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Editorial on the Research Topic
Molecular level atomistic and structural insights on biological
macromolecules, inhibition, and dynamics studies

Introduction

Atoms are the fundamental components of matter, and when they come together,
they create molecules. These molecules can then join to create intricate biological
structures. Having a deep understanding of how molecules behave at the atomic level has
had a significant influence on the pharmaceutical, biotechnology, and chemical sectors
(De Vivo et al. 2016). In various scientific disciplines such as chemistry, physics,
materials science, and biology, it is essential to thoroughly examine and comprehend
the behaviour, structure, and interactions of atoms and molecules (Selvaraj et al. 2023).
In particular, researchers are uncovering novel enzyme structures using different
experimental and computational techniques. These methods provide a detailed
understanding of how enzymes function at the atomic level, their mechanisms, their
roles in reactions, and how they can be inhibited (Carvalho et al. 2014). The atom-level
illustrations primarily emphasize enzyme kinetics, inhibition, and the analysis of
mutations and conformational changes using quantum mechanical and molecular
dynamics techniques (Liu et al. 2018). By uncovering the atomic details of the
macromolecule, we can gain insights that will aid in the identification of new
agonists or antagonists. This, in turn, could lead to the development of potential
drug candidates for the treatment of different diseases (Yu and MacKerell 2017). In
order to develop a new inhibitor that specifically targets a particular protein, it is
essential to thoroughly understand how the active site of the target protein interacts with
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potential inhibitors. The main goal in designing a new inhibitor is
to fully comprehend the molecular interactions between the
inhibitor and the target, improve these interactions to ensure a
strong binding and specificity, and rigorously test the effectiveness
and safety of the inhibitor (Li and Kang 2020).

The following articles in this Research Topic align with the
theme of offering insights at the molecular level to identify drug
candidates that can bind to the desired drug targets. This is
achieved through various computational methods such as
modeling calculations, Quantum Mechanics, and molecular
dynamics, which demonstrate the wide range of calculations
and predictions. Cao et al. conducted a study to investigate
how dapansutrile works on NLRP3 and other protein targets
in gouty arthritis. They used bioinformatics analysis and a
computer simulation framework. The analysis at the molecular
and atomic level, using techniques like molecular docking and
molecular dynamics simulations, showed that dapansutrile may
not only directly inhibit NLRP3 to reduce the inflammatory
response and pyroptosis, but also hinder the movement and
activation of inflammatory cells by regulating IL1B, IL6,
IL17A, IL18, MMP3, CXCL8, and TNF. Mudedla et al. have
applied Quantum-based machine learning and AI models to
generate force field parameters for drug-like small molecules.
They have applied density functional theory (DFT) calculation
for 31,770 small molecules that covered the chemical space of
drug-like molecules. They also developed the neural network
model for assigning atom types, phase angles, and periodicities.
They found that an AI-generated force field was influential in the
fast and accurate generation of partial charges and other force
field parameters for small drug-like molecules. Papathoti et al.
have used the molecular docking and simulation methods for
investigating the bioactive compounds extracted from the
Bacillus sp that target the protein homologs CDC42 of
Colletotrichum gloeosporioides causing anthracnose disease in
cassava. Five potent compounds from B. megaterium were used
to target the protein. The interaction of β-sitosterol and
phenylacetic acid with the critical residue of
CDC42 demonstrated that ligands may inhibit growth-related
functional proteins. They have also constructed the protein-
protein interactions network, and from that, they have
revealed that targeting the CDC42 protein could impart
MAPK (Mitogen-activated protein kinases) signaling pathway.
Shaik et al. have come up with a new computational biology
dimension to interpret the genotype-protein phenotype
relationship between SERPINA1 pathogenic variants with its
structural plasticity and functional behaviour with NE ligand
molecule contributing to the Alpha-1-antitrypsin deficiency. The
molecular docking approach findings have demonstrated that the
most missense variants negatively impact the affinity of NE
(Neutrophil Elastase) and A1AT binding in a molecular
complex, lowering A1AT functionality and contributing to its
deficiency. Kamboj et al. have applied Gene expression analysis,
molecular docking, and molecular dynamics studies to identify
the strong antifungal compounds that show specificity with VelB
and THR drug targets to inhibit Curvularia lunata. Luštinec et al.
have performed the Ab-initio evaluation for evaluating the acid
influence on the chemical stability of hydrophilic diglycolamides.
Their results show strong theoretical findings on including an

acid influence on the diglycolamides chemical structure, treated
in the frame of the density functional theory. Spassov et al. have
used the molecular dynamics simulation methods for
protonated and non-protonated forms of the inhibitors and
suggested that the salt bridge has an unexpected role in
stabilizing the NMT protein conformation and that this may
be a significant factor in mediating its effects on NMT inhibitors
potency. Danazumi et al. conducted microsecond-level MD
simulations to comprehend the role of quinolinyl oxamide
derivative (QOD) and an indole carboxamide derivative
(ICD) as antimalarial lead drugs with dual inhibition of
falcipain-2 and falcipain-3. Jang et al. have come up with the
AI-assisted de novo design approach to identify a potent and
selective inhibitor for the FLT3/FLT-3 (D835Y) mutant. They
have optimized the compound PCW-1001 and generated the
10,416 analogues using the LSTM approach. Achudhan et al.
identified the novel nitrilases compounds from a coal
metagenome using the in silico mining methods. The binding
scores produced by the novel nitrilase were approximately
similar to those of the other prokaryotic nitrilase crystal
structures, with a deviation of ±0.5. Kirubhanand et al.
analyzed the bioactive nature of lochnericine against Non-
Small Cell Lung Cancer (NSCLC) using various
computational approaches such as quantum chemical
calculations, molecular docking, and molecular dynamic
simulation. Also, they confirmed the molecule’s potential
bioactivity based on the band gap energy value associated
with bioactive compounds through Frontier Molecular Orbital
(FMO). Shaik et al. provide comprehensive computational and
structural insights into the genotype-protein phenotype
correlation of the PCSK9 (Proprotein convertase subtilisin/
kexin type 9) pathogenic variant with a PCSK9 inhibitor
monoclonal antibody.

In general, the authors of these articles have used Artificial
Intelligence and molecular modeling approaches to bring
insightful information on atomistic mechanisms and explore
functions of the biological macromolecule using atom-level
calculations (Huggins et al. 2012; Selvaraj et al. 2022). Some
studies have performed extensive molecular dynamics
simulations like microsecond level molecular dynamics
simulations and accurate Quantum Mechanical Calculations
for understanding the atomic role in molecular mechanisms
(Sakkiah et al. 2021). The conclusions of the major articles are
based on theoretical approaches from the software and publicly
available information, with very little confirmation in laboratory
conditions. In the future, the added advantage of experimental
findings supporting these theoretical findings is required to
confirm these findings.
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on molecular docking and
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Purpose: Dapansutrile is an orally active β-sulfonyl nitrile compound that

selectively inhibits the NLRP3 inflammasome. Clinical studies have shown

that dapansutrile is active in vivo and limits the severity of endotoxin-

induced inflammation and joint arthritis. However, there is currently a lack of

more in-depth research on the effect of dapansutrile on protein targets such as

NLRP3 in gouty arthritis. Therefore, we used molecular docking and molecular

dynamics to explore themechanismof dapansutrile onNLRP3 and other related

protein targets.

Methods: We use bioinformatics to screen active pharmaceutical ingredients

and potential disease targets. The disease-core gene target-drug network was

established and molecular docking was used for verification. Molecular

dynamics simulations were utilized to verify and analyze the binding stability

of small molecule drugs to target proteins. The supercomputer platform was

used to measure and analyze the binding free energy, the number of hydrogen

bonds, the stability of the protein target at the residue level, the radius of

gyration and the solvent accessible surface area.

Results: The protein interaction network screened out the core protein targets

(such as: NLRP3, TNF, IL1B) of gouty arthritis. Gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis revealed that gouty

arthritis mainly played a vital role by the signaling pathways of inflammation

and immune response. Molecular docking showed that dapansutrile play a role

in treating gouty arthritis by acting on the related protein targets such as NLRP3,

IL1B, IL6, etc. Molecular dynamics was used to prove and analyze the binding

stability of active ingredients and protein targets, the simulation results found

that dapansutrile forms a very stable complex with IL1B.

Conclusion: We used bioinformatics analysis and computer simulation system

to comprehensively explore the mechanism of dapansutrile acting on

NLRP3 and other protein targets in gouty arthritis. This study found that
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dapansutrile may not only directly inhibit NLRP3 to reduce the inflammatory

response and pyroptosis, but also hinder the chemotaxis and activation of

inflammatory cells by regulating IL1B, IL6, IL17A, IL18, MMP3, CXCL8, and TNF.

Therefore, dapansutrile treats gouty arthritis by attenuating inflammatory

response, inflammatory cell chemotaxis and extracellular matrix degradation

by acting on multiple targets.

KEYWORDS

gouty arthritis, dapansutrile, NLRP3, molecular docking, molecular dynamics

Graphical Abstract
The mechanisms analysis of dapansutrile in the treatment of gouty arthritis.

Introduction

Gouty arthritis is considered one of the most common forms of

inflammatory arthritis, it is a metabolic rheumatic disease (Roddy

and Choi, 2014; Kim et al., 2016; Xie et al., 2017). Gouty arthritis is a

form of arthritis caused by deposits of uric acid crystals called

monosodium urate (MSU) crystals. The disease is usually secondary

to chronic hyperuricemia, and the lesions are located in the joints

and bursae (Klück et al., 2020; Wang and Wang, 2020). MSU

crystal-induced gouty arthritis can occur in joints, periarticular

tissues and kidneys (Wu et al., 2015). Acute gouty arthritis

(AGA) is usually characterized by joint redness, swelling,

warmth, and pain. As the disease progresses, gouty arthritis

eventually leads to deformity of the diseased joint and severe

limitation of joint movement (Yu et al., 2022). The principal

clinical treatment goals for gouty arthritis are stopping acute

attacks, preventing recurrences and complications. The American

College of Rheumatology (ACR) guidelines for the treatment of gout

published in 2012 recommend the use of non-steroidal anti-

inflammatory drugs (NSAIDs) or oral colchicine for the

treatment of acute gout attacks (Khanna et al., 2012). It has been

reported that NSAIDs are harmful to the gastrointestinal tract, liver

and kidney, central nervous system, etc. (Bindu et al., 2020).

Colchicine is an anti-inflammatory drug, which is widely used to

treat acute gouty arthritis. However, colchicine can cause

gastrointestinal discomfort, liver and kidney damage and multi-

organ dysfunction when taken in high doses (Blackham et al., 2007).

At the same time, it is under a narrow therapeutic index with no

significant difference between non-toxic, toxic and lethal doses,

which may lead to toxicity in patients (Finkelstein et al., 2010).
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Therefore, there is an imperative for a safe and effective drug for the

treatment of gouty arthritis.

Dapansutrile (OLT1177) is a beta-sulfonitrile compound.

It can inhibit the NLRP3 inflammasome and reverses the

metabolic cost of inflammation (Marchetti et al., 2018a).

The drug was originally formulated as a candidate for the

topical treatment of degenerative arthritis, and an oral form

was subsequently developed. As with topical gels, oral capsules

have been shown to be safe and well tolerated in humans

(Marchetti et al., 2018a; Marchetti et al., 2018b). Dapansutrile

has been shown to be safe in humans, and Dapansutrile was

the first NLRP3 inhibitor to complete two human proof-of-

concept studies, one for acute gouty arthritis flares (Phase 2a)

and one for stable systolic heart failure (NYHA II-III) (Phase

1b) (Aliaga et al., 2021). Dapansutrile has been shown to

specifically block NLRP3 inflammasome formation and

prevent caspase-1 activation and IL1B maturation and

release (Yang et al., 2019; Lonnemann et al., 2020).

NLRP3 inflammasome formation also induces pyroptosis

(Jorgensen and Miao, 2015). Interestingly, dapansutrile

reduced neutrophil infiltration and joint swelling and

inhibited the secretion of pro-inflammatory factors IL1B,

IL18, and IL6 in a mouse model of yeast glycan- and urate-

induced arthritis (Marchetti et al., 2018b; Zhao and Zhao,

2020). At the same time, activation of the

NLRP3 inflammasome induces the maturation of IL1B and

IL18, both of which are effective targets for the treatment of

acute and chronic inflammatory diseases (Dinarello et al.,

2012).

However, there is currently a lack of more in-depth and

systematic research on dapansutrile in the treatment of gouty

arthritis. Molecular dynamics can comprehensively and

systematically simulate the interaction and binding stability

between small molecule monomers and protein targets with

the help of powerful computing power.

Molecular dynamics (MD) use large computer clusters as

the carrier to obtain data such as the microstructure,

physicochemical properties, and performance

characterization parameters of small molecule drugs and

proteins through calculation (Santos et al., 2019). It is a

supplement and in-depth exploration of traditional

biomedical disciplines based on experiments. Through the

data obtained by calculation, the mechanism behind the

experiment is analyzed from the micro, meso and macro

scales of multi-level research. Molecular dynamics analyzes

the behavioral laws of molecular motion by solving the

potential functions and motion equations of intermolecular

interactions, it simulates the dynamic evolution process of the

system, and it provides microscopic quantities (such as the

coordinates and velocity of molecules) and macroscopic

observable quantities (such as: the relationship between the

temperature, pressure, heat capacity of the system, etc.)

(Sivakumar et al., 2020), so as to study the equilibrium

properties and mechanical properties of composite systems.

Therefore, molecular dynamics can be systematically and

comprehensively analyze the stability and affinity of

dapansutrile and gouty arthritis related protein targets.

Since the mechanism of action of dapansutrile in the

treatment of gouty arthritis is still unclear, this study used

bioinformatics to screen core targets between dapansutrile

and gouty arthritis, and we used gene ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG) and protein-

protein interaction (PPI) to analyze target genes and explore

their mechanisms of action and potential pathways. We used

molecular system motions to simulate the results of

computing interactions from the cellular level to the

chemical group level. Molecular docking was used to

determine the affinity of monomeric compounds to protein

targets, and molecular dynamics were used to model the

stability of bound complexes. Research on the mechanism

of action of dapansulide in the treatment of gouty arthritis will

promote the related research and clinical application of

the drug.

Materials and methods

Core gene targets screening and protein-
protein interaction network building

“Gouty arthritis” was used to be the key word to obtain the

disease gene targets through GeneCards database. The STRING

database was used to analyze the protein-protein interaction

(PPI) of dapansutrile in the treatment of gouty arthritis

(Szklarczyk et al., 2019). In order to further clarify the

interaction between potential protein targets, all potential

therapeutic protein targets of dapansutrile on gouty arthritis

were imported into Cytoscape 3.7.1 to analyze (Shannon et al.,

2003), we defined the protein type as “Homo sapiens,” and

obtained relevant information on protein interactions by

STRING database. Finally, the network topology parameters

were analyzed by Cytoscape 3.7.1, and the core protein targets

were screened out according to the criterion that the node degree

value and the betweenness center value were greater than the

average value.

The gene target enrichment analysis

The main biological processes and signaling pathways of

dapansutrile on gouty arthritis were analyzed though DAVID

database. The interaction gene targets were used in DAVID

database for gene ontology (GO) functional annotation and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis. We obtained molecular function (MF),

cellular component (CC) and biological process (BP) of the
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gene targets through GO enrichment. The disease related targets

obtained from screening were input into the DAVID database by

entering the list of target gene names and selecting the species as

“Homo sapiens” (Huang et al., 2009). In this study, KEGG

pathway enrichment analysis was performed on the relevant

signaling pathways involved in the target, and gene target

screening was performed under the condition of p < 0.05

(Cao et al., 2022).

Network diagram of “disease-core target
gene-drug”

This study used the Cytoscape 3.7.1 network map software to

construct a disease-core target gene-drug network and conduct

topological analysis. The core gene targets can be screened based

on the node degree value greater than 2 times the median (Cao

et al., 2022).

Molecular docking and validation of the
docking protocol

Molecular docking was used to study the molecular affinity of

dapansutrile with gouty arthritis protein targets. In this study,

AutoDock Vina 1.1.2 software was used for molecular docking

work. Before docking, PyMol 2.5 was used to process all receptor

proteins, including removal of water molecules, salt ions and small

molecules (Kim et al., 2016). ADFRsuite 1.0 was used to convert all

processed small molecules and receptor proteins into the PDBQT

format necessary for docking with AutoDock Vina 1.1.2. The

output highest scoring docked conformation was considered to be

the binding conformation for subsequent molecular dynamics

simulations (Kim et al., 2016). The study used the original

crystal ligand of the protein target as a positive reference, and

we analyzed and compared the binding posture of the original

crystal ligand and protein, the chemical bond length and the

chemical bond angle by re-docking the original crystal ligand

and protein. Finally, the consistency of the binding mode could

indicate the correctness of the molecular docking protocol (Cao

et al., 2022).

Molecule dynamics

In this study, the stability of the conformational complex of

the dapansutrile and gouty arthritis proteins was further

verified by molecular dynamics simulations. Molecular

dynamics (MD) simulation is a comprehensive set of

molecular simulation methods combining physics,

mathematics and chemistry. This method mainly relies on

Newtonian mechanics to simulate the motion of molecular

systems, we calculate macroscopic properties such as

thermodynamic quantities of a system by taking samples

from an ensemble of different states of a molecular system

(Burley et al., 2017). In this study, the small molecules and

protein complexes obtained from the molecular docking

results were used as the initial structures, and AMBER

18 software was used to conduct all-atom molecular

dynamics simulations (Maier et al., 2015). The charge of the

small molecule was calculated in advance by the antechamber

module and the Hartree-Fock (HF) SCF/6-31G* of the

gaussian 09 software before the simulation (Harrach and

Drossel, 2014). Finally, the simulated topology and

parameter files were exported. After the initial addition of

hydrogen atoms to each system, the system used a steepest

descent algorithm for vacuum minimization (Wang et al.,

2006). The solvent was then added and the system ions

were balanced with counter ions (Na+/Cl−).

The proteins were all energy minimized using the steepest

descent method and the conjugate gradient method.

Subsequently, combined NVT and NPT (1,000 ps, 2 fs dt)

and MD tests (100 ns, 2 fs dt) were performed at 298 K

temperature and 1 bar pressure using a jump-integration

algorithm. The coordinates and energy of the system are

saved every 10 ps. Finally, 50 ns production simulations were

carried out for each system under periodic boundary

conditions. For all simulations, the van der Waals force

(vdw) cutoff and short-range electrostatic interactions were

set to 10 Å. The Particle-Mesh-Ewald (PME) method was used

to evaluate long-range electrostatic interactions. Molecular

dynamics simulation trajectories include protein-ligand

complex root mean square deviation (RMSD), root mean

square fluctuation (RMSF), radius of gyration and solvent

accessible surface area (SASA).

MMGBSA binding free energy calculation

In this study, the binding free energy of the compound was

investigated by MM-PBSA method, and its conformational

stability was studied in detail. We calculated the binding free

energies between proteins and ligands in all systems using the

MM/GBSA method (Hou et al., 2011). The molecular dynamics

trajectory of 50 ns was used for calculation, and the specific

formula was as follows:

ΔGbind � ΔGcomplex − (ΔGreceptor + ΔGligand)

� ΔΕinternal + ΔΕVDW + ΔΕelec + ΔGLGB + ΔGSA

In the formula, bond energy (Ebond), angular energy (Eangle),

torsion energy (Etorsion), ΔGGA and ΔGGB are collectively called

solvation free energy. The non-polar solvation free energy

(ΔGGA) was calculated based on the product of surface

tension (γ) and solvent accessible surface area (SA), ΔGGA =

0.0072 × SASA (Cao et al., 2022).
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Results

Core target screening and protein-protein
interaction network diagram

A total of 220 gouty arthritis gene targets was screened though

GeneCards database. We obtained core genes targets though

relevance score, relevance score ≥20 which was considered as

core gene target, the study analyzed 18 core gene targets through

STRING database to construct the PPI network interaction map of

target proteins of dapansutra for gouty arthritis, shown in Figure 1A.

Eight core genes (such as: NLRP3, IL1B, CXCL8, etc.) were obtained

by improving the confidence score (confidence degree > 0.95), and

the study used the eight core gene targets to construct the core PPI

network, shown in Figure 1B.

Gene ontology and Kyoto Encyclopedia of
Genes and Genomes enrichment analysis

The 18 gene targets were imported into the DAVID database for

enrichment analysis. Under the condition of p < 0.05, the GO

enrichment analysis yielded 137 GO entries, including 126 BP

entries, 6 CC entries, and 5 MF entries. According to the number

of targets contained, the top 5 BP, CC, and MF compressions were

screened. The results showed that biological processes were highly

correlated with inflammation and cytokine regulation, mainly

involving the inflammatory response, positive regulation of

interleukin-1 beta production, and cellular response to

lipopolysaccharide. Among cell components, extracellular space,

extracellular region and cell surface account for a relatively large

amount. In molecular functions, cytokine activity, peptidoglycan

binding and protein binding were relatively high, shown in Figures

2A–F. KEGG pathway analysis yielded 48 pathways with p < 0.05.

According to the number of targets contained, the top 15 pathways

were screened. The results showed that the enriched pathways

involved multiple pathways related to inflammation and immune

response, mainly rheumatoid arthritis, NOD-like receptor signaling

pathway, IL17 signaling pathway and other signaling pathways,

shown in Figures 2G,H.

Disease-core gene target-drug network

The disease-core gene target-drug network was constructed

to show the main signal pathway and biological process of

dapansutrile in the treatment of gouty arthritis, shown in

Figure 3.

Molecular docking

The eight core gene targets were selected for molecular docking.

The stability of receptor-ligand binding depends on the binding energy.

The lower the binding energy of the complex, the more stable the

receptor-ligand binding conformation. The small molecule

dapansutrile interacted with various proteins mainly through

hydrogen bonding and hydrophobic interactions. In addition, we

were surprised that the cyano group of the small molecule

dapansutrile was the main cyano group acceptor, which had

hydrogen bonds with various proteins, while the sulfone group did

not play the role of hydrogen bond acceptors. Moreover, we observed

FIGURE 1
Protein-protein interaction (PPI) network. (A) PPI network of protein target, (B) PPI network of core protein target (confidence > 0.95).

Frontiers in Physiology frontiersin.org05

Cao et al. 10.3389/fphys.2022.990469

12

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.990469


FIGURE 2
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Analysis of related genes. (A) The top 5 terms in biological
processes (BP) were greatly enriched. (B) The subnetwork displayed the top 5 BP terms and related genes. (C) The top 5 terms in cellular components
(CC) were greatly enriched. (D) The subnetwork displayed the top 5 CC terms and related genes. (E) The top 5 terms in molecular function (MF) were
greatly enriched. (F) The subnetwork displayed the top 5 MF terms and related genes. (G) The top 15 KEGG pathways were showed. (H) The
subnetworks displayed the top 15 KEGG pathways.
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from IL6, IL17A,NLRP3, andTNF that the directmethylene groups of

cyano and sulfone groups on dapansutrile would have hydrophobic

interactions with the protein, shown in Figure 4. The results of the

amino acid residues of the complexes are shown in Table 1.

Molecular dynamics results

The root mean square skewness of molecular dynamics

simulations can reflect the motion process of the complexes. The

larger RMSD indicates the more intense fluctuations andmotions of

the complexes. The RMSD fluctuations of the eight complexes were

within 5 Å for all the complexes except Dapansutrile/CXCL8 during

the RMSD simulation. Therefore, based on the size and stability of

RMSD, we could determine the stability of these complexes from

strong to weak in order of Dapansutrile/IL18, Dapansutrile/MMP3,

Dapansutrile/TNF, Dapansutrile/IL17A, Dapansutrile/IL1B,

Dapansutrile/IL6, Dapansutrile/NLRP3, and Dapansutrile/CXCL8.

However, RMSD results for all complexes indicated that small

molecules could bind to proteins and maintain a relatively stable

state. The results are shown in Figure 5.

Combined free energy calculation results

Based on the trajectory of molecular dynamics simulation, this

study calculated the binding energy by using the MM-GBSA

method, which can more accurately reflect the binding mode of

FIGURE 3
Disease-core gene target-drug network. Square nodes represent gene targets, triangular nodes represent signaling pathways (KEGG), and
octagonal nodes represent gene ontology (GO) of related genes.

Frontiers in Physiology frontiersin.org07

Cao et al. 10.3389/fphys.2022.990469

14

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.990469


FIGURE 4
Molecular docking of active ingredients and core targets. (A)Dapansutrile/CXCL8, (B)Dapansutrile/IL1B, (C)Dapansutrile/IL6, (D)Dapansutrile/
IL17A, (E) Dapansutrile/IL18, (F) Dapansutrile/MMP3, (G) Dapansutrile/NLRP3, (H) Dapansutrile/TNF.

TABLE 1 The results of the amino acid residues of the complexes.

Complex Van Der Waals Conventional Hydrogen
Bond

Carbon Hydrogen Bond

Dapansutrile/
CXCL8

CYS-50, GLU-48, ILE-40, LEU-49, VAL-41, ARG-26 LYS-42

Dapansutrile/IL1B VAL-85, PRO-87, TYR -90, LYS-65, LEU-62, GLY-61 TYR-68, GLU-64, SER-43 SER-43, LYS-63, ASN-66,
PRO-91

Dapansutrile/IL6 THR-163, PHE-105, SER-108, GLU-42, LYS-46, ASP-160, THR-43,
SER-47

ARG-104, SER-107, GLU-106

Dapansutrile/IL17A VAL-117, GLU-95 GLN-94, TRP-67, ASN-36 TRP-67, PRO-37, ILE-66

Dapansutrile/IL18 SER-65, ILE-48 ASN-87, SER-50, SER-7, LYS-4 PRO-88

Dapansutrile/
MMP3

VAL-163, LEU-164, PRO-221, VAL-198, ZN-301, GLU-202, TYR-233,
HIS-201

ALA-165

Dapansutrile/
NLRP3

ASP-90, TRP-68, TYR-13, ARG-12 LYS-9, LYS-86

Dapansutrile/TNF ALA-134, GLU-135, ILE-136, PRO-139 TRP-28, ASN-46, LEU-26 GLN-25
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small molecules and target proteins. The simulation results

suggested that the binding energies of Dapansutrile/CXCL8,

Dapansutrile/IL1B, Dapansutrile/IL6, Dapansutrile/IL17A,

Dapansutrile/IL18, Dapansutrile/MMP3, Dapansutrile/NLRP3,

Dapansutrile/TNF were −2.79 ± 0.48 kcal/mol,

respectively, −6.75 ± 0.52 kcal/mol, −5.67 ± 0.40 kcal/

mol, −6.59 ± 0.41 kcal/mol, −3.85 ± 0.64 kcal/mol, −45.88 ±

0.85 kcal/mol, −7.06 ± 0.35 kcal/mol, −4.54 ± 0.35 kcal/mol. The

value of the operation result indicates the affinity of the molecule to

bind to the target protein, a lower value indicates a stronger binding

affinity. The results showed that the small molecule and the

corresponding proteins have strong binding affinity. The

Dapansutrile/MMP3 binding was significant, the value

was −45.88 ± 0.85 kcal/mol. The binding energies of these

complexes are mainly contributed by van der Waals energy and

electrostatic energy. The experimental results are shown in Table 2.

Hydrogen bond analysis

Hydrogen bonding is one of the strongest non-covalent bonding

interactions, the larger the number of hydrogen bonds indicates the

better binding of the complex. The experimental results showed that

the optimal hydrogen bond size and density for small molecules and

proteins were dapansutril/IL18 and dapansutril/MMP3, the number

of hydrogen bonds was stable at about three throughout the process.

This was followed closely by Dapansutrile/IL17A. The formation of

hydrogen bonds in the rest of the complexes was relatively sparse. The

results are shown in Figure 6.

The stability of the target protein at the
residue level

In this study, the vibrations of each residue after binding of

small molecules and proteins are explored as root mean square

fluctuations (RMSF). The RMSF can reflect the flexibility of the

protein during molecular dynamics simulations. The binding of

small molecule drugs to proteins reduces the flexibility of the

proteins, which results in stabilization of the proteins and thus

their efficacy. The results showed that most of the proteins had

low RMSF except for the two ends, indicating that the protein

core structure has good rigidity. Notably, the overall RMSF of

IL1B, NLRP3 and TNF bound to small molecules was less than

2.5 Å, indicating that these proteins are more rigid when bound

to small molecules. The results are shown in Figure 7.

Analysis of the radius of gyration

The radius of gyration (RoG) can reflect the degree of

compactness of the complex. The results reflected the variation

of RoG over time for the six complexes during the molecular

dynamics simulation. The experimental results showed the degree

of denseness of the complexes from largest to smallest: Dapansutrile/

NLRP3, Dapansutrile/IL1B, Dapansutrile/IL18, Dapansutrile/

MMP3, Dapansutrile/TNF, Dapansutrile/IL6, Dapansutrile/IL17A,

FIGURE 5
Complex root mean square deviation (RMSD) difference over
time.

TABLE 2 Binding free energies and energy components predicted by MM/GBSA (kcal/mol).

System name ΔEvdw ΔEelec ΔGGB ΔGSA ΔGbind

Dapansutrile/CXCL8 −10.11 ± 0.63 −10.57 ± 1.41 19.83 ± 1.54 −1.93 ± 0.11 −2.79 ± 0.48

Dapansutrile/IL1B −17.32 ± 0.48 −19.06 ± 1.36 32.38 ± 0.96 −2.74 ± 0.03 −6.75 ± 0.52

Dapansutrile/IL6 −17.18 ± 0.68 −15.22 ± 1.44 29.73 ± 1.88 −2.98 ± 0.10 −5.67 ± 0.40

Dapansutrile/IL17A −17.26 ± 0.49 −19.15 ± 1.20 32.50 ± 1.32 −2.68 ± 0.06 −6.59 ± 0.41

Dapansutrile/IL18 −10.72 ± 0.76 −17.01 ± 1.81 26.24 ± 1.58 −2.36 ± 0.08 −3.85 ± 0.64

Dapansutrile/MMP3 −15.44 ± 0.65 −65.59 ± 0.98 38.69 ± 0.95 −3.53 ± 0.03 −45.88 ± 0.85

Dapansutrile/NLRP3 −6.04 ± 0.70 −7.13 ± 2.28 9.31 ± 2.62 −3.19 ± 0.11 −7.06 ± 0.35

Dapansutrile/TNF −10.89 ± 0.41 −9.73 ± 1.06 18.10 ± 1.15 −2.00 ± 0.05 −4.54 ± 0.35

ΔEvdW, van der Waals energy; ΔEelec, electrostatic energy; ΔGGB, electrostatic contribution to solvation; ΔGSA, non-polar contribution to solvation; ΔGbind, binding free energy.
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and Dapansutrile/CXCL8. The simulation results indicated that

dapansutrile/NLRP3, dapansutrile/IL1B, dapansutrile/IL18, and

dapansutrile/MMP3 have strong binding potential. The results of

RoG experiments were consistent with those of RMSD. The results

are shown in Figure 8.

Analysis of solvent accessible surface area

The solvent accessible surface area (SASA) indicates the

area where the complex can come into contact with the

aqueous solution. The contact area of the complex indicates

the size of the interaction between the complex and the

aqueous solution. In addition, the fluctuation of SASA

responds to the exposure of the protein surface and the

changes occurring in the buried area. The fluctuation

analysis of SASA suggests that the fluctuations of

Dapansutrile/NLRP3, Dapansutrile/TNF, Dapansutrile/IL1B,

Dapansutrile/IL18, and Dapansutrile/MMP3 were small. This

result implied the close interaction within the complex, which

was the basis for the formation of stable binding of the

complex. The results are shown in Figure 9.

FIGURE 6
Changes in the number of hydrogen bonds between small molecule ligands and protein receptors in complex system simulations (A)
Dapansutrile/CXCL8, (B) Dapansutrile/IL1B, (C) Dapansutrile/IL6, (D) Dapansutrile/IL17A, (E) Dapansutrile/IL18, (F) Dapansutrile/MMP3, (G)
Dapansutrile/NLRP3, (H) Dapansutrile/TNF.
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Discussion

This study explored the pharmacological mechanism of

dapansutrile in the treatment of gouty arthritis by molecular

docking and molecular dynamics simulation based on molecular

system movement. This study found that dapansutrile may not

only directly inhibit NLRP3 to reduce the inflammatory response

and pyroptosis, but also hinder the chemotaxis and activation of

inflammatory cells by regulating IL1B, IL6, IL17A, IL18, MMP3,

CXCL8, and TNF. Firstly, dapansutrile may attenuate

inflammatory responses and reduce pyroptosis by directly

inhibiting the NLRP3 inflammasome and hindering the

activation of downstream inflammatory inflammation.

Secondly, dapansutrile may impede the activation of IL1B,

CXCL8, and TNF reducing the chemotaxis and activation of

inflammatory cells. Finally, dapansutrile may reduce the

expression of MMP3 by regulating IL6, IL18, and IL17A,

thereby degrading the extracellular matrix to treat gouty

arthritis. Therefore, these results demonstrate that

dapansutrile treats gouty arthritis by inhibiting the

inflammatory response from multiple targets.

Analysis of molecular docking and
molecular dynamics

Molecular docking can recognize each other through the

spatial matching of drug small molecule dapansutrile and protein

FIGURE 7
Changes in the stability of protein targets at the residue level (A) Dapansutrile/CXCL8, (B) Dapansutrile/IL1B, (C) Dapansutrile/IL6, (D)
Dapansutrile/IL17A, (E) Dapansutrile/IL18, (F) Dapansutrile/MMP3, (G) Dapansutrile/NLRP3, (H) Dapansutrile/TNF.
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macromolecules in vivo, and predict their interaction and

binding mode and affinity. Therefore, the results of molecular

docking can be used to explore the mechanism of action of

dapansutrile on gouty arthritis.

Firstly, molecular docking experiments indicated that

dapansutrile had strong affinity for the protein targets

NLRP3 and MMP3. The binding of dapansutrile in IL1B,

CXCL8 and TNF were relatively stable, molecular docking

showed that the binding of Dapansutrile/IL1B and

Dapansutrile/IL18 is mainly maintained by hydrogen

bonding and hydrophobic interaction. Dapansutrile/

CXCL8 and Dapansutrile/MMP3 were mainly through

hydrophobic interaction. Dapansutrile combined with IL6,

IL18, and IL17A can form stable complexes, but there were

some abnormal fluctuations, which may be due to the

influence of the number and angle of binding bonds.

Secondly, based on the trajectory of the molecular dynamics

simulation, we calculated the binding energy using the MMGBSA

method, which could more accurately reflect the binding mode of

small molecules and target proteins. In the molecular dynamics

simulation, the RMSDs of Dapansutrile/NLRP3 converged

gradually in the first 5 ns of the simulation and preserved stable

fluctuations in subsequent simulation. The RMSF results suggested

that the overall RMSF of IL1B andTNFwas less than 2.5 Åwhen they

were bound to small molecules. These proteins are more rigid when

bound to small molecules. The radius of gyration suggested that

Dapansutrile/IL18 and Dapansutrile/MMP3 have stable fluctuations

in size, which means they have high binding potential. Hydrogen

bonding is also an important basis for the formation of stable binding

between small molecule drugs and protein targets. The results of this

study showed that the number of hydrogen bonds in Dapansutrile/

IL18 and Dapansutrile/MMP3 were the best in terms of size and

density. The number of their hydrogen bonds was stable throughout

at about three. And all eight complexes can form stable hydrogen

bonds. Therefore, the results of hydrogen bonding analysis showed

that all the eight complexes had the basis for forming stable bonds.

Finally, the binding free energy consists mainly of non-bonding

interactions (such as: Van der Waals interactions, electrostatic

interactions and hydrogen bonding interactions). Because only

non-bonding interactions are generally present in the actual drug

small molecule (ligand) and protein (receptor) complex systems. The

drug molecule binds reversibly to the proteins through non-bonding

interactions, and this binding is more favorable for its own

metabolism and excretion. Therefore, the results of free energy of

binding were the comprehensive evaluation of the binding stability of

drug and protein targets in this study. We analyzed our binding free

energy consequences and other experimental results to derive a

comprehensive ranking of the complex binding stability from

strong to weak Dapansutrile/MMP3, Dapansutrile/NLRP3,

Dapansutrile/IL1B, Dapansutrile/IL17A, Dapansutrile/IL6,

Dapansutrile/TNF, Dapansutrile/IL18, Dapansutrile/CXCL8.

Dapansutrile may attenuate the
inflammatory response in the treatment of
gouty arthritis by inhibiting the NACHT,
LRR, and PYD domains-containing protein
3 inflammasome

Dapansutrile may inhibit the activation of downstream

inflammatory signaling pathways and reduce cell death by

directly inhibiting the NLRP3 inflammasome.

Bioinformatics analysis suggested that dapansutrile can

attenuate inflammatory responses and reduce pyroptosis by

directly inhibiting the NLRP3 inflammasome and hindering the

activation of downstream inflammatory inflammation. As a key

component of inflammatory activation, NLRP3 plays a crucial role

FIGURE 8
Analysis of protein folding state and overall conformation.

FIGURE 9
Analysis of solvent accessible surface area (SASA).
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in innate immunity and inflammation. NLRP3 has a regulatory role

in inflammation, immune response and cellular scorching as an

upstream activator of NF-kappaB signaling. Analysis of protein

interaction network PPI suggested that NLRP3was closely related to

inflammatory responses targets. KEGG signaling pathway analysis

showed that NLRP3 was involved in protein metabolism and NOD-

like receptor signaling pathway. GO analysis suggested that

NLRP3 was involved in peptidoglycan binding.

The NLRP3 inflammasome is a complex containing the

NLRP3 protein, the adaptor protein apoptosis-associated speck-

like protein (ASC) and procaspase-1 (Inoue and Shinohara, 2013a,

2013b; Abderrazak et al., 2015; Song and Li, 2018). The interaction

among the three proteins tightly regulates the function of the

inflammasome to ensure immune activity only when appropriate

(Shao et al., 2015). NLRP3 can trigger caspase-1 self-activation

(Schroder and Tschopp, 2010). In the presence of immune

activators [such as: Pathogen-associated molecular pattern

molecules (PAMPs), danger-associated molecular patterns

(DAMPs), other exogenous invaders, or environmental stress],

NLRP3 opens and allows interaction between NLRP3 and the

pyrin domain (PYD) in ASC. Subsequently, the caspase

recruitment domain (CARD) of ASC in turn recruits the CARD

domain on procaspase-1 for binding, resulting in the generation of

the NLRP3 inflammasome (Martinon et al., 2006;Willingham et al.,

2009; Schroder and Tschopp, 2010; Shao et al., 2015),

NLRP3 inflammasome formation also triggers pyroptosis

(Jorgensen and Miao, 2015). Gouty arthritis is driven by

macrophage uptake of deposited sodium urate crystals and

subsequent activation of the NLRP3 inflammasome (Martinon

et al., 2006; Cavalcanti et al., 2016). However, dapansutrile is an

orally active β-sulfonitrile molecule that inhibits

NLRP3 inflammasome activation (Marchetti et al., 2018a;

Sánchez-Fernández et al., 2019; Wohlford et al., 2020). Research

showed that the concentrations of dapansutrile were found to inhibit

NLRP3-ASC and NLRP3-caspase-1 interaction in vitro at 1 μM or

less. Interestingly, in LPS-stimulated human blood-derived

macrophages, dapansutrile reduced IL1B levels by 60% and

IL18 by 70%, in vitro at concentrations 100-fold lower than

plasma concentrations safely achieved in humans (Marchetti

et al., 2018a; Wohlford et al., 2020). Alba Sánchez-Fernández

et al. (2019) found that prophylactic oral administration of

dapansutrile resulted in a significant (2- to 3-fold) reduction in

the protein levels of IL1B and IL18 as well as IL6 and TNFα in the

spinal cord of EAE mice.

Bertinaria discussed whether the bond between dapansutrile

andNLRP3was covalent or non-covalent (Bertinaria et al., 2018). In

fact, small molecules can have multiple binding sites with protein

ligands at the same time. In our simulation studies, we found that the

cyano and sulfone groups of dapansutrile could form hydrogen

bonds with the protein NLRP3. Moreover, the drug usually binds to

the protein target and acts through non-covalent bonds. Therefore, it

is more reasonable to conclude that dapansutrile inhibits NLRP3 by

forming a stable bond with NLRP3 through non-covalent bonds. At

the same time, our results showed that dapansutrilemay not only act

on NLRP3, but also block the downstream signaling pathway of

NLRP3 by IL1B, IL18, IL6, thus reducing the inflammatory

response. It is possible that our simulation results can better

explain the strong NLRP3 inhibitory and anti-inflammatory

effects of dapansutrile.

Therefore, dapansutrile may attenuate inflammation and

reduces pyroptosis by inhibiting the NLRP3 inflammasome to

treat gouty arthritis.

Dapansutrile in the treatment of gouty
arthritis by inhibiting the occurrence of
inflammation and chemotaxis

Dapansutrile may reduce the inflammatory response and the

chemotaxis of inflammatory cells by blocking the activation of IL1B,

CXCL8, and TNF for the treatment of gouty arthritis.

Dapansutrile may impede the activation of IL1B, CXCL8, and

TNF reducing the chemotaxis and activation of inflammatory cells.

IL1B is an important mediator of inflammatory response, and it is

involved in various cellular activities such as cell proliferation,

differentiation and apoptosis. IL1B is also involved in the

pathogenesis of osteoarthritis. KEGG signaling pathway analysis

suggested that IL1B regulated rheumatoid arthritis and

glucocorticoids. GO analysis indicated that IL1B was associated

with protein domain-specific binding. CXCL8 (also known as IL8) is

a chemokine that attracts neutrophils, basophils and T cells. It is not

only involved in neutrophil activation and chemotaxis, but also has a

role in systemic inflammatory response syndrome (SIRS). KEGG

signaling pathway analysis included cellular senescence and MIF-

mediated glucocorticoid regulation. GO analysis included

chemokine activity and interleukin 8 receptor binding. Protein

interaction network analysis indicated that IL1B, CXCL8, and

TNF were jointly engaged in the chemotaxis and activation of

inflammatory cells. TNF is a multifunctional pro-inflammatory

cytokine. This cytokine is mainly secreted by macrophages, it

causes fever by direct action or through IL1B secretion, and has

been implicated in the induction of cachexia. KEGG signaling

pathway analysis suggested that TNF regulated inflammatory

response and inflammatory bowel disease. GO analysis indicated

that TNF affected cytokine activity.

Tengesdal et al. (2021) found that dapansutrile reduced pSTAT3

(Y705) by 82% and IL6 expression by 53%. IL6 binds to its receptor

complex in IL6R/gp130 to activate downstream Janus kinases

(JAKs), which subsequently activate signal converters and

activators of transcription 3 (STAT3) through phosphorylation of

tyrosine 705 (Mauer et al., 2015). König et al. (2021) found that

activation of TNF was dependent on IL6 signaling, and TNF also

limited the action of IL1B. Furthermore, activation of IL6 transsignal

must be “downstream” of TNF signaling (König et al., 2021).

Meanwhile, IL1B is highly expressed NF-κB activator in triple

negative breast cancer (TNBC) (Ignacio et al., 2019). NF-κB can
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increase the expression of TNF-α and IL6 (Huang et al., 2008; Liu

et al., 2013). Therefore, IL1B and TNF-α can regulate each other.

And You et al. (2021) demonstrated that IL1B enhanced the

expression level of CXCL8 in TNBC cells.

Therefore, dapansutrile may reduce the chemotaxis and

activation of inflammatory cells for the treatment of gouty

arthritis by blocking the activation of IL1B, CXCL8, and TNF.

Dapansutrile in the treatment of gouty
arthritis by degrading extracellular matrix

Dapansutrile may regulate extracellular matrix degradation by

reducing MMP3 expression through IL6, IL18, and IL17A in the

treatment of gouty arthritis.

Dapansutrile may reduce the expression of MMP3 by

regulating IL6, IL18, and IL17A, thereby degrading the

extracellular matrix to deal with gouty arthritis. IL6 is

mainly produced at sites of acute and chronic

inflammation, and it has been implicated in various

inflammation-related disease states, including diabetes and

systemic rheumatoid arthritis. Protein interaction network

analysis showed that IL6, IL18, IL17, and MMP3 were closely

connected with each other. KEGG signaling pathway analysis

showed that IL6 was involved in dendritic cell developmental

lineage pathways and cellular senescence. GO analysis

included signaling receptor binding. IL17A is involved in

inducing the production of inflammatory molecules,

chemokines, antimicrobial peptides and remodeling

proteins. IL17A plays a key role in inducing innate

immune defenses, and IL17A stimulates non-hematopoietic

cells and promotes the production of chemokines, which

attract bone marrow cells to sites of inflammation. KEGG

signaling pathway analysis included MIF-mediated

glucocorticoid regulation and IL17 family signaling

pathways. GO analysis included cytokine activity. IL18 is

associated with tissue and organ damage and plays an

important role in potentially fatal diseases characterized by

cytokine storm. KEGG signaling pathway included MIF-

mediated glucocorticoid regulation and IL-1 family

signaling pathway. MMP3 is involved in the breakdown of

extracellular matrix in arthritis and metastasis. MMP3 is

regarded as involved in wound repair, atherosclerosis

progression and tumor initiation. KEGG analysis included

Gastrin-CREB signaling through PKC and MAPK. GO

analysis included calcium binding and metallopeptidase

activity.

Studies have shown that dapansutrile can inhibit the IL6/

STAT3 axis to inhibit breast cancer metastasis (Siersbæk et al.,

2020; Tengesdal et al., 2021). Tantilertanant et al. (2019) found

that circulating tension-upregulated IL6 increased

MMP3 expression in human periodontal ligament cells. The

IL6 amplifier (IL6 Amp) is an amplification mechanism, the

synergistic interaction of STAT3 with nuclear factor-κB (NF-κB)
produces IL6 and various other cytokines and chemokines (Hirano,

2010; Murakami et al., 2013; Atsumi et al., 2014). Moreover, study

found that IL6 could activate NF-κB through the IL6-STAT3 axis

(Hirano, 2021). Wang et al. (2019) found that IL18 promoted MMP

secretion in human periodontal ligament fibroblasts by activatingNF-

κB signaling. Koenders et al. (2005) found that IL17A promoted

gastric cancer invasiveness through NF-κB-mediated expression of

MMP2 and MMP9. Therefore, IL17A and IL18 regulate

MMP3 expression through NF-κB. At the same time, the

proinflammatory cytokines IL1B and TNF-α produced after

activation of the NLRP3 inflammasome can also promote the

expression of MMP3 (Burrage et al., 2006; You et al., 2021).

Therefore, Dapansutrile may decrease the expression of

MMP3 by regulating IL6, IL18, and IL17A, thereby degrading

the extracellular matrix for the treatment of gouty arthritis.

Analyze the value of dapansutrile in the
treatment of gouty arthritis

Gouty arthritis is a metabolic rheumatic disease caused by

disorders of purine metabolism and reduced synthesis or excretion

of uric acid. Therefore, the treatment of gouty arthritismainly revolves

around correcting the metabolic abnormalities and reducing the

inflammatory response of the body. Current studies have shown

that dapansutrile alleviates the clinical symptoms of gouty arthritis by

suppressing the inflammatory response, and that dapansutrile has

good therapeutic effects and few side effects.

The results of our study further validated the important role

of dapansutrile in reducing the inflammatory response. And we

believed that dapansutrile could reduce the inflammatory

response and body damage not only through NLRP3 but also

through other protein targets (such as: MMP3, IL1B, and IL18).

Moreover, the further development of related drugs should focus

on and learn from some of the characteristics of dapansutrile.

Firstly, dapansutrile has a very simple structure, and its molecular

weight is around one hundred. The simple molecular structure

allows dapansutrile to have satisfactory transmembrane ability,

the excellent transmembrane ability provides the basis for

dapansutrile to inhibit the intracellular inflammatory

response. Secondly, dapansutrile has good absorption, which

can effectively improve drug utilization and reduce drug

dosage, thus reducing drug side effects. Based on the good

absorption properties, dapansutrile is currently being

developed for oral administration. Finally, the clear and

reliable biosafety proof is the biggest advantage of

dapansutrile. The development and improvement of any

related drug must be based on the principle that there is no

or minimal biological toxicity.

The summary of the mechanisms analysis of dapansutrile

in the treatment of gouty arthritis is shown in Graphical

Abstract.
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Conclusion

This study explored the pharmacological mechanism of

dapansutrile in the treatment of gouty arthritis by molecular

docking and molecular dynamics simulation based on

molecular system movement. This study found that

Dapansutrile may not only directly inhibit NLRP3 to

reduce the inflammatory response and pyroptosis, but also

hinder the chemotaxis and activation of inflammatory cells

by regulating IL1B, IL6, IL17A, IL18, MMP3, CXCL8,

and TNF.

Therefore, Dapansutrile treats gouty arthritis by

attenuating inflammatory response, inflammatory cell

chemotaxis and extracellular matrix degradation by acting

on multiple targets.
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Glossary

ACR The American College of Rheumatology

AGA Acute gouty arthritis

ASC Apoptosis-associated speck-like protein

BP Biological process

CARD The caspase recruitment domain

CC Cellular component

CXCL8 C-X-C motif ligand 8

DAMPs Damage-associated molecular patterns

GO Gene ontology

HF Hartree-Fock

IL17A Interleukin 17A

IL18 Interleukin 18

IL1B Interleukin 1 beta

IL6 Interleukin 6

KEGG Kyoto Encyclopedia of Genes and Genomes

LRR Leucine-rich repeat

MAPK Mitogen-activated protein kinases

MD Molecular dynamics

MF Molecular function

MIF Macrophage migration inhibitory factor

MMP2 Matrix metalloproteinase 2

MMP3 Matrix metalloproteinase 3

MMP9 Matrix metalloproteinase 9

MM-PBSA Molecular Mechanics-Poisson Bolzmann

Surface Area

MSU Monosodium urate

NACHT Nucleotide-binding and oligomerization

NF-κB Nuclear Factor Kappa B

NLRP3 The NACHT, LRR, and PYD domains-containing

protein 3

NLRs NOD-like receptors

NSAIDs Non-steroidal anti-inflammatory drugs

NYHA New York Heart Association

PAMPs Pathogen-associated molecular pattern molecules

PKC Protein Kinase C

PME The Particle-Mesh-Ewald

PPI Protein-protein interaction

PRRs Pattern recognition receptors

PYD Pyrin domain

RMS Root mean square

RMSD Root mean square deviation

RMSF Root mean square fluctuation

SASA Solvent accessible surface area

SIRS Systemic inflammatory response syndrome

STAT3 Signal transducer and activator of transcription 3

TNBC Triple negative breast cancer

TNF Tumour necrosis factor alpha

Vdw Van der Waals force
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Manihot esculenta, commonly called cassava, is an economically valuable crop

and important staple food, grown in tropical and subtropical regions of the

world. Demand for cassava in the food and fuel industry is growing worldwide.

However, anthracnose disease caused by Colletotrichum gloeosporioides

severely affects cassava yield and production. The bioactive molecules from

Bacillus arewidely used to control fungal diseases in several plants. Therefore, in

this study, bioactive compounds (erucamide, behenic acid, palmitic acid,

phenylacetic acid, and β-sitosterol) from Bacillus megaterium were assessed

against CDC42, a key protein for virulence, from C. gloeosporioides. Structure

of the CDC42 protein was generated through the comparative homology

modeling method. The binding site of the ligands and the stability of the

complex were analyzed through docking and molecular dynamics simulation

studies, respectively. Furthermore, a protein interaction network was envisaged

through the STRING database, followed by enrichment analysis in the

WebGestalt tool. From the enrichment analysis, it is apparent that bioactive

from B. megaterium chiefly targets the MAP kinase pathway that is essential for

filamentous growth and virulence. Further exploration through experimental

studies could be advantageous for cassava improvement as well as to combat

against C. gloeosporioides pathogen.
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Introduction

Plants are an important source for humans, animals, birds,

and other living organisms. Plants protect themselves from a

variety of biotic and abiotic stresses (Gong et al., 2020). Biotic

stress occurs due to bacterial and fungal pathogens (Peck and

Mittler, 2020). One of the important plants on which more

than 800 million people worldwide are depending for major

food sources is Manihot esculenta Crantz (Atwijukire et al.,

2019). The crop, commonly known as cassava, is enriched

with several nutrients such as starch, carotenoids, vitamins,

and minerals. Cassava is consumed as the primary food source

mainly in the regions of tropical and sub-tropical countries.

Later, due to increased industrial importance such as the

production of animal feed, biomedicine, and cosmetics, the

production of cassava has been highly increased (Li et al.,

2017). In addition, the raw materials from M. esculenta were

used for biopolymer, starch, and bioethanol production (El-

Sharkawy 2004). Apart, the by-products from the cassava

industries are rich with organic residues essential for the

production of value-based products (Ayling et al., 2012).

Hence, the crop with human value and with the immense

industrial application was cultivated by both low-scale and

high-scale cultivators. However, the plant is restricted at an

economical level due to several factors such as the presence of

cyanogen compounds (Balyejusa Kizito et al., 2007), a low

level of proteins, and infectious disease.

Anthracnose disease (AD) damages the healthy planting

materials of cassava, leading to low yield and total economic

loss for the planters. AD occurs in cassava due to the fungal

pathogen Colletotrichum gloeosporioides f. sp. manihotis

(Machado et al., 2020). The fungal strain infects the shoot tips

of the healthy plants; develops cancerous growth on the stem and

leaves. AD is notorious to cause shoot tip-die-back disease

because the pathogen infects the stem region, weakens the

parts and leads to major destruction during strong wind and

rain (Pinweha et al., 2015). The primary interaction of the

pathogen with the cassava plant was established by producing

an infection cell known as appressorium. The melanized cell

surrounding the aspersorium supports the internal solute

concentration and rigidity of the cells (Wang et al., 2021).

After the interaction with the host, the pathogen develops

infection vesicles and primary hyphae. Later, the fungi

develop secondary hyphae structures that spread the infection

and kill the plants. Generally, after the successful infection into

the host, the fungi adapt to the biotrophic mode of nutrition for

their survival (Li et al., 2021). The pathogen produces lesions on

leaves, stems, and other parts of the plant. Sequentially, switches

to the necrotrophic mode of nutrition in which the pathogen

absorbs nutrition from the dead cells of the infected region. This

nutrition adaptation by the pathogen is known as the

hemibiotrophic mode of infection (Jacobs et al., 2019). Thus,

it is very challenging to impair the growth and spread of infection

by C. gloeosporioides. This pathogen also infects humans but

knowledge about the type of disease and mode of infection is not

clear so far.

To prevent fungal infection, chemical fungicides were widely

used to control the disease (Ons et al., 2020). The use of several

fungicides has resulted in impacts on human health and

environmental issues. Hence, as an alternative approach to

overcome AD-mediated damage in the cassava, different novel

approaches were promoted for the development of fungal

resistant-cassava crops (Koehorst-van Putten et al., 2012). The

genetic engineering approach was one of the conventional

strategies known to be the most economical, safe, and

effective method to generate anthracnose disease-resistance

cassava plants (Hormhuan et al., 2020). The use of a

conventional breeding strategy with cassava crops leads to

high heterozygosity, low fertility, delayed flowering, and

prolonged vegetative stage. Hence, the approach of

Agrobacterium-mediated transformation is considered to

improve the acquired resistance in plants. One of the

important plant-pathogen resistance genes, transferred into

cassava has been reported to show improved resistance

against a wide variety of plant pathogens. Thus, alternative

strategies were required to incredulous the current scenario of

anthracnose disease in cassava plants. The cell division cycle

(CDC42) protein present in the fungi performs the function of

the molecular switch by regulating signal transduction pathways

and cytoskeleton-mediated cellular process. The protein belongs

to the Rho-family of the GTP-binding protein, which plays a

pivotal role in the transduction of polarity signals for

morphogenetic development (Wang et al., 2018). The

CDC42 protein also plays an important role in cell

differentiation and appressoria development. CDC42 protein

reported with plants is highly diverse, however, the protein is

conserved in other eukaryotic species. The protein CDC42 from

different fungal species (Magnaporthe grisea, Claviceps purpurea,

andUstilago maydis) has a key role in plant-pathogen interaction

(Oeser et al., 2017; Zheng et al., 2009). Thus, the deletion of

CDC42 from pathogens has significantly reduced the virulence

mechanism during infection. Therefore, in the present study,

CDC42 of C. gloeosporioideswas selected as the therapeutic target

to screen for inhibitors against the protein. Also, the detailed

investigation using a protein-protein interaction network will

pave the way to study the characteristic properties of

CDC42 involved in the different biological processes of host-

pathogen interaction.
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Materials and methods

Generation of homology model and
structure validation

The three-dimensional structure of Cell division control

protein 42 homologs (CDC42) from C. gloeosporioides was

determined through the comparative homology modeling

method. The structure of CDC42 was built through the

SWISS-MODEL server (https://swissmodel.expasy.org/). The

accuracy of the model was assessed by QMEAN4 score

analysis (Benkert et al., 2011). Later, energy minimization was

performed using the steepest descent algorithm using

GROMACS (Van Der Spoel et al., 2005). The structure of the

predicted model was assessed through the structure validation

tool SAVES v6.0 program - VERIFY 3D (Agarwal et al., 2021;

Hasan et al., 2021), ERRAT (Adewole and Ishola, 2021), WHAT

CHECK (Sekhar Pagadala et al., 2009), and PROCHECK analysis

(Laskowski et al., 1996). The geometry and stereochemistry of the

modeled structure were analyzed through the Ramachandran

plot analysis method (Agarwal et al., 2021). In addition,

structural validation of the generated model was performed

through ProSA score analysis (Wiederstein and Sippl., 2007).

Then, the overall quality score of the homology model was

compared with the score of the template structure.

Binding site prediction
Prediction of druggable cavities is a crucial step for structure-

based drug designing. The active site as predicted for

CDC42 model protein using sitemap. The prediction of the

active site reveals the shape, size and chemical interaction of

the ligands with the receptor protein.

Molecular docking

Five monomeric bioactive compounds identified from the

ethyl acetate extract of Bacillus megaterium erucamide, behenic

acid, palmitic acid, phenylacetic acid, and β-sitosterol, were

examined against CDC42 protein of C. gloeosporioides. The

structure of the bioactive compounds was obtained from the

PubChem database. The selected ligands were prepared and the

three-dimensional (3D) coordinates were generated. For

molecular docking, the proteins used for the study were

prepared using protein preparation wizard. The proteins were

subjected for H-bond optimization. The entire protein structure

were relaxed using Uff force field. Energy minimization for

protein and ligand was performed before docking using

default parameters. Autodock tools were utilized for the

addition of hydrogen, Kollman charges, and solvation

parameters (Azam and Abbasi, 2013). Molecular docking was

performed through the Autodock Vina program (Trott and

Olson, 2010). The grid size of 3 Å for the coordinates X, Y,

and Z centered at X: 12.20; Y: 5.95; Z: 7.22 with a grid spacing of

0.375 Å was used for the docking program. The pose with the

lowest binding energy was selected as the best conformation. The

modeled structures were visualized through the BIOVIA

Discovery Studio visualizer (Studio, 2015). Molecular

mechanics of combined generalized born surface area and

surface area continuum solvation (MM/PBSA and MM/

GBSA) methods were performed for studying the effectiveness

of interaction. The calculation for average binding free energy

ΔGbind was represented for estimating the free energy of ligands

binding to the macromolecules. During molecular dynamics

simulation of the receptor-ligand complex, the molecular

mechanics is applied with empirical scoring and perturbation

methods for predicting the accuracy during their simulation run.

The formula for average binding free energy ΔGbind was

calculated as; ΔGbind = ΔEMM+ ΔGSolv+ ΔGSA.
ΔEMM: denotes minimized energies of protein and ligand.

ΔGSolv: solvation-free energy.

ΔGSA: surface area energy.

ADMET properties of the ligands
SMILE structure of the lead molecules used for the present

study were downloaded from Pubchem database. The

pharmacokinetic properties of molecules were predicted using

ADMETSAR2.0. The properties such as acute oral toxicity, BBB,

fish aquatic toxicity and carcinogenicity of the molecules were

analysis.

Molecular dynamics simulation

For each protein-ligand system, their pose with the lowest

binding energy was assessed. The system was minimized and

equilibrated under the number of particles, volume, and

temperature (NVT) and the number of particles, pressure, and

temperature (NPT) conditions. The molecular dynamics

simulation was performed for 50 ns in DESMOND with GPU

support. The Optimized Potential for Liquid Simulations (OPLS)

force field was used. The system was solvated in a dodecahedron

box using a simple point charge (SPC) model with a periodic

boundary condition. The system was neutralized by adding

sodium chloride ions. Energy minimization was performed

through the steepest descent algorithm. Harmonic position

restraints were applied during the NVT ensemble simulation.

The molecular dynamics production runs were carried out at a

2 fs time step. Temperature and pressure were controlled by

setting the Langevin dynamics and Berendsen barostat at 300 K

and 1 bar, respectively. Standard periodic boundary conditions

and cut-off distance (1 nm) were updated. The particle-mesh

Ewald (PME) method was used to assess the interactions. The

bonds were constrained with a linear constraint solver (LINCS)

and the water molecules were constrained with SETTLE (Hess

2008; Tripathi et al., 2022). Molecular dynamics simulation was
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evaluated using root mean square deviation (RMSD) and

hydrogen bond analysis.

STRING analysis

The interacting proteins of CDC42 were predicted through

the STRING database (http://string-db.org) and the network is

built by providing the CDC42 protein sequence in the input box.

The search was performed against C. gloeosporioides. The

confidence score was set to high (0.7). The interactions were

based on the experiments, co-expression, databases, gene fusion,

neighborhood, and co-occurrence. The maximum number of

interactions was set to no more than ten in the first and second

shells.

Identification of clusters from the protein-
protein interaction network

Clustering of interactions from large protein-protein

interaction networks is essential to define the molecular

complexes and topological modules. It is difficult to

comprehend and interpret the network properties as such in

FIGURE 1
Three-dimensional structure of CDC42 predicted through homology modeling (B) The structure of CDC42 protein superimposed with the
template (2NGR) structure. (C) Binding site prediction representing the active site region (pink).
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large protein-protein interaction networks. Therefore, clustering

of networks is significant in unraveling the pure network

properties as well as finding the network connections in the

dense regions. The network obtained from the STRING database

is a network based interaction evidence for data support. The

obtained network was reconstructed in Cytoscape 3.8.0. The

constructed network was evaluated further using Molecular

Complex Detection (MCODE) plug-in to visualize the central

network. The cut off parmaters were set as MCODE score >3 and
node number >4. The subclusters generated were further

visualzed and group to study the clossness and degree of

interaction in their group.

Gene ontology (GO) analysis and protein
interaction analysis

The gene ontology (GO) analysis was performed in which the

functional annotation was achieved through DAVID (database

for annotation, visualization, and integrated discovery) database.

GOView, a web-based WebGestalt (WEB-based GEne SeT

AnaLysis Toolkit) application, is used to visualize and

compare the interactional relationship in the network (Zhang

et al., 2005; Zhang et al., 2004). Furthermore, the central gene sets

were annotated and the hierarchical associations were defined.

The protein SHO1 involved in the MAPK signaling pathway was

modelled using modeler. SHO1 from yeast was used as the

template (2vkn. Pdb) with 61.02% with target sequence. The

model of SHO1 and CDC42 was loaded into Patchdock server

and protein-protein docking was performed (Yousafi et al.,

2021). The protein complex was analysed and results were

represented.

Results

Generation of homology model and
structure validation

The protein sequence of the CDC42 homolog of C.

gloeosporioides (O94103) was retrieved from the NCBI

database (https://www.ncbi.nlm.nih.gov/protein/O94103). The

sequence contains 190 amino acids and belongs to the small

GTPase superfamily, the Rho family. The sequence was predicted

to contain three nucleotides (GTP) binding regions: 12–19

(GDGAVGKT), 59–63 (DTAGQ), and 117–120 (TERG).

Based on sequence homology, the molecular function involves

GTPase activity and the biological process involves cell cycle and

cell division. The sequence contains a propeptide region from

amino acid 188 to 190 (LVL), which is predicted to be cleaved

during protein maturation or activation. The detail for the

propeptide region was revealed through the prediction

evidence sequence similarity search tool ECO:

0000250 mentioned in the NCBI protein sequence database.

The structure of this CDC42 protein was predicted through

comparative homology modeling. It showed 70.83% sequence

TABLE 1 Docking score of different ligands from B. megaterium with CDC42 protein.

S. No PubChem ID Compound name Dock score (kJ mol −1) ΔGbind (Kcal/mol)

1 222284 beta-Sitosterol −10 -42.35

2 999 Phenylacetic acid −10 -39.26

3 985 palmitic acid −9.4 -41.51

4 8,215 Behenic acid −9.2 -37.90

5 5365371 Eurcamide −9.2 -39.49

TABLE 2 GO Slim summary is based on Entrez gene IDs.

S. No Gene symbol Gene name Entrez gene

1 BMH1 14-3-3 family protein BMH1 856924

2 BUD6 Bud6p 851029

3 CLA4 serine/threonine protein kinase CLA4 855418

4 SHO1 osmosensor SHO1 856854

5 SPA2 Spa2p 850639

6 STE50 Ste50p 850325
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FIGURE 2
3D and 2D representation of molecular docking of CDC42 with ligands from B. megaterium. The ligands and their interaction are shown with
the line diagram. The color code green color represents the hydrogen bond. Purple color represents pi-sigma interaction. Light pink color
represents, pi-alkyl and alkyl interaction. (A,B) = beta sitosterol, (C,D) = Phenylacetic acid, (E,F) = palmitic acid, (G,H) = Behenic acid and (I,J) =
Eurcamide.
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similarity with 98% query coverage with human cell division

control protein 42 homolog. The modeled structure was

superimposed with the template structure and it is shown in

Figure 1. The overall quality factor obtained during ERRAT

analysis is 77.5281. In Verify3D, around 80.65% of the amino

acid residues have scored≥0.2 in the 3D/1D profile.

TABLE 3 Predicted ADME physio-chemical properties of the docked compounds, all the tables cited correctly.

Compound name Human intestinal
absorption

BBB Acute oral toxicity
(log (1/(mol/kg))

Fish aquatic toxicity Carcinogenicity (binary)

Beta sitosterol 0.9930 0.9247 1.989 0.9917 0.9714

Phenylacetic acid 0.9490 0.9659 1.697 0.4220 0.7286

palmitic acid 0.8417 0.9725 1.16 0.9178 0.6571

Behenic acid 0.8417 0.9725 0.6378 0.9178 0.6571

Eurcamide 0.9186 0.9969 0.6537 0.7699 0.6429

FIGURE 3
(continued).
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Ramachandran’s Z-score was found to be −2.077 in the

WHAT CHECK analysis. In Ramachandran plot analysis

88.7% amino acid residues were found in the most allowed

regions. Around 10.7% residues were present in additionally

allowed regions and 0.6% amino acid residues were found in

generously allowed regions. The overall quality analyzed

through ProSA Z-score displayed a −6.62 value for target

CDC42 homology while the template displayed a Z-score

value of -7.59. This Z-score comparison between the target

and the template suggests the resemblance in the geometry of

the conformations between the target and template. Structural

validation was shown in (Supplementary Figure S1).

Altogether the structural verification suggested the

consistency of the generated model.

Molecular docking

The molecular docking results for active compounds

identified from B. megaterium were shown in Table 1.

Inconsistent with previous reports from Xie et al. (2021), the

results from the present study also showed β-sitosterol and

phenylacetic acid as the top hits in molecular docking.

Through binding site prediction, it was observed that Leu158,

Ser121, Thr117, Glu118, Ser88, Thr87, Ala15, Glu18, and

Gly14 are the active residues of CDC42. Active site region is

distributed with polar (Ser and Thr), hydrophobic residues (Leu

and Ala) and negatively charged (Glu) residues. The presence of

Ser residues in the active region are responsible for the

interaction with the lead molecules. Presence of single Ser

residues are responsible for enzymatic reaction. The binding

site region consist of two Ser residues responsible for interaction

of the lead molecules. Both the ligand, β-sitosterol and

phenylacetic acid, presented the highest dock score

of −10 kJ mol −1. The next top hit obtained was palmitic acid

(−9.4 kJ mol −1) followed by behenic acid (−9.2 kJ mol −1) and

erucamide (−9.2 kJ mol −1). The representative 2D and 3D

images were presented in Figure 2. The CDC42 homolog

protein with phenylacetic acid displayed van der Waals

interactions with Gly17, Val16, Lys18, Thr37, Thr60, Ala61,

Pro36, Val35, Tyr34; conventional hydrogen bond interactions

with Gly62, Gln63; carbon-hydrogen bond and pi-donor

hydrogen bond interactions with Ala15, Gly14; and pi-sigma

bond interaction with Thr19. The CDC42 protein with β-

FIGURE 3
(A) Molecular dynamics simulation of CDC42 with ligands (β-sitosterol, phenylacetic acid, palmitic acid, behenic acid, and erucamide); (B)
H-bond interaction of CDC42 and ligand molecules.
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sitosterol displayed van der Waals interactions with Pro115,

Ser121, Ser156, Thr117, Phe30, Val123, Glu118, Thr87, Ala15,

and Gly14; conventional hydrogen bond interaction with Ser88;

and alkyl bond interaction with Leu158. Palmitic acid displayed

van der Waals interactions with Phe80, Pro105, Gly108, Arg101,

Ser100, Gly148, Ala144; conventional hydrogen bond

interactions with Ser104, Pro107; and alkyl bond interactions

with Val109, Ala149, Met143, Leu111, Val82, Leu147, Val95. The

CDC42 homolog with behenic acid displayed van der Waals

interactions with Thr87, Glu118, Thr117, Asp13, Gly14, Asp59,

Thr19; conventional hydrogen bond interactions with Ala15,

Val16, Gly17, Lys18; alkyl and pi-alkyl bond interactions with

Pro115, Ala157, Leu158, Tyr34, Phe30, Cys20. Erucamide

showed van der Waals interactions with Tyr34, Ala15, Gly17,

Val16, Thr117, Glu118, Val123, Ser85; (Table 2) conventional

hydrogen bond interaction with Thr87; alkyl and pi-alkyl bond

interactions with Cys20, Phe30, Pro115, Ala157, Leu158. From

the free energy calculation, it was observed that β-sitosterol
obtained the highest binding energy of -42.35 (Kcal/mol)

compared to the other molecules used for docking. Palmitic

acid with an energy of -41.51(Kcal/mol) was observed as second

highest compound showing highest binding affinity. The other

compounds such as phenylacetic acid, Eurcamide, and Behenic

acid was observed with -39.26, -39.49 and -37.90 was observed

with binding energy respectively.

ADMET

All the compounds were predicted positive for intestinal

absorption and blood brain barrier. Also, from the predicted

results it was observed that the compounds were non AMES toxic

and non-carcinogenic. Hence the predicted compounds were

determined non-toxic and can be used extensively for further

studies. Also, β-sitosterol was previously predicted as FDA

approved drug with no side-effects (Babu and Jayaraman,

2020). Based on the pharmacokinetic properties, the molecules

were predicted to be lead molecules (Table 3).

Molecular dynamics simulation

Molecular dynamics simulation is an efficacious method for

validating the stability of the ligands (β-sitosterol, phenylacetic
acid, palmitic acid, behenic acid, and erucamide) docked into the

binding pocket of CDC42. For this, all-atommolecular dynamics

(MD) simulation study was applied which is regarded as a

valuable approach to study the dynamic behavior of the

ligands and proteins along with their key interacting residues.

Thus, the obtained protein-ligand complexes through molecular

docking were enrolled for 50 ns of all-atom MD simulation. MD

simulation results revealed the protein-ligands exhibited

FIGURE 4
STRING network analysis displaying protein-protein interactions. Color nodes represents query proteins and first shell of interactions. Red color
node represents cluster 1, green color represents cluster 2 and blue color represents cluster 3.
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successful conversion of the initial start of run from 15 ns

(Figure 3). The trajectories analysis of the MD run has shown

the rise of initial frames at an average of 15 ns. However, the

RMSD level of the trajectories proceeded with the average values

with minimal fluctuation until 20 ns. The ligand β-sitosterol
showing interaction with CDC42 during MD simulation has

exhibited an initial rise of the frames from 10 to 15 ns. The

standard plateau throughout the MD simulation interval was

FIGURE 5
(A) Gene ontology analysisrepresents role of proteins in different process such as biological process, cellular and molecular function. The
number of proteins involved in different process were represented above each bar. (B) node attribute enumerator analysis using MCODE available
with Cytoscape (Maroon color subnetwork- 1; Cyan subnetwork-2); The subnetwork 1 is occupied with maximum numbers of proteins and
subnetwork 2 is occupied with 3 proteins(C) Subnetworks - three clusters are highlighted in blue and the functional involvement of three
clusters are represented in white font.

Frontiers in Molecular Biosciences frontiersin.org10

Papathoti et al. 10.3389/fmolb.2022.1010603

34

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.1010603


observed from 20 to 50 ns. The average RMSD for β-sitosterol
was observed as 2.10 ± 0.20 Å. This dynamic behavior confers a

more stabilized accommodation of β-sitosterol into the binding

pocket of the CDC42 throughout the MD simulation. The

average RMSD values for phenylacetic acid, throughout the

plateau MD simulation interval (12–28 ns) was 3.1 ± 0.50 Å.

However, the plateau showed a rise in level after 30 ns and

remained stable until 50 ns with an average RMSD of 3.5 ±

0.30 Å. Palmitic acid showed a higher shift in trajectory frames

with an RMSD value rise from 3.1 ± 0.50 Å to 4.3 ± 0.10 Å after

25 ns. However, both the ligands phenylacetic acid and palmitic

acid have converged around the comparable trajectory frames

with an average RMSD value of approximately above 3.5 Å. This

dynamic difference between palmitic and phenylacetic acid has

shown that the ligands might have deviated from the original

interaction compared to the β-sitosterol ligand complex. The

other ligands such as behenic acid and eurcamide have shown

differential dynamic behavior, which confers the ligands shift

from the binding pocket. Eurcamide initial rise in the trajectory

level at 15–20 ns was about 3.1 ± 0.10 Å. Later, the plateau was

depicted as steady until the end of the simulation around 50 ns.

Similarly, behenic acid has shown a rise in the level of the plateau

after 28 ns, which confirms the significant ligand, shifts out of the

CDC2 pocket, and remained stable till the end of the MD run.

Thus, the overall analysis of the MD simulation run suggests the

ligand β-sitosterol has stable conformation into the binding

pocket of CDC42. Comparatively, phenylacetic acid and

palmitic acid have also been found to be stable. Euracamide

and behenic acid ligands were observed to alter their position in

their binding pocket of CDC42. The hydrogen bond formation

plays a significant role during molecular interaction between the

ligand and protein (CDC42). The term hydrogen bond donor

and acceptor during hydrogen bonding indicate hydrogen atom

from the donor and the acceptor with lone pair of electrons.

From the MD simulation run, it was observed that β-sitosterol
and palmitic acid shared a maximum of eight hydrogen atoms

throughout the run. Phenylacetic acid has shared a maximum of

four hydrogen bonds throughout the simulation run. Overall, the

number of hydrogen bond donors, as well as acceptors, are within

the range for β-sitosterol and palmitic acid (Figure 3B).

STRING analysis

The protein-protein interaction network predicted through

STRING analysis is shown in Figure 4. The network comprises

21 nodes; 133 edges; 12.7 average degree nodes; 0.812 average

local clustering coefficient; 31 expected edges with protein-

protein interaction enrichment values less than 1.0e−16. In

Figure 4, color nodes represent the query protein and first

shell of interactors while the white nodes represent the second

shell of interactors. The empty nodes indicate proteins with an

unknown 3D structure. The network edges represent the

confidence mode in which the thickness of the line indicates

the strength of the data support. From Figure 4, it is clear that

there is no 3D structure available for the first and second shell

interactors. Hence, further studies are required to understand the

complex mechanism and detailed functions of the

TABLE 4 KEGG enrichment analysis for enriched gene set.

GeneSet Description Size Overlap Expect Enrichment
ratio

pValue FDR Gene symbol

sce04011 MAPK signaling pathway 114 5 0.109986 45.46053 1.12E-08 4.02E-05 BMH1; CLA4; SHO1; SPA2;
STE50

GO:
0030447

filamentous growth 135 5 0.130246 38.38889 2.64E-08 4.02E-05 BMH1; BUD6; SHO1; SPA2;
STE50

GO:
0000165

MAPK cascade 42 4 0.040521 98.71429 2.67E-08 4.02E-05 CLA4; SHO1; SPA2; STE50

GO:
0023014

signal transduction by protein
phosphorylation

47 4 0.045345 88.21277 4.25E-08 4.80E-05 CLA4; SHO1; SPA2; STE50

GO:
0040007

growth 177 5 0.170767 29.27966 1.04E-07 9.36E-05 BMH1; BUD6; SHO1; SPA2;
STE50

GO:
0001402

signal transduction involved in
filamentous growth

13 3 0.012542 239.1923 1.42E-07 1.07E-04 BMH1; SHO1; STE50

GO:
0031399

regulation of protein modification process 212 5 0.204534 24.44575 2.56E-07 1.66E-04 BMH1; CLA4; SHO1; SPA2;
STE50

GO:
0035556

intracellular signal transduction 252 5 0.243126 20.56548 6.10E-07 3.45E-04 BMH1; CLA4; SHO1; SPA2;
STE50

GO:
0043408

regulation of MAPK cascade 32 3 0.030873 97.17188 2.45E-06 0.00123 CLA4; SHO1; SPA2

GO:
0001932

regulation of protein phosphorylation 133 4 0.128316 31.17293 2.90E-06 0.001312 CLA4; SHO1; SPA2; STE50
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CDC42 homolog in establishing pathogenicity and diseases in

plants.

Clusters identification through MCODE
analysis and GO classification

A subnetwork was constructed and the result was visualized

through Cytoscape. CDC42 has shown interaction with SHO1,

STE50, SPEA2, A0A4U6XE38, MAPK, CLA4, A0A4U6XNA7,

MST20, SCD2, SCD1, RHOA, GB-1, SEPA, RHOC,

A0A4U6XUS1, BUD6, RGA4, BMH1, A0A4U6XTJ5, and

DNMBP. Further functional enrichment and Gene ontology

analysis performed through the WEB-based GEneSeT

AnaLysis Toolkit depicting three fundamental categories were

presented in Figure 5A. The three main categories are biological

process, cellular components, and molecular function. MCODE

provides a real-time cluster assessment quality. The node

attribute enumerator provides a numerical summary of node

attribute values as shown in Figure 5B. Node attribute that is

available for the loaded network is shown in box-1 which

contains 15 nodes and 94 edges. The members of the clusters

are represented in red. Exploration of clusters is shown in box-2

which contains 3 nodes and 3 edges. The members of the clusters

are represented in red. The node scoring the highest value in the

cluster is referred to as the seed. It is the node from which the

cluster was derived, and it is represented in squares, and other

cluster members are represented in circles. Edges indicating the

interactions are represented in blue while the edge directionality

is represented by arrows. New sub-clusters formed from the main

cluster is shown in Figures 5C,D. The GO Slim summary is based

on 6 unique Entrez gene IDs including BMH1, CLA4, SHO1,

SPA2, STE50, and CDC42. Among 6 unique Entrez gene IDs,

6 IDs are annotated to the selected functional categories and also

in the reference list, which are used for the enrichment analysis.

All the genes mentioned above are predicted to play an important

role in the MAP kinase pathway. The enrichment analysis

revealed that the gene is mainly involved in filamentous

growth, signal transduction (by protein phosphorylation), and

MAPK cascade. Altogether, the KEGG enrichment analysis

revealed the association of the MAPK signaling pathway. The

enriched gene set for the MAPK signaling pathway was found to

FIGURE 6
Protein-protein docking of the CDC42 with SHO1 from C. gloeosporioides (A) model proteins of CDC42 (pink) and SHO1 (blue). (B)and (C)
interaction of themodel proteins (D) pictorial representation of the interactionmodel and number of interactions (E) residues involved in interaction.
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have a p-value of 1.1214e−8; an enrichment ratio of 45.46 The false

discovery rate for the network was predicted as 0.00004 for a gene

set size of 114 (Table 4). The protein sequence of SHO1 of C.

gloeosporioides with the accession id A0A1B2LQ50 was obtained

from Uniprot database. The sequence alignment of target and

template sequence (yeast SHO1) with the sequence coverage of

61.02% was used for modelling the protein. Interaction analysis

of CDC42 and SHO protein has shown 14 residues from each

protein have good binding affinity. H-bond (6), non-bonded 149)

and 2 salt bridges were established between the drug target

(CDC42) and SHO1 (Figure 6).

Discussion

Anthracnose disease occurrence in cassava can lead to total

economic loss for the cultivators by damaging the total harvest into

the rotting waste. Anthracnose disease occurs in plants due to

fungal species of the genus Colletotrichum. The species such as C.

fructicola, C. gloeosporioides, C. tropicale, C. theobromicola, C.

siamense, C. brevisporum, and C. plurivorum are the most

common group of plant pathogens that are responsible for

diseases on many plant species. Infected plants with fungal

strains develop dark patches and lesions on stems, leaves, or

any parts of the plant. The lesions occurring on the infected

region (leaves, stem) appear to be the gelatinous masses of

spores. The fungi during infection come in close contact with

the adherence of the spores. The germination starts after several

hours with favorable conditions such as temperature. During the

suitable temperature, the fungi germinate the conidia and produce

the germ tubes. Fungi develop appressorium and arrest the

elongation of the germ tube. The penetration of appressorium

promotes turgor pressure and fungi colonize the plant tissues,

which appear like a canker.

The role of genes in the penetration and development of

infection has not been revealed so far in cassava. However,

mitogen activator (PMK1, MPS1), ATPase (PDE1), Tetraspanins

(PLS1), and fungal effector genes were reported as important genes

for infection in rice blast fungus. CDC42, an important protein

essential for cell division and cell cycle from cassava, was

investigated as the molecular target for the present study. From

the sequence analysis, CDC42 was revealed with 190 amino acids

and belongs to the small GTPase family. In fungi, the presence of

the small GTPase is essential for both beneficial and pathogenic

interaction with the plant system. The small GTPases of cassava are

characterized as Rho family, essential for the formation of virulence,

a fusion of pathogen with plant cell, and production of reactive

oxygen species (ROS). Thus, the protein with three motifs is

structurally essential for the GTPase activity. In absence of the

three-dimensional structure, the protein was modeled based on

sequence similarity. The CDC42protein fromC. gloeosporioides has

shown 70.83% homology with CDC42 of humans with query

FIGURE 7
Details of the overall mechanism representing CDC42 from C. gloeosporioides involved infection and inhibition of the signaling pathway using
lead molecules.
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coverage of 98%. The modeled structure was validated and used for

further docking studies. Generally, Bacillus sp. is considered a

promising source for bioactive secondary metabolites. Therefore,

in the present study molecular docking was carried out with the

bioactive compounds (erucamide, behenic acid, palmitic acid,

phenylacetic acid, and β-sitosterol) of B. megaterium. There are

several pieces of evidence for the compounds identified from B.

megaterium as lead molecules. Erucamide identified from radish

leaf has shown preventive effects against memory deficits related to

Alzheimer’s disease by modulation of cholinergic function. In vivo

experiments have shown that erucamide has biological activity such

as stimulation of angiogenesis, augmentation of neovascularization

in regenerating skeletal muscle, and anti-depressive effects (Kim

et al., 2018). Similarly, behenic acid-based nano micelles were

prepared with dextran as the combination to deliver itraconazole

as a drug. The nano micelles were used as anti-leishmaniasis for

targeting the parasite (Shahriyar et al., 2021). The saturated fatty

acid (C:16), the palmitic acid, selected as the lead molecule in the

present study has been deeply investigated previously (Lee et al.,

2009) as an antiviral agent. Palmitic acid specifically binds to the

CD4 and prevents the entry of the HIV-1 virus. Moreover, beta-

sitosterol has been reported from plants and is known for

anticancer effects against several cancers such as breast and

ovary, prostate, lung, stomach, and liver. In addition, the

compound can significantly inhibit several pathways, cell

signaling, apoptosis, angiogenesis, and inflammation (Bin Sayeed

and Ameen, 2015). Phenylacetic acid and its derivatives were

extensively used in the preparation of drugs that can be used for

several ailments. Diclofenac is used as a medication for the

treatment of pain and inflammation (Gan 2010). Apart, the

previous report indicated that the purified components possess

significant antimicrobial activity against plant pathogens such as A.

tumefaciens (T-37), Erwinia carotovora (EC-1), and Ralstonia

solanacearum (RS-2) (Xie et al., 2021). Among the five

components investigated against plant pathogens, β-sitosterol,
behenic acid, and phenylacetic acid displayed significant

antimicrobial activity. B-sitosterol showed a very low minimum

inhibitory concentration (15.6 μg/ml) againstR. solanacearumRS-2

(Xie et al., 2021). Thus, the five compounds of choice used for the

present study have already been investigated for several alignments.

Mostly, these compounds were reported from different plant

species; however, in the present study, the compounds identified

from B. megaterium were used for investigation. The compounds

were docked into the binding pocket of the CDC42 of C.

gloeosporioides. β-sitosterol and phenylacetic acid showed the

highest dock score of −10 kJ mol −1. The next top hit obtained

was palmitic acid (−9.4 kJ mol −1) followed by behenic acid

(−9.2 kJ mol −1) and erucamide (−9.2 kJ mol −1). From the

binding energy analysis, it was observed that β-sitosterol
obtained the highest binding affinity of −41.51(Kcal/mol).

To study the stability during their interaction, molecular

simulation was performed and the results showed that the

compounds were stable throughout the simulation. For a

comprehensive analysis of the docked protein-ligand complex, a

molecular dynamics simulation was carried out. It is the most

powerful technique to study the conformational changes taking

place at the atom level. Therefore, molecular dynamics simulation

was performed for some time of 50 ns for all atom-docked protein-

ligand complexes. The result showed b-sitosterol with stable

conformation compared to the other docked complexes. The

results are evidence that the docked protein- β-sitosterol complexes

are highly stable for the entire period of 20–50 ns. Furthermore,

RMSD plot analysis showed slight modification in the position,

indicating the stable association and interactions between the

ligand and the protein molecule. Also, the ligand has maintained a

maximum of eight hydrogen bond interactions throughout the MD

run. Thus, the stability of the ligand with CDC42 shows the ligands

can be extended further as a biological agent to treat pathogenesis

against C. gloeosporioides. Additionally, studies have shown that β-
sitosterol has already been used for the treatment of various diseases

due to its potent properties such as antinociceptive, anxiolytic and

sedative effect, anticancer, antimicrobial, immunomodulatory,

hepatoprotective, and wound healing effects. The chemical has

already been approved by FDA and is a safe nutraceutical with no

deleterious effects (Babu and Jayaraman, 2020).

Network-based approaches provide a deep insight to

understand the biological process during the pathogenesis of

C. gloeosporioides. The interacting partner revealed through the

PPI network will pave the way to investigate the cellular activity,

protein localization, and complex biological function of the

protein. Besides, 20 genes have shown interaction with

CDC42 and from the MCODE statistical analysis, two clusters

were identified one with 15 nodes and 94 edges and the second

cluster with 3 nodes and 3 edges. Furthermore, the functional

enrichment analysis has revealed the BMH1, CLA4, SHO1,

SPA2, and STE50 as the important genes involved in the

MAPK signaling pathway. The protein BMH1 has shown to

play important role in aggregation, and arrangement to form

aggresomes. Additionally, BMH1 is involved in spore formation,

sporulation, and ascospore biosynthesis. The CLA4 is very

essential for imparting Cladosporium resistance in the

organism. SHO1 protein, the osmosensor present in the

plasma membrane of C. gloeosporioides activates the high

osmolality glycerol (HOG) of the MAPK signaling pathway in

response to high osmolality. SHO1 protein is found in bud and

bud neck region of the fungal pathogen. Protein docking

interaction reveals SHO1 and CDC42 has established binding

affinity. Hence it is envisaged that inhibition of CDC42 can

significantly prevent the signalling and inhibit the growth and

development of the fungal pathogen. SPA2 perhaps a cytoskeletal

protein is involved in pheromone-induced morphogenesis,

budding, invasive filamentation growth, regulation of hyphal

growth, cellular shape, and reproduction of C. gloeosporioides.

STE50 protein has shown to play a significant role in signal

transduction during filamentous growth, osmosensory signaling

MAPK cascade thereby arrest the growth during conjugation.
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Thus, the identified interacting partners of CDC42 are involved

in the MAPK signaling pathway essential for growth, and

virulence regulation in C. gloeosporioides. Therefore, from the

present study, it is revealed that targeting CDC42 can impart the

interaction network, prevent filament production, and arrest the

reproduction in C. gloeosporioides (Figure 7).

Conclusion

Infections caused by C. gloeosporioides in cassava are very

serious to impair, leading to economic damage to the cultivators.

To date, there are no clear details about the type of infection and

mode of transmission, and pathogenesis of the fungal pathogen.

Hence, in the present study, CDC42 protein involved in cell division

and cell cycle of the pathogen was selected as the target. Modeling of

the protein revealed the key residues playing the functional role of

the protein. The protein was targeted with five active compounds

from B. megaterium. Interaction of β-sitosterol and phenylacetic

acid with the key residue of CDC42 revealed that ligands could have

a potential role in the inhibition of functional proteins that are

involved in growth. Further PPI network constructed for

CDC42 revealed that targeting the protein could impart MAPK

signaling pathway. Additionally, targeting the interacting partner

could also prevent the growth, filamentation, and hyphal growth

which is essential for virulence regulation. However, further

experimental insight can pave a way for preventing C.

gloeosporioides mediated infection in cassava.
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Quantum-based machine
learning and AI models to
generate force field parameters
for drug-like small molecules

Sathish Kumar Mudedla1, Abdennour Braka1 and
Sangwook Wu1,2*
1R&D Center, PharmCADD, Busan, South Korea, 2Department of Physics, Pukyong National University,
Busan, South Korea

Force fields for drug-like small molecules play an essential role in molecular

dynamics simulations and binding free energy calculations. In particular, the

accurate generation of partial charges on small molecules is critical to

understanding the interactions between proteins and drug-like molecules.

However, it is a time-consuming process. Thus, we generated a force field

for small molecules and employed a machine learning (ML) model to rapidly

predict partial charges on molecules in less than a minute of time. We

performed density functional theory (DFT) calculation for 31770 small

molecules that covered the chemical space of drug-like molecules. The

partial charges for the atoms in a molecule were predicted using an ML

model trained on DFT-based atomic charges. The predicted values were

comparable to the charges obtained from DFT calculations. The ML model

showed high accuracy in the prediction of atomic charges for external test data

sets. We also developed neural network (NN) models to assign atom types,

phase angles and periodicities. All the models performed with high accuracy on

test data sets. Our code calculated all the descriptors that were needed for the

prediction of force field parameters and produced topologies for small

molecules by combining results from ML and NN models. To assess the

accuracy of the predicted force field parameters, we calculated solvation

free energies for small molecules, and the results were in close agreement

with experimental free energies. The AI-generated force field was effective in

the fast and accurate generation of partial charges and other force field

parameters for small drug-like molecules.
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partial charge prediction, AI force field, atomtype prediction, protein ligand binding,
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1 Introduction

Molecular dynamics (MD) simulations play an important

role in rational drug design, (Marco De, et al., 2016), which is

useful in the analysis of dynamical interactions between a target

protein and drug molecules (Allinger, 1977; Lifson, et al., 1979;

Burkert and Allinger, 1982; Brooks, et al., 1983; Jorgensen and

Tirado-Rives, 1988; Allinger, et al., 1989; Clark, et al., 1989;

Mayo, et al., 1990; Momany and Rone, 1992; Rappé et al., 1992;

Hwang, et al., 1994; Cornell, et al., 1995; Halgren, 1996; Wang,

et al., 2000; Wang, et al., 2005). MD simulations are less accurate

than first principles approaches. However, a well-parameterized

force field can be used to produce results comparable to those of

quantum mechanical (QM) calculations (Weiner, et al., 1984).

The dynamical properties of proteins, and DNA and RNA

molecules can be described by performing MD simulations

using well-established traditional force fields such as AMBER,

CHARMM, GROMOS and OPLS-AA (Jorgensen, et al., 1996;

Mackerell, et al., 1998; Ponder and Case, 2003; Oostenbrink,

et al., 2004; Zgarbova, et al., 2011; Bergonzo and Cheatham, 2015;

Maier, et al., 2015; Vanommeslaeghe and MacKerell, 2015;

Galindo-Murillo, et al., 2016; Tian, et al., 2019). The

generation of parameters for fundamental units for biological

macromolecules is sufficient to describe the properties of

proteins, DNA and RNA. However, the force field for small

organic molecules should cover a large chemical space because

each drug-like molecule contains different chemical fragments.

In general, a force field consists of bonded and nonbonded

parameters (Jorgensen, et al., 1996; Mackerell, et al., 1998; Ponder

and Case, 2003; Oostenbrink, et al., 2004; Zgarbova, et al., 2011;

Bergonzo and Cheatham, 2015; Maier, et al., 2015;

Vanommeslaeghe and MacKerell, 2015; Galindo-Murillo,

et al., 2016; Tian, et al., 2019). Nonbonded parameters are van

der Waals and electrostatic atomic charges. In molecular

simulations, electrostatics are calculated using atom-centered

point charges with the aid of a simple Coulombic model. The

electrostatic energy component is the dominant one in

nonbonded interactions such as ligand binding to a receptor,

therefore, the generation of qualitative atomic charges plays a key

role in studying the binding of ligands to receptors using

simulations (Honig and Nicholls, 1995). An atomic charge

should include the influence of the corresponding atom and

its bonded atoms. Additionally, the point charge must account

for the electronic effects from nearby electron-donating or

electron-withdrawing functional groups and formal charges in

the molecule (Jakalian, et al., 2002). Hence, charge models should

take into account all these effects.

To generate electrostatics for a molecule, it is necessary to

perform QM calculations. Several software packages, such as

antechamber (Wang, et al., 2006) and CGenff (Vanommeslaeghe,

et al., 2010) generate force field parameters for small organic

molecules using quantum mechanical calculations at different

levels. Charge methods, including AM1-BCC, CGenFF, CM1A,

CM3P and CM5, are used in conjunction with AMBER,

CHARMM and OPLS force fields to generate force field

parameters for drug-like molecules (Storer, et al., 1995;

Jakalian, et al., 2000; Jakalian, et al., 2002; Thompson, et al.,

2003; Marenich, et al., 2012). The charge methods CM1A (Storer,

et al., 1995), CM3P (Thompson, et al., 2003) and AM1-BCC

(Jakalian, et al., 2000; Jakalian, et al., 2002) and produce atomic

charges by applying different empirical corrections to charges

derived from semiempirical quantum methods such as AM1 and

PM3. CM5 produces charges using Hirshfeld population analysis

with the aid of density functional theory (DFT) methods

(Marenich, et al., 2012). To consider the polarization effect by

the environment, these methods increase the magnitude of

charges by using scaling factors such as 1.14 for CM1A3 and

1.20 for CM5 (Udier-Blagovic, et al., 2004; Vilseck, et al., 2014).

AM1-BCC utilizes bond-based incremental corrections to the

charges obtained byMulliken population analysis (Jakalian, et al.,

2000). Bond charge corrections are parametrized by fitting to HF/

6-31G* ESP of molecules in the training set (Jakalian, et al., 2000).

These models have both pros and cons. For instance, AM1-BCC

successfully describes electrostatics for nonpolar molecules such

as saturated and aromatic hydrocarbons. However, it fails in the

case of polar molecules such as pyridines, alkyl amines, alkyl and

aryl halides, sulfides, and nitriles (Jakalian, et al., 2000; Jakalian,

et al., 2002). The DFT-derived CM5 model suffers from a lack of

a fixed scale factor to account for internal electron delocalization

and external polarization effects (Marenich, et al., 2012).

Recently, the 1.14*CM1A charge model with localized bond

charge corrections showed high accuracy in reproducing

experimental solvation free energies and heat of vaporization

and densities with relatively small errors (Dodda, et al., 2017). In

addition to AM1-BCC charge method, antechamber produces

RESP charges using the ESP charges from user provided QM

calculations for the molecule. CGenff program initially estimates

ESP charges from the optimization calculations at MP2/6-31G*

level which is computationally expansive to perform. Then it

further optimizes the charges based on the QM data for the

molecule which is interacting with water molecules in various

orientations. Thus, the popular Antechamber and CGenff

methods use ESP charges from different levels of theory and

then introduces corrections to further improve the quality of

charges. Despite the success in charge models, it is necessary to

develop charge models which are optimized for efficiency and

accuracy for small molecules to the accurate estimation of

electrostatics in MD simulations.

Machine learning algorithms have been successfully applied

to the generation of new scaffolds of small drug-like molecules

(Lavecchia, 2015; Lipinski, et al., 2019; Patel, et al., 2020;

Carracedo-Reboredo Jose et al., 2021), toxicity prediction (Wu

and Wang, 2018), and omics pattern recognition (Stanke and

Morgenstern, 2005). Machine learning algorithms have also been

applied to predict partial charges and forces on atoms of small

molecules in the field of quantum chemistry (Roman and
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Dominik, 2019; Pattnaik, et al., 2020). The calculated force on the

atom in a molecule is used to perform ab initioMD simulations.

The contribution of electrostatic interactions is prominent in

force field-based MD simulations (Jorgensen, 2005). The atomic

charges of molecules alter the interaction with water thus

sensitive to condensed phase properties including free energies

of hydration and heats of vaporization (Jorgensen and Tirado-

Rives, 2005). The accurate estimation of electrostatic interactions

between proteins and ligands is important in calculating binding

free energies, which are useful for screening small molecules in

computer-aided drug design (Jorgensen 2009). Despite the

progress in the polarizable force fields, the point charge

models are still essential owing to their low computational

cost and accuracy (Swope, et al., 2010). Hence, in this study,

we have developed machine learning and DFT charge-based

artificial intelligence (AI) models to predict atomic charges

and to generate force fields for small molecules in less than a

minute of time.

2 Computational methods

2.1 Force field parameters

The potential energy is the sum of the nonbonded (van der

Waals and electrostatic) and bonded (bonds, angles and

dihedrals) interactions in a molecule. The general functional

form of potential energy in force fields is as follows in eqn. 1.

(Jorgensen, et al., 1996; Mackerell, et al., 1998; Ponder and Case,

2003; Oostenbrink, et al., 2004; Zgarbova, et al., 2011; Bergonzo

and Cheatham, 2015; Maier, et al., 2015; Vanommeslaeghe and

MacKerell, 2015; Galindo-Murillo, et al., 2016; Tian, et al., 2019).

V � ∑
bonds

Kb(r − r0)2 + ∑
angles

Kθ(θ − θ0)2 + ∑
dihedrals

Kϕ[1

+ cos(nϕ − γ)] + ∑
i, j pairs

(
Aij

r12ij
− Bij

r6ij
) + ∑

i, j pairs

qiqj
εrij

(1)

where Kb = force constant of bond, Kθ = force constant of angle,

Kϕ = force constant of dihedral angle, r = bond length, r0 =

equilibrium bond length, θ0 = equilibrium angle, θ = angle, ϕ =

dihedral angle, ϕ0 = equilibrium dihedral angle, qi, qj = partial

charges, Aij, Bij = well depth and rij = distance.

All the above-mentioned force field parameters are necessary

to calculate the potential energy inMD simulations. In this study,

we aimed to generate all these force field parameters except van

der Waals potentials for drug molecules using machine learning

tools. The existing van der Waals parameters for the atom types

of organic molecules were developed with great care by matching

the densities and enthalpies of vaporization (Cornell, et al., 1995;

Jorgensen, et al., 1996). The van der Waals parameters also

developed using QM methodologies and they were refined by

fitting experimental properties including heat of vaporization,

molecular volume and hydration free energy (Rupakheti et al.,

2018) and it needs an extensive of work to achieve. Also, the small

changes in van der Waals potentials cause significant changes in

the properties of molecules in the solution (Rupakheti et al., 2018;

Boulanger et al., 2021). Therefore, in this study, we have not

focused on the development of new van der Waals parameters

using machine learning algorithms.

2.2 Generation of the training data set

To generate a training data set for machine learning, we

collected 100,000 small molecules to represent the entire

druggable chemical space of small molecules from the

CHEMBEL-2.5 database (Davies, et al., 2015) after careful

removal of salts, ions and small fragments. We considered to

perform quantum mechanical calculations for all

100,000 molecules and the collected data would be used for

machine learning training. However, it needs 2 years of time to

complete all these calculations with our existing computational

resources. Thus, the calculations were subjected to three batches.

The 31,770 molecules used in this work represent the first batch.

To select molecules of this batch, we divided the

100,000 molecules into 10 parts based on their index. Then

we selected the third part of each 10,000 molecules by random

choice function on the index. To check the trainability of this

batch, we have verified by principal component analysis (PCA)

that the projection of this batch covers the chemical space of

100,000 molecules. The calculations for the other two batches are

in progress. Figure 1 clearly shows that the selected

31770 molecules covered the entire chemical space of

100,000 molecules. This shows that the selected molecules can

cover the whole chemical space.

2.3 Density functional theory calculations

The 2D structures in Simulation Description Format (SDF)

were converted to 3D format using OpenBabel (O’Boyle, et al.,

2011) software, and hydrogen atoms were added to all molecules.

The 3D geometries of the collected small molecules were

optimized using DFT at the B3LYP/6-31G** level of theory

with the Gaussian16 package (Frisch, et al., 2016). The

optimized geometries were subjected to frequency calculations

to confirm that structures were stable on a potential energy

surface (PES) at the same level of theory. The frequencies showed

that there were no imaginary values, implying that the geometries

corresponded to stationary points on the PES. Atomic charges

are not observable in experiments or in quantum chemical

calculations. Several methods have been suggested to estimate

atomic charges. Here, we calculated electrostatic potential (ESP)

charges for all atoms in a molecule using the Merz-Kollman

method (Chandra Singh and Kollman, 1984) at the B3LYP/6-

31G** level. The DFT functional is good in accuracy and
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predicting ground state properties of molecules compared

AM1 method. DFT methods are computationally expensive

than AM1 whereas cheaper than MP2 method to perform

calculations on large number of molecules.

2.4 Machine learning and deep learning

The local environment of an atom in a molecule was

described using atomic features. Bonding and neighbor atom

information for the atoms in a molecule were extracted with the

help of molecular graphs implemented in the MolMod package

(Verstraelen, 2019). From the optimized geometries of ESP

charges for atoms, bond lengths, bond angles and dihedral

angles values were extracted for each molecule in the data set.

The local environment around an atom in a molecule strongly

influences its atomic charge. Therefore, to train the atomic charge

for an atom in a molecule, the atomic features such as atomic

number, electronegativity, atomic size, valence, hybridization,

aromatic nature, chiral, axial, hydrogen donor or acceptor are

first extracted for each atom in a molecule.

Next, we included the features of bonding (first shell around

the reference atom) information for each atom in amolecule. The

local bonded atom information, such as neighboring atoms,

number of bonds, bond orders and bond lengths for each

atom in a molecule, was extracted from the optimized

geometries. The properties of the atoms in the first shell were

included using features such as aromaticity, hybridization and

the presence or absence of rings, fused rings, and double bonds

obtained from structures. We also added information about the

FIGURE 1
A principal component analysis (PCA) plot, showing the comparison of the chemical space defined by our dataset (purple) and the chemical
space represented by CHEMBL25 databases (red).
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atoms present in the second and third shells around the reference

atom in a molecule. Overall, the chemical environment was

described around one atom in the molecule using the

properties of the reference atom and atoms in the first, second

and third shells. A schematic of the chemical environment

around a reference atom is shown in Figure 2. The

information was collected for 1.53 million atoms from

31770 molecules. Accessing such information was not

straightforward, and it is not readily available in packages at

present. For this purpose, in-house scripts were used to extract all

this information.

We applied classification and regression algorithms to train the

derived data for small molecules selected from CHEMBEL-2.5. A

neural network classifier model was used for training to classify the

data. Random forest and neural network regressors were employed

to predict numbers for unknown data. We used the Python-based

scikit-learn package to construct, train and validate the classification

and regressor models (Pedregosa, et al., 2011).

FIGURE 2
An example to show the chemical environment around a reference atom using the first, second and third shells. Red indicates the first shell, sky
blue is the second shell, and Aztec blue represents the third shell around the reference atom.

FIGURE 3
Architecture of the neural network model with the numbers of neurons and atomic descriptors for the prediction of atom types.
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2.4.1 Deep learning
The neural network classification model in the scikit-learn

package was used for atom types, phase angles and periodicity

classification. The architecture of these models is shown in

Figure 3; Supplementary Figure S1. The data set had

31,770 molecules resulting in 1.53 million atoms and

4.8 million torsional terms for training atom types and phase

angles and periodicities, respectively. The models were trained

with a learning rate of 0.001, which controlled the step size in

updating the weights, and a default batch size. The default log-

loss was used as a loss function. Relu was used as the activation

function for the hidden layers, and Adam (Diederik and Jimmy,

2015) a stochastic gradient-based optimizer, was used to update

the weights. Similar parameters were used in the prediction of

partial charges with the neural network regressor except for the

loss function. Mean square error (MSE) was used as the loss

function and to validate the model.

2.4.2 Machine learning
The random forest regressor estimator fits trees on various

subsamples of a data set and uses averaging to improve the

prediction. The random forest regressor model (shown in

Figure 4) was used to train and predict the partial charges of

atoms in molecules. The model was constructed with 800 trees,

and the maximum depth was 100 for each tree. Mean square

error was used to validate the regression model. All other

parameters were used as default values in the scikit package.

In all models, 80% of the data were used for training, and the

remaining 20% were used for validation. The parameters of the

random forest regressor model were determined by employing

k-fold cross validation with k = 5. The mean square error (MSE)

was calculated for the predictions in each fold and then averaged.

2.5 Molecular dynamics simulations

Free energy calculation methods are generally implemented

using the so-called lamination strategy or multistage sampling

along a suitably defined chemical coordinate, λ, whereby the

system is simulated in an appropriate number, n, of intermediate

states corresponding to values of λ between 0 and 1. In this study,

small molecules (33 compounds) were selected for solvation free

energy calculations. Small molecules were solvated in a cubic box

using the TIP3P water model (Jorgensen, et al., 1983). These

systems were subjected to energy minimization using the steepest

descent method and subsequently equilibrated for 1 ns at 298 K

and 1 bar pressure. Velocity rescaling and Parrinello−Rahman

algorithms were used to control temperature and pressure in the

NPT ensemble (Parrinello and Rahman, 1981; Nose and Klein,

1983; Bussi, et al., 2007). Furthermore, equilibrated solvated

structures were simulated for a production run of 1 ns in the

NPT ensemble using a 2 fs time step (Berendsen, et al., 1995;

Lindahl, et al., 2001; Hess, et al., 2008). The particle mesh Ewald

method was used to calculate the electrostatic interactions with

FIGURE 4
Architecture of the random forest regression model used to predict partial charges for atoms in drug-like small molecules.
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an interpolation order of 4 and a grid spacing of 1.6 Å (Essmann,

et al., 1995). Bonds between hydrogen and heavy atoms were

constrained at equilibrium bond lengths using the LINCS

algorithm (Hess, et al., 1997). All simulations were performed

using the GROMACS-2020 package.

All solvation free energy calculations were performed by

decoupling the ligand from the solvent environment. The

initial conformation of the ligand in solvent was taken

from the final snapshot of the 1 ns simulation. Decoupling

of the ligand from solution was performed by turning off

Coulombic interactions and subsequently van der Waals

interactions. The approach of solvation free energy

calculation is shown in Figure 5.

The Coulombic interactions were turned off by changing λ from
0 to 1 with a step size of Δλ = 0.25, and the van derWaals interactions

were unperturbed. Then, the van der Waals interactions were turned

off with nonuniformly distributed values of λ (0.05, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and 1.0). Therefore, a total of

20 windows, each 1 ns, were employed for decoupling of the ligand

from solution. The free energy difference between two end states was

calculated using the Bennett Acceptance Ratio (BAR) method

(Bennett, 1976) and the following equation:

〈 1

1 + exp{β(ΔUijᅳΔG)}〉i �〈 1

1 + exp{β(ᅳΔUij + ΔG)}〉j

(2)

where β is the reciprocal of the thermodynamic temperature, ΔG
is the free energy difference between states i and j, and ΔUij = Uj -

Ui is the potential energy difference.

2.6 Protein–ligand simulations

The crystal structure of the protein kinase, covid19 (main

protease) and factor-IX with cocrystal ligand were taken from

the protein data bank (PDB id: 4XUF, 7L10 and 5TNT).

Protein structures were prepared by correcting the bond

orders, adding missing hydrogens and optimizing

H-bonding with protonation states of residues at

pH 7.0 using protein preparation wizard (Sastry et al.,

2013). The complex was solvated in a cubic box with a

TIP3P water model. The total charge of the proteins was

neutralized by inclusion of Na+ and Cl− ions. The

AMBER99SB-ILDN force field was used for the proteins.

The force field parameters for the cocrystal ligands were

generated using generalized amber force fields (GAFF) and

machine learning force field for the comparison. All solvated

the protein and ligand complexes were subjected to energy

minimization using steepest decent method. Temperature and

pressure controls were imposed using the V-rescale and

Parrinello-Rahman algorithms with 298 K and 1 bar,

respectively (Parrinello and Rahman, 1981; Nose and Klein,

1983; Bussi, et al., 2007). The simulations were carried out

with a time step of 2 fs for 1 ns to equilibrate the systems in the

NPT ensemble. The production run was performed for 250 ns

for each complex using a time step of 2 fs in NPT ensemble.

The interpolation order of 4 and a grid spacing of 1.6 Å were

used in the electrostatic calculations using particle mesh

Ewald method (Essmann, et al., 1995). LINCS algorithm

have used to constrain the bonds of hydrogens with heavy

atoms (Hess, et al., 1997).

FIGURE 5
Decoupling of a ligand from solvation. Water molecules are shown in sticks and ligand as spheres.
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3 Results and discussion

3.1 Prediction of partial charges

The number of samples per element presented in the data set

is shown in Figure 6. Each atom has its local chemical

environments and reference partial charge in the data. The

calculated MSE in Supplementary Table S1 shows that the

random forest regressor is slightly better than the neural

network regressor. Therefore, a random forest regression

model was adopted for further validation. The MSE was

optimized by increasing the number of descriptors for each

atom in the data set. The descriptors were atoms and their

properties in the first, second and third shells around a

reference atom. The MSE with respect to the number of

descriptors is shown in Figure 6. The addition of the chemical

environment reduced the MSE value for the random forest

regression model. The performance of the random forest

regression model was best when all atoms and their properties

were included in the three shells. In previous study also, it was

shown that random forest regression produces reliable results

compared to other machine learning algorithms. Previous study

randomly collected the data for 10000 and 7,000 molecules from

ATB (automated topology builder) and PRODRG servers. ATB

applies symmetry-based averaging of atomic charges based on

the ESP charges from B3LYP/6-31G* calculations for small

molecules with the number of atoms less than 40 otherwise it

carried out semiempirical calculations to generate the charges.

Whereas in this study, we have performed calculations at B3LYP/

6-31G* for all the molecules which are having more than

40 number atoms in addition smaller size molecules. The

considered data for the training of random forest regression

model has the molecules with atoms range from 10 to 120. The

number of data points and features are used in the training of our

charge model (241 features) is higher than the previous study

(61 features). The features include the bond orders, bond lengths,

hybridizations and electronegativities for neighbor atoms to

provide the chemical environment around an atom whereas

the previous study does not consider them.

In Figure 7, the predicted charges were fitted to reference

charges for elements including carbon, hydrogen, nitrogen and

oxygen. The same plots for other elements, such as sulfur,

fluorine, chlorine, bromine and phosphorous, are given in

Supplementary Figure S2 of the Supplementary Information.

Notably, the majority of the predicted charges were similar to

the reference values. The calculated coefficient of determination

(R2) and MSE values for carbon, hydrogen, oxygen, nitrogen,

sulfur, fluorine, chlorine, bromine and phosphorous are

presented in Supplementary Table S2. The calculated

coefficient of determination (R2) values for carbon, hydrogen,

oxygen, nitrogen, sulphur, fluorine, chlorine, bromine and

phosphorous are 0.871, 0.847, 0.852, 0.880, 0.977, 0.632, 0.805,

0.714 and 0.664, respectively. MSE values are 0.0148, 0.001,

0.002, 0.013, 0.004, 0.0003, 0.004, 0.001 and 0.027 for carbon,

hydrogen, oxygen, nitrogen, sulphur, fluorine, chlorine, bromine

and phosphorous, respectively. The prediction accuracy was less

for fluorine, bromine and phosphorous than for other elements.

This may have been due to a smaller number of samples in the

data. The prediction accuracy for atoms such as C, H, O, N, S, P,

F, Cl and Br is low when compared to previous study. Because the

number of date points and data for each atom is different and it

increases variance in the atomic charges thus makes difficulty in

the prediction. It is difficult to compare the charges from our

charge model with other methods because the atomic charges for

a molecule using QM calculations are often sensitive to

functional and fitting method which are used to generate ESP

FIGURE 6
(A)Number of samples per element in the data set. Numbers for phosphorous atoms are not visible in the graph as very few phosphorus atoms
were present in the data. (B) The calculated MSE vs. number of atomic features for a reference atom.
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charges. The charges from different fitting methods are not same

for a molecule. However, we have provided the comparison of

our charge predictions with ESP charges of ATB, QM and AM1-

BCC methods for one molecule in Supplementary Table S3. It

can be clearly noted that charges in all these methods are not

same. The quantity of atomic charges is different in each method

whereas the sign (+ or -) is same in the case of all atoms. In order

to understand the atomic charges produced from random

regression model, the calculated solvation free energies for

molecules using different charge methods are compared with

experimental values in the validation section.

To validate, the performance of the trained random forest

regression model was tested on two external test sets. Test set-1

consisted of 100 molecules that were randomly selected from the

drug-induced liver injury database. This database consists of

FDA approved drugs that are shown to be toxic to the liver. Test

set-2 considered 33 molecules that had experimental solvation

free energies in the literature. We have tested the charge model

on two different datasets (i) first dataset is having molecules

which contains atom numbers range from 20 to 87 (ii) second

dataset contains molecules with atom number range from 9 to 24.

The small molecules in test set-2 consisted of various electron-

donating and electron-withdrawing functional groups. Eight

small molecules from test set-2 are shown in Figure 8. The

predicted charges are plotted against DFT charges for both

test sets and displayed in Figure 9. The R2 and MSE values

reveal that the prediction accuracy for the test sets was high. The

predicted values for a few molecules are compared with ESP

charges obtained from DFT calculations in Table 1 and

Supplementary Table S4. Table 1 shows that the predicted

values were close to the DFT charges. The random forest

regressor gave the correct sign (+ or -) and values similar to

the ESP charges. It was evident that the random forest regressor

model produced can work for small molecules as well as for large

size molecules.

However, it is noted that machine learning charge model can

assigns wrong sign (+ or -) for aliphatic carbon atoms compared

to DFT ESP charges. For example, we considered the charges for

FIGURE 7
Prediction of partial charges for (A) carbon (B) hydrogen, (C) oxygen and (D) nitrogen atoms in the test data set using a random forest regression
model.
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aliphatic molecule (1-Octanol) which are generated using

random forest model and DFT calculation Supplementary

Table S5. It can be seen that C3, C4, C5, C6 and C7 have

positive atomic charge in random forest prediction. Whereas

the atoms C3, C5 and C6 are negative and C4 and C7 are having

positive partial charge in the case of ESP from DFT calculations.

Because all C3, C4, C5, C6 and C7 are sharing similar kind of

bonding environment thus random forest predicts positive

charges for them. The prediction of charges can be improved

by adding a greater number of diverse aliphatic molecules into

the data set to reproduce the ESP of DFT.

Existing small molecule force field generate programs such as

antechamber, CGenFF, ATB and PRODRG produces charges

based on ESP. Antechamber program uses ESP charges from

FIGURE. 8
A few small molecules were selected from test set-2 for the validation of the random forest regression model.

FIGURE 9
Predicted charges vs. DFT charges for (A) test set-1 from the drug-induced liver injury database and (B) test set-2 for known small molecules.
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quantum calculation and produces restrained electrostatic

potential (RESP) using least square fitting method. We have

used antechamber to generate RESP charges for small dataset of

2,700 molecules to train using random forest regression model.

The obtained charge model shows the MSE of 0.027 on the test

set. We have predicted the RESP charges for testset-1 and testset-

2 datasets. The calculated coefficient of determinations are

0.71 and 0.61 Supplementary Figure S3. The model shows

promising result though the trained on a smaller number of

atoms. The model can be improved a lot by incorporating a

greater number of atoms into training set. We will develop a

RESP charge prediction model using greater number of

molecules in the near future.

3.2 Atom type prediction

Categorizing the atoms in a molecule into atom types is

useful to assign the force field parameters. Antechamber

programs were used to generate atom type data for atoms in

the molecules. The trained neural network classifier model

performed well with 98% accuracy on the test data set. The

model identified the atom types based on the provided local

chemical environment around a reference atom. The calculated

confusion matrix produced precision, recall, F1-score and

accuracy for each atom-type prediction. The model could

identify only the following atom types: C, H, O, N, S, P, F, Cl,

and Br. The prediction accuracy for each atom type is given in

Table 2. In Table 2, from c to cy, from h1 to hx, from n to nq,

from o to os, from p3 to py, from s to sy, f, cl and br are atom

types for C, H, N, O, P, S, F, Cl, and Br, respectively. The

definition for each atom type is similar to the generalized amber

force field (GAFF). The model clearly identifies all types of H, O,

F, Cl, and Br atoms with 100% accuracy. Additionally, the sulfur

and phosphorus atom type prediction accuracy was 100%. The

most common aliphatic, cyclic and aromatic atom types of

carbon (c, c1, c2, c3 and ca) and nitrogen (n, n1, n2, n3, na

and nb) were predicted with accuracy above 95%. The

predictions were the least accurate for atom types cf and nf.

However, the model assigns incorrect atom type in the case of sp2

carbons such as cc, cd, ce, cp and cf only with another sp2 carbon

type (cc, cd, ce, cp and cf). All sp2 carbons (nitrogen’s) have the

same van der Waals parameters in GAFF. The same is true in the

case of sp3 carbons and nitrogens. In our force field, atom type

prediction is used to assign van der Waals parameters for the

atoms in a molecule. Therefore, even the incorrect prediction of

atom types would not effect the force field parameters.

To assess the accuracy, the model was used to predict the atom

types for a few small molecules, as shown in Figure 8. The predicted

atom types were comparedwith antechamber-produced atom types;

the results are presented in Table 3 and Supplementary Table S6.

Table 3 and Supplementary Table S6 show that the atom types

predicted by the neural networkmodel were in good agreement with

the predictions of the antechamber program. The neural network

classifier accurately identified the atom types and their chemical

environments. This ensured that the model successfully assigned

atom types for small drug-like molecules.

3.3 Prediction of phase shift angles for
dihedral terms

The phase shift angle is involved in the dihedral energy term,

and it is important to calculate the energy contribution from the

dihedral energy term to the total potential energy. Each dihedral

term had a specific phase angle value and was restricted to the

range between 0° and 180°. The 4.8 million dihedral terms in

31770 molecules were extracted along with their phase angles.

Atomic descriptors were generated for the atoms involved in each

dihedral angle. The calculated dihedral angle values were also

included to train the neural network classifier to predict phase

angles of 0° and 180°. The trained model classified the test data set

as 0° and 180° with 94% accuracy. The predicted values were well

correlated with the parameters generated by the antechamber

program. The incorrect prediction of phase shift angle for

dihedral angle can produces the unwanted angle rotations or

restrictions thus causes changes in the conformation of ligand

compared to GAFF. The phase shift angle is important to retain

the planarity of aromatic ring and conjugated groups in the

molecules. Our phase angle model predicts accurately for these

kinds of molecules and retained the planarity of molecules.

However, phase shift angle model (accuracy 94%) has to be

improved further to avoid the unfavorable conformational

TABLE 1 Comparison of predicted partial charges from the random
forest regression model with DFT charges.

Cyclopentanone Aniline

Atom Random forest DFT Atom Random DFT

O -0.56910 -0.49271 N -0.84978 -0.78174

C -0.06156 -0.04073 C 0.18780 0.35203

C -0.05696 -0.04086 C -0.29226 -0.25455

C -0.15291 -0.19790 C -0.25365 -0.25456

C -0.23938 -0.19782 C -0.06735 -0.10162

C 0.59172 0.54435 C -0.08070 -0.10157

H 0.02416 0.03785 C -0.08311 -0.15603

H 0.04566 0.02639 H 0.16222 0.14008

H 0.04022 0.03786 H 0.14058 0.14009

H 0.05218 0.02643 H 0.13362 0.11626

H 0.08876 0.06753 H 0.13362 0.11625

H 0.08969 0.08105 H 0.13362 0.11343

H 0.07499 0.06753 H 0.36227 0.33594

H 0.07256 0.08101 H 0.37313 0.33595
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changes in the molecules by increasing the number of data points

and feature incorporation in the training dataset.

Neural network model training was conducted with the same

atom features for the inclusion of phase angles for the prediction

of periodicity for dihedral terms. The model performed the

prediction with 93% accuracy. The accuracy for classification

of terms with periodicity 2 and 3 was 96% and 95%, respectively.

The predicted periodicities were retained the structures of

aromatic and other types of molecules. The predicted phase

angles and periodicities were compared with the antechamber-

generated values; they are shown in Supplementary Table S7.

3.4 Generation of topology for a molecule

The concept of using AI algorithms was to generate

parameters and topology for small molecules that generally

did not have parameters in conventional force fields. Few

commercial and noncommercial software packages, such as

ATB (Stroet, et al., 2018), antechamber, CGenFF and PRODG

(Schüttelkopf and Van Aalten, 2004), are available to generate

force field parameters for small molecules. We generated

topologies for small drug-like molecules using machine

learning models to predict atom types, DFT-based partial

charges, phase angles, periodicity and force constants for

bonds, angles and dihedrals. The work flow is shown in

Figure 10. In this study, flow, data collected from a molecule

were used to perform predictions by employing machine learning

and deep learning models. The collected information and

predicted data were used to generate topologies in the format

of used in most MD simulation programs, such as GROMACS

and NAMD.

Topology generation started with the prediction of atom

types for a given molecule. The small molecule force fields like

TABLE 2 Accuracy of the prediction of atom types using a neural network model.

Atomtype Precision Recall f1-score Atomtype Precision Recall f1-score

br 1 1 1 n 1 0.99 0.99

c 1 1 1 n1 0.99 0.99 0.99

c1 0.99 0.97 0.98 n2 0.99 0.96 0.97

c2 0.96 0.98 0.97 n3 1 0.98 0.99

c3 1 1 1 n4 1 0.67 0.8

ca 0.96 0.99 0.98 na 0.99 0.98 0.98

cc 0.82 0.66 0.73 nb 0.92 0.97 0.95

cd 0.72 0.67 0.69 nc 0.75 0.44 0.56

ce 0.72 0.8 0.76 nd 0.74 0.87 0.8

cf 0.58 0.45 0.51 ne 0.66 0.8 0.72

cg 0.7 0.93 0.8 nf 0.17 0.05 0.08

ch 0.43 0.1 0.16 nh 0.96 0.99 0.98

cl 1 1 1 nj 1 1 1

cp 0.57 0.79 0.66 nm 1 1 1

cq 0 0 0 no 1 1 1

cv 0.5 0.5 0.5 np 1 1 1

cx 1 1 1 nq 1 1 1

cy 1 1 1 o 1 1 1

f 1 1 1 oh 1 1 1

h1 1 1 1 op 1 0.83 0.91

h2 1 0.93 0.96 os 1 1 1

h3 1 1 1 p5 1 1 1

h4 1 1 1 py 1 1 1

h5 1 1 1 s 1 1 1

ha 1 1 1 s4 1 1 1

hc 1 1 1 s6 1 1 1

hn 1 1 1 sh 1 1 1

ho 1 1 1 ss 1 1 1

hs 0.97 1 0.98 sx 1 1 1

hx 1 0.25 0.4 sy 1 1 1
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TABLE 3 Comparison of the atom types predicted by the neural network model and antechamber program.

Cyclopentanone Aniline

Atom NN model atom type Antechamber atom type Atom NN model atom type Antechamber atom type

O o o N nh nh

C c3 c3 C ca ca

C c3 c3 C ca ca

C c3 c3 C ca ca

C c3 c3 C ca ca

C c c C ca ca

H hc hc C ca ca

H hc hc H ha ha

H hc hc H ha ha

H hc hc H ha ha

H hc hc H ha ha

H hc hc H ha ha

H hc hc H hn hn

H hc hc H hn hn

FIGURE 10
Workflow of the generation of the topology for small drug-like molecules using machine learning and deep learning models.
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GAFF have limited number of atom types. Each atom type has

corresponding Lennard jones parameters. These parameters

assignment depends on the atom type. The atom type

prediction was done by our model with 98% accuracy with

respect to GAFF. Based on atom types, Lennard jones

parameters were assigned accordingly. Lennard jones

parameters were taken from the GAFF force field. This gives

the correct assignment of Lennard jones parameters to the atoms

in a molecule. Next, the partial charge model predicted atomic

charges for all the atoms in a molecule. The sum of the predicted

atomic charges was not equal to the formal charge of the

molecule. Therefore, charge correction was applied in such a

way that the sum of the predicted charges was subtracted from

the formal charge of the molecule, and the difference was

distributed among all the atoms to make the total charge of

the molecule equal to the sum of the predicted atomic charges.

Furthermore, a list of the bonded atoms and bond lengths was

calculated, and the bond force constants were predicted with the

aid of a trained model. Here, bond lengths from the structure

were used as equilibrium distances for bonds. Subsequently, the

angles and dihedral terms were added to the topology in the

respective sections. Then, the nonbonded 1, 4 pairs for the

molecule were generated by taking the first and fourth atoms

in dihedral angle terms.

Next, we generated improper dihedral angle terms for the

topology file. No tool was used to identify the improper dihedral

angles in small molecules other than current force field

generation programs. In general, improper angles are intended

to maintain the planarity of aromatic and conjugated molecules.

Aromatic and conjugated molecules are predominantly involved

with carbon atoms. Three atoms are bonded to carbon atom that

is involved in a double bond. We generated a list of improper

dihedral angles based on the number of atoms bonded to carbon

atoms and with the extraction of their neighboring atoms.

Eventually, we generated force field parameters for drug-like

molecules within a minute of CPU time. The correct assignment

of partial charges and van der Waals parameters to the atoms

enables the molecules to interact with environment such as water

and protein through nonbonded interactions. The atomic

features are the important in order to understand the

chemical environment which effects partial charges, atom type

and phase angle predictions. The user has to provide proper

molecule structure by adding all hydrogens to heavy atoms

otherwise user may end up with assigning of incorrect

parameters which can collapses molecule structure.

3.5 Validation of the force field

3.5.1 Solvation free energies
To verify the predicted partial charges and other force field

parameters, solvation free energies were calculated for 33 selected

small molecules using the λ-coupling method. This method is

reliable and accurate in the calculation of solvation free energies

and has been used to calculate protein–ligand absolute binding

free energies. The selected 33 molecules contained various

functional groups, including alcohol, thiol, amide, amine,

aldehyde, ketone, nitro, nitrile, and methyl groups and

halogens. Aliphatic chains, aromatic rings and cyclic rings

were also present in the chosen molecules. The calculated free

energies were compared with the experimental free energies; the

results are shown in Supplementary Table S8. The calculated

values were in close agreement with the experimental free

energies. The calculated values were within 2 kcal/mol error

from experimental free energies except for several molecules.

To obtain reasonable free energy values, we introduced charge

corrections to the atoms involved in specific bonds. This was

done based on previous studies where localized bond charge

corrections were added to improve the solvation free energies of

small molecules (Dodda, et al., 2017). Localized bond charge

corrections for few bonds were taken from the literature (Dodda,

et al., 2017), and others were calculated based on a trial and error

approach. The charge corrections for specified bonds are shown

in Supplementary Table S9. Charge corrections were performed

for aliphatic, cyclic and aromatic bonds. The introduction of

charge corrections significantly improved the free energy values,

which were similar to the experimental numbers. The calculated

values are shown in Supplementary Table S8, and they reveal that

the calculated values were similar to the experimental values. It

can be seen that though the incorrect assignment of atomic

charges for carbon atoms in 1-Octanol produces solvation free

energy close to experimental value. Figure 11 shows that the R2

value reached 0.960. Thus, the corrected charges accurately

described the interaction of molecules with the water

environment. We have also compared the calculated solvation

free energies from AI force field, AM1-BCC/GAFF and RESP/

GAFF with experimental values. The calculated solvation free

energies for AM1-BCC/GAFF and RESP/GAFF were taken from

the literature (Shivakumar, et al., 2009) and given in

Supplementary Table S8. The calculated coefficient of

determination for AI force field, AM1-BCC/GAFF and RESP/

GAFF are 0.960, 0.867 and 0.868, respectively. The results shows

that AI force field outperforms the other methods in reproducing

the experimental values. However, further AI force field has to be

tested on large number of molecules and compare with

experimental values. Overall, the machine learning force field

successfully reproduced the experimental free energies, revealing

that the force field was accurate and reliable.

3.5.2 Protein–ligand interactions
To validate the force field parameters generated by the

machine learning force field, MD simulations were performed

for protein and ligand complexes and then compared with the

results of simulations with the GAFF. The complexes were

stable throughout the simulations, and the final snapshots at

250 ns are shown in Figure 12. The ligand was composed of
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aromatic and nonaromatic rings. There were no distortions in

the ligand structure, and it was stable in the pocket. The

surrounding interacting residues for the ligand were the same

in the cases of the machine learning and amber force fields.

However, the atoms involved in hydrogen bond formation

were different in the final snapshots from both force fields.

Additionally, the ligand conformation was slightly different in

the case of the machine learning force field compared to the

GAFF (Figure 12). The calculated root mean square deviations

(RMSDs) for the ligand throughout the simulations are

presented in the Figure 12. Notably, structural changes in

the ligand were not significant in either force field. The

FIGURE 11
Comparison of experimental solvation free energies of small molecules in test set-1 with random forest regression, AM1-BCC and RESP
charges.

FIGURE 12
Simulated structures of proteins related to kinase, covid19 and factor-IX at 250 ns are compared between machine learning force field and
GAFF. The calculated RMSD for the ligands in protein-ligand complex throughout the simulation. Ligand represent in green and red color
corresponds to machine learning and GAFF, respectively.
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average RMSDs of the ligand with respect to the starting

conformation were 1.57 and 1.67 Å for the machine

learning and GAFF force fields, respectively. In addition to

protein kinase, we have performed simulations of 250 ns for

the proteins such as covid 19 (main protease) (pdb id:7L10)

and factor-IX (pdb id: 5TNT). In 5TNT, the ligand binds at the

surface of protein, however, it is stable at the binding site

throughout the simulation. We compared the snapshots of AI

force field and GAFF and it is shown in Figure 12. The

structure of ligand at the binding is not same in both force

field, however the difference is marginal. The ligands are

stable at binding site through interactions with the residues

of protein. The plots show that the there is no significant

structural changes in the ligand with respect to RMSD values.

The stability of complexes derived from the interaction

energy was calculated and shown in the supporting

information. The interaction energy was clearly less for

the machine learning force field than the GAFF.

Furthermore, the electrostatic and van der Waals energy

contributions to the total interaction energy were

calculated, and the results showed that electrostatic

interactions were responsible for the difference in the

interaction energies. The average electrostatic

interaction energies between the protein and ligand were

-17.4 and -30.5 kcal/mol for the machine learning and

GAFF force fields, respectively. The electrostatic

interaction energy was different due to variations in

atomic charges between the machine learning force field

and GAFF. The difference clearly shows that the machine

learning force field should be improved to minimize the

differences in the energies and conformations of the ligand

compared to those obtained using the GAFF. We expect to

study ways to improve the force field by including more

data in the training data set to maximize interactions

between proteins and ligands and enhance the

prediction of phase angles.

4 Conclusion

A force field for small drug-like molecules was generated

using machine learning and deep learning techniques. The

random forest regression based charge model generates

quality atomic charges comparable to DFT based ESP

charges which are suitable for molecular dynamics

simulations. In addition to the charge model, we developed

AI-based models to predict atom types, force constants, phase

angles and periodicities for dihedral terms. The classifications

of atom types, phase angles and periodicity were achieved

successfully with accuracies of 98, 94 and 93%, respectively.

The AI models could able to predict charges and atom types

with high accuracy based on the provided atomic chemical

environment through features around a reference atom. Using

all these models, we developed a module in the pharmulator™
platform that generated topology files for small molecules in

GROMACS and NAMD formats to perform molecular

dynamics simulations. The code generates quality atomic

charges and other compatible force field parameters within

a minute of time. The generated force field parameters for

small molecules reproduces the experimental solvation free

energies with coefficient of determination value of 0.96. The

calculated free energies are better reproduced than AM1-BCC

and RESP charges. Further, the calculated structural changes

in ligand molecules at protein binding sites are comparable

with GAFF results. Overall, the results clearly revealed that the

force field generated by machine and deep learning techniques

was accurate and reliable for use in molecular dynamics

simulations of small molecules as well as for complexes of

proteins and ligands. The machine learning charge model

differs from AM1-BCC and CGenff methods in terms of

methodology and level of theory used to generate atomic

charges. This method could optimize the efficiency and

accuracy of calculations to produce reasonable ESP charges.

Also, DFT calculations to obtain ESP charges were included at

additional computational cost, which increased with the size

of the molecule. Therefore, the rapid prediction of accurate

ESP partial charges, within a minute of time and without

quantum mechanical calculations, would be very helpful in

the drug discovery process.

However, AI based force field models may have certain

limitations that it assigns incorrect sign (+ or -) for aliphatic

carbon atoms compared to ESP charges from DFT. In some

cases, the prediction phase angle for dihedral angle can be

incorrect that may introduce flexibility or rigidity in the

molecules. These limitations can be overcome by adding large

number of diverse aliphatic molecules into training data set. The

increasing of data points and number of features for training of

phase angle model would improve the accuracy to overcome the

limitations.

Generation of force field parameters for ligand molecules

is useful to perform molecular dynamics simulations to

analyzes the interactions and to estimate binding free

energy in implicit and explicit water environment. The

estimation of atomic partial charges of the small molecules

to calculate molecular interaction fields (MIFs) is an

important process in field-based quantitative structure-

activity relationship (QSAR) (Mittal et al., 2009; Gadhe

et al., 2011). The predicted DFT based charges could also

be useful to incorporate in docking calculations to perform

virtual screening (Cho et al., 2005).
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Background: Alpha-1 antitrypsin deficiency (A1ATD) is a progressive lung

disease caused by inherited pathogenic variants in the SERPINA1 gene.

However, their actual role in maintenance of structural and functional

characteristics of the corresponding α-1 anti-trypsin (A1AT) protein is not

well characterized.

Methods: The A1ATD causative SERPINA1 missense variants were initially

collected from variant databases, and they were filtered based on their

pathogenicity potential. Then, the tertiary protein models were constructed

and the impact of individual variants on secondary structure, stability, protein-

protein interactions, and molecular dynamic (MD) features of the A1AT protein

was studied using diverse computational methods.

Results: We identified that A1ATD linked SERPINA1 missense variants like F76S,

S77F, L278P, E288V, G216C, and H358R are highly deleterious as per the

consensual prediction scores of SIFT, PolyPhen, FATHMM, M-CAP and

REVEL computational methods. All these variants were predicted to alter

free energy dynamics and destabilize the A1AT protein. These variants were

seen to cause minor structural drifts at residue level (RMSD = <2Å) of the

protein. Interestingly, S77F and L278P variants subtly alter the size of secondary

structural elements like beta pleated sheets and loops. The residue level

fluctuations at 100 ns simulation confirm the highly damaging structural

consequences of all the six missense variants on the conformation dynamics

of the A1AT protein. Moreover, these variants were also predicted to cause

functional deformities by negatively impacting the binding energy of A1AT

protein with NE ligand molecule.
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Conclusion: This study adds a new computational biology dimension to

interpret the genotype-protein phenotype relationship between SERPINA1

pathogenic variants with its structural plasticity and functional behavior with

NE ligand molecule contributing to the Alpha-1-antitrypsin deficiency. Our

results support that A1ATD complications correlates with the conformational

flexibility and its propensity of A1AT protein polymerization when misfolded.

KEYWORDS

SERPINA1 gene, alpha-1-antitrypsin, serpinopathies, molecular dyanmics, AATD

Introduction

A1ATD is a rare autosomal recessive disease in which low

levels of circulating alpha-1 antitrypsin enzyme in the plasma

promote degenerative or destructive changes in the lung

(Ferrarotti et al., 2018). A1AT protein is a serine protease

inhibitor produced in the liver. This enzyme binds to different

enzymes, including neutrophil elastase, that cleaves them and

gets cleaved by them in a suicidal fashion (Vissers et al., 1988). A

proportion of A1ATD patients develop liver cirrhosis, whichmay

be caused by aggregates of alpha-1-antitrypsin proteins

(Köhnlein and Welte, 2008). While it is often undiagnosed

(Quinn et al., 2020), it causes emphysema, which can be

exacerbated by tobacco smoke (Tejwani and Stoller, 2021). It

affects 1 in 2,500 people of European ancestry (Greulich et al.,

2017).

The A1ATD is caused by different pathogenic variants in the

SERPINA1 gene, which is located on the long arm (q) of

chromosome 14 at 32.1 and consists of 7 exons. It encodes a

394 amino acid long polypeptide, which acts as a molecular

mouse trap that binds and blocks the function of a variety of

proteases. The amino acid substitutions in A1AT may also alter

the cellular function by forming polymer aggregates of the

protein, causing liver and lung damage (Duvoix et al., 2014).

Many pathogenic alleles in SERPINA1 gene, also designated as

protease inhibitor (PI), have already been described in A1ATD

patients (Foil, 2021). The misfolding and aggregation of this

serpin family member is thermodynamically favorable since the

protein’s native conformation is transient and built to be cleaved

to reach stability (Cho et al., 2005).

The effects of missense variants on A1AT’s structure and

function are not yet well resolved. Classical in-vivo and in-vitro

approaches to study the molecular characterization of pathogenic

variants are time and cost-consuming. Alternative “in silico”

approaches, owing to their sensitivity, specificity, and accuracy,

act as pre-screens for laboratory studies (Shaik et al., 2020a; Shaik

et al., 2020b; Awan et al., 2021). In this regard, a growing number

of computational methods can effectively predict variant

pathogenicity and stability, visualize their structures, map the

conserved domains, compare their secondary structures with the

wildtype protein, and simulate their ability to bind with a

substrate. Therefore, it is aimed to utilize these computational

biology methods to study clinical missense variants to expand the

knowledge on the nature of structural defects and

conformational dynamics affecting the A1AT’s function.

Materials and methods

SERPINA1 variant data collection and
curation

The molecular details of the SERPINA1 gene, including the

nucleotide sequence, chromosome position, transcript, and the

corresponding amino acid sequence, were obtained from the

National Center for Bioinformatics (NCBI) (www.ncbi.nlm.nih.

gov) and Ensembl databases (www.ensembl.org). The A1ATD

causative variants were collected from the DisGenNET platform

(https://www.disgenet.org), which is a webserver that contains

disease-associated variants gathered from scientific literature,

genome-wide association studies (GWAS) catalogues, and

animal models (Piñero et al., 2021). The reported variants are

downloaded in a list in Microsoft Excel format. Then, only the

missense variants associated with the A1ATD phenotype were

selected for further analysis, after sorting and filtering by

Microsoft Excel 2019. Table 1 shows the molecular details of

the selected SERPINA1 missense variants.

Variant pathogenicity predictions and
conservation analysis

The selected missense variants were uploaded into the

Ensembl (www.ensembl.org) variant pathogenicity predictor

(VEP) to assess their pathogenic potential. This webserver

allows using multiple tools that measure whether a variant

can be considered deleterious or not based on different

features like whether it is located in a evolutionarily conserved

sequence across species, or whether it causes structural and

stability differences, etc. (Adzhubei et al., 2010). The data can

be entered as a variant ID, VCF file, or nomenclature notation of

HGVS coordinates. The output can be in text or html format. In

this study, six tools, including Combined Annotation Dependent

Depletion (CADD), Scale-invariant Feature Transform (SIFT)
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(Ng and Henikoff, 2003), Polymorphism Phenotyping

(PolyPhen) (Adzhubei et al., 2013), Mendelian Clinically

Applicable Pathogenicity (M-CAP) (Jagadeesh et al., 2016),

and Functional Analysis through Hidden Markov Models

(FATHMM) (Rogers et al., 2018), REVEL (rare exome variant

ensemble learner) were used to evaluate the pathogenicity of

variants (Ioannidis et al., 2016). SIFT predicts pathogenicity

based on alteration in conserved regions of the nucleotide

sequence (Shaik et al., 2020b; Shaik et al., 2021; Alharthi et al.

, 2022; Bima et al., 2022). PolyPhen predicts the variant effects

based on the nucleotide sequence and changes in protein

structure. CADD predicts the effects based on the integration

of several parameters, including sequence context, evolutionary

constraints on the genome, and epigenetic calculations. The

M-CAP combines the predictions of PolyPhen, SIFT, and

CADD together. FATHMM predicts the consequences based

on combining sequence conservation within Hidden Markov

models (HMMs) to depict the alignment of homologous

sequences and conserved protein domains. REVEL is an

ensemble technique for estimating the pathogenicity of

missense variants utilizing the following methods: MutPred,

FATHMM, VEST, PolyPhen, SIFT, PROVEAN,

MutationAssessor, MutationTaster, LRT, GERP, SiPhy,

phyloP, and phastCons. REVEL was trained exclusively on

rare pathogenic and neutral missense variants (Ioannidis et al.

, 2016). To examine the amino acid sequence conservation

pattern of A1AT gene across related species (8 primates), we

have performed multiple sequence alignment using Clustal

Omegat (https://www.ebi.ac.uk/Tools/msa/clustalo/).

3D structure mapping and
superimposition

The PDB database contains the full-length x-ray

crystallographic structure of the natural human native A1AT

protein at 1.8�A (PDB ID: 3NE4 chain A). This structure was used

as a template to construct A1AT protein variants usingModeller-

homology model software. The full-length amino acid sequence

of A1AT retrieved from the NCBI database (accession number

CAJ15161.1) was used to provide input to the Modeller tool to

construct tertiary structural models of A1AT variants. The

Modeller is a readily available online tool that relies on

protein NMR to meet spatial restrictions, using sets of

geometrical requirements to establish atomic positions in

protein models by generating probability density functions.

This approach matches the input sequence with target amino

acid sequences and the structure of the template protein. Using

the steepest descent force field method in the GROMACS

software, energy of three-dimensional mutant A1AT structure

was optimized with steepest descent energy minimization

method. All 3D models, including the wildtype and mutated

structures, were viewed, and analyzed through Pymol2 software.

Structural deviation and secondary
structure analysis of A1AT variants

The structural deviation of mutated proteins is a reliable

metric to determine how an amino acid change affects the overall

structure of the protein. The structural deviation of proteins is

measured in form of RMSD values, which were computed with

the Pymol2 software. The smaller the RMSD value, higher

similarity in both structures is predicted. These RMSD values

were estimated by superimposing each mutated model with the

corresponding wildtype structure. To perform the secondary

structure analysis, each mutated amino acid sequence was

created manually in text format via manual amino acid

substitution. Then, along with the wildtype, all mutated amino

acid sequences were entered into the Netsurfp 2.0 web tool

(https://services.healthtech.dtu.dk/service.php?NetSurfP-2.0) to

generate secondary structure representations. These secondary

structures were then analyzed to see if variant induced changes

occurred at the secondary structural element like α-helix, β-
pleated sheet or loop.

Stability analysis of A1AT variants

The missense variants were analyzed for their ability to

increase or decrease the stability of the protein by using the

DUET server (http://biosig.unimelb.edu.au/duet), which predicts

TABLE 1 Molecular details of alpha-1-antitrypsin causative SERPINA1 missense variants.

# dbSNP ID Clinvar ID Chromosomal position c.DNA position Exon Amino acid change Codon change MAF

1 rs1555369172 VCV000444040.1 14:94383011-94383011 c.274T>C 2/5 F76S tTc/tCc —

2 rs55819880 VCV000017992.2 14:94383008-94383008 c.277C>T 2/5 S77F tCc/tTc —

3 rs756773408 VCV000444044.1 14:94382592-94382592 c.693G>T 2/5 G216C Ggc/Tgc —

4 rs1566753480 VCV000626306.1 14:94380955-94380955 c.880T>C 3/5 L278P cTg/cCg —

5 rs17580 VCV000626305.1 14:94380925-94380925 c.910A>T 3/5 E288V gAa/gTa 0.0196

6 rs1555367891 RCV000512630.1 14:94378633-94378633 c.1120A>G 5/5 H358R cAt/cGt —
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stability scores in ΔΔG in kcal/mol. This server uses variant

cutoff scanning matrix (mCSM) and site-directed mutator

(SDM) methods for estimation of a DUET score, which is

calculated based on integrated scores of both the

aforementioned methods (Pires et al., 2014). The input to this

server can be the four-letter code of the wildtype protein, or the

PDB structure, together with the amino acid change and the

affected chain letter code. If the value is positive, the variant is

making the structure more stable, and if it is negative, it is making

the structure less stable.

Molecular dynamics simulation

The MD simulation of the wild and mutant protein models

was done using the Desmond MD tool (Bowers et al., 2006;

Release, 2017). The simulation systems were first prepared by

applying the SPC/E solvation model to an orthorhombic box

with a boundary distance of 10 Å. The system for all the models

was neutralized by adding 10 Na+ and 0.15 M Na+, Cl− ions using

the OPLS3e forcefield. Energy minimization of the prepared

solvent systems was minimized using the steepest decent

method at 5,000 steps. Further, the minimized systems were

equilibrated in constant temperature and volume (canonical or

NVT) and constant temperature and pressure (NPT) ensembles

using a “relax model system” before the simulation. In the initial

steps, the energy minimized systems are simulated in the NVT

ensemble with Brownian dynamics at 10K temperature for

100 ps and 12 ps with restraint on solute heavy atoms. In

NPT ensemble systems, no restraints were on heavy atoms at

10 K and 300 K temperatures for 12 ps and 24 ps, respectively.

The fully equilibrated systems were finally subjected to 100 ns

unrestrained MD simulations in an NPT ensemble with

1.01325 pKa (pressure) and 300 K temperature. The 25 ns

trajectories were recorded during the simulation period for

post MD analysis.

A1AT—NE protein computational binding
assay

The binding affinity between A1AT (both native and mutant

forms) withNE (neutrophil elastase) proteins was analyzed using

the ClusPro molecular docking online tool (https://cluspro.org).

The input for this tool is the protein and ligand files in PDB

format. The other options were set as “default.” This tool utilizes

the PIPER algorithm where the center of mass of the receptor

remains fixed, and the ligand molecule is rotated in a variety of

positions to determine the best fit (Kozakov et al., 2013; Kozakov

et al., 2017; Vajda et al., 2017; Desta et al., 2020). The resulting

models were compared and only the best scores, depicted as 0 for

each model, were selected for downloading and visual simulation

in Pymol2. Moreover, the lowest negative energy score outputs

were recorded along with center scores for the analysis of binding

energy variation.

Results

Predicting missense deleterious variants
and evolutionary conservation analysis

The deleterious effects of all 6 (F76S, S77F, L278P, E288V,

G216C, and H358R) missense variants were measured with

various “in silico” prediction tools; SIFT, PolyPhen, CADD,

FATHMM M-CAP, and REVEL in the Variant Effect

Predictor (VEP) web server from Ensembl. One of the

variants (L278P) was predicted to be pathogenic by all tools

except CADD with a C-score of 29.1, which was close to the

cutoff value of 30 (Table 2). The pattern of amino acid sequence

conservation implies that all A1AT variants were mapped to the

evolutionarily conserved region (F76S, S77F, L278P, E288V,

G216C, and H358R) (Supplementary Figure S1). A1AT in

humans has a relatively close phylogenetic link with bonobos

and chimpanzees, but it is distinct from mouse lemurs, based on

the phylogenetic relationships among 12 species of primates that

are closely related to one another.

3D modeling and stereochemical quality
assessment of wildtype protein

The crystal structure of A1AT is in metastable native fold

form and consists of three sheets, nine helices, and a reactive

center loop held at the apex of the protein. The amino acids

357 to 359 allowed the RCL region extend β-stand
conformation (stressed external loop) and stabilize the

structure by forming slat bridges between P5 Glu and Arg

196, 223, and 281. Upon 3D modeling of the wildtype protein

in Pymol2, the resultant structure was subjected to energy

minimization to remove bad physical configurations. This was

achieved using the Modeller tool. The energy minimization

output was shown to be −17874.756 kJ/mol, which shows the

successful removal of unwanted bonding patterns from the 3D

model (Figure 1A). SAVES v.6.0 was used in the analysis of

protein structure stereochemical quality assessment through a

Ramachandran plot (Figure 1B), which revealed that a small

number of amino acids have their φ (phi), ψ (psi) angles in the

non-core areas of the protein. The percentage of amino acid

deposits in the center and non-center areas of the protein is

90.9%–8.8%, respectively. The hydrogen bond estimation

(DSSP) algorithm also revealed the output for hydrogen

bonding as a graphical representation (Figure 1C), which

demonstrates the good quality of the built protein model.

The average DSSP score falls between 0 and 1, indicating a

good quality protein structure.
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TABLE 2 The pathogenicity prediction output of different computational tools of the SERPINA1 missense variants.

# Amino acid variant SIFT PolyPhen CADD FATHMM M-CAP REVEL

1 F76S 0.00 1.000 32.0 0.86815 0.75948 0.98304

2 S77F 0.00 1.000 31.0 0.95561 0.82026 0.99571

3 G216C 0.00 1.000 35.0 0.91589 0.83675 0.9706

4 L278P 0.00 0.999 29.1 0.90962 0.88091 0.96096

5 E288V 0.00 0.996 32.0 0.89496 — 0.8882

6 H358R 0.00 0.990 26.8 0.92158 0.80576 0.94428

SIFT: < 0.01 = damaging, PolyPhen: > 0.5 = damaging, CADD: > 30 damaging, FATHMM >0.5 = damaging, and M-CAP > 0.5 = damaging; REVEL >0.5 = damaging.

FIGURE 1
Modeling and stereochemical quality analysis of A1AT wildtype protein. (A) Energy-minimized wildtype model of A1AT protein generated by
Pymol2. (B) Ramachandran Plot for the A1AT energy-minimized wildtype structure representing amino acid deposits in the center and non-center
areas of the protein (90.9%–8.8%, respectively). (C) Hydrogen bonding estimation of energy-minimized A1AT wildtype protein, indicating a good
quality structure.
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Structural deviation analysis of A1AT
variants

The stereochemical analysis of the energy minimized A1AT

mutant protein models (F76S, S77F, L278P, E288V, G216C, and

H358R) showed that approximately 99.7% of the amino acids fall

in the allowed region and only 0.03% in the disallowed region

(Figure 1B). Moreover, it displayed good overall structural

quality through the Procheck tool (SAVES v6.0 package)

(Figure 1C).

Using 3D structure imposition between the folded wildtype

and mutant A1AT proteins, the C-atom structural coordinates

were estimated in the form of RMSD scores by rotating them in

three-dimensional space. No significant structural differences

between the wildtype and all six mutant models of A1AT

protein was observed at whole protein structure level as their

TABLE 3 3D structural deviation of mutated A1AT protein structures versus wildtype represented in the form of RMSD values.

# dbSNP ID Amino acid variant RMSD values (Å)

Whole structure Amino acid

1 rs1555369172 F76S 0.038 2.4

2 rs55819880 S77F 0.028 2.9

3 rs756773408 G216C 0.029 3.1

4 rs1566753480 L278P 0.039 2.5

5 rs17580 E288V 0.049 2.8

6 rs1555367891 H358R 0.069 2.9

FIGURE 2
3D structure superimposition shows subtle variation in amino acid structures for all A1AT variants (Green = Wildtype).
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RMSD scores fell less than 0.2 Å (Table 3). The RMSD values for

F76S, S77F, L278P, E288V, G216C, and H358R are 0.038 Å,

0.028 Å, 0.029 Å, 0.039 Å, 0.049 Å, and 0.069 Å, respectively.

Overall, the superimposition analysis of A1AT protein

demonstrated that all six missense variants cause subtle

structural changes in A1AT at the whole protein level

(Figure 2). However, all mutant models show >2Å structural

deviations at the residue level.

A1AT stability and secondary structure
analysis

The function of the disease candidate protein will be affected

by missense variants that negatively affect thermodynamic

stability. Stability changes of A1AT mutated structures were

analyzed by different tools to measure energy changes. The

mCSM predicted F76S (−2.9 kcal/mol), S77F (−0.584 kcal/

mol), L278P (−1.571 kcal/mol), G216C (−0.415 kcal/mol), and

H358R (−1.74 kcal/mol) variants (5/6; 83.3%) are destabilizing

the protein due to their negative free energy (ΔΔG) values. SDM
also predicted F76S (−3.57 kcal/mol), G216C (−1.12 kcal/mol),

L278P (−2.58 kcal/mol), and H358R (-1.69 kcal/mol) variants as

destabilizing owing to their free energy values.

The DUET tool combines the output of both the mCSM and

SDM tools to generate a consensual prediction. DUET webserver

supported that 5/6 variants (83.3%) are destabilizing the A1AT

structure because of their negative free energy values, i.e., F76S

(-3.199 kcal/mol), S77F (−0.419 kcal/mol), G216C (−0.434 kcal/

mol), L278P (−1.93 kcal/mol), and H358R (−1.842 kcal/mol).

The destabilization data predicted that most of these variants

are pathogenic as they disrupt the folding of the A1AT protein.

Because of positive free energy values, E288V is, predicted by all

the three tools (mCSM = 0.909 kcal/mol, SDM = 0.55 kcal/mol,

and DUET = 1.333 kcal/mol), to further stabilize the A1AT

protein structure (Table 4).

The secondary structure analysis provides information on how

the mutant amino acid residue affects the substructures (alpha

helices, loops, and beta pleated sheets) in the protein. The output

of the secondary structure analysis predicted 2/6 (33%) of variants

show alterations in the secondary structure of A1AT This includes

L278P variant, which shortens the beta pleated sheet (Figure 3) and

the S77F variant that increases the protein length as this variant is

located at the junction with a loop region (Figure 3).

MD simulation analysis

The Root Mean Square Deviation (RMSD), Root Mean Square

Fluctuations (RMSF), and Secondary Structure Elements (SSE) were

analyzed in all the six alpha-1 anti-trypsin models at 100 ns. Figure 4

represents the C-alpha RMSDs of wildtype and mutant alpha-1 anti-

trypsin proteins for 100 ns. The RMSD analysis shows that four

mutant structures (G216C, L278C, E288V, and H358R) significantly

fluctuated compared to the wild-type alpha-1 anti-trypsin model.

The wildtype model RMSD started at 1.4 Å at 0 ns and reached

equilibrium at 50 ns, maintaining the RMSD range between 1.5 Å

and 1.8 Å. Whereas the RMSD of the four mutant models increases

steadily up to 10 ns, after 50 ns, it abruptly decreases from 0.2 Å to

0.42 Å and then increases to 1.8 Å at 70 ns, before fluctuating at 1.6 Å

at the end of the simulation. In the H358R mutant model, a clear

deviation was observed in the domain region, whereas in the other

models, the helix 12 region showed more deviation compared to

other secondary structural elements in the protein models. The

mutations G216C, L278C, E288V, and H358R are localized near

the RCL region of A1AT. After 50 ns, the β -sheets were opened (at

RCL), allowing an increase in the stability of themotifs in the protein.

We also discovered that the RCL region is stressed to a relaxing state

during the simulation period.

To understand the flexible nature of mutated proteins, we

performed RMSF analysis at 100 ns. The RMSF value over the

entire simulation of six mutant models (F76S, S77F, G216C,

TABLE 4 Thermodynamic stability analysis of SERPINA1 missense variants.

# dbSNP ID Nucleotide
substitution

Exon Amino acid
variant

mCSM (ΔΔG) SDM (ΔΔG) DUET (ΔΔG)

1 rs1555369172 c.274T>C 2/5 F76S −2.9 kcal/mol
(Destabilizing)

−3.57 kcal/mol
(Destabilizing)

−3.199 kcal/mol
(Destabilizing)

2 rs55819880 c.277C>T 2/5 S77F −0.584 kcal/mol
(Destabilizing)

0.74 kcal/mol
(Stabilizing)

−0.419 kcal/mol
(Destabilizing)

3 rs756773408 c.693G>T 2/5 G216C −0.415 kcal/mol
(Destabilizing)

−1.12 kcal/mol
(Destabilizing)

−0.434 kcal/mol
(Destabilizing)

4 rs1566753480 c.880T>C 3/5 L278P −1.571 kcal/mol
(Destabilizing)

−2.58 kcal/mol
(Destabilizing)

−1.93 kcal/mol
(Destabilizing)

5 rs17580 c.910A>T 3/5 E288V 0.909 kcal/mol
(Stabilizing)

0.55 kcal/mol
(Stabilizing)

1.333 kcal/mol
(Stabilizing)

6 rs1555367891 c.1120A>G 5/5 H358R −1.74 kcal/mol
(Destabilizing)

−1.69 kcal/mol
(Destabilizing)

−1.842 kcal/mol
(Destabilizing)
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L28P, E288V, and H358R) showed significant fluctuations. When

compared to the wildtype model, the mutant models S77F, G216C,

L278P, and 288V exhibit more fluctuations (>0.2 Å), whereas the
mutant models of F76S and H358R exhibit more rigidity (>0.1 Å).
The higher RMSF values of mutated models of S77F, G216C, L28P,

and E288V support the calculated RMSD values. The secondary

structure analysis was performed on mutated models of the alpha-1

anti-trypsin protein. Of the 6 mutated models, two models show a

significant alteration in secondary structural elements. The mutated

models S77F and G216C show >1% alterations in the secondary

structural elements, whereas the remaining four models show lesser

alterations in their β-strands (Figure 5).

FIGURE 3
Molecular dynamics simulation measuring fluctuation in structural stability at the protein level for 4 A1AT variants (G216C, L278P, L288V, and
H358R) when subjected to a force at different time intervals (measured at 0, 25, 50, 75, and 100 ns. ns = nanoseconds).
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Molecular docking of A1AT-NE complex

ClusPro docking generated the best docking complexes of

A1AT (receptor) and NE (ligand) with similar polarity and

orientation based on their high-resolution models fitted to the

electron microscopy density volumes above. The ClusPro

software calculated the best docking pose based on highly

populated clusters of low-energy models. Further, the best fit

pose for each receptor-ligand complex was identified by the

PIPER algorithm based on electrostatic and van der Waals

scores (Figure 6). A1AT-NE mutated complexes have shown

significant alterations in lowest central energy score

(>-9.1 kcal/mol), compared to the wildtype-NE complex

(Table 5). Therefore, major differences in binding

configuration for all the six variants are predicted by this

analysis. In the wildtype A1AT protein complex, the protein-

FIGURE 4
Secondary structure analysis output of the A1AT missense variants (A–F) in comparison with wildtype structure.
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protein interaction had the lowest free energy score

of −914.9 kcal/mol, whereas the lowest free energy between

F76S-NE complex is −941.2 kcal/mol, in S77F-NE

is −944.6 kcal/mol, in G216C-NE is −941.5 kcal/mol, in

L278P-NE is −945.4 kcal/mol, in E288V-NE is −941.1 kcal/

mol, and in H358R-NE is −931.6 kcal/mol. The A1AT protein

normally functions as a molecular mouse trap by having high

affinity to its substrate and eliminates its target molecule in a

suicidal fashion (Berclaz and Trapnell, 2006). Under A1AT

mutant conditions, differences in binding affinities with NE

were evident. The NE interacts at RCL loop in both wild and

mutant state. However, the mutation at AA348 created a

expansion of B-sheet and allowed perturbation of the Helix

in the A1AT structure. This will allow the formation of

protein-inhibitor covalent liked complex. Other mutations

are not having any direct effect on the NE- A1AT

inhibition. As a result of these findings, it is assumed that

all six mutant models will tightly bind to their substrate,

FIGURE 5
Molecular dynamics simulationmeasuring fluctuation in structural stability at the amino acid level for 6 A1AT variants (F76S, S77F, G216C, L278P,
E288V, and H358R) after being subjected to a force.
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altering the way the alpha-1 antitrypsin protein functions

inside the cell. The A1AT and protease molecular complex

are recognized by hepatic receptors, which rapidly clear it

from the blood circulation. A1AT has been shown to have a

variety of different immunomodulatory actions in addition to

its function as the main protease inhibitor, including an anti-

inflammatory effect and the modulation of T- and

B-lymphocyte functions.

Discussion

A1ATD manifests clinically with emphysema in the lungs

around the fourth to fifth decade of life, with a proportion of

patients developing liver cirrhosis later due misfolded A1AT

protein aggregates accumulating in hepatocytes (Kelly et al.,

2010). The SERPINA1 gene is located on chromosome

14q32.1 and has three untranslated exons (IA, IB and IC) and

FIGURE 6
Molecular docking visualization output of the 6 A1AT variants and wild type protein showing their binding configurations with NE (neutrophil
elastase).

TABLE 5 Cluspro predictions of A1AT-NE molecular complex binding energy scores.

# Receptor-ligand Cluspro weighted scores

Center score (K.cal/mol) Lowest energy (K.cal/mol)

1 A1AT-NE (Wildtype) −798.7 −914.9

2 A1AT -NE (F76S) −793.0 −941.2

3 A1AT -NE (S77F) −798.5 −944.6

4 A1AT -NE (G216C) −798.1 −941.5

5 A1AT -NE (L278P) −794.8 −945.4

6 A1AT-NE (E288V) −792.4 −941.1

7 A1AT-NE (H358R) −775.0 −931.6
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four coding exons (II–V). The first three exons regulate gene

expression through three alternative transcription initiation sites:

exons IA or IB in macrophages, exon IC in hepatocytes (Duvoix

et al., 2014; Greulich et al., 2017; Tejwani and Stoller, 2021).

Pathogenic variants in the SERPINA1 gene underlie alpha-1-

antitrypsin deficiency (A1ATD), which causes reduced protein

levels. Many pathogenic SERPINA1 variants associated with

A1ATD have been reported in medical literature (Foil, 2021).

Biological characterization of each genetic variant is impractical

owing to their high number and time-consuming laboratory

methods. In recent years, different researchers have shown the

successful application of different computational methods like

SIFT, Polyphen-2, M-CAP, and FATHHM in screening clinically

pathogenic variants (Kelly et al., 2010; Hunt and Tuder, 2012;

Lage, 2014). Computational biology-based pathogenicity

prediction methods employ different support vector machine-

based algorithms to identify deleterious variants from non-

deleterious ones (Berclaz and Trapnell, 2006).

In the current study, computational predictions of SIFT,

Polyphen, M-CAP, FATHMM, CADD and REVEL methods

have confirmed all the six variants as pathogenic. However,

computational predictions are often variable, based on the fact

that each tool is trained on a unique variant data set (Thirumal

Kumar et al., 2022; Thirumal Kumar et al., 2021; Abdel-Motal

et al., 2018; Agrahari et al., 2019; Selvakumar et al., 2019).

This study found that two of the selected variants (F76S and

S77F) fell in close range to the previously reported Trento variant

of A1AT (E75V) (Miranda et al., 2017). The patient had a severe

case of A1ATD with pathogenic intracellular polymer formation.

The E75V variant affects the hydrogen bonding of the glutamic

acid sidechain to the backbone of helix I which causes

destabilization to the post helix I loop. This geometry has

been shown to play a conserved role in preventing

polymerization (Lomas et al., 1992). As a result of the

expected geometry disturbance, F76S and S77F are expected

to produce a polymerization phenotype similar to the Trento

variant in affected individuals.

The evolutionary conservation analysis has identified that the

H358R variant is in the Serpin conserved domain (344aa–369aa).

This variant is reported in ClinVar as likely pathogenic. It is

assumed that this variant might introduce a functional change in

the protein conserved domain, but the secondary structure

analysis for this variant did not show any clear alterations in

secondary structural elements like α helices and β pleated sheets.

Recent research has shown that missense variants TYK2

(Pro1104Ala), IL6R (Asp358Ala), and PTPN22 (Trp620Arg)

are unaffected by secondary structural element (SSE) changes

in their respective proteins. The other variants were reported on

ClinVar as follows: F76S as pathogenic, S77F as pathogenic,

G216C as likely pathogenic, L278P as pathogenic, and E288V as

pathogenic. The pathogenicity prediction tools provide a

qualitative support for damaging or not damaging effect but

do not show additional details on the structural changes caused

by the variants. SERPINA1 missense alleles are associated with a

significant reduction in A1AT serum levels because of the

incorrect folding of the protein, poor stability, or degradation.

A1AT is a 52-kDa plasma glycoprotein with 394 amino acids.

Its expression inversely correlates with expression of its binding

partner NE [28]. The damaging effects of missense variants are

better understood when their impact is studied at 3D structure

level [29]. The superimposition of the investigated 3D protein

structures onto the folded wildtype model is demonstrated to be a

useful method for estimating root-mean-square deviation

(RMSD), the average distance between backbone atoms of the

superimposed variant and native protein structures [29]. In this

investigation, we did not find major structural differences in the

whole structure of A1AT in mutated state. However, all

6 missense variants cause subtle structural changes at the

residue level. Amino acid substitutions often result in

quantitative structural alterations that are accompanied by

changes in fundamental physicochemical characteristics such

as size, charge, side chains, molecular weight, and

hydrophobicity. All of these modifications could affect the

amino acid residues’ chemical bonding properties (hydrogen

bonds, ionic bonds, and Vander wall interactions), which are

necessary for keeping the A1AT protein molecule in its

secondary (alpha helices, beta sheets, and coils), tertiary (3-

dimensional form), and quaternary (protein subunit

arrangement) structural conformations.

Thermodynamic stability can provide information about the

nature of the A1AT’s altered function. The greater the negative

free energy, the more destabilizing the variant. In this

combination, the DUET algorithm predicted two variants with

highest negative free energy for H358R (−1.842 K. Cal/Mol) and

F76S (−3.199 K. Cal/Mol) to be as destabilizing. The H358R falls

into the Serpin conserved domain and the F76S has changed

from a large hydrophobic residue (phenylalanine) to a small

hydrophilic residue (serine). This might push the protein region

towards the external environment, altering the overall

thermodynamic and structural orientation.

To get a deeper insight into how variants influence the

stability of the A1AT protein structure on the molecular level,

molecular dynamics simulations were performed for the wild

type and mutant models. The output trajectory of the simulation

at multiple intervals (0, 25, 50, 75, and 100 ns) was subjected to

two analyses: RMSD and RMSF. The RMSF value over the whole

simulation (100 ns) of six mutant models (F76S, S77F, G216C,

L28P, E288V, and H358R) showed significant fluctuations.

However, when subjected to a force, they showed a significant

structural behavior change. The wildtype model had more

fluctuations (>0.2 Å) than the mutant models S77F, G216C,

L278P, and E288V, whereas the F76S and H358R variants

were more rigid in nature (>0.1 Å). This finding demonstrates

that missense variants could somehow introduce mild structural

changes that could affect the behavior of the protein in its

environment. The increase in RMSF values of mutated models
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of S77F, G216C, L28P, and E288V variants validated the

calculated RMSD values. This suggests that these four variants

must have some structural changes affecting the residue

flexibility and behavior. Of the six mutated models, two

models (S77F and G216C) showed a significant alteration in

secondary structural elements. The S77F was already predicted in

the previous secondary structure analysis as having an increased

beta pleated sheet that is increased in length, giving more support

to this finding. The secondary structure change can be attributed

to the subtle changes giving rise to behavioral changes seen in

MD simulations. However, we cannot assume it is the exact cause

of this altered behavior.

Protein-protein interaction analysis is an important

approach in understanding the variant impact on structural

features of disease candidate proteins of genetic diseases (Lage,

2014). The reduction or increase in the binding affinity of a

protein induced by residue alterations can make proteins lose

their function and cause disease. The A1AT protein is the

primary protease inhibitor in the human body, acting on a

variety of targets including trypsin, collagenase, macrophage

cathepsin, tissue kallikrein, factor IX and other molecules

(Berclaz and Trapnell, 2006). However its main function is

to keep the neutrophil elastase in balance during in

inflammation or infection through its inhibitory action

(Hunt and Tuder, 2012). In this analysis, molecular docking

has yielded a similar range of lowest energy (−931.6 K. Cal/

Mol to−944.6 K. Cal/Mol), which predicts a significant

difference versus the wildtype protein (−914.9 K. Cal/Mol).

This results in a strong binding to NE (−16.7 K. Cal/Mol to

30.5 K. Cal/Mol deviation range), most likely causing a

functional alteration. The binding configuration was chosen

based on the best score, which could not have been compared

to an available crystal structure. So, the actual amount was

only an estimation.

Conclusion

This study concludes that computational methods like

SIFT, PolyPhen, FATHMM, M-CAP and REVEL tools are

very helpful in prioritizing SERPINA1 loss-of-function

pathogenic variants. These tools have lot of promise in

screening Alpha-1-antitrypsin deficiency causative

variants from next-generation sequencing data. It is

important to note that laboratory experimental methods

are required for definitive answers to the questions asked

in this analysis. This present analysis highlighted general

structural abnormalities caused by the reported missense

variants of SERPINA1. The structural and stability

prediction methods used in this study have shown how

loss-of-function pathogenic variants could induce

structural drifts, free energy value fluctuations, and alter

the conformational dynamics of the A1AT protein molecule.

The SERPINA1 mutations result in an unstable intermediate

structure that is responsible for the β sheet-A opening,

which can accept the RCL of another A1AT molecule to

form a loop-sheet dimer. The latter can then be extended to

form longer chains of loop-sheet polymers. These models are

based on the “classic” loop-sheet model in which serpin

polymers are formed by the intermolecular linkage of the

reactive loop of one molecule with the β-sheet A of another.

The findings from molecular docking have demonstrated

how most missense variants negatively impact the affinity of

NE and A1AT binding in a molecular complex, lowering

A1AT functionality and contributing to its deficiency. Taken

together, our computational approach offers an extra layer

to study the deleterious potential of SERPINA1 genetic

variants from the structure and function context. Our

findings recommend implementing computational variant

assessment as a pre-invitro phase in improving the genomic

medicine for A1ATD patients carrying SERPINA1

pathogenic variants.
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Treating acute myeloid leukemia (AML) by targeting FMS-like tyrosine kinase 3

(FLT-3) is considered an effective treatment strategy. By using AI-assisted hit

optimization, we discovered a novel and highly selective compound with

desired drug-like properties with which to target the FLT-3 (D835Y) mutant.

In the current study, we applied an AI-assisted de novo design approach to

identify a novel inhibitor of FLT-3 (D835Y). A recurrent neural network

containing long short-term memory cells (LSTM) was implemented to

generate potential candidates related to our in-house hit compound (PCW-

1001). Approximately 10,416 hits were generated from 20 epochs, and the

generated hits were further filtered using various toxicity and synthetic

feasibility filters. Based on the docking and free energy ranking, the top

compound was selected for synthesis and screening. Of these three

compounds, PCW-A1001 proved to be highly selective for the FLT-3

(D835Y) mutant, with an IC50 of 764 nM, whereas the IC50 of FLT-3 WT was

2.54 μM.
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Introduction

Overexpression or mutation of some signaling proteins leads

to cancer development (Kazi and Rönnstrand, 2019). Among the

most mutated extracellular signaling mediators in cancer are the

receptor tyrosine kinases (RTKs) (McDonell et al., 2015). Among

the five known types of RTKs, FMS-like tyrosine kinase (Kindler

et al., 2010) (FLT-3) belongs to type III. It plays an essential role

in regulating early hematopoiesis because it is selectively

expressed on CD34+ hematopoietic stem cells and immature

hematopoietic progenitors (Rosnet et al., 1996; Kindler et al.,

2010). It is also expressed in the liver, spleen, lymph nodes,

thymus, placenta, gonads, and brain (Del Zotto et al., 2001;

Stirewalt and Radich, 2003; Brown and Small, 2004). Our work is

focused on FLT-3, a gene that is highly mutated in acute myeloid

leukemia (AML) (Grafone et al., 2012).

Interestingly, thousands of mutations (mostly insertions)

have been reported for FLT-3. Many FLT-3 point mutations

are commonly found in AML, and the activation loop residue

D835, which stabilizes the inactive conformation is the

predominant site of mutations (Yamamoto et al., 2001; Liang

et al., 2003; Smith et al., 2012). Overexpression and frequent FLT-

3 mutations are associated with poor prognoses and AML

pathogenicity and activate downstream signaling molecules,

which leads to stimulation and survival of cancerous cells

(Zhang and Broxmeyer, 1999; Hayakawa et al., 2000; Lin

et al., 2012). Treating AML patients by targeting FLT-3 and

its mutants with small molecules is considered a promising

strategy (Assouline et al., 2012; Leung et al., 2013; Gebru and

Wang, 2020; Ambinder and Levis, 2021).

Since approval by the Food and Drug Administration (FDA)

of the first tyrosine kinase inhibitor imatinib (Savage and

Antman, 2002) two decades ago, several drugs targeting FLT-

3 have entered clinical trials. Nevertheless, only midostaurin and

gilteritinib have been approved by the FDA (Scholl et al., 2020).

FLT-3 inhibitors are classified as type I or type II based on their

binding with the protein. Type I inhibitors such as sunitinib

(Schittenhelm et al., 2006), midostaurin (Stone et al., 2004),

lestaurtinib (Smith et al., 2004), crenolanib (Heinrich et al.,

2012), and gilteritinib (Grunwald and Levis, 2013) bind with

the active state (DFG-in) of FLT-3, whereas type II inhibitors

such as sorafenib (Auclair et al., 2007), ponatinib (O’Hare et al.,

2009), and quizartinib (Zarrinkar et al., 2009) bind only with the

inactive (DFG-out) FLT-3 conformation (Scholl et al., 2020).

Studies have shown that type I inhibitors are more promising for

use in AML treatment, as they target the predominant mutated

kinase (Wodicka et al., 2010; Smith et al., 2012). There has been

tremendous interest in developing FLT-3 inhibitors using classic

computer-aided drug design approaches (Chang Hsu et al., 2014;

Ke et al., 2015). In this study, we focus on developing a more

rational approach for preparation of FLT-3 type-I inhibitors.

Recent breakthroughs show the significance of artificial

intelligence (AI) in drug discovery, and AI reduces costs and

increases the speed of the drug discovery pipeline (Mak and

Pichika, 2019). One of the main bottlenecks of traditional de novo

drug design methods is the complicated synthetic routes;

reported AI methods suggest synthetically feasible molecules

or synthetic pathways that can help chemists (Corey and

Wipke, 1969; Hessler and Baringhaus, 2018). Using AI,

identification of a DDR1 kinase inhibitor was completed in

just 60 days, including synthesis and experimental validation

(Zhavoronkov et al., 2019). Excientia prepared the first AI-

designed drug (DSP-1181) to treat obsessive-compulsive

disorder (OCD), which subsequently entered clinical trials

(Luo et al., 2022). They also discovered the AI-designed

molecule EXS-21546 for immuno-oncology, which entered

clinical trials in 8 months. Insilico medicine (www.insilico.

com) used its AI program to develop a novel inhibitor

(ISM001-055) for antifibrotic targets, and it reached clinical

trials in 9 months. Recently, they have announced a

preclinical candidate for the main protease of SARS-CoV-2,

which was discovered with their novel AI platform, Chemistry42.

Network-based approaches are widely used to infer relationships

between diseases and drugs (Guney et al., 2016) and aremore focused

on predicting novel protein targets and new uses of known drugs

(Berger and Iyengar, 2009; Wu et al., 2013). In the current study, we

used our reverse network theory approach developed in-house to

identify a potential therapeutic target for PCW-1001. Based on the

network theory and docking results, FLT3 was considered a potential

target. Further biological screening studies showed that PCW-1001

exhibited an inhibitory IC50 of 13.6 μM against FLT-3 WT and

1.83 μM against the FLT-3 (D835Y) mutant (Kang et al., 2022). An

AI-assisted de novo design approach was applied to identify a potent

and selective inhibitor for the FLT3/FLT-3 (D835Y) mutant. This

parent compound (PCW-1001) was considered for further

optimization, and more than 10,416 analogs were generated using

the LSTM approach. These hits were further evaluated for synthetic

FIGURE 1
2D Chemical structure of FLT-3 inhibitor PCW-A1001.
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feasibility by in-house machine learning models and assessed for

potential structural alerts. The resulting hits were subjected to

docking studies, binding mode reviews, and free energy

calculations for prioritization. Based on the binding mode review

and free energy calculation data, the top compound was prioritized

for synthesis and further screening. Screening data showed that

PCW-A1001 (Figure 1) proved to be a potential and selective

inhibitor against the FTL3 (D835Y) mutant.

Results and discussion

Network-based reverse target prediction

We implemented an in-house network-based reverse target

prediction module to identify a protein target for PCW-1001

(Figure 2). Our parent compound, PCW-1001, exhibited a

significant inhibitory profile against various breast cancer cell lines,

but a substantial protein target was unknown (Kang et al., 2022).

PCW-1001 compound structural similarity (atom pair descriptors)

was computed against the ChEMBL chemical database. The

generated similarity matrix of the ChEMBL database with PCW-

1001 and its corresponding protein target informationwas considered

for further analysis. Ensemble docking studies were carried out for

PCW-1001 against all 2,000 unique targets [with a known crystal

structure database (www.rcsb.org)]. Of the top 10 scored (docking

score) targets, five kinases (FLT3, JAK2, NTRK, MKNK2, and

TGFBR1) were observed to be potential targets for PCW-1001. All

five kinase targets are known to play a critical role in treating various

cancers; among the five targets, we selected FLT-3 based on the score.

Furthermore, FLT-3 point mutations are frequently found in AML,

where the mutations occur in the activation loop residue D835 and

stabilize the active conformation.

Artificial intelligence-assisted de novo
design of a novel FMS-like tyrosine kinase
3 inhibitor using the long short-term
memory approach

In the current study, we applied a deep recurrent neural

network (RNN) with long short-term memory (LSTM) cells

FIGURE 2
Network-based reverse target prediction. (A) Protein-Ligand interaction network with nodes (depicted in dark turquoise elliptical sphere) as
proteins and edges (rectangular orange box) as ligands obtained fromChEMBL, DrugBank and PubChem. Tanimoto similarity identified usingMACCS
keys fingerprint between query compound (PCW-A1001) and the top hit CHEMBL 1807483 (shows interactions with FLT3) is 0.67. (B) Study of
selectivity of the PCW-1001 against the panel of 48 representative kinase enzymes. The score was rescaled to be ranged, as the lower value
corresponds to more energetically favorable one.
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FIGURE 3
Overall pipeline of AI based drug discovery approach to identify PCW-A1001 from PCW-1001. Step-1: The target protein for the PCW-1001 was
identified as FLT3 from the network analysis. Step-2: AI-assisted drug design using the RNN-LSTM method. Step-3: Generated compounds were
evaluated using various lead-like identification filters. Step-4: Binding mode analysis (Docking, Molecular dynamics, QM/MM, Free energy
calculation) of the filtered molecules. Step-5: Synthesis and characterization. Step-6: In vitro Assay for the enzymatic activity and cell viability.

SCHEME 1
The synthesis of PCW-A1001. (i) K2CO3, DMF, 70°C, 12 h; (ii) H2(g), Pd/C, EtOAc, r.t., 10 min; (iii) 4-tert-butylbenzoic acid, EDCI, DMAP, DCM, r.t.,
48 h; (iv) LiOH·H2O, THF/MeOH/H2O, r.t., 12 h; (v) NH4Cl, HBTU, DIPEA, DMF, r.t., 12 h; (vi) 20% TFA in MeOH, r.t., 3 h.
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for de novo drug design (Merk et al., 2018) to generate

potential hit candidates around PCW-1001 (Figure 3). We

fine-tuned the model by using the transfer learning approach

to optimize de novo generation of FLT-3 active compounds

(Kang et al., 2022). We sampled 10,416 SMILES (Simplified

Molecular Input Line Entry System) strings from 20 epochs

from the resulting fine-tuned model. AI-generated hits were

further evaluated using MOSES (Polykovskiy et al., 2020) for

novelty, validity, diversity, scaffold similarity, and

uniqueness. Benchmarking analyses indicated that 98.8% of

the hits were valid, 85% of the hits were unique, and 90% of

the hits were novel. The chemical space of AI-generated hits

falls within the range of FLT3 known actives and PCW-1001

(Supplementary Figure S1). Furthermore, violin plot analysis

also suggested that the distribution of molecular weights and

LogP of AI-generated hits were within the range of known

FLT3 actives (Supplementary Figure S2). Overall, AI-

generated hits fell within the chemical space of known

actives, and MOSES analysis suggested that AI-generated

hits were diverse and novel compared with known

FLT3 actives and PCW-1001.

Based on the binding analysis and interaction pattern studies,

we identified 1750 compounds out of 10,416 hits as suitable for

further studies. Following this preliminary evaluation, we

assessed the resulting structures for toxicity endpoints via our

Pharmulator™. We generated 9 toxicity models (different end-

points) using available literature data, and validated models were

deployed in Pharmulator™ to assess the hit moieties quickly. Of

1750 hits, only 190 compounds passed synthetic feasibility,

novelty, drug-like, all toxicity, and PAINS filters and were

further subjected to a binding pose analysis and free energy

calculations. We selected the top compound for synthesis and

in vitro screening.

Synthesis and structural characterization
of the de novo compound PCW-A1001

The synthetic route to PCW-A1001 is summarized in

Scheme 1. Methyl 2-fluoro-4-nitrobenzoate 1 and tert-butyl 3-

aminopiperidine-1-carboxylate 2 were reacted in the presence of

K2CO3 to obtain 3 through nucleophilic aromatic substitution.

The nitro group of resulting compound 3 was converted to an

amino functional group via hydrogenation. Amine Compound 4

was coupled with 4-(tert-butyl)benzoic acid in the presence of

EDCI and a catalytic amount of DMAP and then hydrolyzed

using LiOH·H2O to produce intermediate 6. The acid functional

group was efficiently converted to an amide with the HBTU

coupling reagent. The Boc protecting group of the secondary

amine in the piperidine ring was removed to obtain the desired

compound PCW-A1001. The step-by-step synthesis and

structural characterizations are shown in the Supplementary

Material.

Structural interaction and stability analysis
of PCW-A1001 with wild-type FLT-3 and
the FLT-3 (D835Y) mutant

The top predicted binding mode of PCW-A1001 with FLT-3

WT showed two key hydrogen bonding interactions with

Cys694 and Cys695 and a π-π interaction with Phe830. The

docking complex of PCW-A1001 with FLT-3 WT was

considered for molecular dynamics (MD) simulation for

100 ns. The MD simulation results also showed that the

compound binding interactions observed in the initial docked

complex were retained in PCW-A1001. The compound bound

perfectly in the ATP binding site by forming hydrogen bonds

with the two cysteine residues (Cys694 and Cys695) located in

the hinge region. As observed in several inhibitor-kinase

complexes, hydrogen bonding interactions with the inhibitor

are essential for kinase inhibitory activity (Banks et al., 1979; Ke

et al., 2015). The carbonyl moiety of the benzamide group formed

a hydrogen bond with the NH group of the Cys694 residue

(Figure 4).

The NH moiety of the next benzamide group in the

compound formed a hydrogen bond with the backbone

carbonyl group of the Cys695 residue. Phe830 in the DFG

loop in wild-type (WT) FLT-3 formed π-π interactions with

compound PCW-A1001. The binding free energy of PCW-

A1001 was −13.4 kcal/mol with FLT-3 WT but −14.8 kcal/mol

with the FLT-3 (D835Y) mutant, whereas those of the precursor

compound PCW-1001 were −7.2 kcal/mol and −8.07 kcal/mol

for FLT-3(WT) and FLT-3 (D835Y), respectively (Table 1).

In the FLT-3 (D835Y) mutant, the NH group of

Cys694 formed a hydrogen bond with the CO moiety of the

benzamide group in PCW-A1001, as seen with WT FLT-3.

Cys695 also maintained its hydrogen bonding interactions, as

in the WT; additionally, Lys614 and Tyr693 interacted with the

protein. The Cα-RMSD of the WT FLT-3 and the mutant

complex showed that the complex was stable throughout the

simulation (Figure 4).

Based on the binding study of PCW-A1001 and its precursor

compound PCW-1001 against the panel of kinase enzymes,

selectivity was achieved by PCW-A1001 for FLT-3 (D835Y).

The selectivity scores of PCW-A1001 and PCW-1001 were

calculated from the dock score (rescaled) of the selected

kinase panel of enzymes as 0.33 and 0.46, respectively, for the

Flt-3 (D835Y) mutant (Supplementary Figure S3).

QM/MM analysis of PCW-A1001

QM/MM optimization was used to validate the interactions

between PCW-A1001 and the FLT-3 (D835Y) mutant in the

MD-determined complex to study the electronic and structural

properties of the ligand and selected atoms of the protein

(Figure 5). The electrostatic and van der Waals interactions
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were intact in the protein–ligand complex, as with the MD

structure. The ligand was stabilized at the binding site

through hydrogen bonding and -CH-π and -NH-π
interactions. The backbone -NH group from

Gly697 interacted with the phenyl ring of the ligand. In

addition to hydrogen bonding interactions, -CH-π interactions

were dominant in the complex formed between the ligand and

protein. The Leu746, Phe691, Val624, and Leu616 residues were

involved in the -CH-π interaction, as shown in Figure 5. The

same pattern was also observed in the case ofWT protein binding

with the ligand, except for the -CH-π interactions with Ala642.

The calculated interaction energies for the ligand and protein

were −46.91 and −34.04 kcal/mol for the mutant and WT,

respectively. These binding affinities were in good agreement

with the free energy calculations for an explicit water

environment.

FIGURE 4
Binding analysis of PCW-A1001. (A)DFG-out conformation of FLT-3 wild type (B) Bindingmode of PCW-A1001 with FLT-3 wild type (C) Crucial
interactions observed in the FLT-3 wild-type (sticks). (D)DFG-in conformation of FLT-3 (D835Y) mutant, (E) Bindingmode of PCW-A1001 with FLT-3
(D835Y), (F) Crucial interactions observed in the FLT-3 (D835Y) (sticks). Hydrogen bond interactions are represented in black dashed lines and pi-pi
interactions in the blue dashed lines. (G) RMSD (Cα) plot of FLT-3 wild type and D835Y mutant.

TABLE 1 Binding free energy calculation for PCW-A1001 with WT and
mutant FLT-3.

Compound FLT-3 (WT) FLT-3 (D835Y) mutant

PCW-A1001 −13.4 kcal/mol −14.8 kcal/mol

PCW-1001 −7.2 kcal/mol −8.07 kcal/mol
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The electron distribution was determined from the calculated

orbital energies. The highest occupied molecular orbital (HOMO),

HOMO-1, and lowest unoccupied molecular orbital (LUMO) were

computed and are displayed in Figure 6. The HOMO surface was

predominantly localized in the hydrogen bonding interaction regions

of the ligand, whereas the LUMO surface was distributed evenly

across the ligand (Figure 6). Gly697, which was involved in the -NH-

π interactionwith the ligand, contributed less to theHOMO,whereas

HOMO-1 was highly localized on Gly697. The piperidine ring in the

ligand formed an intramolecular hydrogen bond and stabilized the

ligand orbitals. Thus, the HOMO was localized on and near the

piperidine ring. Furthermore, atomic charges were calculated with

natural population analysis. The sum of the atomic charges on the

ligand was found to be 0.02 au. No significant charge transfer from

the ligand to the protein was observed.

We also analyzed the Frontier orbitals of PCW-A1001, as shown

in Figure 6. Frontier orbitals direct the mode of interaction between

drugs and proteins. The HOMO and LUMO contribute to the

chemical stability of the molecule. If the energy gap is zero or

negligible, the molecule is highly reactive. PCW-A1001 was stable

and showed an energy gap of 3.7 eV. The HOMO was localized on

the phenyl ring, and the LUMO was distributed across two phenyl

rings of PCW-A1001. This indicated that intramolecular charge

transfer might enhance the stability of PCW-A1001. The

molecular electrostatic potential illustrates the charge distribution

of a molecule. This explains how one molecule can interact with

another. The electrostatic potential helps determine the electrophilic

and nucleophilic sites involved in hydrogen bond formation. The

calculated electrostatic potential surface is shown in Figure 6. The

positive and negative potentials are indicated by blue and red colors,

respectively. Atoms in the positive potential region act as electron

acceptors, whereas atoms with a negative potential behave as electron

donors during hydrogen bond formation with FLT-3. The aromatic

phenyl rings involved in -CH-π interactions were found between the

positive and negative potentials. The results show that the charge

distribution over PCW-A1001 was favorable for interacting with the

binding pocket of FLT-3.

Inhibition of MV4-11 and acute myeloid
leukemia cell lines by PCW-A1001

MV4-11 cells and FLT-3-mutated AML cells (Quentmeier

et al., 2003) were used to examine the anticancer activity of PCW-

A1001. It inhibited the proliferation of MV4-11 cells, with an

IC50 of 1.98 μM, showing that PCW-A1001 has potent anticancer

activity in AML cells (Figure 7).

In vitro kinase activity of PCW-A1001

Next, we performed an in vitro kinase assay to evaluate the

inhibitory activity of PCW-A1001 forWT FLT-3 and the D835Y-

mutant kinase. Interestingly, our data indicated that PCW-

FIGURE 5
QM optimization of PCW-A1001 with FLT-3(D835Y). (A) Schematic representation of the QM and MM optimization region selected in the
protein-ligand complex of the FLT-3-D835Y mutant. (B,D) HOMO/HOMO-1 surface of FLT-3 (D835Y) and (C) LUMO surface in FLT-3 (D835Y) in
complex with PCW-A1001. Ligand PCW-A1001 shows in ball and sticks and the residues in the QM region shown in lines. (E) Hydrophobic
interactions observed in the QM/MM optimized complex.
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A1001 inhibited the mutant kinase more effectively than the WT

(Figure 8A). The IC50 determined from the kinase assay was

764 nM for the FLT-3 D835Y mutant, which was only one-third

the IC50 for WT (2.54 μM) (Figures 8B,C). Thus, our data

provide proof-of-concept evidence for the AI-assisted de novo

drug design approach.

Materials and methods

Reverse target prediction—a network-
based approach

The input structures were used as SMILES structures and

converted into fingerprints. We used six kinds of fingerprints:

RDKit, MACCSkeys, AtomPair, Torsion, Morgan, and Morgan

with Features (Landrum, 2016). A total of six fingerprints and six

similarities were calculated and compared with the precalculated

scores for the ligands in our protein–ligand interaction network

database. A total of 10,647 compounds were used for the analysis

among 262,327 compounds in the ChEMBL database. The list of

compounds used with SMILES is included in the (Supplementary

Table S2). In detail, the similarities between the input compound and

all drugs in the network were calculated. Here, we used six similarity

measures: Tanimoto, Dice, Sokal, Cosine, Kulczynsk, and

McConnaughey. We selected drugs with high similarity scores

(sum of similarity values). Using protein–drug relationships in the

FIGURE 6
Isosurfaces of Frontier orbitals HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest Unoccupied Molecular Orbital). The charge
distribution over PCW-A1001 molecule. (A) Isosurface of HOMO, (B) Isosurface of LUMO and (C) Electrostatic potential of the PCW-A1001. The red
color indicates the negative charge and green color indicates the positive charge for the PCW-A1001. The electrostatic potential values were
distributed from −6.109e−2 to 6.109e−2.

FIGURE 7
PCW-A1001 inhibits the viability of AML cell line. MV4-11 cells
were treated with PCW-A1001 for 72 h, and cell viability was
analyzed. The data are presented as the mean ± standard error
mean. The dose response curve was generated using
OriginPro 2021 (OriginLab, United States).
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network, the similarity score of a drug was assigned to all proteins

connected to the drug. Then, we obtained a list of proteins with

similarity scores for each fingerprint. Based on the similarity score,

the list was sorted in descending order, and a rank value, which is a

descending value from the maximum rank, was assigned. The rank

score was calculated using the following formula:

rank score � rank value

∑rank values
(1)

The proteins obtained a total rank score R, which was the

sum of the rank score of each fingerprint. The rank score was

further modified as ~R by applying the following formula and

assigned to each protein. The modified total rank score showed

the potential of the target protein. The network model was

validated using eight known Bruton’s tyrosine kinase (BTK)

inhibitors, the model prediction rank was given

(Supplementary Figure S4), and the details of the targets along

with their inhibitors are given (Supplementary Table S1).

~R � 1
R max

∑
Fingerprint

rank score (2)

AI-assisted de novo design

A recurrent neural network (RNN) is a type of neural

network that is widely used for natural language processing

(NLP) tasks from simple language processing to complex

cheminformatics problems. RNNs have been successfully

applied for protein structure and function predictions from

sequences (Liu, 2017; Zhang et al., 2018), property

predictions, fragment-based hit generation (Awale et al.,

2019), and hit identification (Segler et al., 2018; Erikawa et al.,

2021).

For de novo drug design, we successfully applied generative

recurrent neural networks (RNN) containing long short-term

memory (LSTM) cells (Merk et al., 2018). The model considers

the SMILES strings for molecular representation and learns the

patterns and their probabilities from pretraining for use in

generation of the SMILES structures. We fine-tuned the

generated structures (SMILES) for specific molecular targets

or chemical series by employing transfer learning. The

generative LSTM approach has proven helpful in low-data

drug discovery, hit expansion, molecular design (fragment-

based), and lead optimization (Gupta et al., 2018; Segler et al.,

2018; Erikawa et al., 2021).

All deep learning models were applied using TensorFlow

(v2.1, www.TensorFlow.org) in Python (v3.7, www.python.org).

We have used RDkit (www.rdkit.org) for most cheminformatics

activities (property calculations, SMILES string validity

calculations, molecular fingerprint calculations, and molecular

clustering calculations). A detailed analysis of the generated

SMILES strings was performed using the Jupyter notebook

(www.anaconda.org).

FIGURE 8
PCW-A1001 inhibits the kinase activity of FLT-3 WT and D835Y mutant. (A) PCW-A1001 inhibited FLT-3 WT and D835Y mutant kinase at 10 µM
(A). IC50 of PCW-A1001 for FLT-3 WT (B) and D835Y mutation (C) were analyzed by ThermoFisher. The data are presented as the mean ± standard
error mean. *p < 0.01.
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RNNs were used as autoencoders, and the deep learning

model employed for this study was initially pretrained to capture

the structures of 438,552 bioactive small molecules (after

carefully excluding the FLT-3 actives) retrieved from

ChEMBL25 (KD, Ki, EC50, IC50 < 1 μM) and represent them

as simplified molecular-input line-entry system (SMILES) strings

(Weininger, 1988). Using this pretrained model, we fine-tuned

the model by transfer learning to bias de novo molecule

generation toward the desired bioactivities of the templates

(Merk et al., 2018). This fine-tuning step was employed to

train the model for designing functional mimetics. Generated

hits were further evaluated and benchmarked using Molecular

sets (MOSES) (Polykovskiy et al., 2020).

Synthetic feasibility

The synthetic feasibility of each compound generated by AI

was obtained with the retrosynthesis-associated fragment-based

synthetic feasibility (RAFSF) score module. The fundamental

idea of the module was that after cleaving synthetically

meaningful bonds of the given compound, the bonds and the

resulting fragments were searched from a bond/fragment space

extracted from the ChEMBL (Mendez et al., 2019) or USPTO

(Lowe, 2017) grants database in the same way. In the ChEMBL

small molecule database, 1,917,863 molecules with molecular

weights of less than 1,000 were used, as were 1,808,937 reactions

from the USPTO grants database. To break bonds, we used the

modified BRICS (Degen et al., 2008) module included in the rdkit

(Landrum, 2016). If the bond/fragment from the given

compound was not contained or rarely appeared in the bond/

fragment space, a RAFSF score with a high value was assigned,

meaning it was synthetically unfeasible. The RAFSF score is a

value ranging from 1 (highly feasible synthesis) to 10 (highly

unfeasible).

Protein preparation and modeling

The DFG-out WT FLT-3 protein structure was downloaded

from the protein databank (www.rcsb.org) with PDB ID: 1RJB in

the DFG-out conformation. Protein structures were prepared by

correcting the bond orders, adding missing hydrogens,

optimizing H-bonding with the protonation states of residues

at pH 7.0, and restraining minimization for added hydrogens

using the OPLS2005 forcefield of Protein Preparation Wizard

(Sastry et al., 2013). The DFG-in conformation of the FLT-3

(D835Y) mutant was modeled using Modeler 9.25 (Sali and

Blundell, 1993) with two templates, as reported previously (Ke

et al., 2015). The first template was the DFG-out conformation of

FLT-3 (PDB: 1RJB) with its DFG motif removed, and the other

template was the DFG-in conformation of the colony-

stimulating factor-1 receptor (CSF-1) crystal structure (PDB

id: 3LCD). These templates shared 93% and 63% sequence

identity with the target protein, respectively. The model was

subjected to loop refinement and minimization, followed by

validation using a standard protocol discussed elsewhere

(Sivakumar et al., 2013; Ke et al., 2015).

Ligand preparation andmolecular docking

Hit compounds were initially optimized using the DFT

method in Gaussian 16 with B3LYP functionals and the 6-

31G** basis set (Tirado-Rives and Jorgensen, 2008). The

antechamber obtained GAFF atom types with RESP charges

from the Gaussian output file. The atom types and all needed

parameters for the ligand were obtained from the above process

along with parmed and tleap (Shirts et al., 2017). Molecular

docking was carried out using Glide XP (Friesner et al., 2006)

with default parameters; initially, the receptor was prepared with

a grid box set covering the centroid of the active site, followed by

flexible ligand sampling of the ligand docking.

Molecular dynamics simulations

The stabilities of the complexes were studied byMD simulations

using Gromacs 2019 (Abraham et al., 2015). The Charmm36 force

field (Huang and MacKerell, 2013) was used for the protein

parameters. The protein–ligand complexes were solvated explicitly

using the TIP3P water model inside the cubic box, and their sizes

extended 0.1 nm away from the protein on the edges of the box in

each direction. The overall charge of the system was neutralized by

adding a 0.15M salt (Na+Cl−). All simulations were carried out on

GPU-enabled Linux clusters. The entire system was minimized with

a maximum step size of 50,000 until the maximum force was less

than 10 kJ/mol. The system was then equilibrated for 5 ns under

NVT conditions with temperature coupling for two separate groups,

protein–ligand and water-ions, at 300 K. The Lincs algorithm was

used to constrain the bonds of the hydrogen atoms (Hess et al., 1997).

A Berendsen thermostat and V-rescale were used to keep the

temperature and pressure constant, respectively (Lemak and

Balabaev, 1994; Bussi et al., 2007). The cutoff distances for

Coulomb and van der Waals interactions were set as 1.2 nm. The

particle mesh Ewald method (PME) was used to calculate the long-

range electrostatic interactions (Darden et al., 1993). The final

production run was carried out for 100 ns at a temperature of

300 K and a pressure of 1 bar.

Free energy calculation

The binding free energies for protein and ligand complexes

were calculated in an explicit water environment by employing

the alchemical method (Supplementary Figure S5). The final
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snapshot from the MD simulations (100 ns) was used as the

starting point for the free energy simulations. The alchemical

method involves two steps: 1) decoupling of the ligand from the

protein–ligand complex in an explicit water environment and 2)

decoupling of the ligand from the water environment. The

decoupling process includes turning off the van der Waals

and electrostatic interactions responsible for complex

formation (protein–ligand or water-ligand) with the help of

the coupling parameter (λ). First, electrostatic interactions

were turned off slowly, while the van der Waals interactions

were still present. Then, the van der Waals interactions between

the protein and ligand (water and ligand) were turned off using

the coupling parameter (λ). The electrostatic interactions were

turned off by changing λ (0 0.25 0.5 0.75 1.0) from 0 to 1 with a

step size of Δλ = 0.25, and the van der Waals interactions were

turned off with nonuniformly distributed values of λ (0.05, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0). The

same procedure was applied to decouple the ligands from the

protein–ligand complex and ligands from the water

environment. Therefore, 21 windows, each of 1 ns, were

employed to decouple the ligand from the protein–ligand and

water-ligand complexes. The free energy difference between the

two end states was calculated using the Bennett acceptance ratio

(BAR) method (Bennett, 1976). The BAR method is used to

estimate the free energy difference between two states with the

following equation:

1

1 + exp{β(ΔUij − ΔG)}
〈 〉i � 1

1 + exp{β( − ΔUij + ΔG)}
〈 〉j

(3)
where β is the reciprocal of the thermodynamic temperature, ΔG
is the free energy difference between states i and j, and ΔUij =

Uj−Ui is the potential energy difference.

At each λ-point, the structures were subjected to energy

minimization using the steepest descent method. Using Langevin

dynamics, the resulting structures were equilibrated in an

isothermal-isobaric (NPT) ensemble at 300 K and at a

pressure of 1 bar. The rest of the simulation protocol was

similar to the protocol followed in the classic MD section.

QM/MM approach

The final snapshots of protein and ligand complexes

determined from MD simulations were optimized in the gas

phase at the (B3LYP-D3/6-31G*)/Universal force field level of

theory with the help of the Gaussian16 package. It has been found

in earlier studies that density functionals such as M06-2X,

B3LYP-D, and ωB97XD are suitable for investigating

noncovalent interactions. Hence, in all calculations, the QM

region was optimized with dispersion-corrected B3LYP with

the Grimme empirical dispersion functional (B3LYP-D3)

using the 6-31G* basis set. The ligand and surrounding region

within 4 Å were treated as the QM region, and the remaining

parts were considered the MM region. We extracted only the QM

region from the optimized geometries and added terminal

hydrogens to calculate binding affinities. The resulting

structures were used to calculate the interaction energies with

the supermolecule approach at the B3LYP-D3/6-31G* level of

theory.

IE � EC − (EM1 + EM2) (4)
where IE is the interaction energy of the complex, EC is the

energy of the complex, EM1 is the energy of the protein part of

the complex, and EM2 is the energy of the ligand in the complex.

All IEs were corrected for basis set superposition error (BSSE)

using the counterpoise method suggested by Boys and Bernadi

(Gutowski et al., 1993), as implemented in the

Gaussian16 package (Frisch et al., 2016).

Selectivity

In total, 49 kinases were evaluated via selectivity score

calculation, and those 49 kinases were previously used for the

actual kinase panel assay. Representative PDB structures for

the 49 kinases were extracted from the RCSB Protein Data

Bank (https://www.rcsb.org/). The ligands were docked to the

binding pocket of each PDB using AutoDock-Vina (Trott and

Olson, 2010). The resulting docking score was rescaled to

observe and compare compound trends. Quantitatively, the

selectivity score was calculated to measure the overall

selectivity across different kinase families. A lower

selectivity score indicates better selectivity for the tested

compound.

Selectivityscore(S)
� numberofkinaseswithrescaleddockingscore less than0.5

totalnumberofkinases tested

(5)

Cell culture and cell viability assay

MV4-11 cells were purchased from American Type Culture

Collection (ATCC, VA, United States). The cells were passaged

for less than 1 month, and mycoplasma infection was checked by

PCR once a week. The growth medium was Iscove’s Modified

Dulbecco’s Medium (IMDM; ThermoFisher, United States)

supplemented with 10% fetal bovine serum (FBS; Corning,

United States) and 1% penicillin/streptomycin (GenDEPOT,

United States). The cells were maintained in a humidified

atmosphere with 5% CO2 at 37°C. Cell viability was

determined using the WST-8 assay (Cyto XTM cell viability
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assay kit; LPS solution, Daejeon, South Korea) in accordance with

the manufacturer’s protocol.

Synthesis of PCW-A1001

Unless otherwise stated, all reactions were performed under

an inert (N2) atmosphere. Reagents and solvents were reagent

grade and purchased from Sigma-Aldrich, Alfa Aesar, and

Combi-Blocks. Anhydrous solvents were purchased from

Sigma-Aldrich and used as provided. Reactions were

monitored by TLC and visualized with a UV lamp and/or

KMnO4 staining. Silica gel 60 (230–400 mesh, Merck) was

used for flash column chromatography. 1H and 13C NMR

spectra were recorded on BRUKER Ultrashield 300 and

400 MHz NMR spectrometers at 25°C. Chemical shifts are

reported in parts per million (ppm). Data for 1H NMR are

reported as follows: chemical shift (δ ppm) [multiplicity,

coupling constant (Hz), integration]. Multiplicities are

reported as follows: s = singlet, d = doublet, t = triplet, q =

quartet, dd = doublet of doublets, m = multiplet. Data from 13C

spectra are reported as chemical shifts (δ ppm). The residual

solvent peak was used as an internal reference. Mass spectra were

obtained on Acquity™ Waters A06UPD9BM and Agilent

Technologies SG12109048 systems. Prior to biological testing,

the final compound was confirmed to be > 98% pure by UPLC

chromatography using aWaters ACQUITYH-class system fitted

with a C18 reverse-phase column (ACQUITY UPLC BEH C18:

2.1 mm × 50 mm, Part No. 186002350) according to the

following eluent conditions: (A) H2O + 0.1% formic acid, (B)

CH3CN + 0.1% formic acid, (C) MeOH + 0.1% formic acid; (Ι) a
gradient of 95% A to 95% B over 5 min; and (Ⅱ) a gradient of 95%
A to 95% C over 5 min.

Conclusion

In this work, we used an AI-assisted de novo drug design

(LSTM) approach to identify a novel FLT-3 inhibitor that

selectively targets the FLT-3 (D835Y) mutant. The deep

learning model was pretrained on a known bioactive chemical

space (ChEMBL22), and the generated hits were fine-tuned using

our in-house FLT-3 inhibitors. The generated hits were further

evaluated and filtered using various parameters focusing on their

novelty, similarities, diversities, etc. We further evaluated the

toxicities of the de novo molecules with our in-house program

Pharmulator™. Among the screened hits, only 146 compounds

passed the toxicity filters. The binding affinities, conformations

and interaction patterns of these screened compounds were

studied with WT FLT-3 and its mutant (D835Y). Since the

FLT-3 (D835Y) mutant structure in the DFG-in conformation

was unavailable, we modeled the protein to validate the

compounds in terms of the binding interactions. The

stabilities of complexes were further validated qualitatively

with MD simulations and quantitatively with free energy

calculations.

The top compound, named PCW-A1001, was considered

for synthesis and screening studies. The anticancer activity

was tested against MV4-11 cells to verify the effectiveness of

these compounds in AML treatment. PCW-A1001 was found

to be a promising inhibitor of FLT3, and it showed an IC50 of

764 nM against the FLT-3 (D835Y) mutant and 2.54 μM

against WT FLT-3. PCW-A1001 also showed an IC50 of

1.98 μM against MV4-11-cell line screening. We

successfully implemented reverse network theory and AI-

based de novo design strategies and identified a potential

inhibitor of the FLT3/FLT3 (D835Y) mutant, PCW-A1001.

AI generated a hit, PCW-A1001 exhibited better activity than

the parent compound, PCW-1001. Further fine-tuning of

PCW-A1001 is in progress to optimize the selectivity and

activity and will be reported in due course.
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Ab-initio evaluation of acid
influence on chemical stability of
hydrophilic diglycolamides
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Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, Czech
Technical University in Prague, Prague, Czechia

Diglycolamides (DGA) form one of the most promising groups of organic

ligands used in bio-inspired solvent extraction processes of lanthanide and

actinide ions. Continuous experimental and theoretical research is still

performed in order to further improve their application properties including

their chemical stability in the real extraction environment. This work provides

results of our theoretical approach focused on inclusion of an acid influence on

the DGAs chemical structure, treated in frame of the density functional theory.

Three differentmodels describing the acid action are proposed and investigated

in attempt to increase the resulting accuracy of the chemical stability

predictions based on verified theoretical descriptors. The procedure is

applied and tested on the set of selected hydrophilic DGA representatives.

Comparison of the model results obtained with and without acid action shows

that two types of protection effects may occur: a ‘direct’ protection,

accompanied by an explicit change of the ligand stability indicators, and an

‘indirect’ one consisting in reaction of acid molecules with radicals preceding

the contact of latter with the extracting ligands. The possibility of the direct acid

protection route is supported by the significant decrease of the Fukui charges

found with the acid models included. On the other hand, there is in general no

significant difference of trends in the calculated chemical stability descriptors

suggesting that an indirect mechanism must be also considered in order to

explain the experimentally observed protective role of acids on the chemical

stability of investigated DGA derivatives.

KEYWORDS

diglycolamides, hydrophilic DGA, density functional theory, radiolytic stability, acid
influence

Introduction

Closing the nuclear fuel cycle and the maximal usage of uranium contained in the

nuclear fuel are one of the biggest recent challenges related to a sustainable nuclear power

plants operation. The spent nuclear fuel contains fission products, unused U, and minor

actinides (MAs) which are, together with Pu, also responsible for the long term

radiotoxicity of the nuclear waste. One of the possibilities for the spent nuclear fuel

treatment is its partitioning and transmutation (Veliscek-Carolan, 2016). Partitioning

consists of co-extraction of MAs and lanthanides from a liquid solution of nuclear waste
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and the subsequent separation of these components from each

other. After partitioning, the transmutation of MAs is performed

in order to reduce their long radiative decay lifetime and toxicity.

In the result, the radiotoxicity of MAs and remaining waste can

be significantly reduced (Veliscek-Carolan, 2016).

Among other organic molecules used in solvent extraction

procedures, one of the most promising groups is formed by

diglycolamides (DGAs). DGAs are especially well applicable for

extraction of trivalent actinide and lanthanide ions, mimicking

thus some of the processes observed in biological systems

(Mattocks and Cotruvo, 2020). The solubility of DGAs is

determined by the optional presence and length of specific

N-alkyl substituents. The DGA derivatives containing short

N-alkyls are water soluble, e.g., tertamethyldiglycolamide

(TMDGA) or tetraethyldiglycolamide (TEDGA). These

hydrophilic molecules are used as aqueous stripping and

back-holding agents (Sasaki et al., 2007) in ALSEP process

(Actinide Lanthanide Separation) (Lumetta et al., 2014) or

EXAm process (Extraction of Americium) (Rostaing et al., 2012).

In this work, we study the following DGAs representatives

(Figure 1).

• TMDGA (N,N,N′,N′-tetramethyl-diglycolamide; 2,2’_oxybis

(N,N-dimethylacetamide))

• TEDGA (N,N,N′,N′-tetraethyl-diglycolamide; 2,2′-oxybis
(N,N-diethylacetamide))

• Me-TEDGA (2-(2-(diethylamino)-2-oxoethoxy)-N,N-

diethylpropanamide)

• Me2-TEDGA (2,2′-oxybis (N,N-diethylpropanamide)).

As indicated by experimental results (Wilden et al., 2018;

Horne et al., 2019), addition of methyl group in Me-TEDGA and

Me2-TEDGA results in remarkable radiolytic stability

enhancement compared to the un-methylated TEDGA.

In our previous work (Koubský and Luštinec, 2018), the

quantum mechanical indicators of radiolytic stability of the four

above mentioned hydrophilic DGA derivatives were already

evaluated and analysed in the environment of pure water.

Especially, radical Fukui function, Fukui charges (condensed

Fukui functions), and bond orders were found to be of key

importance for the related radiolytic stability predictions. This

work extends the theoretical treatment on the problem of acid

influence implementation into the DFT calculations in order to

improve the stability predictions. In particular, above mentioned

verified stability indicators are calculated using three different

acid inclusion models, and the obtained results compared and

juxtaposed with the former acid-free results (Koubský and

Luštinec, 2018). In addition, the condensed dual descriptor

(CDD) ΔfA proposed by (Morell et al., 2005; Morell et al.,

2006) and applied by Smirnova et al. (2020) for the radiolytic

stability predictions of several extractants is evaluated and

discussed.

Reference experimental studies

Two key experimental radiolytic stability studies of the

hydrophilic DGA derivatives shown in Figure 1 were

performed by Wilden et al. (2018) and Horne et al. (2019).

In the first study, Wilden and co-workers tested solutions of

DGA derivatives in a warmed nitric acid environment and

compared the results with the behaviour in a pure water

environment. In addition to the steady state measurements,

the pulsed radiolysis method followed by kinetics

FIGURE 1
Studied hydrophilic DGA derivatives.
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measurements and mass spectroscopy was also applied, in order

to get a deeper insight into the radiolysis process of the

hydrophilic DGA derivatives. High rate constants for DGAs

reactions with the hydroxyl radical are found, suggesting the

important role of this radical in the radiolytic degradation

mechanism in water environment. Observed decrease in dose

constants with the increasing molecular weight of DGAs

suggests, together with the measured rate constants, an

electron transfer as the mechanism of the radical reaction.

The radiolytic stability found for studied molecules follows the

trend TMDGA < TEDGA < Me-TEDGA < Me2-TEDGA,

i.e., growths with the molecular weight of the tested derivative

(Wilden et al., 2018).

The second experimental study performed by Horne et al.

(2019) (using the setup similar to the setup used by Wilden and

co-workers) deals with a neutral pH concentrated aqueous

nitrate solutions of the four selected hydrophilic DGA

derivatives. The authors conclude that the studied hydrophilic

DGAs undergo a first-order decay; the observed degradation

product distributions are similar to those found in Wilden et al.

(2018) under pure water conditions (except for the additional

appearance of NOx adducts), and the radiolysis is driven by

hydroxyl and nitrate radical oxidation chemistry, the latter then

likely moderated by some secondary reactions scavenging the

degradation products (Horne et al., 2019). The radiolysis rate of

hydrophilic DGA representatives in aqueous nitrate solutions is

found to be significantly reduced and less structurally sensitive

compared to the acid-free solutions, similarly to the situation

already observed for lipophilic DGA derivatives (Galan et al.,

2015).

Degradation reaction mechanisms

As in our previous work (Koubský and Luštinec, 2018), we

generally consider indirect radiolysis mechanisms to prevail,

because of the low actual concentration of ligands used in

extraction solutions (Wilden et al., 2018). Such indirect

process consists in the primary radiolysis of solvent

molecules, followed then by reactions of the radiolysis

products with the ligand molecules. These water radiolysis

products are represented by OH• and H• radicals. The overall

reaction conditions anticipated in this work follow the

experiments performed by Wilden et al. (2018), adding to

the pure water environment [considered in the previous study

(Koubský and Luštinec, 2018)] the influence of nitric acid via

the proposed acid models.

The first degradation reaction mechanism considered here

is supposed to start with the hydrogen abstraction followed by

rupture of the ether bond C-O, in analogy with the lipophilic

DGAs (Koubský et al., 2017). In the previous works (Koubský

et al., 2017; Koubský and Luštinec, 2018), it was concluded

that the hydrogen abstraction is more probable to occur on the

ether group than on the side chains. Therefore, the ether group

is mainly investigated in this work. It is worth to notice that

the methylation of the ether carbons that promotes the higher

molecular stability, lowers also the number of ether

hydrogens: four in case of the two non-methylated studied

DGA derivatives TMDGA and TEDGA, three in case of Me-

TEDGA, and two for Me2-TEDGA.

The second possible degradation reactionmechanism follows

the findings of Wilden et al. (2018). This mechanism is based on

the known oxidation nature of the hydroxyl radical OH• that

could cause the electron transfer from the amide group

producing the DGA radical cation [DGA]•+. Afterwards, the

rupture of the ether C-O bonds or the amide C-N bonds occurs

(Wilden et al., 2018).

Methods and computational settings

Applied acid models

The acid influence is implemented into DFT simulations

of the selected hydrophilic DGA derivatives by setting up

three different testing models. In the first two of them, the

interaction of ligand with dissociated acid molecules is

assumed. These two models are independent of the

particular acid type used in the experiments. In the first,

simplest model, the hydrogen cation H+ is added to the

calculated system in order to create a complex with the

extraction molecule. In the second tested model, H3O
+

cation (also applied in (Matveev et al., 2017)) is included in

calculations instead of H+. Finally, in the third model, the

interaction with undissociated HNO3 molecule is tested. The

latter model is also relevant since the DGAs extractants are

commonly dissolved in nitric acid solutions concentrated

enough to contain a significant amount of undissociated

HNO3 molecules (Wilden et al., 2018). This model

explicitly includes the specific acid, in contrary to the first

two models using general acid representations. The particular

issue complicating mutual comparison of the results obtained

by these models follows from the different total charge of the

studied systems: it is equal to +1 for the first two models, and

to zero for the last one. Thus, the behaviour of valence

electrons and the related stability descriptors are affected

by this difference.

Calculated stability indicators

The Frontier orbital theory of Fukui (1982) relates the

molecule reactivity to the charge density ρ(r) with respect to

electrophilic and nucleophilic properties of the reaction. Further

developed by Parr and Yang (1989), Fukui functions are practical

tool for qualitatively measuring and displaying the reactive
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regions of molecules. Fukui functions describe the sensitivity of

charge density to losing or gaining electrons as follows

f+ r( ) � 1
ΔN

ρN+Δ r( ) − ρN r( )( )

f− r( ) � 1
ΔN

ρN r( ) − ρN−Δ r( )( ).

Where f+(r) and f−(r) is respectively nucleophilic and

electrophilic Fukui function, and ΔN is a change in the

number of electrons. Radical Fukui function f0(r) is then

obtained as the average of the nucleophilic and electrophilic

Fukui function.

Another possible implementation of the Fukui theory is the

condensed Fukui function giving Fukui charges. Fukui charges

are calculated from the atomic charges qA as follows

f+
A � qanionA − qA

f−
A � qA − qcationA

Here f+
A and f−

A is respectively the nucleophilic and electrophilic

Fukui charge on the atom A. Radical Fukui charge f0
A on atom A

is then given as the average of nucleophilic and electrophilic

Fukui charges.

f0
A � 1

2
(f+

A + f−
A)

The CDD (Morell et al., 2005; Morell et al., 2006) for atom A

is defined as follows

ΔfA � f+
A − f−

A

The sign of CDD indicates the vulnerability of the atomic site

to the particular type of radical attack: the negative sign relates to

electrophilic attack, the positive sign then to nucleophilic one.

Wiberg bond indices WAB (Wiberg, 1968) are calculated

from the electronic overlap between two atoms, A and B, as

follows

WAB � ∑
μ∈A

∑
σ∈B

P2
μσ

Here μ and σ is atomic orbital on atom A and B, respectively, and

Pμσ is the corresponding density matrix element.

Computational settings

The DFT calculations were performed with DMol3 module

from Materials Studio 8.0 (Delley, 1990; Delley, 2000) and

Gaussian09 code (Frisch et al., 2013). The conformation

analysis of the models combining extractants with the selected

acid representation was performed using Gaussian09 code; the

initial optimised extractants conformations were taken from the

previous work (Koubský and Luštinec, 2018) where the geometry

optimization was performed firstly with BLYP and subsequently

with B3LYP functional.

The H+ and H3O
+ cations were then added in vicinity of the

atoms possessing negative partial charge, as calculated in

Koubský and Luštinec (2018). In the case of the third model

employing the undissociated nitric acid molecule, eight different

initial conformations were generated for each of the tested

extractants, with the HNO3 molecule placed gradually into

eight different positions in vicinity of the carbonyl oxygens,

ether oxygen and the two amide nitrogen atoms, which are all

likely to create hydrogen bonds with the HNO3 molecule.

Geometry optimization of the initial conformations was

performed using Gaussian09 code with the following settings:

6–31G (d,p) basis set (Petersson et al., 1988; Petersson and Al-

Laham, 1991), PCM solvent model (Miertuš et al., 1981; Tomasi

et al., 2005) with water taken as the solvent, GD3BJ dispersion

correction (Grimme et al., 2010; Grimme et al., 2011), and B3LYP

exchange and correlation functional (Beck, 1993).

Gaussian09 code with NBO 6.0 (Glendening et al., 2013) was

then used for the Natural population analysis and the Wiberg

bond indices (Wiberg, 1968) calculations (the latter providing

bond orders discussed in Section 3.4) with the same settings as

the ones used in the conformation analysis.

Fukui functions, Fukui charges, and CDDs were calculated

with DMol3 code using the following settings: DNP basis set

(Delley, 1990), COSMO solvent model (Klamt and

Schüürmann, 1993; Tomasi and Persico, 1994),

GD2 dispersion correction (Grimme, 2006), and B3LYP

exchange and correlation functional (Beck, 1993). The

differences between PCM and COSMO implicit solvent

models consists in the particular way in which the cavity

containing the studied system is created. The specific choice of

the implicit solvent model in the performed calculations was

conditioned by the capabilities of the used software tool.

Results and discussion

At first, the geometrical optimization of the studied acid model

systems was performed, leading to optimized conformations,

indicating a localized direct interaction of the acid representatives

with the extractant molecule, mediated by hydrogen atoms. These

optimized conformation were then used in subsequent calculations

of the studied stability indicators. The atomic denotation used in the

calculations and discussion of the results achieved for the studied

structures is shown in Figure 2.

As in the previous work (Koubský and Luštinec, 2018),

arithmetic averages are used for the symmetrically equivalent

atoms to simplify the stability indicators analysis and also to

reduce the conformation dependence of the results. Structure of

Me-TEDGA is unsymmetrical due to the methyl group bonded on

one of the ether carbons C (4,5). For this reason, the atoms C (4,5)

are considered as inequivalent; the remaining atoms symmetrical

against oxygen O (6) are analyzed as being equivalent ones.
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FIGURE 2
General chemical structure of the studied DGA derivatives with the atom labels indicated.

FIGURE 3
Radical Fukui function for TEDGA/acid-free model (Koubský and Luštinec, 2018), mapped on the electron density iso-surface 0.017 eÅ−3; the
red circles mark the FF maxima on hydrogens adjacent to ether group, the white circles identify maxima on amide groups (Dmol3, DNP, B3LYP).
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Radical Fukui function

In our previous studies (Koubský et al., 2017; Koubský and

Luštinec, 2018), the radical Fukui function (FF) (Yang and

Parr, 1985) has proved to be a radical stability descriptor

relevant for the investigated hydrophilic and lipophilic DGA

derivatives. Therefore, the radical FF is also evaluated for the

proposed DGAs acid models. The calculated values of radical

FF are mapped on electron density iso-surface, and the

maxima identified. Similar to the previous study (Koubský

and Luštinec, 2018), the main maxima appear in a close

vicinity of the ether hydrogens and the amide groups. This

trend is found for all tested combinations of DGA derivatives

and acid representations. The results obtained for TEDGA are

given in Figure 3 and Figure 4 as examples.

The trend of radical FF maxima located in vicinity of ether

hydrogens (Table 1) agrees well with the expectations based on

experimentally observed radiolytic stabilities of the derivatives.

For all acid models, the calculated values of radical FF maxima

decrease with the molecular weight of the derivative growing, the

trend being even more pronounced than in the case of pure water

environment considered in (Koubský and Luštinec, 2018).

Within the three acid models considered here, the mentioned

trend seems to be stronger for the H+ and H3O+ models than for

the HNO3 one. However, as already stated, a direct quantitative

comparison of the radical FF values obtained for the different

acid models is not straightforward due to the different total

charge present in the model systems.

Similar to the acid-free situation (Koubský and Luštinec,

2018), the maxima of radical FF on the amide groups are also

FIGURE 4
Radical Fukui function obtained for TEDGA/HNO3 acid model, mapped on the electron density iso-surface 0.017 eÅ−3; the red circles mark the
FF maxima on hydrogens adjacent to ether group, the white circles identify the maxima on amide groups (Dmol3, DNP, B3LYP).

TABLE 1 Values of the radical Fukui function in 10−3 eÅ−3 close to the ether-neighboring hydrogen atoms (red circles in Figure 3 and Figure 4); results
for the acid-free model taken from (Koubský and Luštinec, 2018) (DMol3, B3LYP, COSMO).

Acid model TMDGA TEDGA Me-TEDGA Me2-TEDGA

Acid-free 3.613 3.613 3.325 3.038

H+ model 5.847 4.716 4.235 2.663

H3O
+ model 5.287 4.516 2.463 2.053

HNO3 model 2.053 1.322 1.282 1.232
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observed for all the tested acid models (Table 2). The values

obtained for the HNO3 acid model are reduced as a whole

compared to the acid-free model suggesting that the presence

of nitric acid molecule decreases the ability of DGA derivatives to

react with radicals. The values obtained for different DGA

derivatives show then a gradual descend with the molecular

weight increasing, supporting thus the experimentally

observed stability trend. For the H+ and H3O
+ models, the

radical FF values on amide groups fluctuate and are

dependent on the location of bonding model species. Also, the

influence of different total charge of the model systems must be

taken into account.

Radical Fukui charges and CDD

In order to simplify the analysis and discussion of the

calculated results, the volumetric radical FF can be assigned to

individual atoms; the obtained condensed values are called atomic

Fukui charges. As Table 3 shows, inclusion of acid does not

significantly modify the trends found for the acid-free situation

(Koubský and Luštinec, 2018). Since also the main features of

results obtained with all tested acid models are similar, we discuss

them on the example of H3O+ acid model. (Although some minor

differences can be identified in the case of H+ acid model, the

arguments remain the same.) The HNO3 acid model shows then a

significant reduction of all calculated atomic Fukui charges

(similar to the situation observed for the radical FF values, cf.

Table 1 and Table 2) making analysis and a straightforward

quantitative comparison with the other two models difficult.

Due to its high structural fragility, the ether group is the

weakest part of DGA molecules when a radical attack is

considered. In case of acid-free environment (Koubský and

Luštinec, 2018), the values of radical Fukui charges located on

the ether group (C(4,5), O(6), H(7), H(8), R1 and R2 chains) support

with the greater (C(4,5), H(7)) or lesser (O(6)) extend the

TABLE 2 Values of the radical Fukui function in 10−3 eÅ−3 close to one of the amide groups (white circles in Figure 3 and Figure 4); results for the acid-
free model taken from (Koubský and Luštinec, 2018) (DMol3, B3LYP, COSMO)

Acid model TMDGA TEDGA Me-TEDGA Me2-TEDGA

Acid-free 5.284 5.284 5.787 5.787

H+ model 7.548 5.787 7.045 6.542

H3O
+ model 5.284 5.032 7.800 5.535

HNO3 model 4.781 3.774 3.019 3.019

TABLE 3 Atomic radical Fukui charges based onHirshfeld population analysis obtained for studied DGA derivatives and proposed acidmodels; results
for the acid-free model taken from (Koubský and Luštinec, 2018); values for H8, H(R1) and H(R2) are identical to the value obtained for H7 where
relevant (DMol3, B3LYP, COSMO).

Acid model Ligand N(1) C(2) O(3) C(4) C(5) O(6) H(7)

Acid-free TMDGA 0.062 0.067 0.114 0.030 Eq. C(4) 0.037 0.026

TEDGA 0.057 0.063 0.111 0.030 Eq. C(4) 0.033 0.025

Me-TEDGA 0.057 0.064 0.113 0.021 0.029 0.033 0.023

Me2-TEDGA 0.054 0.064 0.111 0.022 Eq. C(4) 0.036 0.020

H+ model TMDGA 0.096 0.071 0.097 0.020 Eq. C(4) 0.023 0.025

TEDGA 0.072 0.068 0.074 0.019 Eq. C(4) 0.021 0.024

Me-TEDGA 0.049 0.076 0.108 0.013 0.018 0.012 0.022

Me2-TEDGA 0.070 0.065 0.088 0.009 Eq. C(4) 0.012 0.014

H3O
+ model TMDGA 0.065 0.072 0.079 0.025 Eq. C(4) 0.033 0.031

TEDGA 0.061 0.070 0.078 0.025 Eq. C(4) 0.032 0.029

Me-TEDGA 0.062 0.068 0.078 0.018 0.020 0.029 0.019

Me2-TEDGA 0.060 0.064 0.083 0.015 Eq. C(4) 0.022 0.015

HNO3 model TMDGA 0.038 0.019 0.067 0.009 Eq. C(4) 0.022 0.011

TEDGA 0.045 0.018 0.058 0.006 Eq. C(4) 0.007 0.008

Me-TEDGA 0.044 0.016 0.058 0.002 0.006 0.004 0.006

Me2-TEDGA 0.065 0.018 0.058 0.007 Eq. C(4) 0.007 0.011
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experimentally observed stability trend. With acid included, the

analogical behaviour is observed for C(4,5), H(7) and the equivalent

hydrogen atoms. For the ether oxygen O(6), the tendency of

atomic Fukui charge to decrease with the ligandmolecular weight

is remarkably enhanced, suggesting a possible positive influence

of acid presence on the tested DGAs derivatives stabilization.

The maxima of radical FF on amide group are also

reproduced in the radical Fukui charges located on atoms

N(1), C(2), and O(3). Again, the same trends are observed as for

the ether group in case of the acid-free model (Koubský and

Luštinec, 2018), and remain qualitatively unchanged after the

inclusion of acid. The values of charges calculated with the HNO3

model are all reduced compared to the acid-free results.

In order to get a deeper insight into the possible reaction

mechanism, the CDD indicator values are calculated and

evaluated. The calculated results are summarized in (Table 4).

In general, for the acid-free model, the CDD absolute values

on almost all atoms show a decreasing trend with the ligand

weight growing, conformal with the experimental stability trend.

The signs then indicate that atoms N(1) and O(3) are likely the only

ones that are susceptible to an electrophilic attack. The remaining

atoms might be vulnerable to a nucleophilic attack. This result

TABLE 4 Values of atomic CDD based on Hirshfeld population analysis calculated for the studied DGA derivatives and proposed acid models; results
for the acid-free model taken from (Koubský and Luštinec, 2018); values for H8, H(R1) and H(R2) equal to the value obtained for H7 where relevant
(DMol3, B3LYP, COSMO).

Acid model Ligand N(1) C(2) O(3) C(4) C(5) O(6) H(7)

Acid-free TMDGA −0.040 0.057 −0.025 0.031 Eq. C(4) 0.021 0.018

TEDGA −0.044 0.057 −0.020 0.033 Eq. C(4) 0.016 0.017

Me-TEDGA −0.036 0.059 −0.018 0.017 0.036 0.015 0.014

Me2-TEDGA −0.033 0.063 −0.017 0.016 Eq. C(4) −0.017 0.006

H+ model TMDGA −0.034 0.059 −0.040 0.008 Eq. C(4) −0.021 0.015

TEDGA −0.033 0.073 −0.031 0.014 Eq. C(4) −0.004 0.018

Me-TEDGA −0.066 0.083 0.042 0.031 −0.008 0.001 0.012

Me2-TEDGA −0.031 0.068 −0.045 0.012 Eq. C(4) 0.011 0.010

H3O
+ model TMDGA −0.033 0.086 0.014 0.016 Eq. C(4) −0.063 0.015

TEDGA −0.035 0.078 −0.003 0.014 Eq. C(4) −0.040 0.011

Me-TEDGA −0.035 0.067 −0.006 0.023 −0.001 −0.009 0.000

Me2-TEDGA −0.028 0.079 0.044 0.011 Eq. C(4) −0.012 0.003

HNO3 model TMDGA −0.059 −0.031 −0.120 −0.015 Eq. C(4) -0.044 −0.017

TEDGA −0.084 −0.035 −0.106 −0.008 Eq. C(4) −0.013 −0.011

Me-TEDGA −0.084 −0.029 −0.109 −0.009 0.000 0.000 −0.009

Me2-TEDGA −0.082 −0.027 −0.101 −0.006 Eq. C(4) −0.020 −0.017

TABLE 5 Calculated bond order (Wiberg bond indices) of the C(4)-O(6) and equivalent C(5)-O(6) bond; results for the acid-free model taken from
(Koubský and Luštinec, 2018) (Gaussian,B3LYP,PCM,NBO).

Acid model Bond TMDGA TEDGA Me-TEDGA Me2-TEDGA

Acid-free C(4)-O(6) 0.904 0.904 0.888 0.884

C(5)-O(6) Eq. to C(4)-O(6) Eq. to C(4)-O(6) 0.900 Eq. to C(4)-O(6)

H+ model C(4)-O(6) 0.895 0.908 0.895 0.880

C(5)-O(6) Eq. to C(4)-O(6) Eq. to C(4)-O(6) 0.913 Eq. to C(4)-O(6)

H3O
+ model C(4)-O(6) 0.913 0.914 0.892 0.895

C(5)-O(6) Eq. to C(4)-O(6) Eq. to C(4)-O(6) 0.914 Eq. to C(4)-O(6)

HNO3 model C(4)-O(6) 0.904 0.903 0.880 0.882

C(5)-O(6) Eq. to C(4)-O(6) Eq. to C(4)-O(6) 0.904 Eq. to C(4)-O(6)
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supports the reaction degradation mechanism proposed by

Wilden et al. (2018) based on the electron transfer from the

amide group. In addition, in the case of H3O
+ acid model, the

position O(6) is predicted to be sensitive to an electrophilic attack.

The similar behaviour is observed for TMDGA and TEDGA in

frame of the H+ acid model, for Me2-TEDGA in the acid-free

model, and for all tested derivatives in the case of the HNO3 acid

model. Thus, apparently, selection of a particular acid model

affects significantly the afterward obtained CDD values.

Bond orders

For all tested ligands and acid models, the order of C(4)-O(6)

bond is found to be the lowest one of all bonds. The calculated

C(4)-O(6) bond order values are summarized in Table 5. Similar

character of the C(4)-O(6) bond was also identified for the

lipophilic DGA derivatives (Koubský et al., 2017). For all

tested models (with and without acid), presence of the

methyl group(s) taking place in Me-TEDGA and Me2-

TEDGA derivatives causes then a small drop in C(4)-O(6)

bond order. Again, such effect is also observed for the

analogically modified lipophilic DGA representatives

(Koubský et al., 2017).

Bond orders closely relate to the other frequently used

partitioning quantity of electron density - atomic partial charges.

However, the partial charges obtained with the here tested acid

models are found to be strongly dependent on the particular total

charge included in the model, and show also a high sensitivity to the

particular position in the ligandwhere the acid-representing group is

attached (as a result of the geometrical optimization of the system);

no reliable interpretation of the partial charges thus can be achieved

and their values are not discussed here.

Conclusion

Three simplified models of acid influence on the radiolytic

stability of hydrophilic DGA representatives are proposed and

applied in calculations of the selected chemical stability

indicators: radical FF, radical Fukui charges, CDD, and bond

orders. The results obtained for the individual acid models are

compared and juxtaposed with the results obtained for models with

no acid influence considered. The newly tested CDD indicator

shows absolute values that are generally in agreement with the

experimentally observed radiolytic stability trend (TMDGA <
TEDGA < Me-TEDGA < Me2-TEDGA (Wilden et al., 2018)).

For different acid models however, the CDD signs significantly vary,

and the CCD indicator fails to provide a reliable stability description.

All the tested acidmodels provide results similar to the results of

the acid-free model, with the main trends remaining unaffected.

However, values of the tested indicators as a whole drop down with

the acid models applied, suggesting that in addition to the direct

protection reflected by the local variations of calculated indicators,

some indirect protection mechanism may also originate from acid

presence, originating in a general decrease in the chemical reactivity

of the ligands in the presence of acid.

Arguments for a direct acid protection effects follows from the

two following obtained results: 1) the faster stabilizing reduction of

the atomic Fukui charge values at the weakest atomic site of the

tested DGA derivatives–the ether oxygen atom - found with the all

acid models, and 2) the decrease of radical FF maxima on ether

hydrogens and amide groups encountered with the HNO3 acid

model. The latter effect indicates that undissociated acid molecules

may reduce the reactivity of the studied DGA derivatives with

radicals, the final protection effect being then dependent on the

specific nitric acid concentration applied.

Considering the similarity between the basic trends of radical FF

and Fukui charges found for the acid models and the acid-free

model, the obtained results in any case do not contradict the

proposition made by Horne and co-workers (Wilden et al., 2018)

that the significant indirect acid protection effect consists in the

preferential reaction of acid with the products of solvent radiolysis,

decreasing thus the subsequent direct radical attack rate of the

solvent radiolysis products on the extractant molecules.
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Curvuluria lunata is a melanized fungus pathogenic to both plants and animals

including humans, causing frommild, febrile to life-threatening illness if not well

treated. In humans, it is an etiological agent of keratomycosis, sinusitis, and

onychomycosis in immunocompromised and immunocompetent patients. The

development of multiple-drug-resistant strains poses a critical treatment issue

as well as public health problem. Natural products are attractive prototypes for

drug discovery due to their broad-spectrum efficacy and lower side effects. The

present study explores possible targets of natural antifungal compounds (α-
pinene, eugenol, berberine, and curcumin) againstC. lunata via gene expression

analysis, molecular docking interaction, and molecular dynamics (MD) studies.

Curcumin, berberine, eugenol, and α-pinene exhibited in vitro antifungal activity

at 78 μg/ml, 156 μg/ml, 156 μg/ml, and 1250 μg/ml, respectively. In addition,

treatment by these compounds led to the complete inhibition of conidial

germination and hindered the adherence when observed on onion

epidermis. Several pathogenic factors of fungi are crucial for their survival

inside the host including those involved in melanin biosynthesis, hyphal

growth, sporulation, and mitogen-activated protein kinase (MAPK) signalling.

Relative gene expression of velB, brn1, clm1, and pks18 responsible for

conidiation, melanin, and cell wall integrity was down-regulated significantly.

Results of molecular docking possessed good binding affinity of compounds

and have confirmed their potential targets as THR and VelB proteins. The

docked structures, having good binding affinity among all, were further

refined, and rescored from their docked poses through 100-ns long MD
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simulations. The MDS study revealed that curcumin formed a stable and

energetically stabilized complex with the target protein. Therefore, the study

concludes that the antifungal compounds possess significant efficacy to inhibit

C. lunata growth targeting virulence proteins/genes involved in spore formation

and melanin biosynthesis.

KEYWORDS

Curvularia lunata, molecular docking, molecular dynamics, bioactive molecules,
virulence proteins

Introduction

The Curvularia genus is one of the major groups of

opportunistic human pathogenic dematiaceous filamentous

fungi (Alex et al., 2013). Within the genus, Curvularia lunata

(teleomorph sexual state—Cochliobolus lunatus) is in the

growing list of emerging fungal pathogens in humans (Giri

et al., 2011; Chowdhary et al., 2014), whereas it is reported

pathogenic to animals and plants (Beckett et al., 2017; Gupta

et al., 2017; Bisht et al., 2018; Liu et al., 2019). The infections

caused by Curvularia spp. include phaeohyphomycosis, non-

dermatophytic onychomycosis, mycetoma, and infections in

eyes, nails, sinuses, and wounds (Vineetha et al., 2016).

Infections generally occur through direct inoculation of

conidia or by inhalation, leaving it susceptible for invasion

(Shrivastava et al., 2017). Patients with peritoneal, venous

catheters, intravenous drug abusers, and cataract surgery

patients are more prone to C. lunata infections (Alex et al., 2013).

Azoles (itraconazole and voriconazole) and polyenes

(amphotericin B) are antifungals that have widely been used

to control invasive human fungal infections for more than

4 decades (Jørgensen and Heick, 2021; Uma Maheshwari

Nallal et al., 2021). The clinical use of azoles is of high

priority since there are only a few available alternatives for

prophylactic and therapeutic treatment of C. lunata infections

(Chowdhary et al., 2014; Chang et al., 2019). C. lunata infections

like foliar disease and leaf blight have been reported in plants (Liu

et al., 2014; Garcia-Aroca et al., 2018), and to control these

infections, a variety of fungicides were used in the crop fields.

Excessive use of synthetic fungicides poses selective pressure on

cross-kingdom pathogens and impacts antifungal drug resistance

(Hof, 2001). Transferability of such drug-resistant isolates from

farms to humans through the human–plant interaction stances a

critical public health concern (Bengyella et al., 2017) as some of

the azole fungicides possess chemical structures similar to

medical azole (Snelders et al., 2012).

Natural compounds have received a renewed interest in their

use as antimicrobials because of uncontrolled usage of synthetic

drugs or fungicides (Nagoor Meeran et al., 2017). These can be

exploited in controlling the growth of fungi consequently

inhibiting secondary metabolite production. The effect of

plant extracts has been investigated on C. lunata depicting

alteration in growth, sporulation, and secondary metabolite

pathways (Ghany TM et al., 2015). Many investigations

resulted in the screening of a wide variety of plant species/

bioactive compounds for their antimicrobial activities and

have revealed structurally unique biologically active

compounds (Matasyoh et al., 2007). Their target identification

can be approached via direct biochemical assays, molecular

studies, or using computational methods. Furthermore, the

mechanism of action of compounds can be generated by

studying gene expression data in the presence or absence of it.

The pathogenicity of C. lunata involves a plethora of

virulence factors including melanin pigment (Xu et al.,

2007), siderophores (Wang et al., 2013), hydrophobins, and

non-host-specific toxins (Gao et al., 2012). A number of genes

and proteins are involved in these pathways including brn1,

clpks18, clvelB, and clm1 which are involved in melanin

biosynthesis, hyphal growth, sporulation, non-ribosomal

peptide synthetase, and cell wall integrity (Rižner and

Wheeler, 2003; Gao et al., 2012; Fu et al., 2022). Melanin

deposition in the cell wall of fungus protects it from host

macrophage attack and phagolysosome oxidative burst of

neutrophiles (Rižner and Wheeler, 2003; Tóth et al., 2020).

Multiple genes are involved in the melanin production pathway

of the fungus directly or indirectly, including clpks18 gene

responsible for the synthesis of polyketide synthase enzyme

(PKS) and brn1 gene responsible for mechanical strength of

appressorium required for penetration (Rižner and Wheeler,

2003). Trihydroxynaphthalene reductase (THR) is also an

essential enzyme other than PKS of the DHN melanin

biosynthesis pathway, and it represents an emerging target

for the development of antimycotics. Secondary metabolite

synthesis of this pathogen is regulated by genes involved in

velvet protein biosynthesis (Gao et al., 2017), and the velvet-like

B protein VelB plays a crucial role in controlling the production

of conidia, cell wall composition, integrity, and host-specific

methyl 5-(hydroxymethyl) furan-2-carboxylate toxin

production. Studies have also reported involvement of VelB

in pathogenicity as well as fungicide resistance in C. lunata (Wu

et al., 2012; Gao et al., 2017).

The present study focuses on the identification of the

potential virulence target of C. lunata via gene expression

analysis, in silico approach, and in vitro evaluation of

antifungal activity of natural bioactive compounds like α-
pinene, eugenol, berberine, and curcumin.
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Material and methodology

Sample collection and fungal isolation

Rice plant variety PUSA 1121 demonstrated typical symptoms

of disease caused by Curvularia spp. including leaf lesions. The

infected leaf samples were collected from Yamuna Nagar district,

Haryana (GPS coordinates—30°02'38.1"N77°07'50.8"E). The

collected samples were placed in sterile polythene bags properly

tagged with date, time, and location (Naz et al., 2017). Sections of

diseased leaf portions were surface-sterilized in 1% (w/v) sodium

hypochlorite solution, rinsed in sterile distilled water, and incubated

on fresh potato dextrose agar (PDA) for 96 h at 28 ± 2°C. Fungal

isolates were identified macroscopically and microscopically

(Sivanesan 1987; Cuervo-Parra et al., 2012) and further

transferred to fresh PDA and incubated for 96 h at 28 ± 2°C.

Molecular identification

Genomic DNA was extracted from Curvularia spp. using the

modified cetyltrimethylammonium bromide (CTAB) method

(Lee et al., 1988; Wu et al., 2001). Molecular identification of

the isolate was confirmed by the amplification and sequencing of

the full-length 18 S internal transcribed spacer (ITS) region using

the ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-
TCC TCC GCT TAT TGA TATGC-3′) primers (White et al.,

1990). The PCR-amplified ITS region was sequenced by Sanger

sequencing. The sequences obtained were compared to the

sequences in the GenBank database (www.ncbi.nlm.nih.gov.in)

using basic local alignment search tool (BLAST) analysis, and

identification was confirmed when 99–100% sequence identity

was observed.

Procurement of bioactive compounds

The compounds, namely, α-pinene, curcumin, berberine,

and eugenol were procured from Sigma-Aldrich (India). The

compounds were solubilised in dimethyl sulfoxide (DMSO) to

make a stock solution of 100 mg/ml, except berberine (20 mg/ml

in methanol). For working solution, stock solution was further

diluted in potato dextrose broth (PDB). The final concentration

of dimethyl sulfoxide (DMSO) never exceeded the amount with

any detectable effect in assays (Szumilak et al., 2017).

Antifungal susceptibility testing

The conidia were harvested in sterile phosphate-buffered

saline (1× PBS), observed, and counted using a

haematocytometer under a light microscope. The final

conidial suspension was adjusted to 104 conidia/mL in PDB

(Amin and Abdalla, 1980; Xie et al., 2020). Minimum inhibitory

concentration (MIC) of α-pinene, curcumin, berberine, and

eugenol against C. lunata was determined using the broth

microdilution method in a 96-well polystyrene plate according

to CLSI protocol (CLSI, 2016; Alexander, 2017). Two-fold serial

dilution was performed in a 96-well microplate to attain

concentrations ranging from 5000 to 9.765 μg/ml. Each well

was inoculated with 100 µL of the conidial suspension (as

previously described in the section) except the negative

control. The microplate was incubated at 28 ± 2°C for 5 days,

and the growth in each well was compared with that of the

positive control. The experiments were carried out in triplicate.

The MIC value of a drug is determined as the lowest

concentration with no visible growth relative to the drug-free

control (Andrews, 2001).

Pathogenicity test for C. lunata on onion
peel epidermis

Onion bulb scales were thoroughly rinsed with distilled

water. The inner epidermis of onion bulb scales was peeled

off and cut into 1 × 1 cm2 strips. Sections of onion peel were

floated on 4 ml distilled water in 60-mm Petri plates for treated

and untreated samples. Freshly harvested conidia were washed

with sterile water followed by centrifugation at 4500 g for 10 min

and resuspended in sterile distilled water to the final

concentration of 1×104 conidia/ml. Only conidial suspension

(10 µl) was placed on a single strip as a positive control. MIC of α-
pinene (1250 μg/ml), curcumin (78 μg/ml), berberine (156 μg/

ml), and eugenol (156 μg/ml) was added with 10 µl of the conidial

suspension on individual strips of onion peel epidermis. Each

experiment was independently conducted in triplicate. The strips

were incubated at 28 ± 2°C for 24 h. After 24 h of inoculation,

extra suspension was removed from the peel, and 30% methanol

was applied to prevent further penetration during observation

(Chida and Sisler, 1987; Gupta et al., 2019). The strips were

stained with lactophenol cotton blue and observed under a light

microscope (×40 magnification) to observe hyphal growth and

penetration. For scanning electron microscopy (SEM), the strips

were sputter-coated with gold and observed under Zeiss SEM,

MA EVO-18 Special Edition (Liu W. et al., 2011; Gupta et al.,

2019).

Biochemical assays

1) Melanin quantification: Isolation of melanin from C. lunata

(treated and untreated) was performed by the modified

method of Kumar et al. (2011). The fungus was cultured

in the media supplemented with Inhibitory Concentration-50

(IC50) of α-pinene, curcumin, berberine, and eugenol in a 12-

well cell culture plate. Inhibitory Concentration-50 (IC50) of
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α-pinene, curcumin, berberine, and eugenol were 625 μg/ml,

39 μg/ml, 78 μg/ml, and 78 μg/ml, respectively, where 50 %

growth of C. lunata was inhibited. The extracted melanin was

resuspended in 100 mM borate buffer, and absorbance was

recorded in the wavelength range (250–800 nm) on a UV-

visible spectrophotometer. Also, 100 mM borate buffer was

used as a blank. The experiment was conducted in triplicate.

2) Conidial cell surface hydrophobicity (CSH) and

conidiation: Using two-phase partitioning with

hexadecane as the hydrocarbon phase, hydrophobicity

assay was conducted (Pihet et al., 2009; Hoda et al.,

2020). In brief, C. lunata conidia were harvested in 1×

PBS from treated and untreated samples, and their

absorbance was set to 0.3 using a spectrophotometer

(at wavelength 630 nm). Hexadecane (500 µL) was

added to conidial suspension and vortexed for 2 min at

an interval of 30 s; then, for the hydrophobic phase,

separation tubes were kept at room temperature for

10 min. At 630 nm, absorbance of the aqueous phase

was determined and compared to the initial

absorbance, that is, 0.30.

Percentage reduction in cell surface hydrophobicity (%CSH)

was calculated for treated as well as untreated C. lunata conidia

using the formula:

%CSH � A1 − A2
A1

× 100,

where A1 is the absorption before addition of hydrocarbon and

A2 is the absorption after addition of hydrocarbon.

The effect of compounds on conidia formation was

analysed by counting the number of spores using a

haemocytometer (Abubakar and Likita 2021). Conidia

were harvested from the 1 cm3 mycelial mat of treated

and untreated cultures and resuspended in 1 ml of 1× PBS

supplemented with 0.25% Tween-20. A volume of 100 µl of

conidial suspension was placed on the surface of the

counting chamber of the haemocytometer and covered

with a cover slip. The number of conidia was counted

from square grids in the counting unit of the

haemocytometer. The conidia concentration was calculated.

Gene expression analysis

The brn1, velB, clm1, pks18, and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) gene sequences were

downloaded from the NCBI (https://www.ncbi.nlm.nih.gov/

pubmed) database for designing the primers for expression

studies. The primers were designed by Primer3 software

(http://primer3.ut.ee/) and were analysed for potential

hair pin formation and self-complementarity (http://www.

basic.northwestern.edu/biotools/oligocalc.html). The details

of primers are given in Table 1.

The expression of the genes of interest was quantified by

quantitative real time-PCR (qRT-PCR) (Gupta et al., 2019,

2022). Mycelial cultures were harvested, and RNA was

extracted using TRIzol™ reagent (Invitrogen). A measure

of 2 μg of total RNA of each sample (treated and untreated)

was used to synthesize first-strand cDNA by the oligo (dT)-

18 primer using the Hi-cDNA Synthesis Kit (HiMedia). The

qRT-PCR was performed using an ABI QuantStudio

3 system (Applied Biosystems, Streetsville, Canada), and

amplification products were detected with SYBR Green

Master Mix (G-Biosciences) for gene expression.

The relative quantification of individual gene expression

was performed using the comparative threshold cycle

method. The amplification program used for real time

was 95°C for 3 min, 40 cycles at 95°C for 30 s, 60°C for

30 s, and 72°C for 30 s. To check the specificity of the

PCR product, the melting curve was analysed at 95°C for

15 s, 60°C for 60 s, 72°C for 30 s, and holding stage 10 s.

GAPDH gene was set as the reference gene. Relative

expression was estimated using the 2−ΔΔCt formula, where

TABLE 1 Gene-specific primers used for qRT-PCR.

S. No. Gene name Gene reference ID Primer sequence (59-39) Amplicon size (bp)

1 velB KY435512.1 F: AGCATGGCTCACTACCAA 270 bp

R: GTCCACCATGAGGACAAA

2 brn1 JQ698339.1 F: AACAGCCTTTCAATCCTCTC 292 bp

R: GTTCAAAGCCTTGATCTCCT

3 clm1 HQ851366.1 F: GGCTACCAACAACCAGACC 401 bp

R: CTCTGGCCAAACCAAAATC

4 pks18 MF114294.1 F- CGCCACCTCTGTTCTTCTT 185 bp

R- CCTCAACACCACAAGTCCA

5 GAPDH LT715821.1 F- CATTGGCCGTATCGTCTT 339 bp

R- GCCGTTGACAGTCAGGTT
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ΔΔCt � Ct target gene( ) sample − Ct Tub( ) sample[ ]
Ct target gene( ) reference − Ct Tub( ) reference[ ]

.

The results were analysed using ABI QuantStudio 3 software,

and the genes were considered differentially expressed if they

were at least two-fold up- or down-regulated.

Molecular docking and dynamics studies

The three-dimensional structure of the proteins (VelB

and THR) was not available in the Protein Data Bank

(PDBhence FASTA sequence of virulence proteins velvet

protein B (VelB) with accession number ARH19411 and

1,3,8-trihydroxynaphthalene reductase (THR) with

accession number QTG11042—proteins of C. lunata were

retrieved from the NCBI (https://www.ncbi.nlm.nih.gov/).

To obtain the 3D structure of proteins, homology modelling

was performed using SwissModel via the ExPaSy web server

(https://swissmodel.expasy.org/). The Self-Optimized

Prediction Method with Alignment (SOPMA) server was

used to speculate the secondary structure of VelB and THR

proteins (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.

pl?page=/NPSA/npsa_sopma.html). The best template

having maximum percentage identity with the target and

modelled structure was then evaluated via PROCHECK. For

model protein preparation such as charge assignment,

solvation parameters, and fragmental volumes, Swiss-

PdbViewer version 4.10 (SPBDV-4.10) was used (Morris

et al., 2009). The 3D structures of the compounds (α-
pinene, curcumin, berberine, and eugenol) were

downloaded from the PubChem compound database

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702940/)

in the spatial data file (SDF) format. The PubChem

compound identifier (CID) was 969516 (curcumin), 2353

(berberine), 3314 (eugenol), and 6654 (α-pinene). The SDF

file format was further converted to the PDB file format using

the Open Babel tool (https://openbabel.org/docs/dev/

Installation/install.html) for molecular docking via the

AutoDock4.2.3 tool (O’Boyle et al., 2011). The absorption,

distribution, metabolism, excretion, and toxicity profiles of

plant-derived compounds were qualitatively measured by

using the online SwissADME program (http://www.

swissadme.ch/index.php) (Sharma et al., 2022).

Molecular docking was performed using the AutoDock4.2.3 tool

(Morris et al., 2009; Karthika et al., 2021) to predict the binding and

the structure of the intermolecular complex between drug targets

and potential inhibitors. The Lamarckian genetic algorithm was

utilized for protein–ligand interactions with the set parameters.

The total number of poses was set to 50. Poses were further

clustered using all atom root mean square deviation (RMSD) cut-

off of 0.3 Å to remove redundancy. The default values were used

for all other parameters for docking and scoring. The protein

structure was kept rigid in all steps. The molecular interactions of

the best docking pose were visualised via Discovery Studio

Visualizer programs (http://accelrys.com/products/collaborative-

science/biovia-discovery-studio/visualization-download.php). The

amino acid residues that displayed interactions with the ligand are

documented in Table 2 and Table 3.

All-atommolecular dynamics (MD) simulation was performed to

understand the conformational stability of VelB and THR proteins

boundwith the dockedmolecules in comparison to the unbound state

of proteins. Atomic coordinates of VelB and THR protein complexes

with dockedmolecules were used to generate the simulation trajectory

using GROMACS v5.1.4 (Abraham et al., 2015). During the

simulation complex preparation stage, the CHARMM27 (Bjelkmar

et al., 2010) force field was used for proteins, while the TIP3P water

model was used to solvate the protein complex. The bound ligand

parameters were generated as described in the literature (Zoete et al.,

2011). The protein complex was placed in the centre of the cubical box

with 10Å edge-side filledwithwatermolecules. The total charge of the

simulation box was neutralised by adding 0.15M counterions

(Na+Cl−). All the MD simulations were performed under

physiological conditions (Joung and Cheatham, 2008). The

prepared simulation box was taken for energy minimization using

steepest descent followed by conjugant gradients (50,000 steps for

each). The system was further equilibrated through the constant

number, volume, and temperature (NVT) and the constant

number, pressure, and temperature (NPT) for 500 ps. The

Berendsen thermostat (Berendsen et al., 1987) and the

Parrinello–Rahman pressure (Parrinello and Rahman, 1980)

algorithm were used to maintain the temperature and pressure,

respectively. Final MD simulation was performed for 100 ns under

the NPT ensemble condition with the step size of 0.2 fs. GROMACS

modules and MD trajectory (McGibbon et al., 2015; Sankar et al.,

2021) were employed to visualize the global structural order

parameters: RMSD, radius of gyration (RoG), solvent-accessible

surface area (SASA), and root mean square fluctuation (RMSF).

Statistical analysis

Statistical analysis was performed using the one-way analysis

of variance (ANOVA) for the comparison of results of gene

expression analysis via qRT-PCR and melanin and CSH

percentage for biochemical assays. The experiment was

conducted in technical and biological triplicate. Statistical

analysis was also performed using GraphPad Prism software

8.0.2.263 version and Microsoft Excel. p< 0.05 was considered

statistically significant.

Results

Rice plants with symptoms of blast disease specifically leaf

lesions were collected from Yamuna Nagar, Haryana, India
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(Figure 1). The fungal isolate was identified as Curvularia based

on its colony morphology, viz., fluffy and velvety mycelia, greyish

black colour, black pigment on the reverse side, and straight to

pyriform conidia having three to four cells, with a large and

curved central cell with smooth-walled in a lactophenol cotton

blue mount. Morphological characteristics of the isolated fungus

were in agreement with Ellis (1971) and Sivanesan (1984).

Furthermore, molecular characterisation and identification

of the fungal isolate at the species level were conducted and

confirmed by the amplification and sequencing of 18 S ITS1 and

ITS4 regions. The obtained sequence showed 100% similarity

with C. lunata from the GenBank database. The sequence was

submitted to the NCBI with GenBank accession number

OL757869 (https://www.ncbi.nlm.nih.gov/search/all/?term=

OL757869).

Antifungal susceptibility testing

The isolated fungal pathogen was susceptible to polyenes and

azoles. The calculated MIC of bioactive compounds against C.

lunata was in the range of 1250–78 μg/ml: curcumin (78 μg/ml),

berberine (156 μg/ml), eugenol (156 μg/ml), and α-pinene
(1250 μg/ml). Among all, curcumin inhibited the pathogen

TABLE 2 Molecular docking affinity of four compounds with THR protein of C. lunata.

Compound name PubChem CID THR protein

Binding affinity (Kcal/mol) Hydrogen bond formation Amino acid residues

Curcumin 969516 -10.80 4 TYR178, ILE41, ASN114, and ARG39

Berberine 2353 -9.62 3 ILE41 and SER164

Eugenol 3314 -6.25 3 ILE165, SER164, and PRO208

α-Pinene 6654 -6.13 0 -

TABLE 3 Molecular docking affinity of four compounds with VelB protein of C. lunata.

Compound name PubChem CID VelB protein

Binding affinity (Kcal/mol) Hydrogen bond formation Amino acid residues

Curcumin 969516 -8.03 4 SER124, SER119, and SER132

Berberine 2353 -6.98 0 -

Eugenol 3314 -5.21 1 GLU130

α-Pinene 6654 -4.39 0 -

FIGURE 1
(A) C. lunata infection on the leaves of the rice plant; (B) C. lunata colony morphology on potato dextrose agar; and (C) C. lunata conidia.
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FIGURE 2
Microscopic images depicting conidia of C.lunata Control (A,B); α-pinene (C,D); curcumin (E,F); berberine (G,H); and eugenol (I,J). Scale
bar = 10 µm.
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hyphal and conidial germination at a very low concentration. At

IC50 of α-pinene, white fungal morphology was observed in vitro,

whereas IC50 of other compounds inhibited the growth of fungi

to 50% with minor changes in its morphology. IC50 of the

compound referred when the growth of microorganism was

suppressed by 50%.

Pathogenicity test of C. lunata conidia on
onion peel epidermis

Conidia failed to adhere to onion peel epidermis, in the

presence of bioactive compounds when observed after 24 h of

incubation. No visible conidial germination was observed at MIC

of α-pinene, curcumin, berberine, and eugenol. In the control

sample, conidia with dense hyphal growth were observed on the

onion peel under a light microscope as well as SEM as depicted in

Figure 2. Upon treatment, the shape of conidia was obovoidal to

clavate, curved at subterminal ends, and treatment with bioactive

compounds effectively prevented the germination of conidia.

Biochemical assays

1) Melanin content: The overall characteristic absorption of

melanin was observed at 205 nm which was 0.604, 0.401

0.274, 0.247, and 0.184 for control, berberine, eugenol, α-
pinene, and curcumin, respectively (Supplementary Figure

S1; p < 0.0001). The melanin content in the compound-

treated C. lunata culture showed significant reduction in the

quantity as compared to that of control.

2) CSH percentage: A statistical decrease was observed in the

biochemical CSH value of treated cultures as compared to the

untreated positive control. The calculated CSH percentage

was 87.05%, 79.57%, 75.54%, and 58.73% for α-pinene-,
eugenol-, berberine-, and curcumin-treated C. lunata as

compared to the control (Supplementary Figure S2; p <
0.05). Curcumin affected the hydrophobicity of conidia

more than the other compounds.

3) Culture was grown at IC50 of compounds to check the

number of conidia formed, and a 50% reduction in

conidiation was observed in treated cultures in comparison

with the control.

Gene expression analysis

The effect of curcumin, α-pinene, berberine, and eugenol

treatment on the expression of brn1, velB, pks18, and clm1 of C.

lunata was investigated by reverse transcription followed by

qRT-PCR for differential gene expression. α-pinene, curcumin,

berberine, and eugenol treatment led to a significant down-

regulation of velB, brn1, clm1, and pks18 gene transcripts in

comparison with the control (untreated) (Figure 3). The

expression of secondary metabolite gene brn1 was significantly

down-regulated upon eugenol treatment, followed by curcumin,

α-pinene, and berberine and pks18 genes in curcumin and α-
pinene. The velB gene was significantly down-regulated in

eugenol, berberine, and curcumin. The relative expression of

clm1 gene was highly down-regulated in all treated samples as

compared to the control. The complete expression data were

normalized by the housekeeping gene GAPDH. Gene expression

data expressed as 2−ΔΔCt are the mean of at least three replicates ±

standard error.

Molecular docking studies and dynamics
studies

Prediction of the secondary structure of THR (Figure 4A)

resulted in 40.82% α-helix (h), 18.35% extended strand (e), 7.87%

β-turn (t), and 32.96% random coil (c) elements, and the VelB

sequence (Figure 4B) consisted of 15.18% α-helix (h), 17.26%

extended strand (e), 4.46% β-turn (t), and 63.10% random coil (c)

elements. Graphs were obtained to visualize the prediction and

score curves for all predicted states using parameters such as

window width and number of states.

Model accuracy assessment of modelled protein structures of

THR and VelB of C. lunata was performed via SwissModel. The

PDB ID 1YBV was used as the template to model the 3D protein

structure of the THR protein sequence and PDB ID 4N6R chain

B for VelB protein. The stereochemical quality and accuracy of

the model were tested using PROCHECK. Results from

PROCHECK were reported as the Ramachandran plot. For

THR protein, 89.0% residues were in most favoured regions,

11.0% residues were in additional allowed regions, and no

residues were in disallowed regions. Similarly, in protein VelB,

75.7% residues were in most favoured regions, 19.8% residues

were in additional allowed regions, 2.1% residues were in

generously allowed regions, and 2.5% residues were in

disallowed regions. Both modelled proteins obtained by

homology modelling were of good quality on the basis of the

Ramachandran plot (Figure 5).

The binding affinity of four natural compounds with THR

and VelB proteins of C. lunata are presented in Tables 2 and 3,

respectively. The binding interaction of four natural compounds

with VelB and THR proteins are shown in Figures 6, 7,

respectively. The binding affinity and hydrogen bonds of

curcumin were high with THR protein followed by berberine,

eugenol, and α-pinene. With VelB protein, curcumin showed the

highest binding affinity and hydrogen bonds as compared to

berberine, eugenol, and α-pinene. The binding affinity of

curcumin was -10.80 Kcal/mol with four hydrogen bonds for

THR protein and −8.03 Kcal/mol with four hydrogen bonds for

VelB protein. Berberine also showed good binding affinity for

THR and VelB proteins, i.e., −9.62 Kcal/mol and −6.98 Kcal/mol,
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respectively. Berberine did not form any hydrogen bonds with

VelB protein. Eugenol interacted with THR protein with three

hydrogen bonds, while only one hydrogen bond was formed with

VelB protein. α-Pinene showed binding affinity −6.13 Kcal/mol

and −4.39 Kcal/mol with THR and VelB proteins respectively,

but there was no hydrogen bond formation.

Drug-likeness properties of α-pinene, curcumin, berberine,

and eugenol were evaluated via in silico ADME-Tox analysis

(Table 4). All four compounds followed Lipinski’s Rule of Five

without any violation and therefore could be administered as oral

drugs. The pharmacokinetics drug properties for compounds α-
pinene, curcumin, berberine, and eugenol resulted good drug

ability characteristics which included molecular weight <500 g/
mol, lipophilicity (MlogP) < 5, hydrogen bond acceptor <5, and
hydrogen bond donor <10.

Structural order parameters of the THR complex were

analysed with respect to the THR receptor to depict the

structural changes upon curcumin binding. The RMSD

FIGURE 3
Relative quantification of brn1, velB, pks18, and clm1 gene expression in C. lunata (normalised to the house-keeping gene GAPDH). Data were
reported as mean of fold changes with standard deviation from two independent experiments amplified in triplicate. p ≤ 0.05 was considered
statistically significant.

FIGURE 4
Predicted secondary structure validation of THR (A) and VelB (B) proteins of C. lunata using SOPMA. The blue line represents α-helices, red
colour represents the extended strand, green colour represents β-turn, and magenta colour represents the random coil in graphical representation.
The X-axis represents position of the amino acid; the Y-axis shows the score for each predicted state.
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distribution (Figure 8A) reflected that the inhibitor bound state

of THR experiences comparatively less structural deviation along

the simulation time and has 3.22�A mean RMSD, while the THR

receptor has 4.58 �A mean RMSD. RoG defines the compactness

of the structure, and Figure 8D shows that RoG remained

consistent for the THR complex in comparison to the THR

FIGURE 5
Ramachandran plot of predicted 3D structures of THR (A) and VelB (B) proteins of C. lunata using PROCHECK software.

FIGURE 6
Binding of (A) α-pinene, (B) curcumin, (C) berberine, and (D) eugenol with VelB. Ribbon and 2D representation of VelB protein showing various
interactions and docking fit of compounds.
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receptor which further highlights that curcumin binding at the

active site of THR protein enhances the structural stability. The

same was confirmed by SASA analysis (Figure 8B). Apart from

the protein structure-level dynamics, the protein residue-level

dynamics was attained by RMSF analysis (Figure 8C) which

depicted that in the presence of an inhibitor, binding site residues

114 and 200–220 have less fluctuation and therefore stabilize the

complex.

In the case of the VelB complex, structural order parameter

analysis with respect to the VelB receptor showed that RMSD

distribution showed a more zigzag pattern for receptor protein

with the mean RMSD value of 12.81�A, while the bound complex

attained more stability in the presence of an inhibitor

(Figure 9A). RoG (Figure 9D) and SASA analyses (Figure 9B)

further explained the stability of the bound complex along the

simulation. SASA achieved the plateau after 25 ns, while SASA

for the unbound state receptor was still declining. Residue-level

RMSF analysis also displayed that binding site residues

110–135 restricted the local fluctuation, thereby increasing the

stability of the complex (Figure 9C). Curcumin binding stability

at the binding site of respective proteins was further computed

and analysed by monitoring the average distance between centre

mean position of curcumin and selected binding site residues as

shown in Supplementary Figure S3 for the THR–curcumin

complex and Supplementary Figure S4 for the VelB–curcumin

complex. In case of the THR complex, binding site residues such

as ARG39, ASN114, SER164, TYR178, and LYS182 retained the

equilibrium distance after 25 ns. As ASN114, TYR178, and

LYS182 were present at the beta and helix secondary

structure, the distances from these residues were found to be

more consistent compared to ARG39 and SER164 which were

located in the turn of the secondary structure. This analysis

showed that binding site residues maintained favourable distance

for a stable molecular interaction. In case of the VelB complex, all

binding site residues were located at the coiled coil secondary

structure, and analysis of the centre mean distance from

curcumin with binding site residues will further provide

evidence of curcumin stability in the coiled coil binding

region of VelB receptor protein. As it can be seen from

Supplementary Figure S4, all six selected binding site residues

(ARG131, PRO127, SER119, HIS133, SER118, and TYR125)

maintained equilibrium distances after 25 ns simulation time.

All distances have undergone shape drifts transiently at ~65 ns

and thereafter returned to initial equilibrium distances. This

calculation clearly suggests that despite the coiled coil region

of the binding site, curcumin well oriented in the VelB-binding

site. To further establish the fact that curcumin orientation in the

protein-binding site of both proteins remains stable, curcumin

RMSD was measured and plotted in a time evolution manner in

Supplementary Figure S5. Similar to the distance in

FIGURE 7
Binding of (A) α-pinene, (B) curcumin, (C) berberine, and (D) eugenol with THR. Ribbon and 2D representation of THR protein showing various
interactions and docking fit of compounds.
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Supplementary Figures S3, S4, curcumin stabilized its orientation

in the respective binding site after 25 ns of simulation.

Apart from complex structural stability, interaction stability

was assessed by calculating the number of hydrogen bonds

formed between curcumin and receptor protein along the

simulation time. The THR–curcumin complex formed on

average one hydrogen bond with more than 90% occupancy,

while the VelB–curcumin complex formed on average one

hydrogen bond with more than 82% of simulation time

(Figure 10).

Discussion

A fundamental problem with Curvularia infections is the risk

of transferring a genetically evolved isolate from farms to

humans. Such transferability through the human–plant

interaction or intake of contaminated air could cause

resistance against available antifungal drugs since field isolates

suffer from fungicide selective pressure and undergo virulence

differentiation to adapt to adverse conditions (Bengyella et al.,

2017). Curvularia spp. are sensitive to triazoles, and there are

chances of interlocking lifestyle and fungicide pressure which

may lead to the development of resistance in

immunocompromised patients receiving azole therapy

(Bengyella et al., 2017). Occurrence of antifungal resistance in

fungal diseases along with a genetically evolved Curvularia

spp. imparts the search for new therapy to control fungal

infections though it is a major challenge of present-day

treatment. There are known natural compounds that can

control the disease caused by C. lunata; for example, essential

oil of Cymbopogon citratus and extract of Cinnamomum zeylani

are reported to inhibit conidial germination and reduce disease

progress (Mishra et al., 2009; Mourão et al., 2017).

In the present study, natural compounds, namely, α-pinene,
curcumin, berberine, and eugenol were studied for their

TABLE 4 Physicochemical analysis of potential inhibitors of THR and VelB proteins of C. lunata.

Compounds ADME properties (Lipinski’s Rule of Five) Molecular weight Molecular formula Radar diagram

α-Pinene Molecular weight (g/mol) 136.23 C10H16

LogP 3.44

H-bond donor 0

H-bond acceptor 0

Violation 0

Curcumin Molecular weight (g/mol) 368.38 C21H20O6

LogP 1.47

H-bond donor 2

H-bond acceptor 6

Violation 0

Berberine Molecular weight (g/mol) 336.36 C20H18NO4

LogP 2.19

H-bond donor 0

H-bond acceptor 4

Violation 0

Eugenol Molecular weight (g/mol) 164.20 C10H12O2

LogP 2.25

H-bond donor 1

H-bond acceptor 2

Violation 0

Note: According to Lipinski’s rule, molecular weight <500 g/mol, lipophilicity (MlogP) <5, hydrogen bond acceptor <5, and hydrogen bond donor <10 are considered.
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antifungal activity against C. lunata. The fungal growth was

completely inhibited by curcumin (78 μg/ml), berberine

(156 μg/ml), eugenol, (156 μg/ml) and α-pinene (1250 μg/

ml). In the studies conducted elsewhere, α-pinene showed

significant antifungal activity, with greater inhibitory activity

against Candida parapsilosis, and proved to be effective in

inhibiting fungal growth (Nóbrega et al., 2021). Previously

reported MIC of berberine was 125 μg/ml against C. lunata

(Kokkrua et al., 2020), whereas in the current study it was

calculated as 156 μg/ml. Eugenol also inhibited the growth of

fungi at 156 μg/ml, and similar results were reported for the

antifungal activity of eugenol against T. rubrum strains

(64–512 μg/ml) (de Oliveira Pereira et al., 2013). The extract

of Curcuma longa also reported strong inhibitory effect on

various pathogenic fungi at 1 mg/ml concentration (Chen et al.,

2018), and antifungal effect of curcumin has been reported on

Aspergillus spp. at 0.2 mg/ml (Martins et al., 2008; Gitika et al.,

2019) and Candida spp. at 0.1–2 mg/ml (Narayanan et al.,

2020).

The interaction between host plants and conidia of C. lunata

begins with the adherence of conidia onto the leaf surface (Xie

et al., 2020). Once the conidia adhere, they start to germinate and

form appressoria. The cell wall of appressoria contains melanin

which aids to provide mechanical strength for host tissue

penetration. In C. lunata, sporulation and germination are

crucial steps for spreading the disease (Xie et al., 2020). In the

present study, our compounds suppressed sporulation as well as

hyphal growth at IC50 (curcumin, 39 μg/ml; berberine, 78 μg/ml;

eugenol, 78 μg/ml; and α-pinene, 625 μg/ml). The spore

germination and its pathogenicity were studied on the onion

epidermis layer, where the compound-treated (α-pinene,
curcumin, berberine, and eugenol) conidia failed to adhere

and germinate on the surface. The invasive hyphae of C.

lunata were observed when untreated conidia were observed

under light and electron microscope. Another study on spore

germination of Curvularia maculans reported that berberine

affected the germination process of the fungus (Basha et al.,

2002). Biochemical assay showed that curcumin exhibited a

FIGURE 8
Structural order parameter analysis of the THR complex (curcumin) with respect to the THR receptor. (A) Root mean square deviation (RMSD),
(B) solvent-accessible surface area (SASA), (C) root mean square fluctuation (RMSF), and (D) radius of gyration (RoG) analysis.
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significant reduction in conidial hydrophobicity as compared to

the control. It might be due to curcumin interacting with the

conidial wall/membrane and disturbing the cell integrity

(Srivastava et al., 2020).

Unlike other fungi, not much is studied about C. lunata

pathogenesis at the molecular level. Melanin is one of the

reported virulence factors which can improve mechanical

strength of appressorium required for penetration inside the

host (Rižner and Wheeler, 2003). It is produced from 1,8-

dihydroxynaphthalene (DHN) via the pentaketide pathway in

this fungus; crucial genes involved in the pathway are pks18,

scd1, and brn1 (Baker et al., 2006; Liu T. et al., 2011). According

to Liu T. et al (2011) and Wang et al. (2020), brn1 gene deletion

led to improper DHN-melanin biosynthesis as well as

accumulation in the cell wall which also affects the

production of other mycotoxins by this fungus. The current

study observed significant down-regulation of pks18 and brn1

genes when the pathogen comes in contact with bioactive

compounds. The velvet genes/proteins also play a significant

role in regulating secondary metabolism, cell wall integrity

pathway, and sporulation (Calvo, 2008; Gao et al., 2017). It

has been reported that deletion of velB gene exhibited reduced

growth rate and conidiation with increased aerial hyphae

formation (Gao et al., 2017). In the present study, the

expression of velB gene, which is a key member of velvet

protein synthesis, was significantly down-regulated in the

presence of α-pinene, curcumin, berberine, and eugenol.

Mitogen-activated protein kinase gene clm1 regulated cell

FIGURE 9
Structural order parameter analysis of the VelB complex (curcumin) with respect to the VelB receptor. (A) Root mean square deviation (RMSD),
(B) solvent-accessible surface area (SASA), (C) root mean square fluctuation (RMSF), and (D) radius of gyration (RoG) analysis.
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wall integrity, conidiophore formation, and cell-degrading

enzyme activity (Liu T. et al., 2011; Ni et al., 2018). The

presence of bioactive compounds (α-pinene, curcumin,

berberine, and eugenol) showed that there was a significant

down-regulation of clm1 gene of C. lunata, which might result

in decreased cell wall integrity as well as conidia formation. The

qRT-PCR analysis showed that the expression level of pks18,

brn1, velB, and clm1 genes were reduced compared to that in the

control. Hence, conidia were unable to maintain integrity for

their growth and sporulation.

Reported mutant studies of brn1, MAPK gene, and toxin-

related gene deletion led to a decrease in sporulation as well as

virulence (Liu T. et al., 2011; Gao et al., 2012). In case of

compound treatment, it was found that the conidia

germination process was inhibited as shown in SEM images,

and therefore the expression of brn1, clm1, and velB genes

could be decreased. Another mutant study reported that

ΔClVelB showed high expression of pks18, brn1, and cmr1

genes at 48 h and 60 h gene expression study (Gao et al., 2017).

Also, velB gene deletion indicated the increase in osmotic

resistance which suggests that velB gene involved in the

regulation of cell wall integrity. Our study also suggested

that the presence of compounds decreases velB gene

expression which might result in decreased toxin

production and cell wall integrity.

Furthermore, to understand the possible targets of

compounds (α-pinene, curcumin, berberine, and eugenol), an

in silico docking approach was used for virulence proteins

involved in the melanin pathway and conidiation. The

virulence proteins THR and VelB were responsible for the

melanin biosynthesis pathway, and conidiation and methyl 5-

(hydroxymethyl) furan-2-carboxylate toxin production,

respectively. Molecular docking of compounds with THR

and VelB proteins showed significant negative binding

affinity using AutoDock4.2.3. Polyketide synthase plays an

important role in the pathogenicity, which synthesised

THR, another crucial step for the biosynthesis of DHN-

melanin in both mycelia and conidia (Lu et al., 2022). The

velvet family protein is reported to play a key role in the

regulation of secondary metabolism, fungal growth, and

sporulation in many filamentous fungi (Gao et al., 2017).

The main member of the velvet protein family is VelB

protein in a few fungal species, according to the literature

(Bayram et al., 2008; Wiemann et al., 2010; Yang et al., 2013;

Gao et al., 2017). Curcumin is observed to have the highest

negative binding energy and hydrogen bonds with both THR

and VelB proteins. Berberine and eugenol also showed good

binding affinity with both virulence proteins, whereas α-
pinene did not form hydrogen bonds with THR as well as

VelB proteins and also the binding affinity was comparatively

lower. The docking interaction indicated that the

protein–ligand complexes that had good binding affinity

were those that formed the highest number of hydrogen

bonds (Shamsi et al., 2022). Curcumin-bound complexes of

THR and VelB receptor proteins were employed to

understand the stability and dynamical behaviour of the

complexes. Also, 100 ns MD simulation analysis highlights

the gain in the structural stability after binding of the

curcumin molecules. In both complexes, the curcumin

molecule remains stable in the corresponding binding site

of the protein and forms one hydrogen bond with more than

80% of the time. This result suggests the possibility of

designing a high-affinity inhibitor carrying the curcumin

scaffold entity.

Plant-derived compounds (α-pinene, curcumin, berberine,

and eugenol) are effective against C. lunata. The natural

bioactive compounds possess less toxicity and associated side

effects, which makes them a suitable candidate for drug

discovery. Among all, curcumin exhibited effective antifungal

properties to inhibit the growth of the fungus. Conidia

adherence and their germination were restricted by the

activity of these compounds. It was shown that the

compounds down-regulate brn1, velB, pks18, and clm1 gene

expression, leading to decreased cell wall integrity and

sporulation. The correlation between the virulence gene

down-regulation and in silico molecular docking interaction

represented the potential antifungal activity of bioactive

compounds and highlighted virulence proteins THR and

VelB as a possible drug target.

FIGURE 10
Distribution of the hydrogen bonds formed by curcumin with
THR and VelB receptors at the binding site.
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Microsecond-long simulation
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compounds
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The latest world malaria report revealed that human deaths caused by malaria

are currently on the rise and presently stood at over 627,000 per year. In

addition, more than 240 million people have the infection at any given time.

These figures make malaria the topmost infectious disease and reiterate the

need for continuous efforts for the development of novel chemotherapies.

Malaria is an infectious disease caused majorly by the protozoan intracellular

parasite Plasmodium falciparum and transmitted by mosquitoes. Reports

abound on the central role of falcipains (cysteine protease enzymes) in the

catabolism of hemoglobin for furnishing the plasmodium cells with amino acids

that they require for development and survival in the hosts. Even though

falcipains (FPs) have been validated as drug target molecules for the

development of new antimalarial drugs, none of its inhibitory compounds

have advanced beyond the early discovery stage. Therefore, there are

renewed efforts to expand the collection of falcipain inhibitors. As a result,

an interesting finding reported the discovery of a quinolinyl oxamide derivative

(QOD) and an indole carboxamide derivative (ICD), with each compound

demonstrating good potencies against the two essential FP subtypes 2 (FP-

2) and 3 (FP-3). In this study, we utilized microsecond-scale molecular

dynamics simulation computational method to investigate the interactions

between FP-2 and FP-3 with the quinolinyl oxamide derivative and indole

carboxamide derivative. The results revealed that quinolinyl oxamide

derivative and indole carboxamide derivative bound tightly at the active site

of both enzymes. Interestingly, despite belonging to different chemical

scaffolds, they are coordinated by almost identical amino acid residues via

extensive hydrogen bond interactions in both FP-2 and FP-3. Our report

provided molecular insights into the interactions between FP-2 and FP-3
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with quinolinyl oxamide derivative and indole carboxamide derivative, which we

hope will pave the way towards the design of more potent and druglike

inhibitors of these enzymes and will pave the way for their development to

new antimalarial drugs.

KEYWORDS

malaria, Plasmodium falciparum, falcipains, molecular dynamics simulation, enzyme
inhibition

1 Introduction

Malaria continues to pose significant public health threats in

the tropical and subtropical regions, given a global estimate of

about 241 million cases in 2020, with yearly deaths reaching a

record high of 627,000 in the same year. Malaria is an infectious

disease caused by multiple species of intra-erythrocytic parasites

belonging to the genus Plasmodium. The five species that are

responsible for the disease in humans are Plasmodium

falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi.

From the standpoint of global health, P. falciparum is the

most important because it is responsible for over 90% of

global malaria cases and mortalities (Snow, 2015). The current

situation is aggravated by the increased resistance to insecticides

by the mosquito vectors as well as the spread of drug resistance to

the available antimalarial drugs (WHO, 2022). This justified the

unrelenting efforts towards the design and development of new

drug candidates against malaria, along with expanding the

plasmodial drug targets pool. Cysteine proteases have been

identified as molecular targets that have become attractive for

drug design not only against Plasmodium sp but also in related

parasitic diseases (McKerrow et al., 1999; Pandey and Dixit, 2012;

Siqueira-Neto et al., 2018).

Falcipains (FPs) are important cysteine proteases ofP. falciparum

that are central to acquisition by the parasite. To ensure the survival

of Plasmodium in mammalian hosts, FPs catalyze the digestion of

host hemoglobin in the food vacuole of Plasmodium to maintain the

amino acid supply to the parasite (Hanspal et al., 2002). Figure 1

summarizes the pathway of hemoglobin catabolism in P. falciparum,

highlighting the role of falcipains in ensuring amino acids supply for

growth and development. There are two subfamilies of FPs, FP-1, and

FP-2/3. While FP-1 is not relevant to the intra-erythrocytic human

stage of the parasite, FP-2/3 are essential as gene deletions of FP2/

3 are lethal to P. falciparum (Rosenthal, 2020). FPs have been

genetically characterized, with FP-2 and FP-3 sharing 68%

identity, and happened to be critical for the erythrocytic stage of

the parasite’s life cycle in the host (Marco andMiguel Coteron, 2012).

Although FP-2 is the chief haemoglobinase of Plasmodium

falciparum (Hanspal et al., 2002), concomitant inhibition of FP-2

and FP-3 is necessary to cut-off the parasite’s amino acids supply and

thus becomes an effective therapeutic target against P falciparum

(Ettari et al., 2021).

Several inhibitors of these targets have been reported, but none

have yet reached clinical trials (Pant et al., 2018; Machin et al., 2019;

Hernandez Gonzalez et al., 2022). Among others, a quinolinyl

oxamide derivative (QOD), N-(2H-1,3-benzodioxol-5-yl)-N’-[2-

(1-methyl-1,2,3,4-tetrahydroquinolin-6-yl) ethyl]ethanediamide

and an indole carboxamide derivative (ICD), N-{3-[(biphenyl-4-

yl carbonyl) amino]propyl}-1H-indole-2-carboxamide (herein

referred to as compound QOD and ICD, respectively Figure 2A)

were reported as potent dual inhibitors of FP-2 and FP-3 (Rana et al.,

2020). However, the molecular/structural explanation for their dual

inhibitory activities has not been established. However, there is a

knowledge gap in the mechanisms of the dual inhibitory nature of

the QOD and ICD due to lack of structural data, which has limited

SAR studies for obtaining more efficient andmore potent inhibitory

derivatives. Further development of these compounds into active

and non-toxic drugs depends heavily on deciphering themechanism

of their interaction with their molecular targets. This information is

often harnessed from Biophysical techniques, including nuclear

magnetic resonance spectroscopy, X-ray crystallography, or even

cryo-electron microscopy (Batool et al., 2019). Although these

techniques remain the gold standards for structure-based drug

design, information on time-dependent dynamic interaction is

difficult–and in some cases impossible to derive from such

approaches. On the contrary, molecular dynamics (MD)

simulations have emerged as a versatile computational method

FIGURE 1
Simplified representation of hemoglobin catabolism in
Plasmodium falciparum. Hemoglobin is denoted by Hb.
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that offers time-resolved dynamic behavior of biomolecules and

have become an established method for studying the dynamics of

protein-ligand interactions (Hollingsworth and Dror, 2018).

Consequently, we used such an approach to unravel the

mechanism of dual inhibition of FP-2 and FP-3 by antimalarial

lead compounds QOD and ICD (Rana et al., 2020). To mimic the

natural ligand binding, we placed the compounds away from the

proteins and allowed them to diffuse freely in the simulation box to

find their preferred binding site. By subjecting our systems to

microsecond-long MD simulations, we gained atomic-scale

insight into the binding mechanism of the compounds QOD and

ICD to both FP-2 and FP-3. In addition to providing the molecular

basis for the dual inhibitory activities of the compounds to these

essential FPs, our findings will accelerate the optimization of QOD

and ICD towards the development of new classes of antimalarials.

2 Methods

2.1 Structure preparation

The crystal structures of FP-2 and FP-3 were obtained from

the protein databank (PDB) with the IDs 3BPF and 3BPM,

respectively. Co-crystallized water molecules and other

heteroatoms were removed, and Hydrogen atoms were added

to the structures using the H++ server (Gordon et al., 2005). The

3D coordinates of the compounds QOD and ICD were collected

from the MolPort database in SDF format, protonated, and

converted to PDB format using the Schrodinger Maestro suite

(Schrödinger, 2022). The cleaned-protonated proteins and

ligands structures were then used to generate topology in the

amber forcefield using AmberTools22 (Case et al., 2017). In each

case, the ligand (i.e., QOD or ICD) is placed in a random position

away from the protein (FP-2 or FP-3) in a cubic simulation box

(Figure 2B) and solvated in the TIP3P water model (Price and

Brooks, 2004). The systems were further neutralized with

150 mM NaCl, and ligand parameters were defined using

GAFF forcefield (Wang et al., 2004).

2.2 Molecular dynamics simulations

All MD simulations were performed using GROMACS-

2021.3 (Berendsen et al., 1995). Accordingly, each system was

energy minimized for 5000 steps with the steepest descent

algorithm followed by equilibration in the NVT ensemble for

100 ps to a temperature of 298 K using the velocity rescale

temperature coupling (Bussi et al., 2007). The systems were

then equilibrated in an NPT ensemble for 2 ns to a pressure

of 1 atmosphere, using the Parrinello-Rahman barostat for

pressure coupling (Parrinello and Rahman, 1998). This was

followed by 1 ms long final production mdrun in NPT

ensemble, saving snapshots after every 10 ps. The complete

simulation input parameters are described in the

Supplementary Material.

2.3 MD simulation data analyses

To establish the stability of the systems, the trajectories

generated from the 1 ms simulations were used to calculate the

root-mean-square deviation (RMSD) of the protein’s

backbone atoms. Unless told otherwise, the last 500 ns of

the trajectories were used for other downstream analyses, such

as the root-mean-square fluctuations (RMSF). Clustering

analysis was performed to classify the different binding

orientations of the ligands. The clustering was done using

the GROMACS gmx cluster module, and the GROMOS

method was chosen as the classification method (Daura

et al., 1998). Clusters are separated by a 0.25 nm difference

in RMSD. The calculation was performed from a snapshot

every 10 ps.

2.4Molecularmechanics generalized born
and surface area continuum solvation
(MM/GBSA) binding free energy
calculation

The binding energies of the interaction between QOD, ICD,

and FP-2 or FP-3 were calculated from the last 500 ns of the MD

FIGURE 2
2D structures of QOD and ICD (A). Position of falcipain-2 and
N-(2H-1,3-benzodioxol-5-yl)-N’-[2-(1-methyl-1,2,3,4-
tetrahydroquinolin-6-yl)ethyl]ethanediamide (QOD) in a cubic
simulation box (B).
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simulation trajectories using the molecular mechanics

generalized Born and surface area continuum solvation

approach. In this method, the binding free energy is given by:

ΔGbind � ΔH − TΔS£ΔEMM + ΔGsol − TΔS (1)
ΔEMM � ΔEinternal + ΔEelectrostatic + ΔEvdw (2)
ΔGsol � ΔGGB + ΔGSA (3)

(Hou et al., 2011)

The term ΔEMM represents energy due to change in the gas

phase, which is defined by internal (bond, angle, and dihedral

energies, ΔEinternal), electrostatic (ΔEelectrostatic), and van der

Waals energies (ΔEvdw), while ΔGsol and TΔS account for the

free energy of solvation and entropy due to binding-induced

conformational changes, respectively. The solvation free energy

is a term that is derived from the sum of electrostatic (ΔGGB,

estimated from the Generalised Born model) and non-

electrostatic (ΔGSA) solvation energy components, which is

calculated using the solvent accessible surface area (Genheden

and Ryde, 2015). The binding free energy calculation was

performed using gmx_MMPBSA software, and the input

parameters are described in the Supplementary Material

(Valdés-Tresanco et al., 2021).

3 Results

3.1 Assessing the stability of the systems

The root-mean-square deviation (RMSD) is often used to

measure global conformational changes in macromolecular

structures and has become an increasingly popular method for

assessing the convergence of molecular simulations. The RMSDs

of the backbone atoms of our systems were calculated with

reference to the energy-minimized structure, which is very

close to the crystal structures. Although the systems were

relatively stable even before the first 200 ns of the simulation,

we observed some distortions around 500 ns simulation time, for

example, in the FP-2-ICD complex (Figure 3A). This indicated

that the system has not fully stabilized even at 500 ns, and

therefore, those time frames should not be considered for

analyses. In comparison, all systems with FP3 were

remarkably quite stable throughout the simulation time,

suggesting less dynamic interaction of FP3 with the ligands.

Nevertheless, we deemed the first 500 ns as an extension of

equilibration and only considered the last 500 ns for further

structural analyses. The local protein flexibility can be followed

using per-residue root-mean-square fluctuation (RMSF) and can

especially be informative in describing ligand-induced flexibility.

From Figure 3B, we can observe dramatic fluctuations around

residues 107–120, 222–226 in the FP2-QOD system and residues

59–62, 79–83 in the FP-2-ICD complex, compared to the apo FP-

2. These residues constitute part of the α4/β2, β6-β7, α2-α3, α3/

α4 loops (respectively) in FP-2 (Hogg et al., 2006), and therefore

fluctuations are expected. Other observed regions of flexibility

include residue 178 to 183 in FP2-QOD, which constitute a

helical part of the protein. Therefore, the ligand, through its

FIGURE 3
Root-mean-square deviations (RMSD) of the protein
backbone atoms of the different simulation systems. Apo-FP2/
FP3, FP2/FP3-QOD, FP2/FP3-ICD are represented in black, green
and magenta lines, respectively. (A). Root-mean-square
fluctuations (RMSF) of C-α atoms of FP-2 simulation systems. Apo-
FP2, FP2-QOD, FP2-ICD are represented in black, orange and light
blue lines, respectively. (B). Root-mean-square fluctuations
(RMSF) of C-α atoms of FP-3 simulation systems. Apo-FP3, FP3-
QOD, FP3-ICD are represented in black, orange and light blue
lines, respectively. (C).
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interaction with the protein, could also contribute to the more

pronounced fluctuations by influencing the global fluctuation of

the system. Similarly, a higher fluctuation of the loops formed by

residues 88–91, 105–130, and 232–242 (belonging to α3/α4 and

β6-β7 loops) was observed in the FP-3-ICD complex, which

could be due to the same aforementioned reason (Figure 3C). On

the contrary, the RMSF profile of the FP3-QOD system correlates

very well with apo-FP3 RMSF, suggesting that QOD may not

have a significant effect on the local flexibility of the protein.

3.2 QOD and ICD occupy the same pocket
in the falcipain-2 active site

To understand the binding mechanism of the ligands to

FP-2, RMSD-based clustering was applied to the generated

trajectories to classify the different conformations visited

during the simulation. The classification produced 278 and

188 clusters for FP2-QOD and FP-2-ICD, respectively. In each

case, the largest clusters (31.13% and 41.96% of the total

frames for FP2-QOD and FP2-ICD) happened to be the

only cluster in which the ligand is bound to the target.

Interestingly, both ligands occupy the same binding pocket

at the active site of FP-2 (Figure 4A) and are coordinated by

almost identical FP-2 residues (Figures 4B, C). QOD interacts

with Q36, N38, A157, W206, Q209, and W210, with hydrogen

bonds formed by Q209 and W206 with one of the oxygen

atoms of the dioxanyl ring and the carbonyl oxygen of the

ethanediamide ligand backbone, being the major stabilizing

interactions (Figure 4B). Similarly, ICD interacts with Q36,

A157, W206, and W210, in addition to D35 and K37, both of

which are responsible for hydrogen bonding with the

formamide carbonyl oxygen of the ligand. An additional

hydrogen bond is formed between the side chain carboxyl

oxygen of D35 and the nitrogen atom of the indoyl ring of the

ligand (Figure 4C). FP-2 is a member of the papain-like

C1 cysteine proteases family that is characterized by

catalytic quads of cysteine, histidine and asparagine, and

glutamine (Martynov et al., 2015), represented by Q36,

C42, H174 and N204 in FP-2 (Ettari et al., 2010). Our

predicted interaction models suggest that access to these

catalytic residues by the natural substrate is prevented by

the ligands.

3.3 QOD and ICD interact with critical
active site residue of FP-3

Similarly, the trajectories from the simulation of the FP3-

QOD and FP3-ICD complexes were clustered to classify the

FIGURE 4
Surface representation of QOD (orange) and ICD (yellow) bound to the active site of FP-2 (gray) (A). Interaction of QOD (B) and ICD (C)with the
active site residues of FP-2. Hydrogen bonds are represented by red dotted lines.
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different conformations sampled. Just like in FP-2, the largest

clusters (67.54% and 26.62% of the total frames for FP3-QOD

and FP3-ICD, respectively) happened to be the only clusters

where both ligands are bound to FP-3. Unlike in FP-2, the ligands

are not fully embedded in the FP-3 active site and do not assume

the same binding conformation but are docked very close to the

critical residues, with the indonyl ring of ICD directly blocking

the catalytic N213 from the top (Figure 5A). The interaction of

FP-3 with QOD is maintained by a hydrogen bond between the

side chain nitrogen atom of N86 and amide-oxygen of the

ethanediamide backbone, as well as two hydrogen bonds

formed between the backbone oxygen atom of Y90 and both

N′-nitrogen and N-oxygen atom of the ligand ethanediamide

backbone (Figure 5B). Other FP-3 residues that coordinate QOD

include catalytic C51 and H183, Y93, I94, N96, S158, A184, and

E243. The catalytic residues of the protein are not directly

blocked in this interaction mode. However, the ligand’s

methyl-tetrahydroquinolinyl ring is flexible and could move

back and forth or even sideways to cause steric hindrance and

prevent access to C51 and H183 for enzyme catalysis.

FIGURE 5
Surface representation of QOD (orange) and ICD (yellow) bound near the active site of FP-3 (gray). The critical catalytic residues are highlighted
in cyan (A). FP-3 residues (green) interacting with QOD (B) and ICD (C). Hydrogen bonds are represented by red dotted lines.

TABLE 1 MM/GBSA binding energy calculations.

Ligand Predicted binding energy (kcal/mol)

FP-2 FP-3

QOD −18.59 ± 3.67 −32.81 ± 3.68

ICD −21.36 ± 2.65 0.00 ± 2.67

NB: Binding energies are reported as mean ± standard deviation. A detailed description of the contribution of the individual components of Eq. 1 to the total binding energies can be found

in the supplementary datasheet.
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On the other hand, ICD forms only a single hydrogen bond

with the side chain oxygen atom of D163 and the nitrogen atom

of the ligand indonyl substituent. The amino acids A46, A166,

N182, catalytic H183, W215, and W219 constituted the

remaining residues interacting with ICD (Figure 5C). Notably,

the ligand’s biphenyl rings appeared not to contribute

significantly to this interaction, given that the rings protruded

outside and were almost completely excluded from the protein

surface (Figures 5A, C).

3.4 The predicted binding energies are
consistent with the predicted interactions,
and the experimental results

The calculated binding energies of QOD and ICD against

FP-2 returned comparable values (Table 1). This is not

surprising, given that both ligands occupy the same binding

pocket at the receptor’s active site and are coordinated by

almost identical residues (Figure 4). This is also consistent

with the experimental IC50 values, which are 14.71 μM and

12.16 μM against FP-2, for QOD and ICD, respectively (Rana

et al., 2020). The difference in the predicted binding energies of

the ligands against FP-3 is surprisingly large (Table 1),

considering their comparable IC50 values of 9.98 μM and

8.56 μM for QOD and ICD, respectively. However, this

observation agrees, to some extent, with the predicted

interactions since QOD exhibited more robust interaction

with FP-3 in terms of the number of hydrogen bonds and

the coordinating residues (Figure 5).

4 Discussion

Continuous efforts towards the design of new and

improvement of the current antimalarial drugs are necessary

to address the current demand for managing antimalarial drug

resistance (Komatsuya et al., 2013; Suzuki et al., 2015) as well as

meeting the WHO goal of eradicating malaria by 2030 in at least

35 countries (WHO, 2022). In line with this, we probed recently

reported dual inhibitors of P. falciparum important cysteine

proteases (FP-2 and FP-3), QOD, and ICD (Rana et al., 2020),

using molecular dynamics simulations to unravel the mechanism

of their inhibitions of these enzymes. We allowed the ligands to

diffuse freely in the simulation box in an attempt to enable

unbiased sampling of the ligands’ preferred binding modes. After

clustering the generated trajectories, we observed that both

ligands preferred only single binding conformation, and those

conformations represented the largest clusters sampled in all

complexes. The ligands were unbound to the targets in all other

clusters.

The predicted interaction model reveals that both

compounds, QOD and ICD, docked to the same pocket in the

FP-2 active site and interacted with the active site residues in an

almost identical fashion. This observation is not surprising

considering that these ligands were selected from a screening

using a pharmacophore model of the active site inhibitors of FP-3

(Kerr et al., 2009b; 2009a; Rana et al., 2020), that FP-2 and FP-3

share 68% identity and also the conservation of catalytic residues

in the two enzymes (Pandey and Dixit, 2012). The comparable

calculated binding energies of the ligands (−18.59 ±

3.67 and −21.36 ± 2.65 kcal/mol for QOD and ICD,

respectively) against FP-2 corroborated with their

experimental IC50 values (Rana et al., 2020) and also the

interaction mode.

Conversely, QOD and ICD assumed different yet closely

positioned docking poses very near to FP-3’s catalytic residues.

Compound QOD interacts with FP-3 more tightly than

compound ICD, interacting with more residues, forming

more hydrogen bonds, and the ligand fully embedded on the

protein surface, compared to the latter, whose biphenyl

substituent is wholly excluded from the interaction site and

protein surface. In addition, the difference in their predicted

binding energies was notably large, supporting stronger binding

of QOD but incoherent with their experimental IC50 values

(Rana et al., 2020). Notwithstanding, the QOD-FP-3 interaction

model constitutes 67.54% of the total analyzed snapshots as

opposed to the 26.62% for the ICD-FP-3 model, further

pointing towards the more sustained and, therefore, stronger

binding of QOD.

In conclusion, we have profiled QOD and ICD as active

site inhibitors of FP-2 and FP-3. These compounds inhibit the

activity of the FPs, most likely by preventing access to

important catalytic residues in the enzymes’ active sites.

Inhibition of FP-2 and FP-3 is characterized by

compromised amino acid metabolism in P. falciparum

(Hanspal et al., 2002). Capitalizing on this, several ongoing

research programs are currently trying to design both

peptidyl and small molecule inhibitors of FPs as potential

antimalarial drugs (Chakka et al., 2015; Previti et al., 2017;

Himangini et al., 2018; Hernandez Gonzalez et al., 2022).

However, most of these projects are still in the early stages of

drug development. Therefore, we present our work as a

framework for optimizing these lead compounds and hope

that it will stimulate more efforts toward discovering potent

antimalarial drugs. Owing to the potential globalization of

vector-borne diseases due to climate change (Balogun et al.,

2016), the search for new drug candidates must remain

continuous.
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A role of salt bridges in mediating
drug potency: A lesson from the
N-myristoyltransferase inhibitors

Danislav S. Spassov*, Mariyana Atanasova and Irini Doytchinova

Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria

The salt bridge is the strongest non-covalent interaction in nature and is known

to participate in protein folding, protein-protein interactions, and molecular

recognition. However, the role of salt bridges in the context of drug design has

remained not well understood. Here, we report that a common feature in the

mechanism of inhibition of the N-myristoyltransferases (NMT), promising

targets for the treatment of protozoan infections and cancer, is the

formation of a salt bridge between a positively charged chemical group of

the small molecule and the negatively charged C-terminus of the enzyme.

Substituting the inhibitor positively charged amine group with a neutral

methylene group prevents the formation of the salt bridge and leads to a

dramatic activity loss. Molecular dynamics simulations have revealed that salt

bridges stabilize the NMT-ligand complexes by functioning as molecular clips

that stabilize the conformation of the protein structure. As such, the creation of

salt bridges between the ligands and their protein targets may find an

application as a valuable tool in rational drug design.

KEYWORDS

salt bridge, ligand-protein complex, drug-protein interactions, NMT, protein
conformation and drug potency, N-myristoltransferase, conformational
stabilization and inhibition, salt bridge and protein conformation

1 Introduction

The salt bridge is a non-covalent interaction that combines an electrostatic attraction

between oppositely charged chemical groups or atoms and a hydrogen bond; hence, its

strength exceeds the strength of a simple hydrogen bond (Donald et al., 2011; Ferreira de

Freitas and Schapira, 2017). In proteins, the salt bridges occur most frequently between

the positively charged basic amino acid residues Lys or Arg and the negatively charged

acidic Asp or Glu residues (Kumar and Nussinov, 2002; Bosshard et al., 2004; Donald

et al., 2011; Basu and Mukharjee, 2017; Ferreira de Freitas and Schapira, 2017). In this

context, salt bridges are known to participate in protein-protein interaction, protein

folding, protein recognition, protein conformational rigidity, and protein stability

(Takano et al., 2000; Kumar and Nussinov, 2002; Bosshard et al., 2004; Basu and

Mukharjee, 2017; Ferreira de Freitas and Schapira, 2017). However, much less is

known about salt bridges and their significance in mediating the interaction between

small molecule ligands and their protein targets. A substantial number of drug molecules
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contain either positively or negatively charged chemical groups

and, as such, might be capable of participating in salt bridges

within their binding sites (Uddin et al., 2021). Indeed, systematic

surveys of the protein-ligand complexes deposited in the protein

databank have identified over a thousand unique small molecule

ligands that form salt bridges with their protein targets (Ferreira

de Freitas and Schapira, 2017; Kurczab et al., 2018). Such

prevalence raises questions about the significance of salt

bridges in drug-protein interactions and their role in

mediating inhibitor potency.

Hitherto, little is known about the role of these salt bridges

in protein-ligand complexes. In several cases, such as for

certain inhibitors of the Epidermal growth factor receptor

(EGFR) (Peng et al., 2013) and G-protein coupled receptors

ligands (Ferreira de Freitas and Schapira, 2017), it has been

shown that the salt bridge plays a crucial role in the ligand’s

activity. However, in the prevailing number of cases, the

salt bridges, their role in protein-ligand interactions, their

physical and chemical properties, and the mechanisms that

mediate their effects on the potency of the compounds have

remained largely unexplored. The incomplete understanding

of the role of salt bridges in protein-ligand interactions

represents an obstacle to drug design, as the researchers are

unaware of their significance and how to use them to boost the

inhibitors’ potency.

This study began with the observation that two structurally

unrelated inhibitors of N-myristoyltransferases (NMT)—IMP-

1088 and DDD85646 that were developed independently of

each other by high-throughput screening and fragment-based

approaches form a salt bridge within their binding sites. IMP-

1088 and DDD85646 are very potent NMT inhibitors with

reported IC50 in the picomolar and low nanomolar range,

respectively (Frearson et al., 2010; Mousnier et al., 2018). In

preclinical models, the NMT inhibitors were found to be very

effective for treating parasitic protozoan infections such as the

African sleeping sickness and are promising therapeutics for the

treatment of other protozoan diseases such as malaria and

leishmaniasis (Frearson et al., 2010; Ritzefeld et al., 2018;

Schlott et al., 2018). In addition, NMT inhibitors display potent

anti-tumor activity and have produced complete anti-tumor

responses in preclinical murine models (Thinon et al., 2016;

Beauchamp et al., 2020). NMTs are enzymes that catalyze the

myristoylation of selected cellular proteins, which contain a

specific peptide sequence known as a myristoylation signal

(Thinon et al., 2014). This sequence is located in the

N-terminal region of the proteins and binds into a specially

evolved pocket in the NMT active site, known as the peptide

binding pocket (Thinon et al., 2014; Dian et al., 2020). NMT also

uses a cofactor—Myristoyl-CoA (Myr-CoA), which binds to a site

adjacent to the peptide binding pocket (Thinon et al., 2014; Dian

et al., 2020). During myristoylation, the myristic acid is transferred

from Myr-CoA to the N-terminus of the myristoylated proteins

(Thinon et al., 2014; Dian et al., 2020). The myristic acid, due to its

hydrophobicity, is used for the attachment of themodified proteins

to the cellular membranes but also facilitates the dimerization of

interacting partners and regulates crucial cell signaling events

(Patwardhan and Resh, 2010; Gaffarogullari et al., 2011;

Spassov et al., 2018; Meinnel et al., 2020).

NMTs are an ancient enzyme family represented in human

by two members—NMT1 and NMT2, which share a highly

conserved catalytic domain (Ducker et al., 2005; Meinnel

et al., 2020). IMP-1088 and DDD85646 are not selective

against the two forms and inhibit them with almost identical

potency (Frearson et al., 2010; Mousnier et al., 2018).

DDD85646 and IMP-1088 share a common mode of

interaction with NMT (Figure 1). Both compounds contain

a pyrazole ring that participates in a hydrogen bond with

Ser405 in the catalytic center of NMT. In addition, the

crystallographic structures of NMT complexes with these

inhibitors have revealed an interaction between the

C-terminal carboxyl group of NMT and the piperazine

ring of DDD85646 or the dimethylamino group of IMP-

1088, both of which contain a terminal basic nitrogen

atom (Figure 1). Evidence indicates that in the

DDD85646 series, the terminal basic nitrogen is crucial for

activity. Specifically, this can be seen in examples of

compounds where the nitrogen atom is substituted for

a carbon atom (Figure 2). For example, a comparison

between DDD86213 and DDD87749, two compounds

intermediary in the development of DDD85646, reveals that

substituting the nitrogen atom of the piperazine ring reduces

the inhibitory potency of the ligand by 1,328-fold (from IC50

7 nM to IC50 9.3 µM) (Figure 2) (Brand et al., 2017). In the case

of the IMP-1088 series, intermediary compounds at which the

nitrogen atom of the dimethylamino group is replaced with

carbon have not been tested experimentally because the

fragment that contains the dimethylamino group was

identified by high throughput screening and was present in

the initial hit of the series—IMP-72 (Mousnier et al., 2018).

Irrespective of its crucial role in the activity of the NMT

inhibitors, the interaction with the C-terminus of NMT has

not been studied in detail, and the many aspects of this

interaction have not been described previously. Here we

report for the first time that the NMT inhibitors are

positively charged in the physiological environment due to

the protonation of the critical basic nitrogen atom and that the

positively charged chemical groups of the inhibitors

participate in a salt bridge with the negatively charged

carboxyl group at the C-terminus of the NMT protein.

Using Molecular dynamics (MD) simulations of protonated

and non-protonated forms of the inhibitors, we demonstrate

that the salt bridge has an unexpected role in stabilizing the

NMT protein conformation and that this may be a significant

factor in mediating its effects on NMT inhibitors’ potency.
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2 Materials and methods

2.1 Visualization of protein-ligand
interactions and image preparation

Protein-ligand interactions were visualized in PyMOL 1.6.0.0

(Schrödinger, NewYork, United States) (Schrödinger andDeLano,

2020) and YASARA v. 20.4.24 (IMBM, University of Graz,

Austria) (Krieger and Vriend, 2014). The protonation state of

the NMT inhibitors inside their complexes with

N-myristoyltransferases was determined by YASARA and

Protoss (University of Hamburg, Germany) (Bietz et al., 2014).

pKa determinations were performed using Epic software from the

Maestro package release 2018-4 (Schrödinger, New York,

United States) and rely on extensions to the well-established

Hammett and Taft approaches for pKa prediction, namely,

mesomer standardization, charge cancellation, and charge

spreading to make the predicted results reflect the nature of the

molecule itself rather just for the particular chemical group

(Shelley et al., 2007; Schrödinger and DeLano, 2020. The partial

charges of the molecules were determined by using the Maestro

package release 2018-4 (Schrödinger, New York, United States).

Crystal structure images and superimpositions were prepared in

PyMOL 1.6.0.0 (Schrödinger, New York, United States). The

distances and angles of the salt bridge were determined in

PyMOL based on the crystal structures of IMP-1088 and

DDD85646 complexes with human NMT1 (PDB 5MU6 and

PDB 3IWE, respectively). The 2D structures of the NMT

inhibitors were created in MedChem Designer v.5.5

(SimulationsPlus, Lancaster, CA, United States). The

nomenclature of the secondary structural elements in NMT,

such as the names and the position of the α–helices, β-sheets,
or connecting loops, was adopted from Dian et al. (Dian et al.,

2020).

FIGURE 1
IMP-1088 and DDD85646 share a common mode of interaction in the active site of NMT. (A). The main polar interactions between IMP-1088
and Homo sapiens NMT1 based on the crystallographic structure PDB 5MU6. (B). The main polar interactions between DDD85646 and Homo
sapiens NMT1 based on the crystal structure PDB 3IWE. Both inhibitors have a pyrazole ring that forms a hydrogen bond with S405 (shown in green).
IMP-1088 andDDD85646 also interact with the C-terminal carboxyl group of NMT protein (shown inmagenta) through a dimethylamino group
and a piperazine ring, respectively.

FIGURE 2
The role of the nitrogen atomof the piperazine ring in the potency of the DDD85646 series of compounds. IC50 towardsHomo sapiensNMT1 is
shown. Substitution of the indicated nitrogen atom with a carbon reduces potency by 1,328-fold.
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2.2 Molecular dynamics simulations

The protonated and unprotonated forms of IMP-1088 and

DDD8646 were prepared using the crystal structures of their

complexes with Homo sapiens NMT1 and Myr-CoA (PDB

5MU6 and 3IWE, respectively). The hydrogen atoms were

added to the inhibitors’ structures in YASARA. YASARA

automatically assigns the protonation and charge of the ligands

at pH 7.4 to generate the protonated charged forms of the NMT

inhibitors. The unprotonated uncharged forms of the NMT

inhibitors were generated after the removal of the hydrogen

atom, participating in the salt bridge. The structure of

DDD86213 was prepared by replacing the chlorine atoms from

DDD85646 with hydrogen atoms and of DDD87749 by replacing

the nitrogen donor atom in DDD86213 with a carbon atom using

PyMOL. The NMT inhibitor structures were saved in mol2 format

and prepared forMD simulations using the Antechamber program

from the AMBER v. 18 package (UCSF, San Francisco,

United States) (Case et al., 2005; Case et al., 2018) by assigning

a net charge of 0 for the non-protonated forms and net charge +1,

for the protonated forms. Myr-CoA was similarly prepared forMD

simulations using the Antechamber program from the AMBER v.

18 package. The NMT protein used for MD simulations contained

an N-terminal ACE cap and no C-terminal cap. The addition of a

C-terminal cap was not possible because it could have interfered

with the interaction with the ligand’s positively charged group and

was not necessary because the C-terminus of the native NMT

protein contains a negatively charged carboxyl group at this

position. The crystal structures of NMT- IMP-1088/

DDD85646 complexes do not contain the full-length NMT

protein and have truncated N-terminal parts (the first

114 amino acids). Thus the addition of the N-terminal ACE cap

is necessary to eliminate the positively charged N-terminus at

position 115 that is not normally present in the full-length

protein. The ternary complexes, consisting of NMT protein,

Myr-CoA, and either the protonated or the unprotonated forms

of IMP-1088, DDD85646, DDD86231, or DDD87749 were

solvated in saline (0.9% sodium chloride) in a truncated

octahedral box, containing 15,891 water molecules (distance

between protein and the edge of the box varied between

23.7–39.7 Å), energy minimized, heated to 310 K at constant

volume for 1 ns, density equilibrated at 1 bar for 1 ns,

equilibrated keeping constant T and p for 1 ns, using the

Langevin thermostat (Adelman and Doll, 1974) and Berendsen

barostat (Berendsen et al., 1984) and simulated for 1,000 ns by

AMBER v. 18 (UCSF, San Francisco, United States) (Case et al.,

2005; Case et al., 2018). During all steps of simulations, i.e., heating,

density equilibration, preproduction, and production dynamic

SHAKE algorithm (Ciccotti and Ryckaert, 1986) was used for

constraining covalent bonds involving hydrogen with a 2 fs time

step. The bonds to hydrogen were not constrained only during the

energy minimization step. The systems were simulated with the

ff14SB force field (Maier et al., 2015) under periodic boundary

conditions. Frames were saved every 1 ns to generate 1,000 frames

for a total of 1 µs duration of MD production simulations.

2.3 Analysis of results fromMD simulations

The data from the MD simulations were analyzed in VMD

(Visual Molecular Dynamics, the University of Illinois at

Urbana–Champaign, United States) (Humphrey et al., 1996).

For determining the distance between the nitrogen atom of the

ligand and the oxygen atom at the C-terminus of the NMT

protein, the atoms were initially selected through the Graphic

and Labels option in VMD, and the exported graphical data was

used to generate the charts in GraphPad Prism.

RMSD (root-mean-square deviations) of the inhibitors,

NMT protein, and Myr-CoA were determined by the RMSD

trajectory tool in VMD. The NMT protein corresponds to resid

1 to 382 (includes all 382 amino acid residues present in the

crystal structure PDB 3IWE), the A’ –helix- A’a–loop region to

resid 1 to 19, the NMT inhibitors to resid 383, and the Myr-CoA

to resid 384. In all cases, the RMSD values were determined for

the heavy atoms, e.g., excluding the hydrogen atoms. The

exported RMSD graphical data was used to generate the

graphs in GraphPad Prism.

3 Results

3.1 DDD85646 and IMP-1088 are
positively charged at pH 7.4

IMP-1088 contains a dimethylamino group, and

DDD85646 has a piperazine ring that can become protonated.

As such, the compounds can exist in two forms—an

unprotonated uncharged and a protonated charged form

(Figure 3). The targets of these inhibitors - NMT1 and

NMT2, are intracellular cytoplasmic proteins that exist in an

environment where the pH has been estimated to be 7.0-7.4

(Flinck et al., 2018; Persi et al., 2018). The pKa values for

trimethylamine and piperazine, determined experimentally,

are 9.8 and 9.73, respectively (Khalili et al., 2009; Settimo

et al., 2014), indicating that these basic groups exist almost

entirely in a cation form in the physiological environment. In

the context of the whole structure of the inhibitors, the predicted

pKa for the dimethylamino group of IMP-1088 and the

piperazine of DDD85646 by using the Epic package of

Maestro (Schrodinger) was 8.39 and 8.78, respectively. Hence,

in the physiological environment, most IMP-1088 and

DDD85646 molecules are expected to be charged due to the

protonation of their terminal nitrogen atom (Figure 3). The

protonation of IMP-1088 and DDD85646 was also confirmed in

YASARA (Krieger and Vriend, 2014) and Protoss (Bietz et al.,

2014), and they both indicated the presence of the protonated
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forms of the inhibitors inside the binding sites of their complexes

with NMT. DDD86213 has a predicted pKa value of 8.78,

identical to DDD85646. In contrast, DDD87749 is not

protonated and not charged due to the substitution of the

terminal nitrogen atom with a carbon - the pKa for this

compound lies outside the normal range of sampled pH range

in Maestro. Therefore, DDD87749 models the interaction

between the non-protonated inhibitors and NMT under

physiological pH conditions.

3.2 IMP-1088 and DDD85646 form a salt
bridge with the C-terminus of the NMT
protein

N-myristoyltransferases are enzymes that contain two

binding pockets—one for binding the cofactor Myr-CoA

and the other for the substrate peptide (Dian et al., 2020).

The crystallographic structures of NMT in complex with the

NMT inhibitors IMP-1088 (PDB 5MU6) and DDD85646

(PDB 3IWE) reveal that the NMT inhibitors occupy the

peptide binding pocket of NMT, and the cofactor Myr-

CoA binds to a distinct region proximal to the inhibitors’

binding site (Figures 4A,B) (Frearson et al., 2010; Mousnier

et al., 2018). In this binding mode, the NMT inhibitors and

Myr-CoA occupy nearby sites but do not interact directly

with each other (Frearson et al., 2010; Mousnier et al., 2018).

To illuminate the role of the positively charged group of the

NMT inhibitors, we analyzed the crystallographic structures

of complexes of IMP-1088 and DDD85646 with human

NMT1. In these structures, it is evident that the positively

charged chemical group of the inhibitor forms a salt bridge

with the negatively charged C-terminus of the NMT protein,

which is located in the active site of the enzyme (Figures

4C,D) (Dian et al., 2020). The salt bridge’s formation

involves the free carboxyl group of the C-terminal amino

acid residue - Gln496, and not its side chain, which is

oriented in the opposite direction (Figures 4C,D). The

average pKa value of the carboxyl group at the

C-terminus of folded proteins is estimated to be 3.3

(Grimsley et al., 2009), indicating that in the cytoplasm of

the cell (pH 7.0-7.4), the C-terminus is expected to be

FIGURE 3
Structures and protonation forms of the NMT inhibitors IMP-1088 and DDD85646. (A) Unprotonated IMP-1088. (B) Protonated IMP-1088. (C)
Unprotonated DDD85646. (D) Protonated DDD85646. IMP-1088 contains a dimethylamino group, and DDD85646 has a piperazine ring, and their
protonation gives themolecules a positive +1 charge. At pH 7.4, IMP-1088 andDDD85646 are predicted to be in their protonated, positively charged
forms.
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deprotonated, negatively charged, and therefore available for

the formation of the salt bridge.

Generally, a salt bridge combines two non-covalent

interactions - an electrostatic attraction between chemical

groups of opposite charges and a hydrogen bond (Donald

et al., 2011). Both of these interactions can be identified in

the complexes of NMT inhibitors. The electrostatic

attraction involves the positively charged dimethylamino

group of IMP-1088 or the amine group in the piperazine

ring of DDD85646 and the negatively charged C-terminal

carboxyl group of NMT (Figures 4E, F). A hydrogen bond

between the protonated inhibitor’s hydrogen atom and the

FIGURE 4
Formation of a salt bridge between the NMT inhibitors and the C-terminus of the NMT protein. (A) The crystal structure of Homo sapiens
NMT1 in complex with IMP-1088 and Myr-CoA (PDB 5MU6). IMP-1088, shown in magenta, occupies the peptide-binding pocket of NMT and is
located nearby the cofactor Myr-CoA, shown in orange. (B) The crystal structure of Homo sapiens NMT1 in complex with DDD85646 and Myr-CoA
(PDB 3IWE). DDD85646 is shown in cyan andMyr-CoA in orange. (C) Formation of a salt bridge between IMP-1088 and the C-terminus of NMT
in PDB 5MU6. The hydrogen bond with Ser405 is also indicated. (D) Formation of a salt bridge between DDD85646 and the C-terminus of NMT in
PDB 3IWE. (E) A schematic representation of the salt bridge between the dimethylamino group of IMP-1088 and the C-terminal carboxyl group of
NMT. (F) A schematic representation of the salt bridge between the amine group of the piperazine ring of DDD85646 and the carboxyl group at the
C-terminus of NMT. The charge of the groups is indicated above the brackets. The length of the salt bridge, defined as the distance between the
oxygen atom at the C-terminus of NMT and the nitrogen atom of the ligand (orange arrow), is shown in angstroms (Å). The angle between the ligand
nitrogen atom, hydrogen atom, and the C-terminal carboxyl group oxygen atom is also indicated. Green dots indicate the hydrogen bond.
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carboxyl group’s oxygen atom at the C-terminus of NMT is

also formed, fulfilling the second requirement for forming a

salt bridge (Figures 4E,F). The length of the salt bridge in the

IMP-1088 and DDD85646 complexes is 2.7 and 3.2Å,

respectively. (Figures 4E,F). Since the permissible

distance for a salt bridge length is <4 Å, the measured

distances are consistent with salt bridge formation

between the inhibitors and NMT (Donald et al., 2011).

Generally, the optimum angle between the nitrogen,

hydrogen and oxygen atoms in the salt bridge is between

110° and 180° (Kurczab et al., 2018). The measured angles in

the salt bridges of IMP-1088 and DDD85646 of 158.9° and

114.3° (Figures 4E,F) are in the range of values determined

for different salt bridges in the crystallographic structures

deposited in the protein databank (Kurczab et al., 2018).

IMP-1088 may form a stronger salt bridge than DDD85646,

considering that the length and the angle of the salt bridge in

the complexes of this compound are more optimal for

binding (Figures 4E,F). The distribution of partial charges

of the protonated and unprotonated dimethylamino group

and piperazine ring of the NMT inhibitors were determined

by using the Maestro software (Schrödinger, New York,

United States) (Shelley et al., 2007; Schrödinger and

DeLano, 2020) (Figure 5). The nitrogen atom of these

groups is electronegative, and the positive charge of the

protonated form is distributed among the nearby hydrogen

and carbon atoms (Figure 5). The highest partial positive

charge is observed on the hydrogen atom participating in

the salt bridge formation (Figure 5). The distribution of

partial charges is shown in the absence of interactions, and

the formation of a salt bridge between the inhibitors and the

electronegative C-terminal carboxyl group may affect the

described distribution.

The interaction between the inhibitors and NMT also

involves forming a hydrogen bond with Ser405 (Figure 1),

multiple π-π stacking, and hydrophobic interactions with

several aromatic residues, including Tyr296, His298, Phe188,

and Phe311.

FIGURE 5
Predicted partial charges in the protonated and unprotonated forms of IMP-1088 and DDD85646 (A) The protonated dimethylamino group of
IMP-1088. (B) The unprotonated dimethylamino group of IMP-1088. (C) The protonated amine group of DDD85646. A part of the piperazine ring is
shown (D) The unprotonated amine group of DDD85646. A part of the piperazine ring is shown. Partial charges were determined using the Maestro
software package release 2018-4 (Schrödinger, New York, United States of America) (Shelley et al., 2007; Schrödinger and DeLano, 2020).
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3.3 The salt bridge contributes to the
stability of the NMT-ligand complexes

To examine the role of the salt bridge in the stability of NMT-

ligand complexes, we performed MD simulations using the

Homo sapiens NMT1 complexes with the unprotonated and

protonated forms of IMP-1088 and DDD85646. An excellent

representation of the stability of the salt bridge can be obtained by

determining the distance between the nitrogen atom of the ligand

(acting as a hydrogen bond donor) and the negatively charged

oxygen atom at the C-terminus of the NMT protein (acting as

hydrogen bond acceptor) (Figures 4E,F), during the time course

of MD simulations. The results with the protonated forms of

IMP-1088 and DDD85646 indicated that the salt bridge is stable

because its length did not exceed the permissible 4 Å distance for

a salt bridge length during the entire duration of the MD

simulation (Figure 6). Deprotonation of the small molecule

eliminates the salt bridge and leads to substantial instability of

the interaction between the inhibitors and the C-terminus of

NMT (Figure 6). The unprotonated dimethylamino group of

FIGURE 6
Stability of the interaction between the NMT inhibitors and the C-terminus of the NMT protein. (A) The distance between the ligand nitrogen
atom and the C-terminal oxygen atom of NMT (N—O distance) in angstroms (Å) during the time course of MD simulations in nanoseconds (ns) of
NMT complexes with protonated and unprotonated forms of IMP-1088. (B) The distance between the ligand nitrogen atom and the C-terminal
oxygen atom of NMT (N—O distance) in angstroms (Å) vs. time of MD simulations in nanoseconds (ns) of NMT complexes with protonated and
unprotonated forms of DDD85646. (C) The distance between the ligand nitrogen in DDD86213 or the corresponding carbon atom inDDD87749 and
the C-terminal oxygen atom of NMT (N/C—O distance) in angstroms (Å) vs. time of MD simulations in nanoseconds (ns) of NMT complexes with
DDD87749 and protonated DDD86213. The numbers in the plots indicate the average distance in angstroms (Å). Length < 4Å indicates that the salt
bridge is stable; distance > 4Å demonstrates that the interaction between the ligand and the protein is disrupted.

FIGURE 7
Stability of NMT inhibitor complexes by MD simulations. (A) RMSD in angstroms (Å) of the heavy atoms of the protonated and unprotonated
IMP-1088 vs. time of MD simulations in nanoseconds (ns). (B) RMSD values in angstroms (Å) of the heavy atoms in the protonated and unprotonated
DDD85646 forms vs. time of MD simulations in nanoseconds (ns). (C) RMSD in angstroms (Å) of the heavy atoms of DDD86213 (protonated form) and
DDD87749 vs. time of MD simulations in nanoseconds (ns). The numbers in the plots indicate the average RMSD in angstroms (Å).
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IMP-1088 lacks polar hydrogens (Figure 3A); hence, this form

is incapable of forming a hydrogen bond with the C-terminus

of NMT. This may explain why the unprotonated IMP-1088

forms particularly unstable complexes (Figure 6A). In

contrast, the unprotonated piperazine ring of

DDD85646 contains a polar hydrogen atom (Figure 3C)

that may participate in hydrogen bonding with the

C-terminus of NMT. This may explain why the

DDD85646 complex with NMT displays relative stability at

the beginning to up to 400 ns during the MD simulation

(Figure 6B). However, later in the 400-1,000 ns period, the

hydrogen bond is disrupted, suggesting that it cannot

substitute for the salt bridge (Figure 6B). Similar results

were obtained using the NMT complexes with

DDD86213 and DDD87749 (Figure 2). For example, the

protonated form of DDD86213 formed a stable salt bridge

during MD simulations, and the interaction between the

inhibitor and the C-terminus of NMT was disrupted due to

the replacement of the nitrogen donor atom in

DDD87749 with carbon (Figure 6C), As expected, the

RMSD values of the heavy atoms for the unprotonated

ligand molecules were increased compared to protonated

forms (Figure 7). However, the RMSD values of the NMT

inhibitors were lower than 1.5 Å, except in part for

DDD87749, indicating that the small molecules remained

largely restrained to their binding pockets, even though

they have lost the interaction with the C-terminus of NMT

(Compare Figure 6 and Figure 7). The increased distance

between the inhibitor and the C-terminus of NMT in the

non-protonated forms compared to protonated (Figure 6) is at

least partly due to the conformational movement of the

C-terminal region relative to the protein backbone. For

example, the average RMSD of the C-terminal amino acid

(Gln496) was determined to be 1.10 Å and 3.04 Å in the

complexes of protonated and unprotonated IMP-1088

complexes, 2.92 Å and 3.59 Å for the protonated and

unprotonated DDD85646 and 1.66 Å and 2.90 Å in

DDD86213 and DDD87749 complexes, respectively,

indicating that the salt bridge restricts the movement of the

C-terminus of NMT.

3.4 The salt bridge stabilizes the
conformation of the NMT protein

The observation that the NMT inhibitor molecules are

restrained into their binding pockets during MD simulations,

irrespective of their protonation state (Figure 7), raises

questions about how the salt bridge affects ligand potency.

Since the salt bridge is an interaction between the inhibitor

and the NMT protein, we hypothesize that its effects could

also depend on its impact on the protein structure. To test

this hypothesis, we compared the dynamic stability of the

NMT protein during the MD simulations in complexes with

either the protonated or the unprotonated forms of the

inhibitors (Figure 8). The RMSD values of the heavy atoms

of the NMT protein were significantly increased in the

complexes of the unprotonated inhibitors compared to the

complexes of the protonated forms (Figure 8), suggesting that

the salt bridge stabilizes the conformation of the NMT

protein. Similarly, DDD86213, which forms a salt bridge,

stabilizes the NMT protein’s conformation compared to

FIGURE 8
The salt bridge stabilizes the conformation of the NMT protein. The results fromMD simulations ofHomo sapiensNMT1 complexes are shown.
(A). RMSD in angstroms (Å) of the heavy atoms of the NMT protein vs. time of MD simulations in nanoseconds (ns) of its complexes with the
protonated and unprotonated forms of IMP-1088. (B) RMSD in angstroms (Å) of the heavy atoms of the NMT protein vs. time of MD simulations in
nanoseconds (ns) of its complexes with the protonated and unprotonated forms of DDD85646. (C) RMSD in angstroms (Å) of the heavy atoms
of the NMT protein vs. time of MD simulations in nanoseconds (ns) of its complexes with DDD86213 (protonated form) and DDD87749. The numbers
in the plots indicate the average RMSD in angstroms (Å).
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DDD87749, which does not (Figure 8). To investigate what

specific conformation of the NMT protein was stabilized by

the salt bridge, we observed movies of the protein dynamics

during MD simulations. Most strikingly, the conformation

and the position of the A’ -helix and the A’a–loop, which form

a part of the Myr-CoA binding pocket (Figures 9A,B),

remained stable in the complexes containing protonated

IMP-1088, DDD85646 and DDD86213; however, they were

dramatically altered in the complexes containing the non-

protonated forms of the inhibitors. RMSD calculations

confirmed the extraordinary mobility of the A’ -helix -

A’a–loop region in the complexes with non-protonated

inhibitors and its stabilization in the presence of the

protonated forms during MD simulations (Figures 9C–E).

These results suggest that the salt bridge’s presence stabilizes

the conformation of the Myr-CoA binding pocket from

which the A’ -helix and the A’a–loop are part. Consistent

with this, the RMSD values of the Myr-CoA cofactor in the

NMT complexes with the protonated inhibitors were reduced

compared to those with the non-protonated inhibitors

(Figure 10). It was also observed that the eC-loop, located

just above the Myr-CoA pocket (Figure 9B), adopts a partially

helical conformation in some complexes during MD

simulations (not shown). However, this was not related to

the inhibitors’ protonation state and is likely not associated

with the salt bridge formation.

FIGURE 9
The salt bridge stabilizes the conformation of the Myr-CoA binding pocket. (A) The crystal structure of Homo sapiens NMT1 (PDB 5MU6),
depicting the Myr-CoA and peptide binding pockets (B) A zoomed view on the image on the left showing details of the Myr-CoA binding pocket. The
A′-helix and A’a-loop, shown in magenta, take part in the formation of the bottom of the pocket (C) RMSD in angstroms (Å) of the heavy atoms of the
A′-helix and A’a-loop vs. time of MD simulations in nanoseconds (ns) of its complexes with the protonated and unprotonated forms of IMP-
1088. (D) RMSD in angstroms (Å) of the heavy atoms of the A′-helix and A’a-loop vs. time of MD simulations in nanoseconds (ns) of its complexeswith
the protonated and unprotonated forms of DDD85646. (E) RMSD in angstroms (Å) of the heavy atoms of the A′-helix and A’a-loop vs. time of MD
simulations in nanoseconds (ns) of its complexes with DDD86213 (protonated form) and DDD87749. The numbers in the plots indicate the average
RMSD in angstroms (Å).
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4 Discussion

Here we report that IMP-1088 and DDD85646, two potent

NMT inhibitors, form a salt bridge within the active site of the

N-myristoyltransferases. The salt bridge is mediated by the

interaction between the positively charged groups

(dimethylamino group or piperazine ring, respectively) of the

inhibitors and the negatively charged carboxyl group at the

C-terminus of the enzyme, which is located in the catalytic

center of the enzyme. The fact that the salt bridge is formed

in the complexes of two structurally unrelated NMT inhibitors,

independently identified by high-throughput screening

(Frearson et al., 2010; Mousnier et al., 2018; Spassov et al.,

2022), implies that the salt bridge may play a special role in

NMT inhibition. Indeed, preventing its formation by replacing

the nitrogen atom of the ligand, involved in the salt bridge, with a

carbon atom dramatically reduces the potency of the inhibitors

(Figure 2) (Brand et al., 2017).

Along with the hydrogen, halogen, and chalcogen bonds, the salt

bridge belongs to the group of non-covalent interactions, which

depend on electrostatic attraction. However, recent findings based

on the quantitative Kohn–Sham molecular orbital theory have

indicated orbital interactions between the participating atoms,

resembling the ones involved in the formation of the covalent

bonds, demonstrating that a pure electrostatic model cannot fully

describe these non-covalent interactions (Wang et al., 2016; de

Azevedo Santos et al., 2021). Since the salt bridge can be viewed as

a charge-enforced hydrogen bond, such orbital interactions may also

participate during its formation. However, applying the Kohn–Sham

molecular orbital theory for the formation of the salt bridge has not

been reported in the literature, and the precise molecular orbital

interactions during its formation remain to be determined.

Generally, the strength of the salt bridge is highly dependent

on the environment (Takano et al., 2000). On the surface of the

proteins, the salt bridges may not contribute significantly to

interactions, as the gain in free binding energy due to the salt

bridge’s formation is insufficient to compensate for the energetic

penalty of desolvating its charged groups (Takano et al., 2000;

Ferreira de Freitas and Schapira, 2017). In contrast, buried salt

bridges can significantly contribute to the binding (Ferreira de

Freitas and Schapira, 2017). In this aspect, the salt bridges formed

inside the NMT inhibitor complexes are buried into the enzyme’s

catalytic center and may possess significant strength.

The salt bridge is the strongest non-covalent interaction and

participates in protein folding and protein-protein interactions, and

it is known to contribute to protein conformational stability as well

(Kumar and Nussinov, 2002; Bosshard et al., 2004; Donald et al.,

2011; Basu and Mukharjee, 2017; Ferreira de Freitas and Schapira,

2017). However, the role of salt bridges in drug-protein interactions

has remained not well understood. In a recent study, Kurczab et al.

identified 1122 unique small molecule ligands from the Protein

Databank that form salt bridges with their protein targets, indicating

that salt bridges are frequent in drug-protein interactions (Kurczab

et al., 2018). The set contains structures from different enzyme

classes, including hydrolase, transferases, reductase, oxidoreductase,

lyases, and certain G protein-coupled receptors (GPCRs) (Kurczab

et al., 2018). In several cases, it has been experimentally shown that

the salt bridge plays a critical role. For example, the Epidermal

Growth Factor Receptor (EGFR) inhibitor, compound 10, forms a

salt bridge with Asp831 in the kinase domain of EGFR through its

terminal dimethylamino group (Peng et al., 2013; Ferreira de Freitas

and Schapira, 2017). Replacing the nitrogen atom of this group with

a carbon atom reduced the potency of this compound by over

800 folds (from IC50 29 nM to IC50 25 µM) (Peng et al., 2013;

FIGURE 10
The salt bridge stabilizes the complex between Myr-CoA and NMT. The results from MD simulations of Homo sapiens NMT1 complexes are
shown. (A) RMSD in angstroms (Å) of the heavy atoms of the Myr-CoA vs. time of MD simulations in nanoseconds (ns) of NMT complexes with the
protonated and unprotonated forms of IMP-1088. (B) RMSD in angstroms (Å) of the heavy atoms of the Myr-CoA vs. time of MD simulations in
nanoseconds (ns) of its complexes with the protonated and unprotonated forms of DDD85646. (C) RMSD in angstroms (Å) of the heavy atoms
of the Myr-CoA vs. time of MD simulations in nanoseconds (ns) of its complexes with DDD86213 (protonated form) and DDD87749. The numbers in
the plots indicate the average RMSD in angstroms (Å).
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Ferreira de Freitas and Schapira, 2017). In addition, it has been

reported that preventing the formation of the salt bridge between the

aminergic ligands and the aminergic class AGPCRs bymutating the

Asp3.32 residue, which is engaged in the salt bridge, to Ala reduces

the binding 126-fold (Kurczab et al., 2018). In comparison, the

absence of the salt bridge reduces the activity of the NMT inhibitors

by over 1,300 fold (Figure 2) (Brand et al., 2017). Although the salt

bridge is stronger than the hydrogen bond, such substantial

differences in potency in the pairs of compounds that are

capable of forming salt bridges or not are difficult to explain by

a simple increase in the strength of the interaction between the

ligand and the protein and may suggest the existence of a more

complexmechanism thatmediate or at least amplify the salt bridge’s

effects.

The mechanisms that mediate the salt bridge effect on the

inhibitors’ potency were investigated by MD simulations using

NMT complexes with the protonated and unprotonated forms of

the inhibitors. These forms of the inhibitors are best suited to

study the role of the charge of the molecule and the salt bridge

with minimum structural change. In DDD85646, this allows

comparing compounds that form a hydrogen bond

(unprotonated DDD85646) to compounds that form a salt

bridge (protonated DDD85646). However, considering the

pKa of the IMP-1088 and DDD85646, the unprotonated

forms may rarely exist under the physiological pH, and thus

the interaction between unprotonated forms and NMT may not

occur under these conditions. To address this point, we also

performed MD simulations of NMT complexes with

DDD86213 and DDD87749, where the activity of the

compounds under physiological pH has been determined

(Figure 2). The results demonstrated the significance of

adding a charge species to the DDD87749 scaffold and how

this can be used to increase the ligands’ potency. The inability of

the inhibitors’ non-protonated forms to participate in a salt

bridge leads to the instability of their association with the

C-terminus of NMT (Figure 6). This does not lead to the

dissociation of the inhibitor molecules, at least in the 1 µs

time frame of the MD simulations, as they remain largely

confined to their binding pockets (Figure 7). However, the salt

bridge’s presence stabilizes the NMT protein’s conformation

(Figure 8). Interestingly, the activity of the compounds IMP-

1088 > DDD85646 > DDD86213 > DDD87749 corresponds to

the compounds’ ability to stabilize the NMT protein’s

conformation (Figure 8), implying that the stabilization of

NMT conformation by the salt bridge may determine their

potency. Among the protonated forms, DDD86213 has the

weakest capacity to stabilize the NMT conformation

(Figure 8), consistent with its lower inhibitory activity and

that DDD86123 is an intermediate lead compound in the

DDD85646 series and its activity has not been wholly

optimized (Figure 2).

The salt bridge’s effect on the protein conformation is

particularly evident in the A′- helix and the A’a-loop, which

forms part of the Myr-CoA binding pocket (Figure 9). By

stabilizing the conformation of the Myr-CoA binding pocket,

the salt bridge exerts a positive effect on the stability of the

complex between NMT and its cofactor Myr-CoA (Figure 10). By

doing so, the salt bridge may also indirectly exert a positive effect

on the stability of the whole complex. For example, it has been

reported that the binding affinity of DDD85646 to NMT is

increased 33-fold in the presence of Myr-CoA (Frearson et al.,

2010); hence the stability of the NMT-Myr-CoA complex may

translate into increased stability of the interaction between the

NMT inhibitors themselves and the NMT protein. In addition to

the more pronounced conformational changes in the Myr-CoA

binding pocket, smaller conformational changes exist in other

protein regions, including the C-terminus of NMT. Thus the

stabilization of regions of the protein structure by the salt bridge,

other than the Myr-CoA binding pocket, may also play a role in

the compounds’ activity.

Salt bridges have been reported to function as molecular

clips that stitch together large surface areas at interacting

protein interfaces (Basu and Mukharjee, 2017). Similarly,

the results reported here suggest that the formation of a salt

bridge between the protein receptor and the ligand may

stitch a particular protein region and by restricting its

conformational movements to exert a stabilizing effect on

the overall protein conformation. Therefore, the salt

bridge’s impact on the inhibitors’ potency could be more

complex than previously anticipated and may involve, at

least in part, the stabilization of the protein receptor

conformation. This finding may not be surprising in the

light that salt bridges, in general, are known to contribute to

protein conformational stability (Takano et al., 2000;

Bosshard et al., 2004).

In the current work, the parameters for MD simulations were

optimized for studying protein conformational dynamics. The

systems were simulated with the ff14SB force field (Hornak et al.,

2006; Maier et al., 2015; Case et al., 2018), specially parameterized

and recommended for protein dynamics as a part of the AMBER

v. 18 package (Case et al., 2005; Case et al., 2018). ff14SB (Maier

et al., 2015) has evolved from the ff99SB force field and includes

improvements in the torsional parameters for the backbone and

side chains (Hornak et al., 2006; Case et al., 2018). Frames were

saved every 1 ns to generate 1,000 frames for a total of 1 µs

duration of MD production simulations to detect significant

events in the nanosecond time scale. These include protein

conformational changes such as side chain rotations,

backbone and loop motions, and ligand binding. Statistical

inefficiency, principal component analysis, and wavelet

analysis could be used to identify significant events during

MD simulations to reduce the number of frames of MD

simulations without losing statistical power (Heidari et al.,

2016; Gonçalves et al., 2017). However, considering the

number of frames analyzed in the nanosecond time range in

the current study, most, if not all, of the significant events related
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to protein conformational changes and ligand binding are

expected to be captured during analysis.

During the MD simulations, some conformational changes

in the NMT protein were observed that were not related to the

protonation state of the inhibitors and hence are not dependent

on the presence or the absence of the salt bridge; nevertheless,

they might be of interest to researchers studying the

N-myristoyltransferases. Specifically, it was observed that the

eC-loop, positioned just on top of the Myr-CoA binding

pocket, opens and adopts a partially helical composition in

some MD simulations. An analogous loop, the Ab-loop, is

located on top of the adjacent peptide-binding pocket (Dian

et al., 2020). The Ab-loop has been reported to exist in open and

closed conformations and controls the entry of the substrate

peptide into the catalytic center (Dian et al., 2020). The

observation of alternative conformations of the eC-loop

suggests the possibility that this loop may also perform a

similar role in regulating the entry of Myr-CoA into its

binding pocket. However, this remains to be determined in

future studies.

The salt bridges typically involve the amino acid side chains

of Asp or Glu if the ligand is positively charged or the side chains

of Lys or Arg if the ligand is negatively charged (Ferreira de

Freitas and Schapira, 2017; Kurczab et al., 2018). The occurrence

of a salt bridge with the carboxyl group at the C-terminus of the

protein is probably unique to N-myristoyltransferases and

possibly is a reflection of its unusual localization in the active

site of the enzyme and its catalytic functions (Dian et al., 2020).

According to Uniprot (UniProtConsortium, 2021), the

C-terminal amino acid residue in Homo sapiens NMT1 and

NMT2 is Gln. Gln is also the C-terminal residue in NMTs of

the vertebrate species, including Danio rerio, Xenopus laevis,

Gallus gallus, and Mus musculus. In the protozoan species, the

identity of the C-terminal amino acid is not conserved—it is

Val446 in Trypanosoma brucei NMT, Leu410, and Leu421 in

Plasmodium falciparum and Leishmania major NMTs. This

may not be surprising considering that the side chain of

the C-terminal amino acid is orientated in the opposite

direction of the active site and is not involved in the catalysis

(Dian et al., 2020). However, the conservation of the C-terminal

residue of NMT in all vertebrate species may suggest that the

side chain of this residue may play a role that remains to be

determined.

The positive charge of the NMT inhibitors may influence

other pharmacological properties of theirs, such as cell

membrane or BBB permeability, absorption, and distribution.

It is estimated that about 40% of approved prescription drugs are

positively charged and exist as organic cations at neutral

pH (Uddin et al., 2021). The transport of such organic cations

across the membrane could be dependent on or facilitated by

uptake from transport carrier proteins (Thomas et al., 2004;

Sprowl et al., 2016). Irrespective of the entry mechanism, the

NMT inhibitors, as documented in numerous articles, are

undoubtedly capable of crossing the cell membrane and can

effectively target the N-myristoyltransferases intracellularly both

in cell culture models and in vivo (Thinon et al., 2014;

Beauchamp et al., 2020).

In conclusion, the results suggest that salt bridges could be

used as valuable tools in drug design. The inclusion of charged

chemical groups in the ligand structures, where they can

participate in salt bridges with the target proteins, analogous

to the case of DDD87749 and DDD86213, could lead to a

significant increase in activity. Moreover, the results also

imply that conformational stabilization of the target

protein structure could be a hallmark of the salt bridges’

effects. In this aspect, studying the protein dynamics by

MD simulations could be used to predict the outcome of

introducing a new salt bridge in a specific protein-ligand

complex.
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Introduction: Non-Small Cell Lung Cancer is the most prevalent type of cancer in
lung cancer. Chemotherapy, radiation therapy, and other conventional cancer
treatments have a low success rate. Thus, creating new medications is essential
to halt the spread of lung cancer.

Methods: In this study bioactive nature of lochnericine against Non-Small Cell Lung
Cancer (NSCLC) was analyzed using various computational approaches such as quantum
chemical calculations, molecular docking, and molecular dynamic simulation.
Furthermore, the MTT assay shows the anti-proliferation activity of lochnericine.

Results and Discussion: Using Frontier Molecular Orbital (FMO), the calculated band
gap energy value associated with bioactive compounds and the molecule’s potential
bioactivity is confirmed. TheH38 hydrogen atom andO1 oxygen atom in themolecule
are effectively electrophilic, and potential nucleophilic attack sites were confirmed
through analysis of the Molecular electrostatic potential surface. Furthermore, the
electrons within the molecule were delocalized, which confers bioactivity on the title
molecule and was authorized through Mulliken atomic charge distribution analysis. A
molecular docking study revealed that lochnericine inhibits non-small cell lung
cancer-associated targeted protein. The lead molecule and targeted protein
complex were stable during molecular dynamics simulation studies till the
simulation period. Further, lochnericine demonstrated remarkable anti-proliferative
and apoptotic features against A549 lung cancer cells. The current investigation
powerfully suggests that lochnericine is a potential candidate for lung cancer.

KEYWORDS

lochnericine, quantum chemical calculations, molecular docking, molecular dynamics,
anticancer study, non-small lung cancer

1 Introduction

Developed and developing nations consider cancer a significanthealth concern with
increasing incidence and mortality rates. The tumor is caused by complex biological
processes, namely uninhibited cell proliferation, cell death resistance, neo-angiogenesis, and
metastasis (Hausman, 2019). Incursion and metastasis are the frequent causes of cancer-related
mortality, resulting in additional invasion sites and severe organ damage. Cases of cancer are
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rapidly becoming a risk factor for various malignancies, most notably
lung, liver, colorectal, and breast cancers. Because of the disease’s high
notoriety, therapy has been a never-ending fight with few results
(Mullard, 2020; Banaganapalli et al., 2022). One of the deadliest and
most ubiquitous forms of cancer in people is lung cancer. The most
prevalent type of cancer is NSCLC (non-small cell lung cancer),
estimated as 85% among other cancers. Nearly 90% of non-small
cell lung cancer occurrences are caused by smoking. Tumor-
infiltrating lymphocytes (TILs), in general, and notably CD8+ TILs,
are associated with a favourable prognosis in non-small cell lung
cancer (NSCLC) (Gueguen et al., 2021). Traditional cancer treatments,
such as surgery, radiation, and chemotherapy, have a low success rate.
Thus, developing new drugs is crucial to stop lung cancer spread
(Schabath and Cote, 2019).

In cancer treatment, natural products may be used in addition to
traditional anticancer medications. Recently, researchers worldwide
have focused on developing novel drugs with medicinal potential
derived from natural sources such as plants. Plants and their
phytoconstituents have been used for medical purposes since
antiquity (Ekiert and Szopa, 2020). Natural-source chemicals attract
the interest of scientists worldwide. Humans have extracted cancer
chemotherapeutic chemicals from flora (Deng et al., 2020).
Lochnericine is a significant monoterpene indole alkaloid (MIA),
found in the roots of Madagascar periwinkle (Catharanthusroseus)
and formed by the stereoselective C6, C7-epoxidation of tabersonine.
The stereoselective C6 produces Lochnericine and C7-epoxidation of
tabersonine and can be subsequently metabolized to produce more
complex MIAs. Although the enzymes in charge of its downstream
modifications have been identified, those in charge of lochnericine
production have not.

Growth factors, namely hormones, mainly influence the migration
of normal cells and the division of cells. Tyrosine kinase EGRF
(Epidermal Growth Factor Receptor) influences cell proliferation, cell
division, and tumour development. It is a representative transmembrane
receptor which triggers signalling pathways via ligand-provoked
dimerization (Kavitha et al., 2015; Zhou and Yao, 2016; Shaik et al.,
2019). In human cancers, the most prevalently mutated oncogene is the
Kirsten rat sarcoma (KRAS) gene involved in carcinogenesis, which
accounts for more than twenty per cent of lung cancer, particularly
NSCLC (Reck et al., 2021). There is a strong connotation between
various solid tumours NTRK (Neurotrophic Tropomyosin Receptor
Kinase) gene fusion, including NSCLC. In cancers covering NSCLC,
ALK activation occurs through fusion gene formation, the preliminary
actuating mutation in ALK. TRIM 1 is designated by cancer cells to
encourage tumorigenic development and is upregulated in malignant
cells. In tumour cells, it indorses elevatedproteasome activity (Wang
et al., 2016). This study investigated a lochnericine molecule using DFT
quantum chemical calculations, including molecular structure,
vibrational (FMOs), and other vibrational analyses. The
computational studieslikely docking analysis was also
performedusing bioinformatics tools to check the molecule’s
repressivebehaviour against lung cancer-associated targeted proteins.
Computer-Aided Drug Design (CADD) has emerged as an effective
method for determining potential lead compounds and improving the
development of new treatments for various diseases. Molecular
dynamics simulations determine the stability of protein-ligand
complexes. Furthermore, in vitro cytotoxicity testing was carried out
to confirm the anti-lung cancer activity.

2 Materials and methods

2.1 Quantum chemical calculations

The most stable molecular structure of lochnericine was optimized
using the Gaussian 09 software, and the DFT/B3LYP method with
LANL2DZ was used to optimize the structure. The Los Alamos
National Laboratory 2 double zeta (LANL2DZ) for transition
metals and all-electron basis sets for all other non-transition metal
atoms are used more frequently in computations on systems including
transition metals. (Frisch et al., 2009). The molecule’s vibrational
wavenumbers were computed and assigned using the VEDA
4.0 software (Jamroz, 2004). The optimized molecular structure,
vibrational wavenumbers, FMOs, MEP surface, and Mullikenatomic
charge distributions of Lochnericine molecule were visualized using
GaussView 05 software (Dennington et al., 2009). All the quantum
chemical calculations were performed without regard for the potential
energy surface to grasp the interception nature of the Lochnericine
molecule.

2.2 Bioinformatics study

2.2.1 Target and ligand preparation
In the present study, target receptormolecules, including EGFR [PDB

ID: 2ITY], KRAS [PDB ID: 7LGI], Ntrk [PDB ID: 7VKO], and ALK
[PDB ID: 2XP2], were obtained from the RCSB Protein Data Bank
(Sussman et al., 1998). TRIM11 protein sequences were obtained from
UniProt (UniProt ID: Q96F44) (UniProt, 2019). The 3D protein
structure of the other protein, TRIM11, was modelled using the Swiss
model (Schwede et al., 2003). Procheck in the SAVES server was used to
verify the three-dimensional protein structure (Laskowski et al., 2016). All
water molecules and irregular residues were purified from the primary
protein structure. In the PyRxworkspace folders, the protein receptor was
saved as a PDBQT file after addingmissing hydrogens and charges. Using
the PubChem database, the lochnericine molecule was downloaded. The
ligand was imported and prepared. These ligands were then converted to
Auto Dock Ligand format (PDBQT).

2.2.2 Molecular docking
Molecular docking was performed using Vina version 2.0 in PyRX

(Dallakyan and Olson, 2015). In the PyRX interface, rigid docking was
carried out for the targeted receptor molecules. The ligand and
proteins were then subjected to docking to get the binding affinity
with each other. Lamarckian genetic algorithm conformational search
with the default parameters was utilized. Further, the grid on the
targeted protein’s ligand-binding site was situated in the centre of the
binding site. Protein-lead molecule interactions were analyzed using
Discovery Studio Visualize software.

2.2.3 ADME prediction
ADME prediction was performed in the SWISS ADME tool

(Tripathi et al., 2019). This tool can forecast the pharmacokinetics
and drug-like characteristics of active compounds. The numbers of
rotatable bonds, hydrogen bond donors, acceptors, and molecular
weight, were also predicted. The log p values represent the lipophilicity
of the compounds. The logarithmic S value represents the solubility of
water. Human gastrointestinal absorption (HIA) and blood-brain
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barrier (BBB) permeation were predicted pharmacokinetic properties
in swiss adme.

2.2.4 Molecular dynamics simulation
In simulation studies using molecular dynamics (MD), the atomic

and molecular motions within the protein structure were examined.
Atoms and molecules can interact for 100 ns in the GROMACS
(GROningenMAchine for Chemical Simulations) (Van Der Spoel
et al., 2005). Macromolecular structure-to-function interactions may
now be efficiently understood using an advanced technology known as
molecular dynamics simulations (Awan et al., 2021; Bima et al., 2022).
MD simulations were performed by using the GROMOS96 43a1 force
field. Targeted receptor molecule and ligand complex topology was
created by parametrizing the compound through the PRODRG server
(Schüttelkopf and Van Aalten, 2004; Sangavi and Langeswaran, 2021).
The simple point charge (SPC216)watermodel’s step for salvation is the
cubic box centre to edges. To balance the MD simulations, counter ions
(Na+ and Cl−) were also included in the simulation systems (Shaik et al.,
2022). Adding counter-ions to the system to neutralize it. Two methods
exist for adding ions: Solve the solution and then add ions to replace the
solvent’s randomly distributedmolecules. To solve a problem, distribute
ions in accordance with themacromolecule’s electrostatic potential. The
simulation box interacts with an endless number of its periodic images
when periodic boundary conditions are utilized, and the Coulomb
energy is calculated using grid-based techniques. As a result, if a
simulation system is charged, the electrostatic energy will accumulate
to infinity. We must neutralize the system by introducing counter-ions
to address this problem and allow simulations to determine the
electrostatic energy accurately. Using MD simulations at the
atomistic level has the advantage of allowing for capturing and
evaluating various motional contributions to the overall complex
dynamics of the targeted receptor molecule. Potential steric obstacles
between the atoms in the solvated system were removed using the
energy minimization step and the 1,500 steepest descent followed by
conjugate gradient techniques. The NVT and NPT ensemble’s two-step
equilibration was carried out for 100 ps at constant volume, with
gradual heating from 0 to 300 K, and at a pressure of 1 atm. The
temperature is maintained with a Berendsen thermostat. The
Parrinello-Rahman barostat is used to keep the system’s pressure
constant. The simulation of each system took place for 100 ns?
Xmgrace software was used to examine the flexibility and stability of
the protein and ligand complex (Turner, 2005).

2.3 Cell line studies

2.3.1 Materials and drug preparation
Sigma, St Louis, MO, United States, supplied the dimethyl

sulfoxide (DMSO) and Lochnericine. All other chemicals and
solvents were purchased from SISCO Research Laboratories (SRL).
Lochnericine was synthesized in a serum-free RPMI medium after
being dissolved in dimethyl sulfoxide (DMSO) at a final concentration
of less than 0.1 percent (v/v). It did not affect cell viability) and filtered
through a 0.045 mm syringe filter before being stored at 4°C.

2.3.2 Cell proliferation assay by MTT method
The MTT assay was employed to assess the anti-proliferative

efficacy of lochnericine against A549 lung cancer cells. Through
mitochondrial enzymes, the translation of MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to the
formation of MTT is the critical mechanism involved in this
cytotoxicity assay. NCCS Pune supplied the lung cancer cell line
A549 for this investigation. In 24 well tissue culture plates, 2x 105

cells were cultured with 0.5 mL medium/well, 37°C temperature was
maintained with CO2 5%, and relative humidity was about 95%. For
48 h, cells were treated with various concentrations of lochnericine.
The cells were incubated at 37°C for 4 h after adding 200 µl of MTT
solution (5 mg/mL), and cells were harvested. Through the gentle
aspiration method, the medium and unread MTT were detached. At
room temperature, the plates were shaken well for 5 min by adding
500 µl of DMSO. The crystallized dye was extracted by adding 1 mL of
DMSO to the well. At 570 nm absorbance, the quantity of blue dye
formed was estimated. The proliferation of the cells was examined by
microscopic visualization at 48Xmagnification. The control and drug-
treated cells were treated with 10% methanol for 5 min. Then cells
were viewed under an inverted microscopeto confirm the anti-
proliferative efficacy of the drug.

2.4 Statistical analysis

The mean and standard deviation data were displayed (SD).
The noteworthyvariances were calculated using a one-way
analysis of variance (ANOVA). A commercial software
application (SPSS version 20) was employed for statistical
analysis. SPSS offers data analysis for descriptive and bivariate
statistics, numerical result forecasts, and predictions for
classifying groups.

3 Results and discussion

3.1 Molecular structure analysis

The Lochnericine molecule’s molecular structure was
optimized using the DFT/B3LYP method with the cc-pVTZ
basis set (Valarmathi et al., 2020a). Figure 1 depicts the
optimized molecular structure of the lochnericine molecule, and
its energy value was determined to be 1,111.43 a. u. Bond angle,
bond length, and dihedral calculations collectively known as
lochnericinestructural parameters were also displayed in Table 1.
The C1 point group has been noticed in the molecular geometry of
the lochnericine molecule. Lochnericine has been pointed to as a
centrosymmetric structure due to its IR and Raman active
vibrational modes. The optimized molecular structure of the
Lochnericine molecule is located at a local minimum on the
potential energy surface due to the absence of negative
vibrational wavenumbers (Valarmathi et al., 2020b).

3.2 Vibrational spectral analysis

49 atoms and 141 normal vibration modes are present in the
lochnericine, and all belong to the same symmetry species. The
calculated values oflochnericinevibrational frequencies, IR intensity,
and activity of Raman scattering have been represented in Yable 2.
C1 point group symmetry exists in the Lochnericine molecule. Figure 2
depicts the theoretically simulated infrared and Raman spectra of the
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Lochnericine bioactive compound. The experimentally determined
vibrational wavenumbers and theoretically calculated vibrational
wavenumber values agreed well (Areans et al., 1988; Karabacak et al.,
2008; Almansouret al., 2021). The molecule’s vibrational frequencies
were calculated using the VEDA 4.0 programme, which many
researchers have recognized as applicable (Zhou et al., 2021).

3.3 Frontiermolecular orbitals (FMOs) analysis

The highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) are the two molecular
orbitals that are used to analyse how a molecule interacts with
other species (LUMO). The HOMO energy represents the
capacity to provide electrons, whereas the LUMO energy
represents the capacity to carry electrons (Koyambo-Konzapa
et al., 2021). Electric and optical properties, UV-Vis spectra, and
quantum chemistry all depend on FMOs. (Babu et al., 2016). The
molecule’s kinetic stability and chemical reactivity—both crucial
components in determining its electrical properties—are
represented by the HOMO-LUMO gap. Small HOMO-LUMO
gaps are linked to soft molecules that have strong chemical
reactivity and limited kinetic stability. Figure 3 depicts the
Lochnericine molecule’s FMOs. The FMOs’ related molecular
features were calculated using Koopman’s theory (Mohamed
Asath et al., 2017). Red and green are used to represent the
positive and negative phases, respectively, in Figure 3. The
calculated low energy gap value (4.18 eV), which also explains the
intramolecular charge transfer interaction that affects the
lochnericine molecule’s biological activity, supports the increased
chemical reactivity of the compound (Saravanan and Blachandran,
2014). The electron affinity A) is the term used to describe the energy

produced when an electron is introduced to an empty orbital, while
the ionisation energy I) (5.49 eV) is used to describe the energy
necessary to remove an electron from a full orbital (1.31 eV). The
molecule is susceptible to electrophilic and nucleophilic reactions
due to its anticipated high ionisation energy and low electron
affinity. The chemical potentialμ = 3.40 eV, global softness, S =
2.09 eV, μ = 3.40 eV, global hardness, η = 0.47 eV, and global
electrophilicity index, ψ = 12.29 eV, of the molecule were also
computed. Based on the anticipated values of higher hardness
and reduced softness, the molecule is probably stable. The
molecule’s predicted chemical potential and electrophilicity index
provide additional evidence that it has chemical stability comparable
to that of compounds with potential bioactivity.

3.4 MEP surface analysis

Red, yellow, light blue, and blue on the MEP surface (Figure 4)
represent, respectively, regions that are slightly electron-rich, slightly
electron-rich, slightly electron-deficient, and slightly electron-
deficient. It was revealed that the oxygen atoms lone pair electrons
cause the regions around them to be electron-rich (red). Moreover, the
oxygen atom O1 has a stronger electronegative potential, and all of the
other oxygen atoms are classified as being in the slightly electron-rich
zone. The slightly electron-deficient (light blue) portion of the
molecule contained all of the hydrogen atoms. The molecule’s
electron-deficient (blue) portion is identified as hydrogen atom
H38. The hydrogen atom H38, which is shown as being electron-
poor (blue), makes up the molecule. The neutral electrostatic potential
envelopes were positioned around the molecule (green). Potential
electrophilic and nucleophilic attack sites are the hydrogen atom
H38 and the oxygen atom O1.

FIGURE 1
The optimized molecular structure of the Lochnericine molecule.
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TABLE 1 The optimized structural parameters of Lochnericine molecule.

Structural parameters Cc-pVTZ Structural parameters Cc-pVTZ Structural parameters Cc-pVTZ

Bond length Å) Bond length Å) Bond angle (degree)

O1-C10 1.46 C19-H40 1.08 C7-C9-H29 109.73

O1-H39 0.98 C21-H41 1.09 C8-C9-H28 111.07

O2-C20 1.39 C21-H42 1.09 C8-C9-H29 110.09

O2-C25 1.47 C21-H43 1.09 H28-C9-H29 107.54

O3-C20 1.25 C22-C24 1.40 O1-C10-C8 109.90

N4-C7 1.49 C22-H44 1.08 O1-C10-C13 105.09

N4-C13 1.50 C23-C24 1.39 O1-C10-C17 108.86

N4-C14 1.48 C23-H45 1.08 C8-C10-C13 108.18

N5-C12 1.38 C24-H46 1.08 C8-C10-C17 111.52

N5-C18 1.41 C25-H47 1.08 C13-C10-C17 113.05

N5-H38 1.01 C25-H48 1.09 C6-C11-C14 103.66

C6-C7 1.57 C25-H49 1.09 C6-C11-H30 110.59

C6-C11 1.59 Bond Angle (Degree) C6-C11-H31 110.84

C6-C12 1.53 C10-O1-H39 110.44 C14-C11-H30 111.06

C6-C16 1.52 C20-O2-C25 116.16 C14-C11-H31 112.93

C7-C9 1.52 C7-N4-C13 117.00 H30-C11-H31 107.75

C7-H26 1.09 C7-N4-C14 102.38 N5-C12-C6 106.95

C8-C9 1.54 C13-N4-C14 108.96 N5-C12-C15 128.50

C8-C10 1.55 C12-N5-C18 110.11 C6-C12-C15 124.10

C8-C15 1.53 C12-N5-H38 120.30 N4-C13-C10 114.67

C8-H27 1.09 C18-N5-H38 125.83 N4-C13-H32 111.81

C9-H28 1.09 C7-C6-C11 102.68 N4-C13-H33 107.24

C9-H29 1.09 C7-C6-C12 111.08 C10-C13-H32 105.28

C10-C13 1.53 C7-C6-C16 122.69 C10-C13-H33 110.43

C10-C17 1.54 C11-C6-C12 111.67 H32-C13-H33 107.18

C11-C14 1.55 C11-C6-C16 108.00 N4-C14-C11 104.61

C11-H30 1.09 C12-C6-C16 100.79 N4-C14-H34 109.25

C11-H31 1.09 N4-C7-C6 106.00 N4-C14-H35 110.85

C12-C15 1.37 N4-C7-C9 112.28 C11-C14-H34 110.66

C13-H32 1.09 N4-C7-H26 106.78 C11-C14-H35 113.12

C13-H33 1.09 C6-C7-C9 111.91 H34-C14-H35 108.25

C14-H34 1.09 C6-C7-H26 108.64 C8-C15-C12 119.26

C14-H35 1.09 C9-C7-H26 110.92 C8-C15-C20 116.13

C15-C20 1.44 C9-C8-C10 109.46 C12-C15-C20 123.79

C16-C18 1.41 C9-C8-C15 108.53 C6-C16-C18 107.52

C16-C19 1.38 C9-C8-H27 109.55 C6-C16-C19 132.32

C17-C21 1.53 C10-C8-C15 115.79 C18-C16-C19 119.76

C17-H36 1.09 C10-C8-H27 106.98 C10-C17-C21 113.94

(Continued on following page)
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TABLE 1 (Continued) The optimized structural parameters of Lochnericine molecule.

Structural parameters Cc-pVTZ Structural parameters Cc-pVTZ Structural parameters Cc-pVTZ

Bond length Å) Bond length Å) Bond angle (degree)

C17-H37 1.10 C15-C8-H27 106.34 C10-C17-H36 109.13

C18-C22 1.39 C7-C9-C8 108.09 C10-C17-H37 108.11

C19-C23 1.40 C7-C9-H28 110.30 C21-C17-H36 109.20

C21-C17-H37 109.00 C13-N4-C7-H26 −166.63 C16-C6-C11-H30 116.61

H36-C17-H37 107.21 C14-N4-C7-C6 −41.38 C16-C6-C11-H31 −2.83

N5-C18-C16 108.93 C14-N4-C7-C9 −163.88 C7-C6-C12-N5 −155.20

N5-C18-C22 129.02 C14-N4-C7-H26 74.32 C7-C6-C12-C15 17.83

C16-C18-C22 121.99 C7-N4-C13-C10 41.81 C11-C6-C12-N5 90.80

C16-C19-C23 119.02 C7-N4-C13-H32 −77.94 C11-C6-C12-C15 −96.15

C16-C19-H40 120.87 C7-N4-C13-H33 164.83 C16-C6-C12-N5 −23.67

C23-C19-H40 120.09 C14-N4-C13-C10 157.26 C16-C6-C12-C15 149.36

O2-C20-O3 119.93 C14-N4-C13-H32 37.51 C7-C6-C16-C18 143.01

O2-C20-C15 115.03 C14-N4-C13-H33 −79.70 C7-C6-C16-C19 −44.29

O3-C20-C15 125.02 C7-N4-C14-C11 45.781 C11-C6-C16-C18 −98.09

C17-C21-H41 111.68 C7-N4-C14-H34 −72.74 C11-C6-C16-C19 74.59

C17-C21-H42 110.30 C7-N4-C14-H35 168.03 C12-C6-C16-C18 19.12

C17-C21-H43 110.37 C13-N4-C14-C11 −78.76 C12-C6-C16-C19 −168.18

H41-C21-H42 107.91 C13-N4-C14-H34 162.70 N4-C7-C9-C8 55.58

H41-C21-H43 107.44 C13-N4-C14-H35 43.48 N4-C7-C9-H28 −66.03

H42-C21-H43 109.01 C18-N5-C12-C6 20.30 N4-C7-C9-H29 175.65

C18-C22-C24 117.59 C18-N5-C12-C15 −152.32 C6-C7-C9-C8 −63.50

C18-C22-H44 121.51 H38-N5-C12-C6 179.74 C6-C7-C9-H28 174.88

C24-C22-H44 120.88 H38- N5-C12-C15 7.11 C6-C7-C9-H29 56.57

C19-C23-C24 120.46 C12-N5-C18-C16 −7.65 H26-C7-C9-C8 174.97

C19-C23-H45 119.71 C12-N5-C18-C22 170.06 H26-C7-C9-H28 53.36

C24-C23-H45 119.81 H38-N5-C18-C16 −165.68 H26-C7-C9-H29 −64.94

C22-C24-C23 121.13 H38-N5-C18-C22 12.02 C10-C8-C9-C7 −65.36

C22-C24-H46 119.16 C11-C6-C7-N4 20.63 C10-C8-C9-H28 55.77

C23-C24-H46 119.69 C11-C6-C7-C9 143.37 C10-C8-C9-H29 174.78

O2-C25-H47 104.89 C11-C6-C7-H26 −93.80 C15-C8-C9-C7 61.88

O2-C25-H48 110.06 C12-C6-C7-N4 −98.87 C15-C8-C9-H28 −176.97

O2-C25-H49 110.21 C12-C6-C7-C9 23.85 C15-C8-C9-H29 −57.96

H47-C25-H48 111.17 C12-C6-C7-H26 146.67 H27-C8-C9-C7 177.61

H47-C25-H49 111.15 C16-C6-C7-N4 142.03 H27-C8-C9-H28 −61.24

H48-C25-H49 109.27 C16-C6-C7-C9 −95.23 H27-C8-C9-H29 57.76

Dihedral Angle (Degree) C16-C6-C7-H26 27.59 C9-C8-C10-O1 175.37

C25-O2-C20-O3 2.73 C7-C6-C11-C14 6.67 C9-C8-C10-C13 61.13

C25-O2-C20-C15 −176.46 C7-C6-C11-H30 −112.43 C9-C8-C10-C17 −63.79

(Continued on following page)
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3.5 Mulliken atomic charge distribution
analysis

Mulliken’s atomic charge distribution influences the molecule’s
dipole moment, electrostatic potential, electronegativity equalization,
electronic structure, vibrational modes, and polarizability (Geetha et al.,
2021). Because of its attachment to the two electronegative oxygen
atoms, the carbon atomC20 has a higher positive charge value, as shown
in Figure 5 representation of the predicted Mulliken atomic charge
distribution values (O2 and O3). The highest electronegative charge

values are found in the oxygen atom O1 and the nitrogen atom N5. The
carbon atoms’ negative charge values significantly promote electron
delocalization within the molecule.

3.6 Molecular docking

In drug designing, molecular docking is essential to determine
the binding mode and efficacy of the active lead molecules.
Molecular docking approaches were performed for all targeted

TABLE 1 (Continued) The optimized structural parameters of Lochnericine molecule.

Structural parameters Cc-pVTZ Structural parameters Cc-pVTZ Structural parameters Cc-pVTZ

Bond length Å) Bond length Å) Bond angle (degree)

C20-O2-C25-H47 177.04 C7-C6-C11-H31 128.11 C15-C8-C10-O1 52.33

C20-O2-C25-H48 57.37 C12-C6-C11-C14 125.77 C15-C8-C10-C13 −61.90

C20-O2-C25-H49 −63.22 C12-C6-C11-H30 6.67 C15-C8-C10-C17 173.16

C13-N4-C7-C6 77.6534 C12-C6-C11-H31 −112.78 H27-C8-C10-O1 −65.99

C13-N4-C7-C9 −44.84 C16-C6-C11-C14 −124.27 H27-C8-C10-C13 179.76

H27-C8-C10-C17 54.83 C6-C11-C14-N4 −32.14 C10-C17-C21-H41 −65.10

C9-C8-C15-C12 −22.20 C6-C11-C14-H34 85.41 C10-C17-C21-H42 54.90

C9-C8-C15-C20 147.91 C6-C11-C14-H35 −152.90 C10-C17-C21-H43 175.43

C10-C8-C15-C12 101.32 H30-C11-C14-N4 86.63 H36-C17-C21-H41 57.20

C10-C8-C15-C20 −88.56 H30-C11-C14-H34 −155.80 H36-C17-C21-H42 177.22

H27-C8-C15-C12 −139.99 H30-C11-C14-H35 −34.12 H36-C17-C21-H43 −62.24

H27-C8-C15-C20 30.11 H31-C11-C14-N4 −152.18 H37-C17-C21-H41 174.04

O1-C10-C13-N4 −165.87 H31-C11-C14-H34 −34.62 H37-C17-C21-H42 −65.93

O1-C10-C13-H32 −42.53 H31-C11-C14-H35 87.05 H37-C17-C21-H43 54.59

O1-C10-C13-H33 72.84 N5-C12-C15-C8 152.85 N5-C18-C22-C24 −176.69

C8-C10-C13-N4 −48.49 N5-C12-C15-C20 −16.45 N5-C18-C22-H44 2.67

C8-C10-C13-H32 74.83 C6-C12-C15-C8 −18.62 C16-C18-C22-C24 0.75

C8-C10-C13-H33 −169.78 C6-C12-C15-C20 172.06 C16-C18-C22-H44 −179.87

C17-C10-C13-N4 75.52 C8-C15-C20-O2 −165.54 C16-C19-C23-C24 1.35

C17-C10-C13-H32 −161.14 C8-C15-C20-O3 15.30 C16-C19-C23-H45 −178.84

C17-C10-C13-H33 −45.76 C12-C15-C20-O2 4.07 H40-C19-C23-C24 −179.03

O1-C10-C17-C21 −44.95 C12-C15-C20-O3 −175.07 H40-C19-C23-H45 0.75

O1-C10-C17-H36 −167.30 C6-C16-C18-N5 −8.39 C18-C22-C24-C23 −0.37

O1-C10-C17-H37 76.39 C6-C16-C18-C22 173.69 C18-C22-C24-H46 179.35

C8-C10-C17-C21 −166.38 C19-C16-C18-N5 177.82 H44-C22-C24-C23 −179.74

C8-C10-C17-H36 71.25 C19-C16-C18-C22 −0.08 H44-C22-C24-H46 −0.02

C8-C10-C17-H37 −45.04 C6-C16-C19-C23 −172.94 C19-C23-C24-C22 −0.67

C13-C10-C17-C21 71.44 C6-C16-C19-H40 7.45 C19-C23-C24-H46 179.60

C13-C10-C17-H36 −50.91 C18-C16-C19-C23 −0.97 H45-C23-C24-C22 179.52

C13-C10-C17-H37 −167.21 C18-C16-C19-H40 179.41 H45-C23-C24-H46 −0.19
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TABLE 2 Theoretical IR and Raman frequencies and their assignments for Lochnericine molecule.

Mode Wavenumber (cm-1) Assignment Mode Wavenumber (cm-1) Assignment

1 3627 ν NH (100) 41 1456 δ CH2 (28) + β OH (14)

2 3506 ν OH (100) 42 1450 δ CH2 (28) + β OH (13)

3 3227 ν CH (99) 43 1446 β CH (18)+ β NH (12)

4 3214 ν CH (98) 44 1421 ω CH2 (29)

5 3201 ν CH (97) 45 1416 β CH (23)+ ω CH2 (18)

6 3200 νas CH3 (97) 46 1402 β CH (22)+ ω CH2 (13)

7 3193 ν CH (97) 47 1392 β CH (22)+ ω CH2 (12)

8 3172 νas CH3 (95) 48 1385 β CH (38)

9 3156 νas CH3 (94) 49 1379 β CH (23)+ β NH (11)

10 3145 νas CH2 (96) 50 1377 β CH (28)+ β NH (10)

11 3135 νas CH2 (96) 51 1367 β CH (14)+ ω CH2 (26)

12 3129 νas CH2 (97) 52 1352 β CH (27)+ ω CH2 (13)

13 3113 νas CH3 (96) 53 1339 β CH (18)+ ω CH2 (28)

14 3104 νas CH2 (95) 54 1330 t CH2 (29)

15 3087 νs CH2 (94) 55 1322 β CH (27)+ β NH (20)

16 3085 νas CH2 (93) 56 1301 β CH (23)+ t CH2 (17)

17 3084 νs CH3 (94) 57 1297 t CH2 (32)

18 3072 νs CH2 (93) 58 1279 β NH (22)+ t CH2 (16)

19 3057 ν CH (92) 45 1262 β NH (26)+ t CH2 (13)

20 3053 ν CH (92) 60 1259 β NH (33)+ t CH2 (12)

21 3051 ν CH (93) 61 1237 β CH (29)+ β OH (22)

22 3048 νs CH3 (92) 62 1227 β CH (25)+ t CH2 (12)

23 3024 ν CH (92) 63 1217 β CH (22)+ t CH2 (10)

24 3021 νs CH2 (92) 64 1209 β CH (27)+ β OH (18)

25 1678 ν CC (50)+ β CH (32) 65 1202 β CH3 (36)+ β CH (14)

26 1662 ν CC (39)+ β NH (18) 66 1196 β CH3 (29)+ β CH (12)

27 1652 ν CC (39)+ β CH (17)+ β NH (11) 67 1183 β CH (27)+ β NH (12)

28 1640 ν C=O (87) 68 1175 β CH3 (23)+ β CH (11)

29 1560 δ CH2 (39) 69 1165 β CH3 (32)

30 1555 β CH3 (37) 70 1155 ρ CH2 (23)+β CH (12)

31 1544 δ CH2 (42) 71 1145 ρ CH2 (24)+β CH (11)

32 1543 δ CH2 (36) 72 1139 ρ CH2 (29)+ ω CH2 (22)

33 1539 β CH3 (39) 73 1107 ρ CH2 (28)+ t CH2 (18)

34 1537 β CH3 (41) 74 1099 ρ CH2 (19)+ t CH2 (14)

35 1535 δ CH2 (29) 75 1084 ρ CH2 (23)+ β CH3 (13)

36 1531 β CH (32) 76 1067 ρ CH2 (23)+ β CH3 (13)

37 1527 δ CH2 (38) 77 1059 ρ CH2 (29)+ β CH3 (11)

38 1518 β CH3 (46) 78 1052 Ring deformation

39 1517 β CH (38) 79 1046 ν CC (39)+ ν CO (14)

(Continued on following page)
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receptor molecules. Receptor molecules docking score and
interacting residues were tabulated in Table 3. EGFR receptor
(PDB ID 2ITY) molecule interacts with the active lead molecules
that lead to the formation of hydrogen bonds, Pi-Pi stacked, and Pi-
Alkyl. Lead molecule interacts with glycine residue at the position of
724 and forms a conventional hydrogen bond. Leu 747 residue forms
Pi-Alkyl interaction. Phenylalanine 723 amino acid forms the Pi-Pi
Stacked. EGFR_ Lochnericine has good interaction, and thedocking

score is −7.52 Kcal/Mol. 2 days and 3 days interactions between
EGFR_Lochnericine were depicted in Figure 6A. A docking protocol
was carried out between KRAS and Lochnericine, and the docking
score between KRAS and lead molecules is −9.10 Kcal/Mol. Arginine
amino acid at the position of 97 interacts with small molecules and
forms the hydrogen bond. Another hydrogen bond is formed
between Lysine 101 and Lochnericine. Pi-Alkyl formed by the
Tyrosine 137 amino acid residues and 2 days and 3 days

TABLE 2 (Continued) Theoretical IR and Raman frequencies and their assignments for Lochnericine molecule.

Mode Wavenumber (cm-1) Assignment Mode Wavenumber (cm-1) Assignment

40 1492 β CH3 (43) 80 1026 ν CC (25)+ β CH3 (12)

81 1008 γ CH (42) 112 528 γ OH (23)

82 1007 γ CH (38) 113 509 ρ CH2 (23)+ γ OH (13)

83 996 γ CH (34)+ν CC (23)+ ν CO (11) 114 491 τ Ring

84 976 γ CH (37) 115 476 ρ CH2 (28)+ γ CH (18)

85 969 γ CH (29)+ β NH (11) 116 453 ρ CH2 (29)+ γ CH (11)

86 957 γ CH (29) 117 438 ρ CH2 (12)+ γ OH (23)

87 945 γ CH (39)+ν CC (21) 118 416 ρ CH2 (32)

88 942 γ CH (37)+ ν CC (18) 119 395 γ OH (23)

89 905 t CH2 (19) + β NH (10) 120 362 τCCCH (12)+ τCCCC (13)

90 894 γ CH (27) 121 355 τCCCC (13)+ τCCCN (12)

91 890 ρ CH2 (26)+ν CO (10) 122 328 τCCCH (13)+ τCCNO (11)

92 880 ρ CH2 (23) 123 321 τCCCC (13)+ τCCNO(11)

93 875 ρ CH2 (25) + ν CC (12) 124 307 τCCCH (12)+ τCCCC (13)

94 853 Ring Breathing 125 303 τ Ring

95 824 ρ CH2 (23)+ t CH2 (13) 126 285 τ Ring

96 804 Ring Breathing 127 267 τCCCH(12)+ τCCCC(13)

97 792 γ CH (38) 128 251 τCCCH(12)+ τCCCC(12)

98 783 γ CH (27)+ γ NH (28) 129 228 ρ CH2 (23)

99 776 γ CH (29) 130 219 τ CH3 (32)

100 745 ρ CH2 (16) + β NH (12) 131 179 τ CH3 (34)

101 740 γ NH (29) 132 153 τCCCH(12)+ τCCCC(13)

102 727 γ NH (32) 133 147 τCOCO(11)+ τCCCC(11)

103 706 Ring deformation 134 132 Ring deformation

104 687 Ring deformation 135 118 Ring deformation

105 663 Ring deformation 136 103 τ CH3 (23)

106 656 ρ CH2 (21) + β NH (13) 137 94 τ CH3 (12)

107 628 Ring deformation 138 77 Ring deformation

108 600 ρ CH2 (26) + β OH (12) 139 70 τ CH3 (14)

109 594 τ Ring 140 67 τCOCO(12)+ τCCCC(11)

110 582 γ CH (38)+ β CH3 (18) 141 55 τCOCO(12)+ τCCCC(10)

111 537 γ OH (23)

ν, Stretching; νs, symmetric stretching; νas, asymmetric stretching; β, in plane bending; γ, out of plane bending; ρ, rocking; ω, Wagging; δ, Scissoring; t, twisting.
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interactions between KRAS_Lochnericine were depicted in
Figure 6B. Ntrk protein structure was downloaded from the
RCSB PDB (PDB ID: 7VKO). The lead molecule with Glycine
667 amino acid residue forms the carbon-hydrogen bond.
Further, Methionine 592 residue forms another carbon-hydrogen
bond. Alkyl and Pi-Alkyl interactions were formed between lead
molecule and amino acid residues (Valine 524, Tyrosine 591,
Leucine 516, Alanine 542, Phenylalanine589 and Lysine 544).

Ntrk_Lochnericine docking score is −8.24 Kcal/Mol, and the
2 days and 3 days interactions between Ntrk_Lochnericine are
depicted in Figure 6C. ALK three-dimensional proteins with PDB
ID:2XP2 were downloaded and prepared for docking. Alkyl and Pi-
Alkyl interactions are formed by amino acid residue Leu 1,256, Ala
1,148, Val 1,130, Ile 1,171 and Lys 1,150, Glu 1,167, Asn 1,254 and
Arg 1,253 amino acid residue interact with Lochnericine forms
carbon-hydrogen bond. The docking score is −11.59 Kcal/Mol.

FIGURE 2
Theoretically simulated infrared and Raman spectra of the Lochnericine molecule.

FIGURE 3
FMOs of the Lochnericine molecule.

FIGURE 4
MEP surface of the Lochnericine molecule.
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FIGURE 5
Mulliken atomic charge distribution of the Lochnericine molecule.

TABLE 3 Mulliken Atomic charges for optimized geometry.

Atom Mulliken atomic charges Atom Mulliken atomic charges

O1 −0.6579 H26 0.1422

O2 −0.5613 H27 0.1517

O3 −0.4867 H28 0.1495

N4 −0.4188 H29 0.1378

N5 −0.7511 H30 0.1608

C6 −0.0910 H31 0.1503

C7 −0.0117 H32 0.1359

C8 −0.2577 H33 0.1530

C9 −0.2506 H34 0.1421

C10 0.2697 H35 0.1469

C11 −0.2508 H36 0.1354

C12 0.2759 H37 0.1159

C13 −0.1154 H38 0.3454

C14 −0.1352 H39 0.3875

C15 0.1008 H40 0.1318

C16 0.0315 H41 0.1284

C17 −0.2383 H42 0.1627

C18 0.2895 H43 0.1179

C19 −0.1709 H44 0.1311

C20 0.4833 H45 0.1241

C21 −0.4034 H46 0.1266

C22 −0.1034 H47 0.1551

C23 −0.1271 H48 0.1775

C24 −0.1444 H49 0.1734

C25 −0.1584
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2 days and 3 days interactions between ALK_Lochnericine were
depicted in Figure 6D. TRIM11 protein was modelled, and
protein structure was assessed using the Saves server.
TRIM11 forms Pi-Alkyl interaction with phenylalanine
407 amino acid residue. Tyrosine 343 forms a carbon-hydrogen
bond, and the docking score between TRIM11_Lochnericine
is −7.13 Kcal/Mol. 2 days and 3 days interactions between
TRIM11_Lochnericine were depicted in Figure 6E. The docking
score and interacting residues between the targeted receptor
molecules and lead compound were tabulated in Table 4.

3.7 ADME prediction

In the drug-designing process, ADME prediction is essential for
determining the leadmolecule’s efficacy. These obey all the five rules of
Lipinski. Several pharmacokinetic properties, pharmacokinetics, drug-
likeness, and water solubility properties were tabulated in

Table 5.Further, lead compound lipophilicity, size, insoluble,
unsaturation, flexibility, and polar nature are shown in Figure 7.

3.8 Molecular dynamics simulation

Gromacs package’s molecular dynamics simulations were
used to examine the stability of targeted protein-ligand
complexes. Based on the docking score, interaction residues,
and binding affinity between the targeted proteins and the
Lochnericine. For 50 ns, molecular dynamics simulations were
performed. Typically, MD simulation is used to predict the
behaviour of macromolecules, and it relies on classical
mechanics and Newton’s equation of motion to determine the
speed and position of each atom in the system under
consideration. As a result, MD performs a more concise
structural assessment. The difference between the initial and
final structural conformational positions was determined
using the RMSD (Root Mean Square Deviation). The results of
MDs of protein-ligand complexes are shown in Figure 8. The
average range of RMSD deviation was observed between all
the protein-ligand molecules. This indicates a good RMSD
deviation. All protein receptor molecules indicate favourable
RMSD deviation throughout the entire simulation period.
RMSF (Root Mean Square Fluctuation) assesses and computes
the average deviation of a targeted protein over time from
an amino acid residue reference position. The average
fluctuation rate between targeted protein-ligand complexes
ranges between all the protein-ligand molecules. The
fluctuation between the targeted receptor molecules and
Lochnericineis depicted in Figure 8. The smallest fluctuation
with good stability and the fluctuation rate that occurs in the
loop or disallowed region have no implications on the complexes’
stability. Hydrogen bonds in protein-ligand complexes are
calculated using cut-offs for the angle between the Hydrogen
Donor-Acceptor and the distance between the Donor-Acceptor.
Hydrogen bond interactions between targeted proteins and
Lochnericine complexes are represented in Figure 8. EGFR
(PDB ID-2ITY) with the lead compound represented in the
black colour. 7LGI with the active compound represented in
the green colour. The red colour indicates the 7VKO protein
with lochnericine. TRIM11with lochnericine represent in
blue colour. Throughout the simulation runs, the GROMACS
command line gmx_rmsd was used to compute the RMSD
values of each targeted protein-ligand complex’s stability
profile. RMSD often interprets the deviation for a set of atoms
(protein, ligand, or even ligand-protein complex) from the

FIGURE 6
(A) 2d and 3d Interaction between EGFR_ Lochnericine. (B) 2d and
3d Interaction between KRAS_ Lochnericine. (C) 2d and 3d Interaction
between Ntrk_ Lochnericine. (D) 2d and 3d Interaction between ALK_
Lochnericine. (E) 2d and 3d Interaction between TRIM11_
Lochnericine.

TABLE 4 Interacting residues between receptor molecules and lead compound.

S.No Protein_lead compound Interacting residues Docking
score

1 EGFR_ Lochnericine GLY_724, LEU_74 and PHE_723 −7.52 Kcal/Mol

2 KRAS_ Lochnericine ARG_97, LYS_101 and TYR_137 −9.10 Kcal/Mol

3 Ntrk _Lochnericine TYR_591, VAL_524, LEU_516, MET_592, ALA_542, PHE_589, LYS_544, GLY_667 and ASP_668 −8.24 Kcal/Mol

4 ALK_Lochnericine LEU_1256,VAL_1130, ALA_1148, ILE_1171, LYS_1150, ARG_1253, ASN_1254, GLU_1167 and ASP_1270 −11.59 Kcal/Mol

5 TRIM11_Lochnericine PHE_407 and TYR_343 −7.13 Kcal/Mol
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corresponding initial reference structure. Less RMSD values
would therefore be associated with considerable stability due
to changes in the examined molecule’s structure. Additionally,
ligands show lower RMSD values corresponding to the ligand-
protein complexes. A lower RMSD value denotes higher stability
for the protein-ligand complexes. All targeted receptor
molecules with lead compound lesser deviation within the
range of 0.4 nm. All the potential receptors of Non-small
cell lung cancer protein flexibility and target Residue Root-Mean-
Square Fluctuation (RMSF) for each ligand-bound protein
residue root-mean-square fluctuation (RMSF) profile were
calculated in order to acquire more insights into the stability of
the complex binding site. The GROMACS “gmx_rmsf”
command line was used to calculate the specific backbone RMSF
of each protein. This flexibility validation criterion shows the
contribution of specific protein residues to the structural
variations of the ligand/protein complex. The RMSF calculates
the average deviation for each residue from its reference
position inside the reduced initial structures over time. All the
targeted receptor molecules show an acceptable fluctuation
range except the disallowed region. The targeted protein-ligand

complex fluctuates within the range of 0.50 nm.The lowest
values for the deviation below 0.40 nm and the lesser deviation
below 1 nm were found while considering the examined complexes.
The above RMSD and RMSF analysis shows that the targeted
protein-ligand complexes have good stability and flexibility.
The stability of ligand-protein complexes and the corresponding

FIGURE 8
MD simulation of Nonsmall cell lung cancer targeted receptorswith
the lead compounds.

FIGURE 7
ADME prediction of Lochnericine.

TABLE 5 ADME prediction of Lochnericine.

ADME prediction of lochericine

Number of rotatable bonds 3

Number of Hydrogen bond acceptors 4

Number of Hydrogen bond donor 1

Lipophilicity Log PO/W 3.08

Log S −3.59

GI absorption High

BBB permeant Yes

Bioavailability Score 0.55
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conformational changes were thought to be best understood by
examining the hydrogen bond network connections between the
receptors and lochnericine. It was helpful to investigate the
recognized ligand-protein hydrogen bond interactions and their
relative frequency using the GROMACS command line
gmxhbond, which analyses the hydrogen bonds (H-bonds)
between all conceivable donors D and acceptors A. EGFR
receptor molecule exhibit a maximum number of 4 hydrogen
bonds between the targeted receptor molecule was observed.
All other receptors possess the average number of 3 hydrogen
bonds between the receptor and lochnericine. All the resultant
complexes show better hydrogen bond interaction throughout
the simulation period. Furthermore, lochnericine induced a
stabilized favoured hydrogen bond association with the targeted
receptor, which was sustained for significant MD simulation.
This preferential hydrogen bond pair interaction with the
targeted receptors introduces the potential activity of
lochnericine to block the receptor molecules of non-small-cell
lung cancer.

3.9 Anti-proliferative estimation by MTT assay

Several chemicals and natural compounds’ cytotoxic efficacy
against malignant cells have been considered primary studies for
the antitumor potential of the compounds. The conversion of MTT
(3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide)
to MTT-formation using mitochondrial enzymes in the MTT assay
is a notable assay for the valuation of the proliferation of cancer
cells (Sangavi et al., 2022). Treatment Lochnericine for 24 and 48 h
declinedcell proliferationin a dosage and time-dependent manner,
as shown in Figure 9, 10. In the present study,
Lochnericinecondensed cell feasibility in a concentration-
dependent manner. Lochnericine inhibition of cell growth might
be linked to the induction of cell death. Thus,
Lochnericinesuppressive impact on A549 cells significantly
supports Lochnericine’s anti-proliferation capability.

4 Conclusion

The optimization geometry for the lochnericine bioactive
molecule was carried out using the DFT/B3LYP functional
technique and the cc-PVTZ basis set. Simulated Lochnericine
vibrational spectra, including infrared and Raman spectra,
showed that the computed vibrational wavenumbers
significantly correspond with those from earlier works of
literature. The determined band gap energy value of 4.18 eV
abutment lochnericine bioactivity. H38 hydrogen and
O1 oxygen atom in the molecule are possible electrophilic and
nucleophilic attack sites, according to a molecular electrostatic
potential surface analysis. An examination of the atomic charge
distribution of Mulliken verified the electron delocalization that led
to the molecule’s bioactivity. non-small cell lung cancer potential
targeted receptor molecules were selected and analyzed using a
computational approach. During molecular docking studies, all the

FIGURE 9
Depicts the Effect of Lochnericine on cell viability in the Human
Lung Carcinoma cell line A549by MTT assay.

FIGURE 10
Fluorescence Microscopic images of Control and Lochnericine-
treated A549 cells. (A)Control. (B) 25 µMConcentration of Lochnericine.
(C) 30 µM Concentration of Lochnericine.
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targeted receptor has a strong binding affinity for drugs containing
lochnericine. Further targeted receptor and lochnericinedocked
complexes showed good stability and lesser fluctuation during
the simulation time. The protein-ligand complexes are more
stable when their RMSD value is smaller. Every targeted
receptor molecule has a lead compound deviation that seems to
be smaller than 0.4 nm. Within a 0.50 nm range, the targeted
protein-ligand complex fluctuates. While accounting for the
studied complexes, the lowest values for the deviation below
0.40 nm and the lesser deviation below 1 nm were obtained. The
targeted protein-ligand complexes exhibit good stability and
flexibility, according to RMSD and RMSF analysis. Throughout
the simulation, better hydrogen bond interaction can be seen in the
resulting complexes with lochnericine.
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Functional metagenomics
uncovers nitrile-hydrolysing
enzymes in a coal metagenome

Arunmozhi Bharathi Achudhan, Priya Kannan and Lilly M. Saleena*

Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology,
Kattankulathur, Tamil Nadu, India

Introduction: Nitriles are the most toxic compounds that can lead to serious
human illness through inhalation and consumption due to environmental
pollution. Nitrilases can highly degrade nitriles isolated from the natural
ecosystem. In the current study, we focused on the discovery of novel
nitrilases from a coal metagenome using in silico mining.

Methods: Coal metagenomic DNA was isolated and sequenced on the Illumina
platform. Quality reads were assembled using MEGAHIT, and statistics were
checked using QUAST. Annotation was performed using the automated tool
SqueezeMeta. The annotated amino acid sequences were mined for nitrilase
from the unclassified organism. Sequence alignment and phylogenetic analyses
were carried out using ClustalW and MEGA11. Conserved regions of the amino
acid sequences were identified using InterProScan and NCBI-CDD servers. The
physicochemical properties of the amino acids were measured using ExPASy’s
ProtParam. Furthermore, NetSurfP was used for 2D structure prediction, while
AlphaFold2 in Chimera X 1.4 was used for 3D structure prediction. To check the
solvation of the predicted protein, a dynamic simulation was conducted on the
WebGRO server. Ligands were extracted from the Protein Data Bank (PDB) for
molecular docking upon active site prediction using the CASTp server.

Results and discussion: In silicomining of annotated metagenomic data revealed
nitrilase from unclassified Alphaproteobacteria. By using the artificial intelligence
program AlphaFold2, the 3D structure was predicted with a per-residue
confidence statistic score of about 95.8%, and the stability of the predicted
model was verified with molecular dynamics for a 100-ns simulation.
Molecular docking analysis determined the binding affinity of a novel nitrilase
with nitriles. The binding scores produced by the novel nitrilase were
approximately similar to those of the other prokaryotic nitrilase crystal
structures, with a deviation of ±0.5.

KEYWORDS

functional metagenomics, nitrilase, nitriles, artificial intelligence, unclassified
microorganisms

Introduction

Cyanide-containing compounds are known as nitriles and are widely distributed in the
natural environment. They are generated by different plants in various forms, such as
ricinine, phenyl acetonitrile, cyanogenic glycosides, and β -cyanoalanine (Sewell et al., 2003).
Anthropogenic activities have substantially influenced the production of vast quantities of
nitrile compounds. Nitriles are naturally poisonous and are recognised to be a leading cause
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of environmental pollution, which is detrimental to human health
(Li et al., 2013). Most of the cyanide in soil and water comes from
effluents that contain a variety of inorganic cyanides and nitriles.
Contamination is caused by using herbicides with the nitrile group,
such as 2,6-dichlorobenzonitrile and bromoxynil (3,5-dibromo-4-
hydroxybenzonitrile). Nitrile pollution can also be caused by the
exhaust from cars (Nigam et al., 2017). The majority of nitrile
poisoning symptoms include abdominal pain, seizures, breathing
problems, sore throat, difficulty falling asleep, and damage to the
kidneys (Kupke et al., 2016; Tanii, 2017).

Nitrile compounds can be degraded by using microbes or
chemicals. Chemical degradation of nitriles involves harsh
reaction conditions and generates excess waste (Wang, 2015).
Nitrile-hydrolysing enzymes can convert various nitriles to acids.
Enzymes that hydrolyse nitrile include nitrilases (EC 3.5.5.1), nitrile
hydratases (EC 4.2.1.84), and amidases (EC 3.5.1.4) (Figure 1).
These enzymes are utilised extensively in the production of
amides and organic acids, both of which are extremely valuable
to the manufacturing industry (Egelkamp et al., 2019).

The benzonitrile analogues chloroxynil, bromoxynil, and ioxynil
are efficiently degraded by the soil Actinobacteria Rhodococcus
rhodochrous PA-34, Rhodococcus sp. NDB 1165, and Nocardia
globerula NHB-2, and these nitrile degraders should be studied for
the bioremediation of benzonitrile herbicide-contaminated soils (Veselá
et al., 2010). Nitrilase enzymes are used as good biocatalysts in a wide
range of synthetic processes, leading to a huge rise in demand.
Hydrolysis of the ricinine nitrile group was first discovered in the
soil-isolated bacterial strain belonging to the genus Pseudomonas.Many
nitrilases have been purified, characterised, immobilised, gene cloned,
overexpressed in host strains, and used in industrial plants (Amrutha
and Nampoothiri, 2022; Gong et al., 2012).

Advanced bioinformatics tools and techniques are used more
often than traditional methods to find or screen a new nitrilase gene.
This helps in identifying the protein’s suitable substrates (Jones et al.,
2020; Klasberg et al., 2016). The maximum synthesis of propionic
acids, which have applications in the food and chemical industries,
was demonstrated by nitrilase from Bacillus sp. (BITSN007) in a
study on the biotransformation of nitrile compounds to valuable
acids (Biocatalysis of Different Nitriles to Valuable Acids, 2021). The
Tyr141Ala mutation in the nitrilase from P. fluorescens EBC191 led
to a nitrilase variant that can convert aromatic and aliphatic
substrates (Brunner et al., 2018). There is a need for new nitrile-
degrading enzymes, particularly those with the wide substrate-
catalysing properties required for environmental remediation.
The study employs shotgun sequencing of lignite samples
collected from the coal mine. After extracting the coal
metagenomic data, we identified an unclassified bacterium that
codes for the nitrilase enzyme. The primary amino acid sequence

was searched for conserved regions and domain findings. The
secondary and tertiary structures were also identified for the
nitrilase protein, with different types of nitriles (substrates) used
to analyse their binding efficiency by molecular docking analysis.
Binding energy was also calculated for other reference prokaryotic
crystal structures and compared to the predicted structure. This
study focuses on identifying nitrilase enzymes from metagenomic
data and exploring their binding affinity with a wide range of nitriles.

Materials and methods

Sample isolation and sequencing

A lignite sample from the coal mine in Neyveli, India
(11°35′34.44″N and 79°29′29.04″E), was collected. The metagenomic
DNA was isolated from the lignite sample using the PowerMax soil
DNeasy kit (QIAGEN). The isolated metagenomic DNA was then
subjected to shotgun sequencing on an Illumina HiSeqTM
2000 platform to generate paired-end sequences.

Metagenomics data analysis

The forward and reverse end reads in the FASTQ format were
used as the input in the FASTQC tool (Andrews, 2010). The
generated output HTML files were merged using MultiQC (Ewels
et al., 2016) to create a single HTML file report containing the
quality statistics of the reads. The forward and reverse FASTQ files
are the input for the MEGAHIT assembler (Li et al., 2015). A k-mer
value of 99 and a minimum contig length of 200 parameters were
assigned. The output was generated as contigs in a single FASTA file.
The obtained contigs were analysed in the QUAST tool (Gurevich
et al., 2013) for the number and size of the contigs.

Taxonomical and functional findings

The contigs in FASTA format were annotated using the
SqueezeMeta tool, an automated pipeline (Tamames and Puente-
Sánchez, 2019). First, protein-coding genes were predicted from the
contigs using Prodigal, and amino acid and nucleotide sequences
were generated in the FASTA files. The results of these annotated
nucleotide sequences were automatically loaded as input into
Diamond, which searched the GenBank nr database for
taxonomical classification and the KEGG database for functional
annotation. The term “Nitrilase” was searched using the grep script
in tab-separated value files. KEGG IDs and contig IDs were noted for

FIGURE 1
Mechanism of nitrilase, nitrile hydratase, and amidase.
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identifying taxonomy and extracting the nitrilase nucleotide and
amino acid sequences.

Sequence alignment and phylogenetic
analysis

The identified amino acid sequence in FASTA format was
uploaded in BlastP (Johnson et al., 2008) and ran against the
NCBI database of protein reference sequences to find similar
sequences. Similar sequences were chosen based on the >50%
identity of the matches with the query sequence. These sequences
above the threshold were downloaded in FASTA format in a single
file along with the query sequence. This FASTA file was uploaded
using MEGA 11 software (Tamura et al., 2021) and was aligned
using Clustal Omega. The evolutionary history of these sequences
was created using the neighbour-joining method by selecting the
phylogeny tab in the software application.

Conserved region analysis

The amino acid sequence in FASTA format was submitted with the
default parameters in theNCBI–CDD (Marchler-Bauer et al., 2017) and
InterProScan (Quevillon et al., 2005) databases to predict the
homologous superfamily, conserved domain, conserved region, Gene
Ontology, and NCBI-CDD from the query sequence of amino acids.

Physiochemical properties of nitrilase
enzymes

The amino acid sequence was pasted in FASTA format into a
query box of the ExPASy’s ProtParam (Gasteiger et al., 2003) server
and submitted to identify the physical and chemical properties of the
protein sequence. The server page quantifies the number of amino
acids, the molecular weight, the number of negatively charged
residues, the instability index, the theoretical pI, and the grand
average of hydropathicity.

Structure prediction

The secondary structure was predicted by uploading an amino
acid sequence in FASTA format to the NetSurfP tool with the default
parameters (Høie et al., 2022). The amino acid sequences were used
in the software package Chimera X version 1.4 (Pettersen et al., 2021;
Goddard et al., 2018) to perform the AlphaFold2 tool for 3D
structure prediction. This was predicted in the software
programme by choosing the AlphaFold2 option from the
Structure Prediction tab under Tools. The amino acid sequence
was uploaded in the query box and submitted with the default
parameters. The predicted tertiary structure was uploaded into the
PROCHECK tool (Laskowski et al., 1993) to create the
Ramachandran plot, which checks to validate the stereochemical
quality of the protein structure.

Molecular dynamic simulation

The predicted structure was submitted for molecular
dynamics simulation on the WebGRO server (Bekker et al.,
1993) to check its stability. Using the GROMOS96 43a1 force
field settings, the complex system was solvated using a simple
point charge (SPC) water model in a triclinic periodic box. The
complex system was maintained at a salt concentration of 0.15 M
by adding a suitable amount of Na+ and Cl− counterions. Using
the steepest descent approach, energy reduction was achieved in
5,000 steps. Constant amount, volume temperature (NVT/NPT),
and pressure equilibrium types were used. The temperature was
set to 300 K, and the pressure was set to 1.0 bar. The simulation
time was 100 ns and was conducted with 1,000 frames per
simulation. Finally, the simulation result was analysed based
on the time-dependent root mean square deviation (RMSD) of
the given structure and the root mean square fluctuation (RMSF)
of each residue.

Protein and ligand preparation

The homepage of the Protein Data Bank (PDB) (Burley et al.,
2017) was searched for the 3D nitrilase protein structure. X-ray
diffraction was selected using the filter option, and the crystal
structure of nitrilase proteins was retrieved in PDB format.
Nitriles were downloaded from the PubChem database (Kim
et al., 2020) in SDF format. The ligands were converted to the
PDB format using PyMOL (Schrödinger, 2000), and protein and
ligand formats were changed to the PDBQT format for molecular
docking using the AutoDockTools-1.5.7 tool.

Active site predictions

The protein structures’ active site residues were predicted by
uploading the PDB files of nitrilase proteins in the computed atlas of
the protein surface topography −3.0 (CASTp) server (Tian et al.,
2018). The alpha shape theory’s pocket algorithm calculated the
active pockets or binding sites, with large pockets with high volumes
likely to contain enzyme-binding sites for the interaction between
proteins and ligands.

Molecular docking analysis

In AutoDockTools-1.5.7, the protein structures in the PDB
format were used as input to create a grid file by placing a grid
box in the protein’s predicted active site for the binding of ligand
molecules. The inputs of a protein, a ligand in PDBQT format, and a
grid file in text format were used to perform a molecular docking
analysis in AutoDock Vina (Eberhardt et al., 2021) with the default
parameters. The output was the protein–ligand complex in PDB
format. The complex in PDB format was used to study the
interaction of amino acids with ligands using the LigPlot + tool
(Laskowski and Swindells, 2011).
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Results

Metagenomic data analysis

FASTQC andMULTIQC determined the paired-end reads to be
within the Phred score value of 36, considering that the raw reads to
be of standard quality (Bin Kwong et al., 2017). The quality reads of
150-bp length from 32 GB of data were processed for assembly. The
statistics of the assembled contigs were evaluated using the QUAST
tool, resulting in 226 contigs with >50,000 bp, 1,240 contigs
with >25,000 bp, 5,265 contigs with >10,000 bp, 11,596 contigs
with >5000 bp, and 73,144 contigs with >1000 bp.

Taxonomical and functional findings

The phyla observed in significant numbers belong to
Proteobacteria (76%), Actinobacteria (8%), Firmicutes (8%),
Spirochaetes (2%), Bacteroidetes (1.5%), Chloroflexi (0.8%),
Planctomycetes (0.5%), Cyanobacteria (0.2%), [Thermi] (0.1%),
Fusobacteria (0.1%), and Acidobacteria (0.1%). Using “grep,” the
results from SqueezeMeta were searched for nitrilase, and then
organisms involved in nitrilase enzymes were identified. In total,
27 organisms were identified, of which four were from unclassified
microorganisms and belonged to the KEGG ID K01501 with the
metabolic pathway number EC:3.5.5.1. For the novel protein
approach, long amino acid sequences and unclassified
microorganisms were preferred. A single amino acid sequence of
261 base pairs encoding an unclassified Alphaproteobacteria was
selected.

Sequence alignment and phylogenetic
analysis

Using BlastP, the target protein sequence was compared to the
NCBI database of protein reference sequences. Eight sequences
above the threshold were downloaded from NCBI-BLAST, and a
phylogenetic tree was built along with the identified nitrilase
sequence using the MEGA11 tool. Figure 2 shows the multiple
sequence alignment of all the sequences. The branch lengths marked
next to the branches on the tree are shown to scale and are in the
same units as the evolutionary distances, which are used to estimate
the phylogenetic tree (Figure 3). The scale value of 0.050 shows the
genetic change between the protein sequences. The branch of the

nitrilase coal metagenome is the longest, with a length of 0.30, and is
therefore known to have greater genetic change than other protein
sequences. The software application calculated evolutionary
distances using the Poisson correction method and amino acid
substitutions per site. This analysis involved nine protein
sequences. There were a total of 309 positions in the final data
set, and 139 residues were conserved among the protein sequences.

Conserved region and domain findings

According to the analysis of the InterProScan database and
NCBI-CDD results, a carbon–nitrogen hydrolase domain was found
in the 4–19 amino acid position in the protein sequence, indicating it
to be a member of the nitrilase superfamily. InterProScan classifies
three domains: cellular component, molecular function, and
biological process. The predicted biological process for the
identified protein is involved in the metabolic process of the
nitrogen compounds (GO: 0006807), and the molecular function
is involved in catalytic activity (GO:0003824). Based on the
unclassification, amino acid sequence length, conserved region,
and domain analysis, it is considered to be a novel nitrilase enzyme.

Physiochemical characteristics of amino
acid sequences

Using the ProtParam tool, the physiochemical characteristics
of the novel protein sequence were calculated. The compositions
of the amino acids are shown in Figure 4. The result shows that
the negatively charged aspartic acid and glutamic acid were
higher than the positively charged arginine and lysine. The
protein has an acidic nature because of its 4.86 isoelectric
points. The total number of atoms is around 4,010, including
1,275 carbon, 1,990 hydrogen, 354 nitrogen, 385 oxygen, and
6 sulphur atoms. Proteins with a GRAVY score below zero are
hydrophilic, while proteins with a GRAVY score above zero are
hydrophobic. The novel protein has a GRAVY value of −0.126,
which indicates that the protein is inherently hydrophilic. The
protein has an instability index of 53.02, which indicates that it is
unstable because a protein with an instability index of 40 or less
was stable in the test tube. The sequence of amino acids was also
used to estimate the protein’s half-life. For yeast cells, the half-life
period is > 20 h (in vivo), and for E. coli, the half-life period
is >10 h (in vivo) (Gasteiger et al., 2005).

FIGURE 2
Multiple sequence alignment of the selected eight sequences with the identified novel nitrilase sequence. The highlighted residues are the
conserved amino acid sequences. The identified nitrilase sequence from the coal metagenome showed similarity to the 39th site of the other selected
protein sequences.
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Structure predictions

The results from the NetSurfP version 2.0 server revealed that
the nitrilase protein has 10 helices, 16 strands, and 23 coils in its
secondary structure (Figure 5).

Using the amino acid sequence with the default parameters,
the nitrilase protein structure was predicted in AlphaFold2

(Figure 6). In AlphaFold2, the predicted local distance
difference test (pLDDT) calculates the mean confidence value
ranging from 0 to 100. Here, the predicted nitrilase’s mean
pLDDT score was 95.8. A mean confidence value of 90 and
above is said to agree with an experimental structure (Jumper
et al., 2021). The Ramachandran plot was utilised in the
PROCHECK tool, and the modelled protein was evaluated and

FIGURE 3
Phylogenetic tree showing the evolutionary relationship between nitrilase from the coal metagenome and other eight selected protein sequences
from the NCBI database.

FIGURE 4
Amino acid compositions of the nitrilase enzyme.
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validated (Supplementary Material S1). In the model, 92.7% of
residues were found in the most favoured regions (A, B, and L),
6.8% in the additional allowed regions (a, b, l, and p), 0.5% in the
generously allowed regions (~a, ~b, ~l, and ~p), and no residues
in the disallowed regions. As a result, the percentage distribution
of amino acid residues revealed that the predicted nitrilase
structure is of high quality.

Molecular dynamic simulation

To analyse the flexibility and stability of the best-predicted
protein structure provided by AlphaFold2, a time-dependent
molecular dynamic simulation was conducted at 100 ns
employing the GROMACS forcefield on the WebGRO server.
The RMSD value of the nitrilase protein structure showed

FIGURE 5
Prediction of nitrilase secondary structure.

FIGURE 6
Prediction of a novel nitrilase structure using AlphaFold2.
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equilibrium with an average of 0.2 nm. The largest oscillation in
RMSD was observed in the 0–10 ns range. Afterwards, the 10-ns
RMSD value was stabilised up to 100 ns, with an average value of
0.5 nm (Figure 7). The RMSF value was then assessed to analyse the
structural flexibility of the atoms in the backbone of the proteins.
The obtained data showed that there were fluctuations in the
residues present in the loops of the protein structure (RMSF ≤
0.5 nm), and this indicates that the complex was flexible in these
loop regions (Supplementary Material S2). The conformational
changes in the loop structure caused by the flexibility have no
impact on the protein structure (Li et al., 2011).

Protein and ligand preparation

The predicted nitrilase protein and the retrieved crystal
structures of 3WUY (Zhang et al., 2014), 3IW3, and 3IVZ
(Raczynska et al., 2011) were used to check the binding scores
individually by molecular docking analysis and compared. The
three structures were determined by X-ray diffraction analysis.
The protein structure (3WUY), which was identified from

Synechocystis sp. PCC 6803 substr. Kazusa, comprises
349 amino acids and has a resolution of 3.10 Å. The other two
protein structures, 3IW3 and 3IVZ, were identified in Pyrococcus
abyssi GE5 and have a length of 262 amino acid sequences with
resolutions of 1.80 Å and 1.57 Å, respectively. For the
protein–ligand interaction study, nitriles such as acrylonitrile,
benzonitrile, dichlobenil, fumaronitrile, malanonitrile, and
succinonitrile were retrieved. Proteins and ligand molecules
were converted to the PDBQT format and were ready for
docking analysis.

Active site predictions

The CASTp server identified the active site for the predicted
nitrilase protein and the crystal structure of the proteins. The
surface area measurement and cavity volumes were predicted.
For the predicted protein, the area of the active site was
677.110 Å2, and the volume was 645.046 Å3. The area of the
active site for 3WUY, 3IW3, and 3IVZ was 983.426 Å2,
61.447 Å2, and 188.905 Å2 and the volume was 1,129.287 Å3,

FIGURE 7
Graphical representation of RMSD.
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31.456 Å3, and 60.553 Å3, respectively. All the pockets chosen for
the proteins have a high surface area and volume for the specific
enzyme-binding site (Barman et al., 2020).

Molecular docking analysis

Using AutoDockTools-1.5.7, a grid file was generated for all the
proteins. When the model overlapped with the template, an
acceptable range of RMSD was determined to be 2.0, which is
regarded as satisfactory docking (Castro-Alvarez et al., 2017).
The docking analysis was completed using AutoDock Vina, as

tabulated in Table 1. The docking results produced nine ligand-
binding poses, of which the one with the lowest RMSD (value 0) was
selected, indicating a true binding pose. The protein–ligand
interaction showed that these proteins’ docking scores are almost
similar when they bind to six different ligands.

The protein–ligand complex of the predicted nitrilase protein
was analysed to determine the nature of the interactions between the
amino acids and the ligands using LigPlot + (Figure 8).

Nitrile (C≡N) conversion involves a nucleophilic attack on the
electrophilic carbon (electrophilic) by the nucleophilic group
present in the side chain of amino acids in the active site,
resulting in the formation of carboxyl groups (COOH). Cysteine,
serine, threonine, tyrosine, glutamic acid, aspartic acid, lysine,
arginine, and histidine have nucleophilic R groups and can act as
nucleophilic donors. Arginine and tyrosine amino acids serve as
functional converters in benzonitrile and succinonitrile. Threonine
and glutamic acid play a functional role in the catalysis of
fumaronitrile and serine in malononitrile. The nucleophilic attack
on acrylonitrile and dichlobenil is mediated by histidine and
threonine, respectively.

Discussion

Microbial nitrilase, an enzyme of the nitrilase superfamily, is a
great option for numerous industrial applications and

TABLE 1 Docking scores of proteins binding with ligands.

Nitrile
Predicted nitrilase 3WUY 3IW3 3IVZ

Acrylonitrile −2.9 −3.2 −2.9 −3.5

Benzonitrile −4.9 −5.4 −5.0 −4.7

Dichlobenil −5.4 −5.9 −5.2 −4.9

Fumaronitrile −3.8 −3.6 −3.6 −3.3

Malononitrile −3.2 −3.4 −3.0 −3.1

Succinonitrile −3.6 −3.9 −3.4 −3.4

FIGURE 8
Amino acid interaction with nitrile ligands.
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bioremediation procedures. Functional metagenomics enabled the
identification of the novel nitrilase enzyme from environmental
sources, which represent a non-culturable source of the enzyme.
With the help of artificial intelligence and machine learning in
metagenomics, novel enzyme candidates can be identified for
potential use in bioremediation and therapeutics. Ligand
molecules are bound to this active site of the protein, and the
identification of their protein–ligand binding efficacy will lead to
drug discovery, which is beneficial for the advancement of green
chemistry.
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Familial hypercholesterolemia (FH) is a globally underdiagnosed genetic condition
associated with premature cardiovascular death. The genetic etiology data on
Arab FH patients is scarce. Therefore, this study aimed to identify the genetic basis
of FH in a Saudi family using whole exome sequencing (WES) and
multidimensional bioinformatic analysis. Our WES findings revealed a rare
heterozygous gain-of-function variant (R496W) in the exon 9 of the PCSK9
gene as a causal factor for FH in this family. This variant was absent in healthy
relatives of the proband and 200 healthy normolipidemic controls from Saudi
Arabia. Furthermore, this variant has not been previously reported in various
regional and global population genomic variant databases. Interestingly, this
variant is classified as “likely pathogenic" (PP5) based on the variant
interpretation guidelines of the American College of Medical Genetics (ACMG).
Computational functional characterization suggested that this variant could
destabilize the native PCSK9 protein and alter its secondary and tertiary
structural features. In addition, this variant was predicted to negatively
influence its ligand-binding ability with LDLR and Alirocumab antibody
molecules. This rare PCSK9 (R496W) variant is likely to expand our
understanding of the genetic basis of FH in Saudi Arabia. This study also
provides computational structural insights into the genotype-protein
phenotype relationship of PCSK9 pathogenic variants and contributes to the
development of personalized medicine for FH patients in the future.
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1 Introduction

Familial hypercholesterolemia (FH) is a globally
underdiagnosed genetic condition characterized by life-long
elevation of low-density lipoprotein cholesterol (LDL-C) in
plasma (≥190 mg/dL) (Alhabib et al., 2021). FH results from
inherited pathogenic mutations in genes that regulate hepatic
LDL-C clearance and cholesterol metabolism (Mlinaric et al.,
2020; Alhabib et al., 2021). FH begins to manifest at birth, and if
untreated, the chronic elevation of lipids in the blood leads to plaque
formation in arterial walls, subsequently accelerating atherosclerosis
and increasing the risk of developing premature coronary artery
disease (Alallaf et al., 2017; Hooper et al., 2018). Early detection and
therapeutic intervention are critical to delay or prevent
cardiovascular morbidity and mortality in patients with FH
(Blanco-Vaca et al., 2018).

Majority of clinically diagnosed FH patients carry autosomal
dominant loss-of-function (LOF) mutations in the low-density
lipoprotein receptor (LDLR) and apolipoprotein-B (APOB) genes
or gain-of-function (GOF) mutations in the proprotein convertase
subtilisin/kexin type 9 (PCSK9) gene (Alallaf et al., 2017; Awan et al.,
2019; Al-Waili et al., 2020). A rare form of autosomal recessive FH
caused by loss-of-function (LOF) mutations in the low-density
lipoprotein receptor adaptor protein 1 (LDLRAP1) gene has been
reported (Paththinige et al., 2017; Chan et al., 2019). Interestingly,
most of the mutations occur in LDLR (80%), whereas only 5% occur
in APOB and 3% occur in PCSK9 (Alallaf et al., 2017). Recent
evidence supports the presence of other genes with numerous
pathogenic variants, with either a causative or contributory role
in FH pathogenesis. These genes include adenosine triphosphate-
binding cassette transporters G5 and G8 (ABCG5 and ABCG8),
lipase A (LIPA), apolipoprotein E (APOE), signal transducing
adaptor family member 1 (STAP1), cholesteryl ester transfer
protein (CETP), and sterol regulatory element binding
transcription factor 2 (SREBP2) (de Grooth et al., 2004;
Paththinige et al., 2017; Blanco-Vaca et al., 2018; Ibrahim et al.,
2021).

The current global prevalence of FH is estimated to be 1:300
(Beheshti et al., 2020), and its occurrence among founder
populations and specific ethnicities is even higher (Alallaf et al.,
2017; Sturm et al., 2018). This is particularly true for genetically
isolated populations, such as in Saudi Arabia, where the high rate of
consanguineous marriage plays a significant role in the higher
incidence of genetic disorders within the population (Alallaf
et al., 2017; Awan et al., 2019a). As a culturally distinct
population, Saudi Arabia has been reported to have a 3-fold
higher prevalence of FH (Awan et al., 2022). However, genetic
data on FH, particularly founder FH mutations, among Saudi
Arabian patients is scarce (Sturm et al., 2018; Al-Allaf et al.,
2017; Alallaf et al., 2017; Awan et al., 2021b). In recent years, few
whole exome sequencing (WES) and target gene panel testing-based
studies have reported a few rare variants in LDLR (Awan et al., 2022;
Chan et al., 2018; Beheshti et al., 2020) and APOB (Banaganapalli

et al., 2017; Awan et al., 2021a)genes, however, the role of
PCSK9 gene variants in Saudi FH patients is not yet reported.

Molecular-level understanding and functional characterization
of the effect of variants on candidate proteins are essential for the
development of suitable therapeutic strategies (Banaganapalli et al.,
2017). However, the experimental characterization of every variant
is a time-consuming, expensive, and complex process that requires a
variety of skills and infrastructure. However, the expansion of
computational biology applications and artificial intelligence
algorithms in genomics has led to the development of various
web servers and software that can perform better molecular,
structural, and functional analyses of plausible disease-causing
genes and variants within a short time with limited resources
(Awan et al., 2021a). For example, graph-based algorithms have
been shown to aid in disease-causative gene selection by removing
irrelevant and redundant genes using different criteria (Harling-Lee
et al., 2022) (Saberi-Movahed et al., 2022). Although numerous FH-
causative LDLR, APOB, and PCSK9 variants have been reported in
the literature, detailed bioinformatics-based genotype-protein
phenotype characterization is lacking (Awan et al., 2019a;
Meshkov et al., 2021; Guo et al., 2020a).

The main goal of this study is to identify the pathogenic variant
causing FH in Saudi families through whole exome sequencing.
Moreover, this study also aims to utilize computational biology
methods to understand the relationship between variant
macromolecular structures and their function, and role in FH.

2 Materials and methods

2.1 Recruitment of FH patients and their
families

In this study, a Saudi Arabian family was clinically examined
in the dyslipidemia clinic at King Abdulaziz University Hospital
(KAUH) using the combined Simon Broome Register and the
Dutch Lipid Clinic Network (DLCN) criteria for FH diagnosis.
The family was then referred for molecular testing. This research
work was approved by the Institutional Research Ethics
Committee. All participants analyzed in this study gave their
written and informed consent after briefing them about the
study design, potential risks of any discomfort, and benefits.
After careful interviews with the family members, collected a
detailed family history of FH and other cardiovascular
abnormalities. Plasma lipid profile data (LDL-C, high-density
lipoprotein cholesterol (HDL-C), triglycerides, and total
cholesterol) of the family were collected from health records.
For molecular testing, approximately 5 mL (ml) of venous blood
samples from whole family and 200 Saudi control participants
were collected. All control subjects had a normal lipid profile
(triglycerides <1.70 mmol/L, total cholesterol <5 mmol/L, HDL-
C 1.40–1.55 mmol/L, and LDL-C 2.50–4.11 mmol/L) as per their
health records. They were recruited after thoroughly inquiring
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about their clinical and family history during personal
interviews.

2.2 Molecular genetic analysis

2.2.1 DNA isolation
DNA (deoxyribonucleic acid) was isolated from white blood

cells of the peripheral blood samples following the manufacturer’s
protocol (Haven Scientific DNAbler-Blood Kit), and then the purity
and concentration of DNA based on optical density ratios of 260/
230 and 260/280 were assessed using Nanodrop (DeNovix DS-11
Series) Spectrophotometer.

2.2.2 Whole exome sequencing (WES)
In brief, genomic DNA (100 ng/μl) was used to prepare DNA

libraries (Ion AmpliSeq™ Library Kit 2.0), which were sequenced
on the Ion GeneStudio™ S5 System with 30X coverage. All raw
sequence reads were aligned against the human genome reference
(GRC38, NCBI) using the Torrent Suite Software 5.4. Finally, a
variant caller plug-in is used for variant calling. Then, the output
data was filtered with minor allele frequency (MAF) = < 0.01 in
global databases, such as the genome aggregation database
(gnomAD), 1,000 genomes, and searched in local databases
such as the Greater Middle Eastern Genome (GME) and the
King Abdullah International Medical Research Center
(KAIMRC) Genome Database for Arab population frequencies.
Variants with Phred scores of >20 were selected for analysis
(Alves-Bezerra and Cohen, 2017; Bener and Mohammad, 2017;
Gaboon et al., 2020; Kamar et al., 2021) (Supplementary Figure
S1). From this list, heterozygous variants in the coding regions of
known FH causative genes were retained for downstream
analyses.

2.2.3 Variant validation and segregation analysis
using dideoxy sequencing method

The WES identified a potential FH variant which was further
validated using the deoxy—Sanger sequencing method. In this
context, oligonucleotide primer sets (forward:5′-
TGTTCTTTAAGCCCTCCTCTC-3′ and reverse:5′-
AGAGCTGGAGTCTGGAGGAT-3′) spanning at least 100 bp
upstream and downstream of the variant location were designed
using the Primer-BLAST website hosted by the National Center for
Biotechnology Information (NBCI) (https://www.ncbi.nlm.nih.gov/
tools/primer-blast/). These primers were tested using the PCR
primer stats tool (Supplementary Table S1) (https://www.
bioinformatics.org/sms2/pcr_primer_stats.html) to assess the
melting temperature (>50C), guanine-cytosine (GC) ratio
(>40%), primer length (18–22 bp), self-annealing, and hairpin
loop formation parameters. The target gene region was amplified
by polymerase chain reaction (PCR) (Veriti™ 96-Well Thermal
Cycler, Applied Biosystems, United States) and bidirectionally
sequenced using the Sanger method (Applied Biosystems
SeqStudio Genetic Analyzer) with both forward and reverse
primers. To identify and annotate the variant position and
nature, the generated sample sequences were aligned against the
reference candidate gene sequence using the BioEdit
7.2 computational program. Based on the sequencing results, we

were able to determine variant segregation patterns among the
family members and control subjects (Awan et al., 2022).

2.3 Bioinformatic analysis of FH variant

2.3.1 Sequence based annotation
Variant pathogenicity was determined based on the prediction

scores of SIFT (Sorting Intolerant from Tolerant), PolyPhen2
(Polymorphism Phenotyping), and Loss-of-Function Tool
(loFtool) computational tools. In this context, we entered query
variant details such as reference mRNA sequence or nucleotide
sequence position in the Variant Effect Predictor (VEP) tool hosted
on the Ensembl web server. From the VEP output, we selected the
prediction scores of the SIFT, PolyPhen-2, and loFtools. In addition,
the variant was queried on the Franklin webserver (https://franklin.
genoox.com/clinical-db/home) to classify it based on the ACMG
criteria with the existing population, computational, functional,
segregation, de novo, and allelic data (Harrison et al., 2019).

2.3.2 Structure based annotations
2.3.2.1 3D protein modeling

The crystal structure of PCSK9 (PDB code 2P4E, resolution 1.98)
was initially obtained for molecular modeling from the Protein Data
Bank (PDB). The Swiss model server was used to build mutant models
using the PCSK9 crystal structure as a template, and the quality of the
generatedmodel was assessed using the global model quality estimation
(GMQE) score. In addition, an artificial intelligence program named
AlphaFold generated 3D structure was used to improve the accuracy
and dependability of the protein structure predictions.

AlphaFold, a DeepMind advanced deep learning system,
predicts protein folding and generates accurate 3D protein
structure models by combining deep neural networks and unique
computational approaches. The AlphaFold models were compared
to the PCSK9 crystal structure and mutant models created with the
Swiss model server. To evaluate the stereochemical quality of the
wild-type andmutant models, we used multiple programs, including
Procheck, Verify3D, and ERRAT (https://saves.mbi.ucla.edu/), as
reported by Laskowski et al. (1996). Additionally, the altered models
were improved using Swiss PDB Viewer 3.5 and energy
minimization (steepest descent). Finally, using PyMOL software,
all of the created protein models, including those generated by
AlphaFold, were displayed and analyzed (Grell et al., 2006).

2.3.2.2 Secondary structure and protein stability analysis
The secondary structures of wild-type and mutant proteins were

generated using the PDBsum web server with amino acid coordinates as
inputs to analyze the differences in their secondary structures, such as α-
helices, β-pleated sheets, and loops. The impact of the genetic variant on
the stability of the corresponding protein was analyzed using the Multi-
AgEnt Stability pRedictiOn (MAESTRO) web server by providing 3D
structures of both native and variant protein forms (Laimer et al., 2015;
Awan et al., 2021a).

2.3.2.3 Molecular docking with LDLR and monoclonal
antibody

The ClusPro server, which relies on the Fast Fourier Transform
(FFT) algorithm-based docking program (PIPER16) (Kozakov et al.,
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2006), was used to performmolecular docking between LDLR (PDB
ID: 3P5B) and the query protein. This docking step provides ten
candidate models for both proteins (wildtype and mutant), with
cluster scores ranging from 0 to 9 as the best values, ranking them
from the heaviest “0″cluster size to the lightest “9"(Kozakov et al.,
2017; Vajda et al., 2017; Desta et al., 2020). For antibody docking,
Alirocumab (CID 88214187), a fully human monoclonal antibody,
was used to performmolecular docking with query PCKS9, in both
native and mutant conditions, using the DockThor webserver, the
blind docking approach with grid centers on the x, y, and z-axes of
37.42, 24.71, and 34.51, respectively, with a maximum grid size of
40 for the three-dimensional grid (Reyes-Soffer et al., 2017). This
web server relies on phenotypic crowding-based multiple solution
steady-state genetic algorithms that adhere to the following
parameters: 24 docking runs, 1,000,000 evaluations per docking
run, a population of 1,000 individuals, and a maximum of
100 leaders on each docking procedure. The affinity of the
interaction between the query protein and ligand molecules was
represented in the form of a total energy (Etotal) score that
calculates the sum of the van der Waals and electrostatic
potentials between the 1–4 atom pairs (Guedes et al., 2021).

3 Results

3.1 Clinical presentation

A 59-year-old woman from the western region of Saudi Arabia
was clinically diagnosed with FH in 2018 with a positive family
history (II.2). She initially visited the KAUH emergency room with a
complaint of shortness of breath. She was diagnosed with coronary
ischemia and referred to the dyslipidemia clinic, where she was

treated for hypercholesterolemia, since her late twenties. She had
smoked for 30 years, had a corneal wheel in her eyes, and no
Achilles tendon growth was found (Figure 1). She was clinically
diagnosed as heterozygous FH (HeFH). Her (I.1) father had
premature coronary artery disease (CAD) and died in his 40s.
However, we could not access any of his clinical records. The
biochemical tests of the proband (II.2) show high levels of LDL-C
(225 mg/dl), total cholesterol (355.2 mg/dl), and triglycerides
(142.6 mg/dl), with a normal HDL-C level (66.6 mg/dl). She had
been on statins (atorvastatin/20 g per day), which inhibit
cholesterol synthesis, since her clinical diagnosis. No evidence
of xanthomas (cholesterol deposits) was found on her tendons,
elbows and knees. She is the mother of four daughters: III.2
(39 years old), III.4 (37 years old), III.6 (21 years old), and III.7
(16 years old). Despite having a high lipid profile, two sisters
(III.6 and III.7) refused genetic testing due to privacy concerns.
Furthermore, we could not test the offspring of III.2 (IV.1 and
IV.2), III.4 (IV.3, IV.4, and IV.5), and III.6 (IV.6, IV.7, and IV.8)
because of the lack of interest from those families. The abnormal
plasma lipid profiles of III.6 and III.7 suggest that they are likely to
have familial hypercholesterolemia (FH). They may have inherited
the disease from their mother, II.2, in an autosomal dominant
manner. However, this family is lost to clinical follow-up; hence,
we could not ascertain our clinical assumptions and their current
health statuses.

3.2 Genetic analysis

3.2.1 Whole exome sequence (WES) results
The exome sequencing of the proband generated

approximately 67,610 variants, of which only approximately

FIGURE 1
Pedigree of a four-generation Saudi family with a clinically diagnosed FH patient. The arrow indicates the index case, which was screened by both
whole exome sequencing and sanger sequencing, while II.1, III.2, and III.4 were screened by the sanger sequencing method.
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20,202 were localized in the coding region. These variants were
filtered based on: (i) mapping to known FH causative genes (LDLR,
APOB, PCSK9, LDLRAP1, APOE, ABCG5, ABCG8, and LIPA); (ii)
zygosity; (iii) minor allele frequency of less than 1% (MAF <0.01)
in the global population databases; and (iv) Phred score of >20.
Based on the filtering criteria mentioned above, we identified a rare
heterozygous missense variant at c.1486C>T (rs374603772) in the
PCSK9 gene in exon 9, causing a substitution of the amino acid
residue R toW at the 496th position in the protein. In the gnomAD
database, the global MAF of this variant was 0.00004
(12 heterozygotes of 139,471 individuals). In South Asian
populations MAF is 0.0002 (8/15,254), and 0.00003 (4/63,319)
in Europeans (non-Finnish). Surprisingly, this variant has not yet
been reported in other global populations. Additionally, this
variant was not detected in the 9497 exomes of GME or the
1,563 exomes of the KAIMRC database, the majority of them
Arab nationals, if not Saudi Arabians.

3.2.2 Sanger sequencing results
The Sanger sequencing results of the family confirmed that the

proband (II.2) was a heterozygous carrier of the c.1486C>T variant,
but none of the screened family members (II.1, III.2, and III.4), nor
the 200 healthy control samples had this variant (Figure 2). We
could not confirm the variant segregation pattern in this family
because the rest of the family members refused to participate in this
study, although two of the proband’s daughters (III.6 and III.7) had
abnormal lipid profile that fulfilled the laboratory test diagnostic
criteria for FH.

3.2.3 Genotype-phenotype correlations
From the biochemical and genetic data mentioned in Table 1, we

can observe that individuals with the c.1486C/T genotype (II.2) have
significantly elevated cholesterol, triglycerides, and LDL-C levels
compared to individuals with the c.1486C/C genotype (II.1, III.2,
and III.4). This suggests that the c.1486C/T genotype is associated

FIGURE 2
The sequence analysis of PCSK9, c.1486C>T variant. (A). The genotypes and the chromatograms of the screened family members using sanger
sequencing method, (B). Pathogenicity prediction scores for PCSK9 variant in Franklin server by ACMG Classification (https://franklin.genoox.com/
clinical-db/home) showing the likely pathogenic prediction under PP5 classification.
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with a more severe lipid profile in the proband. However, further
analysis and larger sample sizes are needed to draw more definitive
conclusions about the genotype-phenotype correlation.

3.3 Bioinformatic analysis

3.3.1 Pathogenicity prediction
In our study, we utilized two widely used computational tools,

SIFT and PolyPhen2, to assess the potential impact of the
c.1486C>T variant on protein function. SIFT predicts the
tolerance of an amino acid substitution based on sequence
conservation, while PolyPhen2 predicts the potential
pathogenicity of a variant by considering multiple sequence and
structure-based features. The c.1486C>T variant was assigned a
SIFT prediction value of 0.08, which suggests that it is a tolerated
variant. On the other hand, PolyPhen2 assigned a prediction value of
0.798 to the variant, indicating a higher likelihood of being
deleterious. This discrepancy in the predictions suggests the need
for further evaluation and interpretation. In our whole-exome
analysis, we incorporated these SIFT and PolyPhen2 predictions
to prioritize and annotate variants. The predictions from these tools
provided valuable information regarding the potential functional
impact of the c.1486C>T variant. However, it is important to note
that computational predictions alone may not provide conclusive
evidence and require independent evaluation. According to the
ACMG guidelines, this variant is likely to be pathogenic under
the PP5 classification. PP5 criteria refer to pathogenic variants, that
require independent evaluation. This variant is extremely rare in the
GnomAD databases, but it has previously been reported in the
ClinVar and Uniprot databases with no supporting clinical evidence
(Harrison et al., 2019).

3.3.2 3D proteinmodeling and secondary structure
Procheck Ramachandran plot analysis of the wild-type and

mutant PCKS9 protein models showed that approximately 99.8%
and 99.4% of the amino acids fell in the allowed regions, while 0.2%
and 0.6% were in the disallowed regions, respectively. The overall
structural quality of the protein models was confirmed using the
ERRAT (Wild-type, 91.818; Mutant, 87.037) and Verify3D
(Wildtype, 95.5% A.A. 3D score of = 0.2; Mutant, 94.2% A.A. 3D

score of = 0.2) scores (Supplementary Figure S2; Supplementary
Table S2). Secondary structure analysis was performed using the
PDBSUM web server on Swiss modeller built PCSK9 molecular
models (wild-type and mutant forms) with a GQMEN score
of >0.82. The native PCSK9 secondary structure is characterized
by 12 beta chains, 1 beta-alpha-beta unit, 6 beta hairpins, 9 beta
bulges, 38 strands, 14 helices, 7 helix-helix interactions, 47 beta
tuns, 7 gamma turns, and 12 disulfide bonds. In comparison to the
native PCSK9, the R496W variant carrying protein has lost the
1 sheet and 1 helix-helix interaction but gained 2 beta hairpins,
3 beta bulges, 3 strands, 2 helices, 14 beta turns, and 3 gamma turns
(Table 2). These findings suggest that the R496W variant of
PCSK9 introduces structural alterations in the protein. The loss
of a beta sheet and helix-helix interaction indicates potential
disruptions in the overall protein folding and stability. On the
other hand, the gained beta hairpins, beta bulges, strands, helices,
beta turns, and gamma turns suggest that the mutation could
influence the local structural elements and potentially affect the
protein’s functional properties.

3.3.3 Protein stability
We analyzed the changes in the stability of the mutant PCKS9

protein using the MAESTRO webserver. This computational
program relies on statistical scoring functions (SSFs) and
different machine learning approaches to quantify the extent of
protein destabilization based on free energy values (ΔΔGpred).
ΔΔGpred values below 0.0 indicate a stable protein, whereas if
above 0.0 indicate an unstable protein. The ΔΔGpred value of
the R496W variant was −0.032 kcal/mol, suggesting that R-to-W
substitution may destabilize the PCSK9 protein. The confidence
estimation score (Cpred) of this prediction was 0.93. On a scale of
0.0–1.0, any Cpred score closer to 1 corresponds to a perfect
consensus of all prediction (support vector machines, artificial
neural networks, and multiple linear regression agents) agents.
(Laimer et al., 2015).

3.3.4 Molecular docking between PCSK9 and LDLR
The ClusPro software provided the cluster energy scores for ten

docking models of the two proteins complexes, incorporating LDLR
as the receptor and each of wildtype and mutant PCSK9 as ligands.
The resulting complex of wild-type PCSK9 and LDLR complex has

TABLE 1 Biochemical findings of FH in the index case and the family members.

Family
members

Genotype Cholesterol
(mg/dL)

HDL-C
(mg/dL)

Triglycerides
(mg/dL)

LDL-C
(mg/dL)

II.1C c.1486C/C 101.8

Reference:
below

200 mg/dL

25.4

Reference:
60 mg/dL or

above

158.7

Reference:
above

150 mg/dL

45

Reference:
below

100 mg/dL

II.2*C c.1486C/T 355.2 66.6 318 225

III.2C c.1486C/C 178.1 47.1 75.8 116

III. 4C c.1486C/C 188.6 67.1 55.8 140

III.6 - 219.2 47.17 32.5 272.4

III.7 - 296.7 51.58 97.5 243.32

Note: LDL-C: Low-density lipoprotein cholesterol, TC: total cholesterol, TG: triglycerides, HDL-C: High-density lipoprotein cholesterol. * Exome sequenced individuals.C Sanger sequenced

individuals.
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23 hydrogen bonds between LDLR and the wild-type PCSK9 protein.
The number of hydrogen bonds between LDLR and the mutant
PCSK9 protein was reduced to 15 (Supplementary Table S3). The
cluster energy value increased from −1,340.4 kJ/mol in the wildtype
to −1,214.6 kJ/mol in the mutant PCSK9-LDLR complex, when
focusing on the selected models (o), and the best candidate
docking models (Supplementary Table S3). The molecular
complexes of LDLR and PCKS9 were stabilized by the formation
of >20 hydrogen bonds at 3 bond distance.

The interaction between LDLR and PCSK9 is mediated by
specific amino acids. In the wild-type PCSK9-LDLR complex, key
amino acid interactions included Ser153(P)-Asp299, Leu298(L),
Ile154(P)-Leu298(L), Pro155(P)-Leu298(L), Asp238(P)-
Asn295(L), Ile369(P)-Asn301(L), Ser372(P)-Leu318(L),
Try374(P)-Leu318(Cys319, Pro320(L)), Cys375(P)-Leu318(L),
Thr377(P)-Asn309(Asp310, Cys308(L)), Cys378(P)-
Leu318(Val307, Cys308(L)), Phe379(P)-Val307(Cys308, Asn301,
His306(L)), and Val380(P)-His306(L). In the mutant PCSK9-
LDLR complex, the key amino acid interactions were found to be
Glu84(P)-Lys811(L), Ser89(P)-Gln242(L), Arg93(P)-Gln242(L),
Arg96(P)-Ser244(L), Arg104(P)-His769(L), Gly106(P)-Leu772(L),
Gln254(P)-His87(L), Val277(P)-Lys283(L), Arg476(P)-Phe801(L),
Pro479(P)-Asn812(L), Glu482(P)-Lys816(L), Gln554(P)-His837(L),
Gln555(P)-Glu835(L), Thr573(P)-Asp748, Thr749(L), and
His602(P)-Asp834(L).

These detailed amino acid interactions provide insights into the
specific residues involved in the interaction between LDLR and
PCSK9. The changes in hydrogen bonding and amino acid
interactions in the mutant PCSK9-LDLR complex compared to
the wild-type complex may have implications for the stability
and functionality of the complex.

3.3.5 Molecular docking with alirocumab
The DockThor webserver was used to perform molecular

docking between the antibody Alirocumab and the PCSK9
protein (wildtype and mutant). The protein-antibody docking
prediction values represented as total energy (Etotal), which is
the sum of the van der waals and electrostatic potential between
protein-ligand atom pairs and torsion term of the ligand (Santos
et al., 2020) (Guedes et al., 2021). The docking of wildtype PCSK9
protein and the Alirocumab complex had a total energy
of −64.497 kJ/mol (Etotal) with a score of −5.934 kJ/mol, while
the mutant-monoclonal antibody complex had a total energy
of −62.084 kJ/mol with a score of −6.839 kJ/mol (Table 3;
Supplementary Tables S4, S5).

4 Discussion

In this study, we detected a rare heterozygous c.1486C>T
p. (R496W) gain of function variant in the exon 9 of the
PCSK9 gene in the proband (II.2), which was not found in the
screened healthy family members or the 200 healthy
normolipidemic Saudi Arabian controls. The PCSK9 variants are
usually classified into 2 types: gain-of-function (GOF) and loss-of-
function (LOF), where the GOF variant causes a decrease in LDLR
on hepatocytes, leading to the phenotypes of FH, whereas the LOF is
involved in the low LDL-C levels that lower the risk of developing
coronary heart disease with no known adverse effects on human
health (Bayona et al., 2020; Guo et al., 2020b).

The c.1486C>T variant was predicted to be a likely pathogenetic
(PP5) mutation according to the ACMG guidelines. These
guidelines propose a five-tier categorization to evaluate the

TABLE 3 The docking scores calculated from the total energies of wildtype PCSK9, mutant PCSK9 docking with Alirocumab.

Name Score Total energy kJ/mol Van der waals energy kJ/mol Electrostatic energy kJ/mol

Wildtype PCSK9-Alirocumab −5.934 −64.49 0.84 −40.48

Mutant PCSK9-Alirocumab −6.839 −62.08 −5.27 −31.99

TABLE 2 The difference secondary structure elements SSE of the wildtype and mutant PCSK9 proteins.

Secondary structure elements SSE Wildtype PCSK9 protein Mutant PCSK9 protein

Total Total

Beta Sheets 12 10

Beta alpha beta units 1 1

Beta hairpins 6 7

Beta bulges 9 9

Strands 38 36

Helices 14 13

Helix-Helix interacts 7 5

Beta turns 47 57

Gamma turns 7 9

Disulphide bond 12 12
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Mendelian disease variants into “pathogenic" (P), “likely
pathogenic" (LP), “uncertain significance" (VUS), “likely benign"
(LB), and “benign" (B). This classification considers allele frequency
data, reputable sources, functional and computational data, case-
level data, and nature and location of the variants (Harrison et al.,
2019). The c.1486C>T variant was reported in FH patients from
Italy (Pisciotta et al., 2006), Japan (Ohta et al., 2016), Spain
(Ibarretxe et al., 2018), and Turkey (Eroğlu, 2018). All these
studies have performed detailed clinical characterization of the
c.1486C>T but did not report its functional impact on protein
structure and function.

Furthermore, our findings suggest that c.1486C>T is an FH
causative variant, as it was not found in Saudi and Middle Eastern
regional population genetic databases like GME and KAIMRC and
has a very low frequency of 12 het carriers in 139,471 exomes of the
gnomAD (Table 4). Eight of these carriers were from South Asia (of
15,254 exomes) and 4 among the non-Finnish Europeans (of
63,319 exomes).

PCSK9 is a proteolytic enzyme and a member of the proprotein
convertase family of serine proteases, that is mainly expressed in the
liver (Guo et al., 2020b). The GOF variant c.1486C>T (p.R496W) is
located in the C-terminal’s first domain, which is the second reported
domain with the highest GOF variants, as the majority of which are
mapped to the subtilisin-like catalytic region of the Peptidase
S8 domain, whereas the majority of LOF variants are in both
regions of the Peptidase S8 domain (Bayona et al., 2020).
Furthermore, variant c.1486C>T is a missense mutation that results
in the substitution of arginine (R), an amino acid with a positively
charged side chain, with tryptophan (W), a hydrophobic, aromatic side
chain, in codon 496, resulting in different secondary structure elements
(SSE), such as the absence of two beta sheets, two strands, one helix, and
two helix-helix interactions, while gaining one beta-hairpin and two
gamma turns. As a result, this mutation alters the folding pattern,

exhibiting tremendous conformational changes in the tertiary structure
by the absence of the protein’s two-chain structure (chain P-chain A)
into a malfunctioning protein with highly unstable PCSK9 (Shaik and
Banaganapalli, 2019; Awan et al., 2021a).

The role of the PCSK9 GOF variants in accumulating the
cholesterol in the plasma was first reported in 2003 (Abifadel
et al., 2003). It is responsible for the degradation of LDLR on the
cell membrane of the hepatocytes by binding to the extracellular
domain of LDLR (Awan et al., 2021b). Therefore, LDLR is a
transmembrane receptor that binds to circulating LDL-C to form
the LDLR-LDL-C complex. This complex is then internalized
through clathrin-coated pits into endosomes, where the LDLR
releases the LDL-C for degradation in the lysosomes and returns
to the cell membrane. The prevention of LDLR recycling and hepatic
LDL-C clearance by hepatocytes, and chronic elevation of LDL-C in
the plasma leads to plaque formation in arterial walls, accelerates
atherosclerosis, and eventually leads to the development of
premature CAD (McGowan et al., 2019; Seidah and Prat, 2021).

Molecular docking is the analysis of binding between biological
and chemical structures using computational tools that focus on
electrostatic potentials, physicochemical complementarity, and
binding energy and presents them as 3D models with the best-
predicted score. To compare the output of the binding of the mutant
PCSK9 with LDLR, molecular docking was performed between the
wild-type PCSK9 and LDLR as a reference. The lower energy was
produced by the docking process between PCSK9 and LDLR,
yielding ten candidate models (Figure 3). The cluster energy
score increased from −1,340.4 kJ/mol in the wildtype
to −1,214.6 kJ/mol in the mutant PCSK9-LDLR complex,
suggesting that the wildtype complex docked more effectively
than the mutant because low binding energies correlate with
higher binding affinity (Shaik and Banaganapalli, 2019; Desta
et al., 2020) (Figure 4).

TABLE 4 A list of FH causative PCSK9 variants reported from Middle Eastern countries.

No. Country Variant ID Chromosomal
location

Coding regions
change

Amino acid
change

FH
zygosity

Reference

1 Saudi
Arabia

- 1:55,512,313 c.517delC p.P173fs HeFH Al-Allaf et al. (2015)

2 rs509504 1:55,523,033 c.1026A>G p.Q342H HoFH

3 rs540796 1:55,524,197 c.1380A>G p.Y243C HoFH

4 rs562556 1:55,524,237 c.1420G>A p.V474I HoFH

5 - 1:55,529,113 c.1935delG p.L645fs HeFH

6 rs505151 1:55,529,187 c.2009G>A p.G670E HoFH

7 Tunisia rs505151 1:55,529,187 c.2009G>A p.G670E HoFH Alhababi and Zayed
(2018)

8 rs533273863 1: 55046643 c.520C>T p.P174S HeFH

9 - - c.1545T > G p.F515L HeFH Slimani et al. (2015)

10 rs72555377 1:55,039,880 c.65_66insGCTGCT p.L22_L23dup HeFH

11 Lebanon rs72555377 1:55,039,880 c.65_66insGCTGCT p.L22_L23dup HeFH Abifadel et al. (2009)

12 rs11591147 1: 55,039,447 c.137G>T pR46L HeFH Bamimore et al. (2015)

13 Oman rs562556 1: 55058564 c.1420G>A I474V HeFH Al-Waili et al. (2013)
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As previously stated, PCSK9 mutations that result in loss
play an important role in lowering LDL levels in the blood. As a
result, human monoclonal anti-PCSK9 antibodies have proven
effective in lowering LDL-C levels and atherosclerotic
cardiovascular disease (ASCVD) risk, particularly in

individuals with severe phenotypes or resistance to lipid-
lowering therapies (LLT). This was accomplished by binding
to PCSK9 in plasma and preventing it from binding with LDLR.
We performed molecular docking between both the wild type
and the mutant PCSK9 and Alirocumab, a known

FIGURE 3
Analysis of PCSK9 tertiary structure models. (A). The 3D protein model of the wildtype PCSK9 where R496 built by Swiss-Model, (B). The 3D protein
model of the mutant PCSK9 (496W), showing the drastic conformational changes, (C). Molecular docking of wildtype PCSK9 with LDLR, (D). Molecular
docking of mutant PCSK9 with LDLR.

Frontiers in Physiology frontiersin.org09

Shaik et al. 10.3389/fphys.2023.1204018

174

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1204018


PCSK9 inhibitor, to evaluate the change in the binding and the
effectiveness of the PCSK9 inhibitor against the mutant protein.
This scoring system is based on the sum of the van der Waals and
electrostatic potentials of PCSK9 binding to Alirocumab
(Dhankhar et al., 2020; Dhankhar et al., 2021; Dalal et al.,
2022; Kumari et al., 2022). The increase in docking scores
between mutant PCSK9 and Alirocumab showed a damaging
effect of variant c.1486C>T on the binding potential, which
decreases the Van der Waals energy, indicating molecules
moving apart. This study found that the c.1486C>T variant of
PCSK9 reduced the efficacy of alirocumab.

This study has few limitations. We could not recruit more
families with FH to assess the role of PCSK9 (R496W) as a
hotspot mutation among Saudi Arabs. However, given the rare
occurrence of PCSK9 variant-carrier FH families in any ethnic
population this seems to be an unrealistic limitation. Moreover,
we could not ascertain the biological impact of the PCSK9
(R496W) variant using in-vitro functional biology assays
because of the refusal of the participants to provide fresh
tissue samples. However, to complement this lacuna, we used
computational analysis as a primary functional characterization
tool before undertaking technically complicated, time-
consuming and expensive in vitro and in vivo methods.

In conclusion, this is the first c.1486C>T GOF variant
identified in FH patients from Saudi Arabia. This study
emphasizes the significance of genetic testing in identifying
rare or novel FH mutations in underrepresented populations,
which has the potential to reduce the burden of cardiovascular
disease (CVD) in risk-group countries. Furthermore, this
research provides comprehensive computational and
structural insights into the genotype-protein phenotype
correlation of the PCSK9 pathogenic variant with a
PCSK9 inhibitor monoclonal antibody.
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