Aquaculture of marine macroalgae (i.e. seaweeds) such as the kelp Undaria pinnatifida is expected to contribute to future food and biomass production. Although macroalgal survival, biomass, and morphology are strongly affected by the density of individual plants in natural environments, little is known about the cultivation density (individuals per 1 m of cultivation rope) of macroalgae required to optimize aquaculture production, commercial profit (sales – labor expenses for processing), and quality as food. The present study examined the effect of increasing the cultivation density of U. pinnatifida from 10 to 200 individuals m-1 on survival rate, biomass production, profit, and morphological features related to quality as food. Survival rate was almost 100% in all treatments, indicating self-thinning did not occur. Biomass production increased with increasing density, suggesting that the maximum density possible is in excess of 200 individuals m-1. However, although profit rose with increasing density from 10 to 120 individuals m-1, it did not rise further if density was further increased. Moreover, some morphological features related to quality increased or decreased with increasing density. On balance, these results suggest that 80-120 individuals m-1 is an appropriate density range to optimize production of this species in terms of both profit and quality as food. However, only 10-30 individuals m-1 was the density best suited to enhance production of the sporophyll form, which is known to be a nutritious food both for humans and sea urchins.
With the expansion of seaweed culture and changes in the global climate, large quantities of new seaweed germplasm are urgently needed. It is important to elucidate the process of reproductive development and its regulatory mechanism in seaweed. Gracilariopsis lemaneiformis (Rhodophyta) has an essential economic and ecological value, for example, as a raw material for agar extraction and abalone feed. Here, four phases (I to IV) of G. lemaneiformis tetrasporophyte development were analyzed using physiological assays and transcriptome technologies. The results showed that photosynthetic capacity increased during the period from tetraspore formation to the release (Phase II, III and IV). According to transcriptome results, the expression levels of genes associated with light harvesting, photosynthesis, and carbon fixation pathways were significantly upregulated during tetraspore formation and release. Meanwhile, the expression levels of genes encoding starch and trehalose synthesis enzymes in starch and sucrose metabolism were enhanced during tetraspore formation and release, suggesting that G. lemaneiformis requires more energy supply during reproductive development, and that trehalose-6-phosphate may also act as a signaling molecule to induce tetraspore formation. In addition, genes encoding antioxidant enzymes (APX, TRX, GR, TR, PRX, and CAT) were significantly upregulated during tetraspore formation. These results may help us to understand the transition from nutritional to reproductive development and the molecular mechanism of G. lemaneiformis tetrasporogenesis, which is vital for the development of new germplasm and promoting the growth of the seaweed culture industry.
Laver is the most widely farmed seaweed with the largest culture area in China. The spatio-temporal variations in composition, diversity, and functional properties of bacteria in seawater as well as the environmental variables of seawater in a large-scale laver farm in China were studied. Both the community richness indices and Shannon index in the laver farming area remained at a relatively stable level during laver cultivation. Fifty-nine prokaryotic phyla were detected in all samples, however, only six of these phyla accounted for 98.84% of all sequences. Proteobacteria, Gammaproteobacteria, Rhodobacterales, Rhodobacteraceae, and Octadecabacter were the most predominant bacterial taxa at different levels of classification. The keystone bacterial taxa were Bacteroidetes, Pseudomonadales, Rhodobacterales, Flavobacteriales, Loktanella, and Pseudoruegeria based on network analysis. Members of representative bacterial biomarker taxa in November may be associated with degradation of algal cell wall polysaccharides. A significant increase in metabolic exchange and transformation nutrients occurred in the seawater during the early and late stage of laver cultivation, indicating that the laver reproductive activities (i.e. the formation/release activities of archeospores and zygotospores) probably drove the variation of metabolic functional diversity of bacterial communities. Based on Mantel test and redundancy analysis, we found the hydrographic parameters (e.g. salinity, temperature, DO, pH) as well as the key carbon (e.g. POC, DOC) and nitrogen parameters (e.g. nitrate, DIN, DON, TDN) were crucial environmental variables to shape the bacterial community composition in the surrounding seawater of laver farm. In a word, our results suggested that the microbial community structure and function significantly changed across the different succession stages during laver cultivation. This work provides new insights on the characteristics of bacterial communities in a large-scale laver farming system and solidifies the importance of laver farming in shaping seawater microbiomes.
Intertidal macroalgae have adapted to deal with environmental stresses, in particular desiccation. The phytohormone abscisic acid (ABA) plays an important role in the regulation of a suite of critical responses in plants, including desiccation tolerance. The red alga Neoporphyra haitanensis contains a high level of ABA, but its mechanism of action in N. haitanensis is unknown. In this study, the effect of ABA treatment on the relative water content of thalli during the dehydration-rehydration cycle was evaluated and it was identified that ABA treatment resulted in decreased thalli water loss and an accelerated rehydration process. The effects of addition of ABA upon the activation of antioxidant responses, photosynthetic parameters and gene transcription profiles of N. haitanensis were also evaluated. The results revealed that exogenous ABA regulated the activation of the antioxidant system, including by increasing the activity of antioxidant enzymes, increasing the concentrations of ascorbic acid (AsA) and glutathione (GSH), as well as upregulating the expression of genes encoding antioxidant enzymes and enzymes that synthesize AsA and GSH. ABA treatment also inhibited photosynthesis by reducing light capture and down-regulating the Calvin cycle to save energy; ABA supplementation further simultaneously activated repair mechanisms to avoid excessive DNA and protein damage. The results presented herein demonstrate that ABA plays a crucial role in the regulation of stress tolerance in seaweeds, which may be of great importance when examining the adaptation of this organism to the intertidal environment.