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Editorial on the Research Topic

Justified modeling frameworks and novel interpretations of ecological

and epidemiological systems

Nowadays, researchers have paid significant attention to developing new modeling

frameworks using differential equations combined with statistical tools and scientific

computations. The present Research Topic has invited researchers to submit their high-

quality and well-motivated contributions to modeling and analysis of ecological and

epidemiological processes.

Upon a thorough review of all the submitted manuscripts based on the novelty of the

contribution we present ten research articles in this article Research Topic. The accepted

articles can be categorized into three important subtopics: predator-prey dynamics, disease

modeling, and other biological processes. In particular, four articles focused on harvesting,

cannibalism, refuge, and foraging behavior in the context of various ecological interactions.

The remaining six articles explored dengue dynamics, controlling the spread of COVID-

19, preventing illness exposure in susceptible children from pneumonia, and developing

mechanisms for tissue repair. The main results of all these articles are discussed in more

detail below.

In the first sub topic, Panigoro et al. have proposed a fractional order predator-

prey system with two stages for predator species. The authors have assumed harvesting

in the prey species. The model has shown that a lower prey harvesting rate could

maintain the viability of the species. Moreover, an intermediate harvesting rate could

either maintain coexistence or lead to extinction, while an excessive harvesting rate causes

extinction of prey species following a saddle-node bifurcation. Meanwhile, Rayungsari et

al. have considered a fractional order Rosenzweig-MacArthur type predator prey model

incorporating cannibalism among predators. A consecutive Hopf bifurcation has appeared

with respect to the cannibalism as well as refuge parameters, leading to a bubble structure in

the bifurcation diagram.
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The environment is uncertain. This fact makes the parameters

in a model also so. With this consideration, Sukarsih et al. proposed

the well celebrated Rosenzweig-MacArthur system using fuzzy

theoretic framework for possibilistic uncertain parameters and

initial conditions. The authors studied the qualitative behavior of

the model using the fifth order Runge-Kutta method, which was

modified for the fuzzy system using the Zadeh extension principle.

This contribution uncovered that when the initial populations of

prey and predators are uncertain, the behavior of the fuzzy model

would be qualitatively the same as the crisp model. Prakash and

Vamsi have implemented a time optimal control for a predator-prey

system in continuous white noise and discontinuous Levy noise

modeling framework to understand the trade-off between quality

and quantity of additional food to predators.

In the second subtopic, Aldila et al. have used Quasi-Steady

State Approximation (QSSA) method in a SIR-UV vector-borne

disease model in order to make the complicated and coupled SIR-

UV system into a simple IR-model. This investigation potentially

revealed that dengue would periodically appear at least every year

in Jakarta. Another vector-borne disease model (Coffield Jr. et

al.), uncovers the dynamics of Chagas disease transmission in

neighbouring villages. They reported that the effects of human

travel and passive vector migration are unlikely to play a significant

role in the overall dynamics and in the number of human

infections. Hence, control strategies related to travel will also

unlikely yield meaningful benefit.

We have witnessed the dramatic loss of human life and

the collapse of the world economy due to COVID-19. The

COVID-19 patients faced more challenges when they had other

diseases prior to COVID-19 infection. Rois et al. proposed a

COVID-19 model with comorbidity to estimate cumulative cases

infected with COVID-19 from 1 November 2020 to 19 May

2021 in Indonesia. The number of COVID-19 infections can

reduce significantly by means of two optimal controls, namely

public education and increased medical care. In the same line,

Teklu and Terefe developed a new COVID-19 and syphilis co-

infection mathematical model with ten distinct classes of the

human population. The model analyses showed that the COVID-

19 and syphilis co-infection spread could be under control

whenever the basic reproduction number is less than unity.

They also demonstrated that the protections and treatments are

the two fundamental control aspects. Legesse et al. developed

a mathematical model to understand the impact of exclusive

versus inclusive nursing on baby mortalities and morbidities from

conception to 6 months. The main conclusion of this study is that

limiting pneumonia transmission to prevention alone during an

outbreak is the most cost-effective approach.

Finally, in the third sub section, Mulk et al. implemented

inverse finite element (FE) techniques and optimized algorithms

to examine the mechanical properties of PVA-C specimens. The

mechanism in designing and characterizing soft tissue materials is

a novel contribution in this research.

The Research Topic successfully presents genuine, recent, and

important results in modeling and analysis of ecological and

epidemiological processes. The results can be summarized as

follows Panigoro et al. contribution leads to interesting guidelines

in fishery management and biological conservation. The bubble

formation in the context of fractional predator-prey systems

(Rayungsari et al.) is also a new phenomenon. How biological-

interaction and stochastic environmental processes affect the

dynamics of predator-prey systems are nicely explained by Sukarsih

et al. and Prakash and Vamsi. As proposed, the articles in this

Research Topic accomplished either numerical simulation, case

studies, experimental data, or field observations to illustrate and

validate their theories, principles, and results (Aldila et al.; Rois

et al.; Teklu and Terefe; Legesse et al.; Coffield Jr. et al.). For

instance, combining mathematical models and real-data, Aldila et

al. concluded that dengue in Jakarta will periodically appear at least

every year. They suggested some action plans to control the disease.

Rois et al. and Teklu and Terefe formulated COVID-19 models

independently. They proposed some control tactics in reducing the

COVID-19 cases. All the contributions, along with mathematical,

statistical, and numerical tools, are able to explain new ecological

dynamics and suggest prudent disease control strategies.
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Dynamic analysis and optimal
control of COVID-19 with
comorbidity: A modeling study
of Indonesia
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and Chidozie W. Chukwu2

1Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya,

Indonesia, 2Department of Mathematics, Wake Forest University, Winston-Salem, NC, United States

Comorbidity is defined as the coexistence of two or more diseases in

a person at the same time. The mathematical analysis of the COVID-19

model with comorbidities presented includes model validation of cumulative

cases infected with COVID-19 from 1 November 2020 to 19 May 2021 in

Indonesia, followed by positivity and boundedness solutions, equilibrium point,

basic reproduction number (R0), and stability of the equilibrium point. A

sensitivity analysis was carried out to determine how the parameters a�ect

the spread. Disease-free equilibrium points are asymptotically stable locally

and globally if R0 < 1 and endemic equilibrium points exist, locally and

globally asymptotically stable if R0 > 1. In addition, this disease is endemic in

Indonesia, with R0 = 1.47. Furthermore, two optimal controls, namely public

education and increased medical care, are included in the model to determine

the best strategy to reduce the spread of the disease. Overall, the two control

measures were equally e�ective in suppressing the spread of the disease as

the number of COVID-19 infections was significantly reduced. Thus, it was

concluded that more attention should be paid to patients with COVID-19

with underlying comorbid conditions because the probability of being infected

with COVID-19 is higher and mortality in this population is much higher.

Finally, the combined control strategy is an optimal strategy that provides an

e�ective guarantee to protect the public from the COVID-19 infection based

on numerical simulations and cost evaluations.

KEYWORDS

COVID-19, comorbidity, stability, sensitivity analysis, optimal control, cost evaluation

1. Introduction

The COVID-19 virus was reported in the Wuhan-Hubei Province of China

in December 2019 and was spread rapidly to various parts of the world [1–

6]. Symptoms are usually mild and appear gradually. In general, the symptoms

of COVID-19 are fever, dry cough, and tiredness. In addition, there are other

symptoms such as chest pain and tenderness, nasal congestion, headache, conjunctivitis,

diarrhea, loss of sense of taste or smell, skin rash, or discoloration of the

fingers or toes [6]. The symptoms experienced are usually mild and appear

gradually. Furthermore, moderate and severe infection symptoms can occur in
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humans and appear gradually, such as having fever and

cough accompanied by difficulty in breathing or shortness of

breath, chest pain, and others [1, 6]. Individuals with previous

comorbidity (such as diabetes, lung, and heart disease) are

more likely to develop severe disease with stronger COVID-

19 symptoms than individuals who do not have a comorbidity

[7, 8]. In the case of COVID-19 comorbidity in Indonesia, 12

different diseases have been recorded, which range from the

most at risk to the least at risk, namely hypertension, diabetes

mellitus, heart, pregnancy, lung, kidney, immune disorders,

cancer, other respiratory disorders, asthma, tuberculosis, and

liver [9].

The first case in Indonesia was reported directly by

President Jokowi Widodo on 2 March 2020 and there were

as many as two people infected, namely a mother and

child suspected of contracting it from a Japanese citizen

[10]. Data from web [11], on 2 October 2020, to be

precise, indicate that Indonesia was ranked 23 out of 215

countries reported being infected with 295,499 confirmed

cases, 10,972 reported deaths, and 221,340 reported recoveries.

Meanwhile, according to data on 14 June 2021, Indonesia

was ranked 18 out of 222 countries reported being infected,

with 1,919,547 confirmed cases, 53,116 reported deaths, and

1,751,234 reported recoveries.

The increasing number of COVID-19 cases requires a

control strategy to control the COVID-19 outbreak. Control

technique isolation and individual quarantine are the most

efficient measures whenever a new outbreak occurs in a

region without a vaccine or therapy [12, 13]. Several appeals

or mitigations from WHO to control COVID-19 are social

distancing, use of masks in public places, and intensive contact

tracing (tracing) followed by quarantine of individuals who have

the potential to contract the disease, and isolation of infected

individuals in hospitals or independently [14]. Therefore, public

education plays an important role in controlling the outbreak

because it can convey information regarding how to prevent and

reduce the transmission of COVID-19.

Furthermore, it is necessary to use mathematical modeling

to determine the spread of COVID-19 infection and whether

the control measures are effective. WHO also acknowledges

that mathematical modeling can help health decision-makers

(doctors or health professionals) and policymakers make

decisions or find solutions (governments) [15]. The Susceptible-

Infected-Removed (SIR)model is a mathematical representation

of how diseases spread. The SIR model was first developed

in 1927 by Kermack and McKendrick, who established it as a

reference work and contributed significantly to the development

of the mathematical theory of disease transmission [16, 17].

Several studies are related to the spread of disease, for example,

research on the Coronavirus that caused SARS [18] and MERS

[19, 20].

Soewono [21] applied the SEIR model, which has four

subpopulations: susceptible (S), exposed (E), infected (I),

and recovered (R), to simulate the spread of COVID-19.

This model is an improvement on the SIR COVID-19

model. Furthermore, Das et al. [22] add a subpopulation

of C (infected with comorbidity), so that the population is

divided into five subpopulations, namely S, E, I, C, and

R. The comorbidity referred to in this study is a general

congenital disease, while research from Omame et al. [23] also

proposed a comorbidity COVID-19 model, Omame et al. model

coinfection with comorbidities (especially diabetes mellitus).

So, Omame et al. built a model by dividing the population

into eight subpopulations, namely susceptible (S), susceptible to

comorbidity (Sc), individuals infected with COVID-19 without

comorbidities (I), isolation and hospitalization for individuals

infected with COVID-19 without comorbidity (H), recovered

from COVID-19 but without comorbidity (R), infected with

COVID-19 and comorbidity (Ic), isolation and hospitalization

for those infected with COVID-19 and comorbidity ( Hc),

and recovered from COVID-19 but with comorbidity (Rc). In

another study, Jia et al. [24] by incorporating subpopulations of

isolation (H) and quarantine (Q), the model provided divides

the population into seven subpopulations, namely S, E, I, A,

Q, H, and R. The model is also based on the most recent

data from the WHO, indicating that susceptible individuals

must first be quarantined to stop the further spread. Research

on COVID-19 was also conducted by Prathumwan et al. [25]

by adding quarantine subpopulations (Q) and isolation (H)

as well so that the model constructed has six subpopulations,

namely S, E, I, Q, H, and R. The mathematical model that has

been formed needs control to reduce the number of COVID-

19 infections. Researchers discussing control issues include

Deressa and Duress [26], Olaniyi et al. [27], and Das et al.

[22]. Deressa and Duressa provide three controls, namely public

education, protecting yourself from COVID-19 infection (such

as wearing masks, washing hands, and maintaining distance),

and treating individuals infected with COVID-19 in hospitals.

In comparison, Olaniyi et al. provide two controls, public

education and individual care management in hospitals. Other

researchers, Das et al. [22], provide two controls to reduce the

number of infected with comorbidity and without comorbidity,

namely the control other than using drugs and the vaccination

process. There are many studies related to COVID-19 besides

those mentioned above, see for example the following literature

studies [28–54].

By combining the research of Das et al. [22], Jia et al.

[24], and Prathumwan et al. [25], the COVID-19 model will

be constructed in this study. The discussion is divided into

the following sections: The model formulation is presented

in Section 2 followed by model validation and mathematical

analysis in Section 3. A numerical simulation of the model

without control is given in Section 4. Section 5 presents the

model with controls and its simulation is given in Section 6. The

last discussion on cost evaluation is presented in Section 7. The

study is concluded with some key points in Section 8.
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2. Model formulation

We consider the new COVID-19 model with eight

subpopulations, as shown in the compartment diagram in

Figure 1.

Based on the compartmental diagram in Figure 1 and

the model assumptions, we have the following system of

differential equations:

dS

dt
= π −

β1SI

N
−

β2SC

N
− q1S− µS,

dE

dt
=

β1SI

N
+

β2SC

N
− αE− µE,

dI

dt
= ξαE− h1I − r1I − d1I − µI,

dC

dt
= (1− ξ) αE− h2C − r2C − d2C − µC, (1)

dQ

dt
= q1S−

ρ1β1QI

N
−

ρ2β2QC

N
− r3Q− µQ,

dH

dt
= θh1I + δh2C +

pρ1β1QI

N
+

qρ2β2QC

N
−r4H − d3H − µH,

dJ

dt
= (1− θ) h1I + (1− δ) h2C

+
(1− p)ρ1β1QI

N
+

(1− q)ρ2β2QC

N
− r5J − d4J − µJ,

dR

dt
= r1I + r2C + r3Q+ r4H + r5J − µR.

In this model, the COVID-19 model is divided into

susceptible (S), exposed (E), infected without comorbidity

(I), infected with comorbidity ( C), isolated (Q), treatment

isolated (H), isolated without treatment (J), and recovered (R).

Susceptible subpopulation increases with the recruitment or

birth rate denoted by π and can be infected due to contact with

infected individuals without comorbidity and with comorbidity

denoted by β1 and β2, respectively. Susceptible individuals who

are quarantined are denoted by q1 and cannot be returned to

being susceptible due to the effects of public anxiety, which

make some assumptions or opinions that susceptible individuals

need to be quarantined, so that if quarantine is successful,

then recovery is denoted by r3 and if not successful due

to contact with infected individuals without comorbidity and

with comorbidity, showing symptoms of being infected, then

isolation is denoted by ρ1 and ρ2, respectively. Furthermore,

p and q are the proportion of changes from quarantine to

isolation. The progression from exposed to infection is denoted

α, and ξ is the proportion of change from exposed to infection

without comorbidity. From the infected subpopulation without

comorbidity and with comorbidity, isolation is denoted by h1

and h2. The parameters r1, r2, r3, and r4 indicate the recovery

rate of the subpopulations infected without comorbidity,

infected with comorbidity, quarantine, isolated with treatment,

and isolated without treatment. Furthermore, deaths from each

subpopulation are denoted by µ and deaths from COVID-19 in

subpopulations I, C, H, and J are denoted by d1, d2, d3, and d4.

3. Mathematical analysis

3.1. Model validation

We calibrate our model (Equation 1) using cumulatively

confirmed COVID-19 cases for Indonesia. We have retrieved

COVID-19 case data from the Republic of Indonesia Task Force

(SATGAS) situation report for the period 1 November 2020

to 19 May 2021 [9]. The parameter fitting uses the lsqcurvefit

command, and the value of MAPE = 0.026022 is obtained.

The results of the fitting parameters seem to match the infection

case data as shown in Figure 2, and new parameter values are

obtained according to conditions in Indonesia as follows in

Table 1.

3.2. Positivity and boundedness of
solutions

The change in the total population is given by

dN

dt
=

dS

dt
+

dE

dt
+

dI

dt
+

dC

dt
+

dQ

dt
+

dH

dt
+

dJ

dt
+

dR

dt
,

= π − µN − d1I − d2C − d3H − d4J,

≤ π − µN,

whose solutions give

N(t) ≤
π

µ
+

(

N (0) −
π

µ

)

e−µt .

Consequently as t → ∞, then limt→∞ N (t) ≤ π
µ . So, we can

conclude that N is boundedness to N (t) ≤ π
µ .

Considering the above solutions, we have that the model has

a boundedness solution which is contained in a feasible region

�, where

� =

{

(S, E, I, C, Q, H, J, R) | N (t) ≤
π

µ

}

.

Next, we show the positivity of solving the Equation (1) system

by following Riyapan et al. [42] and Rois et al. [46], as follows:

Theorem 1. Let S, E, I, C, Q, H, J, and R be the system

solutions (Equation 1). If S (0) ≥ 0, E (0) ≥ 0, I (0) ≥ 0,

C (0) ≥ 0, Q (0) ≥ 0, H (0) ≥ 0, J (0) ≥ 0, and R (0) ≥ 0,

then all solutions are positive for every t ≥ 0.

Proof. 1. Take the first equation of the system (Equation 1)

as follows:

dS

dt
= π −

β1SI

N
−

β2SC

N
− q1S− µS.
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FIGURE 1

Compartmental diagram of the COVID-19 model with comorbidity.

FIGURE 2

Parameter fitting results from the COVID-19 model.

TABLE 1 Parameter values according to the fitting of the infected cases of COVID-19 in Indonesia.

Parameter Value Parameter Value Parameter Value

π 3783175.865 r5 0.088554 δ 0.00059843

β1 0.65799 h1 0.007884 p 0.090862

β2 0.79664 h2 0.00034162 q 0.28312

q1 0.16574 ρ1 0.99779 d1 0.00086579

r1 0.0068295 ρ2 0.9533 d2 0.022871

r2 0.0025349 α 0.25098 d3 0.36203

r3 0.030397 ξ 0.022219 d4 0.76233

r4 0.31851 θ 5.812× 10−5 µ 0.0138
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Let η =
β1I
N +

β2C
N .

dS

dt
= π − S

(

η + q1 + µ
)

,

dS

dt
+ S

(

η + q1 + µ
)

= π ,

d
(

e(q1+µ)t+
∫ t
0 ηdsS (t)

)

dt
= πe(q1+µ)t+

∫ t
0 ηds, (2)

then a homogeneous solution is obtained

d
(

e(q1+µ)t+
∫ t
0 ηdsS (t)

)

dt
= 0,

S (t) = ke−(q1+µ)t−
∫ t
0 ηds.

Thus, let us assume that the solution is non-homogeneous

S (t) = ke−(q1+µ)t−
∫ t
0 ηds. (3)

Next, substituting the Equation (3) into the Equation (2)

to get

dk (t)

dt
= πe(q1+µ)t+

∫ t
0 ηds,

k (t) =

∫ t

0
πe(q1+µ)y+

∫ y
0 ηdxdy+ K. (4)

The Equation (4) is substituted into the Equation (3), we get

S (t) =

∫ t

0
πe(q1+µ)y+

∫ y
0 η dxdy× e−(q1+µ)t−

∫ t
0 η ds

+S(0)e−(q1+µ)t−
∫ t
0 η ds.

So, S(t) is positive for t ≥ 0.

2. Take the fifth equation of the system (Equation 1) as follows:

dQ

dt
= q1S−

ρ1β1QI

N
−

ρ2β2QC

N
− r3Q− µQ.

Let ω =
ρ1β1I
N +

ρ2β2C
N .

dQ

dt
= q1S− Q(ω + r3 + µ),

dQ

dt
+ Q (ω + r3 + µ) = q1S,

d
(

e(r3+µ)t+
∫ t
0 ωdsQ (t)

)

dt
= q1Se

(r3+µ)t+
∫ t
0 ωds, (5)

then a homogeneous solution is obtained

d
(

e(r3+µ)t+
∫ t
0 ωdsQ (t)

)

dt
= 0,

Q (t) = ke−(r3+µ)t−
∫ t
0 ωds.

Thus, let us assume that the solution is non-homogeneous

Q (t) = ke−(r3+µ)t−
∫ t
0 ωds. (6)

Next, substituting the Equation (6) into the Equation (5)

to get

dk (t)

dt
= q1Se

(r3+µ)t+
∫ t
0 ωds,

k (t) =

∫ t

0
q1Se

(r3+µ)y+
∫ y
0 ωdxdy+ K. (7)

The the Equation (7) is substituted into the Equation (6),

we get

Q (t) =

∫ t

0
q1Se

(r3+µ)y+
∫ y
0 ω dxdy× e−(r3+µ)t−

∫ t
0 ω ds

+Q(0)e−(r3+µ)t−
∫ t
0 ω ds.

So, Q(t) is positive for t ≥ 0.

3. Take the second equation of the system (Equation 1) as

follows:

dE

dt
=

β1SI

N
+

β2SC

N
− αE− µE ≥ −αE− µE,

or

dE (t)

dt
≥ −E (α + µ) ,

∫

dE (t)

E
≥

∫

− (α + µ) dt,

E (t) ≥ e−(α+µ)t+k,

E (t) ≥ E (0) e−(α+µ)t .

Thus, E (t) is positive for t ≥ 0. Furthermore, in the same

way as proof number 3, I (t) , C (t) , H (t) , J (t), and R (t) can

be shown respectively to be positive.

3.3. Equilibrium point and basic
reproduction number

The equilibrium point of the system (Equation 1) is

obtained by setting the right-hand side to zeros. Therefore,

the first equilibrium point is obtained, namely the disease-free

equilibrium point, as follows:

X0 =

(

S0, E0, I0, C0, Q0, H0, J0, R0
)

=

(

π

a1
, 0, 0, 0,

πq1

a1a5
, 0, 0,

πq1r3

a1a5µ

)

.

Where a1 = q1 + µ and a5 = r3 + µ.

Furthermore, the basic reproduction number, denoted by

R0, is obtained using the next-generation matrix method
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[55, 56]. The constituent components of the next-generation

matrix method only consist of infected subpopulation groups,

namely:

f =







β1SI
N +

β2SC
N

0

0






, and v =







a2E

−ξαE+ a3I

− (1− ξ) αE+ a4C






.

The partial derivative evaluated at X0 gives

F
(

X0
)

=







0
β1a5µ

(a5µ+q1µ+q1r3)
β2a5µ

(a5µ+q1µ+q1r3)

0 0 0

0 0 0







and V
(

X0
)

=







a2 0 0

−ξα a3 0

− (1− ξ) α 0 a4






.

The inverse of the V
(

X0
)

matrix is

V−1 =







1
a2

0 0
ξα
a2a3

1
a3

0
(1−ξ)α
a2a4

0 1
a4






.

Based on the F
(

X0
)

and V−1
(

X0
)

matrices, the next-

generation matrix FV−1 can be formed so that we can obtain

FV−1 =







β1a5µξα

a2a3(a5µ+q1µ+q1r3)
+

β2a5µα(1−ξ)

a2a4(a5µ+q1µ+q1r3)
β1a5µ

a3(a5µ+q1µ+q1r3)
β1a5µ

a4(a5µ+q1µ+q1r3)

0 0 0

0 0 0






.

So, the basic reproduction number is obtained based on the

eigenvalues of the FV−1 matrix as follows:

R0 = ρ (M) =
a5µα (β1ξa4 + β2a3 (1− ξ))

a2a3a4
(

a5µ + q1µ + q1r3
) .

J =





























B1 − B2 − a1 B1 B1 −
β1S
N B1 −

β2S
N B1 B1 B1 B1

B2 − B1 −B2 − a2
β1S
N − B1

β2S
N − B1 −B1 −B1 −B1 −B1

0 ξα −a3 0 0 0 0 0

0 (1− ξ) α 0 −a4 0 0 0 0

q1 + B3 B3 B3 −
ρ1β1Q
N B3 −

ρ2β2Q
N B3 − B4 − a5 B3 B3 B3

−B5 −B5 B6 − B5 B7 − B5 B8 − B5 −B5 − a6 −B5 −B5

−B9 −B9 B10 − B9 B11 − B9 B12 − B9 −B9 −B9 − a7 −B9

0 0 r1 r2 r3 r4 r5 −µ





























(8)

Next, the second equilibrium point is obtained,

namely the endemic equilibrium point X∗ =

(

S∗, E∗, I∗, C∗, Q∗, H∗, J∗, R∗
)

with

S∗ =
πa5

A1R0
,

E∗ =
π

a2R0
(R0 − 1) ,

I∗ =
πξα

a2a3R0
(R0 − 1) ,

C∗ =
(1− ξ) πα

a2a4R0
(R0 − 1) ,

Q∗ =
a2a3a4a5q1π

A3
,

H∗ = (R0 − 1)A4,

J∗ = (R0 − 1)A5,

R∗ = (R0 − 1)A6 +
r3a2a3a4a5q1π

µA3
,

with A1 = a5µ + µq1 + q1r3, A2 = ρ1β1a4µαξ +

ρ2β2a3µα (1− ξ),A3 = A1A2 (R0 − 1)+a2a3a4a5A1R0,A4 =
πα
a6R0

(

θh1ξ
a2a3

+
δh2(1−ξ)

a2a4
+

pρ1β1q1a4a5µξ
A3

+
qρ2β2q1a3a5µ(1−ξ)

A3

)

,

A5 = πα
a7R0

( (1−θ)h1ξ
a2a3

+
(1−δ)h2(1−ξ)

a2a4
+

(1−p)ρ1β1µξa4a5q1
A3

+

(1−q)ρ2β2µa3a5q1(1−ξ)
A3

), and A6 =
r1παξ

µa2a3R0
+

r2πα(1−ξ)
µa2a4R0

+

r4A4
µ +

r5A5
µ .

The existence of the endemic equilibrium point X∗ depends

on the value of R0. If the value of R0 < 1 is taken, then the

endemic equilibrium point X∗ does not exist because it is clear

that E∗, I∗, C∗, H∗, and J∗ are obtained negative. If R0 = 1,

then we get the equilibrium point X∗ = X0, which causes the

equilibrium point X∗ not to exist. Furthermore, if R0 > 1, then

we get S∗, E∗, I∗, C∗, Q∗, H∗, J∗, and R∗ are positive and the

endemic equilibrium point X∗ exists.

3.4. Local stability

The local stability of the equilibrium point

is obtained by linearizing system (Equation 1),

which yields the following jacobian matrix below:

With B1 =
β1SI
N2 +

β2SC
N2 , B2 =

β1I
N +

β2C
N , B3 =

ρ1β1QI
N2 +

ρ2β2QC
N2 , $B4 =

ρ1β1I
N +

ρ2β2C
N , B5 =

pρ1β1QI
N2 +

qρ2β2QC
N2 , B6 =
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θh1+
pρ1β1Q

N , B7 = δh2+
qρ2β2Q

N , B8 =
pρ1β1I

N +
qρ2β2C

N , B9 =

(1−p)ρ1β1QI
N2 +

(1−q)ρ2β2QC
N2 , B10 = (1− θ) h1 +

(1−p)ρ1β1Q
N ,

B11 = (1− δ) h2 +
(1−q)ρ2β2Q

N , and B12 =
(1−p)ρ1β1I

N +

(1−q)ρ2β2C
N .

3.4.1. Local stability of disease-free equilibrium
point

Evaluating (8) at X0 yields

J
(

X0
)

=

























−a1 0 −β1C1 −β2C1 0 0 0 0

0 −a2 β1C1 β2C1 0 0 0 0

0 ξα −a3 0 0 0 0 0

0 (1− ξ) α 0 −a4 0 0 0 0

q1 0 −ρ1β1C2 −ρ2β2C2 −a5 0 0 0

0 0 θh1 + pρ1β1C2 δh2 + qρ2β2C2 0 −a6 0 0

0 0 (1− θ) h1 +
(

1− p
)

ρ1β1C2 (1− δ) h2 +
(

1− q
)

ρ2β2C2 0 0 −a7 0

0 0 r1 r2 r3 r4 r5 −µ

























,

With C1 =
a5µ

(a5+q1)µ+q1r3
and C2 =

q1µ

(a5+q1)µ+q1r3
. The

characteristic equation for the |J
(

X0)− λI
∣

∣ = 0 is as follows:

(−a1 − λ) (−a5 − λ) (−a6 − λ) (−a7 − λ) (−µ − λ)
∣

∣

∣

∣

∣

∣

∣

−a2 − λ β1C1 β2C1

ξα −a3 − λ 0

(1− ξ) α 0 −a4 − λ

∣

∣

∣

∣

∣

∣

∣

= 0. (9)

Based on the Equation (9), we obtain the eigenvalues λ1 = λ2 =

λ3 = λ4 = λ5 < 0. Therefore, the stability of the disease-free

equilibrium point depends on

M1 =

∣

∣

∣

∣

∣

∣

∣

−a2 − λ β1C1 β2C1

ξα −a3 − λ 0

(1− ξ) α 0 −a4 − λ

∣

∣

∣

∣

∣

∣

∣

. (10)

From the Equation (10), we obtain the following

characteristic equation:

λ3 + k1λ
2 + k2λ + k3 = 0, (11)

with

J
(

X∗
)

=































B1 − B13 B1 B1 −
β1S

∗

N B1 −
β2S

∗

N B1 B1 B1 B1

B2 − B1 −B14
β1S

∗

N − B1
β2S

∗

N − B1 −B1 −B1 −B1 −B1

0 ξα −a3 0 0 0 0 0

0 (1− ξ) α 0 −a4 0 0 0 0

q1 + B3 B3 B3 −
ρ1β1Q

∗

N B3 −
ρ2β2Q

∗

N B3 − B15 B3 B3 B3

−B5 −B5 B6 − B5 B7 − B5 B8 − B5 −B16 −B5 −B5

−B9 −B9 B10 − B9 B11 − B9 B12 − B9 −B9 −B17 −B9

0 0 r1 r2 r3 r4 r5 −µ































,

k1 = a2 + a3 + a4,

k2 = a2a3 (1− R0) + a2a4 (1− R0)

+a3a4 +
a4β1αC1ξ

a3
+

a3β2αC1 (1− ξ)

a4
, and

k3 = a2a3a4 (1− R0) .

In the Equation (11), it is clear that k1 > 0, and if R0 <

1, then k2 > 0 and k3 > 0. Therefore, the stability

property of the equilibrium point X0

is established using the Routh–Hurwitz criterion. Furthermore,

the equilibrium point X0 is asymptotically stable if and only if it

satisfies the following criteria:

1. k1 > 0,

2. k3 > 0, and

3. k1k2 − k3 > 0.

Criteria Equations (1) and (2) have been met so that the

disease-free equilibrium point X0 is locally asymptotically stable

if it meets k1k2 − k3 > 0 where

k1k2 − k3 > 0,

(a2 + a3 + a4)
(

a2a4 (1− R0) + a3a4 +
a4β1αC1ξ

a3
+

a3β2αC1 (1− ξ)

a4

)

+a22a3 (1− R0) + a2a
2
3 (1− R0) > 0.

It is clear that the Routh–Hurwitz criteria are satisfied;

thus, the roots of the characteristic Equation (11) have negative

real parts. Therefore, the disease-free equilibrium point is

asymptotically locally stable if R0 < 1.

3.4.2. Local stability of the endemic equilibrium
point

Evaluating (8) at X∗ yields

With B1 =
β1S

∗I∗

N2 +
β2S

∗C∗

N2 , B2 =
β1I

∗

N +
β2C

∗

N ,

B3 =
ρ1β1Q

∗I∗

N2 +
ρ2β2Q

∗C∗

N2 , B4 =
ρ1β1I

∗

N +
ρ2β2C

∗

N , B5 =

pρ1β1Q
∗I∗

N2 +
qρ2β2Q

∗C∗

N2 , B6 = θh1 +
pρ1β1Q

∗

N , B7 = δh2 +

qρ2β2Q
∗

N , B8 =
pρ1β1I

∗

N +
qρ2β2C

∗

N , B9 =
(1−p)ρ1β1Q∗I∗

N2 +
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FIGURE 3

Projection of three orbits of the model on the I− C plane.

(1−q)ρ2β2Q∗C∗

N2 , B10 = (1− θ) h1 +
(1−p)ρ1β1Q∗

N , B11 =

(1− δ) h2 +
(1−q)ρ2β2Q∗

N , B12 =
(1−p)ρ1β1I

N +
(1−q)ρ2β2C

N ,

B13 = B2 + a1,B14 = B2 + a2, B15 = B4 + a5, B16 = B5 + a6,

and B17 = B9 + a7.

The characteristic equation of the |J
(

X∗)− λI
∣

∣ = 0 is

λ8 + k1λ
7 + k2λ

6 + k3λ
5 + k4λ

4 + k5λ
3 + k6λ

2 + k7λ

+k8 = 0, (12)

It is difficult to prove analytically that all eigenvalues of J have

negative real parts for R0 > 1. However, from our numerical

simulations (case R0 > 1), all eigenvalues have negative

real parts.

Figure 3 gives the projection of three orbits of three different

initial conditions when R0 > 1 on the I − C plane. The

component (I, C) of the equilibrium X∗ is not (0, 0). This

simulation indicates that the endemic equilibrium X∗ is locally

asymptotically stable when R0 > 1.

3.5. Global stability analysis

In this study, we prove the global stability of disease-free

and endemic equilibrium points by constructing the suitable

Lyapunov function and following the theorem from Alligood

et al. [57].

3.5.1. Global stability of the disease-free
equilibrium point

Theorem 2. Disease-free equilibrium point X0 is globally

asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Defined Lyapunov function

L = κ1E+ κ2I + κ3C, (13)

where

κ1 = a1a2a3a4,

κ2 =
πβ1a2a4

N
, and

κ3 =
πβ2a2a3

N
.

The function L needs to be proven to determine whether

Lyapunov is strong or weak for X0.

L
(

−→x
∗
)

= L
(

S0, E0, I0, C0, Q0, H0, J0, R0
)

,

L
(

−→x
∗
)

= κ1E
0 + κ2I

0 + κ3C
0 = 0.

It is proven that L
(

−→x
∗
)

= 0. Next,

L
(−→x

)

= κ1E+ κ2I + κ3C,

Because ∀ (S, E, I,C,Q,H, J,R) 6=
(

S0, E0, I0, C0, Q0, H0,

J0, R0
)

, so it is proved that L
(−→x

)

> 0.

Thus, the Equation (13) can be reduced to

∂L

∂t
= κ1

dE

dt
+ κ2

dI

dt
+ κ3

dC

dt

= κ1

(

β1SI + β2SC

N
− a2E

)

+κ2 (ξαE− a3I) + κ3 ((1− ξ) αE− a4C) ,

so, we obtain

= a1a2a3a4

(

β1SI + β2SC

N
− a2E+

πβ1a2a4ξαE

a1a2a3a4N

+
πβ2a2a3 (1− ξ) αE

a1a2a3a4N
−

πβ1I

a1N
−

πβ2C

a1N

)

.

Let S = π
a1
, so we get

∂L

∂t
= a1a

2
2a3a4E (R0 − 1) .

Based on the description above, it can be concluded that
∂L
∂t < 0 if R0 < 1 and ∂L

∂t = 0 if E = 0. Hence, by

Lasalle’s invariance principle, the disease-free equilibrium point

in the spread of COVID-19
(

X0
)

is globally asymptotically stable

if R0 < 1.

3.5.2. Global stability of the endemic
equilibrium point

Theorem 3. If R0 > 1, then the endemic equilibrium point X∗ is

said to be globally asymptotically stable.
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TABLE 2 Stability conditions.

Equilibrium point Existence requirement Global stability type Stability condition

X0 None Asymptotically stable R0 < 1

X∗ R0 > 1 Asymptotically stable R0 > 1 and strong Lyapunov function

Proof. The Lyapunov function is defined as follows:

L =
1

2

[

SS + EE + II + CC + QQ + HH + JJ + RR
]2
, (14)

Where SS =
(

S− S∗
)

, EE =
(

E− E∗
)

, II =
(

I − I∗
)

, CC =
(

C − C∗
)

, QQ =
(

Q− Q∗
)

, HH =
(

H −H∗
)

, JJ =
(

J − J∗
)

,

and dan RR =
(

R− R∗
)

.

The function L needs to be proven to determine whether the

Lyapunov function is strong or weak for X∗.

L
(

−→x
∗
)

= L
(

S∗, E∗, I∗, C∗, Q∗, H∗, J∗, R∗
)

,

L
(

−→x
∗
)

=
1

2

[

S∗S + E∗E + I∗I + C∗C + Q∗
Q +H∗

H + J∗J + R∗R

]2

= 0.

Where S∗S =
(

S∗ − S∗
)

, E∗E =
(

E∗ − E∗
)

, I∗I =
(

I∗ − I∗
)

,

C∗C =
(

C∗ − C∗
)

, Q∗
Q =

(

Q∗ − Q∗
)

, H∗
H =

(

H∗ −H∗
)

, J∗J =
(

J∗ − J∗
)

, and R∗R =
(

R∗ − R∗
)

. It is proven that L
(

−→x
∗
)

= 0.

Next,

L
(−→x

)

=
1

2

[

SS + EE + II + CC + QQ + HH + JJ + RR
]2
.

Because ∀ (S, E, I,C,Q,H, J,R) 6=
(

S0, E0, I0, C0, Q0, H0,

J0, R0
)

, so that it is proven that L
(−→x

)

> 0. Next, we check

that the Equation (14) is reduced to

∂L

∂t
=

[

SS + EE + II + CC + QQ +HH + JJ + RR
]

d

dt
[S+ E+ I + C + Q+H + J + R] ,

=
[

SS + EE + II + CC + QQ +HH + JJ + RR
]

[π − µ (S+ E+ I + C + Q+ H + J + R)

−d1I − d2C − d3H − d4J],

Let π = µ
(

S∗ + E∗ + I∗ + C∗ + Q∗ +H∗ + J∗ + R∗
)

+

d1I
∗ + d2C

∗ + d3H
∗ + d4J

∗. So that it gives

=
[

SS + EE + II + CC + QQ +HH + JJ + RR
]

×[−
[

µ(SS + EE + II + CC + QQ +HH + JJ + RR)+ d1
(

I − I∗
)

+d2
(

C − C∗
)

+ d3
(

H −H∗
)

+ d4
(

J − J∗
)]

],

= −
[

SS + EE + II + CC + QQ +HH + JJ + RR
]

×
[

µ(SS + EE + II + CC + QQ +HH + JJ + RR)+ d1
(

I − I∗
)

+d2
(

C − C∗
)

+ d3
(

H −H∗
)

+ d4
(

J − J∗
)]

].

Based on the description above, it can be concluded that
∂L
∂t < 0 if R0 > 1 and ∂L

∂t = 0 if S = S∗, E = E∗, I = I∗, C =

C∗, Q = Q∗, H = H∗, J = J∗, and R = R∗. Hence, by Lasalle’s

invariance principle, it means that the endemic equilibrium

point in the spread of COVID-19
(

X∗
)

is globally asymptotically

stable if R0 > 1.

The terms of existence and the type of stability of the

equilibrium point of the system of equations are summarized in

Table 2.

3.6. Sensitivity analysis

The sensitivity analysis aims to determine the

parameters that cause the spread of the COVID-19

virus. The sensitivity index of the basic reproduction

number depends on the differentiation of the

parameters contained in the basic reproduction number

[58, 59]. Sensitivity index R0 to the parameters is

as follows:

I
R0
α =

∂R0

∂α

α

R0
=

µ

α + µ
,

I
R0
β1

=
∂R0

∂β1

β1

R0
=

β1ξa4

β1ξa4 + β2a3 (1− ξ)
,

I
R0
β2

=
∂R0

∂β2

β2

R0
=

β2a3 (1− ξ)

β1ξa4 + β2a3 (1− ξ)
,

I
R0
ξ

=
∂R0

∂ξ

ξ

R0
=

β1ξa4 − β2ξa3

β1ξa4 + β2a3 (1− ξ)
,

I
R0
q1 =

∂R0

∂q1

q1

R0
= −

q1

q1 + µ
,

I
R0
h1

=
∂R0

∂h1

h1

R0
=

a4β1h1ξ

−a3 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
r1 =

∂R0

∂r1

r1

R0
=

β1r1a4ξ

−a3 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
d1

=
∂R0

∂d1

d1

R0
=

β1d1a4ξ

−a3 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
h2

=
∂R0

∂h2

h2

R0
=

β2h2a3 (1− ξ)

−a4 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
r2 =

∂R0

∂r2

r2

R0
=

β2r2a3 (1− ξ)

−a4 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
d2

=
∂R0

∂d2

d2

R0
=

β2r2a3 (1− ξ)

−a4 (β2a3 (1− ξ) + β1a4ξ)
,
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TABLE 3 Sensitivity analysis.

No Parameter Sensitivity index

1 q1 −0.9761

2 β2 0.9754

3 µ 0.5715

4 d2 −0.5636

5 r2 −0.0625

6 α 0.0522

7 β1 0.0246

8 h2 −0.0084

9 h1 −0.0066

10 r1 −0.0057

11 ξ 0.0025

12 d1 −0.0007

I
R0
µ =

∂R0

∂µ

µ

R0
=

−
(

α ((−2ξ + 2) β2 + 2β1ξ) µ5 + a8 (1− ξ) β2 + β1a9ξ
)

µ4 + 2a10 ((1− ξ) a3β2 + β1ξa4) µ3

a21a
2
2a

2
3a

2
4

−

((

(−a12) q1 + a211
)

α + a211
(

a12 + q1
)

(ξ − 1) β2 −
((

(a11) q1 − a212
)

α − a212
(

a11 + q1
))

β1ξ
)

µ2

a21a
2
2a

2
3a

2
4

−
2
(

a11αq1 (β1ξ + β2 (1− ξ)) a11µ + a12α ((ξ − 1) a11β2 − β1ξa12) q1a11
)

a21a
2
2a

2
3a

2
4

,

With a8 =
(

4d1 + α + d2 + h1 + h2 + q1 + 4r1 + r2
)

,

a9 = d1 + α + 4d2 + h1 + 4h2 + q1 + r1 + 4r2, a10 =
(

d1 + α + d2 + h1 + h2 + q1 + r1 + r2
)

, a11 = h1 + r1 + d1,

and a12 = h2 + r2 + d2.

The parameter sensitivity index is shown in Table 3.

From Table 3, we can see that the most sensitive parameters

are q1 and β2. A positive index means that if we reduce

the parameter by almost 10%, then the value of the basic

reproduction number can decrease by 10%.

4. Simulation of the model without
control

This section presents a numerical solution of system (1)

using the Fourth-order Runge–Kutta method. The parameter

values used in this simulation are shown in Table 1 and three

different initial values. In this simulation, the stability of the

disease-free equilibrium point is shown from the parameter

values given in Table 1, except for the parameter q1 =

0.56574, the value is R0 = 0.456 < 1. Based on the

value of these parameters, the disease-free equilibrium point is

obtained, namely

X0 = (6527542, 0, 0, 0, 83496205, 0, 0, 183499868) .

Next, the graph of the solution R0 < 1 is obtained in

Figure 4.

The analysis results from 3.4.1, and Theorem 2 are illustrated

numerically. Numerical simulations with some initial values

show that the graph solution is toward and close to the disease-

free equilibrium point X0 (converging toward the disease-free

equilibrium point X0). Based on the graph, this means that after

all this time, no individual has been infected with COVID-19.

The numerical results support the analysis that if R0 < 1, then

the disease-free equilibrium point X0 is asymptotically stable

locally and globally given different initial values.

We show the stability of the endemic equilibrium point, the

parameter values in Table 1 are used, and three different values,

so we get R0 = 1.47 > 1. Similarly, the disease-free equilibrium

point is obtained

X0 = (21071493, 0, 0, 0, 79018695, 0, 0, 174052991)

and the endemic equilibrium point is given as

X∗ =
(

S∗, E∗, I∗, C∗, Q∗, H∗, J∗, R∗
)

,

= (6031017, 10196616, 1933377, 63222893,

2119885, 362896, 798735, 30671327) .

The solution graph for the case of R0 > 1 is obtained

as follows in Figure 5.

The numerical simulation results support the analysis from

3.4.2 and Theorem 3 that some of the initial values given are

obtained by the graph of the solution leading to the endemic

equilibrium point X∗ (converging to the endemic equilibrium

point X∗), which means there is a spread of disease due

to COVID-19. The numerical simulation results follow the

analysis that if R0 > 1, the endemic equilibrium point X∗ is

asymptotically stable locally and globally with different initial

values. Based on the given parameter values, we obtain R0 > 1.

This means that there is an outbreak of disease due to COVID-

19. Therefore, it is necessary to take control measures to reduce

the outbreak.

4.1. E�ect parameters

The effect of parameters on R0 was analyzed using

contour plots. We choose two significant parameters, q1
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FIGURE 4

COVID-19 model solution graph for R0 < 1.

FIGURE 5

The COVID-19 model solution graph for R0 > 1.
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and β2, and provide a contour plot as a function of R0.

The impact of some R0 parameters is further investigated

in Figure 6. Figure 6 shows that increasing the parameter

q1 decreases the value of R0. This implies that increasing

quarantines has the effect of reducing the spread of COVID-

19. Meanwhile, an increase in the β2 parameter resulted in

an increase in the R0 value and implied that an increase in

contacts of individuals with comorbidities would increase the

spread of COVID-19, especially individuals with comorbidities.

Therefore, increasing quarantine and reducing contact with

individuals with comorbidities are important.

5. Optimal control problem

5.1. Comorbidity COVID-19 model with
optimal control

The control variable given to the COVID-19 model consists

of preventive measures through education (u1) and individual

treatment efforts for infected (u2) . So the model with control is

given as follows:

dS

dt
= π − (1− u1)

(β1SI + β2SC)

N
− q1S− µS,

dE

dt
= (1− u1)

(β1SI + β2SC)

N
− αE− µE,

dI

dt
= ξαE−

(

h1 + u2
)

I − r1I − d1I − µI,

dC

dt
= (1− ξ) αE−

(

h2 + u2
)

C − r2C − d2C − µC,

dQ

dt
= q1S−

ρ1β1QI

N
−

ρ2β2QC

N
− r3Q− µQ, (15)

dH

dt
=

(

θh1 + u2
)

I +
pρ1β1QI

N

+
qρ2β2QC

N
+

(

δh2 + u2
)

C − r4H − d3H − µH,

dJ

dt
=

(

(1− θ)h1 + u2
)

I

+
(

(1− δ)h2 + u2
)

C +
(1− p)ρ1β1QI

N

+
(1− q)ρ2β2QC

N
− a7J,

dR

dt
= r1I + r2C + r3Q+ r4H + r5J − µR.

The function that minimizes the number of infected cases

without comorbidity (I) and the number of infected cases with

comorbidity (C) over a time interval [0,T] can be defined as

J(u1, u2) =

∫ T

0

(

I(t)+ C(t)+
1

2
(A1u

2
1 + A2u

2
2)

)

, (16)

Where A1 and A2 are the relative cost associated with the

controls u1 and u2, and T is the final time. The aim of the control

FIGURE 6

E�ect parameters of R0

(β2 × q1 ∈ [0.1 :0.79664]× [0.1 :0.16574]).

is to minimize the cost function.

J(u∗1 , u
∗
2) = min J(u1, u2),

Subject to the system (Equation 15), where 0 ≤ (u1, u2) ≤ 1

and t ∈ (0,T).

5.2. Optimal control analysis

The Hamilton function can be defined as follows:

H = I + C +
1

2

(

A1u
2
1 + A2u

2
2

)

+λ1

(

π − (1− u1)
(β1SI + β2SC)

N
− q1S− µS

)

+λ2

(

(1− u1)
(β1SI + β2SC)

N
− αE− µE

)

+λ3
(

ξαE−
(

h1 + u2
)

I − r1I − d1I − µI
)

+λ4
(

(1− ξ) αE−
(

h2 + u2
)

C − r2C − d2C − µC
)

+λ5

(

q1S−
ρ1β1QI

N
−

ρ2β2QC

N
− r3Q− µQ

)

(17)

+λ6

(

(

θh1 + u2
)

I +
pρ1β1QI

N

+
qρ2β2QC

N
+

(

δh2 + u2
)

C − r4H − d3H − µH

)

+λ7
((

(1− θ)h1 + u2
)

I +
(

(1− δ)h2 + u2
)

C

+
(1− p)ρ1β1QI

N
+

(1− q)ρ2β2QC

N
− a7J

)

+λ8 (r1I + r2C + r3Q+ r4H + r5J − µR) .

Based on Pontryagin’s principle, the Hamilton function

will reach an optimal solution if it satisfies the state equation
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and the costate equation, and the condition is stationary. The

equation state is obtained by deriving the Hamilton function

(Equation 17) for each variable costate as Equation (15). Next,

the equation costate is the negative value of the derivative of

the Hamilton function (Equation 17) for each variable state

as follows:

dλ1

dt
= −

∂H

∂S
= (λ1 − λ2)

(

(1− u1) (β1I + β2C)

N
+

(1− u1) (β1SI + β2SC)

N2

)

+q1 (λ1 − λ5) + λ1µ

+
ρ1β1QI

N2

(

pλ6 +
(

1− p
)

λ7 − λ5
)

+
ρ2β2QC

N2

(

qλ6 +
(

1− q
)

λ7 − λ5
)

,

dλ2

dt
= −

∂H

∂E
= (λ2 − λ1)

(1− u1) (CSβ2 + ISβ1)

N2

+λ2α + λ2µ − λ3αξ − λ4α (1− ξ)

+
ρ1β1QI

N2

(

λ6p+
(

1− p
)

λ7 − λ5
)

+
ρ2β2QC

N2
(

λ6q+
(

1− q
)

λ7 − λ5
)

,

dλ3

dt
= −

∂H

∂I
= (λ1 − λ2)

(

(1− u1) Sβ1

N
−

(1− u1) Sβ1

N

)

+h1 (λ3 − θλ6 − (1− θ) λ7)

+u2 (λ3 − λ6 − λ7) + r1 (λ3 − λ8) − λ3(−d1 − µ)

+
ρ1β1Q

N

(

λ5 − λ6p− λ7
(

1− p
))

− 1, (18)

dλ4

dt
= −

∂H

∂C

= (λ2 − λ1)

(

−
(1− u1) Sβ2

N
+

(1− u1) (CSβ2 + ISβ1)

N2

)

+h2 (λ4 − λ6δ − λ7 (1− δ))

+r2 (λ4 − λ8) + u2 (λ4 − λ6 − λ7) − λ4
(

−d2 − µ
)

+
ρ1β1QI

N2

(

−λ5 + λ6p+ λ7
(

1− p
))

+

(

ρ2β2Q

N
−

ρ2β2QC

N2

)

(

λ5 − λ6q− λ7
(

1− q
))

− 1,

dλ5

dt
= −

∂H

∂Q
= (λ2 − λ1)

(

(1− u1) (CSβ2 + ISβ1)

N2

)

+r3 (λ5 − λ8)

+

(

ρ1β1I

N
−

ρ1β1QI

N2

)

(

λ5 − pλ6 −
(

1− p
)

λ7
)

+

(

ρ2β2C

N
−

ρ2β2QC

N2

)

(

λ5 − λ6q− λ7
(

1− q
))

+ λ5µ,

dλ6

dt
= −

∂H

∂H
= (λ2 − λ1)

(

(1− u1) (CSβ2 + ISβ1)

N2

)

+r4 (λ6 − λ8) +
ρ1β1QI

N2

(

−λ5 + λ6p+ λ7
(

1− p
))

+
ρ2β2QC

N2

(

−λ5 + λ6q+ λ7
(

1− q
))

,

dλ7

dt
= −

∂H

∂J
= (λ2 − λ1)

(

(1− u1) (CSβ2 + ISβ1)

N2

)

+r5 (λ7 − λ8) +
ρ1β1QI

N2

(

−λ5 + λ6p+ λ7
(

1− p
))

+
ρ2β2QC

N2

(

−λ5 + λ6q+ λ7
(

1− q
))

+ λ7
(

d4 + µ
)

,

dλ8

dt
= −

∂H

∂R
= (λ2 − λ1)

(

(1− u1) (CSβ2 + ISβ1)

N2

)

+
ρ1β1QI

N2

(

−λ5 + λ6p+ λ7
(

1− p
))

+
ρ2β2QC

N2
(−λ5 + λ6q+ λ7

(

1− q
)

)+ λ8µ.

With transverse condition

λ1 (T) = λ2 (T) = λ3 (T) = λ4 (T) = λ5 (T) = λ6 (T) =

λ7 (T) = λ8 (T) = 0.

The stationary condition for the optimal control problem

(16) is obtained by deriving the Hamilton function (17)

on the control variables u1 and u2

(

∂H
∂u1

= 0, ∂H
∂u2

= 0
)

,

successively obtained

u1 =
(β1SI + β2SC) (λ2 − λ1)

NA1
and

u2 =
I (λ3 − λ6 − λ7) + C (λ4 − λ6 − λ7)

A2
.

The control variables in the COVID-19 model with preventive

measures through education and treatment efforts for infected

individuals are defined as 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1. So, the

optimal control u∗1 and u∗2 can be expressed as

u∗1 = maks
{

0,min
(

(β1S∗I∗+β2S
∗C∗)(λ2−λ1)

NA1
, 1

) }

and

u∗2 = maks
{

0,min
(

I∗(λ3−λ6−λ7)+C∗(λ4−λ6−λ7)
A2

, 1
)}

.

The optimal system is obtained by substituting the optimal

control variables u∗1 and u∗2 into the system of state (Equation

15) and costate (Equation 18) equations.

6. Simulation of the model with
control

The method used in solving this optimal control problem

is the forward–backward sweep method. In this numerical

simulation, the parameter values used are presented in Table 1

according to the state of the COVID-19 case in Indonesia. Next,

the initial values given are as follows S0 = 270, 911, 990, E0 =

1, 000, 000, I0 = 412, 784, C0 = 500, 000, Q0 = 100, 000,

H0 = 56, 899, J0 = 200, 000, and R0 = 341, 942, with simulation

intervals t ∈ [0, 100] . The results of the optimal numerical

control simulation are presented as follows:
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FIGURE 7

The optimal control simulation results with u1 6= 0.

6.1. Using the control strategy u1 6= 0 and
u2 = 0

Figure 7 shows the control strategy u1 6= 0 and u2 = 0. This

is the result of education that makes all individuals always be

careful, such as interacting outside the home. Implementing this

strategy on subpopulations exposed, infected with comorbidity,

infected without comorbidity, and isolation is significantly

reduced. Implementing the control strategy u1 6= 0 and u2 = 0

can also increase the subpopulation of quarantine. Furthermore,

the control strategy profiles u1 6= 0 and u2 = 0 to reduce the

number of COVID-19 cases during t = 100 are presented in

Figure 8.

The control strategy u1 6= 0 and u2 = 0 is given by one

(maximum) from the beginning of the period to t = 99.9 and

decreases significantly to zero at the end of the period. Control

is terminated at the period’s end, meaning no more control

is given.

6.2. Using the control strategy u1 = 0 and
u2 6= 0

Figure 9 shows the control strategy u1 = 0 and u2 6=

0. This strategy can reduce the subpopulation infected with

comorbid and without comorbid because there is an increase

in the care of infected individuals. Implementing this strategy

FIGURE 8

The optimal control profile with u1 6= 0.

on subpopulations exposed, infected with comorbidity, infected

without comorbidity, and isolation is significantly reduced.

Implementing the control strategies u1 = 0 and u2 6= 0 can

also increase the subpopulation of quarantine. Furthermore, the

profiles of u1 = 0 and u2 6= 0 control strategies to reduce

the number of COVID-19 cases for t = 100 are presented in

Figure 10.

The control strategy u1 = 0 and u2 6= 0 is given by one

(maximum) from the beginning to t = 48.6 and decreases slowly
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FIGURE 9

The optimal control simulation results with u2 6= 0.

FIGURE 10

Optimal control profile with u2 6= 0.

until t = 100 reaches zero which means control is stopped at the

end of the period.

6.3. Using the control strategy u1 6= 0 and
u2 6= 0

Figure 11 indicates a combined control strategy. This results

from education thatmakes all individuals always be careful (such

as interacting outside the home) and increased care for infected

individuals. Combined control strategies can control or reduce

deployment significantly. Furthermore, the combined control

strategy profile to reduce the number of COVID-19 cases during

t = 100 is presented in Figure 12.

The combined control strategy consists of two concurrent

administrations of control. The control u1 is given by one

(maximum) up to t = 65.4 and decreases significantly until the

end of the period reaches zero. Then, control u2 is assigned one

(maximum) until t = 39.5 and then decreases until t = 100

slowly reaches zero. Both controls are terminated at the end of

the period, which means they are no longer given control of u1

and u2.

6.4. Comparison of total infections using
all strategic control scenarios

The varying initial values of the exposed subpopulations

are given. Total infected subpopulations for different

initial conditions from exposed subpopulations are

E(0) = 200000,E(0) = 1000000,E(0) = 10000000, and

E(0) = 100000000 successively from left to right using the three

control strategies shown in Figure 13.

From Figure 13, it can be seen that the number of infected

subpopulations was reduced by applying the third strategy

compared to other strategies. Based on strategies 1–3, it can be
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FIGURE 11

Combined optimal control simulation results.

FIGURE 12

Combined control profile.

concluded that strategy 3 is the best strategy to minimize the

number of people infected with COVID-19 in the community.

7. Cost evaluation

The cost evaluation aims to determine the most minimal

cost-effectiveness strategy of COVID-19 spread control

measures. Cost evaluation in this study uses average cost-

effectiveness ratio (ACER) and incremental cost-effectiveness

ratio (ICER). According to the approach to cost-effectiveness

analysis, ACER is defined mathematically as follows:

ACER =
Objective function (J)

Total number of infections averted
.

The strategy with the smallest ACER value is the most

cost-effective and is obtained in Table 4 as follows:

The incremental cost-effectiveness ratio, which compares

two intervention options vying for the same scarce resources,

typically tracks costs and health benefits changes. ICER is

defined as follows when considering strategies p and q as two

competing control intervention techniques:

ICER =
Change in total costs in strategies p and q

Change in control benefits in strategies p and q
.

Next, ICER was calculated to determine the most cost-effective

strategy out of all the control strategies. First, the competition

for strategies 1 and 2 is calculated as follows:

ICER (1) =
49, 247, 000, 000− 0

53, 846, 000, 000−0
= 0.9146,

ICER (2) =
2, 991, 000, 000− 49, 247, 000, 000

53, 893, 000, 000

−53, 846, 000, 000 = −
46, 256, 000, 000

47, 000, 000
= −984.1702,
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FIGURE 13

(A–D) Total subpopulation infected using various strategies.

The ICER results in strategy 1 were greater than in strategy

2, so educational controls alone were more expensive and

ineffective than medical care enhancement controls. Therefore,

strategy 1 is removed from the possible control strategies. Next,

the ICER for strategies 2 and 3 is recalculated as follows:

ICER (2) =
2, 991, 000, 000− 0

53, 893, 000, 000−0
= 0.5130,

ICER (3) =
1, 794, 700, 000−2, 991, 000, 000

53, 894, 000, 000−53, 893, 000, 000

= −
1, 196, 300, 000

1, 000, 000
= −1, 196.3.

Strategy 2 has a higher ICER value than strategy 3. So,

strategy 3 (combined control) is the best control strategy of all

options because of its cost-effectiveness and prevention of the

spread of infectious diseases.

TABLE 4 Total infections prevented, total costs, and ACER for

strategies 1, 2, and 3.

Strategy Infections
prevented

Total cost ACER

No strategy 0 0 0

Strategy 1 53,846,000,000 49,247,000 0.9146

Strategy 2 53,893,000,000 2,991,000 0.0555

Strategy 3 53,894,000,000 1,794,700 0.0333

8. Conclusion

In this study, we have proposed a mathematical model of

COVID-19 with comorbidities and added control of community

education and improvement of medical care. The proposed

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

22

https://doi.org/10.3389/fams.2022.1096141
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Rois et al. 10.3389/fams.2022.1096141

model has been calibrated using cumulative confirmed infection

cases in Indonesia. The basic reproduction number has been

calculated by the next-generationmatrixmethod. Themodel has

an asymptotically stable disease-free equilibrium, provided that

the basic reproduction number is <1. Furthermore, the model

has an asymptotically stable endemic equilibrium, provided that

the basic reproduction number is more than one. Individuals

with comorbidity have a greater risk of infection, so there is

a need for more supervision and preventive measures such as

wearing masks, maintaining distance, and proper sanitation.

Public education can be through social media, TV, radio,

print media, and others to control the COVID-19 pandemic

in Indonesia. Based on the model analysis, it is found that

the COVID-19 pandemic can be controlled and eradicated if

the value of R0 < 1 by providing public education control

and improving medical care. The sensitivity analysis results

show that the most influential parameters are quarantine and

contact with infected individuals, so educating the public to

reduce disease transmission is important. After public education

was given, the community became aware of the COVID-

19 outbreak and began to reduce contact with other people.

Likewise, the Indonesian government imposed large-scale social

restrictions (PSBB) and enforced restrictions on community

activities (PPKM) with four levels aiming to reduce infection

and reduce social contact, educational institutions conducted

online classes, webinars, etc. In addition to public education,

increased medical care also need to be given to individuals who

are already infected so that they recover quickly and that the

epidemic is resolved soon. Furthermore, from the numerical

results and cost-effectiveness analysis on the optimal control

problem, it is found that applying a combination of controls

can give the best results compared to a single control. This

study can be extended in various ways, including considering

the stochastic, time delay, and fractional derivative versions of

this model. In addition, providing control variations (such as

the presence of vaccination) combines the dynamics of two

COVID-19 strains with another comorbidity and considers the

COVID-19 vaccination model.
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Bifurcation analysis of a
predator–prey model involving
age structure, intraspecific
competition, Michaelis–Menten
type harvesting, and memory
e�ect

Hasan S. Panigoro*, Emli Rahmi and Resmawan Resmawan

Biomathematics Research Group, Department of Mathematics, Universitas Negeri Gorontalo,

Gorontalo, Indonesia

The complexity of the dynamical behaviors of interaction between prey

and its predator is studied. The prey and predator relationship involves the

age structure and intraspecific competition on predators and the nonlinear

harvesting of prey following the Michaelis–Menten type term. Some biological

validities are shown for the constructed model such as the existence and

uniqueness as well as the non-negativity and boundedness of solutions. Three

equilibrium points, namely the origin, axial, and interior points, are found

including their global dynamics by employing the Lyapunov function along

with the generalized Lassale invariant principle. The changes in dynamical

behaviors driven by the harvesting and the memory e�ect are exhibited,

including transcritical, saddle-node, backward, and Hopf bifurcations. The

appearance of these interesting phenomena is strengthened by giving

numerical simulations consisting of bifurcation diagrams, phase portraits, and

their time series.

KEYWORDS

bifurcation, age structure, intraspecific competition, harvesting, memory e�ect

1. Introduction

Since Lotka and Volterra introduced the classical predator–prey model, theoretical

studies of predation without age structure have attracted the attention of many authors,

for example Deng et al. [1], Huang et al. [2], Tahara et al. [3], and Zeng et al. [4]. However,

in nature, many species of plants and animals could have life histories that can simply be

partitioned into two age stages: immature andmature stages. In each stage, individuals of

species have identical biological characteristics, such as the ability to reproduce, motile,

ingest food, and survive [5]. In particular, there are amphibians, insects, birds, and

mammals with life cycles that can last from only several days or weeks to more than a

century. For this reason, some researchers have developed the predator–prey model by

incorporating age structure either in prey or/and predator population with other factors

that also influence the dynamics of the predator–prey model, mainly restricted to the

classical integer-order, stochastic, or delay equations [6–13].
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InWang and Chen [14] considered the predator–preymodel

with age structure for the predator population using time delays.

If we ignore the effect of time delay, the model can be written

as follows:

dx

dt
= rx

(

1−
x

K

)

−mxz,

dy

dt
= nxz − βy− δ1y,

dz

dt
= βy− δ2z.

(1)

Here x(t), y(t), and z(t) represent the population densities

of prey, immature predator, and mature predator, at time t,

respectively. Model (Equation 1) assumes that the prey grows

logistically with r as the intrinsic growth rate, K is the carrying

capacity; m is the linear Holling type I functional response, n

is the conversion rate with which captured prey are converted to

new immature predator, β is the maturity rate of the predator, δ1

and δ2 are the death rate of the immature and mature predators,

respectively. It is also assumed that only the mature predator can

feed the prey through the term mxz. If we do not consider the

age structure of the predator population, then model (Equation

1) is reduced to the classical Lotka–Volterra model for which

the positive equilibrium or the boundary equilibrium of this

model is globally asymptotically stable. This means that the

model has no periodic solution. On the other hand, Wang and

Chen [14] prove that in the model (Equation 1), there exists

an orbitally asymptotically stable periodic solution around the

interior equilibrium point which suggests that the age structure

can cause periodic oscillation of populations.

From the point of view of human needs, harvesting of

populations generally occurs in wildlife, forestry, and fisheries

management. When harvesting is integrated into the predator–

prey model, there are three types of harvesting, namely

constant harvesting [15], linear harvesting [16], and non-linear

harvesting [17]. In this article, we assume that the predator is

not a commercial species and there is intraspecific competition

among immature predators. Therefore, the predator–prey

model with age structure and intraspecific competition in

predator (Equation 1), where the prey population is subject to

Michaelis–Menten type harvesting, is given by

dx

dt
= rx

(

1−
x

K

)

−mxz −
hx

c+ x
,

dy

dt
= nxz − βy− δ1y− ωy2,

dz

dt
= βy− δ2z.

(2)

An example of prey-predator interactions whose biological

phenomena are described in the model (Equation 2) can be

found in the African wild dog with its prey impala. The African

wild dogs are a social structure that lives in packs. For 3–4

weeks, young African wild dogs were in the den with their

mother. All adult members of African wild dogs are care for their

young ones and provide food for them. The hunting members

of the pack will return to the den where they regurgitate meat

for the nursing female and young. In some cases, young ones

fail to survive because the hunting member does not bring

back sufficient food for the young, which leads to intraspecific

competition in immature predator [18]. On the other hand, the

prey, impala, even though there are no major threats to their

survival, poaching has become significantly contributed to the

decline in its number [19].

Note that the growth rates of the prey, immature, andmature

predator populations in the model (Equation 2) depend only on

the local state as the left-hand side is the integer-order derivative.

On the other hand, most biological systems have properties

where the current state is affected by all of the past states or it

is called the memory effect. Therefore, modeling with memory

effects can be done by analyzing the system using fractional-

order calculus [20, 21]. The operators of the fractional-order

derivative have non-local properties to make themmore suitable

for dynamical systems that have memory influences on their

state variables.

After Riemann and Liouville generalized the concept of

integer-order calculus to the fractional-order calculus over

two decades ago, the studies about the predator–prey models

with fractional-order differential equation have gained much

attention, for example, Rahmi et al. [22], Owolabi [23], Barman

et al. [24], Ghanbari and Djilali [25], Yousef et al. [26], Ghosh

et al. [27], and Panigoro et al. [28]. The fractional-order

derivatives are defined as an integration that provides the ability

to store the whole memory over time, and hence, it could give

an exact description of different ecological phenomena. For this

reason, the new structure for the model (Equation 2) is given in

the following form:

C
D

α
t x(t) = rx

(

1−
x

K

)

−mxz −
hx

c+ x
= F1(x, y, z),

C
D

α
t y(t) = nxz − βy− δ1y− ωy2 = F2(x, y, z),

C
D

α
t z(t) = βy− δ2z = F3(x, y, z).

(3)

The existence and local stability of all equilibrium points of

the model (Equation 3) are discussed in Panigoro et al. [29].

However, to the best of our knowledge, the global dynamics and

bifurcation analysis of the model (Equation 3), to this day, have

not been investigated. Here, CDα
t f (t) is the standard Caputo

derivative for a continuous function f (x) ∈ C([0,+∞),R),

which is defined as follows:

C
D

α
t f (t) =

1

Ŵ(1− α)

∫ t

0

f ′(τ )

(t − τ )α
dτ , (4)

where Ŵ(∗) is the gamma function, t ≥ 0, and 0 < α ≤ 1 is

known as the order of the fractional derivative.

Based on the above discussion, we have organized our work

in several sections: In Section 3, we develop the existence and
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uniqueness solution of the model (Equation 3). To check the

biologically well-posedness of the model, we establish the non-

negativity and boundedness of solutions of the model in Section

3. In Section 4, we derive some sufficient conditions to ensure the

global asymptotic stability of each locally asymptotically stable

equilibrium point by applying the Lyapunov functions. We then

analyze the existing conditions of transcritical, saddle-node,

backward, and Hopf bifurcations in Section 5. Some numerical

simulations of our obtained results are carried out in Section 6.

Finally, the conclusions are given in Section 7.

2. Existence and uniqueness

In this section, we will show that the model (Equation

3) has a unique solution. A similar manner given by Mahata

et al. [30] is adopted. We first take the Riemann–Liouville

integral (Definition 1 in Yavuz and Sene [31]) on both

sides of Equation (3) to achieve the following Volterra-type

integral equations.

x(t)− x(0) =
1

Ŵ(α)

∫ t

0
F1(x(τ ), y(τ ), z(τ ))(t−)α−1 dτ ,

y(t)− y(0) =
1

Ŵ(α)

∫ t

0
F2(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ , (5)

z(t)− z(0) =
1

Ŵ(α)

∫ t

0
F3(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ ,

Now, we will show that the kernels Fi(x, y, z), i =

1, 2, 3, satisfy the Lipschitz condition. For ‖.‖ is the Euclidean

norm, we suppose that
∥

∥x(t)
∥

∥ ≤ a1,
∥

∥x̄(t)
∥

∥ ≤ a2,
∥

∥y(t)
∥

∥ ≤ a3,
∥

∥ȳ(t)
∥

∥ ≤ a4,
∥

∥z(t)
∥

∥ ≤ a5, and
∥

∥z̄(t)
∥

∥ ≤ a6 are bounded functions. For x, x̄, y, ȳ, z, and z̄,

we have

∥

∥F1
(

x, y, z
)

− F1
(

x̄, y, z
)
∥

∥

= ||

[

rx
(

1−
x

K

)

−mxz −
hx

c+ x

]

−

[

rx̄

(

1−
x̄

K

)

−mx̄z −
hx̄

c+ x̄

]

||

= ||r(x− x̄)−
r

K
(x+ x̄) (x− x̄) −mz (x− x̄)

− ch

(

x− x̄

(c+ x)(c+ x̄)

)

||

≤ r ‖x− x̄‖ +
(a1 + a2)r

K
‖x− x̄‖ + a5m ‖x− x̄‖ +

h

c
‖x− x̄‖

= g1 ‖x− x̄‖ ,
∥

∥F2
(

x, y, z
)

− F2
(

x, ȳ, z
)
∥

∥

=

∥

∥

∥

[

nxz − βy− δ1y− ωy2
]

−

[

nxz − β ȳ− δ1ȳ− ωȳ2
]
∥

∥

∥

=
∥

∥−β(y− ȳ)− δ1(y− ȳ)− ω(y+ ȳ)(y− ȳ)
∥

∥

≤ β
∥

∥y− ȳ
∥

∥+ δ1
∥

∥y− ȳ
∥

∥+ ω(a3 + a4)
∥

∥y− ȳ
∥

∥

= g2
∥

∥y− ȳ
∥

∥ ,

∥

∥F3
(

x, y, z
)

− F3
(

x, y, z̄
)
∥

∥

=
∥

∥

[

βy− δ2z
]

−
[

βy− δ2z̄
]
∥

∥

≤ g3 ‖z − z̄‖ ,

where g1 = r+
(a1 + a2)r

K
+a5m+

h

c
, g2 = β+δ1+ω(a3+a4),

and g3 = δ2. Therefore, we conclude that Fi(x, y, z), i = 1, 2, 3,

satisfy the Lipschitz condition. Furthermore, it is clear that if

0 ≤ gi < 1, then Fi(x, y, z) are contractions for i = 1, 2, 3.

Therefore, the following theorem is obtained.

Theorem 1. The kernel Fi(x, y, z), i = 1, 2, 3 satisfy the

Lipschitz condition and contractions if 0 < gi < 1, i = 1, 2, 3.

Next, Equation (5) can be written as follows:

x(t) = x(0)+
1

Ŵ(α)

∫ t

0
F1(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ ,

y(t) = y(0)+
1

Ŵ(α)

∫ t

0
F2(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ ,

z(t) = z(0)+
1

Ŵ(α)

∫ t

0
F3(x(τ ), y(τ ), z(τ ))(t − τ )α−1 dτ ,

Which can be written by the following recursive formula

xn(t) = x(0)+
1

Ŵ(α)

∫ t

0
F1(xn−1, y, z)(t − τ )α−1 dτ ,

yn(t) = y(0)+
1

Ŵ(α)

∫ t

0
F2(x, yn−1, z)(t − τ )α−1 dτ ,

zn(t) = z(0)+
1

Ŵ(α)

∫ t

0
F3(x, y, zn−1)(t − τ )α−1 dτ ,

with initial conditions x0(t) = x(0), y0(t) = y(0), and z0(t) =

z(0). Therefore, we have

ϕ1n (t) = xn(t)− xn−1(t)

=
1

Ŵ(α)

∫ t

0

(

F1(xn−1, y, z)− F1(xn−2, y, z)
)

(t − τ )α−1 dτ ,

ϕ2n (t) = yn(t)− yn−1(t)

=
1

Ŵ(α)

∫ t

0

(

F2(x, yn−1, z)− F2(x, yn−2, z)
)

(t − τ )α−1 dτ ,

(6)

ϕ3n (t) = zn(t)− zn−1(t)

=
1

Ŵ(α)

∫ t

0

(

F3(x, y, zn−1)− F3(x, y, zn−2)
)

(t − τ )α−1 dτ ,

where xn(t) =
∑n

j=1 ϕ1n (t), yn(t) =
∑n

j=1 ϕ2n (t), and zn(t) =
∑n

j=1 ϕ3n (t). Now, we evaluate the norm of Equation (6). We

achieve

∥

∥ϕ1n (t)
∥

∥ =
∥

∥xn(t)− xn−1(t)
∥

∥

≤
1

Ŵ(α)

∫ t

0
||
(

F1(xn−1, y, z)
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−F1(xn−2, y, z)
)

(t − τ )α−1 dτ ,
∥

∥ϕ2n (t)
∥

∥ =
∥

∥yn(t)− yn−1(t)
∥

∥

≤
1

Ŵ(α)

∫ t

0
||
(

F2(x, yn−1, z)

−F2(x, yn−2, z)
)

(t − τ )α−1 dτ ||, (7)
∥

∥ϕ3n (t)
∥

∥ =
∥

∥zn(t)− zn−1(t)
∥

∥

≤
1

Ŵ(α)

∫ t

0
||
(

F3(x, y, zn−1)

−F3(x, y, zn−2)
)

(t − τ )α−1 dτ ||.

From Theorem 1, we have that the kernel satisfy the

Lipschitz condition and hence Equation (7) becomes

∥

∥xn(t)− xn−1(t)
∥

∥ ≤
g1

Ŵ(α)

∫ t

0

∥

∥xn−1 − xn−2
∥

∥ (t − τ )α−1 dτ ,

∥

∥yn(t)− yn−1(t)
∥

∥ ≤
g2

Ŵ(α)

∫ t

0

∥

∥yn−1 − yn−2
∥

∥ (t − τ )α−1 dτ ,

∥

∥zn(t)− zn−1(t)
∥

∥ ≤
g3

Ŵ(α)

∫ t

0

∥

∥zn−1 − zn−2
∥

∥ (t − τ )α−1 dτ .

The last inequality gives

∥

∥ϕ1n (t)
∥

∥ ≤
g1

Ŵ(α)

∫ t

0

∥

∥ϕ1n−1 (τ )
∥

∥ dτ ,

∥

∥ϕ2n (t)
∥

∥ ≤
g2

Ŵ(α)

∫ t

0

∥

∥ϕ2n−1 (τ )
∥

∥ dτ , (8)

∥

∥ϕ3n (t)
∥

∥ ≤
g3

Ŵ(α)

∫ t

0

∥

∥ϕ3n−1 (τ )
∥

∥ dτ .

Finally, the existence of a solution is given by the following

theorem.

Theorem 2. The solution of model (Equation 3) has a solution

under the condition if we have t1 such that

(

t1gi

Ŵ(α + 1)

)

<

1, i = 1, 2, 3.

Proof. We assume that x(t), y(t), and z(t) are bounded and their

kernel Fi, i = 1, 2, 3 satisfy the Lipschitz condition. According

to Equation (8), we obtain

∥

∥ϕ1n (t)
∥

∥ ≤
∥

∥x0(t)
∥

∥

[

t1g1

Ŵ(α + 1)

]n

,

∥

∥ϕ2n (t)
∥

∥ ≤
∥

∥y0(t)
∥

∥

[

t1g2

Ŵ(α + 1)

]n

, (9)

∥

∥ϕ3n (t)
∥

∥ ≤
∥

∥z0(t)
∥

∥

[

t1g3

Ŵ(α + 1)

]n

,

which represent the existence and continuity of the system. To

show that the solution of the model (Equation 3) can be set up

from the functions in Equation (9), we assume

x(t)− x(0) = xn(t)− Q1n (t),

y(t)− y(0) = yn(t)− Q2n (t), (10)

z(t)− z(0) = zn(t)− Q3n (t).

whereQin , i = 1, 2, 3 are the remaining terms. Furthermore, the

given terms would be demonstrated to hold
∥

∥Qi∞

∥

∥ → 0 ∀i =

1, 2, 3. Denoting that

‖Q1n‖ (t) ≤

∥

∥

∥

∥

1

Ŵ(α)

∫ t

0

(

F1(x, y, z)− F1(xn−1, y, z)
)

dτ

∥

∥

∥

∥

≤
1

Ŵ(α)

∫ t

0

∥

∥F1(x, y, z)− F1(xn−1, y, z)
∥

∥ dτ

≤
tg1

Ŵ(α + 1)

∥

∥x− xn−1
∥

∥ ,

‖Q2n‖ (t) ≤

∥

∥

∥

∥

1

Ŵ(α)

∫ t

0

(

F2(x, y, z)− F2(x, yn−1, z)
)

dτ

∥

∥

∥

∥

≤
1

Ŵ(α)

∫ t

0

∥

∥F2(x, y, z)− F2(x, yn−1, z)
∥

∥ dτ (11)

≤
tg2

Ŵ(α + 1)

∥

∥y− yn−1
∥

∥ .

‖Q3n‖ (t) ≤

∥

∥

∥

∥

1

Ŵ(α)

∫ t

0

(

F3(x, y, z)− F3(x, y, zn−1)
)

dτ

∥

∥

∥

∥

≤
1

Ŵ(α)

∫ t

0

∥

∥F3(x, y, z)− F3(x, y, zn−1)
∥

∥ dτ

≤
tg3

Ŵ(α + 1)

∥

∥z − zn−1
∥

∥ .

By applying a recursive pattern, we acquire

∥

∥Q1n (t)
∥

∥ ≤

[

t

Ŵ(α + 1)

]n+1

gn1 k,

∥

∥Q2n (t)
∥

∥ ≤

[

t

Ŵ(α + 1)

]n+1

gn2 k, (12)

∥

∥Q3n (t)
∥

∥ ≤

[

t

Ŵ(α + 1)

]n+1

gn3 k.

At the point t1, we have

∥

∥Q1n (t)
∥

∥ ≤

[

t1

Ŵ(α + 1)

]n+1

gn1 k,

∥

∥Q2n (t)
∥

∥ ≤

[

t1

Ŵ(α + 1)

]n+1

gn2 k, (13)

∥

∥Q3n (t)
∥

∥ ≤

[

t1

Ŵ(α + 1)

]n+1

gn3 k.

By considering the results of Theorem 1 and applying n →

∞ to both sides, we have
∥

∥Qi∞

∥

∥→ 0 ∀i = 1, 2, 3.

In the end, we will show that the solution is unique for each

initial value by utilizing the contradiction approach. Suppose

that there exists another solution of the model (Equation 3),

namely x1(t), y1(t), and z1(t). Then, we have

x(t)− x1(t) =
1

Ŵ(α)

∫ t

0

(

F1(x, y, z)− F1(xn−1, y, z)
)

dτ ,

y(t)− y1(t) =
1

Ŵ(α)

∫ t

0

(

F2(x, y, z)− F2(x, yn−1, z)
)

dτ , (14)
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z(t)− z1(t) =
1

Ŵ(α)

∫ t

0

(

F3(x, y, z)− F3(x, y, zn−1)
)

dτ .

Applying the norm on both sides, we achieve

∥

∥x(t)− x1(t)
∥

∥ ≤
1

Ŵ(α)

∫ t

0

∥

∥F1(x, y, z)− F1(xn−1, y, z)
∥

∥ dτ ,

∥

∥y(t)− y1(t)
∥

∥ ≤
1

Ŵ(α)

∫ t

0

∥

∥F2(x, y, z)− F2(x, yn−1, z)
∥

∥ dτ ,

(15)

∥

∥z(t)− z1(t)
∥

∥ ≤
1

Ŵ(α)

∫ t

0

∥

∥F3(x, y, z)− F3(x, y, zn−1)
∥

∥ dτ .

By considering Theorem 1, we obtain

∥

∥x(t)− x1(t)
∥

∥ ≤
tg1

Ŵ(α + 1)

∥

∥x(t)− x1(t)
∥

∥ ,

∥

∥y(t)− y1(t)
∥

∥ ≤
tg2

Ŵ(α + 1)

∥

∥y(t)− y1(t)
∥

∥ ,

∥

∥z(t)− z1(t)
∥

∥ ≤
tg3

Ŵ(α + 1)

∥

∥z(t)− z1(t)
∥

∥ .

Therefore, the following equations are obtained.

∥

∥x(t)− x1(t)
∥

∥

(

1−
tg1

Ŵ(α + 1)

)

≤ 0,

∥

∥y(t)− y1(t)
∥

∥

(

1−
tg2

Ŵ(α + 1)

)

≤ 0, (16)

∥

∥z(t)− z1(t)
∥

∥

(

1−
tg3

Ŵ(α + 1)

)

≤ 0.

As a result, we achieve
∥

∥x(t)− x1(t)
∥

∥ = 0,
∥

∥y(t)− y1(t)
∥

∥ =

0, and
∥

∥z(t)− z1(t)
∥

∥ = 0, which impact x(t) = x1(t), y(t) =

y1(t), and z(t) = z1(t). Then, we finally give the following

theorem.

Theorem 3. The Caputo fractional-order predator–prey model

(Equation 3) has a unique solution.

3. Non-negativity and boundedness

In this section, we will show that for any initial condition is

in R
3
+ where

R
3
+ : =

{

(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x ∈ R, y ∈ R
}

.

The solution not only exists and is unique but also bounded

and always in R
3
+ as t → ∞. Therefore, we have the following

two theorems.

Theorem 4. If the initial condition in R
3
+ then both population

densities of prey and predator given by model (Equation 3)

remain in R
3
+.

Proof. To prove this non-negativity condition, we apply

reductio ad absurdum (contradiction method), which is also

used in Barman et al. [24] and Maji [32]. We assume that there

exists t̂ > 0 such that










x(t) > 0, when 0 ≤ t < t̂,

x(t̂) = 0, when t = t̂

x(t̂+) < 0, when t = t̂+.

(17)

From the first equation in Equation (3) along with

Equation (17), we have

C
D

α
t x (t)|x(t̂) = 0. (18)

According to Lemma 3.1 in Barman et al. [33], we get

x(t̂+) = 0 which contradicts with Equation (17) where x(t̂+) <

0. This means that x(t) ≥ 0 for all t ∈ [0,∞]. Similarly, we can

show that y(t) ≥ 0 and z(t) ≥ 0 for all t ∈ [0,∞]. In conclusion,

we have the non-negative solution for model (Equation 3) when

the initial values are in R
3
+.

Theorem 5. The solution of model (Equation 3) is always

bounded in R
3
+ for the initial condition in R

3
+.

Proof. Since we work the population model, it is natural that

the population must be bounded due to the limitation of their

biological resources, which is also known as environmental

carrying capacity. Thus, the boundedness of the solution of the

model (Equation 3) is also important to learn and prove. From

Theorem 4, we can define a positive function as follows:

N (t) = x+
my

n
+

mz

n
. (19)

For any γ > 0, the following fractional-order differential

equation holds.

C
D

α
t N (t)+ γN (t)

= C
D

α
t x(t)+

m

n
C
D

α
t y(t)+

m

n
C
D

α
t y(t)+ γN (t)

=

(

rx
(

1−
x

K

)

−mxz −
hx

c+ x

)

+
m

n
(nxz − βy− δ1y− ωy2)

+
m

n
(βy− δ2z)+ γ x+

γmy

n
+

γmz

n

= rx−
rx2

K
−

hx

c+ x
−

δ1my

n
−

ωmy2

n

−
δ2mz

n
+ γ x+

γmy

n
+

γmz

n

≤ rx−
rx2

K
−

δ1my

n
−

δ2mz

n
+ γ x+

γmy

n
+

γmz

n

= (r + γ )x−
rx2

K
+ (γ − δ1)

my

n
+ (γ − δ2)

mz

n

By choosing γ < min{δ1, δ2}, we obtain

C
D

α
t N (t)+ γN (t) ≤ (r + γ )x−

rx2

K

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

29

https://doi.org/10.3389/fams.2022.1077831
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Panigoro et al. 10.3389/fams.2022.1077831

= −
r

K

(

x2 −
(r + γ )Kx

r

)

= −
r

K

(

x2 −
(r + γ )Kx

r
+

(r + γ )2K2

4r2
−

(r + γ )2K2

4r2

)

= −
r

K

[

(

x−
(r + γ )K

2r

)2

−
(r + γ )2K2

4r2

]

= −
r

K

(

x−
(r + γ )K

2r

)2

+
(r + γ )2K

4r

≤
(r + γ )2K

4r

According to Lemma 3 in Panigoro et al. [34], we apply the

comparison principle and obtain

N (t) ≤

(

N (0)−
(r + γ )2K

4γ r

)

Eα[−γ tα]+
(r + γ )2K

4γ r
. (20)

For t → ∞, we achieve N (t) →
(r + γ )2K

4γ r
, which means

all solutions of model (Equation 3) with non-negative initial

conditions are confined to �̂ where

�̂ : =

{

(x, y, z) ∈ R
3
+ : N (t) = x(t)+

my(t)

n
+

mz(t)

n

≤ σ , σ =
(r + γ )2K

4γ r
+ ε, ε > 0

}

. (21)

4. Global dynamics

In this section, the global dynamics of model

(Equation 3) are investigated. Note that all biological

equilibrium points, their existence conditions, and their

local stability are successfully described in Panigoro

et al. [29], which can be rewritten by the following theorem.

Theorem 6. (i) The origin point Eo = (0, 0, 0) always exists.

It is locally asymptotically stable (LAS) if r <
h

c
.

(ii) The axial point EA =
(

x̂, 0, 0
)

where x̂ is the positive root

of x2 + (c− K)x+

(

h

r
− c

)

K = 0, which has

(a) an equilibrium point if c >
h

r
.

(b) a pair of equilibrium points if c < min

{

K,
h

r

}

.

Moreover, it is LAS if h <
(c+ x̂)2r

K
and x̂ <

(β + δ1)δ2

βn
.

(iii) The interior point EI =
(

x∗, y∗, z∗
)

exists, if ai, i = 2, 3 in

Panigoro et al. [29] satisfies the following statements.

(a) An equilibrium point in R
3
+ if a3 < 0.

(b) Two equilibrium points in R
3
+ if a2 < 0 and a3 > 0.

The LAS condition of EI can be seen in Theorem 4 in

Panigoro et al. [29].

Note that all equilibrium points may attain local asymptotic

stability with several biological conditions. Now, we will identify

the biological properties to obtain globally asymptotically stable

(GAS) for each equilibrium point. The analytical results are

given by the following three theorems.

Theorem 7. The origin point Eo = (0, 0, 0) is GAS if r ≤
h

c+ σ
.

Proof. We define the positive definite Lyapunov function as

follows:

V1(x, y, z) = x+
my

n
+

mz

n
(22)

By applying Lemma 3.1 in Vargas-De-León [35], we compute

the α−order derivative of V1(x, y, z) along the solution of the

model (Equation 3) as follows:

C
D

α
t V1(x, y, z) ≤

C
D

α
t x+

m

n
C
D

α
t y+

m

n
C
D

α
t z

=

(

rx
(

1−
x

K

)

−mxz −
hx

c+ x

)

+
m

n
(nxz − βy− δ1y− ωy2)

+
m

n
(βy− δ2z)

= rx−
rx2

K
−mxz −

hx

c+ x
+mxz

−
βmy

n
−

δ1my

n
−

ωmy2

n
+

βmy

n
−

δ2mz

n

= rx−
rx2

K
−

hx

c+ x
−

δ1my

n
−

ωmy2

n
−

δ2mz

n

≤ rx−
hx

c+ x
−

δ1my

n
−

δ2mz

n
.

From Equation (21), we have x ≤ σ and hence

C
D

α
t V1(x, y, z) ≤ rx−

hx

c+ σ
−

δ1my

n
−

δ2mz

n

= −

(

h

c+ σ
− r

)

x−
δ1my

n
−

δ2mz

n

Therefore, CDα
t V1(x, y, z) ≤ 0 for all (x, y, z) ∈ R

3
+, if

r ≤
h

c+ σ
. We also find that CDα

t V1(x, y, z) = 0, if (x, y, z) =

(0, 0, 0). This conveys that {Eo} is the only invariant set on which
CDα

t V1(x, y, z) = 0. Obeying Lemma 4.6 in Huo et al. [20],

r ≤
h

c+ σ
obviously becomes the biological condition of Eo to

reach GAS.

Theorem 8. The axial point EA = (x̂, 0, 0) is GAS if
hK

cr
< x̂ <

δ2

n
.

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

30

https://doi.org/10.3389/fams.2022.1077831
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Panigoro et al. 10.3389/fams.2022.1077831

Proof. We construct a positive definite Lyapunov function

based on the Volterra equation as follows:

V2(x, y, z) =
(

x− x̂− x̂ ln
x

x̂

)

+
my

n
+

mz

n
. (23)

The α-order derivative of V2(x, y, z) along the solution of the

model (Equation 3) given by Lemma 3.1 in Vargas-De-León [35]

is given by

C
D

α
t V2(x, y, z) ≤

(

x− x̂

x

)

C
D

α
t x+

mCDα
t y

n
+

mCDα
t z

n

=

(

x− x̂

x

)(

rx
(

1−
x

K

)

−mxz −
hx

c+ x

)

Z +
m

n

(

nxz − βy− δ1y− ωy2
)

+

m

n

(

βy− δ2z
)

=
(

x− x̂
)

(

r −
rx

K
−mz −

h

c+ x

)

+mxz

−
mδ1y

n
−

mωy2

n
−

mδ2z

n

=
(

x− x̂
)

(

−
r

K
(x− x̂)+

h(x− x̂)

(c+ x)(c+ x̂)
−mz

)

+mxz −
mδ1y

n
−

mωy2

n
−

mδ2z

n

= −
r

K

(

x− x̂
)2

+
h
(

x− x̂
)2

(c+ x)(c+ x̂)
+mx̂z

−
mδ1y

n
−

mωy2

n
−

mδ2z

n

≤ −
r

K

(

x− x̂
)2

+
h
(

x− x̂
)2

cx̂

+mx̂z −
mδ1y

n
−

mδ2z

n

= −

(

r

K
−

h

cx̂

)

(

x− x̂
)2

−
mδ1y

n

−

(

δ2

n
− x̂

)

mz

Since
hK

cr
< x̂ <

δ2

n
, we have CDα

t V2(x, y, z) ≤ 0 for

all (x, y, z) ∈ R
3
+. It is also clear that CDα

t V2(x, y, z) = 0 if

(x, y, z) = (x̂, 0, 0). This confirms that {EA} is the only invariant

set on which CDα
t V2(x, y, z) = 0. Therefore, EA is GAS due to

Lemma 4.6 in Huo et al. [20]. This confirms the justifiability of

Theorem 8.

Theorem 9. Let �X : =
{

(x, y, z) :
z∗

z
<

(1−mx∗)my∗ − nσ

(1+ σm)my∗

}

and h <
c2r

K
.

The interior point EI = (x∗, y∗, z∗) is GAS in �X .

Proof. Consider a positive definite Lyapunov function as

follows:

V3(x, y, z) =
(

x− x∗ − x∗ ln
x

x∗

)

+
m

n

(

y− y∗ − y∗ ln
x

y∗

)

+
1

δ2

(z − z∗)2

2z∗
. (24)

By applying Lemma 3.1 in Vargas-De-León [35] and Lemma

1 in Aguila-Camacho et al. [36], we obtain the α-order derivative

of V3(x, y, z) as follows:

C
D

α
t V3(x, y, z) ≤

(

x− x∗

x

)

C
D

α
t x+

m

n

(

y− y∗

y

)

C
D

α
t y+

1

δ2

(

z − z∗

z∗

)

C
D

α
t z

=

(

x− x∗

x

)(

rx
(

1−
x

K

)

−mxz −
hx

c+ x

)

+
m

n

(

y− y∗

y

)

(

nxz − βy− δ1y− ωy2
)

+
1

δ2

(

z − z∗

z∗

)

(

βy− δ2z
)

=
(

x− x∗
)

(

−
r

K

(

x− x∗
)

−m(z − z∗)

+
h(x− x∗)

(c+ x)(c+ x∗)

)

+
(

y− y∗
)

(

mxz

y
−

mx∗z∗

y∗
−

mω(y− y∗)

n

)

+
(

z − z∗
)

(

y

y∗
− 1−

z − z∗

z∗

)

= −
r

K

(

x− x∗
)2

+mz∗x+mx∗z

+
h
(

x− x∗
)2

(c+ x)(c+ x∗)

∗ −
my∗xz

y
−

mx∗z∗y

y∗

−
mω

(

y− y∗
)2

n
+

yz

y∗
−

z∗y

y∗

− z + z∗ −

(

z − z∗
)2

z∗
.

Applying Equation (21), we have

C
D

α
t V3(x, y, z) ≤ −

(

r

K
−

h

c2

)

(

x− x∗
)2

−
mω

(

y− y∗
)2

n
−

(

z − z∗
)2

z∗

−

(

1−mx∗ −
σn

my∗

)

z + (1+ σm)z∗.

Since
z∗

z
<

(1−mx∗)my∗ − nσ

(1+ σm)my∗
, we achieve

C
D

α
t V2(x, y, z) ≤ −

(

r

K
−

h

c2

)

(

x− x∗
)2

−
mω

(

y− y∗
)2

n
−

(

z − z∗
)2

z∗
.

Thus, CDα
t V3(x, y, z) ≤ 0 for all (x, y, z) ∈ R

3
+, when

h <
c2r

K
. We also confirm that CDα

t V3(x, y, z) = 0 if (x, y, z) =
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(x∗, y∗, z∗) and hence {EI} is the only invariant set on which
CDα

t V3(x, y, z) = 0. Based on Lemma 4.6 in Huo et al. [20], the

interior point EI is GAS in �X . This ends the proof.

5. Bifurcation analysis

In this section, we will study the occurrence of several

phenomena namely transcritical, saddle-node, backward, and

Hopf bifurcations. Two parameters are chosen, namely the

harvesting rate (h) and the order of the derivative (α), as

the memory index. For the analytical purpose, we define the

following parameter.

h∗1 = cr,

h∗2 =
(c+ K)2r

4K
,

α∗ =
2

π
arctan

∣

∣

∣

∣

ζ2

ζ1

∣

∣

∣

∣

.

Next, the following theorem is given for describing the

occurrence of transcritical bifurcation driven by the harvesting

rate (h) as the bifurcation parameter.

Theorem 10. The origin point Eo and the axial point EA

exchange their stability via transcritical bifurcation when h

passes through h∗1 .

Proof. Since the axial consists of two equilibrium points, we

focus on the axial point nearest to the origin point. When h =

h∗1 , the axial point merge with the origin point E0 = EA =

(0, 0, 0) where the eigenvalues of the Jacobianmatrix are: λ1 = 0,

λ2 = (β + δ1), and λ3 = −δ2. We obtain
∣

∣arg (λ2,3)
∣

∣ = π >

απ/2 while
∣

∣arg (λ1)
∣

∣ = απ/2. This means E0 = EA = (0, 0, 0)

is non-hyperbolic. When h∗1 < h <
(c+ K)2r

4K
, by applying

Theorems 2 and 3 in Panigoro et al. [29], E0 becomes LAS while

the nearest EA becomes a saddle point. For 0 < h < h∗1 , The

origin E0 becomes unstable and the nearest EA /∈ R
3
+ becomes

unstable. This condition shows the existence of transcritical

bifurcation, where h becomes the bifurcation parameter while

h = h∗1 is the bifurcation point.

Now, the existence of saddle-node bifurcation on axial

will be proven by still regarding the harvesting rate (h) as

the bifurcation parameter. As a result, the following theorem

is proposed.

Theorem 11. Suppose that c < min

{

h

r
,K

}

. The axial point EA

undergoes saddle-node bifurcation when h passes through the

bifurcation point h∗2 .

Proof. According to Theorem 1 in Panigoro et al. [29], the

axial point does not exist when h > h∗2 . When h = h∗2 , a

unique equilibrium point EA =

(

K − c

2
, 0, 0

)

occurs in axial

where its Jacobian matrix has three eigenvalues: λ1 = 0 and

λ2,3 = −
1

2

[

β + δ1 + δ2 +
√

(β + δ1 − δ2)2 + 2βn(K − c)
]

.

Since
∣

∣arg (λ1)
∣

∣ = απ/2, this axial point is non-hyperbolic.

When h < h∗, two axial points occurs given by EaA =
(

x̂a, 0, 0
)

and EbA =
(

x̂b, 0, 0
)

, where x̂a =
K − c

2
+

√

(h∗ − h)K

r
and x̂b =

K − c

2
−

√

(h∗ − h)K

r
. It is easy to validate that both E

a
A and

E
b
A are in R

3
+ and have different stability. As a consequence, all

the given circumstances express the occurrence of saddle-node

bifurcation.

Based on Theorems 10 and 11, we obtain more global

bifurcation namely backward bifurcation given by the following

lemma.

Lemma 1. The model (Equation 3) undergoes backward

bifurcation driven by the harvesting rate (h).

Proof. From previous theorems, the axial point EaA exists and is

LAS, while Eo is unstable when h < h∗1 . When h∗1 < h < h∗2 , Eo

becomes LAS, EaA still exists and is LAS, and unstable EbA occurs.

The bistability condition is held for this interval of h which

means that the convergence of the solution is very sensitive to

the initial condition. Finally, those two axial points merge when

h = h∗2 and disappear when h > h∗2 . This completes the proof.

Finally, we will show that the memory index in this case, that

is, the order of the derivative (α), affects the dynamical behaviors

of the model (Equation 3) indicated by the appearance of Hopf

bifurcation around the interior point EI .

Theorem 12. Suppose the characteristic equation of

the Jacobian matrix evaluated at EI can be written as

λ3 + ξ1λ
2 + ξ2λ + ξ3 = 0, which has a pair of complex

conjugate eigenvalues λ1,2 = ζ1 ± iζ2, where ζ1 > 0 and one

real negative eigenvalue (λ3 < 0). The model (Equation 3)

undergoes a Hopf bifurcation when the order of the fractional

derivative α crosses out the critical value α∗ = 2
π arctan

∣

∣

∣

ζ2
ζ1

∣

∣

∣
.

Proof. From the earlier assumptions, we have

min1≤i≤3

∣

∣arg(λi)
∣

∣ = arctan
∣

∣

∣

ζ2
ζ1

∣

∣

∣
. Therefore, the solution

of m(α∗) = α∗ π
2 − min | arg(λi)| = 0 is only when

α∗ = 2
π arctan

∣

∣

∣

ζ2
ζ1

∣

∣

∣
. If we check the transversal condition:

dm(α)
dα

|α=α∗ = π
2 which is not equal to 0, we can assure that

the sign of m(α) changes when the bifurcation parameter α

passing by α∗. It means that the equilibrium point EI is stable

when α ∈ (0,α∗) and is unstable for α∗ < α < 1.

6. Numerical simulations

In this section, we explore the dynamical behaviors of the

model (Equation 3) numerically to support analytical findings,
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FIGURE 1

Bifurcation diagram driven by the harvesting rate (h) of the model (Equation 3) around the axial point using the parameter values: r = 0.1, K = 5,

m = 0.25, c = 0.5, n = 0.01, β = 0.06, δ1 = 0.05, δ2 = 0.05, ω = 0.1, and α = 0.9.
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FIGURE 2

Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K = 5, m = 0.25, c = 0.5, n = 0.01, β = 0.06, δ1 = 0.05,

δ2 = 0.05, ω = 0.1, α = 0.9, and h = 0.02.
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FIGURE 3

Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K = 5, m = 0.25, c = 0.5, n = 0.01, β = 0.06, δ1 = 0.05,

δ2 = 0.05, ω = 0.1, α = 0.9, and h = 0.12.
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FIGURE 4

Phase portrait and time series of the model (Equation 3) using parameter values: r = 0.1, K = 5, m = 0.25, c = 0.5, n = 0.01, β = 0.06, δ1 = 0.05,

δ2 = 0.05, ω = 0.1, α = 0.9, and h = 0.18.

FIGURE 5

Bifurcation diagram driven by the order of the derivative (α) of model (Equation 3) around the axial point EI using parameter values: r = 0.8,

K = 5, m = 0.25, h = 0.01, c = 0.08, n = 0.2, β = 0.4, δ1 = 0.01, δ2 = 0.01, δ2 = 0.01, and ω = 0.1.

especially the occurrence of bifurcation. The predictor–corrector

scheme given by Diethelm et al. [37] is employed. All of

the parameters used in these simulations are assumptions

matched with the biological conditions given by the previous

analysis results. This decision was taken because this work

does not specifically address an ecological case involving a

particular organism.

To show the occurrence of several bifurcations driven by the

harvesting rate (h), we first set the parameter as follows:

r = 0.1, K = 5, m = 0.25, c = 0.5, n = 0.01,

β = 0.06, δ1 = 0.05, δ2 = 0.05, ω = 0.1, α = 0.9. (25)

By varying the harvesting rate in the interval 0 ≤ h ≤ 0.24,

the bifurcation diagram is portrayed as in Figure 1. We have

three types of dynamic behaviors around the axial point. When

0 ≤ h < h∗1 = 0.05, we have unstable origin point Eo and

LAS EA. The origin point losses its stability via transcritical

bifurcation when h crosses h∗1 and the unstable axial point

EA occurs simultaneously. These dynamics are maintained for

interval h∗1 < h < h∗2 = 0.15125. On the other hand, the

stable branch of axial point EA is preserved for 0 ≤ h <

h∗2 . The LAS point and unstable point of EA merge into the

non-hyperbolic point when h = h∗2 . The axial point finally

disappeared when h passes through h∗2 while the sign of Eo

does not change. Thus, we have saddle-node bifurcation on axial

with h∗2 as the bifurcation point. If we observe from a more

global point of view, these interesting phenomena represent the

existence of backward bifurcation marked by the occurrence of

bistability condition. To show these dynamical behaviors, we

choose three values of harvesting rate in each interval: h =

0.02, 0.12, and 0.18 and portray them as phase portraits and time

series (see Figures 2–4). The interesting phenomenon called

bistability is portrayed in Figure 3. Two equilibrium points LAS
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A B

C D

FIGURE 6

Phase portrait of the model (Equation 3) around interior point EI using parameter values from Equation (26). (A) α = 0.81, (B) α = 0.84, (C)

α = 0.87, and (D) α = 0.9.

simultaneously impact the sensitivity of the convergence of the

solution to the selection of the initial value. The two closest

initial values are set which converge to the different equilibrium

points. One of them convergent to the origin point and the

other solution convergent to the axial point. This means, two

conditions may arrive, namely the extinction of all populations

and the only prey existence point. Several references show

that the bistability condition occurs as the consequence of

saddle-node bifurcation, see Adhikary et al. [38] and several

references therein.

From the biological point of view, these numerical

bifurcations describe the possibility for the prey to extinct or

survive due to the change in the harvesting rate while the

predator both mature and immature is always extinct (Figure 1).

Three feasible conditions may happen. First, for any sufficiently

small harvesting rate (0 ≤ h < h∗1 = 0.05), the prey population

may maintain its existence in this ecosystem (Figure 2). Second,

if the harvesting rate increases (h∗1 < h < h∗2), two possible

conditions may occur namely the extinction of prey or the

viability of prey. These circumstances depend on the initial

condition, where if the initial condition is quite close to the

origin point, the prey will be extinct, and for the initial condition

is far enough from the origin point, the prey can survive

extinction (Figure 3). Third, if the harvesting rate is again

increased (h > h∗2), the population of prey will finally extinct

and there are no population again in this ecosystem (Figure 4).

The next circumstance occurs in the interior point of the

model (Equation 3), which demonstrates the influence of the

order of the derivative as the memory index on the dynamical

behaviors around the interior point. We set the parameter as

follows:

r = 0.8, K = 5, m = 0.25, h = 0.01, c = 0.08, n = 0.2,

β = 0.4, δ1 = 0.01, δ2 = 0.01, δ2 = 0.01, ω = 0.1. (26)

To identify the dynamical behaviors, we vary the values of

α in the interval 0.76 ≤ α ≤ 1. As a result, we obtain the

bifurcation diagram given in Figure 5. For α < α∗ ≈ 0.86, the

interior point EI is LAS. To show this condition, we give the

phase portraits by selecting α = 0.81 and α = 0.84 as given

in Figures 6A, B. Nearby solution oscillates and convergent

to EI . When α crosses α∗ ≈ 0.86, EI losses its stability

via Hopf bifurcation which is indicated by the occurrence of

periodic signal namely limit-cycle. The nearby solution stays

away from EI and convergent to the limit-cycle. The evolution

of the limit-cycle given in Figure 5 also shows that the diameter

of the limit-cycle increases when alpha increases. We portray

the phase portraits in Figures 6C, D to show the dynamics
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FIGURE 7

Phase portrait of the model (Equation 3) around interior point EI using parameter values from Equation (26).

of solutions around EI for α = 0.87 and α = 0.9. It is

shown that the densities of all populations are oscillated and

finally converge to the limit cycle. The physical interpretations

of Hopf bifurcation driven by α are closely related to the

influence of the memory on the change of behaviors around the

interior point. The stronger the influence of memory, the higher

the ability of prey and predators to maintain their existence

(α < α∗). For less memory effect which is indicated by α >

α∗, all populations lose the ability to stabilize their number

of individuals. The population density fluctuates according to

seasonal patterns which indicates by the appearance of a limit

cycle (Figures 6C, D), and the peak of each population also

increases for less memory effect (Figure 7). Although the density

for each population cannot tend to a constant number, in

this case, the memory effect cannot cause the extinction of

every population.

7. Conclusion

The dynamics of a predator–prey model incorporating

four biological conditions, namely age structure, intraspecific

competition, Michaelis–Menten type harvesting, and memory

effect, have been studied. All biological validities have been

presented such as the existence, uniqueness, non-negativity,

and boundedness of the solution. The dynamics of the model

have been explored by showing the global stability conditions

for three equilibrium points namely the origin, the axial, and

the interior points. We have shown that three bifurcations

phenomena driven by the harvesting rate occur around the

axial point namely transcritical, saddle-node, and backward

bifurcations. The bistability condition exists as the impact of

saddle-node bifurcation which states that the existence of prey

depends on the initial condition. A bifurcation driven by the

memory effect also has been shown around the interior point

which is called Hopf bifurcation. All the bifurcation phenomena

having an impact on the densities of the population not only

may reduce their densities but also threaten the existence of

several populations.
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COVID-19 and syphilis co-dynamic
analysis using mathematical
modeling approach

Shewafera Wondimagegnhu Teklu* and Birhanu Baye Terefe

Department of Mathematics, College of Natural and Computational Sciences, Debre Berhan University,

Debre Berhan, Ethiopia

In this study, we have proposed and analyzed a new COVID-19 and syphilis

co-infection mathematical model with 10 distinct classes of the human population

(COVID-19 protected, syphilis protected, susceptible, COVID-19 infected, COVID-19

isolated with treatment, syphilis asymptomatic infected, syphilis symptomatic

infected, syphilis treated, COVID-19 and syphilis co-infected, and COVID-19 and

syphilis treated) that describes COVID-19 and syphilis co-dynamics. We have

calculated all the disease-free and endemic equilibrium points of single infection

and co-infection models. The basic reproduction numbers of COVID-19, syphilis,

and COVID-19 and syphilis co-infection models were determined. The results of

the model analyses show that the COVID-19 and syphilis co-infection spread

is under control whenever its basic reproduction number is less than unity.

Moreover, whenever the co-infection basic reproduction number is greater than unity,

COVID-19 and syphilis co-infection propagates throughout the community. The

numerical simulations performed by MATLAB code using the ode45 solver justified

the qualitative results of the proposed model. Moreover, both the qualitative and

numerical analysis findings of the study have shown that protections and treatments

have fundamental e�ects on COVID-19 and syphilis co-dynamic disease transmission

prevention and control in the community.

KEYWORDS

syphilis, COVID-19, COVID-19 and syphilis co-infection, protection, numerical simulation

1. Introduction

Communicable diseases are illnesses caused by pathogenic microbial agents such as bacteria,

viruses, fungi, and parasites, which affect human beings throughout the world [1]. The novel

coronavirus (COVID-19) infection is a lethal disease that has been a major global public health

concern. The COVID-19 pandemic has affected various animals mostly infecting millions of

human beings in different nations throughout the world [2–6]. It has been spreading mainly

through sneezing, individuals interacting with each other in a certain time frame, or through

coughing [7]. Although different species of animals are thought to be the source of COVID-

19 transmission, bats have been shown to be coronavirus hosts [8]. Many nations throughout

the world have started to practice various prevention and control strategies such as lockdown

approach, quarantine, isolation, and closing schools [3, 9].

Syphilis is a major sexually transmitted disease and has been affecting millions of individuals

both in low- and high-income countries of the world [10]. It is a chronic systemic disease caused

by Treponema pallidum bacterium which is mainly transmitted through sex, blood contact,

and mother-to-child during birth [4, 10–16]. Diagnosis, treatment, and using a condom are

the basic control mechanisms of syphilis spreading in the community [10]. If left untreated,

syphilis progresses through four stages: primary, secondary, latent, and tertiary [17–19]. The

first three infection stages can transmit the disease to other susceptible groups of individuals,

the transmission can occur via sexual contact, and in most cases, the tertiary stage is not
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transmissible through sexual contact [19]. It can be a cause

of different cardiovascular and neurological diseases [17].

Approximately 90% of new syphilis substantial morbidity and

mortality data are recorded in low-income countries around the

world [11, 16]. Co-infection is an infection of an individual with

two or more microorganisms’ species [20, 21]. COVID-19 is an

opportunistic infection for people with a weak immune system

who were already infected by acute and chronic infections such as

pneumonia, TB, and HIV/AIDS.

Mathematical modeling approach research done by scholars

using a deterministic method [10, 14], a stochastic method [7, 22],

or a fractional order method [23–32] has made a great contribution

to linking the scientific approach with real-world physical situations

and also for the decision-making process for solving real-world

problems [33]. Different scholars have formulated and analyzed

mathematical models on COVID-19 transmission [7, 8, 22, 24–

26, 29, 30, 34–37], syphilis transmission [10, 17–19, 23], and other

infectious diseases transmission [20, 21, 27, 28, 33, 38–40]; however,

no one has done analysis on COVID-19 and syphilis co-infection

transmission dynamics.

Oshinubi et al. [41] proposed and analyzed a new age-

dependent compartmental model for COVID-19 transmission. The

qualitative analysis of the model includes the non-negativity and

boundedness of the model solutions in a given region, and

the existence, uniqueness, and stability of the model solutions.

Using parameter estimation from three different nations Kuwait,

France, and Cameroon, they carried out numerical simulations

and have shown the fundamental role of vaccination on COVID-

19 transmission. Babaei et al. [34] proposed and examined a

model for novel coronavirus transmission with Caputo’s fractional

order approach. The finding of the study shows that quarantine

has a very fundamental role to control transmission. Iboi et al.

[17] formulated and analyzed a new multi-stage syphilis model

to examine the role of transitory immunity loss in the spreading

process. The analysis shows that the disease-free and unique

endemic equilibrium points are globally asymptotically stable when

the corresponding basic reproduction number is less than unity

and greater than unity, respectively. The results show that high

treatment rates in the primary and secondary stages have a positive

effect on the remaining stages of infection. Nwankwo et al. [38]

formulated a mathematical model to examine the interaction

between HIV/AIDS and syphilis pathogens with syphilis treatment

on the co-infection of syphilis and HIV/AIDS where treatment

or HIV is not accessible. High treatment in the primary stage

has a fundamental role in reducing both single infections and

co-infections in the population. Teklu et al. [42] formulated a

six-compartmental COVID-19 transmission model to examine the

impacts of intervention measures. The results show that protection,

treatment, and vaccinations are fundamental to minimizing infection

in the population.

Because different scholars have been mainly concerned with

studying COVID-19 and syphilis single infections, no one has studied

syphilis and COVID-19 co-infection using a mathematical model

approach. Therefore, in this study, we are interested in filling the

gap by formulating and analyzing syphilis and COVID-19 model

intervention strategies.

The remaining part of the article is organized as follows. Section

2 presents COVID-19 and syphilis co-infection model construction.

Section 3 describes the qualitative model analysis. Section 4 presents

TABLE 1 Variables’ definitions.

State variables Definition

S Susceptible individuals for both COVID-19 and syphilis

Pc COVID-19 protected individuals

Ps Syphilis protected individuals

Ic COVID-19 infected individuals

Qc COVID-19 isolated with treatment individuals

Ias Syphilis asymptomatic infected individuals

Iss Syphilis symptomatic infected individuals

Ts Syphilis treated individuals

Ics COVID-19 and syphilis co-infected individuals

T Co-infected treated individuals

the numerical and sensitivity analyses. Section 5 presents the

discussions and conclusions of the whole research study.

2. Model construction

We have considered COVID-19 and syphilis co-infection by

separating the four syphilis infection stages (primary, secondary,

latent, and tertiary) into two, the asymptomatic and symptomatic

groups, and we have divided the population N (t) into 10 mutually

exclusive states, which are described in Table 1 as follows:

N (t) = Pc (t) + Ps (t) + S (t) + Ic (t) + Qc (t) + Ias (t) + Iss (t)

+ Ts (t) + Tcs (t) + T(t).

Assumptions and definitions of basic terms:

➢ Co-infectious humans do not transmit both

infections simultaneously.

➢ COVID-19 infection is transmitted to susceptible individuals

from Ic and Ics infectious groups at the transmission

rate as follows:

λc = β2(Ic + φ1Ics). (1)

➢ Syphilis infection is transmitted to susceptible individuals from

Ias, Iss, and Ics infectious groups at the force of infection

rate as follows:

λs = β1(Ias + φ2Iss + φ3Ics). (2)

Using variable and parameter definitions given in Tables 1, 2,

respectively, the flowchart of the COVID-19 and syphilis co-infection

model is represented in Figure 1.

Using the flowchart represented in Figure 1, the corresponding

system of differential equations of the complete co-infection model

(3) is written as follows:

dPc

dt
= τ13 − (β + λs + µ)Pc,

dPs

dt
= τ33 − (π + λc + µ)Ps,
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TABLE 2 Parameter definitions.

Parameters Biological definitions

3 The annual recruitment number of population in the

community

τ1 Portion of recruitment rate protected from COVID-19

τ2 Portion of recruitment rate susceptible to both COVID-19

and syphilis

τ3 Portion of recruitment rate protected from syphilis

β COVID-19 protection loss rate

π Syphilis protection loss rate

µ Natural death rate of individuals

θ1 Modification parameter

θ2 Modification parameter

θ3 Modification parameter

ρ Treatment rate of COVID-19 infectious

ǫ Progression rate of asymptomatic syphilis infectious to

symptomatic syphilis infectious

ε Treatment rate of COVID-19 and syphilis co-infections

γ Treatment rate of symptomatic syphilis infectious

δ Immunity lose rate against syphilis treatment

β1 Syphilis transmission rate

β2 COVID-19 transmission rate

ω1 COVID-19 infection induced death rate

ω2 Syphilis infection induced death rate

ω3 COVID-19 and syphilis co-infection induced death rate

θ Immunity lose rate against syphilis after treated from

co-infection

dS

dt
= τ23 + βPc + πPs + δTs + θT − (λs + λc + µ)S,

dIc

dt
= λcS+ λcPs − (θ1λs + ρ + µ + ω1)Ic, (3)

dQc

dt
= ρIc − µQc,

dIas

dt
= λsS+ λsPc − (θ2λc + ǫ + µ)Ias,

dIss

dt
= ǫIas − (θ3λc + γ + µ+ω2) Iss,

dIcs

dt
= θ2λcIas + θ3λcIss + θ1λsIc − (ε + µ+ ω3)Ics,

dTs

dt
= γ Iss − (δ + µ)Ts,

dT

dt
= εIcs − (θ + µ)T.

2.1. Qualitative properties of the model (3)

System (3) represents the human population; we

want to prove that all the solutions of the model

are non-negative and bounded, respectively, in the

following region:

� =

{

(Pc, Ps, S, Ic, Qc, Ias, Iss, Ts, Tcs, T) ∈ R
10
+ ,N ≤ 3

µ

}

(4)

Theorem 1: Let Pc (0) > 0, S (0) > 0, Ps (0) , Ic (0) >

0, Qc (0) > 0, Ias (0) > 0, Iss (0) > 0, Ts (0) > 0, Ics (0) >

0, T (0) > 0 be the initial solutions of the system (3), then

Pc (t) , Ps (t) , S (t) , Ic (t) , Qc (t) , Ias (t) , Iss (t) , Ts (t) , Tcs (t) , and

T (t) are positive in the region R
10
+ for any time t > 0.

Proof: Let τ = sup{t > 0 : Pc (t) > 0, S (t) > 0, Ps (t) , Ic (t) >

0, Qc (t) > 0, Ias (t) > 0, Iss (t) > 0, Ts (t) > 0, Ics (t) >

0, T (t) > 0}.

Since Pc (t) , Ps (t) , S (t) , Ic (t) , Qc (t) , Ias (t) , Iss (t) , Ts (t) ,

Tcs (t) , and T (t) are continuous, and we deduce that τ > 0. If τ =

+∞, then positivity holds, but, if 0 < τ < +∞, Pc (τ ) = 0 or

Ps (τ ) = 0 or S (τ ) = 0 or Ic (τ ) = 0 or Qc ( τ ) = 0 or Ias (τ ) = 0

Iss (τ ) = 0 or Ts (τ ) = 0 or Tcs (τ ) = 0 or T (τ ) = 0.

From model (3) first equation, we do have

dPc

dt
+ (β + λs + µ)Pc = τ13.

After some calculations of integration, we got

Pc (τ ) = a1Pc (0) + a1

∫ τ

0
e
∫

(β+λs+µ)dtτ13dt > 0, where

a1 = e−
∫

(β+λs+µ)dt > 0, Pc (0) > 0, Pc (τ ) > 0, so that

Pc (τ ) 6= 0.

From model (3) second equation, we have

dPs

dt
= τ33 − (π + λc + µ)Ps.

After some calculations of integration, we have

Ps (τ ) = b1Ps (0) + b1

∫ τ

0
e
∫

(π+λc+µ)dtτ33dt > 0, where

b1 = e−
∫

(π+λc+µ)dt > 0, Ps (0) > 0, Ps (τ ) > 0, so that

Ps (τ ) 6= 0.

From model (3) third equation, we have

dS

dt
= τ23 + βPc + πPs + δγTs − S(λs + λc + µ).

After some calculations, we have

S (τ ) = c1S (0)+c1
∫ τ

0 e
∫

(λs+λc+µ)dt(τ23 + βPc + πPs + δγTs)dt >

0, where

c1 = e−
∫

(λs+λc+µ)dt > 0, S (0) > 0, and by the definition of τ

we have Pc (t) > 0, Ps (t) , Ts (t) > 0, S (τ ) > 0, so that S (τ ) 6= 0.

Similarly, by proving the remaining state variable, we have

Ic (τ ) > 0, hence Ic (τ ) 6= 0, Qc (τ ) > 0 hence Qc (τ ) 6= 0,

Ias (τ ) > 0 hence Ias (τ ) 6= 0, Iss (τ ) > 0 hence Iss (τ ) 6= 0,Ts (τ ) > 0

hence Ts (τ ) 6= 0, Tcs (τ ) > 0 hence Tcs (τ ) 6= 0, and T (τ ) > 0 hence

T (τ ) 6= 0.

Thus, τ is not finite, and hence = +∞, which means all the

model solutions are non-negative.
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FIGURE 1

Flowchart of the model (3) with forces of infections λC and λs as in (1) and (2), respectively.

Theorem 2: The model feasible region � stated in (4) is bounded

in R
10
+ .

Proof: The total human being of the model (3) is as follows:

N (t) = Pc (t) + Ps (t) + S (t) + Ic (t) + Qc (t) + Ias (t)

+ Iss (t) + Ts (t) + Tcs (t) + T(t).

Differentiating both sides gives the following result

dN

dt
=

dPc

dt
+

dPs

dt
+

dS

dt
+

dIc

dt
+

dQc

dt
+

dIas

dt
+

dIss

dt
+

dTs

dt

+
dTcs

dt
+

dT

dt
.

= 3 − µN − ω1Ic − ω2Iss − ω3Ics, where τ1 + τ3 + τ2 = 1.

H⇒
dN

dt
≤ 3 − µ N.

After some steps, we have 0 ≤ N (t) ≤ 1
µ
, and hence, the model

solutions with positive initial solutions are bounded in �.

3. Model analysis in qualitative
approach

The complete COVID-19 and syphilis co-infection model (3)

depends on the results of the two sub-models analysis.

3.1. COVID-19 mono-infection model
analysis

From the complete model (3), we have the COVID-19 mono-

infection model taking values Ps = Ias = Iss = Ts = Ics = T = 0

as follows:

dPc

dt
= τ13 − (β + µ)Pc,

dS

dt
= τ23 + βPc − (λc + µ)S,

dIc

dt
= λcS− (ρ + µ + ω1)Ic, (5)

dQc

dt
= ρIc − µ Qc.

with N1 (t) = Pc (t) + S (t) + Ic (t) +Qc (t) as a total population and

λc = β2Ic.

3.1.1. COVID-19 infection-free equilibrium
The COVID-19 infection-free equilibrium of the model (5) at

Ic = 0 is E0c =
(

P0c , S
0 0, 0, 0

)

=

(

τ13
β+µ

, τ23(β+µ)+βτ13
µ(β+µ)

,

0, 0 ).
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3.1.2. COVID-19 mono-infection reproduction
number

This mono-infection model has one infectious class, Ic, and we

can obtain basic reproduction numbers without a method of the

next-generation matrix as follows:

dIc

dt
= λcS− (ρ + µ + ω1)Ic,

= β2IcS− (ρ + µ + ω1)Ic,

= (β2S− (ρ + µ + ω1))Ic,

= (
β23(τ2(β + µ)+ βτ1)

µ(β + µ)
− (ρ + µ + ω1))Ic,

= (ρ + µ + ω1)(
β23(τ2(β + µ)+ βτ1)

µ(β + µ)(ρ + µ + ω1))
− 1)Ic,

= (ρ + µ + ω1)(R
c
0 − 1)Ic, where

R
c
0 =

β2τ 23(β + µ)+ β2βτ13

µ(β + µ)(ρ + µ + ω1)
.

3.1.3. COVID-19 incidence equilibrium point
The COVID-19 incidence equilibrium point of the system (5) is

E∗c =
(

P∗c , S
∗, I∗c , Q∗

c

)

, where

P∗c =
τ13

β + µ
, S∗ =

τ33 (β + µ) + τ1β3,
(

λ∗c + µ
)

(β + µ)
,

I∗c =
(τ33 (β + µ) + τ1β3) λ∗c

(

λ∗c + µ
)

(β + µ) (ρ + µ + ω1)
,

Q∗
c =

(τ33(β + µ)+ τ1β3)ρλ∗c

µ(λ∗c + µ)(β + µ)(ρ + µ + ω1)
.

Theorem 3: The COVID-19 mono-infection model (5) has

a unique COVID-19 incidence (endemic) equilibrium point

wheneverRc
0 > 1.

Proof: Using equation (1), we have the following:

λ∗c = β1I
∗
c =

β1 (τ33 (β + µ) + τ1β3) λ∗c
(

λ∗c + µ
)

(β + µ) (ρ + µ + ω1)
.

Then the non-zero value of λ∗c after a simple simplification is

as follows:

λ∗c = µ(Rc
0 − 1) > 0, if and only if Rc

0 > 1.

Hence, the COVID-19 mono-infection model (5) has a unique

incidence equilibrium point if and only if Rc
0 > 1.

Theorem 4: COVID-19 infection-free equilibrium point of the

model (5) is locally asymptotically stable ifRc
0 < 1; otherwise, it

is unstable.

Proof: The Jacobean matrix of the model (5) at the COVID-19

infection-free equilibrium point is

J(E0c ) =











−(β + µ) 0 0 0

β −µ
−β2(τ23(β+µ)+βτ13)

µ(β+µ)
0

0 0 β2(τ23(β+µ)+βτ13)−µ(β+µ)(ρ+µ+ω1)
µ(β+µ)

0

0 0 ρ −µ











.

Further, the characteristics equation after a certain calculation

gives us as follows:

λ1 = − (β + µ) < 0 or λ2 = −µ < 0, or

λ3 = (ρ + µ + ω1)(R
c
0 − 1).

Thus, each eigenvalue of the Jacobian matrix is negative if R
c
0 <

1 implies the COVID-19 infection-free equilibrium point is locally

asymptotically stable whenever R
c
0 < 1.

Theorem 5: The COVID-19 infection-free equilibrium point

denoted by E∗c of the COVID-19 mono-infection model is globally

stable if Rc
0 < 1; otherwise, it is unstable.

Proof: Take the representative Lyapunov function l (Ic ) = aIc,

where a = 1
(ρ+µ+ ω1))

,

l (Ic) = aIc =
1

(ρ + µ + ω1)
Ic,

dl

dt
=

1

(ρ + µ + ω1)
((β2S− (ρ + µ + ω1))Ic),

≤
1

(ρ + µ + ω1)

(
β23(τ 2(β + µ)+ βτ1)− µ(β + µ)(ρ + µ + ω1)

µ(β + µ)
)Ic,

≤ (
β23(τ 2(β + µ)+ βτ1)− µ(β + µ)(ρ + µ + ω1)

µ(β + µ)(ρ + µ + ω1)
)Ic,

≤ µ(β + µ)(ρ + µ + ω1)(

β23(τ 2(β+µ)+βτ1)
µ(β+µ)(ρ+µ+ω1)

− 1

µ(β + µ)(ρ + µ + ω1)
)Ic,

≤ µ(β + µ)(ρ + µ + ω1)(
R

c
0 − 1

µ(β + µ)(ρ + µ + ω1)
)Ic,

≤ (Rc
0 − 1)Ic.

Thus, dl
dt

< 0, ifRc
0 < 1, and the equality dl

dt
= 0 holds ifRc

0 = 1,

and hence the COVID-19 infection-free equilibrium point is globally

asymptotically stable if Rc
0 < 1.

Theorem 6: The COVID-19 incidence denoted by E∗C of the

COVID-19 mono-infection model (5) is locally asymptotically stable

wheneverRc
0 > 1; otherwise, it is unstable.

Proof: The Jacobean of the system (5) at E∗C

J
(

E∗C
)

=











− (β + µ) 0 0 0

β − (β2Ic
∗ + µ) −β2S

∗ 0

0 β2I
∗
c β2S

∗ − (ρ + µ + ω1) 0

0 0 ρ −µ











.

From the Jacobean matrix, the characteristics equation, after

simplification, gives as follows:

(− (β + µ) − λ) (−µ − λ)
[(

−
(

β2I
∗
c + µ

)

− λ
)

(β2S
∗ − (ρ + µ

+ ω1)− λ)+ β2S
∗β2I

∗
c

]

= 0.

Then we do have the eigenvalues λ1 = −µ < 0 or λ2 =

− (β + µ) < 0 or

a0λ
2 + a1λ + a2 = 0 where

a0 = 1,

a1 =











β2 (τ33 (β + µ) + τ1β3) µ(Rc
0 − 1)

+µ(λ∗c + µ)(β + µ)(ρ + µ + ω1)

(λ∗c + µ)(β + µ)(ρ + µ + ω1)











+
(β2τ 23(β + µ)+ τ1β3)[(λ∗c + µ)µR

c
0 − 1]

(λ∗c + µ)(β + µ)
,

a2 =
β2(τ33(β + µ)+ τ1β3)µ(Rc

0 − 1)

(λ∗c + µ)(β + µ)(ρ + µ + ω1)
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+
(β2τ 23(β + µ)+ τ1β3)[(λ∗c + µ)µR

c
0 − 1]

(λ∗c + µ)(β + µ)

+
β2(τ23(β + µ)+ τ1β3)µ(Rc

0 − 1)

(λ∗c + µ)(β + µ)(ρ + µ + ω1)
.

Hence, all the coefficients of the characteristics equations

are positive when R
c
0 > 1; thus, the COVID-19

incidence equilibrium point has local asymptotic stability

when R
c
0 > 1.

3.2. Analysis of syphilis sub-model

The syphilis sub-model is obtained from the system (3) by

making Pc = Ic = Qc = Ics = T = 0 and is

as follows:

dPs

dt
= τ33 − (π + µ)Ps,

dS

dt
= τ23 + πPs + δγTs − S(λs + µ),

dIas

dt
= λsS− Ias(ǫ + µ), (6)

dIss

dt
= ǫIas − Iss (γ + µ+ω2 ) ,

dTs

dt
= γ Iss − Ts(δγ + µ).

With N2 (t) = Ps (t) + S (t) + Ias (t) + Iss (t) + Ts (t), and

λs = β1 (Ias + φ2Iss ).

3.2.1. Syphilis infection-free equilibrium
The syphilis infection-free equilibrium point of the model (6)

was obtained by making Ias = Iss = 0 and is given by E0s =
(

P0s , S
0, I0as, I

0
ss, T

0
s

)

=

(

τ33
π+µ

, τ23(π+µ)+τ3π3
µ(π+µ)

, 0, 0, 0
)

.

3.2.2. Syphilis sub-model reproduction number
The syphilis sub-model (6) has two infectious classes, which are

Ias, and Iss, then applying the next-generation matrix method stated

in [43, 44] to obtain the basic reproduction number of the system (6)

by computing FV−1 as follows:

F =

(

β1S
0 β1φ2S

0

0 0

)

,

H⇒ F =

(

β13(τ 2(π+µ)+τ3π)
µ(π+µ)

β1φ23(τ2(π+µ)+τ3π)
µ(π+µ)

0 0

)

,

and

V =

(

ǫ + µ 0

−ǫ γ + µ+ω2

)

.

Then, we applied Mathematica coding; we have

V−1 =

[

1
ǫ+µ

0
ǫ

(γ+µ+ω2)(ǫ+µ)
1

(γ+µ+ω2)

]

, and

FV−1 =

[

β13(τ 2(π+µ)+τ3π)
µ(π+µ)(ǫ+µ)

+

ǫβ1φ23(τ2(π+µ)+τ3π)

µ(π+µ)(γ+µ+ω2)(ǫ+µ)

β1φ23(τ2(π+µ)+τ3π)

µ(π+µ)(γ+µ+ω2)

0 0

]

.

Thus, the reproduction number of the syphilis sub-model (6) is

given by R
s
0 =

β13[(γ+µ+ω2)+φ2ǫ](τ2(π+µ)+τ3π)

µ(π+µ)(γ+µ+ω2)(ǫ+µ )
.

3.2.3. Syphilis incidence equilibrium point of the
system (6)

Making the model (6) equation to zero, we have

the syphilis incidence equilibrium point given by E∗s =

(P∗s , S
∗, I∗as, I

∗
ss, T

∗
s ), where

P∗s =
τ33

(π + µ)
,

S∗ =
(γ + µ+ω2) (ǫ + µ) (δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ) (λs + µ) (δγ + µ) − γ δγ ǫλs)
,

I∗as =
λs(γ + µ+ω2)(δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ) (λs + µ) (δγ + µ) − γ δγ ǫλs)
,

I∗ss =
ǫλs(δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ) (λs + µ) (δγ + µ) − γ δγ ǫλs)
,

T∗
s =

ǫλsγ (τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ) (λs + µ) (δγ + µ) − γ δγ ǫλs)
.

Theorem 7: The syphilis incidence equilibrium

point of syphilis in the model (6) is unique whenever

R
0
s > 1.

Proof: From the syphilis infection rate, we have

λ∗s = β1(I
∗
as + φ2I

∗
ss).

λ∗s = β1(
λs(γ + µ+ω2)(δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ)
(

λ∗s + µ
)

(δγ + µ)

−ǫγ δγ λ∗s )

+
ǫλ∗s φ2(δγ + µ)(τ23 (π + µ) + τ33π)

(π + µ) ((γ + µ+ω2) (ǫ + µ)
(

λ∗s + µ
)

(δγ + µ)

− γ δγ ǫλ∗s )

).

H⇒ λ∗s = (δγ + µ)

β13
[

(γ + µ+ω2) (τ2 (π + µ) + τ3π) + ǫφ2 (τ2 (π + µ)

+τ3π)]− µ (π + µ) [(γ + µ+ω2) (ǫ + µ)]

(π + µ)
(

(γ + µ+ω2) (ǫ + µ) (δγ + µ) − γ δγ ǫ
) .

H⇒ λ∗s =
(δγ + µ) µ(γ + µ+ω2) (ǫ + µ) (Rs

0 − 1)
(

(γ + µ+ω2) (ǫ + µ) (δγ + µ) − γ δγ ǫ
) .

H⇒ λ∗s = k1(R
s
0 − 1), where

k1 =
(δγ + µ) µ (π + µ) (γ + µ+ω2) (ǫ + µ)

(π + µ)
(

(γ + µ+ω2) (ǫ + µ) (δγ + µ) − γ δγ ǫ
) .

Hence, the syphilis sub-model (6) has a unique incidence

equilibrium if Rs
0 > 1.

Theorem 8: Syphilis infection-free equilibrium point of the

model (3) has local asymptotic stability ifRs
0 < 1; otherwise, it

is unstable.

Proof: Jacobean of the model (6) at the syphilis infection-free

equilibrium point is as follows:
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J
(

Es0
)

=















− (π + µ) 0 0 0 0

π −µ
−β13(τ2(π+µ)+τ3π)

µ(π+µ)
−β1φ23(τ2(π+µ)+τ3π)

µ(π+µ)
δγ

0 0 β13(τ2(π+µ)+τ3π)−µ(π+µ)(ǫ+µ)
µ(π+µ)

β1φ23(τ2(π+µ)+τ3π)
µ(π+µ)

0

0 0 ǫ − (γ + µ+ω2) 0

0 0 0 γ − (δγ + µ)















.

From the Jacobian matrix, the characteristics equation after

simplification is as follows:

(− (π + µ) λ ) (−µ − λ) (− (δγ + µ) λ)
[(

β13 (τ2 (π + µ) + τ3π) − µ (π + µ) (ǫ + µ)

µ (π + µ)
λ

)

(−(γ + µ+ω2)λ)− (
β1φ23ǫ (τ2 (π + µ) + τ3π)

µ (π + µ)
)

]

= 0.

Then the eigenvalues are λ1 = − (π + µ) < 0 or λ2 = −µ <

0 or λ3 = − (δγ + µ) < 0 or a0λ
2 + a1λ + a2 = 0.

where,

a0 = 1,

a1 = (γ + µ+ω2) + (ǫ + µ) +
β13 (τ2 (π + µ) + τ3π)

µ (π + µ )
,

a2 = (ǫ + µ) (γ + µ+ω2)(1− R
s
0).

Applying Routh–Hurwitz criteria stated in [33], each eigenvalue

of the matrix is negative wheneverRs
0 < 1; thus, the syphilis

infection-free equilibrium point has local asymptotic stability if

R
s
0 < 1.

Theorem 9: Syphilis infection-free equilibrium point E0s of

the model (6) has global stability if R
s
0 < 1; otherwise, it

is unstable.

Proof: Let the Lyapunov representative function be

given as l (Ias, Iss ) = aIas + bIss, where =
[(γ+µ)+φ2ǫ]

(ǫ+µ)(γ+µ+ω2)
,

b =
φ2

(γ+µ+ ω2)
.

H⇒ l (Ias, Iss ) =
[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
Ias +

φ2

(γ + µ+ ω2)
Iss.

H⇒
dl

dt
=

[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
(λsS− Ias (ǫ + µ))

+
φ2

(γ + µ)
(ǫIas − Iss(γ + µ+ ω2)),

≤
[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
(β1 (Ias + φ2Iss) S

∗ − Ias (ǫ + µ))

+
φ2

(γ + µ)
(ǫIas − Iss(γ + µ+ ω2)),

≤
[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
(β1IasS

∗ + β1φ2IssS
∗ − Ias (ǫ + µ))

+
φ2

(γ + µ)
(ǫIas − Iss(γ + µ+ ω2)),

≤ ([β1S
∗ − (ǫ + µ)]

[(γ + µ+ω2)+ φ2ǫ]

(ǫ + µ) (γ + µ+ω2)
+

φ2ǫ

(γ + µ+ω2)
)Ias

+ (
β1φ2[(γ + µ+ω2)+ φ2ǫ]S

∗

(ǫ + µ) (γ + µ+ω2)
− φ2) Iss,

≤ ([
[(γ + µ) + φ2ǫ]β1S

∗

(ǫ + µ) (γ + µ+ω2)
−

[(γ + µ+ω2)+ φ2ǫ]

(γ + µ+ω2)
])Ias

+ (
β1φ2[(γ + µ+ω2)+ φ2ǫ]S

∗

(ǫ + µ) (γ + µ+ω2)
− φ2) Iss,

≤
[(γ + µ+ω2)+ φ2ǫ]β13(τ2 (π + µ) + τ3π)

µ (π + µ) (ǫ + µ) (γ + µ+ω2)
Ias

−
[(γ + µ+ω2)+ φ2ǫ]

(γ + µ+ ω2)
Ias +

(
β1φ2[(γ + µ+ω2)+ φ2ǫ]3(τ2 (π + µ) + τ3π)

µ (π + µ) (ǫ + µ) (γ + µ+ω2)
− φ2) Iss.

≤ ([
[(γ + µ+ω2)+ φ2ǫ]β13(τ2 (π + µ) + τ3π)

µ (π + µ) (ǫ + µ) (γ + µ+ω2)
−m])Ias

+ (
β1φ2[(γ + µ+ω2)+ φ2ǫ]3(τ2 (π + µ) + τ3π)

µ (π + µ) (ǫ + µ) (γ + µ+ω2)
− φ2),where

m =
[(γ + µ+ω2)+ φ2ǫ]

(γ + µ+ω2)
> 1.

≤ m([
R

s
0

m
− 1])Ias + φ2(

R
s
0

φ2
− 1) Iss,

R
s
0

m
< 1,

R
0
s

φ2
< 1,

R
s
0

m
< 1,

R
s
0

φ2
< 1 implies R

s
0 < 1 since m

=
[(γ + µ+ω2)+ φ2ǫ]

(γ + µ+ω2)
> 1, and φ2 > 1.

Hence, the syphilis-free equilibrium point is globally stable if

R
s
0 < 1.

3.3. COVID-19 and syphilis co-infection
model analysis

3.3.1. The model (3) disease-free equilibrium
Making all the equations of (3) zero with Ic = Ias =

Iss = Ics = 0, the disease-free equilibrium point of (3)

is given by E0 =
(

P0c , P
0
s , S

0, I0c ,Q
0
c , I

0
as, I

0
ss, T

0
s , T

0
cs, T

0
)

=
(

τ13
(β+µ)

, τ33
(π+µ)

, 3(τ2(β+µ)(π+µ)+τ1β(π+µ)+τ3π(β+µ))
µ(β+µ)(π+µ)

, 0, 0, 0, 0 , 0 ,

0 , 0 ) .

3.3.2. The model (3) reproduction number
The COVID-19 and syphilis co-infection model (3)

reproduction number denoted by R
cs
0 is calculated using

next-generation matrix criteria, as stated in [44]. Since we
have four infectious groups, those are Ic, Ias, Iss, and Ics, and
we have

fi =









β2(Ic + φ1Ics) (S+ Ps)

β1(Ias + φ2Iss + φ3Ics)(S+ Pc)

0

β2(θ2Ias + θ3Iss)(Ic + φ1Ics) + θ1β1(Ias + φ2Iss + φ3Ics)Ic









.

H⇒ f =









β2(S
0 + P0s ) 0 0 φ1(S

0 + P0s )

0 β1(S
0 + P0c ) β1φ2(S

0 + P0c ) β1φ3(S
0 + P0c )

0 0 0 0

0 0 0 0









,

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org
45

https://doi.org/10.3389/fams.2022.1101029
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Teklu and Terefe 10.3389/fams.2022.1101029

and

vi = vi
− (x)−vi

+ (x)

=











Ic
(

θ1β1(Ias + φ2Iss + φ3Ics)+ ρ + µ+ω1

)

Ias
(

θ2β2(Ic + φ1Ics) + ǫ + µ
)

Iss
(

θ3β2(Ic + φ1Ics) + γ + µ+ω2

)

− ǫIas
Ics(ε + µ+ω3)











.

H⇒ v =











(ρ + µ+ω1) 0 0 0

0 (ǫ + µ) 0 0

0 −ǫ (γ + µ+ω2) 0

0 0 0 (ε + µ+ω3)











.

Then applying Mathematica, we have got

v−1 =











1
(ρ+µ+ω1)

0 0 0

0 1
(ε+µ)

0 0

0 0 1
(γ+µ+ω2)

0

0 0 0 1
(ε+µ+ω3)











,

and

fv−1 =













β2(S
0+P0s)

(ρ+µ+ω1)
0 0 φ1(S

0+P0s)
(ε+µ+ω3)

0 β1(S
0+P0c)

(ε+µ)
β1φ2(S

0+P0c)
(γ+µ+ω2)

β1φ3(S
0+P0c)

(ε+µ+ω3)

0 0 0 0

0 0 0 0













.

H⇒

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

β2(S
0+P0s)

(ρ+µ+ω1)
− λ 0 0 φ1(S

0+P0s)
(ε+µ+ω3)

0 β1(S
0+P0c)

(ε+µ)
− λ

β1φ2(S
0+P0c)

(γ+µ+ω2)
β1φ3(S

0+P0c)
(ε+µ+ω3)

0 0 0− λ 0

0 0 0 0− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Then, the corresponding eigenvalues are λ1 = 0 or λ2 = 0 or

λ3 =
β2(S

0+P0s)
(ρ+µ+ω1)

=
β23τ2

µ(ρ+µ+ω1)
+

β23τ1β
µ(β+µ)(ρ+µ+ω1)

+
β23τ3

µ(ρ+µ+ω1)
=

R
c
0+n or λ4 = β1(

τ23(β+µ)(π+µ)+τ1β3(π+µ)+τ3π3(β+µ)+τ13µ(π+µ)
µ(β+µ)(π+µ)(ε+µ)

)

= R
s
0 − m where, n =

β23τ3
µ(ρ+µ+ω1)

, m =

β13[ǫφ2(τ2(π+µ)+τ3π)−τ1((π+µ)γ+µ+ω2)]
µ(π+µ)(γ+µ+ω2)(ǫ+µ )

.

Therefore, the COVID-19–syphilis complete model

(3) reproduction number denoted by R
cs
0 is given by

R
cs
0 = max

{

R
c
0 + n ,Rs

0 −m
}

.

3.3.3. Model (3) disease-free equilibrium local
stability

Theorem 10: The full-model (3) disease-free equilibrium point

has local asymptotic stability ifRcs
0 < 1; otherwise, it is unstable.

Proof: The Jacobian of the COVID-19 and syphilis co-infection

model (3) at E0 is as follows:

J(E0) =





































a 0 0 0 0 b c 0 d 0

0 e 0 f 0 0 0 0 g 0

β π h i 0 j k l m 0

0 0 0 n 0 0 0 0 o 0

0 0 0 ρ h 0 0 0 0 0

0 0 0 0 0 p q 0 r 0

0 0 0 0 0 ǫ s 0 0 0

0 0 0 0 0 0 γ t 0 0

0 0 0 0 0 0 0 0 u 0

0 0 0 0 0 0 0 0 ε h





































,

where a = − (β + µ) , b = −β1Pc
0, c = −β1φ2Pc

0, d =

−β1φ3Pc
0, e = − (π + µ) , f = −β2Ps

0, g = −β2φ1Ps
0, h =

−µ, i = −β2 S0, j = −β1 S0, k = −β1φ2 S0, l = δγ ,m =

−(β1φ3+β2φ1) S
0, n = β2 (S+ Ps) − (ρ + µ+ω1), o = β2φ1(S +

Ps), p = β1(S+Pc)−(ǫ+µ), q = β1φ2(S+Pc), r = β1φ3( S
0+Pc

0), s =

−(γ + µ+ω2), t = − (δγ + µ) , u = − (ε + µ+ω3 ).

H⇒

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a− λ 0 0 0 0 b c 0 d 0

0 e− λ 0 f 0 0 0 0 g 0

β π h− λ i 0 j k l m 0

0 0 0 n− λ 0 0 0 0 o 0

0 0 0 ρ h− λ 0 0 0 0 0

0 0 0 0 0 p− λ q 0 r 0

0 0 0 0 0 ǫ s− λ 0 0 0

0 0 0 0 0 0 γ t − λ 0 0

0 0 0 0 0 0 0 0 u− λ 0

0 0 0 0 0 0 0 0 ε h− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

By using square block matrix properties, we rewrite the above

determinant as follows:

∣

∣

∣

∣

A B

0 C

∣

∣

∣

∣

= 0, where

A =













a− λ 0 0 0 0

0 e− λ 0 f 0

β π h− λ i 0

0 0 0 n− λ 0

0 0 0 ρ h− λ













,B =













b c 0 d 0

0 0 0 g 0

j k l m 0

0 0 0 0 0

0 0 0 0 0













,

C =













p− λ q 0 r 0

ǫ s− λ 0 0 0

0 γ t − λ 0 0

0 0 0 u− λ 0

0 0 0 ε h− λ













,O =













0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0













.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a− λ 0 0 0 0 b c 0 d 0

0 e− λ 0 f 0 0 0 0 g 0

β π h− λ i 0 j k l m 0

0 0 0 n− λ 0 0 0 0 o 0

0 0 0 ρ h− λ 0 0 0 0 0

0 0 0 0 0 p− λ q 0 r 0

0 0 0 0 0 ǫ s− λ 0 0 0

0 0 0 0 0 0 γ t − λ 0 0

0 0 0 0 0 0 0 0 u− λ 0

0 0 0 0 0 0 0 0 ε h− λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |A| |C| = 0.

From this, we do have

|A| = (a− λ) (e− λ) (h− λ)(n− λ)(h− λ),

|C| = (t − λ)(u− λ)(h− λ)(
(

p− λ
)

(s− λ)− qǫ), |A|

|C| =
[

(a− λ) (e− λ) (h− λ)(n− λ)(h− λ)
]

[

(t − λ)(u− λ)(h− λ)(
(

p− λ
)

(s− λ)− qǫ)
]

= 0.

Then, the eigenvalue of the full model is as follows:

λ1 = a or λ2 = e or λ3 = h or λ4 = n or λ5 = h or λ6 = t or

λ7 = u or λ8 = h or a0λ
2 + a1λ + a2 = 0, where,

a0 = 1,

a1 = (ρ + µ+ω1) (ǫ + µ)
(

1− R
cs
0

)

> 0,

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org
46

https://doi.org/10.3389/fams.2022.1101029
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Teklu and Terefe 10.3389/fams.2022.1101029

a2 = (ǫ + µ) φ2ǫ
[

1−R
cs
0

]

> 0, ifRcs
0 < 1.

Therefore, the co-infection model disease-free equilibrium point

has local asymptotic stability ifRcs
0 < 1.

3.3.4. The full-model endemic equilibrium and
stabilities

The COVID-19 and syphilis co-infection model endemic

equilibrium point is denoted by

E∗cs =
(

P∗c , P
∗
s , S

∗, I∗c ,Q
∗
c , I

∗
as, I

∗
ss, I

∗
cs, , T

∗
s ,T

∗
)

. The analysis of the

COVID-19-only mono-infection system (5) and the syphilis-only

sub-model (6) shows that there is no endemic equilibrium point

wheneverRc
0 < 1 andR

s
0 < 1, respectively, which means there is no

endemic equilibrium point ifRcs
0 < 1 for the co-infection model (3).

In other words, the COVID-19 and syphilis co-infection disease-free

equilibrium point have global stability ifRcs
0 < 1.

The explicit calculation of the co-infection model endemic

equilibrium in terms of model parameters is tedious analytically;

however, the model (3) endemic equilibriums correspond to

1. E∗1 =
(

P∗c , 0, S
∗, I∗c ,Q

∗
c , 0, 0, 0, , 0, 0

)

, ifRc
0 > 1 is the syphilis-free

(COVID-19 persistence) equilibrium point.

The analysis of the equilibrium E∗1 is similar to the endemic

equilibrium E∗c in the model (5).

2. E∗2 =
(

0, P∗s , S
∗, 0, 0, I∗as, I

∗
ss, 0, , T

∗
s , 0
)

, if Rs
0 > 1 is the COVID-

19-free (syphilis persistence) equilibrium point. The analysis of

the equilibrium E∗2 is similar to the endemic equilibrium E∗s in

Equation (6).

3. E∗cs =
(

P∗c , P
∗
s , S

∗, I∗c ,Q
∗
c , I

∗
as, I

∗
ss, I

∗
cs, , T

∗
s ,T

∗
)

is the COVID-19 and

syphilis co-existence persistence equilibrium point. It exists when

each component of E∗cs is positive wheneverR
cs
0 > 1 for this case,

we have shown its stability in the numerical simulation part given

in Section 4.

4. Sensitivity analysis and numerical
simulations

In this section, we carried out the sensitivity analysis to examine

the most sensitive parameters in the disease spreading and numerical

simulations to verify the qualitative results of the mathematical

model (3). Particularly, some numerical verification is considered

to illustrate the qualitative analysis and results of the preceding

sections. Here, we have taken some parameter values from literature

and assumed some of the parameter values that are not from

real data since there is a lack of mathematical modeling analysis

literature which have studied the COVID-19 and syphilis co-infection

transmission dynamics in the community. The fundamental problem

of numerical analysis of a mathematical model is how to estimate

parameters. Randomly choosing the values of parameters in the

model in plausible intervals followed by sensitivity to the parameters

is possible partially to overcome the limitations of parameters [41].

Here, the numerical simulation is used for checking the behaviors

of the full-model (3) solutions and the effects of parameters in

the transmission as well as the controlling of COVID-19 infection,

syphilis infection, and co-infection of COVID-19 and syphilis. For

numerical simulation purposes, we have applied MATLAB ode45

code with parameter values given in Table 3.

TABLE 3 Parameter values for numerical simulations.

Parameter Value References

µ 0.0000559 year−1 [17]

3 500 day−1 [45]

β 0.30 day−1 Assumed

π 0.21 day−1 Assumed

ρ 0.5 day−1 [45]

ǫ 0.40 year−1 [12]

ε 0.3 year−1 Assumed

γ 0.021 year−1 [38]

δ 0.2482 year−1 [34]

β1 8 year−1 [38]

β2 0.6 day−1 [45]

θ1 1.1 dimensionless Assumed

θ2 1.1 dimensionless Assumed

θ3 1.1 dimensionless Assumed

τ1 0.27 dimensionless Assumed

τ2 0.41 dimensionless Assumed

τ3 0.32 dimensionless Assumed

ω1 0.023 day−1 [45]

ω2 0.06849 year−1 [17]

ω3 0.07 year−1 Assumed

4.1. Analysis of sensitivity

Definition: The syphilis and COVID-19 co-infection model (3)

normalized forward sensitivity index for its variable reproduction

number is denoted by R
cs
0 its derivative depends on a parameter ζ

is defined by SEI
(

p
)

=
∂R

cs
0

∂ζ

∗
ζ

R
cs
0

[20, 21, 42].

The syphilis and COVID-19 co-infection model sensitivity

index values justify the significance of different parameters in the

single infections and co-infection spreading in the community. The

parameter which has the highest magnitude of the sensitivity index

value compared to other parameter index values is the most sensitive.

Here, we have calculated the sensitivity index values in terms of the

basic reproduction number R
cs
0 = max

{

R
s
0,R

c
0

}

. Using parameter

values stated in Table 3, the sensitivity index values of the model (3)

are calculated in Tables 4, 5.

Using parameter values in Table 3, we have computed R
cs
0 =

max
{

R
c
0,R

s
0

}

= max {2.7, 3.2} = 3.2 and biologically, it means

that syphilis infection, COVID-19 infection, and their co-infection

are spreading in the population. The sensitivity index values stated

in Table 4 explain that the recruitment rate 3 and the COVID-19

spreading rate β2 have a high direct impact on the COVID-19 basic

reproduction R
c
0. That means the recruitment rate and the COVID-

19 transmission rates are the most sensitive parameters where

stakeholders can control the transmission rate by applying prevention

and control measures. Similarly, the COVID-19 protection portion τ1

and the quarantine with treatment rate ρ also have an indirect impact

on the COVID-19 reproduction numberRc
0.
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TABLE 4 Sensitivity indexes of R
cs

0 = R
c

0.

Sensitivity index Values

SEI(β2) 1

SEI(3) 1

SEI(τ2) 0.50

SEI(β) 0.09

SEI(τ1) –0.56

SEI(µ) –0.13

SEI(ρ) –0.65

SEI(ω1) –0.07

TABLE 5 Sensitivity indexes of R
cs

0 = R
s

0.

Sensitivity index Values

SEI(β1) 1

SEI(3) 1

SEI(γ ) –0.65

SEI(ω2) –0.32

SEI(π) 0.12

SEI(τ2) 0.56

SEI(τ3) –0.64

SEI(φ2) 0.41

SEI(ǫ) 0.46

Sensitivity indices stated in Table 5 explain that the recruitment

rate3 and syphilis spreading rate β1 have a high direct impact on the

syphilis basic reproductionR
s
0. That means the recruitment rate and

syphilis transmission rates are the most sensitive parameters where

stakeholders can control the transmission rate by applying prevention

and control measures. Similarly, the syphilis protection portion τ3

and syphilis treatment rate γ have a high indirect effect on the syphilis

reproduction numberRs
0.

4.2. Results of numerical simulations

4.2.1. Behaviors of solutions of model (3) whenever
R

cs
0 < 1
In the numerical simulation given in Figure 2, we observed that

all the COVID-19 and syphilis co-infection model (3) solutions

converge toward the disease-free equilibrium point whenever Rc
0 =

0.71 and R
s
0 = 0.34 with β1 = 0.3 and β2 = 0.08, respectively. At

the co-infection disease-free equilibrium point, each solution curve of

themodel converges to zero while the susceptible group increases and

then becomes constant, implying that the disease-free equilibrium

point of the COVID-19 and syphilis co-infection model has global

asymptotic stability if Rcs
0 < 1. Biologically it means the COVID-

19 and syphilis co-infection diseases have been eradicated from

the community through time whenever R
cs
0 = max

{

R
c
0, R

s
0

}

=

0.71 < 1.

FIGURE 2

The complete model solutions behavior if Rcs
0 < 1 at β1 = 0.3 and

β2 = 0.08.

FIGURE 3

Behaviors of the full model solutions whenever Rcs
0 > 1 at β1 = 8 and

β2 = 11.

4.2.2. Behaviors of the model solutions whenever
R

cs
0 > 1
Figure 3 shows that all the COVID-19 and syphilis co-infection

model (3) solutions converge toward the endemic equilibrium point

whenever Rc
0 = 3.2 and R

s
0 = 2.1 with β1 = 8 and β2 = 11,

respectively. After 10 years, the full-model solutions converge to

the endemic equilibrium, while the susceptible population decreases

and then remains constant means the COVID-19 and syphilis co-

infection model endemic equilibrium point has local asymptotic

stability if Rcs
0 = max

{

R
c
0,R

s
0

}

= 3.2 > 1. Biologically, it means

that COVID-19 and syphilis co-infection disease spreads throughout

the community under consideration.

4.2.3. E�ects of protection measures on
reproduction numbers

The numerical simulation represented by Figure 4 shows that

when we maximize the COVID-19 rate of protection τ1, the

reproduction number R
c
0 decreases, implying that the COVID-19

spreading rate decreases. Its biological meaning is that whenever

the COVID-19 rate of protection τ1 > 0.7 the reproduction
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FIGURE 4

E�ect of COVID-19 protection rate on R
c
0.

FIGURE 5

E�ect of syphilis protection rate τ3 on R
s
0.

number Rc
0 < 1, that is, the COVID-19 infection will be eradicated

throughout the community.

Here, the numerical simulation represented by Figure 5 shows

that whenever we maximize the syphilis protection rate τ3, the

syphilis reproduction number R
s
0 decreases, implying that the

syphilis spreading rate decreases. Whenever τ3 > 0.686 then

R
s
0 < 1, biologically, it means the syphilis infection eradicate from

the community.

4.2.4. Impact of treatment on co-infected
population

The numerical simulation given in Figure 6 shows that whenever

the combined treatment rate ε of the COVID-19 virus and

syphilis microorganism Treponema pallidum bacterium co-infected

individuals Ics increases, the number of co-infected individuals

decreases; that is, whenever the value of ε increases from 0.3 to 0.8,

then the co-infected group Ics going down.

The numerical simulation given in Figure 7 shows that if the

treatment rate ρ of COVID-19 increases, then the number of

FIGURE 6

Impact of treatment rate ε on Ics.

FIGURE 7

Impact of treatment rate ρ on Ic.

infections in the population decreases; that is, whenever ρ value

increases from 0.2 to 0.8 then the infected group Ic decreases.

5. Discussions and conclusion

In this study, we have formulated and analyzed a new

deterministic mathematical model for gaining insight into the

effects of protections and treatments on the transmission dynamics

of COVID-19 and syphilis co-infection. Both the positivity and

boundedness of the complete model solutions have been discussed

to show that the model is both mathematically and biologically

meaningful. COVID-19 infection-free equilibrium point, COVID-

19 incidence equilibrium point, and local and global stabilities

of COVID-19 infection-free and COVID-19 incidence equilibrium

points have been examined. Syphilis infection-free equilibrium point,

syphilis incidence equilibrium point, and local and global stabilities

of syphilis-free and syphilis incidence equilibrium points have been
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carried out. Using data stated in Table 3, we have carried out

and discussed both sensitivity and numerical analyses of the full

COVID-19 and syphilis co-infection model. From the analytical

and numerical results, we observed that the model disease-free

equilibrium points have global asymptotic stability when the basic

reproduction numbers are less than unity. Biologically, this means

that diseases die out in the community, with the full-model solutions

converging to their endemic equilibrium point whenever their

basic reproduction number is greater than unity, the reproduction

numbers of both the COVID-19 infection and syphilis infection sub-

models decreasing when the corresponding protection and treatment

rates are maximized, and the numbers of co-infected individuals

decreasing when the co-infection treatment rate is increased.

Based on the findings of this study, we recommend public

health stakeholders concentrate on increasing both the COVID-

19 and syphilis protection rates, as well as the syphilis treatment

rate, the COVID-19 isolation with treatment rate, and the co-

infection treatment rate, in order to reduce and possibly eradicate

syphilis and COVID-19 co-infection transmission in the community.

Finally, since no other COVID-19 and syphilis mathematical

modeling approach literature has been formulated and analyzed,

this study is not exhaustive. Interested researchers can extend this

study in different manners, such as including syphilis mother-to-

child transmission, COVID-19 vaccination as a new compartment,

two-strain COVID-19 co-infection with syphilis, age structure for

both infections, the four infection stages of syphilis (primary,

secondary, latent, and tertiary), optimal control approach, stochastic

method, fractional order method, and applying appropriate real

population data.
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Dynamics analysis of a
predator–prey fractional-order
model incorporating predator
cannibalism and refuge

Maya Rayungsari*†, Agus Suryanto,

Wuryansari Muharini Kusumawinahyu and Isnani Darti

Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Brawijaya,

Malang, Indonesia

In this article, we consider a predator–prey interaction incorporating cannibalism,

refuge, and memory e�ect. To involve the memory e�ect, we apply Caputo

fractional-order derivative operator. We verify the non-negativity, existence,

uniqueness, and boundedness of the model solution. We then analyze the

local and global stability of the equilibrium points. We also investigate the

existence of Hopf bifurcation. The model has four equilibrium points, i.e., the

origin point, prey extinction point, predator extinction point, and coexistence

point. The origin point is always unstable, while the other equilibrium points are

conditionally locally asymptotically stable. The stability of the coexistence point

depends on the order of the Caputo derivative, α. The prey extinction point,

predator extinction point, and coexistence point are conditionally globally and

asymptotically stable. There exists Hopf bifurcation of coexistence point with

parameter α. The analytic results of stability properties and Hopf bifurcations are

confirmed by numerical simulations.

KEYWORDS

predator-prey system, cannibalism, refuge, Caputo fractional-order derivative, local and

global stability analyzes, Hopf bifurcation (critical) value

1. Introduction

Predator–prey interaction, as the basis of the food chain, is among the most essential

ecological issues. In numerous published research, mathematical models have been

developed to explain the dynamics of Predator–prey interaction, such as by incorporating

social behavior [1, 2], age structure [3, 4], ratio-dependent functional response [5, 6],

harvesting [7, 8], and so on. The Predator–prey model is still being developed by considering

many factors that occur in nature. Cannibalism, the consuming of the same species in

whole or in part, is one of its most intriguing aspects since many animals in nature exhibit

cannibalistic behaviors, such as carnivore mammals [9–11], fish [12, 13], and spiders [14–

16]. Cannibalism may provide adaptive advantages such as exploiting conspecifics as a food

source or eliminating possible competitors [17].

Some researchers have investigated the mathematical model involving cannibalism [18–

21]. Kang et al. [18] studied a single-species cannibalism model with stage structure. The

model studied is a dynamic system of one population such an age structure that divides

the population into two classes, i.e., eggs and an adult class consisting of larvae, pupae,

queen insects, worker insects, and other types. Zhang et al. [19] analyzed predator–prey
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models with cannibalism and stage structure in predators so that

the model studied was a three-dimensional dynamical model.

In Zhang’s model, the predator population is divided into two

subpopulations, i.e., juvenile and adult predators. The birth rate of

juvenile predators is assumed to be proportional to the number of

adult predators and follows the Malthus growth model. Predation

of prey and juvenile predators by adult predators follows the type-I

Holling functional response. Meanwhile, Deng et al. [20] studied a

two-dimensional predator–prey model with predator cannibalism.

Aside from cannibalism, another interesting Predator–

prey phenomenon to investigate is prey hiding behavior

from predator captures and attacks. This is known as refuge

behavior in the context of ecology. The mathematical model

of Predator–prey interaction with prey refuge has also piqued

the interest of researchers [21–25]. Rayungsari et al. [21]

modified model proposed by Deng et al. [20] by adding the

assumption that there is a refuge in the cannibalized predator

population, as much as mP. Moreover, it is also assumed that

predators need time to catch and handle the prey, so that the

rate of prey predation follows the Holling type-II functional

response. The Predator–prey model incorporating predator

cannibalism and refuge proposed by Rayungsari et al. [21]

is as follows:

dN

dt
= rN

(

1−
N

K

)

−
b1NP

k1 + N
,

dP

dt
=

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P
,

(1)

where N ≥ 0 and P ≥ 0 represent prey density and predator

density, respectively. The parameters of system (Equation 1) are

positive constants described in Table 1. Predator cannibalism is

represented by the last term of the second equation in system

(Equation 1). The model can be interpreted as follows: In the

absence of predator, prey grows logistically with the intrinsic

growth rate r and the environmental carrying capacity K. With

the presence of the predator, the prey population density decreases

by
b1NP

k1 + N
, where b1 is the maximum predation rate and

k1 is the half-saturation constant. The predation rate follows

Holling type-II functional response with the assumption that

predators need time to catch and handle the prey. With the prey

predation by predator, the predator population density increases

by
c1NP

k1 + N
, where c1 is the conversion rate of predation of

prey into predator births and c1 ≤ b1. Predators die naturally

with the death rate e. The term
b2(1−m)P2

k2 + (1−m)P
depicts the

decrease in predator population density caused by cannibalism

with saturated a cannibalism rate, which follows Holling type-II

functional response,

b2(1−m)P

k2 + (1−m)P
. (2)

The value of Equation (2) monotonically increases with

the supremum b2. (1 − m)P is the amount of the available

predator to be cannibalized, as m is the coefficient of refuge.

The conversion rate of cannibalism into predator birth (c2) is

TABLE 1 Description of parameters.

Parameter Description

r Intrinsic growth rate of prey

K Environmental carrying capacity for prey

b1 Maximum prey predation rate

k1 Half-saturation constant of predation

c1 Conversion rate of prey biomass into predator birth

c2 Conversion rate of cannibalism into predator birth

e Predator natural death rate

b2 Maximum predator cannibalism rate

m Coefficient of refuge

k2 Half-saturation constant of predator cannibalism

assumed to be less than the maximum predator cannibalism

rate (b2).

The model proposed by Rayungsari et al. [21] was constructed

in a system of nonlinear differential equations with the first-

order derivative, where the change of population density at any

time depends on the current population density instantaneously.

Whereas in reality, the current condition is also affected by the

history of all previous conditions, which is called the memory

effect [26]. The phenomenon or systems that have memory and

genetic characteristics can be described by a fractional differential

system [27]. The definition of fractional-order derivative was first

introduced by Liouville [28] motivated by L’Hôpital and Leibniz’s

critical thinking on derivatives of order 1
2 . Liouville’s definition

was modified by Riemann by applying a direct generalization

of the Cauchy formula and named Riemann–Liouville fractional

derivative operator [29]. The fractional-order derivative concept

by Liouville and Riemann utilizes Euler’s study of fractional

integration, which led him to construct the Gamma function as

generalization of the factorial concept for fractional numbers [30].

In 1967, Michele Caputo modified the Riemann–Liouville operator

so that when solving differential equations, no initial conditions

are required. The definition of the modified operator is named by

Caputo fractional-order derivative operator. Predator–prey models

using Caputo-type fractional derivatives have been widely studied

recently [24, 31–33]. Hence, in this article, we modify and analyze

the Predator–prey model incorporating predator cannibalism and

refuge in Rayungsari et al. [21] by applying the Caputo fractional-

order derivative operator.

This article is organized as follows. In Section 2, model

development and basic properties are described. The basic

properties consist of verification of the non-negativity, existence,

uniqueness, and boundedness of solutions of the model. In

Section 3, the results of dynamical analysis are presented. The

results consist of the existence and stability of equilibrium

points. Both local and global stability are investigated, while

the analyzed bifurcation is the Hopf bifurcation. In Section 4,

the numerical simulations and intrepretations are carried out to

confirm the analytical results. Finally, in Section 5, we draw some

concluding remarks.
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2. Model development and basic
properties

By applying the Caputo fractional-order derivative operator to

the left-hand side of system (Equation 1), the model becomes

Dα
∗N = rN

(

1−
N

K

)

−
b1NP

k1 + N

Dα
∗P =

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P

, (3)

with α ∈ R, 0 < α ≤ 1, and Dα
∗ is the α-order of Caputo fractional

derivative operator defined by Dα
∗x(t) =

1
Ŵ(1−α)

∫ t
0 (t − s)−αx(s) ds.

Since the variables in the system (Equation 3) represent the

population densities, the solution of the system must be non-

negative. The solution of system (Equation 3) is guaranteed to be

non-negative by the following theorem.

THEOREM 1. All solutions of Equation (3) are non-negative for

any initial values (N(0), P(0)) ∈ R
2
+.

Proof. Since Dα
∗ = N

(

r

(

1−
N

K

)

−
b1P

k1 + N

)

, then Dα
∗N(0) = 0

if N(0) = 0. Dα
∗N = 0 means there is no change of prey population

density. Consequently, N(t) = 0, ∀t > 0. Then, we prove that if

N(0) > 0 thenN(t) ≥ 0 for every t > 0. Suppose that the statement

is wrong, so there is t∗ > 0 such as

N(t) > 0, 0 ≤ t < t∗,

N(t) = 0, t = t∗,

N(t) < 0, t ≥ t∗,

(4)

From Equations (3), (4), we get that Dα
∗N = 0, t = t∗. Thus,

there is no change in the population density ofN when t = t∗. From

the prior statement, N(t) = 0, t = t∗, so that N(t) = 0, t > t∗.

This contradicts the statement that N(t) < 0 for t > t∗. Therefore,

N(t) ≥ 0 for all t > 0 is correct. In the same way, it can be proved

that P(t) ≥ 0 for every t > 0.

Next, we show the existence and uniqueness of solution of the

system (Equation 3) using Theorem 3.7 in Li et al. [34]. Consider a

region [0,∞) × �, where � = {X = (N, P) ∈ R
2
+ : c2 < e}. Then,

we denote a mapping F(X) = (F1(X), F2(X)), where

F1(X) = rN

(

1−
N

K

)

−
b1NP

k1 + N
,

F2(X) =
c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P
.

(5)

For all X = (N, P), X̄ = (N̄, P̄) ∈ �,

||F(X)− F(X̄)|| ≤
∣

∣F1(X)− F1(X̄)
∣

∣+
∣

∣F2(X)− F2(X̄)
∣

∣

=

∣

∣

∣

∣

[

rN

(

1−
N

K

)

−
b1NP

k1 + N

]

−

[

rN̄

(

1−
N̄

K

)

−
b1N̄P̄

k1 + N̄

]∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P

]

−

[

c1N̄P̄

k+ N̄
+ c2P̄ − eP̄ −

b2(1−m)P̄2

k2 + (1−m)P̄

]

∣

∣

∣

∣

∣

≤
∣

∣rN − N̄
∣

∣+

∣

∣

∣

∣

N2 − N̄2

K

∣

∣

∣

∣

+

∣

∣

∣

∣

b1NP(k1 + N̄)− b1N̄P̄(k1 + N)

(k1 + N)(k1 + N̄)

∣

∣

∣

∣

+

∣

∣

∣

∣

c1NP(k1 + N̄)− c1N̄P̄(k1 + N)

(k1 + N)(k1 + N̄)

∣

∣

∣

∣

+
∣

∣(c2 − e)(P − P̄)
∣

∣

+

∣

∣

∣

∣

b2(1−m)(P2(k2 + (1−m)P̄)− (P̄2(k2 + (1−m)P)

(k2 + (1−m)P)(k2 + (1−m)P̄)

∣

∣

∣

∣

≤

[

r +
r(N + N̄)

K
+

(b1 + c1)k1P

(k1 + N)(k1 + N̄)

]

∣

∣N − N̄
∣

∣

+

[

(b1 + c1)N̄

k1 + N̄
+ e− c2

+
b2(1−m)

[

k2(P + P̄)+ PP̄(1−m)
]

(k2 + (1−m)P)(k2 + (1−m)P̄)

]

∣

∣P − P̄
∣

∣ .

Since in the following discussion, it can be proved that the

system solution (Equation 3) is bounded in �, there is a positive

constantM = max{N, P}, ∀t ≥ 0. Hence, we have

||F(X)− F(X̄)|| ≤

[

r +
2M

K
+

(b1 + c1)k1M

k21

]

∣

∣N − N̄
∣

∣

+

[

(b1 + c1)M

k1
+ e− c2 +

b2(1−m)
[

2k2M + (1−m)M2
]

k22

]

∣

∣P − P̄
∣

∣

= L1
∣

∣N − N̄
∣

∣+ L2
∣

∣P − P̄
∣

∣ ,

with

L1 = r +
2M

K
+

(b1 + c1)k1M

k21
,

L2 =
(b1 + c1)M

k1
+ e− c2 +

b2(1−m)
[

2k2M + (1−m)M2
]

k22
.

By choosing a positive constant L = max {L1, L2}, we get

||F(X)− F(X̄)|| ≤ L||X − X̄||. (6)

Based on Equation (6), the function F(X) satisfies the Lipschitz

condition so that there exist a unique solution X(t) of the system

(Equation 3) with any initial value of X(0) = (N(0), P(0)). Thus, we

derive the following theorem.

THEOREM 2. For the system (Equation 3) with any non-negative

initial condition (N(0), P(0)) ∈ �, there exist a unique solution

X(t) ∈ �.

Next, due to the limited carrying capacity of the prey and

predator resources, the size of both populations in the system

(Equation 3) must be limited. Consider a function defined by

V(t) = N(t)+
b1

c1
P(t).
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The Caputo derivative α-order of V satisfies,

Dα
∗V ≤ Dα

∗N +
b1

c1
Dα
∗P

=

[

rN

(

1−
N

K

)

−
b1NP

k1 + N

]

+ b1
c1

[

c1NP
k1+N

+ c2P − eP −
b2(1−m)P2

k2+(1−m)P

]

= rN −
r

K
N2 +

b1

c1

(

c2 − e−
b2(1−m)P

k2 + (1−m)P

)

P

≤ rN − r
KN

2 + b1
c1

(c2 − e) P.

For any positive constant ϕ,

Dα
∗V + ϕV ≤ rN −

r

K
N2 +

b1

c1
(c2 − e)P + ϕ

(

N +
b1

c1
P

)

= (r + ϕ)N −
r

K
N2 +

b1

c1
(c2 − e+ ϕ)P.

If c2 < e and by choosing 0 < ϕ < e− c2, we get

Dα
∗V + ϕV < (r + ϕ)N −

r

K
N2

= −
r

K

[

(

N −
(r + ϕ)K

2r

)2

−

(

(r + ϕ)K

2r

)2
]

≤
r

K

(

(r + ϕ)K

2r

)2

.

(7)

Based on Equation (7), Generalized Mean Value Theorem

in Odibat and Shawagfeh [35], and Lemma 6.1 (Fractional

Comparison Principle) in Li et al. [34], we get that,

V(t) ≤

(

V(0)−
r

ϕK

(

(r + ϕ)K

2r

)2
)

Eα[−ϕ(t)α]

+
r

ϕK

(

(r + ϕ)K

2r

)2

. (8)

Eα[−ϕ(t)α] → 0ast → +∞, so that,

V(t) →
r

ϕK

(

(r + ϕ)K

2r

)2

, t → +∞.

Hence, we establish the following theorem.

THEOREM 3. All solutions of Equation (2) with initial values

(N(0), P(0)) ∈ {(x, y) ∈ R2+ : c2 < e} are uniformly bounded

3. Dynamical analysis

3.1. Existence of equilibrium points

In the similar way as in Rayungsari et al. [21], the system

(Equation 3) has four equilibrium points, namely E0 = (0, 0),

E1 = (0, P1), E2 = (K, 0), and E3 = (N3, P3), where P1 =
k2(e− c2)

(c2 − e− b2)(1−m)
. If b2 + e 6= c1 + c2, then N3 and P3 in E3 is

obtained from the solution of a cubic equation using the Cardano’s

formula [36, 37], i.e.,

N3 =

3

√

q2 ±
√

q22 +
4
27q

3
1

3
√
2

−
q1

3
√
2

3
3

√

q2 ±
√

q22 +
4
27q

3
1

−
B

3A
,

P3 =
r

b1

(

1−
N3

K

)

(k1 + N3),

(9)

with

q1 =
3AC − B2

3A2
,

q2 =
9ABC − 2B3 − 27A2D

27A3
,

A =
r

b1K
(1−m)(b2 − c1 − c2 + e),

B =
r

b1
(1−m)

[

(c1 + c2 − e− b2)−
k1

K
(c1 + 2(c2 − e− b2))

]

,

C = (c1 + c2 − e)k2

+ rk1
b1
(1−m)

[

c1 + (2− k1)(c2 − e)− 2b2 +
b2k1
K

]

,

D = k1

[

k2(c2 − e)+
rk1

b1
(1−m)(c2 − e− b2)

]

.

Whereas, if b2 + e = c1 + c2, we have the value of N3 and P3 as

follows:

N3 =
−R±

√

R2 − 4QS

2Q
, P3 =

r

b1

(

1−
N3

K

)

(k1 + N3),

with

Q =
c1rk1

b1K
(1−m),

R = b2k2 +
rk1

b1
(1−m)

(

k1(c1 − b2)− c1 +
b2k1

K

)

,

S = k1

[

k2(b2 − c1)−
rc1k1

b1
(1−m)

]

.

Two of the equilibrium points need existence conditions. E1
exists in R

2
+ if 0 < c2 − e < b2. The coexistence point E3 exists

in R
2
+ if q22 +

4
27q

3
1 ≥ 0 and 0 < N3 < K for b2 + e 6= c1 + c2.

Meanwhile, for b2 + e = c1 + c2, E3 exists in R
2
+ if R2 − 4QS ≥ 0

and 0 < N3 < K.

3.2. Local stability

Local stability of the equilibrium points of Equation (3) are

determined by the arguments of the eigenvalues of Jacobian

matrix and applying Matignon Local Stability Theorem in

Petras [38]. Suppose that E∗ is an equilibrium point of system

(Equation 3). Based on Matignon Local Stability Theorem, E∗

is local asymptotically stable if all of the eigenvalues λj of the

Jacobian matrix,

J(E∗) =















r

(

1−
2N

K

)

−
b1k1P

(k1 + N)2
−

b1N

k1 + N
c1k1P

(k1 + N)2
c1N

k1 + N
+ c2 − e

−
b2(1−m)P

[

2k2 + (1−m)P
]

(k2 + (1−m)P)2















(10)

that satisfies | arg(λj)| >
απ

2
.

THEOREM 4. The origin point E0(0, 0) is always unstable.

Proof. The Jacobian matrix for E0 = (0, 0) is

J(E0) =

[

r 0

0 c2 − e

]

, (11)
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so the eigenvalues are λ1 = r and λ2 = c2 − e. The argument

of the first eigenvalue is | arg(λ1)| = 0 <
απ

2
. If c2 > e then

| arg(λ2)| = 0 <
απ

2
(E0 is an unstable source), while if c2 > e

then | arg(λ2)| = π >
απ

2
(E0 is an unstable saddle node).

THEOREM 5. Prey extinction point E1 (0, P1) is local

asymptotically stable if r <
b1P1

k1
and unstable saddle node

if r >
b1P1

k1
.

Proof. By substituting E1 = (0, P1) to Equation (10), we get the

Jacobian matrix for E1,

J(E1) =







r −
b1P1

k1
0

c1P1

k1

(c2 − e)(c2 − e− b2)

b2






. (12)

The eigenvalues are λ1 = r −
b1P1

k1
and λ2 =

(c2 − e)(c2 − e− b2)

b2
. Based on the existence condition of E1, then

λ2 is the negative real number and | arg(λ2)| = π >
απ

2
. Hence,

the local stability of E1 depends on λ1. If r <
b1P1

k1
, λ1 < 0, and

| arg(λ1)| = π >
απ

2
so that E1 is local asymptotically stable.

Otherwise, if r >
b1P1

k1
then λ1 > 0, | arg(λ1)| = π >

απ

2
, and E1

is an unstable saddle node.

THEOREM 6. The predator extinction point E2(K, 0) is local

asymptotically stable if e >
c1K

k1 + K
+ c2 and unstable saddle node

if e <
c1K

k1 + K
+ c2.

Proof. With the same way, we get the Jacobian matrix for E2 as

follows:

J(E2) =







−r −
b1K

k1 + K

0
c1K

k1 + K
+ c2 − e






. (13)

The eigenvalues are λ1 = −r and λ2 =
c1K

k1 + K
+ c2 − e. It is

clear that | arg(λ1)| = π >
απ

2
. E2 is local asymptotically stable if

| arg(λ2)| >
απ

2
, i.e., for e >

c1K

k1 + K
+ c2. If e <

c1K

k1 + K
+ c2,

| arg(λ2)| = 0 <
απ

2
, and E2 is an unstable saddle node.

For existence point E3(N3, P3), the Jacobianmatrix is as follows:

J(E3) =

[

J11 J12
J21 J22

]

, (14)

where

J11 =
rN3

k1 + N3

(

1−
k1 + 2N3

K

)

,

J12 = −
b1N3

k1 + N3
,

J21 =
c1k1r

b1(k1 + N3)

(

1−
N3

K

)

,

J22 = −
b1b2k2r(1−m)

(

1− N3
K

)

(k1 + N3)
(

b1k2 + r(1−m)
(

1− N3
K

)

(k1 + N3)
)2

.

(15)

Thus, the eigenvalues are obtained from the following quadratic

equation.

λ2 − trace(J(E3))+ det(J(E3)) = 0, (16)

where

det(J(E3)) = J11J22 − J12J21

= −
r2b1b2k2(1−m)N3

(

1− N3
K

)

(

b1k2 + r(1−m)
(

1− N3
K

)

(k1 + N3)
)2

(

1−
k1 + 2N3

K

)

+
c1k1rN3

(k1 + N3)2

(

1−
N3

K

)

(17)

and

trace(J(E3)) = J11 + J22

=
rN3

k1 + N3

(

1−
k1 + 2N3

K

)

−
b1b2k2r(1−m)

(

1− N3
K

)

(k1 + N3)
(

b1k2 + r(1−m)
(

1− N3
K

)

(k1 + N3)
)2

.

(18)

Suppose that

a =
b1b2k2(1−m)

(

1− N3
K

)

(k1 + N3)
2

N3

(

b1k2 + r(1−m)
(

1− N3
K

)

(k1 + N3)
)2

> 0, (19)

then

trace(J(E3)) =
rN3

k1 + N3

(

1−
k1 + 2N3

K

)

−
arN3

k1 + N3

=
rN3

k1 + N3

(

1− a−
k1 + 2N3

K

)

=
rN3

k1 + N3

(

K − aK − k1 − 2N3

K

)

.

(20)

Suppose that d is the discriminant of Equation (16), i.e.,

d = trace(J(E3))
2 − 4 det(J(E3)). (21)

The cases are divided into two parts, those are for d ≥ 0 and for

d < 0.

1. Case 1 (d ≥ 0)

For this case, if k1 > K − 2N3, we have det(J) > 0 and

trace(J) < 0. Therefore, the eigenvalues (solutions of Equation

16) are real and negative. Consequently, | arg(λj)| = π >
απ

2
for j = 1, 2 and E3 is local asymptotically stable.
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2. Case 2 (d < 0)

In case (d < 0), the eigenvalues are complex number with

non-zero imaginary part λ =
trace(J(E3))+

√
d

2
and λ̄ =

trace(J(E3))−
√
d

2
. Suppose that

(a) If k1 > K−2N3−aK, then trace(J) < 0 so that Re(λ) < 0 and

E3 is local asymptotically stable since | arg(λ)| = | arg(λ̄)| =

π >
απ

2
.

(b) If k1 < K − 2N3 − aK, then trace(J) > 0 so that Re(λ) > 0

and E3 is local asymptotically stable if | arg(λ)| >
απ

2
.

Hence, we establish the following theorem.

THEOREM 7. Suppose that d = trace(J(E3))
2 − 4 det(J(E3)) with

trace(J(E3)) and det(J(E3)) are the trace and determinant of matrix

J(E3) in Equation (14). E3 = (N3, P3) is locally asymptotically stable

if one of the following conditions are satisfied.

1. d ≥ 0 and k1 > K − 2N3,

2. d < 0 and k1 > K − 2N3 − aK,

3. d < 0, k1 < K − 2N3 − aK, and | arg(λ)| =

∣

∣

∣

∣

Im(λ)

Re(λ)

∣

∣

∣

∣

=

∣

∣

∣

∣

λ − λ̄

λ + λ̄

∣

∣

∣

∣

>
απ

2
,

with a is as in Equation (19).

3.3. Global stability

Next, we investigate the global stability of E1, E2, and E3. For

this aim, we use the help of Lemma 3.1 in Vargas-De-Leon [39] and

Generalized Lasalle Invariance Principle in Huo et al. [40].

For prey extinction point E1(0, P1), we consider a

Lyapunov function,

V1(N, P) = N +
b1

c1

(

P − P1 − P1 ln
P

P1

)

.

The Caputo derivative α-order of V1 is as follows:

Dα
∗V1 ≤ Dα

∗N +
b1

c1

(

P − P1

P

)

Dα
∗P

= rN

(

1−
N

K

)

−
b1NP

k1 + N

+
b1

c1

(

P − P1

P

)(

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P

)

= rN

(

1−
N

K

)

−
b1NP1

k1 + N

+
b1

c1P1
(P − P1)

(

k2(c2 − e)P1 + k2(e− c2)P

k2 + (1−m)P

)

= rN

(

1−
N

K

)

−
b1NP1

k1 + N

−
b1

c1P1
(P − P1)

2

(

k2(c2 − e)

k2 + (1−m)P

)

≤ rN

(

1−
N

K

)

−
b1NP1

k1 + N
.

If r <
b1P1

k1
, then we have,

Dα
∗V1 ≤ rN

(

1−
N

K

)

−
rk1N

k1 + N

=
rN

K(k1 + N)

(

KN − k1N − N2
)

.

Dα
∗V1 = 0 only if N = 0. For N > 0, if K ≤ k1, then Dα

∗V1 ≤ 0

and according to Generalized Lasalle Invariance Principle [40],

E1 is globally asymptotically stable. We write the global stability

conditions of E1 in the following theorem.

THEOREM 8. If E1 = (0, P1) exists, then E1 is globally

asymtotically stable if r <
b1P1

k1
and K ≤ k1.

Then, we construct a Lyapunov function as follows:

V2(N, P) =
c1

b1

(

N − K − K ln
N

K

)

+ P,

for E2(K, 0). We have,

Dα
∗V2 ≤

c1

b1

(

N − K

N

)

Dα
∗N + Dα

∗P

=
c1

b1

(

N − K

N

)(

rN

(

1−
N

K

)

−
b1NP

k1 + N

)

+
c1NP

k1 + N

+c2P − eP −
b2(1−m)P2

k2 + (1−m)P

= −
c1r

b1K
(N − K)2

+ P

(

c1K

k1 + N
+ c2 − e−

b2(1−m)P

k2 + (1−m)P

)

≤ P

(

c1K

k1 + N
+ c2 − e−

b2(1−m)P

k2 + (1−m)P

)

≤ P

(

c1K

k1 + N
+ c2 − e

)

.

Suppose that e >
c1K

k1
+ c2. Thus, we have,

Dα
∗V2 ≤ P

(

c1K

k1 + N
+ c2 −

(

c1K

k1
+ c2

))

= P
(

c1K
k1+N

− c1K
k1

)

≤ 0.

We get that Dα
∗V2 ≤ 0, ∀(N, P) ∈ R

2
+. Hence, E2 is

globally asymptotically stable with the condition as in the following

theorem.

THEOREM 9. E2 is globally asymtotically stable if e >
c1K

k1
+ c2.

To investigate the global stability of coexistence point, we

consider a Lyapunov function

V3(N, P) = N − N3 − N3 ln
N

N3
+

b1

c1

(

P − P3 − P3 ln
P

P3

)

,
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where N3 and P3 as in Equation (9). The α-order derivative of V3

satisfies

Dα
∗V3 ≤

(

1−
N3

N

)(

rN

(

1−
N

K

)

−
b1NP

k1 + N

)

+
b1

c1

(

1−
P3

P

)(

c1NP

k1 + N
+ c2P − eP −

b2(1−m)P2

k2 + (1−m)P

)

= (N − N3)

[

r

(

N3 − N

K

)

−
b1k1(P − P3)

(k1 + N)(k1 + N3)

]

+
b1

c1
(P − P3)

[

c1k1(N − N3)

(k1 + N)(k1 + N3)

−
b2k2(1−m)(P − P3)

(k2 + (1−m)P)(k2 + (1−m)P3)

]

= −
r

K
(N − N3)

2 −
b1(N − N3)(N3P − NP3)

(k1 + N)(k1 + N3)

−
b1b2k2(1−m)(P − P3)

2

c1(k2 + (1−m)P)(k2 + (1−m)P3)
.

Consider a domain �∗ =

{

(N, P)

∣

∣

∣

∣

P

P3
>

N

N3
> 1

}

. Then,

Dα
∗V3 < 0 and E3 is globally asymptotically stable in �∗. Hence,

we derive the following theorem.

THEOREM 10. E3 is globally asymptotically stable in the domain

�∗ =

{

(N, P)

∣

∣

∣

∣

P

P3
>

N

N3
> 1

}

.

3.4. Existence of Hopf bifurcation

THEOREM 11. If d < 0 and k1 < K− 2N3− aK with a is given in

Equation (19), then E3 undergoes Hopf bifurcation when the order

of Caputo derivative, α, pass α∗ with

α∗ = tan−1

∣

∣

∣

∣

Im(λ∗)

Re(λ∗)

∣

∣

∣

∣

(22)

and λ∗ is an eigenvalue of E3.

Proof. Suppose that d < 0 and k1 < K − 2N3 − aK. Then, the

eigenvalues of J(E3) are a pair of complex number λ1 = λ∗ and

λ2 = λ̄∗ with positive real part. Suppose that

f (α) =
απ

2
−min | arg(λi)i=1,2|.

For α = α∗ with

α∗ = tan−1

∣

∣

∣

∣

Im(λ∗)

Re(λ∗)

∣

∣

∣

∣

,

we have f (α∗) = 0 and
df (α)

dα

∣

∣

∣

∣

α=α∗

=
π

2
6= 0. According to

Theorem 3 in Li and Wu [41], E3 undergoes Hopf bifurcation at

α = α∗.

4. Numerical simulations

In this section, numerical simulations of themodel (Equation 3)

are carried out using Matlab software and the predictor–corrector

scheme, which is introduced by Diethelm et al. [42]. The purposes

TABLE 2 Parameter values.

Parameter Simulation
1

Simulation
2

Simulation
3

r 1 1 1

K 1 1 1

b1 0.5 0.5 0.3

k1 0.3 0.3 0.3

c1 0.2 0.1 0.2

c2 0.2 0.2 0.12

e 0.1 0.3 0.02

b2 0.3 0.3 0.35

m 0.3 0.3 0.3

k2 1 1 1

of the numerical simulations are to confirm the dynamics analysis

results and the existence of Hopf bifurcation. Since there are no

available data related to our proposed model yet, the parameter

values are chosen hypothetically in Table 2.

For parameter values in Simulation 1, E1 exists, i.e., E1 =

(0, 0.7143) and the local stability condition in Theorem 5 is

satisfied. We conduct numerical simulations with several values

of α. The results in Figure 1 show that the solutions tend to the

prey extinction point for all α values chosen. This is consistent

with the analytical results since the Jacobi matrix eigenvalues are

negative real numbers, which involve E1 always asymptotically

stable with the selected parameter values for any order derivative

of the α ∈ (0, 1]. However, we can see a difference in the solution’s

behavior for each α. The lower the α value, the slower the solution

reaches E1.

For the second simulation, we use the same parameter values

but c1 and e (see Table 2). As a result, the existence condition for

E1 is not satisfied, so the point does not exist. It means that the

prey can survive from extinction. For the predator extinction point

E2(1, 0), the stability condition in Theorem 6 is satisfied and E2 is

asymptotically stable for any fractional order of α ∈ (0, 1]. It fits

the numerial simulation results in Figure 2. Represented by some

values of α, we can see that the solutions with initial value close

to E2 go to E2. With a greater α value, the solution will reach the

predator extinction point faster.

Next, we demonstrate the effect of the derivative order on the

behavior of the solution, with 0.8 ≤ α ≤ 1. The parameter values

in the last column of Table 2 were chosen. With those parameter

values, the coexistence point exists, i.e., E3(0.1423, 1.2645), which

has the eigenvalues λ∗ = 0.0232 + 0.1589i and λ̄∗ = 0.0232 −

0.1589i. The parameter values satisfy k1 < K − 2N3 − aK and

the discriminant of the quadratic equation of the eigenvalues is

negative, i.e., d = −0.1010. Based on the Theorem 7, the stability

of E3 is determined by the argument of the order derivative α. The

threshold is α∗ = 0.9077, which satisfies α∗ <
2

π

∣

∣

∣

∣

λ∗ − λ̄∗

λ∗ + λ̄∗

∣

∣

∣

∣

.

From the bifurcation diagram in Figure 3, we can see that for

α < α∗, the solutions tend to E3. Meanwhile, for α > α∗, the
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A B

FIGURE 1

Graphic solutions of Simulation 1. (A) Solutions of N with respect to time t. (B) Solutions of P with respect to time t.

A B

FIGURE 2

Graphic solutions of Simulation 2. (A) Solutions of N with respect to time t. (B) Solutions of P with respect to time t.

FIGURE 3

Bifurcation diagram with α as bifurcation parameter. (A) Value of N* with respect to derivative order α. (B) Value of P* with respect to

derivative order α.
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A

B

C

FIGURE 4

Graphic solutions of Simulation 3. (A) Solutions of N with respect to time t. (B) Solutions of P with respect to time t. (C) Phase portraits.

solutions tend to limit cycle around E3. As confirmation of the

bifurcation diagram, two α values satisfying α < α∗, i.e., α = 0.8

and α = 0.89, and two α values satisfying α.α∗, i.e., α = 0.91

and α = 1, are selected to simulate the solutions of N and P with

respect to time. For α = 0.8 and α = 0.89, the solutions tend to E3.

The solution with α = 0.89 oscillates longer than α = 0.8 before
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A B

FIGURE 5

Bifurcation diagram with b2 as bifurcation parameter. (A) The value of N* for 0.2 ≤ b2 ≤ 0.4. (B) The value of P* for 0.2 ≤ b2 ≤ 0.4.

A B

FIGURE 6

Bifurcation diagram with m as bifurcation parameter. (A) The value of N* for 0.1 ≤ m ≤ 0.5. (B) The value of P* for 0.1 ≤ m ≤ 0.5.

finally convergent to E3. Meanwhile, for α = 0.91 and α = 1, each

solution convergent to a limit cycle. The amplitude of the limit cycle

solution with α = 1 is greater than α = 0.91.

Numerical simulations in Figures 3, 4 show the existence of

Hopf bifurcation in system (3) with α as bifurcation parameter.

In addition, the system also undergoes one-parameter Hopf

bifurcation with other bifurcation parameters such as cannibalism

rate (b2) and refuge coefficient (m). The bifurcation diagrams are

shown in Figures 5, 6, respectively.

For bifurcation diagram with parameter b2, we have three

bifurcation points, i.e., b∗2 = 0.2429, b∗∗2 = 0.306, and b∗∗∗2 = 0.372.

For b2 < b∗2 , the solutions convergent to prey extinction point

E1. It is in accordance with the analytical result since the stability

condition of E1 is satisfied. When the predator cannibalism rate

is increased pass b∗2 , E1 is unstable, and the solutions convergent

to the coexistence point, which means the predator survive from

extinction. The solutions tend to limit cycle when b∗∗2 < b2 < b∗∗∗2 .

For bifurcation diagramwith parameterm, we have two bifurcation

points, i.e., m∗, m∗∗. For m < m∗, the solutions convergent to

coexistence point. The solutions tend to limit cycle in the refuge

coefficient rangem∗ < m < m∗∗.

5. Conclusion

A first-order system of Predator–prey interaction incorporating

predator cannibalism and refuge is modified by applying Caputo

fractional-order derivative operator. We verify the non-negativity,

existence, uniqueness, and boundedness of the model solution. The

local and global stability of equilibrium points are then examined.

In addition, the existence of Hopf bifurcation is investigated.

There are four equilibrium points in the model: the origin point,

the prey extinction point, the predator extinction point, and

the coexistence point. Since the eigenvalues are real numbers,

the first three equilibrium points have the same local stability

as the first-order system. However, the local stability of the

coexistence point differs from that of the first-order system. The

coexistence point with positive real-part eigenvalues is locally
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asymptotically stable in the modified system as long as the absolute

of the eigenvalue arguments are bigger than απ
2 . Even though

it is based on different theories, the global stability properties

of all equilibrium points are identical to those in the first-

order system. Under certain conditions, the Hopf bifurcation

exists for the coexistence point. Numerical simulations confirmed

the analytical results of stability properties and the existence of

Hopf bifurcation.
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The predator-prey model has been extensively studied, but only studies models in

a certain environment, where all parameters and initial values involved in themodel

are assumed to be certain. In real practice, some parameters and initial values are

often uncertain. To overcome this uncertainty problem, a model can be made by

using a fuzzy theoretical approach. In this paper, we develop a numerical scheme

for solving two predator-prey models with a Holling type II functional response by

considering fuzzy parameters and initial populations. The behavior of the model

was studied qualitatively using the 5th order Runge-Kutta method of which was

modified for the fuzzy system using the Zadeh extension principle. The numerical

simulation results show that, when the initial populations of prey and predators

are fuzzy, the behavior of the fuzzy model would be qualitatively the same as the

crisp model. Finally, we conclude that the resulting fuzzy behavior represents a

generalization of crisp behavior. This gives more realistic results since the solution

is obtained by explicitly considering the problem of uncertainty.

KEYWORDS

predator-prey fuzzy model, Holling type II functional response, fuzzy parameter, fuzzy

initial population, Zadeh extension principle, 5th order Runge-Kutta method

1. Introduction

The predator-prey model is a model of the interaction between two species expressed

in the form of a system of differential equations that describes the dynamic relationship

between prey and predators [1]. This model was first introduced by Lotka and Volterra, so it

is known as the Lotka-Volterra predator-prey model. In this model, the dynamic behavior of

a simple predator-prey model is studied. Various applications of the predator-prey system,

such as those in Supriatna and Possingham [2, 3] and several other modifications of

the predator-prey model have been made by incorporating additional biological processes

into the classic Lotka-Volterra predator-prey equation, including functional response

modifications [4].

In ecological systems, the degree of predation depends on the functional response.

A functional response considers the number of prey that the predator has successfully

consumed per unit time. It is also introduced to describe changes in the rate of prey
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consumption by predators when prey density varies [4]. The

most common and well-known functional response is the type-

II Holling functional response. The Holling type II functional

response describes the increasing rate of predator’s consumption

when the density of prey is low. Meanwhile, when the prey density

is high, the predator’s consumption is constant. In this case, it

represents a phenomenon that the predator takes very little time

to find the prey, and when the prey consumption rate reaches the

highest level, the predator becomes easily full.

In recent years, various studies on predator-prey models

with type-II Holling functional responses have been carried out,

including in in Dawes and Souze [4], Jana and Kar [5], Ma

et al. [6]. Those studies consider a predator-prey model in a

definite environment, where all parameters affecting population

size and initial values involved in the model are assumed

to be crisp. However, in reality, each parameter and initial

value is uncertain, unclear, or incomplete. This uncertainty is

caused by inaccuracies made during the process of observation,

measurement, experimentation, and so on. To overcome this

problem, a model can be made using different approaches such

as the stochastic approach, the fuzzy approach and the fuzzy-

stochastic approach. A crisp ODE system could be more suitable

to be converted into a fuzzy differential equation system whenever

the parameters or the initial values are uncertain and have a degree

of perseptional values.

In recent decades, the application of fuzzy theory has been

widely used as a very effective tool in mathematical modeling to

solve real problems that take into account uncertainty. In this

approach, uncertain variables and parameters are represented by

intervals and fuzzy numbers. In the study of fuzzy differential

equations, the term fuzzy differential equations can be in the

form of differential equations with fuzzy coefficients, differential

equations with fuzzy initial values or fuzzy boundary values [7–12].

The stability of the fuzzy dynamic system in a dynamic population

is studied through fuzzy differential equation and fuzzy initial value

problem [13]. Various numerical solutions for systems of fuzzy

equations have also been introduced in Ahmad and Hasan [10],

Jayakumar et al. [14], Nayak and Chakraverty [15], Behroozpoor

et al. [16], Tapaswini and Chakraverty [17], and Tapaswini and

Chakraverty [18].

The fuzzy predator-prey model was first introduced in da

Silva Peixoto et al. [19], where a classic deterministic predator-

prey model was formulated using a fuzzy rule-based system. The

development of fuzzy differential equations has resulted in new

discoveries of fuzzy predator-prey models, including those made

by Ahmad and Hasan [10], Pandit and Singh [20], Ak and Oru

[21], Ahmad and De Baets [22], Narayanamoorthy et al. [23], Omar

et al. [24], and Pal et al. [25]. The authors in Ahmad and Hasan

[10], Ahmad and De Baets [22], and Omar et al. [24] used the

Euler and 4th order Runge-Kutta method through the principles of

Zadeh extension. While the authors in Ak and Oru [21], used the

concept of generalized fuzzy derivatives. Other authors in Pandit

and Singh [20], used Hukuhara derivative. Moreover, the authors

in Narayanamoorthy et al. [23], used the fractional modified Euler

method. On the biological perspective, there are some authors who

have studied fuzzy predator-prey models with functional responses

such as [20, 23, 24, 26]. They all studied a predator-prey model

with fuzzy initial conditions. Fuzzy predator-prey models with

functional responses have also been studied by Pal et al. [27], Yu

et al. [28], Pal et al. [29], Meng and Wu [30], Mahata et al. [31],

and Pal et al. [32], who presented fuzzy predator-prey harvesting

models. Their work studied two species of predator-prey harvesting

models by considering fuzzy parameters. Among those work, the

authors in Mallak et al. [26], studied a fuzzy predator-prey model

with an arctan functional response using the Hukuhara derivative

approach, to describe the satiation predator’s consumption.

Our research discusses predator-prey models with Holling

type II functional responses by considering fuzzy parameters and

fuzzy initial populations. The motivation is that we would like

to see how different is the dynamics of the sytems compared to

their counterpart crisp predator-prey systems. To proceed we will

present some preliminaries regarding the fuzzy number theory

and fuzzy differential equation background in Sections 2 and 3

followed by the 5th order Runge-Kutta numerical scheme for fuzzy

differential Section 4. In Section 5, we discuss the equilibria and

their stabilities condition for two predator-prey models with fuzzy

parameters and fuzzy initial values followed by the applications of

the 5th order Runge-Kutta numerical scheme to those predator

prey models in Section 6. Finally some discussion and conclusion

are presented in Sections 7 and 8, respectivelly.

2. Preliminaries

Some of the basic concepts used in this paper, such as fuzzy

number, the α-level of the fuzzy number, and the Zadeh extension

principle, will be introduced in this section.

2.1. Fuzzy theory

Definition 2.1 [33]. Let U be a non-empty set, and A is a subset

of U. The characteristic function of A is given by

χA (x) =

{

1, if x ∈ A

0, if x /∈ A

for each x ∈ U.

Definition 2.2 [33]. A fuzzy subset F of the non-empty set U is

defined by a function ϕF :U → [0, 1], which is called themembership

function of F.

Definition 2.3 (α-level) [33]. α-level of the fuzzy subset A of U

is the classical set [A]α defined by

[A]α =
{

x ∈ U :ϕA (x) ≥ α,α ∈ (0, 1]
}

.

Support of A is supp A = {x ∈ U :ϕA (x) > 0} = [A ]0.

Core of A is core A = {x ∈ U :ϕA (x) = 1} = [A ]1.

Definition 2.4 (Fuzzy Number) [7]. A fuzzy subset A is called a

fuzzy number if the defined universal set is the set of all real numbers

R and satisfies the following conditions:

(i) All α-level A is not empty for 0 ≤ α ≤ 1

(ii) All α-levels of A are open intervals of R
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(iii) supp A = {x∈ R :ϕA (x) > 0} is bounded.

The set of all fuzzy numbers is denoted by F (R), and the

α-level of the fuzzy number A is denoted by [A]α = [aα
1 , a

α
2 ].

Definition 2.5 [33]. A fuzzy number A is called a triangular

fuzzy number if its membership function has the following equation:

µA(x) =



















0, if x < a,
x−a
b−a

, if a ≤ x ≤ b,
c−x
c−b

, if b ≤ x ≤ c,

0, if x > c

and α-level of A is, [A]α =
[

a+ α
(

b− a
)

, c− α(c− b)
]

, for

one α ∈ [ 0, 1].

2.2. Zadeh extension principle

Zadeh’s extension principle is one of the basic ideas that

encourage the expansion of non-fuzzy mathematical concepts to

become fuzzy. This method was proposed by Zadeh to extend the

concept from classical set theory to fuzzy set theory.

Definition 2.6 (Zadeh Extension Principle) [7]. Let X and Y

being two universal sets and f :X → Z are classical functions. The

extension of f is a function f̂ (A) ∈ F(Z), A∈ F(X) such that

ϕ
f̂ (A)

(z) =

{

ϕA (x) , if f−1 (z) 6= ∅

0, iff−1 (z) = ∅

where f−1 (z) =
{

x
∣

∣f (x) = z
}

.

Theorem 2.1 [7]. if f :Rn → R
n is a continuous function, then

f̂ :F (Rn)→ F (Rn) is well-defined, continuous, and

[

f̂ (A)

]α

= f ([ A]α)

for each α ∈ [0, 1 ].

Definition 2.7 [33]. Suppose f :R× R → R is a continuous

function. If A and B are two fuzzy numbers, then the extension f̂ via

A and B, is a fuzzy subset f̂ (A,B) of Rwith themembership function

given by:

ϕ
f̂ (A,B)

(z) =











sup min [ϕA (x) ,ϕB

(

y
)

, if f−1 (z) 6= ∅

f−1(z)

0, if f−1 (z) = ∅

where f−1 (z) =
{(

x, y
)∣

∣f
(

x, y
)

= z
}

and
[

f̂ (A,B)

]α

= f ([A]α , [B]α) =
{

f (x, y)
∣

∣x ∈
[

aα
1 , a

α
2

]

, y ∈ [bα
1 , b

α
2 ]

}

.

3. Fuzzy di�erential equation

The initial value problem is given to be

{

x
′
(t) = f (t, x (t)) ,

x (t0) = x0,
(1)

where f is continuous and x0 ∈ R
n. Suppose the initial

condition x0 is uncertain and is modeled by a fuzzy set, then the

problem (1) converted into a fuzzy differential equation

{

x
′
(t) = f (t, x (t)) ,

x (t0) ∈ X0,
(2)

where f : [t0, T]×F (Rn)→ F (Rn), X0∈ F(Rn).

Suppose also Lt (x0) = x(t, x0) is the solution to the problem

(1), then by applying extension principle for Lt (x0) = x(t, x0)

obtained L̂t (X0) = X(t,X0), which is the solution of the fuzzy

problem (2).

Definition 3.1 (Equilibrium Point) [13]. A fuzzy number

X∈ F (Rn) is the equilibrium point of (2) if

L̂t
(

X
)

= X, for each t ≥ 0

or equivalent to

[L̂t
(

X
)

]
α
= [X]

α
, ∀α ∈ [0, 1].

Theorem 3.1 [13]. If x is the equilibrium point of the classical system

(1), then χ[x] is the equilibrium point of the fuzzy system (2) where

χ[x] is a characteristic function of x.

Theorem 3.2 [13]. Suppose x is the equilibrium point of the

deterministic initial value problem (2), then

(a) x stable if and only if χ[x] is stable for the fuzzy initial value

problem (2).

(b) x is asymptotic table, if and only if χ[x] is stable asymptotically

for the fuzzy initial value problem (2).

In many cases, a deterministic solution to problem (2) is

often difficult to obtain, therefore the author considers the method

introduced in [10] which modifies the 5th order Runge-Kutta

method for the fuzzy model as follows.

4. Runge-Kutta 5th order numerical
scheme

In this section, we will study a two-dimensional fuzzy

differential equation system with the form:

{

X
′
(t) = f (X,Y) , X (t0) = X0

Y
′
(t) = g (X,Y) , Y (t0) = Y0

(3)

where f , g :R2 → R is continuous function, and X0,Y0 ∈

F (R )

By modifying the 5th order Runge-Kutta method, the solution

to the fuzzy initial value problem (3) would be:

{

Xi+1 = Xi +
1
6 (K1 + 4K4 + K5)

Yi+1 = Yi +
1
6 (L1 + 4L4 + L5)

(4)
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where

K1 = h · f (Xi,Yi)

L1 = h · g(Xi,Yi)

K2 = h · f

(

Xi +
1

3
K1,Yi +

1

3
L1

)

L2 = h · g

(

Xi +
1

3
K1,Yi +

1

3
L1

)

K3 = h · f

(

Xi +
1

3
K2,Yi +

1

3
L2

)

L3 = h · g

(

Xi +
1

3
K2,Yi +

1

3
L2

)

K4 = h · f

(

Xi +
1

2
K3,Yi +

1

2
L3

)

L4 = h · g

(

Xi +
1

2
K3,Yi +

1

2
L3

)

K5 = h · f (Xi + K4,Yi + L4)

L5 = h · g (Xi + K4,Yi + L4 ) .

Since the arguments Xi and Yi on the right-hand side are

iterative, we can define a new function as follows:

{

Fh(Xi,Yi) = Xi +
1
6 (K1 + 4K4 + K5)

Gh(Xi,Yi) = Yi +
1
6 (L1 + 4L4 + L5)

(5)

so that (4) becomes

{

Xi+1 = Fh(Xi,Yi)

Yi+1 = Gh(Xi,Yi)
(6)

Fh and Ghare fuzzy number-valued functions, then

Fh
(

[Xi]
α , [Yi]

α
)

=
[

min
{

Fh (u, v)
∣

∣uǫ
[

xα
i,1, x

α
i,2

]

, vǫ
[

yα
i,1, y

α
i,2

]}

,

max{Fh(u, v)|uǫ
[

xα
i,1, x

α
i,2

]

, vǫ[yα
i,1, y

α
i,2]}

]

and

Gh

(

[Xi]
α , [Yi]

α
)

=
[

min
{

Gh (u, v)
∣

∣uǫ
[

xα
i,1, x

α
i,2

]

, vǫ
[

yα
i,1, y

α
i,2

]}

,

max{Gh(u, v)|uǫ
[

xα
i,1, x

α
i,2

]

, vǫ[yα
i,1, y

α
i,2]}

]

Let [Xi+1]
α =

[

xα
i+1,1, x

α
i+1,2

]

and [Yi+1]
α =

[

yα
i+1,1, y

α
i+1,2

]

,

then we get















xα
i+1,1 = Fh

(

xα
i,1 , y

α
i,1

)

= min{Fh(u, v)|uǫ
[

xα
i,1 , x

α
i,2

]

, vǫ[yα
i,1 , y

α
i,2]}

xα
i+1,2 = Fh

(

xα
i,2 , y

α
i,2

)

= max
{

Fh (u, v)
∣

∣uǫ
[

xα
i,1 , x

α
i,2

]

, vǫ
[

yα
i,1 , y

α
i,2

]}

yα
i+1,1 = Gh

(

xα
i,1 , y

α
i,1

)

= min{Gh(u, v)|uǫ
[

xα
i,1 , x

α
i,2

]

, vǫ[yα
i,1 , y

α
i,2]}

yα
i+1,2 = Gh

(

xα
i,2 , y

α
i,2

)

= max{Gh(u, v)|uǫ
[

xα
i,1 , x

α
i,2

]

, vǫ[yα
i,1 , y

α
i,2]}

(7)

To approximate the solution (3) at each α-level, the partition

t0 < t1 < t2 < · · · < tN−1 < tN = T is created on the interval

[t0,T], with ti = t0 + ih, i = 0, 1, 2, . . . , N and the length of the

partition h =
T−t0
N > 0.

5. Predator-prey fuzzy model with
type II Holling functional response

In this section, two predator-prey models with type II Holling

functional response will be studied to construct a fuzzy model.

The first model was built from the deterministic model introduced

by Jha et al. [34]. In this model, all parameters and the initial

population are assumed to be certain, whereas in reality the

parameter values and the initial population number cannot be

known with certainty. In the next section, the model is expressed

in a fuzzy model, where the initial population and uncertain

parameters are expressed in fuzzy numbers. Thismodel is expressed

in Equations (4.1), (4.2), and (4.3) which is called model I.

The second model is a modification of model I by considering

harvesting. First of all, the deterministic model of model I is

modified by adding a harvesting factor for both predator and prey.

This model is then expressed in a fuzzy model, where the initial

population and parameters are considered uncertain. This model

is expressed in Equations (4.4), (4.5), and (4.6) which is called

model II.

Model I: A predator-prey model with a type II Holling

functional response introduced in Jha et al. [34] is given as:

{

x
′
(t) = ax

(

1− x
K

)

−
bxy

(A+x) , x (t0) = x0

y
′
(t) = −cy+

dxy
(A+x) , y (t0) = y0

(8)

where x and y are prey and predator population density at time

t, K is environmental carrying capacity, a is prey intrinsic growth

rate, b is prey predation rate, c is the predator mortality rate, d is

the predator conversion, and A is the constant saturation factor of

the predator. All model parameters are assumed to be positive.

If (x,y) is an equilibrium points of (8), by setting the derivatives

equal to zero, we get the equilibrium points are (0, 0) , (K, 0) , and

(x, y), where x = Ac
d−c

, y = a
b (A+ x)

(

1− x
K

)

, and (x,y) is positive

when d > c. The stability at these points is

(i) The system unstable at (0,0)

(ii) The system is asymptotically stable at (K,0), if K < Ac
d−c

(or

K > Ac
d−c

if d < c)

(iii) The system is asymptotically stable at (x, y), if K <
a(A+ x)2

by
.

Suppose the initial population of prey and predators are

uncertain, i.e., X0 and Y0 become fuzzy initial populations of prey

and predators, respectively, at t0. Then by applying the fuzzy initial

value problem, where the initial population is a fuzzy number, the

fuzzy predator-prey model of the system (8) becomes

{

x
′
(t) = ax

(

1− x
K

)

−
bxy

(A+X)
, x (t0) = X0

y
′
(t) = −cy+

dxy
(A+x) , y (t0) = Y0

(9)

where X0,Y0∈ F(R2).

Based on Theorems (3.1) and (3.2), the fuzzy equilibrium point

of the system (9) is χ{0,0}, χ{K,0}, and χ{

Ac
d−c

, a
b
(A+x)

(

1− x
K

)} exists

if d > c. The stability at these points is:

(i) The equilibrium point χ{0,0} is unstable

(ii) The equilibrium point χ{K,0} is asymptotically stable if K <
Ac
d−c

(or K > Ac
d−c

if d < c)

(iii) The equilibrium point χ{

Ac
d−c

, a
b
(A+x)

(

1− x
K

)}

asymptotically stable if K <
a(A+ x)2

by
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Suppose it is assumed that the parameter a is also uncertain. By

changing the variable X in (9) into X = (X1,X2) = (X, a), then the

fuzzy model (9) becomes











X1
′
(t) = X1X2

(

1− X1
K

)

− bX1Y
(A+X1)

, X1 (t0) = X10

X2
′
(t) = 0, X2 (t0) = a

Y
′
(t) = −cY + dX1Y

(A+X1)
, Y (t0) = Y0

(10)

where X0,Y0, a∈ F(R).

Model II. If it is assumed that both prey and predator

populations in system (8) are the target of harvesting efforts, then

system (8) becomes

{

x
′
(t) = ax

(

1− x
K

)

−
bxy

(A+x) − p1Ex , x (t0) = x0

y
′
(t) = −cy+

δxy
(A+x) − p2Ey , y (t0) = y

(11)

where E denotes the catch effort, and p1, p2, respectively, shows

the coefficient catching power of prey and predator, where the

function piEx adoption from Das et al. [35].

If (x,y) is an equilibrium points of (11), by setting the

derivatives equal to zero, we get the equilibrium points are

(0, 0) ,
(

−
K(p1E−a)

a , 0
)

, and (x, y)

where x = −
A(p2E+c)
p2E−d+c

, y =

Ad(E2Kp1p2−EKap2−EKp1d+EKp1c−EAap2+Kad−Kac−Aac)
Kb(p2E−d+c)

2 exists if

E < d−c
p2

and E
(

EKp1p2 − Kap2 − Kp1d + Kp1c− Aap2
)

>

Kac+ Aac− Kad. The stability at these points is

(i) The system is stable at (0,0) if E > a
p1

(ii) The system is asymptotically stable at
(

−
K(p1E−a)

a , 0
)

, if

E < a
p1

Suppose the initial population of prey and predators are

uncertain, i.e., X0 and Y0 becomes the initial fuzzy population of

prey and predators, respectively, at t0, then the fuzzy predator-prey

model obtained from the system (11) would be

{

X
′
(t) = aX

(

1− X
K

)

− bXY
(A+X)

− p1EX , X (t0) = X0

Y
′
(t) = −cY + dXY

(A+X)
− p2EY , Y (t0) = Y0

(12)

where X0,Y0∈ F(R).

Based on Theorems (3.1) and (3.2), the fuzzy equilibrium

points of the system (12) are χ{0,0}, χ{

−
K(p1E−a)

a ,0
}, and

χ{

−
A(p2E+c)
p2E−d+c

,
Ad(E2Kp1p2−EKap2−EKp1d+EKp1c−EAap2+Kad−Kac−Aac)

Kb(p2E−d+c)2

} exists

if E < d−c
p2

, and E
(

EKp1p2 − Kap2 − Kp1d + Kp1c− Aap2
)

>

Kac+ Aac− Kad. The stability at these points is:

(i) The equilibrium point χ{0,0} is stable if E > a
p1

(ii) The equilibrium point χ{

−
K(p1E−a)

a ,0
} is asymptotically stable

if E < a
p1
.

6. Numerical simulation

In this section, we will explore the solution both of the above

model for some case different according to the conditions of

stability at each point of equilibrium using the 5th order Runge-

Kutta method. Numerical simulations were carried out to compare

the behavior of the crisp system and the fuzzy system.

Model I: For model I, Numerical simulation is divided into

two cases. It is assumed for both cases the values of the parameters

a = 0.5, b = 0.254, K = 1, 000, and A = 500. Parameters c and d

in this model are assumed as follows:

(i) c = 0.125 and d = 0.325

(ii) c = 0.325 and d = 0.125

Suppose the initial population of prey and predators is X0 =

1, 100 and Y0 = 900.

Case (i):

For the case (i) where d > c and K <
a(A+x)2

by
obtained

three equilibrium points: (0.0), (1,000, 0), and (312.5, 1099.594).

Equilibrium points (0, 0) and (1,000, 0) are unstable, and at

points (312.5, 1099.594) are asymptotically stable. The results of

the numerical simulation of case (i) are presented in Figures 1,

2A. Figure 1A shows a stable system toward the equilibrium point

(312.5, 1099.594). The phase plane graph for case (i) is presented in

Figure 2A.

Let the initial population X0 and Y0 uncertain

be defined as a triangular fuzzy number with

[X0]
α = [1, 050+ 50α, 1, 150− 50α] and [Y0]

α =

[850+ 50α, 950− 50α]. Based on theorems 3.1 and 3.2,

the fuzzy equilibrium points are obtained: χ{0,0}, χ{1,000, 0},

and χ{312.5, 1099.594}, where the equilibrium point χ{0,0} and

χ{1,000, 0} is unstable, and the equilibrium point χ{312.5, 1099.594}

is asymptotically stable. The numerical simulation results for the

fuzzy model in case (i) are presented in Figures 1, 2B. Figure 1B

shows the fuzzy system is stable toward the equilibrium point

χ{312.5, 1099.594}. The fuzzy phase plane graph for case (i) is

presented in Figure 2B.

Let other than X0 and Y0, parameter a is also uncertain

and is expressed in triangular fuzzy numbers with [a]α =

[0.4+ 0.1α, 0.6− 0.1α] , then the behavior of the system shown in

Figure 3.

The simulation results can be seen that by adding a parameter

as a fuzzy number, the dynamic behavior of the fuzzy system

qualitatively shows the same results when only the initial

populations of prey and predators are fuzzy, and this is in

accordance with the behavior of the crisp system.

Case (ii):

For the case (ii) where d < c and K > Ac
d−c

, three equilibrium

points are obtained: (0.0), (1,000, 0), and (−812.5,−1114.973). The

point (−812.5, −1114,973) is ignored because it has a negative

value, the stability of the equilibrium point is: at point (0,0) is

unstable and at point (1,000, 0) is asymptotically stable. The results

of the numerical simulation of case (ii) are presented in Figures 4,

5A. Figure 4A shows the system is stable toward the equilibrium

point (1,000, 0). The phase plane graph for case (ii) is presented in

Figure 5A.

Suppose the initial population is uncertain and defined as

a triangular fuzzy number as in case (i). Based on theorems

3.1 and 3.2, the fuzzy equilibrium points are obtained: χ{0,0},

and χ{1,000, 0}, where at the equilibrium point χ{0,0} is

unstable and at the point χ{1,000, 0} asymptotically stable.
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FIGURE 1

Population growth over time from case (i) of model I. (A) Crisp. (B) Fuzzy.

FIGURE 2

Phase Plane of case (i) of model I. (A) Crisp. (B) Fuzzy.

FIGURE 3

(A) Population growth over time. (B) Phase plane fuzzy for case (i) of model I with parameter a and population X0, Y0 is fuzzy.

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org69

https://doi.org/10.3389/fams.2023.1096167
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Sukarsih et al. 10.3389/fams.2023.1096167

FIGURE 4

Population growth over time for case (ii) of model I. (A) Crisp. (B) Fuzzy.

FIGURE 5

Phase Plane for case (ii) of model I. (A) Crisp. (B) Fuzzy.

FIGURE 6

(A) Population growth over time. (B) Phase plane fuzzy for case (ii) of model I with parameter a and population X0, Y0 are fuzzy.
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FIGURE 7

Population growth over time for case (i) of model II. (A) Crisp. (B) Fuzzy.

FIGURE 8

Phase Plane for case (i) of model II. (A) Crisp. (B) Fuzzy.

The numerical simulation results for the fuzzy model in case

(ii) are presented in Figures 4, 5B. Figure 4B shows the fuzzy

system is stable toward the equilibrium point χ{1,000, 0}.

The fuzzy phase plane graph for case (ii) is presented in

Figure 5B.

Let other than X0 and Y0, parameter a is also uncertain and

is expressed in triangular fuzzy numbers as in case (i), then the

behavior of the system is shown in Figure 6.

The results of the numerical simulation are presented

in Figures 1–6 shows that for both cases of model I, the

solution graph with the fuzzy approach differs quantitatively, but

qualitatively gives the same results as the graph from the crisp

system when only the initial population is fuzzy, but slightly

different when one of the parameters and the initial population

is fuzzy.

Model II: For model II, Numerical simulation is divided into

two cases. It is assumed for both cases the values of the parameters

and the initial population are the same as for model I: a = 0.5,

b = 0.254, K = 1, 000, and A = 500. And other parameters in this

model are assumed as follows:

(i) c = 0.325, d = 0.125, p1 = 1, p2 = 2, and E = 0.275

(ii) c = 0.125, d = 0.325, p1 = 1, p2 = 1, and E = 0.6

Suppose the initial population of prey and predators is X0 =

1, 100 and Y0 = 900.

Case (i):

For case (i) where E < a
p1

obtained three equilibrium points:

(0.0), (450,0), and (−583.3,−169.51). The point (−583.3,−169.51)

is ignored because it is negative. The stability at equilibrium point
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(0, 0) is unstable and at (450,0) is asymptotically stable. The

numerical simulation results of case (i) are presented in Figures 7,

8A. Figure 7A shows the system is stable toward the point of

equilibrium (450.0). The phase plane graph for case (i) is presented

in Figure 8A.

Suppose the initial population X0 and Y0 uncertain is defined

as a triangular fuzzy number as in model I, then the fuzzy

equilibrium point χ{0,0} is unstable, and the fuzzy equilibrium point

χ{450,0} is asymptotically stable. The numerical simulation results

for the fuzzy model in case (i) are presented in Figures 7, 8B.

Figure 7B shows a stable fuzzy system toward the equilibrium point

χ{450,0}.The fuzzy phase plane graph for case (i) is presented in

Figure 8B.

Case (ii):

For the case (ii) where E > a
p1

obtained three equilibrium

points: (0.0), (−200,0), and (−906.25, −564.792). The points

(−200,0) and (−906.25, −564.792) are ignored because they are

negative. The numerical simulation results of case (ii) are presented

in Figures 9, 10A. Figure 9A shows the system is stable toward

the equilibrium point (0,0). The phase plane graph for case (ii) is

presented in Figure 10A.

Suppose the initial population is uncertain and defined as a

triangular fuzzy number as in model I, then the fuzzy equilibrium

point χ{0,0} is stable. The numerical simulation results for the fuzzy

model in case (ii) are presented in Figures 9, 10B. Figure 9B shows

the fuzzy system is stable toward the equilibrium point χ{0,0}. The

fuzzy phase plane graph for case (ii) is presented in Figure 10B.

7. Discussion

The research presented in this paper is an extension of the

predator-prey model with a type II Holling functional response

discussed by Jha et al. [34] taking into account the uncertainty in the

parameters and the initial population expressed in fuzzy numbers.

Thismodel is further expanded by adding harvesting factors to both

populations. In this study, the behavior of the system is only studied

qualitatively by performing numerical simulations to explore the

behavior of the fuzzy system and compare it with the crisp system.

In conducting the simulation, we use triangular fuzzy numbers to

express uncertainty in the initial population and parameters. Of the

two models studied, we found the same results. In both models,

FIGURE 9

Population growth over time for case (ii) of model II. (A) Crisp. (B) Fuzzy.

FIGURE 10

Phase plane for case (ii) of model II. (A) Crisp. (B) Fuzzy.
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the fuzzy system shows the same behavior as the crisp system

when only the initial population of prey and predators is fuzzy or

when one parameter is added as a fuzzy parameter. Another result

obtained is, for the fuzzy model, the time required for the system

to reach equilibrium is longer than the crisp model. This is due to

the uncertainty in the initial value expressed in the fuzzy interval.

This research only studied the behavior of the system qualitatively

through numerical simulation. In this numerical simulation, all

the figures of the phase planes for the fuzzy systems above are

plotted for the value of the α-level equals zero. It seems that

the phase planes for the crisp systems can be extracted from the

fuzzy system’s phase planes with the α-level equals zero. This is an

interesting result that can be interpreted crisp model can be used as

a special case of fuzzy model whenever the degree of uncertainty is

relatively low.

8. Conclusion

In this paper, we have developed a numerical scheme to find

the solution of two predator-prey models with a Holling type II

functional response by considering fuzzy parameters and fuzzy

initial populations. The first model was developed from the model

studied by Jha et al. [34] by replacing the initial population and

one of the parameters with a fuzzy number. While the second

model was developed from the first model by adding harvesting

factors to both prey and predator populations. The behavior of the

model was studied qualitatively using the Runge-Kutta method of

order-5 which was modified for the fuzzy system using the Zadeh

extension principle. The numerical simulation results show that,

when the initial population prey and predators that have fuzzy

values, then both fuzzy models have the same behavior as the

crisp model, but the fuzzy model takes a longer time to achieve

stability than the crisp model. This is due to the uncertainty

in the initial population which is indicated by fuzzy intervals.

Likewise, when one parameter is added with a fuzzy value, the

fuzzy model has the same behavior as the crisp model. Finally,

we can conclude that fuzzy behavior represents a generalization of

crisp behavior, and this gives more realistic results that represent

the problem of uncertainty. However, there are still much work

to be done in the future, including studying the stability of the

system analytically, bifurcation problems, and others. As pointed

by one of the reviewer, it “would have been more interesting to

place the choice of parameters on the crisp model exibiting marked

sensitivity behavior to initial conditions” and this is currently under

investigation by the authors.
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Tissue-mimicking materials [e.g., polyvinyl alcohol cryogel (PVA-C)] are

extensively used in clinical applications such as tissue repair and tissue

engineering. Various mechanical testing techniques have been used to assess the

biomechanical compatibility of tissue-mimicking materials. This article presents

the development of inverse finite element (FE) techniques that are solved using

numerical optimization to characterize the mechanical properties of PVA-C

specimens. In this study, a numerical analysis where the displacement influence

factor was employed in conjunction with a linear elastic model of finite thickness

was performed. In the analysis, the e�ects of Poisson’s ratio, specimen aspect

ratio, and relative indentation depth were investigated, and a novel mathematical

term was introduced to Sneddon’s equation. In addition, a robust optimization

algorithm was developed in MATLAB that utilized FE modeling for parameter

estimation before it was rigorously validated.

KEYWORDS

indentation, soft tissue, non-destructive, PVA-C, construct, isotropy, optimization, finite

element modeling

1. Introduction

Inverse finite element analysis is a numerical method used to characterize the material

properties of soft tissues for biomedical engineering applications [1, 2]. Many techniques

have been implemented previously to characterize tissue in vivo, ex vivo, or tissue-mimicking

materials [3]. During the characterization process, the first-order Ogden hyperelastic model

is used for estimating material properties. Many previous studies have indicated that

the indentation test is an effective technique for characterizing the compressive behavior

of tissue under small and large deformation loading conditions [4]. Samani et al. [5]

considered tissue hyperelasticity in their indentation-based measurement technique and

reported hyperelastic parameters of breast tissues. Soft tissues or tissue-mimicking materials

are typically modeled as non-linear, homogeneous, isotropic, and nearly incompressible.

The Ogden hyperelastic model is commonly used to capture biological tissue non-

linearity. Isvilanonda et al. used the first-order Ogden constitutive model in the material

characterization process, and after using an inverse problem analysis of experimental

data, they obtained very good results [6–8]. A similar approach is followed in this article

whereby indentation testing data are processed through an inverse FE framework to

estimate tissue hyperelastic parameters. For solving the inverse problem in this article, an

optimization algorithm developed in MATLAB was used where the tissue FE model was

used to calculate the cost function to be minimized [9]. For the first step, FE modeling
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is a good candidate and has been used extensively in this

article. For the second step, a cost or objective function that

measures the difference between measured and model-based

mechanical response is developed. With these two essential

elements, the hyperelastic parameters can be calculated and

optimized by iteratively refining the sought parameters with

initial estimates until the cost function reaches its minimum

value [10–12].

The main motivation of the article as well as the novelty of this

study can be highlighted clearly in the following paragraph.

A variety of clinical procedures for assessing structural and

functional damage of tissues and treating the effectiveness of

tissue therapeutics are under active investigation. Therapeutics of

soft tissues depend on the mechanical response of the organs

and neighboring tissues. Indentation techniques can be used to

probe the local mechanical properties of soft tissues and tissue

mimics. The effect of relative indentation depth, aspect ratio,

Poisson’s ratio, and dimensionless k on the indentation response

of soft tissue mimics needs to be further investigated for an

improved understanding of material characterization. One way

to solve this problem is mesh refinement which also verifies the

convergence of stresses, but most of the mesh sensitivity cases

showed divergence. Even with increasing load sharp edges form

crack that makes the cylindrical indenter very unpopular. To

overcome this problem, a novel approach displacement influence

factor (IF) is used with Boussinesq’s equation to calculate stress

at any point underneath the indenter. Non-linear, hyperelastic

models have been used previously to characterize sources of

non-linearities (i.e., material and geometrical) in this type of

problem but have presented some problems. In this study,

indentation responses from cylindrical indenters are investigated

using numerical methods to develop and optimize new techniques

for characterizing non-linear material properties using Ogden and

Mooney Rivlin’s hyperelastic models.

In this article, we develop a comprehensive understanding of

soft tissue characterization based on a hyperelastic model using

inverse analysis. Moreover, we conduct a parametric analysis

with varying material properties and examine the effectiveness of

an optimization method. Sensitivity analysis was conducted for

cylindrical and spherical indentation tests. Our analysis shows the

effect of specimen thickness, PVA-C concentration, and freeze–

thaw cycle on (µ, α).

1.1. Hyperelastic model

A hyperelastic or green-type elastic material [13–15] is a type

of material that follows constitutive models where the stress–

strain behavior is defined by a strain energy density function

[16]. They are considered to be truly elastic as they store energy

during loading and dissipate equal amounts of energy during the

unloading process. These materials experience large strains that

are mostly recoverable [17–19]. To define hyperelasticity, many

mathematical models have been developed and different aspects of

non-linear elastic material behavior have been explained [20, 21].

These types of models have been very successfully applied to soft

materials and tissues.

Polyvinyl alcohol cryogel (PVA-C) samples of 5%, 10%,

and 15% concentrations are modeled as soft tissue mimics to

examine their non-linear material properties. Experimental force–

displacement (F–D) data were used as an input parameter for the

Ogden hyperelastic model.

A hyperelastic material is a type of constitutive model

where the presence of a strain energy density function is

assumed, and the stress–strain relationship is derived from

a strain energy density function. The Ogden hyperelastic

model for isotropic material can be obtained from strain

as follows:

W=

∞
∑

i=1

µi

αi
(λ

αi
1 + λ

αi
2 + λ

αi
3 − 3) +

∞
∑

i=1

ki(J
el − 1)

2i
, (1)

where µ, α, and K are presented as constitutive parameters, J is

the determinant of the strain tensor, and λ is known as the principle

stretch. For incompressible material deformation, J = 1 leads the

second term in the aforementioned equation to vanish. For the first-

order Ogden model, n = 1. Thus, the model will have only two

unknown parameters of shear modulus (µ) and strain hardening

exponent (α).

For a uniaxial compression test, the nominal stress (σ ) is

represented as a function of the stretch ratio λ. The first-order

Ogden material model can be presented in the form as given in

equation (2):

σ =
2µ

α

(

λ(α−1) − λ(−α/2−1)
)

. (2)

The aforementioned two equations can take only positive

values. The experimental force–displacement (F–d) data are used

as an input parameter for the hyperelastic model. By applying curve

fitting to the experimental (σ – λ) data, the first-order Ogden

parameter is extracted.

1.2. Numerical analysis

Commercial FE software package Abaqus was used to create

an axisymmetric model for examining indentation. PVA-C was

used as a soft tissue mimic, and a flat-ended cylindrical indenter

was modeled in this simulation. The contact surface between

the indenter and the soft tissue was set as frictionless. Soft

biological tissue is generally considered to be incompressible

[22]. For optimal numerical accuracy, high mesh density was

adapted underneath the indenter, and convergence criteria were

verified. Indentation tests were simulated under linear and

non-linear hyperelastic model assumptions. Numerical analysis

was performed by FEM using Abaqus version 6:13–4 (2013).

Cylindrical indenters and rigid flat-ended cylindrical indenters

were used for numerical analysis. An indenter of radius

4mm was indented on a soft tissue-mimicking sample of

PVA-C with 5%, 10%, and 15% (w/w) concentrations. The

sample size was L = 19mm and B = 12mm. The soft

tissue sample was modeled as homogeneous, isotropic, and

nearly incompressible.
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TABLE 1 FE generated variable for cylindrical indentation.

Cylindrical indentation

Hyperelastic model—ogden strain energy function with N = 1

µ α D

0.0003 11.77 0.00000000

Problem size

Number of elements 3,864

Number of elements defined by the user 3,783

Number of internal elements generated

for contact

80

Number of nodes 7,818

Number of nodes defined by the user 3,875

Number of internal nodes generated by

the program

3,943

Total number of variables in the model 11,694

The Ogden hyperelastic material model used in simulation of soft tissue mimics 5% PVA-C

and 15% 2FTC.

An axisymmetric model was developed and meshed with

(CAX4RH) and (CAX3H) linear quadrilateral elements. A very

fine mesh was made at the contact zone and comparatively, the

coarse mesh was utilized outside the contact zone. The boundary

conditions for the three sides of the sample were fixed (U1 = U2

= U3 = UR1 = UR2 = UR3 = 0), and one side is variable (U1

= U3 = UR2 = 0). During the indentation test, a 4N vertical load

was applied, and the contact between the indenter and the sample

was considered frictionless. The Ogden hyperelastic material model

was considered for PVA-C samples undergoing the indentation

test, the data of which are provided in Ref. [23]. The simulation

was completed in 13 steps with a step size of 0.01. To observe

the indentation responses, the hyperelastic FE model was analyzed

including a sample with finite thick and infinite thickness made of

PVA-C with 5% and 15% concentrations.

1.3. Numerical model setting

A two-dimensional axisymmetric cylindrical indentation

model was developed by using Abaqus version 6:13–4 (2013).

The Ogden first-order strain energy density function was

used in the numerical simulation. In total, 7818 (CAX4RH)

nodes were generated in the meshing process, as shown

in Table 1.

An axisymmetric FE model was developed by using Abaqus,

and PVA-C 5% and 15% 2FTC experimental data obtained from

Ref. [23] were used as an input parameter for the first-order Ogden

hyperelastic model. The load–displacement graph for both PVA

concentrations is shown in Figures 1, 2.

1.4. Parametric studies

Based on previous research, it has been found that the

hyperelastic parameters determined using cylindrical or spherical

FIGURE 1

Load vs. displacement graph for PVA-C model with 5%

concentration.

FIGURE 2

Load vs. displacement graph for PVA-C model with 15%

concentration.

indentation testing are not always the same as those obtained

from experimental uniaxial compression tests [4, 6, 10, 20].

To investigate the sources of such disagreement, a parametric

study was conducted to examine the influence of (µ, α) on

the shape of the simulated data. An optimization algorithm

combined with MATLAB was used to minimize the sum of the

squared difference between the experimental measurements and

the FE-simulated Ogden hyperelastic model. This allowed for the

unknown parameters (µ, α) to be determined. A sensitivity analysis

was then conducted to verify the accuracy and robustness of

the parameters. For cylindrical uniaxial indentation obtained from

inverse analysis shown in Table 2.
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TABLE 2 For cylindrical and uniaxial indentation (µ, α) obtained from the inverse analysis.

Method Material Radius (B/2) Depth (L) Experimental Inverse Experimental Inverse

PVA (%) 2FTC (mm) (mm) Mu (kPa) Alpha Mu (kPa) Alpha

UCS 5 19 12 0.0025 10.749 0.0026 10.965

Cylindrical 5 19 12 0.00249 10.76 0.0025 11.8

Cylindrical 10 19 12 0.004 4.67 0.004 4.84

UCS 15 19 12 0.01 25 0.011 24.93

Cylindrical 15 19 12 0.011 25 0.016 25.43

Cylindrical 20 19 12 0.0213 25 0.02 25.4

For 5%, 10%, 15%, and 20% PVA-C, 2FTC specimens.

1.5. Inverse finite element analysis

The inverse FE method was used to determine the

hyperelastic material parameters of soft tissue specimens

from indentation responses [24, 25]. Based on Hadamard’s

definition, an inverse problem is posed if one of the three

conditions is violated: (i) existence, (ii) uniqueness, and (iii)

stability. Many optimization algorithms are commonly used

as such least square fitting power low, Levenberg–Marquardt

(LM) Trust Region Algorithm, and Kalman Filter to solve the

inverse problems.

The inverse analysis is introduced to minimize an objective

function with respect to unknown constitutive material parameters

(µ, α) that match the experimental data [10, 26]. The Levenberg–

Marquardt (LM) method was used in this dissertation to extract

the unknown parameters based on the inverse analysis. The LM

method is defined as the minimization of the error function Φ

with respect to a vector P̂. The error function is represented

as follows:

8

(

P̂
)

=
1

2

n
∑

i=1

[

ri

(

P̂
)]2

=
1

2
rTr (3)

Here, PĹ is a vector that contains unknown constitutive

parameters P̂
T

= {µ, α}, and n is the number of measurements.

The vector r̂ is defined as follows:

r̂ = t∗ − t̂, (4)

where t∗ and t̂ are the model-predicted and experimental data.

1.6. Optimization algorithm: Using ogden
model

A detailed flowchart of the inverse optimization process to

characterize the tissue hyperelastic parameters used in the current

study is shown in Figure 3.

First, experimental (F–D) data were used as an input parameter

for the numerical model (Abaqus). Simulated (F–D) data were

then used as an input parameter for inverse analysis (MATLAB).

An object junction was introduced to minimize the quadratic

difference between simulated- and model-predicted data. Through

the optimization process, a numerical convergence was achieved,

and an optimized unknown parameter was obtained. These

parameters were used as an input parameter of Abaqus for

numerical validation.

1.7. Mesh optimization with µ and α

Although the implicit method with Newton–Raphson iterative

solver is enough to obtain the converged solution, mesh

optimization through adaptive meshing was adopted for numerical

accuracy. Optimizedµ and α throughmesh convergence are shown

in Figures 4, 5.

1.8. Identification for estimating material
properties

The Ogden model is used to identify the hyperelastic material

properties. The Levenburg–Marquardt (LM) algorithm was used

to minimize the difference between experimental- and model-

predicted data. Here, a novel approach is introduced to determine

and validate material hyperelasticity. This method includes the

following steps:

• Experimental data are used as input for the Ogden

hyperelasticity model.

• Numerical analysis is carried out with FEM (Abaqus), and the

output of the load–displacement curve is recorded.

• This load–displacement data are used as input for the

Levenburg–Marquardt (LM) optimization algorithm

in MATLAB.

• Initial estimate values (µ, α) are used for initializing the

optimization algorithm.

• MATLABR Simulink: R2015a used @ fminsearch algorithm

was used to fit the Ogden first-order hyperelastic model as

shown in Equation (2). Moreover, the Levenburg–Marqardt

(LM) optimization algorithm was used as shown in Equation

(3). The optimized parameters (µ, α) are recorded as shown in

Equation (4).
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FIGURE 3

Flowchart of the inverse optimization process to characterize the unknown tissue hyperelastic parameters—Ogden parameter.

• These optimized parameters (µ, α) are inserted in

FEA (Abaqus) for validation and verification of the

inverse problem.

Through inverse analysis, extracted Ogden parameters are

readily available to use in simulation and also to verify the stability

of the solution. The detailed process is shown in the flowchart of

Figure 3.

A new technique has been developed to characterize the

biomechanical properties of nonlinear material using Ogden and

hyperelastic models. Experimental results are compared with the

novel inverse technique that can be further investigated to develop

patient-specific artificial organs.

1.9. Validation exercise

FE-simulated cylindrical load–displacement data were used in

the robust optimization algorithm through inverse analysis. The

entire procedure is shown as a flowchart in Figure 3. A validation

exercise was conducted using Ogden parameters (µ), which were

varied while α was kept constant and vice versa as shown in

Figures 6, 7 [10].

The results obtained from the load–displacement curve

indicated that there is a significant effect of (µ), as this parameter

explains the strength of the material and α is the strain hardening

coefficient. In the process of validation, µ and α values were

compared with that of Ref. [10] and found good agreement.

2. Results

Before conducting any surgical procedures, planning for

biomaterial research, or any other fields where applicable, unique

identification of material properties is essential. The accuracy,

effectiveness, and robustness of such procedures need verification

[3] with FE-simulated data. The performances of the novel model

are illustrated in this section. In general, 5% and 15% (w/w) soft

tissue mimic data [23] were used in the hyperelastic model. During

the simulation, cylindrical, spherical, and uniaxial indentation tests

were conducted.
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FIGURE 4

Graph of µ vs. number of elements for PVA-C modeled with 5%

concentration and finite thickness.

FIGURE 5

Graph of α vs. number of elements for PVA-C modeled with 15%

concentration and finite thickness.

The hyperelastic model was simulated in the Abaqus

environment, where Ogden first-order constitutive model was

used, and experimental data were fitted for parameter optimization.

The indentation response from cylindrical indentation for 5%

and 15% soft tissue mimics are shown in Figures 8, 9 along with

optimized (µ and α) values.

Experimental data obtained from Ref [7, 23, 27] were used

as an input parameter for the FE-simulated Ogden model. FE-

simulated and model-predicted load vs. displacement curve for

PVA-C, 2FTC5%, and 15% specimens are shown earlier. This

process is used as an optimization algorithm for the determination

of material properties (µ and α).

Figure 10 shows a residual–stretch graph. It is defined by

the proportion of variance (R-square) between the observed and

FIGURE 6

FE-simulated load–displacement graph for the Ogden hyperelastic

model. Material property α was kept constant and µ was varied.

FIGURE 7

FE-simulated load–displacement graph for the Ogden hyperelastic

model. Material property α was varied and µ was kept constant.

the predicted data. The FE-simulated Ogden model was used in

the optimization algorithm to gain the residual–stretch results.

Experimental data at a concentration of (i) PVA-C 5%, 2FTC and

(ii) PVA-C 15%, 2FTC were used from cylindrical indentation.

2.1. Optimization algorithm

A detailed flowchart of the inverse optimization process to

characterize the tissue hyperelastic parameters used in the current

study is shown in Figure 11.
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FIGURE 8

Load vs. displacement graph for PVA-C sample with finite thickness

and 5% concentration.

FIGURE 9

Load vs. displacement graph for PVA-C sample with finite thickness

and 15% concentration.

First, experimental (F–D) data are used as an input parameter

for the numerical model (Abaqus). Simulated (F–D) data were

then used as an input parameter for inverse analysis (MATLAB).

An object junction was introduced to minimize the quadratic

difference between simulated and model-predicted data. Through

the optimization process, a numerical convergence was achieved

and an optimized unknown parameter was obtained. These

parameters were used as an input parameter of Abaqus for

numerical validation.

FIGURE 10

Residual vs. stretch graph for PVA-C samples with 15%

concentration, where fitness coe�cient is R2 = 0.9998.

2.2. E�ect of µ and α on thickness

The extracted Ogden parameters from the inverse optimization

algorithm are plotted against various concentrations of PVA-C 5%,

2FTC and PVA-C 15%, 2FTC as shown in Figures 12, 13.

It can be hypothesized that (µ, α) values have a greater

dependency on thickness. As the thickness increases, both µ and

α increase.

2.3. E�ect of concentration

The freeze and thaw technique is a part of the stability testing

that determines whether any formulation will remain stable under

various conditions. The extracted Ogden parameters from the

inverse optimization algorithm are plotted against concentration

and freeze–thaw cycles are shown in Figures 14, 15.

This led us to conclude that there is a proportional relationship

between (µ, α) values and PVA-C concentration and freeze-thaw

cycles. With the increase in PVA-C concentration, (µ, α) values

increase. With the increase of the freeze–thaw cycle time (FTC), the

values of (µ, α) also increase.

2.4. Sensitivity analysis: Cylindrical
indentation

To overcome the stability problem, sensitivity analysis was

conducted by adding noise (±1% and ±2 %) to the solutions.

This noise modulation with the input data will enable us to

investigate whether there is any extraneous influence on material

and equipment. Fellay et al. [6, 13] considered this problem as

another minimization approach.
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FIGURE 11

Flowchart of the inverse optimization process to characterize the unknown tissue hyperelastic parameters Mooney–Rivlin parameters.

After determining optimal material parameters, the sensitivity

analysis of the solution was analyzed by adding noise (±1% and

±2%) to the iterative solutions. Based on Hadamard’s [9] article,

a solution to any inverse problem continuously depends on the

stability of the data [28]. The sensitivity of the solution indicates

that there was no external influence in the solution. This again

proved the uniqueness of the solution.

The objective of the study was to characterize the nonlinear

behavior of soft tissue phantom. The combination of the

inverse method in conjunction with the FE method enables

the identification of unknown material parameters. The LM

optimization algorithm was used to optimize material properties

by minimizing the sum of squared differences between the model-

predicted and experimentally measured load–displacement data,

which provided benchmarks for accurate Ogden parameters (µ,

α). The accuracy, effectiveness, and robustness of such procedures

were validated through FE-simulated data, which is cross-checked

by the LM optimization technique and finally, compared with

published results.

First, the simulated data were used as an input parameter for

the MATLAB optimization algorithm. The robust optimization

technique was performed as expected, which confirmed the

uniqueness of the solution. Second, the Ogden parameters were

plotted at various thicknesses. This proved that µ and α have

a significant effect on specimen thickness. Moreover, µ and α

were plotted against concentration and freeze–thaw cycles. The

simulated result confirmed the dependency of µ and α on

PVA concentration and freeze–thaw cycles. This means that the
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FIGURE 12

Graph of µ vs. various thicknesses for PVA-C 5%.

FIGURE 13

Graph of α vs. various thicknesses for PVA-C 5%.

value of µ and α increases with the increase in concentration

and freeze–thaw cycles with the little exception of PVA at

higher concentrations.

R-squared values for 5% and 15% PVA-C, 2FTC were obtained

through the parameter estimation techniques, and their fitness

coefficients were 0.99999 and 0.9998, respectively. This led us

to conclude that the optimization algorithm provided accurate

results in the determination of the Ogden parameter. Finally,

PVA-C 5% and PVA-C 15% have undergone a sensitivity test by

adding y ± 2% noise to the solution. No extraneous effect was

observed. Thus, supporting the uniqueness of the solution. This

robust technique will be proposed as a “gold standard” for future

biomedical research.

Finally, some perspectives and future works of this study have

been summarized in the Conclusion section.

FIGURE 14

Graph of µ vs. various PVA-C concentrations.

FIGURE 15

Graph of α vs. various PVA-C concentrations.

3. Conclusion

A numerical study was conducted to characterize the

nonlinear mechanical properties of PVA-C. A range of

PVA-C phantom data was analyzed in the numerical

study. The force–displacement data were recorded and

used in FEA studies for experimental data validations and

material characterizations.

1. The developed finite element model (FE) can be utilized to

determine the distribution of resulting stresses of linear and

nonlinear elastic thin-structuredmaterials for a given load. Since

this FE model incorporates an influence factor (IF), the stress

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org83

https://doi.org/10.3389/fams.2023.1064130
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Mulk et al. 10.3389/fams.2023.1064130

distribution could be computed up to 36% (with IF = 1, and IF

= 0.637) more reliably.

2. Introduction of friction coefficient (�) in the developed

analytical model provides up to 23% difference in magnitude

of the functional parameter k used in different standard models

such as Zhang’s, Cao’s, and Hayes’ models. Thus, the proposed

analytical solution can potentially provide an improved

understanding of the indentation response of soft tissues.

3. The developed inverse algorithm is suitable to identify a

few biomechanical properties (e.g., Ogden and Mooney–

Rivlin parameters) for a new development of artificial

materials (e.g., scaffolding, tissue generation, and phantoms for

surgical training).

4. Overall, the finite element model, the analytical model,

and the inverse algorithm developed in this study would

provide an important tool in the design and characterization

of soft tissue materials. In future research, this technique

can be further explored to help develop patient-specific

artificial organs, which can replace the need for human

organ transplantations.
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Mathematical analysis of the
impact of community ignorance
on the population dynamics of
dengue

Dipo Aldila*, Chita Aulia Puspadani and Rahmi Rusin

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia,

Depok, Indonesia

This study proposes a dengue spread model that considers the nonlinear

transmission rate to address the level of human ignorance of dengue in their

environment. The SIR − UV model has been proposed, where SIR denotes the

classification of the human population and UV denotes the classification of the

mosquito population. Assuming that the total human population is constant,

and the mosquito population is already in its steady-state condition, using the

Quasi-Steady State Approximation (QSSA) method, we reduce our SIR−UV model

into a more simple IR-model. Our analytical result shows that a stable disease-

free equilibrium exists when the basic reproduction number is <1. Furthermore,

our model also shows the possibility of a backward bifurcation. Themore ignorant

the society is about dengue, the higher the possibility that backward bifurcation

phenomena may appear. As a result, the condition of the basic reproduction

number being <1 is insu�cient to guarantee the extinction of dengue in a

population. Furthermore, we found that increasing the recovery rate, reducing the

waning immunity rate, and mosquito life expectancy can reduce the possibility of

backward bifurcation phenomena. We use dengue incidence data from Jakarta

to calibrate the parameters in our model. Through the fast Fourier transform

analysis, it was found that dengue incidence in Jakarta has a periodicity of 52.4,

73.4, and 146.8 weeks. This result indicates that dengue will periodically appear at

least every year in Jakarta. Parameter estimation for our model parameters was

carried out by assuming the infection rate of humans as a sinusoidal function

by determining the three most dominant frequencies. Numerical and sensitivity

analyses were conducted to observe the impact of community ignorance on

dengue endemicity. From the sensitivity analysis, we found that, although a larger

community ignorance can trigger a backward bifurcation, this threshold can be

minimized by increasing the recovery rate, prolonging the temporal immunity,

or reducing the mosquito population. Therefore, to control dengue transmission

more e�ectively, media campaigns undertaken by the government to reduce

community ignorance should be accompanied by other interventions, such as a

good treatment in the hospital or vector control programs. With this combination

of interventions, it will be easier to achieve a condition of dengue-free population

when the basic reproduction number is less than one.

KEYWORDS

dengue, community ignorance, quasi-steady state approximation, basic reproduction

number, fast Fourier transform
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1. Introduction

Dengue is an infectious disease that is caused by the dengue

virus (DEN virus or DENV). This virus is transmitted through

the bite of an infected female Aedes aegypti or Aedes albopictus

[1, 2]. It is estimated that ∼50% of the world population is

at risk of dengue every year [3]. Dengue has been the subject

of main concern in many tropical and subtropical countries,

including Indonesia. Since the first case of dengue in Indonesia

was reported in Jakarta and Surabaya way back in 1968, the

incidence of dengue in Indonesia continues to spread to this

day [4]. Based on a new report from the Ministry of Health

Indonesia, from early 2022 until 20 February 2022, the cumulative

number of dengue cases was recorded as 13,776 cases. Meanwhile,

the number of deaths due to dengue was recorded as 145

cases [5].

There are four different serotypes of DENV, namely, DENV-

1, DENV-2, DENV-3, and DENV-4 [6, 7]. In many cases, the

primary infection of dengue is often asymptomatic. In contrast,

the secondary infection with different serotypes from the primary

infection may develop more severe symptoms, such as bone

pain and headache, up to more occasionally fatal symptoms [8,

9]. Individuals who have already recovered from the primary

infection will maintain a lifelong immunity to the first DENV

that had caused the primary infection, but only temporal to the

other three serotypes [10]. When the short-term immunity to

other serotypes wanes, the recovered individuals may acquire

a secondary infection that can be even more severe than the

primary infection. This phenomenon is called the ADE process [11,

12].

There is no specific treatment to cure dengue-infected

individuals of the disease. The main action plan to treat dengue-

infected individuals is rendered feasible by giving them supportive

care, or if the case is severe, then the patient requires hospitalization

which becomes an obligation to be done. Recently, several

candidates for dengue vaccines have been in the process of

development [13, 14]. An affordable and effective dengue vaccine

will give importance to the control of dengue spread around the

world. The main control program adopted by many governments

worldwide to control the spread of dengue is the vector control

program and steps are taken to reduce the probability of a

successful infection through a mosquito repellent. Another option

to prevent the spread of dengue (and other diseases) is by

developing community awareness on the danger of the disease [15–

18]. Community participation in eliminating or at least suppressing

the spread of dengue can be done through several activities,

such as through media campaigns to disseminate knowledge

about how to prevent acquiring infection from mosquitoes from

individual levels up to community levels. The author in [15]

implies that the risk of dengue may be increased when there is a

lack of community awareness due to misunderstanding between

the community and the government. Therefore, maintaining

community awareness by reducing the ignorance of dengue is

essential to guarantee intervention success in controlling the spread

of dengue.

Mathematical models have been used widely by researchers

to understand how vector-borne diseases spread among the

population [19–23]. For the dengue transmission model, many

authors have used mathematical modeling to guide public health

strategies to control the spread of dengue. The mathematical

modeling process is very challenging due to the complexity of

the dengue transmission mechanism. A more complex model may

bring in a more realistic modeling, but finding the analytical results

and conclusion often entails difficulty. Hence, the researcher needs

to develop a realistic but simple model with realistic assumptions.

The use of real incidence data is also needed to calibrate the

performance of the model. There are many approaches that can

be used to construct the dengue transmission model, such as

with ordinary differential equations [24, 25], partial differential

equations [26, 27], fractional-order differential equations [28, 29],

stochastic differential equations [30–32], and other approaches.

Many mathematical models for dengue transmission use a

deterministic approach. Although the transmission process of

dengue involves a vector animal (Aedes mosquito) as the prime

spreader, some authors use a host-to-host modeling approach [30,

33, 34]. This approach does not involve the dynamics of mosquitoes

in their model since it can be argued that the mosquitoes’ life

expectancy is very short compared to the human life expectancy.

Hence, the dynamic of mosquitoes is much faster compared

to that of the human. The authors in [35] find that the only

essential dynamics are coming from the human population, and

mosquito dynamics only slightly perturb them. The other approach

is adopted by considering the dynamic of mosquitoes [24, 25].

With this approach, the mosquito population is explicitly involved

in the model. With the involvement of mosquito dynamics, such

implementation of vector control can bemodeled into the equation.

When the vector control is involved in the model, an optimal

control approach can be used to understand the short-term impact

of the intervention and determine the most effective strategy [36–

38]. Modeling dengue transmission is not only for the macro scale

(population scale). Some of the authors also construct the model

to understand the dynamic within the host [39, 40]. This modeling

is conducted to understand the interaction between the free virus

with susceptible targeted cells. Some interesting factors are involved

in this modeling approach, such as the infectivity of the virus and

immune response.

From the aspect of the impact of community awareness on the

dengue transmission model, there are some models which have

been introduced by authors. The authors in [41] introduced a

mathematical model of dengue where the effect of media awareness

was included. Mathematical analysis on the equilibrium points and

the basic reproduction number was included in it. The author

in [42] introduced a multistrain dengue model that combined

mosquito control programs and human awareness. They found

that the control of a large number of mosquitoes and human

awareness was required to control dengue effectively. The author

introduced an optimal control problem of dengue with human

awareness and vector control in [43]. The authors used Pontryagin’s

maximum principle to characterize the necessary conditions for

the optimal control problem. The author in [44] introduced a

modified host–vector model by considering low- and high-risk

susceptible populations. The author analyzed global stability on

all equilibrium points. The author in [45] introduced an optimal

control model of dengue transmission. The author developed the
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model by considering five control variables: information spread,

bed nets, treatment, screening, and insecticide. The impact of a

media campaign that can reduce the rate of infection was developed

by the author in [24]. The author conducted a cost-effectiveness

analysis to understand the most cost-effective strategy that can be

employed to control dengue transmission. Recently, the authors in

[25] combined vaccination, vector control, and media campaign

in their model where the seasonality was accommodated. All the

mentioned references consider the same assumption that (1) aware

individuals have a smaller probability of being infected due to their

awareness and (2) more prominent infected individuals will reduce

the infection rate more. The second assumption is reasonable

when we wish to model the spread of dengue among a population

where awareness of dengue could increase the participation of the

population in the dengue control programs.

To calibrate the proposed dengue model, many authors use

incidence data to estimate their parameters. The idea behind this

development is to find the best-fit parameters, such that the model

simulation output can fit the time series of the data. Please see the

following references for the use of incidence data in their dengue

research: Aguiar and Stollenwerk [30], ten Bosch et al. [31], Aguiar

et al. [34], and Aldila et al. [46]. With this parameter estimation,

the researcher can make a short time prediction on their model.

Some interventions can be included in their model and the possible

outcomes predicted in the near future.

Motivated by the above discussion, no authors had discussed

the impact of community ignorance on the spread of dengue.

In this circumstance, more infected individuals will increase the

probability of infection in the human and mosquito populations.

In some countries where dengue fever continues to emerge

throughout the year, the level of public ignorance of the spread of

dengue fever is no longer as high as for several newly discovered

diseases and it is quite a concern, such as Zika in 2018 or

COVID-19 in the late 2019. Hence, it is important to consider

the community’s ignorance of our proposed model. Based on

this background, here in this article, we introduce our SIR-UV

mathematical model to describe the spread of dengue under

the impact of community ignorance. The Quasi-Steady State

Approximation method was used to simplify the model. We

used the weekly incidence data of dengue from Jakarta during

the period from January 2008 to December 2021 to estimate

the parameter values in our model. We used the fast Fourier

transform to extract the most significant frequency from our

data. With this dominant frequency, we fit our model output

with the data by assuming the infection rate as a sinusoidal

function that depends on time. Some mathematical and numerical

analyses were conducted to understand the qualitative behavior

of our model and how it was related to the basic reproduction

number. Furthermore, we also analyzed how community ignorance

can trigger the appearance of a backward bifurcation, which

can cause dengue to exist, even though the basic reproduction

number is already <1. The layout of this article is as follows:

In Section 2, we construct our model. In the same section, we

perform our data assimilation to find out the best-fit parameters

of our model. The model analysis is given in Section 3,

which is followed by some sensitivity analyses and numerical

experiments in Section 4. The concluding remarks are given in

Section 5.

2. Mathematical model and data
assimilation

2.1. Model formulation

To develop our dengue transmission model, we introduce N

and M as the total human and female Aedes sp. populations. Let

the total human population be classified into Susceptible, Infected,

and Recovered compartments, which are denoted by S, I, and R,

respectively. On the other hand, the mosquito population is only

classified into Susceptible and Infected compartments, which are

denoted by U and V , respectively. Due to the short life expectancy

of mosquitoes, we do not consider the recovery process in the

mosquito population. Since dengue does not transmit vertically to

newborns, we assume that the recruitment rates of a human and

mosquitoes are going to be susceptible. The rates of a newborn

human and mosquitoes are given by 3h and 3v, respectively.

Susceptible humans can get infected by dengue only if infected

mosquitoes bite them. In many countries where dengue become

can be found all-year round, for instance in Indonesia, public

awareness of dengue fever is not as high as that of new disease

incidents such as COVID-19. Cases of dengue fever only received

attention when the cases were already very high and made the

hospital unable to accommodate the increasing number of patients.

Due to these phenomena, the authors feel that it is important to

discuss the factors of public neglect of news on dengue fever. Based

on this assumption, we notice that the infection rate will increase

when the number of infected individuals increases. Therefore, the

incidence of infection will occur at a much faster pace compared

to the standard mass action infection function (βhSV), where βh

is the infection rate in the human population. Hence, we assume

that the infection rate is nonlinear and depends on the number of

infected individuals. In this case, we choose βh(I) = βh(1 + αI),

where α > 0 represents the incidence increasing factor due to

community ignorance against dengue. For a further discussion on

this type of function, please see [47]. Based on this assumption,

we have βh(1 + αI)SV as the total number of new infections of

susceptible individuals due to contact with infected mosquitoes

with a probability of infection βh. Based on similar arguments,

we derived that the rate of new infected mosquitoes is given by

βv(1 + αI)UI, where βv is the infection rate of dengue in the

mosquito population. Let γ be the recovery rate, δ the waning rate

of temporal immunity, µh the natural death rate of a human, and

µv the natural death rate of mosquitoes, we have the dynamic of

dengue transmission under a nonlinear infection rate as given in

system (1).

dS

dt
= 3h − βh(1+ αI)SV + δR− µhS,

dI

dt
= βh(1+ αI)SV − γ I − µhI,

dR

dt
= γ I − δR− µhR.

dU

dt
= 3v − βv(1+ αI)UI − µvU,

dV

dt
= βv(1+ αI)UI − µvV ,

(1)
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with an initial condition S(0) > 0, I(0) ≥ 0,R(0) ≥ 0,U(0) >

0,V(0) ≥ 0. Our model is well defined both mathematically and

biologically. Please see Theorem 1 for the non-negative solution

property of each variable of system (1) and the feasible region of

the solution in Theorem 2.

THEOREM 1. Model (1) with initial condition S(0) > 0, I(0) ≥

0,R(0) ≥ 0,U(0) > 0,V(0) ≥ 0 always has a non-negative solution

for all times t ≥ 0.

PROOF. We use an integrating factor to solve this theorem. Under

the given initial conditions, from
dS

dt
in system (1), we have

dS

dt
= 3h − βh(1+ αI)SV + δR− µhS.

It can be written as

dS

dt
+ A(t)S = B(t) (2)

where

A(t) = βh(1+ αI)V + µh,

B(t) = 3h + δR,

Define an integrating factor C(t) = e
∫ T
0 A(t)dt and multiply (2)

with the integrating factor. Hence, we have

e
∫ T
0 A(t)dt dS

dt
+ e

∫ T
0 A(t)dtA(t)S = e

∫ T
0 A(t)dtB(t).

It can be written as

Dt[S(t)e
∫ T
0 A(t)dt] = e

∫ T
0 A(t)dtB(t).

By integrating both sides of the above equation, we obtain

∫ T

0
Dt[S(t)e

∫ T
0 A(t)dt]dt =

∫ T

0
e
∫ T
0 A(t)dtB(t)dt.

Therefore,

S(T) = e−
∫ T
0 A(t)dt

(∫ T

0
e
∫ T
0 A(t)dtB(t)dt + S0

)

> 0.

In a similar way, it can be shown that I(t) ≥ 0,R(t) ≥ 0,U(t) >

0, and V(0) ≥ 0, under the given initial condition I0 ≥ 0,R0 ≥

0,U0 > 0, and V0 ≥ 0. Thus, the solutions of S(t), I(t),R(t),U(t),

and V(t) are non-negative for all times t > 0.t

THEOREM 2. Model (1) with initial condition S(0) > 0, I(0) ≥

0,R(0) ≥ 0,U(0) > 0,V(0) ≥ 0 is bounded in the region

� =

{

(S, I,R,U,V) ∈ R
+
5 ∪ 05 :N = S+ I + R

=
3h

µh
,M = U + V =

3v

µv

}

.

(3)

PROOF. From model (1), we obtain

dN

dt
=3h − µhN.

dM

dt
=3v − µv.

We assume that the total population of human and mosquito

is constant, so we obtain the system bounded in N =
3h

µh
and

M =
3v

µv
. Hence, all feasible solutions of model (1) enter the region

� =

{

(S, I,R,U,V) ∈ R
+
5 ∪ 05 :N = S+ I + R =

3h

µh
,

M = U + V =
3v

µv

}

.

2.2. A quasi-steady state approximation

It is approximated that the life expectation of a mosquito is 30

days [48]. Considering human life expectation, which is around

70 years [49], a mosquito population can reach its equilibrium

in a much shorter duration compared to a human population.

It indicates that the mosquito population has a fast dynamics,

while the human population has a slow dynamics. Based on this

assumption, we may assume that the mosquito populations have

already reached their equilibrium condition in our simulation time

interval. Hence, using the quasi-steady state approximation, taking
dU
dt

= 0 and dV
dt

= 0, gives us

U∗ =
3v

βv(1+ αI)I + µv
,

V∗ =
βv(1+ αI)3v

(βv(1+ αI)I + µv)µv
.

Substituting the above quasi-steady state approximation of

(U∗,V∗) in model (1), we have

dS

dt
= 3h − βh(1+ αI)+ δR− µhS,

dI

dt
=

βh(1+ αI)2SIβv3v

((1+ αI)Iβv + µv)µv
− (γ + µh)I,

dR

dt
= γ I − δR− µhR.

(4)

Assuming that the total human population is constant. Then,

we have S = N − I − R. Hence, the system (4) now reads as

dI

dt
=

βh(1+ αI)2(N − I − R)IM

((1+ αI)I + κv)
− (γ + µh)I,

dR

dt
= γ I − δR− µhR.

(5)

where κv =
µv

βv
andM =

3v

µv
. The simple IR -model in system

(5) has an advantage compared to the original SIRUV -model in

system (1) from the perspective of data assimilation, which will

be described in the next section. Furthermore, we will analyze the

IR -model in system (5) to understand the long time behavior of

the SIRUV-model.
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2.3. Data assimilation

Jakarta is the capital of Indonesia with a total population of

more than 10 million people based on the census data of 2022.

The temperature in Jakarta is relatively stable throughout the year,

between 24 and 33◦C. The highest temperatures are recorded

between August and early November. The rainy season in Jakarta

falls between October and May every year with more than a 47%

chance of a rainy day. The highest rainfall occurs in January with

the average rainfall of 22.6 days [50].

Dengue fever has become an annual problem in Indonesia,

including Jakarta. The number of dengue fever cases in Jakarta

during 2008 to December 2021 can be seen in Figure 1A. High cases

of dengue fever are always associated with a high rainfall in Jakarta.

The existing literature indicates that the high cases of dengue fever

follow a seasonal (periodic) pattern. Based on this observation, it

is necessary to analyze the existence of periodicity in the data of

dengue fever cases in Jakarta city. Therefore, we apply a fast Fourier

transform to our data, and the result can be seen in Figure 1B. From

Figure 1B, we show that the three dominant frequencies are 0.019,

FIGURE 1

(A) The number of weekly infected dengue individuals in Jakarta from January 2008 to December 2021. (B) The result of fast Fourier transform

analysis from dengue data in Jakarta.
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0.013, and 0.006. These frequencies are correlated to a periodicity

of 52.43, 73.4, and 146.8 weeks, respectively.

Our aim in this section is to calibrate our proposed

mathematical models with the real situation in the field. To do this,

we construct a model fitting that involves parameter estimation,

which includes the identification of the parameter values that can

fit between the model solution [variable I in system (5)] with

the incidence data in Figure 1A. For the purpose of parameter

estimation, we used the “fmincon” toolbox in Matlab. Fmincon

can be used to find the minimum of constrained nonlinear

multivariable functions.

As we mentioned earlier, our incidence data indicate a periodic

solution. To capture this phenomenon, we treat the infection rate

βh as a sinusoidal parameter, which is given by

βh(t) = a+

3
∑

i=1

bi cos(2πdit)+ ci sin(2πdit), (6)

where a is the median value of βh(t), bi, and ci are

the amplitudes of βh(t), while di refers to the frequencies of

βh(t). Our problem lies in minimizing the Euclidean distance

between our model solution [I(t)] and the time series data in

Figure 1A using the best-fit parameter βh(t) with model in (5)

as the constraint. This task reads as minimizing the following

cost function

J =
1

2ω

734
∑

t=1

(Isolution − Idata)2, (7)

where ω is the variance of the data and Isolution is the solution
of I(t) from

dI

dt
=

(

a+
∑3

i=1 bi cos(2πdit)+ ci sin(2πdit)
)

(1+ αI)2(N − I − R)IM

((1+ αI)I + κv)

− (γ + µh)I,

dR

dt
= γ I − δR− µhR.

(8)

Our task is to find the best-fit parameter Ŵ1 =
{

a, bi, ci, di,α, κv
}

and the best initial condition Ŵ2 =
{

I(t = 0),R(t = 0)
}

. We choose other parameter values as

follows:

N = 10 000 000[51], M = 2N (assumption), γ =
1

4
[52],

µh =
1

70× 52
[49], δ =

1

9× 4
[52].

The result of the parameter estimation is given in Figure 2,

while the parameter values and the initial condition are given in

Table 1. We can see that our model can fit the qualitative behavior

of the data such as the time when the outbreak appears and also

when it decreases. However, our model cannot fit the data in all

simulation times. We extend our simulation time for the next 2

years until December 2023. We can see that the peak of dengue

cases in Jakarta is expected to still appear around April 2022 and

March 2023.

3. Model analysis

3.1. Equilibrium points and the basic
reproduction number

The dengue-free equilibrium of system (5) is given by

(I,R) = (0, 0). (9)

In this case, since S = N − I − R, then the complete

model gives the dengue-free equilibrium as given by (S, I,R) =

(N, 0, 0). Next, we calculate the respected basic reproduction

number of system (5). The basic reproduction number (R0) in

the context of dengue is the expected number of secondary cases

(in human/mosquitoes) due to one bite of infected/susceptible

mosquito to susceptible/infected human, respectively, during its

infection period in a fully susceptible population. To calculate

the respected basic reproduction number of system (5), we use

the next-generation matrix approach introduced by the authors

in [53]. First, we calculate the Jacobian matrix of the infected

subcompartment of system (5) evaluated in the dengue-free

equilibrium in (9). This matrix is given by:

J =

[

βhNM

κv
− γ − µh

]

.

Next, we can decompose J as F + V , where F is the

transmission matrix and V is the transition matrix. Hence, we have

F =

[

βhNM
κv

]

and V = [−γ − µh. Therefore, the next-generation

matrix of system (5) is given by:

K = FV
−1 =

[

βhNM

κv(γ + µh)

]

.

Therefore, the basic reproduction number of system (5), which

is taken by the spectral radius ofK, is given by:

R0 =
βhNM

κv(γ + µh)
. (10)

In many epidemiological models [], many authors can find

the relation between the disease extinction with a condition of

R0 > 1. In our proposed dengue model, we find this relation in

the following theorem.

THEOREM 3. The dengue-free equilibrium of system (5) is locally

asymptotically stable ifR0 < 1, and unstable ifR0 > 1.

PROOF. We use standard linearization to prove the theorem.

Linearization around the dengue-free equilibrium is given by

J|DFE =





βhNM

κv
− γ − µh 0

γ −δ − µh



 .

Eigenvalues of the above linearization matrix are given by

λ1 =
βhNM

κv
− γ − µh, λ2 = −δ − µh.

Equilibrium is asymptotically stable if all the real parts of

its eigenvalues are negative. All of our parameters are positive,
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FIGURE 2

Fitted dengue cases I(t), for the model (8), using data from Jakarta from 2008 to 2021.

therefore the second eigenvalue has negative real parts. To prove

that the first eigenvalue has a negative real part, it must be assumed

that
βhNM

κv(γ + µh)
< 1 ⇐⇒ R0 < 1.

The second equilibrium point is the endemic equilibrium point,

which is given by:

(I,R) =

(

I∗,
γ I

δ + µh

)

. (11)

where I∗ is taken from the positive roots of the following

third-degree polynomial

F(I, τ ) = a3I
3 + a2I

2 + a1I + a0 = 0, (12)

where τ = {βh,M,N,α, γ , δ, κv,µh}, and

a3 = βhMα2(γ + µh + δ),

a2 = Mβh

(

Nα(δ + µh)− 2(δ + γ + µh)
)

− (δ + µh)(γ + µh),

a1 = (Mβh + µh)(δ + γ + µh)+ δγ −MNαβh(δ + µh),

a0 = −(δ + µh)(γ + µh)κv(R0 − 1).

Since a0 < 0 ⇐⇒ R0 > 1 and a3 > 0, then we have the

following theorem.

THEOREM 4. The dengue IR-model in system (5) always has at

least one dengue-endemic equilibrium point ifR0 > 1.

PROOF. Since a3 > 0, then limI→−∞ F(I, τ ) = −∞ and

limI→∞ F(I, τ ) = ∞. For special cases when R0 = 1, we have

one zero root of F(I, τ ). Hence, when a0 < 0 which is equivalent to

R0 > 1, then the graphic of F(I, τ ) will be shifted downward as far

as a0 is concerned. Hence, we have at least one new positive root I

of F(I, τ ) whenR0 > 1.

Since the sign of a1 is not always positive or negative, it

is possible to have another dengue endemic equilibrium when

R0 < 1. Furthermore, since the existence of the dengue-endemic

equilibrium point depends on a third-degree polynomial, it is

possible to have more than one dengue-endemic equilibrium point.

TABLE 1 Best-fit parameter of system (8) for Figure 2.

Parameter Value Parameter Value

a 1.3965× 10−8 α 5.1021× 10−5

b1 1.9395× 10−9 c1 0

b2 0 c2 6.1745× 10−14

b3 0 c1 1.4867× 10−9

d1 0.019 d2 0.0104

d3 0.0059 κv 2.8192× 106

I(0) 50 R(0) 109.64

THEOREM 5. There exists a dengue-endemic equilibrium when

R0 < 1 if α > α∗, where α∗ =
(γ + µh + δ) κv + N (δ + µh)

2 (δ + µh)Nκv
.

PROOF. Let us choose βh as the bifurcation parameter. To conduct

the gradient analysis of I at R0 = 1 and I = 0 using polynomial

(12), we need to rewrite each ai for i = 0, 1, 2, 3 as a function ofR0.

First rewriting βh as a function ofR0 using the expression on (10),

we have

β∗
h =

(γ + µh)κvR0

MN
. (13)

Substitute βh = β∗
h
into F(I, τ ), differentiate I respect to R0,

and evaluate it atR0 = 1, I = 0. We obtain

∂I

∂R0
= −

κv(δ + µh)N

(2α(δ + µh)N − δ − γ − µh)κv − N(δ + µh)
. (14)

Hence, we have that
∂I

∂R0
< 0 if and only if α > α∗ where

α∗ =
(γ + µh + δ) κv + N (δ + µh)

2 (δ + µh)Nκv
. (15)

Since the condition of
∂I

∂R0
< 0 indicates the existence of a

positive root of F(I, τ ) = 0 when R0 < 1, we conclude that there
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TABLE 2 The possible number of dengue-endemic equilibria of model (5)

depends on whetherR0 is lesser or larger than 1.

Case a3 a2 a1 a0 R0 Possible
positive roots

1 + + + + R0 < 1 0

2 + + + − R0 > 1 1

3 + + − + R0 < 1 0 or 2

4 + + − − R0 > 1 1

5 + − + + R0 < 1 0 or 2

6 + − + − R0 > 1 1 or 3

7 + − − + R0 < 1 0 or 2

8 + − − − R0 > 1 1

exists a dengue-endemic equilibrium when R0 < 1 if α > α∗.

Hence, the proof is completed.

To analyze the possible number of dengue-endemic equilibria

of model (5), we use the well-known Descartes’ rule of signs. The

number of possible positive roots of F(I, τ ) is calculated by how

many times the sign of ai changed. The number of possible positive

roots F(I, τ ) is the same or slightly lower by an even/odd number

as the number of changes in the sign of the coefficients. The result

is given in Table 2.

3.2. Backward bifurcation analysis

In the previous section, we found that the dengue-endemic

equilibrium is always locally asymptotically stable if R0 < 1,

and unstable when R0 > 1. Furthermore, we also found that

our simplified IR-model does not always have a unique dengue-

endemic equilibrium point. It is possible to have multiple dengue-

endemic equilibria when R0 < 1. Hence, it is important to

analyze its local stability criteria. Furthermore, we analyze the

bifurcation type of our IR-model using the well-known Castillo–

Song bifurcation theorem [54]. The theorem is given as follows.

THEOREM 6 (Castillo–Song Bifurcation Theorem, [54]).

Consider a general system of ODEs with parameter φ:

dx

dt
= f (x,φ), f :Rn ×R → R

n and f ∈ C
2(Rn ×R). (16)

Without loss of generality, it is assumed that 0 is an equilibrium

of system (16) for all values of the parameter φ, that is

f (0,φ) ≡ 0 for all φ. (17)

Assume

1. A = Dxf (0, 0) =

(

∂fi
∂xj

(0, 0)
)

is the linearization matrix of

system (16) around the equilibrium 0 with φ evaluated at 0. Zero

is a simple eigenvalue of A and all other eigenvalues of A have

negative real parts.

2. Matrix A has a non-negative right eigenvector w and a left

eigenvector v corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =

n
∑

k,i,j=1

vkqiwj
∂2fk

∂xi∂xj
(0, 0), (18)

b =

n
∑

k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0). (19)

The local dynamics of (16) around 0 are totally determined by

a and b.

1. a > 0, b > 0. When φ < 0 with |φ| ≪ 1, 0 is

locally asymptotically stable, and there exists a positive unstable

equilibrium; when 0 < φ ≪ 1, 0 is unstable, and there exists a

negative and locally asymptotically stable equilibrium;

2. a < 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable; when

0 < φ ≪ 1, 0 is locally asymptotically stable, and there exists a

positive unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable, and

there exists a locally asymptotically stable negative equilibrium;

when 0 < φ ≪ 1, 0 is stable, and there exists a positive unstable

equilibrium;

4. a < 0, b > 0. When φ changes from negative to positive, 0

changes its stability from stable to unstable. Correspondingly

a negative unstable equilibrium becomes positive and locally

asymptotically stable.

Now, we are ready to prove the existence of the backward

bifurcation phenomena of our simplified IR-model. Let us assume

x1 = I, x2 = R,

g1 =
dI

dt
, g2 =

dR

dt
.

Therefore, the IR-model can be written as

g1 =
βh(1+ αx1)

2(N − x1 − x2)x1M

(1+ αx1)x1 + κv
− (γ + µh)x1,

g2 = γ x1 − (δ + µh)x2.

Next, we linearize the above system around the dengue-free

equilibrium which yields

M = J|DFE,R0=1 =

[

0 0

γ −δ − µh

]

,

which has two eigenvalues

λ1 = 0, λ2 = −δ − µh.

Please note that we have a simple zero eigenvalue, and one

other eigenvalue is negative, which fulfills the first assumption of

the Castillo–Song bifurcation theorem.

Next, we determine the right eigenvectors of M by solving

Mw = 0, where w = (w1,w2) is a column vector. We obtained

w1 =
(δ + µh)w2

γ
, w2 = w2.
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Next, we determine the left eigenvectors ofM by solving vM =

0, where v = (v1, v2) is a row vector. We obtained

v1 = 1, v2 = 0.

Hence, we have also shown that our preliminary result

fulfills two assumptions, such that we can use the Castillo–Song

bifurcation theorem.

Next, we calculate a and b using the formula in the Castillo–

Song bifurcation theorem. In our case, 0 is the dengue-free

equilibrium.We assumed βh as the bifurcation parameter, such that

the critical value of βh makes R0 = 1. Since we have that v2 = 0,

there is no need to determine the partial derivatives of g2. Thus, we

had the non-zero derivatives of g1 as follows:

∂2g1

∂x21
(0, 0) =

2(γ + µh)(2Nακv − N − κv)

Nκv
,

∂2g1

∂x1∂x2
(0, 0) = −

γ + µh

N
,

∂2g1

∂x2∂x1
(0, 0) = −

γ + µh

N
,

∂2g1

∂x1∂βh
(0, 0) =

NM

κv
.

Using the above derivatives, we can obtain the values of a and

b as follows:

a =

2
∑

k,i,j=1

vkwiwj
∂2gk

∂xi∂xj
(0, 0),

=
2(δ + µh)

2(γ + µh)(2Nακv − N − κv)

Nκvγ 2
−

2(δ + µh)(γ + µh)

γN
,

b =

2
∑

k,i=1

vkwi
∂2gk

∂xi∂βh
(0, 0),

=
(δ + µh)NM

γ κv
.

From these calculations, we always obtain b with a positive

value, whereas a could be positive or negative. To make a positive,

we need to satisfy

α >
(γ + µh + δ) κv + N (δ + µh)

2 (δ + µh)Nκv
= α∗.

Hence, we obtained that a is positive when α > α∗ and a

is negative when α < α∗. Based on the Castillo–Song Theorem,

we would have that our IR-model undergoes a forward bifurcation

when a is negative and b is positive. On the other hand, we would

have that our IR-model undergoes a backward bifurcation when

a is positive and b is positive. Hence, our model could undergo

backward and forward bifurcation depending on the value of α.

THEOREM 7. Model (5) undergoes a backward bifurcation atR0 =

1 if α > α∗ where

α∗ =
(γ + µh + δ) κv + N (δ + µh)

2 (δ + µh)Nκv
.

Otherwise, model (5) undergoes a forward bifurcation when

α < α∗.

Please note that α∗ in Theorem 7 is the same as with α∗ in

Theorem 5. The results in this section enumerate some important

information from our proposed model.

1. The IR-model in system (5) has a dengue-free equilibrium point.

This equilibrium point always exists, and is locally stable if

R0 < 1. These results indicate that we can expect a dengue-free

condition in the community as long as we can reduce the basic

reproduction number to be <1.

2. The dengue-endemic equilibrium of the IR-model always exists

and is locally stable if R0 > 1. Hence, whenever the dengue-

free equilibrium is unstable, we always have a stable endemic

equilibrium.

3. It is possible to have a stable endemic equilibrium whenR0 < 1.

Hence, a condition R0 < 1 does not always guarantee the

disappearance of dengue from the community.

4. Numerical experiments

In this section, we conduct several numerical experiments to

understand the behavior of our model with respect to the level

of community ignorance (α). The first simulation will be the

bifurcation diagram, followed by numerical simulation on the

dynamic of the model with respect to time.

As previously mentioned in Theorem 7, a backward bifurcation

occurs when α > α∗, where α presents the ignorance level of the

community. Larger α means more ignorance in the community

about the spread of dengue. To present the situation, we conduct

numerical experiments to show a possible type of bifurcation that

could appear from our model. At first, we set up all coefficients on

the polynomial (12) as a function ofR0. By solvingR0 with respect

to βh, we have βh =
(γ+µh)κvR0

MN , and substituting it in (12), yields:

a3(R0)I
3 + a2(R0)I

2 + a1(R0)I + a0 = 0, (20)

where

a3(R0) = R0
κv(γ + µh)α

2(γ + µh + δ)

N
,

a2(R0) = −(α(γ + µh))

κv(Nα(δ + µh)− 2(γ + µh + δ))R0 − N(δ + µh)

N
,

a1(R0) = −(γ + µh)

κv(2Nα(µh + δ)− (δ + γ + µh))R0 − N(δ + µh)

N
,

a0(R0) = −(δ + µh)(γ + µh)κv(R0 − 1).

Next, we substitute the parameter values as given in Section 2.3

which gives us

0.0196R0α
2I3 −

(

19793α2
R0 + (0.039R0 + 0.007)α

)

I2 . . .

+
(

0.007+ (0.019− 39586α)R0

)

I +
(

19793(1−R0)
)

= 0.(21)

Using these parameter values, we have the value of α∗ as 6.729×

10−7. Therefore, we choose α = 5× 10−8 < α∗ to find the forward

bifurcation as shown in Figure 3A and α = 5 × 10−6 > α∗ to find

the backward bifurcation as shown in Figure 3B.

Backward bifurcation phenomena imply that a conditionR0 <

1 will not be enough to guarantee the disappearance of dengue
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FIGURE 3

Forward (A) and backward (B) bifurcation diagrams of system (5) for di�erent values of α∗. Red and blue curves present the dengue-free equilibrium

and dengue-endemic equilibrium points, respectively.

from the community. We can see that for some parameter value

when R0 < 1, we can have multiple stable equilibrium points,

i.e., the dengue-free equilibrium and the endemic equilibrium

point (please see Figure 3B). When the ignorance level of the

community is small enough (at least smaller than α∗, a condition

R0 < 1 is enough to guarantee the disappearance of dengue

from the community (please see Figure 3A). To illustrate the

bistability phenomenon when a backward bifurcation appears, we

show the phase portrait of system (5) with some initial conditions.

The results are given in Figure 4, where we have a stable node

dengue-free equilibrium and a stable-spiral endemic equilibrium

point. It can be seen that different initial conditions may lead to

a different final state condition. To see further impact of α on

the bifurcation phenomena of our model, we conduct numerical

experiments as shown in Figure 5. These numerical experiments

confirm our previous results on the impact of α on the appearance

of backward bifurcation phenomena at R0 = 1. Smaller the level

of ignorance of the community, higher the chance to have a free

endemic equilibrium whenR0 < 1.

The public health implication of backward bifurcation is that

it is not enough to only reduce the basic reproduction number

to eliminate dengue. Another factor, which in our case is the

community ignorance level of dengue, should also be considered

for further intervention in the field. Therefore, it is necessary

to find the impact of model parameters on the critical level

of community ignorance. To determine this, we calculate the

normalized sensitivity of α∗ with respect to γ ,µh, δ, and κv. Using

the formula given by [55], we have:

Ŵ
γ

α∗ =
γ κv

N(δ + µh)+ κv(δ + γ + µh)
,

Ŵ
µh
α∗ = −

µhκvγ

(δ + µh)
(

N(δ + µh)+ κv(δ + γ + µh)
)

Ŵδ
α∗ = −

δκvγ

(δ + µh)
(

N(δ + µh)+ κv(δ + γ + µh)
)

Ŵ
κv
α∗ = −

N(δ + µh)

N(δ + µh)+ κv(δ + γ + µh)
.

From a previous analysis, we know that a backward bifurcation

will appear when α > α∗ and a forward bifurcation if α < α∗.

We can see from the expression of Ŵα∗ , we have that Ŵ
γ

α∗ >

0, which indicates that increasing γ will increase α∗. Hence, a

larger recovery rate will increase the chance of non-appearance of

backward bifurcation phenomena atR0 = 1, since we have a larger

interval of α ∈ [0,α∗]. On the other hand, we can see that Ŵ
µh
α∗ ,Ŵδ

α∗ ,

and Ŵ
κv
α∗ are negative, which indicates that increasing natural death

rate of human (µh), waning immunity (δ), and mosquito dynamic

parameters (κv) will reduce α∗. Hence, different with the effect of

recovery rate, increasing µh, δ, and κv will increase the chance of

appearance of backward bifurcation phenomena, since the interval

of α ∈ [0,α∗] is getting smaller. Therefore, we can conclude

that longer the temporal immunity of human (smaller δ−1) will

increase the chance of finding the only possible condition that

dengue disappears when R0 < 1. Furthermore, we also find

that when κv increases (larger life expectation of mosquitoes or

a smaller infection rate in mosquitoes) will increase the possible

existence of dengue-endemic situation in the field, even thoughR0

is already <1.

Next, we carry out numerical simulation in Figure 6

using MatLab to understand the impact of the human level

of ignorance on the spread of dengue. We use the same

parameter values that we used to produce Figure 2. We can

see that less ignorance of the community (smaller α) to the
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FIGURE 4

Trajectories of system (5) in I− R plane show bistability phenomena

when R0 = 0.5. Parameter values used are the same as they have

been used for Figure 3B. Red curve tends to the endemic equilibrium

point, while blue curve tends to the dengue-free equilibrium point.

FIGURE 5

The impact of α on the type of bifurcation phenomena at R0 = 1.

Red, magenta, cyan, green, and black curves present the condition

of α being equal to 5, 2, 0.9, 0.5, and 0.2× 10−6, respectively.

dynamics of infected individuals will reduce the number of

infected individuals. The impact will be more significant as

time increases.

FIGURE 6

Simulation results showing the impact of the level of ignorance of

the community on the dynamics of infected individuals. The red,

blue, and green curves present α = 5.1021× 10−5,

α = 4.1021× 10−5, and α = 3.1021× 10−5, respectively.

5. Summary and concluding remarks

Amathematical model was presented and studied in this article

to assess the impact of the level of human ignorance on the

spread of dengue. At the beginning of the study, we introduced

our SIR-UV model. Using the QSSA approach, we simplified the

model to an IR-model. With this approach, we converted our host–

vector dengue model to a host-to-host dengue model. A host-

to-host dengue model is a common approach adopted by several

researchers to reduce the complexity of their model, by considering

the fact that the dynamic of mosquitoes is very fast compared

to that of human dynamics [30, 33, 34]. Two types of equilibria

emerged from the model, namely the dengue-free equilibrium and

the endemic equilibrium point. The basic reproduction number,

denoted by R0, was calculated. We found that the dengue-free

equilibrium point was always locally asymptotically stable when

R0 < 1. The center manifold theory was used to establish the

stability of the endemic equilibrium point, and it showed that

the existence of backward bifurcation appears when the level of

community ignorance increases. In this situation, we conclude that

ensuring the size of the basic reproduction number to be <1 does

not always guarantee the disappearance of dengue. Several authors

have shown the appearance of a backward bifurcation in the dengue

transmission model in their models [56–59]. Their analysis showed

that some crucial aspects were not included in the calculation of the

basic reproduction number. This aspect may trigger the backward

bifurcation phenomena, making the dengue control program more

difficult to achieve. In our model, we show that, even though

the level of community ignorance does not appear in the basic
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reproduction number, it does trigger the backward bifurcation.

More ignorant the population about dengue, the more difficult

it is for dengue to be controlled since the condition of basic

reproduction number <1 no longer guarantees the disappearance

of dengue.

To test our model, we fit our model output with dengue

incidence data in Jakarta, Indonesia. Our preliminary analysis of

the time series dengue data reveals the existence of periodicity

of dengue incidence data in Jakarta from 2008 to 2021. Three

dominant frequencies of the data related to a periodicity of

53, 74, and 147 weeks. These results indicate that dengue cases

in Jakarta always recur every year. A numerical experiment on

the bifurcation diagram has shown that reducing community

ignorance can significantly change the endemic situation. The

chance of the existence of dengue-endemic equilibrium when

the basic reproduction number is <1 can be avoided when the

community ignorance is relatively small. To reduce community

ignorance, a media campaign to increase people’s awareness of

dengue could be an alternative intervention. On the other hand,

we find that we can increase the chance of the non-existence

of backward bifurcation by increasing the recovery rate of a

human, prolonging the temporal immunity, or reducing the life

expectancy of a mosquito. Our non-autonomous simulation was

conducted by assuming the infection parameter as a sinusoidal

function with three dominant frequencies. It has been shown

that reducing community ignorance of dengue could suppress

the incidence of dengue in Jakarta. Although the outbreak

still appears, the outbreak can be reduced significantly. The

longer period of intervention of media campaigns to reduce

community ignorance will give a more significant reduction in

dengue outbreaks.
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response
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In this study we consider an additional food provided prey-predator model

exhibiting Holling type-IV functional response incorporating the combined e�ects

of both the continuous white noise and discontinuous Lévy noise. We prove the

existence and uniqueness of global positive solutions for the proposed model. We

perform the stochastic sensitivity analysis for each of the parameters in a chosen

range. Later we do the time optimal control studies with respect quality and

quantity of additional food as control variables. Making use of the arrow condition

of the su�cient stochasticmaximumprinciple, we characterize the optimal quality

of additional food and optimal quantity of additional food. We then perform the

sensitivity of these control variables with respect to each of themodel parameters.

Numerical results are given to illustrate the theoretical findings with applications

in biological conservation and pest management. At the end we briefly study the

influence of the noise on the dynamics of the model.

KEYWORDS

stochastic optimal control, time-optimal control, Holling type-IV response, biological

conservation, pest management, Brownian motion, Lévy noise

MSC 2020 codes: 37A50; 60H10; 60J65; 60J70; 60J76; 49K45

1. Introduction

The complex natural ecosystems present around us kindled great attention of many

ecologists and mathematicians to the mathematical modeling of ecological systems in the

last few decades. The interaction among species in these ecosystems can be of several forms

like competition, mutual interference, prey-predator interactions and so on. The very first

ecological models are framed from the pioneering works of Lotka [1] and Volterra [2] in

1925. Various complex models are framed and studied ever since.

The basic component of these prey-predator systems is a functional response, which

is defined as the rate at which each predator captures prey [3]. These functional response

can be majorly classified into two types the first being Density-dependent and the second

Ratio-dependent. Density-dependent functional responses are usually preferred as they

capture the saturation effect, incorporate handling time, and exhibit an asymptotic approach,

which are limited in the case of ratio-dependent responses. Some of the functional responses

include Holling functional responses [4], Beddington-DeAngelis functional responses [5],

Arditi-Ginzburg functional responses [6], Hassell-Varley functional responses [7], and

Crowley and Martin functional response [8].
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Among the density-dependent functional responses, the

Holling type functional responses are the first ones to be proposed.

Among the Holling responses, Holling type-IV response is best

suited to capture the group defense mechanism of prey especially

in high densities. This is also called as inhibitory effect of the

prey. Some examples in real life include, Musk ox are more

successful at fending off wolves when in herds than when alone

[9] and some other organisms that display this kind of response

in nature can be found in [10, 11]. The Holling type-IV functional

response also exhibits a saturation effect, meaning that the rate of

prey consumption by predators increases at a decreasing rate as

prey density increases. This saturation effect aligns with empirical

observations that predators have limited capacity and cannot

consume an unlimited number of prey items. The Holling type-IV

functional response contributes to stable equilibrium or oscillations

in predator-prey dynamics, which is consistent with observed

patterns in many predator-prey systems. This stability is essential

for maintaining ecological balance and preventing population

crashes or outbreaks.

In recent decades, many pioneering dynamical modeling works

[12–17] reveal that the provision of additional food to predators

both in the complimentary and supplementary sense, plays a

vital role in controlling the dynamics of the system. Additional

food can be provided by establishing artificial feeding stations,

organizing supplementary feeding programs or by the provision

of nest boxes or artificial structures. By providing the specific

conceptual information about the system to be studied and also

the empirical data, one should be able to define the sense of the

provided additional food for a particular mathematical model.

The availability of these additional food resources can play

a significant role in predator populations and their ecological

dynamics. Some of the significant findings of these works include

the following:

• In some instances it is observed that the additional food can

dampen predator-prey cycles by reducing the intensity of

predation on natural prey during periods of prey scarcity.

• Access to additional food can increase the chances of survival

for predator individuals, especially during periods of food

scarcity or low prey availability.

• By having access to a variety of food sources, predators

may be able to exploit niche opportunities and develop

specialized feeding strategies. This specialization can lead to a

more efficient utilization of resources and reduce competition

among predators within a community.

The authors in Srinivasu et al. and Srinivasu and Prasad

[12, 13] studied the prey-predator systems involving Holling

type-II functional response and the authors in Srinivasu et al.

[15] studied the prey-predator systems involving Holling type-III

functional response. Also, the authors in Sabelis and Van Rijn [18]

explicitly studied the impact of the additional food provided to

predator, both in supplementary and complementary sense. The

authors in Srinivasu et al. [14] have studied an additional food

provided deterministic prey-predator systems involving Holling

type-IV functional response. In Ananth and Vamsi and May

[17, 19], the authors studied the optimal control problems of

deterministic prey-predator systems involving Holling type-IV

functional response with the quality of additional food and the

quantity of additional food as the control parameters respectively.

As in earlier mentioned works the authors in the works [15, 17, 19]

also considered the provision of additional food to predators both

in the complimentary and supplementary sense.

Specifically in the context of Holling type-IV prey-predator

models, additional food can have several influences on the

dynamics of the system. The Holling type-IV functional response

is characterized by a saturating feeding rate that increases with

prey density but eventually levels off. When additional food

is introduced into the model, it can enhance predator fitness,

buffer the prey population against high predation pressures,

and potentially reduce the predation pressure on primary prey.

Also, the provision of additional food can cascade down the

food web, affecting lower trophic levels. For example, reduced

predation pressure on natural prey can lead to increased herbivore

populations, which may then impact plant communities and

ecosystem structure. The availability of additional food can

contribute to the stability and resilience of predator-prey systems

and aid as a tool for the conservation and management of the

ecosystem. The authors in Srinivasu et al. [14] have studied

an additional food provided deterministic prey-predator systems

involving Holling type-IV functional response. In Ananth and

Vamsi and May [17, 19], the authors studied the optimal control

problems of deterministic prey-predator systems involving Holling

type-IV functional response with the quality of additional food

and the quantity of additional food as the control parameters

respectively. It is important to note that the specific influence

of additional food in a Holling type-IV prey-predator model

depends on various factors, including the parameters of the

model, the relative availability of primary prey and additional

food, and the ecological context. The dynamics and outcomes

can vary depending on the specific assumptions and interactions

incorporated into the model.

Often it is observed that the parameters in an ecosystem

are effected by the environmental fluctuations [20]. For instance,

authors in Elton [21] observed that the main cause of animal

number fluctuations is the instability of the environment. In recent

years, many researchers have drawn their attention to stochastic

models which captures these fluctuations. Most stochastic prey-

predator models are driven by the Brownian motion, which

captures the continuous noise.

White noise is a type of random signal that has equal

intensity at all frequencies. White noise reflects the inherent

unpredictability and stochasticity of ecological systems. White

noise can represent natural environmental fluctuations such as

temperature changes, wind patterns, or random disturbances in

resource availability that are experienced by organisms [20]. It

can also describe the random variation observed in biological

processes. For example, individual behaviors, reproductive events,

or physiological responses may exhibit stochastic fluctuations

resembling white noise. In mathematical and computational

models, white noise is often used as a simplifying assumption to

capture the inherent randomness in ecological processes. It can

be employed to simulate the unpredictable nature of ecological

phenomena or to represent random perturbations in system
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dynamics. Authors in Li and Zhao and Xu et al. [22, 23] studied

the deterministic and stochastic dynamics of a modified Leslie-

Gower prey-predator system with simplified Holling type-IV

functional response.

However, the sudden changes in environment like toxic

pollutants, floods, earthquakes and so on, cannot be captured by

the Brownian motion as it is a continuous noise. Hence, addition of

a discontinuous noise, like Lévy noise, to the prey-predator system

with Brownian motion makes the models more realistic [24].

Discontinuous Lévy noise refers to a type of stochastic

process characterized by intermittent and unpredictable jumps

or bursts of activity. It is based on the Lévy distribution,

which describes the probability of large, rare events occurring.

In a biological and ecological context, discontinuous Lévy noise

captures the occurrence of rare events that can have significant

ecological consequences. These events can include extreme weather

events, catastrophic disturbances, or sudden changes in resource

availability. Discontinuous Lévy noise reflects the non-Gaussian

and heavy-tailed nature of these rare events [24]. The use of

discontinuous Lévy noise in ecological modeling allows for the

incorporation of rare events, abrupt shifts, long-range correlations,

and non-Markovian dynamics. It provides a way to capture

the non-linearity, complexity, and unpredictability observed in

ecological systems and can help elucidate the role of rare events in

shaping ecosystem dynamics.

Jia et al. [25] uses the stochastic averaging method to analyze

the modified stochastic Lotka-Volterra models under combined

Gaussian and Poisson noise. Ma et al. [24] studies the dynamics

and dynamics of a Stochastic One-Predator-Two-Prey time delay

system with jumps. Recently, authors in Prakash and Vamsi [26]

studied the optimal and time-optimal control studies for additional

food provided prey-predator systems involving Holling type-III

functional response in the presence of the continuous white noise.

To the best of our knowledge, there is no study of additional

food provided stochastic prey-predator system with jumps.

Secondly, the optimal control studies of Stochastic Differential

Equations with Jumps (SDEJ) were not performed on prey-

predator systems. Lastly, very few works involved Holling type-IV

response which incorporates the most important group defense

property. Motivated by these observations, in this work, we

study the optimal control problems for additional food provided

stochastic Holling type-IV prey-predator systems under combined

Gaussian and Lévy noise. We consider the provision of additional

food to predators both in the complimentary and substitutable

sense to the prey and also assume that the predators are generalists

in nature.

The article is structured as follows: In Section 2 we present

the basic analysis of the stochastic prey-predator model with

Holling type-IV functional response and additional food with

intra-specific competition among predators. In Subsection 2.1 we

introduce the stochastic prey-predator model followed by the

existence of global positive solution for this model in Subsection

2.2. We perform the stochastic sensitivity analysis in Subsection

2.3. The time-optimal control problem is formulated and the

optimal quality and quantity of additional food is characterized in

Subsections 3.1–3.3. Sensitivity of stochastic controls are discussed

in Subsection 3.5. Section 3.4 illustrates the key findings of the

analysis through numerical simulations in the context of both

biological conservation and pest management. Section 4 studies the

effect of noise on the dynamics of the model. Finally, we present the

discussions and conclusions in Section 5.

2. Stochastic analysis

2.1. The stochastic model formulation

Let N and P denote the biomass of prey and predator

population densities respectively. In the absence of predator,

the prey growth is modeled using logistic equation. Further, we

assume that the prey species exhibit Holling type-IV functional

response toward predators. We also assume that the predators

are supplemented with an additional food of biomass A, which

is uniformly distributed in the habitat. Incorporating these

assumptions, the prey-predator dynamics with Holling type-IV

functional response along with additional food for predators can

be described as:

dN(t)

dt
= rN(t)

(

1−
N(t)

K

)

−

(

cN(t)

(Aηα + a)(bN2(t)+ 1)+ N(t)

)

P(t)

dP(t)

dt
= e

(

N(t)+ ηA(bN2(t)+ 1)

(Aηα + a)(bN2(t)+ 1)+ N(t)

)

P(t)−m1P(t)

(1)

In addition, we also assume that the predators exhibit intra-

specific competition. We capture this competition in similar lines

with [27, 28]. Accordingly, the system (1) gets transformed to the

following system.

dN(t)

dt
= rN(t)

(

1−
N(t)

K

)

−

(

cN(t)

(Aηα + a)(bN2(t)+ 1)+ N(t)

)

P(t)

dP(t)

dt
= e

(

N(t)+ ηA(bN2(t)+ 1)

(Aηα + a)(bN2(t)+ 1)+ N(t)

)

P(t)

−m1P(t)− δP(t)2

(2)

Here the term η represents the ratio between the search rate of

the predator for additional food and prey respectively. The term

−δP2(t) accounts for the intra-specific competition among the

predators in order to avoid their unbounded growth in the absence

of target prey [14, 15]. Here the term α denotes the ratio between

the maximum growth rates of the predator when it consumes the

prey and additional food respectively. This term can be seen to be

an equivalent of quality of additional food. For a complete analysis

of model (1), the reader is referred to Vamsi et al. [16].

The biological descriptions of the various parameters involved

in the systems (1) and (2) are described in Table 1.

In order to reduce the complexity of the model, we

non-dimensionalize the system (2) using the following

non-dimensional parameters.

N = ax, P =
ay

c
, γ =

K

a
, ξ =

ηA

a
, ω = ba2, m2 =

c

aδ
.
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TABLE 1 Description of variables and parameters present in the systems

(1), (2).

Parameter Definition Dimension

T Time time

N Prey density biomass

P Predator density biomass

A Additional food biomass

r Prey intrinsic growth rate time−1

K Prey carrying capacity biomass

c Maximum rate of predation time−1

e Maximum growth rate of predator time−1

m1 Predator mortality rate time−1

δ Death rate of predators due to

intra-specific competition

biomass−1 time−1

α Quality of additional food for

predators

Dimensionless

b Group defense in prey biomass−2

Accordingly, system (2) gets reduced to the following system.

dx

dt
= rx

(

1−
x

γ

)

−

(

xy

(1+ αξ )(ωx2 + 1)+ x

)

dy

dt
= e

(

x+ ξ (ωx2 + 1)

(αξ + 1)(ωx2 + 1)+ x

)

y−m1y−m2y
2

(3)

Here the term ηA2

N denotes the quantity of additional food

perceptible to the predator with respect to the prey relative to the

nutritional value of prey to the additional food. Hence the term ξ =
ηA
a can be seen to be an equivalent of quantity of additional food.

In real world scenarios, environmental fluctuations affect the

dynamics of the system. In order to capture these fluctuations,

we introduce the multiplicative white noise terms into (3). As in

Sengupta et al., Bodine and Yust, and Srinivasu et al. [27, 29, 30],

we now suppose that the intrinsic growth rate of prey and the

death rate of predator are mainly affected by environmental noise

such that

r → r + σ1dW1(t), m1 → m1 + σ2dW2(t)

where Wi(t) (i = 1, 2) are the mutually independent

standard Brownian motions with Wi(0) = 0 and σ1 and σ2 are

positive constants and they represent the intensities of the white

noise.

Also, the system can go through huge, occasionally

catastrophic disturbances. Since white noise is a continuous

noise, it cannot capture sudden environmental changes.

To cater to these, we also apply a discontinuous stochastic

process as Lévy jumps to model these abrupt natural

phenomenon as in Ma et al. and La Cognata et al.

[24, 31].

We now perturb r and m1 with discontinuous Lévy noise in

addition to the continuous white noise. So, we have

r → r + σ1dW1(t)+

∫

Y

γ1(v)˜N(dt, dv), −m1

→ −m1 + σ2dW2(t)+

∫

Y

γ2(v)˜N(dt, dv) (4)

According to the Lévy decomposition theorem [32], we have
˜N(t, dv) = N(t, dv) − λ(dv)t, where ˜N(t, dv) is a compensated

Poisson process and N is a Poisson counting measure with

characteristic measure λ on a measurable subset Y of (0,+∞)

with λ(Y) < ∞. The distribution of Lévy jumps Li(t) can be

completely parameterized by (ai, σi, λ) and satisfies the property of

infinite divisibility.

Now, by incorporating noise induced parameters (4) into

the reduced deterministic system of Equation (3), we get the

following additional food provided stochastic prey-predator system

exhibiting Holling type-IV functional response along with the

environmental fluctuations captured using the white noise and

Lévy noise.

dx(t) = x(t)

[

r

(

1−
x(t)

γ

)

−

(

y(t)

(1+ αξ )(ωx2(t)+ 1)+ x(t)

)]

dt

+ σ1x(t)dW1(t)+ x(t)

∫

Y

γ1(v)˜N(dt, dv)

dy(t) = y(t)

[

e

(

x(t)+ ξ (ωx2(t)+ 1)

(1+ αξ )(ωx2(t)+ 1)+ x(t)

)

−m1 −m2y(t)

]

dt

+ σ2y(t)dW2(t)+ y(t)

∫

Y

γ2(v)˜N(dt, dv)

(5)

2.2. Existence of global positive solution

In order to do the stochastic time optimal control studies for

the system (5), we first prove that the system (5) has a unique global

positive solution.

Theorem 1. For any given initial value X(θ) = (x(θ), y(θ)) ∈

C([−τ0, 0],R
+2
), there exists a unique positive global solution

((x(t), y(t)) of system (5) on t ≥ 0.

Note: The above theorem for existence of solutions of (5) can

be proved in similar lines to the proof in Ma et al. [24] using the

Lyapunov method.

Proof. For any given initial value (x(θ), y(θ)) ∈ C([−τ0, 0],R
+2
),

there is a unique positive (x(t), y(t)) ∈ R
+2

for t ∈ [0, τe], where

τe is the explosion time. Subsequently, we will show that τe = ∞,

which yields that (x(t), y(t)) is the global solution.

Let m0 ≥ 0 be sufficiently large so x(t) and y(t) lie within the

interval [1/m0,m0]. For eachm ≥ m0, we define the stopping time:

τe = inf

{

t ∈ [−ω, τe) : x /∈ (
1

m0
,m0), y /∈ (

1

m0
,m0)

}

(6)
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Evidently, τe is strictly increasing when m −→ ∞. Let τ∞ =

limm−→∞τm; thus τ∞ ≤ τm a.s. Else there exist pairs of constants

T > 0,m1 ≥ m0 and 0 < ǫ < 1 such that P(τ∞ ≤ T) ≥ ǫ,m ≥ m1.

Let V(x, y) = x− 1− lnx+ y− 1− lny be a C2-function.

Using Itô’s formula, we get

dV = LVdt + σ1(x− 1)dW1 + σ2(y− 1)dW2

where

LV = (x− 1)

[

r

(

1−
x(t)

γ

)

−

(

y(t)

(1+ αξ )(ωx2(t)+ 1)+ x(t)

)]

+(y− 1)

[

e

(

x(t)+ ξ (ωx2(t)+ 1)

(1+ αξ )(ωx2(t)+ 1)+ x(t)

)

−m1 −m2y(t)

]

+
σ 2
1

2
+

σ 2
2

2

= rx− r −
r

γ
x2 +

r

γ
x−

xy

(1+ αξ )(ωx2 + 1)+ x

+
y

(1+ αξ )(ωx2 + 1)+ x
+

exy

(1+ αξ )(ωx2 + 1)+ x

+
eξωx2y

(1+ αξ )(ωx2 + 1)+ x
+

eξy

(1+ αξ )(ωx2 + 1)+ x

−
ex

(1+ αξ )(ωx2 + 1)+ x
−

eξωx2

(1+ αξ )(ωx2 + 1)+ x

−
eξ

(1+ αξ )(ωx2 + 1)+ x
−m1y+m1 −m2y

2 +m2y

+
σ 2
1

2
+

σ 2
2

2

≤ rx−
r

γ
x2 +

r

γ
x+ y

+ey+
ξeω

ω(1+ αξ )
y+ eξy

+m1 −m2y
2 +m2y+

σ 2
1

2
+

σ 2
2

2

=

[

(

r +
r

γ

)

x−
r

γ
x2

]

+

[

(

e+ eξ +m2 +
ξe

1+ αξ

)

y−m2y
2

]

+

(

m1 +
σ 2
1

2
+

σ 2
2

2

)

,

From derivative test, we can see that Ax − Bx2 ≤ A2

4B , where A and

B are constants. Therefore,

LV ≤
(r + r

γ
)2

4 r
γ

+
1

4m2

(

e+ eξ +m2 +
ξe

1+ αξ

)2

+

(

m1 +
σ 2
1

2
+

σ 2
2

2

)

≤ K,

where K is a positive constant.

Thus,

dV ≤ Kdt + σ1(x− a)dW1 + σ2(y− b)dW2

Taking expectation, yields

EV(x(τm ∧ T), y(τm ∧ T)) ≤ V(x(0), y(0))+ E

∫ τm∧T

0
Kdt.

Setting �m = {τm ∧ T,m ≥ m0}, we obtain P(�m) ≥ ǫ. For

eachω ∈ �m, there are x(τm,ω), y(τm,ω) equaling eitherm or 1/m

such that

V(x(0), y(0))+ KT ≥ E[1�k(ω)V(x(τm,ω), y(τm,ω))]

≥ ǫ[(
1

m
− 1− ln

1

m
) ∧ (m− 1− lnm)],

where 1�k(ω) denotes the indicator function of �k(ω).

Form −→ ∞, we have

∞ > V(x(0), y(0))+ KT = ∞

which is a contradiction. So, we have that τ∞ = ∞. This

completes the proof.

FIGURE 1

This figure depicts the mean and standard deviation of the predator, prey populations for the system (5) with respect to the parameter γ ∈ (10.1, 15.2).

The values for other parameters are chosen as r = 1.5, ω = 15, α = 10, ξ = 0.10, e = 0.4, m1 = 0.15, m2 = 0.01, σ1 = σ2 = 0.2, γ1 = γ2 = 0.1.
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FIGURE 2

This figure depicts the mean and standard deviation of the predator, prey populations for the system (5) with respect to the parameter ω ∈ (8.1, 15.2).

The values for other parameters are chosen as r = 1.5, γ = 12, α = 10, ξ = 0.10, e = 0.4, m1 = 0.15, m2 = 0.01, σ1 = σ2 = 0.2, γ1 = γ2 = 0.1.

2.3. Stochastic sensitivity analysis

In this subsection we briefly depict the sensitivity analysis for

the remaining parameters that are not perturbed by noise. This

can in turn help in understanding the sensitivity of the model with

respect to these unperturbed parameters.

Figures 1–3 depict the local sensitivity of the stochastic model

(5) w.r.t. the unperturbed parameters γ ,ω, and e in the model.

In this local sensitivity analysis, we simulated the system (5)

1, 000 times for each value in the chosen parameter range.

Each figure contains two sub plots where the first and

second plot depict the mean and standard deviation of

prey, predator populations for the range of chosen parameter

values respectively.

From the plots in Figures 1–3, it can be seen that the prey

population in the system (5) is more sensitive with respect to these

parameters than the predator population.

3. Stochastic time-optimal control
problems

In this section, we formulate and study the stochastic

time-optimal control problem for the prey-predator system

(5) with quality (α) and quantity (ξ ) of additional food as

control variables.

3.1. Quality of additional food as stochastic
time optimal control

In this subsection, we characterize the optimal quality of

additional food for driving the system (5) to a desired equilibrium

state in minimum time using the stochastic maximum principle.

We fix the quantity of additional food ξ > 0 to be a constant and

choose the objective functional to be minimized for this stochastic

time optimal control problem as follows.

J(α) = E

[

∫ T

0
1dt

]

. (7)

From the Sufficient Stochastic Maximum Principle [33] for

the optimal control problems of jump diffusion, we characterize

the optimal solution of the stochastic time optimal control

problem with state space as the solutions of (5) and the objective

functional (7).

Let (p∗, q∗, r∗) be a solution of the adjoint equation in the

unknown processes p(t) ∈ R
2, q(t) ∈ R

2×2, r(t, z) ∈ R
2 satisfying

the backward differential equations

dp1(t) =

[

(

−r +
2rx

γ
−

2ω(1+ αξ )x+ 1

((1+ αξ )(ωx2 + 1)+ x)2

)

p1(t)

−
(1− ωx2)(1+ (α − 1)ξ )

((1+ αξ )(ωx2 + 1)+ x)2
eyp2(t)− σ1q1

−

∫

γ1(v)r1v1(dz1)

]

dt

+ q1(t)dW1(t)+ q2(t)dW2(t)+

∫

Rn
r1˜N(dt, dz)

dp2(t) = −

[

−x

(1+ αξ )(ωx2 + 1)+ x
p1(t)

+

(

e(x+ ξ (ωx2 + 1))

(1+ αξ )(ωx2 + 1)+ x
−m1 − 2m2y

)

p2(t)

+ σ2q4 +

∫

γ2(v)r2v2(dz2)

]

dt

+ q3(t)dW1(t)+ q4(t)dW2(t)+

∫

Rn
r2˜N(dt, dz)

p1(T) = 0, p2(T) = 0

(8)
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FIGURE 3

This figure depicts the mean and standard deviation of the predator, prey populations for the system (5) with respect to the parameter e ∈ (0.1, 0.9).

The values for other parameters are chosen as r = 1.5, γ = 12, ω = 15, α = 10, ξ = 0.10, m1 = 0.15, m2 = 0.01, σ1 = σ2 = 0.2, γ1 = γ2 = 0.1.

The Hamiltonian associated with this control problem is

defined as follows.

H(t, x, y,α, p, q, r)

= 1+

[

r(1−
x

γ
)−

y

(1+ αξ )(1+ ωx2)+ x

]

xp1

+

[

e(x+ ξ (ωx2 + 1))

(1+ αξ )(1+ ωx2)+ x
−m1 −m2y

]

yp2

+ σ1xq1 + σ2yq4 + x

∫

γ1r1v1(dz1)+ y

∫

γ2(v)r2v2(dz2)

(9)

Let U = {α(t)|0 ≤ α(t) ≤ αmax∀t ∈ (0, tf ]}

where αmax ∈ R
+. Let α∗ ∈ U with the corresponding

solution (x∗, y∗) = [x(u∗), y(u∗)].

From the Arrow condition in the sufficient stochastic

maximum Principle [33], we have

∂H

∂α

∣

∣

∣

α∗
= 0

H⇒

[

− yxp1
−ξ (ωx2 + 1

((1+ αξ )(ωx2 + 1)+ x)2

−
eyp2(x+ ξ (ωx2 + 1))(ξ (ωx2 + 1))

((1+ αξ )(ωx2 + 1)+ x)2

]
∣

∣

∣

∣

∣

∗

= 0

H⇒

[

yxp1 − eyp2(x+ ξ (ωx2 + 1))

]∣

∣

∣

∣

∣

∗

= 0

H⇒ x∗p∗1 = ep∗2(x
∗ + ξ (ωx∗

2
+ 1))

Hence the optimal control α∗ should satisfy the

following condition.

x∗p∗1 = ep∗2(x
∗ + ξ (ωx∗

2
+ 1)) (10)

Since the analytical solution of (8) is complex to solve, we

numerically simulate these results in Subsection 3.4.

3.2. Quantity of additional food as
stochastic time optimal control

In this subsection, we characterize the optimal quantity of

additional food for driving the system (5) to a desired equilibrium

state in minimum time using the stochastic maximum principle.

We fix the quality of additional food α > 0 to be a constant and

choose the objective functional to be minimized for this stochastic

time optimal control problem as follows.

J(ξ ) = E

[

∫ T

0
1dt

]

. (11)

From the Sufficient Stochastic Maximum Principle [33] for

the optimal control problems of jump diffusion, we characterize

the optimal solution of the stochastic time optimal control

problem with state space as the solutions of (5) and the objective

functional (11).

Let (p∗, q∗, r∗) be a solution of the adjoint equation in the

unknown processes p(t) ∈ R
2, q(t) ∈ R

2×2, r(t, z) ∈ R
2 satisfying

the backward differential equations

dp1(t) =

[

(

− r +
2rx

γ
−

2ω(1+ αξ )x+ 1

((1+ αξ )(ωx2 + 1)+ x)2

)

p1(t)

−
(1− ωx2)(1+ (α − 1)ξ )

((1+ αξ )(ωx2 + 1)+ x)2
eyp2(t)

− σ1q1 −

∫

γ1(v)r1v1(dz1)

]

dt

+ q1(t)dW1(t)+ q2(t)dW2(t)+

∫

Rn
r1˜N(dt, dz)

(12)
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dp2(t) = −

[

−x

(1+ αξ )(ωx2 + 1)+ x
p1(t)

+

( e(x+ ξ (ωx2 + 1))

(1+ αξ )(ωx2 + 1)+ x
−m1 − 2m2y

)

p2(t)+ σ2q4

+

∫

γ2(v)r2v2(dz2)

]

dt + q3(t)dW1(t)

+ q4(t)dW2(t)+

∫

Rn
r2˜N(dt, dz)

p1(T) = 0, p2(T) = 0

The Hamiltonian associated with this control problem is

defined as follows.

H(t, x, y, ξ , p, q, r)

= 1+

[

r(1−
x

γ
)−

y

(1+ αξ )(1+ ωx2)+ x

]

xp1

+

[

e(x+ ξ (ωx2 + 1))

(1+ αξ )(1+ ωx2)+ x
−m1 −m2y

]

yp2

+ σ1xq1 + σ2yq4 + x

∫

γ1r1v1(dz1)+ y

∫

γ2(v)r2v2(dz2)

(13)

Let U = {ξ (t)|0 ≤ ξ (t) ≤ ξmax∀t ∈ (0, tf ]}

where ξmax ∈ R
+. Let ξ∗ ∈ U with the corresponding

solution (x∗, y∗) = (x(ξ∗), y(ξ∗)).

From the Arrow condition in the sufficient

stochastic maximum Principle [33], we have

∂H

∂ξ

∣

∣

∣

ξ∗
= 0

H⇒

[

− yxp1
−α(ωx2 + 1

((1+ αξ )(ωx2 + 1)+ x)2
+

eyp2

(

((1+ αξ )(ωx2 + 1)+ x)(ωx2 + 1)− α(ωx2 + 1)(x+ ξ (ωx2 + 1))

((1+ αξ )(ωx2 + 1)+ x)2

)

]
∣

∣

∣

∣

∣

∗

= 0

H⇒

[

αxy(ωx2 + 1)p1 + eyp2(ωx
2 + 1)(x(1− α)(ωx2 + 1))

]
∣

∣

∣

∣

∣

∗

= 0

H⇒

[

αxp1 + ep2(1+ ωx2 + x(1− α))

]
∣

∣

∣

∣

∣

∗

= 0

H⇒ αx∗p∗1 + ep∗2(1+ ωx∗
2
+ x∗(1− α)) = 0

Hence the optimal control ξ∗ should satisfy the

following condition.

αx∗p∗1 + ep∗2(1+ ωx∗
2
+ x∗(1− α)) = 0 (14)

Since the analytical solution of (8) is complex to solve, we

numerically simulate these results in Subsection 3.4.

3.3. Existence and uniqueness of solutions
for the Forward Backward Stochastic
Di�erential Equations with Jumps (FBSDEJ)

We so far obtained the adjoint Equations 8, 12 for the

state Equation 5 and the objective functional (7), (11) using

the sufficient stochastic maximum principle respectively. Upon

simplifying the results obtained from the arrow condition (10), (14)

from earlier two subsections, we see that the optimal controls are

given by

α∗ =
ep∗2(1+ x∗ + ωx∗

2
)

ep∗2x
∗ − p∗1x

∗
, ξ∗ =

x∗p∗1 − ex∗p∗2

ep∗2(1+ ωx∗
2
)

(15)

In this section, we now prove the existence of optimal controls

by proving the existence of the solutions for the FBSDEJ [(5),

(8), (12)] which establishes the existence of (x∗, y∗, p∗1 , p
∗
2) for all

simulation purposes. Using the theorem in Al-Hussein and Gherbal

[34], we now prove the existence of the optimal controls (15) in the

following theorem.

Theorem 2. For any (x0, y0) ∈ R
+2
, the FBSDEJ [(5), (8), (12)]

admits an optimal stochastic control.

Proof. Let (Xt)t≥0 be the solution of the Stochastic Differential

Equation with Jumps (SDEJ)

dXt = b(Xt)dt + σ (Xt)dW(t)+

∫

R

Ŵ(v)˜N(dt, dv)

Here the term b(Xt) denotes the drift coefficient, the term σ (Xt)

denotes the diffusion coefficient and the term Ŵ(v) denotes the

poisson term coefficient.

The theorem 1 in Section 3 guaranties the monotonicity and

Lipschitz continuity of the drift coefficient, the diffusion coefficient

and the poisson term coefficient of the state Equation 5.

Following the the existence and uniqueness theorem of

FBDSDEJ in Al-Hussein and Gherbal [34], we are only left to prove

the monotonicity and Lipschitz continuity of the drift and diffusion

terms of the adjoint system of Equation 8.

From (8), due to the positivity of state variables guaranteed

by theorem 1, the drift term and the diffusion terms are given
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as follows.

b(Xt) ≤

(
(

2rx
γ

)

p1(t)+
(

ωex2y
)

p2(t)

(x)p1(t)+ (m1 + 2m2y)p2(t)

)

, σ (Xt) =

(

q1(t) q2(t)

q3(t) q4(t)

)

Since the drift coefficient is a linear combination of adjoint

terms (p1, p2), the monotonicity and Lipschitz continuity

are guaranteed.

In addition to this, the diffusion coefficient is independent

of the adjoint terms (p1, p2). Therefore, the monotonicity and

Lipschitz continuity are guaranteed for the diffusion coefficients.

Hence the existence of unique stochastic optimal controls are

proved for FBSDEJ [(5), (8), (12)].

3.4. Numerical simulations

In this section, we perform the extensive numerical simulations

using python by choosing the following parameters [24] for the

model (5). r = 1.5, γ = 12,ω = 15, e = 0.4,m1 =

0.15, m2 = 0.01, σ1 = σ2 = 0.02, γ1 = 1, γ2 = 1.

In these simulations, white noise is simulated using the Box-

Normal transformations and the poisson noise is simulated using

the poisson point processes [35]. The state Equation 5 and the

adjoint Equations 8, 12 are simulated using the Forward Backward

Doubly Stochastic Differential Equations with Jumps (FBDSDEJ)

method. The subplots in Figures 4, 5 depict the optimal state

trajectories, optimal co-state trajectories, phase diagram, optimal

quality of additional food and the optimal quantity of additional

food respectively.

3.4.1. Applications to biological conservation
The subplots (4a) and (4b) depicts the optimal state trajectory

of the system (5) from the initial state (2, 8) that stabilizes over

time around the state (16, 90). The subplot (4d) gives the phase

diagram which shows the trajectories are stabilized over high values

of prey and predator. The subplots (4e) and (4f) depicts the optimal

quality and quantity of additional food respectively. These plots

show that the high quality of additional food is required to achieve

biological conservation. Even if the quantity of additional food is

lower, still we will be able to achieve biological conservation with

higher quality of additional food.

3.4.2. Applications to pest management
The subplots (5a) and (5b) depicts the optimal state trajectory

of the system (5) from the initial state (7, 5). It can be seen that the

system can be driven to a low prey dominated state. The subplot

(5d) depicts this property more clearly through the phase diagram

where it reaches the lowest prey value over the time. The subplots

(5e) and (5f) depicts that a lesser quality of additional food and a

lower quantity of additional food is good enough to achieve pest

management where pest is viewed as prey.

3.5. Sensitivity of time optimal controls

In this subsection we perform the sensitivity analysis for the

optimal control variables α(t) and ξ (t) with respect to the different

values for the model parameters

In Figure 6, frames (6a) and (6b) depict the sensitivity of

the control variables with respect to the parameters r and

γ respectively. Frames (6c) and (6d) depict the sensitivity of

the control variables with respect to the parameters ω and e

respectively. In Figure 6, frames (6a) and (6b) depict the sensitivity

of the control variables with respect to the parameters m1 and

m2, respectively.

From the sensitivity analysis depicted in Figures 6, 7 we see that

the optimal quality control seems to be more sensitive with respect

to the parameter r in comparison to the other parameters.

4. E�ect of noise on the optimal
control problem

In this section, we briefly study the effects of discrete and

continuous noise on the system (3). We compared the dynamics

of the state trajectories and control variables with and without

these noises.

In Figure 8, frames (8a) and (8b) depict the optimal prey

and optimal predator populations respectively with no noise,

white noise and with both white noise and Lévy noise. Frame

(8c) depicts the corresponding trajectories of co-state variables.

Frame (8d) depicts the phase space of the state variables. Frames

(8e) and (8f) depict the optimal quality and quantity control

trajectories respectively.

From the plots in Figure 8 we see that both the discrete

and continuous noise can lead to fluctuations in prey dynamics

compared to that of predator. From the phase plots it can be seen

that the converging pattern to the final state more or less follow

a similar trend. Overall we find that the prey seems to be more

influenced by the noise than that of predator.

5. Discussions and conclusions

This paper studies a stochastic prey-predator system exhibiting

Holling type-IV functional response along with the combined

influence of white noise and Lévy noise. We do the time-

optimal control studies for this system, with the quality and the

quantity of additional food as control variables. To begin with,

we formulated a stochastic model by considering multiplicative

noise to both prey and predator. In theorem 1, we proved the

existence of a unique positive global solution of (5). Further, we

formulated the time-optimal control problem with the objective

to minimize the final time in which the system reaches the pre-

defined state. Using the sufficient stochasticmaximumprinciple, we

characterized the optimal control values. In theorem 2, we proved

that the existence and uniqueness of Forward Backward Doubly

Stochastic Differential Equations with Jumps (FBDSDEJ). We also

numerically simulated the theoretical findings and applied them in

the context of biological conservation and pest management.
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FIGURE 4

This figure depicts the simulations of time-optimal control problem with respect to the control variables in the context of biological conservation.

The subfigures (A–C) depict the optimal prey, predator and co-state vectors respectively. The subfigure (D) depicts the phase diagram between prey

and predator densities. The subfigures (E, F) depict the optimal quality and quantity control variables. The parameter values are chosen as

r = 1.5, γ = 12, ω = 15, e = 0.4, m1 = 0.15, m2 = 0.01.

To understand the sensitivity of this stochastic system, we firstly

performed the sensitivity analysis with respect to the individual

parameters and later did the sensitivity analysis for the optimal

control variables with respect to the parameters of the system. The

findings revealed that the stochastic system as such is minimally

sensitive with respect to the system parameters and the optimal
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FIGURE 5

This figure depicts the simulations of time-optimal control problem with respect to the control variables in the context of pest management. The

subfigures (A–C) depict the optimal prey, predator and co-state vectors respectively. The subfigure (D) depicts the phase diagram between prey and

predator densities. The subfigures (E, F) depict the optimal quality and quantity control variables. The parameter values are chosen as

r = 1.5, γ = 4, ω = 6, e = 0.6, m1 = 0.1, m2 = 0.01.

quality control variable seems to be more sensitive with respect to

the parameter, growth rate r relative to the other parameters.

Finally a brief study on the influence of different noises on this

stochastic system revealed that both the discrete and continuous

noise induced fluctuations in the prey dynamics and seem to have

minimal effect on the predator dynamics.

Some of the salient features of this work include the

following. Unlike the most traditional papers, here we
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FIGURE 6

The subfigures (A–D) in this figure depict the optimal quality and optimal quantity of additional food (15) with respect to the parameter values r, γ , ω

and e respectively. The other parameter values are chosen as r = 1.5, γ = 12, ω = 15, e = 0.4, m1 = 0.15, m2 = 0.01.

FIGURE 7

The subfigures (A, B) in this figure depict the optimal quality and optimal quantity of additional food (15) with respect to the parameter values m1 and

m2 respectively. The other parameter values are chosen as r = 1.5, γ = 12, ω = 15, e = 0.4.
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FIGURE 8

This figure depicts the simulations of time-optimal control problem with respect to the control variables. The subfigures (A–C) depict the optimal

prey, predator and co-state vectors respectively. The subfigure (D) depicts the phase diagram between prey and predator densities. The subfigures (E,

F) depict the optimal quality and quantity control variables. The three graphs in each subfigure corresponds to the dynamics of the system with no

noise, white noise and multiple noises. The parameter values are chosen as r = 1.5, γ = 12, ω = 15, e = 0.4, m1 = 0.15, m2 = 0.01.

considered a stochastic time-optimal control problem. As

Intra-specific competition among predators is ineluctable,

we also explicitly incorporated the intra-specific competition

into our model. This paper mainly deals with the novel

study of the time-optimal control problems where the state

equations involve both the discrete and continuous noise

which is challenging. We also performed the stochastic

sensitivity analysis.
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To sum up this work has been an initial attempt and a first of

its kind dealing with the Stochastic Time Optimal Control studies

for prey-predator systems involving group defense of the prey.

Since this is an initial exploratory research we didn’t include finer

specificalities such as mutual interference of the predators and also

did not elaborate much on the stochastic bifurcation aspect. In

future we wish to incorporate and study these aspects. We also

intend to extend these studies in the setting of Markov Chain and

Partial Differential Equations.
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Chagas disease has been the target of widespread control programs, primarily

through residual insecticide treatments. However, in some regions like the

Gran Chaco, these e�orts have failed to su�ciently curb the disease. Vector

reinfestation into homes and vector resistance to insecticides are possible

causes of the control failure. This work proposes a mathematical model for the

dynamics of Chagas disease in neighboring rural villages of the Gran Chaco

region, incorporating human travel between the villages, passive vector migration,

and insecticide resistance. Computational simulations across a wide variety of

scenarios are presented. The simulations reveal that the e�ects of human travel

and passive vector migration are secondary and unlikely to play a significant role

in the overall dynamics, including the number of human infections. The numerical

results also show that insecticide resistance causes a notable increase in infections

and is an especially important source of reinfestation when spraying stops. The

results suggest that control strategies related to migration and travel between

the villages are unlikely to yield meaningful benefit and should instead focus on

other reinfestation sources like domestic foci that survive insecticide spraying or

sylvatic foci.

KEYWORDS

Chagas disease, delay di�erential equations, mathematical model, insecticide resistance,

vector migration

1. Introduction

Trypanosoma cruzi is a parasitic hemoflagellate that infects mammals, including

humans, wherever the Triatominae vectors are found, between approximately 40◦ N and S

of the equator in the Americas [1]. Chagas disease (American trypanosomiasis), caused by T.

cruzi infection in humans, is responsible for disability and early death in approximately one-

third of those infected [2]. The WHO reports that approximately 8 million individuals are

currently infected with Chagas disease, an estimated 25 million people are potentially at risk

of infection, and more than 10,000 people die annually from the disease [3]. Chagas disease

is increasingly being detected in the US, Canada, and many European and Asian countries

due to human migration between Latin America and the rest of the world [4]. Therefore, it

is becoming a global threat to public health.

Chagas disease has been the target of widespread and largely successful control programs

over the past few decades [5]. Such efforts–prominently including the Southern Cone

Initiative, which was begun in 1991–have had a tremendous impact, more than halving the

number of infected individuals. However, the disease remains a baleful threat due to large
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number of sylvatic reservoir hosts found throughout Latin America

and the possibility of resurgence in places where incidence has

been reduced. In particular, the Gran Chaco, a region over 600,000

km2 in size located in southcentral South America, is of notable

concern. There, the major disease control strategies have failed, and

Chagas disease remains endemic, threatening the approximately

five million inhabitants [6–8]. For example, one rural village in

the region was recently surveyed, and over 80% of the adults were

found to be infected [9].

Chagas disease has historically been a problem associated with

rural regions of Latin America, largely due to the tendency of

its insect vectors to live in the crevices of homes made from

inexpensive and easily accessible materials such as mud, adobe,

straw, and palm thatch. The disease has spread in recent years as

people have moved from rural areas to urban locations within Latin

America and throughout the world [3, 10]. The estimated burden

of Chagas disease in the United States is greater than 300,000

individuals, with 30,000–45,000 cardiomyopathy cases and 63–315

congenital infections annually [11]. Los Angeles blood banks have

an estimated seroprevalence among all blood donors as high as

1 in 3,800 [12]. The enduring presence and recent diffusion of

Chagas disease is quite concerning as it is a chronic and potentially

life-threatening infection [13]. At present, there is no vaccine for

Chagas disease, and treatments with drugs such as benznidazole

and nifurtimox are long, have serious potential side effects, and

diminish in effectiveness with time since infection. As a result, the

primary method of disease control is prevention [3].

Trypanosoma cruzi infection can be due to exposure to infected

Triatominae feces, blood transfusion, organ donation, or congenital

transmission [10]. The subfamily Triatominae or kissing bugs are

large bloodsucking insects that predominately hide in the homes of

their host during the day and feed on blood at night [3]. Should

the Triatominae bite a mammal infected with T. cruzi, it may

become infected and spread the disease. The parasites are present

in the feces of the vectors and infection only occurs if the parasites

come in contact with the mucosa through the eyes, the mouth,

or enter through the nearby bite site [3, 10]. For this reason the

most important reservoirs for T. cruzi are insectivorous mammals

which can serve as hosts for T. cruzi [14]. Many methods of

inhibiting transmission to humans, such as blood screening, home

improvements, and bednets, are currently in use, with the primary

means of vector control being residual insecticide spraying [3].

Residual insecticide treatment of endemic areas has shown

tremendous success in most regions, but in some like the Gran

Chaco, they have failed to sufficiently curb the disease, and

the uneven success of current prevention methods in these

regions warrants further study. Of particular interest are vector

reinfestation into homes and vector resistance to insecticides,

both of which are important possible causes of control failure.

Reinfestation of vectors into homes is a major concern, because

even a small lingering population of vectors in a village that has

been treated with insecticides can quickly return to pre-spraying

levels of infestation; therefore, migration could contribute to rapid

population recovery and thus account for control failure in regions

like the Gran Chaco [6, 7]. Reinfestation is a particularly prominent

concern in the Gran Chaco due to a combination of political

instability causing unpredictable changes in control strategies and

economic instability causing widespread human migration [6, 7].

Along with these concerns, field work supports the idea that

vector movement is playing an important role in control failure;

recent research suggests that Triatoma infestans, the primary vector

in the Grand Chaco, from sylvatic populations and neighboring

townships are re-infesting villages in the Gran Chaco and that

prevention tactics are needed for effective vector control [15–18].

In addition, despite an initial assumption of the Southern Cone

Initiative that the vectors do not have sufficient genetic variability

to develop resistance, various sources have shown that populations

of T. infestans in the Gran Chaco and other areas are resistant to

the insecticides currently in use [6, 7, 19]. For example, in 2002,

vectors in four separate villages in Argentina were found to have

high resistance to the pyrethroid insecticides deltamethrin and,

β-cypermethrin [20]. Additionally, insecticide resistance has been

observed within the Gran Chaco region, which suggests that it

may be playing a role in the failure of control efforts there [19].

The possibility of insecticide resistance is especially problematic

because vector control plays such a key role in current disease

prevention efforts.

The purpose of this study is to analyze these potential sources

of reinfestation using a differential equations model. This work is

the latest in a series of works that have used Chagas disease models

to analyze the effectiveness of various control strategies [21–26].

The previous works have assumed that reinfestation occurs due

to a small population of vectors that avoid insecticide spraying.

In this study, we compare this cause of control failure with

vector reinfestation through migration by expanding the model to

simulate the spread of Chagas disease in a system of villages rather

than a single town. We then use this updated model to analyze

the impact of different control strategies with a focus on how they

interact with vector migration. We also consider the impact of

larger populations of residual vectors that survive insecticide use

due to resistance.

2. Materials and methods

The model in this work expands upon the one used in “A

Mathematical Model of Chagas Disease Dynamics in the Gran

Chaco Region” [26], which we update to more accurately reflect

the available research on T. infestans and T. cruzi. As in [26],

the model is specifically designed to analyze villages in the Gran

Chaco, and these villages are assumed to have sufficiently large

populations so that differential equations are appropriate for

modeling them. This assumption is consistent with field data, see

[9], where the average village size is 462 people. For each village,

we model the total domestic vectors, infected domestic vectors,

total peridomestic vectors, infected peridomestic vectors, infected

humans, susceptible humans, infected domestic animals that we

will refer to as dogs, and infected peridomestic mammals (goats and

pigs). We also consider chickens as a potential blood meal source,

but do not model their population since they are not susceptible

to T. cruzi infection. Furthermore, as this model considers a

system of villages, multiple sets of these eight equations coupled

by migration terms are used rather than a single set. Throughout,

parameters that may vary between villages are denoted with a j
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subscript, and those that are assumed to be uniform across villages

are not.

Let Vj = Vj(t) represent the total number of domestic vectors

in village j at time t, Vij = Vij (t) the number of infected domestic

vectors, Wj = Wj(t) the total number of peridomestic vectors,

Wij = Wij (t) the number of infected peridomestic vectors, Nij =

Nij (t) the number of infected humans, Nsj = Nsj (t) the number

of susceptible humans, Dij = Dij (t) the number of infected dogs,

Mij = Mij (t) the number of infected peridomestic mammals,

Nj(t) = Nsj (t) + Nij (t) the total number of humans, Dj(t) the

total number of dogs, Mj(t) the total number of mammals, and

Cj(t) the number of chickens. In this work, the total dog, mammal,

and chicken populations are not modeled, but rather obtained

from [27] and [28] and defined explicitly. However, infected dogs

and mammals are modeled as sub-populations of the known total

populations. We use the notation f+ = max(f , 0) and f− =

min(f , 0) throughout.

2.1. Total domestic vectors

First, we model the growth of domestic vectors by the using a

delayed logistic term:

dhj (t − τ )Vj(t − τ )

(

1−
Vj(t − τ )

KVj

)

+

, (1)

where the delay τ is the gestation time of the vectors, KVj is the

carrying capacity of the vectors in village j, and dhj (t− τ ) is the egg

hatching rate in village j at time t − τ . Since adult female vectors

lay eggs after having a complete blood-meal, the egg hatching rate

is dependent on the biting rate Bj(t − τ ), which is the average

number of bites each vector makes per day. In addition to the biting

rate, the egg hatching rate is naturally assumed to be dependent on

the number of eggs a female vector lays after a blood-meal φl, the

proportion of adult females in the population v, and the proportion

of eggs that hatch φh. Thus, the egg hatching rate is given by

dhj (t − τ ) = vφlφhBj(t − τ ). (2)

Since a larger blood supply results in more biting (up to a

maximum per day), the biting rate Bj(t) is dependent on the

domestic blood supply bsupj (t) of village j at the time when the

female lays eggs, and it is also dependent on the season [29]. In

order to accurately capture the seasonal dependence, we construct

a seasonal biting rate b(t) (defined in Table 3) based on data

from [28]. However, this function b(t) is obtained from data in a

setting with a particular known blood supply bsupknown (t) [defined in

equation (43)] and does not capture the blood meal dependence, so

we also use a Holling Type II response to obtain the final biting rate

Bj(t) = b(t)

(

β

bmax

)

(

bsupj (t)

bsupj (t)+ Ab(t)

)

, (3)

where bsupj (t) is the domestic blood supply in village j, β is the

maximum possible daily feedings of a vector, and bmax is the

maximum value of b(t). Ab is chosen such that

(

β

bmax

)(

bsupknown (t)

bsupknown (t)+ Ab(t)

)

= 1. (4)

This is done so that if the blood supply in village j matches the

conditions in [28] (that is, bsupj = bsupknown ), then B(t) = b(t) and

the biting rate agrees with the empirical results.

We now consider the domestic blood supply bsupj (t), which is

composed of total humans, dogs, and chickens. Since the vectors

prefer certain blood sources over others, each one is translated into

a number of humans, so that the unit of measurement is human

factors [28, 30]. More specifically, the human factors for a dog

and a chicken are represented by df and cf , respectively. Also, the

blood supply is dependent on the availability of humans, dogs, and

chickens in the domestic region in village j at time t, given by aNj (t),

aDhj (t), and aChj (t), respectively. These time-dependent values

represent the proportion of the respective populations available

for biting in the domestic region, which may vary due to various

factors, such as dogs sleeping outside or people being unavailable

for biting because of their protection (at night) when they are using

bednets [28]. Therefore, the total blood supply is given by

bsupj (t) = aNj (t)Nj(t)+ df aDhj (t)Dj(t)+ cf aChj (t)Cj(t), (5)

which can be thought of as the equivalent number of human factors

available for biting.

We now consider the deaths of vectors. Natural death is

modeled by

− dmVj(t), (6)

where dm is the natural death rate. We also assume that the vectors

die due to overpopulation, which is modeled by

dk

(

1−
Vj(t)

KVj

)

−

, (7)

where dk is the death rate due to the population being over the

carrying capacity. In addition, death can be caused by insecticide

spraying. We assume there is a sub-population of vectors Vresj

that does not die from spraying, being protected in cracks in the

walls or by insecticide resistance. Recent field surveys confirm that

domestic vectors that survive spraying continue to be a source of

reinfestation [18]. For simplicity, we assume that Vresj is constant

for a given village. Therefore, the term that models death due to

spraying is given by

− rj(t)
(

Vj(t)− Vresj

)

+
, (8)

where rj(t) is the mortality rate due to spraying of non-

resistant vectors.

As was done in [26], we assume the net movement into (or out

of) the domestic region from (or to) the peridomestic region of a

village is given by

ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

. (9)
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Here, ρ is a constant parameter with units vectors per day, and

the term inside the parentheses captures the density dependence

by comparing the ratios of the vector population to the carrying

capacity in the respective regions. We note that the movement of

vectors between the domestic and peridomestic region is still poorly

understood, and amore thorough analysis of this term can be found

in [26].

A novel aspect of our model is the migration of vectors

between villages. Vectors move between villages primarily in two

ways: passively via human movement and actively via flight [15].

However, even with villages within approximately 500 m of each

other there is sometimes no flight of vectors between them [15],

so we consider active transport negligible in our village system.

For passive migration, which occurs when vectors and their eggs

are carried by traveling individuals, we assume that the rate is

dependent on the number of vectors and humans present in the

domestic region of each village in the following way. We let αNj,k

be the daily rate of people traveling from village j to village k, and

use η to denote the average ratio of vectors that live in the luggage

or other travel items in the domicile. Then the number of people

traveling daily from village j to village k is given by αNj,k
Nj(t), and

on average, each person is carrying ηVj(t)/Nj(t) vectors. Thus, the

number of vectors per day passively transporting into (and out of)

village j, and from (and into) village k, is

pVk,j
Vk(t)− pVj,k

Vj(t), (10)

where, pVj,k
= ηαNj,k

.

Finally, the complete equation used to model domestic

vectors is

dVj

dt
= dhj (t − τ )Vj(t − τ )

(

1−
Vj(t − τ )

KVj

)

+

−dkVj(t)

(

1−
Vj(t)

KVj

)

−

−dmVj(t)− rj(t)
(

Vj(t)− Vresj

)

+
+ ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

+
∑

k6=j

(

pVk,j
Vk(t)− pVj,k

Vj(t)
)

. (11)

2.2. Infected domestic vectors

A domestic vector becomes infected by biting infected humans

and infected dogs [31]. Thus, the term that models the growth of

the infected domestic vector population is

Bj(t)
(

Vj(t)− Vij (t)
)

(

PNVaNj (t)Nij (t)+ PMVdf aDhj (t)Dij (t)

bsupj (t)

)

,

(12)

where PNV and PMV are the proportion of vectors that become

infected after taking a blood meal from infected humans and

mammals (including dogs). Note that Bj(t)
(

Vj(t)− Vij (t)
)

is the

daily number of bites by non-infected vectors and that the latter

half of (12) is the fraction of bites that cause infection. The vectors

do not pass T. cruzi to their young, so this is the only term for the

growth of the infected vector population [32].

The death rates for infected vectors are assumed to be

the same as those for all vectors with no preference for the

infected or susceptible populations, so the terms accounting for

mortality are the same as those for total domestic vectors but

multiplied appropriately by Vij/Vj. The transport rates between

populations of vectors are subject to the same assumption, and

they are correspondingly multiplied by the appropriate ratios of

infected vectors.

Thus, the complete equation is

dVij

dt
= Bj(t)

(

Vj(t)− Vij (t)
)

(

PNVaNj (t)Nij (t)+ PMVdf aDhj (t)Dij (t)

bsupj (t)

)

−dkVij (t)

(

1−
Vj(t)

KVj

)

−

− dmVij (t)

−rj(t)

(

1−
Vresj

Vj(t)

)

+

Vij (t)+ ρ

(

Wij (t)

KWj

−
Vij (t)

KVj

)

+
∑

k6=j

(

pVk,j
Vik (t)− pVj,k

Vij (t)
)

. (13)

2.3. Total peridomestic vectors

Naturally, the dynamics of the peridomestic vectors are similar

to those of the domestic vectors; however, there are some minor

differences due to the different setting. First, the egg hatching rate

is updated to depend on the peridomestic blood supply, b̃supj (t),

which is given by

b̃supj (t) = df aDpj (t)Dj(t)+mf aMj (t)Mj(t)+ cf aCpj (t)Cj(t). (14)

Here, aDpj (t) is the peridomestic availability of dogs, aCpj (t) is the

peridomestic availability of chickens, aMj (t) is the availability of

mammals, andmf is themammal factor analagous to df and cf [28].

Thus, the peridomestic biting rate B̃j(t) is given by

B̃j(t) = b(t)

(

β

bmax

)

(

b̃supj (t)

b̃supj (t)+ Ab(t)

)

, (15)

and the peridomestic egg hatching rate is given by

d̃hj (t − τ ) = vφlφhB̃j(t − τ ). (16)

Second, we assume that luggage containing items such as

clothing is what harbors vectors for passive transport [15], so

as there is no luggage in the peridomestic region there is

correspondingly no term for passive transport (We relax this

assumption in Simulation 4 and consider a case with transport of

peridomestic vectors). Therefore, we have

dWj

dt
= d̃hj (t − τ )Wj(t − τ )

(

1−
Wj(t − τ )

KWj

)

+

−dkWj(t)

(

1−
Wj(t)

KWj

)

−
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−dmWj(t)− rj(t)
(

Wj(t)−Wresj

)

+

−ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

. (17)

2.4. Infected peridomestic vectors

The dynamics of infected peridomestic vectors are derived from

those of the total peridomestic vectors just as for the domestic

vectors, so the equation is given by

dWij

dt
= B̃j(t)

(

Wj(t)−Wij (t)
)

(18)

×

(

PMVaMj (t)mfMij (t)+ PMVdf aDpj (t)Dij (t)

b̃supj (t)

)

−dkWij (t)

(

1−
Wj(t)

KWj

)

−

− dmWij (t)

−rj(t)

(

1−
Wresj

Wj(t)

)

+

Wij (t)− ρ

(

Wij (t)

KWj

−
Vij (t)

KVj

)

.

2.5. Susceptible humans

We now consider susceptible humans.We note that all children

of susceptible humans are born susceptible, and a certain fraction

PNN of children born to infected mothers are also born infected due

to congenital transmission with the rest being born susceptible [33–

35]. Also, due to the relatively long time it takes for Chagas disease

to cause death, the birth rate of infected mothers is assumed to be

the same as that of susceptible ones. Thus, using a logistic model,

the growth term is given by

GN

(

Nsj (t)+ (1− PNN)Nij (t)
)

(

1−
Nj(t)

KNj

)

+

, (19)

where GN is the daily growth rate of humans with unlimited

resources. For the death term, we use

− γNsNsj (t), (20)

where γNs is the per day death rate of susceptible humans.

Along with death, we consider the loss of susceptible humans

due to infection. The rate of infection is taken to be the product

of the number of bites per day by infected vectors and the

fraction of those bites that cause human infection, which yields the

following term:

− Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t). (21)

Finally, as we consider multiple villages, we include terms for

the movement of people between them. We assume this movement

depends on a per-person travel rate, so that the rate of people

entering and leaving village j (from and to village k) is given by

αNk,j
Nsk − αNj,k

Nsj , (22)

where αNj,k
is the daily rate of movement of people from village j

to k.

Thus, the complete equation is

dNsj

dt
= GN

(

Nsj (t)+ (1− PNN)Nij (t)
)

(

1−
Nj(t)

KNj

)

+

(23)

−Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t)− γNsNsj (t)

+
∑

k6=j

(

αNk,j
Nsk − αNj,k

Nsj

)

.

2.6. Infected humans

The model for infected humans is similar to that of susceptible

ones. However, the birth term reflects that only infected mothers

can give birth to infected children and that only a certain percentage

of their children are born infected. Also, the susceptible humans

that become infected join the infected population, and the death

rate of infected humans is assumed to be higher. However, the travel

rates are assumed to be the same. Thus, the equation is

dNij

dt
= GNPNNNij (t)

(

1−
Nj(t)

KNj

)

+

+Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t)

−γNiNij (t)+
∑

k 6=j

(

αNk,j
Nik − αNj,k

Nij

)

. (24)

2.7. Infected dogs

We first consider the birth rate of infected dogs. To do this, we

consider the total population of dogs in village j, Dj(t), which we

assume is known. Then, assuming a growth rate of αj(t) for the total

dogs and that susceptible and infected dogs die at the same rate of

γD, we have D′
j(t) = αj(t)Dj(t) − γDDj(t). Finally, since Dj(t) is

known, and hence, D′
j(t) is also known, we also have αj(t) in terms

of known quantities:

αj(t) =
D′
j(t)

Dj(t)
+ γD. (25)

Therefore, as infected dogs are only born to infected mothers, the

birth term for infected dogs is given by

PMM

(

D′
j(t)

Dj(t)
+ γD

)

Dij (t), (26)

where PMM is the proportion of dogs infected by

vertical transmission.

In addition, the infected dog population could grow due to

infected vector bites on susceptible dogs. Therefore, the termwe use

is similar to that used tomodel infection of humans. However, since

dogs inhabit both domestic and peridomestic regions, there are

two separate terms to model infection using appropriate respective
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biting terms, blood supplies, populations, and availability values.

Thus, the terms used are

Bj(t)
PVMdf aDhj (t)

(

Dj(t)− Dij (t)
)

bsupj (t)
Vij (t) (27)

and

B̃j(t)
PVMdf aDpj (t)

(

Dj(t)− Dij (t)
)

b̃supj (t)
Wij (t) (28)

for the domestic and peridomestic regions, respectively.

Then, including the death term, the complete equation is given by

dDij

dt
= Bj(t)

PVMdf aDhj (t)
(

Dj(t)− Dij (t)
)

bsupj (t)
Vij (t) (29)

+B̃j(t)
PVMdf aDpj (t)

(

Dj(t)− Dij (t)
)

b̃supj (t)
Wij (t)

+PMM

(

D′
j(t)

Dj(t)
+ γD

)

Dij (t)− γDDij (t).

2.8. Infected mammals

Finally, we consider infected mammals. This equation is similar

to that for dogs, but it differs slightly in that mammals do not enter

the domestic region and thus there are no terms for infection from

domestic vectors. Therefore, we have

dMij

dt
= B̃j(t)

PVMmf aMj (t)
(

Mj(t)−Mij (t)
)

b̃supj (t)
Wij (t) (30)

+PMM

(

M′
j(t)

Mj(t)
+ γM

)

Mij (t)− γMMij (t).

2.9. The full model

Thus, the full model for village j is given by the following eight

differential equations and the initial conditions found in Table 2:

dVj

dt
= dhj (t − τ )Vj(t − τ )

(

1−
Vj(t − τ )

KVj

)

+

−dkVj(t)

(

1−
Vj(t)

KVj

)

−

−dmVj(t)− rj(t)
(

Vj(t)− Vresj

)

+

+ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

+
∑

k6=j

(

pVk,j
Vk(t)− pVj,k

Vj(t)
)

(31)

dVij

dt
= Bj(t)

(

Vj(t)− Vij (t)
)

(

PNVaNj (t)Nij (t)+ PMVdf aDhj (t)Dij (t)

bsupj (t)

)

−dkVij (t)

(

1−
Vj(t)

KVj

)

−

− dmVij (t)

−rj(t)

(

1−
Vresj

Vj(t)

)

+

Vij (t)+ ρ

(

Wij (t)

KWj

−
Vij (t)

KVj

)

+
∑

k6=j

(

pVk,j
Vik (t)− pVj,k

Vij (t)
)

(32)

dWj

dt
= d̃hj (t − τ )Wj(t − τ )

(

1−
Wj(t − τ )

KWj

)

+

−dkWj(t)

(

1−
Wj(t)

KWj

)

−

−dmWj(t)− rj(t)
(

Wj(t)−Wresj

)

+

−ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

(33)

dWij

dt
= B̃j(t)

(

Wj(t)−Wij (t)
)

×

(

PMVaMj (t)mfMij (t)+ PMVdf aDpj (t)Dij (t)

b̃supj (t)

)

−dkWij (t)

(

1−
Wj(t)

KWj

)

−

− dmWij (t)

−rj(t)

(

1−
Wresj

Wj(t)

)

+

Wij (t)− ρ

(

Wij (t)

KWj

−
Vij (t)

KVj

)

(34)

dNsj

dt
= GN

(

Nsj (t)+ (1− PNN)Nij (t)
)

(

1−
Nj(t)

KNj

)

+

−Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t)− γNsNsj (t)

+
∑

k6=j

(

αNk,j
Nsk − αNj,k

Nsj

)

(35)

dNij

dt
= GNPNNNij (t)

(

1−
Nj(t)

KNj

)

+

+Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t)

−γNiNij (t)+
∑

k 6=j

(

αNk,j
Nik − αNj,k

Nij

)

(36)

dDij

dt
= Bj(t)

PVMdf aDhj (t)
(

Dj(t)− Dij (t)
)

bsupj (t)
Vij (t) (37)

+B̃j(t)
PVMdf aDpj (t)

(

Dj(t)− Dij (t)
)

b̃supj (t)
Wij (t)

+PMM

(

D′
j(t)

Dj(t)
+ γD

)

Dij (t)− γDDij (t)
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dMij

dt
= B̃j(t)

PVMmf aMj (t)
(

Mj(t)−Mij (t)
)

b̃supj (t)
Wij (t)

+PMM

(

M′
j(t)

Mj(t)
+ γM

)

Mij (t)− γMMij (t). (38)

We now establish the baseline parameter values. We separate

these values into two categories: those considered to be biological

in nature and generally consistent in all villages and those that

depend on the structure of the particular collection of villages being

modeled. For example, we consider the vector gestation time and

the proportion of vector bites that result in a human being affected

to be the same in any village, whereas values such as the number of

houses in a village and the availability of dogs in the domestic region

clearly depend on the particular village in question. The parameter

values used are based upon existing data of Chagas disease and the

Gran Chaco region when available, but we note that these values

have a high degree of aleatory variability and epistemic uncertainty.

The constant biological parameters are found in Table 1. We note

that the human growth rate GN was chosen so that the total human

population grows at an approximate annual rate of 1.0% over the

30 years of simulation. This is consistent with recent population

data for Bolivia, Paraguay, and Argentina, the three countries that

contain the vast majority of the Gran Chaco region [46–48]. In

addition, the infection proportion PVN is unknown, so we choose

a value that agrees with the T. cruzi seroprevalence in humans

of 51.7% found in surveys in the Bolivian Chaco [9]. The village

dependent values are found in Table 2 with citations where the

value was chosen based on empirical data.

We now consider the time-dependent parameters. Based on

data from [28], the number of goats in village j is given by

Gj(t) = Hj

(

17.5− 2.5 cos

(

2π

365/2
(t − 45.75)

))

, (39)

where Hj is the number of houses in village j, which yields a

(smooth) function with a period of half a year. This function is

extended periodically. Similarly, the number of pigs is also derived

from [28] and it is taken to be yearly periodic. The (smooth)

function for the first year is given by

Pj(t) =































Hj, 0 ≤ t ≤ 181.5

Hj

(

1.75− 0.75 cos
(

(t − 181.5)π
))

, 181.5 < t ≤ 182.5

2.5Hj, 182.5 < t < 272.75

Hj

(

1.75+ 0.75 cos
(

(t − 272.75)π
))

, 272.75 ≤ t < 273.75

Hj, 273.75 ≤ t ≤ 365.

(40)

Combining these two functions, we have that

Mj(t) = Pj(t)+ Gj(t) (41)

TABLE 1 Constant parameter values used in the baseline simulation.

Parameter Definition Baseline value Units Source

v Fraction of vectors that are adult females 1073/60000 adult female vector
vector

[36]

φl Eggs laid per bite per fed adult female vector 20
egg/bite

adult female vector
[28, 29]

φh Fraction of eggs that successfully hatch 0.831 vector/egg [28, 29]

τ Vector gestation time 20 days [37]

β Max possible bites per vector per day 0.47 bites/vector/day [27, 29, 38]

PNV Per bite human to vector infection prop. 0.03 no units [39]

PVN Per bite vector to human infection prop. 0.00515 no units Est. [39]

PVM Per bite vector to mammal/dog infection prop. 0.02 no units Est. [39]

PMV Per bite mammal/dog to vector infection prop. 0.49 no units Est. [39]

PNN Per birth human to human infection prop. 0.073 no units Est. [35]

PMM Per birth mammal/dog to mammal/dog infection prop. 0.1 no units Est. [33, 40, 41]

df Human factor of one dog 2.45 humans/dog [27]

cf Human factor of one chicken 0.35 humans/chicken [27, 30]

mf Human factor of one mammal 2.45 humans/mammal Est. [27]

bmax Max value of b(t) 0.34 bites/day/vector Est. [28]

γNi Per day mortality rate of infected humans 0.00004163 1/day Est. [42, 43]

γD Per day mortality rate of dogs 1/1788.5 1/day This study

γM Per day mortality rate of mammals 1/1095 1/day This study

γNs Per day mortality rate of susceptible humans 1/27783.8 1/day Est. [42, 43]

GN Per day human growth rate 0.00019 1/day This study

dm Death rate (per day) of vectors 0.023677446 1/day Est. [29]

dk Death rate (per day) of vectors due to overpopulation 10 * dm 1/day This study
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TABLE 2 Village parameter values used in the baseline simulation.

Parameter Definition Baseline value Units Source

KVj Domestic vector carrying capacity in village j 1.301 * Hj vectors [44, 45]

KWj Peridomestic vector capacity in village j 36.26 * Hj vectors [44, 45]

KNj Per village human carrying capacity in village j 10 * Hj humans This study

ρ Factor for per day vector migration between the

peridomestic and domestic regions

1 vectors/day This study

Hj Total number of houses in village j 74 houses [28]

Cj Total number of chickens in village j 15 * Hj chickens [28]

Dj Total number of dogs in village j 2.9 * Hj dogs [27]

aDhj Domestic dog availability in village j 0.59 no units [30]

aDpj Peridomestic dog availability in village j 0.13 no units [30]

aNj Human availability in village j 1 no units This study

Vresj Min number of domestic vectors due to cracks and

resistance

0.05 * Hj vectors This study

Wresj Min number of peridomestic vectors due to cracks and

resistance

0.05 * Hj vectors This study

η Proportion of vectors in luggage of one person 0.1 1/person This study

αNj,k
Rate of human travel from village j to k 1/7 1/day This study

V0j (t), t ∈ [−τ , 0] Initial number of total domestic vectors in village j 50 vectors This study

Vi0j Initial number of infected domestic vectors in village j 30 vectors This study

W0j (t), t ∈ [−τ , 0] Initial number of total peridomestic vectors in village j 1800 vectors This study

Wi0j Initial number of total infected peridomestic vectors in

village j

1400 vectors This study

Ns0j Initial number of susceptible humans in village j 193 humans Est. [39]

Ni0j Initial number of infected humans in village j 207 humans Est. [39]

Di0j Initial number of infected dogs in village j 165 dogs This study

Mi0j Initial number of infected peridomestic mammals in

village j

1150 mammals This study

TABLE 3 Defining points of the piecewise-linear time dependent parameters.

Function t = 45.625 t = 136.875 t = 228.125 t = 319.375

(Fall) (Winter) (Spring) (Summer)

aCj (t) 0.38 0.83

aGj (t) 1 0

aPj (t) 0 1

b(t) 0.14 0.18 0.34 0.23

For availability, we first define the total chicken availability

aCj (t), goat availability aGj (t), and pig availability aPj (t), all of

which are obtained from data in [28]. We use continuous,

yearly-periodic, piecewise-linear functions defined by the values

listed in Table 3 and shown in Figure 1. We assume that

there are an equal number of chickens in the peridomestic

region and the domestic region, so we take aCpj (t) =

0.5 ∗ aCj (t) for the peridomestic chicken availability and

aChj (t) = 0.5 ∗ aCj (t) for the domestic availability. We

then take aMj (t) to be the weighted average of aPj (t) and

aGj (t), yielding

aMj (t) =
aPj (t)Pj(t)+ aGj (t)Gj(t)

Mj(t)
. (42)

For the biting term, we again use a yearly-periodic piecewise-

linear function as defined in Table 3. For the known blood supply,

we use

bsupknown (t) = cf aC(t)Cknown(t)+mf aM(t)Mknown(t), (43)
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FIGURE 1

Time-dependent parameters.

where aC(t) and aM are defined the same as aCj (t) and aMj , and

Cknown(t) and Mknown(t) are given by Hknown = 74. Both of these

functions are also derived from [28]. Finally, we define a yearly

periodic active spraying mortality function, r(t), with the first year

given by

r(t) =















0, 0 ≤ t < t1
(

e−λ(t−t1)
2
− e−1/2

)

r̄max, t1 ≤ t ≤ t2

0, t2 < t ≤ 365

(44)

with t1 = 212.5, t2 = 303.75, and

λ =
1

2(91.25)2
, r̄max =

1

1− e−1/2

as defined in [25]. This corresponds to spraying at t1 with residual

effects that diminish until disappearing at t2. We take rj(t) = r(t)

in spraying years for village j and rj(t) = 0 otherwise. The time-

dependent parameters, with the exception of the active spraying

mortality function, are shown over the course of 1 year in Figure 1.
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FIGURE 2

Baseline simulation: the populations of two identical villages with baseline parameters, insecticide spraying only in village 1, and no travel between

them.
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FIGURE 3

Neighboring villages with human travel and vector migration: the populations of two neighboring villages with human travel and vector transport

between them and insecticide spraying only in village 1.
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FIGURE 4

Neighboring villages with passive vector migration: the populations of two neighboring villages with vector transport between them and insecticide

spraying only in village 1.
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3. Results

We first establish a baseline simulation of two identical villages

with the default parameter values. Insecticide spraying occurs

in village 1 once per year for 10 consecutive years, there is no

insecticide spraying in village 2, and there is no travel or interaction

between the two villages. We then compare this simulation to

several studies where village 1 is connected through travel with

village 2, which can serve as a source of reinfestation. All numerical

solutions were obtained using the NDSOLVE numerical differential

equations solver in Wolfram Mathematica. Graphs were also

produced in Wolfram Mathematica.

3.1. Simulation 0: baseline

For the baseline case with resistant vectors, the simulation is

run for 30 years, during which insecticide spraying in village 1

occurs from year 11 to year 20. This is done so that the populations

can reach steady oscillations before spraying begins and so that the

behavior of the populations before, during, and after insecticide use

can be analyzed. The results of this baseline simulation may be seen

in Figure 2.

Before spraying begins, all the non-human populations

demonstrate almost steady oscillations. These oscillations continue

for the full 30 years in village 2. In village 1, after spraying starts,

the vector populations quickly reach new smaller steady oscillations

while the infected populations decrease. Once insecticide use

stops, the non-human populations rapidly return to the same

oscillating patterns that they demonstrated before it began, and

the number of infected humans begins to increase again. This is

largely in line with the qualitative results found in the baseline

simulations in [26], although there is a more noticeable decrease

in the infected populations in the current work as a result of the

updated parameters.

3.2. Simulation 1: two neighboring villages
with travel and vector migration

In this section, we simulate the populations of two villages that

are connected by human travel, including the passive transport

of vectors. We use the baseline parameters in both villages and

include insecticide spraying from year 11 to year 20 only in village 1.

This scenario investigates how isolated rural villages with different

control measures might affect each other, and in particular, the role

village 2 might play as a reinfestation source for village 1. Here

we simulate the case where travel between the villages is common,

with the average person traveling to the other village once per week

(αN1,2 = αN2,1 = 1/7). Additionally, we specify that 10% of the

vectors live in luggage or other travel items in the homes. The

results are shown in Figure 3.

We see that during the spraying years, the domestic vector

populations in village 1 and village 2 are higher and lower,

respectively, as compared to the baseline case. These changes reflect

the mixing of the vector populations in the two villages due to the

passive transport of vectors. More strikingly, there is a complete

FIGURE 5

Neighboring villages with variable levels of vector migration: the

numbers of infected humans after 30 years in two neighboring

villages as a function of the travel parameters. The value of

PV1,2 = PV2,1 = ηαN1,2
varies from η = 1% and αN1,2

= 1/year on the

low end to η = 10% and αN1,2
= 1/(10 days) on the high end.

mixing of the human populations between the villages so that they

have the same number of infected humans despite the difference

in control measures. While the travel between the villages does

increase the number of human infections in village 1, it is important

to note that the total number of human infections in the two villages

after 30 years is identical to the baseline case. That is, the additional

infections in village 1 are offset by fewer infections in village 2.

Thus, the movement of infected humans and vectors from village

2 to village 1 spreads the disease burden between the villages but

does not increase the total number of infected humans.

It is not clear from this simulation to what extent the change in

the infected human populations is a result of the humans traveling

vs. the vectors being transported. To isolate the effects, we ran a

similar simulation with the same level of human travel but with

no vector transport. The results for the human populations were

identical to those seen in Figure 3 while the rest of the populations

had dynamics similar to the baseline case. We see that the transport

of vectors has little effect on the number of infected humans when

the human populations are mixing at such a high rate. These

results were further confirmed in scenarios with much lower rates

of human travel. For example, when humans travel once per year

between the villages, it takes about 22 years for the two human

populations to fully mix, but the overall number of infections

remains the same. And, removing vector transport in this case

also has no effect on the total number of human infections in

either village.

Overall, we see that vector migration is not a significant source

of reinfestation in this scenario and that travel redistributes the

number of human infections, but does not increase them. The

human travel in this scenario is similar to migration as people travel

to and stay in the other village. As such, the eventual complete

mixing of the populations is likely unrealistic, potentially obscures

the differences between the two villages, and does not increase

the total number of human infections. Thus, to further investigate

the potential effects of vector migration, we will consider in

Simulations 2–7 human travel that passively transports the vectors

while the humans themselves do not move to the new village. These
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FIGURE 6

Neighboring villages with domestic and peridomestic vector migration: the populations of two neighboring villages with domestic and peridomestic

vector transport between them and insecticide spraying only in village 1.
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simulations represent scenarios where humans transport objects

containing vectors but do not stay in the other village.

3.3. Simulation 2: two neighboring villages
with vector migration

In this section, we simulate the populations of two villages with

the same parameters and insecticide spraying as in Simulation 1,

but with the travel terms removed from the human equations. That

is, we consider the baseline simulation with the addition of passive

vector migration but not human travel. The results are shown in

Figure 4 where we see that, except for infected humans, all the

population dynamics are similar to those in Simulation 1 (Figure 3).

Because we have removed human population mixing, the

differences in the number of human infections are attributable

solely to the passive transport of vectors. As in Simulation 1, we

see more vectors in village 1 during spraying years as compared to

the baseline case. These additional vectors in village 1 that come

from village 2 do result in five more infected humans in village 1

after 30 years as compared to the baseline. However, there are six

fewer infected humans in village 2 in this scenario. So while the

disease burden has slightly shifted from village 2 to village 1, the

overall effect is small and the number of human infections across

both villages remains nearly constant. We see that the transport of

vectors does not have a significant impact on human infections in

this scenario.

3.4. Simulation 3: two neighboring villages
with variable travel parameters

We further investigate the effect of the travel parameters in

this section by considering the number of infected humans in both

villages after 30 years as a function of PV1,2 = PV2,1 = ηαN1,2 . We

recall that αNj,k
is the daily travel rate of humans from village j to

village k and η is the average ratio of vectors that live in the luggage

or other travel items. As in Simulation 2, to isolate the effect of

vectormigration, the humans transport the vectors between villages

but do not stay in the other village. All other parameters are held

at the baseline values in both villages, with insecticide spraying in

village 1, but not in village 2. The results are shown in Figure 5.

Overall, we see that vector migration has a relatively small effect

on the infected human populations across a broad range of travel

scenarios. Small changes in the travel parameters have negligible

effects on the infected human populations and even a change from

no travel to high levels of travel and vector transport results in

only a handful of additional infections in village 1 after 30 years.

Furthermore, any increase in human infections in village 1 is offset

by a similar decrease in infections in village 2.

3.5. Simulations 4–5: peridomestic vector
migration and other travel scenarios

Next we consider a simulation where vectors may be passively

transported from the peridomestic regions of a village in addition

to being transported from the homes. In this scenario, vectors

may be hiding in materials (e.g., straw, hay, or animal feed) that

are transported from the peridomestic region in one village to

the peridomestic region in another during agricultural activities.

To accomplish this in the model, we modify the equations for

the peridomestic vector equations to include transport terms that

are analogous to the transport terms in the domestic vector

equations. The travel parameters are set to the same level as those in

Simulation 2, while all other parameters are at their baseline values

and insecticide spraying occurs only in village 1. As in Simulations

2–3, the humans transfer terms are removed from the equations,

though the humans still transport the vectors. The results are shown

in Figure 6.

As expected, we now see a mixing of the peridomestic

vectors, just as we saw with the domestic vectors in Figures 3, 4.

Additionally, we see differences in the infected dog and infected

mammals populations as compared to those in Figures 3, 4, where

there was no peridomestic vector transport. The decline and

rebound of the infected human population is qualitatively similar to

those in Figure 4, though the rebound after spraying ceases is more

pronounced. After 30 years, the number of people infected in village

1 is about nine higher than the baseline case and four higher than

Simulation 2, the case with only domestic vector transport. Notably,

the number of infected humans in village 2 does not decline to

offset the increase in village 1, but rather stays about the same as in

Simulation 2. Nevertheless, the total infected humans across both

villages is only four higher than the baseline case.

We ran additional simulations to see if other differences

between the villages might affect the role that vector migration

plays. We first considered the size of village 2, allowing village 1 to

be connected to a smaller or larger village by varying the number

of houses in village 2 from 40 to 145. We then considered the

number of infected humans after 30 years using different rates of

domestic vector migration. We did not include peridomestic vector

migration or the transfer of humans between the populations. All

other parameters are held at the baseline values in both villages,

with insecticide spraying only in village 1.

FIGURE 7

Neighboring villages with variable number of houses in village 2: the

number of infected humans after 30 years in village 1 as a function

of the number of houses in village 2 with vector migration between

them.
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FIGURE 8

Village 1 with no infected animals or vectors: the populations of village 1, with and without travel to village 2, when only humans are initially infected.
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FIGURE 9

Vector migration to a disease-free village: the populations of two neighboring villages, one which is initially infection-free, with low levels of vector

migration between them and no insecticide spraying.

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org130

https://doi.org/10.3389/fams.2023.1225137
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Co�eld et al. 10.3389/fams.2023.1225137

When vector migration is low (αN1,2 = αN2,1 = 1/365 and

η = 0.01), the number of infected humans in village 1 is essentially

independent of the number of houses in village 2, varying by less

than a single person over the whole range of house values in village

2. We then increased the travel parameters to their values from

Simulation 2, see Figure 7. In this case, the number of humans

infected after 30 years increases by about thirty people over the

whole range of house values in village 2. This suggests that the size

of the neighboring village with no insecticide spraying may be a

significant factor in determining the effects of vector migration in

spreading the disease.

Finally, we ran a similar simulation where we allowed the use

of bed nets in village 2 to vary from 0% to 100% effectiveness. In

both high and low vector migration scenarios, the use of bed nets in

village 2 had no meaningful effect on the number of infected people

in village 1. Overall, we see under a variety of circumstances that

vector migration plays only a minor role in the spread of infection,

except when there is substantial travel to a nearby larger village.

3.6. Simulations 6–7: low infection
scenarios

In the preceding scenarios where infected populations are

already established, travel and vector migration has had only a

secondary or marginal effect on the dynamics. Accordingly, in this

section we consider scenarios where infections in village 1 are very

low so that travel can play a potentially larger role in reintroducing

infected vectors.

First, we modify Simulation 2 so that initially in village 1,

there are no infected animals or vectors, only infected humans.

We modify the corresponding susceptible populations so that

the total populations are initially the same and leave the initial

human populations, infected and susceptible, as in the baseline

case. All other parameters are set to their baseline values, the travel

parameters are as in Simulation 2, and insecticide spraying occurs

only village 1. The results are shown in Figure 8 where they are

contrasted with an otherwise identical scenario that involves no

travel between the two villages.

We see that in this extreme scenario, the reinfestation of village

1 caused by the transport of vectors from village 2 does increase the

number of infected humans above the level of infection that would

occur without the travel between the villages. However, we see that

in both cases the other infected populations rebound within a few

years and the vector migration from village 2 results in fewer than

seven additional human infections at the 30 year mark.

Next, wemodify the above scenario so that there are no infected

animals or humans initially in village 1 and adjust the susceptible

populations accordingly to maintain the same total values at time 0.

The travel parameters are set much lower to αN1,2 = αN2,1 = 1/365

and η = 0.01. Also, notably we do not include insecticide spraying

in either village. The results are shown in Figure 9.

As expected, the introduction of infected vectors from village

2 leads to an eventual explosion of infection throughout all

populations in village 1. The infected vector populations reach

steady levels within about 5 years and the dogs and mammals reach

steady levels soon thereafter. Even though the travel between the

villages is very low, within 30 years, around 20% of the humans

in village 1 are infected. However, we note that if travel with

village 2 is entirely removed from this last scenario and instead

we introduce a single infected vector in the domicile at time 0,

we get nearly identical dynamics and a slightly higher number of

infected humans after 30 years. It is clear that once the infection is

introduced from any source, it is the local dynamics in the village

that drive the further infection in the village and not the ongoing

reinfestation of vectors through transport.

3.7. Simulations 8–9: resistance

Finally, we look at the sensitivity of the baseline simulation to

the number of resistant vectors in the village. Figure 10 depicts the

number of infected humans after 30 years in a single, unconnected

village as a function of the number of resistant vectors Vres =

Wres. All other parameters are set to their baseline values and

insecticide spraying occurs from year 11 to year 20, as in the

baseline simulation.

We see that the first resistant vector has a substantial impact on

human infections, leading to 16more infections after 30 years. And,

as expected, more resistant vectors leads to more infected humans,

though at a decreasing rate. Figure 11 shows all the populations in

the village in the extreme cases of 0, 1, and 40 resistant vectors.

When there are no resistant vectors, the total number of vectors

approaches zero during spraying years and does not recover for at

least 5 years after spraying. However, with only a single resistant

vector, the vector populations are able to rebound quickly to pre-

spraying levels with 1–2 years. Additional resistant vectors lead

to a quicker rebound of vector populations, but not significantly.

Indeed, the presence of any resistant vectors allows the vector

populations to rebound quickly.

Figure 11 also shows increased human infections with Vres =

40 as compared to Vres = 1, but this is due almost entirely to the

FIGURE 10

Resistant vectors in a single village: the number of infected humans

in a single village after 30 years as a function of the number of

resistant vectors Vres = Wres. All other parameters are set to their

baseline values.
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FIGURE 11

Resistant vectors in a single village: the populations in a village in di�erent cases for the number of resistant vectors Vres = Wres.
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sustained higher level of vectors during the spraying years, and not

due to a quicker rebound of vector populations.

4. Discussion

In this work, we expand existing Chagas disease models

by including novel travel and transport terms, allowing for the

investigation of potentially significant infection dynamics due

to travel and the exploration of relevant control strategies. In

particular, the simulations seek to analyze the effects of travel and

vector migration between two rural villages, one with insecticide

spraying and the other with lax control methods and corresponding

higher infection levels. However, these simulations suggest that

human travel and the passive transport of vectors is unlikely to play

a significant role in Chagas disease dynamics in rural villages.

Simulations 1 and 2 demonstrate that travel has only marginal

effects on the total number of infected humans even when there

is weekly travel between the villages. Simulation 3 further shows

that the total number of human infections changes very little over a

wide range of travel and vector migration parameters. Additionally,

allowing for peridomestic vector migration does further increase

the number of infected humans after 30 years in the village with

spraying, but the increase remains below 3% and the net increase in

both villages is under 2%. If, however, the village with no insecticide

spraying is much larger than the one with spraying, and there is

substantial travel between the two, then the village with spraying

can see a marked increase in humans infections after 30 years as

compared to the case with no travel. Otherwise, we see that the

effects on human infections of travel and vector migration between

villages are likely secondary across a wide range of scenarios.

Simulation 6 shows that travel and vector transport could play a

role in reintroducing infected vectors into a village with no infected

animals or vectors, though this scenario is unlikely. Nevertheless,

and most importantly, it is not the ongoing travel that causes

an eventual spike in infections. Rather, it is the introduction of

any infection, in a vector or otherwise, that eventually leads to

elevated infection levels in all populations, as seen in Simulation

7. Ultimately, the most significant role of travel is in introducing

T. cruzi into an infection-free village. But once introduced, travel

becomes relatively insignificant and local dynamics dominate.

Given the nature of travel between villages and the endemic nature

of Chagas disease, it is unlikely that control strategies related to

travel will yield meaningful benefit.

We also considered the effects of insecticide resistance on the

disease dynamics. Simulations 8 and 9 show that any insecticide

resistance, even a single vector, can notably increase the number of

human infections over 30 years by allowing the vector population

to quickly rebound to pre-spraying levels once insecticide spraying

ceases. Additionally, a large number of resistant vectors can further

increase human infections by keeping vector numbers relatively

high even during times of insecticide spraying.

Overall, these simulations suggest that human travel and

passive vector migration between rural villages are not significant

sources of reinfestation in the Gran Chaco. Control measures

should instead focus on other reinfestation sources like sylvatic

foci or domestic foci that survive insecticide spraying. A possible,

unlikely exception would be the case when travel or migration

is from areas where Chagas disease is endemic to areas where it

is not, for example, from rural communities to urban ones [49].

Such a scenario could be considered in future work but would

require significant modeling changes as the model here specifically

considers travel between rural villages, which have quite different

transmission dynamics than urban settings.
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Cost e�ectiveness and optimal
control analysis for bimodal
pneumonia dynamics with the
e�ect of children’s breastfeeding
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Temesgen Duressa Keno

Department of Mathematics, College of Natural and Computational Science, Wallaga University,

Nekemte, Ethiopia

The global impact of exclusive versus inclusive nursing on particular baby

mortalities and morbidities from conception to 6 months is examined in

this study. Exclusive breastfeeding practices are more crucial and e�ective in

preventing illness outbreaks when there is no access to appropriate medications

or vaccinations. Additionally, this study takes optimal control theory into account,

applying it to a system of di�erential equations that uses Pontryagin’s Maximum

Principle to describe a bimodal pneumonia transmission behavior in a vulnerable

compartment. The proposed pneumonia transmission model was then updated

to include two control variables. These include preventing illness exposure

in susceptible children through various preventative measures and treating

infected children through antibiotics, hospital care, and other treatments. If the

threshold number (R0) is less than one, then treatment and prevention rates

are increased, and the disease will be wiped out of the population. However,

when (R0) is greater than one, then the disease persists in the population,

which indicates that prevention and treatment rates are low. To evaluate the

cost-e�ectiveness of all potential control techniques and their combinations,

the incremental cost-e�ectiveness ratio (ICER) was determined. The simulation

results of the identified model show that the interventions of prevention and

treatment scenarios were the most successful in eradicating the dynamics of the

pneumonia disease’s propagation during the epidemic, but they were ine�ective

from a cost-saving perspective. Therefore, limiting pneumonia transmission to

prevention alone during an outbreak is the most economical course of action.

KEYWORDS

inclusive and exclusive, cost-e�ectiveness, pneumonia, optimal control, S1S2EIR model,

ICER, breastfeeding

1. Introduction

Infant (child) disability and death are the primary continuing public health issues

worldwide. However, newborn (child) mortality and morbidity rates are greatly impacted by

deaths caused by infectious illnesses. Infectious diseases can take 7 from 10 childhood deaths

throughout the world. Pneumonia is one of the most common causes of death worldwide

among acute respiratory infections, accounting for 30% of all child fatalities. Ninety-five

percent of cases of pneumonia occur in developing countries. As a result, infectious illnesses

are more likely to kill newborn babies in these countries [1, 2].
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Among acute respiratory infection (ARI) diseases, pneumonia

is the one that affects children’s lungs. Approximately 740,180

children aged 05 years died because of pneumonia in 2019,

which accounts for 14 and 22% of all deaths of children

below 5 years and 1–5 year(s) old, respectively, and deaths are

higher in Asia and Africa [3]. Hence, of infectious diseases,

pneumonia causes the most children’s deaths worldwide [4].

Pneumonia can be caused either by viruses, bacteria, or fungi;

among these, bacterial pneumonia is the leading cause of

death for children under 6 years of age. By immunizing

against the disease, providing appropriate nutrition (EBF), and

decreasing environmental variables, pneumonia can be avoided [5].

Additionally, using many control measures, such as prevention,

treatment, and reducing indoor air pollution, can halt the spread of

pneumonia. The following research has been carried out to address

non-exclusive EBF or a lack of EBF, one of the main risk factors for

infectious illnesses.

The first natural diet for infants is their mother’s milk,

which contains all the nutrients and energy required for a

baby throughout the first 6 months of life [6]. According to

WHO recommendations, newborns should receive only breast

milk for the first 6 months of their lives. Thereafter, additional

(complementary) foods are allowed for 18 months or more,

followed by breastfeeding. Hence, infants (children) can achieve

good growth and development [7]. Therefore, for children in

the first months of life up to 6 months, any additional food

or liquid (even water) is not permitted except vitamins, mineral

supplements, and medicine[7, 8].

An intervention of double control has been offered to help

eliminate the mortality and disability rates among children because

of infectious diseases. Breastfeeding is one of the most popular

and cost-effective strategies (interventions) for preventing pediatric

pneumonia and all other causes of death [9–11]. Furthermore,

the WHO, UNICEF, AAP, AAFP, and NNPE advocate starting

breastfeeding promptly within the first hour after birth and

continuing to exclusively breastfeed with human milk for the

following 6 months to reduce the baby (child) death and disability

rate. Continual breastfeeding with other appropriate foods will

follow for the first 2 years of life to ensure that the children have

healthy optimal growth and development [2].

Most of the studies assure that over two-thirds of the deaths

occurring globally in the first year of life of children are often

associated with a loss of exclusive breastfeeding or inappropriate

feeding exercises [10]. Sub-optimal breastfeeding contributes to

18% of acute respiratory disease deaths among children under 5

years old in low-income countries [6].

Evidence suggests that if the EBF length is properly maintained,

it can significantly increase immunity and lower the risk of

death and disability from communicable and non-communicable

diseases in both the early and advanced phases [12, 13]. EBF

throughout the first 6 months of a baby’s (or child’s) life can

typically lower the likelihood of developing any infectious diseases

[14]. For the first 6 months of their lives, infants (children) who

were nursed exclusively had a higher risk of contracting infectious

diseases than those who were not [9, 15].

According to [10, 16], 1.24 million or 96% of child deaths

occur during the first 6 months of life due to inappropriate EBF

practices, and the mortality rate is higher in Africa and Asia.

Additionally, poor breastfeeding results in more than 236,000

child deaths annually in a select few nations, including Nigeria,

China, Mexico, Indonesia, and India [17]. Furthermore, in low-

and middle-income nations, inadequate breastfeeding was found

to be responsible for 18 and 30% of acute respiratory and diarrheal

mortalities, respectively [18]. To reduce child mortality among

children under the age of five, the WHO advises that an EBF of

90% is needed globally. Furthermore, the Sustainable Development

Goals (SDGs) plan envisaged an increase in EBF of 50% by 2025

[19, 20]. According to the study by [12, 20], raising the EBF rate in

middle-income and developing nations to an ideal level can reduce

infant mortality among children under the age of five by 13 to 15%.

Mathematical models are frequently used to (i) analyse

the dynamics of the spread of infectious diseases like cholera,

bronchiolitis, pneumonia, and others; (ii) employ a variety of

control methods to reduce or stop the spread of infectious diseases;

and (iii) predict the effects of these diseases on people’s lives, socio-

economic systems, and national health programmes and policies.

However, none of the aforementioned studies take into account a

mathematical model method to illustrate the transmission behavior

of infectious diseases, particularly pneumonia.

Several mathematical modeling studies have been conducted

to estimate the potential burden of the endemic and the various

control approaches for the endemic disease of pneumonia in

children. Tilahun et al. [21] considered a non-linear deterministic

model for the transmission of the pneumonia disease in a

population of variable size, together with optimal control and cost-

effectiveness measures. Agusto et al. [22] studied the advantage of

isolation strategies and quarantine effectiveness measures against

outbreaks of disease in the absence of appropriate medicines

or vaccines.

Swai et al. [23] formulated an optimal control of pneumonia

transmission in two strains by incorporating drug resistance.

Additionally, how measures such as vaccination, public awareness

campaigns, and therapy can reduce pneumonia transmission

patterns should be considered. Tessema et al. [24] also developed

a deterministic mathematical model of drug-resistant pneumonia

with ideal preventive measures and cost-effectiveness evaluations.

Based on the simulation values of optimal controls for the proposed

model, they concluded that the combination of prevention,

treatment, and screening of infectious persons is the most

efficient and cost-effective way to remove pneumonia infections

from the community. The diagnostic problem of distinguishing

between bacterial and non-bacterial pneumonia is the main reason

antibiotics are used to treat pneumonia in children. Consequently,

Wu et al. [25] present causal Bayesian networks (BNs) in their

model as useful tools for resolving this problem because they

provide succinct maps of the probabilistic relationships between

variables and produce results in a way that is understandable

and justified by incorporating domain expert knowledge and

numerical data.

Kotola and Mekonnen [26] created a deterministic model

to demonstrate the efficacy of interventions for pneumonia and

meningitis co-infection and provide a reasoned recommendation

to public health officials, decision-makers in government policy,

and programme implementers. Owing to their shared clinical
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characteristics and significant effects on human morbidity and

mortality, pneumonia and tuberculosis are two of themost frequent

airborne infections. Therefore, in a community of populations with

both diseases, co-infection of the two diseases becomes inevitable.

Owing to a lack of resources, the significant illness burden that these

endemics together impose necessitates an efficient intervention to

mitigate the impact. Thus, the authors in Gweryina et al. [27] use a

pragmatic approach to create an SEIRmodel for the co-dynamics of

tuberculosis and pneumonia. Using a variety of parameters, Naveed

et al. [28] investigated the dynamics of delayed pneumonia-like

infectious illnesses. Kassa et al. [29] and Rafiq et al. [30] offer

a mathematical model of COVID-19 that includes bimodal virus

transmission in a susceptible compartment.

Until now, only Legesse et al. [31] formulated a S1S2CIR

deterministicmathematical model by grouping susceptible children

as inclusively and exclusively breastfeed children and verify that

inclusive breastfeeding children are more exposed to pneumonia

than those children breastfeed exclusively. However, they did

not take into account optimal control analysis in their research.

Furthermore, no research has been carried out so far to assess

the impact of EBF practice on child mortality rates and the

efficacy of EBF practice in lowering pediatric mortality due to

infectious disease (pneumonia).With this as a backdrop, the study’s

objective is to apply mathematical models with optimal control

and accessible methods to treat pneumonia in infants between

the ages of 0 and 6 months who do not participate in EBF. By

increasing the prevalence of EBF and stepping up efforts to reduce

non-exclusive breastfeeding, the findings of this study will help in

making decisions that will reduce child mortality and impairment

from pneumonia.

The article is organized as follows. The proposed model is

formulated in the Construction of a Bimodal Pneumonia Model

section and its analysis is presented in the Analyzing the Model

Qualitatively section. Stability analysis of the equilibria is then

discussed in the Equilibrium Point Stability section. Extension

of the proposed model into optimal control is presented in

The Proposed Model Under Optimal Control section. Numerical

simulations are performed to support the analytical results

discussed in the Analyzing the Model Qualitatively section and

are presented in the Results and Discussion. Cost-effective analysis

is performed in the subsequent section followed, finally, by

the Conclusion.

2. Construction of the bimodal
pneumonia model

In this model, the overall population size N(t) is divided

into five mutually exclusive compartments based on the disease

condition of the population as a whole. Furthermore, the total

population size N(t) at any given time t is given by:

N(t) = SI(t)+ SE(t)+ E(t)+ I(t)+ R(t) (1)

At any time instant t ∈ [0,∞), the real valued differentiable

state variables SI(t),SE(t),E(t),I(t), and R(t) represent the number of

susceptible children that are not exclusively breastfed, susceptible

children that are exclusively breastfed, children exposed to the

disease, children that are seriously infected, and children who have

obtained temporary immunity from pneumonia, respectively. This

research assumes that the two susceptible classes SI(t) and SE(t) are

enlisted into the population at rates of 31 and 32, respectively.

They acquire pneumonia infection through effective contact with

the infected humans I(t) or via inhalation of contaminated air

droplets at a force of infection given by

fi =
βiI
N , where i = 1, 2 and βj = kPj, where j = 1, 2.

Here βj = kPj for j = 1, 2 denotes the transmission rates.

However, k stands for the number of contacts, and Pj is the

probability of close contact rates between two susceptible humans

with the infected individuals causing infection.

Humans exposed to pneumonia advance at a γ rate to the

infected compartment I(t). The sub-populations are all reduced

at the same time because a consistent natural mortality rate of

µ is taken into account for each compartment. The parameters

σ and α at the infected stage indicate the mortality rate from

pneumonia disease, which only falls in the infected class, and

the percentage of children who recover due to therapy or innate

immunity, respectively. Those individuals that have recovered

from pneumonia are assumed to have partial immunity and again

become susceptible at a rate of δ. This study also assumes that

a child who has obtained partial immunity does not again join

exclusively breastfed children because as one individual is infected

with infectious diseases they cannot regain their original immunity

[31]. Using the parameter values, basic model assumptions, and

state variables described above, we have generated a systematic

diagram (Figure 1), and the corresponding model equation is given

by Equation (2).



























dSI
dt

= 31 + δR− f1SI − µSI
dSE
dt

= 32 − f2SE − µSE
dE
dt

= f1SI + f2SE − (γ + µ)E
dI
dt

= γE− (σ + α + µ)I
dR
dt

= σ I − (µ + δ)R

(2)

With the following initial conditions:

SI(0) ≥ 0, SE(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0 (3)

3. Analyzing the model qualitatively

This subsection explains the qualitative behavior of the model

being considered for the long run.

3.1. Positivity and boundedness of solution

To ensure that the generated dynamical system’s (2) positivity

of solution is both epidemiologically meaningful and theoretically

well-posed, we must show that all the state variables of the

dynamical systems are non-negative.

Theorem 3.1. All the solutions of Equation (2) with the positive

initial condition given on Equation (3) are non-negative.
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FIGURE 1

Model flow chart.

Proof. From Equation (3), all the state variables are positive or zero

at the initial time, then T > 0. To show the positivity of all the state

variables select any equation of Equation (2), randomly let it be

dSI

dt
= 31 + δR− f1SI − µSI

dSI

dt
+ (f1 + µ)SI = 31 + δR

d

dt
[e

∫ T
0 (f1+µ)dt′SI] = (e

∫ T
0 (f1+µ)dt′ )[31 + δR] (4)

where t′ ∈ [0,T] and each state variable are non-negative at t′.

Equation (4) is integrated with regard to time to produce

SI(t) = k1SI(0)+ k1

[

∫ T

0
(e

∫ T
0 (f1+µ)dt′ )[31 + δR]dt

]

≥ 0 (5)

where k1 = e−
∫ T
0 (f1+µ)dt′ . From Equation (4), we observe that SI(t)

is non-negative for all t > 0. In a similar fashion, one can show

SE(t) ≥ 0,E(t) ≥ 0, I(t) ≥ 0 and R(t) ≥ 0.

Theorem 3.2. The closed positive invariant set � is a biologically

and mathematically well-posed region of the initial value problems

defined on Equations (2), (3), where

� = {(SI , SE,C,E,R) ∈ R5+ :

0 < N(SI , SE,E, I,R) ≤
31 + 32

µ
} (6)

Proof. For convenience, we let S1 = SI , S2 = SE, r1 = γ + µ, r2 =

σ + α + µ, r3 = µ + δ throughout this study. Differentiating

Equation (1) with respect to t gives

dN

dt
=

dSI

dt
+

dSE

dt
+

dE

dt
+

dI

dt
+

dR

dt

dN

dt
= 31 + 32 − µ(SI + SE + E+ I + R)− αI

dN

dt
= 31 + 32 − µN − αI (7)

In the absence of infectious rate Equation (7) reduced to

dN

dt
≤ 31 + 32 − µN. (8)

Integrating both sides of Equation (8) with regard to t and taking

the limit of Equation (8) as t −→ ∞, we obtain

N(t) ≤
31 + 32

µ
−

31 + 32 − µN0

µ
e−µt (9)

N(t) ≤
31 + 32

µ
. (10)

Therefore, each solution of the initial value problems on Equations

(2) and (3) remains in Equation (6) for all t > 0. This result can be

summarized as lemma below.

Lemma 3.1. � is a positively invariant region for the Equation (2)

with initial condition Equation (3) in R5+.

3.2. Threshold parameter

Before calculating the expression for threshold quantity (R0),

determine pneumonia free of Equation (2). For this aim, equate

the right hand side of Equation (2) to zero. After that, substitute

in S1(t) = SI(0) > 0, SE(t) = SE(0) > 0,E(t) = E0 = I(t) = I0 and

R(t) = R0 = 0. Thus,

E0 =

(

31

µ
,
32

µ
, 0, 0, 0

)

. (11)
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Hence, E0 is the pneumonia free-equilibrium of Equation (2). By

usingDFEwe can account the threshold number (R0) following the

work in Agusto [22], and we used the method of next generation

matrix to obtain the required threshold number and from the

transmission matrix

F = DF(E0) =

[

∂F1(E0)
∂E

∂F1(E0)
∂I

∂F2(E0)
∂E

∂F2(E0)
∂I

]

.

Where F1(t) = f1SI + f2SE and F2(t) = γE

F =

[

0 31β1+32β2
31+32

γ 0

]

(12)

and the transition matrix V is given by

V = DF(E0) =

[

∂V1(E0)
∂E

∂V1(E0)
∂I

∂V2(E0)
∂E

∂V2(E0)
∂I

]

.

where V1 = r1E and V2 = r2I.

⇒ V =

[

r1 0

0 r2

]

(13)

Hence, using the next generation matrix calculated from Equations

(12), (13) we get

FV
−1 =

1

r1r2

[

0 r1
β131+β232

31+32

γ r2 0

]

(14)

Now, the governing eigenvalue of Equation (14) represents R0 of

Equation (2), which is given by

R0 =

√

γ (β131 + β232)

r1r2(31 + 32)
(15)

The threshold number (R0) is a quantity that determines how

pneumonia spreads within the population or fades out of the

society. IfR0 < 1 then the disease will fade out of the community.

This shows that more exclusivity in breastfeeding children is added

to the susceptible class. Because exclusively breastfed individuals

have high natural immunity, they are less exposed to the diseases.

R0 > 1 shows that there is a continuation of disease spread within

the population.

3.3. Existence of the model’s endemic
equilibrium point

In this part, we examine the condition known as EE of Equation

(2). The fundamental motivation for this equilibrium is that it is

utilized to estimate how long pneumonia will continue to affect

the population. To identify the prerequisites for an equilibrium in

which community pneumonia is endemic (that is, at least one of

E∗ 6= 0 or I∗ 6= 0 ), denoted by Ee = (S∗I , S
∗
E,E

∗, I∗,R∗). To find

Ee, equate each equation in Equation (2) to zero and express each

state variable in terms of the force of infection at the steady state (f ∗i
where i=1,2), given by

f ∗1 =
β1I

N∗
, f ∗2 =

β2I

N∗

S∗I =
31r3+δσ I∗

r3(f
∗
1 −µ)

,

S∗E = 32
f ∗1 −µ

=
32(31+32)

µ(β2I∗−(31+32))
,

E∗ = r2I
∗

γ
R

2
0,

I∗ =
γE∗

r2
,

R∗ = σ
r3
R

2
0

(16)

Therefore, the existence of Ee in Equation (16) depends onR0,

meaning that Ee from Equation (2) exists ifR0 > 1.

4. Equilibrium point stability analysis

The two equilibria of Equation (2) are shown in this subsection

to have both local and global asymptotic stability. We employ the

Jacobianmatrices of system on Equation (2) at DFE and EE for local

stability and the Lyapunov function for the global stability of both

equilibria to confirm this stability.

4.1. Local stability analyses

Theorem 4.1. The disease free-equilibrium point (E0), of Equation

(2) corresponding to the considered model is locally asymptotically

stable ifR0 < 1 and not stable otherwise.

Proof. To prove this, first determine the Jacobian matrix evaluated

at E0 becomes

J(Eo) =















−µ 0 0 −
β131

31+32
δ

0 −µ 0 −
β232

31+32
0

0 0 −r1
β131+β232

31+32
0

0 0 γ −r2 0

0 0 0 σ −r3















(17)

The characteristic polynomial of Equation (17) becomes

9(λ) = (λ + µ)2(λ + r3)(λ
2 + D1λ + D2) (18)

The first three eigenvalues of Equation (18) are λ = −µ a double

root, λ = −r3. All are negative, and we use the RouthHurwitz

criterion to confirm the presence of the remaining eigenvalues in

the manner described below:

D1 = r1 + r2 > 0,

D2 = r1r2 − γ
β132 + β2α

31 + 32
= r1r2(1−R

2
0) > 1

As a result, the RouthHurwitz criteria’s required condition is

confirmed wheneverR0 < 1. Therefore, the DFE (E0) of Equation

(2) is locally asymptotically stable (LAS) whenR0 < 1.

Theorem 4.2. The disease endemic equilibrium point (Ee), of

Equation (2) is LAS in � ifR0 > 1 and unstable otherwise.
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Proof. To prove the local stability of Ee, first determine the desired

Jacobean matrix J(Ee) of system (2) at the endemic equilibrium,

which is given as Equation (19)

J(Ee) =

















−(f ∗1 + µ) 0 0 −
β1S

∗
I

N∗ δ

0 −(f ∗2 + µ) 0 −
β2S

∗
E

N∗ 0

f ∗1 f ∗2 −r1
β1S

∗
I+β2S

∗
E

N∗ 0

0 0 γ −r2 0

0 0 0 σ −r3

















(19)

The characteristics polynomial corresponding to Equation (19) is

(λ + (f ∗1 + µ))(λ + (f ∗2 + µ))(λ + r1)(λ + r2)(λ + r3) = 0 (20)

The first three roots of Equation (20) are λ = −r1 < 0, λ = −r2 <

0, and λ = −r3 < 0 and the remaining roots can be calculated from

λ2 + a1λ + a2

where

a1 = f ∗1 + f ∗2 + 2µ and a2 = f ∗1 f
∗
2 + 2µ(f ∗1 + f ∗2 )+ µ2

and f ∗1 , f
∗
2 are defined as the force of infection at the

endemic equilibrium.

As λ2 + a1λ + a2 has both roots with a negative real part (and the

system with characteristic equation P(λ) = λ2 + a1λ + a2 = 0

is stable) if and only if a1, a2 > 0, clearly a1, a2 > 0. Hence by

RouthHurwitz criteria, for R0 > 1, the endemic equilibrium (Ee)

is LAS.

4.2. Global stability analysis

In this section, we use LaSalle’s invariant principle to analyse

the global stability of both equilibria of Equation (2) by creating

suitable Lyapunov functions.

Theorem 4.3. If R0 < 1, then the disease free-equilibrium (E0) of

Equation (2) is GAS in � and unstable otherwise.

Proof. We first create a suitable Lyapunov function of the type

L(t) = k1E(t)+ k2I(t) (21)

where ki, i = 1, 2 are positive real numbers to be chosen later. Upon

differentiating Equation (21) along its trajectories with respect to t

and simplifying, the result yields

dL

dt
= k1

dE

dt
+ k2

dI

dt
,

dL

dt
= k1(f1SI + f1SE − r1E)+ k2(γE− r2I) (22)

Now, we choose k1 = γ and k2 = r1, and simplification of Equation

(22) yields

dL

dt
= γ (f1SI + f1SE)− r1r2I,

dL

dt
=

[

γ

(

β131 + β232

31 + 32

)

− r1r1

]

I (23)

Simplification and some rearrangement of Equation (23) will give:

dL

dt
= −r1r2

(

1−R
2
0

)

I (24)

Thus, dL
dt

< 0 whenever R0 < 1. Additionally, dL
dt

= 0 if

and only if E(t) = 0 and I(t) = 0. Hence, the largest compact

invariant set {(SI , SE,E, I,R) ∈ � :
dL
dt

= 0} is the singleton E0,

which is the disease-free equilibrium. Therefore, using LaSalle’s

invariant principle [32], we conclude that the point E0 is globally

asymptotically stable in � ifR0 < 1.

Theorem 4.4. The disease endemic equilibrium point (Ee) of

Equation (2) is GAS in the invariant region stated in Theorem 3.2

as � if R0 > 1.

Proof. To prove the global behavior of Ee, we systematically

construct a Lyapunov function V of the form as Legesse et al. [31]

V(xi) =

n
∑

1

(

xi − x∗i − x∗i ln

(

xi

x∗i

))

(25)

where xi represents the compartments in the model and i = 1,...5

and x∗i is the endemic equilibrium point. This is defined as

V(S∗I , S
∗
E,C

∗, I∗,R∗) =

(

SI − S∗I − S∗I ln

(

SI

S∗I

))

+

(

SE − S∗E − S∗Eln

(

SE

S∗E

))

+

+

(

E− E∗ − E∗ln

(

E

E∗

))

+

(

I − I∗ − I∗ln

(

I

I∗

))

+

(

R− R∗ − R∗ln

(

R

R∗

))

Then, after differentiating V with regard to time t, the following

is obtained.

dV
dt

=

(

1−
S∗I
SI

)

dSI
dt

+

(

1−
S∗E
S2

)

dSE
dt

+

(

1− E∗

E

)

dE
dt

+

(

1− I∗

I

)

dI
dt

+

(

1− R∗

R

)

dR
dt

(26)

Next, substituting dSI
dt
, dSE

dt
, dE
dt
, dI
dt
, dR
dt

in Equation (26) using

Equation (2) gives

dV

dt
=

(

1−
S∗I
SI

)

(31 + δR− f1SI − µSI)+

(

1−
S∗E
SE

)

(32 − f2SE − µSE)+

(

1−
E∗

E

)

(f1SI + f2SE − (γ + µ)E)+

(

1−
I∗

I

)

(γE− (σ + α + µ)I)+

(

1−
R∗

R

)

(σ I − (µ + δ)R)

(27)
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=

(

SI − S∗I
SI

)

(

31 + δR− (f1 + µ)(SI − S∗I )− (f1 + µ)S∗I
)

+

(

SE − S∗E
SE

)

(

32 − (f2 + µ)(SE − S∗E)− (f2 + µ)S∗E
)

+

(

E− E∗

E

)

(

f1SI + f2SE − (γ + µ)(E− E∗)− (γ + µ)E∗
)

+

(

I − I∗

I

)

(

γE− (σ + α + µ)(I − I∗)− (σ + α + µ)I∗
)

+

(

R− R∗

R

)

(

σ I − (µ + δ)(R− R∗)− (µ + δ)R∗
)

.

We can put dV
dt

as dV
dt

= 91 − 92 where

91 = 31 + 32 + δR+ f1SI + γE+ σ I + (f1 + µ)
S∗I

2

SI
+

(f2 + µ)
S∗E

2

SE
+ (γ + µ)

E∗2

E
+ (µ + δ)

R∗2

R
.

92 =
(SI − S∗I )

2

SI
(f1 + µ)+ 31

S∗I
SI

+ δR
S∗I
SI

+ (f1 + µ)S∗I+

(SE − S∗E)
2

SE
(f2 + µ)+

S∗E
SE

32 − (f1 + µ)S∗E +
f1SIE

∗

E
+ f2SE+

(f2SEE
∗

E
− (γ + µ)

(E− E∗)2

E
− (γ + µ)E∗ − γE

I∗

I
−

(σ + α + µ)
(I − I∗)2

I
+ (σ + α + µ)I∗ + (σ + α + µ)

I∗2

I
+

σ I + σ I
R∗

R
− (µ + δ)

(R− R∗)2

R
+ (µ + δ)R∗.

Thus, if P < N, then dV
dt

≤ 0. Hence, dV
dt

≤ 0

when R0 > 1. Clearly, dV
dt

= 0 if and only if SI =

S∗I , SE = S∗E,E = E∗, I = I∗, and R = R∗. Therefore,

the largest compact positive invariant in set {(SI , SE,E, I,R) ∈

� :
dV
dt

= 0} is the singleton Ee, which is a disease

endemic equilibrium of Equation (2). Generally, by LaSalle’s

invariant principle, Ee is GAS in the biologically feasible region

whenR0 > 1.

5. The proposed model under optimal
control

This section focuses on using optimum control techniques

with the model under consideration from Equation (2).

In a short amount of time, we were able to manage or

reduce the diseases in the community with the use of these

strategies. The pneumonia model is expanded to include the

following two control variables, each of which is defined as

follows:

u1: a campaign to prevent the spread of the disease among people

who are vulnerable.

u2: by treating infectious diseases, a treatment effort is made to

minimize infection or maximize recovery.

After incorporating u1 and u2 in Equation (2), we obtain the

following optimal control model Equation (28).



























dSI
dt

= 31 + δR− (1− u1)f1SI − µSI
dSE
dt

= 32 − (1− u1)f2SE − µSE
dE
dt

= (1− u1)(f1SI + f2SE)− (γ + µ)E
dI
dt

= γE− (σ + u2)I − (α + µ)I
dR
dt

= (σ + u2)I − (µ + δ)R

(28)

The control set U is Lebesgue measurable and has the following

definition in order to explore the optimal levels of the controls:

U = {(u1(t), u2(t))} : {0 ≤ u1 < 1, 0 ≤ u2 < 1, 0 ≤ t ≤ T} where

{0 ≤ u1 < 1, 0 ≤ u2 < 1, 0 ≤ t ≤ T} is the set of admissible

controls. Our goal is to find a control u and SI , SE,E, I,

and R that minimize the proposed objective function J

given below, while maintaining the lowest cost of control

implementation in Equation (2). The proposed objective

functional J should follow the epidemic Equation (2), which

is given by

J(u1, u2) = min
u1 ,u2

∫ tf

0
(b1E+ b2I +

1

2

2
∑

i=1

wiu
2
i )dt (29)

subject to Equation (3), where b1 and b2 are the weight positive

constants associated with the number of exposed children and

infected children, respectively, while w1 and w2 are positive

constants, present the relative cost weight, which is associated

with control measures u1 and u2, respectively. We assume

costs are non-linear in nature; hence, the control variables in

J are in second degree polynomial form [21, 23]. The major

thing that is required of us is to reduce the number of

exposed and affected children while maintaining a low cost.

Thus, we are going to find optimal controls (u∗1 , u
∗
2), such

that

J(u∗1 , u
∗
2) = min{J(u1, u2)/ui ∈ U},

where U = (u1, u2): each ui is measurable

with 0 ≤ ui < 1 ,i = 1, 2 for t ∈

[0, tf ].

5.1. The Hamiltonian and optimality system

Here, applying the principle of Pontryagin [34], Maximum

Principle, we can drive the necessary conditions that the optimal

control solutionmust satisfy [35]. Therefore, this principle converts

the model Equations (28), (29) into a problem of minimizing a

Hamiltonian, H, point-wise with respect to u1 and u2, and we

obtained a Hamiltonian (H) defined as:

H(t, x(t), u(t), λ(t)) = f (t, x(t), u(t))+ λg(t, x(t), u(t))

where

f (t, x(t), u(t)) = blE+ b2I +
1

2
w1u

2
1 +

1

2
w2u

2
2,

g(t, x(t), u(t)) = (g1, g2, g3, g4, g5)
T ,
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where

g1 = 31 + δR− (1− u1)f1SI − µSI ,

g2 = 32 − (1− u1)f2SE − µSE,

g3 = (1− u1)(f1SI + f2SE)− (γ + µ)E,

g4 = γE− (r2 + u2)I,

g5 = (σ + u2)I − (µ + δ)R.

.

Hence the Hamiltonian becomes

H(SI , SE,E, I,R, t) = f (E, I, u1, u2, t)+ λ1
dSI
dt

+ λ2
dSE
dt

+ λ3
dE
dt

+

λ4
dI
dt

+ λ5
dR
dt

H(SI , SE,E, I,R, t) = f (E, I, u1, u2, t)+λ1g1+λ2g2+λ3g3+λ4g4+λ5g5

H = blE+b2I+
1

2
w1u

2
1+

1

2
w2u

2
2+λ1g1+λ2g2+λ3g3+λ4g4+λ5g5

(30)

where f (E, I, u1, u2, t) = b1E + b2I +
1

2

∑2
i=1 wiu

2
i , λi, i = 1, 2

are the adjoint variable functions which are determined by using

Pontryagin’s maximal principle [34] and use Swai et al. [23] for

verification of existence of the optimal control pairs.

Theorem 5.1. There exists adjoint variable λi, where i = 1, ..., 5

with transversality conditions λi(tf ) = 0, i = 1, ..., 5 for an optimal

control (u∗1 , u
∗
2) that minimizes J(u1, u2) such that:

dλ

dt
= −

∂H

∂X
,

where X = (SI , SE,E, I,R)
T and λ = (λ1, λ2, λ3, λ4, λ5)

T λ(T) = 0

transidentality condition.

Now,

dλ1

dt
= − ∂H

∂SI
= −(λ1(0− (1− u1)f1 − µ)+

λ2(0)+ λ3((1− u1)(f1)+

λ4(0)+ λ5(0))

= λ1((1− u1)f1 + µ)− λ3(1− u1)f1

dλ2
dt

= − ∂H
∂SE

= −(λ2(λ1(0)− (1− u1)f2 − µ)+ λ3((1− u1)(f2)+

λ4(0)+ λ5(0))

= λ2((1− u1)f2 + µ)− λ3(1− u)f2

dλ3

dt
= −

∂H

∂E
= −(b1+λ1(0)+λ2(0)+λ3(−(γ+µ))+λ4(γ )+λ5(0))

= −b1 + λ3(γ + µ)− λ4γ = −b1 + λ3γ1 − λ4γ

dλ4

dt
= −

∂H

∂I
= −(b2 −

λ1β1(1− u1)SI

N
−

λ2β2(1− u1)SE

N
+

λ3(1− u1)(β1SI + β2SE)

N
− λ4(σ + u2 + α + µ)− λ5(σ + u2)

= −b2 + λ1β1(1− u1)
31

31 + 32
+ λ2β2(1− u1)

32

31 + 32
−

λ3(1− u1)

(

β131 + β232

31 + 32

)

+ λ4(γ2 + u2)− λ5(σ + u2)

dλ5

dt
= −

∂H

∂R
= −(λ1σ + λ2(0)+ λ3(0)+ λ4(0)− λ5(µ + δ))

= −(λ1δ − λ5(µ + δ)) = −λ1δ + λ5γ3

In a similar manner, we obtained the controls by solving the

equation ∂H
∂ui

= 0 at u∗i , for i = 1, 2 in accordance with Pontryagin

[34]’s methodology and obtained:

w1u1 + λ1f1SI + λ2f2SE − λ3(f1SI + f2SE) = 0

u1 =
(λ3 − λ1)β131 + (λ3 − λ2)β232

w1(31 + 32)
I

u∗1 = max

{

0,min

{

1,
(λ3 − λ1)β1SI + (λ3 − λ2)β2SE

w1N
I

}}

Similarly ∂H
∂u2

= 0

w2u2 − λ4I + λ5I = 0

From this

u2 =
(λ4 − λ5)I

w2

This implies that

u∗2 =











u2, if 0 < u2 < 1

0, if u2 < 0

1, if u2 > 1

The above equation in compact notation is

u∗2 = max

{

0,min

{

1,
(λ4 − λ5)I

w2

}}

TABLE 1 Pneumonia model parameter values with their source.

Parameter Value References

α 0.33 [21]

31 0.02 Assumed

32 0.5 Assumed

µ 0.01 [21]

σ 0.0238 [33]

k 0− 10 [23]

δ 0. [21]

pj j = 1, 2 0.89-0.99 [23]

γ 0.1096 Assumed
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Considering the bounds of the control quintuple, we have

u∗1 = max
{

0,min
{

1, (λ3−λ1)β131+(λ3−λ2)β232

w1(31+32)
I
}}

u∗2 = max
{

0,min
{

1, (λ4−λ5)I
w2

}} (31)

The optimality system is obtained from the state Equation (29)

together with adjoint variables and the transversality condition

in Theorem 5.1 by including the characterized control set and

initial condition.

dSI
dt

= 31 + δR− (1− u1)f1SI − µSI
dSE
dt

= 32 − (1− u1)f2SE − µSE
dE
dt

= (1− u1)(f1SI + f2SE)− (γ + µ)E
dI
dt

= γE− (σ + u2)I − (α + µ)I
dR
dt

= (σ + u2)I − (µ + δ)R
dλ1
dt

= (1− u1)f1(λ1 − λ3)+ λ1µ
dλ2
dt

= (1− u1)f2(λ2 − λ3)+ λ2µ
dλ3
dt

= −b1 + λ3γ1 − λ4γ
dλ4
dt

= −b2 + (1− u1)(λ1 − λ3)
β1SI
N + (1− u1)

(λ2 − λ3)
β2SE
N + λ4(r2 + u2)− λ5(σ + u2)

dλ5
dt

= −λ1δ + λ5(µ + δ)

(32)

FIGURE 2

The pneumonia model’s trajectory of solutions converges to (A) DFEP and (B) EEP.

FIGURE 3

(A) Dynamics of sub-populations for the DFE point. (B) The phase portrait for SI(t) and SE(t) vs. E(t).
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FIGURE 4

Simulation of the optimal model showing the e�ect of prevention on (A) not exclusively breastfeed individuals, (B) exclusively breastfeed individuals,

and (C) exposed individuals.

λi(tf ) = 0, i = 1, ..., 5

SI(0) = SI0, SE(0) = SE0,E(0) = E0, I(0) = I0,R(0) = R0

Therefore, using the optimality system 32, it is possible to calculate

the optimal control. Consequently, the optimal problem is minimal

at control u∗1 and u∗2 , as shown by the fact that the second

derivatives of the Lagrangian with regard to u1 and u2, respectively,

are positive.

6. Results and discussion

To analyse the dynamics of pneumonia disease with or without

control measures, numerical simulations are performed on the

suggested model and optimality system using the parameter values

indicated in Table 1. In addition, we assumed the initial population

size to be SI(0) = 40; SE(0) = 100;E(0) = 50; I(0) = 15;

and R(0) = 1 for the purpose of numerical simulation. The weight

constant values are chosen as b1 = 3; b2 = 3;w1 = 0.05 and

w2 = 0.03. First, we simulate the pneumonia model for the case

R0 = 0.8513 < 1, which indicates that the pneumonia disease

dies out from the society. As a result, the pneumonia model’s

solution trajectory moves toward a disease-free equilibrium point.

The disease-free equilibrium point is demonstrated to be locally

asymptotically stable as all the trajectories of the model converge

to DFE, see Figure 2A. Next, we plotted the graphics for the case

R0 = 1.4232 > 1, which implies that the disease is endemic.

In this case, the solution curves are converging to the endemic

equilibrium point, which verifies the linear stability of the EE point

(see Figure 2B).

Now, to extend the proposed model to optimal control, we

focus on the parameter values and initial population, which give
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FIGURE 5

Simulations showing (A) the optimal use of treatment only (u2) and (B) its control profile.

R0 = 1.4232 > 1 to analyze the model. In light of the fact

that diseases are still prevalent in society, adding control factors

to the mode is appropriate. Figures 3–6 demonstrate the impact of

prevention and treatment on the dynamics of pneumonia.

The plot in Figure 3A illustrates that subpopulations converge

to the DFE point, which indicates that pneumonia has been

eliminated from the community. Moreover, it can be observed

that the two susceptible populations decrease while the exposed

and infected children increase for a few years and decrease

rapidly afterward to the DFE point. Figure 3B reveals that

even if controls are applied, non-exclusively breastfed children

are more exposed to pneumonia than exclusively breastfed

children. In general, from Figures 2A, 3A, we can easily see

the impact of control variables on the transmission dynamics

of pneumonia.

6.1. Contingency plans

We utilized the following scenarios to assess how each

regulation would affect the dynamics of pneumonia spread:

(i) Optimal use of prevention (u1 only).

(ii) Optimal use of treatment (u2 only).

(iii) Optimal use of prevention (u1) and treatment

(u2) intervention.

6.1.1. Scenario A: control of pneumonia with
prevention only

This scenario shows the use of only one control measure,

prevention (u1), and the other controls were set to zero. As

clearly observed from Figures 4A, B, with the optimal use of

a prevention strategy, the two susceptible individuals increase

due to the prevention strategy, and when we compare it with

the case free of prevention, the number of susceptibilities of

individuals to the diseases is less. Moreover, the number of

total exposed humans decreases more with control than when

there is no control, as depicted in Figure 4C. Since the number

of infection averted human from pneumonia disease due to

this strategy is less in number, hence additional intervention

is required.

6.1.2. Scenario B: control of pneumonia with
treatment only

Scenario B is shown in Figures 5A, B, which illustrate that

treatment has a significant impact in reducing the number

of children infected with pneumonia after 14 years. It can

be noted that the number of infected individuals slightly

decreases and becomes effective after some time; hence,

more interventions are needed to eliminate the disease from

the community.

6.1.3. Scenario C: optimal use of the two controls
This strategy demonstrates the effect of the optimal use

of prevention for the exposed humans and treatment for the

infectious humans to decrease the number of exposed and

infected individuals in the society. Additionally, this intervention

reduces the spread of pneumonia dynamics governed by model

(2) in the population. The numbers of exposed individuals

and infectious individuals decrease more rapidly when the two

control scenarios are in use compared with when controls are

not used or one control is used, as depicted in Figures 6A, B.

Figure 6F reveals that the optimal use of prevention. u1(t) is

maximum at 100% throughout the proposed days until reaching

the final time that maximum prevention is applied to control

pneumonia. Optimal use of treatment u2(t) is kept at the maximum
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FIGURE 6

Simulations demonstrating optimal use of prevention (u1) and treatment (u2) on (A) E (B) I (C) SE (D) SI (E) R and (F) its control profile.

level for 48 days before arriving at the minimum at the final

intervention time. Figures 6C–E reveal, respectively, the size of SI ,

SE, and R increases compared with non-control and one control

intervention. This confirms that a maximum number of children’s

pneumonia diseases are averted due to the intervention of the

two controls.
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7. Cost-e�ectiveness analysis

In this section, we present cost-effectiveness analysis, which

is used to evaluate the benefits related to a health intervention(s)

or strategy (strategies) (for instance treatment and prevention), to

elaborate the strategy’s costs [22]. The number of infections averted

is given as the difference between total infectious individuals

without control and total infectious individuals with control. Using

the parameter values in Table 1 and initial conditions of state

variables with the weight constant values chosen, the ICER is

determined for each intervention labeled as prevention, treatment,

and a combination of both. The prevention strategy includes

vaccination (immunization), personal hygiene, avoiding exposure

to people who are ill, covering a cough, and adequate nutrition

(scenario A), while the treatment intervention involves antibiotics

that stop the infection from progressing (these medicines are

used to treat bacterial pneumonia), hospital treatment (allowed

for more severe cases), rest, etc. (scenario B). The combination of

prevention and treatment scenario C. This is obtained by balancing

the change between the costs and health outcomes of these

intervention strategies; usually obtained by using the incremental

cost-effectiveness ratio (ICER), which is described as:

ICER =
change in total costs between strategies

change in health benefits between strategies
(33)

where the numerator of the ICER represents the difference in cost-

benefit and the denominator measures the change in health benefit.

According to the simulation outcomes of the optimality system,

the control scenarios are then ranked in ascending order of total

number of infections averted, i.e., prevention of infections in

susceptible children using vaccines, personal hygiene and others

(strategy A), treatment of infected individuals with antibiotics

(strategy B), and a combination of prevention and treatment

(strategy C), as shown in Table 2.

The ICER is obtained through the following computation:

ICER(B) =
1102.5

701.9053
= 1.5707

ICER(A) =
346.4642− 1102.5

1665.791− 701.9053
= −0.7827

ICER(C) =
1753.1540− 346.4642

2178.746− 1665.791
= 2.741

Now, comparing strategy A and B incrementally, the ICER for

the two competing strategies is calculated as above and it shows that

ICER (B) > ICER (A). From this, we can see that strategy A saves

0.7827 more than strategy B, and strategy B is a bit more expensive.

Hence, we excluded strategy B from the set of competing strategies,

and finally, we compared strategies A and C as depicted in Table 3.

From ICER (A) and ICER (C) in Table 3 we can see that strategy C

saves 2.741 than strategy A. Hence, we exclude strategy C, because

it is a bit expensive. Therefore, we conclude that strategy A the

cheapest of all compared strategies, that meant it is the most cost-

effective for pneumonia disease control intervention strategies.

TABLE 2 Incremental cost-e�ectiveness ratio in increasing order of total

infections averted.

Strategies Total infections averted Total cost ICER

StrategyB 701.9053 1102.5 1.5707

StrategyA 1665.791 346.4642 –0.7827

StrategyC 2178.746 1753.1540 2.741

TABLE 3 Comparison between intervention strategies A and C.

Strategies Total infections averted Total cost ICER

StrategyA 1665.791 346.4642 0.2080

StrategyC 2178.746 1753.1540 2.7423

8. Conclusion

This study is concerned with the mathematical analysis of a

pneumonia transmission model with naturally acquired immunity

in the presence of effective exclusively breastfed infants and a

lack of naturally acquired immunity due to the loss of exclusively

breastfed infants. This work also shows that if the threshold number

is smaller than unity, then the pneumonia-free equilibrium point

is both locally and globally asymptotically stable, which means

pneumonia is wiped out of the community. If the threshold

number is greater than unity, then an endemic equilibrium of

the model occurs, which shows the persistence of the diseases in

the population.

To control pneumonia spread dynamics in a population,

multiple time-dependent control variables, including prevention

using vaccines, personal hygiene, etc., treatment of infectious

humans using antibiotics, hospital treatment, and rest are

considered. An analysis of the optimal control model is carried out

theoretically, and the model is simulated to determine the effects

of combining the two control intervention strategies on the spread

dynamics of pneumonia in the community. It is shown that the

number of infected children is minimized through prevention and

treatment intervention strategies. Throughout this work, based on

the results in Table 3, we recommend the prevention of susceptible

children from being exposed to the diseases using vaccination,

public health education, etc., to reduce new exposed cases and the

number of infected children due to pneumonia in our society with

the least cost.

In general, we considered cleanliness as a method of

preventing pneumonia in children under the age of five in the

earlier studies on the dynamics of bimodal pneumonia [31].

However, in the present study, we considered the extension

of the bimodal pneumonia model to optimal control using

two time-dependent control measures, namely prevention and

treatment. In addition, we analyzed the cost-effectiveness of

intervention strategies. The result of the analysis reveals that

prevention strategies are the most cost-effective way of eradicating

pneumonia. Therefore, the present study is more effective and cost-

effective in preventing pneumonia transmission than the previous

study.
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