele in the mouse and suggests that optimisation of
Myc expression is required.

In the optic nerve, retinal ganglion cells (RGCs) are vital for the
propagation of visual information from the eye to the brain through
projections of their axons that run along the optic nerve. Unlike
zebrafish, that can restore vision via the dedifferentiation and
proliferation of Müller glia cells that generate all cell types
required to regenerate, mammals lose the ability to regenerate
their RGCs shortly after birth. Upon injury of the optic nerve,
apoptosis of RGCs leads to an irreversible loss of vision (Boia et al.,
2020; Soucy et al., 2023). Interestingly, single-cell RNA sequencing
has shown that Myc is expressed in certain RGC subtypes (Rheaume
et al., 2018) and that the expression of Myc mRNA is decreased in
the optic nerve by 70%, following injury (Belin et al., 2015). Recently,
it was found that Myc regulates axonal regeneration in the sensory
optic nerve through the downstream target, telomerase reverse
transcriptase (TERT), and p53. Both TERT and p53 are
upregulated following an injury and decrease in expression when
the sensory axonsmature and lose the ability to grow. The functional
inhibition of TERT and p53 or Myc resulted in impairment in
axonal regeneration (Ma et al., 2019). Knockout of Myc significantly
reduced the number of regenerating axons, whilst overexpression of
Myc in the RGCs of mice orchestrated increased survival that drove
regeneration of their axons, following optic nerve injury.
Furthermore, a synergistic effect of AAV-mediated Myc
overexpression combined with the co-deletion of PTEN and
SOCS3 promoted neuronal survival and axon regeneration.
Interestingly, delayed overexpression of Myc to day 1 following
injury, which is more clinically relevant, continued to demonstrate
that Myc could still rescue and improve the survival of injured
neurons and induce axonal regeneration. These regenerated axons
were also found to grow outside the injury site, highlighting an
exciting prospect for neuronal regeneration (Belin et al., 2015).

Oligodendrocyte progenitor cells (OPCs) are a subtype of
proliferating glia in the CNS that differentiate into myelinating
oligodendrocytes which support and insulate axons. Myc expression
is elevated in proliferating OPCs, and Myc plays a key role in their
maintenance in a proliferative and undifferentiated state. The level
of Myc in OPCs declines during the differentiation into
oligodendrocytes in the developing white matter (Magri et al.,
2014). The ability of OPCs to proliferate and differentiate into
oligodendrocytes becomes impaired with ageing, and there is an
age-related decline in the efficiency of re-myelination which can
contribute to the progression of neurological diseases such as
multiple sclerosis (Sim et al., 2002; Kuhlmann et al., 2008; Boyd
et al., 2013; Neumann et al., 2019; Neumann et al., 2021). There is a
correlation between the age-related decline of OPC function and
Myc expression whereby Myc levels have been shown to
dramatically reduce over time during OPC ageing, suggesting
that Myc plays a role in maintaining the identity of OPCs
(Neumann et al., 2021). In agreement with this hypothesis, the
inhibition of Myc in neonatal OPCs leads to a quiescent state and
aged-like OPC characteristics, loss of OPC self-renewal capacity,
and the ability to differentiate (Neumann et al., 2021). Conversely,
restoring the proliferative capacity of OPCs aids the differentiation
potential of OPCs and enhances re-myelination efficiency (Foerster
et al., 2020). Therefore, Myc overexpression has been examined in
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aged OPCs, and ectopic Myc expression can revert OPCs to a more
neonatal-like state characterised by increased proliferative potential
whilst also increasing the ability to differentiate into myelinating
oligodendrocytes. In vivo, the enhanced function of the aged OPCs
by Myc showed an improvement in the myelin regeneration of the
axons in aged animals where there is a poor re-myelination potential
and efficiency due to their aged CNS. These results demonstrate that
Myc can change the functional age of OPCs, highlighting a new
strategy for treating neurological diseases such as multiple sclerosis,
where the myelin sheath is damaged. However, in the case of OPCs,
long-term Myc expression would likely be required to maintain
OPCs in their proliferative, juvenile state, but given the oncogenic
risk of gliomas it may be difficult to harness Myc directly (Neumann
et al., 2021).

6 Concluding remarks

Myc was first discovered in the 1980s and has become one of the
most extensively studied proteins, appearing in ~50,000 publications
listed on PubMed (1980–2024). Myc is a highly conserved protein
across the animal kingdom that regulates many critical processes within
cells. The expression ofMyc is highly synchronized, and its expression is
typically kept at low levels or restricted to highly proliferative tissues.
Myc expression has been shown to be crucial for sustaining
pluripotency (Fagnocchi and Zippo, 2017; Fan and Li, 2023) and is
one of the four factors essential to efficiently reprogram adult somatic
cells to induce pluripotent stem cells (iPSCs) (Takahashi and
Yamanaka, 2006; Araki et al., 2011). The overexpression or
deregulation of Myc is seen in the vast majority of all human
cancers, and cancer cells share many molecular characteristics with
iPSCs. This review has concentrated on evidence that Myc may be
central to regenerative processes across species. Complex tissue
regeneration requires the coordination of a series of fundamental
biological processes, including, wound sensing, barrier formation,
cell cycle re-entry, migration, trans-differentiation, and remodelling.
These processes are characterized by the altered expression of
transcription factors, temporary de-differentiation, and the loss of
cell fate markers. In regenerative species and organs, these
expression changes are temporary and generally revert to baseline
following resolution of the injury. Endogenous reparative
regeneration is an emerging field that aims to restore organ function
by harnessing and enhancing endogenous repairmechanisms. TheMyc
gene family is uniquely situated to synergize upstream pathways into
downstream cell cycle control (Figure 5) and to correspondingly
suppress differentiation-specific genes to allow for trans-
differentiation. The data presented here highlight the need for
controlled, transient, localized delivery of Myc. Careful consideration
is therefore needed when selecting a possible therapeutic strategy to
enhance Myc expression.

There are valid concerns that the ectopic expression of deregulated
Mycmay cause off-target effects or even neoplastic transformation. Any
factor that is involved in cell growth and proliferation is, in essence, a
proto-oncogene, and other factors capable of reactivating proliferation,
such as the activation of Yap or Wnt signalling, are also potently
oncogenic when deregulated. However, these are exactly the proteins
that are required to drive efficient proliferation in non-regenerative
tissues, and the need for these pro-proliferative factors highlights the

importance for the systems that drive expression to be transient. Where
reversible or transient expression systems are employed, de-
differentiation is shown to be reversible (Bywater et al., 2020; Chen
et al., 2021). The reversibility of deregulatedMyc has also been observed
in cancers where the deactivation of ectopicMyc in pancreatic and lung
cancers leads to the complete regression of tumorigenesis and
restoration of the normal tissue architecture (Kortlever et al., 2017;
Sodir et al., 2020). The key, therefore, is the deactivation of Myc
following immediate repair to aid re-differentiation and the later
stages of the reparative regenerative program.

Similarly, where the long-term expression of pro-proliferative factors
via AAV delivery systems has been pre-clinically employed, side effects
from the continued proliferation such as the de-differentiation of
cardiomyocytes and arrhythmic episodes have reduced their success
(Gabisonia et al., 2019). From a safety perspective, the use of constitutive
expression viral systems will probably be unsuccessful, so transient
technologies with rapid kinetics are essential. A system such as
mRNA that has no issues surrounding genetic integration and which
allows a more “physiologically normal” pulse of Myc with its naturally
short protein half-life, as observed following acute damage in
regenerative systems, should be employed.

It must be noted that Myc may be harmful in some tissues; for
instance, as well as the tumorigenic effect of Myc in the liver, Myc can
induce liver fibrosis (Gabisonia et al., 2019). Therefore, in addition to
transient or switchable technologies, cell-specific systems to restrictMyc
expression to the cell types of interest are vital. Cell-specific systems for
mRNA expression are beginning to emerge (Magadum et al., 2020a;
Qian et al., 2022; Kaseniit et al., 2023) and hold much promise for
application in endogenous regeneration. Furthermore, lipid
nanoparticle cell targeting that impedes the accumulation of nucleic
acid in hepatocytes is a future possibility (Kularatne et al., 2022).

Here, we have concentrated on the role of Myc in direct cell cycle
regulation. However, Myc possesses the ability to mediate a plethora
of processes resulting in microenvironment, immune (Kortlever
et al., 2017), and metabolic (Stine et al., 2015) changes which are
dependent on tissue. For instance, where Myc is specifically
expressed in oncogenic KRas-driven lung epithelial tumour cells,
Myc expression leads to a reversible influx of VEGF-expressing
macrophages, an exclusion of T cells, and rapid onset of
angiogenesis. In oncogenic KRas-driven pancreatic tumours,
specific epithelial Myc activation leads to an influx of
macrophages, an exclusion of T cells, but also an influx of
neutrophils and an increase in activated fibroblasts and
deposition of desmoplasia (Kortlever et al., 2017; Sodir et al.,
2020). Therefore, Myc expression may not only lead to intrinsic
cell number restoration but may be able to tap into the resident
regenerative programs of tissues whichmay be vital for regeneration.
Metabolic reprogramming is a key hallmark of cancer that is mostly
directly regulated by Myc (Stine et al., 2015) and facilitates the
generation of biomass for rapid cell proliferation. Likewise, cellular
metabolism plays a key role during regeneration. In the heart, loss of
mammalian cardiac regenerative capacity correlates with an
increased metabolic state (a metabolic switch from glycolysis to
fatty acid oxidation). Mimicking these changes in ES-cell derived
cardiomyocytes can drive cells to become more mature and
proliferate less (Mills et al., 2017). Conversely, metabolic
reprogramming can allow for cardiomyocyte proliferation and
cardiac regeneration in vivo (Magadum et al., 2020b; Bae et al.,
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2021; Li et al., 2023). Therefore, during complex tissue regeneration,
Myc may not only provide the stimulus for cell cycle but also the
capability for the demands of growth and communication with the
surrounding environment.
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Endothelial c-Myc knockout
disrupts metabolic homeostasis
and triggers the development
of obesity
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Introduction: Obesity is a major risk factor associated with multiple pathological
conditions including diabetes and cardiovascular disease. Endothelial dysfunction
is an early predictor of obesity. However, little is known regarding how early
endothelial changes trigger obesity. In the present work we report a novel
endothelial-mediated mechanism essential for regulation of metabolic
homeostasis, driven by c-Myc.

Methods: We used conditional knockout (EC-Myc KO) and overexpression (EC-
Myc OE) mouse models to investigate the endothelial-specific role of c-Myc in
metabolic homeostasis during aging and high-fat diet exposure. Body weight and
metabolic parameters were collected over time and tissue samples collected at
endpoint for biochemical, pathology and RNA-sequencing analysis. Animals
exposed to high-fat diet were also evaluated for cardiac dysfunction.

Results: In the present study we demonstrate that EC-Myc KO triggers
endothelial dysfunction, which precedes progressive increase in body weight
during aging, under normal dietary conditions. At endpoint, EC-Myc KO animals
showed significant increase in white adipose tissue mass relative to control
littermates, which was associated with sex-specific changes in whole body
metabolism and increase in systemic leptin. Overexpression of endothelial
c-Myc attenuated diet-induced obesity and visceral fat accumulation and
prevented the development of glucose intolerance and cardiac dysfunction.
Transcriptome analysis of skeletal muscle suggests that the protective effects
promoted by endothelial c-Myc overexpression are associated with the
expression of genes known to increase weight loss, energy expenditure and
glucose tolerance.
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Conclusion: Our results show a novel important role for endothelial c-Myc in
regulating metabolic homeostasis and suggests its potential targeting in preventing
obesity and associated complications such as diabetes type-2 and cardiovascular
dysfunction.
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1 Introduction

Overweight and obesity are chronic conditions that result
mostly from exposure to hypercaloric diet rich in saturated fat
and sugar and lack of physical activity (Faruque et al., 2019;
Elmaleh-Sachs et al., 2023). Other factors such as aging, stress,
certain health conditions, medication, and genetics have also been
associated with the development of overweight and obesity. Obese
individuals have an increased risk of developing cardiovascular
disease, liver disease, diabetes, and cancer (Scully et al., 2020;
Powell-Wiley et al., 2021).

Endothelial cells play an essential role in tissue homeostasis by
supporting regeneration through the regulation of surveillance and
repair mechanisms (Reiterer and Branco, 2020). Endothelial
dysfunction, which occurs with aging and exposure to
environmental stress factors, has a detrimental impact on organ
physiology, ultimately leading to multiple pathological conditions
such as obesity, type-2 diabetes, and cardiovascular disease (Engin,
2017; Donato et al., 2018; Haybar et al., 2019; Kajikawa and Higashi,
2022). Most studies on obesity have focused on how exposure to a
diet rich in fat triggers endothelial dysfunction. However, little is
known regarding how early changes in the endothelium contribute
to obesity.

The transcription factor c-Myc plays an important physiological
role controlling multiple cellular functions (Hofmann et al., 2015;
Zacarias-Fluck et al., 2024). Deregulated c-Myc expression has been
associated with cancer, metabolic and inflammatory conditions
(Zheng et al., 2017; Luo et al., 2021; Rosselot et al., 2021;
Nevzorova and Cubero, 2023; Zacarias-Fluck et al., 2024). Several
reports from our group and others have highlighted an essential role
of the transcription factor c-Myc in endothelial cell function in
development (Baudino et al., 2002; He et al., 2008; Rodrigues et al.,
2008; Kokai et al., 2009) and disease (Riu et al., 2002; Riu et al., 2003;
Hurley et al., 2010; Florea et al., 2013; Rosselot et al., 2019; Qi et al.,
2022). In addition to regulating angiogenesis, we have shown that
c-Myc controls endothelial self-renewal and inflammation (Florea
et al., 2013; Qi et al., 2022). In the present work, we provide
supporting evidence that endothelial c-Myc plays an essential
role in regulating overweight and obesity, which extends to the
prevention of insulin resistance and cardiovascular dysfunction.

2 Materials and methods

2.1 Animals

All animal experiments were approved by the University of
Miami Animal Care and Use Committee according to the National
Institutes of Health guidelines and conform to the Guide for the

Care and Use of Laboratory Animals. A total of four transgenic
mouse lines were used in this study to conditionally regulate c-Myc
expression in endothelial cells. All animals were housed on a 12-h
light/dark cycle with free access to food and water unless otherwise
stated. Endothelial c-Myc knockout mice were generated by crossing
c-Mycflox/flox (B6.129S6-Myctm2Fwa/Mmax, Strain #032046, Jackson
Laboratory, Bar Harbor, ME, USA) and Cdh5(PAC)-CreERT2
(C57BL/6-Tg (Cdh5-cre/ERT2)1Rha), developed by Dr. Ralph
Adams at Cancer Research UK (Cancertools.org reference
number 151520) mouse lines. Knockout controls consisted of
littermates carrying identical floxed genotypes, but lacking Cre
(Cre-negative) or carrying only the Cre (Flox/Flox-negative).
Males and females were used in the study. Induction of c-Myc
knockout was performed between 4-6 weeks of age through daily
intraperitoneal injections of 2 mg tamoxifen (#13258, Cayman
Chemical, Ann Arbor, MI, USA) per animal for a total period of
5 days as previously described (Qi et al., 2022). Endothelial c-Myc
overexpression mice were generated by crossing Tet-O-Myc (FVB/
N-Tg(tetO-MYC)36aBop/J, Stanford University, Stanford, CA,
USA) and Cdh5-tTA (FVB-Tg(Cdh5-tTA)D5Lbjn/J, Strain
#013585 Jackson Laboratory, Bar Harbor, ME, USA) mouse lines
in the presence of doxycycline diet (#TD.01306, Teklad,
Indianapolis, IN, USA) to prevent the expression of the human
c-Myc transgene. Overexpression controls consisted of littermates
carrying the Tet-O-Myc genotype but lacking the transactivator
(tTA-negative). Induction of c-Myc overexpression was performed
between 4-6 weeks of age through withdrawal from the doxycycline
diet. Only males were used in the study because the human c-Myc
transgene is restricted to the Y-chromosome in this model. c-Myc
knockout and overexpression in endothelial cells were confirmed by
qPCR (Supplementary Figure S1).

For diet-induced obesity experiments, mice were exposed to
control (#TD.08485) or high-fat diet (#TD.88137) (Teklad,
Indianapolis, IN, USA) for a total period of 20 weeks.

2.2 Vasoactive response studies

Vasoactive response was assessed in mesenteric arteries
harvested from control (CT) and endothelial c-Myc knockout
(EC-Myc KO) mice using a pressure myograph system model
110p (Danish Myo Technology, Denmark) as previously
described (Hernandez et al., 2019). Briefly, the mesenteric arcade
was initially isolated and placed in physiological salt solution (PSS)
for dissection of the second-order mesenteric arteries and preserve
viability. Vessels were then mounted on two glass microcannulas
and placed in the myograph chamber containing PSS solution at
37°C and under aeration with a special mix of 95% O2 and 5% CO2.
Quality control was performed to confirm vessel viability prior to all
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measurements as previously described (Coats and Hillier, 1999).
After confirmation of viability, arteries were washed with PSS, and
pre-contracted with norepinephrine followed by assessment of
endothelium-dependent vasodilation through exposure to
increasing doses of acetylcholine every 5 min. Pressure-outside
diameter curves were recorded at an isobaric condition of
60 mmHg as evidence of vasoreactivity response for different
acetylcholine concentrations.

2.3 Gross phenotypic analysis

We performed longitudinal analysis of experimental animals
maintained under a standard control or a western style high-fat diet.
Body weight was collected once a week (high-fat diet) or once a
month (aging), and animals were macroscopically evaluated for any
visible abnormalities. Food consumption was monitored in EC-Myc
KO animals. Any signs of abnormalities, cancer development and
sudden deaths were recorded.

2.4 Indirect calorimetry and body
composition measurements

Whole-body energy metabolism was evaluated in CT and EC-Myc
KOmice by indirect calorimetry using theOxymaxComprehensive Lab
Animal Monitoring System (CLAMS) (Columbus Instruments,
Columbus, OH, USA) as previously described (Fonseca et al., 2014).
Chambers were maintained at 22°C and O2 levels were calibrated
against a standard gas mixture prior to use. Mice were individually
housed under light/dark cycles of 12-h and allowed to acclimate to the
chamber for 48 h prior to data collection. Food andwater were available
ad libitum. After acclimation, O2 consumption, CO2 production,
respiratory exchange ratio (RER) and heat production were collected
at 26-min intervals for a total period of 48 h.

2.5 Metabolic assessment of skeletal
muscle slices

The redox state of skeletalmuscle tissue harvested fromCTandEC-
Myc KO mice was estimated using a 3D fluorescence cryo-imaging
system custom designed by the Biophotonics Laboratory at Florida
Atlantic University (Ceyhan et al., 2023). Briefly, frozen tissues were
embedded a day before imaging in a black absorbent medium. For
imaging, the frozen tissue blockwasmounted to the sample stage, where
its temperature wasmaintained at cryogenic temperatures (−10°C) for a
higher quantum yield of fluorescence while retaining markers of
metabolic state. A motor-driven stage and microtome blade allowed
tissue slicing at 30 µm thickness. Images were acquired using a CCD
camera (Retiga R6, Teledyne Photometrics, Tucson, AZ) with
alternating filter wheels for nicotinamide adenine dinucleotide
(NADH), and oxidized flavin adenine dinucleotide (FAD). The
tissue was excited with a mercury arc lamp (200W lamp, Oriel,
Irvine, CA). The broad light passes through excitation filters 350 ±
40 nm (UV Pass Blacklite, HD Dichroic, Los Angeles, CA) for the
NADH channel and 437 ± 10 nm (440QV21, Omega Optical,
Brattleboro, VT) for the FAD channel. All components of image

acquisition operate with an automated virtual interface LabVIEW
software (2022, National Instruments). The images of each slice
were stacked in the z-direction to generate 3D images. Variables
such as light intensity, illumination pattern, and dark current noise
were considered for image processing. The redox ratio (RR = NADH/
FAD) was calculated by dividing the fluorescence values of NADHover
FAD images voxel by voxel. Representative images of NADH and FAD
intensity are provided in Supplementary Figure S2.

2.6 Glucose tolerance test

Mice were fasted for 6-h with continuous access to water before
the glucose load (i.p. bolus of 1.5 mg/kg body weight). Glucose levels
were determined from a small drop of blood collected from the tail
using a commercially available glucometer (AlphaTRAK®, Zoetis,
United Kingdom). Samples were collected before and 15, 30, 60,
90 and 120 min after glucose administration.

2.7 Pathology and biochemical analysis

At endpoint, blood andmajor organs were collected for pathology
analysis from all experimental groups. Tissues were macroscopically
examined for visible signs of disease and organ weight was recorded.
Blood was collected by cardiac puncture from fasted (approximately
6-h) and non-fasted animals. Plasma and serum were separated from
blood for analysis of insulin and leptin levels using commercially
available ELISA kits (#EZRMI and #RAB0334, Sigma-Aldrich Inc., St
Louis, MO) per manufacture instructions.

2.8 Endothelial cell sorting and c-Myc
expression analysis

Endothelial cells were magnetically sorted from hearts harvested
from CT and EC-Myc OE mice based on CD31 expression using
commercially available kits and instrument (Miltenyi Biotec Inc.,
Gaithersburg, MD). Briefly, harvested hearts were minced and
dissociated with a mixture of enzymes (Multi Tissue Dissociation Kit
2, #130-110-203) using the gentleMACS Octo Dissociator system. After
dissociation, cell suspension was cleared of debris (Debris Removal
Solution, #130-109-398) and incubated with CD45 microbeads (#130-
052-301) to exclude inflammatory cells, which may also express CD31.
The CD45 depleted cell suspension was then incubated with
CD31 microbeads (#130-097-418) for final sorting of endothelial
cells. All steps followed manufacturer’s instructions for each specific
kit used. RNA was extracted from sorted endothelial cells for analysis of
mouse and human c-Myc by qPCR using Taqman probes
(#Mm00487804_m1 and #Hs99999003_m1, respectively) per
manufacture instructions (Life Technologies Corp, Carlsbad, CA).

2.9 Gene expression analysis by RNA-
sequencing

RNA was extracted from soleus and gastrocnemius muscle
harvested from CT and EC-Myc OE mice using TRI-reagent
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(#TR118, Molecular Resource Center Inc., Cincinnati, OH) per
manufacturer’s instructions. RNA concentration was determined
using a NanoDrop spectrophotometer (Life Technologies Corp,
Grand Island, NY) and samples were outsourced for library
preparation, sequencing, and bioinformatics analysis (Novogene
Corporation, Inc. Sacramento, CA). Prior to library preparation,
RNA integrity was evaluated using an Agilent BioAnalyzer 2100
(Agilent Technologies), and messenger RNA was purified from total
RNA using poly-T oligo-attached magnetic beads. The library was
checked with Qubit and real-time PCR for quantification and
bioanalyzer for size distribution detection.

2.10 Statistical analysis

We used SigmaPlot (Inpixon) and Prism (GraphPad)
Software for all graphs and statistical analysis. Sample
numbers are indicated in all figure legends and
p-values <0.05 were considered significant. For comparison
between two groups, we performed Student’s t-test and
considered two-tailed p-values. When samples did not pass the
normality and variance tests, Welch’s t-test was used as an
alternative. For comparison between four experimental groups,
we performed two-way ANOVA. Holm-Sidak test was used for
multiple comparison analysis. Tukey HSD tests were performed
as a post hoc test to identify significant differences between
individual groups. Two-way RM ANOVA was used for the
interaction effect of the genotype with one continuous
dependent variable. Individual animals are represented by dots
in all graphs. Bars indicate the standard deviation unless
otherwise stated.

3 Results

3.1 Endothelial c-Myc knockout impairs
vasorelaxation

Endothelial dysfunction is an early predictor of multiple
pathological conditions. Little is known regarding early
mechanisms that trigger endothelial dysfunction. Previous
studies from our group have shown that the transcription factor
c-Myc plays an important role in endothelial homeostasis and
regulation of inflammation (Florea et al., 2013; Qi et al., 2022).
These findings propelled us to investigate if c-Myc contributes to
endothelial dysfunction ultimately impacting overall animal
health. To confirm the association between c-Myc deficiency
and endothelial dysfunction, we performed vasoactive response
studies as impaired vasorelaxation is one of the first signs of
dysfunctional endothelium. Mesenteric arteries of control (CT)
and endothelial c-Myc knockout (EC-Myc KO) mice were
harvested and tested for acetylcholine-induced vasorelaxation
after constriction with norepinephrin. Our results show that
loss of endothelial c-Myc significantly impacted vasorelaxation
in response to acetylcholine relative to control. At the highest dose
of acetylcholine tested (10−5 M), the ability of EC-Myc KO
mesenteric arteries to relax was reduced by 29% relative to CT
mice (58.2% ± 12.5% vs. 81.9% ± 5.6%, p = 0.031) (Figure 1).

3.2 Endothelial c-Myc knockout increases
body weight and adiposity

We performed longitudinal analysis of CT and EC-Myc KO
mice over a period of 16 months and found an expected increase
in body weight over time, although findings were more
pronounced in knockout animals relative to control
(Figure 2A). At endpoint, body weight was significantly
increased in EC-Myc KO females (31.67 ± 1.35 vs. 27.13 ±
0.61 g, p = 0.004) and males (44.2 ± 2.30 vs. 38.0 ± 1.03 g, p =
0.01) relative to CT (Figure 2B). When compared side by side,
EC-Myc KO mice looked bigger in size than CT (Figure 2C).

Analysis of white adipose tissue (WAT) at endpoint in EC-Myc
KO mice showed a significant increase by 76% in females (1.52 ±
0.20 vs. 0.86 ± 0.12, p = 0.007) and a trend increase by approximately
22% in males (2.74 ± 0.29 vs. 2.24 ± 0.22 g, not significant)
(Figure 3A). Based on the observed increase in white adipose
tissue (WAT) accumulation, in endothelial c-Myc deficient
animals, we analyzed the circulating levels of leptin, which is
expected to correlate with changes in adipocyte mass (Kiernan
and MacIver, 2020). Our results showed a significant increase of
approximately 47.98% in serum leptin in EC-Myc KO animals
relative to CT (163.72 ± 21.48 vs. 110.64 ± 13.17 pg/mL)
(Figure 3B). Representative images of fat deposits from CT and
EC-Myc KOmice are shown in Figure 3C. Morphometric analysis of
WAT from male and female EC-Myc KO animals revealed some
sex-specific differences relative to CT (Supplementary Table S1). In
EC-Myc KO females, we found a significant increase of 54% in the
estimated number of adipocytes relative to CT (5.93 ± 0.75 vs. 3.85 ±

FIGURE 1
Vasoactive response of mesenteric artery from control and
endothelial c-Myc knockout mice. Curves indicate vasorelaxation
response to acetylcholine 1 month after induction of endothelial
c-Myc knockout in male mice. Results are expressed as
percentage of vasorelaxation and represent themean ± standard error
for individual concentrations of acetylcholine. Black and white circles
represent control and knockout mice, respectively. CT, Control (n =
4); EC-Myc KO, Endothelial c-Myc Knockout (n = 4); NE,
Norepinephrine. *p < 0.05.
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0.40, p = 0.025), but no changes in other parameters (Figure 3D). In
males, the only significant difference between CT and EC-Myc KO
was in the frequency of adipocyte size. EC-Myc KO males showed a
higher percentage of very large-sized adipocytes relative to small
sizes, while no differences were found in CT (Figure 3E).

3.3 Endothelial c-Myc knockout reduces
metabolic activity

Our observations described above suggest that loss of
endothelial c-Myc causes an imbalance in energy metabolism.
We analyzed food intake in CT and EC-Myc KO mice prior to the

onset of weight gain and did not find any significant differences
(data not shown). In the absence of alterations in calorie intake,
one possible explanation for the observed increase in body weight
in EC-Myc KO mice is a decrease in energy expenditure.
Accordingly, we performed a series of metabolic studies with
CT and EC-Myc KO mice by indirect calorimetry and found
interesting sex-related differences between experimental groups.
Similar results were found in dark and light periods
(Supplementary Figure S3). A summary of all metabolic
parameters is presented in Supplementary Table S2. In males,
we found a significant increase in respiratory exchange ratio in
EC-Myc KO relative to CT (0.91 ± 0.01 vs. 0.86 ± 0.02 RER, p =
0.015), without significant changes in other metabolic parameters

FIGURE 2
Body weight analysis of control and endothelial c-Myc knockout mice during aging. (A) Longitudinal analysis of body weight in male and female
mice. Black and white circles represent control and knockout mice, respectively. Results represent the mean ± standard error (B) Analysis of body weight
at 16-month endpoint. Dots represent individual animals and filled circles represent the mean ± standard deviation. (C) Representative dorsal and ventral
images of males showing size differences between experimental groups. CT, Control (n = 19–65); EC-Myc KO, Endothelial c-Myc Knockout (n =
17–49). *p < 0.02, **p < 0.002.
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(Figure 4D). However, in females, we found a significant decrease
in heat production (0.39 ± 0.01 vs. 0.44 ± 0.03 kcal/kg/h, dark
period p = 0.04) (Figure 4A), which was accompanied by a
decrease in VO2 (3203 ± 61 vs. 3687 ± 187 mL/kg/h, p =
0.007) (Figure 4B) and CO2 (2791 ± 62 vs. 3241 ± 199 mL/kg/
h, p = 0.01) (Figure 4C). No significant differences in RER were
found in females (Figure 4D).

To further explore the impact of endothelial c-Myc loss in energy
metabolism, we performed analysis of redox ratio in skeletal muscle
harvested from CT and EC-Myc KO animals. Our results indicated a
significant reduction of 51% in the mitochondrial redox ratio in EC-
Myc KO relative to CT animals (1.53 ± 0.17 vs. 2.32 ± 0.2), which
suggests a decrease in cellular energy production (Figure 5).

3.4 Overexpression of c-Myc in endothelial
cells attenuates visceral fat accumulation
and prevents systemic leptin release
induced by western diet exposure

Our results described above indicate an important role for
endothelial c-Myc in the maintenance of metabolic homeostasis. As
such, we hypothesized that overexpression of c-Myc in endothelial cells
would protect animals from developing overweight and obesity, as well
as associated complications such as glucose intolerance and
cardiovascular disease. To test this hypothesis, we performed a series
of experiments in which we challenged control (CT) and endothelial
c-Myc overexpression (EC-Myc OE) mice with a western-style high-fat

FIGURE 3
Analysis of white adipose tissue in control and endothelial c-Myc knockout mice. (A)Quantification of white adipose tissue mass. (B)Quantification
of leptin levels. (C) Representative images of fat deposits. The image on the right corresponds to an extreme case of increased adiposity in knockoutmice.
(D)Morphometric analysis of white adipose tissue showing an increase in the number of adipocytes in female knockout mice. (E)Morphometric analysis
of white adipose tissue showing significant difference in adipocyte size distribution in male knockout mice. Dots represent individual animals and
filled circles represent themean ± standard deviation. CT, Control (n = 10–16); EC-Myc KO, Endothelial c-Myc knockout (n = 5–15); S, small; M, medium;
L, large; VL, very large; ns, non-significant. *p < 0.05, **p < 0.01, ***p < 0.005.
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diet (WD) over a period of 20 weeks. Exposure to WD promoted a
gradual increase in body weight in both CT and EC-Myc OE mice
(Figure 6A). This effect was significantly attenuated around 5 weeks
post-exposure in EC-Myc OE relative to CT (31.10 ± 0.55 vs. 33.03 ±
0.83 g, p = 0.035) (Figure 6B). At 10 weeks post-exposure, the difference
in body weight between both groups was lost. However, analysis of fat

deposits revealed significant attenuation by 22% in visceral adipose
tissue accumulation in EC-Myc OE mice relative to CT (408 ± 26.3 vs.
522 ± 43.9 mg, p = 0.028) (Figure 6C). No significant differences were
observed in epidydimal and brown adipose tissue.

Quantification of systemic leptin levels showed a significant
increase in CT animals under WD exposure relative to the control

FIGURE 4
Metabolic phenotype of control and endothelial c-Myc knockout mice by indirect calorimetry. (A) Heat production. (B) Volume of oxygen
consumed (VO2). (C) Volume of carbon dioxide release (VCO2). (D) Respiratory exchange ratio (RER). Dots represent individual animals and filled circles
represent the mean ± standard deviation. CT, Control (n = 5–7); EC-Myc KO, Endothelial c-Myc Knockout (n = 7–11); ns, non-significant. *p < 0.05,
**p < 0.01.
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diet (48.98 ± 7.85 vs. 5.39 ± 2.12 pg/mL, p < 0.001), while the
response was prevented in EC-Myc OE mice (12.46 ± 3.13 vs. 2.47 ±
0.23 pg/mL, not significant). Our findings revealed significant
differences between EC-Myc OE and CT under WD exposure
(12.46 ± 3.13 vs. 48.98 ± 7.85 pg/mL, p < 0.001) (Figure 6D).

3.5 Overexpression of c-Myc in endothelial
cells prevents the development of western
diet-induced glucose intolerance

One of the major complications associated with obesity is the
development of insulin resistance. CT and EC-Myc OE mice have
similar fasting glucose levels under normal diet conditions.
Exposure to WD for 5 weeks was sufficient to significantly raise
basal glucose levels in both CT (164 ± 8 vs. 129 ± 13 mg/dL,
p = 0.013) and EC-Myc OE (147 ± 8 vs. 121 ± 7 mg/dL, p = 0.048)
mice relative to the control diet. However, after 10-weeks of
exposure to WD, although basal glucose further increased in
CT animals relative to control diet (184 ± 15 vs. 130 ± 5 mg/dL,
p = 0.001), it remained the same in EC-Myc OE mice (148 ± 6 vs.
113 ± 8 mg/dL, p = 0.02). Our findings indicated significant
differences in basal glucose between EC-Myc OE and CT mice in
response to long-term exposure to WD (148 ± 6 vs. 184 ± 15 mg/dL,
p = 0.014) (Figure 7A).

We performed a glucose tolerance test (GTT) in all experimental
groups to account for the development of glucose intolerance. Under
the WD diet, the time to glucose peak in CT was longer than in EC-
MycOE (60 vs. 30 min). After 120 min, the level of glucose in EC-Myc
OEmice underWDwas almost completely back to baseline (211.00 ±
92.25 vs. 161.11 ± 43.44 mg/dL, 30% above baseline), while in CT
animals, it remained significantly elevated (402.88 ± 121.50 vs.
183.83 ± 42.64 mg/dL, 120% above baseline) (Figure 7B).

At the 10-weeks endpoint, we measured systemic insulin levels and
found a significant increase in CT animals exposed to WD relative to
control diet (2.51 ± 2.18 vs. 0.44 ± 0.26 ng/mL, p = 0.001), which was
significantly attenuated in EC-Myc OE animals (1.12 ± 0.38 vs. 0.48 ±
0.18 ng/mL, not significant). Ourfindings indicated significant differences
in insulin levels between EC-Myc OE and CT mice in response to WD
(1.12 ± 0.13 vs. 2.51 ± 0.77 ng/mL, p = 0.019) (Figure 7C).

3.6 Transcriptome analysis of skeletal
muscle revealed significant differences
between control and endothelial c-Myc
overexpression mice in response to western
diet exposure

The skeletal muscle plays an important role in energy
metabolism (Mengeste et al., 2021). Based on our findings

FIGURE 5
Analysis of redox ratio in control and endothelial c-Myc knockout skeletal muscle. (A) Normalized intensities of redox ratio. For each group, seven
representative muscle images are presented. (B) Histogram plot showing decrease in redox ratio in skeletal muscle of endothelial c-Myc knockout mice
relative to control. (C) Average redox ratio of individual animals. Dots represent individual animals and filled circles represent the mean ± standard
deviation. CT, Control (n = 7); EC-Myc KO, Endothelial c-Myc knockout (n = 7). *p < 0.05.
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suggesting that endothelial c-Myc overexpression attenuates visceral
fat accumulation and insulin resistance, we performed
transcriptome analysis of skeletal muscle harvested from CT and
EC-Myc OE mice. Exposure to WD for 10 weeks had a significant
impact on the gene expression profile of both CT (1016 genes
altered >1.5-fold) and EC-Myc OE mice (666 genes altered >1.5-
fold) relative to control diet. Venn diagram analysis showed that

both experimental groups shared common targets altered by diet
exposure (243 genes) and that each experimental group had their
own exclusive list of altered genes. It was noticeable that the number
of genes in CT was almost double of what was found in EC-Myc OE
(709 vs. 422 genes) (Supplementary Figure S4).

Comparison of the transcriptome profiles of WD-treated
groups showed a total of 207 genes (128-up and 79-down)

FIGURE 6
Gross phenotype analysis of control and endothelial c-Myc overexpression mice under exposure to western diet. (A) Longitudinal analysis of body
weight and weight gain for a total period of 10 weeks. White and black symbols represent animals exposed to control and western diet, respectively. (B)
Analysis of body weight at 5- and 10-weeks endpoints. (C)Quantification of visceral (VAT), epididymal (EAT) and brown (BAT) adipose tissue mass at 10-
weeks endpoint. (D)Quantification of systemic leptin levels at 10-weeks endpoint. In A, results are represented asmean ± standard error. In all other
graphs, dots represent individual animals, filled circles represent themean ± standard deviation. CT, Control; OE, Endothelial c-Myc overexpression; CTD,
control diet (n = 14–22); WD, western diet (n = 22–31); ns, non-significant. (*p < 0.05, ***p < 0.001).
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significantly altered >1.5-fold in EC-Myc OE (OE-WD) relative to
CT (CT-WD). Among the most significantly altered targets, we
identified Zbtb16 (2.35-fold, p = 1.39 × 10−19, Acsl3 (1.56-fold, p =
2.4 × 10−10) and Rabif (2.04-fold, p = 2.36 × 10−07) as the top
upregulated genes, and Rrad (−1.57-fold, p = 1.61 × 10−5) as the top
downregulated. The top canonical pathways identified by
Ingenuity software analysis that are affected by endothelial
c-Myc expression are shown in Supplementary Figure S5. The
S100 Family Signaling was among the top 5, comprising up- and
downregulated genes. Some of the targets in this pathway include
S100a3 (6.9-fold, p = 0.009, S100a14 (2.6-fold, p = 0.043) and
Wnt10a (3.96-fold, p = 0.002).

We next analyzed the transcriptome profile associated with the
exclusive response of EC-Myc OE and CT to WD relative to control
diet (CTD). Pathway Analysis of upregulated genes differentially
expressed showed significant increase in targets associated with
extracellular matrix organization, collagen metabolism and
organization for both groups. Analysis of downregulated genes
revealed interesting differences between groups, including
pathways associated with metabolism (Supplementary Figure S6).
We focused our analysis on functions specifically related to
metabolic disease based on our physiological and pathological
findings. Both experimental groups showed changes in the
expression of genes associated with diabetes, obesity, insulin
resistance/sensitivity, glucose metabolism disorders, weight gain
and energy homeostasis. However, the CT group showed a much
higher number of genes altered under these function categories than
EC-Myc OE (Figure 8). Interestingly, our analysis revealed other

metabolic functions for EC-Myc OE that could account for the
beneficial effects we observed. Some of the genes differentially
expressed EC-Myc OE muscle have been related to weight loss,
energy expenditure and glucose tolerance. Among the genes under
these exclusive categories, we identified Socs3 (−1.83-fold, p = 0.009)
as a common target in multiple pathways.

3.7 Endothelial c-Myc overexpression
prevents western diet-induced
cardiovascular dysfunction and remodeling

Obesity is a major risk factor associated with the development of
cardiovascular disease. Based on the protective effect of endothelial
c-Myc overexpression described above, we performed cardiovascular
assessment of animals exposed to control and WD for 18 weeks by
echocardiography. It is noticeable from looking at our data that
endothelial c-Myc overexpression prevents several functional and
structural diet-induced alterations observed in controls. CT
animals showed an increase in myocardial performance index
(MPI) relative to those fed control diet (0.54 ± 0.08 vs. 0.39 ±
0.04, p = 0.008), which was related to an increase in isovolumetric
contraction time (IVCT) (10.56 ± 1.73 vs. 6.25 ± 1.10 m, p = 0.007).
No significant changes in isovolumetric contraction time (IVRT) were
observed. In addition, CT mice showed an increase in E/A ratio
(3.99 ± 1.15 vs. 1.31 ± 0.13, p = 0.02). Interestingly, no significant
changes in functional parameters were found in EC-Myc OE mice
exposed toWD. At structural level,WD induced a significant increase

FIGURE 7
Analysis of glucose tolerance in control and endothelial c-Myc overexpression mice under exposure to western diet. (A) Basal glucose levels at 5-
and 10-weeks. (B)Glucose tolerance test at 10-weeks. White and black symbols represent animals exposed to control and western diet, respectively. (C)
Quantification of systemic insulin levels at 10-weeks endpoint. In B, results are expressed as fold change relative to baseline and represent the mean ±
standard error. In all other graphs, dots represent individual animals and filled circles represent the mean ± standard deviation. CT, Control; OE,
Endothelial c-Myc overexpression; CTD, control diet (n = 6–7); WD, western diet (8-9). *p < 0.05, **p < 0.005, ***p < 0.001.
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in CT left ventricular mass (154.71 ± 12.50 vs. 114.12 ± 13.07 mg, p <
0.001), whereas no changes were found in EC-Myc OE (Figure 9).
However, significant changes in wall thickness were found in both CT
and EC-Myc OE mice after exposure to WD. We observed that EC-
Myc OE mice under normal diet showed some baseline changes
relative to CT, such as an increased fractional shortening (41.82% ±
1.78% vs. 32.64% ± 4.16%, p = 0.008), a reduced systolic diameter
(1.94 ± 0.15 vs. 2.56 ± 0.39, p = 0.025) and increased thickness of the
left ventricle posterior wall during systole (1.73 ± 0.18 vs. 1.30 ±
0.28 mm, p = 0.014) and diastole (1.33 ± 0.12 vs. 0.91 ± 0.25 mm, p =
0.008). A summary of all cardiac parameters is presented in
Supplementary Table S3).

4 Discussion

In this study, we aimed to elucidate the role of endothelial c-Myc in
metabolic homeostasis. Our findings underscore a novel endothelial-
mediatedmechanism associatedwith themaintenance ofmetabolic and
cardiovascular health regulated by c-Myc.

Aging and exposure to stress factors have been reported to
cause endothelial dysfunction, which is an early predictor of
multiple pathological conditions, including obesity, diabetes, and
cardiovascular disease (Engin, 2017; Donato et al., 2018; Haybar
et al., 2019; Kajikawa and Higashi, 2022). However, recognizing
endothelial dysfunction as a cause or an effect in disease

FIGURE 8
Transcriptome analysis of skeletal muscle from control and endothelial c-Myc overexpression mice. (A) Top metabolic-related diseases and
functions affected by western diet exposure in control and endothelial c-Myc overexpression mice relative to control diet. (B) Venn diagram analysis
showing the number of gene targets altered by western diet exposure in each metabolism-related disease or function. CT, Control; OE, Endothelial
c-Myc overexpression; CTD, control diet (n = 3); WD, western diet (n = 4).
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conditions needs further investigation. Endothelial cells play a
fundamental role in maintaining vascular tone, and impaired
vasorelaxation is a primary sign of endothelial dysfunction
(Donato et al., 2018). Our results show that depletion of
c-Myc in endothelial cells is sufficient to decrease
acetylcholine-induced vasorelaxation, supporting previous
studies that this transcription factor is essential for
maintenance of endothelial function (Baudino et al., 2002; He
et al., 2008; Rodrigues et al., 2008; Kokai et al., 2009; Hurley et al.,
2010; Florea et al., 2013; Qi et al., 2022).

A key finding of our study is the link between endothelial c-Myc
loss and metabolic disturbances. We observed an age-dependent
increase in body weight and adiposity with c-Myc depletion from the
endothelium that was associated with significant decrease in
metabolic parameters supporting a novel essential role for
endothelial c-Myc in regulating energy metabolism. Importantly,
these findings were backed up by our results on endothelial c-Myc
overexpression in the context of obesity, which attenuates visceral
fat accumulation and prevents insulin resistance and cardiac
dysfunction. The relevance of c-Myc for metabolic homeostasis
has been reported, but mostly on non-endothelial cell types.
Contrarily to our findings, global c-Myc haploinsufficiency has
been related to high metabolic rate without changes in adipose
tissue mass relative to controls during aging (Hofmann et al., 2015).
Exposure to high-fat diet leads to upregulation of c-Myc expression
in adipose tissue and intestines (Liu et al., 2017; Luo et al., 2021).
Overexpression of c-Myc in β-cells has been associated with the
development of diabetes (Laybutt et al., 2002; Cheung et al., 2010),
while reduction in c-Myc expression in intestinal cells was shown to
improve high-fat-diet-induced obesity and insulin resistance (Luo

et al., 2021). Despite these contradictory findings, which would be
difficult to reconcile considering the differences in experimental
models used, other work supports a protective role for c-Myc as we
observed. Multiple lines of evidence suggest that some increment in
c-Myc levels is likely beneficial. Recently, we have shown that loss of
c-Myc endothelial cells leads to liver fibrosis (Qi et al., 2022). In
hepatocytes, c-Myc is essential to drive proliferation during liver
regeneration (Zhang et al., 2018; Wang et al., 2022), and
overexpression of c-Myc in the liver has been shown to prevent
obesity and insulin resistance (Riu et al., 2002; Riu et al., 2003). In
pancreatic β-cells, c-Myc has been shown to promote proliferation
as part of an adaptation response to glucose exposure (Puri et al.,
2018; Rosselot et al., 2019). Treatment of β-cells the small molecule
harmine promotes mitogenesis through a mild increase in c-Myc
expression (Wang et al., 2015), suggesting the potential targeting of
c-Myc in diabetes to improve insulin production.

Whole body metabolism involves crosstalk between multiple
organ systems and endothelial cells serve as the interface of this
communication, transmitting signals that will impact tissue
response according to environmental cues (Castillo-Armengol
et al., 2019; Katagiri, 2023). The most evident effect we
observed upon knockout of endothelial c-Myc was an increase
in adiposity. Our findings were associated with a raise in leptin
levels, which is mostly produced by adipose tissue (Kiernan and
MacIver, 2020). Although we observed a significant increase in
adiposity in male and female EC-Myc-KO mice relative to CT, we
found interesting sex-specific differences in the mechanisms
associated with adipose tissue expansion. Sex-related differences
in adipose tissue distribution have been reported and seem to play
a role in the development of obesity and type-2 diabetes

FIGURE 9
Transthoracic echocardiography analysis of control and endothelial c-Myc overexpression mice. Animals were analyzed after 18-weeks under
control and western diet. (A)Myocardial performance index (MPI). (B) Isovolumetric contraction time (IVCT). (C) E/A ratio. (D) Left ventricular mass. Dots
represent individual animals and filled circles represent the mean ± standard deviation. LV, Left ventricle; CT, Control; OE, Endothelial c-Myc
overexpression; CTD, control diet (n = 3–4); WD, western diet (n = 3–4). *p < 0.05, **p < 0.01, ***p < 0.005.
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(Tchoukalova et al., 2010a; Gavin and Bessesen, 2020). However,
the mechanisms involved are not fully understood. The expansion
of adipose tissue can be driven by the formation of new adipocytes
(hyperplasia), increase in lipid storage (hypertrophy) and/or
reduced lipid breakdown (Li and Spalding, 2022). In EC-Myc
KO males, even though we did not observe changes in
adipocyte number, we found significant alteration in adipocyte
size frequency, with higher accumulation of very large adipocytes,
suggesting a hypertrophic mechanism. On the other hand, EC-Myc
KO females showed an increase in adipocyte numbers, suggesting a
hyperplasia response. These findings are supported by previous
studies in humans, indicating that adipose tissue in males involves
adipocyte hypertrophy and in females, hyperplasia (Tchoukalova
et al., 2008; Tchoukalova et al., 2010b). Our findings suggest a
novel endothelial-mediated mechanism driven by c-Myc in
adipose tissue morphogenesis.

The skeletal muscle plays an important role in energy
metabolism and the crosstalk between endothelial and skeletal
muscle cells is essential for energy balance, including insulin-
dependent glucose metabolism (Mengeste et al., 2021; Pepe and
Albrecht, 2023). One of the most remarkable results from our
study was the prevention of glucose intolerance by endothelial
c-Myc overexpression in response to high-fat diet exposure.
Transcriptome analysis of skeletal muscle provided us with
important clues regarding potential mechanisms by which
endothelial c-Myc promotes metabolic homeostasis. Pathway
analysis of transcriptome data showed that CT and EC-Myc
OE share multiple biological and disease functions relevant for
metabolic homeostasis, but significant differences were found in
the number of genes altered and the identity of specific targets.
Importantly, we found an enrichment for weight loss, energy
expenditure and glucose tolerance functions exclusively in EC-
Myc OE. Among potential downstream targets altered in skeletal
muscle of EC-Myc OE that could account for protective results,
we found Socs3, Foxo1 and Angptl4. Socs3 was common to all the
biological and disease functions enriched in our data and
downregulated in EC-Myc KO skeletal muscle. Exposure to
high-fat diet has been shown to induce SOCS3 expression in
skeletal muscle and liver and proposed to act as negative
regulator of insulin signaling (Ueki et al., 2004). Skeletal
muscle specific deletion of SOCS3 protects mice from insulin
resistance induced by high-fat diet exposure (Jorgensen et al.,
2013), while overexpression impaired glucose homeostasis (Yang
et al., 2012). The expression of Foxo1 was downregulated in EC-
Myc OE muscle. Previous studies have shown that
overexpression of FoxO1 in skeletal muscle is associated with
insulin resistance and glucose intolerance (Kamei et al., 2004;
Teaney and Cyr, 2023). Inhibition of FoxO1 has shown positive
effects on glucose homeostasis in experimental models of
diabetes (Li et al., 2019; Mao et al., 2021) supporting its
potential targeting. ANGPTL4, an adipokine mainly secreted
by adipose tissue and liver is involved in lipid metabolism,
glucose homeostasis, inflammation and angiogenesis (Xu et al.,
2005; Cinkajzlova et al., 2018). Increase in Angptl4 expression has
been reported in skeletal muscle and associated with exercise and
exposure to fatty acids, where it may be part of an adaptive
response to physical activity (Staiger et al., 2009; Raschke and
Eckel, 2013; Sabaratnam et al., 2018). We found the Angptl4

expression was downregulated in EC-Myc OE muscle. This
finding aligns with previous studies where genetic inactivation
of ANGPTL4 was associated with improved insulin sensitivity
and reduced risk of Type 2 diabetes (Gusarova et al., 2018).

5 Conclusion

Outside the domain of cancer, c-Myc plays a significant
physiological and pathological role (Rosselot et al., 2021;
Nevzorova and Cubero, 2023; Prochownik and Wang, 2023;
Zacarias-Fluck et al., 2024). Although therapeutic interventions
involving direct c-Myc manipulation may present challenges, the
protective effects observed across various parameters suggest that its
targeting may offer an approach to mitigate obesity-associated
complications. Further mechanistic studies are necessary to
unravel the precise molecular pathways by which c-Myc exerts its
protective effects in whole body metabolism to establish its
translational potential. By understanding the downstream targets
of c-Myc and identifying key pathways influenced by its activity, we
can advance novel strategies to counteract obesity-related
complications and improve overall metabolic and
cardiovascular health.
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Regeneration is vital for many organisms, enabling them to repair injuries and
adapt to environmental changes. The mechanisms underlying regeneration are
complex and involve coordinated events at the cellular and molecular levels.
Moreover, while some species exhibit remarkable regenerative capabilities,
others, like mammals, have limited regenerative potential. Central to this
process is the regulation of gene expression, and among the numerous genes
involved, MYC emerges as a regulator of relevant processes during regeneration
with roles conserved in several species, including Drosophila. This mini-review
aims to provide valuable insights into the regeneration process in flies, focusing
on significant organs where the role of MYC has been identified: from the
imaginal discs, where MYC regulates cell growth, structure, and proliferation,
to the gut, where it maintains the balance between renewal and differentiation of
stem cells, and the central nervous system, where it influences the activities of
neural stem cells and the interaction between glia and neuronal cells. By
emphasizing the molecular mechanisms regulated by MYC, its significance in
controlling regeneration mechanisms, and its conserved role in flies, we aim to
offer valuable insights into the utility of Drosophila as a model for studying
regeneration. Moreover, unraveling MYC’s function in Drosophila during
regeneration may help translate findings into the mechanisms underlying
human tissue repair.

KEYWORDS

MYC, regeneration, imaginal discs, epithelial cells, gut, neurons and glia, Drosophila

1 Regeneration

The ability to regenerate and restore lost body parts after injury reflects key
physiological pathways governed by developmental processes; regeneration capacity is
widespread in animals and, in some species, has been lost during evolution, contributing to
the variations in regenerative capacities across species (Losner et al., 2021). While
remarkable abilities are observed in cnidarians, crustaceans, salamanders, and certain
vertebrates, humans have limited regenerative potential (Wells and Watt, 2018),
underscoring the need to understand molecular mechanisms of tissue and organ
development for regenerative medicine.

Animal regeneration is categorized into five types: 1) structural regeneration, seen in the
distal regrowth of appendages in vertebrates and arthropods; 2) organ regeneration, where
damaged organs restore their mass; 3) tissue regeneration, responding to damaged epithelial
or epidermis; 4) whole-body regeneration, involving the regrowth of an organism’s central
axis; and 5) cellular regeneration, such as the regrowth of severed nerve axons (Bely and
Nyberg, 2010). Regeneration, depending on tissue and damage types, involves distinct steps,
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including wound healing, the formation of a proliferative blastema,
cellular differentiation, and tissue patterning. The blastema,
comprised of progenitor cells responsible for the regeneration
process, is formed temporarily at the injury site and undergoes
morphogenesis through cell migration and proliferation to
regenerate the missing organ (King and Newmark, 2012; Slack,
2017). Additionally, immune cells at the injury site play a crucial role
in debris clearance and secretion of signaling molecules, initiating
specific cellular proliferation and differentiation processes necessary
for thriving tissue regeneration (Julier et al., 2017). Despite the
progress made in understanding tissue regeneration, identifying
novel signaling pathways that govern reprogramming
mechanisms remains a significant challenge. Consequently,
simple animal models are indispensable for gaining a deeper
understanding of these intricate processes.

AlthoughDrosophila does not possess the extensive regenerative
abilities of some other species, its advanced genetic technology,
previously used to uncover the complex genetic networks governing
development, framework, which connects body parts and identity
genes (such as the Hox genes), as well as pattern formation
components (like Hedgehog, Decapentaplegic (Dpp), and
Wingless (Wg) analogous to vertebrate Wnt), can now be
utilized to investigate the molecular basis of regeneration (Fox
et al., 2020). Here, we review the role of MYC in regeneration
models such as wing imaginal discs, gut, and neuronal-glia cells,
where processes like cell growth, division, and apoptosis may
depend critically on MYC’s function.

2 Drosophila MYC

The MYC/MAX/MAD network in Drosophila stands out for its
lack of redundancy, as the Drosophila genome contains a single gene
for each component (Gallant, 2006). Despite being only 26%
identical to its human counterpart, the Drosophila MYC protein
shares highly conserved functional domains such as Box I and II, the
degron sequences, and the basic-helix-loop-helix leucine zipper
(bHLH/LZ) domain, to mediate MYC: MAX heterodimers that
bind the E-box sequences on target genes (Orian et al., 2003;
Hulf et al., 2005). The discovery that MYC mutants, also called
diminutive, are composed of smaller cells (Johnston et al., 1999)
paved the way for genetic experiments that revealed MYC’s role in
controlling growth and ribosomal biogenesis. The similarity in
phenotypes between MYC mutants and those of the insulin (InR/
IRS/chico) (Bohni et al., 1999) and Target of Rapamycin (TOR/S6K)
(Montagne et al., 1999) pathways has contributed to unveiling how
growth pathways influence MYC activity in flies (Bellosta and
Gallant, 2010; Parisi et al., 2011). These studies revealed the
control of MYC protein stability by growth factors signaling
through the phosphorylation of conserved domains (degrons) by
Ras-ERK/MAPK and GSK3ß kinases, confirming this pathway of
MYC protein degradation in flies (Galletti et al., 2009;
Schwinkendorf and Gallant, 2009). Furthermore, MYC levels
increase during starvation in the fat body, a metabolic tissue that
parallels the function of vertebrate adipose tissue and the liver
(Teleman et al., 2008; Parisi et al., 2013). Indeed, we showed that
MYC increases metabolic processes like glycolysis and
glutaminolysis during nutrient starvation (Parisi et al., 2013; de la

Cova et al., 2014) and promotes the catabolic process autophagy in
the fat cells, leading to survival (Nagy et al., 2013; Paiardi
et al., 2017).

MYC’s control over ribosome biogenesis is highlighted by its
coordination of RNA polymerases I, II, and III activities. MYC
facilitates the recruitment of RNA polymerase I to rDNA, ensuring
proper rRNA synthesis with the transcription of ribosomal proteins
(Destefanis et al., 2020). MYC’s role in regulating ribosomal
biogenesis led to the discovery of its role in cell competition; a
physiological process initially observed in flies heterozygous for the
Minute ribosomal proteins (Morata and Ripoll, 1975). In this
process, cells with higher MYC levels outcompete unfit
neighboring cells (with lower MYC), leading to their apoptosis
(de la Cova et al., 2004; Moreno and Basler, 2004). This property
of MYC was later demonstrated in the development of vertebrates
(Claveria et al., 2013; Ellis et al., 2019), and it may underscore a role
for MYC in mechanisms of tissue repair and regeneration across
diverse organisms (Gogna et al., 2015; Yusupova and Fuchs, 2023).

3 Organ-specific regeneration: the
wing imaginal discs, gut, and neural
cells, three models to study
regeneration

3.1 Wing imaginal discs

Imaginal discs in Drosophila larvae are sac-like structures of
epithelial tissue (Figure 1A) and they are the precursors of adult
organs. Due to their accessibility and the availability of a wide range
of genetic tools, imaginal discs have become, in the last decade, an
invaluable tissue for studying regeneration. They also provide an
excellent platform for analyzing evolutionarily conserved pathways
identified in the regeneration (Hariharan and Serras, 2017; Fox et al.,
2020). Early studies on regeneration demonstrated that when
imaginal wing discs were cut into small pieces and transplanted
into either adult female abdomen, which served as natural culture
chambers, or young larvae, they regenerated to their correct size and
shape (Bergantinos et al., 2010b; Worley and Hariharan, 2022). This
indicated the ability of the discs to resume proliferation and
regenerate the missing part. These pioneering experiments
demonstrated the regenerative potential of imaginal discs and
unveiled their plasticity. In addition, fragments of discs cultured
through prolonged transplantation cell-fate changes such as leg-to-
wing, leading to the regeneration of alternative organs, in a
phenomenon called transdetermination. This phenomenon
demonstrates the capacity of Drosophila imaginal cells to be
reprogrammed to various lineages (McClure and Schubiger,
2007). The refinement of surgical ablation of imaginal discs
facilitated the exploration of regeneration during larval and pupal
development. This technique revealed the critical role of cell division
and the timing of ablation during development in shaping the
regeneration timing (Diaz-Garcia and Baonza, 2013). More
advanced technology was developed using genetic tools to induce
apoptosis in specific domains of the disc and monitor tissue
recovery, utilizing the binary UAS/Gal4 system (Brand and
Perrimon, 1993). This widely used technique was adapted to
study regeneration by temporally inducing the expression of
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apoptotic genes in the wing disc, regulated by the temperature-
sensitive allele Gal80ts, an inhibitor of Gal4 (Figure 1B) (Smith-
Bolton et al., 2009; Bergantinos et al., 2010a). Furthermore, the
UAS/Gal4 system was combined with an engineered LexA-LexAop
system, enabling precise temporal induction of cell death
(Santabarbara-Ruiz et al., 2015). These methods allowed the
identification of crucial genes involved in blastema formation,
including Wg, a key regulator of regeneration in many species,
and MYC (Smith-Bolton et al., 2009; Worley et al., 2012). Indeed,
MYC was found to be upregulated in the proliferating cells
surrounding the blastema, and its reduction partially impeded
regeneration in the wing pouch (Smith-Bolton et al., 2009).
Subsequent research demonstrated that MYC reduction, combined
with reaper ablation, significantly hindered regeneration in the wing
disc. Conversely, under the same conditions, MYC overexpression
improved both the size and morphology of the adult wings,
confirming its crucial role in the regeneration process (Harris
et al., 2020). Additionally, MYC has been identified to regulate
Yorkie (Yki), the unique Drosophila ortholog of YAP/TAZ, a
component of the Hippo tumor suppressor pathway, in a feed-
back mechanism that restrains the growth of the imaginal discs
(Neto-Silva et al., 2010; Ziosi et al., 2010). In mammals, the
Hippo-YAP/TAZ pathway regulates regeneration by controlling
cell proliferation, apoptosis, and stem cell maintenance to ensure
proper tissue growth and repair (Moya and Halder, 2019). Thus,
MYC’s regulation of Yorkie (Yki) could be crucial for balancing cell

proliferation and tissue growth in response to damage. This
coordination is vital for developmental processes and organ
growth, where MYC and the Hippo pathway are key players (de la
Cova et al., 2004; Pan, 2007). Cells at the regeneration site stimulate
proliferation through non-autonomous mechanisms such as
apoptosis-induced proliferation (AiP), compensating for the
apoptotic zones by triggering cell proliferation (Fogarty and
Bergmann, 2017). The mechanisms controlling AiP are still under
investigation; however, one hypothesis is that the release of ROS by
the dying cells activates the ROS-sensitive kinase 1 (Ask1), expressed
during regeneration, and its signal attenuated by Akt1/PKB/InR in
living cells surrounding the blastema modulates moderate JNK/
p38 signaling, which is crucial for controlling apoptosis in the
regenerative response (Santabarbara-Ruiz et al., 2019; Esteban-
Collado et al., 2021). Recent single-cell transcriptomics analysis of
blastema from wing imaginal discs identified Ets21C, a transcription
factor that controls patterning and organ development. This factor is
induced by cell damage and is essential for the expression of genes
crucial for regeneration (Worley et al., 2022). Interestingly, our RNA
sequencing data reveals that both Ets21C andMYC are upregulated in
wing disc cells undergoing apoptosis induced by proteotoxic stress
(not published), suggesting that their expression may share
components in the stress response pathways still to be investigated.

Finally, we would like to briefly address the critical role of the
steroid hormone ecdysone during regeneration and its relation with
MYC. Ecdysone controls cellular and specific pathways that regulate

FIGURE 1
Models to study regeneration. (A) Schematic view of third instar larvae indicating the brain, wing imaginal discs, and the gut. (B) Third instar wing
imaginal discs in which apoptosis is induced in the pouch using a specific Gal4-promoter. (Left) The induction of the apoptotic gene occurs through a
controlled temperature switch. At 18°C, Gal80 binds to Gal4, repressing its activity and preventing its expression. However, when the temperature is
switched to 29°C, Gal80 expression is suppressed, releasing Gal4 from inhibition and initiating the expression of the apoptotic gene and cell death
(Hariharan and Serras, 2017). (Middle) After a few hours, animals are switched to the permissive temperature of 18°C to block apoptosis, allowing
regeneration to occur with the formation of the blastema (green) that expands until a fully recovered pouch is obtained (Right). (C) Representation of the
adult gut with the zone that characterizes its function (R0-5) (Buchon et al., 2013). (D)Model of the midgut epithelium where regeneration occurs upon
injury. Cells are color-coded as in panel (E), where the stem-cell niche is represented: ISC: Intestinal Stem Cell, EB: Enteroblast, EE: Enteroendocrine cell,
EC: Enterocyte. (F) Schematic representation of the adult brain indicating themost common structures MB: mushroom body, OL: Optical Lobe. The inset
represents a site of injury with neuron and glial cells represented in green and brown. (G) Representation of neuroblasts division. Neuroblasts (NB) divide
asymmetrically, generating a ganglion mother cell (GMC), which then divides to produce a postmitotic neuron or glial cell (Homem and Knoblich, 2012).
(H) Schematic representation of a third instar larva indicating themushroombody (MB), theOptical lobe (OL) and the neurons (green). In red is a common
site for injury in the Ventral Neural Cord (VNC). The figurewas created using BioRender Premium, license (XV26VCD8GB), and further refined using Adobe
Photoshop for its final appearance.
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physiological organ growth and developmental timing (Andersen et al.,
2013). Ecdysone is produced by the prothoracic gland (PG) at specific
development times to regulate larval molting and metamorphosis
(Edgar, 2006; Tennessen and Thummel, 2011). In the regeneration
process, ecdysone levels determine the timing after which larvae
terminate their window of regenerative potential by controlling the
state of epithelial cell progenitors through regulating the transcription
factors chinmo and broad (Narbonne-Reveau and Maurange, 2019;
Karanja et al., 2022). Moreover, the release of ecdysone by the PG is
indirectly controlled by the dying cells in the regenerating discs that
secrete Dilp8, a peptide belonging to the insulin/relaxin-like growth
factor family, which binds to the LGR3 receptor in the brain. This
inhibits the release of ecdysone from the PG (Colombani et al., 2015;
Vallejo et al., 2015) and slows down the development, allowing the
damaged cells of the discs to complete their regeneration process
(Blanco-Obregon et al., 2022; Karanja et al., 2022). Moreover, the
physiological reduction of ecdysone at specific development points
corresponds to an increase inMYC in the fat body (FB) (Delanoue et al.,
2010). MYC in the FB favors the storage of nutrients (fat and sugars)
and activates survival pathways such as autophagy to survive starvation
(Parisi et al., 2013; Paiardi et al., 2017). It is known that regeneration in
wing discs is affected by pathways regulated by nutrients (Esteban-
Collado et al., 2021), and animals allowed to regenerate in starvation do
not complete this process (Figure 2). The observation that animals in
starvation have a reduced ability to regenerate suggests that non-
autonomous signals from the FB are necessary to complete this
process. Although MYC is upregulated in the FB of starved animals
(Teleman et al., 2008; Parisi et al., 2013), the impaired regeneration
observed under starvation conditions indicates that the upregulation of
endogenous MYC activity in the FB is insufficient to sustain
regeneration. Alternatively, starvation may prevent the storage of
nutrients in the FB or hinder the production/secretion of factors
necessary for regeneration.

3.2 Gut

Research onDrosophila gut regeneration offers valuable insights
into repair mechanisms relevant to regenerative medicine, given the
similarities in tissue composition, anatomy, and physiological

functions with the human intestine. To investigate regeneration,
various methods are employed to induce stress and cell damage,
such as chemical exposure (e.g., Dextran Sulfate Disodium (DSS),
bacterial infection, heat stress, oxidative stress (e.g., H2O2), and
mechanical damage (Apidianakis and Rahme, 2011; Zhang and
Edgar, 2022) Drosophila gut comprises an anterior, middle, and
posterior hindgut (Figure 1C); however, regeneration primarily
occurs in the midgut, where the Intestinal Stem Cells (ISCs)
generate a niche initiated by Notch (Ohlstein and Spradling,
2007). These cells divide asymmetrically and give rise to a new
ISC and an Enteroblast (EB) that will differentiate into Enterocytes
(ECs) or Enteroendocrine cells (EE) in the absence of cell division
(Figures 1D,E) (Mathur et al., 2010; Amcheslavsky et al., 2014). Wg
is necessary to maintain ISCs self-renewal and is the balance
between Notch and Wg signaling that controls the equilibrium
between the proliferation and differentiation of ISCs (Zhang and
Edgar, 2022). MYC plays a crucial role in mediating gut fitness both
in ISCs and in ECs. MYC activity is essential for their differentiation
and proliferation and acts downstream of stress-dependent and
growth factor pathways such as JAK-STAT, Wg, Hippo, and EGFR
(Ren et al., 2013). MYC is also crucial in maintaining gut health in
response to different diet conditions. A nutrient-rich diet
suppresses MYC in ECs, increasing cell death and gut
permeability and shortening lifespan. Conversely, dietary
restriction boosts MYC, enhancing EC fitness, gut integrity, and
lifespan (Akagi et al., 2018). This may occur through MYC-
inducing cell competition, which is crucial for maintaining the
fitness of adult enterocytes (ECs), especially during dietary
changes. Interestingly, this is similar to what was previously
described in intestinal ISCs for Minute genes, many of which
are MYC targets, where both ISC and differentiatedMinute/+ cells
were eliminated through cell competition to promote the
proliferation and self-renewal of wild-type stem cells (Kolahgar
et al., 2015). Recent evidence also reveals the role of MYC as a
regulator of the amino acid transporter arcus (acs) in ECs (Socha
et al., 2023). This signal is coordinated with the activation of the
insulin pathway that favors aminoacidic absorption and ECs
recovery after bacterial-mediated toxin damage, suggesting
another active role for MYC in the gut to favor the
regeneration of these cells.

FIGURE 2
Starvation affects wing regeneration. (A-C)Wings from animals that underwent regeneration while subjected to amino acid starvation. Reaper was
temporarily induced in the spalt domain (green), three days after egg laying in larvae of the genotype: SpaltPE-Gal4/tub-Gal80ts; UAS-rpr. Animals were
kept in a starvation medium (PBS/20% sucrose) until eclosion. (A) Wings from flies not expressing reaper. (B, C) or in which reaper was induced. These
images highlight the morphological defects observed in the wings due to the incomplete regeneration process. Scale Bar 1 mm.
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3.3 Neuronal cells

Drosophila’s neural stem cells (NSCs), or neuroblasts, are pivotal
for brain development. They exhibit remarkable plasticity,
transitioning between quiescent and active states in response to
environmental cues or injury. This dynamic regulation underscores
their importance in maintaining brain homeostasis and promoting
tissue repair. Neuroblasts (NB) play a crucial role in larval
development, undergoing asymmetric division to generate
neuroblasts and smaller ganglion mother cells (GMC). These
GMCs divide further to produce post-mitotic neurons or glial
cells (Figure 1G) (Homem and Knoblich, 2012; Otsuki and
Brand, 2020). The neurons establish identities via proneural and
selector genes, resulting in four classes (I-IV) of dendritic
arborization (da) sensory neurons. Class IV-ddaC neurons,
known for their intricate dendritic arbors sensitive to mechanical
stimuli, serve as models for dendrite repair and the study of
neurodevelopmental disorders (Grueber et al., 2007; Liu et al., 2023).

Methods for investigating neuronal regeneration during
development include gently crushing the larval segmental nerve
to maintain larval viability or employing laser ablation (Figure 1H).
This approach involves labeling specific axon patterns using GFP
expressed by neuronal-specific promoters, facilitating the
visualization of cells during regeneration events throughout larval
development (Pfeiffer et al., 2008). In adult flies, few models exist for
studying neuronal regeneration. Experimental stab lesions to either
the optic lobes (OL) or the central brain result in local neurogenesis
days after injury (Figure 1F). This response was attributed to
dormant neural progenitor cells (qNPs) activation (Moreno et al.,
2015; Crocker et al., 2021). Glial cells respond to nervous system
damage by increasing their number and changing morphology after
neuronal cell death. This process is conserved across regions of the
peripheral nervous system and involves Dpp and Hh signaling, with
the JNK pathway contributing to glial migration (Velarde et al.,
2021). Glial cells exhibit an immune response like microglia,
expressing the phagocytic receptor draper (drpr), crucial for axon
regeneration and debris clearance. While macrophages aid central
nervous system (CNS) regeneration in vertebrates, their role in
Drosophila neural injury remains unclear (Losada-Perez et al., 2021).

Recent discoveries highlight the crucial role of NSCs in
maintaining and regenerating adult brain tissues (Li and Hidalgo,
2020). In contrast to adult mammals, Drosophila NSCs can be
activated by different diets or exercises initiated by larval
hatching. However, the mechanisms by which NSCs transition
between quiescence and activation remain elusive (Ding et al.,
2020). Brain injuries in adult flies are thought to trigger the
recruitment of quiescent neural progenitors (qNPs) near the
injury site, facilitated by damage-responsive neuroglial clusters
(DNGCs). These clusters stimulate the proliferation of distant
qNPs, thereby expanding the zone of stem cell activation through
the reactivation of dormant qNPs (Moreno et al., 2015; Crocker
et al., 2021). Since previous research has shown that a ubiquitous
pulse of MYC promotes qNP division (Fernandez-Hernandez et al.,
2013), it is possible that MYC could induce growth factors in qNPs
through injury-induced secretion, allowing these cells to survive and
proliferate. MYC has also emerged as a non-autonomous regulator
of metabolism in retinal ganglion glial cells, where using a model of
reprogrammed glial cells that activate PI3K and EGFR pathways

(RGCPE), MYC activity was shown relevant for the regeneration of
neurons by mediating pro-regeneration metabolic pathways in glia
(Li et al., 2020), including the glia-neuron lactate shuttle essential for
neuronal survival (Volkenhoff et al., 2015). This highlights its
important role in inducing nonautonomous signals that control
axon regeneration.

4 Discussion

Studying regeneration in Drosophila has unveiled complex
cellular and molecular mechanisms guiding tissue repair and
organ regeneration across species. Although tissues display
differing regenerative abilities, common pathways and
principles govern regeneration. The pivotal role of MYC
emphasizes its importance in regulating fundamental conserved
processes, connecting metabolism and growth, influencing cell
competition, and highlighting regeneration’s complexity.
Insights from Drosophila research hold potential for future
advancements in regenerative medicine. Further exploring
molecular mechanisms across organisms is fundamental to
developing novel therapeutic strategies to enhance human tissue
repair and organ regeneration.
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