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Editorial on the Research Topic

Brain-inspired cognition and understanding for next-generation AI:

Computational models, architectures and learning algorithms

1. Introduction

The human brain is probably the most complex thing in the universe. Apart from the

human brain, no other system can automatically acquire new information and learn new

skills, perform multimodal collaborative perception and information memory processing,

make effective decisions in complex environments, and work stably with low power

consumption. In this way, brain-inspired research can greatly advance the development of a

new generation of artificial intelligence (AI) technologies.

Powered by new machine learning algorithms, effective large-scale labeled datasets, and

superior computing power, AI programs have surpassed humans in speed and accuracy

on certain tasks. However, most of the existing AI systems solve practical tasks from a

computational perspective, eschewing most neuroscientific details, and tending to brute

force optimization and large amounts of input data, making the implemented intelligent

systems only suitable for solving specific types of problems. The long-term goal of brain-

inspired intelligence research is to realize a general intelligent system. The main task is to

integrate the understanding of multi-scale structure of the human brain and its information

processing mechanisms, and build a cognitive brain computing model that attempt to

simulate the cognitive function of the brain. In particular, attention needs to be paid to

how the human brain cooperates with different computing components to accomplish

different cognitive tasks such as perception, attention, learning, memorizing, knowledge

representation, reasoning, decision-making, and judgment.
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This special issue contains 14 research articles, which could

be broadly classified into three classes: (1) three articles focus on

investigating the spiking neural networks to explore the working

mechanism for human brain, (2) three articles review several

existing machine learning techniques and models by refering the

working manner from human brain, (3) the remaining articles

mainly focus on some practical applications such 3D modeling,

robotics, speech recognition and image processing.

Specifically, Skatchkovsky et al. proposed a Bayesian learning

framework for spiking neural networks (SNNs), which utilizes

a Gaussian variational distribution for synaptic weights and a

Bayesian single-task and continual learning rules with binary

weights. Their study shows that the proposed framework has the

ability to adapt to changing learning tasks and provides reliable

quantification of uncertainty in the model’s decisions. Hu and Liao

proposed a membrane voltage slope-guided algorithm (VSG) that

correlates delayed feedback signals with effective clues embedded

in background spiking activity. This method finds potential points

for emitting new spikes and the old spikes that need to be removed

from the time derivative of membrane voltage, thereby avoiding the

dilemma of failing to find adjustment points. Furthermore, it does

not require iterative calculation to find the critical threshold. Zhao

and Zeng proposed an intention predictionmodel for robots, which

enables them to successfully predict user intentions through the

spike-timing-dependent plasticity (STDP) mechanisms and simple

feedback of right or wrong. Compared with the traditional Q-

learning method, the proposed model significantly reduces training

time.

Wingfield et al. proposed a deep artificial neural network

model for speech processing that bears resemblance to patterns of

activation in the human auditory cortex. This was achieved through

a combination of spatio-temporal searchlight representational

similarity analysis (ssRSA) and multimodal neuroimaging data.

The study concludes that the low-dimensional bottleneck layer in

the DNN could learn representations that characterize articulatory

features of human speech. According to the study of Vaskevich

and Torres, statistical learning is a highly dynamic and stochastic

process that unfolds at different time scales, and evolves distinct

learning strategies on demand. Their research reassesses how

individuals dynamically learn predictive information in stable

and unstable environments. Specifically, narrow-variance learners

retain explicit knowledge of the regularity embedded in stimuli

and use an error-correction strategy consistently in both stable and

unstable environments. Broad-variance learners, on the other hand,

emerge only in unstable environments. Lee et al. investigated brain-

inspired predictive coding frameworks for machine challenging

tasks (MCTs) and found that they have advantages in incremental

learning, long-tailed recognition, and few-shot recognition. The

study concludes that predictive coding learning is similar to the

plasticity-stability property of the human brain, andmainly mimics

the interaction between the hippocampus and prefrontal cortex.

For the practical application, Kumari et al. proposed

an attentional search model for practical application in a

3D environment, utilizing two separate channels for object

classification and location prediction. This enables the camera to

accurately classify the target while focusing on it. Their model

employs Elman and Jordan recurrence layers as well as JK-flip-flop

recurrence layers instead of the traditional Long Short Term

Memory (LSTM) to integrate temporal attention history into the

network.

In the field of remote sensing, Shi et al. proposed an improved

anchor-free SAR ship detection algorithm inspired by the brain’s

ability to effectively focus on target information and ignore

interference from redundant information. The proposed model

utilizes dense connection in the deep layer of the network and

visual attention processing in the shallow layer to enhance feature

extraction ability. Moreover, a wide height prediction constraint is

applied to the target to further improve localization accuracy.Wang

et al. proposed a knowledge-assisted neural network for millimeter

wave radar object classification. This model injects two kinds of

prior information containing spatial and physical understanding

of objects for assistance. With the guidance of prior information,

the network can learn object classification more akin to human

brains and achieve superior performance. Tong et al. proposed

an interpretable approach for automatic aesthetic assessment of

remote sensing images. This method can highlight important areas

of the image that influenced the model’s decision, and provide

visual explanations of the remote sensing aesthetic assessment.

Drawing inspiration from the way humans learn different

object features based on the backgrounds and use historical

appearances to aid in target positioning during tracking, Cui et

al. proposed a novel tracking algorithm based on dynamic feature

selection, aberrance repression, and a historical model retrieval

module. By introducing dynamic feature-channel and aberrance

repressed regularization into the loss function, the tracker can learn

different feature weights according to the difference between the

target and the background. The memory module, built by historical

target samples, allows the tracker to learn a flexible representation

that adapts to changes in object appearance during tracking.

Similarily, Zheng et al. proposed a novel Gaussian prototype

learning model to address tactile object recognition in open-set

scenarios. Their unified framework integrates classification and

class detection, consisting of two main components: a feature

extractor and class prototypes. The feature extractor simulates

the human perception system for transforming raw sensing data

into abstract representations, and the prototypes for each category

serve as abstract memories of the corresponding category in the

brain. Experimental results validate that their model can not only

correctly classify known tactile inputs but also effectively detect

unknown tactile classes.

Current deep learning-based fundus image registration

methods attempt to learn the geometric transformation or dense

pixel-level displacement vector field directly between the test and

reference images. However, the significant intra-class variability

and small inter-class differences of fundus images pose a significant

challenge for accurate keypoint matching. In response to this

challenge, Xu et al. has proposed a spatially-varying adaptive

pyramid context aggregation network to simultaneously match all

the vessel crossing and branching points by taking advantage of the

knowledge of contextual consistency.

Li et al. has proposed a kinship verification method based

on face images that is relevant to real-life applications, such as

missing children search, family photo classification, and kinship

information mining. To enable the deep model to capture diverse
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and abundant local features from different regions of the face,

they have proposed an attention center learning guided multi-

head attentionmechanism. To address the issue of misclassification

caused by single feature center loss, a family-level multi-center loss

has been proposed to ensure a more appropriate intra/inter-class

distance measurement for kinship verification.

These articles cover a wide variety of topics including

encoding and decoding of spatial-temporal information, 3-D

environment modeling, visual object detection and localization,

speech recognition, and aesthetic assessment. From the perspective

of brain-inspired intelligence, these researches enrich the

corresponding research fields with insightful methodologies

and techniques, and ultimately offering alternative solutions to

effectively enhance the robustness, generalization ability, and

interpret ability for related tasks.

We hope that our readers will have a delightful experience when

reading these excellent articles.
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Chinese Academy of Sciences, Beijing, China, 3National Laboratory of Pattern Recognition, Institute

of Automation, Chinese Academy of Sciences, Beijing, China, 4School of Artificial Intelligence,
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With the development of artificial intelligence and robotic technology in

recent years, robots are gradually integrated into human daily life. Most of

the human-robot interaction technologies currently applied to home service

robots are programmed by the manufacturer first, and then instruct the

user to trigger the implementation through voice commands or gesture

commands. Although these methods are simple and e�ective, they lack some

flexibility, especially when the programming program is contrary to user

habits, which will lead to a significant decline in user experience satisfaction.

To make that robots can better serve human beings, adaptable, simple,

and flexible human-robot interaction technology is essential. Based on the

neural mechanism of reinforcement learning, we propose a brain-inspired

intention prediction model to enable the robot to perform actions according

to the user’s intention. With the spike-timing-dependent plasticity (STDP)

mechanisms and the simple feedback of right or wrong, the humanoid robot

NAO could successfully predict the user’s intentions in Human Intention

Prediction Experiment and Trajectory Tracking Experiment. Compared with the

traditional Q-learning method, the training times required by the proposed

model are reduced by (N2
−N)/4, where N is the number of intentions.

KEYWORDS

human-robot interaction, intention prediction, brain-inspired model, spiking neural

networks, humanoid robot

1. Introduction

The research trend of the new generation of robots is to make robots participate in

human life, and improve the naturalness and flexibility of interaction between humans

and robots through human-robot interaction technology. Robots that can successfully

predict user’s intention and take appropriate actions according to the intention can

effectively improve interaction efficiency and user experience. Researchers have made

significant progress in user intention prediction modeling. These studies use a variety

of frameworks or models to enable robots to predict users’ intentions in specific

human-robot interaction tasks. These frameworks or models use a variety of methods,

such as probabilistic graphical models, deep learning techniques, and other methods that

include extreme learning machine algorithms, etc.
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There are many studies on the application of the probability

graph model to human intention prediction. Song et al. (2013)

proposes a probabilistic graphical model for predicting human

manipulation intention from image sequences of human-object

interaction. The model can enable the robot to successfully

infer intention in a house-hold task which contains four

intentions: hand-over, pouring, tool-use, and dish-washing.

Vinanzi et al. (2019) proposes a novel artificial cognitive

architecture to predict the intentions of a human partner.

The architecture contains unsupervised dynamical clustering of

human skeletal data and a hidden semi-Markov chain. With the

architecture, the iCub robot can engage in cooperative behavior

by performing intention reading based on the partner’s physical

clues. Besides that, Yu et al. (2021) proposes a Bayesian method

for human motion intention in a human-robot collaborative

task. Dermy et al. (2017) and Luo and Mai (2019) built

models based on Probabilistic Movement Primitives for human

intention prediction. Their models are verified in gaze guidance

experiment or tabletop manipulation task.

Deep learning techniques, especially deep long short-term

memory (LSTM) neural network, have also been used to predict

human intentions. Yan et al. (2019) presents an LSTM neural

network to recognize human intention. They designed a human-

robot collaboration environment using aUR5 robot and a Kinect

V2 depth camera. The experimental results show that the 2-

layers deep LSTM network enables the robot to understand

the human intentions even with only 40% of the motion

sequences. Liu et al. (2019) presents a deep learning system

combing convolutional neural network (CNN) and LSTM, and

this system could accurately predict the motion intention of the

human in a desktop disassembly task.

In addition, there are other methods for human intention

recognition. Wang et al. (2021) proposes a teaching-learning-

prediction (TLP) framework, which enables robots to learn and

predict human hand-over intentions in collaborative tasks. The

robot learns the human demonstrations via the extreme learning

machine (ELM) algorithm, which realizes the robot’s learning

and prediction of human hand-over intentions in collaborative

tasks. The experimental results show that the framework can

enable the robot to effectively predict the human hand-over

intention and complete the hand-over task. Since the framework

enables robots to learn through human demonstrations, it

can reduce human manual-programming efforts and improve

the efficiency of human-robot collaboration. Lin et al. (2017)

develops a human intention recognition framework in human-

robot collaboration scenarios. The framework contains an

inverse-reinforcement learning system to find the optimal

reward function of the policy and a Markov-Decision process

to model human intention. They use a coffee-making task

and a pick-and-place task to verify the validity of the model

and obtained the desired results. Li et al. (2020) proposes a

task-based framework to enable robots to understand human

intention from natural language dialogues. The framework

includes a language semantics module for extracting instruction

keywords, a visual object recognition module for identifying

objects, and a similarity computation module for inferring

intention based on the given task. With this framework,

the robot could comprehend human intentions using visual

semantics information.

It can be seen that most of the current studies use

relatively complex methods to complete specific human-robot

interaction tasks, and few studies use brain-inspired cognitive

computational modeling methods to solve intention prediction

tasks. Brain-inspired cognitive computational modeling is a

method that draws on the results of neuroimaging studies on

cognitive tasks, proposes feasible neural pathways and network

structures, and conducts modeling based on the spiking neuron

model.

Here, based on the neuroimaging studies of reinforcement

learning, we propose a brain-inspired intention prediction

model to enable the robot to perform actions according to

the user’s intention. Based on the brain-inspired network

structure, the humanoid robot NAO could successfully predict

the user’s intentions in Human Intention Prediction Experiment

and Trajectory Tracking Experiment only by using the spike-

timing-dependent plasticity (STDP) mechanisms and the simple

feedback of right or wrong.

2. Materials and methods

2.1. Architecture of the brain-inspired
intention prediction model

The architecture of the brain-inspired intention prediction

model is shown in Figure 1.

The dorsolateral prefrontal cortex (DLPFC) is responsible

for representing state information (Barbey et al., 2013). In our

computational model, the DLPFC receives input from visual

cortex and abstractly represents the visual information.

Popular theories implicate that the basal ganglia (BG) are

responsible for action selection (Stocco et al., 2010; Friend

and Kravitz, 2014). The striatum D1 (StrD1) and striatum D2

(StrD2) are components of BG (Villagrasa et al., 2018). In our

computational model, the BG is used for intention prediction,

that is, BG selects the actions that conform to the user’s intention

according to the visual information represented by DLPFC.

The thalamus is generally considered to be a relay

station, transmitting information between different cerebral

cortex (Hwang et al., 2017). In our computational model, the

thalamus acts as a relay station to transmit information from BG

to PMC and OFC.

The primary motor cortex (PMC) is a critical area for

controlling the execution of movement (Kakei et al., 1999). In

our computational model, the PMC is used to control the actions

of the robot.
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FIGURE 1

The architecture of the brain-inspired intention prediction model.

The substantia nigra pars compacta and ventral

tegmental area (SNc/VTA) play important roles in reward

cognition (Haber and Knutson, 2010; Zhao et al., 2018). In our

computational model, the SNc/VTA receives the user’s feedback

and determines the pathway of information transmission.When

the feedback information is positive, SNc/VTA combines the

information from PMC and transmits the stimulation to OFC_2

(a sub-region in orbitofrontal cortex). When the feedback

information is negative, the stimulation of SNc/VTA is 0.

The orbitofrontal cortex (OFC) is considered as a

critical frontal region for memory formation (Frey and

Petrides, 2002). The sub-region medial orbitofrontal cortex

(MOFC) and lateral orbitofrontal cortex (LOFC) respond

to positive reward (O’Doherty et al., 2001) and negative

reward (Kringelbach, 2005). In our computational model, the

OFC contains OFC_1 and OFC_2, MOFC and LOFC. The

OFC_1 and OFC_2 are used to receive and store information

from the thalamus and SNc/VTA. When the feedback

information is positive, the MOFC receives stimulation from

OFC_1, and the LOFC receives stimulation from OFC_2 and

is inhibited by MOFC at the same time. When the feedback

information is negative, only the LOFC receives the stimulus

from OFC_1 and OFC_2. Then the MOFC transmits the

information to DLPFC and StrD1 in BG, and the LOFC

transmits the information to DLPFC and StrD2 in BG.

2.2. Model implementation

The concrete neural network architecture of the model is

shown as Figure 2.

In order to describe one training process of the model

more directly, in Figure 2, we use orange neurons, blue neurons

and green neurons to represent the neurons be activated in

one training process. 1. The intention prediction process:

(a) The visual information of image category 1 is input into

DLPFC, and all neurons representing this category in DLPFC

are activated (orange neurons in DLPFC); (b) After the synaptic

weight matrix calculation between DLFPC and BG, the neuron

representing intention 1 in BG is activated (orange neuron in

BG); (c) Thalamus receives the results of BG (orange neuron

in Thalamus) and passes the information to PMC to control

motor generation (orange neuron in PMC). 2. The positive

reward process, if the user gives positive reward into SNc/VTA:

(a) The OFC_1 receives the stimulation form Thalamus (blue

neuron in OFC_1). The SNc/VTA combines the information

from PMC and transmits the stimulation to OFC_2. And all

neurons representing this action are activated (green neurons

in OFC_2). (b) Then the stimulation of OFC_1 and OFC_2

are transmitted to MOFC (blue neuron in MOFC) and LOFC

respectively, and LOFC is simultaneously inhibited by MOFC

(green neurons in LOFC). (c) MOFC transmits the information

to BG via StrD1 and to DLPFC at the same time. LOFC transmits

the information to BG via StrD2 and to DLPFC at the same time.

(d) The synaptic weight between DLPFC and BG is updated

according to the time difference between the neurons firing. In

short, the connection between image category 1 and intention

1 is strengthened, and the connections between image category

1 and other intentions are weakened. 3. The negative reward

process, if the user gives negative reward into SNc/VTA: (a) The

OFC_1 receives the stimulation form Thalamus, then transmits

the information to LOFC. (b) LOFC transmits the information

to BG via StrD2 and to DLPFC at the same time. (c) The synaptic

weight between DLPFC and BG is updated according to the time

difference between the neurons firing. In short, the connection

between image category 1 and intention 1 weakened, while

the connections between image category 1 and other intentions

remained unchanged.

We use the Izhikevich neuron model to build the

computational model. The Izhikevich neuron model achieves

a good balance in biologically plausible and computational

efficiency (Izhikevich, 2003). The neuron model is described as

Equations (1) and (2). The variable v represents the membrane

potential of the neuron and u represents a membrane recovery

variable. And a, b, c, and d are dimensionless parameters. If

the membrane voltage v is greater than 30 mV, the membrane
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FIGURE 2

The concrete neural network architecture of the brain-inspired intention prediction model. The sizes of the regions depend on the number of

intentions. Taking the number of intentions and actions as 12, the size of di�erent regions except PMC in the model is 12 x 12, and the size of

PMC is 1 x 12.

voltage and the recovery variable are reset according to the

Equation (2). I is input, calculated by Equation (3). TheWij is the

synaptic weight between presynaptic neuron and postsynaptic

neuron, and the Oij is the output of presynaptic neuron. If

multiple neurons fire at the same time, the neuron with the

largest membrane voltage will inhibit other neuronal firings. The

dimensionless parameters c and d are the same in different areas,

they are c = −65 and d = 8. And the dimensionless parameters

a and b of the neurons in StrD1, StrD2 and other areas are set

as a = 0.01, b = 0.01; a = 0.1, b = 0.5; a = 0.02, b = 0.6,

respectively.

v′ = 0.04v2 + 5v+ 140− u+ I

u′ = a(bv− u)
(1)

ifv ≥ 30mV , then







v ← c

u ← u+ d
(2)

Iij =Wij × Oij

Oij =

{

1 if vij ≥ 30

0 otherwise

(3)

Spike Timing Dependent Plasticity (STDP) is an important

learning mechanism in the biological brain, which updates the

synaptic weight between presynaptic and postsynaptic neurons

according to the time difference between their firing (Bi and Poo,

2001). And the STDP mechanism is widely used in our previous

work on brain-inspired cognitive computing modeling (Zeng

et al., 2016, 2017, 2020; Zhao et al., 2021b). Within a millisecond

time window, if the postsynaptic neurons are fired later than

the presynaptic neurons, the synaptic weights between them

increase, exhibit the long-term potentiation (LTP) mechanism;

if the postsynaptic neurons are fired earlier than the presynaptic

neurons, the synaptic weights between them decrease, exhibit

the long-term depression (LTD) mechanism. The mathematical

description of the STDP mechanism is shown in Equation (4).

A+ andA− are the learning rates under the LTPmechanism and

the LTD mechanism, respectively. τ+ and τ− are time constants

for synaptic updates under the LTP mechanism and the LTD

mechanism, respectively. To ensure the biologically plausible

of the computational model, according to the results of the

biological neuron fitting (Bi and Poo, 2001), we set A+=0.777,

A−=-0.237, τ+=16.8, and τ−=-33.7 ms. To enable the robot

to learn the user’s flexible intentions more quickly, the synapse
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weights are updated according to the ratio based on the current

weight, as shown in Equation (5). In the computational model,

synaptic plasticity occurs between DLPFC and BG, and the

synaptic weight is fixed between other brain areas.

1w=

{

A+ × e(1t/τ+) if 1t < 0

A− × e(1t/τ−) if 1t ≥ 0

1t = tDLPFC − tBG

(4)

W(t + 1)ij =W(t)ij +W(t)ij ×1w (5)

The stimulation transmitted fromMOFC to BG and DLPFC

exists as follows: the neurons in DLPFC fired first, and the

neurons in StrD1 fired later, the 1t is less than 0. And the

synaptic weight between DLPFC and BG increased, exhibiting

the LTP mechanism. The stimulation transmitted from LOFC

to BG and DLPFC exists as follows: the neurons in StrD2

fired first, and the neurons in DLPFC fired later, the 1t is

greater than 0. And the synaptic weight between DLPFC and

BG decreased, exhibiting the LTD mechanism. Therefore, when

the user gives the right feedback, the weight of intention options

selected by the model increases, while the weight of other

candidate intention options decreases. When the user gives

wrong feedback, the weight of intention options selected by the

model decreases, while the weights of other candidate intention

options are unchanged.

3. Results

We deploy the model on the humanoid robot NAO, and

verify the effectiveness of the model through Human Intention

Prediction Experiment and Trajectory Tracking Experiment.

3.1. Human intention prediction
experiment

3.1.1. Experimental settings

The Human Intention Prediction Experiment allows the

robot to predict human intentions through human gestures (the

intention refers to the action that human expects the robot to

perform), and to learn new intentions when human intentions

change. After 12 gestures and 12 intentions are defined, the

user can define the gesture-intention corresponding rules in

his mind. The user makes gestures and the robot recognizes

the gesture. Then the robot predicts the user’s intention and

performs the corresponding actions according to the proposed

model. The user gives the right or wrong feedback according

to whether the robot’s action complies with his intentions.

The robot can successfully predict the user’s intention through

multiple interactions. If some of the user’s gesture-intention

rules change, the robot can continue to learn those changed

rules through interaction based on the learned model, and the

unchanged rules are not affected, that is, the robot does not need

to relearn all the rules.

The predefined 12 gestures are shown in Figure 3. Gesture A,

both hands close to the body; Gesture B, single hand away from

the body; Gesture C, single hand moves to the left; Gesture D,

single hand moves to the right; Gesture E, single hand moves up;

Gesture F, single handmoves down; Gesture G, both handsmove

down; Gesture H, single hand above the left shoulder; Gesture

I, single hand above the right shoulder; Gesture J, both hands

above both shoulders; Gesture K, left hand and left shoulder

overlap; Gesture L, right hand and right shoulder overlap.

The predefined 12 intentions are shown in Figure 4.

The intentions can be roughly divided into three categories:

movement intentions (move forward, move backward, turn left,

turn right, stand up, squat down and sit down), interaction

intentions (clap the left palm, clap the right palm and clap both

palms), and service intentions (beat the left shoulder and beat

the right shoulder).

To make the experiment more intuitive, the initially defined

gesture-intention correspondence rules are shown in Figure 5.

After learning the gesture-intention corresponding rules, the

user modified the corresponding rules (as shown in Figure 6) to

verify the flexibility of the model, and then the robot continued

learning through interaction.

3.1.2. Experimental results

Considering that gesture recognition is not the focus of

the proposed model, to recognize the user’s gestures more

simply, we used a Kinect camera for image acquisition. The

Kinect camera can capture 25 user’s joints and record their

three-dimensional space coordinate. We defined 20 neurons to

represent the movement direction of the left and right hands

(upward movement, downward movement, left movement,

right movement, close to the body and away from the body),

as well as the position information of the left and right hands

compared with the left and right shoulders (overlap with the

left shoulder, overlap with the right shoulder, higher than the

left shoulder and higher than the right shoulder). These neurons

determine whether to fire based on the three-dimensional

coordinate information of the joint.

After obtaining the gesture features, we use an unsupervised

learning algorithm based on the STDP mechanism for gesture

recognition. When a gesture is detected, the correlation

coefficient of neurons firing pattern between the detected gesture

and the learned gesture is calculated, and the activated target

neuron is determined according to the correlation coefficient. If

the correlation coefficient is very small, the gesture is determined

as a new gesture, and a new target neuron is activated. The

synaptic weights update between the new gesture and the new

target are based on the STDP mechanism.
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FIGURE 3

Predefined 12 gestures. From left to right are: Gesture A, Gesture B, Gesture C, Gesture D, Gesture E, Gesture F, Gesture G, Gesture H, Gesture I,

Gesture J, Gesture K and Gesture L.

FIGURE 4

Predefined 12 intentions. From left to right are: Move forward, Move backward, Turn left, Turn right, Stand up, Squat down, Sit down, Clap the

left palm, Clap the right palm, Clap both palms, Beat the left shoulder and Beat the right shoulder.

The method is an online learning method, and the

recognition accuracy increases with the increase of the number

of training samples. We define a trial training set that contains

12 types of gestures, each of the gestures is performed once.

After the previous trial training ends, the next trial continues

learning on the trained model. Test at the end of each trial.

The test set consisted of 12 types of gestures performed 30

times each, with a total of 360 samples. When the training of

the sixth trial is completed, the gesture recognition accuracy

is 98.33%.
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FIGURE 5

Gesture-intention corresponding rules.

FIGURE 6

Changed gesture-intention corresponding rules.

The method is an online learning method, and the

recognition accuracy increases with the increase of the number

of training samples. The training set consists of repeated batch

training sets. We define a batch training set that contains

12 types of gestures, each of the gestures is performed once.

That is, there are 12 samples in a batch training set, which

are different types of gestures. A batch training indicates

that the model is trained on the batch training set. The

online learning method of the model is realized in the

following ways: after the previous batch training ends, the

next batch continues learning on the trained model. Test

at the end of each batch training. The test set consists of

12 types of gestures, each of which is executed 30 times.

The test set includes 360 samples. When the training of the

sixth batch is completed (that is, from the initial training,

a total of six batches of training were carried out, each

batch containing 12 gestures), the gesture recognition accuracy

is 98.33%.

The user makes gestures randomly, and the robot predicts

the user’s intention and performs the corresponding action

through the proposed model. Then, the user gives right or

wrong feedback according to the robot’s action and the initially

defined gesture intention correspondence rules. The experiment

is repeated many times until the robot could successfully predict

the user’s intention. The synaptic weights between DLPFC and

BG are shown in Figure 7. In general, the number of interactions

required to complete the training ranges from 12 (the robot

successfully predicts the intention of the gesture each time)

to 78 times (the robot tries all possible intentions until the

last time to successfully predict the intention). In most cases,

FIGURE 7

Synaptic weights between DLPFC and BG.

the robot needs 45 interactions to complete the training. Then

the user modifies the corresponding rules, and gives feedback

according to the modified rule. After modifying the rules,

the synaptic weights between DLPFC and BG are shown in

Figure 8. Since the synapse weights are updated according to

the ratio based on the current weight, when the rules change,

the robot can quickly forget the old rules. In general, after two

interactions, the robot can forget the old rules and start learning

the new ones.
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FIGURE 8

Synaptic weights between DLPFC and BG (Rules changed).

3.2. Trajectory tracking experiment

3.2.1. Experimental settings

The Trajectory Tracking Experiment can make the robot

learn to walk along the track only through the right and wrong

feedback of the remote control.

The training scenario and test scenario are shown in

Figures 9A,B, respectively. In the training scenario, the robot

makes behavioral decisions based on the collected image

information and the proposed model, such as move forward,

move backward, move left, move right, turn left and turn right.

Then the user gives right or wrong feedback based on the robot’s

behavior, and gradually makes the robot learn to walk along

the black track. The upper right corner of Figure 9A is the

collected image information by the robot. Compared with the

training scenario, the test scenario includes turn left and turn

right behaviors in a tracking experiment Figure 10.

3.2.2. Experimental results

We detect the trajectory in the image through traditional

image processing methods such as image binarization,

edge detection, and Hough transform, and classify the

trajectory according to its image characteristics. Finally, we

use six neurons to implement an abstract representation of

the results. The detection method is simple and effective,

which can ensure the robot identifies the trajectory with

high accuracy.

In the training scenario, the robot completed the training by

walking two times along the trajectory clockwise and two times

counterclockwise. In the test scenario, the robot can successfully

complete the trajectory tracking experiment.

3.3. Compared with Q-learning method

First, we test the training times required by the Q-learning

method (more details can be found in Supplementary material)

and the proposed model under different number of intentions

(form 1 to 9). All the intention-action corresponding rules

are considered in the test process, and the number of

rules corresponding to different intentions is shown in

Table 1. The number of rules refers to the number of

the intention-action corresponding rules, which is the total

number of permutations of intention-action corresponding

rules. For the intention-action corresponding rules under

the same intention number, the training times required

by the Q-learning method are fixed, while the training

times required by the proposed method is slightly different

according to different rules. In order to better compare

the performance of the proposed method, the mode of

training times [The Proposed Model (Mode)], minimum

training times [The Proposed Model (Min)], and maximum

training times [The Proposed Model (Max)] required by

the proposed method under different rules are selected for

comparison.

The result of detailed comparison between Q-learning

method and the proposed model is shown in Figure 11.

From Figure 11 and Table 1, it is easy to see that compared

with the Q-learning method, the number of training times

required by the proposed model decreases significantly with

the increase of the number of intentions. Taking the number

of intentions as 6 as an example, the number of all intention-

action corresponding rules is 720. The Q-learning method

requires 21 training times to complete the training, while

the proposed model requires at least 6 times and at most

21 times under different rules. The mean of mode is 13.5

times. In general, the proposed model needs 13.5 times to

complete training, which is 7.5 times less than Q learning

method.

As can be seen from Figure 11, the training times of

the proposed model under different rules are symmetrically

distributed, so its mode is equal to the average value. Therefore,

when the number of intentions is N, the improvement effect

(Trainimprove) of the proposed model on training times can be

calculated by Equation (6). The TrainQ is the training times

required by Q-learningmethod, and the TrainBIIP is themode of

training times required by the proposed model under the given

intention numbers.

Trainimprove = TrainQ − TrainBIIP

= (1+ N) ∗ N/2− (N + (1+ N) ∗ N/2)/2

= (N2
− N)/4

(6)

Finally, we compared the training times required by the

two methods when the number of intentions is 1–50. The

experimental result is shown in Figure 12.

Frontiers inNeuroscience 08 frontiersin.org

15

https://doi.org/10.3389/fnins.2022.1009237
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao and Zeng 10.3389/fnins.2022.1009237

FIGURE 9

(A) Training scenario. (B) Test scenario.

FIGURE 10

The actions that the user expects the robot to perform according to di�erent images. From left to right are: Move forward (the black line is in the

center of the visual field), Move backward (no black line detected), Move left (the black line is on the left side of the visual field), Move right (the

black line is on the right side of the visual field), Turn left (the black line turns left) and Turn right (the black line turns right).

TABLE 1 Number of rules under di�erent intention numbers, and the comparison results of Q-learning method and the proposed model.

Number of intentions 1 2 3 4 5 6 7 8 9

Number of rules 1 2 6 24 120 720 5,040 40,320 362,880

Q-learning method 1 3 6 10 15 21 28 36 45

The proposed model (Mode) 1 2.5 4.5 7 10 13.5 17.5 22 27

The proposed model (Min) 1 2 3 4 5 6 7 8 9

The proposed model (Max) 1 3 6 10 15 21 28 36 45

4. Discussion

Based on the neural mechanism of reinforcement learning,

we propose a brain-inspired intention prediction spiking neural

network model to enable the robot to perform actions according

to the user’s intention. With the STDP mechanisms and the

simple feedback of right or wrong, the humanoid robot NAO

could successfully predict the user’s intentions in Human

Intention Prediction Experiment and Trajectory Tracking

Experiment. Compared with the traditional Q-learning method,

the training times required by the proposed model are reduced

by (N2
− N)/4, where N is the number of intentions.

Reinforcement learning, supervised learning and

unsupervised learning are considered as the three basic

machine learning paradigms. It has been successfully applied

to different robotic tasks, such as navigation, manipulation,

decision-making in human robot interaction. The Q-learning

method is a widely used and very effective reinforcement

learning method. Compared with the Q-learning method,

our model has two characteristics: biologically plausible and

requires fewer training times under the same task.

The biologically plausible of the model helps to reveal

the neural mechanism of reinforcement learning in the brain

from a computational perspective. We ensured the biologically

plausible of the model from three aspects: the network structure,

the neuron model and the learning mechanism. The network

structure refers to the neural mechanism of reinforcement

learning, including the relevant brain regions, the functions

of these brain regions and the pathways between these

brain regions. The neuron model is Izhikevich neuron model

which achieves a good balance in biologically plausible and

computational efficiency. The learningmechanism uses themost

important STDP mechanism in the biological brain, and the

results of the biological neuron fitting are used as the parameters

of the computational model.

Compared with Q-learning method, the direct reason that

our model needs fewer training times is the inhibition of LOFC

by MOFC in the process of positive reward processing. The

positive reward process indicates that the robot successfully

predicted the user’s intention. MOFC transmits the information

to BG via StrD1 and to DLPFC at the same time. This pathway

is used to strengthen the synaptic weight between the current
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FIGURE 11

Detailed comparison between Q-learning and the proposed

model. The horizontal axis is the number of intentions, and the

vertical axis is the number of training times. The blue bar is the

training times of the proposed model under di�erent

intention-action corresponding rules. The red diamond is the

mode of training times required by all intention-action

corresponding rules under di�erent intention numbers. If there

are multiple modes, the mean value is taken. The orange

triangle is the training times of Q-learning method under

di�erent intention numbers.

FIGURE 12

Comparison between Q-learning and the proposed model. The

horizontal axis is the number of intentions, and the vertical axis

is the number of training times. The red diamond is the mode of

training times required by all intention-action corresponding

rules under di�erent intention numbers. If there are multiple

modes, the mean value is taken. The orange triangle is the

training times of Q-learning method under di�erent intention

numbers.

visual input (such as Visual1) and the prediction intention

(such as Intention1) to ensure that the user’s intention can

be correctly predicted when the same visual input is received

in the future. Meanwhile, MOFC inhibits LOFC, then LOFC

transmits the information to BG via StrD2 and to DLPFC at the

same time. This pathway is used to reduce the synaptic weight

between the future visual inputs (Visualothers) and the currently

predicted intentions (Intention1), avoid new visual inputs to

choose the intentions that have been learned (Intention1), and

promote new visual inputs to select other unlearned intentions

(Intentionothers).

5. Conclusion

We propose a brain-inspired intention prediction model

based on the neural mechanism of reinforcement learning.

We deploy the model on the humanoid robot NAO, and

verified the effectiveness of the model through Human Intention

Prediction Experiment and Trajectory Tracking Experiment.

The experimental results show that the robot could successfully

predict the user’s intentions only through the simple feedback of

right or wrong. In this way, the robot can quickly learn new rules

without interfering with the learned and unchanged intention

rules. The proposed model is simple and effective, which can

effectively improve the flexibility and simplicity of human-robot

interaction.

In our future work, we will combine our previous work in

affective states recognition (Zhao et al., 2020, 2021a) to explore

the potential of the proposed model in affective interaction tasks

and improve the naturalness and flexibility of human-robot

interaction.
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The brain integrates streams of sensory input and builds accurate predictions,

while arriving at stable percepts under disparate time scales. This stochastic

process bears different unfolding dynamics for different people, yet statistical

learning (SL) currently averages out, as noise, individual fluctuations in data

streams registered from the brain as the person learns. We here adopt

a new analytical approach that instead of averaging out fluctuations in

continuous electroencephalographic (EEG)-based data streams, takes these

gross data as the important signals. Our new approach reassesses how

individuals dynamically learn predictive information in stable and unstable

environments. We find neural correlates for two types of learners in a

visuomotor task: narrow-variance learners, who retain explicit knowledge

of the regularity embedded in the stimuli. They seem to use an error-

correction strategy steadily present in both stable and unstable environments.

This strategy can be captured by current optimization-based computational

frameworks. In contrast, broad-variance learners emerge only in the unstable

environment. Local analyses of the moment-by-moment fluctuations, naïve

to the overall outcome, reveal an initial period of memoryless learning, well

characterized by a continuous gamma process starting out exponentially

distributed whereby all future events are equally probable, with high signal

(mean) to noise (variance) ratio. The empirically derived continuous Gamma

process smoothly converges to predictive Gaussian signatures comparable

to those observed for the error-corrective mode that is captured by

current optimization-driven computational models. We coin this initially

seemingly purposeless stage exploratory. Globally, we examine a posteriori

the fluctuations in distributions’ shapes over the empirically estimated

stochastic signatures. We then confirm that the exploratory mode of those

learners, free of expectation, random and memoryless, but with high signal,

precedes the acquisition of the error-correction mode boasting smooth

transition from exponential to symmetric distributions’ shapes. This early

naïve phase of the learning process has been overlooked by current models
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driven by expected, predictive information and error-based learning. Our work

demonstrates that (statistical) learning is a highly dynamic and stochastic

process, unfolding at different time scales, and evolving distinct learning

strategies on demand.

KEYWORDS

statistical learning, dynamic learning, exploration, stochastic process, error
correction, active inference learning, reinforcement learning

Introduction

At the start of life, human babies gradually become aware
of their bodies in motion and as they understand it, they
come to own the consequences of impending movements that
make up all their purposeful actions. Seemingly purposelessly,
neonates explore their surroundings as they expand their limbs
with antigravity motions and eventually learn to reach out
to their immediate space in a well-controlled, purposeful, and
intended manner. The type of highly dynamic, spontaneous,
exploratory learning that is at first driven by surprise and
curiosity, has no initial goal or desired target. At this early
stage of learning, all future events are equally probable to
the cognitive system. The learning is merely a wondering
process, “what happens if I do this?”, perhaps a guess, “if I
do this, then this (consequence) will ensue, otherwise, this other
(consequence) will happen. . .”. The current work offers evidence
to suggest that this endogenous and dynamic type of learning
in early life may scaffold how we learn in general. That is,
that before realizing that certain regularities are present in
the environment we collect information spontaneously, without
relying on prior knowledge, committing to some stimuli salient
feature, or using referencing goals. This stage, that has so far
been overlooked, is not well described by traditional models of
error correction learning. These models rely on expectation and
surprise minimization. However, there are situations whereby
the system does not yet have referencing information to generate
a prediction error or expected prediction error code.

Research about learning, whether in the perceptual, the
motor, or the cognitive domain, is primarily based on error-
correction schemas (Censor et al., 2012; Hasson, 2017; Frost
et al., 2019). These schemas are aimed at reducing the difference
between a desired configuration or goal to be learned, and
the current learning state (Hasson, 2017). Such goals tend
to be exogenous in nature, but implicit in them are rules
that the system must find. Somehow the spontaneous self-
discovery process that we relied on as babies, to learn about
sensing our body in the world and sensing the world in our
body, tends to fade away from our behavioral research. Indeed,
curious exploration seldom enters our experimental paradigms
in explicit ways (Frost et al., 2019). Some animal models of
exploratory behavior (Drai and Golani, 2001) have nevertheless

been successfully extended to characterize exploration in human
infants as excursions that separate segments of movements’
development from lingering episodes (Frostig et al., 2020). This
recent research suggests behavioral homology across species and
prompted us to hypothesize that at a finer temporal learning
scale, a wondering, exploratory code may hide embedded in the
fluctuations of our performance. We tend to average out such
fluctuations as superfluous noise, often referred to as gross data.
Certainly, when favoring a priori imposed theoretical means
under assumptions of normality and stationarity in the data
registered during the learning process, we miss the opportunity
to know what possible information lies in the gross data.

The exploratory code discussed above is not to be confused
with the exploration mode that is commonly addressed in
models of exploration vs. exploitation in reinforcement learning
(RL) (Sutton, 1992; Dayan and Balleine, 2002). Within this
computational framework, learning depends on a reward,
which is either intrinsically obtained, or extrinsically provided.
However, for both exploration and exploitation, the learning
is best described by error correction, as the system considers
information and aims to descent optimally along the gradient of
some implicit objective function, minimizing the error towards
a desirable configuration. The RL framework does not explain
how the objective (target) of the objective function is determined
neither does it say how the value of the target self-emerges
in different contexts. This includes more recent work on
intrinsically motivated RL, where “Curiosity thus seems to be a
matter of finding the right balance so that the agent is constantly
maximizing the rate of reducing the prediction errors” (Dubey
and Griffiths, 2020). Indeed, RL solves a different problem than
that of self-discovering the perceptual goal or objective of a given
situation.

We here focus precisely on how the system comes to self-
discover the task-goal or purpose by firstly opening information
channels welcoming surprise. More specifically, we isolate
the spontaneous exploratory mode of learning. This mode
without expectations, or referencing signals, leads to the self-
discovery of the goal or objective. To that end, we focus on the
cognitive processes known as implicit or statistical learning (SL).
While we recognize other influential computational frameworks
such as active inference and Bayesian RL contribute to our
understanding of learning in general (Friston et al., 2016, 2017),
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SL is ideal for the present study as it involves embedding and
manipulating the predictability of specific regularities within
the perceptual input, so that the emergence of expectations
and transitions between different learning modes can be
tracked online. We return to the relevance and implications
of our results on other computational frameworks that rely
on optimization and error-correction in the “Discussion”
section.

Implicit SL describes the ability of the brain to extract
(largely beneath awareness) regularities from the environment
(Hasson, 2017; Frost et al., 2019; Conway, 2020). Such capacity
has long been known to support a wide range of basic human
skills such as discrimination, categorization, and segmentation
of continuous information (Saffran et al., 1996; Romberg and
Saffran, 2010; Christiansen, 2019) and predictive aspects of
social interactions (Torres et al., 2013a; Sinha, 2014; Crivello
et al., 2018). Previous research has consistently shown that
regardless of the nature of the embedded regularity (motor,
perceptual or both), SL involves motor control systems, so
that when participants are required to respond, the presence
of predictive information modulates both response preparation
and response execution processes (Kunar et al., 2007; Schwarb
and Schumacher, 2012; Vaskevich et al., 2021). Yet work to
addresses the stochastic motor signatures of SL during motor
decisions communicating a preferred stimulus is sparse (Torres
et al., 2013a), particularly those involving different levels of
neuromotor control (Torres, 2011).

In this work, we reevaluate SL from the standpoint of
sensory-motor systems. We reasoned that the motor percept
that emerges from the sensations of our own endogenously
generated biorhythmic motions could serve to support the type
of SL that other perceptual systems would experience to gain
behavioral control. More specifically, we propose to reframe the
SL problem using recent advances in developmental research
of neuromotor control (Torres et al., 2016) that focuses on
time series of biorhythmic signals like those derived from

electroencephalographic (EEG) signals (Ryu et al., 2021). We
track the dynamic changes in stochastic signature of the learning
process, continuously evaluating an EEG signal recorded while
participants perform in a learning task that contained predictive
information (i.e., regularities).

To uncover the continuous dynamics of SL, we consider
multiple time scales (Figure 1A) within the context of a visual
search task (Figure 1B) whereby learning takes place across
millisecond, minutes, and hours. Furthermore, we view the
stochastic phenomena at a local and at a global level (Figure 1C).
At the local level, we start naïve, without empirical knowledge
of the stochastic process at hand. We do not make theoretical
assumptions about this process (e.g., that is Gaussian, stationary,
linear, etc.). Instead, we obtain moment by moment, the
stochastic signatures of data parameters (e.g., signals’ amplitude
and timing) and track how they evolve over time, as the learning
unfolds. At the global level, we then examine a posteriori, the
fluctuations in those stochastic signatures that we empirically
estimated, to gain insight into the overall dynamics of the SL
process that took place. For example, we track the evolution of
the empirically estimated probability distributions’ shapes.

We analyze fluctuations of a continuous EEG signal,
recorded during the visual search task. While we leverage the
precise time stamping of the events in the data acquisition
system and the use of stable and unstable implicit-learning
environments (Vaskevich et al., 2021), we empirically estimate
anew, moment by moment, the probability distribution function
(PDF) that best fits fluctuations in the data and obtain the
continuous family of PDFs describing the overall learning
process. We let these fluctuations that are often discarded as
gross data, reveal the primordial way of curious, exploratory
learning, preceding the self-discovery of regularities conducive
of a goal and eventually defining the error in the error-correction
mode. We reframe SL from the point of view of a developing,
nascent motor system that spontaneously transitions from
purposeless to purposeful behavior.

FIGURE 1

Dynamic statistical learning. (A) Different time scales of learning are accompanied by different types of learning supporting each level. From a
level at sub-second time scales, to the scale of 40 min, different levels of granularity in the data afford different levels of precision to describe
learning phenomena. Averaging out fluctuations in the system’s responses may eliminate gross data containing important information on
learning mechanisms. These may be varying from trial to trial and from block to block at each level. (B) Visual search task: the target was a letter
T rotated either left or right that appeared among rotated Ls (distractors). Across trials, the spatial configurations of target and distractors (i.e.,
layouts) could repeat (correlated group), be generated randomly (random group) or repeat on half of the trials (mixed group). (C) Micro-Local
vs. Macro-Global signatures of variability are extracted from fluctuations in EEG signals recorded while participants searched for the target and
pressed the corresponding response key as fast as possible.
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Materials and methods

This study involving human participants was reviewed
and approved by the Institutional Review Board of Tel Aviv
University. The participants provided their written informed
consent to participate in this study. Behavioral and ERP analyses
of these data were previously published (Vaskevich et al., 2021).
Here we focus on the continuous EEG signal, without taking
data epochs and averaging data parameters under theoretical
assumptions of normality, linearity, and stationarity. Instead,
we empirically estimate the continuous family of PDFs that in a
maximum likelihood (MLE) sense, best fits what is traditionally
discarded as superfluous gross data. This novel approach
enabled us to isolate phenomena that cannot be observed when
data is analyzed with conventional methods, leading to the
uncovering of entirely new results.

Participants

Data from 70 participants (48 female, mean age, 23.7)
was analyzed in this study: 24 in the random group, 23 in
the correlated, and 23 in the mixed groups. There were no
differences in age or gender between the three experimental
groups. Two participants (one in the mixed group and one in
the correlated group) were removed from the analyses due to
incomplete data: their EEG recording started late, missing the
first few trials. As we focus here on continuous data analyses of
the full learning experience, these two subjects were excluded.

Stimuli and procedure

All participants gave informed consent following the
procedures of a protocol approved by the Ethics Committee at
the Tel Aviv University. The EEG signal was recorded during
the visual search task. This task was followed by an explicit
memory test during which EEG was not recorded. A more
detailed account of the procedure can be found in Vaskevich
et al. (2021).

Stimuli in the visual search task and the explicit memory
test were white T’s and L’s (Figure 1B). All stimuli were made
up of two lines of equal length (forming either an L or a T).
From a viewing distance of approximately 60 cm, each item
in the display subtended 1.5◦ × 1.5◦ of visual angle. All items
appeared within an imaginary rectangle (20◦ × 15◦) on a gray
background with a white fixation cross in the middle of the
screen (0.4◦ × 0.4◦). Targets appeared with equal probability on
the right or left side of the screen.

Visual search task
Participants searched for a rotated T (target) among

heterogeneously rotated L’s (distractors) while keeping their eyes

on the fixation cross. Each trial began with the presentation
of a fixation cross for 2,100, 2,200, or 2,300 ms (randomly
jittered) followed by an array of one of two possible targets
(left or right rotated T) among seven distractors. Participants
were instructed to press a response key corresponding to the
appropriate target as fast as possible -i.e., the goal of the
task was to be accurate as fast as possible. Each participant
was randomly assigned to one of three groups, with the
degree of regularity in the task varying along a gradient. At
one extreme the participants searched for the target within
a highly predictable environment where predefined spatial
configurations of target and distractors (layouts) were repeated
from trial to trial (correlated group). Presumably, the embedded
regularity can be easily and systematically confirmed by the
system. At the other extreme, participants experienced the
least amount of regularity, as from trial to trial, the layouts
of the display were generated randomly (random Group). For
the third group, consistent and random layouts were mixed
throughout the task (mixed group). Any regularity cumulatively
built from random guesses and confirmations, thus creating
the ground for self-emergence of the overall goal or purpose
of the task. This task is ideal to investigate the dynamic
progression of SL. The gradient of predictability enables to
examine, moment by moment, stochastic variations in learning
between environments that differ in the reliability of predicting
and confirming a guessed regularity. Depending on the group,
the visual search contained the consistent mapping condition
(correlated group), the random mapping condition (random
group), or both (mixed group).

In summary, the three groups corresponded to predictable
predictability (consistent group), predictable unpredictability
(random group) and unpredictable predictability (mixed
group). We were particularly interested in learning in the mixed
group relative to the other two (predictable) groups.

For the consistent mapping condition, spatial configurations
of targets and distractors were randomly generated for each
participant (8 layouts for the mixed group and 16 layouts for the
correlated group). In the random mapping condition targets and
distractors appeared in random locations throughout the task.
The order of layouts was randomized every 16 trials (in the case
of the mixed group 16 trials correspond to eight consistent and
eight random trials presented in a random order). The identity
of the target (left or right rotation) was chosen randomly on each
trial and did not correlate with the spatial regularity. Participants
completed 512 trials in the experiment. Only correct trials were
included in the analysis.

Explicit memory test
Participants were not informed of the regularity in the visual

search task. Upon completing the task, participants in the mixed
and correlated groups (when the task contained regularity)
completed an explicit memory test, designed to reveal explicit
knowledge of the regularity: participants saw the layouts that
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were presented to them during the search task mixed with new,
randomly generated layouts. For each layout participants had
to indicate whether they have seen the layout during the visual
search task or not. We then computed an Explicit Memory
Test (ET) score (hit rate/false alarm rate) that is considered to
reflect each participant’s explicit knowledge of the regularity,
so that higher scores correspond to better explicit knowledge
(Vaskevich et al., 2021).

EEG recording
Electroencephalographic signals were recorded inside a

shielded Faraday cage, with a Biosemi Active Two system
(Biosemi B.V., Amsterdam, Netherlands), from 32 scalp
electrodes at a subset of locations from the extended 10–20
system. The single-ended voltage was recorded between each
electrode site and a common mode sense electrode (CMS/DRL).
Data was digitized at 256 Hz (for a more detailed account
see Vaskevich et al., 2021). We rely on continuous recordings,
without averaging epochs of the data. In this work, we focus on
the electrodes that do not reflect strong eye muscle activity either
through blinking or the jaw movement. The analyzed subset
Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, Fz, FCz, C3, C4, Cz, T7, T8,
P1, P2, P3, P4, P5, P6, P7, P8, Pz, PO3, PO4, PO7, PO8, POz,
O1, O2, and Oz), includes all the electrodes that were previously
analyzed (P7, P8, PO3, PO4, PO7, PO8, C3, C4). We use the
EEGLAB PREP pipeline (Bigdely-Shamlo et al., 2015) to clean
the EEG signals.

Cross-coherence analyses and network
representation

The statistical analyses described in the next sections were
done for a hub channel, chosen continuously for each time
window (5 s of recording) with 50% overlap of the sliding
window. Here we describe the process by which these hub
channels were selected. Based on previous work with the same
approach we bandpass filtered the data at 13–100 Hz using
IIR filter at 20th order (Ryu et al., 2021). Two sample leads,
taken pairwise across all sensors of the EEG cap were then
used to instantiate the analyses. We used cross-coherence to
quantify the similarity between any two leads (Phinyomark et al.,
2012). For each pair, the maximal cross-coherence was obtained,
with corresponding phase and frequency values at which the
maximum was attained. The maximal cross-coherence matrix
was used as an adjacency matrix to build a weighted undirected
graph representation of a network (Supplementary Figure 1).
Next, network connectivity analyses were used to obtain the
maximum clustering coefficient representing the hub within
each time window at the selected frequency band. The stochastic
signatures of the moment-by-moment fluctuations in neural
activity were then tracked in each overlapping window for the
identified hub.

New data type: The micro-movement
spikes

The analysis that is at the heart of the current work relies
on the micro movements (MMS) spikes. This type of data and
analytical platform, developed in the Torres lab (Torres et al.,
2013a), and patented by the US Patent office (Torres, 2018a),
was used in the current work to examine the change in stochastic
variations of an EEG signal over time. To obtain the MMS
of the EEG-hub biorhythmic signal, for each participant we
take the peaks of the original EEG-hub waveform, derive the
empirical distribution of the peaks and using the empirically
estimated mean, we obtain the absolute deviation of each time
point in the EEG-hub time series, from the empirically estimated
mean. In the present data, the continuous Gamma family of
probability distributions best fitted the peaks data, in an MLE
sense. The Gamma family has well defined moments. We
used the empirically estimated mean amplitude (µV) in our
computations, to track the moment-by-moment fluctuations
away from the empirically estimated mean. This builds a time
series of micro-movements’ spikes (MMS) which consists of
periods of activity away from the mean interspersed with
quiet period of mean activity. Importantly, we retained the
original times where those fluctuation peaks occurred and
built normalized spike trains using the deviations from the
mean amplitude using equation (1). An example is shown in
Figures 2A,B.

Equation 1 scales out allometric effects owing to anatomical
differences (Lleonart et al., 2000). Each local peak (max) of these
series of fluctuations is divided by the sum of its value and
the averaged values of points between the two local minima
surrounding it

MMS =
max

max + avgmin−to−min
(1)

The result is then plotted, reflecting the unitless standardized
MMS (Figure 2C), which describe the minute fluctuations
in the original waveform (the EEG-hub), away from the
empirically estimated mean (Figure 2C). Sweeping through
the MMS trains, the values of the peaks (ranging now
between 0 and 1) are gathered into frequency histograms
for windows of 5 s with 50% overlap between each two
consecutive windows (Figure 2D shows the corresponding
histograms from the sampled blocks and windows in
Figure 2C). We explored between 1- and 5-s-long windows
(with 50% overlap) and settled on 5 s as the minimal time
unit that gave us acceptable 95% confidence intervals in
the empirical estimation process requiring 100 peaks or
more.
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FIGURE 2

Transforming continuous analog signals to digital spikes: micro-movement spikes MMS. (A) Sample electroencephalographic signal from one
hub channel determined through network connectivity analyses, zooming into one segment. Sweeping through the signal, windows of 5 s with
50% overlap are taken to scale each peak value deviated from the empirically estimated mean (µV). (B) For each participant, the original peaks
are used to empirically estimate the mean amplitude across the session, and obtain, for each point in the time series, the absolute deviation
from the mean. This series of fluctuations are then used to scale out possible allometric effects from e.g., anatomical head differences, using
equation 1 in the methods. (C) The unitless, standardized MMS are plotted as time series conserving the original peaks’ timing, shown here for
two sample states in some window of blocks 1 and 8. (D) The peaks (red dots) are gathered into a frequency histogram to obtain the histogram’s
difference, from window to window (block by block), using the earth movers’ distance, a similarity metric used in transport problems. We then
obtain the amount of effort that it takes to transform one frequency histogram into the other. (E) Using maximum likelihood estimation (MLE)
the best continuous family of probability distributions fitting the frequency histogram is obtained, shown here for different time windows.

A similarity metric for abstract
probability spaces

The Earth Mover’s Distance, EMD (Monge, 1781; Rubner
et al., 1998) was used to obtain the scalar difference from
moment to moment between the frequency histograms. This
built a time series of such scalar quantity and enabled
quantification of the dynamically changing stochastic
trajectories. Figure 2D shows two sample histograms that
can serve as input to the EMD metric expressing this (abstract)
distance notion in probability space. Figure 2E shows an
example of the empirically estimated Gamma PDFs across
windows, contrasting blocks 1 and 8 for two quadrants of
the Gamma parameter plane where these points are to be
represented (see next section).

Local analyses: Empirical estimation of
gamma scale and shape parameters

Upon deriving the MMS, we proceed to sweep through them
using 5-s-long windows of MMS activity, with 50% overlap. This
gives us a local estimation (at each window) of the stochastic

process. Using MLE, we empirically estimate the shape and
scale of the best PDF in an MLE sense. Examples of frequency
histograms are shown in Figure 2D for different sample blocks
and windows. Examples of PDFs are shown in Figure 2E. We
found that the continuous Gamma family of PDFs were the best
MLE fit for these windows of normalized MMS activity. Among
distributions that we tested were the Lognormal, the normal, the
exponential, the Gamma and the Weibull.

The Gamma was the best continuous family fitting the
MMS in a MLE sense. The Gamma (a) shape and (b) scale
parameters were then plotted on the Gamma parameter plane
(Figures 3A,B). The Gamma family choice confirms previous
work, as it has been found to be the optimal for representing
MMS derived from human biorhythmic data registered from the
face, eyes, whole body, heart, EEG, fMRI signals (e.g., Torres
et al., 2013a; Ryu et al., 2021). This section is dedicated to
explaining the empirical meaning of the Gamma parameter
plane. We note here that at this level of analyses we are naïve as
to the overall stochastic process and are empirically estimating
its moment-by-moment evolution according to our unit of time
(5 s window) chosen to yield tight confidence intervals.

The continuous Gamma family spans distributions of
different shapes and different scales. Prior research has
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FIGURE 3

Stochastic analyses of the MMS derived from hub’s activities. (A) Upon determination of the lead the MMS are obtained and MLE used to
determine the parameters of the best continuous family of probability distribution functions (PDFs) describing their fluctuations. In this case the
Gamma family. The Gamma shape and scale parameters thus estimated, are then plotted with 95% confidence intervals, on the Gamma
parameter plane. (A) Each point represents the signatures of a 5-s window with 50% overlap. Colors represent arbitrary order. (B) The log–log
Gamma parameter plane is obtained to track points according to the quadrants spanned by the median shape and median scale, taken across
each block. The Right Lower Quadrant (RLQ) contrasts with the Left Upper Quadrant (LUQ). (C) The Gamma moments are obtained to visualize
the points in (B) on a parameter space whereby the Gamma mean is represented along x-axis, the variance along the y-axis, the skewness along
the z-axis and the size of the marker is proportional to the kurtosis. The color corresponds to the direction of the shift, where the point lands,
red is from the LUQ to the RLQ, or from the RLQ to itself, whereas blue is from the RLQ to the LUQ, or from the LUQ to itself. (D) Empirical
interpretation of the Gamma plane and the quadrants. Along the shape axis, the distributions change from the shape a = 1 memoryless
exponential to the Gaussian range, with skewed distributions with heavy tails in between. (E) The EMD is used to track the magnitude of the shift
from each estimated PDF in windows at t and t + 1, while the direction is tracked by the quadrant landing. This curve represents the evolution of
the stochastic process and serves to determine, e.g., critical points of transitions for each block of the session.

empirically characterized maturation of human neuromotor
development, showing over the human lifespan a tightly linear
relationship between the log shape and log scale of this family
(Torres et al., 2013a; Ryu et al., 2021). As humans mature,
distributions of the fluctuations in biorhythmic activities
measured from their central and peripheral nervous systems
grow more symmetric while the scale (dispersion) decreases.
This characterization has reduced the parameters of interest to
one (the shape or the scale) since knowing one, we can infer the
other with high certainty. Focusing here then on the ranges of
PDF shapes, we track the SL evolution. These parameters reflect
different degrees of randomness and different levels of noise to
signal ratio NSR (which in the Gamma family is given by the
scale parameter of (equation 2).

NSR =
0σ

0µ
=

a · b2

a · b
= b (2)

We will use in our descriptions 1/NSR = SNR and will refer
to it as the signal (empirically estimated mean over empirically
estimated variance). Figure 3A shows the Gamma parameters

estimated for each window in blocks 1 and 8, while Figure 3B
shows the log-log Gamma parameter plane with a division
into quadrants that reflect different empirical properties of the
stochastic process. We take the median of the shape values and
the median of the scale values and draw a line across each
axis (Figure 3B), to break the Gamma parameter plane into
quadrants that shift from window to window. Quadrants reflect
the evolution of the stochastic process. Figure 3C shows the
corresponding Gamma moments space following the color-code
of Figure 3Bwhereby points that fall on the right lower quadrant
(RLQ) are those representing symmetric distributions with low
NSR (low dispersion), while those in the left upper quadrant
(LUQ) represent distributions closer to the exponential range
and having high NSR.

As an example, in Figure 3D, we summarize these results
for empirical interpretation and inference in block 8. Generally,
at the leftmost extreme, when the Gamma shape is 1, we have
the special case of the memoryless exponential distribution (no
points appear in this range for this example). This is the case
of having a random process whereby events in the past do not

Frontiers in Neuroscience 07 frontiersin.org

25

https://doi.org/10.3389/fnins.2022.1033776
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1033776 November 3, 2022 Time: 13:53 # 8

Vaskevich and Torres 10.3389/fnins.2022.1033776

inform more about events in the future than current events
would. All future events are equally probable. The information
is coming from the here and now. At this level of randomness,
prior research has shown corresponding highest levels of NSR
(We note that the signal to noise ratio SNR = 1/NSR will be
used henceforth). Such distributions are typical to the motor
code at the start of neurodevelopment (Torres et al., 2013a,
2016). Around 4–5 years of age, when the system is (on average)
mature enough to start schooling, receive instructions, and
sustain longer attention spans, a transition into heavy tailed
distributions is observed. By college age these distributions are
tending to Gaussian, so that the shape parameter is at the other
extreme of the shape axis on the Gamma parameter plane and
the SNR is at its highest value (Figure 3D).

Prior work has also revealed that in systems where
maturation is compromised (e.g., autism across the lifespan)
these global signatures remain in the exponential range,
randomly relying on the here and now and manifesting very low
SNR. In this case, the system does not progress into acquiring a
predictive code (Torres et al., 2013a).

For each Gamma PDF derived from the MMS in each
window, the shape and scale parameters are plotted with 95%
confidence intervals as points along a stochastic trajectory, on
the Gamma parameter plane. Figure 3E makes use of the EMD
to quantify the stochastic shifts from moment to moment in
each learning block, as points transition from quadrant to
quadrant.

Dynamically tracking the stochastic
signatures of the data

As the stochastic signatures (a,b) shift quadrants from
moment to moment, they describe probability-positions over
time (the dynamics of the stochastic process) on the Gamma
parameter plane. Differentiation of this probabilistic positional
trajectory yields an abstract velocity field whereby each velocity
vector tangent to the trajectory, expresses the direction and the
magnitude of the stochastic shift. To track the direction, we
use the location of the landing point on the quadrants (the
LUQ or the RLQ). The shift may leave the process in the same
quadrant, or it may shift it away to the other quadrant. As shown
in Figure 2D, to track the magnitude of the shift, we use the
EMD scalar quantity representing the difference between the
frequency histograms of amplitude fluctuations (MMS) derived
from the EEG-hub channel activity. This is shown in Figure 3E
for one participant’s activity in blocks 1 and 8. That is, the
EMD value on the y-axis represents the difference between the
histogram at time t and the histogram at time t + 1, taken at
consecutive windows of activity. Notice that this is not physical
distance. It is abstract distance in probability space. Likewise,
this is not physical time, but time that depends on the length

of the window and the overlapping % of the sliding window
process.

Global analyses

As we accumulate the above discussed stochastic
trajectories, we are locally tracking the shapes of the PDFs
over the empirically estimated Gamma parameters. We use
EMD to trace the moment-by-moment evolution of the
stochastic Gamma process, as it unfolds across all trials and
blocks. But initially we are naïve to the fluctuations in this
process. It is then as we contemplate the full stochastic profile,
a posteriori, that we can track the spikes of the EMD at a
global time scale, i.e., across the entire session. This is shown in
Figures 4A–D using the MMS and Gamma process once again,
this time, the empirically estimation is on the fluctuations of the
Gamma shape parameter representing the stochastic shifts of
the distributions of the Gamma shape.

The general formula for the PDF of the Gamma distribution
is shown below (equation 3), where a is the shape parameter and
b is the scale parameter.

f (x) =
1

0 (a) ba
xa−1e−

x
b (3)

Although the continuous Gamma family of PDFs can
be parameterized with two parameters (a shape and b scale
parameter), we can also obtain its statistical moments. We will
use this alternative description of the distributions later to help
visualize the results. The moments (µ, σ, skewness, kurtosis) are
a·b,a·b2 ,2/√a,6/k

respectively.

Results

Behavioral results

The results from the analyses of the behavior and averaged
potentials were previously reported (Vaskevich and Luria, 2018;
Vaskevich et al., 2021). For completeness we summarized here
the main behavioral result. Participants in the mixed group
reached significantly slower reaction times than participants
in both the correlated and random groups, even though the
task contained a potentially beneficial regularity on half of the
trials. This result replicated previous findings and highlights the
crucial issue of validity: when the regularity is valid, applying
this statistical information results in facilitation to both the
search and response processes (correlated group). However,
when the regularity is mixed with random trials, thus appearing
within a relatively unreliable and unstable environment, a
global interference effect emerges, so that the reliance on all
prior information is attenuated. Previously proposed theoretical
interpretation for these highly counterintuitive results were

Frontiers in Neuroscience 08 frontiersin.org

26

https://doi.org/10.3389/fnins.2022.1033776
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1033776 November 3, 2022 Time: 13:53 # 9

Vaskevich and Torres 10.3389/fnins.2022.1033776

FIGURE 4

Global analyses (A) performed by pooling the MMS across trials and blocks and taking 5-s-long windows with 50% overlap (B) to obtain
frequency histograms that can be compared using the EMD metric (C). (D) Sweeping through the full trajectory of a condition gives the EMD
sequence to obtain the peaks in red and gather them into a frequency histogram tracking the fluctuations in amplitude of the EMD variation (i.e.,
how the distribution change shape and dispersion) and the rate at which these changes occur as the inter peak interval intervals measuring the
distances as well across peaks representing the PDF transitions. These histograms are used in MLE estimation of the distribution parameters best
describing this global process.

reported in Vaskevich and Luria (2018, 2019) and Vaskevich
et al. (2021).

Explicit memory test

In the mixed group, participants correctly classified
previously seen layouts as familiar on 57% of the trials (hit rate),
and incorrectly classified new layouts as familiar on 50% of the
trials (false alarm rate). In the correlated group, participants
correctly classified previously seen layouts as familiar on 55%
of the trials (hit rate), and incorrectly classified new layouts as
familiar on 48% of the trials (false alarm rate). For both the
correlated and the mixed groups the differences between hit rate
and false alarm were not significant, F < 1. The random group
did not complete the explicit memory test as there was nothing
to test for- there was no regularity in the task.

To assign a memory score (ET) we calculated the ratio
between hit rate and false alarm rate for each participant. Higher
scores correspond to better explicit memory of the visual layouts
presented during the search task. The Overall memory scores of
the correlated group (M = 1.37, SD = 0.9) and the mixed group
(M = 1.25, SD = 0.7) were not significantly different, F < 1.

Local level of the stochastic process

For all three groups (correlated, random, mixed) we isolated
the MMS from the continuous EEG data. We converted the
fluctuations in the EEG amplitude (peaks µV) and inter-
peak-interval timing (ms) to unitless, standardized MMS trains
that were then analyzed using a sliding window of 5 s with
50% overlap (see section Methods). The window-by-window
analyses for each participant revealed two subgroups in the
mixed group. On the Gamma moments parameter space, along
the Gamma variance dimension, one subgroup of learners
(subgroup A of broad-variance learners) expressed higher
variance of the fluctuations in the MMS amplitudes at the start
of the experiment. This departure from the other subgroup (B
of narrow-variance learners) can be appreciated individually for
each participant over the entire experiment in Figure 5.

The fluctuations in the empirically estimated Gamma
variance were then unfolded over blocks for each participant
(Figures 6A,B). After the second block of trials, the levels
of variance derived from the MMS-amplitude in subgroup A
systematically decreased, eventually converging to the much
lower level of the subgroup B. As such, subgroup A, with the
initially much higher variance, expressed a higher bandwidth of
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FIGURE 5

Local learning evolution captures two classes of learners in the unstable environment (i.e., mixed group). Empirically estimated Gamma
moments span a parameter space whereby each participant represents a point by the moments of the probability distribution. The coordinates
are the mean (x-axis), the variance (y-axis), the skewness (z-axis). The color represents the target orientation (left or right). (A) Mixed case (i.e.,
group) whereby trials intermix random and correlated conditions, spanning a relatively unstable learning environment. In this group two
self-emerging distinct subgroups of participants. (B) Correlated group, for which layouts are consistent from trial to trial, spanning a stable
learning environment. (C) Random group, for which layouts are generated randomly from trial to trial, spanning a stable learning environment
where no regularity is present. (D) Corresponding frequency histograms of the distribution of the variance across trials, target types and
participants.

overall variance values than subgroup B, which started out with
much lower variance and remained in that regime throughout
the eight blocks of the experiment. This was the case for
both target types. Furthermore, this low range of variance in
subgroup B was comparable to the ranges of variance observed
in the random and correlated groups. This can be appreciated
in Figures 6C,D for the random case and Figures 6E,F for the
correlated case.

To show the overall differences in stochastic signatures of
each case, we pooled the Gamma variance data from all blocks
and for each mixed, correlated, and random group respectively
(Figure 5D). The mixed group is indeed significantly non-
unimodal, according to the Hartigan dip test of unimodality,
p < 0.01 (Hartigan and Hartigan, 1985). The PDF derived from
the MMS amplitude of the mixed group significantly differed
from those in the random and correlated groups, according to
the Kolmogorov Smirnov test for two empirical distributions
(p< 0.01).

Relationship between behavioral
outcomes and stochastic results

The two subgroups broad-variance A and narrow-variance
B of the mixed group did not differ in reaction times or accuracy,
suggesting that all participants were able to reach the same

level of online performance. Instead, they were differentiated
by their explicit knowledge of the regularity imbedded in
the task, as reflected by their memory scores in the explicit
memory test: 10 subjects in the broader variance subgroup A,
M = 0.94, SD = 0.4 vs. 13 subjects in the narrow variance group
subgroup B, M = 1.52, SD = 0.75, p < 0.01 non-parametric
Wilcoxon ranksum test (Figure 7A). The subgroup A with
broader bandwidth of variability showed low test scores, thus
exhibiting less explicit knowledge of the regularity. In contrast,
the subgroup B with the narrow, steady bandwidth of variability,
gained a higher level of explicit knowledge, as reflected in
higher explicit memory test scores (Figure 7B). We coined the
process showing higher variance with low explicit memory score
(subgroup A) “exploratory mode.” In contrast, we called the
process showing lower variance and high explicit memory score
“error-correction mode” (subgroup B). Here the mode refers to
learning mode or phase and in the next results, we provide a
stochastic characterization of these two fundamentally different
modes of learning which, nevertheless, converged in block 8 to
a similar variance range.

For completeness, the memory scores of the correlated
group were also examined. Overall, memory scores (M = 1.37,
SD = 0.9) were like the scores observed in subgroup B of
the mixed group. This result is consistent with the similar
stochastic learning signatures of the correlated group and this
high memory subgroup (observed in the variance trajectories of
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FIGURE 6

Broad- and narrow-variance groups according to the empirically estimated Gamma variance parameter block by block. (A,B) Two subgroups in
the mixed group are revealed for right- and left-oriented targets (each curve represents the trajectory of a participant within the group). The
subgroup with lower variance and narrower bandwidth of values throughout the experimental session separate from those in the subgroup with
high variance and broader bandwidth of values. However, both subgroups converge to similar variance levels toward the 8th block of learning.
Target types show different trajectories but similar convergence trend. (C,D) Random group shows similar levels of variance and stable learning
throughout the experimental session, as does the correlated group (E,F) (with two outliers).

Figure 6). We here infer that as the regularity in the correlated
group was highly reliable, with layouts repeating on all trials, it
seems that all participants reached some minimal level of explicit
knowledge, therefore no subgroups emerged.

Global a posteriori stochastic analyses
of distribution shapes

Analyses of the stochastic signatures derived from pooling
all trials, block by block, across all participants allowed
us to examine the evolution of the distribution of the
empirically estimated Gamma shape parameter, i.e., as the
system experienced the learning and the PDFs shifted shape.
The moment-by-moment fluctuations in the shape parameter
provide insights into the dynamics of the stochastic process.
Notice here that in our local computation (i.e., the MMS
distributions at each window), we were naïve to the global
dynamic nature of the stochastic Gamma process, as we were
locally estimating the Gamma parameters (shape and scale) and
the Gamma moments. Upon estimation of the full stochastic
trajectory across the entire session, trial by trial and block by
block, we are no longer naïve to the process. As such, we can
make a global statement at the time scale of the entire session.

Among the moments of the distributions of the shape
parameter, the variance of the evolving Gamma PDF shape
parameter revealed the separation of the mixed group from
the random and from the correlated groups (Figure 8A).
Furthermore, a distinction is also observed for the mean
parameter of the distribution of Gamma shapes (Figure 8B). As
such, the SNR shows the highest signal content for the mixed
group (Figure 8C). For both the correlated and random groups,
the distribution shape has an increasing trend, consistent in
both cases for the right- and left-oriented targets. However, in
the mixed group, there is an initial increase in the shape that
decreases and stabilizes by the 4th to 5th block, at much lower
values of the variance, so that the SNR of the mixed group is
much higher than that of the random or correlated groups. This
elevated SNR indicates that the mixed environment is much
more effective for learning than environments that contain
purely random or purely correlated trials alone. Its information
content is higher.

Unfolding the gamma process for each
learning mode

We show the stochastic shifts of each of the error
correction (lower Gamma shape variance and higher explicit
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FIGURE 7

Self-emerging subgroups in the mixed group are differentiated by the scores of the explicit memory test. (A) The horizontal axis comprises the
minimum value of the variance, while the vertical axis comprises the maximum value of the variance for each participant. Thus, the graph
depicts the full range of variance values. The size of the marker is proportional to the explicit memory test score and the color represents the
subgroup, with no overlapping between the two sets of participants. (B) Empirically estimated Gamma variance parameter unfolded block by
block as in Figures 6A,B, for the two subgroups of the mixed condition. The group with less explicit knowledge [lower scores on the explicit
memory test (ET score M = 0.94, SD = 0.4)] starts out with higher variance of the fluctuations of the MMS amplitudes (broad-variance group A),
eventually converging to the much lower variance level of the subgroup that showed higher explicit knowledge of the regularity (ET score
M = 1.52, SD = 0.75) (narrow-variance group B).

FIGURE 8

Learning evolution taken globally across participants and full session, shows the unstable environment (mixed group) to provide the most
efficient conditions for learning, as indicated by the highest SNR. (A) Tracking, block by block, the empirically estimated variance of the
distribution of gamma shape values obtained from the fluctuations in MMS amplitudes for each type of stimulus and target. Correlated and
random groups trend upward with a steeper rate for correlated, while the mixed group stabilizes after 1/2 the session. The variance separates the
correlated and random groups from the mixed group, with a marked reduction on the variability of distribution shapes and an overall trend to
increase the variability in distribution shape toward the final blocks. (B) Tracking, block by block, the empirically estimated mean value of the
distribution of shape values from the fluctuations in MMS amplitudes. (C) The signal to noise ratio (mean/variance) then shows the highest signal
for the mixed trials, with a downward tendency after 1/2 the total session.

memory test score) and exploratory (higher Gamma shape
variance and lower explicit memory test score), as they unfold
across the blocks.

The empirically estimated Gamma family shape parameters
of the subgroup with high explicit memory scores (subgroup B)
starts in the symmetric Gaussian range but trends down and
converges towards the skewed, heavy tailed distributions, shown
in Figure 9A for the mean Gamma shape and in Figure 9B for
the variance Gamma shape of the two types of learners [the SNR
(mean/var ratio) for the two subgroups is shown in Figure 9C].
The trajectory on the Gamma parameter plane (Figure 9D)
confirms the departure from a memoryless random state (i.e.,
when the Gamma shape value is 1). To better visualize these

processes, we zoom in and unfold the two types of learning
modes of Figure 9D. Figure 9E focuses on the exploratory
process. As time progresses, the learning generally evolves from
memoryless (Gamma shape 1) towards skewed, heavy tailed
distributions and more symmetric distributions of the shape.
Figure 9F focuses on the error correction process. Here we
see the opposite trend whereby initially the distributions have
symmetric shape (in the Gaussian range of the Gamma family)
but as time progresses, the distribution shapes approach values
closer to those observed for the exploratory process: skewed,
heavy tailed distributions.

Notice here that we are capturing the distribution of the
fluctuations in the estimated Gamma shape parameter with
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FIGURE 9

Stochastic characterization of exploratory vs. error correction modes across blocks by subgroups. (A) The evolution of the empirically estimated
mean based on the distribution of Gamma shape values extracted from the MMS. (B) The evolution of the empirically estimated variance of the
distribution of Gamma shape parameters. (C) The SNR (mean/var ratio) for the exploratory and error-correction subgroups. (D) Block by block
evolution of the empirically estimated shape and scale parameters of the continuous Gamma family of probability distributions. Block number is
proportional to the marker size, with earlier blocks having smaller size and later blocks increasing in size. The exploratory mode is confined to
the gamma shapes close to the memoryless exponential distribution, while the error corrective mode evolves from higher to lower values of the
Gaussian regime of the Gamma family. Unfolding each case [exploratory (E) and error corrective (F)] shows their convergence to a regime away
from the memoryless exponential and tendency to more Gaussian like distributions. This convergent global behavior is congruent with the
convergent local behavior of Figure 3.

a Gamma process as well. We are referring to the Gamma
shape and Gamma scale parameters of the distributions derived
(globally a posteriori) from the fluctuations in Gamma shape
of the MMS derived from the EEG hub channels. On this
Gamma parameter plane, the dispersion (Gamma scale of
the fluctuations in Gamma shape value of MMS) along the
y-axis, is larger as learning occurs, broadening the bandwidth
of distribution shapes as learning takes place. The switch
from exponential to heavy tailed to Gaussian distributions
reflects the more systematic confirmation of a regularity in
the stimuli. Initially, all future stimuli are equally probable
(exponential regime), but in time, correct prediction of futures
events increases, consistent with the transition from a detected
regularity to a systematic goal. Once a goal is in place, error
correction is the learning regime reflecting Gaussian predictive
process embedded in this overall Gamma process. Here is
where we see a tendency to symmetric shapes approached by
both modes along the horizontal axis of the Gamma parameter
plane. One mode (the exploratory) approaching it from the left,
away from the memoryless exponential. The other approaching
it from the right.

The stochastic transition depicted in Figures 9E,F confirms
the separation between two fundamentally different learning

styles with initially different stochastic regimes. It also
highlights a phase transition approximately midway of the
learning progression. Notwithstanding the initial differences,
these regimes converged to similar signatures in the end.
This transition from memoryless exploration (exponential) to
predictive error-correction (heavy-tailed to Gaussian) surfaces
in correspondence to midway of the session, blocks 3–4. Likely
the regularity then self-emerges and eventually, through guess
and systematic confirmation, transitions to a steady goal, one
that serves to compute an error from.

In Figures 9E,F we see the system transitioning from an
initial purposeless search to a search that then acquires a
clear purpose, i.e., self-discovery of a task goal that was not
instructed to the system. Our results suggest that this transition
from memoryless into error correction-based learning depends
on some minimum level of explicit knowledge. Examining
this global process, we presume that in one subgroup enough
explicit knowledge to trigger this transition was acquired much
earlier than in the other subgroup. The group boasting an
initial exploratory mode, for which the search was in the
here and now, did not acquire distributions of the shape
parameter away from the exponential range until around blocks
3–4. This was when the system shifted to a Gaussian mode
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(Figure 9E larger markers) and when locally the variance of
the MMS shrunk (Figures 6A,B), thus spiking (globally) the
SNR of the fluctuations in shape parameter (Figure 8C). In this
exploratory scenario, the system does not immediately progress
into acquiring a predictive code. In other words, because of
not yet committing to regularities in the perceptual input,
the predictive processing that underwrites exploitative or goal-
directed behavior is initially precluded in favor of broadening
the bandwidth of information that enables surprise and self-
referencing towards the self-discovery of a goal. Only then, does
the system transitions into an error-corrective regime.

Dynamic statistical learning

At a global timescale (i.e., stochastic trajectory of the
empirically estimated parameters examined a posteriori, across
the entire experimental session) we assessed the change in
stochastic variations of the signals over time. To do so, we
examined the evolution of the fluctuations in the change of
Gamma distributions’ shapes using the Earth Movers Distance
(EMD) metric (see trajectories in the Supplementary Figures 2–
4). We compared from trial to trial, and block to block,
across participants, the fluctuations in the amplitude of the
change in distributions of the Gamma shape parameter (as
measured by the EMD). We also assessed the rate of the
change in peaks (inter peak intervals related to the physical
timing of the overall global process by our unit of time, 5-s
windows with 50% overlap). These parameters are analogous
to a kinematic “speed temporal profile” of the PDFs’ shape
trajectory (Torres and Lande, 2015; Torres et al., 2016). As the
Gamma process shifts stochastic signatures per unit time on
the Gamma parameter plane, we obtain enough MMS peaks
and estimate the Gamma parameter of each window with tight
95% CI. The EMD scalar profile over time, measuring how
the histograms used in the estimation process change from
window to window, reflect the dynamic nature of the stochastic
shifts that occur as the participants perform the task and
learn in exploratory, or in error correction mode, converging
toward the signatures of the latter at the end of the learning
process.

The analyses revealed that the system clearly distinguishes
the rates at which the distributions change shape from the
random to the correlated groups and between those and
the mixed group. Figure 10A shows this on the log-log
Gamma parameter plane where each point with 95% confidence
intervals, represents the performance for the right target
(left not shown for simplicity but has similar patterns, see
Supplementary Figure 5). The corresponding PDFs for both
right and left oriented targets are shown in Figure 10B. We can
appreciate that the mixed case yields the most toward-Gaussian-
predictive shifts in distribution change, with the highest shape
value. This is accompanied by the highest SNR (i.e., at the

lowest Gamma scale value). Furthermore, these rates of change
in the two subgroups of the mixed case, clearly distinguish the
left from the right oriented targets, with comparable rates of
shifts in distribution shape for the exploratory and the error
corrective subtypes. These are shown in Figure 10C (estimated
Gamma parameters) and Figure 10D (corresponding Gamma
PDFs). Different neural correlates of the learning process are
shown in Supplementary Figure 6. These comparable shifts
in distribution dynamics for exploratory and error correction
stochastic regimes, hint at a smooth process whether the system
is curiously wondering in exploratory mode, or aiming for a task
goal, in error corrective mode.

Discussion

This study evaluated online dynamics of SL using a new data
type and analytical approach. This new platform relies on the
moment-by-moment fluctuations in the signal of interest, which
are traditionally discarded as gross data. Within the context of
a visual search paradigm that manipulated, trial by trial, the
reliability of stimulus regularities, while registering EEG signals,
we examined the continuous stochastic process reflecting SL.
We first isolated the EEG hub lead, maximally connected to
other leads, and then proceeded to apply our new statistical
analyses to this continuous data stream.

We found that SL is a highly dynamic and stochastic
process, sensitive to the reliability of the incoming information.
Moreover, we discovered that embedded in the gross data,
traditionally discarded as superfluous noise under assumptions
of normality, lies a code that describes different modes
of learning. Based on our stochastic characterization of
the learning phenomena at different local vs. global scales,
we equate this distinction with two fundamentally different
types of learning processes. These are the commonly studied
error correction mode linked to stimulus regularity, and the
newly characterized exploratory mode. This exploratory mode,
stochastically characterized here for the first time, is likely
reflecting surprising contextual variations that lead the system
to eventually self-discover the purpose of the task with (i)
the self-discovery of a goal through self-referencing and (ii)
transitioning to the error-correction mode. Eventually the
latter can lead to fast and accurate performance. To aid
interpreting these results, we leverage prior research on the
broad characterization of human biorhythmic activity (Torres
et al., 2013a; Ryu et al., 2021) and reframe SL from the vantage
point of neuromotor control, where spontaneous (seemingly
purposeless) and deliberate (highly purposeful) motions coexist
in any natural behavior from the start of life (Torres, 2011;
Torres et al., 2016).

Two main results emerged from the current analyses. First,
we show that unstable environmental conditions (i.e., mixing
reliable and unreliable stimulus regularities) provide the most
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FIGURE 10

Global statistical learning dynamics. Unfolding the global rate of change in distribution shapes, as the system transitions from PDF to PDF, using
the EMD to ascertain distribution differences from moment to moment. (A) Right target case is shown for the three groups with 95% confidence
intervals for the empirically estimated Gamma shape and scale parameters. Each point represents a different distribution. Here the mixed group
shows the maximal values of log shape (Gaussian) and SNR (1/log scale). (B) The PDFs corresponding to the maximum likelihood estimation
(MLE) distributions in (A). (C) Investigating the differentiation between targets for the two subgroups of the mixed condition at the global level
reveals similar rate of change in the interpeak intervals, suggesting smooth transitions in both exploratory and error corrective cases.
(D) Corresponding PDFs for (C).

opportunity for learning, as characterized by higher SNR on
both the global and local levels of analyses. Next, we show
that on an individual basis, this unstable environment may give
rise to different learning profiles: within this mixed group, two
subgroups of participants self-emerged from the analyses. For
one subgroup-B, coined error correction mode, the learning
profile shows narrow variance in the MMS from start to
finish and higher explicit memory test scores, reflecting better
recall of the regularity. However, for the second subgroup-
A, coined exploratory mode, the learning profile reflected an
early stage of broad variance and memoryless learning which
later converged into the signatures of the error correction
mode. Crucially, this subgroup showed lower scores in the
explicit memory test, as they did not recall the regularity with
the degree of accuracy of the other subgroup. In their initial
learning performance, all future events were equally probable,
without a bias towards a particular regularity being reliably
noted or recalled. We now turn to discussing each of these
results in detail, while considering their implications on our
understanding of SL in general.

Unpredictable environments provide
more opportunity for learning,
corresponding to a more efficient
learning process than predictable
environments

When comparing the stochastic signature of learning
within an unstable environment mixing the stimulus regularity
between random and correlated trails (mixed group) with
stable conditions providing reliable regularity (correlated and
random groups), the process proved to be less stationary,
more predictable in nature, and was characterized by higher
SNR. These characteristics suggest that complex environments
provide higher opportunity to learn than reliable environments.
Moreover, within our theoretical framework, higher SNR
corresponds to more efficient learning. These results are
consistent with neuroimaging studies that have identified brain
systems that track uncertainty in a curvilinear U-shaped
function (Nastase et al., 2014; Hasson, 2017). Within these
systems, full randomness or full regularity are alike in terms of
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informativeness and provide less information than the mixed
case. As such, these systems seem to be especially sensitive to
tracking relatively unreliable information in the environment.

Given that the real world is indeed complex, with
our cognitive system continuously bombarded with variable
regularities, it seems natural that we should be more
attuned to learning under relatively unreliable (yet richer in
information) conditions. However, suggesting that learning
under such conditions is more efficient may seem to contradict
the behavioral pattern previously observed in these data:
participants in the mixed group reached slower RTs than both
in the random and correlated groups (for a detailed account see
Vaskevich et al., 2021). To resolve this issue, one must bear in
mind that efficiency of learning is not necessarily manifested in
online performance. That is, more complex learning conditions
may hinder online reactions, but be beneficial for the long term.
We propose that to gain further insight on SL, future studies
should combine the methods introduced in the current work
with experimental designs that involve changing regularities
online and considering multiple sessions of learning. Indeed,
such designs are becoming common within the field (Makovski
and Jiang, 2010; Zellin et al., 2013; Vaskevich and Luria, 2019).
However, so far, they lack the perspective of evaluating the
dynamic and stochastic online evolution of the learning process,
which is enabled by the methods used in the current work.

Learning dynamics at multiple time
scales

Within the SL domain, focusing on the dynamics of
the learning process itself, with the specific consideration of
multiple time scales, has been recently suggested as the next
necessary step in SL research (Hasson, 2017; Frost et al., 2019;
Conway, 2020). Experts in the field agree that to understand
the neural substrates underlying behavior it is necessary to
view it, and to measure it, as a continuous process, evaluating
learning trajectories of its stochastic variations and learning
stability. However, so far, this direction has not matured into
meaningful research, largely due to limitations of the standard
analytical techniques. To date, several measurements, such as
rhythmic EEG entrainment (Batterink et al., 2019; Moser et al.,
2021), functional connectivity (FC) analysis (Toth et al., 2017),
and divergences in EEG activity in the beta-band (Bogaerts
et al., 2020) have been used to assess the online signature of
SL. Collectively, these studies show that during different tasks
with embedded regularities the EEG signal changes over time
to reflect SL. They provide insight into the mechanisms that are
going through a transition during SL, such as task automaticity
(Toth et al., 2017), and word representation (Batterink et al.,
2019), thus complementing behavioral measures that rely on
reaction times and accuracy. In the context of the present work,
they provide solid justification for the choice of EEG recordings

as the data used to assess the stochastic profile of SL. However,
none of the previously proposed measurements are informative
regarding the ongoing dynamics of the learning process itself, as
in all the above-mentioned studies the signal is segmented into
periods, with the relevant measurement averaged across many
trials for each period, under the assumption of normality.

The present work goes beyond assumptions of normality,
linearity and stationarity in the data and exploits the moment-
by-moment fluctuations that prior work discards as gross data.
Embedded in that gross data we uncovered the phase transitions
in probability space that distinguished two fundamentally
different modes of learning and revealed one (memoryless
exponential) that converges to the other (predictive Gaussian).
Both modes are well characterized by the continuous Gamma
family of PDF s at the local level, when we are naïve to
the upcoming moment-by-moment distribution, and at the
global level, when a posteriori, we can see the fluctuations
in the (Gamma) distribution shape unfolded through the
Gamma process itself.

Exploratory versus error correction
modes differentiated by explicit
knowledge of the embedded regularity

For a cohort of participants, the unstable environment
(mixed group) triggered an initial stage of memoryless
exploratory learning. During this stage, the stochastic signature
of the process reflected a type of learning whereby initially all
future events were equally probable. The stochastic signature
unveiled in this initial period of learning for the broad-variance
subgroup A of this cohort, suggests that the system was not
relying on prior knowledge but was instead gathering as much
information as possible from the “here and now.” Presumably,
this exploratory stage was elicited by the high levels of surprise
in an environment that contained rules that were not followed
consistently over time. Crucially, this subgroup A also exhibited
low scores in the explicit memory test. We posit that for
participants in the narrow-variance subgroup B showing higher
level of explicit knowledge, the stochastic signature reflected
an error correction mode of learning throughout, from the
beginning to the end of the task.

The behavioral differentiation between subgroups A and B,
suggests that the transition from exploratory behavior into error
correction depends on some minimal level of explicit knowledge
that needs to be obtained. This conclusion contradicts the
current assumption that both explicit and implicit SL always
reflects error correction (Hasson, 2017; Frost et al., 2019). For
instance, within theories arguing that both explicit and implicit
learning systems operate simultaneously (i.e., dual-system
approach), it has been suggested that during a learning episode,
implicit associative learning occurs initially, which leads to the
formulation of predictive “wagers” that steadily become more
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correct, leading to explicit awareness of the learned patterns
(Dale et al., 2012). The initial stage of exploratory, memoryless
sampling from the perceptual input that has emerged from our
analyses has so far been overlooked.

The new methodology introduced in this work is grounded
on deliberate vs. spontaneous movement classes (Torres, 2011),
with different classes of temporal dynamics. Framed in this way,
the error correction code would correspond to the deliberate
movements intended to a goal. Such movements are well
characterized by paths that can be traversed with different
temporal dynamics and remain impervious to changes in speed
(Atkeson and Hollerbach, 1985; Nishikawa et al., 1999; Torres
and Zipser, 2004; Torres and Andersen, 2006). Within such
learning, the path to the goal is independent of how long it takes
to attain it and remains stable despite the moment-by-moment
temporal structure of the stimuli, which must be learned and
transformed into physical, motoric action (Torres and Zipser,
2002). This invariance is akin to timescale invariance in models
of temporal learning, strongly supported by empirical data
(Gallistel and Gibbon, 2000). In contrast, exploratory learning,
would correspond to the class of spontaneous movements,
i.e., highly sensitive to contextually driven variations in
temporal dynamics of the stimuli (Torres, 2011; Brincker and
Torres, 2018). These different dynamics can be distinguished
in the variance profile of the learners in the mixed group
of Figure 6A. They respond dynamically different across
blocks, depending on target type. In this sense, exploratory
trajectories with higher variance, lower explicit memory scores
and fundamentally different target responses, are contextually
more informative than error correcting trajectories. According
to their initial exponential distribution signature, during this
exploratory mode, all events are equally probable. The system
samples without restriction. This mode may increase the
chances of surprise, grabbing the system’s attention to some
context-relevant events, perhaps self-discovering (through guess
and confirmation of the regularity) the transition toward a
consistent, ever more systematic state that may eventually
result in a desirable, stable task-goal. At this point the system
seems to enter and guide the error correction mode under a
Gaussian regime. Such smooth transition across memoryless
exponential, heavy tailed, skewed distributions to Gaussian
modes are evident in the convergence of the variance profiles
of the two subgroups in the mixed group to a common regime
(locally obtained for the MMS Gamma variance in Figure 6A
and globally computed in Figures 9E,F for the Gamma family
of fluctuations in Gamma distribution shapes). Their smoothly
evolving transition dynamics were also unveiled in the stochastic
signatures of their rates of change (Figure 10).

We propose to trace back the newly characterized
exploratory mode to the neonatal stages of learning. Such
stages appear prior to the maturation of perceptual systems and
are guided by endogenous bodily fluctuations that the infant
senses from self-generated movements (likely heavily involving

central pattern generators already operating at birth; Grillner
and El Manira, 2020). To that end, we cite how neonates learn,
perhaps supporting our idea that humans’ mental strategies and
the different learning modes discovered here, are embodied,
grounded on the types of learning that we ontogenetically
transitioned through during early infancy, when seemingly
purposeless movements preceded intentional ones (Thelen,
2001).

Studies of infants exploring an environment where the
mother serves as an anchoring reference place, find that
the babies explore using interleaving segments of progressive
movements with lingering episodes (Frostig et al., 2020).
They confirm that such exploratory behavior is homologous
across species and situations (Drai et al., 2000; Frostig et al.,
2020). Furthermore, a recent study from the SL domain
demonstrated that infants prefer to attend to events that are
neither highly unpredictable nor highly predictable (Kidd et al.,
2012). The authors suggest that this effect is a characteristic
of immature members of any species, that must be highly
selective in sampling information from their environment to
learn efficiently. We add to these interpretations a concrete
stochastic model and suggest that infants attend to relatively
unpredictable environments because these are ideal for the
exploratory behavior that dominates early stages of surprise-
and curiosity-driven motor learning in neonates (Torres et al.,
2016) and infants (Torres et al., 2013a). Across early stages of
life, when altricial mammals generally mature their somatic-
sensory-motor systems (More and Donelan, 2018), human
infants acquire a stable motor percept. As they undergo
motor milestones (myelination, acquisition of motor, and
sensory maps, etc.), the families of PDFs that are empirically
estimated from their bodily biorhythmic motions, transition
from spontaneously purposeless, memoryless exponential to
intentionally purposeful, highly predictive Gaussian (Torres
et al., 2013a).

Given our results, it appears that the exploratory type of
learning is preserved throughout adulthood, and that there
are conditions in which this exploratory, memoryless learning
with high SNR, emerges on demand, and is likely extremely
advantageous. An open question is, when is this type of learning
beneficial? One possibility is that it supports flexibility within
the system, as it provides it with a broader range of information
that would have been missed by a premature systematic biasing
toward a regularity, without allowing/evoking wondering
behavior. That is, in changing, unstable environments, it may be
best to initially gather as much information as possible, before
committing to an error correction, goal-targeted mode. This
direction, which is beyond the scope of the present work, may
be tested by examining whether exploratory periods emerge
during processes that require flexibly extending an existing
solution to new context, known in motor control as transfer and
generalization (Krakauer et al., 2006; Torres et al., 2013b; Wu
and Smith, 2013; Tanaka and Sejnowski, 2015), but such studies
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are rare. This research may bear important implications for
clinical programs that are currently grounded in animal models
of conditional reinforcement that do not address the possible
benefits of an exploratory mode of learning, whereby the value of
a reward self-emerges internally from the self-discovery process,
rather than externally given and a priori set by an external agent.

Related to these proposed processes, are recent models
of human and machine learning that emphasize the role of
curiosity within the learning system (Pathak et al., 2017; Dubey
and Griffiths, 2020). These models suggest that the causal
environment determines when curiosity is driven by novelty or
by prediction errors. In an environment where the past and
future occurrences of stimuli are independent of each other,
the optimal solution for gaining a future reward is to explore
novel stimuli. This novelty mode, that has been referred to
as novelty-error-based (Dubey and Griffiths, 2020), and the
standard prediction-error-based approaches have at their heart
the same computational problem: optimize by minimization of
an error that depends on a given targeted goal, while using
prior information. Though also fueled in part by curiosity,
the exploratory mode suggested in our present results is
computationally different from the error correction mode. As
explained, in our exploratory mode initially, all future events
are equally probable, the SNR of the stochastic process is high,
and the system does not yet operate with a goal in mind. In
fact, it must self-discover it, gathering as much information as
possible in a memoryless way, without yet committing to an
objective function, a value function, a policy, or a reward. In this
case, opposite to RL, Bayesian Reinforcement leaning and active
inference, the system does not minimize surprise.

We argue that to characterize learning properly, this
additional type of endogenous, curious unexpected exploration
should be incorporated into future models of inference and
learning. Indeed, intrinsic motivation and curiosity has become
a dominant theme in machine learning and artificial intelligence
over the past years (Daw et al., 2006; Baranes and Oudeyer,
2009; Schmidhuber, 2010; Still and Precup, 2012; Little and
Sommer, 2013; Friston et al., 2017; Schwartenbeck et al., 2019).
Perhaps the best example of this is active inference and learning
(Friston et al., 2011, 2016). Active inference provides an account
of optimal behavior in terms of maximizing the evidence for
forward, world or generative models of engagement with the
world. In other words, instead of learning to maximize reward,
agents maximize model evidence or marginal likelihood (as
scored with evidence bounds or variational free energy; Winn
and Bishop, 2005).

In active inference, behaviors are chosen to maximize both
expected value and expected information gain (i.e., expected
free energy) (Parr and Friston, 2019). Statistically speaking,
this ensures that behavior complies with both the principles of
optimum Bayesian decision theory (Berger, 1993) and Bayesian
design (MacKay, 2003; Parr and Friston, 2019). This leads
naturally to an initial phase of exploratory behavior driven by

expected information gain (a.k.a. expected Bayesian supplies,
intrinsic value, epistemic affordance, etc.), which then gives
way to exploitative behavior driven by expected value (a.k.a.,
prior preferences, extrinsic value pragmatic affordance, etc.).
Our results speak of a different facet of this transition, namely
one where the system has no expectation whatsoever. Instead,
all future events are equally probable and signal information
is at its highest, maximizing surprise. There is at this point,
no gradient direction pointing the system towards descending
error. During this initial naïve learning phase, the system casts
a broad net over all incoming information that enhances the
chance for a surprising event, before committing to any salience
or regularity. This is precisely opposite to (complementary of)
the minimization of predictive error or the consequences of
predictive error. Crucially, the fact that the transition between
the memoryless exploration mode and the error correction
mode could be predicted from an independent assessment of
behavioral data (i.e., explicit knowledge) lends a predictive
validity to our analysis of the neuronal correlates of a new
aspect of learning. Only after a goal self-emerges it can be
incorporated into an objective function or model, transitioning
from trial-and-error model-free, to error-correction model-
based learning, as an objective function gets defined. At that
stage, minimizing expected surprise, as in active inference,
fits well with the error-correction phase that all participants
eventually converged to. However, active inference, as other
learning frameworks, will need to be modeled differently from
its current conceptualizations of optimal expectation-driven
exploration to include the newly discovered spontaneous and
memoryless stage of learning.

Through the motor control lens, we posit that the new
(expectation-free) exploratory mode described here, scaffolds
the emergence of what we have coined spontaneous autonomy
(Torres, 2018b), different from deliberate autonomy (i.e.,
derived from targeted error-correction). It will be critical
to include random-memoryless, expectation-free exploratory
learning with high signal content, in the future design
of autonomous robots/agents. This type of autonomy can
be realized through the self-referenced discovery of the
relationships between actions and their consequences. The latter
leads to the sense of action ownership and to the volitional
control of physical acts that are congruent with one’s own mental
intent (Torres et al., 2013b). We posit that only then, after
acquiring this selectively adapted balance between autonomous
and controlled acts, will others understand one’s intent and
contribute, through co-adaptation, to the person’s agency.

We have in summary shown that using new analytical
techniques, we can get a precise characterization of the dynamic
nature of SL, the rich stochastic signal embedded in fluctuations
that are traditionally treated as gross data and the differential
nature of contrasting learning modes. Investigation is warranted
on whether these results generalize to other SL paradigms,
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and to the acquisition of predictive information in learning
in general. Of particular interest, are questions of individual
differences, and the degree to which the exploratory and error
correction learning modes may be differently recruited on
demand by the same learner under different contexts. We here
offer methods that allow to investigate these and many new
questions in future SL research from the perspective of the
nascent, developing motor systems and their richly layered
dynamic and stochastic motor percepts.
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A thorny problem in machine learning is how to extract useful clues related

to delayed feedback signals from the clutter of input activity, known as the

temporal credit-assignment problem. The aggregate-label learning algorithms

make an explicit representation of this problem by training spiking neurons to

assign the aggregate feedback signal to potentially e�ective clues. However,

earlier aggregate-label learning algorithms su�ered from ine�ciencies due to

the large amount of computation, while recent algorithms that have solved

this problem may fail to learn due to the inability to find adjustment points.

Therefore, we propose a membrane voltage slope guided algorithm (VSG)

to further cope with this limitation. Direct dependence on the membrane

voltage when finding the key point of weight adjustment makes VSG avoid

intensive calculation, but more importantly, the membrane voltage that always

exists makes it impossible to lose the adjustment point. Experimental results

show that the proposed algorithm can correlate delayed feedback signals

with the e�ective clues embedded in background spiking activity, and also

achieves excellent performance on real medical classification datasets and

speech classification datasets. The superior performancemakes it ameaningful

reference for aggregate-label learning on spiking neural networks.

KEYWORDS

spiking neural networks, spiking neurons, aggregate-label learning, temporal credit-

assignment, synaptic adjustment

1. Introduction

The birth and development of artificial intelligence are deeply inspired by the

sophisticated biological brain, such as the striking deep learning represented by the

artificial neural network (ANNs), which has attracted considerable attention in the past

decade (LeCun et al., 2015). ANNs highly abstract biological neurons, and obtains the

analog outputs by the weighted sum of the analog inputs through activation function.

This conversion process is somewhat consistent with the biological spiking process,

and the analog inputs and outputs are also regarded as equivalent to the firing rates of

biological neurons (Rueckauer et al., 2017). However, ANNs still lack biological realism

compared to physiological neural networks that utilize binary spikes for information

transfer (Bengio et al., 2015).

Then, spiking neural networks (SNNs) offer a new computing paradigm with

theoretical advantages in computational efficiency and power consumption due to the

adoption of the binary spiking mechanism. However, these advantages have not been

fully exploited, and the results are far from achieving the desired impact. One of the
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major reasons is the lack of efficient learning algorithms, so

research on SNN algorithms remains attractive. Nevertheless,

many valuable works have emerged. Among them, depending

on the presence of additional teaching signals, existing

SNN algorithms can be roughly divided into supervised

and unsupervised.

Neurophysiological studies have shown that the long-

term potentiation (LTP) and depression (LTD) of synaptic

transmission are ubiquitous phenomena existing in almost

every excitatory synapse in the mammalian brain (Malenka

and Bear, 2004). Spike-timing dependent plasticity (STDP) rule

(Bi and Poo, 1998), which combines these two phenomena,

becomes a feasible unsupervised learning rule benefiting by its

definite biological basis. Then STDP intrigues the research of

local learning rules that imitate the neuroscience mechanisms

(Masquelier et al., 2007; Diehl and Matthew, 2015; Tavanaei

and Maida, 2017a). For example, STDP rules have been

applied to an SNN architecture that simulates visual function

to promote neurons show the selectivity of orientation and

disparity (Barbier et al., 2021), to shallow convolutional SNNs

to realize near-real-time processing of events collected from

neuromorphic vision sensors (She and Mukhopadhyay, 2021),

and to weight-quantized SNNs to complete online learning (Hu

et al., 2021), etc. In addition, variants of STDP have also been

embedded into Inception-like SNNs for highly parallel feature

extraction (Meng et al., 2021) or ensemble convolutional SNNs

for object recognition (Fu and Dong, 2021). This biologically

inspired learning do not require regulatory signals and is easy

to execute, making it attractive to hardware implementation of

emerging memory devices (Burr et al., 2016; Zhou et al., 2022).

However, such local learning rules are more suitable for small-

scale pattern recognition tasks, and it is difficult for them to

be directly applied in complex tasks due to the lack of global

information related to convergence for large models (Mozafari

et al., 2018).

On the other hand, there is also documented evidence

supporting the existence of instruction-based learning in the

central nervous system (Knudsen, 1994; Thach, 1996). Over

the years, a growing number of supervised learning algorithms

of SNN have been proposed (Ponulak and Kasiński, 2010;

Florian, 2012; Mohemmed et al., 2012; Xu et al., 2013b;

Memmesheimer et al., 2014; Zhang et al., 2018a,b, 2019; Luo

et al., 2022), and some of them obtained comparable accuracies

to that of ANNs in large-scale applications. SpikeProp (Bohte

et al., 2000) is a classical supervised learning method of

SNNs, which is derived from the gradient descent algorithm

of ANNs. While the application of this algorithm is limited

by the fact that each neuron can only fire once, so the multi-

spike version of it are proposed to improve performance

(Ghosh-Dastidar and Adeli, 2009; Xu et al., 2013a). As for the

critical dilemma of non-differentiable discrete spikes in SNNs,

Spikeprop uses a linear assumption of membrane potential

at these time instants to bypass it. The other way proposed

in SLAYER (Shrestha and Orchard, 2018) to handle it is to

replace the derivatives of these non-differentiable moments

with approximate functions, SuperSpike (Zenke and Ganguli,

2018) algorithm uses the surrogate gradients, and DSR (Meng

et al., 2022) uses gradients of sub-differentiable mappings. These

algorithms and some others (Wu et al., 2018c, 2019) almost all

follow the idea of back-propagation through time (BPTT), which

makes full use of information on both time and space scales, but

it also means quite a bit of computing and storage requirements.

Beyond these, there are some situations where the guidance

signals are ambiguous. For example, animal survival behavior

to identify whether small clues in the environment represent

danger or opportunity involves detecting relationships between

multiple clues and ambiguous long-delayed feedback signals.

Multi-Spike Tempotron (MST) (Gütig, 2016), an aggregate-

label learning algorithm, is proposed to train a detector to

automatically respond wherever a valid clue appears, given only

the number of desired spikes. It uses the distance between the

true threshold and the a critical threshold (under which a specific

number of spikes can be fired) as the error signal for weight

adjustment, enabling it to obtain robust and powerful learning

capabilities. Then TDP1 (Yu et al., 2018) is proposed to simplify

the iteration calculation in MST and improve the learning

efficiency. However, they are still computationally expensive

due to the need to calculate the critical threshold. Therefore,

MPD-AL (Zhang et al., 2019) directly adjusts the weight from

the membrane voltage, which greatly reduces the computing

requirements. However, the disadvantage of this method is that

there is a possibility that the tunable point cannot be found.

Inspired by MPD-AL, we propose an voltage slope-guided

algorithm (VSG). When the number of spikes emitted by the

output neuron is not equal to its desired spike number, an

appropriate point is selected to adjust the weight according to

the slope of the membrane voltage, so that the neuron can emit

more spikes or remove redundant spikes. The proposed method

avoids the dilemma of failing to find the adjustment points, and

does not need iterative calculation to find the critical threshold.

The comparative experiments with MPD-AL, MST, and TDP1

verify its superiority, and the classification results on realistic

datasets further proves its practical performance.

The rest of the article is organized as follows: In Section

2, we introduce the proposed algorithm and compare it with

several other algorithms. In Section 3, we conduct a series of

experiments to verify the performance of the algorithm. Finally,

the algorithm is analyzed and discussed in Section 4.

2. Neuron model and learning
algorithm

In this section, the neuron model employed will be first

introduced, followed by the proposed VSG algorithm, and
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FIGURE 1

Schematic of neuronal structure and membrane voltage

dynamics. The postsynaptic neuron integrates spikes from

a�erent neurons over time, and each incoming spike

contributes to the membrane voltage together with the

corresponding synaptic weights. When the membrane voltage

of the postsynaptic neuron crosses the firing threshold ϑ , it

emits a spike and the voltage is reset.

finally this algorithm will be compared with its counterparts,

highlighting their differences.

2.1. Neuron model

The leaky integrate-and-fire neuron model (Maass and

Bishop, 1999; Gütig, 2016) is one of themost widely used spiking

neuronmodels, benefiting from its computational simplicity and

modest biological reliability. So we also adopt it in this article.

The postsynaptic neuron receives spikes transmitted from

its N presynaptic neurons through synapses, which induce

postsynaptic potentials (PSPs) on the postsynaptic neuron,

resulting in changes in its membrane voltage V(t), as shown

in Figure 1. Thus, the membrane voltage of the postsynaptic

neuron gradually rises from the resting state Vrest = 0. When

the membrane voltage crosses the threshold ϑ , the neuron fires

a spike, and the membrane voltage quickly resets to the resting

potential, then it enters a refractory period. This process can be

expressed as:

V(t) = Vrest +

N
∑

i=1

wi

∑

t
j
i<t

K(t − t
j
i)−

∑

t
j
s<t

η

(

t − t
j
s

)

, (1)

where wi is the weight of the synapse established with the i-

th afferent neuron, and t
j
i denotes the time of the j-th spike

from the afferent neuron. t
j
s denotes the time of j-th spike

emitted by this postsynaptic neuron. K(·) and η(·) characterize

the normalized PSP kernel and refractory period, respectively,

which are defined as

K(x)=V0

[

exp

(

−
x

τm

)

− exp

(

−
x

τs

)]

, x > 0, (2)

and

η(x) = ϑ · exp

(

−
x

τm

)

, x > 0, (3)

where τm and τs are the membrane time constant and the

synaptic time constant, which together control the shape of the

PSP. V0 is a coefficient that normalizes the PSP. These two

kernels only make sense when x > 0, since a spike only takes

effect at the time after its occurrence.

2.2. Voltage slope guided learning

Unlike algorithms that generate an exact desired spike train,

VSG aims to generate a desired number of spikes in response

to an input pattern. When the actual spike count No is more

or less than the desired count Nd, the network parameters are

adjusted:

1. No < Nd : When the actual spikes are insufficient, the

network parameters are strengthened so that more spikes

can be delivered. Thus, the time instant with the largest

membrane voltage slope (except the existing spike times) is

selected as the critical time t∗. The membrane voltage V(t∗)

at this moment has the strongest upward trend. Adjusting

the membrane voltage at this point will be more efficient

compared to other locations.

2. No > Nd : When more spikes are fired than the expectation,

the redundant spikes should be removed by weakening the

network parameters. Therefore, the critical moment t∗ will

be selected from the existing spike times. On the contrary,

among these moments, the point with the weakest upward

trend of membrane voltage crossing the threshold is chosen.

Because it can be removed with less effort than other spikes.

As shown in Figure 3A (left), the red arrows and green arrows,

respectively, represent the critical points if more or less spikes

need to be emitted in the case that there are already five

output spikes.

For these two cases, we construct error function based on

the distance between the critical membrane voltage V(t∗) and

its target membrane voltage Vtar . In the case of No < Nd, it is

obvious that the target voltage should be equal to the threshold

in order to emit more spikes. While in the case of No > Nd, the

critical membrane voltage should be lowered in order to remove
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the spike, so the target voltage can be set as the resting potential

Vrest :

E =
1

2

(

V
(

t∗
)

− Vtar
)2

, (4)

where

Vtar =

{

ϑ , No < Nd,

Vrest , No > Nd.
(5)

Then the gradient descentmethod is applied to obtain the weight

updating rule:

1ωi = −η
dE

dwi
= −η

(

V
(

t∗
)

− Vtar
) dV(t∗)

dwi
, (6)

η is the learning rate which define the update magnitude of the

synaptic weights. In fact, ±η · dV/dw can also be used directly

to enhance/weaken weights during the experiment without

considering the error function, which has a learning efficiency

similar to Equation (6), as shown in Figure 6B.

Without loss of generality, suppose that there is a fully

connected network with L (L ≥ 2) layers. For a neuron s in

layer L (the output layer), if the output spike count is not equal

to its desired number, all synaptic weights that contribute to its

firing will be adjusted. Assuming that the critical spike time of

the neuron is t∗, and the corresponding membrane voltage is

V(t∗). Then according to Equation (6), all we need to do is to

calculate dV/dw:

2.2.1. Output layer

According to Equation (1), V(t∗) is not only affected by the

input spikes from the previous layer, but also by the previous

spikes t
f
s < t∗ (f = 1, 2, ..., F) excited by the neuron itself,

therefore,

dV(t∗)

dwL
is

=
∂V(t∗)

∂wL
is

+

F
∑

f=1

∂V(t∗)

∂t
f
s

∂t
f
s

∂wL
is

, (7)

where wL
is is the synaptic weight between i-th neuron in the layer

L− 1 and s-th neuron in the layer L.

From Equation (1), the first term of Equation (7) can be

expressed as

∂V(tx)

∂wL
is

=

∑

t
j
i<tx

K
(

tx − t
j
i

)

,
(8)

where tx ∈
{

t1s , t
2
s , · · · , t

F
s , t
∗
}

, t
j
i is the j-th spike of the i-th

neuron in layer L − 1. While for the second term of Equation

(7), we have

∂V(t∗)

∂t
f
s

= −
ϑ

τm
exp

(

−
t∗ − t

f
s

τm

)

, (9)

and

∂t
f
s

∂wL
is

=
∂t

f
s

∂V(t
f
s )

∂V(t
f
s )

∂wL
is

, (10)

where ∂V(t
f
s )/∂w

L
is can be calculated by Equation (8). Suppose

nl is the number of neurons in the l-th layer. Then following

the linear hypothesis for the voltage crossing threshold in Bohte

et al. (2002) and Yu et al. (2018), we get

∂t
f
s

∂V(t
f
s )
= −

(

∂V(t
f
s )

∂t
f
s

)−1

= −

(

∂V(t)

∂t

∣

∣

∣

∣

t=t
f−
s

)−1

, (11)

where

∂V(t)

∂t
=

nL
∑

i=1

wL
is

∑

t
j
i<t

κ(t − t
j
i)+

∑

t
f
s<t

η(t − t
f
s )

τm
, (12)

κ(t − t
j
i) =

∂K(t − t
j
i)

∂t
=

V0

τs
exp

(

−
t − t

j
i

τs

)

−
V0

τm
exp

(

−
t − t

j
i

τm

)

.

(13)

2.2.2. Hidden layers

Suppose wl
ij is the synaptic weight between i-th neuron in

the layer l− 1 and j-th neuron in the layer l. It has an impact on

the spike time tm,l
j , i.e., them-th (m = 1, 2, · · · ) spike time of the

neuron j in layer l, and then affect the spike time of neurons in

all the subsequent layers through tm,l
j . Therefore, the derivative

of V(t∗) with respect to wl
ih
(1 ≤ l ≤ L− 1) is

dV(t∗)

dwl
ij

=

∑

tm,l
j <t∗

∂V(t∗)

∂tm,l
j

∂tm,l
j

∂wl
ij

, (14)

where ∂tm,l
j /∂wl

ij can be calculated just like Equation (10).

∂V(t∗)/∂tm,l
j , the key term for error propagation between layers,

is denoted as δ
m,l
j .

For 1 ≤ l < L− 1,

δ
m,l
j ,

∂V(t∗)

∂tm,l
j

=

nl+1
∑

k=1

∑

t
f ,l+1

k

∂V(t∗)

∂t
f ,l+1
k

∂t
f ,l+1
k

∂tm,l
j

=

nl+1
∑

k=1

∑

t
f ,l+1

k

δ
f ,l+1
k
·
∂t

f ,l+1
k

∂tm,l
j

, tm,l
j < t

f ,l+1
k

< t∗.

(15)

And for l = L− 1,

δ
m,l
j =

∂V(t∗)

∂tm,l
j

+

∑

tm,l
j <t

f ,L
s <t∗

∂V(t∗)

∂t
f ,L
s

∂t
f ,L
s

∂tm,l
j

. (16)
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FIGURE 2

The feedforward propagation of spikes and backpropagation of

errors. The neuron j in the l-th layer emits two spikes t1,l
j

and t2,l
j
,

they a�ect the generation of spikes in the next layer after them

(purple and green curved arrows). The neuron k in the layer l+ 1

also emits two spikes denoted as t1,l+1
k

and t2,l+1
k

. In the feedback

process, a spike generated by neuron k transmit the error signal

δ to input spikes that contribute to it (pink and yellow curved

arrows).

Noted that the error backpropagation is performed based

on spikes, and Equation (15) involves complex spike time

relationships when δ propagate back between adjacent layers. As

shown in Figure 2, the spike t2,lj has an effect on the later spike

t2,l+1
k

emitted by the downstream neuron (green arrow), but has

no effect on the earlier spike t1,l+1
k

. Therefore, when the error

signal δ1,l+1
k

corresponds to the spike t1,l+1
k

is backpropagated,

it will only transmit to the earlier spike t1,lj that contribute to it

(yellow arrow).

From Equation (1), the first term of Equation (16), i.e., the

derivative of the membrane voltage with respect to the input

spike coming from its presynaptic neuron is calculated as below

∂V(t∗)

∂tm,L−1
j

= −wL
js · κ

(

t∗ − tm,L−1
j

)

, (17)

and ∂V(t∗)/∂t
f ,L
s can be calculated by Equation (9). And for

1 ≤ l ≤ L− 1,

∂t
f ,l+1
k

∂tm,l
j

=
∂t

f ,l+1
k

∂V(t
f ,l+1
k

)

∂V(t
f ,l+1
k

)

∂tm,l
j

=





∂V(t
f ,l+1
k

)

∂t
f ,l+1
k





−1

wl+1
jk

κ

(

t
f ,l+1
k
− tm,l

j

)

.

(18)

Thereupon, the whole learning process of the VSG is

summarized in Algorithm 1.

Input: T: time duration; 1t: time step; Nd:

desired spike number; η: learning rate;

S: input spike pattern; ϑ: firing

threshold; Vrest: resting potential; µ:

mean of the Gaussian distribution; σ:

standard deviation of the Gaussian

distribution;

1 Initialize: synaptic weights w ∼ N(µ, σ ), actual

spike number No = 0;

2 while Na 6= Nd do

3 to = ∅, No = 0;

4 for t = 0 :1t :T do

5 calculate membrane voltage V(t) in

response to the input pattern S by

Equation (1) and ∂V(t)/∂t by Equation (12);

6 if V(t) ≥ θ then

7 to ← to ∪ {t} ;

8 No ← No + 1;

9 V(t)← Vrest;

10 if No 6= Nd then

11 if No < Nd then

12 t∗ = argmax
t 6∈to

{∂V(t)/∂t}, Vtar = ϑ;

13 else

14 t∗ = argmin
t∈to

{∂V(t)/∂t}, Vtar = Vrest;

15 calculate gradient dV(t∗)/dw by Equation

(14);

16 1w = −η
(

V(t∗)− Vtar

)

· dV(t∗)/dw;

17 w← w +1w;

18 return w;

Algorithm 1. Learning algorithm of the VSG.

2.3. Comparison with other
aggregate-label learning algorithms

Existing aggregate-label learning works can be divided into

threshold-driven methods, such as MST, TDP1, and membrane

voltage-driven methods, such as MPD-AL. The threshold-

driven method searches for a critical threshold ϑ∗ that can

increase/decrease the number of spikes by one, then the distance

between the critical threshold and the actual firing threshold ϑ

is used as the error to update the synaptic weights. However,

ϑ∗ cannot be solved analytically, it can only be obtained by

performing dichotomy in the interval where it may appear. Such

a search process must be executed for each update iteration,

which is quite time-consuming. As for the membrane voltage-

driven method MPD-AL, when more spikes are needed, the

time of the maximum peak of membrane voltage (below the
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FIGURE 3

The comparison of learning between VSG and MPD-AL. (A) The

membrane potential traces before learning. t∗ indicates the key

time point selected when a spike needs to be added. (B)

Learning curves depicting the spike-timing dependence of the

contribution of di�erent synapses to V(t∗). (C) The membrane

potential traces after learning (with one spike added). (D) The

amount of weight change before and after learning. For the

convenience of observation, each presynaptic neuron sends

only one spike, and the synapses in (B,C) are arranged in the

order of their corresponding spike time.

threshold) is taken as the critical time for enhancing the weights,

and when fewer spikes are needed, the last spike time is used as

the critical time to weaken the weights, as shown in Figure 3A

(right).

Inspired byMPD-AL, we choose the point with the strongest

rising trend of membrane voltage at non-spike time and the

weakest rising trend of membrane voltage at spike time as the

key point for enhancement and weakening, respectively. As

shown in Figure 3, taking the addition of a spike as an example,

the two algorithms have different choices for t∗, resulting in

different learning curves (Figure 3B), thus adding a new spike

in different places (Figure 3C).

Neither VSG nor MPD-AL require the complicated process

of finding ϑ∗, which makes them more efficient than threshold-

driven algorithms. However, when a new spike is required,

MPD-AL needs to find all local maxima of the membrane

voltage below the threshold and then select the largest one. But

sometimes such a point does not exist, especially when there are

already many spikes, as shown in Figure 4. In this case, MPD-AL

can no longer add spikes and the learning stalls. While VSG does

not have this problem, because the point with the largest slope

must exist, and it is likely to be raised to the threshold quickly,

since a large slope means a large upward trend. Similarly, among

the firing spike, the point with the lowest slope means that it

has less power to cross the threshold, and when a spike needs

to be removed, it takes less effort to eliminate it. We will verify

the rationality of this selection of adjustment point through

experiments in the next section.

On the other hand, VSG seems to be a little more

computationally expensive compared to MPD-AL, because it

requires additional computation of the time derivative (slope)

of membrane voltage. But this calculation can be integrated

into the calculation of membrane voltage, since they use exactly

the same intermediate variables (Equations 12 and 1). In this

way, as shown in Figure 6A, it takes almost no more time for

VSG to calculate the membrane voltage than MPD-AL, with

a total time increase of <0.01 s for 1,000 calculations [the

average time for one trial is too small, and the device is Intel(R)

Core(TM) i5-8400 CPU @ 2.80, 2.81 GHz]. However, MPD-

AL spends about three times as long as VSG in finding the

adjustment point. Because it needs to find all the local peak of

membrane voltages and then perform the maximum operation,

while VSG only needs to perform the maximum operation on

the membrane voltage slope. Overall, the computational cost of

finding adjustment points for VSG is low.

3. Experimental results

Various experiments are carried out to examine the

performance of the proposed VSG learning algorithm. We first

investigate the learning efficiency of the VSG, and then apply it

to learn predictive clues. Several practical classification tasks are

performed thereafter to further evaluate its capability.

3.1. Learning of desired number of spikes

In this section, we first investigate the ability of a single

neuron to learn to deliver a fixed number of spikes through

training of VSG algorithm, and then verify the plausibility of

its way of finding adjustment points. Finally, it is compared

with several competitive aggregation-label learning algorithms

to further evaluate its learning efficiency.

In this first experiment, the learning neuron receives spikes

from 500 presynaptic neurons and are trained to deliver 10

spikes over a period of 500 ms. To observe the learning

under different input conditions, input spikes are generated by

the Poisson distribution at 4 and 20 Hz, respectively, while

the synaptic weights are initialized by the same Gaussian

distribution N(0.01, 0.01). Figures 5A,B depicts the membrane

voltage traces and synaptic weights of this output neuron before

(blue) and after (black) learning when the input spike is 4 Hz.

The sparse input caused the neuron not to fire initially, after

learning, many synaptic weights are enhanced so that the neuron

fires 10 spikes. Figures 5C,D shows the situation of neurons
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FIGURE 4

Pain point of MPD-AL. When the membrane voltage rapidly accumulates and frequently emits spikes, there may be no local maximum

membrane voltage below the threshold. In this case, MPD-AL cannot find t∗ if another spike is required (right). However, VSG can find the point

where the membrane voltage increases the fastest, namely its t∗ (left).

FIGURE 5

Membrane voltage traces and synaptic weights before (blue) and after learning (black). The learning neuron receives 4 Hz (A,B) and 20 Hz (C,D)

spikes from 500 presynaptic neurons, respectively, and are trained to emit 10 spikes in 500 ms.

before and after learning when the input spikes is 20 Hz. Before

learning, too dense input causes neurons to emit a lot of spikes,

and the VSG algorithm weakens the synaptic weights as a whole,

so that neurons only emit 10 spikes at the end.

Then we verify the rationality of the way the VSG finds

adjustment points. We choose different combinations of ways to

find adjustment points to test the efficiency of training neurons

to emit a specified number of spikes. The firing rate of input

is 4–10 Hz, which allows the initial spike count to be more

or less than the desired count. Other experimental conditions

remain unchanged. The average times over 20 trials for several

combinations at each desired spike count are reported. If the

neuron does not successfully trigger the corresponding number

of spikes until 2,000-th iterations, record the time it took to

run 2,000 iterations. As shown in Figure 6B, when the desired

number of spikes is small, it is more effective to add a new spike

at the maximum peak of the subthreshold membrane voltage.

But when the desired number of spikes is large, learning may fail

due to the inability to find an adjustable point, and the required

time will increase greatly, as shown by the combinations of a and
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FIGURE 6

The comparison of e�ciency between VSG and MPD-AL. (A) The total time to calculate the membrane voltage (dark blue) and find the

corresponding adjustment point (light blue) for 1,000 trials. (B) The average time required to learn the corresponding number of spikes over 20

trials (up to 2,000 iterations each). For cases where one spike needs to be added and removed, several combinations of methods for finding the

adjustment point are tested: (a) maximum peak of subthreshold membrane voltage + last spike (MPD-AL), (b) maximum peak of subthreshold

membrane voltage + spike with the lowest slope, (c) non-firing point with the largest slope + last spike, (d) non-firing point with the largest

slope + spike with the lowest slope (VSG). In addition, the VSG method without considering the error function (e) is also tested.

b. While the method of selecting the point with the largest slope

to add a new spike is stable, as shown by the combination of

c, d, and e. In addition, by comparing the combination a and

b (or c and d), it can be found that selecting the spike with

the lowest slope or the last spike as the removed spike makes

little difference. Therefore, in a nutshell, the way of VSG to find

the adjustment point strikes a good balance between efficiency

and stability.

Furthermore, we conduct experiments to compare the

learning efficiency of VSG and other aggregate-label algorithms.

To this end, we test the time required for each algorithm

to learn successfully when the desired output count ranges

from 10 to 80, with an interval of 10. The firing rate of

input is fixed at 4 Hz. Other experimental conditions are the

same as above. Figure 7A shows the number of times each

algorithm successfully delivered the desired number of spikes

over 20 trials. It can be found that when the desired count

is greater than or equal to 40, MPD-AL cannot successfully

learn every time, because sometimes it cannot find t∗. While

the other three algorithms can learn successfully, even when

the number of desired spikes is very large. Figure 7B shows

the time required to successfully fire the target number of

spikes. The time required for different algorithms almost

increases with the increase of the desired spike count, especially

MST. The time required for TDP1 is relatively less, but

also much more than the proposed algorithm. MPD-AL

can learn very quickly only when the required number of

spikes is small (≤30). When the desired spike count is

large, the average time it consumes increases significantly due

to several failed learning. In short, the learning efficiency

of the proposed algorithm is better than other aggregate-

label algorithms.

FIGURE 7

The comparison among VSG, MPD-AL, TDP1, and MST

algorithms in terms of learning e�ciency. (A) The number of

successes of learning within 2,000 iterations over 20 trials. (B)

The required learning time.

3.2. Detection of predictive clues

The task of detecting clues is to simulate the predictive

behavior of animals in response to small changes in the

environment as they survive in nature. For example, prey

may recognize danger by the sound of breaking twigs among

many natural noises and flee before predator attacks. Therefore,

detecting predictive clues are to identify effective clues hidden
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within distracting streams of unrelated sensory activity. In

addition, there is also a difficulty in how to correlate clues with

long-delayed feedback signals, which is called the “temporal-

credit assignment problem” (Gütig, 2016). In this section, wewill

demonstrate the ability of VSG to solve this task.

Similar to Gütig (2016) and Zhang et al. (2019), 10 short

(50 ms) spiking patterns with firing rate of 4 Hz are generated

from 500 afferents to simulate clues, where effective clues and

distracting clues are randomly set as required. These clues are

then randomly embedded into the background spiking pattern

(with duration Tb), as shown in Figure 8A, and the number

of occurrences of each cue follows a Poisson distribution with

mean Pm. The firing rate of the background pattern is 0∼4 Hz,

with an average of 2 Hz, simulating the complex variability of the

environment. The single neuron takes the long synthetic spike

patterns containing clues and backgrounds as input, and detects

effective clues through training, that is, it emits a specified

number of spikes at the position where the effective clues

appear, while remaining silent where other distracting clues and

background patterns appear. During training, a total of 100

training samples are generated for neurons learning, Tb and Pm

are set to 500 ms and 0.5, respectively. While in testing phase,

in order to make all clues fully exposed, they are set to 2,200 ms

and 0.8.

We set up different experiments to detect different kinds

of clues. Assuming that di spikes are expected to be fired in

response to the appearance of clue i, and the number of times

that clue i occurs in a certain sample is ci. Then for this sample,

the desired spike count of the learning neuron isNd =
∑10

1 cidi,

of which di = 0 for distracting clues. During the learning

process, if the actual spike count is not equal to Nd, the synaptic

weight is strengthened or weakened according to the VSG

algorithm. We first trained the neuron to detect a single kind of

clue, and the remaining nine kinds of clues are distractors. After

training, the neuron not only fires the correct number of spikes,

but also fires only where the effective clue appears, and remains

silent elsewhere. Further, no matter whether di corresponding

to this effective clue is 1 or 5, the neuron can learn successfully,

as shown in Figures 8B,C. Then, we train the neuron to detect

five different clues under the conditions that their corresponding

spike counts are {1, 1, 1, 1, 1} and {1, 2, 3, 4, 5}, respectively.

These involve more complicated temporal-credit assignments.

But surprisingly, the neuron can automatically learn effective

clues and assign them the corresponding number of spikes based

only on the feedback signal of the total number of output spikes,

as shown in Figures 8D,E. The experimental results show the

capabilities of the VSG algorithm to decompose the delayed

output signal and detect effective clues.

3.3. Classification of medical datasets

In this section, we test the proposed method on

three medical datasets from UCI machine learning

repository (Dua and Graff, 2017) and compare with

other algorithms.

3.3.1. Data encoding and output decoding

The data encoding refers to encoding real values into spike

times. As in Shrestha and Song (2016), Wang et al. (2017),

Taherkhani et al. (2018), and Luo et al. (2022), Gaussian

receptive field population encoding is used to encode each

feature in the original data separately. To encode a certain

feature, K identically shaped Gaussian functions that overlap

each other and cover the interval [a, b] are created, where a, b are

the maximum and minimum values of this feature, respectively.

Feeding a real value x into these Gaussian functions yields the

output value yi (i = 1, 2, · · · ,K), and then inversely mapping yi

to [0,T] to get the spike time. T is the time window of encoding

(in this section, T = 100 ms). A large yi corresponds to an early

firing time, a small yi corresponds to a late firing time, and spikes

with time later than 0.9T are canceled. Thus, an original sample

containing N features is encoded as an input pattern containing

KN neurons, each with at most one spike time. More details

about the encoding process can be found in Luo et al. (2022).

Here, for classification tasks, decoding the output refers

to determining the category identified by the network from

its output. In this section, the number of neurons in the

output layer is set equal to the number of categories, and each

neuron corresponds to a category. During training, the neuron

corresponding to the sample’s label is expected to fire Nd (= 5)

spikes, while the other output neurons are expected to not

fire. In the inference phase, the sample belongs to the class

corresponding to the output neuron that emits the most spikes.

If no output neuron fires, the sample belongs to the class of

neuron with the largest membrane voltage.

3.3.2. Medical datasets and classification results

The Wisconsin Breast Cancer dataset (WBC) contains 699

pieces of data described by 9 features, excluding 16 pieces of data

with missing values, 683 samples are used in our experiments.

The BUPA Liver Disorders dataset contains 345 samples with

six features, and the Pima Diabetes dataset contains 746 samples

with eight features. Each of the three datasets has two categories.

As in SpikeProp (Shrestha and Song, 2016), SWAT (Wade et al.,

2010), SRESN (Dora et al., 2016), and FE-Learn (Luo et al.,

2022), we divided the training set and test set in a 1:1 ratio.

For data encoding, we use the same number of neurons as

in SpikeTemp (Wang et al., 2017) and FE-Learn to encode

each feature, shown in Table 1 (# Encoders). A single-layer

network and a two-layer network with 360 hidden neurons are

used to conduct experiments separately. 20 independent trials

are carried out in each experiment, and each trial run 200

epochs. Table 2 reports the mean and standard deviation of the

classification accuracy in 20 trials.
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FIGURE 8

Detection of predictive clues. (A) The input spike pattern showing only 100 of the 500 synaptic a�erents. 10 di�erent cues (represented by

colored rectangles, 50 ms each) are embedded in the background pattern. (B,C) The membrane voltage traces of the trained neuron when there

is only one kind of e�ective clue, and it corresponds to 1 and 5 expected output spikes, respectively. (D,E) The membrane voltage traces of the

trained neuron when there are five kinds of e�ective clues, and they correspond to {1, 1, 1, 1, 1} and {1, 2, 3, 4, 5} expected output spikes,

respectively.

TABLE 1 Description of the dataset.

Dataset WBC Liver disorders Pima diabetes

No. of instances 683 345 768

No. of categorizes 2 2 2

No. of features 9 6 8

No. of encoders 15 25 10

No. of training 341 172 384

No. of testing 342 173 384

As shown in Table 2, the performance of single-layer VSG

is moderate, which is better than that of SWAT, Multilayer DL-

ReSuMe (Taherkhani et al., 2018), and single-layer FE-Learn.

The two-layer VSG performs better, further outperforming

SRESN and two-layer FE-Learn compared to its single-layer

counterpart. On the BUPA Liver Disorders dataset, it achieves

the highest test accuracy of 65.1% together with SpikeProp, but

a smaller standard deviation indicates that it is more stable than

SpikeProp. Furthermore, it achieves sub-optimal accuracy on

both theWBC and Pima Diabetes datasets. SpikeTemp achieved

a state-of-the-art test accuracy of 98.3% on the WBC dataset,

but it has a 2:1 ratio of training and test set, meaning it uses

more training samples to train the model and fewer test samples

to validate, which makes it more advantageous. The accuracy

of SpikeProp on the Pima Diabetes dataset is much higher

than other methods, but it requires a very large number of

training epochs, and it is inferior to the proposed method on

the WBC dataset. In conclusion, none of these algorithms can

be absolutely dominant, and the performance of the proposed

algorithm is relatively excellent.

3.4. Classification of speech datasets

In this section, we conduct experiment on speech

recognition datasets. As mentioned earlier, VSG can detect

useful clues in long spatiotemporal patterns, so it is also suitable

for processing signals with rich temporal information like

speech signals.

3.4.1. Data encoding and output decoding

The TIDIGITS corpus (Leonard and Doddington, 1993)

is a common dataset widely used for speech recognition
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TABLE 2 Comparison of classification performance on medical datasets.

Dataset Breast cancer Liver disorders Pima diabetes

Architecture Epochs Architecture Epochs Architecture Epochs

SpikeProp 55-15-2 1,000 37-15-2 3,000 55-20-2 3,000

SWAT 54-702-2 500 36-468-2 500 54-702-2 500

SRESN 54-(8-12) 306 36-(6-9) 715 54-(9-14) 254

SpikeTemp 135-306 / 150-226 / 80-431 /

Multi DL-ReSuMe / 100 246-360-2 100 / 100

MPD-AL 135-2 200 150-2 200 80-2 200

FE-Learn 135-2 200 150-2 200 80-2 200

FE-Learn2 135-360-2 200 150-360-2 200 80-360-2 200

VSG 135-2 200 150-2 200 Feb-80 200

VSG2 135-360-2 200 150-360-2 200 80-360-2 200

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

SpikeProp 97.3± 0.6 97.2± 0.6 71.5± 5.2 65.1± 4.7 78.6± 2.5 76.2± 1.8

SWAT 96.5± 0.5 95.8± 1.0 74.8± 2.1 60.9± 3.2 77.0± 2.1 72.1± 1.8

SRESN 97.7± 0.6 97.2± 0.7 60.4± 1.7 59.7± 1.7 70.5± 2.4 69.9± 2.1

SpikeTemp 99.1 98.3 93 58.3 77.5 67.6

Multi DL-ReSuMe 98.2 96.4 69.9 61.8 72.1 70.6

MPD-AL 99.9± 0.1 97.2± 0.6 92.7± 1.8 62.2± 3.6 71.4± 1.9 69.6± 1.3

FE-Learn 94.8± 0.9 94.3± 1.7 72.2± 5.0 61.2± 3.6 79.3± 1.2 71.2± 2.0

FE-Learn2 100± 0.0 97.5± 0.5 96.6± 0.7 64.8± 2.3 90.6± 1.4 72.5± 1.5

VSG 99.2± 0.5 97.1± 0.7 74.7± 1.6 63.8± 2.0 77.4± 1.4 72.3± 1.5

VSG2 99.3± 0.3 97.6± 0.6 96.3± 8.1 65.1± 1.9 91.8± 1.8 73.7± 1.7

(Wu et al., 2018a,b). It consists of 11 isolated spoken digit strings

(from “0” to “9,” and “oh”) and speakers from 22 different

dialectical regions. 2,464 and 2,486 speech utterances make up

the standard training set and testing set. There is already a

set of well-established and feasible encoding methods for this

dataset: As shown in Figure 9, the raw speech waveform is first

filtered by a Constant-Q-Transform (CQT) cochlear filter bank

to extract spectral information, where the filter bank consists of

20 cochlear filters from 200 Hz to 8 kHz. Then the threshold

coding mechanism (Gütig and Sompolinsky, 2009) is applied to

convert the each frequency sub-band into a spike pattern of 31

neurons. Finally, the spike patterns obtained from all frequency

bands are spliced into a complete spike pattern of 620 neurons.

More details about the encoding process can be found in Pan

et al. (2020).

There are also differences among samples of the same

category in a dataset, especially for large and complex datasets,

for which a fixed number of outputs is unreasonable. Therefore,

we adopt the dynamic decoding (DD) strategy (Luo et al., 2019,

2022; Zhang et al., 2019) in this experiment. Instead of specifying

a fixed number of output spikes, the dynamic decoding strategy

decides whether to add a new spike based on the current sample.

Here, we modify the strategy as follows to adapt to the proposed

algorithm: If the actual spike count of an output neuron is 1 ≤

No < Nd, a new spike should be added, but unless themembrane

voltage of the selected point reaches a given sub-threshold, i.e.,

V(t∗) ≥ ϑs, the new point will be discarded and no learning will

be performed. This gives the output neuron a degree of freedom

to respond to different inputs of the same class.

3.4.2. Network settings and results

The input layer of the network has 620 neurons and is

responsible for feeding the encoded spike patterns into the

network. The output layer contains 11M neurons, of which M

neurons are a group, corresponding to a class in the dataset.

For the group of neurons corresponding to the sample’s label,

Nd = 5, while the rest of the neurons are expected to not fire

(Nd = 0). In the training phase, if the actual number of spikes

emitted by a output neuron is not equal to Nd, the parameters

are adjusted according to the DD strategy (ϑs = 0.8) and the

VSG algorithm, where the Adam optimizer (Kingma and Ba,

2015) is also used. During inference, the sample is classified into

the class corresponding to the group of neurons with the largest

number of output spikes. If all output neurons fail to fire, the

sample is considered to belong to the class corresponding to the

neuron with the largest membrane voltage. As in the previous

section, we use a single-layer network (620−11) and a two-layer
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FIGURE 9

Schematic diagram of the encoding process of a speech sample (left) and the applied two-layer classification network (right).

TABLE 3 Comparison of classification performance on TIDIGITS

datasets∗.

Model Type Layers Accuracy

Tavanaei and Maida (2017b) SNN+SVM 1 91.00%

Tavanaei and Maida (2017a) Spiking CNN+HMM 3 96.00%

Neil and Liu (2016) MFCC+RNN 4 96.10%

ETDP (Zhang et al., 2020) SNN 2 95.80%

MPD-AL (Zhang et al., 2019) SNN+DD 1 97.52%

FE-Learn (Luo et al., 2019) SNN+DD 1 96.42%

FE-Learn2 (Luo et al., 2022) SNN+DD 2 98.10%

VSG (M = 1) SNN+DD 1 96.34%

VSG (M = 1) SNN+DD 2 98.23% (98.03%)

VSG (M = 10) SNN+DD 2 98.47% (98.32%)

*DD, dynamic decoding. Values in parentheses are the average of 10 experiments.

network with 800 hidden neurons (620−800−11M,M = 1, 10)

to conduct experiments separately.

Table 3 shows the highest test accuracies achieved by the

proposed method and other baseline methods. A single-layer

network trained with VSG can achieve a maximum accuracy of

96.34%. As a single-layer network with only 11 output neurons,

it performs well, as the best performingMPD-AL (among single-

layer network) has 110 output neurons. In addition, when there

is only one set of output neurons (M = 1), the two-layer

network trained by VSG outperforms the two-layer FE-Learn

by a slight advantage. When the number of output neurons is

increased (M = 10), the performance can be further improved,

reaching the highest accuracy of 98.47% as against other baseline

methods. However, since the proposed method has only a slight

advantage over FE-Learn2, it may not have statistical confidence.

So we re-executed the proposed algorithm 10 times (500 epochs

each) on the two-layer network and reported the average test

accuracies (in parentheses). WhenM = 10, the average accuracy

is 98.32%, which is also higher than the highest accuracy of

FE-Learn2. In addition, although the average accuracy when

M = 1 is only 98.03%, the highest accuracy (98.23%) is higher

than that of FE-Learn2. We believe that this can demonstrate the

superiority of the proposed algorithm.

4. Discussion and conclusion

Temporal-credit assignment problem is a non-trivial

problem in machine learning, and the aggregate-label learning

algorithm MST is an innovative SNN algorithm to solve this

problem. Then TDP1 improves the computational efficiency

of MST by modifying the formula for calculating the weight

derivative. Subsequently, MDP-AL bypasses the procedure of

iteratively finding critical thresholds in the MST and TDP1 by

adjusting the weights directly from the membrane voltage, thus

greatly reducing the computation time. But there is a drawback

in MPD-AL, that is, it may not be able to find the critical time it

needs, leading to the failure of learning.

In this paper, we propose to find the potential points for

emitting a new spike and the old spike that need to be removed

from the time derivative of membrane voltage, avoiding the

dilemma of failing to find the adjustment points. Furthermore,

on the one hand, the intermediate variables required to calculate

this time derivative are also necessary in the calculation of

membrane voltage and subsequent weight derivatives, so little

additional computation is added. On the other hand, we choose

the point with the fastest growth of the time derivative to

add the spike, and select the point with the slowest growth of

the derivative (among the existing pulses) to remove it, which

is experimentally proven to achieve a good balance between

efficiency and stability.

A single neuron trained with this algorithm can be

used to tackle the challenging temporal-credit assignment

problems. Specifically, it can detect valid clues embedded in

distracting clues and background spiking activity, deconstruct

aggregated delayed feedback signal and then assign them to

valid clues. Further, unlike MST, TDP1, and MPD-AL, which

is limited to the training of a single neuron or a single-

layer network, the proposed algorithm is rooted in multi-layer

SNNs for derivation, which further extends its performance. Its
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application on UCI and speech classification datasets also proves

its superiority.

Although the proposed algorithm is simple and efficient, it

has drawbacks. Like MPD-AL, when learning predictive clues, if

the clues in the training samples are too densely distributed, it

will be difficult to learn, which may be an unavoidable problem

caused by not calculating the precise critical threshold. In

addition, as a multi-layer spike-driven SNN learning algorithm,

the proposed learning rule suffers from common problems such

as gradient exploding and dead neurons. These all require us to

further optimize.
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Backpropagation has been regarded as the most favorable algorithm for

training artificial neural networks. However, it has been criticized for

its biological implausibility because its learning mechanism contradicts

the human brain. Although backpropagation has achieved super-human

performance in various machine learning applications, it often shows limited

performance in specific tasks. We collectively referred to such tasks as

machine-challenging tasks (MCTs) and aimed to investigate methods to

enhance machine learning for MCTs. Specifically, we start with a natural

question: Can a learning mechanism that mimics the human brain lead to

the improvement of MCT performances? We hypothesized that a learning

mechanism replicating the human brain is e�ective for tasks where machine

intelligence is di�cult. Multiple experiments corresponding to specific types

of MCTs where machine intelligence has room to improve performance

were performed using predictive coding, a more biologically plausible

learning algorithm than backpropagation. This study regarded incremental

learning, long-tailed, and few-shot recognition as representative MCTs. With

extensive experiments, we examined the e�ectiveness of predictive coding

that robustly outperformed backpropagation-trained networks for the MCTs.

We demonstrated that predictive coding-based incremental learning alleviates

the e�ect of catastrophic forgetting. Next, predictive coding-based learning

mitigates the classification bias in long-tailed recognition. Finally, we verified

that the network trained with predictive coding could correctly predict

corresponding targets with few samples. We analyzed the experimental result

by drawing analogies between the properties of predictive coding networks

and those of the human brain and discussing the potential of predictive coding

networks in general machine learning.

KEYWORDS

brain-inspired learning, biologically plausible learning, deep learning,

backpropagation, predictive coding
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1. Introduction

The human brain has an intricate and heterogeneous

structure that consists of a high recurrent and nonlinear

neural network (Felleman and Van Essen, 1991; Friston,

2008; Bertolero et al., 2015). It is commonly understood

that the learning system of the human brain operates on

the synaptic plasticity mechanism (Hebb, 2005), wherein the

modulation in synaptic weights varies according to the intrinsic

or extrinsic stimuli (Power and Schlaggar, 2017). Specifically,

neural plasticity regulates the process of synaptic transmission

as a fundamental property of neurons (Citri and Malenka, 2008;

Mateos-Aparicio and Rodríguez-Moreno, 2019). Based on this

property, the neuronal responses to sensory stimuli enable the

robust recognition (Ohayon et al., 2012; Denève et al., 2017;

Geirhos et al., 2017; Wardle et al., 2020) and noise-resistance

learning (Suzuki et al., 2015; Perez-Nieves et al., 2021) in

human perception.

Based on the human brain architecture, artificial neural

networks (ANNs) were suggested to simulate the pattern of

the human decision-making process for recognition tasks.

Rumelhart et al. (1986) introduced the backpropagation

algorithm that adjusts the network parameters to achieve

reliable performance. Backpropagation iteratively updates the

network parameters relying on the error signal generated at

the end of the network between the produced output and

the desired output. In the last decade, with the benefits of

backpropagation (Rumelhart et al., 1986), ANNs have exceeded

human-level performance on classification, segmentation, and

detection (He et al., 2016; Dosovitskiy et al., 2020). However,

learning ANNs with backpropagation have been criticized for

their biological implausibility, wherein its behavior conflicts

with the activity of real neurons in the human brain (Akrout

et al., 2019; Illing et al., 2021). First, the human brain

operates according to neural plasticity, which indicates the

capability for modifying neural circuit connectivity or degree

of interaction (Neves et al., 2008). Second, global error-guided

learning requires the forward weight matrices to propagate the

error signal flow to the lower layer, that is weight transport

problem (Grossberg, 1987). Multiple learning algorithms have

been proposed to alleviate the previously mentioned issues

based on strong constraints of backpropagation and reinforce

its biological plausibility (Liao et al., 2016; Lillicrap et al., 2016;

Whittington and Bogacz, 2017; Woo et al., 2021; Dellaferrera

and Kreiman, 2022). This study explored the predictive coding

network (Whittington and Bogacz, 2017) among the various

biologically plausible learning and its characteristics.

A predictive coding network (Whittington and Bogacz,

2017) was introduced to resolve the biological limitations of

backpropagation depending on the hierarchically organized

visual cortex of the human brain (Rao and Ballard, 1999; Friston,

2008). With respect to biological plausibility, a predictive

coding network concentrates on local and Hebbian plasticity

by minimizing the prediction errors between expected and

actual inputs (Rao and Ballard, 1999; Millidge et al., 2020).

The learning mechanism of the predictive coding network

is different from that of backpropagation, which updates the

network parameters using only one error derived from the last

layer (Rumelhart et al., 1986). Predictive coding is regarded as a

local learning algorithm because its learning is performed with

local error nodes and global error nodes. A learning network

with predictive coding approximates the learning dynamics of

backpropagation (Whittington and Bogacz, 2017) and can also

be expanded to arbitrary computational graphs (Millidge et al.,

2020). Multiple works (Han et al., 2018; Wen et al., 2018; Choksi

et al., 2021) inspired by the property of prediction itself have

been proposed, and some studies (Choksi et al., 2021; Salvatori

et al., 2021) demonstrated that the potential of the predictive

manner related to human perception.

However, despite the remarkable accomplishment of

ANN architectures and their learning algorithms, there

remains a performance gap between machine and human

intelligence in some applications. We collectively refer

to these tasks as machine-challenging tasks (MCTs); MCTs

are difficult for machine intelligence while easy for human

intelligence. This study considers the representative MCTs as

incremental learning, long-tailed recognition, and few-shot

learning (Hassabis et al., 2017). A more detailed definition

and explanation of MCTs will be presented in Section 2.2.

Humans progressively and ceaselessly acquire new knowledge

and preserve it by virtue of the hippocampus (Preston and

Eichenbaum, 2013). The primary function of the hippocampus

is that it enables long-term memory of the spatial and sequential

order from the human experience (Bird and Burgess, 2008;

Davachi and DuBrow, 2015). This property makes the

human intelligence exhibits robust and performs better than

machine intelligence (Goodfellow et al., 2014; Zhou and

Firestone, 2019; Liu et al., 2021). Meanwhile, ANNs trained with

backpropagation tend to forget what it learned when it learns

new information, that is catastrophic forgetting (McCloskey

and Cohen, 1989; French, 1999; Goodfellow et al., 2013). As

another example, machine intelligence shows unsatisfactory

performance under limited or imperfect training data

recognition (De Man et al., 2019; Liu et al., 2019a). When

training ANNs for classification tasks in a long-tail scenario, the

classifier can be easily biased toward the majority classes that

contain the most data and show poor performance in minority

classes (Johnson and Khoshgoftaar, 2019). These phenomena

result from the fundamental differences in visual processing

between the brain and ANNs (Xu and Vaziri-Pashkam, 2021).

Inspired by Hassabis et al. (2017), we hypothesized that the

closer the learning algorithm is to the human brain, the more

effective it is for the MCTs.

Similar to our assumption on the MCTs, the learning

algorithms inspired by the brain are consistently studied to

reduce the performance gap between machine intelligence and
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human intelligence based on human’s various attributes. In

terms of human learning mechanisms, a spiking neural network

(SNN) is considered a promising solution to replicate the

neural processing process of the brain. Yang et al. (2022c)

proposed an SNN-based continual meta-learning framework

and demonstrated that the suggested model improves the

accuracy and robustness of the continual meta-learning tasks.

Yang et al. (2022b) also established the ensemble framework with

multiple spike-driven few-shot online learning and confirmed

the effectiveness of the brain-inspired paradigm. On the

other hand, recent studies reported that the neural network

trained biologically plausible manner embodies specific memory

functions in the human memory system. Salvatori et al. (2021)

discovered that the network trained with predictive coding

can naturally implement the associative memory function,

such as reconstructing incomplete regions. Yang et al. (2022a)

verified that the multicompartmental spiking neural network

incorporates the working memory satisfying four essential

components of brain-inspired mechanisms. Therefore, based

on previous studies, we speculated that predictive coding has

other latent properties. This study aimed to discover hidden

properties and extend the scope of predictive coding to MCTs.

Contrary to the conventional solutions for the MCTs, our study

focused on the predictive coding algorithm itself employed for

the optimization of the network parameters. In incremental

learning, it is confirmed that predictive coding better reveals

the plasticity-stability property and enables faster adaptation to

new tasks than backpropagation. In long-tailed recognition, it

reduces the classification bias problem of minority classes.

This paper is organized as follows: In Section 2, the

predictive coding network is briefly reviewed. In Section 3,

the experiments on incremental learning based on a predictive

coding network are presented. In Section 4, the experiments

on limited data recognition based on a predictive coding

network, such as long-tailed recognition and few-shot learning,

are described. In Section 5, we discuss why predictive coding

network improves the performance of MCTs. In Section 6,

related work to help understand our paper is presented. In

Section 7, we conclude the paper with limitations and a

summary.

Our contributions can be summarized as follows:

• The study characterized the MCTs, which are easy for

human intelligence and difficult for machine intelligence,

in machine learning fields and proposed a hypothesis

that the brain-inspired learning algorithm improves the

performance of MCTs.

• Predictive coding, a biologically plausible learning

algorithm, was adopted for MCTs, such as incremental

learning and limited data recognition. In addition,

extensive experiments were performed by reimplementing

the learning with backpropagation with predictive coding.

• The effect of learning algorithms close to brain learning

on MCTs in terms of neuroscience was presented. Mainly,

the experimental results were analyzed with respect to

the plasticity-stability dilemma and interplay between the

hippocampus and prefrontal cortex.

2. Related Work

2.1. Biologically Plausible Learning

The backpropagation algorithm (Rumelhart et al., 1986),

which simulates the properties of the human brain, has achieved

excellent progress in various machine learning tasks. The

algorithm calculates the global error by comparing the predicted

outputs and the actual targets at the network’s end to achieve an

objective. Then, it propagates the error signal to the front of the

network to update parameters. Although backpropagation is the

most popular learning algorithm for ANNs, it is often regarded

as a biologically implausible algorithm from a neuroscience

perspective. The main reason is that backpropagation does

not operate following the local synaptic plasticity (Takesian

and Hensch, 2013; Mateos-Aparicio and Rodríguez-Moreno,

2019) as a fundamental property of the nervous system.

Synaptic plasticity refers to the ability to reorganize structures

or connections by intrinsic or extrinsic stimuli. Another

reason is that the backpropagation requires a copy of the

weight matrices to transfer backward error signal (Grossberg,

1987). However, retaining synaptic weights on each neuron is

impractical in the human brain. So, Lillicrap et al. (2016)

replaced the backward weight matrices with fixed random

weights to avoid those problems. Liao et al. (2016) reported

that the signs of backward weight matrices were important,

and when the signs between the forward and backward

matrices were concordant, the same or better performance

could be achieved. Furthermore, various learning algorithms

have been proposed to reinforce biological plausibility while

maintaining the classification performance (Lee et al., 2015;

Whittington and Bogacz, 2017; Ahmad et al., 2020; Lindsey

and Litwin-Kumar, 2020; Pogodin and Latham, 2020). Among

them, predictive coding, based on the predictive process

of the brain, was suggested to achieve better biologically

plausible properties than the backpropagation algorithm and

achieved comparable performance to the backpropagation

on arbitrary computational graphs (Whittington and Bogacz,

2017).

2.2. Machine Challenging Tasks (MCTs)

ANNs have achieved comparable or superior

performances to humans by backpropagation in
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visual recognition (Russakovsky et al., 2015; Geirhos

et al., 2017). However, ANNs have unsatisfactory

performance in certain tasks regarded as simple

and easy for human intelligence (Goodfellow et al.,

2013; Snell et al., 2017; Cao et al., 2019). As detailed

in Section 1, these types of tasks as MCTs (e.g.,

incremental learning, long-tailed recognition, and few-shot

recognition).

Humans ceaselessly take new information from multiple

sensory organs and reorganize it in the brain (Felleman

and Van Essen, 1991; Denève et al., 2017). These processes

proceed in a lifelong manner because knowledge construction

is affected by previous experiences. In addition, humans can

refine or transfer knowledge acquired from different types of

previous tasks built in an incremental manner (Preston and

Eichenbaum, 2013; Davachi and DuBrow, 2015). In contrast

to human intelligence, ANNs have catastrophic forgetting in

which the collected information is lost after training of

subsequent tasks (Goodfellow et al., 2013).Moreover, the human

visual system shows robust performances even in limited data

recognition, such as long-tailed and few-shot visual recognition.

Real-world data commonly follow long-tailed distribution

wherein the majority classes occupy the significant part of

the dataset and have an open-ended distribution (Liu et al.,

2019b). The primary purpose of long-tailed recognition is to

correctly classify theminority class samples to the corresponding

targets, reducing the classification bias effect (Cao et al., 2019).

Further, the classification of tail class samples can be regarded

as a few-shot recognition problem as the degree of imbalance

increases (Samuel et al., 2021).

The discrepancy in learning performances between humans

and ANNs is closely related to the characteristics of the human

brain. First, the human brain operates under two properties:

plasticity and stability (Takesian and Hensch, 2013). Plasticity

refers to the brain’s change in connectivity and circuitry that

enables humans to acquire knowledge, keep memories, and

adapt to the external environment (Power and Schlaggar,

2017). Meanwhile, stability refers to the ability of long-term

memory where stable memory is relevant to stable neuron

connectivity (Susman et al., 2019). A balance between plasticity

and stability is achieved with excitatory and inhibitory circuit

activity in the visual cortex (Takesian and Hensch, 2013).

Second, the brain engages the hippocampus and neocortex, as

explained by the complementary learning system theory that

characterizes learning in the brain (Preston and Eichenbaum,

2013). The hippocampus focuses on acquiring new knowledge,

and knowledge is transferred and generalized to the neocortex

via the memory consolidation process. Such mechanisms do

not exist in backpropagation. However, they can be indirectly

performed in learning predictive coding through the free-

energy minimization process of predictive coding. As such,

we assume that humans can achieve superior performance

in MCTs.

3. Predictive Coding Networks

Most architectures in ANNs follow an L-layer structure

wherein each layer consists of a set of neurons (Rumelhart et al.,

1986). The training with the backpropagation algorithm can be

explained to minimize a global error generated at the last layer

of a network. In the backpropagation algorithm, an activation

value of each layer is defined as follows:

v̂0 = x (1)

v̂i = f (v̂i−1; θi) (2)

where i is the indices of layers, and θi is the parameters of i-th

layer. The goal of backpropagation algorithm is to minimize a

loss function L(ŷ, y) between the ground-truth target y and the

prediction value ŷ. The final layer output is derived from the

forward pass as follows:

ŷ = f (x; θ) = v̂L (3)

In the backward pass, the optimization of parameters is

performed by the derivative of the loss function. The gradient

of each layer is computed in reverse order as follows:

δi = δi+1
∂fi+1(v̂i; θi+1)

∂ v̂l
(4)

and

dθi = −
∂L(ŷ, y)

∂θi
(5)

where δi and dθi are the error signal and the gradient from i-th

layer, respectively.

Meanwhile, in the predictive coding algorithm, an error

node is defined in every layer, and the goal of learning is to

minimize the collective energy function (Friston, 2003; Bogacz,

2017; Buckley et al., 2017), which is the sum of prediction

errors as illustrated in Figure 1. A predictive coding network

assumes the network as a directed acyclic computational graph

G = {E , V} to deliver an error from the last layer to the first

layer. E and V are defined as a set of error nodes ei ∈ E and

a set of activation nodes vi ∈ V at every layer.

By analogy to the cortical hierarchy in the human brain,

predictive coding can be formulated as a variational inference

algorithm (Friston, 2005; Buckley et al., 2017). Millidge et al.

(2020) extended predictive coding to an arbitrary computational

graph G considering its hierarchical and generative structure.

Given a computational graph G, the feedforward prediction

is defined as p(vi) = 5N
i p(vi|Pi)) and variational posterior

is derived as Q({vi}) = 5N
i Q(vi), where P(x) indicates

the set of parent nodes and C(x) denotes the set of child

nodes for the given node x. Each activation node has the

prediction v̂i = f (P(vi); θi) = f (v̂i−1; θi) for i-th layer. Based
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FIGURE 1

Illustration of (A) backpropagation and (B) predictive coding. Di�erent from backpropagation, predictive coding has an error unit ǫi for each

activation unit vi and this enables predictive coding to perform local learning.

on this, Millidge et al. (2020) defined a objective function

of predictive coding as the variational free energy F as

follows (Friston, 2005; Buckley et al., 2017):

F = KL[(Q({vi})||p({vi}))] ≥ KL[Q({vi})||p({v1 :N−1|v0, vN})]

≈

N
∑

i=0

eTi ei (6)

where a prediction error of each layer ei. The i-th error node ei

can be calculated as follows:

ei = v̂i−1 − vi = fi(vi−1; θi)− vi (7)

where vi−1 is the activation node value of the previous layer.

In the backward phase of predictive coding, network

parameters θ containing activation nodes {vi} and error nodes

{ei} are updated via gradient descent of each layer as follows:

dvi = −
∂F

∂vi
= ei −

∑

j∈C(vi)

∂ v̂j

∂vi
. (8)

The learning is performed by minimizing the variational free

energy F until converges as follows:

θi = θi + ηdθi (9)

where η is the weight learning rate. Parameters are updated as

follows:

dθi = −
∂F

∂θi
= −ei

∂fi(vi−1; θi)

∂θi
(10)

The equation 10 indicates the local learning rule of the predictive

coding where the parameters of i-th layer are only updated based

on the ei and vi−1.

4. Incremental Learning with
Predictive Coding

Based on previous studies (Hassabis et al., 2017; Perez-

Nieves et al., 2021), our fundamental assumption is that the

more biologically plausible the learning algorithm, closely

replicating the learning mechanism of the brain, the more

effective it will be for MCTs. Previous studies focused on

confirming that the predictive coding network itself inherits the

physiological characteristics of the brain. Salvatori et al. (2021)

recently explored that predictive coding networks naturally

implement associative memory, which plays a vital role in

human intelligence (Colom et al., 2022). Motivated by the

previous study, the current research assumed that predictive

coding networks have a latent ability to consolidate the

sequentially acquired knowledge in the human memory system.

Therefore, we propose a predictive coding framework for

incremental learning and verify the efficacy of MCTs. The

task of incremental learning can be mainly categorized into

two categories (Masana et al., 2020): class-incremental learning

and task-incremental learning. The current study focused on

the former. In class-incremental learning, the knowledge from

previously seen classes is no longer available when a network

learns the knowledge of unseen classes, and the learned network

aims to achieve favorable classification accuracy for all tasks

without forgetting. Multiple tasks were sequentially learned

based on the pre-defined order to validate our assumption, and

each task with its validation set finishing the training of the given

task was evaluated. The algorithms are detailed in Algorithm 1.

4.1. Experimental Settings

A 3-layer predictive coding network with ReLU non-

linearity, where the number of the hidden nodes was 800

for the simple dataset such as MNIST (LeCun et al., 1998)

and FMNIST (Xiao et al., 2017), was employed. Similar

to the study by Serra et al. (2018), a simplified Alexnet

architecture (Krizhevsky et al., 2012) consisting of three

convolutional layers was used for the complex dataset such as

CIFAR-10 (Krizhevsky et al., 2009). The three convolutional

layers comprised 64, 128, and 256 channels.

Frontiers inComputationalNeuroscience 05 frontiersin.org

58

https://doi.org/10.3389/fncom.2022.1062678
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lee et al. 10.3389/fncom.2022.1062678

Input: Dataset DT
t=1, Computational Graph G = {E ,V},

inference learning rate ηv, weight learning rate

ηθ

for all dataset for each task Dt ∈ D do ⊲ For

each minibatch in the sequential tasks

v̂0 ← xt ⊲ Initialize the graph with inputs

for all v̂i ∈ V do ⊲ Forward phase: calculate

predictions

v̂i ← f (P(v̂i); θ)

end for

ǫL ← fL(vL−1; θi)− vL ⊲ Compute output error

while not converged do ⊲ Backward phase:

backward iteration

for all (vi, ǫi) ∈ G do

ǫi ← v̂i−1 − vi ⊲ Compute prediction errors

vi ← vi + ηv
dF
dvi

⊲ Update the vertex values

end for

end while

end for

for all θ ti ∈ E do ⊲ Update weights at

equilibrium

θ ti ← θ t+1i + ηθ
dF
dθi

end for

return θ t

Algorithm 1. Predictive Coding for Incremental Learning.

We refined the data to formulate sequential incremental

tasks. The data were divided into multiple portions following

the representative incremental learning approaches (Lee et al.,

2017; Sokar et al., 2021), and constructed four datasets: disjoint-

MNIST, disjoint-FMNIST, split-MNIST, and split-CIFAR-10.

Disjoint-MNIST and disjoint-FMNIST were organized by

separating MNIST and FMNIST into two tasks. In addition, a

more complex dataset, called split-MNIST and split-CIFAR-10,

was also established, where all classes were separated into five

tasks, and each task contained two categories. The details of

the tasks on the multiple datasets are described in Tables 1 and

2. Finally, we evaluated incremental learning performance. We

trained a network with sequential order and measured that the

acquired knowledge was maintained after each task’s training,

same as Serra et al. (2018).

A learning rate of 0.05 was used, and the learning rate

was divided by 1/3 to perform incremental learning, if there

was no advancement in the validation loss for five consecutive

epochs. In predictive coding, the weight learning rate was set

as 0.1 while keeping the other hyperparameters. The minimum

learning rate was set as 1e−4 and batch size as 64. All

experiments were conducted using data split according to

five different seeds. We provide the code to reproduce the

results in the manuscript at https://github.com/jangho2001us/

PredictiveCoding$_$IncrementalLearning.

4.2. Experiments on Incremental Learning

Incremental learning was performed on disjoint-MNIST

and disjoint-FMNIST using the predictive coding framework

to validate our hypothesis. To implement the incremental

learning task in a predictive coding manner, we integrated

the code of Serra et al. (2018) and Rosenbaum (2021) by

replacing the network learning from the backpropagation with

the predictive coding networks. The performance of each task

was evaluated after completing the learning of each task in

Tables 3 and 4. The performance in all tasks learned was

evaluated using the best model of the last task. In this case, the

best model refers to the model with the highest performance

in the given task. Moreover, the other backpropagation-based

incremental approaches containing SGD (Goodfellow et al.,

2013), SGD-F (Goodfellow et al., 2013), EWC (Kirkpatrick

et al., 2017), IMM (Lee et al., 2017), LFL (Jung et al., 2016),

and LWF (Li and Hoiem, 2017) were evaluated to observe

whether the predictive coding framework itself is effectual for

preventing catastrophic forgetting. For all datasets, the average

performance of the network trained with SGD based on the

predictive coding manner outperformed the performance of

the network trained with SGD based on backpropagation.

Furthermore, learning with predictive coding exceeds strong

competitor EWC (Kirkpatrick et al., 2017) on disjoint-MNIST

and split-MNIST.

To make the challenging experimental settings, we

combined two classes into one task and created five tasks using

MNIST and CIFAR-10, similar to the study by Sokar et al.

(2021). Incremental learning performance of backpropagation

and predictive coding on split-MNIST and split-CIFAR-10

is shown in Tables 5 and 6. The performance of incremental

learning based on predictive coding was also compared with

that of conventional approaches (Goodfellow et al., 2013;

Jung et al., 2016; Kirkpatrick et al., 2017; Lee et al., 2017; Li

and Hoiem, 2017). To observe its ability to retain previously

obtained knowledge, we visualized the average accuracy

of trained tasks in Figure 2. Figure 2 and Table 5 are the

experimental results from the same protocol (split-MNIST).

After finishing every epoch, we evaluated the performance

of all the tasks and drew Figure 2. While Table 5 shows the

results of the average evaluation five times using the best model

derived from each task. It was confirmed that catastrophic

forgetting occurred in both learning algorithms, but the degree

of forgetting was certainly more severe in the experimental

results of backpropagation. Learning with predictive coding

showed stable performance even when the learning task

changed, in contrast to the pattern of backpropagation. In the

backpropagation experiment, when the network acquired the
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TABLE 1 Details of the tasks in the disjoint-MNIST and disjoint-FMNIST benchmarks.

Task id MNIST classes FMNIST classes Training Testing

1 [0, 1, 2, 3, 4] [T-shirt/top, Trouser, Pullover, Dress, Coat] 25000 5000

2 [5, 6, 7, 8, 9] [Sandal, Shirt, Sneaker, Bag, Ankle boot] 25000 5000

TABLE 2 Details of the tasks in the split-CIFAR-10 benchmark.

Task id CIFAR-10 classes Category Training Testing

1 [airplane, car] vehicle 10000 2000

2 [bird, cat] animal 10000 2000

3 [deer, dog] animal 10000 2000

4 [frog, horse] animal 10000 2000

5 [ship, truck] vehicle 10000 2000

TABLE 3 Comparison of incremental learning performance (%) on

disjoint-MNIST.

Algorithm Method Task1 Task2 Average

BP SGD (Goodfellow et al., 2013) 88.19 98.99 93.59

SGD-F (Goodfellow et al., 2013) 99.61 84.56 92.09

EWC (Kirkpatrick et al., 2017) 92.29 98.99 95.64

IMM-MEAN (Lee et al., 2017) 98.22 97.10 97.66

IMM-MODE (Lee et al., 2017) 85.51 98.47 91.99

LFL (Jung et al., 2016) 93.20 65.78 79.49

LWF (Li and Hoiem, 2017) 99.43 98.84 99.13

PC SGD (Goodfellow et al., 2013) 92.80 98.91 95.85

We denoted the learning with backpropagation as BP and learning with the predictive

coding framework as PC.We used the five random seeds in the experiments and reported

the average performance between task1 and task2.

knowledge of task 3, the knowledge of task 2 was forgotten.

Further, when the network learned knowledge of task 5, it

was confirmed that the discriminative information of tasks 1

and 2 was removed from the memories. These experimental

results confirm that a biologically plausible learning algorithm

reduces catastrophic forgetting in incremental learning

and enhances the performance of incremental learning as

one of MCTs.

We carried out additional experiments to demonstrate the

advantages of learning with the brain-inspired algorithm. We

implemented the predictive coding version of EWC (Kirkpatrick

et al., 2017), IMM-MEAN (Lee et al., 2017), and IMM-

MODE (Lee et al., 2017) algorithms and evaluated their

performance on disjoint-MNIST. In the EWC algorithm,

learning with predictive coding improves the average

performance from 95.64% to 97.52%. In addition, learning

with predictive coding enhances the average performance 0.21%

and 5.42% in IMM-MEAN and IMM-MODE, respectively.

TABLE 4 Comparison of incremental learning performance (%) on

disjoint-FMNIST.

Algorithm Method Task1 Task2 Average

BP SGD (Goodfellow et al., 2013) 67.37 97.47 82.42

SGD-F (Goodfellow et al., 2013) 91.87 82.06 86.96

EWC (Kirkpatrick et al., 2017) 88.79 96.66 92.72

IMM-MEAN (Lee et al., 2017) 85.70 95.46 87.78

IMM-MODE (Lee et al., 2017) 64.15 96.33 80.24

LFL (Jung et al., 2016) 79.00 83.01 81.00

LWF (Li and Hoiem, 2017) 91.24 97.35 94.30

PC SGD (Goodfellow et al., 2013) 75.68 97.11 86.40

We denoted the learning with backpropagation as BP and learning with the predictive

coding framework as PC.We used the five random seeds in the experiments and reported

the average performance between task1 and task2.

5. Limited Data Recognition with
Predictive Coding

The potential of predictive coding networks for limited

data recognition was then investigated. Specifically, the efficacy

of predictive coding networks in long-tailed recognition and

few-shot recognition type of MCTs was analyzed. First, real-

world datasets are often highly imbalanced following long-tail

distribution in which data category accounts for a significant

portion of the overall data (Johnson and Khoshgoftaar, 2019;

Liu et al., 2019b). Owing to the skewed class distribution of

the dataset, the network trained with a class-imbalanced dataset

may show a classification bias problem in which the samples of

tail classes are predicted as head classes (Cao et al., 2019). In

addition, managing few-shot samples in an open-world setting

is crucial because it is similar to the situation in which the

human recognition system can be encountered. Second, to

achieve more human-like recognition performance, effectively

managing few-shot examples in an open-world setting is crucial.

Two experimental scenarios are significant because it is realistic

situations that human recognition can encounter.

The cortical neuron in the human brain can learn with only

a few repetitions owing to the local synaptic plasticity (Yger

et al., 2015), and it is widely known that such plasticity

contributes to the interactions between limited data (Wu et al.,

2022). It has been demonstrated that the changes in synaptic

connections assist in learning new information and long-term

memory formation (Yang et al., 2009). Given the characteristics
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TABLE 5 Comparison of incremental learning performance (%) on split-MNIST.

Algorithm Method Task1 Task2 Task3 Task4 Task5 Average

BP SGD (Goodfellow et al., 2013) 98.52 74.06 93.74 96.43 99.61 92.47

SGD-F (Goodfellow et al., 2013) 99.95 90.52 95.43 98.06 87.38 94.27

EWC (Kirkpatrick et al., 2017) 99.41 75.24 94.21 96.34 99.60 92.96

IMM-MEAN (Lee et al., 2017) 99.94 98.67 94.38 96.55 88.33 95.57

IMM-MODE (Lee et al., 2017) 99.88 74.20 95.27 97.47 99.42 93.25

LFL (Jung et al., 2016) 94.34 52.62 54.34 70.63 89.36 72.26

LWF (Li and Hoiem, 2017) 99.95 99.10 99.77 99.83 99.76 99.68

PC SGD (Goodfellow et al., 2013) 99.89 97.09 99.28 99.39 98.37 98.80

We denoted the learning with backpropagation as BP and learning with the predictive coding framework as PC.We used the five random seeds in the experiments and reported the average

performance from task1 to task5.

TABLE 6 Comparison of incremental learning performance (%) on split-CIFAR-10.

Algorithm Method Task1 Task2 Task3 Task4 Task5 Average

BP SGD (Goodfellow et al., 2013) 72.17 66.08 71.44 84.17 93.71 77.51

SGD-F (Goodfellow et al., 2013) 95.72 67.96 60.03 69.97 77.38 74.15

EWC (Kirkpatrick et al., 2017) 72.76 64.90 67.53 73.99 72.15 70.26

IMM-MEAN (Lee et al., 2017) 89.71 78.35 78.51 74.73 78.91 80.04

IMM-MODE (Lee et al., 2017) 76.14 67.07 73.63 84.79 93.87 79.10

LFL (Jung et al., 2016) 71.50 59.30 71.71 84.47 84.85 74.37

LWF (Li and Hoiem, 2017) 76.95 70.58 78.46 94.34 93.99 82.86

PC SGD (Goodfellow et al., 2013) 70.42 74.27 80.70 87.21 90.96 80.71

We denoted the learning with backpropagation as BP and learning with the predictive coding framework as PC.We used the five random seeds in the experiments and reported the average

performance from task1 to task5.

of synaptic plasticity, experiments with a predictive coding

framework were performed on the class-imbalanced data, and

the biologically plausible learning algorithm that helped limited

data recognition was identified.

5.1. Experimental Settings

The same architecture used in the previous section

consisting of three-layer MLP was used in long-tailed

recognition. The number of hidden neurons was set as 800

with ReLU non-linearity and dropout. We used MNIST (LeCun

et al., 1998) for our experiment and synthesized the long-tailed

data with an imbalance ratio γ . The imbalance ratio was defined

as the proportion of the samples of the highest number of

classes to the lowest number of classes as Nmax
Nmin

. Although it

differed depending on the imbalance ratio, in general, Nmax

and Nmin usually followed the relationship, Nmax ≫ Nmin.

Exponential distribution and the number of samples Nl in

l-th class was defined as Nl = Nmax · γ
−

l−1
L−1 . The four types

of imbalanced data distribution were then synthesized as

previously described (Kim et al., 2020). To train a network, we

set a batch size of 128 and optimized a model until 100 epochs.

When backpropagation was used for learning, the learning rate

was increased from 0.0001 to 0.5 by growing five times, and the

best performance results among them were determined. When

predictive coding was used for the optimization, a learning rate

of 0.002 with a weight decay of 2e−4 was used. Additionally, the

weight learning rate η was set as 0.1 and the number of iterations

as 20 as hyperparameters for predictive coding networks. All

the experiments with predictive coding were performed under

the fixed prediction assumption. We provide the code to

reproduce the results in the manuscript at https://github.com/

jangho2001us/PredictiveCoding$_$LongTailedRecognition.

In few-shot recognition, the same experimental settings with

those of Snell et al. (2017), which comprised four convolutional

blocks with Batch normalization, ReLU, and MaxPool were

used. Experiments on few-shot recognition were conducted

with Omniglot (Lake et al., 2011) dataset containing 1623

categories of handwritten characters. The performance of few-

shot recognition is commonly measured by N-way k-shot

classification, where N implies the number of given classes and

k indicates the number of samples in each category. The current

study extended the experimental protocol of the original paper

to 30-way k-shot experiment settings because those evaluation
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FIGURE 2

Qualitative and quantitative performance comparison on two learning schemes for (A,B) backpropagation and (C,D) predictive coding on

split-MNIST. In (A,C), the solid line indicates the average accuracy for each task and the transparent region represents the standard deviation on

five random seeds. The vertical dashed line refers to the point at which the task to be learned changes. In (B,D), each value indicates the

performance each task measured by the final model.

protocols are more difficult because the number of classes for

the candidate group increases. The learning rate was set to 1e−3

and then reduced by 1/10 every 20 epoch to train a network. For

learning networks with a predictive coding framework, the same

learning rate, weight decay, weight learning rate, and iterations

were used. For more information, please refer to the original

paper (Snell et al., 2017). We provide the code to reproduce the

results in the manuscript at https://github.com/jangho2001us/

PredictiveCoding$_$FewShotRecognition.

5.2. Experiments on Long-tailed
Recognition

In Table 7, we compared the long-tailed recognition

performance with Cross-Entropy (CE) loss, Mixup

approach (Zhang et al., 2017), Focal loss (Lin et al., 2017),

Class-Balanced Focal (CB Focal) loss (Cui et al., 2019), Label-

Distribution-Aware-Margin (LDAM) loss (Cao et al., 2019),

and Balanced Meta-Softmax (BALMS) loss (Ren et al., 2020).

Further details on multiple learning objectives are provided in

the Supplementary material. The experimental results showed

the benefit of learning with predictive coding networks. First,

the long-tailed recognition performance was higher by 4.45% in

learning the network with a predictive coding framework than

that in learning with CE loss under severe class imbalance of

data distribution. Similar results in the following experiments

were observed when the network was trained with other learning

objectives such as Focal (Lin et al., 2017) and BALMS (Ren

et al., 2020). In this experiment, the performance improvement

is evaluated using the predictive coding framework rather than

comparing performance between different learning objectives.

The results shown in Table 7 indicate that the learning algorithm

close to the human brain brings a positive effect on MCTs,

confirming our assumption.

5.3. Experiments on Few-shot
Recognition

The few-shot recognition performance trained with

backpropagation and predictive coding framework is shown

in Table 8, Learning with predictive coding enabled robust

recognition under the various few-shot experimental protocols.

Additionally, predictive coding networks showed their potential

ability under challenging inference settings such as 20-way 1-

shot and 30-way 1-shot rather than 20-way 5-shots and 30-way

5-shots. The experimental results confirmed our assumptions
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TABLE 7 Comparison of classification performance (%) on MNIST under four di�erent imbalance distributions.

Imbalance Ratio (γ )

Algorithm Objective Function 200 100 50 10

BP CE 68.78 78.06 89.63 97.17

Mixup (Zhang et al., 2017) 67.60 76.69 86.97 96.15

Focal (Lin et al., 2017) 70.92 79.42 90.89 97.31

CB Focal (Cui et al., 2019) 69.93 79.72 91.26 97.09

LDAM (Cao et al., 2019) 65.17 75.58 84.91 97.14

BALMS (Ren et al., 2020) 72.25 81.34 92.50 97.23

PC CE
73.23

(+4.45)

79.26

(+1.20)

90.10

(+0.47)

97.37

(+0.20)

Mixup (Zhang et al., 2017)
67.77

(+0.17)

77.60

(+0.91)

88.26

(+1.29)

96.27

(+0.12)

Focal (Lin et al., 2017)
71.99

(+1.07)

79.57

(+0.15)

91.18

(+0.29)

97.03

(-0.28)

CB Focal (Cui et al., 2019)
70.19

(+0.26)

80.28

(+0.56)

91.40

(+0.14)

97.24

(+0.14)

LDAM (Cao et al., 2019)
65.54

(+0.37)

76.05

(+0.47)

85.08

(+0.17)

97.20

(+0.06)

BALMS (Ren et al., 2020)
74.22

(+1.97)

82.28

(+0.94)

93.50

(+1.00)

97.45

(+0.22)

Experiments are performed with five random seeds, and the average performance is reported. Relative variance is provided in the bracket. Increments are presented as red and decrements

as blue.

TABLE 8 Experimental results on the low-shot recognition on the Omniglot dataset.

Algorithm Method
5-way Acc. 10-way Acc. 20-way Acc. 30-way Acc.

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

BP ProtoNet 98.41 99.56 96.87 99.18 94.64 98.54 92.97 97.98

(Snell et al., 2017)

PC ProtoNet 98.46 99.59 96.98 99.19 94.88 98.59 93.14 98.05

(Snell et al., 2017) (+0.05) (+0.03) (+0.11) (+0.01) (+0.24) (+0.05) (+0.17) (+0.07)

Five random seeds are used in the experiment, and the average performance is reported. Relative variance is shown in the bracket. Increments are presented as red.

and supported that the brain-like learning algorithm was

effective for MCTs.

6. Discussion

6.1. Analysis of Plasticity-stability Aspects

The plasticity-stability dilemma is a well-known problem

widely studied in biology (Mateos-Aparicio and Rodríguez-

Moreno, 2019). This phenomenon is related to the power of

consolidation of new information without forgetting previously

acquired information (Mermillod et al., 2013). Further, it is

an essential issue in incremental learning with ANNs (Lin

et al., 2022). The human brain is well-controlled to learn

new information and to prevent the learned information

from being overridden by the new information (Takesian and

Hensch, 2013). However, ANNs naturally induce catastrophic

forgetting and expose the trade-off between plasticity and

stability (Kirkpatrick et al., 2017).

To confirm that predictive coding achieves a better

plasticity-stability trade-off than backpropagation, we

experimented with split-MNIST by controlling the stability

of two learning mechanisms. Adjusting the learning rate

is not directly related to stability, but it was used because

it was considered as a factor that could adjust stability in

our experiments. In Figure 3, we report the experimental

results and compare the learning schemes by adjusting the

learning rate of backpropagation and the weight learning rate

of predictive coding. In backpropagation experiments, the
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FIGURE 3

Comparison of learning with (A) backpropagation and (B) predictive coding on split-MNIST in two learning schemes. To adjust network stability,

the learning rate of backpropagation and the weight learning rate of predictive coding are varied.

learning is reduced from 0.01 to 0.0001 to decrease forgetting

of acquired knowledge. When the learning rate was 0.0001, the

network forgot less information to perform task 2. However,

it still showed limited performance in tasks 1 and 2. Thus,

maintaining stability by reducing the learning rate may not

be acceptable because it deteriorates the overall performance.

Meanwhile, performance was consistently high for each task in

predictive coding experiments. These results implied predictive

coding had better plasticity properties than backpropagation

while maintaining stability.

6.2. Interplay of Hippocampus and
Prefrontal Cortex

The hippocampus plays an essential role in episodic memory

at the top of the cortical processing hierarchy (Felleman

and Van Essen, 1991). In incremental learning, the ability to

regulate learned information and retrieve context-appropriate

memories is essential. We can understand the effectiveness of

predictive coding in incremental learning as the interaction

between the hippocampus and the prefrontal cortex in the

human brain (Eichenbaum, 2017; Barron et al., 2020). It is

well known that the hippocampus can quickly encode new

information, stabilize memory traces, and organize memory

networks (Preston and Eichenbaum, 2013). In addition, this

mechanism has been physiologically proven through functional

magnetic resonance imaging studies (Hindy et al., 2019).

We have shown that the learning process of predictive

coding networks is analogous to the interaction between

the hippocampus and the prefrontal cortex in the human

brain (Eichenbaum, 2017). As described in Algorithm 1, the

learning process based on predictive coding networks can be

divided into two phases: forward and backward pass. In the

forward phase, the predictive coding network computes its

predictions for every layer. In the backward phase, the predictive

coding network minimizes the free-energy summation as a

learning objective. The two-phase learning of predictive

coding networks corresponds to acquiring and consolidating

information in the hippocampus and prefrontal cortex. The

predictive coding framework promotes the two processes and

enables accurate inference when data containing information

corresponding to the previously learned task are received.

6.3. Rationale for Selecting Predictive
Coding

The reason why we selected predictive coding as a brain-

inspired algorithm is as follows. As described in Section 2,

predictive coding is potentially more biologically plausible

because local learning rules perform parameter updates. This

property is distinct from the update of backpropagation

executed from the global error signal. It will be ideal if the

parameter update is performed asynchronously in a different

layer, such as the neural plasticity of the human brain. However,

the parameter update of predictive coding occurs under the

fixed prediction assumption (Millidge et al., 2020). The fixed

prediction assumption implies that the parameters are updated

based on the fixed predictions of the forward phase.Whittington

and Bogacz (2017) demonstrated that a predictive coding

network with a fixed prediction assumption performs the same

parameter updates as backpropagation. Another limitation of

predictive coding is the degree of convergence of variational

free energy used as a learning objective. The convergence of

the backward phase is achieved by setting a specific number

of iterations (Rosenbaum, 2021). Depending on the number

of backward iterations, learning with predictive coding may
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converge or diverge. Although these two issues introduced

earlier remain open questions, we conducted our experiments

using predictive coding because we thought its advantages

outweighed its disadvantages.

7. Conclusion

This study empirically demonstrated the potential

effectiveness of predictive coding in MCTs. However, despite

this, the predictive coding algorithm still has some limitations.

First, predictive coding requires a longer training time than

backpropagation because it executes backward iteration until

the error nodes and activation nodes converge. Although we

expanded our experiments for large networks such as VGGNet

and ResNet (He et al., 2016; Krizhevsky et al., 2017), we could

not perform the experiments on MCTs because of the excessive

training time. Second, to conduct learning with predictive

coding, the network should be an architecture composed of

sequential layers. For example, if shortcut connections exist, it is

challenging to implement them into a predictive coding layer.

In this case, we set the block unit, which is the boundary of the

shortcut, as the predictive coding layer. If predictive coding

combines learning speed and scalability, there will be infinite

opportunities for development as a learning algorithm that can

replace backpropagation.

In summary, we extensively analyze the benefits of learning

ANNs with predictive coding frameworks for MCTs. MCTs can

be described as tasks that are easy for human intelligence while

difficult for machine intelligence. Based on our hypothesis, we

empirically demonstrate that brain-inspired predictive coding

has advantages in incremental learning on MNIST and CIFAR,

long-tailed recognition on MNIST, and few-shot recognition on

Omniglot. In neuroscience, especially the intrinsic properties

of the human brain, we discuss why training ANNs with

a predictive coding framework improves the performance of

MCTs. The study concludes that predictive coding learning is

similar to the plasticity-stability property of the human brain

and mainly mimics the interaction between the hippocampus

and prefrontal cortex. Finally, it is an interesting avenue

for future work to reduce the training time under the fixed

prediction assumption and relax the constraint of predictive

coding while maintaining the performance.
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Among the main features of biological intelligence are energy e�ciency,

capacity for continual adaptation, and risk management via uncertainty

quantification. Neuromorphic engineering has been thus far mostly driven

by the goal of implementing energy-e�cient machines that take inspiration

from the time-based computing paradigm of biological brains. In this paper,

we take steps toward the design of neuromorphic systems that are capable

of adaptation to changing learning tasks, while producing well-calibrated

uncertainty quantification estimates. To this end, we derive online learning

rules for spiking neural networks (SNNs) within a Bayesian continual learning

framework. In it, each synaptic weight is represented by parameters that

quantify the current epistemic uncertainty resulting from prior knowledge and

observed data. The proposed online rules update the distribution parameters

in a streaming fashion as data are observed. We instantiate the proposed

approach for both real-valued and binary synaptic weights. Experimental

results using Intel’s Lava platform show the merits of Bayesian over frequentist

learning in terms of capacity for adaptation and uncertainty quantification.

KEYWORDS

spiking neural networks, Bayesian learning, neuromorphic learning, neuromorphic

hardware, artificial intelligence

1. Introduction

Recent advances in machine learning and artificial intelligence systems have been

largely driven by a pursuit of accuracy via resource-intensive pattern recognition

algorithms run in a train-and-then-deploy fashion. In stark contrast, neuroscience

paints a picture of intelligence that revolves around continual adaptation, uncertainty

quantification, and resource budgeting (allostasis) for the parsimonious processing

of event-driven information (Doya et al., 2007; Friston, 2010; Feldman Barrett,

2021; Hawkins, 2021). Taking inspiration from neuroscience, over the last decade,

neuromorphic engineering has pursued the goal of implementing energy-efficient

machines that process information with time via sparse inter-neuron binary signals—

or spikes (Davies et al., 2021). The main aim of this paper is to introduce algorithmic

solutions to endow neuromorphic models, namely spiking neural networks (SNNs),

with the capacity for adaptation to changing learning tasks, while ensuring the reliable

quantification of uncertainty of the model’s decisions.
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1.1. Managing uncertainty via Bayesian
learning

Training algorithms for SNNs have been overwhelmingly

derived by following the frequentist approach which consists in

minimizing the training loss with respect to themodel parameter

vector (Shrestha and Orchard, 2018; Zenke and Ganguli, 2018;

Bellec et al., 2020; Kaiser et al., 2020). This is partly motivated by

the dominance of frequentist learning, and associated software

tools, in the literature on deep learning for conventional artificial

neural networks (ANNs). Frequentist learning is well justified

when enough data are available to make the training loss a

good empirical approximation of the underlying population loss

(Clayton, 2021). When this condition is not satisfied, while the

model’s average accuracy may be satisfactory on test data, the

decisions made by the trained model can be badly calibrated,

often resulting in overconfident predictions (Nguyen et al.,

2015; Guo et al., 2017). The problem is particularly significant

for decisions made on test data that differ significantly from

the data observed during training—a common occurrence for

applications such as self-driving vehicles. Furthermore, the

inability of frequentist learning to account for uncertainty limits

its capacity to adapt to new tasks while retaining the capacity to

operate on previous tasks (Ebrahimi et al., 2020).

The main cause of the poor calibration of frequentist

learning is the selection of a single parameter vector, which

disregards any uncertainty on the best model to use for a

certain task due to the availability of limited data. A more

principled approach that has the potential to properly account

for such epistemic uncertainty, i.e., for uncertainty related to the

availability of limited data, is given by Bayesian learning (Jaynes,

2003) and by its generalized form known as information risk

minimization (see, e.g., Zhang, 2006; Guedj, 2019; Knoblauch

et al., 2019; Jose and Simeone, 2021; Simeone, 2022). Bayesian

learning maintains a distribution over the model parameter

vector that represents the partial information available to the

learner. This way, Bayesian models can provide well-calibrated

decisions, which quantify accurately the associated degree of

uncertainty and can be used to detect out-of-distribution inputs

(Daxberger and Hernández-Lobato, 2019). In the self-driving

example provided earlier, the vehicle may hand back control to

the driver when the certainty of its decision is below a certain

threshold.

Bayesian reasoning is at the core of the Bayesian brain

hypothesis in neuroscience, according to which biological brains

constantly update an internal model of the world in an

attempt to minimize their information-theoretic surprise. This

hypothesis is formalized by the free energy principle, which

measures surprise in terms of a variational free energy (Friston,

2012). In this context, synaptic plasticity has been hypothesized

to be well-modeled as Bayesian learning, which keeps track of

the distributions of synaptic weights over time (Aitchison et al.,

2021).

In the present paper, we propose (generalized) Bayesian

learning rules for SNNs with binary and real-valued synaptic

weights that can adapt over time to changing learning tasks.

1.2. Related work

Bayesian learning, and its application to deep ANNs,

typically labeled as Bayesian deep learning, is receiving

increasing attention in the literature. We refer to the following

work for a recent overview (Wang and Yeung, 2020). Natural

gradient descent rule known as the Bayesian learning rule was

introduced in Khan and Lin (2017), then applied in Meng et al.

(2020) to train binary ANNs, and to a variety of other scenarios

in Khan and Rue (2021). Khan and Rue (2021) demonstrates

that the Bayesian learning rule recovers many state-of-the-art

machine learning algorithms in a principled fashion. We also

point to the Kreutzer et al. (2020) that explores the use of natural

gradient descent for frequentist learning in spiking neurons.

As mentioned, the choice of a Bayesian learning framework

is in line with the importance of the Bayesian brain hypothesis

in computational neurosciences (Friston, 2012). The recent

Aitchison et al. (2021) explores a Bayesian paradigm to model

biological synapses as an explanation of the capacity of the brain

to perform learning in the presence of noisy observations. A

Bayesian approach to neural plasticity was previously proposed

for synaptic sampling, by modeling synaptic plasticity as

sampling from a posterior distribution (Kappel et al., 2015).

Apart from the conference version (Jang et al., 2021) of the

present work, this paper is the first to explore the definition

of Bayesian learning and Bayesian continual learning rules

for general SNNs adopting the standard spike response model

[SRM, see, e.g., (Gerstner and Kistler, 2002)].

Continual learning is a key area of machine learning

research, which is partly motivated by the goal of understanding

how biological brains maintain previously acquired skills

while adding new capabilities. Unlike traditional machine

learning, whereby one performs training based on a single data

source, in continual learning, several datasets, corresponding

to different tasks, are sequentially presented to the learner.

A challenge in continual learning is the ability of the

learning algorithm to perform competitively on previous tasks

after training on the subsequently observed datasets. In this

context, catastrophic forgetting indicates the situation in which

performance drops sharply on previously encountered tasks

after learning new ones. Many continual learning techniques

follow the principle of preserving synaptic connections that

are deemed important to perform well on previously learned

tasks via a regularization of the learning objective (Kirkpatrick

et al., 2017; Zenke et al., 2017). Bayesian approaches have also

been proposed for this purpose, whereby priors are selected

as the posterior evaluated on the previous task to prevent

the new posterior distribution from deviating too much from
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learned states. Biological mechanisms are explicitly leveraged

in works such as Laborieux et al. (2021) and Soures et al.

(2021), which combine a variety of neural mechanisms to

obtain state-of-the-art performance for SNNs on standard

continual learning benchmarks. Putra and Shafique (2022)

also proposes a continual learning algorithm for SNNs in an

unsupervised scenario by assuming limited precision for the

weights. In the present paper, we demonstrate how Bayesian

learning allows obtaining similar biologically inspired features

by following a principled objective grounded in information

risk minimization.

Traditionally, training of SNNs has relied on biologically

realistic Hebbian rules, among which spike-timing dependent

plasticity (STDP) is the most popular. STDP modulates the

synaptic weight between two neurons based on the firing

times of both neurons. A long-term potentiation (i.e., an

increase in the weight) of the synapse occurs when the pre-

synaptic neuron spikes right before the post-synaptic neuron,

while long-term depression (i.e., a decrease in the weight)

of a synapse happens when the pre-synaptic neuron spikes

after the post-synaptic neuron. STDP implements a form of

unsupervised learning, and can be leveraged to perform tasks

such as clustering, while also supporting continual learning

(Vaila et al., 2019).

Supervised learning based on the minimization of the

training loss is challenging in SNNs due to the activation

function of spiking neurons, the derivative of which is

always zero, except at the spike time, where it is not

differentiable. Modern training algorithms (Zenke and Ganguli,

2018; Bellec et al., 2020; Kaiser et al., 2020) overcome

this difficulty through the use of surrogate gradients, i.e.,

by replacing the true derivative with that of a well-defined

differentiable function (Neftci et al., 2019). An alternative

approach, reviewed in Jang et al. (2019), is to view the SNN

as a probabilistic model whose likelihood can be directly

differentiated. Further extensions of the probabilistic modeling

approach and associated training rules are presented in Jang and

Simeone (2022) and Jang et al. (2020b).

An application of Bayesian principles to SNNs has first

been proposed in the conference version of this paper

(Jang et al., 2021). Jang et al. (2021) focuses on SNNs

with binary synaptic weights and offline learning, presenting

limited experimental results. In contrast, the current paper

provides all the necessary background, including frequentist

learning; it covers frequentist and Bayesian continual learning;

and it provides extensive experimental results on a variety

of tasks.

1.3. Main contributions

In this work, we derive online learning rules for SNNs within

a Bayesian continual learning framework. In it, each synaptic

weight is represented by parameters that quantify the current

epistemic uncertainty associated with prior knowledge and

data observed thus far. Bayesian methods are key to handling

uncertainty over time, providing the model knowledge of what

is to be retained, and what can be forgotten (Ebrahimi et al.,

2020). The main contributions are as follows.

i) We introduce general frameworks for the definition of

single-task and continual Bayesian learning problems for SNNs

that are based on information risk minimization and variational

inference. Following the desiderata formulated in Farquhar and

Gal (2019a), we focus on the standard formulation of continual

learning in which there exist clear demarcations between

subsequent tasks, but the learner is unaware of the identity

of the current task. For example, in the typical example of an

autonomous vehicle navigating in several environments, the

vehicle may be aware that it is encountering a new terrain, while

being a priori unaware of the type of new terrain. Furthermore,

the model is not modified between tasks, and tasks may be

encountered more than once;

ii) We instantiate the general Bayesian learning frameworks

for SNNs with real-valued synapses. To this end, we adopt

a Gaussian variational distribution for the synaptic weights,

and demonstrate learning rules that can adapt the parameters

of the weight distributions online. This choice of variational

posterior has been previously explored for ANNs, and

can yield state-of-the-art performance on real-life datasets

(Osawa et al., 2019);

iii) We then introduce Bayesian single-task and continual

learning rules for SNNs with binary weights, with

the main goal of supporting more efficient hardware

implementations (Courbariaux et al., 2016; Rastegari et al.,

2016), including platforms based on beyond-CMOS memristors

(Mehonic et al., 2020);

iv) Through experiments on both synthetic and real

neuromorphic datasets, we demonstrate the advantage of

the Bayesian learning paradigm in terms of accuracy and

calibration for both single-task and continual learning. As

neuromorphic algorithms are designed to be run on dedicated

hardware, we run the experiments using Intel’s Lava software

emulator platform (Intel Corporation, 2021), accounting for the

limited precision of synaptic weights in hardware.

2. Methods

We first introduce the adopted SNN model,

namely the standard spike response model (SRM),

before giving a short overview of frequentist, Bayesian,

continual, and biologically inspired learning. We

then detail learning rules for offline and continual

frequentist learning, and derive associated online Bayesian

learning rules.
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FIGURE 1

Illustration of the internal architecture of an SNN. The behavior

of neurons in the read-out layer is guided by the training data,

while that of neurons in the hidden layer is adjusted to fit the

data. The blue shaded area represents the set of pre-synaptic

neurons Pi to neuron i.

2.1. SNN model

2.1.1. Spike response model

The architecture of an SNN is defined by a network of

spiking neurons connected over an arbitrary graph, which

possibly includes (directed) cycles. As illustrated in Figure 1, the

directed graph G = (N , E) is described by a set N of nodes,

representing the neurons, and by a set E of directed edges i→ j

with i 6= j ∈ N , representing synaptic connections.

Focusing on a discrete-time implementation, each spiking

neuron i ∈ N produces a binary value si,t ∈ {0, 1} at discrete

time t = 1, 2, . . ., with “1” denoting the firing of a spike. We

collect in an |N | × 1 vector st = (si,t : i ∈ N ) the spikes emitted

by all neurons N at time t, and denote by s
t
= (s1, . . . , st)

the spike sequences of all neurons up to time t. Without loss of

generality, we consider time-sequences of length T, and write

s : = s
T . Each neuron i receives input spike signals {sj,t}j∈Pi

=

sPi,t at time t from the set Pi = {j ∈ N :(j→ i) ∈ E} of parent,

or pre-synaptic, neurons, which are connected to neuron i via

directed links in the graph G. With some abuse of notations, this

set is taken to include also exogeneous input signals.

Each neuron i maintains a scalar analog state variable ui,t ,

known as the membrane potential. Mathematically, neuron i

outputs a binary signal si,t , or spike, at time t when the

membrane potential ui,t is above a threshold ϑ , i.e.,

si,t = 2(ui,t − ϑ), (1)

with 2(·) being the Heaviside step function and ϑ being the

fixed firing threshold. Following the standard discrete-time SRM

(Gerstner and Kistler, 2002), the membrane potential ui,t is

obtained by summing filtered contributions from pre-synaptic

neurons in set Pi and from the neuron’s own output. In

particular, the membrane potential evolves as

ui,t =
∑

j∈Pi

wij
(

αt ∗ sj,t
)

− βt ∗ si,t , (2)

where wij is a learnable synaptic weight from pre-synaptic

neuron j ∈ Pi to post-synaptic neuron i; and we collect in

vector w = {wi}i∈N the model parameters, with wi : =

{wij}j∈Pi
being the synaptic weights for each neuron i. We have

denoted as αt and βt the spike responses of synapses and somas,

respectively; while ∗ denotes the convolution operator ft ∗ gt =
∑

δ>0 fδgt−δ . When implemented with autoregressive filters,

the SRM is equivalent to leaky integrate-and-fire (LIF) neuron

model (Gerstner and Kistler, 2002; Kaiser et al., 2020). The

techniques developed in this work can be directly generalized to

other, more complex, neuron models, such as resonate-and-fire

(Izhikevich, 2001), but we leave an investigation of this point to

future work.

2.1.2. Real-valued and binary-valued synapses

In this paper, we will consider two implementations

of the SRM introduced in the previous subsection. In the

first, the synaptic weights in vector w are real-valued, i.e.,

wij ∈ R, with possibly limited resolution, as dictated

by deployment on neuromorphic hardware (see Section 3).

In contrast, in the second implementation, the weights are

binary, i.e., wij ∈ {+1,−1}. The advantages of models with

binary-valued synapses, which we call binary SNNs, include

a reduced complexity for the computation of the membrane

potential ui,t in Equation (2). Furthermore, binary SNNs are

particularly well suited for implementations on chips with

nanoscale components that provide discrete conductance levels

for the synapses (Mehonic et al., 2020). In this regard,

we note that the methods described in this paper can be

generalized to models with weights having any discrete number

of values.

2.2. Frequentist vs. Bayesian learning

With traditional frequentist learning, the vector of synaptic

weights w is optimized by minimizing a training loss. The

training loss is adopted as a proxy for the population loss, i.e.,

for the loss averaged over the true, unknown, distribution of

the data. Therefore, frequentist learning disregards the inherent

uncertainty caused by the availability of limited training data,

which causes the training loss to be a potentially inaccurate

estimate of the population loss. As a result, frequentist learning is

known to potentially yield poorly calibrated, and overconfident

decisions for ANNs (Nguyen et al., 2015).

In contrast, as seen in Figure 2A, Bayesian learning

optimizes over a distribution q(w) in the space of the synaptic

weight vector w. The distribution q(w) captures the epistemic

uncertainty induced by the lack of knowledge of the true
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FIGURE 2

Illustration of Bayesian learning in an SNN. (A) In a Bayesian SNN, the synaptic weights w are assigned a joint distribution q(w), often simplified as

a product distribution across weights. (B) An ensemble decision is obtained by sampling several times from the distribution q(w), and by

averaging the predictions of the sampled models. Sampling is done independently for each new input. (C) In a committee machine, the weights

for several models are drawn only once from q(w), and the same models are run in parallel for any new input.

distribution of the data. This is done by assigning similar

values of q(w) to model parameters that fit equally well the

data, while also being consistent with prior knowledge. As a

consequence, Bayesian learning is known to produce better

calibrated decisions, i.e., decisions whose associated confidence

better reflects the actual accuracy of the decision (Guo et al.,

2017). Furthermore, models trained via Bayesian learning can

better detect out-of-distribution data, i.e., data that is not

covered by the distribution of the training set (Daxberger and

Hernández-Lobato, 2019; Kristiadi et al., 2020).

Once distribution q(w) is optimized via Bayesian learning,

at inference time a decision on any new test input is made by

averaging the decisions of multiple models, with each being

drawn from the distribution q(w). The average over multiple

models can be realized in one of two ways.

i) Ensemble predictor: Given a test input, as seen in Figure 2B,

one draws a new synaptic weight vector several times from

the distribution q(w), and an ensemble decision is obtained by

averaging the decisions produced by running the SNN with

each sampled weight vector;

ii) Committee machine: Alternatively, one can sample a number

of realizations from the distribution q(w) that are kept

fixed and reused for all test inputs. This solution foregoes

the sampling step at inference time as illustrated in

Figure 2C. However, the approach generally requires a

larger memory to store all samples w to be used for

inference, while the ensemble predictor can make decisions

using different weight vectors w ∼ q(w) sequentially

over time.

2.3. O	ine vs. continual learning

Offline learning denotes the typical situation where the

system is presented with a single training dataset D, which is

used to measure a training loss. In offline learning, optimization

of the training loss is carried out once and for all, resulting in a

synaptic weight vector w or in a distribution q(w) for frequentist

or Bayesian learning, respectively. Offline learning is hence, by

construction, unable to adapt to changing conditions, and it is

deemed to be a poor representation of how intelligence works in

biological organisms (Kudithipudi and Aguilar-Simon, 2022).

In continual learning, the system is sequentially presented

datasets D(1),D(2), . . . corresponding to distinct, but related,

learning tasks, where each task is selected, possibly with

replacement, from a pool of tasks, and its identity is unknown

to the system. For each task k, the system is given a training set

D(k), and its goal is to learn to make predictions that generalize

well on the new task, while causing minimal loss of accuracy on

previous tasks 1, . . . , k−1. In frequentist continual learning, the

model parameter vector w is updated as data from successive

tasks is collected. Conversely, in Bayesian continual learning, the

distribution q(w) is updated over time as illustrated in Figure 3.

The updates should be sufficient to address the needs of the
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FIGURE 3

Illustration of Bayesian continual learning: the system is successively presented with similar, but di�erent, tasks. Bayesian learning allows the

model to retain information about previously learned information.

new task, while not disrupting performance on previous tasks,

operating on a stability-plasticity trade-off.

2.4. Biological principles of learning

Many existing works on continual learning draw their

inspiration from the mechanisms underlying the capability

of biological brains to carry out life-long learning (Soures

et al., 2021; Kudithipudi and Aguilar-Simon, 2022).

Learning is believed to be achieved in biological systems

by modulating the strength of synaptic links. In this

process, a variety of mechanisms are at work to establish

short-to intermediate-term and long-term memory for the

acquisition of new information over time (Kandel et al.,

2014). These mechanisms operate at different time and spatial

scales.

One of the best understood mechanisms, long-term

potentiation, contributes to the management of long-term

memory through the consolidation of synaptic connections

(Morris, 2003; Malenka and Bear, 2004). Once established,

these are rendered resistant to disruption by changing their

capacity to change via metaplasticity (Abraham and Bear,

1996; Finnie and Nader, 2012). As a related mechanism,

return to a base state is ensured after exposition to small,

noisy changes by heterosynaptic plasticity, which plays a key

role in ensuring the stability of neural systems (Chistiakova

et al., 2014). Neuromodulation operates at the scale of neural

populations to respond to particular events registered by the

brain (Marder, 2012). Finally, episodic replay plays a key role in

the maintenance of long-term memory, by allowing biological

brains to re-activate signals seen during previous active periods

when inactive (i.e., sleeping) (Kudithipudi and Aguilar-Simon,

2022).

2.5. Frequentist o	ine learning

We now review frequentist offline training algorithms for

SNNs, under the SRMmodel described in Section 2.1.1. This will

provide the necessary background for Bayesian learning and its

continual version, described in Sections 2.6 and 2.8, respectively.

2.5.1. Empirical risk minimization

To start, as illustrated in Figure 1, we divide the set N of

neurons of the SNN into two subsets Y and H with N =

Y ∪ H: a set of read-out, or output, neurons Y and a set of

hidden neurons H. The set of exogeneous inputs is defined as

X . We focus on supervised learning, in which a dataset D is

given by |D| pairs (x, y) of signals generated from an unknown

distribution p(x, y), with x being exogeneous input signals, one

for each element of the set X , and y the corresponding desired

output signals. Both x and y are vector sequences of length

T, with x comprising |X | signals, and y including |Y| signals.

Each output samples ym,t in y dictates the desired behavior

of the mth neuron in the read-out set Y . The sequences in x

and y can generally take arbitrary real values (see Section 3 for

specific examples).

In frequentist learning, the goal is to minimize the training

loss over the parameter vector w using the training dataset D =

{(x, y)}. To elaborate, we define the loss Lx,y(w) measured with

respect to a data (x, y) ∈ D as the error between the reference

signals y and the output spiking signals produced by the SNN

with parameters w, given the input x. Accordingly, the loss is

written as a sum over time instants t = 1, . . . ,T and over the

|Y| read-out neurons as

Lx,y(w) =

T
∑

t=1

Lxt ,yt
(w) =

T
∑

t=1

∑

m∈Y

L
(

ym,t , fm(w, x
t)

)

, (3)
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where function L
(

ym,t , fm(w, x
t)

)

is a local loss measure

comparing the target output ym,t of neuron m at time t and

the actual output fm(w, x
t) of the same neuron. The notations

fm(w, x
t) andLxt ,yt

(w) are used as a reminder that the output of

the SNN and the corresponding loss at time t generally depend

on the input xt up to time t, and on the target output yt at time t.

Specifically, the notation fm(w, x
t) makes it clear that the output

of neuronm ∈ Y is produced with the model parametersw from

exogeneous input xt , consisting of all input samples up to time

t, using the SRM (Equations 1, 2).

The training loss LD(w) is an empirical estimate of the

population loss based on the data samples in the training dataset

D, and is given as

LD(w) =
1

|D|

∑

(x,y)∈D

Lx,y(w). (4)

Frequentist learning addresses the empirical risk

minimization (ERM) problem

min
w

LD(w). (5)

Problem (Equation 5) cannot be directly solved using

standard gradient-based methods since: (i) the spiking

mechanism (Equation 1) is not differentiable in w due to the

presence of the threshold function 2(·); and (ii) in the case of

binary SNNs, the domain of the weight vector w is the discrete

set of binary values.

To tackle the former problem, as detailed in Section 2.5.2,

surrogate gradients (SG) methods replace the derivative of

the threshold function 2(·) in Equation (1) with a suitable

differentiable approximation (Neftci et al., 2019). In a similar

manner, for the latter issue, optimization over binary weights

is conventionally done via the straight-through estimator (STE)

(Bengio et al., 2013; Jang et al., 2021), which is covered in

Section 2.5.3.

2.5.2. Surrogate gradient

As discussed in the previous subsections, the gradient

∇wLx,y(w) is typically evaluated via SGmethods. SG techniques

approximate the Heaviside function 2(·) in Equation (1) when

computing the gradient ∇wLx,y(w). Specifically, the derivative

2′(·) is replaced with the derivative of a differentiable surrogate

function, such as rectifier or sigmoid. For example, with a

sigmoid surrogate, given by function σ (x) = (1 + e−x)−1,

we have ∂si,t/∂ui,t ≈ σ ′(ui,t − ϑ), with derivative σ ′(x) =

σ (x)(1 − σ (x)). Using the loss decomposition in Equation (3),

the partial derivative of the training loss Lxt ,yt
(w) at each time

instant t with respect to a synaptic weight wij can be accordingly

approximated as

∂Lxt ,yt
(w)

∂wij
≈

∑

m∈Y

∂L(ym,t , fm,t)

∂si,t
︸ ︷︷ ︸

ei,t

·
∂si,t

ui,t
︸︷︷︸

σ ′(ui,t−ϑ)

·
∂ui,t

∂wij
︸ ︷︷ ︸

αt∗sj,t

, (6)

where the first term ei,t is the derivative of the loss at time t

with respect to the output si,t of post-synaptic neuron i at time

t; and the third term can be directly computed from Equation

(2) as the filtered pre-synaptic trace of neuron j. For simplicity

of notation, we have defined fm,t : = fm(w, x
t) and omitted

the explicit dependence of si,t and ui,t on exogeneous inputs xt

and synaptic weights w. The second term is the source of the

approximation, as the derivative of the threshold function 2′(·)

from Equation (1), which is zero almost everywhere, is replaced

using the derivative of the sigmoid function.

At every time instant t = 1, . . . ,T, using Equation (6),

the online update is obtained via stochastic gradient descent

(SGD) as

wij,t+1 ← wij,t − η ·
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(wt)

∂wij
, (7)

where η > 0 is a learning rate, and B ⊆ D is a mini-

batch of examples (x, y) from the training dataset. Note that

the sequential implementation of the update (Equation 7) over

time t requires running a number of copies of the SNN model

equal to the size of the mini-batch B. In fact, each input x, with

(x, y) ∈ B, generally causes the spiking neurons to follow distinct

trajectories in the space of themembrane potentials. Henceforth,

when referring to online learning rules, we will implicitly assume

that parallel executions of the SNN are possible when the mini-

batch size is larger than 1.

The weight update in the direction of the negative gradients

in Equation (7) implements a standard three-factor rule. Three-

factor rules generalize two-factor Hebbian updates such as STDP

(Gerstner et al., 2018), and can be implemented on hardware

with similar complexity (Zenke and Ganguli, 2018; Kaiser

et al., 2020; Stewart et al., 2020). In fact, the partial derivative

(Equation 6) can be written as

∂Lxt ,yt
(w)

∂wij
= ei,t

︸︷︷︸

error signal

· σ ′(ui,t − ϑ)
︸ ︷︷ ︸

posti,t

·
(

αt ∗ sj,t
)

︸ ︷︷ ︸

prej,t

, (8)

where we distinguish three terms. The first is the per-neuron

error signal ei,t , which can be in principle computed via

backpropagation through time (Huh and Sejnowski, 2018).

In practice, this term is approximated, e.g. via local signals

(Bellec et al., 2020), or via random projections (Kaiser et al.,

2020). The latter technique has previously been likened to

the biological mechanisms behind short-term memory (Zou

et al., 2022). We will discuss a specific implementation

in Section 3.2. The second contribution is given by the

local post-synaptic term σ ′(ui,t − ϑ), which measures the
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current sensitivity to changes in the membrane potential

of the neuron i. Finally, the last term is the local pre-

synaptic trace αt ∗ sj,t that depends on the activity of the

neuron j.

2.5.3. Straight-through estimator

As mentioned in Section 2.5.1, optimization over binary

weights can be carried out using STE (Bengio et al., 2013;

Jang et al., 2021), which maintains latent, real-valued weights

to compute gradients during training. Binary weights, obtained

via quantization of the real-valued latent weights, are used as

the next iterate. To elaborate, in addition to the binary weight

vector w ∈ {+1,−1}|w|, we define the real-valued weight vector

w
r
∈ R
|w|×1. We use |w| to denote the size of vector w. With

STE, gradients are estimated by differentiating over the real-

valued latent weights wr, instead of discrete binary weights w,

to compute the gradient ∇wrLxt ,yt
(wr)|wr=w. The technique

can be naturally combined with the SG method, detailed in

Section 2.5.2, to obtain the gradients with respect to the real-

valued latent weights.

The training algorithm proceeds iteratively by selecting a

mini-batch B of examples (x, y) from the training dataset D at

each iteration as in Equation (7). Accordingly, the real-valued

latent weight vector wr is updated via online SGD as

wr
ij,t+1 ← wr

ij,t − η ·
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(wr

t )

∂wr
ij,t

∣

∣

∣

∣

wr
ij,t=wij,t

, (9)

and the next iterate for the binary weights w is obtained by

quantization as

wij,t+1 = sign
(

wr
ij,t+1

)

, (10)

where the sign function is defined as sign(x) = +1 for x ≥ 0 and

sign(x) = −1 for x < 0.

2.6. Bayesian o	ine learning

In this section, we describe the formulation of

Bayesian offline learning, and then develop two Bayesian

training algorithms for SNNs with real-valued and binary

synaptic weights.

2.6.1. Information risk minimization

Bayesian learning formulates the training problem as the

optimization of a probability distribution q(w) in the space of

synaptic weights, which is referred to as the variational posterior.

To this end, the ERM problem (Equation 5) is replaced by the

information risk minimization (IRM) problem

min
q(w)

{

F
(

q(w)
)

= Eq(w)

[

LD(w)
]

+ ρ · KL
(

q(w)||p(w)
)

}

,

(11)

where ρ > 0 is a “temperature” constant, p(w) is an arbitrary

prior distribution over synaptic weights, and KL(·||·) is the

Kullback-Leibler divergence

KL(q(w)||p(w)) = Eq(w)

[

log
q(w)

p(w)

]

. (12)

The objective function in IRM problem (Equation 11) is

known as (variational) free energy (Jose and Simeone, 2021).

The problem of minimizing the free energy in Equation (11)

must strike a balance between fitting the data—i.e., minimizing

the first term—and not deviating too much from the reference

behavior defined by prior p(w)—i.e., keeping the second term

small. Note that with ρ = 0, the IRM problem (Equation 11)

reduces to the ERM problem (Equation 5) in the sense that

the optimal solution of the IRM problem with ρ = 0 is a

distribution concentrated at the solution of the ERM problem

(assuming that the latter is unique). The KL divergence term

in Equation (11) is hence essential to Bayesian learning, and

it is formally justified as a regularizing penalty that accounts

for epistemic uncertainty due to the presence of limited data

in the context of PAC Bayes theory (Zhang, 2006). It can

also be used as a model of bounded rationality accounting for

the complexity of information processing (Jose and Simeone,

2021).

If no constraints are imposed on the variational posterior

q(w), the optimal solution of Equation (11) is given by the

Gibbs posterior

q⋆(w) =
p(w) exp

(

− LD(w)/ρ
)

Ep(w)

[

exp
(

− LD(w)/ρ
)

] . (13)

Due to the intractability of the normalizing constant in

Equation (13), we adopt a mean-field variational inference

(VI) approximation that limits the optimization domain for

problem (Equation 11) to a class of factorized distributions

(see, e.g., Angelino et al., 2016; Simeone, 2022). More

specifically, we focus on Gaussian and Bernoulli variational

approximations, targeting SNN models with real-valued and

binary synaptic weights, respectively, which are detailed in the

rest of this section.

2.6.2. Gaussian mean-field variational inference

In this subsection, we derive a Gaussian mean-field VI

algorithm that approximately solves the IRM problem (Equation

11) by assuming variational posteriors of the form q(w) =

Frontiers inComputationalNeuroscience 08 frontiersin.org

75

https://doi.org/10.3389/fncom.2022.1037976
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Skatchkovsky et al. 10.3389/fncom.2022.1037976

1: Input: dataset D, learning rate η, temperature

parameter ρ, prior (m0, p0)

2: Output: learned parameters pair (m, p)

3: initialize parameters (m1, p1)

4: repeat

5: select mini-batch B ⊆ D

6: for each time-step t = 1, . . . ,T do

7: sample weights w as w ∼ N (w|mt ,P
−1
t ).

8: for each (x, y) ∈ B do

9: compute the gradient ∇wLxt ,yt
(w) locally at

each synapse using SG (see Section 2.5.2).

10: end for

11: update the mean and precision parameters

(mij,t , pij,t) for all synapses (i, j) ∈ E as

pij,t+1 ← (1− ηρ) · pij,t

+ η ·

[

1

|B|

∑

(x,y)∈B

(

∂Lxt ,yt
(w)

∂wij

)2

+ ρ · pij,0

]

mij,t+1 ← mij,t − η · p−1ij,t+1

·

[

1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · pij,0 ·

(

mij,0 −mij,t

)

]

.

12: end for

13: set (m1, p1) = (mT , pT )

14: until convergence

Algorithm 1. Bayesian o	ine learning with real-valued

synapses.

N (w|m,P−1), where m is a mean vector and P is a precision

diagonal matrix with positive vector p on the main diagonal. For

the |w| × 1 weight vector w, the distribution of the parameters

w is defined by the |w| × 1 mean vectorm and |w| × 1 precision

vector p = {pij}(i,j)∈E with pij > 0 for all (i, j) ∈ E . This

variational model is well suited for real-valued synapses, which

can be practically realized to the fixed precision allowed by the

hardware implementation (Davies et al., 2018). We choose the

prior p(w) as the Gaussian distribution p(w) = N (w|m0,P
−1
0 )

with mean m0 and precision matrix P0 with positive diagonal

vector p0.

We tackle the IRM problem (Equation 11) with respect

to the so-called variational parameters (m, p) of the Gaussian

variational posterior q(w) via the Bayesian learning rule (Khan

and Rue, 2021). The Bayesian learning rule is derived by

applying natural gradient descent to the variational free energy

F(q(w)) in Equation (11). The derivation leverages the fact

that the distribution q(w) is an exponential-family distribution

with natural parameters λ = (Pm,−1/2P), sufficient statistics

T = (w,wwT) and mean parameters µ = (m,P−1 +

mm
T). Updates to the mean mt and precision pt parameters

at iteration t can be obtained as Osawa et al. (2019) and

Khan and Rue (2021).

pij,t+1 ← (1− ηρ) · pij,t

+ η · Eqt(w)

[

1

|B|

∑

(x,y)∈B

(

∂Lxt ,yt
(w)

∂wij

)2

+ ρ · pij,0

]

(14)

mij,t+1 ← mij,t − η · p−1ij,t+1

· Eqt(w)

[

1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · pij,0 ·

(

mij,0 −mij,t
)

]

(15)

where η > 0 is a learning rate; B ⊆ D is a mini-batch

of examples (x, y) from the training dataset; and qt(w) =

N (w|mt ,P
−1
t ) is the variational posterior at iteration t with mt

and pt .

In practice, the updates (Equations 14, 15) are estimated by

evaluating the expectation over distribution qt(w) via one or

more randomly drawn samples w ∼ qt(w). Furthermore, the

gradients ∇wLxt ,yt
(w) can be approximated using the online

SG method described in Section 2.5.2. The overall training

algorithm proceeds iteratively by selecting a mini-batch B ⊆ D

of examples (x, y) from the training dataset at each iteration,

and is summarized in Algorithm 1. Note that, as mentioned in

Section 2.5.2, the implementation of a rule operating with mini-

batches requires running |B| SNN models in parallel, where |B|

is the cardinality of the mini-batch. When this is not possible,

the rule can be applied with mini-batches of size |B| = 1.

2.6.3. Bernoulli mean-field variational inference

In this subsection, we turn to the case of binary synaptic

weightswij ∈ {+1,−1}. For this setting, we adopt the variational

posterior q(w) = Bern
(

w|p
)

, with

q(w) =
∏

i∈N

∏

j∈Pi

p

1+wij
2

ij (1− pij)
1−wij

2 , (16)

where the |w| × 1 vector p = {{pij}j∈Pi
}i∈N defines the

variational posterior, with pij being the probability that synaptic

weights wij equals+1.

The variational posterior (Equation 16) can be

reparameterized in terms of the mean parameters

µ = {{µij}j∈Pi
}i∈N as

q(w) = Bern
(

w

∣

∣

∣

µ+ 1

2

)

(17)

by setting pij = (µij+ 1)/2, where 1 is the all-ones vector. It can

also be expressed in terms of the logits, or natural parameters,

w
r
= {{wr

ij}j∈Pi
}i∈N as q(w) = Bern

(

w|σ (2wr)
)

by setting

wr
ij =

1

2
log

(

pij

1− pij

)

=
1

2
log

(

1+ µij

1− µij

)

, (18)
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1: Input: dataset D, learning rate η, temperature

parameter ρ, GS trick parameter τ, logits w
r
0 of

prior distribution

2: Output: learned real-valued weights w
r

3: initialize real-valued weights w
r
1

4: repeat

5: select mini-batch B ⊆ D

6: for each time-step t = 1, . . . ,T do

7: sample relaxed binary weights as

wij = tanh

(

wrij,t + δij

τ

)

,

with δij =
1
2 log

ǫij
1−ǫij

and ǫij
i.i.d.
∼ U (0, 1) for all

(i, j) ∈ E.

8: for each (x, y) ∈ B do

9: compute the gradient ∇wLxt ,yt
(w) locally at

each synapse using SG (see Section 2.5.2).

10: end for

11: update the real-valued weights wrij,t for all

synapses (i, j) ∈ E as

wrij,t+1 ← (1− ηρ) · wrij,t − η ·

[ 1− w2
ij

τ
(

1− tanh2(wrij,t)
)

·
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · wrij,0

]

.

12: end for

13: set w
r
1 = w

r
T

14: until convergence

Algorithm 2. Bayesian o	ine learning with binary-valued

synapses.

for all (i, j) ∈ E . The notation w
r has been introduced to suggest

a relationship with the STEmethod described in Section 2.5.3, as

defined below. We assume that the prior distribution p(w) also

follows a mean-field Bernoulli distribution of the form p(w) =

Bern(w|σ (2wr
0)), for some vector of w

r
0 logits. For example,

settingwr
0 = 0 indicates that the binary weights are equally likely

to be either+1 or−1 a priori.

In a manner similar to the case of Gaussian VI developed

in the previous subsection, we apply natural gradient descent

to minimize the variational free energy in Equation (11) with

respect to the variational parameters wr defining the variational

posterior q(w). Following Meng et al. (2020), and applying the

online SGD rule detailed in Section 2.5.2, this yields the update

wr
ij,t+1 ← (1− ηρ) · wr

ij,t

− η ·

[

∂

∂µij,t
Eqt(w)

[ 1

|B|

∑

(x,y)∈B

Lxt ,yt
(w)

]

− ρ · wr
ij,0

]

, (19)

where η > 0 is a learning rate and qt(w) the variational

posterior with w
r
t and µt related through (Equation 18). Note

that the gradient in Equation 19 is with respect to the mean

parameters µt .

In order to estimate the gradient in Equation 19, we leverage

the reparameterization trick via the Gumbel-Softmax (GS)

distribution (Jang et al., 2016; Meng et al., 2020). Accordingly,

we first obtain a sample w that is approximately distributed

according to qt(w) = Bern
(

w|σ (2wr
t )

)

. This is done by

drawing a vector δ = {{δij}j∈Pi
}i∈N of i.i.d. Gumbel variables,

and computing

wij = tanh

(wr
ij,t + δij

τ

)

, (20)

where τ > 0 is a parameter. When τ in Equation (20) tends

to zero, the tanh(·) function tends to the sign(·) function, and

the vector w follows distribution qt(w) (Meng et al., 2020). To

generate δ, one can set δij =
1
2 log

(

ǫij
1−ǫij

)

, with ǫij ∼ U(0, 1)

being i.i.d. samples.

With this sample, for each example (x, y), we then obtain

an approximately unbiased estimate of the gradient in Equation

(19) by using the following approximation

∂

∂µij,t
Eqt(w)

[

Lxt ,yt
(w)

]

(a)
≈ Ep(δ)

[

∂Lxt ,yt
(w)

∂µij,t

∣

∣

∣

∣

w=tanh
(

w
r
t+δ

τ

)

]

(b)
= Ep(δ)

[

∂Lxt ,yt
(w)

∂wij
·

∂

∂µij,t
tanh

(wr
ij,t + δij

τ

)

]

= Ep(δ)

[

∂Lxt ,yt
(w)

∂wij
·

1− w2
ij

τ
(

1− tanh2(wr
ij,t)

)

]

, (21)

where the approximate equality (a) is exact when τ → 0 and

the equality (b) follows the chain rule. We note that the gradient

∇wLxt ,yt
(w) can be computed as detailed in Section 2.5.2.

As summarized in Algorithm 2, the resulting rule proceeds

iteratively by selecting a mini-batch B of examples (x, y) from

the training dataset D at each iteration. Using the samples wij

from Equation (20), we obtain at every time-step t the estimate

of the gradient (Equation 19) as

∂

∂µij,t
Eqt(w)

[

Lxt ,yt
(w)

]

≈

1− w2
ij

τ
(

1− tanh2(wr
ij,t)

)

·
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · wr

ij,0. (22)

This is unbiased when the limit τ → 0 holds.
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2.7. Frequentist continual learning

We now consider a continual learning setting, in which

the system is sequentially presented datasets D(1),D(2), . . .

corresponding to distinct, but related, learning tasks. Applying

a frequentist approach, at every subsequent task k, the system

minimizes a new objective based on dataset D(k) in order to

update the model parameter vector w, where we have used

superscript (k) to denote the quantities corresponding to the

kth task. We first describe an algorithm based on coresets

and regularization (Farquhar and Gal, 2019b). Then, we briefly

review a recently proposed biologically inspired rule.

2.7.1. Regularization-based continual learning

In a similar manner to Equation (4), let us first define as

LD(k) (w) =
1

|D(k)|

∑

(x,y)∈D(k)

Lx,y(w) (23)

the training loss evaluated on dataset D(k) for the kth task.

A general formulation of the continual learning problem in a

frequentist framework is then obtained as the minimum of the

objective

LD(k) (w)+

k−1
∑

k′=1

L
C(k′) (w)+ α · R

(

w, {w(k′)
}
k−1
k′=1

)

, (24)

where L
C(k′) (w) is the training loss evaluated on a coreset, that

is, a subset C(k
′)
⊂ D(k′) of examples randomly selected from

a previous task k′ < k and maintained for use when future

tasks are encountered; α ≥ 0 determines the strength of the

regularization; and R(w, {w(k′)
}
k−1
k′=1

) is a regularization function

aimed at preventing the current weights from differing toomuch

from previously learned weights {w(k′)
}
k−1
k′=1

, hence mitigating

the problem of catastrophic forgetting (Parisi et al., 2019).

A popular choice for the regularization function, yielding

the Elastic Weight Consolidation (EWC) method, proposes to

estimate the relative importance of synapses for previous tasks

via the Fisher information matrices (FIM) computed on datasets

k′ < k (Kirkpatrick et al., 2017). This corresponds to the choice

of the regularizer

R
(

w, {w(k′)
}
k−1
k′=1

)

=

k−1
∑

k′=1

(w − w
(k′))TF(k

′)(w(k′))(w − w
(k′)),

(25)

where F(k)(w) = diag
(
∑

(x,y)∈D(k) (∇wLx,y(w))
2
)

is an

approximation of the FIM estimated on datasetD(k). The square

operation in vector (∇wLx,y(w))
2 is evaluated element-wise.

Intuitively, a larger value of an entry in the diagonal of thematrix

F(k)(w) indicates that the corresponding entry of the vector w

plays a significant role for the kth task.

2.7.2. Biologically inspired continual learning

The authors of Soures et al. (2021) introduce a biologically

inspired, frequentist, continual learning rule for SNNs, which

we briefly review here. The approach operates online in discrete

time t, and implements themechanisms described in Section 2.4.

It considers a leaky integrate-and-fire (LIF) neuron model. The

LIF is a special case of the SRM (Equations 1, 2) in which

the synaptic response α implemented as the alpha-function

spike response αt = exp(−t/τmem) − exp(−t/τsyn) and the

exponentially decaying feedback filter βt = − exp(−t/τref)

for t ≥ 1 with some positive constants τmem, τsyn, and τref.

This choice enables an autoregressive update of the membrane

potential (Jang et al., 2020a; Kaiser et al., 2020).

Ametaplasticity parameter νij is introduced for each synapse

(i, j) ∈ E that determines the degree to which the synapse is

prone to change. This quantity is increased by a fixed step 1ν as

νij,t+1 ← νij,t +1ν (26)

when the pre- and post-synaptic neurons spiking rates, i.e.,

the spiking rate of neuron i and j, respectively, pass a pre-

determined threshold. Furthermore, each synapse (i, j) ∈ E

maintains a reference weight wref
ij to mimic heterosynaptic

plasticity by adjusting the weight updates to drive synaptic

weights toward this resting state. It is updated over time as

wref
ij,t+1 ← wref

ij,t + κ ·

(

wij,t − wref
ij,t

)

, (27)

where κ > 0, and serves as a reference to implement

heterosynaptic plasticity.

With these definitions, the update of each synaptic weight w

is computed according to the online learning rule

wij,t+1 ← wij,t − exp
(

− |νij · wij,t|
)

(

η · ei,t · sj,t · σ
′(ui,t − ϑ)+ γ · (wij,t − wref

ij,t) · si,t

)

, (28)

where η and γ are respectively learning and decay rates, and

ei,t is an error signal from neuron i (see Soures et al., 2021 for

details). The rule (Equation 28) takes a form similar to that of

three-factor rules (Equation 8), with the term ei,t ·sj,t ·σ
′(ui,t−ϑ)

evaluating the product of error, post-synaptic, and pre-synaptic

signals. The update (Equation 28) implements metaplasticity via

the term exp
(

− |νij · wij,t|
)

that decreases the magnitude of the

updates during the training procedure for active synapses. It

also accounts for heterosynaptic plasticity thanks to the term

(wij,t − wref
ij,t), which drives the updates toward learned “resting”

weight wref
ij,t when the pre-synaptic neuron is active.

2.8. Bayesian continual learning

In this section, we generalize the Bayesian formulation seen

in Section 2.6 from the offline setting to continual learning.
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2.8.1. Bayesian continual learning

To allow the adaptation to task k without catastrophic

forgetting, we consider the problem (Farquhar and Gal, 2019a).

min
q(k)(w)

F (k)(q(k)(w)
)

(29)

of minimizing the free energy metric

F (k)(q(k)(w)
)

= Eq(k)(w)

[

LD(k) (w)+

k−1
∑

k′=1

L
C(k′) (w)

]

+ ρ · KL
(

q(k)(w)||q(k−1)(w)
)

, (30)

which combines the IRM formulation (Equation 11) with the

use of coresets. Minimizing the free energy objective (Equation

30) must strike a balance between fitting the new training

data D(k), as well as the coresets {C(k
′)
}
k−1
k′=1

from the previous

tasks, while not deviating too much from previously learned

distribution q(k−1)(w). Comparing (Equation 30) with the free

energy (Equation 11), we observe that the distribution q(k−1)(w)

plays the role of prior for the current task k.

2.8.2. Continual gaussian mean-field variational
inference

Similarly to the approach for offline learning described in

Section 2.6, we first assume a Gaussian variational posterior

q(w), and address the problem (Equation 30) via natural

gradient descent. To this end, we adopt the variational posterior

q(k)(w) = N (w|m(k), (P(k))−1), with mean vector m
(k) and

diagonal precision matrix P(k) with positive diagonal vector p(k)

of size |w| × 1 for every task k. We choose the prior p(w) for

dataset D1 as the Gaussian distribution p(w) = N (w|m0,P
−1
0 )

with positive diagonal vector p0 of size |w| × 1. Applying the

Bayesian learning rule (Khan and Rue, 2021) as in Section 2.6.2,

updates to the mean and precision parameters can be obtained

via online SGD as

p
(k)
ij,t+1 ← (1− ηρ) · p

(k)
ij,t + η · E

q
(k)
t (w)

[

1

|B|

∑

(x,y)∈B

(

∂Lxt ,yt
(w)

∂wij

)2

+ ρ · p
(k−1)
ij

]

(31)

m
(k)
ij,t+1 ← m

(k)
ij,t − η · (p

(k)
ij,t+1)

−1
· E

q
(k)
t (w)

[

1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · p

(k−1)
ij ·

(

m
(k−1)
ij −m

(k)
ij,t

)

]

,

(32)

wheremini-batchB is now selected at random from both dataset

D(k) and coresets from previous tasks, i.e.,B ⊆ D(k)
∪
k
k′=1

C(k
′).

The rule can be directly derived by following the steps detailed

in Section 2.6.2, and using for prior at every task k the mean

m
(k−1) and precision P

(k−1) obtained at the end of training on

the previous task.

2.8.3. On the biological plausibility of the
Bayesian learning rule

The continual learning rule (Equations 31, 32) exhibits

some of the mechanisms thought to enable memory retention

in biological brains as described in Section 2.4. In particular,

synaptic consolidation and metaplasticity for each synapse

(i, j) ∈ E are modeled by the precision pij. In fact, a larger

precision pij,t+1 effectively reduces the step size 1/pij,t+1 of

the synaptic weight update (Equation 32). This is a similar

mechanism to the metaplasticity parameter νij,t introduced

in the rule (Equation 28). Furthermore, by Equation 31, the

precision pij is increased to a degree that depends on the

relevance of the synapse (i, j) ∈ E as measured by the

estimated FIM (∂Lxt ,yt
(w)/∂wij)

2 for the current mini-batch B

of examples.

Heterosynaptic plasticity, which drives the updates toward

previously learned and resting states to prevent catastrophic

forgetting, is obtained from first principles via the IRM

formulation with a KL regularization term, rather than from

the addition of the reference weight wref in the previous work

(Soures et al., 2021). This mechanism drives the updates of

the precision p
(k)
ij,t+1 and mean parameter m

(k)
ij,t+1 toward the

corresponding parameters of the variational posterior obtained

at the previous task, namely p
(k−1)
ij andm

(k−1)
ij .

Finally, the use of coresets implements a form of replay, or

reactivation, in biological brains (Buhry et al., 2011).

2.8.4. Continual bernoulli mean-field
variational inference

We now consider continual learning with a Bernoulli mean-

field variational posterior, and force the synaptic weight wij to

be binary, i.e., wij ∈ {+1,−1}. Following Equation (16), the

posterior is of the form q(k)(w) = Bern
(

w|p
(k)

)

.

We leverage the Gumbel-softmax trick, and use the

reparametrization in terms of the natural parameters at task k

w
r,(k)
ij =

1

2
log

(1+ µ
(k)
ij

1− µ
(k)
ij

)

. (33)

We then apply the Bayesian learning rule, and, following the

results obtained in the offline learning case of Section 2.6.3, we

obtain the learning rule at task k as

w
r,(k)
ij,t+1 ← (1− ηρ) · w

r,(k)
ij,t − η

·

[

Ep(δ)

[

1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
·

1− w2
ij

τ
(

1− tanh2
(

w
r,(k)
ij,t

))

]

− ρ · w
r,(k−1)
ij

]

, (34)

where we denote as wr,(k−1) the logits obtained at the end of the

previous task k − 1, and mini-batch B is selected at random as

B ⊆ D(k)
∪
k
k′=1

C(k
′).
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3. Experiments

In this section, we compare the performance of frequentist

and Bayesian learning schemes in a variety of experiments, using

both synthetic and real neuromorphic datasets. All experiments

consist of classification tasks with C classes. In each such task,

we are given a datasetD′ consisting of spiking inputs x and label

cx ∈ {0, 1, . . . ,C − 1}. Each pair (x, cx) is converted into a pair

of spiking signals (x, y) to obtain the dataset D. To do this, the

target signals y are such that each sample yt is the C× 1 one-hot

encoding vector of label cx for all time-steps t = 1, . . . ,T.

3.1. Datasets

3.1.1. Two-moons dataset

We first consider an offline 2D binary classification task on

the two-moons dataset (Scikit-Learn library, 2020). Training is

done on 200 examples per class with added noise with standard

deviation σ = 0.1 as proposed in Meng et al. (2020) for 100

epochs. The inputs x are obtained via population encoding

following (Jang et al., 2020a) over T = 100 time-steps and via

10 neurons.

3.1.2. DVS-gestures

Next, we consider a real-world neuromorphic dataset for

offline classification, namely the DVS-Gestures dataset (Amir

et al., 2017). The dataset comprises 11 classes of hand

movements, captured with a DVS camera. Movements are

recorded from 30 different persons under 5 lighting conditions.

To evaluate the calibration of Bayesian learning algorithms, we

obtain in- and out-of-distribution dataset Did and Dood by

partitioning the dataset by users and lighting conditions. We

selected the first 15 users for the training set, while the remaining

15 users are used for testing. The first 4 lighting conditions are

used for in-distribution testing; and the one left out from the

training set is used for out-of-distribution testing. Images are of

size 128×128×2, and preprocessed following (Amir et al., 2017)

to yield inputs of size 32× 32× 2, with sequences of length 500

ms for training and 1, 500 ms for testing, with a sampling rate

of 10ms.

3.1.3. Split-MNIST and MNIST-DVS

For continual learning, we first conduct experiments on the

5-ways split-MNIST dataset (Farquhar and Gal, 2019a; Soures

et al., 2021). Examples from the MNIST dataset, of size 28 × 28

pixels, are hence rate-encoded over T = 50 time-steps (Jang

et al., 2020a), and training examples drawn from subsets of two

classes are successively presented to the system for training. The

order of the pairs is selected as {0, 1}, then {2, 3}, and so on. We

restrict here our study to rate encoding, although the proposed

methods are applicable to any spike encoding scheme. In a

similar way, we also consider a neuromorphic continual learning

setting based on the neuromorphic counterpart to the MNIST

dataset, namely, the MNIST-DVS dataset (Serrano-Gotarredona

and Linares-Barranco, 2015). Following the preprocessing

adopted in Skatchkovsky et al. (2020a,b, 2021), we cropped

images spatially to 26 × 26 pixels, capturing the active part

of the image, and temporally to a duration of 2 s. For each

pixel, positive and negative events are encoded as (unsigned)

spikes over two different input channels, and the input x is of

size 1, 352 spiking signals. Uniform downsampling over time

is then carried out to restrict the length to T = 80 time-

samples. The training dataset is composed of 900 examples per

class, and the test dataset contains 100 examples per class. For

continual learning, classes are presented to the network in pairs

by following the lexicographical order, i.e., the classes {0, 1} are

presented first, then {2, 3}, and so on.

3.2. Implementation

All schemes are implemented using the SG technique

DECOLLE (Kaiser et al., 2020) to compute the gradients. In

DECOLLE, the SNN is organized into L layers, with the first

L− 1 layers encompassing the hidden neurons in setH, and the

Lth layer containing the read-out neurons in set Y . To evaluate

the partial derivative (Equation 8), we need to specify how to

compute error signals ei,t for each neuron i ∈ N . To this end, at

each time t, the spiking outputs s
(l)
t of each layer l ∈ {1, . . . , L}

are used to compute local per-layer errors

L(ym,t , s
(l)
t ) = −ym,t · log

(

Softmaxm
(

B
(l)
s
(l)
t

)

)

, (35)

where B
(l)

∈ R
C×|l| are random, fixed weights, |l|

is the cardinality of layer l, and Softmaxm(a) =

exp(am)/
∑

1≤n≤C exp(an) is the ith element of the softmax of

vector a with length C. The local losses (Equation 35) at every

time-step t are then used to compute the error signals ei,t in

Equation (8) for every neuron i ∈ l as

ei,t =
∑

m∈Y

∂L(ym,t , s
(l)
t )

∂si,t
. (36)

While the algorithms introduced in this work are valid for

any SNN architecture as highlighted in Figure 1, DECOLLE is

limited to feedforward layered architectures, which we hence

adopt for our experiments (Kaiser et al., 2020). Furthermore, we

consider autoregressive filters for the spike responses of synapses

αt and somas βt in the membrane potential (Equation 2), as

discussed in Section 2.1.1.

Results have been obtained by using Intel’s Lava software

framework (Intel Corporation, 2021), under Loihi-compatible
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fixed-point precision (Davies et al., 2018)1.We use as benchmark

the frequentist algorithms detailed in Sections 2.5, 2.7, for

which gradients are as described in the previous paragraph. For

Bayesian learning with real-valued (fixed-precision) synapses,

we set the threshold of each neuron as ϑ = 64; while for binary

synapses the threshold ϑ is selected as the square-root of the

fan-in of the corresponding layer.

Implementation of the proposedmethods on hardware is left

for future work. While Loihi supports the injection of Gaussian

noise to the membrane potential of the neurons (Davies et al.,

2018), it does not provide mechanisms for the sampling of the

model parameters. In contrast, recent work (Dalgaty et al., 2021)

has proposed leveraging the inherent noise of nanoscale devices

in order to implement Bayesian inference.

3.3. Performance measures

Apart from the test accuracy, performance metrics include

calibration measures, namely reliability diagrams and expected

calibration error (ECE), which are described next. We note

that, as the hardware implementation of Bayesian SNNs is

currently an open problem (see Section 3.2), we are unable

to provide measurements in terms of energy expenditure

and computation time. As a general remark, as discussed in

Section 2.2, Bayesian learning requires a larger memory to store

all samples for the weights distribution to be used for inference

using a committee machine implementation, while an ensemble

predictor implementation increases inference latency.

3.3.1. Confidence levels

For frequentist learning, predictive probabilities are

obtained from a single pass through the network with parameter

vector w as

p
(

cx = k | x,w
)

=
1

T

T
∑

t=1

Softmaxk
(

B
(L)f (w, xt)

)

, (37)

where f (w, xt) is the output of read-out layer L for weights w, as

detailed in the previous subsection.

In contrast, for Bayesian learning, decisions and confidence

levels are obtained by drawing NS samples {ws}
NS
s=1 from the

distribution q(w), and by averaging the read-out outputs of the

model to obtain the probability assigned to each class as

p
(

cx = k | x, {ws}
NS
s=1

)

=
1

NS

1

T

NS
∑

s=1

T
∑

t=1

Softmaxk
(

B
(L)f (ws, x

t)
)

.

(38)

1 Our implementation can be found at: https://github.com/kclip/

bayesian-snn.

Unless mentioned otherwise, the predictions (Equation 38)

are obtained by using the committee machine approach, and

hence the weights {ws}
NS
s=1 are kept fixed for all test inputs x

(see Section 2.2). All results presented are averaged over three

repetitions of the experiments and 10 draws from the posterior

distribution q(w), i.e., we set NS = 10 in all experiments.

For Bayesian learning, the hard prediction of the model is

hence obtained as

c∗x = argmax
1≤k≤C

p
(

cx = k | x, {ws}
NS
s=1

)

, (39)

corresponding to the predictive probability

p
(

c∗x | x, {ws}
NS
s=1

)

= max
1≤k≤C

p
(

cx = k | x, {ws}
NS
s=1

)

. (40)

The probability (Equation 40) can be interpreted as the

confidence of the model in making decisions (Equation 39).

A model is considered to be well calibrated when there

is no mismatch between confidence level p
(

c∗x | x, {ws}
NS
s=1

)

and the actual probability for the model to correctly classify

input x (Guo et al., 2017). Definitions (Equations 39, 40) can be

straightforwardly adapted to the frequentist case by replacing the

average over draws {ws}
NS
s=1 with a single parameter vector w.

3.3.2. Reliability diagrams

Reliability diagrams plot the actual probability of correct

detection as a function of the confidence level (Equation 40).

This is done by first dividing the probability interval [0, 1] into

M intervals of equal length, and then evaluating the average

accuracy and confidence for all inputs x in each mth interval

(m−1M , mM ], also referred to as mth bin. We denote as Bm the

subset of examples whose associated confidence level p
(

c∗x |

x, {ws}
NS
s=1

)

lies within binm, that is, Guo et al. (2017)

Bm =

{

x ∈ D

∣

∣

∣
p
(

c∗x | x, {ws}
NS
s=1

)

∈

(m− 1

M
,
m

M

]

}

. (41)

The average empirical accuracy of the predictor within bin

m is defined as

acc(Bm) =
1

|Bm|

∑

x∈Bm

1(c∗x = cx), (42)

with 1(·) being the indicator function; while the average

empirical confidence of the predictor for binm is defined as

conf(Bm) =
1

|Bm|

∑

x∈Bm

p
(

c∗x | x, {ws}
NS
s=1

)

. (43)

Reliability diagrams plot the per-bin accuracy acc(Bm)

vs. confidence level conf(Bm) across all bins m. A model

is said to be perfectly calibrated when, for all bins m, the
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FIGURE 4

Predictive probabilities (Equation 40) evaluated on the two-moons dataset after training with di�erent values of the temperature ρ in

Equation (11) for Bayesian learning. Top row: Real-valued synapses; Bottom row: Binary synapses.
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FIGURE 5

Top: Reliability diagrams (for in-distribution data) with real-valued synapses for the DVS-Gestures dataset. Bottom: Corresponding empirical

confidence histograms for in-distribution data.
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Top: Reliability diagrams (for in-distribution data) with binary synapses for the DVS-Gestures dataset. Bottom: Corresponding empirical

confidence histograms for in-distribution data.
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FIGURE 7

Out-of-distribution empirical confidence histograms for SNNs with real-valued and binary synapses on the DVS-Gestures dataset.

equality acc(Bm) = conf(Bm) holds. If in the mth bin, the

empirical accuracy and empirical confidence are different, the

predictor is considered to be over-confident when the inequality

acc(Bm) < conf(Bm) holds, and under-confident when the

reverse inequality acc(Bm) > conf(Bm) holds.

3.3.3. Expected calibration error

While reliability diagrams offer a fine-grained

description of calibration, the ECE provides a

scalar measure of the global miscalibration of the

model. This is done by computing the average
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difference between per-bin confidence and accuracy as

Guo et al. (2017).

ECE =
1

|D|

M
∑

m=1

|Bm|
∣

∣conf(Bm)− acc(Bm)
∣

∣. (44)

Models with a lower ECE are considered to be

better calibrated.

3.3.4. Out-of-distribution empirical confidence

Reliability diagrams and ECE assume that the test data

follows the same distribution as the training data. A well-

calibrated model is also expected to assign lower probabilities

to out-of-distribution data, i.e., data that does not follow the

training distribution (DeGroot and Fienberg, 1983). To gauge

the capacity of a model to recognize out-of-distribution data,

a common approach is to plot the histogram of the predictive

probabilities
{

p
(

c∗x|x, {ws}
NS
s=1

)}

x∈Dood
evaluated on a dataset

Dood of out-of-distribution examples (DeGroot and Fienberg,

1983; Daxberger and Hernández-Lobato, 2019). Such examples

may correspond, as discussed, to examples recorded in different

lighting conditions with a neuromorphic camera.

3.4. O	ine learning

3.4.1. Two-moons dataset

We start by considering the two-moons dataset. For this

experiment, the SNN comprises two fully connected layers

with 256 neurons each. Bayesian learning is implemented with

different values of the temperature parameter ρ in the free

energy (Equation 11). In Figure 4, triangles indicate training

points for a class “0,” while circles indicate training points

for a class “1.” The color intensity represents the predictive

probabilities (Equation 37) for frequentist learning and Equation

(38) for Bayesian learning: the more intense the color, the higher

the prediction confidence determined by the model. Bayesian

learning is observed to provide better calibrated predictions, that

are more uncertain outside the input regions covered by training

data points.

For both real-valued and binary synapses, the temperature

parameter ρ has an important role to play in preventing

overfitting and underfitting of the training data, while also

enabling uncertainty quantification. When the parameter ρ is

too large, the model cannot fit the data correctly, resulting in

inaccurate predictions; while when ρ is too small, the training

data is fit more tightly, leading to a poor representation of the

prediction uncertainty outside the training set. A well-chosen

value of ρ strikes the best trade-off between faithfully fitting

the training data and allowing for uncertainty quantification.

Frequentist algorithms, obtained in the limit when ρ → 0, yield

the most over-confident estimates.

3.4.2. DVS-gestures

We now turn to the DVS-Gestures dataset, for which

we plot the performance for real-valued and binary-valued

SNNs, in terms of accuracy, reliability diagrams (DeGroot and

Fienberg, 1983), and ECE (Guo et al., 2017) in Figures 5,

6. In all cases, the SNNs have two fully connected layers

comprising 4, 096 neurons each, and they are trained for

200 epochs. The architecture was chosen to highlight the

benefits of Bayesian learning over frequentist learning in regimes

characterized by epistemic uncertainty, and it was not optimized

for maximal accuracy. The figures confirm that Bayesian SNNs

generally produce better calibrated outcomes. In fact, reliability

diagrams (top rows) demonstrate that frequentist learning

algorithms produce overconfident decisions, while Bayesian

learning outputs decisions whose confidence levels match well

the test accuracies. This improvement is reflected, for models

with real-valued synapses (with fixed precision), in a lower

ECE of 0.064, as compared to 0.088 for frequentist SNNs;

while, for binary SNNs, the reduction in ECE is from 0.085

for frequentist learning, to 0.069 for Bayesian learning. This

benefit may come at the cost of a slight decrease in terms

of accuracy, which is only observed here for binary synapses.

The bottom parts of Figures 5, 6 also show that frequentist

learning tends to output high-confidence decisions with a larger

probability.

We now turn to evaluate the performance in terms

of robustness to out-of-distribution data. As explained in

Section 3.3, to this end, we evaluate the histogram of the

confidence levels produced by frequentist and Bayesian learning,

as shown in Figure 7. From the figure, it is remarked that

Bayesian learning correctly provides low confidence levels on

out-of-distribution data, while frequentist learning outputs

decisions with confidence levels similar to the case of in-

distribution data, which are shown in Figures 5, 6.

This point is further illustrated in Figure 8 by showing the

three largest probabilities assigned by the different models on

selected examples, considering real-valued synapses in the top

row and binary synapses in the bottom row. In the left column,

we observe that, when both models predict the wrong class,

Bayesian SNNs tend to do so with a lower level of certainty,

and typically rank the correct class higher than their frequentist

counterparts. Specifically, in the examples shown, Bayesian

models with both real-valued and binary synapses rank the

correct class second, while the frequentist models rank it third.

Furthermore, as seen in the middle column, in a number of

cases, the Bayesian models manage to predict the correct class,

while the frequentist models predict a wrong class with high

certainty. Finally, in the right column, we show that even when

frequentist models predict the correct class and Bayesian models

fail to do so, they still assign lower probabilities (i.e., < 50%) to

the predicted class.

A key advantage of SNNs is the possibility to obtain

intermediate decisions during the observation of the T
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FIGURE 8

Top three classes predicted by both Bayesian and frequentist models on selected examples. Top: real-valued synapses. Bottom: binary

synapses. The correct class is indicated in bold font.
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Evolution of the accuracy (top), ECE (middle), and predictive probabilities (bottom) during the presentation of out-of-distribution test examples

for the DVS-Gestures dataset. The horizontal axis represents the time instants t within the presentation of each test example. Left: Real-valued

synapses. Right: Binary synapses.

samples of a test example. To elaborate on this aspect,

Figure 9 reports the evolution of the mean test accuracy,

ECE, and predictive probabilities (Equations 38, 37) for all

examples in the out-of-distribution dataset as a function

of the discrete time-steps t = 1, 2, . . . ,T. Although both

Bayesian and frequentist methods show similar improvements

in accuracy over time, frequentist algorithms remain poorly

calibrated, even after the observation of many time samples.

The bottom plots show that frequentist learning tends

to be more confident in its decisions, especially when

a few samples t have been observed. On the contrary,

Bayesian algorithms offer better calibration and confidence

estimates, even when only part of the input signal x has

been observed.

TABLE 1 Final average test accuracy and ECE on the split-MNIST

dataset (real-valued synapses).

Model Accuracy ECE

TACOS (Soures et al., 2021) (Full Precision) 83.45± 0.55% N/A

Frequentist (Kirkpatrick et al., 2017) 77.19± 0.65% 0.39± 0.01

Bayesian committee machine 85.44 ± 0.16% 0.36 ± 0.01

Bayesian ensemble decision 85.03± 0.54% 0.36 ± 0.01

3.5. Continual learning

We now turn to continual learning benchmarks. Starting

with the rate encoded MNIST dataset, we use coresets
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Distribution of the mean parameter m at the end of training on the MNIST and MNIST-DVS datasets.
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FIGURE 11

Evolution of the average test accuracies and ECE on all tasks of the split-MNIST-DVS across training epochs, with Gaussian and Bernoulli

variational posteriors, and frequentist schemes for both real-valued and binary synapses. Continuous lines: test accuracy, dotted lines: ECE,

bold: current task. Blue: {0, 1}; Red: {2, 3}; Green: {4, 5}; Purple:{6, 7}; Yellow: {8, 9}.

representing 7.5% of randomly selected training examples

for each class. To establish a fair comparison with the

protocol adopted in Soures et al. (2021), we train SNNs

comprising a single layer with 400 neurons for one epoch

on each subtask. This choice was found to be advantageous

for Bayesian techniques—a result that may be related to the

known asymptotic behavior of Bayesian neural networks as

non-parametric models (Neal, 1996). In Table 1, we show the

average accuracy over all tasks at the end of training on the

last task, as well as the average ECE at that point for real-

valued synapses, enabling a comparison with Soures et al.

(2021). Bayesian continual learning is seen to achieve the best

accuracy and calibration across all the methods studied here,

including the solution introduced in Soures et al. (2021). The

latter incurs a 2.5× memory overhead as compared to standard

frequentist methods. Considering that we performed training
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Box plots for final test accuracy (top) and ECE (bottom) across all tasks for Bayesian and frequentist learning with real-valued and binary

synapses after the 500th epoch of training on the MNIST-DVS dataset (see Figure 11). The horizontal bar represents the median value across the

tasks, while the box extends from the first to the third quartile. The whiskers extend from the box by 1.5 times the inter-quartile range. Circles

represent outliers.

using the 8-bit precision imposed by the neuromorphic chip

Loihi, our solution outperforms the state-of-the-art with a

5× memory consumption improvement. This saving can be

leveraged, e.g., to store several samples of the weights for a

committee machine implementation.

Next, for the MNIST-DVS dataset (Serrano-Gotarredona

and Linares-Barranco, 2015), we use coresets representing 10%

of randomly selected training examples for each class, and

implement multilayer SNNs with 2, 048 − 4, 096 − 4, 096 −

2, 048−1024 neurons per layer, that we train on each subtask for

100 epochs. This task requires a larger architecture and longer

training time to allow for the processing of the richer spatio-

temporal information recorded by neuromorphic cameras, as

compared to the spatial information from static image datasets,

such as MNIST, encoded into spikes via rate encoding (Jang

et al., 2020a).

We highlight the requirement for a larger architecture on the

MNIST-DVS dataset in Figure 10 by comparing the distribution

of the mean parameter m at the end of training on the MNIST

and MNIST-DVS datasets. For the larger network trained on the

MNIST-DVS dataset, 83.5% of the mean parameters are non-

zero, a larger proportion than that of the network trained on

the MNIST dataset, for which only 80.1% of the mean weight

parameters are non-zero. This demonstrates that the larger

number of weights used for this task is important for the network

to perform well.

In Figure 11, we show the evolution of the test accuracy

and ECE on all tasks, represented with lines of different colors,

during training. The performance on the current task is shown

as a thicker line. We consider frequentist and Bayesian learning,

with both real-valued and binary synapses. With Bayesian

learning, the test accuracy on previous tasks does not decrease

excessively when learning a new task, which shows the capacity

of the technique to tackle catastrophic forgetting. Also, the

ECE across all tasks is seen to remain more stable for Bayesian

learning as compared to the frequentist benchmarks. For both

real-valued and binary synapses, the final average accuracy and

ECE across all tasks show the superiority of Bayesian over

frequentist learning.

This point is further elaborated in Figure 12, which shows

test accuracy and ECE on all tasks at the final epoch—the

500th—in Figure 12. Bayesian learning can be seen to offer a

better test accuracy and ECE on average across tasks, as well as a

lower dispersion among tasks.

4. Conclusion

In this work, we have introduced a Bayesian learning

framework for SNNs with both real-valued and binary-valued

synapses. Bayesian learning is particularly well suited for

applications characterized by limited data—a situation that

is likely to be encountered in use cases of neuromorphic

computing such as edge intelligence. We have demonstrated

the benefits of Bayesian learning in terms of calibration metrics

that gauge the effectiveness of uncertainty quantification

over a variety of offline and continual learning. We have also

argued that the proposed rules exhibit mechanisms resembling

those that enable lifelong learning in biological brains from

a theoretically motivated information risk minimization

framework. While this work focused on variational inference

Bayesian learning methods, future research may explore

Monte-Carlo based solutions. Finally, we recall the importance

of investigating solutions for hardware design, adopting either
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ensemble predictors or committees of machines. As an example,

consider ensemble predictions based on binary synapses. An

implementation based on digital hardware would need to store

the real-valued parameters of the parameter vector distribution,

and to sample from the distribution using auxiliary circuitry,

which incurs energy and memory overheads. Alternatively, one

could leverage the inherent stochasticity of analog hardware for

sampling (Dalgaty et al., 2021), a line of research that we reserve

for future work.
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BIAS-3D: Brain inspired
attentional search model
fashioned after what and
where/how pathways for target
search in 3D environment

Sweta Kumari1, V. Y. Shobha Amala2, M. Nivethithan1 and

V. Srinivasa Chakravarthy1*

1Computational Neuroscience (CNS) Lab, Department of Biotechnology, IIT Madras, Chennai, India,
2IIT BHU, Varanasi, India

We propose a brain inspired attentional search model for target search in

a 3D environment, which has two separate channels—one for the object

classification, analogous to the “what” pathway in the human visual system, and

the other for prediction of the next location of the camera, analogous to the

“where” pathway. To evaluate the proposedmodel, we generated 3D Cluttered

Cube datasets that consist of an image on one vertical face, and clutter or

background images on the other faces. The camera goes around each cube on

a circular orbit and determines the identity of the image pasted on the face. The

images pasted on the cube faces were drawn from: MNIST handwriting digit,

QuickDraw, and RGB MNIST handwriting digit datasets. The attentional input

of three concentric cropped windows resembling the high-resolution central

fovea and low-resolution periphery of the retina, flows through a Classifier

Network and a Camera Motion Network. The Classifier Network classifies the

current view into one of the target classes or the clutter. The Camera Motion

Network predicts the camera’s next position on the orbit (varying the azimuthal

angle or “θ ”). Here the camera performs one of three actions: move right,

move left, or do not move. The Camera-Position Network adds the camera’s

current position (θ ) into the higher features level of the Classifier Network and

the Camera Motion Network. The Camera Motion Network is trained using

Q-learning where the reward is 1 if the classifier network gives the correct

classification, otherwise 0. Total loss is computed by adding the mean square

loss of temporal di�erence and cross entropy loss. Then the model is trained

end-to-end by backpropagating the total loss using Adam optimizer. Results

on two grayscale image datasets and one RGB image dataset show that the

proposed model is successfully able to discover the desired search pattern to

find the target face on the cube, and also classify the target face accurately.

KEYWORDS

attention, memory, human visual system, what and where pathway, convolutional

neural network, search in 3D, flip-flop neurons
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1. Introduction

Human visual system (HVS) processes a restricted field of

view of about 150◦ in the horizontal line and 210◦ in the

vertical line (Knapp, 1938). However, the eye orientates itself

in such a manner that the image of the region of interest falls

inside the central part of the retina or fovea to obtain precise

information from that part of the visual field. Information from

the fovea in high resolution and periphery in low resolution is

passed through the visual hierarchy, and the features related to

the form, color, and motion are analyzed by respective visual

cortical areas. Due to this anatomical constraint, the eye does

not process the entire scene at once: the eye makes darting

movements called saccades and attends the salient parts of the

scene sequentially and integrates the pieces of the image to get a

more comprehensive understanding of the scene.

Visual attention is a popular topic in both computer vision

and visual neuroscience. Many computational models of visual

attention, proposed in the past couple of decades, may be

divided into two categories: bottom-up approaches (Le Meur

et al., 2006; Gao et al., 2008), and top-down approaches (Gao

et al., 2009; Kanan et al., 2009; Borji et al., 2012). The models

are basically developed to predict the saliency map, where a

brighter pixel has a higher probability of receiving human

attention and vice versa. Bottom-up attention is considered to

be stimulus driven whereas top-down attention is considered to

be task driven, which receives human attention based on the

explicit understanding of the image content. Prior attempts in

the field of top-down attention mechanisms (Gao et al., 2009;

Kanan et al., 2009; Borji et al., 2012) have mainly used non-

deep approaches such as the Bayesian approach (Borji et al.,

2011), based on a limited understanding of visual attention.

In a recent model of visual attention, Mnih et al. (2014)

have developed a recurrent attention model (RAM) which

takes a glimpse of the attention window as input and uses

the internal state of the network to find the next location to

focus on in a non-static environment. Their proposed network

processes multiple glimpses of windows to attend to a part of

the image at different levels of resolutions. Training of their

model is done by using the reinforcement learning approach for

classification of MNIST dataset for modeling task-driven visual

attention. Design of their network is based on fully connected

layers, which leads to a rapid increase in computational cost

with image size, and therefore the network is perhaps not

feasible for more complex real world tasks such as search in a

3D environment.

There is an extensive number of research studies that

demonstrate the application of attentional search methods to

solve real world problems in 2D space such as image cropping

(Xu et al., 2019), object recognition (Gao and Vasconcelos,

2004), object segmentation (Shen et al., 2014; Wang et al.,

2015a,b), video understanding (Zhang et al., 2015, 2017; Yang

et al., 2016a,b,c), and egocentric activity recognition (Liu et al.,

2021, 2022). These models are based on covert attention, where

the mental shift of attention occurs at the output activity map

without explicit eye movement. But the use of overt visual

attention in a 3D environment is still relatively under-explored.

Earliest work in 3D target search is the Shape Nets (Wu

et al., 2015) where the objective was to voxelize the target and

use deep belief networks for training and prediction. Minut

and Mahadevan (2001) used Q learning to identify the next

movement of the camera (action) out of the eight possible

actions in order to focus on the object of interest. At a lower

level, this approach uses histogram back projection color maps

and symmetry map to identify the objects. Unlike reinforcement

learning based approaches, the model proposed by Kanezaki

et al. (2018) named RotationNet, focuses on convolutional

neural networks (CNNs) based approaches where multiple views

of the object are taken into consideration for learning. The

model predicts the class and the pose (orientation) of the object

of consideration. This was an improvement over the previous

CNN based networks, that recognized the object but failed to

predict the pose. The model yielded an accuracy of 94% on

Modelnet40 dataset (Wu et al., 2015) consisting of 40 categories

including chair, airplane, etc. Multiview CNN (Su et al., 2015)

was one of the earliest attempts in 3D object recognition that

acts as a precursor of the RotationNet.

In the model known as the SaccadeNet developed by

Lan et al. (2020), a model closest in approach to ours, four

module classifiers are used to recognize objects. These modules

are—center attentive module, the corner attentive module,

the attention transitive module, and the aggregation attentive

module. Each module works on identifying the main key

points of the object of interest, perhaps the center, corners,

attend object centers, and bounding boxes. This technique

works similar to the proposed saccade approach inspired by

human visual search. The drawback is that it works mainly

on 2D inputs. While performing a target search in a 3D

environment, the model needs to predict the next location

of the camera and identify the object that the camera is

looking for. To perform such search tasks in 3D space, time is

one of the constraints which depends on the network design

and input.

We propose a Brain Inspired Attentional Search model in

3D space (BIAS-3D) that takes the attentional glimpse instead of

the entire image. The design of themodel contains convolutional

layers instead of fully connected layers to extract features and

contains Elman and Jordan recurrence layers as well as JK-

flip-flop recurrence layer (Sweta et al., 2021) instead of Long

Short TermMemory (LSTM) to integrate the temporal attention

history in the network. To generate the attentional glimpse, a set

of concentric attention windows is used by taking the inspiration

from Ba et al. (2014), Mnih et al. (2014), and Kahou et al. (2017).

The proposed model has the following brain-inspired

features: (1) it has separate channels for image classification

and camera movement, analogous to the “What pathway” and
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FIGURE 1

Simulated environment: “r” is the radius of the circular orbit

around the cube or the line connecting the camera position and

origin of the spherical coordinate system. Polar angle “φ” is

assumed to be fixed at 0, and azimuth angle “θ ” is varying.

“Where pathway” in HVS; (2) it incorporates three types of

recurrence connections: (a) Local recurrence connection of

Elman type (Elman, 1991), (b) Global recurrence connection

of Jordan type (Jordan, 1986), (c) Flip-flop neurons (Holla and

Chakravarthy, 2016) that are capable of storing information for a

long time. In this study, we show that the BIAS-3D is effectively

able to learn task-specific strategies and identify the targets.

Our simulation results successfully show that an attention-

based network can be an efficient approach in dealing with

target search tasks in a 3D environment, which is demonstrated

by using 3D Cluttered MNIST Cube dataset, 3D Cluttered

QuickDraw Cube dataset, and 3D Cluttered RGB MNIST

Cube dataset.

2. The proposed approach

2.1. Environment overview

The virtual environment used in this study is created using

OpenGL (Segal and Akeley, 2010) (Figure 1). The environment

contains a cube placed at the origin of a spherical coordinate

system and a camera placed on a circular orbit around the cube.

On this orbit of radius “r,” the camera revolves around the cube,

always looking inwards toward the center of the cube (Figure 2).

As the camera moves on the orbit, it processes the views of

the cube it captures and searches for the face that has a target

pattern displayed on it (Figure 3B). The possible movements of

the camera on the orbit are: “move right” (θ+), “move left” (θ−),

or “do not move” (θ ; Figure 2).

2.2. Architecture overview

The architecture design of the proposed brain inspired

attentional search model in 3D space (BIAS-3D) is depicted

in Figure 3D. The model takes two inputs: (i) the attentional

glimpse which consists of the contents at different resolutions

and sizes of the attended region, where multiple concentric

FIGURE 2

Direction of all three movements of the camera on the orbital

path, supposed to be predicted by the model.

attention windows are applied to the center location of the

camera view, and (ii) the camera-position in the form of a point

on the unit circle at an angle θ or the azimuth angle of the

camera position on its circular orbit. The model predicts two

outputs at each timestep: (i) the next location of the camera

on the orbit, and (ii) the class of the object seen in the camera

view. The model consists of three parallel pipelines (Figure 3D):

(i) the upper pipeline processes the class information of the

object seen in the view, called the Classifier Network, (ii) the

middle pipeline processes the location of the target object over

the cube and predicts the next position of the camera, called

the Camera Motion Network, and (iii) the lower pipeline, which

incorporates the camera position into the high level features

of the Classifier Network and the Camera Motion Network,

is called the Camera-Position Network. Outputs of all the

three pipelines are concatenated in one flattened layer which

connects with a fully connected layer, and the output of the

fully connected layer passes through one linear output layer

and one softmax output layer in parallel. Linear output layer

computes the Q-values corresponding to the three actions that

can be taken by the camera, and softmax output layer computes

the classification probabilities of the object present inside the

attentional glimpse. A Deep Q-learning algorithm is applied to

train the model and learn the optimal policy for camera control

(Fan et al., 2020). As the model takes the sequential input, the

network requires memory to store the past information of the

following details: (i) the extracted features of the attentional

glimpse, (ii) its corresponding location on the cube, and (iii) the

camera position. For storing this input history, the model uses

three recurrent neural features: the flip-flop neuron layer (Holla

and Chakravarthy, 2016), Elman and Jordan recurrence layers.

2.3. The BIAS-3D

The proposed attention model is a deep neural network,

which has three pipelines: Classifier Network, Camera Motion

Network, and Camera-Position Network (Figure 3). The

classifier network consists of three convolutional layers

(Convs), three maxpool layers, and one fully connected

(FC) Elman Jordan recurrence layer (FCEJ). The camera
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FIGURE 3

The design of the BIAS-3D: (A) Simulated environment with the 3D Cluttered RGB MNIST cube and the camera, (B) camera captures the image

from the environment, (C) the attentional glimpse generated from the camera captured view, (D) the BIAS-3D predicts the class of the target

and position of the camera or “θ ,” and (E) Update the camera position using the predicted “θ .”

motion network consists of three convolutional flip-flop

layers (ConvJKFF), three maxpool layers, one FCEJ layer,

and one FC flip-flop layer (FCJKFF). The camera-position

network consists of one FCEJ layer, and one FCJKFF layer;

this network encodes the revolving direction of the camera.

The aforementioned layers are discussed in greater detail in the

following paragraphs.

Convolutional layers (Convs) are used to extract features by

sharing the weights across different spatial locations. Input and

output to the Conv layer are 3D tensors, called feature maps.

The output feature map is calculated by convolving the input

feature map with 3D linear filters. Then a bias term is added up

into the convolved output. In this paper, the bold notations in

all the equations stands for the matrix or the matrices. If Xl−1 is

the input feature map of lth Conv layer and Wl and bl are filter

weights and bias terms, respectively, then the output featuremap

Xl of lth layer is calculated via Equation-1:

Xl
= Xl−1Wl

+ bl, (1)

l = 1, ..., L,

X0
= I,
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In the above equation, L is the total number of layers, X0 is

the input image I to the first Conv layer. The output featuremaps

from each Conv layer are passed through a non-linear ReLU

activation function (Nair and Hinton, 2010) (equation-2).

f (X) = max (0,X) (2)

The output feature maps from the activation function,

are normalized using local response normalization (LRN)

(Krizhevsky et al., 2012). LRN normalizes the feature maps

within the channels and is a form of lateral inhibition (Equation

3).

N
f
x,y = X

f
x,y/



k+ α

min(C−1,f+c/2)
∑

j=max(0,f−c/2)

(X
j
x,y)

2





β

(3)

where X(x, y) and N(x, y) are the pixel values at (x, y)

position before and after normalization, respectively, f denotes

the filter. C stands for the total number of channels. The

constants k,α,β , and c are hyperparameters. k is used to avoid

“division by zero,” α is a normalization constant, while β

is used as a contrasting constant. The constant c is used to

define the length of the neighborhood, that is, the number of

consecutive pixel values need to be considered while calculating

the normalization. (k,α,β , c) = (0, 1, 1,C) case is considered

as the standard normalization. Normalized features from the

Conv layer are passed through the maxpool layer (Scherer

et al., 2010). Several convolutional layers and pooling layers are

assembled alternately across depth in the first three Conv or

ConvJKFF layers in both classifier and camera motion networks

(Figure 3D).

To implement the Elman recurrence layer (Elman, 1991),

the output vector of the FC layer at time “t − 1” is stored in a

context layer and the content of the context layer is fed back to

the same FC layer at time “t,” named as FC Elman recurrence

layer which is a short range storage connection. The Elman

recurrence layer is implemented only in the first FC layer of all

three networks. Similarly, to implement the Jordan recurrence

layer (Jordan, 1986), the output vector of the last FC layer at

time step “t − 1” is stored in a context layer and this context

layer is fed back to the first FC layer at time step “t” in their

corresponding pipeline, named as FC Jordan recurrence layer

which is a long-range storage connection. In this way, the first

FC layer in Classifier and Camera Motion Networks has both

Elman and Jordan recurrences; so we call this layer a FCEJ layer.

The computation of FCEJ is shown in the following (Equation 4)

Xl
t = f

(

Xl−1
t Wl−1,l

+ Xl
t−1W

l,l
+ XL

t−1W
L,l

+ bl

)

(4)

In Equation (4), Xl−1
t is the output of the l− 1th layer at

time “t” and going as input to the lth layer at time “t” (FC layer).

Xl
t−1 is the output of the lth layer at time “t − 1” and going as

input to the same lth layer at time “t” (Elman recurrence layer).

XL
t−1 is the output of the Lth layer at time “t − 1” and going as

input to the lth layer at time “t” (Jordan recurrence layer). W′s

and b are the corresponding weights and bias, respectively. f is

the ReLU activation function.

Memory of the past information in the layers of the

proposed network is stored using a third mechanism—the flip-

flop neurons (Holla and Chakravarthy, 2016). A flip-flop is

a digital electronic circuit to store state information. There

are four types of digital implementations of flip-flops: D flip-

flops, Toggle flip-flops, SR flip-flops, and JK flip-flops (Roth

et al., 2020). In the proposed network, JK flip-flop neurons are

used in place of LSTM neurons because of the performance

advantage shown in Holla and Chakravarthy (2016) and Sweta

et al. (2021). In both of these papers, the experiments conducted

on the sequential data shows that flip-flop neurons outperform

the LSTM neurons, using only half the number of training

parameters in comparison to LSTM. Likewise, to get the

advantage of fewer parameters and better performance, in the

current study we used the JK flip-flop neuron. The JK flip-flop

neuron uses two gating variables with “J and K” nodes, whereas

LSTM uses four gating variables. In this paper, the term flip-

flop will be used to refer to JK-flip-flop. Furthermore, the flip-

flop neurons are considered similar to the UP/DOWN neurons

found in the prefrontal cortex (PFC), responsible for working

memory (Gruber et al., 2006).

In the proposed model, the flip-flop layer is designed in

two ways: flip-flop neurons in convolutional layer (named

as “convolutional flip-flop layer” or ConvJKFF), and flip-flop

neurons in the FC layer (named as “fully connected flip-flop

layer” or FCJKFF). Training rules of these flip-flop neurons in

the network were also developed. The two gate outputs “J” and

“K,” the hidden state of the JK flip-flops, and the final flip-flops

output are computed by using Equations (5–7, respectively)

below.

J = σ
(

IntWj
)

,K = σ
(

IntWk

)

(5)

Ht = J.
(

1−Ht−1
)

+ (1− K) .Ht−1 (6)

Ot = tanh (HtWout) (7)

In Equation (6), “.” stands for the pointwise multiplication.

Int = (Xt;Ht) is the input to the flip-flop layer, where Xt is

the output from the previous layer and Ht is the hidden state

at time “t,” which initialize with ones at time 0. 1 is a matrix of

ones. J andK are the gate variables, which has weight parameters

Wj and, Wk, respectively. Ot is the output of the flip-flop layer

at time ’t’. To train the flip-flop neurons, the partial derivatives

w.r.t J and K were used to backpropagate the corresponding J

and K nodes (Equation 8).

∂Ht

∂J
= 1−Ht−1;

∂Ht

∂K
= −Ht−1 (8)
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2.4. Implementation detail

2.4.1. Camera motion network

The camera motion network takes the attentional glimpse

of size h × w × a as input, where “h” is the height, “w” is the

width, and “a” is the number of the cropped attention windows.

Here, the number of attention windows is chosen to be 3 (i.e.,

a = 3). The size of one attention window is twice the previous

attention window’s size. Similar multiscale concentric attention

windows were used in other models (Mnih et al., 2014; Haque

et al., 2016; Shaikh et al., 2019). All the attention windows, except

the smallest one, get resized to the size of the smallest attention

window. For example, to generate the attentional glimpse where

h = 16, w = 16, and a = 3 from location y = 35 and

x = 50 in the given image of size 75 × 100, the first, second,

and third attention windows are cropped out of size 16 × 16,

32 × 32, and 50 × 50 from pixel location (y, x) = (27 to 43,

42 to 58), (y, x) = (19 to 51, 34 to 66), and (y, x) = (10

to 60, 25 to 75), respectively. The second and third cropped

attention windows are resized to the size of the first cropped

attention window, which is 16 × 16. After resizing, all the three

attention windows are stacked together, which finally becomes

an attentional glimpse of size 16×16×3. This type of attentional

glimpse having a size of h× w× a shown in Figure 3C is passed

to the first ConvJKFF layer of 16 kernels, each of size 3 × 3, of

the classifier network (shown in the top pipeline of the BIAS-3D

in Figure 3D). The spatial dimension of the features generated

from the first ConvJKFF layer is h×w×16, which are normalized

using LRN, and passed into ReLU activation function. Output

from ReLU activation function is passed to the maxpool layer

with a window of size 2× 2 and stride by 2, which translates the

feature’s spatial dimensions into h/2×w/2× 16. The translated

feature maps are passed as input to the second ConvJKFF layer

of 32 kernels, each of size 3 × 3, to extract the higher level

features of size h/2 × w/2 × 32. Then, similar to the previous

layer, features generated from the second ConvJKFF layer are

passed through the LRN layer, ReLU activation function, and

maxpool layer with a window of size 2 × 2 and stride 2. After

passing into the maxpool layer, feature maps of size h/4 ×

w/4 × 32 are generated, which are further converted into a

flattened layer to reshape the 3D features into 1D vectors. The

flattened vectors are passed through one FCEJ layer of 512

neurons, which is followed by one FCJKFF layer of 512 neurons.

Output from the FCJKFF layer of the camera motion network is

concatenated with the output vectors of the last layer of the other

two channels.

2.4.2. Classifier network

The classifier network gets the same attentional glimpse as

input which has been passed to the camera motion network.

This network predicts the class of the object present in the

attentional glimpse. The object present in the attentional glimpse

may belong to one of the “n + 1” classes, where “n” classes are

the object or target class and one is the nontarget or clutter

class. The network consists of 3 Conv layers followed by one

FCEJ layer. The first Conv layer of 16 kernels of size 3 × 3

generates the feature maps of spatial dimension h × w × 16.

Generated features are passed through the LRN layer and ReLU

activation function. After this, the maxpool layer with a window

of size 2 × 2 and stride by 2 has been applied to the output of

ReLU activation function, which gives the featuremaps of spatial

dimension h/2 × w/2 × 16. Then, the feature maps are passed

through a second Conv layer of 32 kernels, each of size 3 × 3,

LRN layer, ReLU activation function, and maxpool layer with a

window of size 2 × 2 and stride by 2. Feature maps of spatial

dimension h/4×w/4×32 are passed through a third Conv layer

of 64 kernels each of size 3 × 3 with ReLU activation function,

which further generates the feature maps of size h/4×w/4×64.

Then the flattened layer reshapes the 3D tensor of feature maps

into vectors, and these vectors are input to the FCEJ layer of 512

neurons. The output of the FCEJ layer gets concatenated with

the output vectors of the last layer of the camera motion network

and the camera position network.

2.4.3. Camera position network

The camera’s position in the environment is inferred from

the spherical coordinates, where the camera is assumed, as

described before, on a circular object centered on the origin,

and the center of the cube is located at the origin. The camera’s

position is defined by three variables: (“r,” “θ ,” “φ”), where

“r = R” is the radius of the circular orbit of the camera or

line connecting the camera point and the origin of the spherical

coordinate system, “θ” is the azimuth angle and “φ” is the

polar angle of the spherical coordinate system. In the current

simulated environment, the camera moves only in one degree

of freedom, that is “θ .” Therefore, “r = R” and “φ = 0” are

considered to be constant. Only “θ” varies as the camera moves

on a circular orbital path around the origin of the spherical

coordinate system or the cube. In the camera position network,

sinusoidal functions of “θ” are passed as input to the first FC

Elman (FCE) layer having 128 neurons, followed by one FCJKFF

of 64 neurons. Output from the FCJKFF layer is concatenated to

the output vectors of the last layer of the classifier network and

the camera motion network.

Outputs from three pipelines are concatenated in one

common flattened layer, which further connects with two

output layers in parallel. One output layer with linear activation

function is responsible to predict one direction out of the three

considered directions in which the camera will move on the

orbit to look and locate the target face present in the given

cube. The other output layer with softmax activation function

is responsible to predict the class of the object seen on the view

of the camera.
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FIGURE 4

Pretrained classifier network.

2.4.4. Training and testing

Tensorflow framework is used to implement the proposed

attention model. Xavier’s initialization (Glorot and Bengio,

2010; Equation 9) with random normal distribution is used to

initialize the weights for each layer of the three networks. The

Xavier initialization is able to avoid the exploding or vanishing

gradients (Bengio et al., 2001) problem by fixing the variance of

the activations across each layer as the same.

Wl
= N

(

0,
2

ml−1 +ml

)

(9)

where, N stands for the normal distribution. ml−1 and ml

is the number of neurons in the previous layer and current

layer, respectively. Wl denotes the weights at lth layer with

Xavier initialization.

Before training the model, the classifier network is

pretrained on the camera captured views. To pretrain the

classifier network, we collect views of the simulated environment

by explicitly revolving the camera from 0 to 360◦, where 0◦ is

assumed to be exactly at the front of the face containing the

target object. Advancing in steps of 9 degrees over the range

of 0–360◦, a total of 40 views is collected for each cube in the

dataset. Views between −45 to +45 range are labeled as one

of the “n classes” and views between +46 to +180 and −46

to −180 range are labeled as “background class.” Therefore,

the total number of classes present in the dataset is n + 1. To

make the views data uniform, the same number of views of the

background class are chosen randomly as the number of views

of the other class. The classifier network is pretrained on such

views of targets and background or nontarget class. We assume

that the camera’s focus is always fixed in the center of the view.

Therefore, we create a glimpse of three concentric windows from

the center location of the camera view. Detailed architecture

of the pretraining classifier network is shown in Figure 4. The

classifier network without recurrent layers in the BIAS-3D is

pretrained on the glimpse of the camera views. Total loss of

the model is calculated in two parts: one is classification loss,

calculated using the cross-entropy loss function (Goodfellow

et al., 2016) and the other one is prediction loss, calculated

using mean square error of temporal difference (Sutton and

Barto, 1998). Equations of the both loss functions are shown in

Equations (10) and (13).

Lce = −

n+1
∑

i=1

di log
(

pi
)

(10)

In Equation (10), di denotes the desired classification

probability and pi denotes the predicted classification

probability of ith class. “n + 1” is the total number of

classes that are present in the dataset including background

class. Here, the camera is assumed as an agent and the agent

learns a defined policy of the reward function (Equation 11)

(Armstrong and Murlis, 2007). When the agent is in the current

state, Q-values of all three actions are predicted by passing

the information of the current state (like the attention input

and the θ value of the camera) into the deep neural network.

Based on the predicted Q-value of all the actions in the current

state, the agent makes an action decision using a softmax

action selection policy (Abed-alguni, 2018). In this policy, the

predicted Q-values are passed through a softmax activation

function to produce the action probabilities. The action with the

highest probability is selected and performed by the agent in the

current state of the environment. After performing the action,

the current state is updated to the next state and then the agent

receives a reward, either “1” or “0” depending on the reward

policy shown in Equation (11).

r =



















1 argmaxi∈n(pi) == argmaxi∈n(di)

max(p) ≥ λ

0 otherwise

(11)
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Apart from the softmax action selection policy, we used

a race model (Rowe et al., 2010) which ensures that the

selected action is correct. Race models have been applied in

many behavioral, perceptual, and oculomotor decisions and

such decisions are based on trial-to-trial modifications in a

race among all the responses (Carpenter and McDonald, 2007).

Race model works based on two neurophysiological evidences

to show the relatedness. Firstly, if monkeys are trained to

make their decision on coherently moving direction of dots,

accumulating neuronal activity is formed that mirrors the

decision even when there is no coherent motion. Here, both

choices are equally rewarded (Churchland et al., 2008). Secondly,

the decision threshold is considered constant for a selected

action, regardless of its being a specifically cued action (Roitman

and Shadlen, 2002). We have taken the motivation to apply the

race model based on the second evidence. The action predicted

by the network is the action which crosses the threshold, λ, first

and if the action predicted is correct, the agent gets reward “1”;

it otherwise gets reward “0.”

The Q-values of the actions in the next step are estimated

by passing the next state information into the target network,

where the target network is the separate copy of the networks

of the model. Target Q-value is calculated by adding the current

state reward and maximum of the next stateQ-values multiplied

with a discount factor γ . Discount factor defines how much

the current state Q-value depends on the future reward. Now,

the temporal difference (TD) is calculated by calculating the

difference between the target Q-value and the predicted Q-value

(Equation 12).

TD =
(

r + γ ∗Qmax
(

St+1
))

− Q (St) (12)

Lmse =
1

n

n
∑

i=0

TD2 (13)

ltotal = Lce + Lmse (14)

where, r is the reward which the agent gets while going from

the state St to the state St+1. Q
(

St+1
)

and Q (St) is the Q-

value of the state St+1 and, St , respectively. γ is the discount

factor. Then these two losses, the cross-entropy loss of the

classifier network (Equation 10), Lce and the mean square error

of temporal difference of the camera motion network (Equation

13), Lmse, are added up to get the total loss (Equation 14). The

total loss is back propagated into the network (Voleti, 2021). The

network parameters are updated by using the mini-batch Adam

optimizer (Kingma and Ba, 2014). L2 regularization (Kratsios

and Hyndman, 2020) is used to avoid the overfitting problem of

the network. During inference, the camera starts from a random

location and moves toward the target face of the cube. Once

it finds the target face, the camera continues to fixate around

that face. The number of trainable parameters of the model are

FIGURE 5

A sample of image datasets are shown here. (A) 28× 28 MNIST

digits. (B) 28× 28 QuickDraw. (C) 28× 28 RGB MNIST digits.

2, 668, 362. The model achieves a processing speed of 0.0001 s

per input image on a workstation with an NVIDIA GeForce

GTX 1, 080Ti 11 GB GPU, i7-8700 CPU @ 3.20 GHz 3.19 GHz,

64-bit operating system, and 32.0 GB RAM.

3. Simulation results

We evaluate our model on “painted cube” data, where each

cube has a target object on one vertical face and nontarget objects

on the other three vertical faces. The model is supposed to move

the camera around the cube on a circular orbit and search the

target object image present on one of the four vertical faces

of the cube. For target object image, we used image datasets.

Totally three 3D Cluttered Cube datasets were considered in the

experiment. The cube datasets were generated using their related

image data. Grayscale MNIST digit image dataset, QuickDraw

image dataset, and RGB MNIST digit image dataset (Samples

are shown in Figures 5A–C, respectively) were used to generate

cube datasets like 3D Cluttered Grayscale MNIST Cube dataset,

3D Cluttered QuickDraw Cube dataset, and 3D Cluttered RGB

MNIST Cube dataset respectively. The first two of these are

cube datasets with grayscale images, and the last one is a cube

dataset with RGB images. Based on the grayscale and RGB

cube datasets, we designed the experiments in two parts: one

part of the experiment shows the target search capability of the

proposed model on the cubes which has all four vertical faces of

grayscale images (called grayscale cubes) and the other part of

the experiment shows the target search capability of the model

on the cubes which has all vertical faces of RGB images (called

RGB cubes).

3.1. Searching on grayscale cubes

In the first part of the experiment, we evaluated our model

on two datasets of Grayscale cubes. For that, we used two

different datasets of grayscale images: MNIST handwritten digits

(LeCun et al., 1998) and QuickDraw (Jongejan et al., 2016). Both

datasets with 10 different classes contain 48, 000 examples in the

training set, 12, 000 examples in the validation set, and 10, 000
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TABLE 1 Accuracy on testing set of all three datasets.

Dataset Testing accuracy (%)

3D cluttered grayscale MNIST cube dataset 95.6

3D cluttered grayscale QuickDraw cube dataset 83

3D cluttered RGB MNIST cube dataset 91.5

examples in the testing set. We have generated a 3D Cluttered

MNIST Cube dataset using MNIST dataset. To generate such

a cube dataset, each of the cubes were created with a 28 × 28

MNIST digit image (target) on one vertical face and 28 × 28

a random clutter image (nontarget) on the other three vertical

faces. In this experiment, the bottom and top faces of the cube

are not considered for searching. Similarly, a 3D Cluttered

QuickDrawCube dataset was generated usingQuickDraw image

dataset.

Once the cube datasets are generated, we place the cube in

the environment in such a way that the center of the cube is at

the origin of the spherical coordinate system. Then the camera

is placed at a random value of azimuth angle “θ” at initial time

(t = 0). The polar angle “φ,” and radius “r” are set to 0, and

2.5, respectively. The camera placed at (r, θ ,φ) captures the view

of size 75 × 100. Then a glimpse is extracted from the center

location of the captured view. To extract the glimpse, three

concentric windows of size 16 × 16, 32 × 32, and 50 × 50 are

cropped out from the center of the view. After cropping out,

windows of size 32 × 32 and 50 × 50 are resized into the size

of 16 × 16. Then resized windows with the smallest window of

size 16 × 16 are arranged together across depth to generate an

attentional glimpse of dimension 16 × 16 × 3. Since the image

size in the QuickDraw image dataset is same as the image size in

theMNIST dataset, the same dimensions of the camera view and

attentional glimpse were considered in case of the 3D Cluttered

QuickDraw Cube dataset.

The proposed model takes the attentional glimpse of size

16 × 16 × 3 from the center location of the image view

of the camera of size 75 × 100. Achieved accuracy on both

grayscale datasets are listed in Table 1. The results of the

camera’s movement predicted by our model in the testing set

are shown in Figures 6–9. In this figure, images of the camera

view of dimension 75 × 100 are shown in one row and their

corresponding plots for predicted classification probabilities for

that view (dotted dashed-blue curve) and ground truth target

classification probabilities (green curve) are shown in the row

just below. At the bottom of the plots, timestep and ground

truth target class labels are denoted by using variables “t” and

“c,” respectively. In the row of images of the camera view, three

concentric red windows depict the glimpse.

The model has the ability to move the camera to the position

where the target face of the cube is visible from the camera. For

example, in Figure 6, the class of digit 2 in the fourth image of

the first row has the view of nontarget or clutter face at timestep

t = 0 and its corresponding predicted classification probabilities

shown in the plot just below that image is low for all classes. But

at timestep t = 1 (θ is decided by the model), the camera has

moved toward the right and has seen some part of the target

face that has the digit 2. At the same time, the highest of the

predicted classification probabilities is for digit 2. The camera

again moved to the right at timestep t = 2, where an adequate

part of the digit 2 on the cube face is visible (first image in fourth

row of Figure 6) and therefore, the maximum value of predicted

classification probabilities is close to 1 for digit 2, which crosses a

testing threshold of value 0.95. Similarly, for the other digits, the

camera starts moving appropriately, searching for the target. The

camera stops moving when the maximum value of the predicted

classification probabilities crosses the testing threshold. The

testing threshold is set based on the feature complexity of the

image datasets.

In the case of the 3D Cluttered QuickDraw Cube dataset,

we can observe the same search behavior of the camera. For

example, in Figure 8, class 5 (bicycle) in the third image of the

tenth row has the camera view showing non-target objects on

the cube face at timestep t = 0 and its corresponding predicted

classification probabilities shown in the plot just below the that

image is low for all classes. At the next timestep (t = 1),

the camera has moved to the left and the camera continues

to move in the left direction 3 more times even though the

target is not visible. At timestep t = 4, a very small part of

the bicycle is visible (second image in the thirteenth row of

Figure 9) and at this time the classification probability for class 5

or bicycle becomes the highest. The camera stops moving once

the maximum value of the predicted classification probabilities

crosses a testing threshold of value 0.85.

3.2. Searching on RGB cubes

In the second part of the experiment, we evaluated our

model on RGB cubes to investigate that the model is able

to search for the target object on the cube face even in the

case of color images. To this end, we generated a cube dataset

using RGB MNIST image dataset. Here, we first create the RGB

MNIST digit image dataset by assigning different colors to the

digits and the background of the images available in Grayscale

MNIST digit image dataset (LeCun et al., 1998). Our created

RGB MNIST handwriting digit dataset is available in this link.

The dataset with 10 different classes contains 48, 000 examples

in the training set, 12, 000 examples in the validation set, and

10, 000 examples in the testing set. Once the image dataset is

ready, we generate a 3D Cluttered RGB MNIST Cube dataset

using RGB MNIST image dataset. To generate a 3D Cluttered

RGB MNIST Cube dataset, each of the cubes is created with a

28× 28× 3 RGBMNIST image (target) on one vertical face and
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FIGURE 6

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

Grayscale MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.
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FIGURE 7

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

Grayscale MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.

28×28×3 random clutter image (non-target) on the other three

vertical faces.

The model is evaluated by placing the RGB cube in the

environment in the same way of grayscale cube datasets.

The camera captures the view of size 75 × 100 of the 3D

Cluttered RGB MNIST Cube. The camera extracts the glimpse

from the center of the captured view. To extract the glimpse,

three concentric windows of size 16 × 16, 32 × 32, and

50 × 50 are cropped out from the center of the view to

generate an attentional glimpse of size 16 × 16 × 9. The

proposed model takes the attentional glimpse of size 16 ×

16 × 9 from the center location of the image view of the

camera of size 75 × 100 in case of 3D Cluttered RGB MNIST

Cube dataset. The achieved accuracy on the RGB cube dataset

is listed in Table 1. The results of the camera’s movement

predicted by our attention model in the testing set are shown
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FIGURE 8

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

Grayscale QuickDraw Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.
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FIGURE 9

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

Grayscale QuickDraw Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.

in Figures 10–12. Plots of accuracy, and reward vs. epoch, are

shown in Figure 13.

The hyperparameters of the model are tuned and chosen

as follows: 0.0001 learning rate, 0.43 discount factor, 0.85

threshold (λ), and 0.1 regularization factor (β) with the

best performance in case of 3D Cluttered Grayscale MNIST

Cube dataset. The model explores the actions with ǫ equal

to 0.99 and the exploration gets reduced by a decay factor

of 0.999 while training. The minimum value of ǫ is set

with 0.1. The model is trained for 25 epochs and 50

timesteps per cube, in case of 3D Cluttered Grayscale MNIST

Cube dataset. In the case of the 3D Cluttered QuickDraw

Cube dataset, the model is trained for 20 epochs and

50 timesteps. During the inference, time-steps are varied

depending upon the classification probabilities. Prediction is

considered to be done as soon as the maximum value of the
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FIGURE 10

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

RGB MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.
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FIGURE 11

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

RGB MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.
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FIGURE 12

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

RGB MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.

classification probabilities crosses a certain testing threshold

(= 0.95). A slight variation in values of the hyperparameters

is used for the 3D Cluttered RGB MNIST Cube dataset

after tuning.

Jump length is the displacement from one location to the

next location. The jump length of the camera from one location

to the next location on the orbit is considered as a predefined

parameter. The jump length of the camera is 12 in case of

Grayscale 3D Cluttered MNIST Cube dataset, and 20 in case of

3D Cluttered QuickDraw Cube dataset and 3D Cluttered RGB

MNIST Cube dataset.

4. Discussion

To search for the entrance of a building, where there is

neither a boundary wall, nor a clear path leading to the entrance,

we usually move on the circular path around the building in
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FIGURE 13

(A–C) Shows the plots of Accuracy (1st and 3rd row) and Reward (2nd and 4th row) vs. Epochs of 3D Cluttered Grayscale MNIST Cube dataset,

3D Cluttered Grayscale QuickDraw Cube dataset, and 3D Cluttered RGB MNIST Cube dataset, respectively.

either clockwise or anticlockwise direction until we find the

entrance. While performing such a task, we also take care that

the movement should not involve rapid alternation between the

two directions, andmust progress continuously in one direction.

The best application of the current model can be in space.

For example, geostationary satellites and spy satellites revolving

around the earth in a circular orbit require a searching capability

of one specific large area of the earth to get a bird’s eye view or
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to obtain information about various weather, natural calamities,

deforestation, and similar activities. From the results of camera

movement shown in Figures 6–12, the proposed model is able

to avoid alternative movements and is always able to follow the

continuous movements to search the target face of the cube.

There are three major components to consider the proposed

model biologically inspired. First, the model takes the input of

multiple concentric windows of different scales, which resembles

the differential spatial resolution of the central fovea and the

peripheral regions of the retinal. Second, themodel processes the

view and its corresponding functions of the camera’s location,

θ , which is analogous to determining the position using path

integration and using it to navigate the world. The classifier

and camera motion networks are analogous to the processing of

visual information along the “what and where/how” pathways

(Schenk and McIntosh, 2010), respectively. Third, the model

uses Elman, Jordan, JK-flip-flop recurrence layers as memory

to store the history of the view and corresponding location,

which resemble the feedback loops present among the visual

cortical areas, for example from V1 to thalamus or from V2 to

V1, (Angelucci and Sainsbury, 2006). The output layers of the

classifier and the camera motion network are used to attribute

a specialized role to both of the networks for classification

and searching tasks, by feeding the outputs back into the first

fully connected Elman and Jordan layers in their corresponding

channels. The output vector of the camera motion network (Q-

values) which has information about the action to be taken by

the camera is fed back into the fully connected Elman and Jordan

layer and the output vectors of this layer passed through fully

connected flip-flop layer and gets concatenated with the output

of the last layer of the camera position network; this wide loop is

responsible for storing the history of location and view.

5. Conclusions

In the proposed model, we have shown how the “classifier”

and “camera motion” networks coordinate with each other to

perform the 3D visual search task. The BIAS-3D successfully

performed the classification task on a 3D environment on three

datasets (Table 1). As shown in the results, movements generated

by the model to search a target in the given cube always aim

at the target face and take meaningful movements so that the

camera looks at the target and classifies it correctly. Based on

the results described herewith, we want to extend the model to

more complicated full 3D searches in a 3D environment like, for

example, searching for defects on the surface of a 3D structure.

The model can then be applied to full scale object detection and

recognition in 3D space.
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The increase of remote sensing images in recent decades has resulted in their

use in non-scientific fields such as environmental protection, education, and

art. In this situation, we need to focus on the aesthetic assessment of remote

sensing, which has received little attention in research. While according to

studies on human brain’s attention mechanism, certain areas of an image

can trigger visual stimuli during aesthetic evaluation. Inspired by this, we

used convolutional neural network (CNN), a deep learning model resembling

the human neural system, for image aesthetic assessment. So we propose

an interpretable approach for automatic aesthetic assessment of remote

sensing images. Firstly, we created the Remote Sensing Aesthetics Dataset

(RSAD). We collected remote sensing images from Google Earth, designed

the four evaluation criteria of remote sensing image aesthetic quality—

color harmony, light and shadow, prominent theme, and visual balance—and

then labeled the samples based on expert photographers’ judgment on

the four evaluation criteria. Secondly, we feed RSAD into the ResNet-18

architecture for training. Experimental results show that the proposed method

can accurately identify visually pleasing remote sensing images. Finally, we

provided a visual explanation of aesthetic assessment by adopting Gradient-

weighted Class Activation Mapping (Grad-CAM) to highlight the important

image area that influenced model’s decision. Overall, this paper is the first

to propose and realize automatic aesthetic assessment of remote sensing

images, contributing to the non-scientific applications of remote sensing and

demonstrating the interpretability of deep-learning based image aesthetic

evaluation.
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attention mechanism, deep learning
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Introduction

In recent decades, remote sensing has advanced rapidly,
becoming increasingly important in geological mapping,
environmental monitoring, urban development, etc. These
studies mainly focus on the scientific uses of remote sensing.
However, with the increase of remote sensing images, they
have emerged in various non-scientific applications and been
used non-scientific users. These individuals only regard remote
sensing images as images, not as a source of scientific
information. In such case, we need to pay attention to
the aesthetic assessment of remote sensing images. Visually
appealing remote sensing images, which offer a distinctive
perspective from above, can be meaningful to fields such
as environmental protection, education, and art. When
policymakers are exposed to natural splendors, they may be
motivated to adopt more environmentally friendly measures
(Wang et al., 2016). When creating artworks, artists such as
photographers and painters can be inspired by the beauty of
the Earth (Grayson, 2016). Beautiful remote sensing images
can also be used by educators to trigger students’ passion
in nature. According to studies on human brain’s attention
mechanism, certain areas of an image can trigger visual stimuli,
influencing aesthetic evaluation. Inspired by this, we used
convolutional neural network (CNN), a deep learning model
resembling the human neural system, to perform automatic
aesthetic assessment of remote sensing images. By comparing
the key image area that affected the model’s decision with
human aesthetic standards, we discussed the interpretability of
deep-learning based image aesthetic evaluation.

Aesthetic assessment is the process of classifying images
into high or low aesthetic quality (Wong and Low, 2009; Luo
et al., 2011), or predict their aesthetic scores (Datta and Wang,
2010; Li et al., 2010). Aesthetic quality can be understood as
the pleasure people obtain from appreciating images (Kalivoda
et al., 2014). Recent advances in cognitive neuroscience have
suggested correspondence between the physical properties of
stimuli and the sensations they cause (Skov and Nadal, 2020).
Therefore, images of high aesthetic quality can be deemed
as “visually pleasing.” Though people’s aesthetic preference or
criteria may differ (Kim et al., 2018), such subjectivity does
not preclude objective research into aesthetic quality. Just as
many people may feel more comfortable and delightful with
certain rhythms in music (Li and Chen, 2009), many may
have similar feelings towards certain images. The same goes
for remote sensing images. And if we can identify the factors
that affect people’s judgment on the aesthetic quality of remote
sensing images, we may establish the evaluation standards
behind aesthetic evaluation. Using data-driven methods, we can
then measure the aesthetic quality of remote sensing images in a
scientific way.

In past decades, researchers have designed handcrafted
features to quantify image aesthetic quality. These features

range from low-level image statistics, such as edge distributions
and color histograms, to high-level photographic rules, such
as the rule of thirds and the golden ratio. For example, Datta
et al. (2006) designed a set of visual features, including color
metrics, rule of thirds, depth of field, etc. Using professional
photography techniques Luo and Tang (2008) first extracted the
subject region from a photo and then formulated many high-
level semantic features based on this subject and background
division. Recently, researchers began to apply deep learning
in image aesthetic evaluation. They typically cast it as a
classification or regression problem (Deng et al., 2017). A model
is trained by assigning a single label (i.e., a class or score) to
an image to indicate its level of aesthetic quality. Compared
with hand-crafted features designed primarily based on domain-
specific knowledge, automatically learned deep features can
better capture the underlying aesthetic characteristics from
massive training images (Tian et al., 2015). Among the deep
learning methods, CNN proved to be effective in analyzing
image aesthetics. It is the most similar to human visual
processing systems, has a structure well-suited to processing 2D
and 3D images, and can effectively learn and extract 2D feature
abstractions. The max-pooling layers of CNN can effectively
detect shape changes. And it is good at extracting mid-to-
high level abstract features from raw images by interleaving
convolutional and pooling layers (i.e., by spatially shrinking
feature maps layer by layer).

Here, we tackle the aesthetic assessment problem by binary
classification, discriminating a remote sensing image into “high
aesthetic quality” or “low aesthetic quality.” And CNNs have
excellent performance in image aesthetic classification. In Lu
et al. (2014), proposed the Rating Pictorial Aesthetics using
Deep Learning (RAPID) model, it was the first attempt to apply
CNNs in image aesthetic evaluation. The network structure
was close to AlexNet and aimed at the binary aesthetic
classification. CNN’s robustness in image aesthetic classification
is also demonstrated in image style classification (Karayev et al.,
2013) and image popularity estimation (Khosla et al., 2014).
In image classification, network depth is crucial, but stacking
more conventional layers to increase depth can easily lead to the
problem of gradient explosion (Liu et al., 2019). Existing CNN
networks, such as AlexNet and VGG, are usually built to directly
learn the mapping between input and output, which can hardly
alleviate gradient explosion. To address this problem, He et al.
(2016) proposed ResNet in 2016, which used residual blocks to
create a shortcut between the target and the input. The ResNet
residual module can solve the problem of vanishing gradients
and accelerate training (Wu et al., 2020).

Despite the good performance of deep neural networks in
image aesthetic assessment, they are hard to interpret because
they cannot be decomposed into intuitive and understandable
components (Lipton, 2018). Evidence from human perception
process (Mnih et al., 2014) demonstrates the importance of
attention mechanism, which uses top information to guide
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bottom-up feed-forward process. In the cognitive process of
visual aesthetics, the region of the object’s prominent visual
properties, such as color, shape, and composition, receives initial
attention (Cela-Conde et al., 2011). These prominent regions
would trigger stimulus within the ventral visual stream. The
feed-forward process would then enhance the visual experience
of the object, leading to aesthetic assessment. In other words,
rather than processing the whole scene in its entirety, humans
selectively focus on specific parts of the image (Wang et al.,
2018). So inspired by such attention mechanism involved in
image aesthetic evaluation, we adopt the Gradient-weighted
Class Activation Mapping (Grad-CAM) proposed by Selvaraju
et al. (2017). Grad-CAM can use the gradient information
learned by convolutional neurons to highlight the important
image area that influenced the model’s decision. The highlighted
area generated by Grad-CAM is comparable to the prominent
area that draws attention and triggers visual stimulus during the
cognitive process of aesthetic assessment.

The increase of remote sensing images in recent decades has
resulted in their use by non-scientific users who only see them
as images rather than a source of scientific information. In this
situation, we need to focus on the aesthetic assessment of remote
sensing, which has received little attention in research. Though
convolutional neural network (CNN) performs well in image
aesthetic evaluation, it lacks interpretability. While according to
studies on human brain’s attention mechanism, certain areas of
an image can trigger visual stimuli during aesthetic evaluation.

Therefore, inspired by the brain’s cognitive process and the
use of CNN in image aesthetic assessment, we propose an
interpretable approach for automatic aesthetic assessment of
remote sensing images. Firstly, we created the Remote Sensing
Aesthetics Dataset (RSAD). We collected remote sensing images
from Google Earth, designed the four evaluation criteria of
remote sensing image aesthetic quality—color harmony, light
and shadow, prominent theme, and visual balance—and then
labeled the samples based on expert photographers’ judgment
on the four evaluation criteria. Secondly, we feed RSAD into
the ResNet-18 architecture for training. Experimental results
show that the proposed method can accurately identify visually
pleasing remote sensing images. Finally, we provided a visual
explanation of aesthetic assessment by adopting Grad-CAM
to highlight the important image area that influenced model’s
decision. Overall, this paper is the first to propose and realize
automatic aesthetic assessment of remote sensing images,
contributing to the non-scientific applications of remote sensing
and demonstrating the interpretability of image aesthetics. Our
work has the potential to promote the use of remote sensing
in non-scientific fields such as environmental protection,
education, and art.

Materials and methods

Our method consists of three steps, as shown in Figure 1.
We first created the Remote Sensing Aesthetics Dataset. We

FIGURE 1

Overall technical route of automatic remote sensing aesthetic assessment.
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collected remote sensing images from Google Earth, established
four evaluation criteria of remote sensing aesthetics, and labeled
the images based on professional photographers’ judgment of
the four criteria. Secondly, we fed the dataset into a deep
learning model to classify remote sensing images in high or low
aesthetic quality. Finally, we tried to interpret model’s aesthetic
assessment with Grad-CAM.

The remote sensing aesthetics dataset

Data source
To enable aesthetic evaluation, the remote sensing images

we gather should adhere to certain technical requirements. First,
all images should be in true color. They should be combination
of the three channels that are sensitive to the red, green, and blue
visible light, producing what our naked eyes see in the natural
world. As we will explain in the following subsection, color plays
a significant role in aesthetic evaluation, and dealing colors we
are familiar with is a good place to start when exploring remote
sensing aesthetics. Figure 2 compares remote sensing image in
true color (Figure 2B) with false color (Figure 2A). Second,
samples ought to have a high resolution. In this way, people
can identify features on the image and determine whether the
image have a prominent theme or visual weight. Finally, images
should not contain any artifacts. Artifacts can appear during
image mosaicking as a result of color differences or geometric
misalignments between adjacent images (Yin et al., 2022), as
shown in Figure 2C.

To meet the following technical requirements, we collected
images from Google Earth, an open-source platform that
includes data integration of satellite and aerial images. Both
image types can be regarded as remote sensing images because
they are passively collected remotely sensed data. Google Earth
includes a wide range of true-color visible spectrum imagery
(380–760 nm wavelength) derived from a combination of
freely available public domain Landsat imagery, government
orthophotos, and high resolution commercial data sets from
DigitalGlobe, GeoEye, and SPOT (Fisher et al., 2012). Whatever
imaging modalities are used for different data sources, these
images all truly reflect the earth’s surface. Also, Google image
has a resolution of below 100 m, usually 30 m, and a viewing
angle of about 15 km above sea level. As a result, Google Earth
images can be used as a data source for assessing remote sensing
aesthetic quality.

In order for an effective and thorough investigation of
remote sensing aesthetics, we should ensure that the dataset had
enough variety. Therefore, we gathered remote sensing images
covering eight content categories: river, mountain, farmland,
beach, desert, forest, glacier, and plain. These categories are
based on typical landscape types and remote sensing features,
and they are selected for two reasons. First, these are natural
features. These images are simpler and clearer than those with
artificial features such as airport, industrial, and residential

regions, making it relatively easier for aesthetics quality
evaluation. Second, these features are common on the Earth’s
surface. They contain a variety of spatial patterns that are
representative in terms of texture and color, and most of them
vary sufficiently between different regions. For instance, Mount
Himalayan, Sahara Desert volcanoes, and frost-covered Arctic
mountains are located at different latitudes, and they look
completely different.

We collected all images from a viewing height of 1,500 m,
and we avoided images with artifacts. In addition, to increase
diversity, remote sensing images are carefully selected from
continents worldwide, covering as many latitudes and regions
as possible. And these images are selected from different years
and seasons. Figure 3 is a schematic diagram of some images
and their selected locations.

Evaluation criteria of remote sensing aesthetic
quality

Researchers found that image aesthetic quality can be
affected by numerous factors, including lighting (Freeman,
2007), contrast (Itten, 1975), color scheme (Shamoi et al., 2020),
and image composition (London et al., 2011), etc. While judging
the aesthetic quality of remote sensing images, viewers also have
certain criteria or pay attention to certain features in mind.
Therefore, we first design a questionnaire to study the factors
that may influence how humans evaluate the aesthetic quality of
remote sensing images.

We recruited a total of 30 college students between the ages
of 18 and 25 as volunteers to fill in the questionnaires. To ensure
variety, these students come from a variety of backgrounds and
major in fields including journalism, law, economics, computer
science, psychology, and electrical engineering, etc. There is
a nearly equal distribution of genders. In the questionnaire,
we presented volunteers with several remote sensing images
and asked them to list more than two factors that they felt
crucial for assessing the aesthetic quality of these images.
They were also encouraged to further explain how the factor
affected the aesthetic evaluation. The top four frequently
mentioned factors are “Composition,” ”Color,” “Content,” and
“Light/Brightness.” Other factors mentioned include “Texture,”
“Balance,” “Imagination,” “Perspective,” “Mood,” etc.

In response to the survey results, we summarized four
evaluation criteria: color harmony, light and shadow, prominent
theme, and visual balance, which addressed both the image’s
content and composition. As was previously stated, the bottom-
up attention mechanism involved in aesthetic evaluation is
stimulus-driven. Thus, these four criteria together work as visual
stimuli that draw viewers’ attention. In our work, we assume that
remote sensing images of high aesthetic quality are used for non-
scientific users. These individuals regard remote sensing images
solely as images, or in a broader sense, artworks of nature.
Therefore, when concluding the aforementioned criteria, we
considered the general guidelines for both art and photography.
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FIGURE 2

Remote sensing image in false color (A), true color (B), and with artifacts (C).

FIGURE 3

Schematic diagram of remote sensing aesthetics dataset (RSAD) images and their selected locations.

We also considered the properties of remote sensing images. The
four criteria are elaborated as follows.

Color harmony

Color is what we notice first when we appreciate an
image. When two or more colors are brought together to

produce a satisfying affective response, they are said to be
harmonized (Burchett, 2002). Color harmony is therefore
related to the relationship between colors, including cool-warm
colors, complementary colors, and the arrangement relations of
colors, as shown in Figure 4. A remote sensing image can cover
a wide range of features, and the various colors of these features
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can result in color harmony, leading to high aesthetic quality.
The illustration and examples of color harmony in different
contexts are provided below.

In modern color theories, an imaginary dividing line
running through the color wheel separates the colors into warm
and cool, as is displayed in Figure 4A. Cool-warm colors are
linked to the feelings they evoke and the emotions with which
we identify when looking at them. Red, orange, and yellow are
warm colors, while blue, green, and purple are cool (Moreland,
2009). Figure 5A cleverly combines cool and warm colors. Cool
colors like green and blue predominate in the farmland on the
left portion of the image, while warm red predominates in the
right portion. They form an overall structure of cool-warm
contrast. Meanwhile, the left part is interspersed by warm red
color patches, creating a local contrast between cool and warm.
Complementary colors are a pair of color stimuli (dependent
on appropriate wavelength pairs and luminance ratios) whose
mixture color matches a given neutral (Brill, 2007). These color
pairs can create a striking visual impact when they appear in
the same picture. According to the RGB additive color mode,
red and cyan, green and magenta, blue, and yellow are typical
complementary color pairs, as is shown by Figure 4B. Remote
sensing images that capture complementary color pairs in
nature can have a strong visual impact on the audience, resulting
in a high aesthetic quality. Figure 5B is an excellent example of
red-green complementation, with scattered red islands dotting
the green salty lake, bringing liveliness to the whole scene.
When colors are arranged in certain relations, they engage the
viewer and create an inner sense of order, a balance in the
visual experience (Brady and Phillips, 2003). One typical of color
arrangement relations is that colors of similar hues undergo
progressive changes in brightness or saturation. The gradual
change in color will serve as a one-way visual guide, leading
humans to appreciate the scene in a specific direction. The
progressive red color transition can be seen in the meandering
river in Figure 5C.

Light and shadow

Optical remote sensing images, in most cases, use sunlight as
a source of illumination (Yamazaki et al., 2009). When sunlight
reaches the ground features, it will cast a shadow. A right
proportion of light and shade can impart depth perception to
the scene, creating a stereoscopic effect (Todd et al., 1997).
The amount of shadow produced by the light is determined by
its direction. In remote sensing images, the direction of light
depends on the solar zenith angle, which is related to the latitude
of the direct solar point, the local latitude, and the local time
(Zhang et al., 2021). In the morning or afternoon, due to the low
solar zenith angle, half of the feature is in sunlight and the other
half is in shadow. At this time, the contrast between the bright
and dark portions of the image is sharp, and the stereoscopic
effect at its peak. However, the ground features’ large shadow
area lowers the aesthetic quality at the same time. At noon, the

solar zenith angle is close to 90 degrees, so the ground features
are evenly exposed to light and can be clearly identified. But
the shadow is also the shortest, and the stereoscopic effect is
weak. Remote sensing images of high aesthetic quality should
have a light-shadow balance. Figure 6B shows an ideal light-
shadow distribution that results in high aesthetic quality. The
right amount of shadow is produced with enough light and
the right light direction: just enough to create the stereoscopic
effect without shading over other features. While Figure 6A
suffers from the lack of sunlight which results in a dim image,
the light direction in Figure 6C creates too large shadow area
that obscures the ice in the image, lowering the overall aesthetic
quality.

Prominent theme

Since remote sensing images are taken from high altitudes,
they are often occupied by dense ground features, which can
easily make the viewer feel monotonous because of the lack of
focus. Therefore, remote sensing image of high aesthetic quality
should highlight the theme, drawing the viewer’s attention to
the key area of the picture. And the theme is often emphasized
by image composition (Dhar et al., 2011), including rule of
thirds, framing and repetition. When composing an image,
professional photographers often divide the image using the
imagery horizontal and vertical thirds lines and place important
objects along these lines or at their intersections. This particular
visual element placement is known as the rule of thirds (Krages,
2005). In Figure 7A, for example, the heart-shaped cloud is
located at the intersection of two dividing lines. The cloud
becomes a standout theme, with the green terrain serving as the
backdrop. Just as the frame of a painting naturally draws people’s
attention to the painting, the frame of an object within an image
does the same. A frame can be regular, complete, and closed,
or it can be irregular, incomplete, and open. In Figure 7B,
dark green woodlands, winding roads and houses form a frame
to surround and highlight the colorful terraces. Apart from
traditional image composition techniques, repetition can also
be used to create a prominent theme. Repetition means using
repeating shapes or a repetitive pattern inside the frame as
part of the composition. While the overall repetition can easily
draw attention and deepen the viewer’s memory of the repeated
objects, the repetitions that are slightly different from each other
can produce a unique sense of rhythm in the picture (Shinkle,
2004). In remote sensing images, repetitive objects can be seen
everywhere. From the bird’s-eye view, these repetitive objects
appear as different regular geometric figures, highlighting the
distinct theme. Figure 7C serves as a good example. The
repetitive circles in different shades of green, which are dotted
with rectangle fields of corn and wheat, emphasize the image
theme of farmlands.

Visual balance

Visual balance, a sense of weighted clarity created in a
composition (Arnheim, 1956), influences how we perceive
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FIGURE 4

Cool-warm colors (A) and complementary colors (B).

FIGURE 5

Remote sensing images with cool-warm contrast (A), red-green color complementation (B), and progressive color arrangement (C).

FIGURE 6

Remote sensing images with a lack of sunlight (A), ideal light-shadow distribution (B), and too large shadow area (C).

FIGURE 7

Remote sensing images that emphasize the theme using the rule of thirds (A), framing (B), and repetition (C).
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FIGURE 8

Object area (A) and distance from the image center (B) impact visual balance.

FIGURE 9

The overall labeling procedure of remote sensing aesthetics dataset (RSAD).

FIGURE 10

Remote sensing aesthetics dataset (RSAD) samples of high (A) and low (B) aesthetic quality.

aesthetic quality (Palmer et al., 2013). Visual balance builds
upon the notion of visual weight, a perceptual analog to physical
weight (Lok et al., 2004). An object is visually heavy if it takes
up large area. The larger the area occupied by an object, the
greater its visual weight is. Also, objects far from the image
center frequently appear visually heavier than objects close

to the image center. This is the visual Principle of Lever:
Since the feature in the image represents a heavy object and
the image center represents the lever’s fulcrum, the distance
between them functions as a lever (Xia, 2020). Figure 8A shows
how object area impacts visual balance. The top and bottom
portions of the image divided by a tilted line are roughly the
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same size, whereas the two parts at the bottom are almost
equally sized and are divided by a second, nearly diagonal
line. Figure 8B shows how distance from the image center
impacts visual balance. The long ridge on the upper part of the
remote sensing image is of high visual weight. However, such
visual weight is balanced by a smaller ridge farther from the
center.

Dataset creation
After that, images are manually annotated. We invited

professional photographers to evaluate the aesthetic quality
of remote sensing images because they master photographic
skills and understands the aesthetic preference of the public.
They can decide whether the image satisfies the four evaluation
criteria: color harmony, light and shadow, prominent theme and
visual balance. If a photographer thinks an image satisfies at
least three standards, the image will be considered beautiful.
15 photographers participated in the labeling procedure. If
8 or more photographers agree on the aesthetic quality of
an image, then we will assign it the label of “high aesthetic
quality”. And the remaining images will be of “low aesthetic
quality”. In addition, we have added a “skip” option. To put
it another way, if the photographer is unable to determine
whether a remote sensing image satisfies the four standards,
he can skip it. After three skips, an image’s aesthetic quality
is suggested to be blurred, so it will be removed from
the dataset. The overall annotation process is depicted in
Figure 9.

The expert photographers evaluated 1,500 samples, 117 of
which were skipped, leaving 1,383 samples with valid labels. The
RSAD dataset was finished with 875 positive samples and 508
negative samples. Figure 10 depicts samples of high (A) and low
(B) aesthetic quality; images in the same column are of the same
content type.

Learning remote sensing aesthetics
with deep learning

In this study, we used binary classification to discriminate
a remote sensing image into “high aesthetic quality” or “low
aesthetic quality.” And ResNet-18 served as the backbone
network. The ResNet residual module can solve the problem
of vanishing gradients and is calculated as follows. Define a
residual block in the form of yl = h (Xl)+F(Xl, WL), where
x and y are the input and output vectors of the residual
block, respectively, h (Xl) is the feature mapping function, and
F(Xl, WL) is the residual mapping function to be learned, f(yl)

is the activation function.

yl = h(Xl)+ F(Xl, WL) (1)

Xl+1 = f (yl) (2)

Figure 11 depicts the ResNet-18 network structure and
parameters, including the input, output, and convolutional and
pooling layers in the middle. Input images of 512 x 512 and get
the output of 1 x 2 after training. The first parameter represents
the probability of being unaesthetic, and the second digit is
the probability of being aesthetic. If the probability of being
aesthetic is greater than the probability of not being aesthetic,
the image is considered visually appealing, and vice versa.

The input section consists of a large convolution kernel
(7 x 7, stride 2) and a max-pooling (3 x 3, stride 2). This step
converts the 512 x 512 input image to a 128 x 128 feature map.
The convolution layer then extracts feature information using
two 3 x 3 convolutions and adds it directly to the original data
in a residual block; the output part converts the feature map to
1 x 1 using global adaptive average pooling and passes it through
the fully connected layer. Table 1 displays the model’s input and
output for each layer.

FIGURE 11

The ResNet-18 network structure and parameters.
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TABLE 1 ResNet-18’s input and output for each layer.

Layer name Operation Input Output

Conv1 7× 7, 64, stride2 512× 512× 1 256× 265× 64

Max pool 3× 3, max_pooling, stride2 256× 265× 64 128× 128× 64

Conv2_x

 3 × 3 64

3 × 3 64

 × 2 128× 128× 64 128× 128× 64

Conv3_x

 3 × 3 128

3 × 3 128

 × 2 128× 128× 64 64× 64× 128

Conv4_x

 3 × 3 256

3 × 3 256

 × 2 64× 64× 128 32× 32× 256

Conv5_x

 3 × 3 512

3 × 3 512

 × 2 32× 32× 256 16× 16× 512

Average pool avg_pooling 16× 16× 512 2× 2× 512

FC 1,000–d fc + softmax 2× 2× 512 1× 2

Interpreting aesthetic assessment with
gradient-weighted class activation
mapping

While deep learning enables good performance in the
aesthetic classification of remote sensing images, it lacks
interpretability. As the process of aesthetic evaluation involves
visual stimulation (Cheung et al., 2019), visualizing the
prominent image area that influenced model’s decision can be
a solution. Therefore, in an effort to interpret the deep-learning
based aesthetic assessment and compare it with the cognitive
process of human brain, we adopted the class activation map
Grad-CAM proposed by Selvaraju et al. (2017). By referring to
the gradient information learned by convolutional neurons, we
can generate visual explanations from any CNN-based network
without architectural changes or retraining.

Gradient-weighted class activation mapping (Grad-CAM)
uses the gradient information flowing into the last convolutional
layer to draw a heat map, as shown in Figure 12. The network
first performs forward propagation to obtain the output of
feature layer A (the last convolutional layer of ResNet in this
case) and the predicted value y. Assuming that the predicted
value of a remote sensing image by the network is yc, then back-

propagating yc can obtain the gradient information
−

A that is
back-transmitted to the feature layer. The importance of each
channel of the feature layer A is obtained by calculation and
then weighted and summed. After passing through the residual
module ReLU, we can obtained the final result of Grad-CAM.

Equations 3 and 4 show the Grad-CAM calculation formula.
Among them, Ak

ij represents the point (i, j) of the kth channel

of feature map A, yc represents the output of class c, and ∂yc

∂Ak
ij

represents the partial derivative of yc for all feature maps Ak
ij

of the last layer of CNN. The ReLU function produces a heat

map whose values are positively correlated with class c. The
negative part indicates that it does not belong to class c, which
can be viewed as posing an inhibitory effect and thus can be
filtered out with ReLU.

αc
k =

1
Z

∑
i

∑
j

∂yc

∂Ak
ij

(3)

Lc
Grad−CAM = ReLU

(∑
k

αc
kAk

)
(4)

The Grad-CAM heat map can show which area contributes
the most to an image’s aesthetic quality prediction. The redder
parts of the heat map have a greater impact on the prediction
than the bluer parts. As a result, using Grad-CAM, we can verify
the four evaluation criteria we have concluded of remote sensing
image aesthetic quality: color harmony, light and shadow,
prominent theme and visual balance.

Experimental results and analysis

Experimental design

In this paper, we conducted experiments on the Remote
Sensing Aesthetics Dataset. 80% of the samples are for training,
and the remaining 20% are for testing. To facilitate network
training, we resized the images to 512 x 512 and fed them
into the ResNet-18 architecture. After that, we used quantitative
indicators to assess model performance.

Regarding training parameters, we trained 100 epochs with
ResNet-18, batch size = 16, without any pre-trained weights.
Stochastic gradient descent is the optimizer used in back-
propagation, with the hyperparameter learning rate set to
1 × 10−4. The learning rate controls the update of the weights,
and a lower learning rate allows the model to converge better.
Cross-entropy is the loss function, and it is defined as follows:
yi represents the aesthetic label of sample i, the positive class is
1, and the negative class is 0; pi represents the probability that
sample i is predicted to be a positive class.

L =
1
N

∑
i

Li =
1
N

∑
i

−
[
yi · log

(
pi
)
+
(
1− yi

)
· log

(
1− pi

)]
(5)

Evaluation metrics

In this paper, finding visually attractive remote sensing
images is a binary classification task in which samples are
classified as either high or low aesthetic quality. The confusion
matrix is thus used to calculate the four parameters TP, FP, TN,
and FN to evaluate model performance. Each parameter in the
confusion matrix is explained as follows.
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• TP (True Positive): High-aesthetic-quality image predicted
of high aesthetic quality.
• TN (True Negative): Low-aesthetic-quality image predicted

of low aesthetic quality.
• FP (False Positive): Low-aesthetic-quality image predicted

of high aesthetic quality.
• FN (False Negative): High-aesthetic-quality image

predicted of low aesthetic quality.

We can calculate accuracy, recall, precision, and F1-
score of our method based on these four parameters, shown
in Equations 6–9.

• Accuracy: the proportion of accurately predicted
images in all images.

Accuracy = (TP+TN)
(TP+FN+TN+FP) × 100

(6)

• Recall: the proportion of accurately predicted aesthetic
images in all correct predictions.

Recall =
TP

TP + FN
(7)

• Precision: the proportion of images predicted as high
aesthetic quality of all aesthetic images.

Precision =
TP

TP + FP
(8)

• F1-score: the harmonic mean of precision and recall,
reflecting the robustness of our model.

F1 =
2TP

2TP + FN + FP
=

2 · Pr ecision · Recall
Pr ecision+ Recall

(9)

Results and analysis

Automatic remote sensing aesthetic
assessment

The test set contains 277 samples, and it has an accuracy of
91.34%. Figure 13A depicts the confusion matrix for the test set,
and the classification results for each cell of the confusion matrix
are visualized in Figure 13B.

Judging from the True-Positive cell where images of high
aesthetic quality are correctly predicted, we can conclude that
our model can distinguish the images that meet the four
evaluation standards. In the lower-right image of farmland,
there is feature repetition and a prominent theme. Light and
shadow contrast can be found in the upper-left image of glacier.
And color harmony exists in the upper-right image of coral reef.
Similar conclusion can be reached when we examine all images
in the True-Negative cell. Looking at the farmland image in

the upper-left corner with a meandering purple outline and the
image of meandering rivers in the lower-right corner, we can see
that the model may find the winding shape visually unappealing.

Based on the confusion matrix, we calculated accuracy,
recall, precision and F1-score. The accuracy is 91.34%,
demonstrating the overall good performance. The precision
is 0.90, which indicates the effectiveness of the model in
identifying images of low aesthetic quality. Meanwhile, the
model is good at identifying high-aesthetic-quality images, as
the recall reaches 0.67. While F1-score of 0.77 proves the
robustness of the model as well.

From the analysis above, we can conclude that the ResNet
model we trained can accurately distinguish between remote
sensing images of high and low aesthetic quality.

Attention mechanism in automatic aesthetic
assessment

In an effort to interpret the deep-learning based aesthetic
assessment, we adopted Grad-CAM to highlight the prominent
image area that influenced model’s decision, as shown in
Figure 14. By examining how those areas matches human
attention on the four aesthetic standards, we can compare how
ResNet performs aesthetic evaluation with the actual cognitive
process of aesthetics in the human brain.

Color harmony
Color harmony is related to the relationship between colors,

including cool-warm colors, complementary colors and the
arrangement relations of colors. Cool-warm colors are linked to
the feelings they evoke and the emotions with which we identify
when looking at them. Complementary colors are a pair of color
stimuli whose mixture color matches a given neutral. And color
arrangement relations are the progressive color changes in hue,
brightness or saturation. Grad-CAM highlighted the warm red
blocks in the lower right corner and the cool-toned mountains
in Figure 14A, indicating the cool-warm color contrast.

Light and shadow
When ground features are exposed to sunlight, shadows will

occur. A right proportion of light and shade can impart depth
perception to the scene, creating a stereoscopic effect. However,
a large shadow area will reduce the aesthetic quality. So remote
sensing image of high aesthetic quality should have light-shadow
balance, as shown in Figure 14B. The lower-right corner of the
image has more shade areas whereas the upper-left corner has
more exposure to light, both are highlighted on the heat map.

Prominent theme
Remote sensing image of high aesthetic quality should

highlight the theme, drawing the viewer’s attention to the
key area of the picture. And prominent theme is realized by
repetition, rule of thirds and framing. Figure 14C serves as a
good example of repetition. Grad-CAM captures the repetitive
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FIGURE 12

The work flow of gradient-weighted class activation mapping (Grad-CAM).

FIGURE 13

Confusion matrix for the test set (A) and the classification results for each cell of the confusion matrix (B).

FIGURE 14

Gradient-weighted class activation mapping (Grad-CAM) captures the image’s cool-warm contrast (A), the light and shadow area (B), the
repetitive circles and the rectangle fields of corn and wheat (C), and the two balancing portions of visual weight (D).
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circles in various shades of green, as well as the rectangle fields
of corn and wheat, all of which emphasize the image theme of
farmlands.

Visual balance
Visual balance, a sense of weighted clarity created in a

composition, is influenced by the feature’s area and its distance
from the image center. In Figure 14D, the long ridge on the
upper part of the remote sensing image is of high visual weight.
A smaller ridge farther from the center, however, balances such
visual weight. And both ridges are highlighted on the heat map.

Judging from the heat maps’ highlighted regions, we
can conclude that ResNet’s aesthetic evaluation is involved
with something similar to the attention mechanism of the
brain’s visual aesthetic process. It proves the interpretability of
automatic remote sensing aesthetic assessment as well.

Conclusion and future work

To enable non-scientific application of remote sensing
images, while inspired by the brain’s cognitive process and
the use of CNN in image aesthetic assessment, we propose
an interpretable approach for automatic aesthetic assessment
of remote sensing images. Firstly, we created the Remote
Sensing Aesthetics Dataset. We collected remote sensing images
from Google Earth, designed the four evaluation criteria of
remote sensing image aesthetic quality—color harmony, light
and shadow, prominent theme, and visual balance—and then
labeled the samples based on expert photographers’ judgment
on the four evaluation criteria. Secondly, we feed RSAD into
the ResNet-18 architecture for training. Experimental results
show that the proposed method can accurately identify visually
pleasing remote sensing images. Finally, we provided a visual
explanation of aesthetic assessment by adopting Grad-CAM
to highlight the important image area that influenced model’s
decision. Overall, this paper is the first to propose and realize
automatic aesthetic assessment of remote sensing images,
contributing to the non-scientific applications of remote sensing
and demonstrating the interpretability of deep-learning based
image aesthetic evaluation.

But some limitations still exist, so we need to further
our research. First, we treat aesthetic assessment as a binary
classification problem in this paper. This is because assigning
an aesthetic quality score requires more voters and samples.
Therefore, estimating an aesthetic quality score for each remote
sensing image using regression methods will be part of the future
work. Second, we only used ResNet, a scene-based CNN, as the
backbone of evaluation, which is not a novel method. To ensure
that the model is more dedicated to remote sensing aesthetic
quality, we should fine-tune the backbone network by adjusting
its blocks and layers. Third, objectivity and subjectivity coexist
in aesthetic assessment. So we are unable to verify the aesthetic

classification results due to the possible subjectivity of aesthetics.
Thus, we will continue to work on bridging the objective and
subjective aspects of remote sensing aesthetics through well-
designed psychology surveys. To sum up, more research and
practice in the fields of neural science, remote sensing, deep
learning, aesthetics, and psychology will be needed in the future
for the automatic aesthetic evaluation of remote sensing images.
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As a computing platform that can deal with problems independently and

adapt to di�erent environments, the brain-inspired function is similar to the

human brain, which can e�ectively make use of visual targets and their

surrounding background information to make more e�cient and accurate

decision results. Currently synthetic aperture radar (SAR) ship target detection

has an important role in military and civilian fields, but there are still great

challenges in SAR ship target detection due to the problems of large span of

ship scales and obvious feature di�erences. Therefore, this paper proposes an

improved anchor-free SAR ship detection algorithm based on brain-inspired

attention mechanism, which e�ciently focuses on target information ignoring

the interference of complex background. First of all, most target detection

algorithms are based on the anchor method, which requires a large number

of anchors to be defined in advance and has poor generalization capability

and performance to be improved in multi-scale ship detection, so this paper

adopts an anchor-free detection network to directly enumerate potential

target locations to enhance algorithm robustness and improve detection

performance. Secondly, in order to improve the SAR ship target feature

extraction capability, a dense connection module is proposed for the deep

part of the network to promote more adequate deep feature fusion. A visual

attention module is proposed for the shallow part of the network to focus

on the salient features of the ship target in the local area for the input SAR

images and suppress the interference of the surrounding background with

similar scattering characteristics. In addition, because the SAR image coherent

speckle noise is similar to the edge of the ship target, this paper proposes a

novel width height prediction constraint to suppress the noise scattering power

e�ect and improve the SAR ship localization accuracy. Moreover, to prove

the e�ectiveness of this algorithm, experiments are conducted on the SAR
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ship detection dataset (SSDD) and high resolution SAR images dataset (HRSID).

The experimental results show that the proposed algorithm achieves the best

detection performance with metrics AP of 68.2% and 62.2% on SSDD and

HRSID, respectively.

KEYWORDS

anchor-free, synthetic aperture radar, ship detection, brain-inspired, attention

mechanism

1. Introduction

The brain-inspired concept originates from the human

brain, which can focus on the target information while

selectively ignoring the interference of redundant information

when facing a large amount of information, and this attention

mechanism in the human brain can enhance the target

cognition and understanding. By imitating the processing mode

of information in the human brain, the brain-inspired can

improve the information acquisition ability of the target in

practical applications, and finally complete the cognitive and

understanding of the target.

In SAR ship detection, the target information usually

contains a large number of redundant interference components,

and being able to obtain the target information accurately plays

an important role in the detection results. Because the brain-

inspired ability to effectively pay attention to key regions in the

target scene, we take SAR ship detection as an example to explore

an algorithm that can effectively extract SAR ship information

and improve SAR ship detection accuracy.

Synthetic aperture radar (SAR) is an active microwave

imaging sensor that can effectively collect large area data under

any weather conditions, such as day, night, and foggy days, and

eventually generate high-resolution SAR images. Because of its

all-day and all-weather high-resolution imaging capability, SAR

plays an important role in marine ship target detection (Li et al.,

2016), such as marine rescue, marine law enforcement and other

civilian fields, as well as precise detection, ship target detection,

and other military fields. However, it is difficult to detect ship

targets in SAR images due to the large scale span of ship targets

and obvious feature differences. Therefore, an efficient target

detector is needed to detect SAR ship targets.

Traditional SAR target detection methods can be broadly

classified into three categories: threshold (Wang et al., 2016),

statistical (Song and Yang, 2015), and transform methods (He

et al., 2019). The main steps include the pre-processing stage

of processing the input image into a more recognizable image,

the candidate region extraction stage of extracting possible

target pixels as candidate targets, and the recognition stage

of identifying targets within the potential region. Among the

existing conventional SAR target detection algorithms, the

constant false alarm rate (CFAR) method (Wang et al., 2017)

is one of the most commonly used techniques, which is based

on the main idea of establishing a sea clutter distribution model

based on local sea clutter data and plotting the probability

density curve of the sea clutter distribution model, then

calculating the adaptive threshold based on the typical false

alarm probability, and finally using the adaptive threshold to

detect the target in the SAR image. Although the CFAR method

has been widely used for SAR ship target detection, it relies

on the modeling of sea clutter data and adapts to simple

scenarios, and does not adapt to multi-scale ship detection in

complex backgrounds.

With the rapid theoretical development of deep learning,

various deep learning models have emerged, which are

widely used in the field of image processing due to their

advantages such as powerful feature characterization ability and

automatic learning. For feature misalignment and variation of

target appearance in SAR multi-scale target detection, Tang

et al. (2022) proposed scale-aware feature pyramid network

with scale-adaptive feature extraction module and learnable

anchor point assignment strategy. For redundancy-oriented

computation and background interference in the remote sensing

domain, Deng et al. (2022) proposed fast anchor point

refinement network with rotational alignment module and

balanced regression loss function. To improve the SAR multi-

scale ship detection performance, Cui et al. (2019) proposed

dense attention pyramid network by fusing the convolutional

attention module with the features of each layer to highlight

the salient features of each layer. Since SAR ship targets are

difficult to distinguish from the surrounding background, Yang

et al. (2022) proposed robust detection network by introducing

coordinate attention approach to obtain more representative

semantic features. To obtain better detection performance in

practical industrial applications, Gao et al. (2022) proposed

efficient SAR ship detection network with targeted skill fusion

strategy based on Yolov4.

The above detection algorithms are all based on

anchor detectors, and although these methods achieve

better performance in target detection, there are still some

shortcomings. Firstly, the algorithms need to manually set

some hyperparameters according to the data, which are

sensitive to ship targets with large scale span. Secondly, the

algorithms usually generate a large number of anchor boxes
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on the image, while SAR ship targets account for a small

percentage of the image, and a large number of irrelevant

anchor boxes waste computational resources. Moreover, when

the targets are densely arranged, the overlapping area of

candidate anchor boxes is large, and some targets are missed

under non-maximum suppression. Therefore, it is necessary

to propose an efficient anchor-free detector in SAR ship

target detection.

The general anchor-free detector is designed based on

natural scene images, while SAR images are very different from

natural scene images, and the detection results are not good if

the anchor-free detector is directly applied to SAR ship target

detection. First of all, the SAR image coherent speckle noise

is relatively large, the ship target is relatively similar to the

clutter, and the island, port and building backgrounds have high

grayscale characteristics easily confused with the ship target,

so the SAR ship target features are difficult to extract, and

problems such as missed detection and false detection are easy

to occur in the detection results. In order to detect objects

more effectively in existing detection algorithms, Deng et al.

(2021) introduced dynamic weights to encourage the filters

to focus on more reliable regions during the training phase.

Han et al. (2019) added global context patches in the training

phase of the model to better distinguish the target from the

background. Zhao et al. (2017) adopted high confidence update

strategies and study mechanisms to avoid model corruption

and handle occlusion. Han et al. (2017) utilized a co-training

paradigm to formulate multi-feature templates with inherently

complementary information into a correlation filter model to

extract valid feature targets. Wang et al. (2022) introduced deep

residual networks into dictionary learning to extract rich image

information. Lin et al. (2017a) developed top-down architectures

with lateral connections for building high-level feature maps at

various scales. Although existing feature extraction networks can

effectively extract target features, they often lack the targeting

of different feature layers in the network. The deep part of the

network has a relatively large perceptual field and rich semantic

features, and we propose a dense connection module for the

deep part of the network to promote more adequate deep feature

fusion. The shallow part of the network has a relatively small

perceptual field and rich fine-grained details, and we propose a

visual attention module for the shallow part of the network to

focus on the salient features of the ship target in the local area

for the input SAR images and suppress the interference of the

surrounding background with similar scattering characteristics.

In addition, because the scattered power distribution of the

surrounding background in the near-shore scene of SAR images

is similar to the edge of the ship target, it is easy to lead to the

offset between some ship predicted positions and real positions,

and the ship target is not localized correctly. For this reason,

we propose a novel width height prediction constraint, which

considers the overlapping area of the predicted box and the real

box, the real difference between the width and length of the

edge and the loss gradient reweighting to improve the ship target

localization accuracy.

In conclusion, drawing on the idea that the brain-

inspired can effectively use visual targets and their surrounding

background information, we propose an improved anchor-free

SAR ship detection algorithm based on brain-inspired attention

mechanism. The main contributions are summarized as follows.

1. We propose an improved anchor-free SAR ship detection

algorithm, which directly enumerates potential target

locations and classifies them with better generalization

capability compared to the anchor method, and makes

targeted improvements to different feature layers of the

network to improve SAR ship detection accuracy.

2. We design a dense connection module and a visual attention

module for feature extraction. The deep part of the network is

richer in semantic features, and the dense connection module

promotes more adequate deep feature fusion. The shallow

part of the network is richer in fine-grained details, and the

visual attention module focuses on the salient features of

the target in the local area and suppresses the surrounding

background interference, which can eventually detect the

SAR ship target more effectively.

3. We design a novel width height prediction constraint, which

considers the overlapping area of the prediction box and

the real box, the real difference between the length and

width of the edge and the loss gradient reweighting, which

suppresses the influence of the near-shore background on

SAR ship target localization and improves the SAR ship target

localization accuracy.

2. Related work

Since the concept of deep learning (Hinton and

Salakhutdinov, 2006) was proposed, deep learning has

gradually shown great advantages over traditional methods for

various classification and regression tasks, and target detection

using deep learning has now become mainstream. Existing

target detection methods are mainly divided into two categories:

anchor-based detectors and anchor-free detectors.

In the anchor-based detectors, first a series of sliding

windows are predefined on the feature map, then they are

divided into positive and negative samples according to the

IOU values, and finally the detection results are obtained by

classification regression on the divided positive and negative

samples. The anchor-based detectors can be classified into

two-stage and one-stage detectors according to the number of

classification regression. Typical representatives of two-stage

detectors are Faster R-CNN (Ren et al., 2017), Cascade R-CNN

(Cai and Vasconcelos, 2018), etc., while typical representatives

of one-stage detectors are RetinaNet (Lin et al., 2017b), SSD

(Liu et al., 2016), etc. Generally speaking, two-stage detectors

can obtain higher accuracy, but the processing speed is slower.
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One-stage detectors have faster processing speed, but obtain

poorer accuracy.

Anchor-based detectors require a series of predefined sliding

windows before detecting targets, while brain-inspired detects

important area targets directly without predefined operations.

In addition, the predefined sliding windows are not suitable

for the targets with large scale span in remote sensing image

processing, so the anchor-free detectors have been developed

and researched.

In the anchor-free detectors, they can be mainly divided

into key point detectors and pixel point detectors. In this paper,

we focus on key point detectors, which detect the key points

of the same instance object after prediction by identifying the

location of bounding box characteristics as key points. The

typical representatives of key point detectors are CornerNet

(Law and Deng, 2018), ExtremeNet (Zhou et al., 2019b), and

CenterNet (Zhou et al., 2019a), etc. CornerNet predicts the top-

left and bottom-right points of the target and determines the

connection between the two points through the localization

vector to complete the target detection, but when the target is

irregular, the extracted information of the two points is weak.

ExtremeNet predicts the center point of the target and the

extreme points of the four edges of the target to complete the

target detection, but the network outputs a large number of

key points and requires a large number of extreme points to

be matched, resulting in a slow operation. Based on the above

methods, Centernet determines the target location directly by

predicting the center of the target without subsequent grouping

and post-processing, and the network will be described in

detail later. Although anchor-based detectors dominate in target

detection, the anchor-free detectors processing idea is more

scientific and have great potential for development.

3. Methods

The overall architecture of our proposed algorithm is shown

in Figure 1, using an anchor-free network with an encoder-

decoder structure, which performs targeted feature extraction

for the deep and shallow parts of the network with target width

and height prediction constraint to finally obtain detection

results. In the deep part of the network, a dense connection

module is made from the encoder layer En3 to the decoder layer

De3 to promote a more adequate deep feature fusion. In the

shallow part of the network, the encoder layer En2 is processed

with a visual attention module to focus on the salient features

of the local area ship targets for the input SAR images and

suppress the interference of the surrounding background with

similar scattering characteristics. In the prediction head part

of the network, the decoder layer De2 outputs heatmap, target

center offset, and constrained target width and height to obtain

the final detection results.

In this section, we first introduce the anchor-free network

with an encoder-decoder structure used as the algorithm

baseline. Next, the designed dense connection module and

visual attention module are described in detail. Then we present

a novel width height prediction constraint designed in the

prediction head.

3.1. Anchor-free network

The proposed algorithm builds on the key point anchor-

free detector, which determines the target center by key point

estimation and regresses at the target center to obtain other

target attributes, such as target center offset and target width

and height.

The feature extraction part uses an encoder-decoder

structure. In the encoder, Resnet101 is used for feature

extraction, and the extracted features are En1, En2, En3, En4,

En5, with scales corresponding to 1/2, 1/4, 1/8, 1/16, 1/32 of

the original image, reflecting the information of SAR image

from shallow to deep. The shallow features are richer in fine-

grained details and highlight the boundary of the target, while

the deep features are richer in semantic features and highlight

the location of the target. In the decoder, the features extracted

by the encoder are up-sampled three times to gradually recover

the featuremap resolution, and the up-sampled features are De4,

De3, De2, with scales corresponding to 1/16, 1/8, 1/4 of the

original image. The final network output features are not only

rich in feature extraction, but also have higher resolution, which

is convenient for target detection.

In the prediction head part of the network, the output

heatmap, target center offset and target width and height are

shown in Figure 1. Heatmap is used to locate the key points to

be determined in the input image, and the peak in the heatmap

is determined as the center of the target by sigmoid function

processing. Since the spatial resolution of the output heatmap

is 1/4 of the original image, the target center offset is used to

compensate for the pixel error caused by mapping the points on

the heatmap to the original image. The output target width and

height is used to predict the size of the target. Compared with

the anchor detector, the key point anchor-free detector directly

predicts the target center to determine the target, which is more

in line with the idea of brain-inspired attention mechanism.

3.2. Dense connection module

We design a dense connection module for feature extraction

to promote more adequate deep feature fusion. Traditional

feature extraction methods usually utilize lateral connection to

combine high-level semantic featuremappings from the decoder

with corresponding low-level detailed feature mappings from

the encoder, which can extract effective target features but lack
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FIGURE 1

Overall architecture of the proposed algorithm. The deep part of the network is densely connected, the shallow part of the network is processed

by the visual attention module (VAM), and the prediction head outputs heatmap, target center o�set, and constrained target width and height.

FIGURE 2

The dense connection module is used for feature extraction,

which can promote the deep feature fusion more fully.

correlation between adjacent layers and feature extraction is

not sufficient. For this reason, we design a dense connection

module, as shown in Figure 2, with decoder feature layers from

the encoder small-scale and same-scale feature mappings, and

large-scale feature mappings from the decoder or encoder layer

En5, to promote adequate feature fusion.

The encoder layer En1 is usually not considered in the

following feature extraction, while the shallow part of the

network En2 is not sufficiently extracted with still more

background interference, so we only process the deep part of the

network, i.e., the dense connection from the encoder layer En3 to

the decoder layer De3, to promote the deep feature fusion more

fully. Take how to build the decoder layer De4 as an example,

its input sources are, the encoder layer En3 after down-sampling

operation, the encoder layer En4 after lateral connection and the

encoder layer En5 after up-sampling operation, whose feature

maps have the same resolution for channel concatenation, and

the number of channels of each input feature layer is 64 in

order to unify the number of channels. To fuse the concatenated

feature maps more fully, a fusion process is applied to them,

i.e., a convolution of size 3 × 3 with 192 channels, batch

normalization and ReLU activation function. The formula for

constructing the decoder layer De4 is as follows:

De4 = FP(CONCAT(D(En3), L(En4),U(En5))) (1)

where D(·) denotes the down-sampling operation, L(·) denotes

the lateral connection, U(·) denotes the up-sampling operation,

CONCAT(·) performs channel concatenation on the three

processed feature maps, and FP(·) applies fusion processing

on the concatenated feature maps by convolution, batch

normalization with RELU activation function.

3.3. Visual attention module

We design a visual attention module to focus on local

area SAR ship target salient features, suppress surrounding

background interference, and finally detect the target effectively.

As shown in Figure 3, encoder feature e and decoder feature

d are input to the network for attention processing to obtain
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FIGURE 3

The visual attention module focuses on the salient features of the target in the local area, suppresses the surrounding background interference,

and detects the object e�ectively.

encoder feature ê that highlights important information, and

the processed encoder feature ê is then channel concatenated

and shuffled with decoder feature d, thus promoting sufficient

information mixing among different channels and finally

obtaining feature o for target detection.

In the shallow part of the network, the encoder layer En2

is rich in fine-grained details, but it is usually ignored in the

feature extraction due to insufficient feature extraction and

still more background interference. To extract richer features

in SAR target detection, we apply the visual attention module

to the encoder layer En2 and the decoder layer De3 with the

same scale after up-sampling, so as to obtain the effective

feature information of the encoder layer En2 and finally achieve

better detection results. In the visual attention module, the

encoder layer En2 is simplified as feature e and the processed

decoder layer De3 is simplified as feature d. First, they go

through a 1 × 1 convolution We and Wd, respectively to

change the channels into the same, followed by a weigh feature

fusion of both, i.e., a selective element-by-element summation

with differentiated fusion of different input features, and then

after a Relu activation function, a 1 × 1 convolution ψ of

the channel down to 1 and Sigmoid to obtain the attention

coefficients. By using the attention coefficients to weight the

encoder features e, the encoder features ê that highlight the

effective information are obtained, and the processed encoder

features ê are channel concatenated and shuffled with the

decoder features d, thus promoting information mixing among

different channels and finally obtaining feature o for target

detection. The visual attention module is processed by the

following equation:

WFF = Conv(
ω1 × I1 + ω2 × I2

ω1 + ω2 + ε
) (2)

ê = SIG(9(RELU(WFF(e×We, d ×Wd))))× (e×We) (3)

o = CS(CONCAT (̂e, d×Wd)) (4)

In (2), WFF represents weight feature fusion, where w is the

parameter we learn to distinguish the importance of different

input features I in the feature fusion process. In (3), ê represents

the encoder features with salient important information, where

SIG(·) denotes the sigmoid function. In (4), o represents the

features processed by the visual attention module for target

detection, where CS(·) denotes channel shuffle and CONCAT(·)

denotes channel concatenation.

3.4. Width height prediction constraint

In predicting the width and height of the target, the scattered

power distribution of the surrounding background in the near-

shore scene of SAR image is relatively similar to the edge of

the ship target, which is easy to have an impact on the ship

target localization. So we propose a new width height prediction

constraint, considering the overlapping area of the prediction

box and the real box, the real difference of width and height

edge and the loss gradient reweighting to improve the ship target

localization accuracy. The relative position of the prediction

box and the real box is shown in Figure 4. In wide and high

prediction, the network only computes the positive sample loss

values, so the prediction box overlaps with the true box at

the center.

The overlapping area of prediction box and real box is better

for ship targets with large scale differences, which can make

the width and height regressions have the same contribution at

different scales. The true difference of width and height edge

can minimize the difference between the width and height of

the prediction box and the true box to improve the detection

accuracy. Loss gradient reweighting is better when focusing

on high IOU targets by adaptively enhancing the weighting of

the loss and gradient of high IOU objects. The width height

prediction constraint loss function is as follows:

Lsize = 1− IOUα(A,B)+
ρ2α(w,wgt)

wc
2α

+
ρ2α(h, hgt)

hc
2α

(5)
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FIGURE 4

The relative position of the prediction box and the real box, both of which have the same center.

where Lsize represents the width height prediction constraint

loss value, IOU(A,B) considers the overlapping area of the

prediction box and the real box,
ρ2(w,wgt)

wc
2 +

ρ2(h,hgt)

hc
2 considers

the real difference of width and height edge, wc and hc denote

the width and height of the minimum external box covering

the prediction box and the real box, and α considers the loss

gradient reweighting, by adjusting the parameter α, the detector

can flexibly achieve different IOU target regression accuracy, the

parameter α is taken as 3.

4. Experiments

To evaluate the performance of the proposed algorithm,

we conducted experiments on the SAR ship detection dataset

(SSDD) and high resolution SAR images dataset (HRSID).

Firstly, the adopted dataset, experimental setup and evaluation

metric are described. Then ablation experiments are performed

on the algorithm to verify the effectiveness of the proposed

dense connection module, visual attention module, and width

height prediction constraint. Finally, it is compared with

multiple target detection methods to demonstrate that the

proposed algorithm can achieve better results in SAR ship

target detection.

4.1. Implementations

4.1.1. Dataset

SSDD is the first publicly available dataset at home and

abroad dedicated to SAR image ship target detection, which

can be used for training and testing to check algorithms and is

widely used. SSDD contains a total of 1,160 images, each image

size is about 500 × 500, with a total of 2,456 ships, and the

average number of ships per image is 2.12. The data mainly

has RadarSat-2, TerraSAR-X and Sentinel-1 sensors with four

polarizations of HH, HV, VV, and VH, and resolutions of 1–15

m, with ship targets in large areas of the sea and nearshore. We

choose the suffix images with indexes 1 and 9 as the test set (232

images). The images with index suffix 7 are set as the validation

set (116 images). The remaining images in SSDD are set as the

training set (812 images). The image size is resized to 512× 512

in our experiment.

HRSID is a high-resolution SAR ship detection dataset

that includes SAR images of different resolutions, polarization,

sea state, sea area, and coastal ports. The dataset is collected

by Sentinel-1 and TerraSAR-X satellites and contains a total

of 5,604 high-resolution SAR images and 16,951 labeled

ship targets. Based on the original report in the HRSID

dataset, the whole dataset is divided into training and test

sets according to 13:7. The image size is 800 × 800 in

our experiment.

4.1.2. Experimental setup

The proposed algorithm is implemented on pytorch 1.4.0,

CUDA 10.1, and NVIDIA TITAN RTX GPU. Adam is used

to optimize the target, the initial learning rate is 1.25e-4, the

batch size is 16, and the feature extraction backbone is Resnet-

101.

4.1.3. Evaluation metric

To evaluate the algorithm performance, we use the COCO

metrics, which are AP, AP50, AP75, APs, APm, and APl. The

average precision (mAP) is the area under the precision–recall

curve, which reflects the average precision of multiple types of

targets. mAP = AP since there is only one type of target for

SAR ships. The IoU threshold is calculated every 0.05 on the

interval from 0.5 to 0.95, and the final average is taken as the
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final result of AP. AP50 is the AP at IOU = 0.5 and AP75 is the

AP at IOU = 0.75. AP75 requires more stricter target localization

accuracy.APs,APm andAPl correspond to the AP of small-scale,

medium-scale and large-scale targets, respectively. The precision

and recall equations are as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP is the number of correctly detected ships, FP is the

number of false alarm ships, FN is the number of missed ships.

4.2. Ablation experiments

We performed ablation experiments on SSDD to analyze the

contribution of the proposed different modules. To ensure the

validity of the experimental results, all experimental settings are

the same. The results are shown in Table 1, and it can be seen

that the proposed different modules all significantly improve

the algorithm and enhance the SAR ship target detection

accuracy.

In the experimental results, by comparing the results in

the second row with the fifth row, the combination of the

dense connection module with the width height prediction

constraint improves more in the metrics APs and AP75, with

an increase of 1.7 and 1.0%, respectively. APs indicates the

extraction ability of small-scale ships, and AP75 requires high

target localization accuracy, which we believe is mainly due

to the consideration of the overlapping area between the

prediction box and the real box in the width-height prediction,

and the introduction of the loss gradient reweighting. The

overlapping area makes the target width and height regressions

have the same contribution at different scales, which avoids

the network from focusing too much on large scale ships and

ignoring the importance of small scale ships. The loss gradient

reweighting improves the loss of high IOU and improves the

target localization accuracy. By comparing the fifth row with

the last row of results, the combination of adding the visual

attention module improves more in the metric APm, which is

2.9% higher than before. The dense connection module acts

on deep features with relatively large sensory fields, which

usually correspond to the extraction of medium and large

scale targets, and we believe that the visual attention module

adds shallow detail information to the deep extracted features,

which enriches the network features and promotes the target

detection accuracy.

The detection results of the different modules proposed

are shown in Figure 5. The first row (Figures 5B,C) shows

the detection results without and with the dense connection

module, respectively. The dense connection module can detect

the missed ship target and improve the target detection

accuracy. The second and third rows (Figures 5B,C) show the

detection results without and with the width height prediction

constraint, respectively. The results in the second row show

that the width height prediction constraint can avoid the

small target with false alarm and improve the small target

detection accuracy. The results in the third row show that

the width height prediction constraint makes the ship’s tail

localization more accurate and improves the target localization

accuracy. The last row (Figures 5B,C) shows the detection

results without and with visual attention module, respectively,

and the visual attention module reduces the interference of

near-shore background and improves the target detection

accuracy.

4.3. Performance and analysis

In order to verify the effectiveness of this algorithm in SAR

ship target detection, this algorithm is compared with multiple

target detection methods. The feature extraction backbone is

used Resnet101 and keeps other parameters consistent. The AP

metric can reflect the overall performance of target detection,

and according to Table 2, the proposed algorithm achieves

68.2% AP on SSDD, which is 3.7, 5.4, 4.2, 2.6, and 1.2%

higher than Faster R-CNN, RetinaNet, FCOS, ATSS, and VFNet,

respectively, which proves the effectiveness of the proposed

algorithm on SAR ship target detection. In addition, the

proposed algorithm has higher detection accuracy than other

methods except in the metric APm which is lower than VFNet,

and metric APl which is lower than Faster R-CNN. According to

Table 3, the proposed algorithm achieves 62.2% AP on HRSID,

and the AP, AP50, AP75, APs, APm, and APl are 5.4, 3.2, 7.9, 6.2,

1, and 0.7% higher than those evaluated on baseline, respectively,

which proves the robustness of the proposed algorithm on

different datasets.

Figure 6 shows the detection results of other target detection

methods and the proposed algorithm. In the figure, green

indicates the truth box, red indicates the Faster R-CNNdetection

results, yellow indicates the RetinaNet detection results, blue

indicates the VFNet detection results, and purple indicates

the detection results of the proposed algorithm. In Figure 6,

the first row shows that the proposed algorithm has better

detection results for small-scale ships, the second and third

rows show that the proposed algorithm can effectively detect

targets in complex near-shore scenes, and the fourth and

fifth rows show that the proposed algorithm can get better

detection results for densely arranged ships, while the other

methods have poor detection results. The detection results

we obtained show that the proposed algorithm can be better

applied to small-scale targets, complex scenes, and densely

arranged targets.
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TABLE 1 Contribution of dense connection module, visual attention module, and width height prediction constraint to the algorithm on SSDD.

Dense connection Visual attention Prediction constraint AP AP50 AP75 APs APm APl

× × × 0.605 0.938 0.723 0.565 0.667 0.673
√

× × 0.665 0.964 0.804 0.632 0.715 0.733

×
√

× 0.622 0.965 0.734 0.582 0.679 0.746

× ×
√

0.629 0.942 0.750 0.594 0.680 0.712
√

×
√

0.672 0.965 0.814 0.649 0.707 0.716
√ √ √

0.682 0.968 0.817 0.647 0.736 0.717

Bold values indicate that the value is the largest in the same metric.

FIGURE 5

Detection results of di�erent proposed modules. (A) Ground truth. (B) Detection results without proposed modules. (C) Detection results with

proposed modules.
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TABLE 2 Performance of other target detection methods and the proposed algorithm on SSDD.

Method AP AP50 AP75 APs APm APl

Faster R-CNN 0.645 0.925 0.774 0.592 0.724 0.793

RetinaNet 0.628 0.943 0.741 0.568 0.726 0.661

FCOS 0.640 0.940 0.758 0.598 0.714 0.691

ATSS 0.656 0.958 0.770 0.603 0.741 0.744

VFNet 0.670 0.965 0.802 0.622 0.746 0.737

Proposed 0.682 0.968 0.817 0.647 0.736 0.717

Bold values indicate that the value is the largest in the same metric.

TABLE 3 Performance of the baseline method and the proposed algorithm on HRSID.

Method AP AP50 AP75 APs APm APl

Baseline 0.568 0.866 0.619 0.567 0.679 0.347

Proposed 0.622 0.898 0.698 0.629 0.689 0.354

Bold values indicate that the value is the largest in the same metric.

FIGURE 6

Detection results of di�erent detection methods. (A) Ground truth. (B) Detection results of Faster R-CNN. (C) Detection results of RetinaNet. (D)

Detection results of VFNet. (E) Detection results of the proposed algorithm.
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5. Conclusion

In this article, drawing on the idea that the brain-

inspired can effectively use visual targets and their surrounding

background information, we propose an improved anchor-

free SAR ship detection algorithm based on brain-inspired

attention mechanism. The proposed algorithm improves on

the anchor-free network, and in order to obtain richer target

information, the deep part of the network applies a dense

connection module to promote more adequate fusion of

deep semantic features, and the shallow part of the network

applies a visual attention module to extract features rich in

fine-grained details. And in order to enable more accurate

target localization in complex scenes, a novel width height

prediction constraint is proposed to finally improve the target

detection accuracy. After experimental validation, the proposed

algorithm achieves better detection results in SAR ship target

detection. In addition, there is a shortcoming during the

experiment, some densely arranged ships are missed, so we

will continue to improve the proposed algorithm in the future,

such as considering multimodal information of ship targets,

including but not limited to ship target detection under different

frequency bands.
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As an extended research direction of face recognition, kinship verification

based on the face image is an interesting yet challenging task, which aims

to determine whether two individuals are kin-related based on their facial

images. Face image-based kinship verification benefits many applications

in real life, including: missing children search, family photo classification,

kinship information mining, family privacy protection, etc. Studies presented

thus far provide evidence that face kinship verification still o�ers many

challenges. Hence in this paper, we propose a novel kinship verification

architecture, the main contributions of which are as follows: To boost the

deep model to capture various and abundant local features from di�erent

local face regions, we propose an attention center learning guided multi-

head attention mechanism to supervise the learning of attention weights and

make di�erent attention heads notice the characteristics of di�erent regions.

To combat the misclassification caused by single feature center loss, we

propose a family-level multi-center loss to ensure a more proper intra/inter-

class distance measurement for kinship verification. To measure the potential

similarity of features among relatives better, we propose to introduce the

relation comparison module to measure the similarity among features at a

deeper level. Extensive experiments are conducted on the widely used kinship

verification dataset—Family in the Wild (FIW) dataset. Compared with other

state-of-art (SOTA) methods, encouraging results are obtained, which verify

the e�ectiveness of our proposed method.

KEYWORDS

brain-inspired, relation comparison network, multi-head attention, facial kinship

verification, deep learning

Introduction

As an extended and novel research branch of face recognition, kinship

verification has received an increasing amount of attention (Hu et al., 2017;

Lu et al., 2017; Wu et al., 2018; Dahan and Keller, 2020) in the recent 10

years. The purpose of kinship verification is to offer verdict whether people

with different identities have kinship or not based on their facial information.

Face image-based kinship verification benefits many applications in real life,

including: kinship information mining (Robinson et al., 2021), missing children

search (Robinson et al., 2020), family photo classification (Xia et al., 2012), family

privacy protection (Kumar et al., 2020), etc. Generally, kinship can be divided
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into three generations containing 11 types. The same-

generation: Brother-Brother (B-B), Sister-Sister (S-S),

and Brother-Sister (SIBS). The first-generation: Father-

Son (F-S), Father-Daughter (F-D), Mother-Son (M-S),

and Mother-Daughter (M-D). The second-generation:

Grandfather-Grandson (GF-GS), Grandfather-Granddaughter

(GF-GD), Grandmother-Grandson (GM-GS), and

Grandmother-Granddaughter (GM-GD).

Meaningful achievement in kinship verification has been

delivered. The earliest solution toward kinship verification is to

construct proper handcraft features and then to calculate the

similarity between features to verify the kinship of two face

images. In recent years, with the development of deep learning

which draws inspiration from the neurobiological mechanisms

of the human brain, many data-driven kinship verification

methods based on deep learning have been applied to solve the

problem of face kinship verification. However, the achievements

in kinship verification are relatively less inspirational compared

to general face recognition or verification, due to the following

challenges put forth:

1. Face datasets with family relationships are scarce. The scale

of kinship verification dataset is incomparable to that of the

general face recognition dataset. Therefore, data deficiency

and imbalance invalidate many data-driven methods and

pose great challenges for kinship verification. It is still very

challenging to tackle the issue of how to boost its verification

ability through limited data like the human brain.

2. Feature expressions of the latent similarity among family

members are quite different compared to that of a single

individual. To illustrate this issue, nine face images from

Family in the Wild (FIW) dataset (Robinson et al., 2018) are

shown in Figure 1, in which, faces in line A, line B, and line

C belongs to three different families. And the first column

are faces of fathers, the second column are faces of sons, the

third column are faces of mothers. The similarities among

those faces are calculated by adopting features extracted by

the pretrained FaceNet. The face images in Figure 1A are

those of a couple and their son. Due to gender differences,

the calculated similarity between the son and his mother

is lower than the similarity between him and fathers from

other families, which is quite different with the human brain.

Similarly, due to the differences in skin color, in group B,

the faces of the son and the other father with white skin are

also very similar. Therefore, feature expression for kinship

verification is still very challenging.

Measurement of feature distance for kinship verification is much

more complicated, compared to general face recognition. The

main idea behind the face recognition problem is to reduce the

intra-class distance between different samples of each individual

and to expand the inter-class distance between samples of

different individuals. However, deep learning-based models

cannot handle the validation problem across multiple samples

as well as the human brain, because there are usually gender

differences and there is a large age gap lying between the relative

samples, which make it very difficult to narrow down the intra-

class distance with general hand-designed metric functions.

Besides, a family usually contains several members with different

feature representations. Simply adopting a single center for all

the different family members generates an improper intra/inter-

class distance for kinship verification. For instance: inter-

distance between husband and wife is closer than their intra-

class distance, which leads to a wrong verification of kinship.

To address these challenges in kinship verification, we

propose an efficient and practical automatic kinship verification

architecture inspired by the perspective of the human brain

in processing visual information about relatives. The main

contributions toward this article are as follows:

(1) To boost the deep model to capture various and abundant

local features from different local face regions, we

propose an attention center learning guided multi-head

attention mechanism to supervise the learning of attention

weights and make different attention heads notice the

characteristics of different regions. And then, the captured

local features are combined with the global feature as the

final feature expression.

(2) To combat the misclassification caused by single feature

center, we propose a family-level multi-center loss to ensure

that the learned model can map different facial features

of individuals with kinship to similar positions in the

feature space.

(3) To measure the potential similarity of features among

relatives better, we propose to introduce the relation

comparison module to measure the relationship between

features at a deeper level, instead of using a hand-designed

metric function.

The rest of the article is organized as follows: In section

Related work, recent influential works on kinship verification

are reviewed. In section Methodology, the proposed novel

methods are elaborated. In section Experimental results,

extensive experiments are conducted and experimental results

demonstrate that our approach achieves state-of-the-art results

compared to other methods. Lastly, we summarize the main

ideas and contributions of this paper.

Related work

According to the challenges discussed before, kinship

verification methods based on facial features are roughly

divided into local feature-based methods and metric learning-

based methods.

For local feature-based methods, the key issue one needs

to solve is how to abstract discriminative local features. In

Zhang et al. (2015), the face image is cropped into multiple
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FIGURE 1

(A–C) The figure above shows the face features extracted by using the pretrained FaceNet (Schro� et al., 2015), and the similarity is calculated.

overlapping patches, and then shallow convolutional networks

are used to learn the local features between relatives’ face pairs

for kinship verification. Dibeklioglu (2017) proposes an Age

Uniform Network (AUN) to convert faces of relatives into the

same age range for reducing the age features learned by the

Verification Network (VFN) to be intrusive. In a similar work,

a variety of artificially designed feature descriptors and deep

network feature descriptors are used to extract the local and

global features of the face, and the two tasks of face verification

and kinship verification are combined to improve the accuracy

of kinship verification (Kohli et al., 2016). In Zhang et al. (2020),

adversarial loss and verification loss are added to the feature

extraction process of face patches to learn the potential features

of relatives’ faces. Local features are used to enhance global

features, which result in more effective features for kinship

verification. By combining the face identification network and

the face landmark prediction network, the extraction of facial

appearance features and shape features is completed, and then

the comparison scores of these two features are combined to

finally obtain the kinship verification score (Zhang et al., 2019).

In addition, in Goyal and Meenpal (2020), Dual-Tree Complex

Wavelet Transform (DTCWT) is used to select a more effective

patch pair for kinship verification, so as to make full use of

the face patch to improve the effect of kinship verification.

In Zheng et al. (2021), Residual Factorization Module is used

to decompose facial features into identity and gender features,

and then the adversarial training is used to reduce the negative

impact of gender features on kinship verification. Indeed, local

features have a positive effect on the verification of facial

kinship. However, most existing local feature extractionmethods

rely heavily on the accuracy of facial patch crop or face

landmark prediction.

To address this issue further, researchers began to introduce

a non-local attention module as a complement. Visual attention

is a subjective or objective mechanism of visual information

selection by the brain, which concentrates on a limited amount

of information and ignores other perceivable information

(Cohen et al., 2012;Wang et al., 2022). It allows the human brain

to be selective in processing visual input from the outside world

(Yarbus, 2013), as well as enables the brain to quickly extract
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different parts of interest from complex scenes and process

them separately (Higgins et al., 2021). Aiming to simulate

the information processing mechanism of the human brain,

researchers have widely discussed the topic of attention in deep

neural network. Non-local attention (Wang et al., 2018) is an

attention mechanism that captures the relationship between

distant pixels. After fusing the information of the global feature,

an autocorrelation matrix is generated to weigh the original

feature map to obtain the final attention feature. This attention

model represents the importance of local regions better. Many

improvements have been made on the basis of a non-local

attention mechanism. DANet (Dual Attention Network) (Fu

et al., 2019) increases channel attention on the basis of spatial

attention in non-local attention. CCNet (Criss-Cross Network)

(Huang et al., 2019) uses the cross multiplication method to

reduce the computation of non-local attention. OCNet (Object

Contact Network) (Yuan et al., 2018) is used to obtain the

pixel-level similarity of different objects in the image to obtain

the target semantic information in the image better. ABD-Net

(Attentive but Diverse Network) (Chen et al., 2019) uses a

non-local attention model with channel and spatial attention in

person re-identification model to enhance the effectiveness of

local features. It has been proven that non-local attention has

a good effect in extracting the importance of the image region.

NLA-FFNet (Non-local Attentional Feature Fusion Network)

(Zhou et al., 2022) is proposed to enhance the robustness

of feature extraction by representing the relationship between

features with non-local attention through a multi-layer non-

local attention mechanism. At the same time (Fu et al., 2017;

Zheng et al., 2017), have shown that different channels of image

features can represent specific visual patterns, and grouping

them can get different regions in the image. Due to the powerful

feature representation capability for Siamese models with shared

weights, the Siamese networks have been used by scholars to

extract global features of different images (Han et al., 2022). At

present, how to boost the attention module to capture various

and abundant local features from different local face regions

automatically as the human brain and how to make full use of

local as well as global features are worth being discussed.

Metric learning has shown a promising performance for face

verification and face recognition task, which provides a positive

inspiration for kinship verification. In Feng and Ma (2021),

a contrastive loss function suitable for kinship comparison is

proposed, and a dual-path autoencoder network is used to

generate another member of the family to verify kinship pairs.

In Li et al. (2017), a sampling strategy of face image triples based

on family relationship information is proposed. Compared with

triples based on family tags, this method is more suitable for

optimization on family relationship data. At the same time,

there are also studies using quadruple sampling to find more

effective training pairs in kinship pairs (Zhou et al., 2019), but

it is a time-consuming and labor-intensive process to construct

a more suitable quadruple. In these works (Rehman et al., 2019;

Nguyen et al., 2020; Yu et al., 2020), the dual-path structure

network with shared or unshared weights is used to extract the

face features, and various splicing methods are introduced for

feature fusion, then the distance between the features is used for

kinship verification. Recently, some works have started to focus

on modifying the measurement method. In Wei et al. (2019),

the traditional Euclidean distance or Mahalanobis distance

measurement method is replaced by the adversarial learning

method. In Wu et al. (2021), the framework of Mahalanobis

remote metric learning is used to learn multiple distances

from training data metrics. In Zhu et al. (2022), Distance and

Direction based Deep Discriminant Metric Learning (D4ML)

modifies and designs two loss functions to learnmultiple metrics

by making full use of the discriminative information contained

in facial images of parents and children for minimizing the

distance between relatives’ faces. In conclusion, how to extract

more effective shared features between kinship faces and learn

the relationship between metrics is still a great challenge for

metric learning-based kinship verification.

Methodology

In section Motivation, the motivation behind the proposed

method is detailed. In section Proposed architecture, the

overall structure of the proposed network is described. In

section Attention center learning guided multi-head attention

mechanism, the proposed novel attention center learning guided

multi-head attention mechanism is detailed. In section Family-

level multi-center loss, the introduced kinship relation compare

module is illustrated, and in section Relation compare module,

the novel family-level multi-center loss is elaborated.

Motivation

Multiple attention modules are introduced to extract local

features under different channels in existing studies, however,

the relationship between different attention modules is ignored,

resulting in the inability to learn feature variability under

different channels. To tackle this issue, we propose to conduct

grouping at the channel level of the feature map, and then

input it into a well-designed multi-headed attention module

to extract local features of the face. The human brain, when

processing visual information, is able to quickly focus on a few

salient visual objects or multiple features, allowing for a broader

range of visual information, whereas computer image processing

is concerned with only a small fraction of the entire image.

Therefore, to ensure the difference in various features to obtain a

wider range of facial information as the human brain, we design

the attention center learning module. The module is used to

supervise the multi-head attention to learn diverse local features

from different local regions.

Frontiers inNeuroscience 04 frontiersin.org

141

https://doi.org/10.3389/fnins.2022.1093071
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.1093071

FIGURE 2

Overview of the kinship network structure.

Simply aggregating facial features of all family members

to a single center generates an improper intra/inter-class

distance, for example: inter-distance between husband and

wife is closer than their intra-class distance, which leads to a

wrong verification of kinship. The visual system of the human

brain deals with the features of different individuals separately.

Inspired by this reasoning, we believe that it is inappropriate to

treat different members of the whole family as the same label for

metric learning. Hence, we introduce a brain-inspired family-

level multi-center loss so that the family feature center is not

limited to one, and it is more useful to use the local area of the

face to perform auxiliary metric learning.

In kinship verification, feature distance measurement is

quite different and more challenging due to the existing data

deficiency, gender difference, age gap, skin color, etc. Narrowing

the intra-class distance with a general hand-designed metric

function may not yield promising results. To handle the

validation problem across multi-samples like the human brain,

we propose to use a relational reasoning-based method to

measure the similarity between relatives, instead of being limited

to amanually set measurement function. Therefore, a non-linear

relation comparable module is introduced to make the distance

measurement more suitable for kinship verification.

Proposed architecture

In this section, we describe the proposed kinship verification

framework. The overall structure, which consists of three main

parts, is shown in Figure 2, in which the two input images are

example images from FIW dataset (Robinson et al., 2018).

As shown above, the Siamese network is introduced as

a feature extraction network architecture. The first part is a

BaseNet module used for global feature extraction. It adopts

a ResNet-50 network. To train the BaseNet better, the large-

scale face dataset CASIA-WebFace (Yi et al., 2014) is introduced,

and both SoftMax and center loss are applied. The second part

is the attention center learning guided multi-head attention

mechanism, also denoted as ACLMHA. It adopts the multi-

head attention module to generate the local attention features

of the face, during which, the proposed attention center learning

mechanism is used to supervise the attention matrix. This helps

to boost the deep model to capture various and abundant local

features from different local face regions, and therefore improve

the network’s feature extraction ability for local areas. To capture

small-scale local features better, we make full use of the feature

maps (conv3_x, conv4_x, conv5_x) output by three different

convolution blocks of ResNet, specifically, we perform bilinear
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FIGURE 3

Overview of the structure of the ACLMHA (attention center learning guided multi-head attention mechanism).

FIGURE 4

Overview of the structure of the attention center learning (ACL).
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upsampling operation for C5, use 1∗1 convolution for down-

channel for C4, and downsample for C3. Finally, three feature

maps with a size of 14∗14∗512 are obtained., and then we get

a 14∗14∗1,536 feature map after splicing in the channel layer,

which is input into the ACLMHA model to extract the features

of the local module. Besides, the brain-inspired family-level

multi-center loss is proposed to address the feature distance

expression further. The third part is the relation compare

module introduced to measure the complex feature distance for

kinship verification. The features obtained by splicing the global

and local features of different faces are fed into the module to

measure their similarity, and finally the kinship between face

pairs is arrived at.

Attention center learning guided
multi-head attention mechanism

Attention module has been widely discussed to simulate the

critical areas discovering process of the human brain. The non-

local attention network expresses the importance of each pixel in

the feature map through an autocorrelation matrix calculated by

the correlation between the pixels of the feature map. To boost

the attention module to focus on different critical regions of face

images as human brain further, we propose an attention center

learning mechanism to supervise the learned attention matrix. It

guides the multi-head model to pay attention to different local

features of the face image.

Structure of the ACLMHA

As shown in Figure 3, considering that different channels

often learn different visual modes of the image, we propose

to extract the features of different regions by performing

channel grouping on the convolved feature maps. To be specific,

the feature maps of different scales obtained by the deep

convolutional network are combined, and then channel shuffling

is applied to mix the channel maps of different scales, so

that the information of different scales can be merged. After

that, the mixed combined features are divided into k groups,

and subsequently convolution operations are performed on the

features through k different convolutional layers. In this paper,

k is set as 4. Then, the output is fed into the spatial-channel

attention (SCA) network for spatial attention learning, during

which the proposed attention center learning mechanism is

applied to supervise the learned attention matrix to focus on

different critical regions of face images as the human brain.

The SCA network can be represented as a triple (K, Q, V), as

shown in Equation (1):

Ki
= θ(Mi),Qi

= φ(Mi),V i
=ψ(Mi) (1)

where M ∈ RH×W×C is the feature map fed to the attention

module, H,W,C are the width, height, and channel of the

feature map separately. θ ,φ,ψ are three different 1 × 1

convolution layers. We use 1 × 1 convolution kernel to reduce

the channel number C to C
m . In this paper, m = 4, the feature

map Ki is reshaped into R(Ki)∈RHW×
C
m after passing through

the 1∗1 convolutional layer, the feature map Q is reshaped into

R(Qi)T∈R
C
m×HW after passing through the 1∗1 convolutional

layer and then transposed further. The autocorrelation matrix

is obtained by multiplying Ki and Qi, and then the Softmax is

performed row by row to get the final patch location attention

matrix Ai which is represented as shown in Equation (2):

Ai
= SoftMax(R(Ki) • R(Qi)T) (2)

where R is the reshape operation, T is the transpose operation,

and • represents the matrix multiplication operation. Then Ai

and R(V i) are matrix multiplied and the residual M
′

is added

to obtain the final local attention feature Mi
a, as shown in

Equation (3):

Mi
a = R(V i) • Ai

+M
′

(3)

Attention center learning module

The combination of different local features and global

features of human faces has significant advantages over only

global features. However, in most of the previous methods,

features of different regions are extracted through facial

landmark detection-based region location, which is not suitable

for relatives, since the local similarities among relatives’ faces are

not limited to specific landmarks. Therefore, we developed an

attention model that can automatically locate the salient areas

between relatives, so that different attention matrices can learn

different regions. We propose a feature center-based learning

method to supervise the non-local attention correlation matrix.

As shown in Figure 4, the location attention matrix is the

result processed by the SoftMax function row-wise. We denote

FIGURE 5

To understand the distribution of facial features in the feature

space, the figure on the left shows the case of a single center

(A), each light color dot represents di�erent family members’

face samples, and the dark dot with the star represents the

characteristics of the family id center, and the figure on the right

shows the distribution of features with multiple centers (B).
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the operation of summing Ai by column as S, and then reshape

it into A′
i∈R

H×W , as shown in Equation (4):

A′
i = R(S(Ai

l)) (4)

The maximum value of Ai after threshold operation is set

as the center of the attention matrix, which is expressed in

Equations (5)–(7):

A′′
i = T(A′

i) (5)

Tθ (a) =

{

ai if ai≥ θ

0 otherwise
(6)

CenterAi=max
(

A′′
i
)

(7)

where T is the threshold operation to make sure only the area

with larger attention weight is kept. To make θ ∈ (0, 1) A′
i

is normalized.
To gather attention to the center, we proposed the LA(com).

We introduce the reciprocal of the distance between each pixel in
the matrix and the center is introduced to weight the point-to-
point attention matrix value difference. So that pixels far from
the center have smaller weights, and pixels closer to the center
have larger weights. At the same time, for those pixels near the
center point, their attention values are more close to that of the

FIGURE 6

Examples of Family in the Wild (FIW) dataset (Robinson et al., 2018).
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center point. LA(com) is represented as Equations (8) and (9):

LA(com) =

H
∑

x = 0

W
∑

x = y

(

1
∥

∥(x,y)−(Cx,Cy)
∥

∥

2

2

•
∥

∥A′′
i(Cx,Cy)−A′′

i(x,y)
∥

∥

2

2

)

(8)

and A′′
i(x,y)6= 0 (9)

The purpose of LA(dis) is to separate the attention centers from

each other, which helps to extract the attention feature maps

of different positions on the face. LA(dis) is represented as

Equation (10):

LA(dis) =−

k
∑

i = 0

k
∑

j6=i

∥

∥

∥
(Cix,C

i
y), (C

j
x,C

j
y)
∥

∥

∥

2

2
(10)

Finally, the loss function LA of the ALMACL part is obtained by

adding the above two loss functions, as shown in Equation (11).

LA = LA(com)+LA(dis) (11)

Family-level multi-center loss

Different from the previous kinship verification method, in

this paper we propose a family-level multi-center loss, which

is a combination of the SoftMax function and the designed

multi-center loss. Inspired by SoftTriple loss (Qian et al., 2019),

as shown in Figure 5A, simply mapping the feature of father,

mother, and child to the same feature center is improper,

because, although children have latent similarities with their

parents, fathers andmothers do not have such similarities. Single

feature center will lead to improper intra/inter-class distance for

kinship verification. To combat this issue, we design multiple

feature centers for each family label, which we call family-

level multi-center loss. As shown in Figure 5B, the features of

different family members can be aggregated to the nearest center

point by extending out multiple centers, which helps to separate

the feature boundaries of different members. The family-level

multi-center loss function Lfid−c is specified by the following

Equation (12):

Lfid−c =
1

2Nm

N
∑

i = 1

m
∑

k = 1

∥

∥

∥
αi−ckβi

∥

∥

∥

2

2
(12)

where N is the number of samples in each minibatch, m is the

number of each family center, and ck
β i

is the category center, and

the updated equations of the category center are as follows:

∂Lfid − c

∂αi
=

1

Nm

m
∑

k = 1

(αi−ckβi ) (13)
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1Cj =

∑N
i = 1 δ(βi = j)(cj−αi)

ε+
∑N

i = 1 δ(βi = j)

(14)

C
′

= Cj−a1Cj (15)

where αi denotes the sample, βi denotes the corresponding label,

ε is used to prevent the denominator from being zero when

updating the calculation of categories with multiple feature

centers, and δ() indicates that the value corresponding to

the sample in the current training batch is 1 and the value

corresponding to other samples is 0.

As shown in Figure 2, to ensure that the effective face

features can be extracted, we propose a classification loss

function Lcls, which includes two parts: Lfid−CE and Lpid−CE,

as shown in Equations (16) and (17), and the total loss is shown

in Equation (18).

Lfid = Lfid−CE+Lfid−c (16)

Lcls = λLfid−CE+βLpid−CE (17)

Ltotal = Lcls+LA+Lfid (18)

Relation compare module

As shown in Figure 2, 2∗K groups of facial local features

extracted from the input image pair are combined to generate

K∗K features and then spliced with the global features. The

obtained final features are fed into the perceptron layer, followed

by an element-level addition operation, the output of which is

used for family relationship learning. Finally, the kinship/non-

kinship score of the face pair are acquired through the sigmoid

activation function, as shown in Equation (19).

score= g(sum(f (cat(Mi
a(X1),M

i
a(X2),Z(X1),Z(X2)))) (19)

Among them, X1 represents the input image of the child,

X2 represents the input image of the parents, cat represents

concatenation operation, and Z represents the mapping of the

BaseNet network, which is used to extract global features. In

addition, we use binary cross entropy (BCE) loss for training

here. This module is similar to a learnable metric function.

Through training, it can learn the feature relationships of faces

among different family relationships. Therefore, it can overcome

the limitations of hand-designed metric functions and learn the

potential relationships between features better.

Experimental results

Datasets

The face kinship verification Family in the Wild (FIW)

dataset (Robinson et al., 2018) is adopted for experiments in this

paper. FIW is the largest dataset whose distribution is closest

to the real data. As shown in Figure 6, the dataset contains

1,000 families and 10,676 individuals. It can be formed into

690 thousand pairs, including all the 11 kinds of kinship: B-

B, S-S, SIBS, F-D, F-S, M-D, M-S; GF-GD, GF-GS, GM-GD,

and GM-GS.

Training details

First, the CASIA-WebFace database is used to train the

BaseNet, during which the combination of SoftMax and center

loss is employed. We notice that, at the initial stage of training,

if center loss is assigned with larger weight, it will lead to a

very slow or difficult convergence. So, we propose to introduce a

similar warm-up strategy that can dynamically adjust the weight

of the center loss. Specifically, we start with a relatively small

weight at the beginning of the training stage. In this paper,

we set it to 0.5. After 200 thousand iterations, the weight of

FIGURE 7

Receiver operating characteristic (ROC) curve of brother-brother (B-B), sister-sister (S-S), and brother-sister (SIBS).
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FIGURE 8

Receiver operating characteristic (ROC) curve of father-daughter (F-D), father-son (F-S), mother-daughter (M-D), and mother-son (M-S).

every five thousand iteration is 1.5 times of the original, until

the iteration is completed. Second, we migrate the pretrained

BaseNet on FIW. Only the last fully connected layer is left and all

the parameters are frozen to learn the subsequent kinship model

with a small learning rate. When the network is iterated to 200

thousand times, we unfreeze all the network layers and then fine-

tune the entire network. Finally, in the verification phase, two

face images are input into our model to verify their kinship.

Ablation experiments

To explore the effectiveness of our relationship model

for latent feature learning among facial relatives, we design

a group of comparative experiments between the multi-layer

perceptron model (MLP), the relation compare model (RCM),

and the relation compare module combined with ACLMHA.

It should be noted that for the first two methods, the adopted

features are the combination of the global and local features,

which are extracted through MTCNN (Multi-task Cascaded

Convolutional Networks)-based key points detection.

As shown in Table 1, the verification accuracy of RCM is

increased by about 7% compared to the traditional MLP. In

addition, ACLMHA combined with RCM achieves the highest

result, which is a further 2% improvement. It shows that the

proposed ACLMHA can enhance further the discrimination

of local features compared to those. In addition, the average

accuracy of each generation is 80.7, 78.4, and 75.3% separately,

which shows that kinship verification of the second generation

is the most challenging task.

Comparative experiments

To demonstrate further the advantages of our algorithm,

the proposed algorithm is compared with other advanced

algorithms published so far, and the specific comparison results

are shown as follows.

Experiments of 11 different kinship verifications

are conducted. Figures 7–9 show the receiver operating

characteristic (ROC) curve of the proposed method on the

FIW dataset. The higher the AUC (area under curve) value,
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FIGURE 9

Receiver operating characteristic (ROC) curve of grandfather-granddaughter (GF-GD), grandfather-grandson (GF-GS),

grandmother-granddaughter (GM-GD), and grandmother-grandson (GM-GS).

TABLE 2 Results of brother-brother (B-B), sister-sister (S-S), and brother-sister (SIBS) on family in the wild (FIW).

Method B-B S-S SIBS Avg

LBP (Ahonen et al., 2006) 55.5 57.5 55.4 56.1

SIFT (Dalal and Triggs, 2005) 57.9 59.3 56.9 58.0

VGG-face (Parkhi et al., 2015) 69.7 75.4 66.5 70.5

ResNet20 (Wen et al., 2016) 65.6 69.7 60.1 65.1

SphereFace (Liu et al., 2017) 71.9 77.3 70.2 73.1

ResNet50 (Hörmann et al., 2020) 66.4 65.3 76.0 69.2

ResNet50+ feature fusion (Yu et al., 2020) 75.1 74.4 72.0 73.8

InsightFace (Shadrikov, 2020) 80.2 80.4 77.3 79.3

Dual-VGGFace-v2 (Rachmadi et al., 2021) 66.3 73.2 67.2 68.9

AIAF+ IFW (Liu et al., 2022) 73.8 85.5 77.6 78.9

Ours 81.3 82.1 78.6 80.7

the higher the prediction accuracy. It can be seen that the

same-generation kinship verification achieves the best effect,

followed by the first-generation kinship. The second-generation

kinship verification is the most challenging task.

Tables 2–4 show the comparison results of the proposed

method and the current state-of-the-art (SOTA) methods. As

shown, for the proposed method, the average verification

accuracy of the same-generation is 80.7%, which is 1.4%

higher than the best results of other comparable algorithms.

The average accuracy of the first-generation kinship is 78.4%,

during which the M-D kinship verification achieves the

highest result among all the mentioned methods. The average

accuracy of the most challenging second-generation kinship

is 75.3%, which is 3.5% higher than the best results of other
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TABLE 3 Results of father-daughter (F-D), father-son (F-S), mother-daughter (M-D), and mother-son (M-S) on family in the wild (FIW).

Method F-D F-S M-D M-S Avg

LBP (Ahonen et al., 2006) 55.1 53.8 55.7 54.7 54.8

SIFT (Dalal and Triggs, 2005) 56.4 56.2 55.1 56.5 56.1

VGG-face (Parkhi et al., 2015) 64.3 63.9 66.4 62.8 64.4

ResNet20 (Wen et al., 2016) 59.5 60.3 61.5 59.4 60.2

SphereFace (Liu et al., 2017) 69.3 68.5 71.8 69.5 69.8

ResNet50 (Hörmann et al., 2020) 76.9 80.1 76.7 78.2 78.0

ResNet50+ feature fusion (Yu et al., 2020) 75.5 81.8 74.7 75.2 76.8

InsightFace (Shadrikov, 2020) 75.2 80.8 77.7 74.4 77.0

Dual-VGGFace-v2 (Rachmadi et al., 2021) 65.3 64.1 67.3 66.3 65.8

AIAF+ IFW (Liu et al., 2022) 79.1 78.2 76,1 86.5 79.9

Ours 77.3 80.5 78.4 77.4 78.4

TABLE 4 Results of grandfather-granddaughter (GF-GD), grandfather-grandson (GF-GS), grandmother-granddaughter (GM-GD), and

grandmother-grandson (GM-GS) on family in the wild (fiw).

Method GF-GD GF-GS GM-GD GM-GS Avg

LBP (Ahonen et al., 2006) 55.8 55.9 54.0 55.4 55.3

SIFT (Dalal and Triggs, 2005) 57.3 55.4 57.3 56.7 56.7

VGG-face (Parkhi et al., 2015) 62.1 63.8 57.4 61.6 61.2

ResNet20 (Wen et al., 2016) 55.4 58.1 59.7 59.7 58.2

SphereFace (Liu et al., 2017) 66.1 66.4 64.6 65.4 65.6

ResNet50 (Hörmann et al., 2020) 70.0 73.4 63.9 60.3 66.9

ResNet50+ feature fusion (Yu et al., 2020) 72.5 72.7 67.3 67.6 70.0

InsightFace (Shadrikov, 2020) 77.9 69.4 75.8 59.8 70.7

Dual-VGGFace-v2 (Rachmadi et al., 2021) 60.5 59.1 61.6 60.6 60.5

AIAF+ IFW (Liu et al., 2022) 69.3 69.3 70.5 78.3 71.8

Ours 78.5 74.1 76.4 72.2 75.3

algorithms, which however achieves much higher performance

compared with other optimal algorithms. The results show

that the kinship verification evaluation of our method shows

a greater improvement compared to the existing algorithm,

especially for the most challenging second-generation kinship

verification task.

Conclusions

In this paper, we propose a novel brain-inspired network

with ACLMHA and FML to address the challenging feature

expression, complex similarity measurement issues, and the

misclassification due to single feature center in kinship

verification. First, we propose an attention center learning

guided multi-head attention mechanism to supervise the

learning of attention weights and make different attention

heads notice the characteristics of different regions to boost

the deep model to capture various and abundant local features

from different local face regions. Second, a family-level multi-

center loss is proposed to ensure that the learned model

can map different facial features of the same family to

similar positions in the feature space. Finally, the feature

relation compare module is introduced to measure the

potential similarity of features among relatives. Extensive

comparison experiments are conducted on the FIW dataset.

Among them, the proposed method achieves a promising

performance, especially in the verification of grandparents and

grandchildren, which is significantly better than other state-

of-art (SOTA) methods. The topic of how to combat data

scarcity and better utilize the existing face dataset to improve

the accuracy of facial kinship verification needs to be discussed

in the future.
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Introduction: In recent years, machines powered by deep learning have

achieved near-human levels of performance in speech recognition. The fields

of artificial intelligence and cognitive neuroscience have finally reached a

similar level of performance, despite their huge di�erences in implementation,

and so deep learning models can—in principle—serve as candidates for

mechanistic models of the human auditory system.

Methods: Utilizing high-performance automatic speech recognition systems,

and advanced non-invasive human neuroimaging technology such as

magnetoencephalography and multivariate pattern-information analysis, the

current study aimed to relate machine-learned representations of speech to

recorded human brain representations of the same speech.

Results: In one direction, we found a quasi-hierarchical functional

organization in human auditory cortex qualitatively matched with the hidden

layers of deep artificial neural networks trained as part of an automatic speech

recognizer. In the reverse direction, we modified the hidden layer organization

of the artificial neural network based on neural activation patterns in human

brains. The result was a substantial improvement in word recognition accuracy

and learned speech representations.

Discussion: We have demonstrated that artificial and brain neural networks

can be mutually informative in the domain of speech recognition.

KEYWORDS

automatic speech recognition, deep neural network, representational similarity

analysis, auditory cortex, speech recognition
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1. Introduction

Speech comprehension—the ability to accurately identify

words and meaning in a continuous auditory stream—is a

cornerstone of the human communicative faculty. Nonetheless,

there is still limited understanding of the neurocomputational

representations and processes in the human brain which

underpin it. In this paper we approach a fundamental

component of speech comprehension—namely the recognition

of word identities from the sound of speech— in reverse:

to find artificial systems which can accomplish the task, and

use them to model and probe the brain’s solution. In the

domain of engineering, automatic speech recognition (ASR)

systems are designed to identify words from recorded speech

audio. In this way, ASR systems provide a computationally

explicit account of how speech recognition can be achieved,

so correspondences between the human and machine systems

are of particular interest; specifically, the question of whether

the learned representations in an ASR can be linked to those

found in human brains. Modern advances in high-resolution

neuroimaging and multivariate pattern-information analysis

have made this investigation feasible.

In the present research, we took a bidirectional approach,

relating machine-learned representations of speech to recorded

brain representations of the same speech. First, we used the

representations learned by an ASR system with deep neural

network (DNN) acoustic models (Hinton et al., 2012) to

probe the representations of heard speech in the brains of

human participants undergoing continuous brain imaging. This

provided a mechanistic model of speech recognition, and

evidence of it matching responses in human auditory cortex.

Then, in the opposite direction, we used the architectural

patterns of neural activation we found in the brains to refine

the DNN architecture and demonstrated that this improves ASR

performance. This bidirectional approach was made possible

by recently developed multivariate pattern analysis methods

capable of comparing learned speech representations in living

brain tissue and computational models.

ASR encompasses a family of computationally specified

processes which perform the task of converting recorded speech

sounds to the underlying word identities. Modern ASR systems

employing DNN acoustic and language models now approach

human levels of word recognition accuracy on specific tasks.

For instance, regarding English, the word error rate (WER) of

transcribing careful reading speech with no background noise

can be lower than 2% (Luscher et al., 2019; Park et al., 2019), and

the WER of transcribing spontaneous conversational telephone

speech can be lower than 6% (Saon et al., 2017; Xiong et al.,

2018).

For the present study, our ASR system was constructed

based on a set of hidden Markov models (HMMs). For each,

a designated context-dependent phonetic unit handled the

transitions between the hidden states. A DNN model was used

to provide the observation probability of a speech feature vector

given each HMM state. This framework is often called a “hybrid

system” in the ASR literature (Bourlard and Morgan, 1993;

Hinton et al., 2012). The Hidden Markov Model Toolkit (HTK:

Young et al., 2015; Zhang and Woodland, 2015a) represents a

historical state-of-the-art ASR system, and is still among the

most widely used. We used HTK to train the DNN-HMMs and

construct the overall ASR pipeline of audio to text. A version of

this model comprised a key part of the first-place winner of the

multi-genre broadcast (MGB) challenge of the IEEE Automatic

Speech Recognition and Understanding Workshop 2015 (Bell

et al., 2015;Woodland et al., 2015). In this paper, all ASR systems

were built in HTK using 200 h of training data from the MGB

challenge. We designed the experimental setup carefully to use

only British English speech and reduce the channel difference

caused by different recording devices.

Of particular importance for the present study is the

inclusion of a low-dimensional bottleneck layer in the DNN

structure of our initial model. Each of the first five hidden layers

contains 1,000 nodes, while the sixth hidden layer has just 26

nodes. Our choice to include six hidden layers in the DNN is

not arbitrary. The performance of different DNN structures in

the MGB challenge has previously been studied. Empirically,

having a fewer hidden layers result in worse WERs, while more

hidden layers result in unstable training performance due to

the increased difficulty when optimizing deeper models. Similar

structures were often adopted on different datasets and by

different groups (e.g., Karafiát et al., 2013; Doddipatla et al.,

2014; Yu et al., 2014; Liu et al., 2015). Since the layers in

our DNN are feed-forward and fully connected, each node

in each layer is connected only with the nodes from its

immediately preceding layer, and as such the acoustic feature

representations of the input speech are forced to pass through

each layer in turn to derive the final output probabilities of

the context-dependent phonetic units. The bottleneck layer

representations are highly compressed and discriminative, and

are therefore widely used as an alternative type of input

features to acoustic models in ASR literature1 (Grézl et al.,

2007; Tüske et al., 2014; Woodland et al., 2015). In addition,

the inclusion of this bottleneck layer greatly reduces the

number of DNN parameters without significantly diminishing

the accuracy of word recognition (Woodland et al., 2015),

since it can prevent the model from over-fitting to the training

data (Bishop, 2006). Thus, the bottleneck layer representation

provides a learned, low-dimensional representation of speech

which is both parsimonious and sufficient for high-performance

speech recognition. This is especially interesting for the present

study, given the inherently low-dimensional parameterization

of speech that is given by articulatory features, which are a

1 Bottleneck layers which are trained alongside the other layers in a

model have been shown to be superior to other methods of lowering

dimensions, such as simple PCA (Grézl et al., 2007).
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candidate characterization of responses to speech in human

auditory cortex.

Recent electrocorticography (ECoG: Mesgarani et al., 2008,

2014; Chang et al., 2010; Di Liberto et al., 2015; Moses et al.,

2016, 2018) and functional magnetic resonance imaging (fMRI:

Arsenault and Buchsbaum, 2015; Correia et al., 2015) studies in

humans show differential responses to speech sounds exhibiting

different articulatory features in superior temporal speech areas.

Heschl’s gyrus (HG) and surrounding areas of the bilateral

superior temporal cortices (STC) have also shown selective

sensitivity to perceptual features of speech sounds earlier in the

recognition process (Chan et al., 2014; Moerel et al., 2014; Saenz

and Langers, 2014; Su et al., 2014; Thwaites et al., 2016). Building

on our previous work investigating phonetic feature sensitivity

in human auditory cortex (Wingfield et al., 2017), we focus

our present analysis within language-related brain regions: STC

and HG.

The neuroimaging data used in this study comes from

electroencephalography and magnetoencephalography

(EMEG) recordings of participants listening to spoken

words in a magnetoencephalography (MEG) brain scanner.

High-resolution magnetic resonance imaging (MRI) was

acquired using a 3T MRI scanner for better source localization.

As in our previous studies (Fonteneau et al., 2014; Su et al.,

2014; Wingfield et al., 2017), the data (EMEG and MRI) has

been combined to generate a source-space reconstruction

of the electrophysiological activity which gave rise to the

measurements at the electroencephalography (EEG) and MEG

sensors. Using standard minimum-norm estimation (MNE)

procedures guided by anatomical constraints from structural

MRIs of the participants (Hämäläinen and Ilmoniemi, 1994;

Gramfort et al., 2014), sources were localized to a cortical

mesh at the gray-matter–white-matter boundary. Working

with source-space activity allows us to retain the high temporal

resolution of EMEG, while gaining access to resolved spatial

pattern information. It also provides the opportunity to restrict

the analysis to specific regions of interest on the cortex, where

an effect of interest is most likely to be found.

Recent developments in multivariate neuroimaging

pattern analysis methods have made it possible to probe the

representational content of recorded brain activity patterns.

Among these, representational similarity analysis (RSA:

Kriegeskorte et al., 2008a) provides a flexible approach which is

well-suited to complex computational models of rich stimulus

sets. The fundamental principle of our RSA procedures was the

computation of the similarity structures of the brain’s response

to experimental stimuli, and comparing the similarity structures

with those derived from computational models. In a typical RSA

study, this similarity structure is captured in a representational

dissimilarity matrix (RDM), a square symmetric matrix whose

rows and columns are indexed by the experimental stimuli, and

whose entries give values for the dissimilarity of two conditions,

as given by their correlation distance in the response space.

A key strength of RSA is that RDMs abstract away from the

specific implementation of the DNN model or measured neural

response, allowing direct comparisons between artificial and

human speech recognition systems; the so-called “dissimilarity

trick” (Kriegeskorte and Kievit, 2013). The comparison between

RDMs computed from the ASR model and RDMs from human

brains take the form of a Spearman’s rank correlation ρ between

the two (Nili et al., 2014).

RSA has been extended using the fMRI searchlight-mapping

framework (Kriegeskorte et al., 2006; Nili et al., 2014) so

that representations can be mapped through image volumes.

Subsequently, searchlight RSA has been further extended into

the temporal dimension afforded by EMEG data: spatiotemporal

searchlight RSA (ssRSA: Su et al., 2012, 2014). Here, as in other

studies using computational cognitive models (e.g., Khaligh-

Razavi and Kriegeskorte, 2014; Mack et al., 2016), ssRSA

facilitates the comparison to a machine representation of the

stimulus space which may otherwise be incommensurable with

a distributed brain response.

In the machine-to-human direction, using ssRSA and

the ASR system as a reference, we found that the early

layers of the DNN corresponded to early neural activation in

primary auditory cortex, i.e., bilateral Heschl’s gyrus, while the

later layers of the DNN corresponded to late activation in

higher level auditory brain regions surrounding the primary

sensory cortex. This finding reveals that the neural network

located within HG is likely to have a similar functional

role as early layers of the DNN model, extracting basic

acoustic features (though see Hamilton et al., 2021 for a

recent contrasting study). The neurocomputational function of

superior temporal gyrus regions is akin to later layers of the

DNN, computing complex auditory features such as articulation

and phonemic information.

In the reverse human-to-machine direction, using the

pattern of results in the brain-image analysis, we improved the

architecture of the DNN. The spatial extent of neural activation

explained by the hidden-layer representations progressively

reduced for higher layers, before expanding again for the

bottleneck layer. This pattern, which mirrored the structure of

the DNN itself, and (assuming an efficient and parsimonious

processing stream in the brain) suggests that some pre-

bottleneck layers might be superfluous in preparing the low-

dimensional bottleneck compression. We restructured the DNN

model with the bottleneck layer moved to more closely resemble

the pattern of activation observed in the brain, hypothesizing

that this would lead to a better transformation. With this

simple, brain-inspired modification, we significantly improved

the performance of the ASR system. It is notable that similar

DNN structures have been developed independently elsewhere

in order to optimize the low-dimensional speech feature

representations from the DNN bottleneck layer. However,

“reverse-engineer” human learning systems implemented in

brain tissue in such a bidirectional fashion provides a
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complementary approach in developing and refining DNN

learning algorithms.

2. Study 1: Investigating ASR DNN
representations

2.1. Materials and methods

2.1.1. Building DNN-HMM acoustic models for
ASR

Here we construct a DNN which can each be included as a

component in the hybrid DNN-HMM set-up of HTK. This is

a widely used speech recognition set-up in both academic and

industrial communities (Hinton et al., 2012), whose architecture

is illustrated in Figure 1. Each network comprises an input

layer, six hidden layers, and an output layer, which are all

fully-connected feed-forward layers.

The DNN acoustic model was trained to classify each input

frame into one of the triphone units at each time step. We

used it as the acoustic model of our DNN-HMM ASR system

to estimate the triphone unit likelihoods corresponding to each

frame. The log-Mel filter bank (FBK) acoustic features were

used throughout the paper, which were extracted with a 25 ms

duration and 10 ms frame shift. The first order differentials

of the FBK features were also included to extend the acoustic

feature vectors. Each of these windows was transformed into a

40-dimensional FBK feature vector representing a speech frame

with an offset of 10 ms. When being fed into the DNN input

layer, the 40-dimensional feature vectors were augmented with

their first-order time derivatives (also termed as delta features

in the speech-recognition literature) to form an 80-dimensional

vector ot for the t-th frame. The final DNN input feature vector,

xt , was formed by stacking nine consecutive acoustic vectors

around t, i.e., xt = {ot−4, ot−3, . . . , ot+4}. Therefore, the DNN

input layer (denoted as the FBK layer from Figure 2 to Figure 1)

has 720 nodes and covers a 125 ms long input window starting at

(10×t−50) ms and ending at (10×t+75) ms.Where this wider

context window extended beyond the limits of the recording

(i.e., at the beginning and end of the recording), boundary

frames were duplicated to make up the nine consecutive frames.

Following the input layer FBK, there are five 1,000-node

hidden layers (L2–L6), a 26-node “bottleneck” layer (L7), and

the output layer (TRI). This network is therefore denoted as

DNN-BN7 since the bottleneck layer is the seventh layer (L7).

All hidden nodes use a sigmoid activation function and the

output layer uses a softmax activation function to estimate

pseudo posterior probabilities for 6,027 output units. There are

6,026 such units corresponding to the tied triphone HMM states

which are obtained by the decision tree clustering algorithm

(Young et al., 1994). The last output unit is relevant to the

non-speech HMM states. The DNN was trained on a corpus

consisting of 200 h of British English speech selected from 7

weeks of TV broadcast shows by the BBC covering all genres.

Using such a training set with a reasonably large amount of

realistic speech samples guarantees our DNN model to be

properly trained and close to the models used in real-world

speech recognition applications. The DNN model was trained

to classify each of the speech frames in the training set into one

of the output units based on the cross-entropy loss function. All

DNN-BN models were trained with the same configuration. The

training was conducted using a modified NewBob learning rate

scheduler (Zhang and Woodland, 2015a), with each minibatch

having 800 frames, and with an initial learning rate of 2.0 ×

10−3 and a momentum factor of 0.5. A layer-by-layer pre-

training approach was adopted, which started by training a

shallow artificial neural network with only one hidden layer

for one epoch, and gradually adding in more hidden layers as

the penultimate layer, one layer per epoch until the final DNN

structure is achieved (Hinton et al., 2012). Afterwards the entire

DNN model is jointly fine-tuned for 20 epochs. More details

about the training configuration and data processing procedure

can be found in (Woodland et al., 2015; Zhang and Woodland,

2015a).

When performing speech recognition at test-time, the

posterior probabilities, P(sk | xt), were converted to log-

likelihoods to use as the observation density probabilities of

the triphone HMM states. Specifically, the conversion was

performed by

ln p(xt | sk) = ln P(sk | xt)+ ln p(xt)− ln P(sk), (1)

where sk is a DNN output for target k, and P(sk) is the frequency

of frames corresponding to the units associated with target

k in the frame-to-HMM-state alignments of the training set

(Hinton et al., 2012).

2.1.2. Recorded speech stimuli

This study used speech stimulus recordings from Fonteneau

et al. (2014), which consists of 400 English words spoken

by a native British English female speaker. The set of words

consists of nouns and verbs (e.g., talk, claim), some of which

were past-tense inflected (e.g., arrived, jumped). We assume

that the words’ linguistic properties are independent of the

acoustic–phonetic properties presently under investigation. We

also assume that this sample of recorded speech provides

a reasonable representation of naturally occurring phonetic

variants of British English, with the caveat that the sampled

utterances are restricted to isolated words and a single speaker.

Audio stimuli, which were originally recorded and presented

to subjects with a 22.1 kHz sampling rate, were down-sampled

to 16 kHz before building models, as the DNN was trained on

a 16 kHz audio training set. After the DNN was first trained

on the data from BBC TV programs, it was further adapted to

fit the characteristics of the speaker and the recording channel
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FIGURE 1

Schematic of the overall procedure. (A–D) Schematic representation of our automatic speech recognition system. Our ASR model is a hybrid

DNN–HMM system built with HTK (Young et al., 2015; Zhang and Woodland, 2015a). (A) An acoustic vector is built from a window of recorded

speech. (B) This is used as an input for a DNN acoustic model which estimates posterior probabilities of triphonetic units. Numbers above the

figure indicate the size of each layer. Hidden layer L7 is the bottleneck layer for DNN-BN7. (C) The triphone posteriors (TRI) are converted into

log likelihoods, and used in a set of phonetic HMMs. (D) A decoder computes word identities from the HMM states. (E–G) Computing dynamic

RDMs. (E) A pair of stimuli is presented to each subject, and the subjects’ brain responses are recorded over time. The same stimuli are

processed using HTK, and the hidden-layer activations recorded over time. (F) The spatiotemporal response pattern within a patch of each

subject’s cortex is compared using correlation distance. The same comparison is made between hidden-layer activation vectors. (G) This is

repeated for each pair of stimuli, and distances entered into a pairwise comparison matrix called a representational dissimilarity matrix (RDM). As

both brain response and DNN response evolve over time, additional frames of the dynamic RDM are computed.

of the stimuli data using an extra adaptation stage with 976

isolated words (see Zhang and Woodland, 2015b for details

of the approach). This is to avoid any potential bias to our

experimental results caused by the differences between the DNN

model training set and the stimuli set, without requiring the

collection of a large amount of speech samples in the same

setting as the stimuli set to build a DNN model from scratch.

There are no overlapping speech samples (words) between the

adaptation and stimuli sets. This guarantees that the model

RDM obtained using our stimuli set is not over-fitted into the
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FIGURE 2

Arrangement of phonetic space represented in DNN-BN7. (A) Davies–Bouldin clustering indices for hidden-layer representations. Each plot

shows the Davies–Bouldin clustering index for the average hidden-layer representation for each phonetic segment of each stimulus. Lower

values indicate better clustering. Indices were computed by labeling each segment by its phonetic label (top right panel), or by place, manner,

frontness, or closeness features (other panels). (B) Average activation of phones for L7 Sammon non-linear multidimensional scaling (MDS) of

average pattern of activation over phones, annotated with features describing place and position of articulation. (C) The same MDS arrangement

annotated with features describing manner of articulation.
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seen data, and guarantees our results and conclusions to be as

general as possible.

2.1.3. Evaluating clustered representations

To investigate how the assignment of phonetic and featural

labels to each segment of the stimuli could explain hidden-layer

representations in DNN-BN7, we computed Davies–Bouldin

clustering indices for representational spaces at each layer.

Davies–Bouldin indices (Davies and Bouldin, 1979) are

defined as the average ratio of within- and between-cluster

distances for each cluster with its closest neighboring cluster.

They indicate the suitability of category label assignment to

clusters in high-dimensional data, with lower values indicating

better suitability and with 0 the minimum possible value

(obtained only if labels are shared only between identical points).

This in turn serves as an indication of how suitably phonetic and

feature labels might be assigned to hidden-layer representations.

To compute Davies–Bouldin indices, we recorded the vector

of hidden-layer activations elicited by each input time window

of the stimuli for each layer in each DNN. There was a high

level of correlation between many activation vectors resulting

from overlapping adjacent input vectors. To minimize the effect

of this, we used average vectors from each hidden layer over

each contiguous phonetic segment. For example, in the word

“bulb”, the hidden-layer representations associated with each

frame corresponding to the acoustic implementation of the first

[b] were combined, and separately the representations for the

final [b] were combined. Then, to each combined vector, we

assigned a label under five separate labeling schemes: closeness

features, frontness features, place features, manner features, and

phonetic label. For place and manner features, we considered

only phones which exhibited a place or manner feature (i.e.,

obstruents). For frontness and closeness features, we likewise

considered only phones which exhibited frontness or closeness

features (i.e., syllabic vowels).Where a phone hadmore than one

appropriate feature assignment, we used the most appropriate

feature. The full assignment of feature labels for phones used in

the clustering analysis is given in Supplementary Figure 1.

We computed p-values for each Davies–Bouldin index

calculation using a permutation procedure in which phone labels

were randomized after averaging activation vectors for each

segment of input (5,000 permutations). p-values were computed

by randomizing the labels and recomputing Davies–Bouldin

indices 5,000 times, building a distribution of Davies–Bouldin

indices under the null hypothesis that phone and feature

labels did not systematically explain differences in hidden-layer

activations. In all cases, the observed Davies–Bouldin index was

lower than the minimum value in the null distribution, yielding

an estimated p-value of exactly 0.0002. Since the precision of this

value is limited by the number of permutations performed, we

report it as p < 0.001. All Davies–Bouldin index values reported

were significant at the p < 0.001 level.

2.2. Results and discussion

Davies–Bouldin indices for each layer and categorization

scheme are shown in Figure 2A. Of particular interest is the

improvement of feature-based clustering in bottleneck layer

L7 of DNN-BN7, which shows that it is, in some sense,

reconstructing the featural articulatory dimensions of the

speaker. That is, though this was not included in the teaching

signal, when forced to parsimoniously pass comprehension-

relevant information through the bottleneck, DNN-BN7 finds

a representation of the input space which maps well onto the

constraints on speech sounds inherent in the mechanics of

the speaker. L7 showed the best clustering indices out of all

layers for manner and place features and phone labels, and

the second-best for frontness features. For closeness alone, L7

was not the best, but was still better than its adjacent layer L6.

The general trend was that clustering improved for successively

higher layers. Layers prior to the bottleneck tended to have larger

clustering indices, indicating that their activations were not as

well accounted for by phonetic or featural descriptions.

To further illustrate and visualize the representational space

for L7, we used the phonetic partitioning of our stimuli provided

by HTK, and averaged the activation across hidden nodes

in L7 for each window of our 400 stimulus words which

was eventually labeled with each phone. This gave us an

average L7 response vector for each phone. We visualized this

response space using the Sammon non-linear multidimensional

scaling (MDS) technique in which true high-dimensional

distances between points are compressed into two dimensions

so as to minimize distortion (Sammon, 1969). Place/position

features are highlighted in Figure 2B, and manner features are

highlighted in Figure 2C.

To be clear, the presence of these feature clusters does

not imply that there are individual nodes in L7 which track

specific articulatory features. However, using the reasoning of

RSA, we can see that articulatory features are descriptive of the

overall arrangement of phones in the L7 response space. This

ability to characterize and model an overall pattern ensemble

in a way abstracted from the specific response format and

distributed neural representations is one of the strengths of the

RSA technique.

3. Study 2: Representational
similarity mapping of auditory cortex
with DNN representations

3.1. Materials and methods

3.1.1. Computing model RDMs from
incremental machine states

To encapsulate the representational space of each of

the DNN’s hidden layer representations through time, we
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computed model RDMs from the activation of each layer

using the following procedure, illustrated in Figure 1. RSA

computations were performed in Matlab using the RSA toolbox

(Nili et al., 2014).

As described previously, the input layer of the DNN

had access to 125 ms of audio input at each time step, to

estimate the triphone-HMM-state likelihoods. Since we can

only compute model RDMs where the DNN has activations

for every word in the stimuli set, only the activations

corresponding to the frames whose ending time is smaller

than 285 ms (the duration of the shortest word) are

used in our experiments Since each frame has a 25 ms

duration and a 10 ms shift, only the activations of the

first 27 frames of each word are reserved to construct

our model RDMs (as the frame index t is required to

satisfy 10× t + 25 6 285).

For each fixed position of the sliding time window on

each pair of our 400 stimulus words, we obtained the pattern

of activation over the nodes in a particular layer of the

DNN. By computing Pearson’s correlation distance (1 − r)

between activation pattern for each pair of words, we built

a 400 × 400 model RDM whose rows and columns were

indexed by the stimulus words. Then, by moving the sliding

time window in 10 ms increments and recomputing model

RDM frames in this way, we produced a series of model

RDMs which varied throughout the first 260 ms of the

stimuli. We repeated this procedure for each hidden layer

L2–L7, as well as the input and output layers FBK and

TRI, producing in total eight series of model RDMs, or

216 individual model RDM frames. When building a model

RDM frame from the input layer FBK, we used only the 40

log-mel filterbank values within the central 25 ms window

(and did not include the first derivatives or overlapping

context windows).

3.1.2. EMEG data collection

Sixteen right-handed native speakers of British English

(six male, aged 19–35 years, self-reported normal hearing)

participated in the study. For each participant, recordings

of 400 English words, as spoken by a female native British

English speaker were presented binaurally. Each word was

repeated once. The study was approved by the Peterborough

and Fenland Ethical Committee (UK). Continuous MEG

data were recorded using a 306 channels VectorView system

(Elektra-Neuromag, Helsinki, Finland). EEG was recorded

simultaneously from 70 Ag-AgCl electrodes placed within

an elastic cap (EASYCAP GmbH, Herrsching-Breitbrunn,

Germany) according to the extended 10/20 system and

using a nose electrode as the recording reference. All data

Fonteneau et al. (2014).

3.1.3. EMEG source estimation

In order to track the cortical locations of brain–model

correspondence, we estimated the location of cortical sources

using the anatomically constrained MNE (Hämäläinen and

Ilmoniemi, 1994) with identical parameters to those used in

our previous work (Fonteneau et al., 2014; Su et al., 2014;

Wingfield et al., 2017). MR structural images for each participant

were obtained using a GRAPPA 3D MPRAGE sequence (TR =

2250 ms; TE = 2.99 ms; flip-angle = 9 deg; acceleration factor

= 2) on a 3 T Trio (Siemens, Erlangen, Germany) with 1 mm

isotropic voxels. From the MRI data, a representation of each

participant’s cerebral cortex was constructed using FreeSurfer

software (https://surfer.nmr.mgh.harvard.edu/). The forward

model was calculated with a three-layer boundary element

model using the outer surface of the scalp as well as the outer

and inner surfaces of the skull identified in the anatomical MRI.

This combination of MRI, MEG, and EEG data provides better

source localization thanMEG or EEG alone (Molins et al., 2008).

The constructed cortical surface was decimated to yield

approximately 12,000 vertices that were used as the locations of

the dipoles. This was further restricted to the bilateral superior

temporal mask as discussed previously. After applying the

bilateral region of interest mask, 661 vertices remained in the

left hemisphere and 613 in the right. To perform group analysis,

the cortical surfaces of individual subjects were inflated and

aligned using a spherical morphing technique implemented by

MNE (Gramfort et al., 2014). Sensitivity to neural sources was

improved by calculating a noise covariance matrix based on the

100 ms pre-stimulus period. The activations at each location of

the cortical surface were estimated over 1 ms windows.

This source-reconstructed representation of the

electrophysiological activity of the brain as the listeners

heard the target set of 400 words was used to compute

brain RDMs.

3.1.4. Computing brain RDMs in a
spatiotemporal searchlight

To match the similarity structures computed from each

layer of the DNN to those found in human participants, in the

ssRSA procedure, RDMs were calculated from the EMEG data

contained within a regular spatial searchlight patch and fixed-

width sliding temporal window. We used a patch of vertices of

radius 20 mm, and a 25 ms sliding window to match the 25 ms

frames used in ASR. The searchlight patch was moved to center

on each vertex in the masked source mesh, while the sliding

window is moved throughout the epoch in fixed time-steps of

10 ms. From within each searchlight patch, we extracted the

spatiotemporal response pattern from each subject’s EMEG data.

We computed word-by-word RDMs using Pearson’s correlation

distance (1 − r) on the resulting response vectors. These RDMs

were averaged across subjects, resulting in one brain RDM for
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FIGURE 3

Matching model and data RDMs at systematic latencies. (A) Both

DNN and brain representations change throughout the

time-course of the stimulus, and are aligned to the start of the

stimulus at t = 0. Some amount of time (“processing latency”)

elapses between the sound reaching the participants’ eardrums

and the elicited response in auditory cortex. Thus, the brain

representations recorded at time t were elicited by the stimulus

earlier in time. (B) For a given hypothesized processing latency,

we RDMs from DNN layers and brain recordings are matched

up, and an overall level of fit is computed. This modeled latency

is systematically varied, the resultant level of fit thereby

indicating how well the DNN’s representation matches the

brain’s at that latency.

each within-mask vertex. Our 25 ms ssRSA sliding window

moved in increments of 10 ms throughout an EMEG epoch of

[0, 540] ms, giving us a series of RDMs at each vertex for sliding

windows [t, t + 25] ms for each value of t = 0, 10, . . . , 510.

In total, this resulted in a total of 66,300 brain RDM frames.

By using the ssRSA framework, we make this vast number of

comparisons tractable by systematizing the comparison.

3.1.5. Systematic brain–model RDM
comparisons

Themodel RDMs computed from the DNN layer activations

describe the changing representational dissimilarity space of

each layer throughout the duration of the stimulus words.

We can think of this as a dynamic model timeline for each

layer; a collection of RDMs indexed by time throughout the

stimulus. Similarly, the brain data-derived RDMs computed

from brain recordings describe the changing representational

dissimilarity space of the brain responses at each searchlight

location throughout the epoch, which we can think of as a

dynamic data timeline. It takes non-zero time for vibrations at

the eardrum to elicit responses in auditory cortex (Figure 3A).

Therefore, it does not make sense to only compare the DNN

RDM from a given time window to the precisely corresponding

brain RDM for the same window of stimulus: to do so would

be to hypothesize instantaneous auditory processing in auditory

nerves and in the brain.

Instead, we offset the brain RDM’s timeline by a fixed

latency, k ms (Figure 3B). Then, matching corresponding DNN

and brain RDMs at latency k tests the hypothesis that the DNN’s

representations explain those in auditory cortex k ms later. By

systematically varying k, we are able to find the time at which

the brain’s representations are best explained by those in the

DNN layers.

Thus, for each such potential processing latency, we obtain

a spatial map describing the degree to which a DNN layer

explains the brain’s representations at that latency (i.e., mean

Spearman’s rank correlation coefficient between DNN and brain

RDMs at that latency). Varying the latency then adds a temporal

dimension to the maps of fit.

This process is repeated for each subject, and data combined

by a t-test of the ρ values across subjects at each vertex within

the mask and each latency. This resulted in one spatiotemporal

t-map for each layer of the DNN. For this analysis, we used

latencies ranging from 0 to 250 ms, in 10 ms increments.

3.1.6. Threshold-free cluster enhancement

We applied threshold-free cluster2 enhancement (TFCE:

Smith and Nichols, 2009) to the t-maps from each layer of

the DNN. TFCE is an image-enhancement technique which

enables the use of cluster-sensitive statistical methods without

the requirement to make an arbitrary choice of initial cluster-

forming threshold and is used as the standard statistical method

by the FSL software package (Jenkinson et al., 2012).

TFCE transforms a statistical image in such a way that the

value at each point becomes a weighted sum of local supporting

clustered signal. Importantly, the shape of isocontours, and

hence locations of local maxima, are unchanged by the TFCE

transformation. For a t-map comprised of values tv,k for vertices

v and latencies k, the TFCE transformation is given by

TFCE (tv,k) =

∫ tv,k

0
h2

√

e(h) dh (2)

where e(h) is the cluster extent of the connected component of

(v, k) at threshold h. We approximated (2) with the sum

i1h ≤ tv,k < (i+1)1h
∑

i=0

(i1h)2
√

e(i1h) (3)

2 The term cluster here refers to spatiotemporally contiguous sets of

datapoints in statistical maps of activation or model fit. This is a di�erent

term to cluster as used in the previous section to refer to sets of points

located close-by in a high-dimensional abstract space. It is unfortunate

that both of these concepts have the same name, but we hope their

distinct meanings will be clear from the context.
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where 1h was set to 0.1. The choice of 1h affects the accuracy

of the approximation (3) but should not substantially bias

the results.

All t-maps presented for the remainder of this paper have

TFCE applied.

3.1.7. Group statistics and correction for
multiple comparisons

To assess the statistical significance of the t-maps, we

converted the t-values to p-values using a random-effects

randomization method over subjects, under which p-values are

corrected for multiple spatiotemporal comparisons (Nichols

and Holmes, 2002; Smith and Nichols, 2009; Su et al., 2012).

In the random-effects test, a null-distribution of t-values is

simulated under the null hypothesis that Spearman’s rank

correlation values ρ are symmetrically distributed about 0 (i.e.,

no effect). By randomly flipping the sign of each individual

subject’s ρ-maps before computing the t-tests across subjects

and applying the TFCE transformation, we simulate t-maps

under the null hypothesis that experimental conditions are

not differentially represented in EMEG responses. From each

such simulated map, we record the map-maximum t-value,

and collect these into a null distribution over all permutations.

For this analysis we repeated the randomization 1,000 times,

and collected separate null distributions for each hemisphere.

To assess the statistical significance of a true t-value, we see

in which quantile it lies in the simulated null distribution of

map-maximum randomization t-values.

We performed this procedure separately for the models

derived from each layer of the DNN, allowing us to

obtain t-maps which could be easily thresholded at a fixed,

corrected p-value.

3.2. Results

We used the dynamic representations from each layer

of DNN-BN7 to model spatiotemporal representations

in the auditory cortices of human participants in an

EMEG study by applying ssRSA. Areas of auditory cortex

(Figure 4A) were defined using the Desikan–Killiany Atlas

(STC and HG).

Figure 4 shows the left hemisphere results of this analysis.

The brain maps in Figure 4B show threshold-free-cluster-

enhanced t-maps (Smith and Nichols, 2009) computed from

the model RDMs of each hidden layer, thresholded at p < 0.01.

Model RDMs computed from all DNN layers except L5

showed significant fit in left STC and HG. Input layer FBK

peaked early in left posterior STC at 0–70 ms, and later

in left anterior STC and HG at 140–210 ms. Hidden-layer

models L2–L4 and L6–L7 peaked later than FBK, achieving

FIGURE 4

Clusters of significant fit of hidden-layer models to

left-hemisphere EMEG data. (A) Location of region of interest

mask for auditory cortex. (B) Maps describing fit of DNN layer

models to EMEG data. Latency represents the time taken for the

brain to exhibit neural representations that fit the DNN model

prediction. All maps thresholded at p < 0.01 (corrected). (C) Line

graphs showing the time-courses of cluster extents for each

layer which showed significant fit.

maximum cluster size at approximately 170 ms. Layers L5

and TRI showed no significant fit in the regions of interest.

Overall, significant cluster size increased between layers FBK–

L3, diminished for L4 and L5, and re-emerged for L6

and L7.

The line graphs in Figure 4C show the time-courses of each

layer as they attain their maximum cluster extent. In general,

there appeared to be two distinct clusters across the superior

temporal region: an early cluster peaked in left posterior STC

for the DNN input layer FBK, and another late cluster peaked in

left anterior STC for DNN layers L1–L4 and L6–L7, throughout

the whole epoch, but attaining a maximum cluster size at

approx 170 ms. Details of timings for each layer are shown in

Supplementary Table 1. Right hemisphere results are included in

Supplementary Figure 2.
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3.3. Discussion

The input layer FBK representing purely acoustic

information (i.e., not a learned or task-relevant representation)

showed a later and smaller effect (cluster in human posterior

STC) than that of higher layers L2 and L3. The strongest

cluster for FBK was early, and the later cluster appears to be a

weaker version of those for higher hidden-layer models. The

late cluster for FBK indicates that there is some involvement

of both low-level acoustic features and higher-level phonetic

information in the later neural processes at around 170 ms.

However, since there is an intrinsic correlation between acoustic

information and phonetic information, it is hard to completely

dissociate them. Another explanation for the mixture of high

and low levels of speech representations in a single brain region

at the same time is the existence of feedback connections in

human perceptual systems (However, the ASR systems used

in this paper can achieve high degree of accuracy without the

top-down feedback loop from higher to lower hidden layers.).

It should be noted that while the FBK, L2 and L4 clusters all

register as significant at a latency of 0 ms, timings correspond

to a 25 ms window of EMEG data being matched against model

state computed for the central 25 ms of 125 ms windows of

audio, so only approximates the actual latency.

Moving up to hidden layers L2 and L3, we saw later

clusters which fit the brain data more strongly than FBK in

the left hemisphere. All hidden layers including L2 and L3

activate according to learned parameters. Progressively higher

layers L4 and L5 fit with smaller clusters in human STC,

with L5 showing no significant vertices at any time point

(p > 0.01) in the left hemisphere but a very small cluster in

the right hemisphere. However, the highest hidden layers L6

and L7 once again showed string fit with activations in left

anterior STC.

Of particular interest is this re-emergence of fit in anterior

STC to the representations in the bottleneck layer L7. In this

layer of the DNN, the 1,000-node representation of L6 is

substantially constrained by the reduced size of the 26-node

L7. In particular, the fact that ASR accuracy is not greatly

reduced by the inclusion of this bottleneck layer indicates that,

for the machine solution, 26 nodes provide sufficient degrees

of freedom to describe a phonetic space for purposes of word

recognition. This, in conjunction with the re-emergence of

fit for L7 to STC representations makes the representations

of this layer of particular interest. The hidden layers in the

DNN learn to sequentially transform acoustic information into

phonetic probabilities in a way which generalizes across speakers

and background acoustic conditions. There is no guarantee

that the features the DNN learns to identify for recognition

are comparable to those learned by the brain, so the fact

that significant matches in the RDMs were found between

machine and human solutions of the same problem is worthy

of further consideration.

4. Study 3: Improving DNN design

4.1. Materials and methods

From the maximum cluster extents of the DNN layers

shown in Figure 4, the activations of the DNN acoustic

model significantly correspond to the activity in the left-

hemisphere of human brain when listening to the same

speech samples. This suggests that the DNN and human brain

rely on similar mechanisms and internal representations for

speech recognition.

Human speech recognition still has superior performance

and robustness in comparison to even the most advanced ASR

systems, so we reasoned that it could be possible to improve

the DNN model structure based on the evidence recorded from

the brain.

The overall minimal spatiotemporal clusters for L5 of DNN-

BN7 suggested that while early layers (L2–L3) were performing

analogous transformations to early auditory cortex, and that the

bottleneck (L7) was representing speech audio with a similarly

parsimonious basis as left auditory cortex, there was a divergence

of representation at intermediate layers (L4–L6). This indicates

the possibility that the calculations in DNN layer L5 are less

important for recognizing the speech accurately since brain

does not appear to use such representations in the recognition

process. On the other hand, although a bottleneck layer is

positioned at L7, its strong correspondence to the brain reveals

the importance of the calculations performed in that layer. Thus,

it is natural to assume that more parameters and calculations in

important layers can improve speech recognition performance,

while fewer calculations can reduce the complexity of the

model DNN structure without sacrificing the performance too

much. With the supposition that the arrangement of auditory

cortex would be adapted specifically to speech processing,

we hypothesized that by moving the bottleneck layer into

the positions occupied by divergent layers in DNN-BN7,

the network might learn representations that closer resemble

those of human cortex, and thus improve the performance of

the model.

To this end, we built and studied another DNN model,

DNN-BN5, which has the same number of parameters as DNN-

BN7 but has the bottleneck layer moved from L7 to L5. The

details of the new DNN structures are shown in Figure 5C.

For purposes of comparison, and following the same naming

convention, we expanded our investigation with another two

DNN models, DNN-BN4 and DNN-BN6 were also built for

DNNs whose bottleneck layers are L4 and L6 respectively. In

all models the number of parameters was kept to 5.0 million,

matching the 4.9 million parameters of DNN-BN7.

It may appear to the reader as if an alternative modification

would be to re-locate the bottleneck layer relative to the input

layer as we have done so, but attach it directly to the TRI

layer (as in DNN-BN7) without intermediate levels. However
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FIGURE 5

Brain-informed DNN design refinement. (A) Original DNN-BN7 design. Numbers beside layers indicate number of nodes. (B) Maximum cluster

extent indicates the degree of fit with EMEG brain representations. Where there is more than one spatiotemporally discontinuous cluster, we

sum their contributions, with di�erent segments indicated by di�erent shading. Colored shapes on the DNN-layer axis and in other panels

indicate the placement of the bottleneck layer for DNN-BN4–7. (C) Candidates for adjusted DNN design: DNN-BN4 (bottleneck at L4), DNN-BN5

(bottleneck at L5) and DNN-BN6 (bottleneck at L6).

we chose to fix the number of DNN layers and simply move

the position of the bottleneck in order to keep the total number

of parameters fixed at 5 million, since number of trainable

parameters is a strong determiner of performance ceiling. We

could have retained 5 million parameters by inflating the size of

the hidden layers between the input and the bottleneck, but this

would have forced upstream representations to change between

models, making DNN-BN7 harder to compare to DNN-BN4–6.

Additionally, early DNN studies demonstrated that, for a fixed

number of parameters, deeper, thinner models (i.e., those with

more layers containing fewer units) performed significantly

better than shallower, wider models, and this is now a standard

practice (Morgan, 2011; Hinton et al., 2012). Alternative DNN

design choices may have different effects, and we hope to

investigate this in future work.

We tested the derived DNNmodels with different bottleneck

layer positions using two tasks: general large-vocabulary

continuous speech recognition with recordings from BBC TV

programs, and in-domain isolated-word recognition using the

stimuli set. The MGB Dev set was derived as a subset of

the official development set of the MGB speech recognition

challenge (Bell et al., 2015), which includes 5.5 h of speech.

Since the MGB testing set involves sufficient samples (8,713

utterances and 1.98M frames) from 285 speakers and 12 shows

with diversified genres, and the related WER results are reliable

metrics to evaluate the general performance of the DNNmodels

for speech recognition. In contrast, the WERs on the stimuli

set are much more noisier since it only consists of 400 isolated

words from a single female speaker. However, the stimuli set

WERs are still important metrics since the same 400 words are

TABLE 1 The performance of DNN-HMM systems with di�erent

bottleneck layer positions.

System
Bottleneck

layer

Accuracy% WER%

Train HV MGBDev Stimuli

DNN-BN7 L7 44.0 41.5 33.3 6.5

DNN-BN6 L6 44.6 42.3 32.4 6.3

DNN-BN5 L5 44.2 42.3 32.3 5.8

DNN-BN4 L4 42.6 41.1 33.5 7.3

The WERs (the lower the better) were given on both the MGB challenge official

development subset (MGB Dev), which is a general purpose large vocabulary continuous

speech recognition testing set, as well as the 400 isolated words used as the stimuli in

our listening experiments to derive the RDM (Stimuli). The MGB Dev WERs are reliable

indicators for the general performance of the systems in realistic ASR tasks. The Stimuli

WERs are the most direct indicators of the model performance on the data used in our

brain-machine comparison experiments. The classification accuracy values (the higher

the better) were obtained by classifying each frame into one of the 6,027 triphonetic

DNN output units were obtained on both the training and held-out validation (HV) sets.

For fair comparisons, DNN structures of all systems were constrained to have the same

amount of model parameters (about 5M for each model, as shown in Figure 5). Accuracy

can be considered as an auxiliary performance metric, which indicates that DNN-BN6

suffered more from over-fitting compared to DNN-BN5 , since DNN-BN6 is better in the

training accuracy but not in the HV accuracy.

used to build the RDMs used in the key experiments. These

results are presented in Table 1 and Figure 6C.

4.2. Results

As shown in Table 1 and Figure 6C, adjusting the design

of the DNN structure to better fit with the representations
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FIGURE 6

(A) Davies–Bouldin clustering indices for hidden-layer representations. Each plot shows the Davies–Bouldin clustering index for the average

hidden-layer representation for each phonetic segment of each stimulus. Lower values indicate better clustering. Indices were computed by

labeling each segment by its phonetic label (top right panel), or by place, manner, frontness, or closeness features (other panels). Colored

shapes on the DNN-layer axis indicate the placement of the bottleneck layer for each System. Inset axes show clustering indices for

bottleneck-layers only. Each plot shows the clustering index for the average bottleneck-layer representation for each phonetic segment of each

stimulus. Indices were computed by labeling each segment by its phonetic label (top right), or by place, manner, frontness, or closeness

features. Colored shapes on the DNN-layer axis indicate the placement of the bottleneck layer for each System. (B) WERs for each DNN system.

Upper panel shows WERs on the MGB Dev set. Lower panel shows WERs for the stimuli.

exhibited in the human subjects led to improved DNN

performance in terms of WER in DNN-BN5 and DNN-BN6.

The MGB Dev set contains sufficient testing samples with

diversified speaker and genre variations. When testing on MGB

Dev, a 4-g language model (Woodland et al., 2015) was used

to provide word-level contexts by rescoring each hypothesis

in decoding as in general large vocabulary continuous speech

recognition applications. The 1.0% absolute WER reduction

(relatively 3.3%) obtained by comparing DNN-BN7 with DNN-

BN5 is substantial (Bell et al., 2015; Woodland et al., 2015).

Such an improvement was achieved without increasing the

number of parameters, and hence demonstrates the superiority

of the structure of DNN-BN5. DNN-BN6 also performed 0.9%

(absolute WER) better than DNN-BN7, but 0.1% WER worse

than DNN-BN5. This can also be observed from the frame

classification accuracy values, as DNN-BN6 has the same HV

accuracy but better train accuracy compared with DNN-BN5,

indicating that placing the bottleneck layer at L6 results in over-

fitting. Regarding the stimulus set, no language model was

used since each stimulus utterance has only one word and the
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recognition requires no word-level context. Still, the changes in

WERs are consistent with those on theMGBDev set. Comparing

Table 1 to Figure 5, the WERs and the maximum cluster extent

values of these DNN models are also consistent on the Stimulus

test set.

As well as altering the position of the bottleneck layer,

we also trained and tested a DNN without a bottleneck layer,

but using the same 5.0M parameters. This DNN achieved

44.0% train accuracy and 42.3% HV accuracy, and 32.3% MGB

Dev WER and 5.8% WER on the stimuli. In other words,

close-to, but just falling short of (albeit insignificantly), the

overall best model including a bottleneck layer: DNN-BN5.

The inclusion of a bottleneck layer was included in DNN-BN5

was motivated both for machine-learning and computational-

modeling reasons, as we have described. It is therefore notable

that even though DNN-BN5 contains a bottleneck layer, and

thus forces a compression of the speech representation from

1,000 down to 26 dimensions, it was still able to achieve the

overall best performance.

What is not immediately clear, however, is whether this

improvement in performance arises from a corresponding

improvement in the model’s ability to extract a feature-based

representation. In other words, if the bottleneck layer learns

a representation akin to articulatory features, by moving the

layer to improve performance does this enhance this learned

representation? To answer this question, we investigated how

the assignment of phonetic and featural labels to each segment

of the stimuli could explain their hidden-layer representations.

As before, we probed the organization of the representational

space of each hidden layer according to phones and features

using Davies–Bouldin clustering indices.

The clustering results exhibited two overall patterns of note.

First, clustering (i.e., suitability of assignment of phonetic and

featural labels to hidden layer representations) was improved on

the DNNs whose design had been inspired by the human brains.

Second, the optimum clustering level was often found in the

bottleneck layer itself (highlighted on the graphs in Figure 6A).

The clustering index at the bottleneck layers alone are separately

graphed in inset panels in Figure 6A, and show that bottleneck

layer clustering was also improved in DNN-BN5 andDNN-BN6.

In other words, the placement of the bottleneck layer in

position 5 and 6 yielded, as predicted, the best clustering

results both overall and in the bottleneck layer itself. Moving

the bottleneck layer too far back (DNN-BN4) yielded worse

clustering results generally and in the bottleneck layer—

indicated by the characteristic U-shaped curves in Figure 6B.

4.3. Discussion

Artificial Intelligence (AI) and machine learning have

already been extensively applied in neuroscience primarily

in analyzing and decoding large and complex neuroimaging

or cell recording data sets. Here, DNN-based ASR systems

were used as a model for developing and testing hypothesis

and neuroscientific theories about how human brains perform

speech recognition. This type of mechanistic or generative

model—where the computational model can perform the

behavioral task with realistic data (in this case, spoken word

recognition)—can serve as a comprehensive framework for

testing claims about neurocognitive functional organization

(Kriegeskorte and Douglas, 2018). Moreover, insights can flow

both ways; the neuroimaging data can also guide the exploration

of the model space and lead to improvements in model

performance, as we have seen.

While our use of neurological data only indirectly informed

the improvements to ASR architecture, the present work can be

seen as an initial step toward extracting system-level designs for

neuromorphic computing from human auditory systems. This

goal in itself is not new (see e.g., Toneva and Wehbe, 2019),

however the key novel element of our approach is the ability

to relate the machine and human solutions in complementary

directions. The power of RSA, and in particular ssRSA, to relate

the different forms of representations in these systems is key in

this work. In summary, the methodology illustrated here paves

the way for future integration of neuroscience and AI with the

two fields driving each other forwards.

5. General discussion

We have used a DNN-based ASR system and spatiotemporal

imaging data of human auditory cortex in a mutually

informative study. In the machine-to-human direction, we have

used a computational model of speech processing to examine

representations of speech throughout space and time in human

auditory cortex measured as source-localized EMEG data. In so

doing, we have produced a functional map in human subjects

for each part of the multi-stage computational model. We were

able to relate dynamic states in the operating machine speech

recognizer to dynamic brain states in human participants by

using ssRSA, extended to account for a dynamically changing

model. In a complementary analysis, we have improved the

performance of the DNN-based ASR model by adapting the

layered network architecture inspired by the staged neural

activation patterns observed in human auditory cortex.

5.1. Relating dynamic brain and machine
states: Comparing and contrasting
computational models in vision and
audition

There has been some recent successes in comparingmachine

models of perception to human neuroimaging data. This has

primarily been in the domain of visual object perception (e.g.,
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Kriegeskorte et al., 2008b; Cadieu et al., 2014; Clarke et al., 2014;

Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven,

2015; Kriegeskorte, 2015; Cichy et al., 2016; Kheradpisheh et al.,

2016; Devereux et al., 2018), with less progress made in speech

perception (though see our previous work: Su et al., 2014;

Wingfield et al., 2017).

The visual systems of humans and other primates are

highly related, both in their architecture and in accounts of the

neurocomputational processes they facilitate. There is evidence

of a hierarchical organization of cortical regions in the early

visual systems of human and non-human primates. There are

also detailed accounts of process sequencing from early visual

cortex through higher perceptual and semantic representation

which exist for visual object perception in several primate

models (e.g., Van Essen et al., 2001; Tootell et al., 2003; Denys

et al., 2004; Orban et al., 2004; Kriegeskorte et al., 2008b). This

is not so the case for speech processing and audition to the

same degree.

In parallel, machine models for vision have often been

designed based on theories of primate cortical processing

hierarchies. This extends to recent work employing deep

convolutional neural networks (CNN) for visual object

processing, in particular those featuring layers of convolution

and pooling. Furthermore, the convolutional layers in CNNs

appear to learn features resembling those in the receptive fields

of early visual cortex, and higher layers’ representational spaces

also match those found in higher visual cortex, and other regions

in the visual object perception networks (Khaligh-Razavi and

Kriegeskorte, 2014; Güçlü and van Gerven, 2015; Wen et al.,

2018). Importantly, this means that the internal structures of

machine vision systems are potentially informative and relevant

to our understanding of the neurocomputational architecture of

the natural system (and vice versa), and not just whether they

generate equivalent outputs (for example in object classification

tasks). To date, these common features are not well-established

for DNNs or other type of acoustic models widely used for

ASR systems.

Certain aspects of the human auditory processing

system have resemblances to those in other primate models

(Rauschecker and Scott, 2009; Baumann et al., 2013). However,

no non-human primate supports anything like human speech

communication, where intricately modulated sequences of

speech sounds map onto hundreds of thousands of learned

linguistic elements (words and morphemes), each with its own

combination of acoustic-phonetic identifiers.

Perhaps due to this lack of neurocomputationally explicit

models of spoken word recognition, the design of ASR systems

has typically not been guided by existing biological models.

Rather, by optimizing for engineering-relevant properties such

as statistical learning efficiency, they have nonetheless achieved

impressive accuracy and robustness.

It is striking, therefore, that we have been able to show

that the regularities that successful ASR systems encode in the

mapping between speech input and word-level phonetic labeling

can indeed be related to the regularities extracted by the human

system. In addition, like animal visual systems have inspired

the field of computer vision, we have demonstrated that human

auditory cortex can improve ASR systems using ssRSA.

6. Conclusion and future work

We have shown that our deep artificial neural network

model of speech processing bears resemblance to patterns of

activation in the human auditory cortex using the combination

of ssRSA with multimodal neuroimaging data. The results

also showed that the low-dimensional bottleneck layer in the

DNN could learn representations that characterize articulatory

features of human speech. In ASR research, although the

development of systems based around the extraction of

articulatory features has a long history (e.g., Deng and Sun,

1994), except for a small number of exemplars (e.g., Zhang et al.,

2011; Mitra et al., 2013), recent studies mostly rely on written-

form-based word piece units (Schuster and Nakajima, 2012; Wu

et al., 2016) that are not directly associated with phonetic units.

Our findings imply that developing appropriate intermediate

representations for articulatory features may be central to speech

recognition in both human and machine solutions. In human

neuroscience studies, this account is consistent with previous

findings of articulatory feature representation in the human

auditory cortex (Mesgarani et al., 2014; Correia et al., 2015;

Wingfield et al., 2017), but awaits further investigation and

exploitation in machine solutions for speech recognition. In

particular, previous work by Hamilton et al. (2021) has shown

that—unlike our DNN architecture—the organization of early

speech areas in the brain are not purely hierarchical, suggesting

new potential avenues of model architectures including layer-

bypassing connections.

The results we have presented here prompt further questions

regarding how modifications to the design and training of

DNN-based ASR models affects their representations, how to

most effectively tailor a model to match the representational

organization of the human brain, and which of these

modifications lead to improved performance at the task. We

hope to continue similar investigations to other types of

artificial neural network models in our future work, such

as different hidden activation functions, time-delay neural

networks (Waibel et al., 1989; Peddinti et al., 2015), CNNs

(LeCun et al., 1998; Krizhevsky et al., 2012), and recurrent neural

networks (Rumelhart et al., 1986; Hochreiter and Schmidhuber,

1997), etc.

There is a difference between speech recognition (i.e.,

the extraction of word identities from speech audio) and

speech comprehension (i.e., understanding and the elicitation

of meaning). In this paper we have tackled only recognition.

The HTK model we used is established and highly used in
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the literature, and while it is able to incorporate context via

the sliding window and hidden Markov language model, we

certainly would not claim that it understands or comprehends

speech as humans can. Recently, large deep artificial neural

network models pre-trained on a massive amount of unlabeled

waveform features (e.g., Baevski et al., 2020; Hsu et al., 2021;

Chen et al., 2022), have demonstrated strong generalization

abilities to ASR and many para-linguistic speech tasks

(Mohamed et al., 2022). While we would not claim that these

larger models are capable of true understanding, it would

nonetheless be interesting to apply the methods used in this

paper to study similar types of models and tasks. This may

contribute to understanding the functional organization of

human auditory cortex and improve such large scale speech-

based computational models.
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To improve the cognition and understanding capabilities of artificial

intelligence (AI) technology, it is a tendency to explore the human brain

learning processing and integrate brain mechanisms or knowledge into neural

networks for inspiration and assistance. This paper concentrates on the

application of AI technology in advanced driving assistance system. In this

field, millimeter-wave radar is essential for elaborate environment perception

due to its robustness to adverse conditions. However, it is still challenging

for radar object classification in the complex traffic environment. In this

paper, a knowledge-assisted neural network (KANN) is proposed for radar

object classification. Inspired by the human brain cognition mechanism

and algorithms based on human expertise, two kinds of prior knowledge

are injected into the neural network to guide its training and improve

its classification accuracy. Specifically, image knowledge provides spatial

information about samples. It is integrated into an attention mechanism in

the early stage of the network to help reassign attention precisely. In the late

stage, object knowledge is combined with the deep features extracted from

the network. It contains discriminant semantic information about samples. An

attention-based injection method is proposed to adaptively allocate weights

to the knowledge and deep features, generating more comprehensive and

discriminative features. Experimental results on measured data demonstrate

that KANN is superior to current methods and the performance is improved

with knowledge assistance.

KEYWORDS

millimeter-wave radar, object classification, knowledge-assisted, neural network,
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Introduction

Thanks to the complex structure and mechanisms of the
brain, humans have the capability to continuously learn new
knowledge, perceive complex environments, and make precise
decisions (Cornelio et al., 2022; Kuroda et al., 2022). With
the groundbreaking discovery of cells and continuous research
in neuroscience, a variety of artificial neural networks have
been proposed (van Dyck et al., 2022). Neural networks
have promoted the development of artificial intelligence (AI)
technologies in many fields, such as smart healthcare (Alsubai
et al., 2022; Soenksen et al., 2022), intelligent transportation
(Zhu et al., 2019; Zhu F. et al., 2020), etc. Similar to humans,
networks acquire capabilities through learning. However, they
learn things by brute force optimization based on input data,
which limits their performance in various practical applications.
To promote the next generation of AI technology, the neurology
mechanism of the human brain learning process is studied,
and the brain mechanism or knowledge is integrated into
neural networks to help networks improve the perception and
understanding of the world (Marblestone et al., 2016; Lindsay,
2020; Zhu J. et al., 2020).

This paper mainly focuses on the application of AI
technology in advanced driving assistance system (ADAS),
which has proved its effectiveness in safe driving and
its evolution is in full swing. To elaborately capture the
surroundings, multiple sensors are equipped on vehicles, such as
cameras, LiDAR and millimeter-wave (MMW) radar. Cameras
provide high-resolution optical images that are in line with
human visual cognition and are widely applied in object
detection (Redmon et al., 2016; Ren et al., 2017; Kim and Ro,
2019; Deng et al., 2022) and tracking (Danelljan et al., 2014;
Smeulders et al., 2014; Nam and Han, 2016; Zhao et al., 2017;
Han et al., 2019b) tasks. Although cameras offer optical images
and give a semantic understanding of real-world scenarios, it
is not robust facing adverse conditions, such as weak lighting
or bad weather (Wang et al., 2021). As for LiDAR, it generates
point cloud data and can be utilized for object detection and
localization (Qi et al., 2018; Shi et al., 2019, 2021). However,
these methods require dense point clouds to describe detailed
information for accurate prediction, and LiDAR also has poor
robustness to fog (Bijelic et al., 2018), rain or snow.

Compared with cameras and LiDAR, MMW radar is more
reliable and robust in harsh environments. It is widely used
in many practical scenarios, such as remote sensing target
detection and classification (Liu et al., 2018; Wang et al.,
2018; Liu et al., 2021; Tang et al., 2022) and intelligent
transportation (Munoz-Ferreras et al., 2008; Felguera-Martin
et al., 2012). Therefore, perception from pure radar data
becomes a valuable alternative (Wang et al., 2021). Although
it is widely used to obtain accurate location information about
different objects (Prophet et al., 2019), it is still a challenge
to extract discriminative semantic features from radar data

for precise object classification. Great efforts have been made
to advance MMW radar object classification performance.
Existing researches are mainly based on three kinds of radar
data, including micro-Doppler signatures (Villeval et al., 2014;
Angelov et al., 2018; Held et al., 2019), point clouds (Feng et al.,
2019; Zhao et al., 2020) and range-Doppler (RD) maps or range-
azimuth maps (Major et al., 2019; Palffy et al., 2020). Since RD
maps can be easily obtained in engineering and maintain rich
Doppler and object motion information, this paper focuses on
object classification based on RD maps.

Typical feature-based approaches (Rohling et al., 2010;
Heuel and Rohling, 2012) extract hand-crafted features from RD
maps, such as velocity, extension in range dimension, etc., which
are physically interpretable. Then, a support vector machine
(SVM) classifier is trained to classify the features. To extract
these features, humans constantly learn and summarize laws
from various objective things and construct feature extraction
algorithms based on accumulated knowledge and experience.
Therefore, these methods heavily rely on human experience
and algorithm design, and their performance may degrade in
complex practical application scenarios.

Recent advances in deep learning have promoted the
development of automatic object classification. By learning
and optimizing details from pure input data, neural networks
can accomplish various specific tasks. A convolutional neural
network (CNN) has been established to extract valuable features
for automotive radar object classification (Patel et al., 2019;
Shirakata et al., 2019). Recently, a radar object detection
method was proposed (Gao et al., 2019), which combines a
statistical constant false alarm rate (CFAR) detection algorithm
with a visual geometry group network 16 (VGG-16) classifier
(Simonyan and Zisserman, 2015). After that, RadarResNet
(Zhang A. et al., 2021) was constructed for dynamic object
detection based on range-azimuth-Doppler maps. Ouaknine
et al. (2021) utilized a fully convolutional network (FCN) to
accomplish object detection and classification tasks. A RODNet
(Wang et al., 2021) was proposed for radar object detection
based on cross-modal supervision approach. These methods
automatically learn features from training data and obtain good
results. However, they discard human knowledge, which means
the information they obtain may be not comprehensive.

In order to promote the intelligence of radar object
classification and achieve more accurate and stable performance,
it is a trend to introduce prior knowledge generated from human
brains and experience into neural networks for assistance
and guidance. Recently, similar ideas and methods have been
studied in many fields. Reference (Chen and Zhang, 2022)
presented the concept of knowledge embedding in machine
learning and summarized the current research results. In
the field of radar target classification, physics-aware features
were obtained from synthetic aperture radar (SAR) images
and injected into the layer of a deep network to provide
abundant prior information for training and classification
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(Huang et al., 2022). In Zhang et al. (2022), azimuth angle and
phase information were extracted from SAR images and served
as domain knowledge to improve the performance of SAR
vehicle classification. For polarimetric high-resolution range
profile classification, a feature-guided network was proposed
with state-of-the-art results (Zhang L. et al., 2021). In the
driving assistance system, the information obtained by the
tracker has been studied to improve object classification
accuracy (Heuel and Rohling, 2011). A state-aware method
was proposed to model the discrimination and reliability
information synchronously into the tracking framework to
ensure robust performance (Han et al., 2019a).

Following the idea, a knowledge-assisted neural network
(KANN) using RD map sequence for automotive MMW radar
object classification is proposed. The primary intention is
to inject knowledge into the neural network to supplement
the network with physical information and to improve the
classification performance. The network imitates the structure
of neural mechanisms in human brains, however, it achieves
learning tasks through brute force optimization of input
data and lacks perception of the practical physical world.
While knowledge is generated based on how and what the
human brain thinks when accomplishing complex tasks. It
conforms to human brain cognition and is an objective and
physical description of the objects in the practical world. By
fusing the knowledge and high dimensional data fitting, the
network will have some physical cognition capability and be
more similar to the way the human brain perceives, which
will improve the network performance in practical driving
assistance applications.

Specifically, in the method, the RD map sequence is
served as input, which consists of several frames of region-
of-interest (RoI) about an object based on CFAR algorithm.
To improve the performance of the network, two kinds of
prior knowledge of RD maps based on human expertise are
extracted and hierarchically integrated into the network for
assistance. The first one is image knowledge which describes
the explicit spatial information of the RD map. It is obtained
from the algorithms consistent with the human brain visual
mechanism and applied to the attention mechanism to help
the network more accurately concentrate on object regions.
The second one is object knowledge which represents the
semantic attribute information of objects. It includes the ranges,
velocities, azimuths, and RD map extension features, which are
important when humans are classifying objects. Additionally,
RD maps of the same object may vary with different ranges,
velocities, etc. Therefore, object knowledge is injected into
the network to assist its training and classification. It is
combined with the deep features extracted from the network
adaptively through an attention-based injection method to
provide more comprehensive and discriminative features.
Experimental results on measured data of four kinds of objects

demonstrate that KANN can achieve advanced performance and
the assistance of knowledge is helpful.

Knowledge-assisted neural
network

The architecture of KANN is shown in Figure 1. KANN
employs the RD map sequence containing several consecutive
frames of RoIs in RD maps about an object as input data. The
RoIs are cut out from RD maps based on CFAR algorithm.
Different frames are fed into the network as different channels
to provide temporal dimension information. Knowledge-guided
attention module (KAM) and knowledge injection module
(KIM) are proposed to generate the features for classification
with knowledge assistance. The knowledge utilized is some
prior information obtained from artificial algorithms, and
it contains the physical cognition consistent with human
brain when humans classify objects in traffic environments.
Specifically, in KAM, an attention mechanism is established,
and the prior image knowledge containing specific spatial
information is applied to help make the attention assignment
more reasonable and discriminative. KIM is utilized to extract
spatiotemporal information about input data. Inspired by the
human brain cognition when classifying objects, in this module,
object knowledge containing semantic attribute information is
adaptively injected into the network to provide more valuable
information for classification. The rest of this section will first
introduce the RD map sequence generation method in detail.
Then, the specific contents of KAM and KIM are explained.

Range-Doppler map sequence
generation

MMW radar dominantly transmits continuous chirps and
receives the reflected echoes from objects. The workflow of RD
map sequence generation is shown in Figure 2. First, the RD
map is generated from the radar signal through the 2D-fast
Fourier transform (FFT). The 2D-CFAR detection algorithm is
then utilized to detect the objects. After that, inspired by Patel
et al. (2019), a fixed-size RoI of the RD map is cut out for each
detected object. Finally, an RD map sequence is constructed
by stacking several RoIs about the same object in continuous
frames of RD maps. The RoIs across frames are associated based
on the range and velocity correlation, which means the detection
results with the largest overlap are regarded as the same object.
It should be noted that, to provide temporal information, in a
sequence, the highest detected peak of the object is in the center
of the first RoI, and the rest RoIs have the same location in the
RD map as the first one. The ground truth categories of the RD
map sequences are annotated according to the optical images.
Specifically, before the data collection, the radar sensor and
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FIGURE 1

Illustration of knowledge-assisted neural network (KANN). (C, H, and W denote the channel number, height, and width of the data; ⊗ represents
Hadamard product).

camera are calibrated in typical scenarios. First, the range and
azimuth measurement results of the radar sensor are calibrated
based on angle reflectors. Then, some cooperative pedestrians,
cyclists, and cars are employed as detection objects on a test
road. The radar data and optical images are recorded separately,
and the locations and other information of the objects from the
two sensors are compared and calibrated. Finally, after collecting
the measured data, the RoIs in RD maps are labeled based on the
optical images.

Knowledge-guided attention module

Since an object only occupies a small region in the RD
map, KAM establishes an attention mechanism that is inspired
by the visual attention mechanism of human brains (Lindsay,
2020). It generates different weights to help networks focus
on the discriminative regions in each RoI, while suppressing
unnecessary ones. In KAM, as shown in Figure 1, image
knowledge is prepared as the assistant knowledge to participate
in the generation of the attention matrix for more precise
attention assignment. Considering that the spatial information
obtained by the network lacks the physical cognition of the

practical world, introducing image knowledge can make the
network assign attention in a way more similar to the human
brain. The image knowledge is obtained from algorithms
based on human expertise and is composed of the average
energy (Kavg_e) and undulation feature (Kundu) which delineate
the exact spatial information and distinguish the target and
background clutter. Given a pixel sij whose location is (i, j) in
an RoI, we consider the pixels in the surrounding region with
the size of 3× 3 to calculate the features:

Kavg_e
ij =

1
n

 i+1∑
i−1

j+1∑
j−1

s2
ij

 , (1)

Kundu
ij =

1
n

 i+1∑
i−1

j+1∑
j−1

(
sij − s̄

)2

 , (2)

where n = 9 and s̄ denotes the number of pixels and the mean
amplitude of the RoI, respectively. By stacking the two feature
sequences in channel dimension, image knowledge of the RD
map sequence can be obtained.

Figure 3 shows the two features extracted over the same
RoI in an RD map. It can be observed that Kavg_e and Kundu

can represent the spatial information consistent with the visual
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FIGURE 2

The workflow of range-Doppler (RD) map sequence generation.

cognition of the human brain. Concretely, Kavg_e describes the
average energy of the region and highlights the target regions,
while Kundu describes the amplitude undulation information.

In this module, given an RD map sequence, it is first
processed with a convolutional layer whose kernel size is 3 × 3
to obtain the feature map F. Then, a max pooling layer and an
average pooling layer are applied to down-sampled F in two
aspects to capture spatial information autonomously. The size
of the layers is configured to 5× 1× 1 to obtain compact spatial
information. At this time, image knowledge is introduced to
concatenated with the pooling results in channel dimension to
generate the weight matrix M:

M = σ
(
f
(
concat

(
MaxPool(F); AvgPool(F); IMK

)))
, (3)

where σ denotes the “relu” activation function, f represents the
convolution operation, MaxPool (·) and AvgPool (·) denote the
max pooling and average pooling operation respectively. Next,
according to M, the redefined feature map F′ can be obtained:

F′ = M ⊗ F, (4)

where⊗ denotes Hadamard product.
Compared with most existing attention mechanisms, KAM

improves the physical perception ability of the network and
can explore more accurate attention distribution by embedding

image knowledge which is obtained from human expertise and
contains precise spatial information of samples.

Knowledge injection module

Since the RoI from a whole RD map only represents
a portion of the radar field-of-view, the network trained
with the data will lack the radial velocity, range, and
other information of objects in the real world. However,
for the same object, the shape or extension in the RD
map may vary with its velocity, range, and azimuth relative
to the radar sensor. Missing this information can lead to
poor classification performance of the network. Therefore, to
generate more discriminative features for classification, in KIM,
object knowledge is injected into the network by combining
with the deep features. Object knowledge includes the velocity,
range, azimuth, range profile (Pr), and velocity profile (Pv)
of the object in each RoI. These five kinds of information
not only offer real-world information about the objects, but
also have the capability of classification (Prophet et al., 2018).
In this way, the network can improve the overall perception
of samples, which is more similar to the cognition of the
human brain and can enhance the performance of the semantic
classification task.
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FIGURE 3

Kavg_e and Kundu extracted from the same region-of-interest (RoI) in an range-Doppler (RD) map.

The velocity, range, and azimuth can be obtained by 3D-
FFT. From the RD map obtained by 2D-FFT, the radial range
and relative velocity can be captured. Then, FFT is performed
on the range-velocity bins to estimate the azimuth. Pr and Pv

describe the target extensions in range and velocity dimensions,
as shown in Figure 4. Pr and Pv are the maximum length of
detected points in range and velocity dimensions of the object,
respectively, and can be calculated by:

Pr = (re − rs + 1) ·1R, (5)

Pv = (ve − vs + 1) ·1v, (6)

where rs and re denote the starting and ending points detected,
1R represents the range resolution. In (6), vs, ve, and 1v denote
the similar meanings in velocity dimension.

The structure of KIM is given in Figure 1, a ConvLSTM
(Shi et al., 2015) layer is employed to extract the deep

FIGURE 4

The schematic diagram of Pr and Pv.

features containing spatiotemporal information. ConvLSTM
network is a recurrent structure owing good capability of
modeling sequential data and extracting temporal information.
Meanwhile, it can learn the spatial information of each
individual time step due to the convolution operation.
Therefore, considering that the input is a sequence, ConvLSTM
network is suitable for extracting deep features from both
temporal and spatial dimensions simultaneously.

Then, object knowledge is combined with deep features.
Considering that there is a gap between the two features and
the same feature may have different contributions in different
classification tasks, inspired by squeeze-and-excitation networks
(Hu et al., 2018), we adopt an attention-based method to
combine object knowledge and deep features in an adaptive way,
as shown in Figure 5. Specifically, the deep features and object
knowledge are first mapped to the same dimension through
an fully connected (FC) layer and scaled to 0∼1 by sigmoid
activation, respectively, making them similar and conducive for
combination. Then, the mapped features, Fd and FOBK , are
connected in channel dimension and Fc can be acquired. After
that, the global pooling operation is utilized to squeeze Fc, and
two FC layers are adopted to learn the attention weight vector a
containing two elements:

a = [aOBK , adeep] = δ
(
W2 · σ

(
W1 · AvgPool (Fc)

))
, (7)

where adeep and aOBK are the weights of the deep features
and object knowledge, respectively, δ and σ are “sigmoid”
and “relu” activation functions, W2 and W1 are parameter
matrices, AvgPool (·) denotes the average pooling operation.
Subsequently, object knowledge and the deep features are
redefined by multiplying with the corresponding weights.
Next, Fd and FOBK are added to their redefined results to
preserve original information from different sources. Finally, the
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FIGURE 5

Illustration of attention-based injection method (⊗ represents
Hadamard product; ⊕ denotes element-wise addition).

concatenated features are used for classification:

Ffinal = concat
(
Fd + adeepFd, FOBK + aOBKFOBK

)
, (8)

In this module, by injecting object knowledge, the network
trains with sufficient information about samples, which
improves its learning capability and classification performance.

Experiment

In this section, to evaluate the performance of KANN,
we conduct a variety of experiments based on a measured
dataset. The dataset is first introduced in detail. Then, the
classification performance of KANN is assessed by comparative
experiments. Additionally, we analyze the influence of the
knowledge assistance and network structure on the performance
of KANN through experiments.

Dataset preparation and
implementation details

The measured dataset is collected by an automotive MMW
multiple-input multiple-output (MIMO) radar with 4 Tx and
8 Rx producing a total of 32 virtual antennas. It uses the
Frequency Modulated Continuous Waveform (FMCW) which
is widely used in automotive radar (Hu et al., 2019). The specific
configurations of radar are provided in Table 1.

The radar sensor is assembled and mounted on the front
of the car as shown in Figure 6. The data is collected
under different lighting conditions in different scenarios, such
as city streets, elevated roads, and tunnels. Some sample
scenarios are shown in Figure 7. Four kinds of objects are

TABLE 1 The specific configurations of radar.

Parameter Value

Center frequency and bandwidth 77 GHz and 600 MHz

Maximum range, resolution 80 m, 0.3 m

Maximum radial velocity, resolution 40 m/s, 0.3 m/s

Field of view −45◦∼45◦

Number of chirps per frame 64

Number of samples per chirp 256

FIGURE 6

Radar installation diagram.

considered, including pedestrian, runner, vehicle, and cyclist,
with overlapping speed ranges.

After collecting the original radar echoes, we perform
the sequence generation method and knowledge extraction
algorithms to obtain the RD map sequences and two kinds of
knowledge. It should be noted that in the experiments we stack
the RoIs of the same object in the RD maps of five continuous
frames to construct an RD map sequence, and the RoIs in
different RD map sequences are completely different. There are
some samples given in Figure 8. Then, the samples are randomly
divided into training and testing datasets. The detailed settings
are listed in Table 2.

Moreover, the implementation details are shown. The
experiments are conducted on a server cluster with a 64-bit
Linux operating system. In the training phase, the batch size is
set to 64, the learning rate is 0.01, and the network is optimized
with adaptive moment estimation (Adam) algorithm.

Evaluation metrics

In order to evaluate the performance of different methods,
the average accuracy (AA) of all classes is applied. This metric
takes into account the imbalance of the data and can provide a
more objective assessment of performance. It can be calculated
by:

AA =
1
C

C∑
c=1

NTP

Nc
, (9)
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FIGURE 7

Samples of different data collection scenarios.

FIGURE 8

Samples of four kinds of objects.

where C is the number of classes, NTP is the number of samples
classified correctly in class c, and Nc is the total number of
samples in class c.

Quantitative analysis

Object classification
In this part, we assess the performance of KANN based on

the measured dataset. Additionally, six methods that have been
studied in this field are served as comparisons. Two of them

are feature-based methods that extract the features contained
in object knowledge and then utilize SVM (Heuel and Rohling,
2012) and random forest (RF) classifiers to predict the object
labels, respectively. The remaining four comparison methods
establish different neural networks to accomplish the task,
containing Three Layer-CNN (TL-CNN) (Patel et al., 2019),
VGG-16 (Gao et al., 2019), FCN (Ouaknine et al., 2021), and
RadarResNet (Zhang A. et al., 2021).

The per-class accuracy and AA of different methods are
shown in Table 3. The values in bold in the table are the highest
accuracy among the methods. We can observe that KANN
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can achieve advanced performance, and its AA and per-class
accuracy is all above 90%. These results demonstrate that KANN
is effective in the MMW radar object classification task. Since the
two kinds of knowledge are obtained from the human brain’s
wisdom and logic, integrating them can inspire the network to
learn the samples in a way more similar to the human brain and
extract more discriminative and comprehensive features.

In order to assess the performance of KANN in practical
application, the runtime of different methods is analyzed, and
the results are listed in Table 4. It can be observed that the
feature-based methods cost the shortest time because their input
is a set of prepared artificial feature vectors but not raw data.
Among the deep learning methods, the runtime of KANN is the
longest, which is 2.053 s. It can be inferred that the structure

TABLE 2 The detailed settings of the dataset.

Object Number of training data Number of testing data

Pedestrian 840 279

Runner 873 350

Vehicle 1,085 368

Cyclist 714 246

Total 3,512 1,243

TABLE 3 Experimental results on different methods.

Method Accuracy (%)

Pedestrian Runner Vehicle Cyclist AA

Features+SVM
(Villeval et al., 2014)

60.93 76.13 91.70 91.60 80.09

Features+RF 78.49 67.90 91.70 88.55 81.66

TL-CNN (Patel
et al., 2019)

83.52 71.19 91.27 90.08 84.02

VGG-16 (Gao et al.,
2019)

88.53 79.42 93.01 93.13 88.52

FCN (Ouaknine
et al., 2021)

87.81 92.59 94.32 94.66 92.35

RadarResNet
(Zhang A. et al.,
2021)

94.98 85.60 96.51 90.84 91.98

KANN 93.19 91.35 96.51 95.42 93.39

TABLE 4 Computational costs on different methods.

Model Runtime (s)

Features+SVM (Villeval et al., 2014) 0.013

Features+RF 0.007

TL-CNN (Patel et al., 2019) 0.081

VGG-16 (Gao et al., 2019) 0.864

FCN (Ouaknine et al., 2021) 0.079

RadarResNet (Zhang A. et al., 2021) 0.293

KANN 2.053

of ConvLSTM contained in KANN costs more time compared
with convolution operation due to its serial units. As for the
application, in general, it is an acceptable efficiency for the
proposed method and its accuracy is the highest.

Ablation study
To investigate the advantage of knowledge assistance, we

conduct the ablation experiment. The basic network of KANN
without knowledge assistance is regarded as the baseline. Then,
image knowledge and object knowledge, are separately added
to the baseline for assistance. KANN is compared with these
three models. Moreover, to assess the structure of KANN,
we exchange the positions of KAM and KIM to conduct the
experiments. Besides, considering that the spatial information
can also be obtained by convolutional operation, in KANN,
we remove the image knowledge and apply two convolution
kernels with randomly initialized parameters to extract spatial
information to compare the effect of artificial image knowledge
and the automatically obtained spatial information. The results
are listed in Table 5. The values in bold in the table are the
highest accuracy among the methods.

It is shown that the baseline performs worst. When one kind
of knowledge is added, the accuracy improves. The integration
of image knowledge increases AA by 3.63%, and object
knowledge makes the network achieve an 8.06% increase in AA.
KANN with image knowledge and object knowledge achieves
the best performance, whose AA is more than 10% higher than
the baseline. Additionally, we can observe that when KIM lies
in the front, AA drops by about 3%. As for the comparison
of artificial image knowledge and spatial information from
convolution operation, it can be seen that the AA of the
model with artificial image knowledge is approximately 5%
higher than the model with learnable spatial information. It
can be inferred that though the network can automatically
extract the information, the artificial features can supplement

TABLE 5 Experimental results of the ablation study.

Model Accuracy (%)

Pedestrian Runner Vehicle Cyclist AA

Baseline 78.92 68.91 87.77 83.97 79.89

Baseline + image
knowledge

79.93 73.25 90.83 90.08 83.52

Baseline + object
knowledge

81.83 86.83 90.39 92.76 87.95

Baseline + image
knowledge
+ object knowledge
(KANN)

93.19 91.35 96.51 95.42 93.39

KIM + KAM 83.87 81.84 90.83 92.37 90.53

KANN with convolution
operation

98.57 84.77 87.77 82.44 88.38
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the network with physical and discriminative information which
the network lacks.

From the results, we can conclude that with the knowledge
assistance, the network is inspired to learn sample information
no longer solely by optimizing data. It can explore information
in a way more like the human brain. Although an attention
mechanism is built to help the network focus on the object
regions first, it is trained by the network learning mechanism.
Image knowledge contains sample spatial information, which
is acquired based on human brain wisdom and logic. By
introducing image knowledge into the attention mechanism, the
network can assign attention not only based on the network
learning results, but also according to the visual cognition of
the human brain. As a result, the network concentrates more
precisely on the object region and achieves more accurate
classification performance. As for object knowledge, it provides
semantic information about objects in the real world, which is in
line with the human brain perception when classifying objects.
Adding this information supplements more information for the
network and can improve the accuracy. Besides, by contrast,
object knowledge plays a more significant role in KANN. It
can be inferred that object knowledge offers the semantic
information which the network lacks, while image knowledge
modifies the attention weight matrix. On the other hand, from
the module location experiment, it can be inferred that the
network can achieve better performance by focusing on the
object regions in the early stage and delicately combining
object knowledge and deep features through the attention-based
method just before classification.

Comparison of combination methods
In this part, to evaluate the performance of the attention-

based combination method in KIM, different combination
methods are applied to the fusion of object knowledge and
deep features, and the results are discussed. Two common
approaches, including concatenation and element-wise addition
are served as the comparison methods. The results are listed in
Table 6, we can observe that three combination methods can
all achieve good results with AA all above 90%. The values in
bold in the table are the highest accuracy among the methods.
The experiment proves that the object knowledge definitely

TABLE 6 Experimental results of different combination methods.

Combination
method

Accuracy (%)

Pedestrian Runner Vehicle Cyclist AA

Concatenation 90.32 90.53 92.14 93.13 91.53

Element-wise
addition

89.96 86.83 94.76 90.84 90.59

Attention-based
method

93.19 91.35 96.51 95.42 93.39

supplements physical and discriminative information for the
network and improves the classification performance. Among
them, the attention-based method performs best because the
network can adaptively assign weights of different features, and
the features generated are more suitable for this classification
task. As for the other two, they are just the simple combination
of the two features, and their accuracy is lower than our adaptive
attention-based combination method.

Conclusion

In this paper, we propose a knowledge-assisted network
KANN based on RD map sequence for automotive MMW
radar object classification. We introduce two kinds of prior
knowledge to help the network learn information from
samples in a way more similar to the human brain. In this
way, the neural network can generate more discriminative
features for semantic classification tasks. Specifically, image
knowledge helps the network more accurately focus on the
object regions. Object knowledge is fused with the deep
feature from the network to provide more comprehensive
information for classification. To effectively combine the
two aspects of information, an attention-based injection
method is employed to achieve the adaptive combination.
Experiments based on measured data of four classes of
objects verify the effectiveness of KANN and demonstrate
that knowledge assistance can improve the performance of
the network. Our research is continuing, and the data in
more complex traffic scenarios, e.g., the crowded situation
and strong interference conditions, is still being collected
and processed. Since some researches show that introducing
knowledge into the network can mitigate the network data
size dependence (Zhang L. et al., 2021; Huang et al.,
2022), in future research, based on our expanded dataset,
we will conduct further experiments to assess the effect of
knowledge injection with the training data size as the main
topic. Simultaneously, the practical application value will be
further evaluated with the data in more complex traffic
scenarios.
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Tactile object recognition is crucial for e�ective grasping and manipulation.

Recently, it has started to attract increasing attention in robotic applications.

While there are many works on tactile object recognition and they also

achieved promising performances in some applications, most of them are

usually limited to closed world scenarios, where the object instances to be

recognition in deployment are known and the same as that of during training.

Since robots usually operate in realistic open-set scenarios, they inevitably

encounter unknownobjects. If automation systems falsely recognize unknown

objects as one of the known classes based on the pre-trained model, it can

lead to potentially catastrophic consequences. It motivates us to break the

closed world assumption and to study tactile object recognition in realistic

open-set conditions. Although several open-set recognition methods have

been proposed, they focused on visual tasks and may not be suitable for

tactile recognition. It is mainly due to that these methods do not take into

account the special characteristic of tactile data in their models. To this end, we

develop a novel Gaussian Prototype Learning method for robust tactile object

recognition. Particularly, the proposed method converts feature distributions

to probabilistic representations, and exploit uncertainty for tactile recognition

in open-set scenarios. Experiments on the two tactile recognition benchmarks

demonstrate the e�ectiveness of the proposed method on open-set tasks.

KEYWORDS

tactile perception, object recognition, open-set recognition, Gaussian prototype

learning, tactile object recognition

1. Introduction

Object recognition is a prerequisite for robotic dexterous manipulations, which is the

cornerstone of many robotic applications (Li et al., 2018; Qiao et al., 2021). For example,

a robot needs to know the category of an object for selecting a suitable interaction

pattern or manipulation strategy during exploring the surroundings or performing

manipulation (He et al., 2020; Zheng et al., 2020a). Therefore, how to effectively realize

object recognition has recently attracted widespread attention in robotic research fields.
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Since tactile sensing is an effective way of perceiving

some physical properties of the manipulated objects through

physical interaction (Luo et al., 2017), it has been extensively

used in robotic tasks involving object recognition, material

identification (Zheng et al., 2019), texture recognition and

robotic grasp detection (Guo et al., 2021). Liu and Sun (2017)

proposed a tactile recognition method for classify material

identification. Xu et al. (2013) proposed a tactile identification

method with Bayesian exploration. Kerr et al. (2018) used

tactile data to classify the materials with the BioTAC sensor. In

addition, tactile information is used as an effective complement

of visual information for robotic tasks. In Liu et al. (2016),

a novel visual-tactile fusion method was proposed for object

recognition using joint group kernel sparse coding. Guo et al.

(2017) adopted tactile information as an important complement

of visual information for the robotic grasp detection task. These

works have shown that tactile perception plays a significant role

in robotic recognition tasks.

While there are many works on tactile recognition and

they have been demonstrated to be effective for some specific

applications (Yi et al., 2020), they have mainly focused on

constructing predictive models to classify predefined and

fixed object classes in closed-set scenarios, assuming that the

classes seen in testing must have appeared in training. In

fact, such an assumption is usually violated in actual robotic

applications (Zheng et al., 2020b). This is mainly due to

that robots are commonly deployed in realistic unconstrained

environments, where objects of unknown classes are regularly

encountered. When observing an unknown object, these closed-

set classification methods incorrectly categorize it as one of the

known classes with high confidence. As classifier prediction in

robotic applications can trigger some kind of costly robotic

action, such misclassification can be catastrophic and is often

not acceptable. Thus, it is necessary to investigate robust tactile

recognition in open-set scenarios, which is also referred to open-

set tactile recognition. The schematic is shown in Figure 1, where

robots should have the dual ability of unknown detection and

known classification.

To the best of our knowledge, tactile object recognition of

open-set scenarios is still unexplored research in the robotic

field. Similar to other open-set recognition, open-set tactile

recognition also faces the core challenge of how to not only

correctly classify samples from the known classes but also

effectively detect and flag unknown examples as the novel.

Many methods have been proposed to handle this problem

in the literature. The mainstream methods attempt to utilize

thresholding to reformulate open-set recognition as a closed-

set classifier. As feature distribution of training samples is not

explicitly considered in their learning objectives, the learned

features generally have excessive intra-class variance. The inter-

class distance can even be smaller than the intra-class distance

in the learned feature space. This makes it difficult to set an

appropriate threshold that well separates known from unknown.

In addition, another technical solution aims to collect

unknown samples for training a (K + 1)-class model, where

K is the number of known categories and all unknowns are

treated as an additional category. The strategy is simple and

intuitive, but it usually requires large-scale training data to

represent the large numbers of unknowns in open scenarios.

However, collecting sufficient tactile data is difficult for training

due to the complex collection process and constraints of

robot-object physical interactions. Hence, constructing an

effective model for open-set tactile recognition is still an

open question.

As we know, humans can effectively recognize objects in

open environments based on template or prototype matching.

Motivated by the recognition mechanism, we propose an

uncertainty estimation model for open-set tactile object

recognition in this work. The framework consists of two

main components, which are the feature extractor and the

class prototypes. The feature extractor simulates the perception

system of humans for transforming the raw sensing data into

abstract representations. Moreover, the prototypes for each

category serve as abstract memories of the corresponding

category in the brain. By matching the tactile features

(abstract representation) with prototypes (classes memories),

the proposed model performs object recognition. During

inference, if the feature of a test tactile sample can not match well

with all the prototypes of the known classes, it will be considered

as the unknown.

To this end, the learned features of each known class are

characterized by a Gaussian distribution in our framework.

As known samples follow the prior distributions, those test

samples located in low probability regions will be recognized as

unknown by the model. Meanwhile, for the test samples from

known classes, the model will compute its probabilities over

all known classes and classify it as the class with the highest

probability. To explicitly enforce training samples following

Gaussian distributions, we introduce a likelihood regularization

term to the classification discriminant function during training.

In addition, we further add a classification margin to make each

cluster more compact and further improve the generalization

of the model. The main contributions are summarized as

follows:

1. In this paper, we specifically address tactile object recognition

in open-set scenarios. To this end, a novel Gaussian Prototype

Learning method is proposed, which is suitable for both

unknown detection and known classification.

2. We introduce a likelihood regularization term to explicitly

enforce training samples following Gaussian distributions.

In addition, we further introduce a classification margin to

make each cluster more compact, which is more beneficial for

unknown detection.

3. We perform comprehensive experimental evaluations of our

proposed method on publicly available tactile datasets. The
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FIGURE 1

The schematic of open-set tactile object recognition. Some images are from https://sites.gatech.edu/hrl/mr-gan/.

experimental results demonstrate the effectiveness of the

proposed method.

Please note that our proposed open-set tactile recognition

is not just a matter of the robot filling in gaps in its knowledge

base. Instead, we aim to enable robots will be able to continually

expand the scope of the knowledge to learn new unknown

classes over time in an active learning manner. That is to say,

at any particular point in time the model needs to be able

to detect and reject unseen data belonging to unknown tasks

or classes. These unknown data could be utilized and learned

with another algorithm in some human-in-the-loop system at

a later stage. We believe that this research will aid in active

learning and continual learning in open-set conditions, which

can serve as the first step toward building lifelong robot tactile

recognition systems.

In the following, related works are briefly reviewed in

Section 2. In Section 3, we describe the problem of tactile

open-set object recognition. Section 4 details the framework

architecture and learning model of the proposed method. The

experimental results and analysis are given in Section 5.

2. Related work

In this section, the main related works are briefly reviewed

from two aspects: tactile object recognition and open-Set

Recognition.

2.1. Tactile object recognition

Object recognition is a fundamental perceptual capability

for many robot applications (Meyer et al., 2020). While vision

enables robots to have excellent visual recognition capabilities

(Deng et al., 2019; Han et al., 2019), it is not always effective for

object recognition in practical tasks (Yang et al., 2019). This is

mainly due to that objects of similar appearance can have very

different physical properties, which may not be easily obtained

visually (Deng et al., 2022). Tactile sensing is an important

perception modality, of which the interactive nature allows it

to convey rich and diverse tactile information, such as texture,

roughness, or stiffness (Li et al., 2020). It is crucial for robots

to explore and learn the mechanical properties of manipulated
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objects, especially when interacting with unknown objects in

practical environments.

Considering its effectiveness in perceiving environments,

tactile information has been extensively adopted in a variety

of robot recognition tasks. Liu and Sun (2017) proposed a

tactile material recognition model with semantic labels, which

improved the identification performance. Kerr et al. (2018)

utilized BioTAC sensor to collect tactile data, and then these

data are used to classify the materials. Yuan et al. (2018)

used GelSight tactile sensor to recognize 11 properties of the

clothes, which aim to help the robot understand their material

properties. Based on a hybrid touch approach, Taunyazov et al.

(2019) developed an effective tactile identification framework for

texture classification. More recently, Gu et al. (2020) proposed

an event-based tactile object recognition method with a spiking

graph neural network using electronic skins.

Although the mentioned tactile-based recognition

methods have been successfully applied in some specific

robotic tasks, most of them are deployed under a closed-set

condition. Such a closed-set scenario is practically unfeasible in

robotic applications. Robots commonly are deployed in open

environments, where they will often come across new types of

objects. Recently, Abderrahmane et al. (2018, 2019) proposed a

tactile recognition framework, which can recognize both known

as well as novel objects. Nevertheless, this framework still did

not explicitly consider the nature of open-set. In particular, the

set of novel classes that can be recognized must be known in

advance in the framework. Moreover, it relied on the hypothesis

that attributes learned from the training seen-classes are shared

by the testing unseen-classes. Obviously, they are potential

drawbacks in practice applications. Consequently, existing

methods are not suitable for open-set tactile object recognition.

2.2. Open-set recognition

Open-set tactile recognition faces the core challenge is how

to not only correctly classify samples from the known classes

but also effectively detect and flag unknown examples as the

novel. Traditional closed-set classification models may not work

in open-set problems because they often predict high confidence

for inputs that are significantly different from the training

classes (Wang et al., 2022). To tackle this challenge, a variety

of related methods have been proposed in the literature. An

intuitive method is to use closed-set classifier to solve open-

set recognition by setting rejection threshold, such as 1-vs-set

SVM (Scheirer et al., 2012), SROSR (Zhang and Patel, 2016),

NNO (Bendale and Boult, 2015), DOC (Shu et al., 2017), and

CROSR (Dhamija et al., 2018). Exploring this idea, Scheirer

et al. (2012) proposed 1-vs-Set model based on SVM to detect

unknown samples by adding an extra hyper-line. Bendale and

Boult (2015) extended Nearest Class Mean (NCM) classifier to

open-set conditions, establishing a Nearest Non-Outlier (NNO)

algorithm. Recently, Bendale and Boult (2016) proposed to use

the Openmax layer to replace the Softmax layer in deep neural

networks. This method redistributes the probability distribution

of Softmax to obtain the class probability of unknown samples.

As most of these models ignore constructing reasonable

feature distribution for different classes, the learned features

generally have excessive intra-class variance (Han et al., 2017).

The inter-class distance can even be smaller than the intra-class

distance in the learned feature space. As a consequence, it is

hard to select an appropriate threshold that well separates known

from unknowns. Moreover, feature distribution of training

samples is not explicitly considered in their learning objectives,

which will limit the performance of the model to detect

unknown samples.

Another technical route is to collect or synthesize examples

of extra classes for representing unknowns. Along this line,

G-OpenMax (Ge et al., 2017) proposed to train a generator

for synthesizing examples that represent all unknown classes

for model training. Neal et al. (2018) developed counterfactual

image generation, which aimed to generate extra class image

samples that cannot be classified into any known class. Since

the complex collection process and operation constraints, it is

difficult to acquire large amounts of tactile data for unknown.

Therefore, it is unfeasible to learn an effectivemodel with limited

training data for generating sufficient samples to represent

unknowns.

3. Problem formulation

In this work, we aim to realize robotic tactile object

recognition in open-set scenarios. The goal is to endow robots

with an effective mechanism to detect samples from unknown

classes that may be encountered during testing, which are not

available to be seen in training. To accomplish this goal, the

tactile open-set recognition model is able to (i) correctly classify

known tactile inputs (i.e., classes from the training set) and

(ii) effectively detect unknown tactile classes (i.e., classes not

exposed in the training set).

Let us formalize the problem described above. Given a

tactile training dataset Dtr = {(ti, yi)}
M
i=1, where ti ∈ Rd

denotes a training tactile sample, yi ∈ Y = {1, 2, ....,K} is

the corresponding class label and M denotes the number of

training samples. The testing dataset Dte = {(tj, yj)}
N
i=1 where

tj ∈ Rd, yj ∈ Y ′ = {1, 2, ....,K,K + 1, ...., k′} (k′ > K)

and N is the number of testing samples. Here, {k + 1, ...., k′}

denotes the set of unknown categories, which is referred to as

novelty and uniformly denoted as YK+1 in this paper. Therefore,

Y ′ = Y ∪ YK+1 and Y ∩ YK+1 = ∅. Our task is that the

tactile recognition system need to determine whether a tactile

observation tj ∈ Y ′ is from the known classes Y or the unknown

classes YK+1. If tj is from Y , the classifier should predict a class

label ŷ ∈ Y , otherwise it can be judged as the novel class YK+1.
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The primary challenge of solving this problem is how to

enable the model to classify tactile examples of seen classes

into their respective classes and meantime detect tactile data

of unseen classes. Traditional classifiers predict the class of

the input instance with the highest Softmax probability. Since

the model is impossible to know in advance unknown classes

that may be encountered in practice, it tends to predict the

lowest probability on the unknown classes. As a consequence,

directly using closed-set classifiers for open-set recognition

would classify unknown instances into known categories with

improperly high confidence, yielding poor performance in open-

set recognition. What is more, it is hard to collect sufficient

tactile data in practice. These factors make the existing open-set

methods unsuitable for tactile recognition. Therefore, it needs to

be investigated carefully.

As discussed above, the open-set tactile recognition is a

non-trivial task due to the following two major challenges:

1. Similar to other open-set recognition problems, open-set

tactile recognition also faces the core challenge is how

to not only correctly classify samples from the known

classes but also effectively detect and flag unknown examples

as the novel.

2. Different from other open-set visual recognition tasks,

collecting sufficient tactile data is difficult for training

due to the complex collection process and constraints of

robot-object physical interactions. This makes it difficult to

migrate some existing open-set recognition methods with a

complicated network to the tactile open-set recognition task.

3. Moreover, the tactile signals for object recognition are

commonly high-dimensional dynamic time-series, which

exhibit many challenges. Firstly, it is impossible to directly

use high-dimensional signals into the existing machine

learning methods without any preprocessing techniques.

Additionally, there is the nature of misalignment among

different tactile measurements. It makes tactile open-set

recognition more difficult.

4. The proposed method

In this section, we first expound the framework architecture

of the proposed method, and then we elaborate the details of the

Gaussian prototype learning model in the method. Finally, we

describe the algorithm optimization of the model.

4.1. Framework architecture

The framework of our proposed model is shown in Figure 2,

which can be structurally disentangled into two main modules:

feature extraction module f (θ , t) andGaussian prototype learning

module. The feature extraction module is used to transform

the raw tactile inputs into abstract feature representations,

where t is a tactile input and θ denotes the parameters of

the feature extraction module. Different from the traditional

softmax layer for classification on the learned features, we adopt

a prototype learning module to learn class prototypes µl
yi on the

extracted features for each class yi ∈ Y , where the superscript

l ∈ {1, 2, ..., L} is the number of prototypes in each category.

Finally, we apply these prototypes for classification by template

matching. When the extracted feature f (θ , t) of an input t can

not match well with all prototypes of all known classes, it can be

viewed as unknown. In this model, a feature extraction module

and prototype module are jointly learned from data during

training, thus forming a unified end-to-end deep framework,

which is beneficial to improve the performance of recognition.

Previous experiments demonstrated that when the number

of prototypes l in each class is large, it can not promote the

classification accuracy and on the contrary will degrade the

performance of the model. In fact, the deep neural network is

very powerful for feature representation. Although the initial

feature distribution is complex and scattered, the features of

each class can be compacted to fit a single class centroid with

some appropriate constraints after transformation. As such, we

maintain one prototype for each category in our model. For

convenience, µl
yi is denoted as µyi , of which the superscript is

omitted in the following description.

4.2. Gaussian prototype learning model

Given a tactile input tj, we firstly extract its abstract

representation through the feature extraction module f (θ , tj),

and then search the nearest prototype based on the Euclidean

distance between the extracted feature with all prototypes in the

feature space. Finally, we assign the class label of this prototype

to the tactile input. The process can be described as:

ŷ =







arg
K

max
i=1

gi(tj), if gi(tj) > δ

Unknown YK+1, if gi(tj) ≤ δ

(1)

where gi(x) is the class discriminant function that denotes the

matching score of tactile sample tj with class i, δ is a rejection

threshold.

To train the framework, we introduce the three optimization

objectives, which are discriminative classification loss, feature

distribution loss and learning to detect unknowns.

4.2.1. Discriminative classification loss

Intuitively, an ideal class prototype should effectively

discriminate and classify samples from different categories. To

achieve the goal, we propose a discriminative classification loss.

It aims to make the prototype of the corresponding class closer

to f (θ , ti) while the prototypes of other classes stay away from

f (θ , ti), ensuring tactile input is correctly classified.
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FIGURE 2

The framework of our proposed method for open-set recognition.

Essentially, the discriminative classification loss is a

novel distance-based cross-entropy loss. Similar to traditional

cross-entropy loss, it calculates cross-entropy loss with class

probabilities obtained from the distances between samples

feature and all prototypes. Specifically, given a sample ti and its

class label yi, the probability of belonging to the corresponding

prototype can be measured by the distance, and the probabilities

are normalized in a similar way of Softmax. With this definition,

the loss is defined as:

Lcls(θ ,µi) = −
1

N

N
∑

i=1

K
∑

j=1

Ŵ(ŷ = yj) log Pyj (ŷ|ti). (2)

where Ŵ(·) is symbolic function, and pyi is class-specific

probability, of which the definition can be expressed as:

Pyj (ŷ|ti) =
e
−

1
T

∥

∥

∥
f (θ ,ti)−µyj

∥

∥

∥

2

2

∑

i∈Y e−
1
T ‖f (θ ,ti)−µi‖

2
2

(3)

where T is a temperature coefficient that is used to control

the characteristics of the classifier. We set the value of T as

the variance σ 2 in the feature space, in order to normalize the

representation space and increase the stability of the system. All

classes prototypesµi with i ∈ Y and the variance σ 2 are updated

in an online manner.

By minimizing Lcls(θ ,µi), the loss aims to encourage

separating the samples from different categories in learned

feature space. In particular, this objective is to decrease the

distance between samples of the same category and the

corresponding prototype, and increase the distance between the

sample and all other incorrect prototypes. Since the objective

considers all prototypes in each updating step, it can better

guarantee the convergence of training.

4.2.2. Feature distribution loss

For open-set recognition, the learned features need not only

to be separable in different classes but also be compact in the

same class. However, the above classification loss only makes the

features of different categories separable. As a result, a feature

ti is far away from the corresponding category centroid µyi ,

but it still is correctly classified if it is relatively closer to µyi

than to the feature centroids of the other classes. To tackle this

issue, we further introduce a feature distribution loss to learn

discriminative and compact representation, making it more

applicable for our task.

The feature distribution loss is essentially the maximum

likelihood regularization term on the assumption of Gaussian

distribution. Specifically, we assume that the extracted feature

on the training set conforms the Gaussian mixture distribution,

viewing class prototype µyi as the mean of a Gaussian

component, which can be expressed as:

p(ti) =

k
∑

i=1

N(f (θ , ti),µyi , σyi )p(yi). (4)

where σyi is covariance of class yi in the feature space, and

p(yi) is the prior probability of class yi. For the convenience

of calculation, the likelihood regularization term is defined as

the negative log-likelihood. By reasonably setting constant prior

probabilities p(yi), the likelihood regularization term Llkd is

simplified to Equation (5).

Llkd(θ ,µyi ) = −

k
∑

i=1

logN(f (θ , ti),µyi , σyi ). (5)

The objective of the regularization term aims to maximize

the log-likelihood of sample ti for its corresponding class.

By minimizing Llkd, the model can effectively reduce the

within-class variance and constrain the feature distribution of
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known classes, so it can reserve more feature space for unknown

classes and improve the performance of the proposed method

for detecting unknowns.

4.2.3. Learning to detect unknowns

The threshold-based rejection is frequently used in open-

set recognition tasks. Most of the existing methods directly

adopt the predefined threshold to detect unknowns, which is not

suitable in practical applications. In order to make our model

effective on the open set tasks, we explicitly consider adopting

class-specific rejection criteria. In particular, we use an adaptive

strategy by letting the value threshold δ to be proportional to

maximal distance 1yi between samples specific class yi and

the corresponding class centroid µyi , i.e., δ = α1yi where

α is proportional coefficient. Formally, Equation (1) can be

expressed as:

ŷ =







t ∈ class arg
k

max
i=1

gi(t), if gi(t) > α1yi

Unknown, if gi(t) ≤ α1yi

, (6)

where gi(t) =
1

σ 2
yi

∥

∥f (θ , t)− µyi

∥

∥

2
2. Instead of adopting the pre-

defined threshold, we explicitly learn specific threshold of each

category by minimizing the following objective:

Lthr(θ ,µyi ) =
∑

i∈Y

max(0,m(
1

σ 2

∥

∥f (ti, θ)− µyi

∥

∥

2
− α1i)).

(7)

wherem = −1 if i = yi andm = 1 otherwise.

By minimizing Lthr , the model can obtain class-specific

rejection thresholds, instead of presetting a global threshold as

in prior works. It makes the proposed model effective to detect

unknown samples.

4.3. Algorithm optimization

With the above-mentioned analysis, the optimization

process of our proposed method is structurally divided into

two components: optimization of feature representation and

optimization of rejection threshold.

(1) In this optimization of feature representation, the

trainable parameters in the proposed method are composed

of two parts, i.e., parameters of encoder network for feature

transformation f (θ , ti) and all classes prototypes µi. To this

end, we combine discriminative classification loss and feature

distribution loss. The formally objective function is expressed as:

L(θ ,µyi ) = Lcls(θ ,µyi )+ λLlkd(θ ,µyi ) (8)

where λ ≥ 0 is weighting coefficients, which controls the

trade-off of the two loss terms to optimal performance.

Require:

(1): Training data Dtr = {(ti, yi)}
M
i=1, and the

associated class label yi ∈ Y = {1, 2, ...., k};

(2): Hyperparameter: α, λ, the learning rate η;

(3): Testing dataset Dte = {(tj, yj)}
N
i=1, and the

associated class label yj ∈ Y ′ = {1, 2, ....,K,K + 1, ...., k′}

(k′ > K).

Ensure:

Learned encoder network f (θ), class prototypes

µyi and corresponding covariance σyi.

1: for number of iterations do;

2: Update parameters θ, σyi and µyi by descending

their stochastic gradients by Equation (8).

3: θ ← θ − η · ∇θ (Lcls(θ ,µyi )+ λLlkd(θ ,µyi ))

4: µyi ← µyi − η · ∇µyi
(Lcls(θ ,µyi )+ λLlkd(θ ,µyi ))

5: end for

6: return f (θ) and {(σi,µi)}
k
i=1

gi(t) =
1

σ 2
yi

∥

∥f (θ , t)− µyi

∥

∥

2

2

gmax(t) = sort(gi(t))

7: if gmax(t) > δi

8: Predict t as known classes with label ypred

9: else do

10: detect t as unknown with label YK+1

11: end if

Algorithm 1. The program flowchart of the proposed method.

For the hybrid optimization objective function L(θ ,µyi )

in Equation (5), we can directly calculate the gradients

of ∂L
/

∂f and ∂L
/

∂µyi . According to the error back

propagation, we can calculate the gradient of ∂L
/

∂θ .

With the gradients of L over all parameters, we can jointly

optimize both feature extractor and all classes prototypes

using a gradient descent (SGD) optimization algorithm in an

end-to-end way.

(2) For optimization of rejection threshold, it aims to achieve

optimal class-specific thresholds α1i. In this process, we held-

out set of samples from the training set to learn the optimal

thresholds. Hence, we split the samples into two parts, one

part used for learning the feature extractor f (θ) and the classes

prototypes µyi and the remaining part for learning the value of

α1yi .

In summary, the optimization process of our proposed

model is elaborated in Algorithm 1.

5. Experiments

In this section, the proposed open-set tactile recognition

method is comprehensively evaluated on two publicly available

datasets. Firstly, the adopted datasets, evaluation metrics,

comparison methods, and implementation details are described.

Then experiments results and their analysis are provided.
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FIGURE 3

All material images of the data set. The numbers, respectively, denote the beginning of each category. The original images are from Strese et al.

(2016). It has been reproduced with permission from IEEE, available at https://zeus.lmt.ei.tum.de/downloads/texture/.

Finally, we further analyze the sensitivity of hyperparameters in

the model.

5.1. Dataset splits

We demonstrate our proposed method on two publicly

available data sets, which are Haptic Texture Database

(LTM_108) dataset (Strese et al., 2016) and Penn Haptic

Adjective Corpus (PHAC-2) (Chu et al., 2015) dataset. They

have been used to evaluate a model’s ability to recognize objects

or textures by tactile modality (Liu and Sun, 2017). In these

two data sets, their tactile data, respectively, represent two

typical types of tactile information. Different from closed-set

recognition, open-set tactile recognition needs a special setup

and experiments. The splitting of the dataset is described as

follows:

LTM_108: The LTM_108 dataset consists of 108 different

surface material instances, which are divided into 9 categories

based on the material properties. These material images of

the dataset are shown in Figure 3. In this dataset, it provides

multimodal data for each material instance, namely visual

images, tactile acceleration traces and sound signals generated

from the surface-tool interaction. The dataset provides a training

set and a testing set. They both contain 108 material instances

and every instance has ten tactile samples. In this experiment,

we only use the tactile acceleration traces as tactile data for object

recognition.

Although this dataset has been directly used for some closed-

set tasks of tactile recognition, we use this dataset to tackle more

challenging the open-set tactile recognition task. To provide a

suitable test platform, a new dataset split is proposed based on

the original dataset. In particular, we randomly select K < 9

categories tactile samples from the train set to train our models

and use totally 9 categories of tactile samples from the test set for

test evaluation. This setting ensures that the test set appears some

TABLE 1 The details of the dataset splits on LTM_108.

Material category Training samples Testing samples

Mesh 13× 10 13× 10

Stones 9× 10 9× 10

Glossy 9× 10 9× 10

Wood 13× 10 13× 10

Rubbers 5× 10 5× 10

Fibers 15× 10 15× 10

Foams - 12× 10

Foils and paper - 15× 10

Textile and fabrics - 17× 10

Total 64× 10 108× 10

material categories that are not in the training set. The Table 1

show a case of the dataset splits when K = 6.

PHAC-2: There are 60 objects in the PHAC-2 dataset. The

visual images of the dataset are shown in Figure 4. According

to the physical properties, these objects are divided into eight

categories. In this data set, each object contains tactile signals

and visual images. The tactile signals are collected by two

SynTouch BioTacs tactile sensors, which are installed to the

grippers of a PR2 robot. In order to mimic the process of

humans exploring the tactile properties of objects, the robot used

four exploratory procedures to acquire five types of tactile data.

According to the specified procedures, ten trials are performed

on each object, resulting in totally 600 tactile samples. Although

the joint data on gripper during exploratory movements are

available, we focused on the tactile signals for classification in

this experiment. In particular, each tactile sample consists of five

components PDC , PAC , TDC , TAC and E19.

Similar to the above dataset setting, the PHAC-2 dataset also

needs to be reorganized and split. Firstly, we randomly select

an object instance from each material category as test objects
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FIGURE 4

The PHAC-2 contains 60 objects, which are organized by their primary material. The original images are from Chu et al. (2015). It has been

reproduced with permission from Elsevier, available at https://hi.is.mpg.de/research_projects/learning-haptic-adjectives-from-tactile-data.

and remain other 52 object instances. Then, we randomly select

K < 8 categories from eight categories from the remaining

object instances. WhenK = 5, the details of the dataset splits are

shown in Table 2. Please note that according to the above setting,

not only does the test set contains some categories that are not

in the training set, but also the training set and the testing set do

not share the same object instance even from the same category.

Different from instance-level recognition, this experiment can

be referred to as categorization-level open-set recognition. To

this need, we need the proposed model to have generalization

and robustness for unseen object instances.

5.2. Data preprocessing and network
architecture

Considering the difference between the two types of tactile

signals, we adopt two different feature extraction methods and

network architectures for classification. The specific details are

as follows.

LTM_108: In the LTM_108 dataset, the recorded tactile

signals are three-axis acceleration traces. Firstly, the three-

axis acceleration traces are conversed to a one-dimensional

signal by the DFT321 algorithm (Kuchenbecker et al., 2010).

Considering the effectiveness of short-time Fourier transform

(STFT) extracting features of time-series signals, we adopt STFT

to convert a one-dimensional DFT321 signal into a spectrogram.

These spectrograms are in the log domain, where the length of a

frame length is 500 and the increment of frame and frame is 250.

By the predefined configuration settings mentioned above, there

are 100 spectrogram samples of size 50 x 250 extracted from each

tactile acceleration trace.

As convolutional neural network (CNN) has proven to

be effective in visual classification, which has achieved good

performance on many tasks. Moreover, some CNN models

pre-trained on ImageNet (Deng et al., 2009) have shown

generalization and discrimination. In this experiment, we use

the pre-trained Resnet18 (He et al., 2016) model on ImageNet

as the network backbone of the proposed method.

PHAC-2: As in Abderrahmane et al. (2019), we firstly

normalize the five components (PDC , PAC , TDC , TAC, E19)

in each signal sample, respectively. As the sample rate of

PAC is higher than other components of a tactile sample, we

downsample it to match the other signals’ sample rate of 100

Hz. For some exploratory movements, the length of tactile

signals varies considerably from objects. In order to resolve

the length difference of signal, we downsample the signal of

each exploratory movement to a fixed length of 150. Principal

Component Analysis is used independently on the E19 data from

each exploratory movement to capture the four most principal

components across all objects. Thus, we obtain 64 tactile signals

for each object in each trial.

Recently, Ji et al. (2015) has demonstrated the effectiveness

of CNN on temporal signals with limited amounts. In this

experiment, we adopt Convolutional neural networks (CNN)

to perform tactile object recognition. The specific network

structure is the same as the Haptic CNN model in Gao et al.

(2016). Every tactile sample per object has 64 tactile signals. We

concatenate the 64 features along the channel axis, which is used

as the input of our model.
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TABLE 2 The details of the dataset splits on the PHAC-2.

Material

category

Original

samples

Training

samples

Testing

samples

Foam 16× 10 15× 10 1× 10

Organic 5× 10 4× 10 1× 10

Fabric 7× 10 6× 10 1× 10

Plastic 13× 10 12× 10 1× 10

Paper 12× 10 11× 10 1× 10

Stone 2× 10 - 1× 10

Glass 2× 10 - 1× 10

Metal 3× 10 - 1× 10

Total 60× 10 48× 10 8× 10

5.3. Evaluation metric

In this experiment, we use the three metrics to evaluate the

classification performance, including Accuracy and F-measure

and AUC.

• Accuracy: As a common metric method to evaluate

classifiers on a closed set task, recognition accuracy Acc is

defined as:

Accuracy =
TP+ TN

TN+ TP+ FP+ FN
(9)

where TP, TN, FN, and FP, respectively, denote true

positive, true negative false negative, and false positive. The

sum of the three quantities is equal to the total number of

samples.

• F-measure: F-measure is commonly evaluation metric,

which is defined as a harmonic mean of Precision P and

Recall R:

F −measure = 2×
P × R

P × R
=

2TP

2TP + FP + FN
(10)

As suggested in Bendale and Boult (2016) and Geng et al.

(2020), we use macro-averaged F1-score. It is denoted as

macro-F1.

• AUC: It denotes area under the ROC curve (AUC), which

measures the performance of detecting unknown between

known and unknown data.

5.4. Comparison methods

To validate the advantages of our proposed method,

several classical methods were also implemented for

comparison. A brief description of the methods is

as follows:

• Softmax: It used the highest probability from the softmax

layer of networks as the confidence score for classification.

• τ -Softmax (Hendrycks and Gimpel, 2016): It aims to use

a global threshold on the softmax probability to determine

whether an input sample belongs to an unknown class. We

refer to this method as τ -Softmax.

• τ -Center (Wen et al., 2016): It can be combined with cross-

entropy loss to encourage the training data to form better-

behaved class structures, which may be easier to model and

facilitate greater distinction of open-set inputs. To this end,

we also use it to detect unknown classes by a predefined

threshold, which is denoted as τ -Center loss.

• OpenMax (Bendale and Boult, 2016): It proposed replacing

the softmax layer with OpenMax, which calibrates the

confidence score with Weibull distribution. It proposed an

inference method for detecting novel classes.

We note that some advanced methods, such as Yoshihashi

et al. (2019) and Sun et al. (2020), have also been proposed to

deal with open-set visual recognition. However, we do not take

them for comparison, because the networks of thesemethods are

too complex to work on the limited training data of tactile tasks.

5.5. Implementation details

For open-set recognition, the ratio of seen and unseen is an

important factor, which quantifies the openness of the problem.

As in Zhou et al. (2021), the openness is defined as:

openness = 1−

√

Ntrain

Ntest
(11)

where Ntrain and Ntest , respectively, denote the number of

categories in training set and testing set. As we described in the

preliminaries, Ntrain = K.

In this experiment, we empirically set the likelihood

regularization parameter λ to 0.01 in experiments. For the

margin parameter α, the optimization of the objective function

becomes more difficult as the value increases. Therefore, α needs

to be smaller when the number of classes gets more. In our

experiments, we empirically set α to 0.4 and 0.3 for LTM_108

and PHAC-2, respectively.

5.6. Experimental results and analysis

Experimental results on the LTM_108 and PHAC-2 datasets

are reported in this subsection. In this experiment, we randomly

select 6 categories as known classes for LTM_108. Considering

the instance imbalance of categories in PHAC-2, the first five

categories are used as known classes. Ten trials are performed on

each experiment, and the averaged results are used as final metric
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TABLE 3 Experimental results of di�erent method.

Model
LTM_108 PHAC-2

Accuracy Macro-F1 AUC Accuracy Macro-F1 AUC

Softmax 59.1% 0.491 0.878 62.5% 0.518 0.871

τ -Softmax (Hendrycks and Gimpel, 2016) 61.7% 0.567 0.970 70.01% 0.625 0.975

τ -Center (Wen et al., 2016) 64.9% 0.613 0.975 71.3% 0.634 0.977

OpenMax (Bendale and Boult, 2016) 62.5% 0.574 0.978 58.7% 0.536 0.928

Proposed method 70.76% 0.669 0.986 75.5% 0.703 0.986

scores. In this setting, the corresponding experimental results on

different methods are shown in Table 3.

From Table 3, it can be seen that our proposed method

achieves the highest Acc, macro-F1, and AUC on the two

datasets. It indicates that the proposed model outperforms

the compared methods, which also demonstrates that the

proposed method is able to effectively improve the ability to

detect unknowns while ensuring the accuracy of the known

classification simultaneously.

As mentioned above, the open-set recognition on PHAC-2

is more challenging, as its test set and training set does not share

the same object instance. Besides, we do not perform any data

augmentation or employ some specific and complex networks in

these experiments. Even so, our proposed method still achieves

optimal performance. This further verifies the effectiveness of

the proposed method.

Additionally, it is clear that τ -Center exhibits a better

performance among all these compared methods because it

explicitly encourages stronger compactness of feature, which

is beneficial for open-set recognition. However, it mainly

aims at improving the softmax loss and feature distribution

is not explicitly modeled. Therefore, it can not achieve

optimal performances dealing with the tactile OSR problem.

Since integrating the advantages from both classification

discrimination with Gaussian Prototype Learning and likelihood

estimation of feature distribution, our proposed method

performs better in open-set conditions. It highlights the

importance of considering the likelihood of feature distribution

in the tactile OSR problem.

In particular, we can observe that as a state-of-art open-

set recognition method, Openmax shows low performance,

especially on the PHAC-2 dataset. It is mainly due to low

recall on known classes with a few training instances since

test instances from smaller classes are usually projected farther

from the mean activation vector of the corresponding class.

This demonstrates that Openmax may be also hardly infer

the class probability of unknown inputs by the probability

distribution of Softmax. Moreover, our experiments

indicate that merely thresholding the output probabilities

of softmax helps, but is still relatively weak for open set

recognition.

FIGURE 5

Macro F1 against varying openness with di�erent methods on

the LTM_108 dataset.

5.7. E�ectiveness of di�erent openness

To valid the robustness of our proposed model to different

openness, we evaluate performance over multiple openness

values in the experiments. In particular, we vary the openness

of Equation (11) by varying the number of classes in the

training sample, while the number of test classes remains the

same. We evaluate the performance by macro F1-scores. The

corresponding results are shown in Figures 5, 6.

As to be expected, when more known classes are available

during training, the performances of classifiers are better

for all methods in Figures 5, 6. We can observe that the

proposed approach remains relatively stable over a wide

range of openness, which produces better results compared to

other methods.

5.8. Parameter sensitivity analysis

In the proposed model, α and λ are important parameters,

and their values affect on the model’s performance. To

obtain optimal values for these parameters, we conduct

extensive experiments to perform grid search for α and
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FIGURE 6

Macro F1 against varying openness with di�erent methods on

the PHAC-2 dataset.

FIGURE 7

Acc and macro F1 for di�erent α on the LTM_108 dataset.

λ within the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and

{0.0001, 0.001, 0.01, 0.1, 1, 10, 100}. The experimental results

show that the model can achieve optimal performance when α

= 0.4 and λ = 0.01 on the LTM_108 dataset. For the PHAC-2

dataset, the model shows the best performance where α = 0.3

and λ = 0.01. For the convenience of explanation, the sensitivity

analysis of these two parameters is divided into two parts

for illustration.

To analyze the effect of these parameters α on the

proposed model’s performance, we set the value of λ to

0.01 and perform grid search of the parameter α within the

set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The relationships

between Accuracy and the macro-F1 and of the value of α are

shown on the two datasets in Figures 7, 8, respectively. It can be

observed that the performance of the model is very sensitive to

the value of the parameter α, and the model performs well when

α ∈ [0.1, 0.8] on both datasets.

FIGURE 8

Acc and macro F1 for di�erent α on the PHAC-2 dataset.

FIGURE 9

The performance of proposed model in terms of λ.

Then, we conduct experiments to study the effect of

the parameter λ on the performance of the model. Fixing

parameters α = 0.4 on the LTM_108 dataset and α = 0.3

on the PHAC-2 dataset, we tune the parameter λ within the

set {0.0001, 0.001, 0.01, 0.1, 1, 10, 100} and the corresponding

experimental results are given in Figure 9. It can be observed that

ourmodel achieves good performances in the range of λ ∈ (0, 1].

When λ > 1, the model’s performance on the contrary degrades.

This is mainly because the likelihood regularization starts to play

a role when the training accuracy is close to saturation, and a

strong regularization weakens the discrimination effect of the

model. Hence, there is a need to find the optimal balance of the

two terms in the optimization process.

6. Conclusion

In this work, we specifically address tactile object recognition

in open-set scenarios, which aims to enable robots to exploit
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tactile explorations in unstructured environments. To this end,

we proposed a novel Gaussian prototype learning model, which

incorporates classification and novel class detection into a

unified framework. In particular, a likelihood regularization

term is introduced to explicitly consider the feature distribution

of tactile data. In addition, we further develop an adaptive

classification margin to improve the performance of the model.

Experimental results validate the effectiveness of the proposed

method, which has the potential to improve the performance

of open-set tactile perception. We believe that it makes the first

step to formulate lifelong tactile recognition in the real world.

In the future, we will explore the generalization of the proposed

method to realize active continual learning in the open world.
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To ensure that computers can accomplish specific tasks intelligently and

autonomously, it is common to introduce more knowledge into artificial

intelligence (AI) technology as prior information, by imitating the structure

and mindset of the human brain. Currently, unmanned aerial vehicle (UAV)

tracking plays an important role in military and civilian fields. However,

robust and accurate UAV tracking remains a demanding task, due to limited

computing capability, unanticipated object appearance variations, and a

volatile environment. In this paper, inspired by the memory mechanism

and cognitive process in the human brain, and considering the computing

resources of the platform, a novel tracking method based on Discriminative

Correlation Filter (DCF) based trackers and memory model is proposed,

by introducing dynamic feature-channel weight and aberrance repressed

regularization into the loss function, and by adding an additional historical

model retrieval module. Specifically, the feature-channel weight integrated

into the spatial regularization (SR) enables the filter to select features. The

aberrance repressed regularization provides potential interference information

to the tracker and is advantageous in suppressing the aberrances caused

by both background clutter and appearance changes of the target. By

optimizing the aforementioned two jointly, the proposed tracker could

restrain the potential distractors, and train a robust filter simultaneously by

focusing on more reliable features. Furthermore, the overall loss function

could be optimized with the Alternative Direction Method of Multipliers

(ADMM)method, thereby improving the calculation e�ciency of the algorithm.

Meanwhile, with the historical model retrieval module, the tracker is

encouraged to adopt some historical models of past video frames to update

the tracker, and it is also incentivized to make full use of the historical

information to construct a more reliable target appearance representation.

By evaluating the method on two challenging UAV benchmarks, the results

prove that this tracker shows superior performance compared with most other

advanced tracking algorithms.

KEYWORDS

unmanned aerial vehicle, object tracking, discriminative correlation filter, channel

regularization, aberrance repressed, historical memory
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1. Introduction

The thinking ability endowed by the brain is fundamental.

Due to its existence, human beings are more intelligent than

animals. It is also the premise that humans have the capability

to conduct scientific research (Kuroda et al., 2022). People

rely on their brains to recognize the world, learn knowledge,

and summarize rules. Their brains also allow them to use

memory systems to store the information generated when

experiencing different events (Atkinson and Shiffrin, 1968;

Cornelio et al., 2022). In turn, the information serves as prior

knowledge, helping people in dealing with similar problems

better and adapting to new complex scenes faster. The core of

artificial intelligence (AI) is to enable the machine to complete

specific tasks independently through learning and using prior

information (Connor et al., 2022; Foksinska et al., 2022; Nofallah

et al., 2022; Pfeifer et al., 2022; Wang et al., 2022). The original

scientific research mainly adopts the following two methods.

The first is to mathematically represent the law (i.e. prior

information) that people summarize when perceiving things,

and then use mathematical expressions and logical frameworks

to construct modules and methods for computers, just like

teachers teach students what they know. The second is to build a

variety of artificial neural networks based on the neural structure

of the human brain and then use large-scale data to train and fit

the network (Deng et al., 2022; Liu et al., 2022), aiming to enable

the computer to automatically learn the characteristics of various

things from the data itself, just like the students read books and

learn by themselves. Although scientists have put a lot of effort

into the research and utilization of the human brain, it is still a

difficult task to determine how to endow computers with more

and better prior knowledge through algorithms.

This paper mainly concentrates on visual object tracking

on the UAV platform, which plays an important role in the

field of computer vision, and is widely used in many tasks,

such as collision avoidance (Baca et al., 2018), traffic monitoring

(Elloumi et al., 2018), military surveillance (Shao et al., 2019),

and aerial cinematography (Gschwindt et al., 2019). By adopting

this technology, it aims to predict the precise status of the target

in a video sequence captured by an onboard camera only with

the information given in the first frame (Han et al., 2022). Over

the past few years, a lot of effort has been put into the tracking

field. However, it is still a challenging task to design a robust

and efficient tracker, when considering the various complexUAV

tracking scenarios, e.g., occlusion, change of viewpoint, and

limited power capacity.

In the past decade, the research on visual object

tracking mainly adopted the two methods below, namely

the discriminative correlation filter (DCF)-based method

and the Siamese-based method. The Siamese-based method

(Bertinetto et al., 2016b; Li et al., 2018a; Wang et al., 2019;

Voigtlaender et al., 2020; Javed et al., 2022) aims at the offline

learning of the similarity measurement function between image

patches, by maximizing the distance between the target and the

background patches while minimizing the distance between the

different image patches belonging to the same target. Such a

method consists of two identical subchannels that are used to

process the target template and the current frame search area,

respectively. The target location is determined by computing the

partial similarity between the target template and each location

in the search area. Moreover, the Siamese-based method uses

neural network architecture and numerous training data to

obtain excellent feature extraction capability, so it needs to

occupy a large number of computing resources in the tracking

process. DCF-basedmethods are based on the correlation theory

in the field of signal processing, and it computes the correlation

between different image patches by convolution. Such a method

usually adopts the hand-crafted features carefully designed with

prior information and aims at training a correlation filter online

in the region around the target by minimizing a least squares

loss. Due to the convolution theorem, DCF-based methods can

track objects at hundreds of frames per second (FPS) with only

one CPU. Considering that the computing resources of the UAV

platform are very limited, and the speed is a key issue in addition

to the tracking performance, this paper mainly concentrates on

target tracking based on DCF methods.

The development history of the DCF-based method is the

process by which people integrated more and better prior

information into the tracking framework. As people add their

understanding of tracking tasks as regular constraints to the

loss function (Mueller et al., 2017; Han et al., 2019b), the

trained correlation filter becomes more and more discriminative

and robust. Mosse (Bolme et al., 2010), as the originator of

correlation filtering, deemed target tracking as a problem of

binary classification, and trained the filter by randomly sampling

a fixed number of background samples as negative samples.

This greatly limits its discriminative power. To effectively

increase the number of training samples, which was critical

to the performance of the trained classifier, KCF (Henriques

et al., 2014) introduced the circulant matrix into the tracking

framework and obtained a large number of virtual negative

samples by circularly shifting the target samples. The cyclic

shifting greatly increased the training samples and caused

boundary effects that seriously limited the improvement of

tracking performance simultaneously. To mitigate the boundary

effect, SRDCF (Danelljan et al., 2015) added the SR term into

the loss function, aiming at penalizing the non-zero value

near the template boundaries. BACF (Kiani Galoogahi et al.,

2017) generated lots of real background samples, by expanding

the search area and introducing a binary mask for middle

elements cropping. To solve the scale change of the target,

DSST (Danelljan et al., 2014a) introduced an independent

scale filter, in addition to the classical correlation filter used

for locating, as well as SAMF (Li and Zhu, 2014) sampled

multiscale images, thereby building image pyramids. For the

improvement of the feature representation, CN (Danelljan et al.,
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2014b) brought in color features, while ECO (Danelljan et al.,

2017) added depth features obtained from off-line training

of the neural network. STRCF (Li et al., 2018b) brought in

additional temporal constraints to the SRDCF to limit the

variation of the filter in consecutive frames. This effectively

reduced the risk of filter degradation in case of sudden large

appearance variations. SAT (Han et al., 2019a) advocated a

kurtosis-based updating scheme to guarantee a high-confidence

template updating. ASRCF (Dai et al., 2019) realized the adaptive

suppression of clutter in different regions by regarding the

SR term, introduced in SRDCF, as a variable. MUSTer (Hong

et al., 2015) built the short-term and long-term memory stores,

thereby processing the target appearance memories. Autotrack

(Li et al., 2020) reformulated the loss function by introducing

the change of response maps into temporal regularization

(TR) and SR terms, thereby realizing adaptive adjustment.

Regardless of the great progress in DCF-based trackingmethods,

there are still some issues to solve. (1) Most original trackers

treat the features of different dimensions equally. Features of

different dimensions play different roles in tracking different

scenarios and different kinds of targets. The tracker is easily

biased by similar interference due to ignorance of the feature

channel information. (2) Most original trackers have insufficient

ability to suppress potential interference. Most of the original

methods merely utilize the same and fixed bowl-shaped SR

term centered on the target, aiming at giving more weight to

the background area for suppression. Additional suppression

is not applied to the potential interference according to the

actual tracking situation, thus leading to limited anti-aberrance

capability. (3) Most original trackers do not effectively use

historical information. Most of the original methods updated

the filter with a constant update rate, thereby causing the waste

of historical information and the risk of filter degradation.

Historical information is one of the most important factors in

the tracking process and should be efficiently used to enhance

the discriminant capacity of the tracker.

The brain can perceive the interference information in

the background, independently select the optimal features to

describe the target, and use historical memory to achieve

an accurate target location in the current frame. When

considering the above, a UAV tracking algorithm with

repressed dynamic aberrance, a channel selective correlation

filter, and a historical model retrieval module is proposed to

solve the aforementioned problems. Moreover, by formulating

the dynamic feature channel weight and the aberrance

repressed regularization into the integral loss function, the

tracking algorithm is built, thereby enabling the filter to

highlight valuable features in the channel domain and

using response maps to sense and suppress background

interference in advance. Meanwhile, the model retrieval

module, by imitating brain memory realizes the adaptive

update of the tracker. This paper has the main contributions

as follows.

i) A novel tracking method, that integrates the aberrance

repressed regularization and dynamic feature channel weight

into the loss function of the DCF framework, is proposed.

For joint modeling of the two factors, the tracker obtains the

ability to screen target features based on actual background

interference and learns more differentiated target appearance

representation. Thus, the loss function could be solved in very

few iterations by employing an efficient ADMM algorithm.

ii) A model retrieval module is employed which can realize

the adaptive update of the tracker by saving the history filters.

This module can also enhance the tracker’s learning of the

appearance of the trusted targets with historical information and

reduce the pollution of unreliable samples for the tracker.

iii) By giving the experimental validation conducted on

two public UAV datasets, the effectiveness of this method is

demonstrated.

2. Proposed methodologies

2.1. Revisted autotrack

In this section, the baseline Autotrack of this tracker shall be

revised.

Most original trackers, based on the discriminative

correlation filters (DCF), attempt to add a variety of

regularization terms such as spatial regularization (SR)

and temporal regularization (TR), thereby improving

the discrimination ability to target and background. Such

regularization terms are usually predefined fixed parameters,

so flexibility and adaptability are lacking in cluttered and

challenging scenarios. To realize automatic adjustment of the

hyper-parameters of the SR and TR terms during tracking,

Autotrack constructs them with the response maps obtained

during detection. Specifically, Autotrack introduces the partial

response variation 3 to the SR parameter ũ, and the global

response variation ‖3‖2 to the reference value θ̃ of the

coefficient of the TR term. The partial response variation 3

is defined as the variation of response maps between two

continuous frames, with the Equation as below.

3 =
Rt[ψ1]− Rt−1

Rt−1
(1)

Where, R refers to the response map calculated in the

detection phase. [ψ1] represents the shift operator which makes

the response peaks in response maps of two continuous frames

coincide with each other. As for Autotrack, the integral objective
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loss function is shown below:
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∥

∥

∥
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∥

∥
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∥
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s.t. ũ = P⊤δlog(3 + 1)+ u (2)

θ̃ =
ζ

1+ log(ν ‖3‖2 + 1)
, ‖3‖2 ≤ φ

Where, Xt = [x1t , x
2
t , ..., x

K
t ] and Ht = [h1t , h

2
t , ..., h

K
t ]

represent the trained filter and the extracted target feature

matrix at t frame, respectively. K is the total number of feature

channels. xkt ∈ RT×T indicates the sample feature vector

with length T in frame t in k channel and y ∈ RT×T is

the desired corresponding label set in the Gaussian shape. ũ

and θt represent the coefficients of SR and TR, respectively.

θ̃ is the reference value of θt used for measuring the change

in the tracking response map between two continuous frames.

PT ∈ RT×T is a binary matrix, used in cropping the central

elements of the training sample Xt . δ is a constant that can be

used in balancing the weights of partial response variations. u

represents a fixed bowl-shaped matrix of SR which is identical

to the STRCF tracker. ⊛ and ⊙ represent the convolution

operation and the elemental multiplication, respectively. ‖‖22 is

the Euclidean norm.

SR and TR, constructed by response maps variation, enable

the trained filter in Autotrack to adjust automatically while flying

and be more adaptable to different scenarios. Although this

method has achieved outstanding performance, it does have two

limitations. a) This method uses the response map generated

by the filter in the previous frame, rather than the learned

filter in this frame, thus leading to insufficient suppression of

interference. Sudden changes in response maps give important

information regarding the similarity of the current object

and the appearance model and reveal potential aberrances.

The tracker should reduce the learning of irrelevant objects

according to the changes during the training phase. b) The

weight of each feature channel is equivalent. Different channels

describe the objects in different dimensions. There may be many

similar features between the target and the background, which

are useless or even have a negative effect on the discriminatory

ability of trackers. Thus, the filter selects partial distinctive

features based on the actual situation for training and updating.

2.2. Loss function construction

To solve the above problems and enhance the discrimination

ability and anti-interference ability of the tracker, the weight of

the feature channel and aberrance suppression are introduced

together to restrain the filter. Specifically, feature channel

weight, which is treated as an optimization variable, updates

simultaneously with the filter. Also, the variation of two

continuous response maps, as an aberrance suppression

regularization, is integrated into the training process. The loss

function is shown below.
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∥

∥

∥
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∥
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2

2

(3)

Where υkt is the weight coefficient of feature channel k at

t frame. It should be noted that υkt is not a fixed parameter,

but a variable that changes with the target appearance during

the tracking. The constant υk0 is regarded as the reference of

υkt , which represent the advance distributions of targets in the

different feature channels. υk0 is set to 1, thereby ensuring that

each feature channel has the same weight in the initial state.

Qt−1 refers to the response map generated from the previous

frame, and is equivalent to
K
∑

k=1

xkt−1 ⊛ hkt−1. Thus, it can be

treated as a constant signal during the optimization stage. λ1,

and λ2 are parameters that control model overfitting.

Equation 3 consists of six items that can be divided into four

parts. The first part constitutes the first item, the regression term.

The second part, including the second and third items, is the SR

integrated with channel selection. The third part, consisting of

the fourth and fifth items, is the TR borrowed from Autotrack.

The fourth part, made up of the last item, is the regularization

term, aiming at restricting and counteracting the aberrances

created by the background information. For the introduction

of channel weight υkt , the feature sifting of the filter is realized

in the channel domain by mitigating the impact of features

having no relation to the targets and by excluding needless

information. By introducing aberrance repressed regularization,

which gives greater penalties for interference, the ability of

the tracker to identify the aberrance in the background, and

suppress the subsequent changes of response maps on the basis

of the baseline, is further improved. The fusion of these two

factors enables the filter to find the aberrance in time, and

utilize the best features, thereby maximizing the differentiation

between the target and background.
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2.3. Optimization

As observed from Equation 3, the optimization of the

overall loss function involves the complex correlation operation

between matrices. Therefore, to reduce computational

complexity, and reduce sufficient computing efficiency, the

Parseval theorem is used to convert complex correlation

operations into simple elemental multiplication operations and

move the loss function from the time domain to the Fourier

domain as E(Ht , Ĝt , θt ,υt). Besides, the constraint parameter

ĝkt =
√
TFPThkt is used in constituting the Augmented

Lagrangian function L(Ht , Ĝt ,υ, θt , M̂t) as follows:

L(Ht , Ĝt ,υ, θt , M̂t) = E(Ht , Ĝt , θt ,υt)

+

K
∑
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k
t

+
µ

2
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∥
ĝkt −

√

TFPThkt

∥

∥

∥

2

2

E(Ht , Ĝt , θt ,υt) =
1

2

∥

∥

∥

∥

∥

∥

ŷ −

K
∑

k=1

x̂kt ⊙ ĝkt

∥

∥

∥

∥

∥

∥

2

2

+
1

2

K
∑

k=1

∥

∥

∥
υkt ũ⊙ hkt

∥

∥

∥

2

2
+
θt

2

K
∑

k=1

∥

∥

∥
ĝkt − ĝkt−1

∥

∥

∥

2

2

+
1

2

∥

∥

∥
θt − θ̃

∥

∥

∥

2

2
+
λ1

2

K
∑

k=1

∥

∥

∥
υkt − υk0

∥

∥

∥

2

2

+
λ2

2

∥

∥

∥

∥

∥

∥

Q̂t−1 −

K
∑

k=1

x̂kt ⊙ ĝkt

∥

∥

∥

∥

∥

∥

2

2

(4)

Where symbol ˆ represents the discrete Fourier

transformation (DFT), for example, ŷ =
√
NFy and F

called the Fourier matrix is the orthonormal N × N matrix of

complex basis vectors. m refers to the Lagrangian multiplier,

and µ represents the penalty parameter. For simplification,

Ĝt = [ĝ1t , ĝ
2
t , ĝ

3
t , ..., ĝ

K
t ] and M̂t = [m̂1

t , m̂
2
t , m̂

3
t , ..., m̂

K
t ] are

defined. By assigning
ˆ
skt =

1
µ

ˆ
mk
t the optimization of Equation

(4) is equivalent to solving equation (5).

L(Ht , Ĝt ,υ, θt , Ŝt) = E(Ht , Ĝt ,υ, θt)

+
µ

2

K
∑

k=1

∥

∥

∥
ĝkt −

√

TFPThkt + ŝkt

∥

∥

∥

2

2
(5)

Considering the complexity of the above-mentioned

function, the alternative direction method of multipliers

(ADMM) (Lin et al., 2010) is applied to speed up the calculation.

Specifically, the function of optimization can be divided into a

few sub-problems to be solved iteratively. During the solution

of every subproblem, only one variable is contained to be

optimized, while the others are regarded as fixed constants

temporarily. In this way, each subproblem and its relevant

closed-form solution can be given in detail below.

Subproblem for Ĝt : By giving Ht , υ, θt , Ŝt , the optimal Ĝ
∗

t

could be obtained by solving the optimization problem:

Ĝ
∗

t = argmin

Ĝ
∗

t

{
1

2

∥

∥

∥

∥

∥

∥

ŷ−

K
∑

k=1

x̂kt ⊙ ĝkt

∥

∥

∥

∥

∥

∥

2

2

+
θt

2

K
∑

k=1

∥

∥

∥
ĝkt − ĝkt−1

∥

∥

∥

2

2

+
λ2

2

∥

∥

∥

∥

∥

∥

Q̂t−1 −

K
∑

k=1

x̂kt ⊙ ĝkt

∥

∥

∥

∥

∥

∥

2

2

+
µ

2

K
∑

k=1

∥

∥

∥
ĝkt −

√

TFPThkt + ŝkt

∥

∥

∥

2

2
} (6)

However, it is still very difficult to solve Equation 6

directly, because this subproblem containing X̂kĝk shows a

high computation complexity and needs multiple iterations

in ADMM. Fortunately, X̂k is sparse, which means that

each element of ŷ(ŷ(n), n = 1, 2, . . . ,N) is merely related

to x̂k(n) = [x̂k(n)
1, x̂k(n)

2, . . . , x̂k(n)
D] and ĝk(n) =

[conj(ĝk(n)
1), conj(ĝk(n)

2), ..., conj(ĝk(n)
D)], where conj() refers

to the complex conjugate operation. Thus, this subproblem can

be divided intoN simpler problems acrossK channels as follows.

Ŵ∗j (Ĝt) = argmin

Ŵj(Ĝt)

{

∥

∥

∥
ŷj − Ŵj(X̂t)

⊤
Ŵj(Ĝt)

∥

∥

∥

2

2

+µ

∥

∥

∥
Ŵj(Ĝt)+ Ŵj(ŝt)− Ŵj(

√

TFP⊤Ht)
∥

∥

∥

2

2

+ θt

∥

∥

∥
Ŵj(Ĝt)− Ŵj(Ĝt−1)

∥

∥

∥

2

2

+
λ2

2

∥

∥

∥
Q̂t−1 − Ŵj(X̂t)

⊤
Ŵj(Ĝt)

∥

∥

∥

2

2
} (7)

Where, Ŵj(Ĝt) ∈ C(K × 1) indicates the vector including

all K channel value of Ĝt on pixel j(j = 1, 2, . . . ,N). By

introducing the Sherman-Morrison formula (uvH + A)−1
=

A−1
−

A−1uvHA−1

vHA−1u+1
, the inverse operation in the derivation

can be further simplified and accelerated.Then, the closed-form

solution of this subproblem can be obtained as follows.

Ŵ∗j (Ĝt) =
1

µ+ θt
(I−

(1+ λ2)Ŵj(X̂t)Ŵj(X̂t)
⊤

θt + µ+ (1+ λ2)Ŵj(X̂t)
⊤
Ŵj(X̂t)

)ρ (8)

Where ρ is merely an intermediate variable for simple

representation and ρ = Ŵj(X̂t)ŷj + θtŴj(Ĝt−1) − µŴj(Ŝt) +

µŴj(
√
TFP⊤Ht)+ λ1Ŵj(X̂t)Q̂t−1

Subproblem for Ht : By fixing Ĝt ,υ,θt ,Ŝt , Ht can be solved

with the equation below:

hk∗t= argmin

hkt

{
1

2

∥

∥

∥
υkt ũ⊙ hkt

∥

∥

∥

2

2
+
µ

2

∥

∥

∥
ĝkt −

√

TFPThkt + ŝkt

∥

∥

∥

2

2
}

=
µTp⊙ (skt + gkt )

λ1(υ
k
t ũ⊙ υkt ũ)+ µTp

(9)
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Where, p = [P11,P22, . . . ,PTT]
⊤ represents the column

vector, that composed of the diagonal elements of P. As observed

in Equation 9, the computational cost on hk∗t solution is very

low, because it only involves the element-wise operation and an

inverse fast Fourier transform.

Subproblem for θt : By treating Ĝt ,υ,Ht ,Ŝt as constants,

the optimal θt can be obtained by solving the problem of

optimization below:

θ∗t = argmin
θt

{
θt

2

K
∑

k=1

∥

∥

∥
ĝkt − ĝkt−1

∥

∥

∥

2

2
+

1

2

∥

∥

∥
θt − θ̃

∥

∥

∥

2

2
}

= θ̃ −

K
∑

k=1

∥

∥

∥
ĝkt − ĝkt−1

∥

∥

∥

2

2

2
(10)

Subproblem for υt
∗ Given Ĝt ,θt ,Ht ,Ŝt , υ

k
t can be optimized

with the following equation.

υk∗t = argmin

υkt

1

2

K
∑

k=1

∥

∥

∥
υkt ũ⊙ hkt

∥

∥

∥

2

2
+
λ1

2

K
∑

k=1

∥

∥

∥
υkt − υk0

∥

∥

∥

2

2

=
λ1υ

k
0

(ũ⊙ hkt )
⊤(ũ⊙ hkt )+ λ1

(11)

Lagrangian multiplier updating:

Ŝ
i+1
t = Ŝt

i
+ µi(Ĝt

i+1
− Ĥt

i+1
) (12)

Where, i and i + 1 represent the previous and current

iterations. The new Ĝt Ĥ obtained from the above optimization

solution is used to update the Lagrangian multiplier. The

regularization constant observes the updating laws of µi+1
=

min(µmax,βµ
i), thereby ensuring the convergence of the

integral model according to ADMM.

2.4. Historical model retrieval module

Most original tracking methods use linear interpolation with

a constant learning rate β , like Equation 13, to update the filter.

However, such an updating method not only causes the tracker

to indiscriminately treat all the historical information but also

results in filter pollution and degradation. The tracking result is

poor when faced with complex scenes, such as partial occlusion,

and camera defocus. Too high a learning rate causes the tracker

to easily overfit and then neglect historical information, while

too low a learning rate disenables the tracker from effectively

learning the change of targets. Considering that the human

brain can recall historical memory to make the best choice when

identifying targets and HMTS tracker, the history filter, namely

the historical model retrieval module is retrieved, and the best

filter of the current frame is obtained by selecting and linear

interpolating several effective filters. Specifically, historical filters

are saved first, and a filter library is built. After the training phase

of each frame, the correlation between each template and the

current sample image is calculated. Several historical templates

with the highest scores are selected and the scores are used as

weights to linear interpolate them, thereby obtaining a tracking

template for the next frame object location. This module is

described below in detail with mathematical symbols.

ht = βh+ (1− β)ht−1 (13)

Similiar to HMTS tracker (Chen et al., 2022), this method

retains the filter for each frame as the historical model Hhist .

However, the HMTS tracker builds the filters library with all

historical filters, which causes much computing burden and

redundancy. For example, when tracking to the end of a long

video, there are numerous historical filters, and there is great

similarity in target appearance between the current filter and

the front filter. Therefore, the size is fixed to φhist and the filters

library is constructed as Hhist = {(hi, si)}
φhist
i=1 . si refers to the

score of each historical model.

As expressed by the regression term in the loss function

Equation 3, the convolution results of the trained filter and

sample should ideally present a Gaussian shape centered on

the target, namely the label y. The basis of correlation filtering

theory is as below: the more similar the two signals are, the

greater the correlation between them is. Thus, like the HMTS

tracker, the si is defined as the correlation between the label

y and the convolution results Ri of different historical filters

Hi, i ∈ [1,φhist] and the current frame target samples Xt . The

equation of si is as follows:

si = max(F−1(yHRi))

Ri =

∥

∥

∥

∥

∥

∥

K
∑

k=1

xkt ⊛ hki

∥

∥

∥

∥

∥

∥

2

2

(14)

Where F−1 represents the inverse Fourier transform,H

indicates the conjugate transpose, and max(·) refers to the

maximum of the vector.

After the tracker training phase in accordance with Section

2.3, Equation (14) is adopted to calculate the scores of the trained

filter in the current frame and historical filters in the filters

library. Next, the historical model with the lowest score in the

filter library is replaced by the filter trained from the current

frame, thereby ensuring no change in the number of filters in

the library. It needs to be noted that, since the first frame is the

most accurate manually labeled target information, the filter of

the first frame shall always remain in the filter library. The filter

ht used for object detection in the next frame can be obtained by

a linear weighting of the filters with the top φscores scores.

ht =
∑

i

sihi

s.t.Rank(si) ≥ φscores (15)
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Where, Rank(si) represents the index of si in the set {si}
φhist
i=1 ,

which is ranked in descending and i ∈ [1,φhist]. It needs to be

noted that the filter trained in the first frame always participates

in the calculation of Equation 15 and it is given the lowest weight

in φscores filters if Rank(s1) ≤ φscores.

3. Experiments

In this section, the tracking performance of the proposed

tracker is evaluated against the nine state-of-the-art trackers,

namely AutoTrack, ASRCF, ECO-HC, STRCF, SRDCF, BACF,

LADCF (Xu et al., 2019), MCCT-H (Wang et al., 2018) and

Staple (Bertinetto et al., 2016a) on two difficult UAV benchmarks

(UAV123 Mueller et al., 2016 and VisDrone2018-test-dev Zhu

et al., 2018). For the measurement of the performance of

the aforementioned trackers, the employed evaluation metric

named one-pass evaluation(OPE) contained two indicators,

namely Precision Rate and Success Rate. It needs to be noted

that the precision plot threshold is set to 10 pixels in UAV123

and to 21 pixels in VisDrone2018-test-dev, when considering the

different target sizes from different UAV datasets.

3.1. Implementation details

Our tracker was used in MATLAB-2017a with an Intel i7-

9750H CPU, and 16GB of RAM, and runs at a 25 FPS average

with hand-crafted characteristics for target representation. The

common hyper-parameters are kept to the same values as the

baseline Autotrack, namely δ = 0.2, ν = 2× 10−5, and ζ = 13.

The SR constraint coefficient λ1 and the response aberrance

regularization constraint coefficient λ2 which are unique to the

proposed tracker, are set as 0.71 and 0.001, respectively. In the

historical model retrieval module, φhist = 30 and φscores = 20

are determined. As for the ADMM algorithm, the number of

iterations is set as 4, β = 10, and µmax = 104, which also shares

the same parameters as in Autotrack.

3.2. Quantitative evaluation

UAV123 is the most commonly used dataset in UAV

object tracking, with 123 videos with more than 110K frames

composed. In these sequences, 12 of the challenging attributes

involved, such as background clutter, aspect ratio change, and

similar object, required a more accurate and stable tracking

algorithm. The quantitative comparison of different trackers

is shown in Figure 1, and it can be observed that our tracker

shows the best precision with the second success rate, slightly

lower than ECO-HC. However, the proposed method achieves a

remarkable advantage of 2.6% in precision and 1.5% in success

rate, compared with the baseline tracker Autotrack.

VisDrone2018-test-dev is a dataset that is especially

proposed for aerial object tracking competition. It consists of

35 videos captured from 14 different cities and covers various

aspects including such as shooting position, tracking scene,

target type, and object density. Different scenarios, weather

conditions, and illumination changes are primarily addressed

in this dataset. As shown in Figure 2, the proposed tracker is

superior to all other evaluated trackers, and it can achieve 81.1%

and 60.7% in the distance precision (DP) and the area under

the curve (AUC), respectively. By comparing with the baseline

tracker, Autotrack, our tracker accomplishes 2.3% and 3.4% of

performance gains in precision and success rate, respectively.

3.3. Parametric sensitivity

As presented in Section 3.1, some hyper-parameters of

the proposed tracker need to be set, namely the spatial-

channel regularization constraint coefficient λ1 and the response

aberrance regularization constraint coefficient λ2 in the loss

function. In this section, the influence of different configurations

on tracking results is investigated. When evaluating each hyper-

parameter for a fair comparison, the common parameters are

maintained at the same value as in Autotrack and all other

parameters are fixed. Considering the operation speed, φhist is

set as a constant of 30 and φscores = 20 is set as a constant of

20 to ensure the efficient use of historical information and the

effective reduction of redundancy. Table 1 exhibits the tracking

results under different λ1,λ2 in VisDrone2018-test-dev, where

φscores is fixed to 20. It can be observed that this tracker yields

the best performance with λ1 = 0.001 and λ2 = 0.71.

3.4. Ablation experiments

As described in Section 2, in our method loss function is

reconstructed by introducing the feature channel weight and

aberrance repressed regularization, and an additional historical

memory model is added to the baseline Autotrack. To prove

the effectiveness of each module, ablation experiments were

conducted. The results are shown in Table 2. AutoTrack_csar

only reconstructs the loss function, while AutoTrack_hist

only adds the historical memory model. As observed, by

adding the two modules separately, the performance of the

baseline tracker can be improved effectively. Moreover, by

joining these two modules simultaneously, our method can

achieve excellent performance against the baseline. This is

mainly because the fusion of the two enables the tracker to

effectively use historical information to prevent background

clutter during tracking while establishing a more robust target

appearance representation.
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FIGURE 1

Overall performance of ten trackers on UAV123. The legend of success plot represents the area under the curve score of each tracker. The

legend of the precision plot refers to the threshold scores at 10 pixels.

FIGURE 2

Overall performance of ten trackers on Visdrone2018-test-dev. The legend of success plot represents the area under the curve score of each

tracker. The legend of the precision plot refers to threshold scores at 21 pixels.

TABLE 1 The success rate and precision rate (percentage) related to the varying number of regularization constraint coe�cients on

VisDrone2018-test-dev.

Parameter λ1 λ2

Value 0.001 0.1 0.5 1 0.71 0.01 0.1 1

Success Rate 60.7 58.4 59.2 59.0 60.7 58.5 59.1 59.0

Precision Rate 81.1 78.4 79.5 80.2 81.1 79.1 80.1 79.5

In historical models, φscores = 20 and φhist = 30. The threshold of precision rate is set to 21 pixels.

Bold values refer to first place in the experiments.
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TABLE 2 The success rate and precision rate (percentage) of ablation experiments on UAV123.

Tracker AutoTrack Two regularization Historical memory Precision rate Success rate

AutoTrack X 52.3 47.2

AutoTrack_csar X X 53.7 47.4

AutoTrack_hist X X 54.2 47.5

Ours X X X 54.9 48.7

The precision rate threshold is set as 10 pixels.

Bold values refer to first place in the experiments.

FIGURE 3

Qualitative performance evaluation of the proposed tracker and the other nine most advanced trackers on the typical UAV videos. The number

in the upper left corner refers to the frame number. The tracking boxes in di�erent colors represent the tracking results of di�erent trackers in

the frame. (A) Person16. (B) Person12_2. (C) Group1_1. (D) Uav0000088_00000_s. (E) Uav0000093_00000_s. The photos appearing in this

figure have been reused from: ‘A benchmark and simulator for uav tracking’ and ‘Vision meets drones: a challenge’. The corresponding website

are ‘https://cemse.kaust.edu.sa/ivul/uav123’ and ‘http://aiskyeye.com’.
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3.5. Qualitative evaluation

In this subsection, the qualitative comparison is given

to the proposed method and the aforementioned 9 state-of-

the-art algorithms to better demonstrate the performance

of each tracker in Figure 3. The above image sequences

(containing person16, person12_2, group1_1 in UAV123

and Uav0000088_00000_s, and Uav0000093_00000_s in

VisDrone2018-test-dev) mainly include three challenging

attributes, namely similar object (SOB), background clutters

(BC), and occlusion (OC). It can be observed that our tracker

is effective in solving these difficult issues, and can locate the

targets accurately.

When facing a similar object and background clutter,

aberrance repressed regularization can help the tracker in

accurately perceiving and fully restraining the interference

regions in advance. Simultaneously, dynamic feature channel

weight realizes the independent filtering of different dimensional

features, thereby encouraging the filters to focus onmore reliable

and discriminative features between the target and a cluttered

background. By jointly modeling the above two constraints, the

tracker can learn the robust features of the target according

to the environment and the interference from a cluttered

background.

When there is an occlusion, the trackers can learn the

features of the block and lose the target information, thus leading

to model drift and a failure of tracking. With the introduction of

a historical model retrieval module in our method, the tracker

has a memory function similar to the human brain by saving

a history template. The method of dynamic updating of the

template encourages the tracker to reduce the learning rate when

the training sample is abnormal, thereby effectively reducing the

probability of template pollution. The memory function of the

tracker also guarantees that the method can accurately lock the

target again after the disappearance of the occlusion.

In summary, when challenging attributes occur during

tracking, the addition of the two constraints endows the tracker

with the ability to select the most distinguishing feature for

sensing and suppressing the interference around the target,

while the historical model retrieval module effectively reduces

the pollution of interference and noise to the tracker. However,

when meeting viewpoint change and rotation, the performance

of our tracker is reduced because of rapid changes in the

appearance of the target. In the future, we will explore how to

refine tracking results to solve such problems.

4. Conclusion

Based on the idea that the brain can perceive interference

information in the background, select the optimal features

independently to describe the target, and use historical memory

to achieve accurate target location in the current frame, in this

paper, we propose a UAV tracking algorithm on the basis of

repressed dynamic aberrance and a channel selective correlation

filter with a historical model retrieval module combined. By

jointly modeling feature channel weight and the aberrance

repressed regularization, our tracker could restrain the potential

distractors, and highlight the valuable features in the channel

domain, thereby constructing a robust target appearance. With

a historical model retrieval module, our tracker can make full

use of the historical information to update the tracker, while

effectively avoiding tracking drift. The experimental results

on the two public UAV benchmarks demonstrate that the

proposed method achieves better tracking results than the other

advanced algorithms.
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The task of fundus image registration aims to find matching keypoints between an

image pair. Traditional methods detect the keypoint by hand-designed features, which

fail to cope with complex application scenarios. Due to the strong feature learning

ability of deep neural network, current image registration methods based on deep

learning directly learn to align the geometric transformation between the reference

image and test image in an end-to-endmanner. Another mainstream of this task aims

to learn the displacement vector field between the image pair. In this way, the image

registration has achieved significant advances. However, due to the complicated

vascular morphology of retinal image, such as texture and shape, current widely used

image registration methods based on deep learning fail to achieve reliable and stable

keypoint detection and registration results. To this end, in this paper, we aim to bridge

this gap. Concretely, since the vessel crossing and branching points can reliably and

stably characterize the key components of fundus image, we propose to learn to

detect and match all the crossing and branching points of the input images based on

a single deep neural network. Moreover, in order to accurately locate the keypoints

and learn discriminative feature embedding, a brain-inspired spatially-varying adaptive

pyramid context aggregation network is proposed to incorporate the contextual cues

under the supervision of structured triplet ranking loss. Experimental results show

that the proposedmethod achieves more accurate registration results with significant

speed advantage.

KEYWORDS

retinal image analysis, fundus image registration, deep learning, context aggregation,

structured triplet ranking loss

1. Introduction

Fundus image analysis has been widely researched, due to its significant advantage of non-

invasive observation. The purpose of image registration (Hill et al., 2001; Sotiras et al., 2013)

is to deform the test image to the coordinate system of the reference image, so that the same

point can be imaged at the same coordinate of the two images (Oliveira and Tavares, 2014).
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Registration of medical images is a crucial step in the image

processing. Image registration can trace the progression of the

same patient through time, providing a basis for clinical diagnosis,

lowering physician effort, and aiding in the investigation of

disease prognosis and outcome. In order to accurately learn

the deformation coefficient to transform the test image, the

matching keypoints between the test image and reference image

should be obtained. To this end, previous methods rely on

human-designed features to distinguish among visually similar

keypoints, by encoding the texture, shape or intensity gradient

with particularly designed computing pattern. Recently, deep neural

network (DNN) (Krizhevsky et al., 2012; Simonyan and Zisserman,

2014; He et al., 2016) based image registration has made rapid

progress due to its strong feature learning ability. Some current

DNN based methods propose to directly learn the geometric

transformation, such as homography transformation, between the

test image and reference image. Other works also aim to learn

the dense pixel-level displacement vector filed between the image

pair (Cao et al., 2017; Krebs et al., 2017). However, due to the complex

and variable retinal vascular structure, previous methods fail to

achieve reliable and stable registration performance, which severely

limits downstream applications. Considering that the vessel crossing

and branching points are able to reliably and stably characterize the

fundus image (Deng et al., 2010; Chen et al., 2011), we propose

to choose all the crossing and branching points as the keypoints.

To this end, a single deep neural network is utilized to learn to

simultaneously locate and match all the keypoints.

Since the lower-level spatial details and higher-level semantic

cues of fundus image are both critical for learning accurate keypoint

detection and corresponding discriminative feature embedding for

keypoint matching, we employ the widely used encoder-decoder

architecture (Ronneberger et al., 2015) as the basic network.

Moreover, due to the large intra-class variability and small inter-

class difference of fundus image, the non-matching keypoints are

prone to be misclassified. It is natural for human being to gain the

knowledge of contextual consistency, which is helpful for alleviating

this issue. As a result, contextual cues should be incorporated into the

vanilla encoder-decoder architecture to handle these critical issues.

To this end, on the basis of the encoder-decoder architecture, we

propose a brain-inspired spatially-varying adaptive pyramid context

aggregation network. Concretely, with the proposed spatially-varying

adaptive pyramid context aggregation module, every pixel location

of the feature map is reweighted with the learned weight factor

guided by the aggregated global contextual cues. Feature vectors

of any two pixel locations are explicitly interacted by the form of

matrix multiplication between the reshaped two-dimensional feature

maps, leading to the spatially-varying feature weight factors. The

generated weight factors are then utilized as the dilated depth-

wise convolution kernels with different dilation factors to aggregate

the contextual cues in receptive fields with multiple scales. In

this way, the contextual cues are integrated into the feature maps

with predictable and spatially-varying depth-wise convolutions. In

addition, we employ a structured triplet ranking loss, whose aim is to

supervise the network to enlarge the distance of feature embedding

between non-matching keypoints and narrow the distance of feature

embedding between the matching keypoints, leading to compactness

between matching keypoints and dispersion between non-matching

keypoints.

In order to verify the effectiveness of the proposed method,

proper dataset and evaluation metric should be elaborately designed.

However, current FIRE dataset (Hernandez-Matas et al., 2017) only

labels a small part of the keypoints. Meanwhile, some keypoints of

FIRE dataset are not located at branching or crossing points. So this

dataset can’t be used for training our proposedmodel. To this end, we

collect 200 retinal images of 50 patients taken with fundus camera by

RetCam3 and Canon. Concretely, 100 neonatal fundus images of 27

patients with low imaging quality are taken from RetCam3. Another

100 high-quality retinal images of 23 patients taken from Canon

are also included. Meanwhile, different imaging angles and diverse

overlapping areas between the image pair are also considered during

the construction of dataset. In order to quantitatively evaluate the

proposed method, following previous methods (Hernandez-Matas

et al., 2017), we choose the Area Under Curve (AUC) value as

the registration score. Experimental results demonstrate that our

proposed method achieves significant performance improvement

over the vanilla encoder-decoder network. Our method achieves

the best registration performance among the deep learning based

methods. Meanwhile, our proposed method also surpasses most

of the traditional registration methods with significantly faster

execution speed by an order of magnitude.

Our contributions are summarized into three parts:

• We propose to achieve reliable and stable keypoint detection

and registration results for fundus image. Considering that the

vessel crossing and branching points can reliably and stably

characterize the key components of fundus image, we propose to

learn to detect and match all the crossing and branching points

of the input image pair with a single deep neural network.

• In order to cope with the large intra-class variability and small

inter-class difference of retinal image, we propose a brain-

inspired spatially-varying adaptive pyramid context aggregation

based on the widely used encoder-decoder architecture. In

this way, long-range contextual cues are incorporated into the

feature maps with predictable and input-variant convolutions.

Moreover, a structured triplet ranking loss is employed to

enforce the network to produce similar feature embedding for

matching keypoints in the input image pair, and dissimilar

feature embedding for non-matching keypoints.

• Since there is no proper fundus image registration dataset

for method evaluation, we construct a large-scale dataset

which covers diverse application scenarios. Quantitative and

qualitative results show that our proposed method is able to

reliably and stably locate and match keypoints.

We organize our paper as follows. Section 2 reviews related work.

Section 3 shows the detail of our method. Section 4 demonstrates

experimental results. Finally, Section 5 presents our conclusion.

2. Related work

2.1. Deep learning based image registration

Since the learning based image registration is mainly considered

in this paper, we provide a brief review of related works on deep

learning based image registration in this part. In recent years, several
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FIGURE 1

Overview of the proposed network for simultaneous keypoints detection and keypoints matching.

methods (Cao et al., 2017; Krebs et al., 2017) have proposed to

employ the DNN to directly learn the warp field between the test

image and reference image. Ground truth warp fields are required

in the above methods (Rohé et al., 2017; Sokooti et al., 2017; Yang

et al., 2017) to supervise the learning of DNN. In order to obtain

the ground truth warp field, several methods propose to simulate the

deformation operation and generate deformed images. Some other

methods employ the classical registration method, which rely on

hand-designed feature. However, the above methods are difficult to

obtain ground truth warp field as the ground reality, which severely

limit the application in real scenario. Recently, several unsupervised

learning based image registration methods (Li and Fan, 2017; Vos

et al., 2017; Zou et al., 2020) are also proposed. However, these

methods fail to cope with complex image registration application,

such as large transformations (Vos et al., 2017).

Compared to images collected in our daily life, the retinal image

registration is a much more challenging problem. First, there are

large differences in illumination, color, contrast and imaging angles

of the input image pair in diverse scenarios. The overlapping areas

between the test image and the reference image may be also diverse.

Furthermore, significant changes in retinal structure may be caused

by the progression of retinopathy. As a result, current deep learning

based image registration methods fail to achieve reliable and stable

registration results, which are not applicable for the challenging

fundus image task.

2.2. Deep metric learning

Deep metric learning aims to learn the distance metric to

compare and measure similarity between pairs of examples, which

is important for various tasks, such as image retrieval (Sohn, 2016;

Movshovitz-Attias et al., 2017), clustering (Hershey et al., 2016). One

of the main task of deep metric learning is to design proper loss

function. Contrastive loss (Chopra et al., 2005; Hadsell et al., 2006)

aims to encode the pair-wise relations between the anchor example

and one similar(positive) or dissimilar(negative) example, which is

first proposed to learn the feature embedding for image search task.

Triplet loss (Wang et al., 2014; Schroff et al., 2015; Cui et al., 2016) is

used to learn feature embedding for face recognition task. A triplet is

composed of the anchor example, a positive example and a negative

example. The triplet loss is to learn a distance metric by which the

anchor point is closer to the similar point than the dissimilar one

by a margin. Recently, richer structural relations among multiple

examples are considered by ranking-motivated methods (Schroff

et al., 2015; Oh Song et al., 2016; Sohn, 2016; Law et al., 2017;

Movshovitz-Attias et al., 2017). Some other methods propose to

design clustering-motivated structured losses (Hershey et al., 2016;

Oh Song et al., 2017). However, since clustering-motivated losses

are more difficult to optimize, the ranking-motivated loss function

is mainly considered in this paper.

3. Method details

This section presents details of our method for reliable and stable

fundus image registration. We show the overview of the proposed

model in Figure 1. We start by introducing the encoder-decoder

network, which is the baseline of our model. Then we introduce the

proposed network architecture and employed loss function.

3.1. Encoder-decoder network architecture

For the fundus image registration method based on deep

neural network (DNN), in order to achieve accurate pixel-level

image registration results, robust global semantic information
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and rich local spatial details are required. Current DNN stacks

successive convolutional and pooling layers to obtain roust feature

representations. However, due to the multiple pooling operations,

the feature spatial resolution is largely reduced. As a result, local

spatial details are severely lost for the features in deeper-level layers.

On the contrary, due to fewer pooling layers, spatial resolution of

features in lower-level layers are larger. In this way, the features in

lower-level layers encode rich local spatial details. However, the lack

of semantic and discriminative cues make the lower-level features

fail to effectively model long-range information. Since both the local

spatial details and global semantic cues are essential for accurate

image registration performance, a balanced fusion of the lower-level

features and the deeper-level features is required.

As shown in Figure 1, current widely used encoder-decoder

architecture employs the encoder sub-network to extract the

multi-scale features by multiple stacked convolutional and pooling

operations. The later decoder sub-network then combines the

extracted multi-level features by multiple feature fusion operations.

Concretely, with the input image pair, the successive convolutional

and pooling layers of encoder sub-network extract multi-scale

features, similar to ResNet (He et al., 2016) or VGGNet (Simonyan

and Zisserman, 2014). The decoder sub-network consists of multiple

feature fusion operations, which are employed to fuse the multi-

scale features generated by the encoder sub-network progressively.

For every fusion operation, F̂i, the feature in current layer i, is first

upsampled to match the resolution of the feature map Fi−1 from

the lower neighbor layer i − 1. The feature concatenation along

the channel dimension is applied, which is followed by another

convolution for further feature abstraction. This operation can be

formulated as:

ˆFi−1 = Conv(Concat(Up((F̂i)), Fi−1)). (1)

The above fusion operation is iterated until the lowest layer,

where the generated feature F1 has the same spatial resolution as the

input image, which is used to produce the final prediction.

3.2. Spatially-varying context aggregation
module

Due to the large intra-class variability and small inter-class

difference of fundus image, the non-matching keypoints are prone to

be misclassified. As a result, contextual cues should be incorporated

into the vanilla encoder-decoder architecture to handle this critical

issue (Liu et al., 2020). To this end, with the deepest feature map

generated by the encoder, a novel context aggregation module is

applied to incorporate the contextual cues in a spatially-varying

manner. The details are illustrated below.

In order to model the long-range contextual cues, previous

methods are mainly designed to generate global-consistent feature

re-weighting coefficient. For example, SE-Net (Jie et al., 2019)

is proposed to produce channel-wise feature re-weighting factor

of global distribution by a squeeze-and-excitation mechanism.

Differently, we propose to aggregate the global contextual cues by

generating spatially-varying feature re-weighting factors. In this way,

the long-range relations are more effectively mined in a spatially-

varying manner.

Figure 2 shows the overall architecture of the proposed Spatially-

varying Context Aggregation (SCA) module. First, we explicitly

model the long-range relations between any two pixel locations by

matrix multiplication, generating spatially-varying context kernel

prediction. Then, the predicted context kernels are applied on the

original feature map, leading to aggregated context enhanced feature.

Following are the detailed processing pipeline.

With the feature map X ∈ RH×W×C generated by the last feature

block of the encoder, we first transform it into two forms with two

independent convolutional operations: the key and query. The H, W

and C refer to the hight, width and channel number, respectively.

The key feature map K ∈ RH×W×C and the query feature map

Q ∈ RH×W×s2 are then used to aggregate the contextual cues. Here, s

is the kernel size of the learned context kernel.

In order to effectively model the global contextual cues between

pixels, the relation within any pixel locations should be explicitly

interacted. To this end, the key feature map K ∈ RH×W×C and the

query feature map Q ∈ RH×W×s2 are first reshaped into 2D form,

K ∈ QH×W×C and Q
′

∈ R(H×W)×s2 , respectively. In this way, our

aim is to make each column ofK effectively encodes the channel-wise

characteristics of original feature mapX along the channel dimension

C. The length of each of the C−dimensional feature vector isH×W.

Meanwhile, each column of Q
′

models one of the s2-dimensional

feature vectors with the length of H ×W.

Afterwards, in order to explicitly model the interactions between

each column of K ∈ QH×W×C and Q
′

∈ R(H×W)×s2 for all the

(H ×W) pixel locations, we employ following operations:

S
′

(i, j) =

H×W
∑

q=1

Q
′

(q, i)× K
′

(q, j), (2)

Where i = 1, 2, ....., s2, j = 1, 2, ....,C. Since the number of query

vectors is s2, s2 feature vectors encoded the interactions between all

the pixel locations can be thus obtained. The length of each of the

feature vector is C. We can also rewrite the above operation of dot

product form as a form of matrix multiplication:

S
′

= Q
′T

× K
′

, (3)

Where Q
′T

refers to the transpose of matrix Q
′

, S
′

∈ Rs
2
×C is the

union of all the obtained cues about spatial location relation.

Then, the generated two-dimensional S
′

∈ Rs
2
×C is reshaped

into 3D form S ∈ Rs×s×C . We then employ a batch normalization

operation to modulate S, generating the predicted spatially-varying

context kernel. The generated kernel effectively encodes the relation

cues between pixels of all spatial locations, which can be used to

produce spatially-varying weight factor F ∈ RH×W×C for all H ×W

spatial locations.

In order to fully exploit the information encoded in the spatially-

varying context kernel, the depth-wise convolution is applied on

the original feature map X with the context kernel S as the

depth-wise convolution kernel. In this way, each channel of S is

able to modulate one specific channel of X in an independent

manner. The spatially-varying context guided modulation can thus

be implemented. Concretely, as shown in Figure 3, we first split the

context kernel S ∈ Rs×s×C into C two-dimensional kernels along the

channel dimension. Each of the 2D C kernels has a spatial dimension

of s × s. These C kernels are then applied on each channel of the

original feature map X ∈ RH×W×C in an independent manner,
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FIGURE 2

Details of the proposed spatially-varying context aggregation module, which first predicts the spatially-varying context kernel and then aggregates the

context with the predicted re-weight kernels.

generating intermediate feature. A 1 × 1 × 1 convolution is then

used to transform the generated intermediate feature map for further

feature abstraction. The obtained feature is then processed with one

Sigmoid activation function, which produces the spatially-varying

weight factor F ∈ RH×W×C. Finally, an element-wise multiplication

between M and X is performed to achieve the output feature map,

which is then passed through the decoder part for multi-scale feature

fusion.

3.3. Spatially-varying adaptive pyramid
context aggregation module

3.3.1. Dilated convolution
Standard convolution is characterized by its property of local

receptive field. However, large receptive field is essential for

enhancing deep neural network’s discriminative feature learning

ability. Hence, pooling layer is used after several convolutional layers

to enlarge the receptive field. However, the adoption of pooling

layer leads to the loss of spatial details and lower-resolution feature

map, which is unfavorable for accurate pixel-level keypoint location

and matching. Dilated convolution is able to effectively alleviate this

challenging issue by sparsifying the standard convolution separated

by zero with specific interval (dilation rate), which allows us to

enlarge the receptive field without loss of spatial resolution of the

feature map.

3.3.2. Depth-wise dilated convolution
Depth-wise separable convolution transforms the standard

convolution into a depth-wise convolution followed by a point-

wise convolution. In this way, the computation complexity is thus

drastically reduced. Concretely, the depth-wise convolution is applied

on each channel of the feature map independently. The point-wise

convolution is then used to fuse the output from the depth-wise

convolution.

On the basis of the context aggregation module above, a dilation

pyramid based context aggregation module is incorporated for

further context aggregation of multi-scale field-of-view, as shown

in Figure 3. Concretely, with the predicted spatially-varying context

kernel S, we employ three parallel dilated convolutions with different

dilation rates to model contextual cues in a context-adaptive manner.

The three different dilation rates are set as 1, 3, 5 in our paper. In this

way, a dilation pyramid context aggregation block is obtained.

With these operations, three context kernels (S1, S2, and S3) with

different context aggregation fields are obtained. The three context

kernels are then applied over the original feature map X, leading to

three different weight factors R1, R2, and R3. The three generated

weight factors are then fused by element-wise sum:

R = R1 + R2 + R3. (4)

With the final fused weight kernel R, similar to the above SCA

module, an element-wise multiplication is operated between R and

X to ensure each channel of R can independently modulate the

corresponding channel of X.

3.4. Loss function

In order to supervise the above network to effectively locate and

match the keypoints, specifically designed loss functions are utilized.

3.4.1. Keypoint location loss
We convert the keypoint location task into a pixel-level binary

classification problem. In order to accurately locate the keypoints,

the widely used cross-entropy loss is first utilized to supervise the

learning of the transformed feature map of the last feature block of

the above adaptive pyramid context aggregation network:

CE(yi, pi) = −[yilog(pi)+ (1− yi)log(1− pi)], (5)
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FIGURE 3

Details of the proposed spatially-varying adaptive pyramid context aggregation module. The adaptive pyramid mechanism aggregates the contextual

cues with multi-scale field-of-views via convolution pyramid with multiple atrous rates.

Where yi means the label of pixel i (1 and 0 means the keypoint

and background, respectively), pi refers to the predicted probability

of pixel i to be the keypoint.

We also use the Dice loss for more accurate keypoint location:

Dice(X,Y) = 1−
2|P ∩ Y|

|P| + |Y|
, (6)

Where P means the pixel set of the predicted keypoints, Y means

the pixel set of ground truth keypoints. |P∩Y| refers to the sum of the

element-wise production between P and Y . |P| + |Y|, |P| refers to the

sum of all the elements of P, |Y| refers to the sum of all the elements

of Y .

3.4.2. Keypoint matching loss
In order to supervise the network to enhance the discriminative

power of learned feature embedding of keypoints, proper keypoint

matching loss should be designed. The ideal keypoint matching loss

should reduce the gap between matching keypoints and enlarge the

gap between non-matching keypoints.

To this end, with the feature map in the last feature

block of decoder before generating keypoint detection prediction,

we transform this feature map into three-dimensional feature

embedding. Thus, every fundus image keypoint has its corresponding

one-dimensional feature embedding. Following Huang et al. (2016)

and Opitz et al. (2017), we set the feature embedding dimension

as 512. In this way, our task is to enlarge the distance of

feature embedding between non-matching keypoints and narrow

the distance of feature embedding between the matching keypoints,

leading to compactness between matching keypoints and dispersion

between non-matching keypoints. Metric learning mechanism is

employed to tackle the above problem in this paper. Concretely, we

use the ranking loss to compute the relative distance between the one

dimensional feature embedding of every two keypoints in the input

image pair.

3.4.2.1. Pair-wise ranking loss

This widely used loss is also called contrastive loss. Positive

and negative pairs of the one-dimensional feature embedding of

keypoints in input image pair are both required for computing

the pair-wise ranking loss. One positive pair consists of an anchor

keypoint ka and the matching keypoint kp. One negative pair consists

of an anchor keypoint and a non-matching keypoint kn. The one-

dimensional feature embedding of the anchor keypoint ka, the

matching keypoint kp and the non-matching keypoint kn are fa,

fp, and fn, respectively. For positive pairs, the aim of the pair-

wise ranking loss is to guide the network to learn proper feature

embedding with a small distance. On the contrary, for negative

pairs, the pair-wise ranking loss aims to supervise the network

to learn feature embedding with a large distance. We choose the

Euclidian distance as the distance computing function to measure the

similarity between the feature embedding. The above operations can

be formulated as:

L(fa, fp, fn) =

{

d(fa, fp), if PostivePair,

max(0,m− d(fa, fn)), if NegativePair.
(7)

As shown in the Equation 7, for one positive pair, if the distance

between fa and fp are larger than 0, the loss value will also be positive.

Hence, the network is guided to reduce the distance to be 0. In this

way, this pair-wise ranking loss guides the network to produce similar

feature embedding for matching keypoints. On the other hand, for

negative pair, when the distance between the feature embedding of

the anchor keypoint and negative (non-matching) keypoint is larger

than a specific margin threshold, the loss will be 0. When the distance

is reduced below the margin value, the loss value will be positive.

When the distance between fa and fp, the loss value is the largest value

m. In this way, the pair-wise ranking loss supervises the network to

produce dissimilar feature embedding for non-matching keypoints.

When the distance for a negative pair is distant enough (larger than

the default threshold), the network will focus on the learning of

feature embedding for more difficult pairs.

3.4.2.2. Triplet ranking loss

Instead of using only one pair of keypoints for every computation

of pair-wise ranking loss, the triplet ranking loss considers the

relations of a triplet, which consists of an anchor keypoint ka, a

positive keypoint kp and a negative keypoint kn. The aim of the

triplet ranking loss is to guide the network to produce separable

feature embedding: the distance between the feature embedding of
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FIGURE 4

Illustration of the (A) Pair-wise Ranking loss, (B) Triplet Ranking loss, and (C) Structured Triplet Ranking loss. Di�erent shapes represent di�erent classes.

The blue circle is an anchor. For Pair-wise Ranking loss, the anchor and one positive example or one negative example are considered for every loss

computation. For Triplet Ranking loss, the anchor is compared with only one negative example and one positive example. For the Structured Triplet

Ranking loss, the anchor is compared with all negative examples.

the anchor keypoint and negative keypoint d(fa, fn) is larger than

the distance between the feature embedding of anchor keypoint and

the positive keypoint d(fa, rp) by a specific margin m). The above

operations can be rewritten as:

L(fa, fp, fn) = max(0,m+ d(fa, fp)− d(fa, fn)). (8)

We note that the difference between the pair-wise ranking

loss and triplet ranking loss is that pair-wise ranking loss only

considers pair of keypoints for one loss computation, however, a

triplet of anchor keypoint, positive keypoint and negative keypoint

is considered for the triplet ranking loss.

3.4.2.3. Structured triplet ranking loss

Triplet loss (Weinberger and Saul, 2009; Schroff et al., 2015) is

proposed to pull the learned feature embedding of anchor keypoint

closer to the positive keypoint than to the negative keypoint by a

fixed margin. However, the triplet loss only considers one triplet

for every loss computation, neglecting the relations among multiple

keypoints. To this end, inspired from Oh Song et al. (2016); Wang X.

et al. (2019), we propose to employ the structured triplet ranking loss

to supervise the feature embedding learning of our network, which

explores the structured relationship among multiple keypoints.

Concretely, the structured triplet ranking loss encourages the

interaction between more negative keypoints. On the basis of triplet

loss, the employed structured triplet ranking loss aims to supervise

the learned feature embedding between the anchor keypoint and

one positive keypoint is as similar as possible. Moreover, the feature

embedding between the anchor keypoint and all negative keypoints

as dissimilar as possible. Formally, the structured triplet ranking loss

aims to pull the anchor keypoint closer to one positive keypoint than

all negative keypoints than a marginm.

L =
1

2|P|

∑

(i,j)∈P

[d(fi, fj)+ log(
∑

(i,p)∈N

exp(m− d(fi, fp))

+

∑

(j,l)∈N

exp(m− d(fj, fl))]+,
(9)

Where P and N are the set of positive pairs and negative pairs

respectively, fi, fp, fj, and fl refer to the feature embedding of pixel

TABLE 1 Details of our constructed AN-200 dataset.

Camera Number
of image
pairs

Number
of

patients

Adult Canon 100 27

Neonatus RetCam3 100 23

We collect and label 200 fundus image pairs of adult and neonatus, which are taken from Canon

and RetCam3.

i, pixel p, pixel j, and pixel l, respectively. [·]+ is the hinge function.

Illustration of the Pair-wise Ranking loss, Triplet Ranking loss, and

Structured Triplet Ranking loss are shown in Figure 4.

3.5. Implementation details

The hyperparameters of batch-size, weight decay are set to 1, 1e−

3 respectively. The monmentum is set as 0.9. We use pytorch (Paszke

et al., 2017) as the basic implement architecture. The widely used

stochastic gradient descent strategy is used for training the proposed

model.

4. Experiments

In this section, we present extensive experiments to validate the

proposed model for fundus image registration. First, we show our

evaluation dataset and metric. Then we present a detailed analysis of

our model on the constructed large-scale dataset.

4.1. Datasets and metrics

4.1.1. Dataset
Current widely used funds image registration dataset, FIRE,

consists of 134 image pairs from 39 patients, which are acquired

with Nidek AFC-210 fundus camera. The keypoints of images in

FIRE dataset are randomly labeled in a sparse manner. There is not
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FIGURE 5

Example of the fundus images from diverse applications, including adult and neonatus patients acquired under good or bad imaging conditions.

Moreover, di�erent imaging angles and overlapping areas between the image pairs are also considered.

a guarantee that all the vessel branching and crossing points are

labeled as keypoints. In this case, these sparse ground-truth keypoint

labelings fail to train our proposed model. As a result, a large-scale

fundus image registration dataset, which labels all the keypoints in a

reliable and stable manner, is required for further research.

To this end, we collect 200 pairs of fundus images under various

imaging conditions (illumination, angle etc.) taken from different

fundus cameras, such as Canon and RetCam3, as shown in Table 1.

The constructed dataset is termed as AN-200 dataset. Concretely, 100

high-quality retinal images of 27 adult patients are acquired from

Canon. Moreover, the neonatal fundus images are often with low

image quality, due to the uncooperative image acquiring process.

We collect 100 neonatal fundus images taken from 23 patients

with RetCam3 to support various neonatal applications. In addition,

different imaging angles and lighting conditions are considered

during the construction of the dataset. Example of the fundus images

are shown in Figure 5. For every image pair, all the branching

and crossing points are labeled as keypoints. All the matched

keypoints are then labeled as ground truth matching keypoints. In

this way, a reliable and stable fundus image registration dataset

is constructed.

4.1.2. Evaluation metric
First, we choose the widely used FIRE dataset to quantitatively

evaluate the proposed method and compare with state of the art

methods. Since FIRE dataset only labels part of the crossing and

branching points, our model cannot be trained on this dataset.

Following Rivas-Villar et al. (2022), we train the models on the

training set of our constructed dataset. The trained models are

then evaluated on FIRE dataset with the registration score proposed

by Hernandez-Matas et al. (2017), which calculate the success ratio

between the fixed and moving image pairs after the transformation of

the moving image with the learned transformation parameters.

Concretely, pixels of moving image are first transformed into

the coordinate space of fixed image. We then calculate the averaged

distance between the transformed pixels and the ground-truth points

of fixed image as the registration error of this image pair. If the

registration error is below a threshold, the registration of this image

pair is successful. With larger threshold, more image pairs are

deemed successful registrations. By varying the threshold from 0 to

larger value, the percentage of successful registration pairs enlarges

gradually. In this way, we can plot the registration curve, where

the X axis corresponds to the setting threshold, the Y axis refers to

the percentage of successfully registered images. With the plotting

curve, the Area Under Curve (AUC) can be calculated as the final

registration score. The original FIRE dataset (Hernandez-Matas et al.,

2017) is divided into three sub-datasets based on the overlapping

and anatomical similarity between an image pair. The sub-dataset

S consists of 71 image pairs with more than 75% overlapping and

no anatomical differences. The sub-dataset P contains 49 image

pairs with less than 75% overlapping. Finally, the sub-dataset A is

composed of 14 image pairs with anatomical differences. Similar

to Rivas-Villar et al. (2022), we calculate the AUC score on the S, P,

and A sub-datasets and the whole FIRE dataset.

In addition, we also calculate the AUC value as the registration

score on our constructed AN-200 dataset with the same computing

manner. Concretely, 60%, 20% and 20% of the original dataset

are randomly divided into the training, validation and test set,

respectively. The final registraction score is reported on the test set.
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TABLE 2 The evaluation results of methods with di�erent network settings

on AN-200 and FIRE datasets.

Method AN-200(%) FIRE(%)

U-Net 70.5 68.1

SCA-Net 72.2 69.5

SAPCA-Net 72.9 71.1

The bold values mean the best performance.

4.2. Ablation study on the network
architecture

Based on the constructed dataset, in order to obtain better

understanding of the proposed network, we evaluate following

methods with different network settings. The experimental results are

summarized in Table 2:

• Baseline: We first choose the vanilla encoder-decoder

architecture (U-Net) as the backbone network to simultaneously

learn the detection of keypoint and the generation of feature

embedding, under the supervision of the above cross-entropy

loss, Dice loss and the proposed structured triplet ranking loss.

As shown in Table 2, the Baseline achieves an AUC of 70.5 and

68.1% on AN-200 and FIRE datasets, respectively.

• Spatially-varying context aggregation network (SCA-Net): Then

we enhance the simple U-Net with the proposed spatially-

varying context aggregation module. Concretely, over the last

stage of the encoder sub-network of U-Net, the generated

feature map of encoder sub-network is enhanced with the SCA

module. The global contextual cues are thus incorporated. The

loss functions are kept the same with the Baseline. The AUC

on AC-200 of SCA-Net is 72.2%, and the AUC on FIRE is

enlarged to 69.5%. The performance improvement is 1.7 and

1.4%, respectively.

• Spatially-varying adaptive pyramid context aggregation network

(SAPCA-Net): Finally, we test our overall network, SAPCA-

Net, by changing the SCA-module with the SAPCA module to

incorporate context-adaptive cues. Compared to original U-Net,

the SAPCA-Net largely improves the AUC of AD-200 by 2.4%,

the AUC of FIRE by 3.0%. Concretely, the AUC of AD-200 is

significantly enlarged from 70.5 to 72.9%, and the AUC of FIRE

is improved from 68.1 to 71.1%. These results effectively show

the effectiveness of the proposed SAPCA module.

As shown in Figure 6, we plot the curve of the successful

registration ratio as the change of different error thresholds. In

addition to the above quantitative comparisons, we also show the

visualized results of ourmethod. Figure 7 demonstrates the visualized

keypoint detection and keypoint matching results from two typical

scenarios. The last row also shows the final fused results with the

matching keypoints. The first column of Figure 7 shows the ground

truth keypoint detection and fused result. As shown in Figure 7, the

baseline method is able to effectively locate and match keypoints.

However, there exist a number of wrong keypoint matching results.

The SCA-Net is able to remove some false positive predictions,

leading to better keypoint matching result. Finally, the SAPCA-Net

further removes more false positive keypoint matching predictions.

Meanwhile, the number of true keypoint matching is also increased.

FIGURE 6

The registration success with di�erent error thresholds for the model

with di�erent network settings on FIRE dataset.

As a result, the final fused result with the matching keypoints

generated by the SAPCA-Net is visually better than other methods.

These qualitative comparisons further demonstrate the effectiveness

of the proposed network architecture.

4.3. Ablation study on the loss function

On the basis of the above best performing SAPCA-Net, we also

conduct further ablation study for further understanding of the loss

function. We evaluate the SAPCA-Net with following different loss

functions, the results are summarized in Table 3:

• SAPCA-net-pairwise: We first replace the keypoint matching

loss function of SAPCA-Net with the simple pairwise ranking

loss. Pairwise ranking loss guides the SAPCA-Net to learn the

pairwise relationship between the feature embedding of the

anchor keypoint and one positive/negative keypoint. As shown

in Table 3, the SAPCA-Net-Pairwise achieves the AUC of 71.4

and 69.7% on AN-200 and FIRE, respectively.

• SAPCA-net-triplet: Then we replace the keypoint matching loss

function with the triplet ranking loss. The triplet loss helps the

network to pull the anchor point closer to the similar keypoint

than the dissimilar one by a margin. The AUC of SAPCA-Net-

Triplet on AN-200 is 72.2%, and the AUC on FIRE is improved

to 70.3%.

• SAPCA-net-structured-triplet: We further replace the keypoint

matching loss function with structured triplet ranking loss. The

structured triplet ranking loss supervise the network to learn the

structured relationship among multiple keypoints. Compared to

original pair-wise ranking loss, the AUC of AN-200 is enlarged

from 71.4 to 72.9%, and the AUC of FIRE is improved from 69.7

to 71.1%. These results effectively show the effectiveness of the

employed structured triplet ranking loss.

Among the SAPCA-Net with the above three different loss

functions, the SAPCA-Net-Structured-Triplet achieves significantly

better results, which effectively demonstrates the superiority of the

structured triplet ranking loss for the learning of matching keypoints.
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FIGURE 7

Example of the keypoint detection and matching results of normal adult and neonatal fundus images. We also show the fused image with the matching

keypoints.

The change curve of registration success ratio under different error

thresholds is shown in Figure 8.

4.4. Comparison to state-of-arts

In order to compare our proposed best-performing SAPCA-

Net with state of the art methods, the widely used FIRE dataset

is employed for evaluation. We first focus on the deep learning

based methods. As shown in Table 4, compared to previous two-

stage UNet + RANSAC (Rivas-Villar et al., 2022), our end-to-end

registration method achieves consistently better results on the S,

P, A sub-datasets and the whole FIRE dataset. Concretely, on the

four dataset settings, our SAPCA-Net achieves the registration score

of 93.9, 36.2, 71.9, and 71.1%, significantly outperforming UNet +

RANSAC by 3.1, 6.9, 5.9, and 5.4%, respectively.Moreover, ourmodel

accomplishes the two steps of keypoint detection and matching with

a single network. However, for previous UNet + RANSACmodel, the
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keypoint detection is first accomplished by a U-Net, which is followed

by traditional RANSAC (Fischler and Bolles, 1981) for the keypoint

matching step. In this way, the execution time of our proposed

SAPCA-Net is much shorter.

TABLE 3 Ablation study on the loss function.

Method AN-200(%) FIRE(%)

SAPCA-Net-Pairwise 71.4 69.7

SAPCA-Net-Triplet 72.2 70.3

SAPCA-Net-Structured-Triplet 72.9 71.1

With the structured triplet loss, SAPCA-Net-Structured-Triplet achieves the best result. The bold

values mean the best performance.

FIGURE 8

The curve of successful registration percentage under di�erent error

thresholds for the model with di�erent loss functions on FIRE dataset.

Then, we compare our method with traditional registration

methods. As shown in Table 4, our SAPCA-Net obtains the best

registration score on the A sub-dataset, by achieving 71.1%

AUC. This result is 3.8% better than previous best performing

VOTUS. On the S sub-dataset, our method obtains the registration

score of 93.9%, slightly better than VOTUS, while is 1.9%

lower than the REMPE. On the whole FIRE dataset, our

method outperforms most of the traditional methods. Although

VOTUS and REMPE achieve better registration scores than

our SAPCA-Net, the execution time of these two methods are

two orders of magnitude slower than our method. Concretely,

the execution time of our method is only 0.32s, which shows

significant advantage compared to the VOTUS (106s) and REMPE

(198s). This is a big advantage for applications in clinical

scenarios.

5. Conclusion

Current deep learning based image registration methods

directly learn to align the geometric transformation or the dense

displacement vector field between the input image pair. These

previous modeling paradigms fail to achieve keypoint detection

and registration results in a reliable and stable way. To this

end, in this paper, we aim to tackle this challenging issue. First,

considering that the vessel crossing and branching points can

reliably and stably characterize the key components for fundus

image, a single network is employed to simultaneously learn to

detect and match all the crossing and branching points of the

input image pair in an end-to-end manner. Moreover, a spatially-

varying adaptive pyramid context aggregation network is proposed

to aggregate contextual cues in multi-scale field-of-view, which

are much beneficial for accurate keypoint detection and matching.

Furthermore, a structured triplet ranking loss is employed to guide

TABLE 4 Comparison to state-of-arts on FIRE dataset.

Method S P A FIRE Execution
time

SIFT +WGTM (Lowe, 2004) 83.7 54.4 40.7 68.5 –

GDB-ICP (Yang et al., 2007) 81.4 30.3 30.3 57.6 19

Harris-PIIFD (Yang et al., 2007) 90.0 9.0 44.3 55.3 13

SURF +WGTM (Bay et al., 2008) 83.5 6.1 6.9 47.2 –

ED-DB-ICP (Tsai et al., 2009) 60.4 44.1 49.7 55.3 44

RIR-BS (Chen et al., 2011) 77.2 0.49 12.4 44.0 -

ATS-RGN (Serradell et al., 2014) 36.9 0.0 14.7 21.1 -

EyeSLAM (Braun et al., 2018) 30.8 22.4 26.9 27.3 7

GFEMR (Wang J. et al., 2019) 81.2 60.7 47.4 70.2 10

RIFT + NTG (Zhou et al., 2022) 90.7 51.2 81.0 71.7 -

VOTUS (Motta et al., 2019) 93.4 67.2 68.1 81.2 106

REMPE (Hernandez-Matas et al., 2020) 95.8 54.2 66.0 77.3 198

U-Net + RANSAC (Rivas-Villar et al., 2022) 90.8 29.3 66.0 65.7 0.65

Our SAPCA-Net 93.9 36.2 71.9 71.1 0.32
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the learning of similar feature embedding for matching keypoint

and dissimilar feature embedding for non-matching keypoints.

The proposed model is trained on a new constructed large-

scale dataset with well-labeled ground-truths. Both quantitative

and qualitative results show the effectiveness of the proposed

method.
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