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Proliferating cells must adapt their metabolism to 
fulfill the increased requirements for energy demands 
and biosynthetic intermediates. This adaptation is 
particularly relevant in cancer, where sustained rapid 
proliferation combined with the harsh conditions of the 
tumor microenvironment represent a major metabolic 
challenge. Noteworthy, metabolic reprogramming is now 
considered one of the hallmarks of cancer. However, the 
one size fits all rarely applies to the metabolic rewiring 
occurring in cancer cells, which ultimately depends 
on the combination of several factors such as the 
tumor’s origin, the specific genetic alterations and the 
surrounding microenvironment. In the present Research 
Topic, we compile a series of articles that discuss different 
metabolic adaptations that proliferating cells undergo 
to sustain growth and division, as well as the potential 
therapeutic window to treat certain pathologies, with a 
special focus on cancer.
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Editorial on the Research Topic

Metabolic Adaptation to Cell Growth and Proliferation in Normal and Pathological Conditions

Proliferating cells must adapt their metabolism to fulfill the increased requirements for energy 
demands and biosynthetic intermediates. This adaptation is particularly relevant in cancer, where 
sustained rapid proliferation combined with the harsh conditions of the tumor microenviron-
ment represent a major metabolic challenge. Noteworthy, metabolic reprogramming is now 
considered one of the hallmarks of cancer (1). However, the one size fits all rarely applies to the 
metabolic rewiring occurring in cancer cells, which ultimately depends on the combination of 
several factors such as the tumor’s origin, the specific genetic alterations and the surrounding 
microenvironment (2). In the present Research Topic, we compile a series of articles that discuss 
different metabolic adaptations that proliferating cells undergo to sustain growth and division, 
as well as the potential therapeutic window to treat certain pathologies, with a special focus on 
cancer.

One of the most common and well-described metabolic adaptations occurring in cancer cells 
is the so-called Warburg effect, which consists on high rates of glycolysis and lactate export, even 
in the presence of oxygen (3). Abdel-Haleem et al. show that this metabolic phenotype, far from 
being an exclusive feature of tumors, is a common characteristic of the proliferative state and also 
a usual metabolic adaptation when robust transient responses are required. Interestingly, when 
Otto Warburg described this phenomenon almost a century ago, he proposed that the exacerbated 
aerobic glycolysis observed in cancer cells was due to defective mitochondria. However, as Herst and 
collaborators highlight in an extensive review about the role of mitochondria in health and disease, 
these organelles are not only usually functional in cancer cells but also all the more essential to 
generate metabolic intermediates for biosynthesis, to maintain redox balance and to trigger signaling 
pathways that promote cell growth and proliferation.

Cell cycle progression, cellular division, and metabolism are intricate processes that regulate 
each other. One of the mechanisms by which proliferating cells orchestrate these phenomena 
in a timely manner is by the use of the cell cycle machinery to control metabolism (4). On this 
subject, Denechaud et al. describe how the transcription factor E2F1 couples the progression 
of cell cycle with the expression of genes involved in several metabolic pathways and show that 
dysregulation of E2F1 activity contributes to the pathophysiology of metabolic disorders such 
as obesity and type 2 diabetes. Another emerging link between metabolism and proliferation is 
the epigenetic regulation of gene expression, which is treated here in two articles. On the one 
hand, Rabhi and collaborators and collaborators discuss how, in response to the nutritional 
status, variations in the intracellular levels of certain metabolites are sensed by epigenetic 
cofactors that in turn promote changes in gene expression. On the other hand, Bogner-Strauss 
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comments on the very recent literature about the novel roles 
of the metabolite N-acetylaspartate in lipogenesis and cancer 
progression, which include, but are not limited to, epigenetic 
modulation.

In the recent years, the importance of the interactions 
between tumor cells and their surrounding microenvironment 
has become clear (5). Two reviews describe different strategies 
developed by tumors to acquire external nutrients to sustain 
biomass production. Recounvreux et al. highlight the relevance 
of macropinocytosis as a protein source for cancer cells under 
nutrient-deprived conditions, whereas Blücher et al. show how 
lipids and other molecules delivered by adipocytes fuel tumor 
growth in breast cancer, unveiling a possible link with obesity.

One of the most important aspects about the study of the meta-
bolic adaptations occurring during proliferation is the possibility 
of developing novel therapies to treat cancer. Fendt discusses in 
an opinion article the opportunities, but also the challenges, for 
metabolism-based anticancer strategies.

Overall, in the present Research Topic, we cover some of the 
different metabolic adaptations that take place during prolif-
eration and show that they ultimately depend on both internal 
and external cues (cell type, history, metabolic context, etc.). 
Importantly, understanding the specific metabolic profile of pro-
liferating cells may contribute to the identification of metabolic 
vulnerabilities in the tumors that could be exploited to increase 
the efficacy of the current treatments.
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The Warburg effect (WE), or aerobic glycolysis, is commonly recognized as a hallmark of 
cancer and has been extensively studied for potential anti-cancer therapeutics develop-
ment. Beyond cancer, the WE plays an important role in many other cell types involved 
in immunity, angiogenesis, pluripotency, and infection by pathogens (e.g., malaria). Here, 
we review the WE in non-cancerous context as a “hallmark of rapid proliferation.” We 
observe that the WE operates in rapidly dividing cells in normal and pathological states 
that are triggered by internal and external cues. Aerobic glycolysis is also the preferred 
metabolic program in the cases when robust transient responses are needed. We aim 
to draw attention to the potential of computational modeling approaches in systematic 
characterization of common metabolic features beyond the WE across physiological 
and pathological conditions. Identification of metabolic commonalities across various 
diseases may lead to successful repurposing of drugs and biomarkers.

Keywords: Warburg effect, cancer, immune cells, malaria, angiogenesis, pluripotency, rapid proliferation, 
constraint-based metabolic modeling

iNtrODUctiON

While all cells need a source of energy to maintain homeostasis, proliferating cells require a sub-
stantial amount of nutrients to produce biosynthetic building blocks and macromolecules for the 
newly produced daughter cells (1). Both glycolysis and respiration through oxidative phosphoryla-
tion (OxPhos) can generate free energy in the form of adenosine-5′-triphosphate (ATP) (1). Most 
cells metabolize glucose to pyruvate via glycolysis, and under normoxic conditions, the generated 
pyruvate is further oxidized to CO2 in the mitochondria through OxPhos, generating up to 36 ATP 
molecules per glucose molecule. When oxygen becomes limiting, mitochondrial OxPhos is restricted 
and pyruvate is converted to lactate instead. However, it has been widely observed across different 
cell types that the latter can predominate when oxygen is plentiful (2). A common feature among cells 
exhibiting this phenomenon of aerobic glycolysis (3, 4) is “rapid proliferation.” Although it seems 
counterintuitive, most rapidly proliferating cells seem to rely on aerobic glycolysis despite the fact 
that it yields significantly less ATP/glucose compared to OxPhos (5, 6). Although different proposals 
have been put forward to rationalize the cell’s unique feature of using the Warburg effect (WE), 
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FigUre 2 | Proposed computational metabolic modeling approach to systematically identify common metabolic features within pathological conditions as well as 
across normal and disease states. Starting with a curated human metabolic network, high-throughput data specific for each normal tissue (e.g., proliferating 
endothelial cells and effector T lymphocytes) or disease (e.g., cancer, autoimmune diseases, and inflammation) will be used to develop the corresponding 
context-specific metabolic network which is amenable to simulations under the constraint-based modeling framework being subject to different levels of constraints. 
By assigning an appropriate objective function (e.g., biomass production), it is possible to enumerate metabolic processes that are tightly coupled to growth and 
proliferation. Eventually, since all context-specific models are developed under a uniform integrative framework, it is legitimate to cross compare metabolic networks 
potentially identifying common metabolic features (e.g., aerobic glycolysis). NEAAs, non-essential amino acids metabolism.

FigUre 1 | Warburg effect (WE) in cancerous and non-cancerous cells. (A) The frequency of publications on the WE in cancer cells has not witnessed a parallel 
surge in studies investigating the same phenomenon in non-cancerous context. (B) WE has been observed across a plethora of rapidly proliferating cells in both 
physiological and pathological contexts. T-cells shape is adopted from Ref. (9), the malaria life cycle stages image is adopted from Ref. (10), and the blood vessel 
icon is adopted from Ref. (11). ES, embryonic stem cells; iPS, induced pluripotent stem cells.
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it is still unclear whether aerobic glycolysis is “causal” or if it is 
just a phenotype of rapidly proliferating cells due to metabolites 
overflow (7).

Although aerobic glycolysis is now an established hallmark 
of cancer (8), relatively fewer studies have investigated the WE 
in non-cancerous cells (Figure 1). Here, we discuss the role of 
aerobic glycolysis as a “hallmark of rapid proliferation” as part 
of cellular dysregulation (cancer, inflammation, and autoimmune 
diseases), physiologically regulated process (T-cell activation and 
angiogenesis), and pluripotency. Beyond mammalian cells, the 
WE has also been central to the developmental stages of rapidly 

proliferating parasites, such as Plasmodium and Toxoplasma. 
Furthermore, the use of aerobic glycolysis and the secretion of 
organic acids are common in most rapidly growing microbes 
(e.g., yeast and E. coli). We argue that cells adopt aerobic glyco-
lysis in the cases where a rapid transient action is needed while 
respiration tends to support long-term constitutive (more stable) 
processes. Because the span of cells exhibiting the WE is wide, 
we propose that a systems biology approach based on constraint-
based modeling (CBM) of metabolism (Figure 2) can be useful 
as a means of systematic characterization of common and distinct 
features of the WE across different diseases and cell types.
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We PLAYs A rOLe iN ActivAtiON OF 
eFFectOr t-HeLPer LYMPHOcYtes 
(ADAPtive iMMUNitY)

In order to perform their function in protecting the body against 
pathogens and allergens, naïve T-cells need to be activated. This 
involves rapid proliferation (clonal expansion) and differen-
tiation of naïve T-cells into antigen-specific T-effectors (Teff) or 
T-regulatory cells that function to mediate or suppress immune 
responses, respectively (12–14). T-cell activation requires energy 
and metabolic precursors for macromolecular biosynthesis (15). 
The role of WE in T-cell activation has recently become more 
apparent, and efforts are underway to understand its role.

Upon stimulation, effector T-cells exhibit high levels of 
glucose uptake and glycolysis (16). In both cancer cells and acti-
vated effector T-cells, elevated expression of glucose transporter, 
particularly GLUT1, has been reported (12, 16, 17). However, it 
is unclear whether upregulation of GLUT1 happens as a prereq-
uisite or consequence of T-cell activation as Teff was selectively 
increased in transgenic mice when Glut1 was overexpressed 
(18). Enhanced glucose uptake is also linked to increased expres-
sion and activity of glycolytic enzymes. In humans, chronically 
activated T-cells in allergic asthma patients produce high levels 
of lactate and overexpress pyruvate dehydrogenase kinase that 
inhibits pyruvate dehydrogenase, thus restricting the entrance 
of pyruvate into the mitochondrial TCA (19, 20). In addition 
to transporters and glycolytic enzymes, carcinogenesis shares 
many metabolic regulators with T-cell activation, including 
phosphoinositide 3-kinase [PI(3)K]/Akt, mammalian target of 
rapamycin complex (15, 16, 21), and Myc (15, 22) as well as the 
hypoxia-inducible factor-1α (HIF-1α) (2, 20). Altogether, activa-
tion of T-cells parallels carcinogenesis with respect to adopting 
glycolysis rather than OxPhos in presence of oxygen.

It is critical to highlight that T-cell activation is not accompanied 
merely by a switch from oxidative metabolism to glycolysis, but 
that both pathways coordinate to support bioenergetic demands 
(15). In fact, mitochondrial activity is enhanced in stimulated 
lymphocytes compared to their resting counterparts. The same 
observation has been extensively reviewed in the field of cancer 
biology, which contradicts the initial “WE” theory that cancer cells 
opt for aerobic glycolysis due to a defective mitochondria. Hence, 
the WE does not require a defective mitochondria to be the pre-
dominant metabolic program in rapidly dividing cells (1, 21, 23).

An important difference between glycolysis in T-cell activa-
tion and carcinogenesis is that carcinogenesis is a form of cellular 
dysregulation (24). By contrast, T-cell activation happens in both 
pathological (e.g., autoimmune diseases) and physiological 
contexts (25, 26). This further underscores that aerobic glycolysis 
is a feature that is tied to rapid proliferation independent of the 
context being normal or pathological state.

MArcOPHAges (iNNAte iMMUNitY) 
UtiLiZe AerOBic gLYcOLYsis

Inflammatory cells, such as activated macrophages, upregulate 
glycolysis (2) in response to tissue injury or infection to cope with 

increased production of host defense factors, enhanced phagocy-
tosis, and antigen presentation (2). In both activated inflammatory 
cells and cancer cells, glucose transporter GLUT1 is upregulated, 
lactate production is increased, and oxygen consumption by the 
mitochondria is decreased in the downstream events to PI(3)
K-Akt1 signaling (2). There is also a marked switch from expres-
sion of the liver isoform of 2,6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase (encoded by PFKFB1) to the PFKFB3 isoform, 
the type of which is also commonly found in tumor cells. This 
leads to accumulation of fructose-2,6-bisphosphate (F2,6P2) 
as an allosteric activator of 6-phosphofructo-1-kinase (PFK1), 
and therefore, glycolysis takes place (2, 27, 28). In addition, 
hexokinase, the first enzyme involved in glycolysis as well as 
in the pentose phosphate pathway (PPP), is also upregulated in 
activated macrophages (29).

In contrast to pro-inflammatory M1 macrophages, anti-
inflammatory M2 macrophages have higher rates of OxPhos and 
lower rates of glycolysis (2). Further, M2 macrophages have no 
detectable PFKFB3 and expressing PFKFB1 instead (2). In addi-
tion, the transcription factor HIF-1α and AMP-activated protein 
kinase play critical roles in regulating the metabolic alterations 
between inflammatory and anti-inflammatory responses (2, 30, 
31). It is noteworthy that both M1 and M2 macrophages are highly 
active and can proliferate; nevertheless, the pro-inflammatory 
M1 relies on glycolysis while the anti-inflammatory and tissue-
repair-promoting M2 relies on OxPhos. We thus hypothesize that 
OxPhos is more suited to long-term reparative roles (e.g., anti-
inflammation), while aerobic glycolysis being suited for rapid, 
robust, and transient responses (e.g., inflammation). However, 
fitting this premise in the context of the behavior of quiescent 
adult stem cells, which opt for glycolysis to avoid senescence due 
to increased ROS load generated by OxPhos (5, 32), warrants 
further investigation.

In the pathological states discussed here, we observe that 
the WE is a phenotype of rapidly dividing cells irrespective of 
whether the context is triggered by an external or internal cue. 
For instance, autoimmune diseases might arise from somatic 
mutations in antigen receptors according to the “Clonal Selection 
Theory” (26). Similarly, cancer cells might arise due direct or 
indirect oncogenic mutations. In both cancer and autoimmune 
diseases, the trigger is an internal cue. However, in the case of 
physiological T-cell activation, external signals (cytokines in this 
case) mediate the appropriate immune response (2, 33).

Taken together, the WE is a hallmark of rapidly proliferative 
cells across wide spectrum of pathological and physiological 
processes that are triggered by either internal or external cues.

eNDOtHeLiAL ceLLs (ecs) UtiLiZe 
AerOBic gLYcOLYsis DUriNg 
ANgiOgeNesis

Blood vessels deliver oxygen and nutrients to all of the tissues 
and organs in the body. ECs and vascular smooth muscle cells are 
the two main cellular components of blood vessels. Consequently, 
these cells are involved in a variety of physiological processes as 
well as pathological dysfunctions, including atherosclerosis (34).
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Angiogenesis relies on the proliferation and migration of ECs 
(35). Once the vessel is perfused, ECs become quiescent phalanx 
cells (27). Similar to other rapidly proliferating cells, ECs are 
exposed to sufficient oxygen for oxidative metabolism, yet they 
prefer aerobic glycolysis. Radioactive-tracer labeled substrates 
in EC monolayers showed that glycolytic flux in ECs was largely 
comparable to those in tumor cells but much higher than in 
various other healthy cells (27). Notably, glycolytic flux was more 
than 200-fold higher compared to glucose oxidation, fatty acid 
oxidation, and glutamine oxidation (27), while mitochondrial 
respiration was lower in ECs than in other oxidative cell types 
(27). In addition, glycolysis generated up to 85% of the total 
cellular ATP content (27) and regulated vessel sprouting (27). 
Overall, glycolysis is the predominant bioenergetic pathway for 
proliferating ECs.

Similar to other rapidly dividing cells discussed here, PFKFB3 
is critical for EC proliferation where PFKFB3 silencing reduced 
vessel sprouting (27) while inhibition of respiration did not have 
a significant effect. Similar findings have been reported in cancer 
cells and M1 macrophages (36,37), highlighting a potentially 
conserved critical role for PFKFB3 in aerobic glycolysis.

AerOBic gLYcOLYsis is A MetABOLic 
FeAtUre iN PLUriPOteNt eMBrYONic 
steM ceLLs

In contrast to somatic cells and in analogy to rapidly proliferating 
cells, embryonic stem (ES) cells rely on glycolytic ATP generation 
regardless of oxygen availability (38–40). The reliance on glycoly-
sis was suggested to be due to a low copy number of mitochondrial 
DNA (mtDNA) as well as low numbers of nascent mitochondria 
(38, 41). Differentiation increases mtDNA abundance and pro-
motes mitochondrial biogenesis to form networks of elongated 
and cristae-rich mitochondria in support of competent oxidative 
metabolism (38, 42, 43).

High-resolution metabolomics showed that induced pluri-
potent stem (iPS) cells upregulate glycolytic enzymes and 
down regulate electron transport chain subunits enabling a 
switch that converts somatic oxidative metabolism into a 
glycolytic flux-dependent and mitochondria-independent state 
that underlies pluripotency induction (32, 38). To maintain high 
glycolytic rates, human embryonic stem cells as well as cells of 
the inner cell mass (which becomes the embryo proper) upregu-
late GLUT1, GLUT3, HK, and PFK1 (6, 32, 44–46) leading to 
increased lactate synthesis (44, 47). In iPS cells, the upregulation 
of glycolysis precedes the reactivation of pluripotency markers 
(48, 49) implicating that the glycolytic phenotype is more tied to 
rapid proliferation rather than pluripotency. Further, despite the 
low levels of oxygen consumption in undifferentiated ES, ATP 
synthesis is decoupled from oxygen consumption and depends 
on glycolysis instead, possibly consuming oxygen through the 
mitochondrial ETC (44). As ES progress toward differentiation, 
their glycolytic fluxes decrease dramatically while mitochondrial 
OxPhos fueled by glucose and fatty acids increases (44).

Elevated levels of PFKFB3 have been also reported in human 
embryonic kidney 293 cells (28) and cancer stem (CS) cells. 

However, iPS cells express a very low level of PFKFB3 while 
expression of PFK1 was comparable to that in CS cells. This 
indicates that PFK1 activation could be PFKFB3-independent 
in iPS cells (50). Taken together, PFKFB3 is upregulated in a 
wide spectrum of rapidly proliferating cells adopting Warburg 
metabolism.

MALAriA ADOPts A gLYcOLYtic 
MetABOLic PrOgrAM DUriNg its 
AseXUAL iNtrAerYtHrOcYtic LiFe 
cYcLe stAges

Malaria forms that are injected into human blood following an 
infected-mosquito bite, migrate to the liver, and then are released 
into the blood stream were they rapidly proliferate inside the red 
blood cells (RBCs), eventually causing malaria symptoms and 
pathology due to RBCs lysis (51). A small fraction (<1%) of these 
rapidly proliferative stages commit to sexual development and is 
responsible for transmitting infection to another mosquito vector 
(52). Because the malaria parasite encounters different metabolic 
niches across its developmental stages, its growth matches its 
nutritional requirements by rewiring its metabolic network [(53) 
and our unpublished work]. During the intraerythrocytic devel-
opmental stages, the asexual stages of the malaria parasite increase 
their glucose uptake by more than 10-fold (51) with 93% of their 
glucose uptake being converted into lactate (53), consistent with 
a high metabolic demand that is imposed by parasite division. 
This percentage drops to 80% in the non-proliferative/quiescent 
gametocyte stages (53). Hemoglobin digestion generates ROS and 
increases the redox burden, so that favoring aerobic glycolysis 
could be a means to minimize redox burden (compared to using 
OxPhos). Nevertheless, the asexual forms still rely on electron 
transport activity for regeneration of ubiquinone that is required 
as the electron acceptor for dihydroorotate dehydrogenase, an 
essential enzyme for pyrimidine biosynthesis (54). Knocking out 
the mitochondrial ATP synthase β-subunit gene that disrupted the 
parasite transmission cycle while only marginally reducing growth 
of the asexual rapidly proliferating stages, reflecting a higher essen-
tiality of mitochondrial function in the non-rapidly proliferative 
mosquito stages (54). In another study, a genetic investigation of 
TCA metabolism across the malaria life cycle (55) showed that 
knocking out of six of the eight TCA cycle enzymes does not affect 
asexual growth while affecting life cycle progression in later stages. 
Collectively, these studies (51, 54, 55) show that the overall flux of 
pyruvate into the TCA cycle is low in the rapidly dividing sexual 
stages while aerobic glycolysis is more prominent. In contrast, 
elevated levels of the TCA cycle activity sustained by increased 
catabolism of pyruvate dominates in Plasmodium gametocytes.

In this context, the asexual forms of the malaria parasite con-
verge metabolically with the rapidly proliferating counterparts 
of other cancerous and non-cancerous cells, as discussed here. 
Malaria is an obligate intracellular parasite and has lost several 
of its genome content leading to a reduced metabolic capacity 
compared to its host (56). The fact that the asexual rapidly prolif-
erating forms of the parasite opt for the WE despite their reduced 
metabolic capacity compared to other rapidly proliferating 
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eukaryotic cells implies that the synthesis of biosynthetic precur-
sors does not necessarily come on top of the reasons for why cells 
preferentially undergo the WE.

IN SILICO MetABOLic MODeLiNg cAN 
sYsteMAticALLY eLUciDAte cOMMON 
MetABOLic FeAtUres AcrOss 
DiFFereNt ceLL tYPes AND DiseAses

Constraint-based modeling (57, 58) uses genome-scale metabolic 
models (GEMs) as platforms for integrating and interpreting dif-
ferent levels of high-throughput data (59–62) (Figure 2). Under 
the constraints of substrate availability, mass conservation limits 
reaction products and their stoichiometry, while thermodynam-
ics constrain reaction directionality. This information can be 
obtained from genome sequences and annotation (e.g., human 
genome annotation); organism-specific database (e.g., http://
plasmodb.org for malaria) along with bibliomic data that support 
the presence of each metabolic functionality before being added 
to the metabolic reconstruction. A metabolic reconstruction is 
then converted to a stochiometric matrix (57, 58), based on the 
stochiometric coefficients of each reaction, which is amenable to 
computation and simulations. Data-driven network boundaries 
(e.g., uptake and secretion products) are then applied. Taken 
together, these constraints would define the allowable “solution 
space” to achieve a certain cellular objective (e.g., growth that 
can be simulated by biomass precursors production) (58, 63).  
Additional context-specific constraints (e.g., enzyme gene expres-
sion levels or metabolites concentration) would shrink the solu-
tion space leading to context-dependent predictions about the 
utilization of alternate pathways across the metabolic network.

Many CBM methods for analyzing genome-scale metabolic 
networks (64, 65) have been developed (58). Since certain 
enzymes are only active in specific cell types, COBRA methods 
can be used for tailoring a generic metabolic network (Figure 2) 
by integrating high-throughput data to extract a cell type or 
disease-specific metabolic model from a GEM.

To comprehensively identify common metabolic features 
across the range of rapidly proliferating cells we discuss here, we 
suggest a CBM-based workflow (Figure 2) to enable integration 
of different levels of data to model the widely variable types of 
rapidly proliferating cells. Because of the ability of CBM to predict 
gene essentiality by simulating single-gene knockouts (58, 63), 
GEMs can provide a means to address the systematic interac-
tions between the different biological components of the WE 
along with elucidating how they influence the entire metabolic 
network. Furthermore, model-predicted knockout phenotypes 
that selectively inhibit growth of rapidly proliferating cell models 
but not their quiescent counterparts can be integrated in drug 
development pipelines to predict druggable targets (63, 66–68) 
as well as new drug combinations. Using a metabolite essentiality 
analysis (69), instead of gene-knockout experiments, biomarkers 
for identification of cells undergoing the WE can be predicted. 
The advantage of using metabolites prompt searching for struc-
tural analogs of the essential metabolites to inhibit enzymes that 
relied on them as substrates (59).

Constraint-based modeling methods have also been used to 
model interactions between different cell types (70). Following 
a similar workflow, it is possible to use GEMs of the cancerous 
and non-cancerous cells in a tumor microenvironment to identify 
essential metabolites whose inhibition would disrupt the symbi-
otic relationship between cancerous cells and non-cancerous cells 
in their surroundings. For instance, recent data have indicated that 
glycolysis-targeting interventions such as the depletion of PFKFB3 
may exert antineoplastic effects by limiting vessel sprouting (27), 
hence targeting both proliferative endothelial and cancer cells. 
Thus, outlining the common metabolic features between normal 
and pathological cells can be of potential clinical value.

Constraint-based modeling allows prediction of numerous 
metabolic phenotypes, including growth rates, nutrient uptake 
rates, and gene essentiality. They are, thus, well-suited to the 
search for common metabolic features across a span of pathologi-
cal and physiological conditions as well as for integration in the 
early stages of target-based drug development pipelines.

cONcLUDiNg reMArKs

Although WE is one of the most extensively studied bioenergetic 
processes that are being shared between cells that undergo rapid 
proliferation, other bioenergetic and anabolic processes contain 
similar potential to being metabolic phenotypes of rapid prolif-
eration. For instance, glutamine dependency and glutaminolysis 
increased PPP activity, serine and glycine metabolism as well as de 
novo lipogenesis (71, 72). Likewise, several intermediate metabo-
lites bear the potential of being biomarkers of rapid proliferation 
(e.g., serine, sarcosine, and kyneurin). However, whether a thera-
peutic window for the clinical application of these processes exists 
remains to be determined. Noteworthy is that the response of the 
glycolytic pathway to drug perturbations is non-linear (71–73). 
Thus, careful considerations will be needed to develop a biomarker 
that can determine the context in which it would be efficacious to 
exploit any diagnostic or therapeutic potential for the WE. The 
clinical success of antimetabolites (71) lends support to the argu-
ment presented here that metabolic events can be therapeutically 
exploited while being shared between both normal and pathologic 
rapidly proliferating cells. Nevertheless, drug inhibitors developed 
against other metabolic events have not progressed beyond the 
pre-clinical stages yet (74, 75). Taken together, the arguments and 
discussion presented here suggest that grouping diseases and cell 
types according to common metabolic phenotypes can provide 
mechanistic understanding of the observed phenotypes in rela-
tion to the context-specific repertoire of metabolic interactions as 
well as expediting drug development pipelines.
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The ability to rapidly adapt cellular bioenergetic capabilities to meet rapidly changing 
environmental conditions is mandatory for normal cellular function and for cancer pro-
gression. Any loss of this adaptive response has the potential to compromise cellular 
function and render the cell more susceptible to external stressors such as oxidative 
stress, radiation, chemotherapeutic drugs, and hypoxia. Mitochondria play a vital role in 
bioenergetic and biosynthetic pathways and can rapidly adjust to meet the metabolic 
needs of the cell. Increased demand is met by mitochondrial biogenesis and fusion of 
individual mitochondria into dynamic networks, whereas a decrease in demand results 
in the removal of superfluous mitochondria through fission and mitophagy. Effective com-
munication between nucleus and mitochondria (mito-nuclear cross talk), involving the 
generation of different mitochondrial stress signals as well as the nuclear stress response 
pathways to deal with these stressors, maintains bioenergetic homeostasis under most 
conditions. However, when mitochondrial DNA (mtDNA) mutations accumulate and 
mito-nuclear cross talk falters, mitochondria fail to deliver critical functional outputs. 
Mutations in mtDNA have been implicated in neuromuscular and neurodegenerative 
mitochondriopathies and complex diseases such as diabetes, cardiovascular diseases, 
gastrointestinal disorders, skin disorders, aging, and cancer. In some cases, drastic 
measures such as acquisition of new mitochondria from donor cells occurs to ensure 
cell survival. This review starts with a brief discussion of the evolutionary origin of mito-
chondria and summarizes how mutations in mtDNA lead to mitochondriopathies and 
other degenerative diseases. Mito-nuclear cross talk, including various stress signals 
generated by mitochondria and corresponding stress response pathways activated by 
the nucleus are summarized. We also introduce and discuss a small family of recently dis-
covered hormone-like mitopeptides that modulate body metabolism. Under conditions 
of severe mitochondrial stress, mitochondria have been shown to traffic between cells, 
replacing mitochondria in cells with damaged and malfunctional mtDNA. Understanding 
the processes involved in cellular bioenergetics and metabolic adaptation has the 
potential to generate new knowledge that will lead to improved treatment of many of 
the metabolic, degenerative, and age-related inflammatory diseases that characterize 
modern societies.

Keywords: mitochondrial DNA, mitochondrial DNA mutations, mitochondriopathies, mito-nuclear cross talk, 
mitochondrial transfer, mitochondrial stress signals, mitopeptides
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FiguRe 1 | Mitochondrial involvement in fundamental cellular pathways and processes.
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iNTRODuCTiON

Mitochondria are maternally inherited multifunctional organelles 
that form a comprehensive network in many cells maintained by 
an intricate balance between fission and fusion, mitochondrial 
biogenesis, and mitophagy (1, 2). Although mitochondria are best 
known for harvesting and storing energy released by the oxidation 
of organic substrates under aerobic conditions through respiration, 
their many anabolic functions are often overlooked (see Figure 1). 
Arguably, the biosynthetic functions of mitochondria are at least 
as important for tumorigenesis and tumor progression as ATP 
generation [recently reviewed by Ahn and Metallo (3)]. Tumor 
cells easily survive in hypoxic conditions by recycling NADH to 
NAD+ via lactate dehydrogenase (LDH) and plasma membrane 
electron transport (PMET) to allow for continued glycolytic ATP 
production (4). Cells without mitochondrial (mt) DNA (ρ0 cells) 
are incapable of mitochondrial electron transport (MET) coupled 
to oxidative phosphorylation (OXPHOS), but proliferate if sup-
plemented with pyruvate and uridine (5, 6). Pyruvate addition 
appears to be necessary to maintain the pyruvate/lactate couple 
which generates NAD+ for continued glycolysis, even though the 
majority of pyruvate produced through glycolysis will be reduced 
to lactate rather than entering the Krebs cycle, which limits bio-
synthetic intermediates required for several metabolic pathways 
(3, 5). For example, α-ketoglutarate is a precursor of glutamate, 
glutamine, proline, and arginine while oxaloacetate produces 
lysine, asparagine, methionine, threonine, and isoleucine. Amino 
acids in turn are precursors for other bioactive molecules, such 
as nucleotides, nitric oxide, glutathione, and porphyrins. Citrate 
can be transported out of mitochondria via the pyruvate-citrate 
shuttle and metabolized to cytosolic acetyl-CoA, which is the 
substrate for the biosynthesis of fatty acids and cholesterol 
as well as protein acetylation (3). Uridine is necessary for ρ0 
cells to bypass metabolic reliance on MET, allowing continued 

pyrimidine biosynthesis and thus DNA replication to continue. 
Dihydroorotate dehydrogenase (DHODH), a flavoprotein found 
on the outer surface of the inner mitochondrial membrane 
(IMM), oxidizes dihydroorotate to orotate. Electrons from this 
oxidation are used to reduce coenzyme Q just prior to complex III 
in MET (6). In the absence of MET, DHODH is unable to oxidize 
dihydroorotate, blocking pyrimidine biosynthesis.

Whereas many biosynthetic processes occur in the mitochon-
drial matrix, respiratory complexes that form the functional 
respirasome are positioned in the IMM, which is heavily folded 
into cristae in many cell types with high energy requirements. 
Electrons from NADH and FADH2 are transported to oxygen 
as the terminal electron acceptor through respiratory complexes 
I, II, III, and IV of MET. The energy released in this process 
is stored in the form of a proton gradient, which produces an 
electric potential across the IMM. This membrane potential 
drives the generation of ATP through OXPHOS via the F0F1 
ATP synthase (respiratory complex V) [summarized in Ref. (7)]. 
The mitochondrial membrane potential also regulates influx of 
Ca2+ ions into the mitochondria to buffer cytoplasmic calcium as 
well as facilitate the import of nuclear-encoded, mitochondrially 
targeted proteins (n-mitoproteins) (7–10). MET ensures low 
NADH/NAD+ ratios to facilitate sustained glycolysis. An impor-
tant byproduct of MET is the production of reactive oxygen 
species (ROS) which at low levels act in cell signaling pathways. 
These radicals are balanced by strong mitochondrial antioxidant 
defense systems to prevent oxidative damage to mitochondrial 
DNA (mtDNA), and to protein and lipids at higher concentra-
tions (11, 12). Mitochondria are also involved in regulation of 
apoptosis through activation of the mitochondrial permeability 
transition pore whenever ROS and the AMP/ATP ratio increases 
and Ca2+ levels in the mitochondria increase (13, 14).

Mitochondria play a vital role in bioenergetic and biosynthetic 
pathways and can rapidly adapt to meet the metabolic needs of 
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the cell. Increased demand is met by mitochondrial biogenesis 
and fusion of individual mitochondria into dynamic networks, 
whereas a decrease in demand results in the removal of superflu-
ous mitochondria though fission and mitophagy (1, 2, 15, 16). 
This level of adaptability to cellular needs is achieved by effective 
communication between the nucleus and the mitochondria. 
Factors that compromise mito-nuclear cross talk will affect 
the cell’s ability to respond to stresses caused by changes in the 
microenvironment. Effective mito-nuclear cross talk is also of 
vital importance in tumorigenesis and tumor progression but 
remains largely unexplored (17). The role of mitochondria in 
different stages of tumor biology has been reviewed recently  
(10, 18–20). This review will discuss how cells respond when 
mtDNA mutations accumulate, mito-nuclear cross talk falters, 
and mitochondria do not deliver important functional outputs. 
In some cases, drastic measures such as acquisition of new mito-
chondria from donor cells occur to ensure cell survival.

evOLuTiONARY ORigiN  
OF MiTOCHONDRiA

To better understand the need for and intricacies of ongoing 
mito-nuclear communication, we provide a brief summary of 
the events that led to mitochondria becoming an integral part of 
eukaryotic cells. The idea that mitochondria originated from free 
living bacteria that became incorporated inside an archaeal cell 
via endocytosis (21) is supported by phylogenetic analysis of con-
served ribosomal RNA (rRNA) (22, 23). It is now widely accepted 
that all multicellular life originated from a common eukaryotic 
ancestor that evolved more than two billion years ago. Although 
the exact timing of the acquisition of the α-proteobacterium is 
still debated (24, 25), the metabolic advantages that this endosym-
biotic relationship brought are indisputable. Protomitochondria 
conferred on early eukaryotes the ability to use previously toxic 
oxygen to fuel a much more efficient way of releasing energy 
from organic substrates, aerobic respiration. This allowed them 
to colonize new and diverse ecological niches and set the scene for 
the advent of complex multicellularity, eventually giving rise to 
fungal, plant, and animal cells. A comparison of non-ribosomal 
proteomes of α-proteobacteria and eukaryotes reveals that 
protomitochondrial metabolism was likely based on the aerobic 
catabolism of lipids, glycerol, and amino acids provided by the 
host. Over time, considerable endosymbiotic gene transfer from 
the protomitochondrion to the host nucleus occurred while many 
genes were lost through redundancy. As a result, the nuclear 
genome has become larger and more complex, while the mito-
chondrial genome has dwindled. A comparison of proteomes 
suggests that only 22% of human mitochondrial proteins are of 
protomitochondrial descent (26).

iNTegRiTY OF mtDNA

Organization of mtDNA in Nucleoids
The human mitochondrial genome is a double-stranded, closed-
circular molecule of 16,569 nucleotide pairs. It was first sequenced 
in 1981 (27) and revised in 1999 (28). mtDNA does not contain 

introns and encodes just 13 polypeptides, 22 transfer RNAs 
(tRNAs), and the 12S and 16S rRNA genes for mitochondrial pro-
tein synthesis (29). The 13 polypeptides encode subunits of the 
respiratory complexes (7 of 45 for RC-I, 1 of 11 for RC-III, 3 of 13 
for RC-IV, and 2 of 16 for RC-V). The four subunits that make up 
RC-II are nuclear encoded along with the remaining 85% of the 
other RC subunits (29). Nuclear DNA encodes more than 22,000 
proteins, about 1,500 of which contribute to the mitochondrial 
proteome. These n-mitoproteins include enzymes required for 
the TCA cycle, amino acid, nucleic acid and lipid biosynthesis, 
mtDNA and RNA polymerases, transcription factors, ribosomal 
proteins in addition to all components of DNA repair pathways. 
N-mitoproteins are expressed in the cytoplasm and folded upon 
entry through the mitochondrial outer membrane via the TOM/
TIM complex. From there, they locate to their specific sites: the 
outer mitochondrial membrane (OMM), the IMM, the inter-
membrane space (IMS), or the mitochondrial matrix (30).

Mitochondrial DNA is not structurally associated with 
histones, as is nuclear DNA. Instead, it is closely associated 
with a number of proteins in discreet nucleoids, approximately 
100 nm in diameter. Nucleoids are anchored to the IMM, fac-
ing the matrix (31). One cell can contain tens to thousands of 
nucleoids, each with a single mtDNA molecule as shown by 
super-resolution microscopy (31). Transcription factor A of 
mitochondria (TFAM), the mtDNA helicase Twinkle, and 
mitochondrial single-stranded DNA-binding protein (mtSSB) 
all co-localize with mtDNA within nucleoids (32). TFAM binds 
to mtDNA and forces U-turns in the circular molecule, which 
allows compacting and packaging of mtDNA into nucleoids (33). 
TFAM plays an important role in both the transcription and 
maintenance of mtDNA and has been shown to recognize and 
bind to cisplatin-damaged and oxidized mtDNA. TFAM is also 
expressed in the nucleus and regulates nuclear genes. mtDNA 
replication is enhanced by an increase in expression of the 
master regulator of the mitochondrial biogenesis, transcriptional 
coactivator peroxisome proliferator-activated receptor gamma 
coactivator 1alpha (PGC-1α) expression via co-activation of the 
nuclear respiratory factor 2 (NF2), and NF1 (34). Overexpression 
of mitochondrial TFAM after cisplatin exposure promotes treat-
ment resistance and cancer growth (35). High TFAM expression 
in tumors has been found to be correlated with poor outcomes 
in patients with ovarian cancer, pancreatic adenocarcinoma, 
endometrial adenocarcinoma, and colorectal cancer, with a 
poor response to chemotherapy [reviewed by Kohno et al. (35)]. 
TFAM, Twinkle, and mtSSB are essential components of nucle-
oids. Other n-mitoproteins associated with mtDNA replication, 
transcription, translation, and repair are transiently associated 
with the nucleoid and are referred to as mitochondrial nucleoid 
associated proteins (30). Mito-ribosomes, although found close 
to nucleoids, are not attached and are, therefore, not part of the 
nucleoid. In contrast to prokaryotes, mitochondrial transcription 
and translation occur as separate processes, with the polycistronic 
RNA needing further processing before being translated. Any 
apparent association with the nucleoid is likely to be related to the 
small spaces between cristae in the mitochondrial matrix (30).

The mitochondrial and nuclear genomes differ in size by more 
than five orders of magnitude. However, each somatic cell contains 
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10 to several thousand mtDNA copies (31) and only two copies of 
nDNA. This disproportionate representation of protein-encoding 
mitochondrial to nuclear genes in most cells exceeds two orders 
of magnitude (36), requiring ongoing mito-nuclear communica-
tion to ensure appropriate stoichiometry of RC subunits. Both 
decreased and increased mtDNA copy numbers have been associ-
ated with increased cancer incidence, with contradictory findings 
between some studies for the same type of tumor. For example, 
both increased (37) and decreased copy numbers (38, 39) have 
been reported to increase the incidence of renal cancer.

Given the density of open reading frames in mtDNA, one 
could argue that loss of mtDNA integrity can have serious 
consequences for individual cells as well as the entire organism. 
It is generally accepted that mtDNA mutates more rapidly than 
nDNA because of its close proximity to mitochondrially gener-
ated ROS, lack of protective histone proteins, and comparatively 
less effective repair processes (40, 41). An earlier study showed 
that mtDNA damage is not only more severe but also persists 
longer than nuclear DNA damage after H2O2 exposure (42). 
However, other studies have shown that the DNA-binding 
proteins of mitochondrial nucleoids can be equally protective of 
mtDNA as histones are of nuclear DNA when exposed to H2O2 or 
X-rays (43). In addition, the effect of a single mtDNA mutation 
may have fewer consequences than a single nDNA mutation. 
Impaired MET due to mtDNA mutations results in depolarized 
mitochondria which are unable to re-fuse with the mitochon-
drial network after fission (44). Protection from damage by 
nucleoid proteins combined with the removal of mitochondria 
with damaged DNA through mitophagy may result in a more 
robust response to oxidative stressors such as H2O2 than previ-
ously thought.

Cells of most outbred populations contain more than one 
mitochondrial genotype. This heteroplasmy can be quite vari-
able within tissues and cell types of one organism, complicating 
interpretation of mitochondrial genetics and influencing disease 
presentation in the case of pathological mtDNA mutations (36). 
Interestingly, most mtDNA mutations are recessive and easily 
complemented by wild type mtDNA copies. There seems to be 
a threshold ratio of mutated/wild type mtDNA of approximately 
70% before disease symptoms become evident, depending on the 
mutation and the type of tissue (40, 45).

Both nDNA mutations that affect n-mitoproteins and mtDNA 
mutations in the 13 genes encoding subunits of the respiratory 
chain compromise OXPHOS (40, 41, 45). Germline mutations, 
resulting in a decrease in or loss of expression of succinate 
dehydrogenase (SDH), fumarate hydratase (FH), and isocitrate 
dehydrogenase have been reported in inherited paragangliomas, 
gastrointestinal stromal tumors, pheochromocytomas, myomas, 
SDH, papillary renal cell cancer (FH), and gliomas (46).

Mutations in mtDNA have been implicated in neuromuscular 
and neurodegenerative mitochondriopathies (47–49) and com-
plex diseases like diabetes (50), cardiovascular diseases (51, 52), 
gastrointestinal disorders (53), skin disorders (54), aging (55, 56), 
and cancer (41).

A recent review by van Gisbergen et al. (41) describes several 
studies showing that mtDNA germline variations can play a 
role in tumor growth for hemopoietic cancers, prostate cancer, 

breast cancer, and renal cancer. The authors also report that 
somatic mtDNA mutations can be involved in breast, colorectal, 
bladder, esophageal, head and neck, ovarian, renal, lung and 
thyroid cancer, and leukemia and can influence cancer progres-
sion and metastasis. The effect of somatic mtDNA mutations on 
tumorigenesis depends on the functional and threshold effects 
of the mutation (57). Different human populations have differ-
ent human mtDNA haplotypes, each with a unique fingerprint 
of mtDNA polymorphisms, passed on through the maternal 
germline. These haplotypes correlate to the geographic origin of 
the population. Certain human haplotypes carry a higher risk of 
developing a particular type of cancer or a neurodegenerative 
disease during their lifetime than others (8, 41, 58).

More than 50% of mtDNA mutations involved in carcino-
genesis are located in the 22 mitochondrial tRNA genes (58). 
The most common mtDNA mutation is the single nucleotide 
polymorphism, 3243A > G, which alters leucine mt-tRNA and 
thus affecting translation of the 13 respiratory subunits, result-
ing in fewer mitochondrial subunits and impaired OXPHOS 
(59, 60). Individuals with 10–30% faulty copies of tRNALeu may 
develop maternally inherited diabetes and deafness. People 
with 50–90% faulty copies are likely to develop mitochondrial 
encephalomyopathy, lactic acidosis, and stroke-like episodes 
(MELAS) (50, 59–65). The tRNALeu mutation results in variable 
forms of mitochondrial RC deficiency in different patients. By 
far, the most common finding in MELAS is complex I (RC-I) 
deficiency, whereas some patients have combined deficiencies 
of RC-I, RC-III, and RC-IV (59, 66). Other mt-tRNA mutations 
that play a role in human disease are: tRNALys, which is associated 
with myoclonic epilepsy, tRNASer with deafness, and tRNAIle with 
cardiomyopathies (51).

In addition to mutations affecting the respirasome and tRNAs, 
a recent review by Gopisetty and Thangarajan (67) summarizes 
possible roles for mutations in mitochondrial ribosomal small 
subunit genes (MRPS) in human disease. The authors describe 
the roles of 30 new MRPS as well as the effect of known MRPS 
mutations on different cancers and other diseases, including 
developmental and neurodegenerative diseases, mitochondrio-
pathies, cardiovascular diseases, obesity, and inflammatory dis-
orders. They further provide evidence of the role of MRPS18-2 
in carcinogenesis as a potential oncogene. Differential expression 
of specific MRPS genes has been associated with breast cancer, 
cervical cancer, non-small cell lung cancer, thyroid tumors, 
invasive glioblastoma, Burkitt’s lymphoma, pediatric hyperdip-
loid acute lymphoblastic leukemias, testicular germ cell tumors, 
endometrial carcinoma, and head and neck squamous cell 
carcinoma (67). Expression levels in cancers were heterogeneous 
both within the same tumor type and between different cancers. 
For example, MRPL42 overexpression has been described for 
breast, carcinoid, liver, endometrial, melanoma, and ovarian 
cancers. Downregulation was seen in pancreatic, renal, and 
urothelial cancer. Expression profiles change in response to 
cisplatin chemotherapy treatment and radiation, indicating a 
potential role for MRPS genes in cellular responses cytotoxic 
drugs or serve as biomarkers. Single nucleotide polymorphisms 
in MRPS genes have also been linked to cancer risk [reviewed 
in Ref. (67)].
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Drivers and Timing of mtDNA Mutations
Until recently, the generally accepted view was that mtDNA 
mutations are generated by ROS-mediated oxidative damage 
(36, 41). Generation of ROS in the respiratory chain is inherently 
part of OXPHOS. ROS play an important part in several signal-
ing processes and their levels are kept in check by antioxidant 
enzyme systems in the mitochondrial matrix and IMS. However, 
in situations where OXPHOS is compromised due to misshapen 
respiratory complexes resulting in increased leakage of electrons 
to oxygen, ROS levels may overwhelm the antioxidant defense 
system and damage nearby mtDNA (11, 12).

DeBalsi and colleagues propose that mistakes made by the 
mtDNA replication and repair machinery can also generate 
mtDNA mutations (68). Human cells contain 17 distinct human 
DNA polymerases, but only polymerase gamma (Pol-γ) functions 
in mtDNA replication and repair. Nuclear-encoded Pol-γ holo-
enzyme consists of a catalytic subunit and an accessory subunit 
[reviewed by DeBalsi et al. (68)]. Pol-γ replicates mtDNA with 
high fidelity due to nucleotide selectivity and proofreading abil-
ity with one mis-insertion in every 500,000 new base pairs (69). 
Over 300 Pol-γ mutations have been linked to human disease, 
some manifest in adulthood and these are associated with aging, 
such as various forms of progressive external ophthalmoplegia 
(PEO) and Parkinson’s disease (PD) [reviewed in Ref. (68)]. The 
importance of Pol-γ in limiting mtDNA mutations was demon-
strated by homozygous, but not heterozygous, mutator mice with 
a proofreading-deficient Pol-γ developing several age-related 
conditions and having a shortened lifespan. They accumulated 
mtDNA mutations that were not caused by oxidative damage, 
as their antioxidant capacities were the same and the extent of 
oxidative damage was similar to wild-type mice. The mutator 
mice acquired somatic point mutations, large deletions and mul-
tiple linear deleted mtDNA fragments. Another n-mitoprotein 
involved in mtDNA replication is the mtDNA-specific helicase 
Twinkle, which unwinds mtDNA for synthesis by Pol-γ [reviewed 
in Ref. (70)]. Overexpression of Twinkle in transgenic mice led 
to increased mtDNA copy number and OXPHOS and several 
twinkle mutations are associated with mitochondrial myopathy 
(68). Both oxidative damage and faulty replication are likely to 
contribute to the total mtDNA mutational load of a cell and the 
contribution of each mutational driver is likely to change over 
time.

Repair of Faulty mtDNA
For the most part, mtDNA repair pathways mirror those that 
occur in the nucleus with the same or similar proteins alter-
natively spliced and targeted to the mitochondria [reviewed 
by Kazak et  al. (71)]. Mitochondria have a robust base exci-
sion repair (BER) system, which mainly fixes oxidative DNA 
damage of mtDNA physically associated with IMM. Single 
strand breaks are sensed by PARP-1 and repaired by the BER 
enzymes. There is also evidence of double strand break (DSB) 
repair, with alternatively spliced nuclear DSB repair proteins 
or mitochondrial homologs from the non-homologous end 
joining and homologous recombination pathways present in the 
mitochondrial matrix. Mismatch repair for replication errors is 
present in mitochondria but the proteins involved are distinct 

from those in nuclear mismatch repair (71). The various mtDNA 
repair pathways employ a myriad of proteins, all of which are 
nuclear encoded. Although there is a certain amount of redun-
dancy, upregulation, downregulation, and/or point mutations in 
mtDNA repair proteins will affect mtDNA integrity. Cancer cells 
with a compromised mtDNA repair capability will accumulate 
more mtDNA mutations over time. In the event that mtDNA 
mutations are not removed through fission and mitophagy, 
increased mtDNA burden will compromise OXPHOS and force 
a switch to a purely glycolytic metabolism, as described in the 
next part of this review.

MiTO-NuCLeAR CROSS TALK

Most mito-nuclear cross talk is focused on meeting the bioen-
ergetics demands of cells. This will be related to the speed with 
which cellular demands change and the consequences if these 
demands are not met. Mitochondria continually update the 
nucleus of their bioenergetics status (retrograde signaling) by 
producing a number of energy metabolites (mitostress signals). 
The nucleus responds by activating stress response signaling 
pathways aimed at adjusting ATP production to suit the cell’s 
energy requirements. The different mitostress signals and nuclear 
stress response pathways are summarized in Figure 2.

Mitostress Signaling Overview
Decreased MET results in a decrease in mitochondrial membrane 
potential which leads to several mitostress signals that trigger spe-
cific nuclear transcriptional responses described in more detail 
by Arnould et al. (72) and summarized in Figure 2. Decreased 
mitochondrial ATP levels cause energy deprivation (high AMP/
ATP ratio). This induces AMP-activated protein kinase (AMPK) 
signaling, which activates peroxisome proliferator-activated 
receptor γ coactivator 1-α (PGC-1α), promoting mitogenesis. 
PGC-1α also decreases mammalian target of rapamycin (mTOR) 
activity which downregulates energy-demanding anabolic pro-
cesses, which is mirrored by a lack of Krebs cycle metabolites 
available for anabolic pathways. Increased cytosolic Ca2+ levels 
activate transcriptional regulators such as activating transcrip-
tion factor, CREB1, NFkB, p53, MEF-2, and PGC-1α. Increased 
mitochondrial NADH/NAD+ ratios affect the membrane and 
cytosolic redox potential, causing reductive stress. Changing the 
NADH/NAD+ ratio also affects activity of the NAD+-dependent 
poly[ADP-ribose] polymerase-1 (PARP-1), involved in DNA 
repair, and the Sirtuin family. Increased mitochondrial ROS result 
from leakiness of the respiratory chain caused by misshapen res-
piratory complexes. In most healthy mammalian cells, 95–98% 
of total oxygen consumption occurs at respiratory complex 
IV. Premature electron leakage to oxygen occurs at respiratory 
complexes I, II, and III generating superoxide, although other 
possible sites of superoxide production have been identified (73). 
Superoxide is converted to hydrogen peroxide by superoxide 
dismutases (Cu-ZnSOD in the IMS and MnSOD in the matrix). 
Hydrogen peroxide in mitochondria is detoxified to water and 
oxygen by glutathione peroxidase and peroxireductase (73). 
Under normal circumstances, these antioxidant enzymes neu-
tralize most of the ROS, leaving enough hydrogen peroxide to 
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mitochondria by the integrated stress response (ISR) and a shift from mitochondrial to glycolytic/lactate metabolism all ensure that the energy demands of cells are 
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pass through membranes to promote redox signaling through 
modifications of cysteine residues on redox sensitive proteins, 
resulting in posttranslational modifications. Redox signaling 
has been implicated in anti-aging and longevity, promoting 
protective stress responses and enhanced immunity [reviewed 
in Ref. (74)]. Excess hydrogen peroxide can be transformed into 
the highly aggressive hydroxyl radical, responsible for oxidative 
damage to mitochondrial proteins, lipid and DNA. Both SIRT1 
and SIRT3 are activated under increased ROS and help orches-
trate increased antioxidant gene expression as well as mitophagy.

Prototoxic Stress
Prototoxic stress is caused by a mismatch in the number/shape of 
respiratory chain subunits and results in a buildup of redundant/
misshapen/unfolded respiratory subunits in the mitochondrial 
matrix. Both proteotoxic stress and depolarization of mito-
chondria activate the mitochondrial unfolding protein response 
(mtUPR), resulting in accumulation of PINK 1 in the IMS, 
recruitment of PINK2 to the mitochondria, and the removal of 
defective mitochondria through mitophagy (75).

Mitometabolite Levels
Mitometabolite levels such as acetyl-CoA and S-adenosyl methio-
nine (SAM) affect acetylation and methylation of the nuclear 

genome, respectively. Changes in the nuclear and mtDNA profiles 
can directly affect epigenetic regulation and thus cancer progres-
sion and metastasis (76). SAM is the primary methyl donor 
molecule utilized in cellular methylation of proteins, DNA, RNA, 
and lipids and is synthesized directly from methionine. Both 
existing DNA, as well as newly synthesized DNA can be dynami-
cally methylated and demethylated (76). In mouse embryonic 
stem cells, lack of threonine in the growth medium decreased 
accumulation of SAM and decreased histone methylation, result-
ing in slowed growth and increased differentiation (77).

Mitopeptides
Recent mitochondrial transcriptome analysis have revealed the 
existence of several small open reading frames (sORFS) within 
the 16S and 12S rRNA gene sequences. These sORFS cor-
responded with small mitochondria-derived peptides (MDPs). 
The first MDP, humanin, was discovered in 2001 by Hashimoto 
et  al. (78), followed by the discovery of MOTS-c by Lee et  al. 
in 2015 (79) and small humanin-like peptides (SHLP 1–6) by 
Cobb et al. in 2016 (80). Emerging evidence suggests that MDPs 
play important roles in the regulation of cellular bioenergetics 
and system metabolism by modulating insulin sensitivity and 
glucose homeostasis [reviewed by Kim et al. (81)], but whether 
these hormone-like peptides are bona fide retrograde signaling 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


19

Herst et al. Functional Mitochondria in Health and Disease

Frontiers in Endocrinology | www.frontiersin.org November 2017 | Volume 8 | Article 296

molecules that modulate nuclear gene expression or induce 
epigenetic changes intracellularly or in other cells remains to 
be determined. The 24 amino acid humanin (located within the 
16S rRNA gene) has been shown to be strongly neuroprotective, 
antiapoptotic, and protects against ischemia/reperfusion injury 
possibly due to a decrease in ROS generation (78). Humanin 
directly affects mitochondrial bioenergetics by increasing basal 
OCR, respiration capacity, and ATP production and increases 
mtDNA copy number and the number of mitochondria. Humanin 
also plays a role in lipid metabolism by decreasing body weight 
gain, visceral fat, and hepatic triglyceride accumulation together 
with an increase in activity level in high-fat diet-fed mice (81). 
Injecting humanin improved pancreatic islet function and 
insulin sensitivity in non-obese diabetic mice and prevented 
diabetic progression in some animals (82). In humans, humanin 
is found in the brain, hypothalamus, heart, vascular wall, blood 
plasma, kidneys, and testes (83). Humanin could be considered 
a mitohormone with plasma levels adjusting to cellular oxidative 
stress levels. In support of this notion, low levels of oxidative 
stress, as seen in prediabetic patients with slightly increased blood 
glucose levels, had significantly lower plasma humanin levels 
than healthy control patients (83). This could be considered a 
positive adaptation to mild-moderate oxidative stress which may 
promote longevity in a similar manner to dietary caloric restric-
tion (84). As oxidative stress increases, mitochondria would then 
significantly upregulate humanin levels as seen in patients with 
advanced mitochondrial encephalopathy, lactic acidosis and 
stroke-like episodes (MELAS), and chronic progressive external 
ophthalmoplegia (85, 86).

The six SHLP peptide sequences (20–38 amino acids long) 
are also found within the 16S rRNA gene (80), with SHLPs1-5 
being on the antisense light strand. SHLP2 and SHLP3 have 
similar protective effects as humanin and both improved 
mitochondrial metabolism by increasing oxygen consumption 
rate and ATP production, mitochondrial biogenesis and by 
reducing apoptosis and ROS levels. SHLP2 and SHLP3 enhance 
insulin sensitizing effects in  vitro and in  vivo (81). MOTS-c 
is a 16 amino acid peptide located within the 12S rRNA gene 
[reviewed in Ref. (87)]. MOTS-c increases glucose uptake and 
glycolysis through AMPK activation, whereas it suppresses 
mitochondrial respiration in cultured cells and skeletal muscle. 
This resembles a Crabtree effect-like phenomenon, namely, 
decreased mitochondrial OCR in response to high glucose 
uptake. MOTS-c is also closely associated with amino acid and 
lipid metabolism. MOTS-c enhances whole body insulin sen-
sitivity, acting primarily through the muscle. MOTS-c further 
prevents HFD-induced obesity and insulin resistance in CD-1 
mice and prevents HFD-induced obesity independent of caloric 
intake in C57BL/6J mice (87).

Mitochondrial Non-Coding RNAs
Large parts of the non-coding nuclear genome, which itself 
represents more than 98% of the total genome, are transcribed 
into various types of non-coding RNA, which include rRNAs, 
tRNAs, small nucleolar RNAs, small nuclear RNAs, and the 
more recently identified microRNAs (miRNAs), and long non-
coding RNAs (lncRNAs). According to the last GENCODE 

release (v25), the human genome contains more than 4,000 
miRNA and 15,000 lncRNA genes. A very recent review by 
Vendramin and colleagues describes in detail the roles of differ-
ent types of non-coding RNAs as modulators of mitochondrial 
function (88). The 22 nucleotide long miRNAs are highly 
conserved non-coding RNAs that have been implicated in a 
large variety of patho-physiological processes including aging 
and cancer. They inhibit translation of mRNA targets in the 
cytoplasm, by binding to them and recruiting the RNA-induced 
silencing complex. Many non-coding RNAs have evolved to 
allow cells to cope with stress and several miRNAS have been 
shown to play a role in tumorigenesis, both as oncogenes and 
tumor suppressors (88).

MicroRNAs have been found inside mitochondria of mtDNA 
competent cells while being absent in their mtDNA deficient ρ0 
counterparts (89) These mito-miRNAs could have been nuclear 
or mitochondrially encoded and would have the potential 
to bind and prevent translation of mito-messenger RNAs.  
A decrease in the number of mitochondrially encoded respira-
tory subunits would affect respiratory subunit stoichiometry and 
thus mito-nuclear cross talk, resulting in cells switching to a 
more glycolytic metabolism, which is described in more detail 
below. Two mitochondrially encoded miRNAs were described 
very recently by Gao et  al. after re-analyzing a public PacBio 
full-length transcriptome dataset, producing the full-length 
human mitochondrial transcriptome (90). The authors propose 
that these miRNAs, through sense–antisense interactions with 
mRNAs, regulate the transcription of the RC subunits, and thus 
control MET and OXPHOS activity. Interestingly, the transcrip-
tion level of these miRNAs was significantly higher in normal 
tissues compared with hepatocellular carcinoma, indicating a 
loss of regulatory control (90).

Metabolic Shift
Glycolysis is the common energy-generating pathway used by all 
mammalian cells; it oxidizes glucose to pyruvate in the cytoplasm, 
generating 2ATP/glucose through substrate phosphorylation. In 
the presence of oxygen, cells with a functional respiratory chain 
will further oxidize pyruvate to carbon dioxide in the Krebs 
cycle, generating 2ATP/glucose. Reoxidation of NADH and 
FADH2 during MET ideally generates an additional 30-32ATP/
glucose through OXPHOS. Under hypoxic conditions, some 
normal cells (myocytes, hepatocytes, erythrocytes, and adipo-
cytes) and most cancer cells reoxidize NADH produced during 
glycolysis via LDH that reduces pyruvate to lactate, and through 
a short evolutionarily conserved electron chain in the plasma 
membrane (PMET). PMET could be a potential evolutionary 
remnant of an ancient pathway responsible for preventing 
intracellular reductive stress due to buildup of NADH during 
glycolysis. A number of different PMET pathways have been 
described in yeasts, plants and mammalian cells [reviewed in 
Ref. (4)]. A PMET system, active in highly proliferative glycolytic 
cells (both non-transformed and cancer cells), uses oxygen as a 
terminal electron acceptor, reminiscent of MET (91, 92). Cell 
surface oxygen consumption has been reported for a number 
of cancer cell lines and can be 2–3× higher in cells devoid of 
mtDNA (ρ0 cells) (91–93). Cell surface oxygen consumption 
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also contributes to the acidification seen in glycolytic cells, due 
to increased LDH activity resulting in increased lactate produc-
tion (92). Cell surface oxygen consumption together with LDH 
activity are required for maintaining intracellular NADH/NAD+ 
balance of highly glycolytic cancer cells, and thus their invasive 
and metastatic potential. In support of this, inhibition of PMET 
by the external redox cycler, phenoxodiol, was shown to promote 
apoptosis in a range of cancer cell lines (94–96) as well as leuke-
mic blasts from patients with myeloid and lymphoid leukemias  
(97, 98). Cell-impermeable drugs targeting PMET may, therefore, 
represent useful additional tool in preventing growth, invasion, 
and metastasis of highly glycolytic cancers (4, 99–101).

The metabolic shift from OXPHOS to aerobic glycolysis in 
rapidly proliferating cells, including cancer cells is controlled by 
hypoxia-inducible factor 1α which is highly expressed in most 
solid cancers [reviewed in Ref. (102)]. However, even under 
aerobic conditions, many, but not all, cancer cells rely to a large 
extent on glycolysis to meet their energy demands. This allows 
them to use glycolytic intermediates for anabolic processes and 
escape the effects of high ROS levels at the expense of additional 
OXPHOS energy. Otto Warburg was the first person to describe 
the phenomenon of aerobic glycolysis (the Warburg effect) in 
the 1920s in Ehrlich ascites cells (103). However, other than for 
cells unable to use OXPHOS due to an assortment of mutations, 
this scenario has proven to be too simplistic. Many cancer cells 
still use OXPHOS to increase their bioenergetic potential and 
generate low levels of ROS for signaling purposes. It seems that 

the glycolysis to OXPHOS shift is more like a rheostat, facilitat-
ing a dynamic adjustment of the proportion of energy gained 
from glycolysis and OXPHOS depending on demand and the 
microenvironment (20). For example, ionizing radiation causes 
re-oxygenation in previously hypoxic tumors. In this scenario, 
cancer cells with the flexibility to adjust readily between glyco-
lysis and OXPHOS would have a distinct survival advantage.  
In support of this, Lu and colleagues recently showed that expos-
ing human MCF-7 breast cancer cells, HCT116 colon cancer, 
and U87 brain cancer cells to a single dose of 5  Gy caused a 
switch from aerobic glycolysis to OXPHOS, increasing their 
bioenergetic capacity and conferring radiation resistance (104). 
They reported that mTOR, a serine/threonine kinase of the 
PIK3 family and highly expressed in cancer cells, translocated 
to the OMM after radiation. There, mTOR bound to and 
inactivated hexokinase II, inhibiting glycolysis and reactivating  
OXPHOS (104).

Mitochondrial Quality Control
In general, a shortfall in ATP levels is caused by a lack of res-
piratory units, increased energy demands by the cell, or transient 
hypoxia. In these cases, mitochondrial quality control restores 
the bioenergetics capacity of the cell for differentiated function 
by increasing the mitochondrial network through mitogenesis. 
In contrast, increasing glycolysis and removing excess mitochon-
dria through autophagy (mitophagy) favors rapid cell prolifera-
tion (see Figure 3).

FiguRe 3 | Mitochondrial quality control involves changes to the mitochondrial network to maintain bioenergetics homeostasis. Fusion (1) of additional mitochondria 
to the existing network occurs when the bioenergetics demands of the cell are not met. When damaged mitochondria cannot be repaired, they can be removed 
from the network through fission (2) followed by removal from the cell though mitophagy (3). Transfer of functional mitochondria from external sources through 
tunneling nanotubules (TNTS) (4), vesicles (5), or direct cytoplasmic fusion (6) can replenish a damaged or deficient mitochondrial network.
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Mitogenesis
Mitogenesis is regulated by mitochondrial and nuclear-encoded 
structural proteins as well as n-mitoproteins involved in mtDNA 
transcription, translation, and repair. Expression of the master 
regulator of mitochondrial biogenesis, PGC-1α is increased with 
increased energy demands after exercise in skeletal and cardiac 
muscle as well as upon fasting in the liver, or after cold exposure 
in brown fat cells. PGC-1α regulates the transcription levels 
of a number of genes involved in metabolic pathways such as 
gluconeogenesis, fatty acid synthesis, and oxidation, promoting 
mitochondrial biogenesis, angiogenesis, and aerobic respiration 
[reviewed in Ref. (105)].

Regulation of PGC-1α occurs at the level of expression and 
a variety of posttranslational changes that regulate its activity 
and stability (phosphorylation, acetylation, and ubiquitination). 
Activation of the p38 mitogen-activated protein kinase (p38 
MAPK) increases PGC-1α expression and stability of the protein 
in brown fat, muscle and liver, which increases gluconeogenesis. 
The energy sensor AMPK also induces PGC-1α transcription 
and enhances its activation through Sirt1-mediated deacetylation 
when ATP/ADP levels are low (105). This in turn allows for the 
regulation of the downstream pathways controlled by PGC-1α. 
One of the targets of PGC-1α, is the newly discovered peptide 
hormone, irisin, secreted by muscle cells after exercise (106). 
Increased irisin expression caused browning of subcutaneous 
adipose tissue (thermogenesis), increased oxygen consumption, 
reduced obesity and insulin resistance in mice given a high fat 
diet (106).

The effects of PGC-1α in cancer cells mimic those in normal 
cells including mitochondrial biogenesis and increased OXPHOS, 
with the added effect of promoting invasion and metastasis 
(107). Circulating breast cancer cells have been found to exhibit 
enhanced mitochondrial biogenesis and respiration as a result 
of increased PGC-1α expression, leading to an increased rate of 
metastasis (107). PGC-1α also increased resistance to cisplatin 
of ascites-derived cancer cells from ovarian cancer patients with 
advanced disease (108). In addition, expression of PGC-1α and 
TFAM were increased in high grade serous ovarian cancers that 
were highly chemoresistant (109).

Mitophagy
Mitophagy is crucially important in removing superfluous or 
faulty mitochondria from the cell. Mitophagy is triggered by 
the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway. 
This pathway is activated by membrane depolarization which is 
a signal of mitochondrial dysfunction caused by hypoxia, lack 
of NADH, and/or a limited number or ill-fitting dysfunctional 
respiratory complexes. Stabilization of PINK1 on the depolarized 
OMM directly phosphorylates Parkin, which ubiquinates a num-
ber of OMM proteins leading to their degradation through the 
26S proteasome and recruitment of the autophagosome. Other 
Parkin-dependent and independent mitophagy pathways have 
been described and have been reviewed in detail by Gumeni and 
Trougakos (110).

Faulty mtDNA copies can be diluted out through continued 
cycles of fusion/fission events. Fusion of several individual mito-
chondria into the larger network allows for complementation of 

mtDNA variants to maintain mitochondrial function. Parts of 
the mitochondrial network with a high mutational load can be 
isolated through fission and eliminated through mitophagy (111, 
112). Fusion is orchestrated by three GTPases; the mitofusins, 
Mfn1, and Mfn2, are involved in fusion of the OMM, whereas 
optic atrophy-1 (Opa1) is responsible for fusing the IMM and is 
also involved in cristae remodeling (111–113). Fission is driven 
by recruitment of dynamin-related protein 1 (Drp1) to receptors 
on the OMM where it causes constriction of both the OMM 
and IMM (1). Drp1 translocation and activity is regulated by 
multiple kinases that respond to distinct cell cycle and stress 
conditions (113).

Removal of Protein Aggregates  
by mtuPR
Accumulation of ROS-damaged/unfolded/misfolded proteins in 
the mitochondrial matrix is called prototoxic stress. The mito-
chondrial unfolded protein response (mtUPR) is responsible 
for degrading protein aggregates in the mitochondrial matrix 
and IMS. Two comprehensive reviews describe the process of 
unfolding, translocation, and refolding of precursor proteins, as 
well as degradation of damaged/misfolded/unfolded proteins by 
ATP-dependent and ATP-independent proteases and oligopepti-
dases (72, 110). Most of our knowledge of the mtUPR pathway 
and its integration with other stress pathways has been obtained 
from research with C. elegans. The mtUPR in mammals is still 
poorly defined with respect to signaling pathways and target 
genes. Two separate mtUPR pathways have been described, one 
deals with protein aggregates in the mitochondrial matrix and 
the other resolves protein aggregates in the mitochondrial IMS  
(72, 110). An interesting recent review by Nuebel and colleagues 
explores the roles of many newly identified proteins unique to the 
IMS in mitochondrial and cellular homeostasis (114). This mito-
chondrial compartment represents a uniquely oxidizing redox 
environment. The IMS proteome is involved in protein and lipid 
transport across the OMM and IMM, apoptosis, redox homeo-
stasis, ROS signaling, and MET. Accumulation of unfolded or 
aggregated proteins is a hallmark of neurodegenerative diseases 
such as Alzheimer’s disease and Parkinson’s disease. Prototoxic 
stress in the mitochondrial matrix is also a common occurrence 
in cancer cells and many, but by no means all cancer types, have 
an activated mtUPR response (110).

integrated Stress Response (iSR)
The ISR is an evolutionary conserved adaptive stress pathway.  
In mammals, the ISR is activated under oxidative stress, ER 
stress, depletion of amino acids, glucose and haem, viral infec-
tion, or UV irradiation. Four different kinases phosphorylate the 
eukaryotic translation initiation factor 2α (eIF2α), a key event 
in ISR [described in detail in Ref. (72)]. Activation of eIF2α 
reduces ATP-consuming processes such as protein synthesis, 
helps stabilize Ca2+ storage in the ER and mitochondria, and 
maintains mitochondrial function. If mitochondrial function 
cannot be recovered, the ISR can initiate autophagy or apoptosis. 
Mitochondrial ISR is triggered by mitochondrial dysfunction 
caused by mtDNA damage, mtDNA depletion, and oxidative 
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stress, whereas mtUPR is specifically triggered by protein aggre-
gates buildup in the mitochondrial matrix. However, it is likely 
that these two stress pathways overlap as phosphorylation of 
eIF2α is a common feature of both pathways.

MiTOCHONDRiAL TRANSFeR BeTweeN 
CeLLS

So far, this review has covered the many different ways that cells 
address inadequate mitochondrial performance. However, what 
happens when mito-nuclear cross talk fails, mtDNA and nDNA 
mutations that affect mitochondrial function accumulate, ATP 
levels fall and biosynthetic pathways wind down? Until fairly 
recently, the answer to these questions would have been clear: 
a decrease in metabolic rate and ultimately, cell death would 
ensue. However, recent research has shown that cells may be able 
to obtain functional mitochondria from other cells in order to 
satisfy their bioenergetics and biosynthetic needs.

The traditional cell biology dogma that mitochondria and 
mtDNA remain within the constraints of their host cell has 
recently been questioned. Several studies have shown that mito-
chondria can move between cells in vitro (115–124). Furthermore, 
we recently showed that tumorigenesis of murine melanoma and 
breast cancer cell lines without mtDNA depended on their ability 
to obtain mtDNA from host mouse cells in the microenviron-
ment (125, 126).

Transfer of functional mitochondria was also shown to confer 
a survival advantage in several mouse models. For example, bone 
marrow-derived stromal cells were able to rescue lipopolysaccha-
ride-induced acute lung injury in alveolar epithelia of mice (127) 
while transfer of mitochondria from mesenchymal stem cells 
(MSCs) protected epithelia by decreasing mitochondrial ROS in 
a mouse model of airway injury and allergic airway inflammation 
(128). Transfer was enhanced when the donor cells overexpressed 
Miro1, a mitochondrial Rho-GTPase. In other recent publications, 
astrocytes were shown to increase ATP levels and viability of neu-
rons in a mouse ischemia model by donating healthy mitochon-
dria contained in vesicles (129), while stromal cells transferred 
mitochondria to immortalized acute myeloid leukemia (AML) 
cells in an immunocompromised mouse xenograft model in 
response to chemotherapy-induced apoptosis (130). This transfer 
occurred via endocytosis from stromal cells to the AML cells, 
and increased ATP production, viability, and survival of AML 
cells was reported. Mitochondrial transfer has also been shown to 
rescue aerobic respiration in carcinoma cells (116) and increase 
survival in an adrenal gland cell line (117). Together, these results 
suggest that intercellular mitochondrial transfer plays a role in 
cellular communications, intracellular metabolic homeostasis or 
exists as a mechanism to support cells under physiological stress. 
In support of this, recent research demonstrated that cells exposed 
to injury have improved survival when introduced to healthy cells 
as an extracellular source of mitochondria (115, 127, 128, 131). 
When exposed to intentional injury such as chemotherapy or 
radiation, fragmentation of mtDNA occurs alongside damage to 
the nuclear genome. The resulting mitochondrial dysfunction in 
the absence of nuclear DNA damage can be toxic (132) and/or 
contribute to the mechanism of action of several cancer therapies. 

Circumvention of mtDNA damage by uptake of mitochondria 
from other cells could lead to treatment resistance.

Although most published work refers to mitochondrial tran-
sfer as a way to replace dysfunctional mitochondria, cells could 
also transfer dysfunctional mitochondria (133, 134). This may 
be particularly relevant in both Alzheimer’s and Parkinson’s 
disease where an increase in mitochondrial dysfunction is cor-
related with progressive degenerative phenotypes (111–113). 
Mutations in mtDNA and disrupted mitochondrial homeostasis 
are common across many neurodegenerative diseases and lead 
to mitochondrial dysfunction (114). Affected cells could manage 
the increase in faulty mtDNA copies by intercellular transfer of 
dysfunctional mitochondria that escape mitophagy.

The types of cells that are able to donate mitochondria, as 
well as the communication between recipients and donor cells 
that drive this transfer remain largely unknown. The exact 
mechanism(s) of mitochondrial transfer has also not been fully 
elucidated. Tunneling nanotubes (TNTs), extracellular vesicles 
and direct cellular contact have all been suggested to facilitate 
mitochondrial transfer between cells (see Figure 3).

Tunneling Nanotubes
Emerging research into the role of TNTs has revealed that these 
open-ended, F-actin containing intercellular structures can act 
as a conduit for intercellular transfer of various biomaterials, 
inclusive of, but not limited to mitochondria (115, 131, 135–138). 
First described in 2004 (139), movement of organelles through 
TNTs has received much attention, particularly from investiga-
tors engaged in MSC research. Numerous recent studies conclude 
that intercellular mitochondrial transfer contributes to the pro-
tective or restorative properties of MSC seen both in vitro and 
in multiple animal injury models [reviewed in Ref. (140)]. The 
formation of TNT-like structures is closely associated with the 
physiological state of the cells, making TNTs likely candidates 
for facilitating intercellular mitochondrial transfer in vivo (133, 
141–143). However, due to the challenges in identifying and 
characterizing open-ended TNTs among a multitude of other 
subcellular tube-like structures, definitive evidence in support 
of TNT-mediated mitochondrial transfer in vivo remains elusive 
(144). Identification of TNTs is currently limited to generalized 
morpho-temporal characteristics determined by time-lapse 
confocal fluorescence microscopy in vitro (129). Identification of 
specific markers for TNTs and other similar structures engaged 
in intercellular mitochondrial transfer is a prerequisite for further 
progress in the field.

extracellular vesicles
Microvesicles, exosomes, apoptotic bodies, and oncosomes are 
biological particles which fall under the broad categorization of 
“extracellular vesicles.” Vesicle size, molecular content, and the 
origin of the particles determines their specific nature and bio-
logical role [reviewed in Ref. (145)]. Microvesicles make up the 
largest category of extracellular vesicles and consist of particles of 
up to approximately 1 µm in size. Like other extracellular vesicles, 
microvesicles bear proteomic signatures that allow cellular uptake 
via endocytosis or phagocytic mechanisms. Their molecular 
contents can exert a broad range of effects on cell physiology. 
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Numerous studies of intercellular mitochondrial transfer report 
mtDNA as well as intact mitochondria can be partitioned into 
microvesicles from specific cell types, suggesting a vesicular 
mechanism for uptake of exogenous mitochondria by recipient 
cells. The first published study of intercellular mitochondrial 
transfer by Spees et al. (115) reported secretion of extracellular 
vesicles containing mitochondrially targeted fluorescent proteins 
by human mesenchymal stem cells into growth medium and 
uptake by recipient cells. These particles were also found to play a 
role in intercellular transfer of mitochondria by Islam et al. (127) 
who observed connexin43-mediated uptake of bone marrow-
derived MSC mitochondria in microvesicles by lung epithelium. 
Evidence for mitochondrial and mtDNA transfer mediated by 
extracellular vesicles has seen steady development across many 
different cell types, and continues to expand as a new field of 
intercellular communications (129, 133, 141, 143, 144).

Partial or Complete Cell Fusion
Perhaps the least explored mechanism in the existing mito-
chondrial transfer literature, the acquisition of exogenous 
mito chon dria via partial or complete cell fusion, is an interesting 
concept. Given the notion that the majority of cells exist in a 
state of individual compartmentalization, cells engaged in these 
types of intimate interactions may not be limited to traditional 
syncytial candidates such as osteoclasts or skeletal muscle cells. 
Cell fusion may be more widespread and important within 
normal biological function than traditionally thought—this 
is a somewhat challenging proposition. There is precedence 
for certain cell types, particularly those derived from the bone 

marrow, to spontaneously fuse with other cell types including 
cardiomyocytes, hepatocytes, and Purkinje neurons (146–150). 
Partial fusion events or alternatively, syncytial mixing through 
intercellular structures, provides opportunities for the acquisition 
of mitochondria from surrounding cells. An example of this would 
be the tumor networks interconnected by tumor microtubes (dis-
tinct from TNTs) in primary glioblastomas, that communicate 
via connexin43 gap junctions (151, 152). Spees and colleagues 
(115) demonstrated mitochondrial transfer without the uptake 
of nuclear associated polymorphisms, excluding complete cell 
fusion in their system. Regardless, restoration of bioenergetic 
status and cellular regeneration via fusion-like mechanisms (150, 
153) remains a potential mechanism in future studies of intercel-
lular mitochondrial transfer.

CONCLuDiNg ReMARKS

The ability to adapt cellular bioenergetics capabilities to meet 
rapidly changing environmental conditions is mandatory for 
cellular function and for cancer progression. Any compromise 
in this adaptive response has the potential to compromise cel-
lular function and render the cell more susceptible to external 
stressors such as oxidative stress, radiation, chemotherapeutic 
drugs, hypoxia, etc. Mito-nuclear cross talk, involving the gen-
eration of different mitochondrial stressors as well as the nuclear 
stress response pathways to deal with those stressors is capable 
of maintaining bioenergetics homeostasis under most conditions 
(see  Figure  4). Although many mito-nuclear stress signaling 
pathways have been described (see Mito-Nuclear Cross Talk), a 

FiguRe 4 | Stressors affect nuclear cross talk through changes in gene expression. Stressors such as oxidative stress, radiation, chemotherapeutic drugs, hypoxia, 
etc., cause genetic and epigenetic changes to both nDNA and mitochondrial DNA (mtDNA). The resulting changes in gene expression result in altered cellular 
bioenergetics, often leading to decreased oxidative phosphorylation. Mitochondrial stressors (a decrease in mitochondrial membrane potential, ATP levels, NADH 
levels, and increased mitopeptide expression, etc.) elicit nuclear stress responses. Stress pathway activation (mtDNA damage repair, mitochondrial biogenesis and 
fusion, switching to glycolytic metabolism, etc.) results in a return to bioenergetics homeostasis, restoring cellular function.
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In the past years, several lines of evidence have shown that cell cycle regulatory proteins 
also can modulate metabolic processes. The transcription factor E2F1 is a central player 
involved in cell cycle progression, DNA-damage response, and apoptosis. Its crucial role 
in the control of cell fate has been extensively studied and reviewed before; however, 
here, we focus on the participation of E2F1 in the regulation of metabolism. We summa-
rize recent findings about the cell cycle-independent roles of E2F1 in various tissues that 
contribute to global metabolic homeostasis and highlight that E2F1 activity is increased 
during obesity. Finally, coming back to the pivotal role of E2F1 in cancer development, 
we discuss how E2F1 links cell cycle progression with different metabolic adaptations 
required for cell growth and survival.

Keywords: e2F1, cell cycle regulators, cancer metabolism, obesity, metabolic diseases

iNTRODUCTiON: A CeLL CYCLe PROTeiN wiTH New SKiLLS

The E2F transcription factors were first identified as proteins that were able to bind to the promoter 
of the adenoviral gene E2 (1). Eight E2F genes (E2F1-8) have been described to date, which can 
be classified based on their protein structures, their interaction partners, and their transcriptional 
properties (2). E2F1 was the first member of the E2F family to be identified because of its ability 
to bind the retinoblastoma protein (pRB), a tumor suppressor mutated in many types of cancer (3, 
4). The activity of E2F1 is dependent on its binding partners, which include dimerization proteins 
(DP) and the retinoblastoma family proteins (also known as “pocket proteins”), composed by pRB 
(RB1), p107 (RBL1), and p130 (RBL2) (5). E2F1–pRB interaction blocks the transcriptional activa-
tion domain of the E2F1–DP complex and prevents the recruitment of transcriptional co-activators 
to the promoters of its target genes (6). During cell cycle progression, cyclin-dependent kinases 
(CDKs) phosphorylate pRB, releasing E2F1, which is then available to promote the expression of 
genes involved in S-phase entry, DNA synthesis, and mitosis (7–9).

Three decades after its discovery, it is now clear that the control of cell cycle represents only 
a subset of the E2F1 roles, which include the regulation of apoptosis (10), senescence (11), and 
DNA-damage response (12). Indeed, genome-wide location studies have revealed that E2F1 binds 
to hundreds of promoter regions of genes involved in a myriad of cellular pathways (13–16). What 
ultimately determines E2F1 distinct biological functions are its protein levels, the combination of 
several posttranscriptional modifications and its interaction with different partners (17). The intri-
cate role of E2F1 as a master regulator of cell fate has been extensively examined before and is out of 
scope for this review (17, 18). Instead, here, we want to focus on the recent research evidencing that 
E2F1 is a master regulator of metabolism both in normal and pathological conditions.
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FigURe 1 | Main roles of E2F1 in metabolic tissues. E2F1 participates in the differentiation of several tissues, but also in the regulation of specific metabolic functions 
in fully differentiated organs, thus contributing to global metabolic homeostasis. Moreover, during obesity, E2F1 activity is increased and it contributes to some of the 
comorbidities of this pathological condition. Pathways activated by E2F1 are represented in green while pathways repressed by E2F1 are in red.
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regulators of adipocyte fate and differentiation (25, 26). Moreover, 
in mature adipocytes E2F1 can form a repressor complex with 
TRIP-Br2—a transcriptional co-regulator—which inhibits lipoly-
sis and mitochondrial β-oxidation (27). Interestingly, CDK4, the 
main E2F1 upstream activator during cell cycle progression, also 
promotes adipogenesis though PPARG activation and in mature 
adipocytes it sustains insulin signaling by phosphorylation of the 
Insulin Receptor Substrate 2(28, 29). Altogether, these findings 
show that the canonical CDK4-pRB-E2F1 axis is essential for 
adipogenesis and to maintain adipocyte function.

In contrast to white adipose tissue, E2F1 represses mouse 
myogenic differentiation by inhibiting the transcription factors 
MyoD and Myogenin (30, 31). MyoD in turn, promotes the 
expression of the Kelch Repeat and BTB Domain Containing 
Protein 5 (Kbtbd5), which represses E2F1 activity in a negative 
feedback loop by the ubiquitination and degradation of DP1 
(32). Conversely, in Drosophila, depletion of the dE2F1 blunts the 
expression of late myogenic markers during muscle differentia-
tion, which is critical for survival (33). The differences between 
the two organisms are puzzling and require further exploration, 
but they may rely on the fact that in Drosophila there are only two 
E2F isoforms, dE2F1 and dE2F2, which work as activators and 
repressors of transcription, respectively.

Chromatin immunoprecipitation (ChIP) analysis revealed 
that in basal conditions E2F1 and pRB form a repressor complex 
in the promoters of several genes involved in oxidative metabo-
lism and mitochondrial biogenesis in muscle, but also in brown 
adipose tissue (34). In response to exercise or cold exposure, pRB 
is phosphorylated in muscle and brown adipose tissue, respec-
tively, and mitochondrial and thermogenic genes are expressed  

e2F1 RegULATeS MeTABOLiSM iN  
NON-PROLiFeRATive CONDiTiONS AND 
CONTRiBUTeS TO gLOBAL MeTABOLiC 
HOMeOSTASiS

Role of e2F1 in Normal Physiology
Despite the critical function of E2F1 in cell proliferation, 
E2f1−/− mice undergo normal development, likely due to the 
compensation by other E2F family members (19, 20). However, 
E2f1−/− mice present some metabolic perturbations that highlight 
its specific role in the regulation of metabolism independently 
from cell cycle control. E2F1 participates in the development and 
the differentiation of several tissues involved in global metabolic 
homeostasis, but it is also implicated in specific metabolic func-
tions of fully differentiated organs like pancreas, adipose tissues, 
muscle and liver (Figure 1).

E2f1/E2f2 mutant mice show severe exocrine atrophy of 
pancreatic β cells, primarily resulting from E2F1 mutation, 
which leads to insulin-dependent diabetes (21). E2F1 promotes 
β cell proliferation and differentiation through the regulation 
of the endocrine markers PDX-1 and Neurogenin 3 (22, 23). In 
addition, in fully differentiated β cells, E2F1 directly controls the 
expression of the major subunit of the ATP-sensitive K+ channel 
Kir6.2, hence promoting glucose-stimulated insulin secretion 
(24). These studies show that E2F1 participates in pancreas 
development, maintenance, and endocrine function, hence 
contributing to global glucose homeostasis.

In the adipose tissue, E2F1 promotes adipogenesis though the 
regulation of PPARG and RIP140 gene expression, two master 
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(34, 35). As a consequence, deletion of E2F1 in mice results 
in better resistance to fatigue during exercise and higher body 
temperature upon cold stimulation due to increased oxidative 
metabolism (34). Strikingly, E2F1 depletion in a dystrophic 
mouse model significantly improved muscle performance by 
increasing muscle oxidative metabolism (36).

Some studies using pRB lack of function models support the 
role of the E2F1–pRB complex as a negative regulator of oxidative 
metabolism. For instance, adipose-specific RB1-deficient mice 
are resistant to high-fat diet (HFD)-induced obesity and display 
increased mitochondrial activity in white and brown adipose tis-
sues (37). This was reproduced in RB1-haplosufficient mice (38). 
However, the HFD-resistant phenotype of RB1-deficient mice 
could also be attributed to the role of pRB in promoting white 
versus brown fat cell differentiation (35, 39), as evidenced by the 
increased expression of the thermogenic protein UCP1 in both 
white and brown adipose tissue depots (37, 38). Additionally, 
acute loss of pRB or depletion of p170 increased mitochondrial 
content and activity in muscle cells (40, 41). Conversely, other 
studies report that pRB may in fact promote mitochondrial bio-
genesis. Deletion of RB1 led to impaired mitochondrial function 
in myocytes (42) and erythrocytes (43). More recently, it was 
shown that acute pRB loss in adult mice results in a decreased 
content of oxidative phosphorylation proteins in the lung and in 
the colon (44), while RB1 depletion blocked muscle differentiation 
due to an impairment in oxidative metabolism (45). The above 
confounding studies evidence the relevance of the E2F1-pRB 
complex in the control of oxidative metabolism in highly meta-
bolic tissues, but they highlight that its specific function may be 
context dependent. It should also be taken into account that pRB 
loss of function also leads to multiple E2F1-independent effects 
(4). Moreover, the fact that E2F1 can activate or repress its target 
genes often complicates the understanding of the phenotype of 
E2f1 knockout models.

Role of e2F1 in Metabolic Diseases
Obesity is associated with increased risk of developing cardiovas-
cular diseases, type 2 diabetes, and cancer (46). As we will discuss 
in this section, E2F1 expression and activity are increased during 
obesity in several tissues involved in metabolic homeostasis, sug-
gesting that E2F1 could contribute to some of the comorbidities 
of this condition.

E2f1 mRNA and protein levels are increased in the visceral 
white adipose tissue of obese human subjects and positively cor-
related with insulin resistance and circulating free-fatty acids (47). 
E2F1 expression was also increased in the visceral adipose tissue 
of two widely used mouse models of obesity: mice fed a HFD and 
leptin-deficient (ob/ob) mice (48). This effect was reversed when 
HFD-fed mice were treated with resveratrol, which in parallel 
decreased body weight gain and the levels of pro-inflammatory 
cytokines levels in white adipose tissue (49). In addition, pRB lev-
els and repressor activity decrease in white adipose tissue during 
obesity both in rats and in humans (50), which is consistent with 
increased E2F1 activity. These evidences are supported by ChIP 
analysis in human white adipose tissue that revealed increased 
E2F1 binding to the promoters of stress signaling genes during the 
progression of obesity (51). Interestingly, E2F1 has been shown 

to enhance NF-κB-mediated inflammatory response (52, 53). 
However, the contribution of E2F1 to the inflammation of white 
adipose tissue during insulin resistance remains to be explored.

Obesity is a well-known inducer of cardiac hypertrophy, 
which often contributes to heart failure (54). Pathological cardiac 
hypertrophy occurs in parallel with the development of metabolic 
inflexibility and a re-activation of the cell cycle machinery (55). 
Similar to the effects observed in the white adipose tissue, HFD 
increased E2F1 levels and increased RB phosphorylation in 
mouse heart. This correlated with elevated expression of the E2F1 
transcriptional target pyruvate dehydrogenase kinase 4 (PDK4) 
(56, 57). PDKs inhibit pyruvate dehydrogenase, blocking pyruvate 
conversion into acetyl-CoA, which results in decreased glucose 
oxidation. Hence, upregulation of the E2F1–PDK4 axis during 
obesity may account for the impairment in glucose oxidation that 
characterizes cardiomyopathy. Moreover, through the regulation 
of PINK1 translation via miR-421 expression, E2F1 promotes 
mitochondrial fragmentation in cardiomyocytes, which can lead 
to myocardial infarction (58). Additionally, E2F1 has been shown 
to suppress cardiac neovascularization by downregulating VEGF 
and PIGF expression. Consequently, E2f1−/− mice present better 
cardiac function after myocardial infarction than their wild-type 
littermates (59). Altogether, these studies suggest that increased 
E2F1 activity occurring during obesity contributes to the devel-
opment of cardiomyopathy through the re-entry in the cell cycle 
and the re-wiring of cardiac metabolism.

Some laboratories, including ours, have recently dem-
onstrated the importance of E2F1 in the physiopathological 
context of non-alcoholic fatty liver disease (NAFLD), which is 
highly related to the epidemic of obesity. NAFLD is a progres-
sive disease that starts with a benign accumulation of lipids in 
the liver (hepatic steatosis) that can develop to non-alcoholic 
steatohepatitis (NASH) which, in its worst prognosis, can lead to 
liver fibrosis, cirrhosis, and hepatocarcinoma (60). Hepatic E2F1 
levels are increased in steatotic liver in mice but also in humans 
(16). Additionally, NAFLD correlated with the phosphorylation 
of pRB in the liver in different mouse models of obesity and 
diabetes (16, 61), altogether consistent with increased E2F1 
activity in these conditions. One major contributor to NAFLD 
is an increase in hepatic de novo lipogenesis, a process in which 
E2F1 plays an important role. Indeed, E2F1 directly activates 
the expression of key glycolytic and lipogenic genes and E2F1 
depletion protects against NAFLD (16). Remarkably, hepatic 
E2F1 expression is increased in patients with NASH and in 
different mouse models of liver fibrosis (62, 63). Perturbed bile 
acid metabolism and/or cholesterol homeostasis are major con-
tributors to NASH. The importance of E2F1 in bile acid synthesis 
was found in a mouse model of NASH—bile duct ligation and 
3, 5- diethoxycarbonyl-1, 4-dihydrocollidine (DCC) feeding—in 
which bile acid accumulation in the liver contributes to fibrosis. 
Indeed, knockout of E2F1 in mice reduced bile acid synthesis, 
which protected from the development of biliary fibrosis under 
DCC feeding (62). We also recently revealed that E2F1 partici-
pates in cholesterol homeostasis by enhancing the expression of 
PCSK9, a negative regulator of the LDL receptor and cholesterol 
uptake (63). Importantly, anti PCSK9 antibodies were recently 
approved for the treatment of cardiovascular diseases due to 
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TABLe 1 | E2F1 contributes to the metabolic reprograming of cancer cells.

e2F1-target genes Reference

Nucleotide synthesis DHFR, TK (85,86)
Lipid synthesis FAS (89)
Glycolysis PFKB, Sirt6, PDK (71,72,73,75)
Oxidative metabolism TOP1MT, EVOVL2, NANOG (76–78)
Autophagy v-ATPase, ATG1, DRAM1, MAP1LC3 (91,92)

E2F1 regulates the expression of several genes that have an impact on cancer 
metabolism.
DHFR, dihydrofolate reductase; TK, thymidine kinase; FAS, fatty acid synthase; 
PFKB, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase; PDK, pyruvate 
dehydrogenase kinase; Sirt6, Sirtuin 6; TOP1MT, mitochondrial topoisomerase I; 
EVOVL2, ELOVL fatty acid elongase 2; ATG1, autophagy-related gene-1; MAP1LC3, 
microtubule-associated protein-1 light chain-3; DRAM, damage-regulated autophagy 
modulator.

32

Denechaud et al. E2F1, a Novel Regulator of Metabolism

Frontiers in Endocrinology | www.frontiersin.org November 2017 | Volume 8 | Article 311

their capacity to lower LDL cholesterol levels (64). E2f1−/− mice 
present decreased circulating levels of cholesterol as a conse-
quence of increased cholesterol uptake by several tissues, includ-
ing the liver. However, when subjected to a high cholesterol diet, 
E2f1−/− mice presented increased liver fibrosis, likely due to the 
combination of exacerbated cholesterol uptake and a defect in 
bile acid secretion (63). Taken together, these studies imply that 
the convenience of targeting E2F1 to treat liver fibrosis could 
be context dependent and that this approach requires further 
investigation. Nevertheless, in humans, the increase of E2F1 dur-
ing NASH was more substantial than the induction of standard 
fibrosis markers such as α-SMA and α1-collagen, which suggest 
that E2F1 could be potentially used as a new diagnostic marker 
for increased risk of developing liver fibrosis and cirrhosis (62).

Long-term HFD also increased E2F1 protein levels and pRB 
phosphorylation in hypothalamic Arcuate nucleus neurons, 
which are involved in global energy balance (65). This in turn 
led to a de-repression of E2F1-target genes involved in cell cycle 
regulation and apoptosis. Lu et  al. found that the E2F1–pRB 
repressor complex is necessary for POMC neuron maintenance, 
whereas specific RB1 depletion in these neurons led to hyper-
phagia, obesity and diabetic syndrome in an E2F1-dependent 
manner (65). These results indicated that dysregulation of E2F1 
at the central level also contributes to the development of the 
metabolic syndrome during the progression of obesity.

Altogether, recent work has highlighted the importance of the 
pRB-E2F1 pathway in the pathophysiology of obesity.

e2F1 CONTRiBUTeS TO THe MeTABOLiC 
RePROgRAMMiNg OF CANCeR CeLLS

Cancer cells adapt their metabolism in order to promote growth, 
proliferation, survival, and metastasis. The specific metabolic 
profile of a tumor ultimately depends on the tissue of origin, the 
oncogenic alterations, the tumor stage, and the tumor microenvi-
ronment. Metabolic reprogramming is now considered one of the 
hallmarks of cancer and selectively targeting tumor metabolism 
has been proposed in the recent years as a therapeutic strategy 
to treat cancer (66, 67). Remarkably, some oncogenes such as 
p53 and Myc regulate cancer metabolism (68, 69) and, as we will 
discuss in this section, so does E2F1 (Table 1).

e2F1 Contributes to the warburg effect
One metabolic feature of many cancer cells is the so-called 
Warburg effect, which consists on increased aerobic glycolysis 
and decreased glucose oxidation, resulting in high rates of 
glucose utilization and lactate production (66, 70). It has been 
shown that, against the assumption of Otto Warburg, who first 
described this phenomenon almost a century ago, in most 
cancers this is not caused by defective mitochondria. Several 
hypotheses have been proposed on how the Warburg effect ben-
efits cancer cells, including higher rates of ATP synthesis, the 
generation of glycolytic intermediates for biosynthetic reactions 
or the remodeling of the tumor microenvironment; however, 
this phenomenon is still not fully understood (70). It has been 
shown that E2F1 can promote this metabolic switch by both 
enhancing glycolysis and by repressing glucose oxidation in 
the mitochondria (Figure 2). During the development of HCC, 
increased E2F1 levels progressively recruit Pontin and Reptin 
(two putative DNA helicases) to promote the expression of genes 
involved in glycolysis and in lactate export, which contributes 
to the Warburg effect (15). During cell division, E2F1 also 
promotes the expression of the F-type isoform of the enzyme 
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, which 
results in the synthesis of fructose-2,6-bisphosphate, a potent 
stimulator of glycolysis (71, 72). Moreover, E2F1 also enhances 
glycolysis in bladder and prostate cancer cell lines through 
the suppression of the expression of Sirtuin 6, a NAD(+)-
dependent deacetylase that inhibits the transcription of several 
key glycolytic genes (73, 74). Besides enhancing glycolytic gene 
expression, as previously mentioned, E2F1 also blocks glucose 
oxidation in the mitochondria by promoting the expression 
of the PDK enzymes. While in the heart E2F1 regulates PDK4 
(57), in pancreatic cancer cells E2F1 enhances the expression of 
PDK1 and PDK3 isoforms, which results in increased aerobic 
glycolysis and proliferation (75).

e2F1 and Oxidative Metabolism
In addition to regulating oxidative metabolism in non-
proliferative conditions (34), E2F1 also repress mitochondrial 
biogenesis during proliferation. Like in the muscle, knocking 
down E2F1 in HeLa cells led to increased expression of several 
genes involved in mitochondrial biogenesis and oxidative 
phosphorylation, which resulted in increased ATP production 
(76). E2F1 depletion in Mesenchymal Stem Cells also increased 
mitochondrial biogenesis and oxygen consumption (77). 
Additionally, it has been shown that E2F1-mediated repression 
of oxidative metabolism results in a self-renewal of tumor-
initiating stem-like cells that contributes to the progression of 
HCC (78). Some evidences show that mitochondrial function, 
in turn, also impacts E2F1 activity. For instance, inhibition of 
ATP synthase or of the electron transport chain leads to the 
downregulation of E2F1 activity and to cell cycle arrest (79, 
80). On the other hand, mitochondrial ROS production can 
promote E2F1-mediated apoptosis (81, 82). For a more detailed 
perspective of the complex interplay between E2F transcription 
factors and the mitochondrial function, we address you to recent 
specific reviews about the topic (83, 84).

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


FigURe 2 | E2F1 contributes to the Warburg effect. E2F1 participates in the characteristic aerobic glycolysis observed in many tumors by different mechanisms. 
E2F1 promotes glycolysis by repressing the expression of Sirtuin 6 (Sirt6), a negative regulator of glycolytic gene expression and by promoting the expression of the 
F-type isoform of 6-phosphofructo-2-kinase/fructose-2,6-bissphosphatase (PFKB). E2F1 also recruits a Pontin/Reptin complex to promote the expression of genes 
involved in glycolysis and lactate export. Additionally, E2F1 blocks glucose oxidation in the mitochondria by promoting the expression of pyruvate dehydrogenase 
kinase (PDK) enzymes, which inhibit the pyruvate dehydrogenase complex (PDH).
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e2F1 and Anabolic Metabolism
Cancer cells undergo different anabolic processes to fulfill the 
high demand of macromolecules required for proliferation. 
E2F1 participates in DNA synthesis by regulating the expres-
sion of several genes involved in nucleotide metabolism such as 
Thymidine kinase and Dihydrofolate reductase (85, 86). Tumors 
also normally present high rates of lipid synthesis, which are used 
both for membrane production and as signaling molecules (87). 
Lipogenesis is not only important during proliferation; it also 
contributes to the metastatic capacity of cancer cells (88). Besides 
promoting lipogenesis in the liver (16), in medulloblastoma E2F1 
enhances fatty acid synthase expression in response to Sonic 
hedgehog signaling (89).

mTORC1 is a master regulator of cell growth and survival, 
and it is involved in the progression of many cancers (90). It 
was recently shown that E2F1 promotes mTORC1 activity by 
enhancing the expression of lysosomal v-ATPase. This in turn, 
blocked autophagy, one of the main metabolic processes regu-
lated by mTORC1 (91). Conversely, it was shown that E2F1 can 
also stimulate upregulation of genes involved in autophagy in 
response to DNA damage (92). Hence, the contribution of E2F1 
to autophagy is still a matter of debate. Additionally, numerous 
studies have highlighted the crosstalk between E2F1 activity and 
other signaling pathways involved in cancer metabolism, such as 
the AKT or the HIF pathways (93–95). Whether E2F1 promotes 
anabolic reprogramming in cancer cells through the interaction 
with these signaling pathways remain to be explored.

Overall, these studies show that the transcription factor E2F1 
plays a pivotal role integrating the cell cycle regulatory machinery 

with metabolic pathways essential for cell growth and survival. 
This, in turn, determines cell fate by affecting cell stemness, pro-
liferation rate, or apoptosis. Therefore, inhibiting E2F1 activity 
could potentially impact tumor development at different levels 
simultaneously by blocking cell cycle progression and by impair-
ing metabolic flexibility in cancer cells. In this regard, CDK4/6 
inhibitors that block pRB phosphorylation and that are currently 
used for treating hormone-positive breast tumors have been 
reported to block proliferation, in part, by inducing a metabolic 
reprogramming in cancer cells (96, 97).

CONCLUSiON AND PeRSPeCTiveS

Here, we have collected the current and emerging evidence 
showing that E2F1 regulates metabolism in non-proliferating 
conditions and, more importantly, that dysregulation of E2F1 
activity leads to complications associated with obesity. Many 
studies have focused on the mitogenic signals that drive E2F1 
activation in cancer cells, but how E2F1 is activated in other 
pathological conditions such as obesity is just beginning to be 
understood. The CDK4-pRB-E2F1 pathway can be stimulated 
both by glucose and by insulin in different tissues involved in 
global metabolic homeostasis (16, 24, 29, 95, 98). One possibility 
is that during obesity, hyperglycemia and/or hyperinsulinemia 
render pRB hyperphosphorylated (50, 61, 65). This in turn, would 
increase E2F1 activity and, in a positive feedback loop, E2F1 
could promote its own expression (99). Other possible candidates 
for exacerbated E2F1 activation during obesity could be chronic 
inflammation or increased ROS production due to mitochondrial 
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stress, two factors that promote E2F1 activity in other contexts 
(52, 82). Despite the specific mechanisms that lead to E2F1 
hyperactivation during obesity, targeting E2F1 could potentially 
be used to ameliorate some of the deleterious effects of this condi-
tion. Notably, E2f1−/− mice present increased insulin sensitivity 
and are resistant to HFD-induced obesity (25, 34). However, it 
should be considered that systemically inhibiting E2F1 activity 
would likely impair insulin secretion (100), which could be det-
rimental in the initial phases of insulin resistance, when insulin 
production is enhanced to maintain normoglycemia.

Given its dual role in proliferation and metabolism, it is 
tempting to speculate that E2F1 might be a central actor in the 
interplay between obesity and some types of cancer. One of 
those cases could be HCC, for which there is an increased risk 
in obese patients (101). We have recently shown that hepatic 
E2F1 expression is augmented during obesity (16), while numer-
ous studies have demonstrated that increased E2F1 activity 
promotes the development of HCC (15, 78, 102, 103). Notably, 
it was also recently reported that E2F1 mediates the proliferative 
effects of insulin in hepatocytes (95). Indeed, obesity-associated 
hyperinsulinemia is one mechanism proposed to explain the 
epidemiological observations of increased HCC in obese patients 
(104). Therefore, under obesity conditions, enhanced hepatic 
E2F1 activity—maybe in response to hyperinsulinemia—may 
first lead to enhanced de novo lipogenesis, NAFLD development 

and fibrosis (16, 62). Subsequently, E2F1 may contribute to HCC 
progression by promoting the expression of genes involved in cell 
cycle machinery and cancer metabolism (15).

In conclusion, research over the past 15  years has given an 
increasingly complex picture of the multiple roles of E2F1. 
Beyond being a mere cell cycle regulator, this transcription factor 
has emerged as a novel player in the control of metabolism not 
only in normal physiology but also under pathological conditions 
such as obesity and cancer.

AUTHOR CONTRiBUTiONS

PDD, LF, and AG conceived and wrote the manuscript.

ACKNOwLeDgMeNTS

The authors thank Isabel C. Lopez-Mejía and Jenny Sandström 
for their critical reading of the manuscript.

FUNDiNg

This work was supported by grants from the Swiss Ligue Contre 
le Cancer, the Swiss National Science Foundation, and the 
Fondation de France.

ReFeReNCeS

1. Kovesdi I, Reichel R, Nevins JR. Identification of a cellular transcription 
factor involved in E1A trans-activation. Cell (1986) 45(2):219–28. 
doi:10.1016/0092-8674(86)90386-7 

2. Black EP, Hallstrom T, Dressman HK, West M, Nevins JR. Distinctions 
in the specificity of E2F function revealed by gene expression signatures. 
Proc Natl Acad Sci U S A (2005) 102(44):15948–53. doi:10.1073/pnas. 
0504300102 

3. Bagchi S, Weinmann R, Raychaudhuri P. The retinoblastoma protein copu-
rifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F. 
Cell (1991) 65(6):1063–72. doi:10.1016/0092-8674(91)90558-G 

4. Dyson NJ. RB1: a prototype tumor suppressor and an enigma. Genes Dev 
(2016) 30(13):1492–502. doi:10.1101/gad.282145.116 

5. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev (1998) 
12(15):2245–62. doi:10.1101/gad.12.15.2245 

6. Frolov MV, Dyson NJ. Molecular mechanisms of E2F-dependent activa-
tion and pRB-mediated repression. J Cell Sci (2004) 117(Pt 11):2173–81. 
doi:10.1242/jcs.01227 

7. Polager S, Kalma Y, Berkovich E, Ginsberg D. E2Fs up-regulate expression 
of genes involved in DNA replication, DNA repair and mitosis. Oncogene 
(2002) 21(3):437–46. doi:10.1038/sj.onc.1205102 

8. La Thangue NB. DP and E2F proteins: components of a heterodimeric tran-
scription factor implicated in cell cycle control. Curr Opin Cell Biol (1994) 
6(3):443–50. doi:10.1016/0955-0674(94)90038-8 

9. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, et al. The E2F1-3 
transcription factors are essential for cellular proliferation. Nature (2001) 
414(6862):457–62. doi:10.1038/35106593 

10. Ginsberg D. E2F1 pathways to apoptosis. FEBS Lett (2002) 529(1):122–5. 
doi:10.1016/S0014-5793(02)03270-2 

11. Dimri GP, Itahana K, Acosta M, Campisi J. Regulation of a senescence check-
point response by the E2F1 transcription factor and p14(ARF) tumor sup-
pressor. Mol Cell Biol (2000) 20(1):273–85. doi:10.1128/MCB.20.1.273-285. 
2000 

12. Stevens C, La Thangue NB. The emerging role of E2F-1 in the DNA damage 
response and checkpoint control. DNA Repair (Amst) (2004) 3(8–9):1071–9. 
doi:10.1016/j.dnarep.2004.03.034 

13. Bieda M, Xu X, Singer MA, Green R, Farnham PJ. Unbiased location analysis 
of E2F1-binding sites suggests a widespread role for E2F1 in the human 
genome. Genome Res (2006) 16(5):595–605. doi:10.1101/gr.4887606 

14. Ouyang Z, Zhou Q, Wong WH. ChIP-Seq of transcription factors predicts 
absolute and differential gene expression in embryonic stem cells. Proc Natl 
Acad Sci U S A (2009) 106(51):21521–6. doi:10.1073/pnas.0904863106 

15. Tarangelo A, Lo N, Teng R, Kim E, Le L, Watson D, et al. Recruitment of 
Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer 
progression. Nat Commun (2015) 6:10028. doi:10.1038/ncomms10028 

16. Denechaud PD, Lopez-Mejia IC, Giralt A, Lai Q, Blanchet E, Delacuisine B,  
et al. E2F1 mediates sustained lipogenesis and contributes to hepatic steato-
sis. J Clin Invest (2016) 126(1):137–50. doi:10.1172/JCI81542 

17. Poppy Roworth A, Ghari F, La Thangue NB. To live or let die – complexity 
within the E2F1 pathway. Mol Cell Oncol (2015) 2(1):e970480. doi:10.4161/
23723548.2014.970480 

18. Shats I, Deng M, Davidovich A, Zhang C, Kwon JS, Manandhar D, et  al. 
Expression level is a key determinant of E2F1-mediated cell fate. Cell Death 
Differ (2017) 24(4):626–37. doi:10.1038/cdd.2017.12 

19. Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin  WG Jr, Livingston DM, et al. 
E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 
(1996) 85(4):549–61. doi:10.1016/S0092-8674(00)81255-6 

20. Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor 
induction and tissue atrophy in mice lacking E2F-1. Cell (1996) 85(4):537–48. 
doi:10.1016/S0092-8674(00)81254-4 

21. Li FX, Zhu JW, Tessem JS, Beilke J, Varella-Garcia M, Jensen J, et  al. The 
development of diabetes in E2f1/E2f2 mutant mice reveals important roles 
for bone marrow-derived cells in preventing islet cell loss. Proc Natl Acad Sci 
U S A (2003) 100(22):12935–40. doi:10.1073/pnas.2231861100 

22. Fajas L, Annicotte JS, Miard S, Sarruf D, Watanabe M, Auwerx J. Impaired 
pancreatic growth, beta cell mass, and beta cell function in E2F1 (-/-) mice. 
J Clin Invest (2004) 113(9):1288–95. doi:10.1172/JCI18555 

23. Kim SY, Rane SG. The Cdk4-E2f1 pathway regulates early pancreas devel-
opment by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors. 
Development (2011) 138(10):1903–12. doi:10.1242/dev.061481 

24. Annicotte JS, Blanchet E, Chavey C, Iankova I, Costes S, Assou S, et al. The 
CDK4-pRB-E2F1 pathway controls insulin secretion. Nat Cell Biol (2009) 
11(8):1017–23. doi:10.1038/ncb1915 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/0092-8674(86)90386-7
https://doi.org/10.1073/pnas.0504300102
https://doi.org/10.1073/pnas.0504300102
https://doi.org/10.1016/0092-8674(91)90558-G
https://doi.org/10.1101/gad.282145.116
https://doi.org/10.1101/gad.12.15.2245
https://doi.org/10.1242/jcs.01227
https://doi.org/10.1038/sj.onc.1205102
https://doi.org/10.1016/0955-0674(94)90038-8
https://doi.org/10.1038/35106593
https://doi.org/10.1016/S0014-5793(02)03270-2
https://doi.org/10.1128/MCB.20.1.273-285.2000
https://doi.org/10.1128/MCB.20.1.273-285.2000
https://doi.org/10.1016/j.dnarep.2004.03.034
https://doi.org/10.1101/gr.
4887606
https://doi.org/10.1073/pnas.0904863106
https://doi.org/10.1038/ncomms10028
https://doi.org/10.1172/JCI81542
https://doi.org/10.4161/23723548.2014.970480
https://doi.org/10.4161/23723548.2014.970480
https://doi.org/10.1038/cdd.2017.12
https://doi.org/10.1016/S0092-8674(00)81255-6
https://doi.org/10.1016/S0092-8674(00)81254-4
https://doi.org/10.1073/pnas.2231861100
https://doi.org/10.1172/JCI18555
https://doi.org/10.1242/dev.061481
https://doi.org/10.1038/ncb1915


35

Denechaud et al. E2F1, a Novel Regulator of Metabolism

Frontiers in Endocrinology | www.frontiersin.org November 2017 | Volume 8 | Article 311

25. Fajas L, Landsberg RL, Huss-Garcia Y, Sardet C, Lees JA, Auwerx J. E2Fs 
regulate adipocyte differentiation. Dev Cell (2002) 3(1):39–49. doi:10.1016/
S1534-5807(02)00190-9 

26. Docquier A, Augereau P, Lapierre M, Harmand PO, Badia E, Annicotte JS, 
et al. The RIP140 gene is a transcriptional target of E2F1. PLoS One (2012) 
7(5):e35839. doi:10.1371/journal.pone.0035839 

27. Liew CW, Boucher J, Cheong JK, Vernochet C, Koh HJ, Mallol C, et  al. 
Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxida-
tive metabolism, prevents diet-induced obesity and insulin resistance. Nat 
Med (2013) 19(2):217–26. doi:10.1038/nm.3056 

28. Abella A, Dubus P, Malumbres M, Rane SG, Kiyokawa H, Sicard A, et  al. 
Cdk4 promotes adipogenesis through PPARgamma activation. Cell Metab 
(2005) 2(4):239–49. doi:10.1016/j.cmet.2005.09.003 

29. Lagarrigue S, Lopez-Mejia IC, Denechaud PD, Escoté X, Castillo- 
Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipo-
cytes. J Clin Invest (2016) 126(1):335–48. doi:10.1172/JCI81480 

30. Wang J, Helin K, Jin P, Nadal-Ginard B. Inhibition of in vitro myogenic dif-
ferentiation by cellular transcription factor E2F1. Cell Growth Differ (1995) 
6(10):1299–306. 

31. Wang J, Huang Q, Tang W, Nadal-Ginard B. E2F1 inhibition of tran-
scription activation by myogenic basic helix-loop-helix regulators. J Cell 
Biochem (1996) 62(3):405–10. doi:10.1002/(SICI)1097-4644(199609) 
62:3<405::AID-JCB10>3.0.CO;2-H 

32. Gong W, Gohla RM, Bowlin KM, Koyano-Nakagawa N, Garry DJ, Shi X. 
Kelch repeat and BTB domain containing protein 5 (Kbtbd5) regulates skel-
etal muscle myogenesis through the E2F1-DP1 complex. J Biol Chem (2015) 
290(24):15350–61. doi:10.1074/jbc.M114.629956 

33. Zappia MP, Frolov MV. E2F function in muscle growth is necessary and suf-
ficient for viability in Drosophila. Nat Commun (2016) 7:10509. doi:10.1038/
ncomms10509 

34. Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clapé C, Chavey C, et al. 
E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol 
(2011) 13(9):1146–52. doi:10.1038/ncb2309 

35. Hansen JB, Jørgensen C, Petersen RK, Hallenborg P, De Matteis R, Bøye HA, 
et al. Retinoblastoma protein functions as a molecular switch determining 
white versus brown adipocyte differentiation. Proc Natl Acad Sci U S A (2004) 
101(12):4112–7. doi:10.1073/pnas.0301964101 

36. Blanchet E, Annicotte JS, Pradelli LA, Hugon G, Matecki S, Mornet D, 
et al. E2F transcription factor-1 deficiency reduces pathophysiology in the 
mouse model of Duchenne muscular dystrophy through increased muscle 
oxidative metabolism. Hum Mol Genet (2012) 21(17):3910–7. doi:10.1093/
hmg/dds219 

37. Dali-Youcef N, Mataki C, Coste A, Messaddeq N, Giroud S, Blanc S, et al. 
Adipose tissue-specific inactivation of the retinoblastoma protein protects 
against diabesity because of increased energy expenditure. Proc Natl Acad Sci 
U S A (2007) 104(25):10703–8. doi:10.1073/pnas.0611568104 

38. Mercader J, Ribot J, Murano I, Feddersen S, Cinti S, Madsen L, et  al. 
Haploinsufficiency of the retinoblastoma protein gene reduces diet-induced 
obesity, insulin resistance, and hepatosteatosis in mice. Am J Physiol 
Endocrinol Metab (2009) 297(1):E184–93. doi:10.1152/ajpendo.00163.2009 

39. Scimè A, Grenier G, Huh MS, Gillespie MA, Bevilacqua L, Harper ME, 
et  al. Rb and p107 regulate preadipocyte differentiation into white versus 
brown fat through repression of PGC-1alpha. Cell Metab (2005) 2(5):283–95. 
doi:10.1016/j.cmet.2005.10.002 

40. Petrov PD, Ribot J, López-Mejía IC, Fajas L, Palou A, Bonet ML. 
Retinoblastoma protein knockdown favors oxidative metabolism and glucose 
and fatty acid disposal in muscle cells. J Cell Physiol (2016) 231(3):708–18. 
doi:10.1002/jcp.25121 

41. Scimè A, Soleimani VD, Bentzinger CF, Gillespie MA, Le Grand F,  
Grenier G, et al. Oxidative status of muscle is determined by p107 regulation 
of PGC-1alpha. J Cell Biol (2010) 190(4):651–62. doi:10.1083/jcb.201005076 

42. Ciavarra G, Zacksenhaus E. Rescue of myogenic defects in Rb-deficient cells 
by inhibition of autophagy or by hypoxia-induced glycolytic shift. J Cell Biol 
(2010) 191(2):291–301. doi:10.1083/jcb.201005067 

43. Sankaran VG, Orkin SH, Walkley CR. Rb intrinsically promotes erythro-
poiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev 
(2008) 22(4):463–75. doi:10.1101/gad.1627208 

44. Nicolay BN, Danielian PS, Kottakis F, Lapek  JD Jr, Sanidas I, Miles WO, 
et  al. Proteomic analysis of pRb loss highlights a signature of decreased 

mitochondrial oxidative phosphorylation. Genes Dev (2015) 29(17):1875–89. 
doi:10.1101/gad.264127.115 

45. Váraljai R, Islam AB, Beshiri ML, Rehman J, Lopez-Bigas N, Benevolenskaya 
EV. Increased mitochondrial function downstream from KDM5A histone 
demethylase rescues differentiation in pRB-deficient cells. Genes Dev (2015) 
29(17):1817–34. doi:10.1101/gad.264036.115 

46. Font-Burgada J, Sun B, Karin M. Obesity and cancer: the oil that feeds the 
flame. Cell Metab (2016) 23(1):48–62. doi:10.1016/j.cmet.2015.12.015 

47. Haim Y, Blüher M, Slutsky N, Goldstein N, Klöting N, Harman-Boehm I, 
et al. Elevated autophagy gene expression in adipose tissue of obese humans: 
a potential non-cell-cycle-dependent function of E2F1. Autophagy (2015) 
11(11):2074–88. doi:10.1080/15548627.2015.1094597 

48. Choi Y, Jang S, Choi MS, Ryoo ZY, Park T. Increased expression of FGF1-
mediated signaling molecules in adipose tissue of obese mice. J Physiol 
Biochem (2016) 72(2):157–67. doi:10.1007/s13105-016-0468-6 

49. Kim S, Jin Y, Choi Y, Park T. Resveratrol exerts anti-obesity effects via mechanisms 
involving down-regulation of adipogenic and inflammatory processes in mice. 
Biochem Pharmacol (2011) 81(11):1343–51. doi:10.1016/j.bcp.2011.03.012 

50. Moreno-Navarrete JM, Petrov P, Serrano M, Ortega F, García-Ruiz E,  
Oliver P, et al. Decreased RB1 mRNA, protein, and activity reflect obesity-in-
duced altered adipogenic capacity in human adipose tissue. Diabetes (2013) 
62(6):1923–31. doi:10.2337/db12-0977 

51. Haim Y, Blüher M, Konrad D, Goldstein N, Klöting N, Harman-Boehm I, 
et al. ASK1 (MAP3K5) is transcriptionally upregulated by E2F1 in adipose 
tissue in obesity, molecularly defining a human dys-metabolic obese phe-
notype. Mol Metab (2017) 6(7):725–36. doi:10.1016/j.molmet.2017.05.003 

52. Lim CA, Yao F, Wong JJ, George J, Xu H, Chiu KP, et  al. Genome-wide 
mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator 
recruited by NF-kappaB upon TLR4 activation. Mol Cell (2007) 27(4):622–35. 
doi:10.1016/j.molcel.2007.06.038 

53. Warg LA, Oakes JL, Burton R, Neidermyer AJ, Rutledge HR, Groshong S, 
et al. The role of the E2F1 transcription factor in the innate immune response 
to systemic LPS. Am J Physiol Lung Cell Mol Physiol (2012) 303(5):L391–400. 
doi:10.1152/ajplung.00369.2011 

54. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. 
Obesity and the risk of heart failure. N Engl J Med (2002) 347(5):305–13. 
doi:10.1056/NEJMoa020245 

55. Vara D, Bicknell KA, Coxon CH, Brooks G. Inhibition of E2F abrogates 
the development of cardiac myocyte hypertrophy. J Biol Chem (2003) 
278(24):21388–94. doi:10.1074/jbc.M212612200 

56. Zhang L, Mori J, Wagg C, Lopaschuk GD. Activating cardiac E2F1 induces 
up-regulation of pyruvate dehydrogenase kinase 4 in mice on a short 
term of high fat feeding. FEBS Lett (2012) 586(7):996–1003. doi:10.1016/j.
febslet.2012.02.027 

57. Hsieh MC, Das D, Sambandam N, Zhang MQ, Nahlé Z. Regulation of the 
PDK4 isozyme by the Rb-E2F1 complex. J Biol Chem (2008) 283(41):27410–7. 
doi:10.1074/jbc.M802418200 

58. Wang K, Zhou LY, Wang JX, Wang Y, Sun T, Zhao B, et al. E2F1-dependent 
miR-421 regulates mitochondrial fragmentation and myocardial infarction 
by targeting Pink1. Nat Commun (2015) 6:7619. doi:10.1038/ncomms8619 

59. Wu M, Zhou J, Cheng M, Boriboun C, Biyashev D, Wang H, et  al. E2F1 
suppresses cardiac neovascularization by down-regulating VEGF and 
PlGF expression. Cardiovasc Res (2014) 104(3):412–22. doi:10.1093/cvr/ 
cvu222 

60. Musso G, Gambino R, Cassader M. Cholesterol metabolism and the patho-
genesis of non-alcoholic steatohepatitis. Prog Lipid Res (2013) 52(1):175–91. 
doi:10.1016/j.plipres.2012.11.002 

61. Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP, et al. Cyclin 
D1-Cdk4 controls glucose metabolism independently of cell cycle progres-
sion. Nature (2014) 510(7506):547–51. doi:10.1038/nature13267 

62. Zhang Y, Xu N, Xu J, Kong B, Copple B, Guo GL, et  al. E2F1 is a novel 
fibrogenic gene that regulates cholestatic liver fibrosis through the Egr-1/
SHP/EID1 network. Hepatology (2014) 60(3):919–30. doi:10.1002/hep.27121 

63. Lai Q, Giralt A, Le May C, Zhang L, Cariou B, Denechaud PD, et al. E2F1 
inhibits circulating cholesterol clearance by regulating Pcsk9 expression in 
the liver. JCI Insight (2017) 2(10). doi:10.1172/jci.insight.89729 

64. Descamps OS, Fraass U, Dent R, Marz W, Gouni-Berthold I. Anti-PCSK9 
antibodies for hypercholesterolaemia: Overview of clinical data and  
implications for primary care. Int J Clin Pract (2017) 71:e12979.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1016/S1534-5807(02)00190-9
https://doi.org/10.1016/S1534-5807(02)00190-9
https://doi.org/10.1371/journal.pone.0035839
https://doi.org/10.1038/nm.3056
https://doi.org/10.1016/j.cmet.2005.09.003
https://doi.org/10.1172/JCI81480
https://doi.org/10.1002/(SICI)1097-4644(199609)
62:3 < 405::AID-JCB10 > 3.0.CO;2-H
https://doi.org/10.1002/(SICI)1097-4644(199609)
62:3 < 405::AID-JCB10 > 3.0.CO;2-H
https://doi.org/10.1074/jbc.M114.629956
https://doi.org/10.1038/ncomms10509
https://doi.org/10.1038/ncomms10509
https://doi.org/10.1038/ncb2309
https://doi.org/10.1073/pnas.0301964101
https://doi.org/10.1093/hmg/dds219
https://doi.org/10.1093/hmg/dds219
https://doi.org/10.1073/pnas.0611568104
https://doi.org/10.1152/ajpendo.00163.2009
https://doi.org/10.1016/j.cmet.2005.10.002
https://doi.org/10.1002/jcp.25121
https://doi.org/10.1083/jcb.201005076
https://doi.org/10.1083/jcb.201005067
https://doi.org/10.1101/gad.1627208
https://doi.org/10.1101/gad.264127.115
https://doi.org/10.1101/gad.264036.115
https://doi.org/10.1016/j.cmet.2015.12.015
https://doi.org/10.1080/15548627.2015.1094597
https://doi.org/10.1007/s13105-016-0468-6
https://doi.org/10.1016/j.bcp.2011.03.012
https://doi.org/10.2337/db12-0977
https://doi.org/10.1016/j.molmet.2017.05.003
https://doi.org/10.1016/j.molcel.2007.06.038
https://doi.org/10.1152/ajplung.00369.2011
https://doi.org/10.1056/NEJMoa020245
https://doi.org/10.1074/jbc.M212612200
https://doi.org/10.1016/j.febslet.2012.02.027
https://doi.org/10.1016/j.febslet.2012.02.027
https://doi.org/10.1074/jbc.M802418200
https://doi.org/10.1038/ncomms8619
https://doi.org/10.1093/cvr/cvu222
https://doi.org/10.1093/cvr/cvu222
https://doi.org/10.1016/j.plipres.2012.11.002
https://doi.org/10.1038/nature13267
https://doi.org/10.1002/hep.27121
https://doi.org/10.1172/jci.insight.89729


36

Denechaud et al. E2F1, a Novel Regulator of Metabolism

Frontiers in Endocrinology | www.frontiersin.org November 2017 | Volume 8 | Article 311

65. Lu Z, Marcelin G, Bauzon F, Wang H, Fu H, Dun SL, et al. pRb is an obesity 
suppressor in hypothalamus and high-fat diet inhibits pRb in this location. 
EMBO J (2013) 32(6):844–57. doi:10.1038/emboj.2013.25 

66. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. 
Cell Metab (2016) 23(1):27–47. doi:10.1016/j.cmet.2015.12.006 

67. Fendt SM. Is there a therapeutic window for metabolism-based cancer 
therapies? Front Endocrinol (2017) 8:150. doi:10.3389/fendo.2017.00150 

68. Floter J, Kaymak I, Schulze A. Regulation of metabolic activity by p53. 
Metabolites (2017) 7(2). doi:10.3390/metabo7020021 

69. Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, metabolism, 
and cancer. Cancer Discov (2015) 5(10):1024–39. doi:10.1158/2159-8290.
CD-15-0507 

70. Liberti MV, Locasale JW. The Warburg Effect: how does it benefit cancer cells? 
Trends Biochem Sci (2016) 41(3):211–8. doi:10.1016/j.tibs.2016.01.004 

71. Darville MI, Antoine IV, Mertens-Strijthagen JR, Dupriez VJ, Rousseau GG. 
An E2F-dependent late-serum-response promoter in a gene that controls 
glycolysis. Oncogene (1995) 11(8):1509–17. 

72. Fernandez de Mattos S, Lam EW, Tauler A. An E2F-binding site mediates 
the activation of the proliferative isoform of 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase by phosphatidylinositol 3-kinase. Biochem J 
(2002) 368(Pt 1):283–91. doi:10.1042/bj20020622 

73. Wu M, Seto E, Zhang J. E2F1 enhances glycolysis through suppressing 
Sirt6 transcription in cancer cells. Oncotarget (2015) 6(13):11252–63. 
doi:10.18632/oncotarget.3594 

74. Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, et al. 
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. 
Cell (2010) 140(2):280–93. doi:10.1016/j.cell.2009.12.041 

75. Wang LY, Hung CL, Chen YR, Yang JC, Wang J, Campbell M, et al. KDM4A 
coactivates E2F1 to regulate the PDK-dependent metabolic switch between 
mitochondrial oxidation and glycolysis. Cell Rep (2016) 16(11):3016–27. 
doi:10.1016/j.celrep.2016.08.018 

76. Goto Y, Hayashi R, Kang D, Yoshida K. Acute loss of transcription factor 
E2F1 induces mitochondrial biogenesis in HeLa cells. J Cell Physiol (2006) 
209(3):923–34. doi:10.1002/jcp.20802 

77. Tan PY, Chang CW, Duan K, Poidinger M, Ng KL, Chong YS, et al. E2F1 
orchestrates transcriptomics and oxidative metabolism in Wharton’s Jelly-
derived mesenchymal stem cells from growth-restricted infants. PLoS One 
(2016) 11(9):e0163035. doi:10.1371/journal.pone.0163035 

78. Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, Tahara SM, et al. NANOG 
metabolically reprograms tumor-initiating stem-like cells through tumori-
genic changes in oxidative phosphorylation and fatty acid metabolism. Cell 
Metab (2016) 23(1):206–19. doi:10.1016/j.cmet.2015.12.004 

79. Mori K, Uchida T, Fukumura M, Tamiya S, Higurashi M, Sakai H, et  al. 
Linkage of E2F1 transcriptional network and cell proliferation with respi-
ratory chain activity in breast cancer cells. Cancer Sci (2016) 107(7):963–71. 
doi:10.1111/cas.12953 

80. Gemin A, Sweet S, Preston TJ, Singh G. Regulation of the cell cycle in 
response to inhibition of mitochondrial generated energy. Biochem Biophys 
Res Commun (2005) 332(4):1122–32. doi:10.1016/j.bbrc.2005.05.061 

81. Espada L, Meo-Evoli N, Sancho P, Real S, Fabregat I, Ambrosio S, et al. ROS 
production is essential for the apoptotic function of E2F1 in pheochro-
mocytoma and neuroblastoma cell lines. PLoS One (2012) 7(12):e51544. 
doi:10.1371/journal.pone.0051544 

82. Raimundo N, Song L, Shutt TE, McKay SE, Cotney J, Guan MX, et  al. 
Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. 
Cell (2012) 148(4):716–26. doi:10.1016/j.cell.2011.12.027 

83. Lopez-Mejia IC, Fajas L. Cell cycle regulation of mitochondrial function. 
Curr Opin Cell Biol (2015) 33:19–25. doi:10.1016/j.ceb.2014.10.006 

84. Benevolenskaya EV, Frolov MV. Emerging links between E2F control and 
mitochondrial function. Cancer Res (2015) 75(4):619–23. doi:10.1158/0008-
5472.CAN-14-2173 

85. Li Y, Slansky JE, Myers DJ, Drinkwater NR, Kaelin WG, Farnham PJ. Cloning, 
chromosomal location, and characterization of mouse E2F1. Mol Cell Biol 
(1994) 14(3):1861–9. doi:10.1128/MCB.14.3.1861 

86. Slansky JE, Li Y, Kaelin WG, Farnham PJ. A protein synthesis-dependent 
increase in E2F1 mRNA correlates with growth regulation of the dihydro-
folate reductase promoter. Mol Cell Biol (1993) 13(3):1610–8. doi:10.1128/
MCB.13.3.1610 

87. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic repro-
gramming in cancer cells. Oncogenesis (2016) 5:e189. doi:10.1038/oncsis. 
2015.49 

88. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, 
et  al. Targeting metastasis-initiating cells through the fatty acid receptor 
CD36. Nature (2017) 541(7635):41–5. doi:10.1038/nature20791 

89. Bhatia B, Hsieh M, Kenney AM, Nahlé Z. Mitogenic Sonic hedgehog signaling 
drives E2F1-dependent lipogenesis in progenitor cells and medulloblastoma. 
Oncogene (2011) 30(4):410–22. doi:10.1038/onc.2010.454 

90. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and 
disease. Cell (2017) 169(2):361–71. doi:10.1016/j.cell.2017.03.035 

91. Meo-Evoli N, Almacellas E, Massucci FA, Gentilella A, Ambrosio S,  
Kozma SC, et  al. V-ATPase: a master effector of E2F1-mediated lyso-
somal trafficking, mTORC1 activation and autophagy. Oncotarget (2015) 
6(29):28057–70. doi:10.18632/oncotarget.4812 

92. Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the tran-
scription of autophagy genes. Oncogene (2008) 27(35):4860–4. doi:10.1038/
onc.2008.117 

93. Dynlacht BD. Live or let die: E2F1 and PI3K pathways intersect to make life or 
death decisions. Cancer Cell (2008) 13(1):1–2. doi:10.1016/j.ccr.2007.12.017 

94. Moniz S, Bandarra D, Biddlestone J, Campbell KJ, Komander D, Bremm A, 
et al. Cezanne regulates E2F1-dependent HIF2 alpha expressiond. J Cell Sci 
(2015) 128(16):3082–93. doi:10.1242/jcs.168864 

95. Morzyglod L, Caüzac M, Popineau L, Denechaud PD, Fajas L, Ragazzon B, 
et al. Growth factor receptor binding protein 14 inhibition triggers insulin-in-
duced mouse hepatocyte proliferation and is associated with hepatocellular 
carcinoma. Hepatology (2017) 65(4):1352–68. doi:10.1002/hep.28972 

96. Franco J, Balaji U, Freinkman E, Witkiewicz AK, Knudsen ES. Metabolic 
reprogramming of pancreatic cancer mediated by CDK4/6 inhibition 
elicits unique vulnerabilities. Cell Rep (2016) 14(5):979–90. doi:10.1016/j.
celrep.2015.12.094 

97. Olmez I, Brenneman B, Xiao A, Serbulea V, Benamar M, Zhang Y, et  al. 
Combined CDK4/6 and mTOR inhibition is synergistic against glioblastoma 
via multiple mechanisms. Clin Cancer Res (2017). doi:10.1158/1078-0432.
CCR-17-0803 

98. Chirivella L, Kirstein M, Ferrón SR, Domingo-Muelas A, Durupt FC, 
Acosta-Umanzor C, et al. Cdk4 regulates adult neural stem cell proliferation 
and differentiation in response to insulin-IRS2 signals. Stem Cells (2017). 
doi:10.1002/stem.2694 

99. Johnson DG, Ohtani K, Nevins JR. Autoregulatory control of E2F1 expres-
sion in response to positive and negative regulators of cell cycle progression. 
Genes Dev (1994) 8(13):1514–25. doi:10.1101/gad.8.13.1514 

100. Fajas L, Blanchet E, Annicotte JS. The CDK4-pRB-E2F1 pathway: a new 
modulator of insulin secretion. Islets (2010) 2(1):51–3. doi:10.4161/isl.2.1. 
10338 

101. Reeves HL, Zaki MY, Day CP. Hepatocellular carcinoma in obesity, type 
2 diabetes, and NAFLD. Dig Dis Sci (2016) 61(5):1234–45. doi:10.1007/
s10620-016-4085-6 

102. Conner EA, Lemmer ER, Omori M, Wirth PJ, Factor VM, Thorgeirsson SS. 
Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. 
Oncogene (2000) 19(44):5054–62. doi:10.1038/sj.onc.1203885 

103. Kent LN, Bae S, Tsai SY, Tang X, Srivastava A, Koivisto C, et  al. Dosage-
dependent copy number gains in E2f1 and E2f3 drive hepatocellular carci-
noma. J Clin Invest (2017) 127(3):830–42. doi:10.1172/JCI87583 

104. Hopkins BD, Goncalves MD, Cantley LC. Obesity and cancer mechanisms: 
cancer metabolism. J Clin Oncol (2016) 34(35):4277–83. doi:10.1200/
JCO.2016.67.9712 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Denechaud, Fajas and Giralt. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
https://doi.org/10.1038/emboj.2013.25
https://doi.org/10.1016/j.cmet.2015.12.006
https://doi.org/10.3389/fendo.2017.00150
https://doi.org/10.3390/metabo7020021
https://doi.org/10.1158/2159-8290.CD-15-0507
https://doi.org/10.1158/2159-8290.CD-15-0507
https://doi.org/10.1016/j.tibs.2016.01.004
https://doi.org/10.1042/bj20020622
https://doi.org/10.18632/oncotarget.3594
https://doi.org/10.1016/j.cell.2009.12.041
https://doi.org/10.1016/j.celrep.2016.08.018
https://doi.org/10.1002/jcp.20802
https://doi.org/10.1371/journal.pone.0163035
https://doi.org/10.1016/j.cmet.2015.12.004
https://doi.org/10.1111/cas.12953
https://doi.org/10.1016/j.bbrc.2005.05.061
https://doi.org/10.1371/journal.pone.0051544
https://doi.org/10.1016/j.cell.2011.12.027
https://doi.org/10.1016/j.ceb.2014.10.006
https://doi.org/10.1158/0008-5472.CAN-14-2173
https://doi.org/10.1158/0008-5472.CAN-14-2173
https://doi.org/10.1128/MCB.14.3.1861
https://doi.org/10.1128/MCB.13.3.1610
https://doi.org/10.1128/MCB.13.3.1610
https://doi.org/10.1038/oncsis.
2015.49
https://doi.org/10.1038/oncsis.
2015.49
https://doi.org/10.1038/nature20791
https://doi.org/10.1038/onc.2010.454
https://doi.org/10.1016/j.cell.2017.03.035
https://doi.org/10.18632/oncotarget.4812
https://doi.org/10.1038/onc.2008.117
https://doi.org/10.1038/onc.2008.117
https://doi.org/10.1016/j.ccr.2007.12.017
https://doi.org/10.1242/jcs.168864
https://doi.org/10.1002/hep.28972
https://doi.org/10.1016/j.celrep.2015.12.094
https://doi.org/10.1016/j.celrep.2015.12.094
https://doi.org/10.1158/1078-0432.CCR-17-0803
https://doi.org/10.1158/1078-0432.CCR-17-0803
https://doi.org/10.1002/stem.2694
https://doi.org/10.1101/gad.8.13.1514
https://doi.org/10.4161/isl.2.1.
10338
https://doi.org/10.4161/isl.2.1.
10338
https://doi.org/10.1007/s10620-016-4085-6
https://doi.org/10.1007/s10620-016-4085-6
https://doi.org/10.1038/sj.onc.1203885
https://doi.org/10.1172/JCI87583
https://doi.org/10.1200/JCO.2016.67.9712
https://doi.org/10.1200/JCO.2016.67.9712
http://creativecommons.org/licenses/by/4.0/


November 2017 | Volume 8 | Article 30437

Review
published: 03 November 2017

doi: 10.3389/fendo.2017.00304

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Lluis Fajas,  

University of Lausanne,  
Switzerland

Reviewed by: 
Sana Siddiqui,  

University of California, San 
Francisco, United States  

Roman L. Bogorad,  
CRISPR Therapeutics, Inc.,  

United States

*Correspondence:
Jean-Sébastien Annicotte  

jean-sebastien.annicotte@inserm.fr

†Present address: 
Nabil Rabhi,  

Department of Biochemistry,  
Boston University School of 

Medicine, Boston, MA,  
United States;  

Sarah Anissa Hannou,  
Division of Endocrinology and 
Metabolism, Duke Molecular 

Physiology Institute, Duke  
University Medical Center,  

Durham, NC, United States

Specialty section: 
This article was submitted to  

Cellular Endocrinology,  
a section of the journal  

Frontiers in Endocrinology

Received: 31 July 2017
Accepted: 19 October 2017

Published: 03 November 2017

Citation: 
Rabhi N, Hannou SA, Froguel P and 

Annicotte J-S (2017) Cofactors  
As Metabolic Sensors Driving  
Cell Adaptation in Physiology  

and Disease.  
Front. Endocrinol. 8:304.  

doi: 10.3389/fendo.2017.00304

Cofactors As Metabolic Sensors 
Driving Cell Adaptation in Physiology 
and Disease
Nabil Rabhi1,2,3†, Sarah Anissa Hannou1,2,3†, Philippe Froguel1,2,3,4  
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Chromatin architectures and epigenetic fingerprint regulation are fundamental for 
genetically determined biological processes. Chemical modifications of the chromatin 
template sensitize the genome to intracellular metabolism changes to set up diverse 
functional adaptive states. Accumulated evidence suggests that the action of epigenetic 
modifiers is sensitive to changes in dietary components and cellular metabolism inter-
mediates, linking nutrition and energy metabolism to gene expression plasticity. Histone 
posttranslational modifications create a code that acts as a metabolic sensor, translat-
ing changes in metabolism into stable gene expression patterns. These observations 
support the notion that epigenetic reprograming-linked energy input is connected to the 
etiology of metabolic diseases and cancer. In the present review, we introduce the role 
of epigenetic cofactors and their relation with nutrient intake and we question the links 
between epigenetic regulation and the development of metabolic diseases.

Keywords: metabolism, nutritional status, cofactors, epigenetics, metabolites

iNTRODUCTiON

During their lifetime, cells receive several external signals, including hormones, growth factors, 
cytokines and other extracellular factors. Cells translate those signals to make crucial adaptive 
decisions, such as quiescence, proliferation, or differentiation. Recent works highlighted a funda-
mental role of environmental cues and nutrient availability in cell metabolism and adaptation. This 
flow of metabolites, through complex but well characterized metabolic networks, constitutes a fuel 
for diverse epigenetic cofactors thus relaying nutrition and diet changes into cytoplasmic signaling 
and chromatin remodeling.

Through their ability to sense internal and external cues, several transcriptional cofactors allow 
a cell to rapidly adapt by introducing reversible protein posttranslational modifications (PTMs). 
Hundreds of PTMs have been identified (1–3). However, only few have been directly linked to 
metabolic fluxes. PTMs include histone and non-histone modifications and represent a key physi-
ological signal for cell adaptation (4–12). For the purposes of this review, we will only focus on 
PTMs linking changes in metabolism to histone modification.

Histone modifications—all with DNA methylation, RNA interference, and non-coding RNA—
encompassed by the term epigenetics represent diverted ways by which cells control the expression 
of genes without any alteration in the underlying genetic material. Since each cell has the same 
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genetic code, epigenetic modifications allow a fine regulation 
of the gene expression and determine cell identities. Thereby, 
various chromatin modification patterns, such as acetylation, 
methylation, phosphorylation, O-linked glycosylation, ubiquit-
ination, and SUMOylation, result in a particular configuration 
that determines chromatin accessibility to the transcriptional 
machinery. For example, acetylation of lysine nine residues of 
histone H3 (H3K9), H3K14, and/or (mono-, di-, or tri) meth-
ylation of H3K4, H3K36 and H3K79 are often associated with 
transcriptionally active chromatin. By contrast, methylation of 
H3K9, H3K27, and H4K20 are markers of transcriptional silenc-
ing (13–15).

The generated metabolites remain the same for a given cell. 
Yet, the tissue function and nutriment availability will determine 
the metabolite requirements. Moreover, metabolic challenges, 
such as caloric or oxygen restriction or even a high-fat diet 
(16–19), will drive cell fate decisions. Consistent with this, 
dramatic epigenetic changes have been linked to metabolic 
disorders, such as obesity, insulin resistance, type-2 diabetes, 
and cancer (20–25). In this perspective, this review will focus 
on cofactor families linking nutritional input and metabolism to 
epigenetic pattern modifications.

ACeTYL-CoA AND HiSTONe/LYSiNe 
ACeTYLTRANSFeRASe eNZYMeS

Lysine/Histone acetyltransferases (KAT/HAT) catalyze the 
transfer of an acetyl group from acetyl-CoA to ε-amino group 
of a histone lysine residue (26), which allows a transcriptional 
access to DNA by either neutralizing the positive histone 
charge, or serving as a binding site for chromatin remolding 
complexes. HAT can be divided on the basis of their subcellular 
localization or of the structural and functional similarity of 
their catalytic domains (27).

Acetyl-CoA availability is a major input for histone acetyla-
tion. A rise in acetyl-CoA level is sufficient to drive a yeast growth 
program by promoting histone acetylation at specific growth 
genes through the General control of amino acid synthesis pro-
tein 5-like 2 (GCN5, KAT2A) (28). In mammalian cells, histone 
acetylation with acetyl-CoA generated from glucose metabolism 
controls the early differentiation of embryonic stem cells (ESCs) 
(29). The limiting ATP citrate lyase enzyme that controls the 
conversion of citrate into oxaloacetate and acetyl-CoA was 
shown to be important for histone acetylation in response to 
glucose and growth factor stimulation (30).

As demonstrated for yeast, the mammalian GCN5 activity 
is required for histone acetylation during cell differentiation 
(30, 31). Tracing experiments using 13C-carbon combined with 
acetyl-proteomics showed that up to 90% of histone acetylations 
on certain histone lysines are derived from fatty acid even in glu-
cose excess. Acetyl-CoA generated from fatty acid β-oxidation 
seems to be important for the control of a gene expression 
program involved in lipid metabolism (32). Cytosolic acetate is 
another acetyl-CoA source that leads to an increase in H3K9, 
H3K27, and H3K56 histone acetylations of specific promoter 
regions, enhancing de novo lipid synthesis under hypoxic condi-
tions (33). KAT2b is a KAT that acetylates H3K9 and H3K14. 

During embryogenesis, GCN5 mRNA is already expressed at 
high levels by day 8, whereas KAT2b mRNA is first detected on 
day 12.5, suggesting that KAT2b and GCN5 play distinct roles 
by controlling the expression of a distinct set of genes (34).  
We have demonstrated that KAT2b is required for pancreatic 
β-cell adaptation to metabolic stress by promoting histone 
acetylation and gene expression of several unfolded protein 
response markers (35). While a β-cell-specific deletion of Kat2b 
in mouse has no effect under normal diet, Kat2b deficiency leads 
to a dramatic effect on β-cell morphology and function upon 
high fat feeding. KAT2b is thereby a major sensor of acetyl-CoA 
under hyperglycemic condition (35). Altogether, those data 
suggest that distinct histone acetyltransferases can sense acetyl-
CoA upon different conditions and translate the appropriate 
cell response by activating different sets of genes. Moreover, the 
origin of acetyl-CoA seems to be important for this selectivity. 
Sutendra et  al. recently demonstrated that acetyl-CoA is gen-
erated in the nucleus through a dynamic translocation of the 
mitochondrial pyruvate dehydrogenase complex (PDC), raising 
new questions about intracellular acetyl-CoA compartmentali-
zation and the way its origin can regulate a specific set of genes 
(36–38). A better understanding of KAT activation, of the origin 
of acetyl-CoA and of its fluctuations within subcellular compart-
ments upon different nutritional challenges can be of interest for 
the development of new therapeutic strategies against metabolic 
disease and cancer.

NAD+-DePeNDeNT AND iNDePeNDeNT 
HiSTONe/LYSiNe DeACeTYLASeS

Lysine/Histone deacetylases (KDAC/HDAC) are the enzymes 
that catalyze the removal of the acetyl group from lysine residues 
of histones. On the basis of their mechanistic similarities, they 
can be divided into two groups: classical HDAC and NAD+-
dependent sirtuin deacetylase families (39, 40).

The mammalian NAD+-dependent KDACs consist of seven 
sirtuin members (SIRT1 to SIRT7), with distinct subcellular 
localizations. Three sirtuins are located in the mitochondria 
(SIRT3–SIRT5), while SIRT1, SIRT6, and SIRT7 are predomi-
nantly located in the nucleus, and SIRT2 is found in the cyto-
plasm (41, 42). NAD+ levels rise in energy deficiency situations, 
such as exercise, caloric restriction, and fasting, leading to sirtuin 
activation (43, 44). In contrast, when energy is in excess, NAD+ 
is depleted, generating a higher NAD+/NADH ratio, which 
inhibits sirtuin activity (6, 41, 42). This notion further argues 
toward a direct link between the nutritional status and epigenetic  
control.

SIRT1, one of the most studied KDAC, controls circadian 
rhythm and liver metabolism through the deacetylation of H3K9 
and H3K14 at the promoter of clock genes (45, 46). Furthermore, 
through its interaction with Menin, SIRT1 enhances histone 
deacetylation and controls hepatic triglyceride accumulation 
(47, 48). SIRT1 can also deacetylate H4K16, functionally link-
ing metabolic activity to genome stability and aging (49, 50). 
SIRT6, another nuclear sirtuin, is linked to aging by controlling 
a specific deacetylation of H3K9 at NF-κB target gene promoters 
(51). In cancer cells, SIRT7 is involved in the stabilization of their 
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transformed phenotype by inducing the deacetylation of H3K18 
at specific oncogene promoter regions (52).

The second families of KDAC are classical HDAC, and, in 
spite of their independent activity on endogenous metabolite, 
they have been linked to cellular metabolism. Shimazu et  al. 
showed that β-hydroxybutyrate produced under fasting, star-
vation or intense exercise condition is a natural endogenous 
HDAC inhibitor leading to increased H3K9 and H3K4 acetyla-
tion (18, 53). It also increases histone acetylation at the Foxo3a 
and Mt2 promoters through the inhibition of HDAC1 and 
HDAC2 (18).

Lactate production, as a result of an increased rate of gly-
colysis, has also been shown to upregulate the expression of 
genes associated with HDAC proteins (54). The authors have 
demonstrated that the primary effect of lactate on gene expres-
sion depends on HDAC inhibition (54). Therefore, lactate may 
be an important transcriptional regulator, linking the metabolic 
state of the cell to gene transcription. Further work is needed 
to corroborate whether the lactate produced in vivo has a tissue 
specific effect on HDAC cofactors. Moreover, lactate has been 
implicated in the modulation of the DNA damage and repair 
processes as well as in the resistance of carcinoma cells to anti-
cancer therapy (55).

Altogether, those data provide evidence for a direct link 
between metabolism products and cellular adaptation through 
the modulation of KDAC activity.

HiSTONe MeTHYLATiON AND 
S-ADeNOSYLMeTHiONiNe (SAM)

S-adenosylmethionine, generated by the methionine cycle,  
contains the active methyl donor group used by methyltrans-
ferases to methylate RNA, DNA, and proteins, including histones 
(56–61). While extensive studies focused on the changes of meth-
ylation status upon embryonic development, physiology, and  
diseases, the link between intracellular SAM fluctuation and 
their conversion into specific epigenetic modifications remains 
poorly understood. For instance, only histone methylation has 
been linked to methionine availability, an essential amino acid 
obtained from the diet (62).

Histone methylation can occur on arginine or lysine residues. 
While lysine can be mono-, di-, or trimethylated, arginine can 
only be mono-methylated. There are three classes of histone 
methyltransferase: SET domain lysine methyltransferases, non-
SET domain lysine methyltransferases (disruptor of telomeric 
silencing 1-like, DOT1L), and arginine methyltransferases 
(PRMT) (63–65).

In mouse ESCs, mitochondrial threonine dehydrogenase 
(TDH), an enzyme that catabolizes threonine into glycine and 
acetyl-CoA, has been shown to be important in maintaining 
the intracellular SAM level (66). Threonine depletion in culture 
medium or TDH knockdown in mouse ESCs decreases SAM  
accumulation and H3K4me3 mark, whereas no effect was observed 
in other methylation marks (66). In cancer cells, an aberrant  
expression of Nicotinamide N-methyltransferase—a limiting 
enzyme that metabolizes SAM—exerts specific control over the 
cells methylation potential (67). Moreover, recent works provide 

evidence in both mouse and human that methionine status is 
sufficient for the control of numerous physiological processes 
including the activity of genes involved in cell fate through the 
modulation of histone methylation levels (62).

As observed for HDAC, PMRT activity can be controlled by 
intermediary metabolites. Three recent reports showed that an 
increased intracellular concentration of methylthioadenosine 
(MTA) in cancer cells harboring 5-methylthioadenosine phos-
phorylase (MTAP) deletions leads to PMRT5 inhibition (68–70). 
MTAP is the enzyme controlling MTA cleavage to generate pre-
cursor substrates for methionine and adenine salvage pathways. 
In cancer cells, MTAP deficiency leads to partial metabolite- 
based inhibition of PRMT5 by altering the ratio of MTA to 
SAM, which results in a decreased H4R3me2s mark (68–70). 
More studies are needed to understand whether the MTA-to-
SAM ratio can also be controlled by physiological metabolic 
nutritional states.

FLAviN ADeNiNe DiNUCLeOTiDe (FAD) 
AND HiSTONe DeMeTHYLASeS

Histone methylation was originally considered as a permanent 
chromatin alteration until the landmark discovery of histone 
lysine-specific demethylase 1 (LSD1) by Shi Yang’s group, 
established both in  vitro and in  vivo methylation reversibility 
(71). LSD1 uses FAD formed from ATP and riboflavin (vitamin 
B2) in mitochondria as a cofactor to demethylate mono- and 
di-methylated H3K4 and H3K9 (72, 73). Although LSD1 dem-
ethylase activity appears to control the metabolism in favor of  
de novo fatty acid synthesis over gluconeogenesis in hepatocyte  
and brown adipose tissue thermogenic activity, a direct link bet-
ween nutritional status and LSD1 activity still needs to be estab-
lished (74–78). For instance, recent works demonstrate that livers 
from mouse fed with folate-deficient diet present an increased 
dimethyl-H3K4 and decreased LSD1 activity (79). More studies 
are needed to decipher the metabolic consequence of FAD fluc-
tuation upon physiological and pathophysiological conditions.

α-KeTOGLUTARATe (αKG) AND  
HiSTONe DeMeTHYLASeS

α-ketoglutarate is produced from isocitrate through the activity 
of two key-enzymes of the Krebs cycle, isocitrate dehydrogenase 
1 and 2 (IDH 1 and IDH2) (16, 80). αKG can also be produced 
anaplerotically from glutamate by oxidative deamination, using 
glutamate dehydrogenase (49). Under fasting or caloric restric-
tion, the accumulation of αKG is used by the αKG-depending 
dioxygenase to influence the epigenetic status of the cells (81, 82).  
Several chromatin-modifying enzymes are regulated by αKG 
availability, including demethylase enzymes containing a Jumonji 
C domain (JmjC) and ten-eleven translocation (TET) protein 
families (83–86).

The JmjC subfamily comprises the largest identified family 
of lysine demethylases (KDMs) with more than 60 enzymes 
identified in humans (87). In addition to αKG, JmjC-dependent 
histone demethylation requires iron Fe(II) (88). Each JmjC 
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family member exhibits preference to reverse lysine or arginine 
trimethylated histone. Considering the key-determinant role 
of methylation on gene expression and demethylase specific-
ity, KDM2 and KDM5 families have been shown to promote a 
repression chromatin status, while KDM3, KDM6 and KDM7 
act as chromatin activators (63).

Ten-eleven translocation protein family can catalyze 
5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in three 
consecutive Fe(II)- and 2-oxoglutarate (2-OG)-dependent oxida-
tion reactions (89, 90). Gene expression depends on the location 
of the 5hmC marks. Indeed, the presence of 5hmC in the gene 
bodies was found to correlate positively with gene expression, 
whereas no correlation with gene expression was found when 
5hmC peaks are located at transcription start sites (91, 92).

α-ketoglutarate can be derived from glucose and glu-
tamine. However, few studies have demonstrated a direct link 
between αKG generation and histone demethylation. A direct 
manipulation of intracellular αKG/succinate ratio is sufficient 
to regulate chromatin state in ESCs. The accumulation of αKG 
promotes self-renewal of ESCs through JMJD3 and Tet1/Tet2 
demethylation of H3K9me3, H3K27me3, and H4K20me histone 
marks (93). Gas chromatography coupled to mass spectrom-
etry analysis revealed a rapid increase in hepatic α-KG levels  
following intraperitoneal glucose injection in mice. Strikingly, 
5hmC and 5fC marks are reported to increase in various mouse 
tissues including the liver, kidney, and muscle without any 
change in TET protein expression or localization leading to a 
change in gene expression (94). Changes in demethylase activity 
may thereby contribute to cellular and tissue dysfunction under 
persistent hyperglycemic conditions.

In cancer cells, a loss of function mutation of TCA cycle 
enzymes, such as mitochondrial succinate dehydrogenase or 
fumarate hydratase, promotes succinate and fumarate abundance 
(95, 96). Both metabolites inhibit α-KG-depending demethy-
lase leading to a decreased 5hmC mark and a specific increase 
in H3K9me3 levels (96, 97). Somatic mutations of IDH1 and 
IDH2 have been identified in glioblastomas, acute myelogenous 
leukemia, chondrosarcomas and lymphomas and other solid 
tumors (98–103). These gain-of-function mutations lead to a 
new enzymatic activity promoting the conversion of α-KG to 
produce D(R)-2-hydroxyglutarate (R2HG) (104, 105). This onco-
metabolite, which accumulates in tumors with IDH mutations,  
is a competitive inhibitor of TET and JmjC protein family  
activity (106–109).

Two recent reports describe another metabolite generated 
under hypoxic condition by the conversion of α-KG to produce 
L(S)-2-hydroxyglutarate (S2HG) (110, 111). Both reports dem-
onstrate that S2HG is the product of malate dehydrogenase 1, 
malate dehydrogenase 2, and lactate dehydrogenase A. The accu-
mulation of this metabolite leads to α-KG-depending demethy-
lase activity inhibition toward TET1/2 and KDM4C (110, 111).  
Interestingly, this effect is not cancer-specific since a similar 
level of S2HG production was observed in endothelial cells 
(110). Moreover, manipulating S2HG is sufficient to increase 
the methylation of histone repressive marks, suggesting that this 
metabolite may be generated in other conditions than hypoxia. 

Further studies are needed to understand the role of S2HG in 
controlling proliferation versus fate in ES cell.

NUCLeAR LOCALiZATiON OF 
MeTABOLiTeS

The cytosol and nucleus are dense and very viscous. This may 
restrict the diffusion of small molecules and slow down bio-
chemical reactions. Moreover, several metabolite pathways are 
organized in multiprotein complexes to allow reaction chan-
neling to facilitate signaling. A multiprotein complex (molecular 
assembly line) has been proposed to promote efficient substrate 
channeling from one enzyme to the next (112). Accumulated evi-
dence suggests a close coupling of the histone-modifying enzymes 
with their critical cofactor synthesis enzyme in the nucleus. 
Their nuclear translocation aims to provide in  situ metabolite 
synthesis in response to metabolic stress. For example, Katoh 
and colleagues demonstrate that the SAM-generating enzyme, 
methionine adenosyltransferase II (MATIIα), is localized in the 
nucleus and interacts with the Swi/Snf and NuRD complexes, 
supplying SAM for methyltransferases (113). MATIIα will 
maintain a local high SAM concentration, which is used by an 
H3K9-specific histone methyltransferase to repress the oncogene 
MafK transcriptional activity (113).

Similarly, a pyruvate conversion to acetyl-CoA is processed in 
the nucleus through the nuclear translocation of the mitochon-
drial PDC. Nuclear PDC levels, as well as the histone H3 and 
H4 global acetylation levels, increase in a cell-cycle depending 
manner upon epidermal growth factor, serum, or mitochondrial 
stress (36). Nuclear PDC inhibition leads to a specific decrease 
in the acetylation of the histone that is important for the gene 
expression of G1-S phase progression and S phase markers (36). 
Moreover, nuclear concentration of acetyl-coA has been shown 
to be important for osteoblast differentiation (114). In line 
with this, recent works showed that pyruvate is critical for the 
TCA cycle enzyme nuclear localization in mammalian zygotic 
genome activation (115). The authors demonstrated that nutri-
ents, such as pyruvate, are essential for an early pre-implantation 
development in mouse and human. Mechanistically, Nagaraj 
and colleagues showed that pyruvate controls the nuclear locali-
zation of multiple TCA enzymes in addition to proteins related 
to TCA cycle entry, including pyruvate carboxylase, pyruvate 
dehydrogenase, pyruvate dehydrogenase phosphatase, citrate 
synthase, aconitase-2, and isocitrate dehydrogenase 3A (115). 
Moreover, acetate-dependent acetyl-coA synthase 2 (ACSS2) 
binds to chromatin nearby regions of genes that are upregu lated 
during neuron differentiation. A decrease in ACSS2 lowers 
nuclear acetyl-coA levels, histone acetylation, and neuronal 
genes in hippocampus, leading to defective spatial memory 
(116). Those data support a critical role of ACSS2, linking 
acetate metabolism to localized acetyl-coA production, histone 
acetylation, and gene expression. In hepatocellular carcinoma 
cells, the nuclear localization of ACCS2 promotes cancer cell 
survival by increasing H3K9, H3K27, and H3K56 acetylation 
levels at the promoter regions of lipogenic genes such as acetyl-
CoA carboxylase alpha and fatty acid synthase and enhances de 
novo lipid synthesis (33).
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Finally, NAD+, the critical cofactor of sirtuin deacetylase, 
can also be generated in the nucleus through the conversion of 
nicotinamide by nuclear NMNAT1. NMNAT1 enzymatic activity 
is required to provide NAD+ for SIRT1 (117) and PARP1 (118) 
during transcriptional regulation and DNA repair.

The precise nuclear localization of critical cofactor-generating 
enzymes supports the presence of localized subdomains within 
the chromatin that may promote the clustering of relevant PTMs 
at specific genomic loci. This model raises a new question on how 
the nutritional state and metabolism products control the nuclear 
localization and activity of those microdomains. The second 
question is to know whether those processes are tissue and cell 
specific and if they are disturbed under pathophysiological condi-
tions such as obesity or cancer. Then, the final question is: what 
is the functional and physiological significance of this process?

CONCLUSiON

Scientific evidence clearly supports that nutrition and diet are 
the most influential lifestyle factors that contribute to health and 
the development and progression of chronic diseases, including 
metabolic disorders, neurodegenerative diseases, cancers, and 
cardiovascular diseases.

The recent exciting advances surveyed herein show that eating 
habits and nutritional input is deciphered by a metabolic sensor 
and translated into an adaptive epigenetic code that controls 
major biological processes such as cell survival, proliferation, 
DNA damage, and cellular energy production and/or storage 
(Figure 1). The next major challenge for epigenetic research will 
depend on the ability to translate the lessons learned from epig-
enomic profiling, structural studies, and regulatory mechanisms 
to treatment.

However, it will also be important to strengthen our under-
standing on how metabolite fluctuations can control a specific 
gene set in a given tissue. Importantly, it will be of interest to 
understand how all those pathways integrate into a specific 
physiological and/or pathophysiological state. The mechanisms 
controlling the concentration of metabolites in microdomains 
within the nucleus and the ability for this chromatin compart-
mentalization of critical cofactor synthesis enzyme to coordinate 
specific responses to metabolite changes are two other intriguing 
questions.

Finally, the most important question might be to determine 
whether cofactors can be successful targets for metabolic dis-
eases. Although this review highlights how far we have come 
in less than two decades, those findings shed light on a wide 
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range of more open questions to understand the role of cofac-
tors in nutritional sensing and the epigenetic control of gene 
expression.
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N-acetylaspartate (NAA) is a highly abundant brain metabolite. Aberrant NAA con-
centrations have been detected in many pathological conditions and although the 
function of NAA has been extensively investigated in the brain it is still controversial. 
Only recently, a role of NAA has been reported outside the brain. In brown adipocytes, 
which show high expression of the NAA-producing and the NAA-cleaving enzyme, 
the metabolism of NAA has been implicated in lipid synthesis and histone acetylation. 
Increased expression of N-acetyltransferase 8-like (Nat8l, the gene encoding the NAA 
synthesizing enzyme) induces de novo lipogenesis and the brown adipocyte pheno-
type. Accordingly silencing of aspartoacylase, the NAA-cleaving enzyme, reduced 
brown adipocyte differentiation mechanistically by decreasing histone acetylation and 
gene transcription. Notably, the expression of Nat8l and the amount of NAA were 
also shown to be increased in several tumors and inversely correlate with patients’ 
survival. Additionally, Nat8l silencing reduced cell proliferation in tumor and non-tumor 
cells, while NAA supplementation could rescue it. However, the mechanism behind 
has not yet been clarified. It remains to be addressed whether NAA per se and/or its 
catabolism to acetate and aspartate, metabolites that have both been implicated in 
tumor growth, are valuable targets for future therapies.

Keywords: N-acetylaspartate, acetate, acetyl-CoA, lipid metabolism, brown adipocytes, ATP-citrate lyase, nAA 
catabolism

inTRODUCTiOn

N-acetylaspartate (NAA) is the second most abundant brain metabolite with concentrations around 
10  mM (1). NAA is synthesized from aspartate and acetyl-CoA by aspartate N-acetyltransferase 
(Asp-NAT, encoded by the gene Nat8l) and cleaved by aspartoacylase (Aspa) yielding aspartate and 
acetate. Acetyl-CoA synthetase (AceCS) can then use acetate to generate acetyl-CoA which is a 
general energy metabolite and second messenger (2) and essential for lipid synthesis. In this respect, 
NAA has been suggested as acetyl-CoA source for myelin lipid synthesis in oligodendrocytes during 
brain development and loss-of-function mutations of Aspa lead to hypomyelination as well as NAA 
accumulation in the central nervous system (CNS) (3, 4). However, other studies proposed roles for 
NAA as a precursor for N-acetylaspartylglutamate synthesis (the most concentrated neuropeptide 
in the human brain), in osmoregulation, and in axon-glial signaling (5). Although the role of NAA 
in the CNS has been studied over decades and several mouse models with either deletion of Nat8l 
(6), Aspa (7), or both (8), have been investigated with regard to its physiological function, the role of 
NAA remains still controversial. Even though disruption of NAA metabolism leads to clear effects 
in human and mice, to this day, the question whether NAA itself or its breakdown to acetate and 
aspartate is essential for CNS awaits to be answered. An overview of a plethora of studies which 
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TABLe 1 | Body regions/conditions in which NAA concentrations and/or Nat8l/Aspa expression have been determined in physiological and pathological conditions 
outside the CNS.

Tissue/condition nAA concentration  
(method used for detection)

nat8l Aspa Literature

Brown adipose tissue mRNA, protein mRNA, protein Pessentheiner et al. (10),  
Prokesch et al. (11)

Brown adipocytes Up to 20 nmol/mg protein  
(HPLC/HRMS; LC-MS/MS)

mRNA, protein mRNA, protein, activity Pessentheiner et al. (10),  
Prokesch et al. (11)

White adipose tissue, human white adipocytes mRNA mRNA Pessentheiner et al. (10),  
Prokesch et al. (11)

Non-small cell lung cancer (NSCLC) Blood (up to 200 nM)
Tumor (5–15 µM)
Cells (relative) (HPLC, GC-MS)

Tumor (mRNA)
Cells (protein)

Lou et al. (12)

High-grade serious ovarian cancer (HGSOC) Ovarian cancer (~60 μM) (NMR) mRNA, Protein mRNA Zand et al. (13)

Inflammatory breast cancer (IBC) Cells (relative) (LC-MS) mRNA Wynn et al. (14)

Duodenum of obese/diabetic mouse model Protein, activity Surendran et al. (15)

Adipose tissues of obese/diabetic mouse model mRNA mRNA Pessentheiner et al. (10)
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tried to answer this question was given in excellent reviews in 
the past (5, 9). The present review focuses on the role of NAA in 
physiological and pathological conditions outside the CNS which 
has appeared in the focus of research only most recently. Table 1 
shows tissues/conditions in which NAA concentrations and/
or the NAA yielding/catabolizing enzymes have been detected 
outside the CNS. Details about a potential role of NAA in the 
differentiation of adipocytes and the proliferation of cancer cells 
are given in separate sections subsequently.

nAA MeTABOLiSM AnD LiPiD SYnTHeSiS 
in BROwn ADiPOCYTeS

Over the past decades, NAA synthesis has only been described 
in the CNS. However, its uptake and consumption was also 
observed in other tissues. Kidney metabolizes NAA to CO2, while 
other tissues like mammary gland convert NAA into lipids (16). 
We recently discovered that Nat8l mRNA is highly expressed in 
brown adipose tissue (BAT) (10). Although many other meta-
bolic tissues were screened for Nat8l expression, robust expres-
sion of Nat8l was only observed in BAT while its expression in 
white adipose tissue is much weaker and is negligible in skeletal 
muscle, heart and liver. Interestingly, the expression of Nat8l is 
massively increased during adipocyte differentiation of both 
murine and human cells, suggesting that NAA could be involved 
in lipid metabolism (10). Aspa expression is also upregulated in 
differentiating brown adipocytes suggesting that NAA catabolism 
is required for its function in adipocytes (11). However, NAA is 
not a primary source for acetyl-CoA and its downstream usage 
for lipogenesis as it requires acetyl-CoA for its synthesis. Thus, as 
suggested by us for brown adipocytes (11) and others for the CNS 
(17), NAA might be a storage and transport form of acetate that 
can be subsequently used for synthesis of acetyl-CoA by acetyl-
CoA synthase-1 (AceCS1) when required. In agreement, silenc-
ing of Aspa in brown adipocytes led to a massive accumulation of 
NAA and reduced cytosolic acetyl-CoA concentrations (11) while 

overexpression of Nat8l (and concomitant Aspa upregulation) 
strongly increased de novo lipogenesis (10), arguing that NAA 
catabolism and acetate availability is important for adipocytes. 
Wang et al. (18) showed that NAA supplies around one third of 
the acetyl-CoA for myelin lipid synthesis during brain develop-
ment while citrate provides the other two thirds, suggesting that 
the NAA pathway might be an alternative pathway for lipogenesis 
in adipocytes as well. Citrate is produced in mitochondria and 
exported to the cytosol where it is cleaved by ATP-citrate lyase 
(Acly) to yield acetyl-CoA and oxaloacetate. We hypothesized 
that NAA might complement citrate to deliver acetyl-CoA to the 
cytosol. In alignment, Nat8l localizes to mitochondria in brown 
adipocytes (10), while Aspa is found in the cytosol (11). Notably, 
the expression of Acly was strongly enhanced in brown adipo-
cytes silenced for Nat8l and in BAT from Nat8l-knockout mice 
suggesting a compensatory upregulation of the Acly pathway if 
NAA is not available (10).

nAA CATABOLiSM AnD HiSTOne 
ACeTYLATiOn in BROwn ADiPOCYTeS

Wellen et al. showed that Acly silencing leads to reduced histone 
acetylation. They also proposed that AceCS1 could provide an 
alternative acetyl-CoA source for protein acetylation in the 
presence of acetate (19). A role in protein acetylation has also 
been discussed for NAA-derived acetate in the brain as Aspa 
and AceCS1 have even been found to colocalize (9). Hence it 
seemed logical that, if the NAA pathway is an alternative way for 
cytosolic acetate delivery, NAA catabolism could play a role in 
posttranslational protein modification as well. In brown adipo-
cytes, silencing of Aspa diminished cytosolic acetyl-CoA levels 
and reduced acetylation of histone H3 and the locus-specific 
lysine residues H3K9 and H3K27 (11). The latter histone modifi-
cations have been shown to regulate transcription. Accordingly, 
the transcription of many genes, amongst others adipogenic 
marker genes, was downregulated thereby leading to reduced 
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differentiation potential in Aspa-silenced adipocytes. To date, a 
system boosting NAA catabolism by overexpressing Aspa has not 
yet been investigated in brown adipocytes. However, it can be 
speculated that increased NAA cleavage would lead to increased 
availability of cytosolic acetyl-CoA and higher histone acetyla-
tion. Interestingly, the addition of NAA to brown adipocytes 
led to a similar decrease in gene transcription as observed upon 
Aspa-silencing but without affecting cytosolic acetyl-CoA levels 
(11). Thus, it is conceivable that NAA per se impacts the activ-
ity of protein deacetylases or is even “toxic” as it can easily be 
taken up by cells as also observed for brown adipocytes (11).  
A couple of studies (20–23) showed that NAA is bioavailable and 
can be taken up by several tissues in rats (but cannot pass the 
blood brain barrier) when administered either by oral gavage or 
when incorporated into diets. At doses under 2,000 mg/kg, these 
investigators did not observe NAA-related adverse effects with 
regard to motor activity, hematology, coagulation, organ weight, 
or gross pathology evaluations. Thus, they concluded that NAA 
does not evoke systemic or reproductive toxicity at given doses. 
It is worth mentioning that acute toxicity leading to death within 
2 days in female rats has been observed with a single gavage of 
5,000  mg/kg NAA. NAA is present in a number of foods (24) 
and although very low in concentration, its biological effect in 
humans should probably not be underestimated. In this regard, 
long-term studies that investigate the effects of NAA in diets 
except for reproduction and development might be required to 
exclude a toxic effect of NAA at the molecular level.

THe ROLe OF nAA in CAnCeR

Nowadays, metabolic reprogramming is a well-accepted hallmark 
of cancer. Distinctive metabolic dependence of cancer cells on 
alternative sources for energy and biomass production can pro-
vide new possibilities for early diagnosis and targeted therapies. 
During the past decade, alternative metabolites as acetate have 
been suggested for the use of lipid generation which supports cell 
proliferation (25–27). Although previous work found NAA to 
be more abundant in tumors when compared to non-cancerous 
tissues (28–32), only very recently, the biological and clinical role 
of NAA/Nat8l in cancer was addressed in more detail in some 
nearly simultaneously published studies. Lou et al. detected NAA 
in non-small cell lung cancer (NSCLC) while it was undetect-
able in normal lung epithelium (12). Concomitantly, they found 
increased expression of Nat8l in approximately 40% of investigated 
adenocarcinoma and squamous cell carcinoma cases while the 
expression of Nat8l was minimal in non-malignant lung tissues. 
Expectedly, reducing Nat8l expression in NSCLC through siRNA 
also reduced NAA content of these cells. These investigators 
suggested that the biosynthesis of NAA depends on glutamine 
availability in NSCLC cells. Glutamine dependency was also con-
firmed in an in vitro model for inflammatory breast cancer (IBC) 
that also shows NAA enrichment (14). Lou et al. also investigated 
whether NAA, as it has the potential to be secreted, could serve 
as a circulating biomarker and found blood NAA concentrations 
increased in 46% of the NSCLC patients at the age of 55 years or 
younger when compared to age-matched, healthy controls (12). 
However, this data should be interpreted with caution as NAA 

concentrations were also found to be influenced by age, obesity 
and diabetes (12, 33, 34). Another group used metabolic flux 
analysis that also revealed biosynthesis of NAA in lung cancer 
cells (35). Additionally, they found that Nat8l silencing inhibits 
the proliferation of several human cancerous and non-cancerous 
cell lines. Metabolic profiling of high-grade serious ovarian cancer 
(HGSOC) also identified NAA as a metabolite that was correlated 
with reduced survival of patients when high (13). In addition, 
these investigators also studied open access RNA Seq data from 
The Cancer Genome Atlas (TCGA, https://cancergenome.nih.
gov/) and found that high Nat8l expression was associated with 
worse overall survival of patients with melanoma, renal cell, 
breast, colon, and uterine cancer proposing a general role for 
NAA in cancer. Similar to observations in lung cancer cells, Nat8l 
silencing reduced cancer proliferation in ovarian cancer cell lines 
which could interestingly be rescued by NAA supplementation 
(13). They also found that Nat8l-silencing in orthotopic mouse 
models for ovarian cancer and melanoma significantly reduced 
tumor growth. Zand et al. also suggested that silencing of Nat8l 
expression downregulates the antiapoptotic pathway mediated 
through FOXM1; however, the mechanism how NAA regulates 
FOXM1 expression was not revealed (13). Another mechanism 
was proposed in SUM 149 cells, the primary model for IBC. 
Wynn et  al. found out that silencing of the oncogene RhoC, a 
driver of metastatic potential, strongly reduced Nat8l expression 
and NAA content in SUM149 cells. Notably, Aspa expression 
was not detected in this cancer cell model further arguing for a 
role of NAA distinct from its catabolism in cancer (14). Also, no 
correlation of Aspa expression with tumor NAA levels was found 
in ovarian cancer samples (13). Finally, according to the TCGA 
database, Aspa expression is downregulated in several cancers 
arguing that NAA itself and not its breakdown products (aspartate 
or acetate) might be important for cancers. Although there is no 
evidence yet to prove that cancers do not consume NAA, well-
controlled metabolic tracing experiments could conclude the fate 
of NAA in proliferating cells. Considering NAA is not consumed 
by tumors would bring up the intriguing question why cancer 
cells would excrete a metabolite that could very well contribute to 
biosynthetic and energetic needs of proliferation. Thus, also fur-
ther investigations are required to provide a direct role for NAA 
function independent from its catabolism. It is also important to 
note that potential interactions between NAA (secreted by cancer 
cells) and the host organism (e.g., immune system) have not yet 
been investigated and may reveal novel roles for NAA.

OUTLOOK/FUTURe ASPeCTS

Many questions remain open when it comes to the functional 
role of NAA in cancer, adipose tissue energy metabolism and 
lipid-associated disorders also as in the latter there is a discrep-
ancy about the levels of NAA in urine and adipose tissue Nat8l 
expression (10, 33, 34, 36). Future studies will also have to dissect 
whether NAA per se or the catabolism of NAA by providing acetate 
and not to forget aspartate [as its availability correlates with cell 
proliferation (37–39)] for further usage are responsible for the 
effects associated with either NAA accumulation or depletion in 
diverse malignancies. Without debate, NAA plays a crucial role 
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in physiological conditions and in the development of several 
pathological conditions also outside the CNS. Thus, investigating 
the underlying mechanism might pave the way for therapeutic 
targeting of a variety of diseases correlated with deviant NAA 
concentrations.
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Oncogenic mutations, such as Ras mutations, drive not only enhanced proliferation 
but also the metabolic adaptations that confer to cancer cells the ability to sustain 
cell growth in a harsh tumor microenvironment. These adaptations might represent 
metabolic vulnerabilities that can be exploited to develop novel and more efficient 
cancer therapies. Macropinocytosis is an evolutionarily conserved endocytic pathway 
that permits the internalization of extracellular fluid via large endocytic vesicles known 
as macropinosomes. Recently, macropinocytosis has been determined to function as 
a nutrient-scavenging pathway in Ras-driven cancer cells. Macropinocytic uptake of 
extracellular proteins, and their further degradation within endolysosomes, provides the 
much-needed amino acids that fuel cancer cell metabolism and tumor growth. Here, 
we review the molecular mechanisms that govern the process of macropinocytosis, as 
well as discuss recent work that provides evidence of the important role of macropino-
cytosis as a nutrient supply pathway in cancer cells.

Keywords: macropinocytosis, Ras, growth factors, nutrient uptake, cancer metabolism

inTRODUCTiOn

Sustained rapid proliferation represents a major metabolic hurdle for cancer cells. The challenge 
lies in balancing the towering energy and nutrient demands required for biomass production with 
the harsh nutrient-depleted conditions of the tumor microenvironment. Hence, it is not surprising 
that tumors have evolved the capacity to employ the same oncogenic signaling pathways [e.g., RAS, 
MYC, PI3-kinase (PI3K)] that trigger aberrant growth to also control the metabolic rewiring that 
is necessary to adapt to a nutrient-deprived ecosystem (1).

Metabolic reprogramming is now recognized as one of the hallmarks of cancer cells (2) and the 
topic has become of increasing interest in recent years. Importantly, a better understanding of the 
molecular mechanisms and metabolic adaptations that confer growth and survival advantages to 
cancer cells could lead to the discovery of novel therapeutic opportunities. One of the many adaptive 
strategies that cancer cells use to fulfill their metabolic demands is the ability to exploit alternative 
nutrient acquisition pathways (3). Among them, macropinocytosis is an evolutionarily conserved 
form of bulk endocytosis by which cells incorporate extracellular fluid into large, irregularly shaped 
vesicles called macropinosomes (4). Macropinocytosis was first observed microscopically in malig-
nant cells in the 1930s (5), and since then, it has been extensively studied in different cell types and 
in varying contexts. For example, the amoeboid organism Dictyostelium discoideum utilizes macro-
pinocytic uptake to engulf fluid and nutrients during axenic growth (6). In antigen presentation 
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that occurs in the mammalian immune system, macrophages 
and dendritic cells employ macropinocytosis to internalize and 
process extracellular antigenic proteins (7). Macropinocytosis 
can occur at basal rates, as it occurs spontaneously in many 
cells, or it can be dramatically induced by receptor tyrosine 
kinase (RTK) activation or by oncogenes such as Ras (8) and 
v-Src (9). Although having been observed in transformed cells 
for nearly 30 years, the biological relevance of macropinocytosis 
in cancer has only recently been elucidated (10). In cancer cells 
harboring oncogenic Ras mutations, macropinocytosis serves 
as a nutrient uptake pathway by which extracellular protein is 
internalized and degraded to supply the much-needed amino 
acids that support cellular growth (10–12). This novel function 
of macropinocytosis as a feeding mechanism in tumors has 
provided a new perspective for cancer metabolism research and 
has positioned this ancient mechanism as a promising target for 
therapeutic intervention.

In this review, we aim to summarize the mechanisms that 
govern macropinocytosis regulation in cancer cells, as well as 
to provide the latest findings supporting its important role as 
a nutrient supply pathway that enables tumor cell proliferation 
and survival.

ReGULATiOn OF MACROPinOCYTOSiS 
in CAnCeR CeLLS

Macropinocytosis is a clathrin-independent endocytic process 
driven by actin. In contrast to the closely related phagocytosis 
pathway, macropinocytic uptake is non-selective and not con-
trolled by its cargo (13). Other distinctive features that define 
macropinocytosis are the fact that it can be stimulated by growth 
factors, and that it is suppressed by ion exchange inhibitors such 
as amiloride and its derivatives, which specifically inhibit macro-
pinocytosis as opposed to other endocytic pathways (4, 14). 
Another definitive property is that macropinosomes are larger 
than other endocytic vesicles and can be specifically labeled by 
high molecular weight dextrans (15), which are incorporated 
into discrete vesicles larger than 0.2 µm in diameter.

Macropinocytosis is intimately linked to actin cytoskeleton 
dynamics. Protrusions of the plasma membrane, known as 
membrane ruffles, are formed via actin polymerization. Nascent 
macropinosomes arise at the cell surface of ruffling cells when 
these membrane protrusions spontaneously form cup-shaped 
ruffles that close, leading to fission of the nascent macropino-
some from the plasma membrane and the internalization of 
extracellular fluid (13). Two types of membrane ruffles have been 
described and both can lead to macropinocytosis: planar ruffles, 
which are derived from the cell edges, and circular dorsal ruffles, 
which occur at the apical cell surface (16).

Both membrane ruffling and macropinocytosis depend 
heavily on actin cytoskeleton remodeling, as evidenced by 
their complete abrogation by inhibitors that disrupt actin 
polymerization, like cytochalasin D (17, 18). Moreover, many 
key regulators of actin polymerization, such as members of the 
Ras superfamily of small guanosine triphosphatases (GTPases), 
Ras, Rac, Cdc42, Arf6, and Rab5, among others, have been 

associated with ruffle formation and macropinocytic activity 
(19). Additionally, membrane phospholipids, in particular 
phosphatidylinositol (PI), PI4P, PI5P, PI(4,5)P2, and PI(3,4,5)
P3, and the phospholipid kinases and phosphatases that inter-
convert them, are important players in the spatiotemporal 
regulation of macropinocytosis (13). For instance, inhibition of 
PI3K by either wortmannin or LY294002 has been shown to 
abolish macropinocytosis in several cell types including cancer 
cells, fibroblasts, and macrophages (18, 20, 21). Stage-specific 
enrichment of each type of PI during macropinosome matura-
tion allows for the sequential recruitment and activation of 
specific enzymes and adapter proteins, including small GTPases 
and other proteins necessary for actin polymerization and 
membrane trafficking, such as Scar/Wave, Wasp, and Arp2/3 
complexes, as well as sorting nexins (22–24).

These orchestrated rearrangements of the actin cytoskel-
eton, as well as the production and turnover of phospholipids 
necessary for macropinocytosis, can be initiated by growth 
factor-dependent activation of RTKs (Figure  1). Induction of 
macropinocytosis by growth factors, such as epidermal growth 
factor (EGF), platelet-derived growth factor (PDGF), and mac-
rophage colony-stimulating factor, has been well studied and 
relies on the capacity of growth factors to stimulate membrane 
ruffling through the activation of the small GTPases Ras and 
Rac (14, 25–27). Several studies have demonstrated that Ras 
activation, either by growth factor stimulation or through 
oncogenic mutation, leads to increased membrane ruffling and 
macropinocytosis. First observations by Bar-Sagi and Feramisco 
showed that microinjection of oncogenic Hras into rat embryo 
fibroblasts rapidly induced ruffles and fluid-phase uptake of 
high molecular weight dextran (8). Similarly, Kras-transformed 
Rat-1 fibroblasts showed increased macropinocytosis that was 
dependent on PI3K and phospholipase C activity (18). More 
recently, it was shown that human bladder and pancreatic cancer 
cells that harbor oncogenic HRAS or KRAS mutations, respec-
tively, display an enhancement of macropinocytosis relative to 
cancer cells of the same tissue type that express wild-type HRAS 
or KRAS (10). Furthermore, macropinocytic activity was also 
observed in vivo in a Kras-mutant mouse model of pancreatic 
ductal adenocarcinoma (PDAC) (10, 28), as well as in human 
primary PDAC specimens (11).

Ras activation leads to the stimulation of a plethora of differ-
ent signal transduction pathways, including Rac, Cdc42, PI3K, 
and Raf/Erk activation. Activation of Rac by Ras has been shown 
to have an important role in inducing both membrane ruffling 
and macropinocytosis in different cell types (26). Both Rac1 
transient activation and subsequent deactivation are required 
for complete closure and maturation of macropinosomes (29). 
Interestingly, Rac1 and Cdc42 are necessary and sufficient to 
induce macropinocytosis uptake in bladder cancer cells, as 
demonstrated by employing dominant negative and constitu-
tively active forms of these small GTPases (30). In addition, it 
was recently demonstrated that Dock1, a Rac-specific guanine 
nucleotide exchange factor, is required for oncogenic Ras-
induced macropinocytosis in several cancer cells (31).

Rac and Cdc42 can activate actin polymerization via 
p21-activated kinase 1 (Pak1), which has been shown to 
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FiGURe 1 | Schematic representation of extracellular protein uptake via macropinocytosis in cancer cells. Ras activation, either by growth factor stimulation or 
through oncogenic mutation, leads to increased membrane ruffling and macropinocytosis via activation of Rac1 and Cdc42, which in turn stimulate p21-activated 
kinase 1 (Pak1) to induce actin polymerization. Activation of Rac1 and Cdc42 is sensitive to changes in submembranous pH, and the activity of Na+/H+ exchangers 
(NHEs) and vacuolar H+-ATPase (V-ATPases) is crucial to maintaining pH homeostasis. Conversion of membrane phosphoinositides by PI3-kinase (PI3K) is also 
necessary for macropinocytosis. Macropinosomes containing extracellular proteins such as albumin and collagen are internalized and subsequently fuse with 
lysosomes. Lysosomal proteases (▲) allow the catabolism of extracellular proteins into free amino acids (a.a.) that can fuel the TCA cycle to promote cell growth 
and survival. mTORC1 finely regulates the utilization of extracellular protein-derived amino acids by inhibiting macropinocytosed protein catabolism when free a.a. 
are abundant. Yellow stars represent phosphorylation of growth factor receptors.
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co-localize with macropinosomes in 3T3 fibroblasts, and can 
drive macropinocytosis through circular dorsal ruffles when 
expressed in a constitutively active form (32, 33). Pak1 activity 
is also important for closure of macropinocytic cups through 
phosphorylation of CtBP1/BARS, a protein involved in mem-
brane fission in the context of EGF-induced macropinocytosis 
(34). Signaling through other members of the Rab family of 
small GTPases, such as Rab5 and its effector Rabankyrin-5, have 
been shown to play a role in macropinosome formation and 
maturation. Specifically, both have been shown to be associated 
with membrane ruffles in epithelial cells (35, 36) and expression 
of a Rab5 dominant negative form inhibits PDGF-stimulated 
circular ruffles in MEFs (37).

While Ras, Rac, and Cdc42 signaling are critical for the early 
steps of macropinocytosis (i.e., membrane ruffling and formation 
of macropinocytic cups), PI3K activity seems to be specifically 
required for macropinosome closure in tumor cells and mac-
rophages (18, 20, 21). Studies in the epithelial carcinoid cell 
line A431 have shown that PI3K inhibitors do not affect EGFR-
induced membrane ruffling, but they inhibit macropinocytosis 
(21). These studies showed that as the macropinocytic cups close, 
PI(3,4)P2 is depleted from the cup while PI(3,4,5)P3 production 
by PI3K increases, and these highly regulated kinetics may be 
required for coordinated actin remodeling that allows macropi-
nosome closure. It should be noted that these observations may 
be cell and/or stimuli specific, as other studies have demonstrated 
that PI3K can control plasma membrane ruffling caused by either 

oncogenic v-Src expression or PDGF stimulation (18, 38). The 
regulation of membrane ruffling by PI3K in these contexts may be 
mediated by PI3K-dependent activation of Rac1 (39).

The fate of macropinosomes after internalization varies 
depending on the cell type, as they can be recycled to the cell 
membrane as is the case in A431 cells (40) or they can adopt 
degradative properties by fusing with lysosomes and undergoing 
a lysosome-dependent acidification, as is the case in macrophages 
(41) and Ras-transformed cancer cells (10). Although the 
mechanisms underlying macropinosome maturation remain to 
be explored, a switch from Rab5 to Rab7 accumulation on the 
macropinosome (42) and the recruitment of specific septins to the 
maturing macropinosome, seem to regulate fusion events with 
late endosomal/lysosomal compartments (43). Although much 
work has been done in past years to elucidate the mechanisms 
that control macropinocytosis, more studies are necessary to fur-
ther identify the cell- and tissue-specific pathways that regulate 
this process, especially in cancer cells where it can represent a 
therapeutic targeting strategy.

MACROPinOCYTOSiS AnD  
pH HOMeOSTASiS

As discussed above, macropinocytic induction arises as a result 
of the coordinated interactions among small GTPases, actin 
filaments, and membrane phosphoinositides in restricted areas 
of the plasma membrane known as membrane ruffles. Because 
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of the electrostatic origin of some of these interactions, they 
are susceptible to alterations in the charge balance across the 
plasma membrane. Accordingly, quite soon after the discovery 
of growth factor-induced macropinocytosis, it was shown that 
conditions that acidify the cytosol, such as the addition of NH4

+,  
or the blockade of the Na+/H+ exchangers (NHEs) by ami-
loride, dramatically inhibit macropinocytosis (14). Given that 
NHE inhibition selectively blocks macropinocytosis, leaving 
coated vesicles intact, sensitivity to amiloride and its analogs, 
like 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and HOE-694, 
has been used as a distinctive feature of macropinocytosis 
(4). Nevertheless, the functional association between Na+/H+ 
exchange and macropinocytosis and the mechanisms mediating 
amiloride/EIPA inhibition remained unknown for many years.

Koivusalo et  al. described that targeting of NHEs, by ami-
loride and HOE-694, abrogates EGF-induced macropinocytosis 
by lowering the submembranous pH (44). Interestingly, these 
changes in pH (from pH = 7.8 to 6.8) seemed to exclusively affect 
the recruitment and activation of Rac1 and Cdc42 to membrane 
ruffles. Consequently, the recruitment of their downstream 
effectors, Pak1 and Arp2/3, was also abrogated, thus inhibit-
ing ruffle formation without affecting EGFR phosphorylation 
or PI3K activation. The authors also showed that EGF could 
stimulate Na+/H+ exchange with a concomitant alkalinization 
of the cytoplasm at sites of nascent macropinosome formation. 
Inhibition of the NHEs resulted in an accumulation of acidic 
equivalents, which are thought to occur due to a boost of meta-
bolic activity driven by EGF stimulation. The outcome was an 
overall acidification of the cytoplasm, with a more pronounced 
effect in the vicinity of the plasma membrane where macropino-
cytosis was taking place (44). Although this study only addressed 
NHE inhibition of EGF-induced macropinocytosis in A431 
cells, it is likely that similar mechanisms account for amiloride/
EIPA inhibition in the setting of other growth factors and in 
Ras-induced macropinocytosis, where H+ accumulation caused 
by increased metabolic activity and actin polymerization also 
occurs, especially in cancer cells where the high metabolic rate 
is well known to promote acidification of the cell and the tumor 
microenvironment (45–47).

The most commonly used macropinocytosis inhibitors, ami-
loride and EIPA, broadly target the SLC9A gene family of NHEs, 
which includes 11 isoforms reported to date (48). Whether 
specific NHE isoforms differentially regulate macropinocytosis 
remains an open question. Although NHE1 is highly expressed 
in several cancer cell lines (49) and is the most widely studied 
isoform, gene expression analyses indicate that NHE6, 7, and 
8 are expressed at levels comparable to NHE1 in PDAC cells 
(50); therefore, it would be useful to conduct further studies 
aimed at identifying the contribution of specific NHE isoforms 
to macropinocytosis.

Underscoring the importance of NHE-dependent macro-
pinocytosis in tumor growth, EIPA treatment of mice bearing 
MIA-PaCa2-derived xenograft tumors showed a suppression 
of intratumoral macropinocytosis that was accompanied by a 
reduction in tumor size relative to control mice (10). Moreover, 
EIPA treatment was effective only in tumors with high macro-
pinocytic activity, as tumor growth rate was not affected in 

tumors derived from BxPC3 cells, which display low levels 
of macropinocytosis. These results indicated that enhanced 
macropinocytic activity in particular tumors might represent 
a metabolic vulnerability that can be specifically harnessed to 
restrain tumor growth.

In addition to nascent macropinosome formation, later 
stages of macropinosome maturation where the degradation of 
the macropinocytosed cargo occurs are also dependent on pH 
regulation. Macropinosome maturation includes fusion with lys-
osomes, which facilitates the delivery of the machinery necessary 
for compartmental acidification and the lysosomal proteases that 
are responsible for protein catabolism (41). Vacuolar H+-ATPases 
(V-ATPases) function to maintain the acidic pH of different 
intracellular organelles such as late endosomes and lysosomes 
and these proton pumps play a critical role in vesicular traffick-
ing and protein degradation (51). Concordantly, inhibition of 
V-ATPases by bafilomycin A1 has been shown to impair down-
stream events in the macropinocytosis pathway (Figure 1). For 
instance, bafilomycin A1 inhibits degradation of LDL causing 
its accumulation in macropinocytic vesicles in macrophages 
(52). Furthermore, protein degradation of macropinocytosed 
albumin was prevented by treatment with bafilomycin A1 in 
KRAS-mutant PDAC cells (10). Interestingly, bafilomycin A1 also 
inhibits the initial stages of macropinocytosis in HRAS-mutant 
T24 bladder cells (53), as well as in KRAS-mutant A549 lung cells 
(54). These effects of bafilomycin on nascent macropinosome 
formation may be a result of either (1) perturbations of cytosolic 
pH due to impaired pumping of protons into lysosomes or (2) 
alterations of submembranous pH due to inhibition of proton 
pumping to the extracellular space. Supporting the second pos-
sibility, several studies have demonstrated that V-ATPases can 
reside at the plasma membrane in KRAS-mutant PDAC and 
breast tumor cells and contribute to pH regulation at the plasma 
membrane (55, 56).

Altogether, these results suggest that pH homeostasis, both at 
the cellular and organellular level, is vital to properly execute the 
macropinocytosis program. Therefore, from the perspective of 
the pathological state, pH homeostasis is at the center of cancer 
cell metabolism and is critical to the role of macropinocytosis 
as a vital nutrient supply route that supports cancer cell growth 
and survival.

MACROPinOCYTOSiS AS A SURvivAL 
STRATeGY in TUMORS

Oncogenic Ras triggers a myriad of cellular adaptations to pro-
mote the metabolic rewiring that allows cancer cells to sustain 
unrestrained proliferation [reviewed in Ref. (57)]. Such rewiring 
includes enhanced glucose uptake and glycolytic activity, shifts 
in glutamine metabolism and redox balance (58, 59), increased 
flux of glucose to anabolic pathways such as hexosamines and 
ribose-5-phosphate (60), as well as upregulation of the major 
nutrient-scavenging mechanisms: autophagy (61–63) and 
macropinocytosis (10). It was recently demonstrated that extra-
cellular amino acids and lipids rather than glucose contribute 
to the majority of cell biomass in proliferating cancer cells (64). 
These findings underscore the relevance of nutrient-scavenging 
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pathway exploitation by cancer cells to support tumor growth and 
survival.

Unlike autophagy, which generates nutrients from a lim-
ited supply of intracellular organelles and cytosolic proteins, 
macropinocytosis serves as a feeding mechanism by internal-
izing and degrading extracellular proteins. In this way, the 
resulting protein-derived amino acids can be utilized by the 
tumor to fuel central carbon metabolism, in addition to other 
metabolic pathways. This function has been proven to be 
particularly relevant to sustaining tumor growth in nutrient-
deprived environments both in vitro and in vivo. For instance, 
mutant KRAS-driven pancreatic cancer cells, which rely on 
glutamine metabolism to support their growth, can maintain 
proliferation under glutamine-limiting conditions if supplied 
with extracellular serum albumin. Importantly, this escape from 
the deleterious effects of glutamine deprivation is suppressed by 
the inhibition of macropinocytosis (10). Similarly, extracellular 
serum albumin has the ability to reverse a proliferation arrest 
in PDAC cells grown in the absence of essential amino acids, 
such as leucine (11, 12). Tracing experiments with labeled extra-
cellular protein showed that protein-derived amino acids are 
indeed incorporated into TCA cycle metabolites, supporting the 
growth-promoting role of macropinocytosis in Ras-transformed 
cells (10). Thus, macropinocytosis is necessary to support cell 
growth under nutrient-deprived conditions. Whether the extent 
of macropinocytosis can be dialed up or down depending on 
nutritional status remains to be elucidated.

The potential importance of macropinocytosis in human 
cancer is underscored by the observation that PDAC tumor tis-
sues from Whipple procedure patients display enhanced macro-
pinocytic uptake relative to adjacent non-neoplastic regions 
(11). Such PDAC tumors are hypovascularized and are depleted 
of amino acids (11); therefore, extracellular protein scavenging 
represents an attractive alternative for nutrient acquisition in 
these tumors as opposed to the import of free, circulating amino 
acids, which would depend on adequate perfusion. In agreement 
with this, extracellular protein uptake and catabolism via macro-
pinocytosis has been directly evidenced in vivo in murine PDAC 
tumors (28). Moreover, inhibition of macropinocytosis via 
EIPA treatment suppressed tumor growth in xenograft tumors 
(10). Although the majority of the studies on the utilization of 
extracellular protein as a nutrient source have been performed 
in pancreatic cancer cells and animal models, similar results have 
also been reported in Ras-driven cancer cells of different tissue 
origins, such as bladder, lung, sarcoma, and colon cancer (10, 
31, 65). The cell growth effects mediated by macropinocytosis 
under glutamine-deprived conditions were suppressed in KRAS-
mutant lung, sarcoma, and colon cells, when the Rac1 activator 
Dock1 was inhibited either pharmacologically or by genetic 
ablation. Moreover, treatment with a Dock1 inhibitor decreased 
tumor growth and metastasis in mice (31). In addition to tumor 
cells, macropinocytosis was also observed in the stromal com-
partment of PDAC tumors (11). Further studies are necessary 
to evaluate the potential contribution of macropinocytosis to 
survival and growth of these cells.

The intracellular degradation of extracellular proteins 
acquired via macropinocytosis is dependent upon lysosomes, 

which are tightly controlled by the mammalian target of rapa-
mycin complex (mTORC1), a key regulator of cell growth that 
responds to nutrient availability (66). Lysosomal catabolism of 
extracellular proteins has been shown to activate mTORC1 in 
Ras-transformed cells (12), and furthermore, macropinocytosis-
derived lysosomal amino acids are required for rapid activation 
of mTORC1 in response to growth factor stimulation to promote 
cell growth (67). On the other hand, mTORC1 activation seems to 
minimize lysosomal degradation of macropinocytosed proteins. 
Suppression of mTORC1 by rapamycin or torin1 enhances pro-
tein catabolism and proliferation in amino acid-starved PDAC 
cells in vitro, and in hypovascularized, nutrient-poor regions of 
PDAC tumors (12). Thus, although it seems that mTORC1 does 
not directly regulate the early steps of macropinocytosis, it does 
play a pivotal role in regulating the degradation of proteins that 
are internalized by macropinosomes, allowing for the coordina-
tion of protein catabolism in response to nutrient availability. 
Hence, when free amino acids are plentiful, mTORC1 activation 
could suppress the catabolism of macropinocytosed proteins 
and conversely, as amino acid levels decrease upon consump-
tion, mTORC1 suppression could allow for enhanced protein 
degradation. It is also conceivable that as protein-derived amino 
acids are produced, they, in turn, activate mTORC1, establishing 
a feedback regulatory loop that serves to shift between nutri-
ent acquisition pathways depending on nutrient availability 
(Figure 1).

Finally, molecules other than serum albumin are also inter-
nalized via macropinocytosis, and uptake of these molecules 
might also contribute to tumor metabolism and growth. For 
example, tumor cells can internalize and catabolize extracellular 
matrix molecules, such as fibronectin and collagen (28, 68). Like 
serum albumin, internalization of these matrix molecules serves 
to produce protein-derived amino acids that can support tumor 
cell growth. In addition to extracellular proteins, KRAS-mutant 
A549 lung cancer cells can also macropinocytose extracel-
lular ATP in order to increase the intracellular ATP pool (69). 
Ras-driven cancer cells are also known to have increased lipid 
scavenging to support tumor metabolism (70, 71), and although 
the mechanisms remain to be elucidated, it is reasonable to 
hypothesize that serum lipids bound to albumin are taken up 
via macropinocytosis.

COnCLUDinG ReMARKS

The critical role that metabolic reprogramming and adaptation 
strategies play in supporting the growth of tumors is now widely 
recognized. By inducing the internalization of extracellular pro-
teins, and other macromolecules, that can be further processed 
and utilized to fuel different metabolic pathways, macropino-
cytosis provides not only a survival mechanism under nutrient-
scarce conditions but also the potential for unrestricted tumor 
growth in an adverse tumor microenvironment. For this reason, 
targeting macropinocytosis has emerged as a novel therapeutic 
strategy that requires further investigation. Understanding the 
molecular events that drive macropinocytosis in the context 
of different cancers might inform the design of more specific 
and potent inhibitors. Given that macropinocytosis is crucial to 
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sustaining tumor growth under nutrient-deprived conditions, 
it is possible that macropinocytosis inhibition would be par-
ticularly beneficial in patients suffering from severely hypoxic 
or hypovascularized tumors, such as PDAC. Moreover, studies 
focused on combination therapies employing macropinocytosis 
inhibitors in conjunction with other metabolic pathway inhibi-
tors could pave the way for improved therapeutic outcomes.
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Obesity and excess accumulation of adipose tissue are known risk factors for several 
types of cancer, including breast cancer. With the incidence of obesity constantly rising 
worldwide, understanding the molecular details of the interaction between adipose  
tissue and breast tumors, the most common tumors in women, becomes an urgent 
task. In terms of lipid metabolism, most of the studies conducted so far focused on 
upregulated de novo lipid synthesis in cancer cells. More recently, the use of extracellular 
lipids as source of energy came into focus. Especially in obesity, associated dysfunc-
tional adipose tissue releases increased amounts of fatty acids, but also dietary lipids 
can be involved in promoting tumor growth and progression. In addition, it was shown 
that breast cancer cells and adipocytes, which are a major component of the stroma 
of breast tumors, are able to directly interact with each other. Breast cancer cells and 
adjacent adipocytes exchange molecules such as growth factors, chemokines, and 
interleukins in a reciprocal manner. Moreover, it was shown that breast cancer cells can 
access and utilize fatty acids produced by neighboring adipocytes. Thus adipocytes, 
and especially hypertrophic adipocytes, can act as providers of lipids, which can be 
used as a source of energy for fatty acid oxidation and as building blocks for tumor 
cell growth.

Keywords: breast cancer, obesity, adipose tissue, lipid metabolism, free fatty acids

inTRODUCTiOn

Breast cancer is the most abundant malignant tumor and the leading cause of death from cancer 
in women worldwide (1, 2). Established risk factors for breast cancer are a woman’s age, own or 
familial history of breast cancer or of precancerous lesions, genetic configuration, pregnancies and 
reproductive treatment, consumption of alcohol, and exposure to ionizing radiation (3). In addition, 
overweight and obesity are now regarded as promoting factors for breast cancer development and 
progression. This perception is based on numerous recent epidemiological and experimental studies 
with following observations: several population studies demonstrated that obesity and associated 
excess accumulation of adipose tissue are associated with an elevated risk for breast cancer, especially 
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FiGURe 1 | Adipocytes and breast cancer cells interact via several secreted factors. Adipocytes secrete bioactive lipids, adipokines, cytokines, hormones,  
and proteases/protease inhibitors priming breast cancer cells for a more aggressive phenotype. This includes increased proliferation, migration, invasion, and 
β-oxidation. Breast cancer cells induce adipocyte lipolysis resulting in the formation of cancer-associated adipocytes (CAAs), which are characterized by delipidation, 
dedifferentiation, autophagy, and altered secretion. In turn, the increased release of free fatty acids (FFA), inflammatory cytokines, and proteases from CAAs 
promotes breast cancer progression. In obesity, the adipose tissue is characterized by hypertrophy and increased infiltration of macrophages and other immune 
cells. Furthermore, adipocyte function is impaired due to hypoxia, oxidative, and ER stress leading to secretory dysfunction. The resulting elevated release of FFA, 
insulin-like growth factor-1 (IGF-1), insulin, inflammatory cytokines, and leptin, and decreased secretion of adiponectin, enhances the tumor-promoting effects of 
adipose tissue.
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in post-menopausal women (4–6) and are independent negative 
prognostic factors for mammary tumors (7–10). On a molecular 
level, several studies showed that adipocytes, which are a major 
component of the stromal environment of mammary tumors, exert 
tumor-promoting effects on breast cancer cells. Several hypotheses 
about how adipose tissue and adipocytes promote tumorigenesis 
have been described, but the molecular mechanisms that underly 
this interaction are yet to be defined in more detail.

Signaling molecules and metabolites secreted by adipose 
tissue and adipocytes, especially in the obese state, are now 
recognized as important factors for cancer progression as they 
directly or indirectly stimulate anti-apoptotic effects, cell growth, 
angiogenesis, and migration (11, 12). Mature adipocytes are 
the major cell type of white adipose tissue and are primarily 
responsible for the metabolic homeostasis of the body. Lipids are 
stored here in the form of triacylglycerol (TAG) and released as 
free fatty acids (FFA) in times of demand. Besides energy storage, 
adipocytes also play an active role in endocrine signaling to other 
tissues of the body, by secreting hormones, adipokines, cytokines, 
and growth factors (13, 14). An elevated intake of calories and a 

largely sedentary lifestyle can lead to obesity, which often results 
in dysfunctional adipose tissue. In particular, adipocytes become 
hypertrophic and store elevated amounts of TAGs along with 
higher secretion of adipokines and pro-inflammatory cytokines, 
such as tumor necrosis factor-α, IL-6, IL-8, and PAI-1 (Figure 1). 
These molecules are chemoattractants for macrophages, mono-
cytes, and other immune cells, which induce a chronic low-grade 
inflammation within the adipose tissue. As a result, lipolysis is 
initiated and adipocytes release elevated amounts of FFAs, which 
adversely affects lipid homeostasis of the entire organism and 
leads to subsequent metabolic diseases (12). The release of higher 
amounts of fatty acids could be a direct mechanism through 
which adiposity may promote cancer progression by delivering 
building blocks for the production of pro-tumorigenic signaling 
lipids (14).

Visceral obesity and increased adipose tissue mass are often 
accompanied by low levels of plasma high-density-lipoprotein 
cholesterol (HDL-C), which has been associated with breast 
cancer risk in some studies (15, 16). However, evidence for the 
relationship between plasma HDL-C and breast cancer risk 
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remains equivocal (17) and it is not clear whether low HDL-C 
causally affects tumorigenesis or merely serves as a biomarker for 
poor lifestyle and dietary habits.

Epidemiologic studies have also investigated the relationship 
between elevated plasma low-density-lipoprotein cholesterol or 
total cholesterol and cancer occurrence and prognosis. In terms 
of breast cancer onset, these studies yielded contradictory find-
ings (17, 18). However, in several recent studies, elevated plasma 
cholesterol levels were associated with a poor prognosis and 
the use of cholesterol-lowering medication (statins) increased 
recurrence-free survival of breast cancer patients (19–21). Large-
scale prospective studies, adequately controlled for confounding 
factors, are necessary to substantiate the potential beneficial 
effects of statins and other cholesterol-lowering drugs in breast 
cancer patients.

Regarding intracellular lipid metabolism, it is well known 
that several tumor cells show a hyperactivation of various lipid 
synthesis pathways, including breast cancer. Breast cancer cells 
show an increased activity of fatty acid synthase (FASN), an 
enzyme used for de novo fatty acid synthesis. In addition, breast 
cancer cells also show an upregulation of monoacylglycerol lipase 
(MAGL). The MAGL pathway controls the intracellular release 
of fatty acids and its hyperactivation is often associated with the 
aggressiveness of a tumor. Together, FASN and MAGL very likely 
promote cancer progression by synthesizing and mobilizing intra-
cellular lipids, which in turn promote tumor growth (14, 22, 23).  
Interestingly, lipidomic analyses demonstrated that the incorpo-
ration of endogenous fatty acids into membrane phospholipids 
is enhanced in mammary carcinomas as compared to normal 
human breast tissue. Furthermore, these changes in membrane 
lipid composition correlated with tumor progression, hormone 
receptor status, and patient survival, with the concentration of 
these lipids being the highest in ER-negative and grade 3 tumors 
(24). Moreover, another study showed that the ratios of specific 
monounsaturated fatty acid phosphatidylcholines compared to 
saturated fatty acid phosphatidylcholines are significantly higher 
in cancerous tissue in comparison to healthy reference sections 
(25). A different aspect of the role of lipid metabolism in cancer 
is seen in patients with late-stage cancers, who often suffer from 
cachexia. This phenomenon is characterized by the loss of both 
muscle and fat mass through catabolic mechanisms. This process 
is triggered by a marked upregulation of adipose triglyceride 
lipase (ATGL) and hormone-sensitive lipase (HSL), which break 
triglycerides into diglycerides and diglycerides into fatty acids, 
respectively. The resulting elevated levels of circulating FFA can 
be used as building blocks for cancer cell growth or tumorigenic 
signaling lipids (26). Thus, cancer cells are able to utilize FFA not 
just from de novo lipogenesis but also from exogenous fat sources. 
Intriguingly, a few recent articles described that breast cancer cells 
can access and directly use lipids from neighboring adipocytes 
(27, 28). One study even demonstrated that the predominant 
source of de novo lipid synthesis by breast cancer cells is extracel-
lular lipids, not just glucose and glutamine (27). Together, these 
studies indicate that breast cancer cells are metabolically very 
flexible and fit the current notion that metabolic reprogramming 
is an emerging hallmark of cancer cells. However, in contrast to 
endocrine and paracrine effects of adipose tissue in obesity, the 

role of extracellular fatty acids in breast cancer metabolism is a 
relatively new area of research and warrants further elucidation.

In this review, we will focus on the role of lipids from excess 
adipose tissue in obesity, from tumor-associated adipocytes or 
dietary lipids, and discuss how these extracellular fatty acids drive 
tumor growth and progression.

LiPiDS DeLiveReD TO BReAST CAnCeR 
CeLLS FUeL TUMOR GROwTH

Direct interaction of Adipocytes and 
Breast Cancer Cells
The tumor microenvironment plays an important role for its 
growth and progression since non-malignant cells of the stroma, 
such as endothelial cells, immune cells, tumor-associated 
macrophages and tumor-associated fibroblasts, deliver tumor-
promoting molecules, including chemokines, interleukins, and 
growth factors (29). In breast cancer, the interaction of breast 
tumor cells with surrounding fibroblasts, immune, endothelial, 
and mesenchymal cells is well studied. By contrast, the crosstalk of 
breast tumor cells with associated adipocytes has been addressed 
only recently. In fact, adipocytes are a major component of the 
microenvironment of mammary tumors. During early tumor cell 
invasion, breast cancer cells invade the mammary fat pad and 
exist in direct conjunction with neighboring adipocytes (30). 
Several recent studies demonstrated that this direct interaction 
with adipocytes has tumor-promoting effects (Figure 1). Breast 
cancer cells secrete, among other factors, cytokines and lypolytic 
enzymes, which affect adipocytes. In a reciprocal manner, associ-
ated adipocytes secrete adipokines, growth factors, proteases, and 
fatty acids, which stimulate tumor growth and survival (31, 32). 
In addition, a study by Dirat et al. showed that breast cancer cells 
induce lipolysis together with a phenotypic change in neighboring 
adipocytes. These fat cells, termed cancer-associated adipocytes 
(CAAs), are characterized by a fibroblast-like morphology, a sig-
nificant decrease in number and size of intracellular lipid droplets 
and loss of terminal adipocyte differentiation markers, such as 
leptin or FABP2 (Figure 1). Functionally, CAAs secrete increased 
amounts of proteases and interleukins, such as PAI-1, IL-6, and 
IL-1β, which promote tumor aggressiveness. In addition, CAAs 
were shown to deliver fatty acids, important building blocks for 
tumor proliferation (30). Using a co-culture model of ovarian 
cancer cells and omental adipocytes, Nieman and co-workers 
showed that cancer cells have the ability to take up and utilize 
fatty acids from surrounding fat cells (28). This co-cultivation 
induced lipolysis within the adipocytes and enabled a direct 
transfer of lipids to the cancer cells together with enhanced lipid 
storage and mitochondrial oxidation. Analogous co-cultivation 
of omental adipocytes with MCF-7 and MDA-MB-231 breast 
tumor cells also resulted in lipid droplet accumulation in the 
cancer cells (28). The impact of adipocyte-derived fatty acids 
on breast cancer cell progression was underscored by work con-
ducted by Balaban et al. showing that MCF-7 and MDA-MB-231 
breast cancer cells induced HSL/ATGL-dependent lypolysis in 
co-cultured adipocytes which resulted in increased cancer cell 
proliferation and migration. This effect was even more enhanced 
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when adipocytes were loaded with a mixture of oleate, palmitate, 
and linoleate beforehand of co-cultivation to mimic “obese” 
adipocytes and thereby demonstrated that an increased avail-
ability of fatty acids for mitochondrial oxidation promotes breast 
cancer cell progression (27). Together, these studies suggest a 
metabolic shift of cancer cells in adaption to the availability of 
metabolic substrates in the microenvironment. This metabolic 
shift activates alternative pathways to support tumor growth and 
survival. To date, most of the studies examining breast cancer cell 
lipid metabolism focused on glucose and glutamine metabolism 
as precursors for de novo lipogenesis. The data described above 
clearly point out that extracellular lipids are an important source 
for breast cancer cell lipid synthesis and fatty acid oxidation. 
The translational relevance of these findings is substantiated by 
a recent study by Camarda et al. (33). The authors demonstrate 
that highly aggressive triple-negative breast cancer cells, which 
overexpress the oncogenic transcription factor MYC, show sig-
nificantly increased rates of fatty acid oxidation. Pharmacological 
inhibition of fatty acid oxidation dramatically decreased energy 
metabolism and, therefore, cell and tumor growth in vitro and 
in vivo in a MYC-dependent manner. Together, these data high-
light that targeting lipid metabolism and lipid uptake should be 
considered for the development of novel therapeutic strategies in 
breast cancer.

Fatty Acids Released by Adipose Tissue  
in Obesity
Obesity is described as excess fat storage and accumulation of 
adipose tissue, which becomes deregulated. Dysfunctional 
adipocytes release increased amounts of fatty acids which accu-
mulate in non-adipose tissues, such as liver, heart, or muscle. 
Intermediates of intracellular fatty acid metabolism, such as 
ceramides or diacylglycerols (DAGs), can ultimately induce 
lipotoxicity (34). Lipotoxicity is characterized by cell cycle and 
mitochondrial deregulation, autophagy, and apoptosis. Several 
recent studies have shown that an over-production of ceramides 
or DAGs induces growth arrest and apoptosis in various cancer 
cells (35, 36). These discoveries open interesting inroads for the 
development of new lipid-based cancer treatment options. On the 
other hand, elevated levels of fatty acids can be utilized by cancer 
cells as source of energy or as building blocks for oncogenic 
lipid signaling molecules, such as lysophosphatidic acid (LPA), 
prostaglandins and sphingosine-1-phosphate (S1P) (Figure  1) 
(14). In the past few years, several studies addressed the cellular 
and molecular mechanisms linking fatty acids and cancer using 
cell culture experiments and animal models. For example, oleate, 
which is the most abundant fatty acid esterified to triglycerides in 
adipose tissue, has been explored for its potential role in cancer 
progression (37–39). A recent in vitro study points in the direc-
tion that breast cancer cells use exogenous lipids, such as oleate, 
to regulate lipid metabolism, in addition to de novo fatty acid 
synthesis (40). Moreover, the authors show that a proliferative 
effect of oleate on breast cancer cells is dependent on the fatty 
acid translocase/CD36, as silencing of CD36 mRNA expression 
significantly decreased exogenous fatty acid uptake, which turns 
CD36 into an interesting candidate for novel treatment strategies 

(40). Also recently, Shen et al. demonstrated that oleate induces 
the expression of angiopoietin-like 4 (ANGPTL4) in head and 
neck squamous cell carcinoma resulting in anoikis resistance and 
metastasis via upregulation of fibronectin (41). Notably, palmitate 
and linoleate also induced ANGPTL4 gene expression in these 
cancer cells. Moreover, the induction of ANGPTL4 expression by 
oleate was also detected in other cancer cell types, including breast 
cancer cells (41). This suggests an interesting link since Angptl4 
has been described to promote breast cancer cell invasion and 
metastasis to the lung in vitro and in vivo, respectively (42–44). 
The role of oleate was also studied with respect to metabolic adap-
tions in highly aggressive cancer cells. An in vitro study by Li and 
co-workers showed that AMPK is activated in highly metastatic 
gastric and breast cancer cells treated with oleate (45). AMPK 
promoted the rates of fatty acid oxidation and ATP synthesis in 
these cells, enabling increased cell growth and cell migration. In 
low metastatic cancer cells, oleate reduced cell proliferation and 
migration, indicating a selective tumor-promoting function of 
oleate on highly metastatic cancer cells (45). The pro-tumorigenic 
effect of oleate was also demonstrated by an independent study 
showing that the treatment with oleate promoted cell invasion 
in highly metastatic breast cancer cells, but not in low metastatic 
cancer cells (38). Addressing the potential underlying mecha-
nism, Hardy et al. showed that oleate enhanced cell proliferation 
via activation of G protein-coupled receptor 40 in highly aggres-
sive breast cancer cells (46). Moreover, oleate treatment of breast 
cancer cells resulted in long-term survival in serum-free media, 
which was associated with enhanced intracellular lipid droplet 
formation and upregulation of lipolysis (47). In contrast to the 
tumor-promoting effects of oleate, palmitate, which is the most 
abundant circulating saturated fatty acid in the human circula-
tion, exhibited inhibitory effects in in vitro studies (48, 49). For 
example, the treatment of breast cancer cells with palmitate 
mediated the inhibition of cell proliferation and induction of 
apoptosis. Interestingly, oleate antagonized the proapoptotic 
function of palmitate in these experiments (49).

Together, these data indicate that the effects of fatty acids on 
breast cancer progression are complex and depend on the fatty 
acid subtype, the combination thereof, and the specific breast 
cancer subtype. More future studies are warranted to uncover the 
detailed link between obesity, fatty acids, fatty acid metabolism 
intermediates, and breast cancer progression.

Cholesterol Metabolism and Breast 
Cancer
Changes in cholesterol and lipid metabolism (often due to 
poor diet or obesity) have been extensively studied as risk fac-
tors for various malignancies, including breast cancer. Several 
epidemiological studies investigated the relationship between 
cholesterol and the risk of breast cancer, with inconsistent results 
(17). However, Li and co-workers demonstrated in a more recent 
meta-analysis study that dietary cholesterol was associated with 
an increased risk of breast cancer (50). Evidence for the role 
of elevated plasma cholesterol in promoting breast cancer was 
also obtained in recent experimental studies. The induction of 
hypercholesterolemia in mice resulted in enhanced breast cancer 
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growth, suggesting tumor-promoting effects of hypercholester-
olemia (51, 52). Moreover, the primary oxysterol metabolite of 
cholesterol, 27-hydroxycholesterol (27-OHC), was identified to 
promote growth and metastasis in vivo (53, 54). Higher levels of 
27-OHC were also detected in human estrogen receptor-positive 
breast tumors as compared to adjacent normal breast tissue (55). 
In addition, 27-OHC was also described to play a crucial role in 
mediating resistance of estrogen receptor-positive breast cancer 
to specific endocrine therapies (56, 57). Together the data show 
that alterations in lipid and cholesterol metabolism might be 
important factors in promoting breast cancer progression. To 
fully understand how obesity and associated changes in lipid 
metabolism affect breast cancer biology is going to be one of the 
demanding but irremissible tasks in battling breast cancer.

The Role of Omega-3 and Omega-6 
Polyunsaturated Fatty Acids (PUFAs)  
in Breast Cancer
The impact of FFA and specific components, such as saturated, 
monounsaturated, and PUFAs, were studied in several human 
diseases, including cancer. Much of the data implicate that satu-
rated fatty acids and monounsaturated fatty acids elevate cancer 
risk, whereas specific PUFAs (omega-3 PUFAs) exhibit anticancer 
effects (58–61). Still, since not all of the studies conducted so far 
showed consistent results, more detailed analyses are warranted. 
Particularly with regard to breast cancer, the contribution of 
dietary fatty acids depends on diverse factors, e.g., breast cancer 
subtype, a woman’s menopausal status, fatty acid species, and 
intake ratios (62).

The two major groups of PUFAs, omega-3 and omega-6 
PUFAs, are essential fatty acids, which must be ingested as 
part of a diet. Omega-3 PUFAs, such as eicosapentaenoic acid 
and docosahexaenoic acid are precursors for the production of 
anti-inflammatory eicosanoids and inflammation resolving deri-
vates, such as resolvins and protectins (63). On the other hand, 
eicosanoids resulting from the omega-6 PUFA–arachidonic acid 
(AA) axis are predominantly involved in the initiation and main-
tenance of inflammation (63). In recent years, epidemiologic 
studies have explored the role of omega-3 and omega-6 PUFAs 
on cancer risk and reported that consumption of western diets 
with a low omega-3:omega-6 ratio is associated with a higher 
risk of several cancer types (64). Notably, an elevated intake of 
omega-3 PUFAs as well as a higher dietary intake ratio of omega-
3:omega-6 PUFAs correlated with reduced breast cancer risk in 
obese women, but there was no such association in overweight 
or normal weight women (65). Thus, this study suggests a link 
between obesity, omega-3-PUFAs intake, and breast cancer risk. 
Several mechanisms have been proposed for the anti-tumor 
effects of omega-3 PUFAs, including the alteration of the cell 

plasma membrane composition, the inhibition of AA-derived 
synthesis of inflammatory eicosanoids, and alteration of gene 
expression of genes known to be involved in cell proliferation and 
apoptosis (62). Especially in connection with obesity, omega-3 
PUFAs might be a useful tool in reducing obesity-associated 
inflammation and related tumor risk (66, 67).

In conclusion, these studies support the interesting notion 
that PUFAs, especially omega-3 PUFAs, are linked to reduced 
breast cancer risk, in particular by decreasing pro-tumorigenic 
inflammation. However, more clinical studies are needed to fully 
understand the role of omega-3 and omega-6 PUFAs in obesity-
associated breast cancer.

SUMMARY

Obesity is now recognized as an important risk factor for breast 
cancer development and progression. Several mechanisms have 
been suggested to explain this association, including inflamma-
tory signaling, chemokines, adipokines, and insulin. In addition, 
more recent studies demonstrated that extracellular lipids play an 
important role in promoting breast cancer growth and progres-
sion by serving as substrates for activated fatty acid oxidation or 
as building blocks for oncogenic lipid signaling molecules. Breast 
cancer cells may obtain extracellular lipids through deregulated 
adipose tissue, by dietary intake or by directly interacting with 
adipocytes of the tumoral stroma. Emerging evidence clearly 
indicates that breast tumor cells are able to adapt to their 
metabolic environment in a very flexible manner. Targeting the 
utilization of extracellular lipids in breast tumor cells may open 
up new avenues for breast cancer treatment.
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Cells that have undergone an oncogenic transformation have an altered metabolism compared 
to the cells they originate from (1). This observation led to the addition of “a deregulated 
metabolism” to the hallmarks of cancer (2). Accordingly, it has been extensively demonstrated that  
many of the observed alterations in the metabolism of cancer cells are important for their pro-
liferation (1, 3, 4). However, a metabolic alteration that is important for cancer cell proliferation 
is not automatically a good target for treatment, as treatments also have to be selective toward 
cancer cells. Since almost all of the cancer-induced metabolic changes are not caused by gain of 
function mutations in specific enzymes, metabolism-based drug have to be developed against the 
naturally occurring enzymes. Thus, the valid question arises whether there is a therapeutic window 
for targeting the deregulated metabolism of cancer cells. In the following, I would like to describe 
the challenges and advocate the opportunities for metabolic drug targets in cancer treatment.  
In the first section, I will address the question whether there is in general a therapeutic window  
for metabolism-based cancer treatment, while in the second section, I will discuss new concepts 
that can refine metabolism-based anticancer strategies.

THERApEUTiC WinDOW

Is there a therapeutic window for metabolism-based cancer treatment? A major challenge for meta-
bolic drugs in cancer treatment is that metabolism is a universal cellular process and, with a few 
exceptions (such as gain of function mutations in metabolic enzymes), the metabolic alterations 
found in cancer cells are present in similar form in some non-transformed cell; i.e., while cells 
that undergo an oncogenic transformation will always change their metabolism, there is no single 
metabolic change that unifies all cancer cells and separates them from all non-transformed cells. 
Based on this fact, one could argue that targeting the metabolism of cancer cells is challenging, since 
it is not selective. However, an opportunity for treatment arises based on the fact that many meta-
bolic changes in cancer cells support cell proliferation, while the majority of the non-transformed 
cells are in a differentiated and low proliferative state. Thus, metabolic drugs that impair cellular 
proliferation preferentially target cancer cells. The validity of this reasoning is supported by the 
fact that many of the first chemotherapeutic agents that are still used in the clinics are targeting 
the metabolism of proliferating cancer cells (5). Examples are the antifolate methotrexate and the 
nucleoside analog 5-fluorouracil. Despite the fact that these agents target any highly proliferating 
cell rather than only cancer cells, their usage has revolutionized cancer treatment and the benefits 
still justify the side effects arising from their moderate selectivity. Thus, metabolism-based treat-
ments are feasible, currently used in the clinics, and a patient benefit at least in the scope of a typical 
standard of care chemotherapeutic agent can be expected.

Yet, is it possible to refine metabolism-based cancer therapies by increasing efficacy and selectiv-
ity and thus broaden the treatment window that arises from the metabolic changes that occur in 
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cancers? In the following, I will focus on three concepts that aim 
to refine metabolism-based anticancer drugs.

METABOLiC VULnERABiLiTiES ARiSinG 
FROM THE CAnCER-SpECiFiC GEnETiC 
LAnDSCApE

One of the earliest approaches to refine metabolism-based 
anticancer drugs has focused on metabolic vulnerabilities that 
arise due to the genetic loss of tumor suppressors or hyperactiva-
tion of oncogenes. The rationale for this approach is that many 
tumor suppressors and oncogenes regulate metabolic genes and 
consequently loss or hyperactivation of this regulation creates 
dependencies on specific metabolic pathways (6). This approach 
led to the identification of an oncogene specific and targetable 
metabolism in cultured cancer cells. Yet, recent in vivo data show 
that the organ microenvironment and the cell origin can redefine 
the oncogene-imposed metabolic dependencies of cancer cells 
and thus can lead to impaired in vivo efficacy of metabolic drugs 
(7–11). A solution to this challenge is the integration of oncogene 
profiles with the cell origin and the organ microenvironment. 
An example for the validity of this concept is the finding that 
cancers with KrasG12D/+; Trp53−/− background originating and 
growing in the lung are susceptible to branched chain amino acid 
metabolism inhibition, while this is not the case for cancers with 
the same genetic background but originating and growing in the 
pancreas (10). Thus, the cancer-specific oncogene and tumor 
suppressor landscape can be exploited to increase the efficacy of 
metabolic drugs in the context of the cell origin and the organ 
microenvironment.

Another concept that builds on the genetic landscape of 
cancers to increase the selectivity of metabolic drugs focuses 
on the metabolic vulnerabilities arising from a mutation in or 
gene loss of a metabolic enzyme (Figure 1A). The rationale of 
this concept is that normal cells have the metabolic flexibility to 
cope with drugs that (partially) inhibit an enzyme, while cancer 
cells fail to have this flexibility due to a mutation or loss in an 
enzyme concomitant to the enzyme targeted by the drug. An 
example for this concept are cancers with homozygous loss of 
p16/CDKN2A resulting in the passenger deletion of the enzyme 
methylthioadenosine phosphorylase (MTAP) (which is found in 
~15% of all cancers and>50% of glioblastoma multiforme) and 
inhibition of the enzyme arginine methyltransferase (PRMT5) 
(12–14). Mechanistically, loss of MTAP results in the accumula-
tion of its metabolite substrate methylthioadenosine, which 
partially inhibits PRMT5 activity. Consequently, cancers with 
loss of MTAP and therefore already impaired PRMT5 activity 
are hypersensitive toward PRMT5 inhibitors (12–14). Another 
example for this concept is demonstrated by the effectiveness of 
a pyruvate carboxylase (PC) knockdown to impair the prolifera-
tion of paraganglioma with mutation in succinate dehydrogenase 
(SDH) (15, 16). Mechanistically, mutations in SDH result in a 
truncated tricarboxylic acid cycle and therefore impaired glu-
tamine anaplerosis (17), which is a process that supports aspartate 
production required for nucleotide biosynthesis. Consequently, 
SDH mutant tumors switch to PC-dependent anaplerosis to 

sustain nucleotide biosynthesis. In turn, SDH mutant tumors are 
hypersensitive toward PC knockdown, while non-transformed 
cells have the flexibility to use either path of tricarboxylic acid 
cycle anaplerosis. Thus, combining the genetic loss of an enzyme 
with a metabolic drug creates hypersensitivity specifically in 
cancer cells. Taken together, identifying the metabolic vulner-
abilities that arise from the cancer-specific genetic landscape 
can be conceptualized to increase the selectivity and efficacy of 
metabolic drugs.

CAnCER CELL pHEnOTYpES BEYOnD 
pROLiFERATiOn

A recent concept to refine metabolic drugs is focused on under-
standing the metabolic vulnerabilities of metastasizing rather 
than proliferating cancer cells. As described in the first section, 
most metabolism-based anticancer drugs inhibit the prolifera tion 
of cancer cells (1, 18). Unquestionable, this is a very important 
aspect of cancer therapy. However, this focus on proliferation con-
tributes to the moderate selectivity of metabolism-based drugs 
(and many other drugs that target cancer cell proliferation), since 
some non-transformed cells also proliferate. A solution to this 
challenge is the concept to go beyond the proliferative phenotype 
of cancer cells and target their single cell survival and coloniza tion 
capacity (Figure 1B). These latter phenotypes are less frequently 
found in normal cells compared to the proliferation phenotype. 
Moreover, they are particularly important for cancer progression 
toward metastasis formation, which results in up to 90% of the 
patient mortality. Thus, considering phenotypes beyond prolif-
eration can increase selectivity of metabolic drugs and advance 
their application toward inhibition of metastasis formation. An 
example for this concept is the recent discovery that inhibition 
of proline catabolism impairs metastasis formation by breast 
cancer cells without apparent adverse effects on normal cells 
and organ function (19). Mechanistically, metastasizing cancer 
cells rely on proline catabolism to fuel their increased energy 
need during the colonization of distant organs. Consequently, 
targeting proline metabolism does not affect primary cancer 
growth or non-transformed cells, but impairs metastasis forma-
tion in distant organs (19). Another example for this concept 
is the finding that the survival of metastasizing cancer cells in 
the circulation depends on their antioxidants metabolism (20). 
Consequently, targeting one carbon metabolism that contributes 
via NADPH production to the cellular antioxidants response 
[e.g., by inhibiting methylenetetrahydrofolate dehydrogenase 
(MTHFD1)] decreases the survival of cancer cells in the circula-
tion and subsequently metastasis formation in distant organs 
(20). Taken together, targeting cancer cell phenotypes beyond 
proliferation refines metabolic drugs and extends their applica-
tion toward anti-metastatic agents.

EXTEnSiOn TO STROMAL AnD  
iMMUnE CELLS

An additional concept to refine the use of metabolic drugs in 
cancer treatment is targeting the entire cellular composition of 
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FiGURE 1 | Novel concepts to refine metabolism-based cancer therapies. (A) Loss or mutation of enzymes in cancer cells can create hypersensitivity of the cancer 
cells toward the inhibition of a concomitant enzyme. (B) Targeting cancer cell phenotypes beyond proliferation such as single cell survival and colonization can 
increase the selectivity of metabolism-based drugs and broaden their application toward metastases prevention and treatment. (C) Manipulating the cellular tumor 
composition by targeting stromal and immune cells with metabolism-based drugs can enable a comprehensive cancer therapy.
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a cancer, which includes stromal and immune cells. Classically, 
metabolism-based drugs have been developed against cancer 
cells. However, within the tumor, not only cancer cells but 
also stromal and immune cells are found. Many stromal and 
some immune cells (such as tumor-associated macrophages) 
are reprogrammed to support the development and progres-
sion of cancer, while other immune cells within the tumor 
(such as cytotoxic T-cells) counteract cancer development and 

progression. Thus, targeting stromal and/or immune cells along 
with the cancer cells can be a comprehensive treatment concept 
(Figure 1C). The effectiveness of this concept has been shown 
for stromal cells: tumor endothelial cells display an aberrant 
activation (in form of proliferation and migration), which leads 
to tumor vascularization, but also vascular permeability. This 
aberrant activation is at least in part driven by high glycolytic 
rates (21). Consequently, downregulating glycolysis in tumor 
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endothelial cells can normalize the tumor vasculature, which 
has been shown to result in increased efficacy of chemotherapy 
and decreased metastasis formation (21). Both effects relied on 
a tightened vascular barrier that resulted in improved delivery 
of chemotherapeutic agents to the cancer and decreased success 
of cancer cell intravasation to the vasculature. Thus, targeting 
tumor-associated stromal cells and cancer cells at the same time 
can provide a synergistic anticancer efficacy.

Targeting the metabolism of immune cells emerges to be more 
complex, since the different subclasses of immune cells exhibit 
either pro- or antitumor capacities (22, 23). Therefore, any  
metabolism-based therapy targeting immune cells needs to either 
hamper the fitness of immune cells with protumor capacity or 
boost the fitness of immune cells with antitumor capacity. To 
achieve such selectivity, an increased understanding of the  
metabolism of immune cells is needed. An approach to circum-
vent the above-described complexity is to stimulate the meta-
bolic fitness of antitumor immune cells ex vivo and combine it  
with a consecutive adoptive transfer. For example, it has been 
shown that the ex vivo treatment of cytotoxic T-cells with the 
metabolite S-2-hydroxyglutarate (not to be confused with the 
oncometabolite R-2-hydroxyglutarate) results (after adoptive 
transfer) in enhanced in vivo proliferation, survival, and antitu-
mor capacity of the treated cytotoxic T-cells (24). Mechanistically, 
S-2-hydroxyglutarate treatment induced changes in histone and 
DNA methylation as well as the activation of HIF-1α-dependent 
transcriptional programs (24). Thus, while approaches targeting 
the metabolism of immune cells in vivo require further research, 

ex vivo approaches show promising results. Taken together, 
targeting the metabolism of stromal and immune cells can refine 
cancer treatment.

In conclusion, metabolism-based drugs are important con-
tributors to cancer treatment. Novel concepts such as targeting 
metabolic vulnerabilities of cancer cells arising from their genetic 
landscape, metabolic requirements of metastasizing cancer cells, 
and stromal and immune cells have the potential to refine metab-
olism-based anticancer therapies. Moreover, combining current 
and future metabolism-based drugs with targeted delivery such 
as nanobodies (25) and magnetic nanoparticles (26) can further 
advance their use in cancer treatment. Thus, my answer to the 
question “Is there a therapeutic window for metabolism-based 
cancer therapies?” is yes.
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