Introduction: Many of the patients using ankle–foot orthoses (AFOs) experience poor fit, pain, discomfort, dislike of the aesthetics of the device, and excessive range of motion restrictions, which diminish the use of AFOs. Although 3D-printed ankle–foot orthoses (3D-AFOs) affect patient satisfaction and overall gait functions such as ankle moment, joint range of motion (ROM), and temporal-spatial parameters, the material properties and manufacturing process of 3D-AFOs are still diverse; the clinical effects of community ambulation using 3D-AFOs and satisfaction in patients with stroke are poorly understood.
Case description: Case 1: A 30-year-old man, with a history of right basal ganglia hemorrhage, presented with marked foot drop and genu recurvatum. Case 2: A 58-year-old man, with a history of multifocal scattered infarction, presented with an asymmetrical gait pattern due to abnormal pelvic movement. Case 3: A 47-year-old man, with a history of right putamen hemorrhage, presented with recent poor balance and a prominent asymmetrical gait pattern due to increased ankle spasticity and tremor. All patients could walk independently with AFOs.
Interventions and outcomes: Gait was assessed under three walking (even, uneven, and stair ascent/descent) and four AFO (no shoes, only shoes, shoes with AFOs, and shoes with 3D-AFOs) conditions. After 4 weeks of community ambulation training with 3D-AFO or AFO, the patients were followed up. Spatiotemporal parameters; joint kinematics; muscle efficiency; clinical evaluations including impairments, limitations, and participation; and patient satisfaction with wearing 3D-AFO were evaluated.
Results and conclusion: 3D-AFOs were suitable for community ambulation of patients with chronic stroke and effective on step length, stride width, symmetry, ankle range of motion, and muscle efficiency during even surface walking and stair ascent in patients with chronic stroke. The 4-week community ambulation training with 3D-AFOs did not promote patient participation; however, it increased ankle muscle strength, balance, gait symmetry, and gait endurance and reduced depression among patients with a history of stroke. The participants were satisfied with 3D-AFO's thinness, lightweight, comfortable feeling with wearing shoes, and gait adjustability.
Objective: To explore the effect of 12 weeks of Tai Chi on neuromuscular responses and postural control in elderly patients with sarcopenia.
Methods: One hundred and twenty-four elderly patients with sarcopenia from ZheJiang Hospital and surrounding communities were selected, however, 64 were later disqualified. Sixty elderly patients with sarcopenia were randomly assigned to the Tai Chi group (n = 30) and the control group (n = 30). Both groups received 45-min health education sessions once every 2 weeks for 12 weeks, and the Tai Chi group engaged in 40-min simplified eight-style Tai Chi exercise sessions 3 times per week for 12 weeks. Two assessors who had received professional training and were unaware of the intervention allocation assessed the subjects within 3 days prior to the intervention and within 3 days after completion of the intervention. They chose the unstable platform provided by the dynamic stability test module in ProKin 254 to evaluate the patient’s postural control ability. Meanwhile, surface EMG was utilized to assess the neuromuscular response during this period.
Results: After 12 weeks of intervention, the Tai Chi group showed a significant decrease in neuromuscular response times of the rectus femoris, semitendinosus, anterior tibialis, and gastrocnemius and overall stability index (OSI) compared to before the intervention (p < 0.05), while there was no significant difference in the control group for these indicators before and after intervention (p > 0.05). In addition, these indicators in the Tai Chi group were significantly lower than those in the control group (p < 0.05). The changes in neuromuscular response times of the rectus femoris, semitendinosus, anterior tibialis, and gastrocnemius were positively correlated with the changes in OSI (p < 0.05) in the Tai Chi group, but there were no significant correlations between changes in neuromuscular response times of the aforementioned muscles and changes in OSI in the control group (p < 0.05).
Conclusion: Twelve-weeks of Tai Chi exercise can improve the neuromuscular response of the lower extremities in elderly patients with sarcopenia, shorten their neuromuscular response time when balance is endangered, enhance their dynamic posture control ability, and ultimately reduce the risk of falls.
Background: We investigated the effects of brain-computer interface (BCI) combined with mental practice (MP) and occupational therapy (OT) on performance in activities of daily living (ADL) in stroke survivors.
Methods: Participants were randomized into two groups: experimental (n = 23, BCI controlling a hand exoskeleton combined with MP and OT) and control (n = 21, OT). Subjects were assessed with the functional independence measure (FIM), motor activity log (MAL), amount of use (MAL-AOM), and quality of movement (MAL-QOM). The box and blocks test (BBT) and the Jebsen hand functional test (JHFT) were used for the primary outcome of performance in ADL, while the Fugl-Meyer Assessment was used for the secondary outcome. Exoskeleton activation and the degree of motor imagery (measured as event-related desynchronization) were assessed in the experimental group. For the BCI, the EEG electrodes were placed on the regions of FC3, C3, CP3, FC4, C4, and CP4, according to the international 10–20 EEG system. The exoskeleton was placed on the affected hand. MP was based on functional tasks. OT consisted of ADL training, muscle mobilization, reaching tasks, manipulation and prehension, mirror therapy, and high-frequency therapeutic vibration. The protocol lasted 1 h, five times a week, for 2 weeks.
Results: There was a difference between baseline and post-intervention analysis for the experimental group in all evaluations: FIM (p = 0.001, d = 0.56), MAL-AOM (p = 0.001, d = 0.83), MAL-QOM (p = 0.006, d = 0.84), BBT (p = 0.004, d = 0.40), and JHFT (p = 0.001, d = 0.45). Within the experimental group, post-intervention improvements were detected in the degree of motor imagery (p < 0.001) and the amount of exoskeleton activations (p < 0.001). For the control group, differences were detected for MAL-AOM (p = 0.001, d = 0.72), MAL-QOM (p = 0.013, d = 0.50), and BBT (p = 0.005, d = 0.23). Notably, the effect sizes were larger for the experimental group. No differences were detected between groups at post-intervention.
Conclusion: BCI combined with MP and OT is a promising tool for promoting sensorimotor recovery of the upper limb and functional independence in subacute post-stroke survivors.