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Editorial on the Research Topic
72nd Annual meeting of the Italian society of physiology: new
perspectives in physiological research

The 72nd AnnualMeeting of the Italian Society of Physiology, held in Bari in September
2022, provided a vibrant platform for the convergence of leading physiologists, fostering
interdisciplinary dialogue, and paving the way for innovative research directions. This
Research Topic encompasses a diverse array of topics that emerged from the rich texture of
discussions and presentations at the conference. Gathering insights from esteemed
researchers across Italy, the Research Topic delves into groundbreaking studies that
shed light on various facets of physiological research. Covering a spectrum of themes
ranging from cell physiology to neurobiology and cardiovascular health, each article offers a
unique perspective, contributing to the collective understanding of complex
biological processes.

In exploring novel therapeutic approaches for neurological disorders, the spotlight on
autophagy emerges as a promising avenue. Traumatic brain injury (TBI) poses significant
challenges in treatment, often leaving limited options due to its complex pathophysiology.
However, recent investigations into the role of autophagy machinery, particularly in post-
TBI neuronal responses, shed light on potential interventions. Boswellia Sacra gum resin
(BSR) emerges as a notable candidate, exhibiting modulatory effects on neuronal autophagy
and demonstrating substantial improvements in functional recovery within a mouse model
of TBI (Interdonato et al.). This aligns with a broader narrative within the field of
neurodegenerative diseases, notably Parkinson’s disease (PD), where a repurposing
strategy involving Type 2 Diabetes Mellitus (T2DM) drugs gains support. The interplay
between T2DM and PD pathogenesis, marked by disruptions in autophagic processes,
underscores the therapeutic potential of antidiabetic medications (Greco et al.). By restoring
autophagic function, these drugs offer a glimmer of hope in mitigating neurodegenerative
processes and enhancing neuronal resilience. Thus, the convergence of research efforts in
different fields highlights the pivotal role of autophagy modulation in addressing
multifaceted challenges within the complex scenario of neurological disorders. As the
population ages, the incidence of neurological diseases tends to increase. This demographic
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trend underscores the importance of developing accurate and
reliable instruments for monitoring individual health, particularly
among the elderly. A recent study developed a composite measure of
fitness status based on multiple tests, including the six-minute
walking test. Data from eight fitness tests were collected from
176 participants aged 51–80. The newly developed biomarker for
biological aging showed strong associations with cardiovascular risk
scores and mortality predictions, outperforming previous methods
(Manca et al.). This approach has potential for clinical screening and
monitoring but requires further validation.

Exploring the therapeutic potential of botanical extracts and
dietary supplements unveils a compelling narrative in addressing
various health challenges. An anthocyanin-rich fraction extracted
from Callistemon citrinus flowers emerges as a protective shield
against oxidative stress-induced damage in human red blood cells
(RBCs). By preserving RBC morphology and anion exchanger 1
(band 3, SLC4A1/AE1) activity, this extract underscores the
importance of dietary interventions in fighting oxidative stress-
related pathologies (Remigante et al.). Similarly, niacin combined
with citicoline demonstrates promise in restoring retinal physiology
preventing retinal ganglion cell loss, offering a glimmer of hope in
the management of hypertensive glaucoma (Melecchi et al.).
Furthermore, bergamot extract emerges as a potent anti-aging
agent, exhibiting profound effects on human RBCs exposed to
D-Galactose-induced aging (Remigante et al.). Through its
multifaceted antioxidant and metabolic regulatory properties,
bergamot extract holds potential in mitigating age-related
changes, thus presenting a novel avenue in anti-aging
therapeutics. Collectively, these findings underscore the
burgeoning interest in harnessing the therapeutic power of
botanical extracts and dietary supplements in addressing a
spectrum of health disorders.

Resolving the intricate web of cellular communication unveils a
captivating narrative in understanding disease pathogenesis and
therapeutic interventions. In the context of neurodegenerative
disorders like Amyotrophic Lateral Sclerosis (ALS), the crosstalk
between microglia, astrocytes, and infiltrating immune cells emerges
as a pivotal player in shaping the neuroinflammatory milieu
(Calafatti et al.). By orchestrating a pro-inflammatory
microenvironment, this intricate interplay exacerbates neuronal
damage, further fueling disease progression. Meanwhile,
tunneling nanotubes (TNTs) offer a novel avenue for long-range
intercellular communication within the central nervous system
(CNS), yet this area remains largely unexplored (Capobianco
et al.). Serving as conduits for the exchange of small signals and
large cargo between CNS cells, TNTs redefine our understanding of
cellular interactions in controlling CNS functions. As we delve
deeper into these intercellular dialogues, new therapeutic
strategies aiming to modulate microglial phenotypes and restore
CNS homeostasis are on the horizon, holding promise in mitigating
neurodegenerative processes and improving patient outcomes.

The deleterious impact of environmental pollutants on human
health is a growing concern, with airborne particulate matter less
than 10 µM in size (PM 10) emerging as a significant risk factor.
Investigations into the cellular mechanisms underlying PM-induced
cytotoxicity shed light on its role in triggering apoptotic volume
decrease (AVD), a hallmark of early apoptosis, in A549 pulmonary
cells (Giordano et al.). Furthermore, chronic exposure to glyphosate,

a common herbicide, and its metabolite AMPA, raises questions
about their potential cardiovascular effects. Studies elucidating the
biological effects of sub-lethal doses of these agrochemicals on
H9c2 cardiac myoblasts uncover a complex interplay between
these agrochemicals and cytotoxicity (reduction in cell viability,
increased ROS production, morphological alterations, and
mitochondrial dysfunction), highlighting the need for further
research to inform regulatory policies and public health
interventions (Arrigo et al.).

Finally, the dynamic orchestration of intracellular signaling
pathways lies at the heart of cellular function and disease
pathogenesis. Despite decades of research, the spatiotemporal
analysis of Ca2+ signaling events continues to surprise, revealing
previously unexplored facets of cellular function. The experimental
exploitation of classic and newly developed genetically encoded
fluorescent probes is opening new windows, shedding light on
unexpected roles for this ubiquitous ion (Moccia et al.). Recent
investigations have elucidated four such roles: 1) the transient
receptor potential mucolipin 1 (TRPML1) channel plays a crucial
role in modulating water reabsorption in the kidney; 2)
dysregulation of endoplasmic reticulum-to-mitochondria Ca2+

transfer contributes to astroglial dysfunction in Alzheimer’s
Disease; 3) TRP Melastatin 8 (TRPM8) plays a non-canonical
role as a Rap1A inhibitor in cancer progression; and 4) non-
genetic optical stimulation might serve as a new tool to enable
precise manipulation of Ca2+ signals in cardiovascular function. In
addition, investigations into the effects of Type 2 Diabetes Mellitus
(T2DM) on vascular smooth muscle cells (VSMCs) have uncovered
significant alterations in intracellular Ca2+ handling (Moreno-
Salgado et al.). Studies conducted in Zucker Diabetic Fatty rats
have shown that T2DM leads to decreased Ca2+ release from the
sarcoplasmic reticulum (SR) and increased activity of store-operated
channels (SOCs) in VSMCs. Furthermore, enhanced cytosolic Ca2+

activity during the early stage of ATP-induced Ca2+ transient decay,
along with alterations in the activity of Ca2+ extrusion mechanisms,
suggests a potential link between dysregulated Ca2+ homeostasis in
VSMCs and vascular dysfunction associated with T2DM.

As we navigate the ever-expanding landscape of physiological
research, it is essential to acknowledge the collaborative efforts of
scientists, clinicians, and educators driving scientific innovation
forward. The 72nd Annual Meeting of the Italian Society of
Physiology exemplifies the spirit of inquiry and collaboration that
fuels progress in biomedical sciences. We extend our heartfelt
gratitude to all the authors, reviewers, and contributors who have
made this Research Topic possible.

In conclusion, this Research Topic serves as a demonstration to
the boundless curiosity and collective endeavor of the scientific
community. May the discoveries unveiled within these pages inspire
future generations of physiologists and propel us closer to
unraveling the mysteries of human biology and health.
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Biological effects of sub-lethal
doses of glyphosate and AMPA on
cardiac myoblasts

Elisa Arrigo1*, Sara Gilardi1, Luisa Muratori1,2, Stefania Raimondo1,2

and Daniele Mancardi1*
1Department of Clinical and Biological Sciences, University of Torino, Turin, Italy, 2Neuroscience Institute
Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy

Introduction: Glyphosate is the active compound of different non-selective
herbicides, being the most used agriculture pesticide worldwide. Glyphosate and
AMPA (one of its main metabolites) are common pollutants of water, soil, and food
sources such as crops. They can be detected in biological samples from both
exposedworkers and general population. Despite glyphosate acts as inhibitor of the
shikimate pathway, present only in plants and some microorganisms, its safety in
mammals is still debated. Acute glyphosate intoxications are correlated to
cardiovascular/neuronal damages, but little is known about the effects of the
chronic exposure.

Methods:We evaluated the direct biological effects of different concentrations of
pure glyphosate/AMPA on a rat-derived cell line of cardiomyoblasts (H9c2) in
acute (1–2 h) or sub-chronic (24–48 h) settings. We analyzed cell viability/
morphology, ROS production and mitochondrial dynamics.

Results: Acute exposure to high doses (above 10 mM) of glyphosate and AMPA
triggers immediate cytotoxic effects: reduction in cell viability, increased ROS
production, morphological alterations and mitochondrial function. When
exposed to lower glyphosate concentrations (1 μM—1 mM), H9c2 cells showed
only a slight variation in cell viability and ROS production, while mitochondrial
dynamicwas unvaried.Moreover, the phenotypewas completely restored after 48h
of treatment. Surprisingly, the sub-chronic (48 h) treatmentwith low concentrations
(1 μM—1 mM) of AMPA led to a late cytotoxic response, reflected in a reduction in
H9c2 viability.

Conclusion: The comprehension of the extent of human exposure to these
molecules remains pivotal to have a better critical view of the available data.

KEYWORDS

AMPA, ROS, cardiac myoblasts, mitochodria, glyphosate, H9c2

1 Introduction

Glyphosate [IUPAC name N-(phosphonomethyl) glycine] is a synthetic phosphonic
amino derivative of glycine, which disrupts the shikimate pathway by inhibiting the activity
of 5-enolpyruvylshikimate-3-phosphatase (EPSP) synthase. This metabolic pathway is used
by plants and several microorganisms for the biosynthesis of folate and aromatic aminoacids
(Bai and Ogbourne, 2016). Glyphosate (Gly) is the active compound of a large part of non-
selective herbicidal (glyphosate-based herbicidal, GBHs), being the most used worldwide
since middle 70s (Torretta et al., 2018).
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Gly is absorbed through leaves and stems and it is transported from
roots to edible parts (Tong et al., 2017). In agriculture, genetically
modified Gly-resistant crops (as soybean, cotton, corn, etc.) are
extensively used and, because of their resistance they accumulate
Gly at high concentrations (Xu et al., 2019). Once applied, Gly
undergoes degradation mainly by a process known as
mineralization, which leads to different byproducts, with
aminomethyl phosphonic acid (AMPA) as the main metabolite.
The kinetic of this mechanism is highly dependent on soil pH and
minerals concentration. Other processes that determine Gly fate are
immobilization and leaching: the first one leads to soil adsorption/
accumulation, while the second results in water contamination (Bai and
Ogbourne, 2016). Gly and AMPA are highly soluble in water and their
persistence is variable depending on water conditions with half-lives
ranging from few days to several weeks (Tomlin, 2009; Grandcoin et al.,
2017; ATSDR, 2020; Goncalyes et al., 2020). In soil, Gly and AMPA
accumulate with a discrete persistence with half-lives depending on
factors such as pH, salinity, microbial composition, spanning from few
days up to about a year (Bai and Ogbourne, 2016; Bento et al., 2016;
Domínguez et al., 2016; Grandcoin et al., 2017; ATSDR, 2020).

Given the massive use of GBHs, Gly and AMPA are frequently
detected in different water and food samples and classified as
pollutants (Bai and Ogbourne, 2016; Bonansea et al., 2017; Silva
et al., 2018; Xu et al., 2019; Okada et al., 2020; Marques et al., 2021;
Pelosi et al., 2022). The constant presence represents not only an
ecological burden but also a potential indirect threat to both animal
and human health. Gly and AMPA were, in fact, found in urines of
both occupationally or para-occupationally exposed workers (from
0.26 to 73.5 μg/L) and in general population (from 0.16 to 7.6 μg/L)
(Krüger et al., 2014; Niemann et al., 2015; Gillezeau et al., 2019; Perry
et al., 2019; Mesnage et al., 2022a). Indeed, this type of report suffers
from inconstant technical approaches that fail to allow a reliable
comparison, mostly because the available studies are based on very
different methodologies for Gly and AMPA quantification (gas
chromatography, liquid chromatography or ELISA) (Valle et al.,
2019). Liquid chromatography is the elective analytical technique for
glyphosate determination because of its flexibility and availability in
different types of laboratories. This technique can be coupled with
different detector types (i.e., ultraviolet-visible, fluorescence, mass
spectrometry, etc.) many of which are applicable to Gly
quantification. Every technique needs various degrees of technical
skills to be performed and requires substantially different
investments, and each of them can reach different levels of
sensitivity (Moldovan et al., 2023). Hence, more accurate and
standardized procedures are needed to reliable and repeatable
measurements of Gly and AMPA concentration in biological
samples and, therefore, an accurate evaluation of exposure extent.

Despite its selective mechanism of action, Gly has been proven
to have either acute or chronic toxicity in different off-target non-
mammals animal species, such as amphibians, annelids, arthropods,
fishes and birds (Antón et al., 1994; Contardo-Jara et al., 2009; Roy
et al., 2016; Gill et al., 2018; Jin et al., 2018). However, these effects
were more severe when animals were exposed to Gly formulation
than the molecule alone, suggesting that the adjuvants (such as
surfactants) act in synergy, amplifying the toxicity.

As of today, the safety of Gly in mammals is still under debate.
Acute intoxications due to GBHs ingestion are reported to strongly
affect cardiovascular system (Bradberry et al., 2004; Gress et al., 2015;

Brunetti et al., 2020; Hu et al., 2021), as well as to cause gastrointestinal
and respiratory symptoms, hypotension and consciousness alteration
(Lee et al., 2000; Bradberry et al., 2004); however, these effects are due to
very high levels of Gly and adjuvants and are in line with accidental
intake and does not reflect the low, although daily, exposure of the
general population. The long-term effects of a chronic exposure to Gly
andAMPA are not clear. Some in vitro studies on differentmammalian
cell lines showed Gly (or its formulations) to be genotoxic (Benachour
and Séralini, 2009; Martini et al., 2012; Mesnage et al., 2013; Townsend
et al., 2017; Santovito et al., 2018; Mesnage et al., 2022b), cytotoxic
(Townsend et al., 2017; Vanlaeys et al., 2018; Hao et al., 2020; Martínez
et al., 2020) and reprotoxic (Gasnier et al., 2009; Clair et al., 2012; De Liz
Oliviera Cavalli et al., 2013; Anifandis et al., 2017; Stur et al., 2019; Hao
et al., 2020; Jarrell et al., 2020; Cao et al., 2021;Mohammadi et al., 2022).
Gly toxicity is usually associated with oxidative stress, dysfunctional
mitochondria dynamics and bioenergetics. The sensibility to Gly seems
to be cell specific; only few studies demonstrated Gly toxicity in
concentrations below the human Acceptable Daily Intake
(1.0 mg/kg) (Santovito et al., 2018) and not related to the adjuvants
present in its formulations.

In the present work, we evaluate the direct biological effects of
different concentrations of pure Gly or AMPA on a rat-derived
immortalized cell line of cardiomyoblasts (H9c2), recognized as a
valuable tool for investigating in vitro effect of toxic factors on
myocardial and muscle-skeletal immortalized cells (Branco et al.,
2015; Bouleftour et al., 2021; Onódi et al., 2022).

In the first part of the study, we simulated an acute exposure
to high levels (10–20 mM) of Gly or AMPA. We eventually
shifted to lower concentrations (1 μM—1 mM) in order to
identify a sub-lethal range to mimic the biological effects of
acute and sub-chronic treatments. We evaluated changes in cell
viability, morphology, ROS production and mitochondrial
distribution and mass.

2 Materials and methods

2.1 Solutions & reagents

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium)
bromide), Glyphosate, AMPA (amino methyl phosphonic acid),
DCF-DA (2-7-dichlorofluorescine diacetate), NAC (N-Acetyl
cysteine) were purchased from Sigma-Aldrich.

2.1.1 MTT
The solution was freshly prepared the day of the experiment by

dissolving 5 mg/mL of powder in sterile Phosphate Buffered Saline
(PBS—Sigma Aldrich).

2.1.2 Glyphosate, AMPA and NAC
Stock solutions were freshly made the day of the experiments by

dissolving the powder in serum-free cell culture medium. Then,
stock solutions were diluted in complete cell culture medium to
reach the working concentrations.

2.1.3 DCF-DA
Stock solution was made by dissolving the powder in sterile

dimethyl sulphoxide (DMSO—Sigma-Aldrich) and stored at −20°C,
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in the dark. Stock solution was diluted in sterile PBS with Ca2+/Mg2+

to reach the working concentration.

2.2 Cell culture

H9c2 cells (ATCC® CRL-1446™) were purchased from Sigma-
Aldrich. Cell culture was performed in Dulbecco’s Modified Eagle’s
Medium (DMEM) with phenol red (Sigma-Aldrich) supplemented
with 10% Fetal Bovine Serum (FBS - Sigma-Aldrich), 1% 200 mM L-
Glutamine (Microgem), 1% penicillin/streptomycin (Sigma-
Aldrich) at 37°C, 5% CO2, 25% O2. Cells were split at 80%
confluence.

2.3 Cell viability

H9c2 cells were seeded in 96-well plates at 5 × 104 cells/well
and kept in incubator 24 h. Then, cells were starved O/N in
DMEM 2% FBS and treated with different Gly or AMPA
concentrations for different times. When necessary, cells were
pretreated 1 h with NAC (100 µM). After the treatments, the
medium was replaced, 10 µl MTT were added to each well and the
plates were incubated 3 h at 37°C. Then, medium was discarded
and the purple formazan crystals were dissolved in 100 µl DMSO.
The optical density was measured in a microplate reader (Model
680—BioRad) at 570 nm. The experiment was performed on
technical and biological triplicates.

2.4 Morphology

Cells were plated into Petri dishes and kept in completemedium for
24 h to allow cell adhesion. After the desired confluence (70%–90%)
was reached, samples were treated with 10 or 20 mM of glyphosate or
AMPA for 24 h (t24) or kept in culture medium. After the treatments,
cells were washed with warm sterile PBS with Ca2+/Mg2+ and medium
was replaced with a fresh one. All samples were observed under an
optical microscope (Axiovert 200—Zeiss) at t0 or t24 with a 63X lens.
Images were acquired through Infinity Analyze Software (Lumenera
Corporation). At least five fields/sample have been analyzed. The
experiment was performed on technical triplicates.

2.5 Transmission electron microscopy

H9c2 cells were plated into Petri dishes and kept in culture until
reaching 80% confluence. Then, cells were treated with Gly 10 mM for
1 h or kept in culture medium (Control). Cells were gently washed with
warm sterile PBS without Ca2+/Mg2+, detached with trypsin/EDTA
0.05%/0.02% (PAN Biotech), collected in tubes and centrifuged 5′ at
3000 rpm. Supernatant was discarded and pellet was fixed in 1%
paraformaldehyde (Merck, Darmstadt, Germany), 1.25%
glutaraldehyde (Fluka, St Louis, MO, United States) and 0.5%
saccharose in 0.1 M Sörensen phosphate buffer (pH 7.2) for 2 h. For
resin embedding, samples were post-fixed in 2% osmium tetroxide
(SIC, Società Italiana Chimici) for 2 h and dehydrated in ethanol
(Sigma Aldrich) from 30% to 100% (5 min each passage). After two

passages of 7 min in propylene oxide, one passage of 1 h in a 1:
1 mixture of propylene oxide (Sigma Aldrich) and Glauerts’mixture of
resins, samples were embedded in Glauerts’mixture of resins (made of
equal parts of Araldite M and the Araldite Harter, HY 964, Sigma
Aldrich). In the resin mixture, 0.5% of the plasticizer dibutyl phthalate
(SigmaAldrich) was added. For the final step, 2% of accelerator 964was
added to the resin in order to promote resin polymerization at 60°C.
Ultra-thin serial sections (70 nm thick) were cut using anUltracut UCT
ultramicrotome (Leica Microsystems, Wetzlar, Germany), stained with
a solution of 4% UAR-EMS uranyl acetate replacement in distilled
water and analysed using a JEM-1010 transmission electron
microscope (JEOL, Tokyo, Japan) equipped with a Mega-View-III
digital camera and a Soft-Imaging-System (SIS, Münster, Germany)
for computerized acquisition of the images.

For mitochondria quantification, 4 ultra-thin sections 50 µm
distant each other were considered for each experimental group with
a magnification of 30000X. A total of 50 cells for experimental group
were analysed and the number of impaired and unimpaired
mitochondria was estimated in % based on their morphological
features such as the shape of mitochondria, the morphology of the
cristae and evidence of swelling.

2.6 ROS measurements

DCFH-DA is a non-fluorescent molecule permeable to cells. It is
hydrolyzed at the intracellular level in dichlorofluorescine (DCFH),
which is retained in the cell as it is no longer able to cross cell
membranes. In the presence of H2O2, DCFH is oxidized forming the
highly fluorescent DCF.

4 × 103 cells/well were seeded in 96-well plates and kept in
incubator O/N to allow adhesion. Cells were treated with different
concentrations of Gly or AMPA for 1 or 2 h. After the treatments,
cells were gently washed two times with warm PBS with Ca2+/Mg2+.
100 μl/well of 10 µM DCF-DA were added and the plates were
incubated for 45 min at 37°C, covered by an aluminum foil. Cells
were washed two times with warm PBS with Ca2+/Mg2+. The
fluorescence intensity was measured at the wavelengths ex:
485 nm and em: 535 nm with a microplate reader (Infinite
200—Tecan). The experiment was performed on technical and
biological triplicates. A control lane with only cells (NO DCF)
was always included to subtract cellular auto-fluorescence.

2.7 Mitochondrial staining

MitoTracker Green FM™ (MTG—Thermo Fisher) is a
fluorescent probe, which stains mitochondria independently from
their metabolic activity.

5 × 103 cells/well were plated in 24-well plates in complete
DMEM and kept O/N in the incubator. Cells were washed with
sterile warm PBS with Ca2+/Mg2+ and treated with different
concentrations of Gly or AMPA for 2 or 24 h. After the
treatments, cells were gently washed with sterile warm PBS with
Ca2+/Mg2+. 100 nM MTG was added to each well and plates were
incubated 30’ in the dark at 37°C. Samples were washed with warm
sterile PBS with Ca2+/Mg2+ and observed under a fluorescence
microscope (Axiovert 200—Zeiss) with a ×40 magnification lens.
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Images were acquired through Infinity Analyze Software (Lumenera
Corporation) with a resolution of 480 × 360 pixels. At least five
fields/sample have been analyzed. The experiment was performed
on technical triplicates.

2.8 Statistical and computer analysis

Statistical analysis was performed using Graphpad Prism
Software® (version 9.00, GraphPad Software). Data are expressed
as a mean ± SD. The differences between the groups were analyzed
through statistical tests: ANOVA, one-way or two-way, or Kruskal-
Wallis or Mann-Whitney t-test. Statistical significance has been set
at p < 0.05.

3 Results

3.1 Effects of high doses of glyphosate and
AMPA—Acute exposure

In order to evaluate whether an acute exposure to Gly or AMPA
determines changes in cell viability in our cell model, we performed
an MTT assay.

After 2 h, Gly treatment diminished H9c2 viability in a
concentration-dependent manner, with the most dramatic effect
given by the highest dose. As shown in Figure 1, 10 and 20 mM
treatment determined, respectively, 30% and 90% decrease in cell
viability (Figure 1A). At equal doses, AMPA decreased cell viability
from 20% to 30% (Figure 1A).

In light of the observed cytotoxic effects and considering that
Gly, in the literature, is often associated with oxidative stress (Sardão
et al., 2009; Kwiatkowska et al., 2014; Anifandis et al., 2017;
Burchfield et al., 2019; Cao et al., 2021), we performed ROS
measurements on H9c2 cells.

At 10 mM, there was a slight increase in ROS production compared
to the control, without substantial differences between Gly and AMPA

groups (Figure 1B). Treatment with 20 mMof Gly, instead, determined
a 4-fold increase in ROS production (Figure 1B), which can explain the
dramatic loss in cell viability (Figure 1A). This potent effect was not
observed in 20 mM AMPA treated group, which ROS levels are
comparable to 10 mM one (Figure 1B).

After 24 h (t24), signs of membrane blebbing and cell shrinkage
are still present in Gly-treated group (Figure 2, bottom panels);
many rounded and floating cells were clearly visible in the plates at
20 mM, together with strong signs of cytoplasmic cavitation. The
same morphological alterations were not observed in AMPA treated
group (Figure 2, bottom panels).

After analysis of phenotypical changes (Figures 1, 2), additional
MTT and DCF-DA assays were performed in a shorter time-range,
focusing on 10 mM Gly treatment, which effects were not too
deleterious on the selected cell model.

Interestingly, cell viability did not change when comparing 1 h
and 2 hours-treatment groups (Figure 3A), while ROS production
was significantly higher after 1 h (Figure 3B), confirming an early
response of H9c2 cells to these levels of Gly exposure.

As additional confirmation, both a decrease in cell viability (≡
20%, Figure 4A) and an increase in ROS production (≡ 1.5 fold-
change, Figure 4B) were significant in H9c2 cells already after 5 min
of 10 mM Gly. However, the most appreciable effect was reached
after 1 h (Figures 3, 4).

Given the significant and rapid production of ROS, an
involvement of Gly-driven mitochondrial functional impairment
was postulated. Therefore, H9c2 cells were treated with Gly 10 mM
for 1 h and analyzed using transmission electron microscopy. The
morphology of mitochondria was further investigated by
transmission electron microcopy that allowed to access healthy
mitochondria with intact double membrane structure, cristae and
cristae space easily detectable in the control group (Figures 5A, C);
several swollen mitochondria without cristae, instead, are detected
in Gly-treated group (Figures 5B, D). Furthermore, the number of
perinuclear mitochondria was quantified. We determined two
populations: 1) “healthy mitochondria” (HM) showing normal
morphology, cristae structure and intact membrane; 2) “damaged

FIGURE 1
Cell viability & ROS production. The figure shows the relative histograms obtained from: (A) MTT and (B) DCF-DA assays. H9c2 cells were treated
with 10 or 20 mM of glyphosate (GLY) or AMPA for 2 h. After the treatments, cell viability and ROS production were assessed, respectively, through MTT
and DCF-DA assays. Mean ± SD; p-values: ○ < 0.0005; C < 0.001 vs. control. NO DCF: control lane without the fluorescent probe.
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mitochondria” (DM) with degenerated or swollen cristae. To
calculate the percentage of DM, we used the formula:

% of DM � DM
HM +DM( )*100

As shown in Figure 5E, the percentage of damagedmitochondria
was significantly higher in Gly-treated group compared to control,
potentially explaining the observed cytotoxic effects.

3.2 Effects of medium-to-low doses of
glyphosate and AMPA—Acute exposure

The acute exposure of H9c2 cells from medium (1 mM) to very
low (1 µM) doses of Gly, produced similar effects seen before

(Figure 1), although to a lesser extent. In terms of cell viability
and ROS production, the treatments determined, respectively, a
decrease from 10% to 15% (Figure 6A) and an increase from 1.1 to
1.2 fold-change (Figure 6B).

The use of the antioxidant NAC, even if effective in lowering
ROS production (Figure 6B), was not able to totally restore cell
viability (Figure 6A).

After the observation of Gly- and AMPA-induced production of
reactive oxygen species, we wanted to test if there were variations in
mitochondrial mass and distribution. To do so, we probed
mitochondria with the fluorescent molecule MitoTracker Green
FM™ after 2 or 24 h of Gly or AMPA treatment.

Mitochondrial distribution, as shown in Figures 7A, B, appeared
homogeneous and no variations in fluorescence intensity were
detected, suggesting that both mitochondrial dynamics and mass

FIGURE 2
Morphology. The figure shows representative fields of H9c2 cells treated with 10 or 20 mM of glyphosate (GLY) or AMPA for 24 h. Images were
acquired through a camera connected to an invertedmicroscope at the start (t0—top panels) and at the end (t24—bottom panels) of the treatments with
a 63X lens (scale bar = 10 µm).

FIGURE 3
Cell viability & ROS production. The figure shows the relative histograms obtained from: (A) MTT and (B) DCF-DA assays. H9c2 cells were treated
with 10 mMof glyphosate (GLY) for 1 or 2 h. After the treatments, cell viability and ROS production were assessed, respectively, throughMTT andDCF-DA
assays. Mean ± SD; p-values: C < 0.0001 vs. control. NO DCF: control lane without the fluorescent probe.

Frontiers in Physiology frontiersin.org05

Arrigo et al. 10.3389/fphys.2023.1165868

12

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1165868


were preserved. However, we cannot totally exclude that the inability
to find any relevant change, could be associated with a limitation of
the technique used, which has, indeed, a limited resolution.
Moreover, the probe stains all mitochondria independently from
their activity, so it was no possible to distinguish healthy and
damaged populations.

3.3 Effects of medium-to-low doses of
glyphosate and AMPA—Sub-chronic
exposure

Given the scarce effects of Gly on ROS production (Figures 6A,
B) and since there were not changes in mitochondrial distribution
and mass after 24 h of Gly (Figure 7A) or AMPA (Figure 7B)
exposure, we hypothesized that H9c2 cells were able to overcome the
injury. To verify this hypothesis, we tested cell viability of H9c2 cells
after prolonged exposure (24 and 48 h) to low doses (1 μM–1 mM)
of Gly or AMPA.

As expected, after 24 h of low doses of Gly exposure, cell viability
is totally rescued, except for the 1 mM dose (Figure 8A). After 48 h,
the control phenotype was restored under all doses (Figure 8B).

As regards to AMPA treated-group, after 24 h, cell viability was
comparable to control cells (Figure 8A). Surprisingly, after 48 h of
exposure, cell viability decreased by ≡ 40% at all doses (Figure 8B).

4 Discussion

Gly is considered an environmental pollutant as active
compound of a large part of non-selective herbicidal largely used
worldwide in the last 50 years (Torretta et al., 2018). As a matter of
fact, traces of Gly and AMPA (its main degradation product) are
commonly detected in samples of water, soil and food (Bai and
Ogbourne, 2016; Bonansea et al., 2017; Silva et al., 2018; Xu et al.,
2019). This diffuse contamination leads to a constant exposure,
representing both an ecological and a health concern for humans

and animals. Despite its plant-specific mechanism of action, Gly has
been proven to have either acute or chronic toxicity in different
animal species, including mammals.

4.1 Glyphosate effects

At high doses, Gly treatment determines a great reduction in
myoblasts viability after 2 h (Figure 1A). The response appears very
early, since 10 mM treatment is able to reduce cell viability already
after 5 min (Figure 4A). Furthermore, cell shrinkage and membrane
blebbing are already visible soon after the application of the
treatments (Figure 2, top panels). Signs of cell damage are still
present after 24 h (Figure 2, bottom panels). Coupled to the
reduction in cell viability, these morphologic alterations suggest
an involvement of apoptotic pathways (Sardão et al., 2009; Gui et al.,
2012; Zhang et al., 2018; Noritake et al., 2020). Benachour and
Séralini (2009) showed that in vitro pure Gly treatment caused
apoptosis via caspase (cas)-3 and -7 activation, already after 6 h, in
three different human cell lines. Gly-dependent increase in cas-3,
-8 and -9 activity was also recently confirmed in human peripheral
blood mononuclear cells (hPBMCs) (Kwiatkowska et al., 2020).
Moreover, in a neuroblastoma cell line (SHSY-5Y), 5 mM Gly
treatment altered the expression of different apoptosis-related
genes such as BAX, BCL2, CASP3 and CASP9 (Martínez et al.,
2020).

The toxic effects we observed were related, at least in part, to
ROS production and mitochondrial abnormalities. Mitochondria
are, in fact, key players in maintaining cellular redox status and
homeostasis. Upon a toxic stimulus, mitochondria may trigger an
apoptotic response through cytochrome c release followed by the
activation of cas-9-dependent pathway (Orrenius, 2004). A dose of
10 mM Gly determined a great production of ROS already after
5 min (Figure 4B), reaching the peak after 1 h (Figure 3B). In
addition, 1 h of Gly treatment rapidly provoked mitochondrial
disruption (Figures 5A, B). This is in line with what shown in
hPBMCs, in which 4 h in vitroGly treatment, from 0.05 mM, caused

FIGURE 4
Cell viability & ROS production. The figure shows the relative histograms obtained from: (A) MTT and (B) DCF-DA assays. H9c2 cells were treated
with 10 mM of glyphosate at different time points (from 5 to 30 min). After the treatments, cell viability and ROS production were assessed, respectively,
through MTT and DCF-DA assays. Mean ± SD; p-values: C < 0.0001 vs. control. NO DCF: control lane without the fluorescent probe.
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a significant reduction in mitochondrial membrane potential
(ΔѰm) and a consistent ROS production. These effects were
markedly increased at 5 mM concentration (Kwiatkowska et al.,
2020). H9c2 viability after 1 or 2 h of Gly exposure was comparable
(Figure 3A), altogether suggesting that the damage could occur
during the first hour. However, it remains a speculation since we did
not checked these data in a longest time-window for this range of
Gly concentration.

The same drastic effects were not detected at lower
concentrations (1 μM–1 mM), in which there was only a slight
(although significant) variation in cell viability (Figure 6A) and
ROS production (Figure 6B) after acute treatment. Similar results
were obtained from Kim et al. (2013): the researchers found that the
treatment with pure Gly up to 10 µM was not able not alter

H9c2 features in terms of caspases activation, cell morphology
and ΔѰm. As a further confirmation of the low toxicity, the sub-
chronic exposure (24 or 48 h) of H9c2 to low doses of Gly showed a
total rescue of the phenotype in terms of cell viability (Figures 8A, B)
and no variations in mitochondrial dynamics (Figure 7A) or cell
morphology (data not shown), suggesting that the cells were able to
recover from the damage. A similar type of behaviour has been
already reported by Townsend et al. (2017), which demonstrated
that Gly is lethal to Raji cells (a line of lymphoblast-like cells) at
concentrations above 10 mM, while no cytotoxic effects were
observable at concentrations at or below 100 μM. Furthermore,
in their study, acute (from 30 to 60 min) Gly treatment in
concentrations between 1 and 5 mM induced significant DNA
damage, which was totally recovered after 2 h.

FIGURE 5
Ultrastructural analysis and mitochondria quantification. The figure shows: (A) Ultrastructure of HM in H9c2 cells control group (green arrows); (B)
morphology of DM (red arrows) and HM (green arrows) in GLY group (10 mM, 1 h of treatment) (Scale bar = 1 µm); (C) higher magnification of HM in
control group and (D) higher magnification of DM in GLY group (Scale bar = 0.2 µm). In (E) the relative boxplots of the mitochondrial count are shown.
p-values: C < 0.0001 vs. control.
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Overall, our original results are not in contrast with what
previously reported in literature. Gly appears toxic, on average,
at- or above 1 mM in different mammalian and non-mammalian
cell types, while at low doses it is relatively safe. The toxicity
mechanisms seem to be related to oxidative stress, induced by
mitochondrial dysfunctions or disruption of antioxidant systems
(Contardo-Jara et al., 2009; Kwiatkowska et al., 2014; Lopes et al.,

2014; Jin et al., 2018; Vanlaeys et al., 2018; Martínez et al., 2020;
Nerozzi et al., 2020; Madani and Carpenter, 2022; Strilbyska et al.,
2022).

It remains unclear whether Gly exerts its toxicity by acting in an
intra- or extra-cellular manner. Unfortunately, as of today, it is not
known whether glyphosate is transported into mammalian cells and
how it may vary across different cell lines. A 2016 study performed

FIGURE 6
Cell viability and ROS production. The figure shows the histograms obtained from: (A) MTT and (B) DCF-DA assays. H9c2 cells were treated with
1 μM to 1 mM of glyphosate and/or 100 µM of NAC for 2 h. After the treatments, cell viability and ROS production were assessed, respectively, through
MTT and DCF-DA assays. Mean ± SD; p-values: ◇ < 0.005; ○ < 0.0005; C < 0.0001 vs. control. NO DCF: control lane without the fluorescent probe.

FIGURE 7
Mitochondrial distribution. The figure shows the representative images (40X, scale bar = 10 µm) of H9c2 cells stained with the mitochondrial
fluorescent dye MitoTracker Green FM. H9c2 cells were treated with 100 nM to 1 mM of (A) glyphosate (GLY) or (B) AMPA for 2 or 24 h.
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on a human epithelial cell line suggests an active uptake mediated by
the L-type aminoacid transporter (LAT) (Xu et al., 2016). We
evaluated whether our cells could use this carrier for Gly uptake.
To do so, we co-treated the cells with different doses of glyphosate
(5, 10 and 20 mM) and a specific LAT-1 inhibitor (2-aminobicyclo-
(2,2,1)-heptane-2-carboxylic acid, BCH) in acute settings (1 and
2 h). We, then, assessed cell viability and ROS production through
MTT and DCF-DA assays, respectively, that did not show any
changes in Gly-driven cytotoxicity (data not shown), suggesting that
cardiac myoblasts use a different type of transport system and/or
that Gly toxicity relies on a receptor-mediated signalling.

4.2 AMPA effects

Cells exposure to AMPA showed two types of responses.
There was an acute cytotoxic response to high doses (10 or
20 mM), as demonstrated by a reduction in cell viability
(Figure 1A) and an increase in ROS production (Figure 1B).
Membrane blebbing, cell shrinkage and cytoplasmic cavitation
were observable at t0 (Figure 2, top panels), but not after 24 h of
treatment (Figure 2, bottom panels). Overall, in this range of
concentrations, AMPA treatment was less toxic than Gly.
Kwiatkowska et al. (2020) observed an analogous behavior: in
hPBMCs, the treatment with AMPA induced hydroxyl radical
formation only at the highest concentration (5 mM), while Gly
treatment was effective already at 0.05 mM. Similarly, in a study
from 2018, it was observed an increase in ROS levels in hPBMCs
exposed to 1 mM Gly, but not to the same concentration of
AMPA (Woźniak et al., 2018). In SHSY-5Y cells, after 48 h of
exposure to 10 mM AMPA there was a significant increase is ROS
production, while Gly exerted the same effect at 5 mM (Martínez
et al., 2020).

Conversely, when treated sub-chronically at low doses (from
1 to 1 mM), H9c2 cells showed a late cytotoxic response to AMPA.
After 48 h, there was a decrease in cell viability about 40% at all
doses (Figure 8B). This was somehow unexpected, given the scarce
amount of data about AMPA effects (especially in mammals)
(Grandcoin et al., 2017; Bailey et al., 2018; Stur et al., 2019),

and represents a result that need to be explored with more
detail. A non-monotonic response to sub-lethal doses of AMPA
was recently reported in amphibians. In such experimental model,
the chronic treatment with low (0.07 μg/L) and medium (0.32 μg/
L) doses of AMPA determined a significant dysfunction of the
antioxidant machinery, which authors suggest to be linked to a
hyper-stimulation of catalase activity, while high doses (3.57 μg/L)
did not recapitulate the same effect (Cheron et al., 2022). We
hypothesize that the early response could be due to a direct
extracellular damage (as the binding with a receptor), while the
late one could be secondary to bioaccumulation. Accordingly, it
was demonstrated that, in hPBMCs, AMPA treatment determined
an increase in both cas-8 [generally associated with the death
receptors-mediated apoptotic pathway (Orrenius, 2004)] and cas-9
[involved in the mitochondrial-mediated apoptotic pathway
(Orrenius, 2004)] activity (Kwiatkowska et al., 2020), supporting
the hypothesis that the molecule is able to trigger both types of
response. The activation of cas-3 and cas-9 pathways, following
48 h of AMPA treatment, was also reported by Martínez et al.
(2020) in SHSY-5Y cells.

The fact that Gly treatment did not determine the same effects,
could have two means: (I) Gly is not actively metabolized in AMPA
neither inside nor outside our cells; (II) the kinetic of Gly to AMPA
biotransformation is very slow, so more time is necessary to start to
see the effects (Bailey et al., 2018).

4.3 Conclusion

Overall, we confirmed in our model previous in vitro studies
indicating that pure Gly is toxic when administered at high
concentrations, causing alterations in cell viability, morphology
and mitochondrial health. At low doses, Gly causes only a slight
cytotoxic response and the phenotype is rescued within 24 h. AMPA
recreates almost the same effects, but with a lesser extent. Moreover,
we provided new evidences about a late cytotoxic response to low
doses of sub-chronically administered AMPA. In each condition,
mitochondria and the antioxidant machinery are likely to be key
mediators, a finding which is largely supported by the literature.

FIGURE 8
Cell viability. The figure shows the relative histograms obtained fromMTT assays. H9c2 cells were treated with 1 μM to 1 mM of glyphosate (GLY) or
AMPA for (A) 24 h or (B) 48 h. Mean ± SD; p-values: ◇ < 0.005; C < 0.0001 vs. control.
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Unfortunately, the comprehension of the mechanisms by which Gly
is possibly imported into mammalian cells is very limited, nor is
clear if it is actively or inactively metabolized within the cells.
Unveiling these aspects would help to clarify whether the damage
is receptor-mediated or if it occurs after the internalization of the
molecules. Furthermore, it is of pivotal importance to have a reliable
measure of the real human exposure to glyphosate and AMPA, in
order to critically evaluate all the scientific data obtained as of today.
Since the main route of exposure of the general population to Gly is
through the diet, it is pivotal to perform quality control of the agro-
food chain. In particular, on those foods which are more likely to
contain Gly such as fish/meat and derivatives, cereals and
derivatives, honey and beverages such as tea, beer and wine.
Some studies have been already conducted and are reported in a
recent review by Soares et al. (2021). To do so, there is the urge to
develop standardized quantification systems with good sensitivity
(that should be well below the maximum residue limit established)
but also affordable in terms of technical equipment and costs, a goal
achievable with HPLC-related methodologies. Last, in order to shed
light on the debate about Gly safety, it would be helpful to
distinguish between the damages directly related to the pure
molecules and its metabolites and the ones mediated (or
amplified) by the adjuvants, i.e., the surfactants, present in the
different GBH formulations.

This study needs further research to address additional scientific
concerns: first, we did not included AMPA in all of the experiments,
since we did not expect to observe any appreciable effect (especially
at low doses); second, we did not examine in depth the effects of the
chronic exposure of the two substances. However, the evaluation of a
chronic treatment in an in vitro environment is limited and this
study was intended as a pilot to identify a sub-toxic range, coherent
with the environmental exposure, to evaluate the chronic toxicity of
Gly in vivo.
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A novel estimate of biological
aging by multiple fitness tests is
associated with risk scores for
age-related diseases

A. Manca1†, G. Fiorito1†, M. Morrone1, A. Boi1, B. Mercante1,
G. Martinez1, L. Ventura1, A. P. Delitala2, A. Cano1, M. G. Catte1,
G. Solinas1, F. Melis1, F. Ginatempo1 and F. Deriu  1,3*
1Department of Biomedical Sciences, University of Sassari, Sassari, Italy, 2Department ofMedicine, Surgery
and Pharmacy, University of Sassari, Sassari, Italy, 3Unit of Endocrinology, Nutritional and Metabolic
Disorders, AOU Sassari, Sassari, Italy

Introduction: Recent research highlights the need for a correct instrument for
monitoring the individual health status, especially in the elderly. Different
definitions of biological aging have been proposed, with a consistent positive
association of physical activity and physical fitness with decelerated aging
trajectories. The six-minute walking test is considered the current gold
standard for estimating the individual fitness status in the elderly.

Methods: In this study, we investigated the possibility of overcoming the main
limitations of assessing fitness status based on a single measure. As a result, we
developed a novel measure of fitness status based on multiple fitness tests. In 176
Sardinian individuals aged 51–80 years we collected the results of eight fitness
tests to measure participants’ functional mobility, gait, aerobic condition,
endurance, upper and lower limb strength, and static and dynamic balance. In
addition, the participants’ state of health was estimated through validated risk
scores for cardiovascular diseases, diabetes, mortality, and a comorbidity index.

Results: Six measures contributing to fitness age were extracted, with TUG
showing the largest contribution (beta = 2.23 SDs), followed by handgrip
strength (beta = −1.98 SDs) and 6MWT distance (beta = −1.11 SDs). Based on
fitness age estimates, we developed a biological aging measure using an elastic
net model regression as a linear combination of the results of the fitness tests
described above. Our newly developed biomarker was significantly associated
with risk scores for cardiovascular events (ACC-AHA: r = 0.61; p = 0.0006; MESA:
r = 0.21; p= 0.002) andmortality (Levinemortality score: r = 0.90; p= 0.0002) and
outperformed the previous definition of fitness status based on the six-minute
walking test in predicting an individual health status.

Discussion:Our results indicate that a composite measure of biological age based
on multiple fitness tests may be helpful for screening and monitoring strategies in
clinical practice. However, additional studies are needed to test standardisation
and to calibrate and validate the present results.

KEYWORDS

biological age-chronological age, aging, cardiovascular diseases, 6-min walking test,
timed “up and go” test, ten meter walk test, handgrip test
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Introduction

Persons of the same chronological age may vary in their pace of
aging, suggesting that chronological age is an inadequate proxy of
biological aging (Liu et al., 2018). Most researchers agree that
biological or phenotypic aging can be described as the
accumulation of damages at the cellular, molecular, tissue and
organ levels, which lead to “age-related changes in an organism
that adversely affect its vitality and functions” (Finch, 1994; Gilbert,
2000). The characteristics of biological aging, as distinguished from
diseases of aging, affect all the individuals of a species.

The current gold standard for quantifying biological aging is
DNA methylation (DNAm), which allows estimating chronological
and biological ages through epigenetic clocks that can also predict a
variety of aging outcomes, including all-cause mortality, cancers,
health span, and physical functioning (Levine et al., 2018). Biological
age can also be estimated via a newly introduced tool, the Phenotypic
Age calculator, which considers a combination of blood-measured
biomarkers associated with longevity (Levine et al., 2018). Only very
recently, epigenetic clocks have started to incorporate physical
fitness (PF) parameters into their calculations (e.g., the DNAm
FitAge) (McGreevy et al., 2022). These measures have been
shown to correlate with changes in molecular signs of decline
and can provide further insights into the effect of lifestyle on the
aging process.

The American College of Sports Medicine defines PF as “a set of
attributes that people have or achieve that relates to the ability to
perform physical activity. It is also characterized by 1) an ability to
perform daily activities with vigor, and 2) a demonstration of traits
and capacities that are associated with a low risk of premature
development of hypokinetic diseases (e.g., those associated with
physical inactivity)” (Wilder et al., 2006). Indeed, maintaining good
levels of PF during adulthood and later life, i.e., active aging, helps
preserve autonomy and functional abilities and decelerate aging
trajectories (Pareja-Galeano et al., 2015; Fiuza-Luces et al.,
2018). Adequate PF is considered an established protective
factor against chronic diseases and age-related disabilities
(Sanchez-Sanchez et al., 2020). Importantly, the amount of
physical activity accomplished in the transition from adult to
older age is crucial to fostering successful ageing and has been
shown to surpass other cardiovascular or sociodemographic risk
factors that are classically associated with adverse health
outcomes (Sanchez-Sanchez et al., 2020). Health benefits of
active aging include reduced hospitalization and mortality
rates, increased lifespan, and quality of life (Ekelund et al.,
2019; Sanchez-Sanchez et al., 2020). It has been pointed out
that preventing loss of physical and cognitive function and
improving mental health and social engagement are the main
benefits whereby physical activity would mostly contribute to
improved chances of successful and healthy aging (Szychowska
and Drygas, 2022). Older adults who maintain a regular
physically active lifestyle have been extensively reported to
display estimated biological ages considerably younger than
their chronological ages (Nakamura et al., 1989; Levine et al.,
2018; Sanchez-Sanchez et al., 2020; World Health Organization,
2015). The World Health Organization (WHO, 2002) defines
healthy aging, “as the process of developing and maintaining the
functional ability that enables wellbeing in older age” (Beard

et al., 2016). Within such multidimensional framework, where
the aging person needs to stay active to remain a resource to
families, communities and economies, PF has proved among the
most important contributors to healthy aging (Tucker, 2017).

In light of the above background, defining PF levels accurately
and reliably is, therefore, of critical importance. Even though PF can
be determined by multiple components—the main ones being body
composition, cardiorespiratory endurance, muscular strength,
flexibility, and balance (Caspersen et al., 1985), the
cardiorespiratory domain is by far the most examined. This is
generally accomplished by means of the gold standard for
cardiorespiratory fitness assessment, which is the maximum
oxygen uptake obtained at the end of a cardiorespiratory exercise
testing. In low-resource environments or the clinical setting,
submaximal and field exercise tests are more feasible and
generally preferred (Ross et al., 2016). Among these, the Six-
Minute Walk test (6MWT) has emerged as the most employed
test for cardiorespiratory fitness and overall functional capacity
(Matos Casano and Anjum, 2022). The 6MWT was introduced
by the American Thoracic Society in 2002 as a sub-maximal exercise
test to assess aerobic capacity, endurance, and PF (ATS Committee
on Proficiency Standards for Clinical Pulmonary Function
Laboratories, 2002). Beyond assessing PF and the individual’s
functional capacity, it also provides information regarding the
systems involved in physical activity, including pulmonary and
cardiovascular systems, blood circulation, body metabolism, and
peripheral circulation (ATS Committee on Proficiency Standards for
Clinical Pulmonary Function Laboratories, 2002). This has led to
consider the 6MWT as a global mobility and PF test for both, healthy
and diseased populations (Wiener et al., 2019; Soares-Miranda et al.,
2021; Elshafey and Alsakhawi, 2022; Matos Casano and Anjum,
2022).

In the clinical setting, the 6MWT still provides the main
definition of PF, despite this outcome is increasingly being
assessed in research over different components (aerobic fitness,
muscular strength and endurance, flexibility, and body
composition). Some studies have recently attempted to overcome
this limitation by employing more comprehensive testing
procedures to determine PF in the elderly. Mack-Inocentio et al.
(2020) evaluated PF in 590 older adults aged 60+ years through a
multi-domain battery of as many as ten motor-functional tests and
found that a smaller set of these (trunk strength, handgrip strength,
6MWT, sit-to-stand, sit-and-reach) could explain the largest
amount of variation in physical performance and functional
capacity of persons older than 60 years.

Based on the above background, we hypothesized that the new
multi-domain definition of PF would outperform the mono-
dimensional definition based on the 6MWT in predicting the
abovementioned health risk scores of our mixed cohort of
middle-aged and older adults. Therefore, the present study
aimed at 1) profiling biological aging in a group in the
50–80 years through multiple fitness tests; 2) overcoming the
main limits of the 6MWT and identifying a comprehensive and
novel measure of biological aging based on different components
of fitness; 3) identifying the best motor predictors of biological
aging, and 4) testing their ability to estimate an individual state of
health, though investigation of their association with
cardiovascular, morbidity and mortality risk scores.
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Materials and methods

Participants

The current study was advertised via social networks and public
engagement events to find participants. The group facilitator also
gave a public lecture previewing the study project at the University
of Sassari, Italy. Participants were required to be 50 years old or over
at the time of the examination (from February 2021 to December
2021) and have no medical, physical, or cognitive condition that
would interfere with participation in the functional assessments. We
selected the first 300 respondents deemed apparently eligible after a
preliminary telephone interview. After thoroughly screening for
eligibility, 176 volunteers participated in the study. Figure 1
presents the study flow chart according to the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
checklist (Vandenbroucke et al., 2007). The Institutional Review
Board and the Clinical Research Ethics Committee approved all
procedures involving human subjects (ID: PG/2020/16846).
Following the Declaration of Helsinki, written informed consent
was obtained from each participant before inclusion and
participation in the tests.

Clinical examination

The subjects were evaluated by a geriatric specialist to ensure
that they met the eligibility criteria. The patient’s heart rate and
blood pressure were measured during the examination. At the
same time, respiratory, rheumatologic, neurological,

cardiovascular, musculoskeletal, neoplastic, and metabolic
conditions were thoroughly investigated. Additional factors
that may influence health outcomes, such as the participant’s
smoking history, level of education, and current pharmacological
therapy, were evaluated and recorded. The Italian validated
version of the Geriatric Depression Scale was used to assess
the subject’s depression (Galeoto et al., 2018). Lastly,
adherence to the Mediterranean diet was evaluated using the
MEDIET questionnaire, with scores ranging from low
(0–5 points), medium (6–8 points), to maximal adherence
(>9 points) (Ros et al., 2014).

Motor-functional tests

Eight different tests were administered to examine the
participant’s functional mobility, gait, aerobic condition,
endurance, upper and lower limb strength and static and
dynamic balance: 1) the Four Square Step Test (4SST) (Cleary
and Skornyakov, 2017); 2) the Timed Up and Go test (TUG)
(Podsiadlo and Richardson, 1991); the 10 m Walk Test
(10MWT) evaluating both the 3) self-selected and comfortable
walking speed and 4) fastest walking speed (Perera et al., 2006);
5) the Short Physical Performance Battery (SPPB) (Perera et al.,
2006); 6) 6MWT (ATS Committee on Proficiency Standards for
Clinical Pulmonary Function Laboratories, 2002); maximum
voluntary isometric contraction of both the dominant 7) forearm
(Handgrip test) and 8) quadriceps (Abizanda et al., 2012).
Dynamometric measurements were performed with a Handgrip
Dynamometer (G200, Biometrics LTD., Newport, United Kingdom)

FIGURE 1
Study flow chart.
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and with a hand-held dynamometer (MyoMeter M550, Biometrics
LTD., Newport, United Kingdom) connected to a laptop via the
same data collection tools.

Between each test repetition, a 1-min rest was given to recover,
and a 2-min rest between one test and the next. The time taken to
complete the tests was monitored using a stopwatch.

Statistical analyses

Biological age definition
We defined the biological age of study participants based on

the results of the motor-functional tests described above using a
statistical approach previously employed to define the
epigenetic age (Horvath, 2013). Specifically, we employed a
linear regression model with elastic net regularization, where
chronological age was the dependent variable (y), and the
standardised results of the motor tests were the predictors
(x1, x2, . . .). The elastic net model, including λ1 and λ2
penalisations, allows extracting relevant predictors of y and
avoids overfitting simultaneously. The optimal values of the
λ1 and λ2 parameters were derived as those minimising the root
mean squared error (RMSQ) averaging from 100 permutations
in which 80% of the sample was used (glmnet R package). The
model-predicted age was defined as the biological/fitness age. By
definition, individuals with higher predicted than chronological
age are experiencing accelerated ageing and vice versa. Further,
we determined the fitness age acceleration measure (fitAA) as
the residuals of the regression of fitness age on
chronological age.

State of health/risk scores
We computed three composite risk scores predictive of 10-year

risk of cardiovascular diseases:

• the Framingham Risk Score (FRS) (D’Agostino et al., 2008),
• the Cardiovascular disease (CVD) risk from the American
College of Cardiology (ACC) and American Heart Association
(AHA) (Goff et al., 2013),

• the CHD risk prediction based on the MESA cohort (Budoff
et al., 2018).

The three CVD scores include measures of total and HDL
cholesterol, available for a subgroup of the whole study sample
(N = 74). In this subsample, we computed the three CVD scores
and a reduced version without using total and HDL cholesterol
values. The CVD score calculated without cholesterol values had a
Pearson correlation higher than 0.99 with the original measure
for all three measures. Based on the above, we used the CVD risk
score without cholesterol for subsequent analyses to increase the
sample size. Also, we computed a composite score for the risk of
diabetes within 7.5 years according to the algorithm described by
Stern et al. (Stern et al., 2002). Similarly to what was described for
CVD risk, the diabetes score version computed without
cholesterol measures strongly correlated (R > 0.99) with the
original one. Finally, we calculated the 10-year mortality score
according to Levine et al. (Levine et al., 2018) and the Charlson
Comorbidity Index (CCI) (Roffman et al., 2016).

Results

This study sample included 176 volunteers (60,2% women) aged
51–80. Table 1 summarizes study sample characteristics, including
anthropometric variables, health lifestyle variables such as smoking
history, dietary status and polypharmacy and the maximum
education attained as a proxy for the socio-economic status, and
lifestyle. The average age was 66.5 years (SD = 7.8). Most of the study
participants hold a high-school diploma (45%), whereas 5%
attended primary school only; the average body mass index
(BMI) was 26.9 kg/m2 (SD = 3.9); 56% were never smokers;
finally, the average adherence to the Mediterranean diet score
was moderate in women (median = 6, IQR = 2) and low in men
(median = 5, IQR = 2).

Fitness age definition and components

Our elastic net model extracted six features, as described in
Table 2. A precise ranking was identified in how much each test
contributed to fitness age. The weights in Table 2 can be interpreted
as the increase in biological age for each increase by one standard
deviation of the corresponding test result. Positive coefficients/
weights indicate motor tests whose results are higher in an
individual with higher fitness age and vice versa. Accordingly,
TUG had the largest contribution, followed by handgrip strength
and 6MWT distance.

As expected, the predicted (fitness) age correlated with the
chronological age (Pearson 0.75, p < 0.0001; Figure 2). This
applied both to women and men. Based on this relationship, the
novel measure fitAA was derived as the residual of the linear
regression of fitness age on chronological age.

Association of fitAA with risk scores

In Table 3 we showed the results of the linear regressions of risk
scores with fitAA adjusted for covariates as described in Methods.
The results are presented in Table 3. Increased value of the fitAAwas
significantly associated with ACC-AHA and MESA scores for CVD
risk, and with the Levine mortality score.

FitAA vs. previous definition of physical
fitness in predicting risk scores

Based on the results above, we propose to classify individual
fitness status according to the newly developed fitAA measure.
Specifically, we defined individuals with fitAA scores lower
than −2.5 as “FIT”; individuals with fitAA scores ranging
from −2.5 to 2.5 as “NORMAL”; and those with fitAA higher
than 2.5 as “UNFIT”. Then, we compared the newly developed
classification of fitness status with that commonly used in the
literature based on the 6MWT (Matos Casano and Anjum, 2022)
in the ability to predict risk scores for CVD, diabetes and mortality.
Table 4 reports the results of the association of the categorical fitness
status vs. risk scores, according to the two definitions described
above.
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The fitness status definition based on fitAA outperformed the
previous classification based on the results of the “6 min walking
test” in estimating CVD andmortality scores, as shown in Table 4. In

fact, no significant associations of risk scores with fitness status
based on the 6MWT were detected, whereas fitness status based on
fitAA was significantly associated with ACC-AHA and MESA CVD
scores, and the Levine mortality score.

Discussion

In this exploratory study we provide evidence that the individual
biological age of our sample can be efficiently estimated by the
comprehensive set of motor tests assessed here. The elastic net
regression model identified the variables mostly contributing to
biological age: the time needed to complete the TUG, and maximal
handgrip strength, suggesting that in clinical practice, the results of
these two tests deserve more attention for assessing an individual
state of health. The strong association of these physical tests with
biological age was not unexpected. Low grip strength at midlife may
indicate subclinical disease, which later develops into clinical disease
and disability, whereas good grip strength may mark some general
intrinsic midlife vitality or motivation that tracks into good
functional ability in old age (Rantanen et al., 1999). Handgrip
strength, gait speed and ability to independently rise from a chair

TABLE 1 Anthropometric and demographic characteristics of the participants.

Variable (units of measurement) Women N = 106 Men N = 70 Total N = 176

Age (years) 66.97 ± 7.46 65.74 ± 8.2 66.48 ± 7.77

(65.53, 68.41) (63.79, 67.7) (65.33, 67.64)

Weight (kg) 63.55 ± 10.41 78.35 ± 12.22 69.44 ± 13.29

(61.55, 65.56) (75.43, 81.26) (67.46, 71.41)

Height (m) 1.53 ± 0.09 1.69 ± 0.07 1.59 ± 0.11

(1.51, 1.55) (1.67, 1.71) (1.58, 1.61)

Body mass index (kg/m2) 26.77 ± 4.17 27.27 ± 3.61 26.97 ± 3.95

(25.97, 27.58) (26.41, 28.13) (26.38, 27.56)

Mediterranean diet adherence [pts: median (IQR)] 6 (2) 5 (2) 6 (2)

Comorbidity index (pts) 3.12 ± 1.68 2.71 ± 1.31 2.96 ± 1.55

(2.8, 3.45) (2.4, 3.03) (2.73, 3.19)

Geriatric depression scale (pts) 4.65 ± 2.68 4.07 ± 2.72 4.42 ± 2.7

(4.13, 5.17) (3.42, 4.73) (4.02, 4.83)

Polypharmacy (count) 2 (2) 1 (3) 1 (2)

Smoking history Not smoking n = 85 n = 62 n = 147

Smoking n = 18 n = 7 n = 25

Never smoked n = 57 n = 40 n = 97

Have smoked n = 46 n = 29 n = 75

Education level Primary school n = 6 n = 3 n = 9

Middle school n = 28 n = 12 n = 40

High school n = 44 n = 35 n = 79

Tertiary + n = 25 n = 17 n = 42

All data are presented as mean ± standard deviation and 95% confidence interval, except for polypharmacy data (expressed as median and IQR, interquartile range). Abbreviations: kg,

kilograms; m, meters; pts, points.

TABLE 2 Coefficients of the elastic net model for selected variables
contributing to the biological age (FitAge).

FitAge coefficients

Variable Coefficient (SDs)

TUG time 2.23

Handgrip strength −1.98

6MWT distance −1.11

Fast walking 10MWT time 0.95

4SST time 0.23

Quadriceps strength −0.19

Abbreviations: SDs, standard deviations; TUG, timed up and go test; 6MWT, 6-min walk

test; 10MWT, 10-m walk test; 4SST, four square step test. Coefficients indicate the

standardized weight of each motor test in the construction of the biological/fitness age.

Coefficients equal to zero indicate no contribution to the biological aging measure.
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(the latter two being essential components of the TUG) are tests of
muscle strength and function that have been recommended by
international study groups on sarcopenia, including the European
Working Group on Sarcopenia in Older People (EWGSOP)
(Cruz-Jentoft et al., 2010), the Asian Working Group for
Sarcopenia (Chen et al., 2014), and the International Working
Group on Sarcopenia (Fielding et al., 2011) for the screening and
diagnosis of sarcopenia. In this regard, handgrip strength is an
established and powerful predictor of healthy aging beginning
from midlife (Rantanen et al., 1999). Our findings on the
relevance of TUG and handgrip also align with a more recent
study where these tests were found to be the best predictors of
short-term mortality in the elderly (Chua et al., 2020). They also
agree with a pertinent consensus of experts, who proposed a panel
of biomarkers of healthy ageing, which include the TUG and
handgrip strength among the five biomarkers of physical
capability (Lara et al., 2015). Interestingly, the other
biomarkers are balance, gait speed and chair rising, all three
being key components of the TUG.

Although preliminary, this finding suggests that these simple
and well-known physical tests are strong and useful markers for
predicting healthy aging trajectories. We also observed that the
universally employed 6MWT was not a major contributor to age
prediction. This disagrees with a relatively large and recent body of
literature referring to this test as a measure of physical functioning
and fitness (Wiener et al., 2019; Soares-Miranda et al., 2021; Elshafey
and Alsakhawi, 2022). The gold-standard for demonstrating the
physical fitness of an individual is the direct determination of peak
oxygen uptake, which is considered the best indicator of
cardiovascular fitness and aerobic endurance (Edvardsen et al.,
2013). Due to the high costs and low feasibility of this approach
in settings other than research, the walking distance covered in
6 min has been progressively supported as a low-cost, more
applicable alternative to estimate fitness status, particularly in the
elderly and diseased populations (Matos Casano and Anjum, 2022).
However, age prediction models based on multiple domains are
increasingly being favored over unidimensional measures as they
can predict the individual health status in a more comprehensive
manner. In this regard, Mack-Inocentio and colleagues introduced
the Vitality Test Battery as a relatively simple tool that can be used to
assess the physical condition of senior men and women outside a
laboratory (Mack-Inocentio et al., 2020). Compared to their tool,
which consists of a battery of 10 tests (6-min walk, trunk
strength, hand grip strength, medicine ball throwing, 30-s
chair stand, flexibility, balance, plate tapping, ruler drop, and
dual task), our novel measure of fitness status based on the
biological age, i.e., the fitness age acceleration (fitAA) that we
developed, relies on two major contributors to fitness age,
i.e., TUG test and handgrip strength, and to a minor extent,
on the 6MWT. This measure was calculated into two steps: 1) an
elastic net penalised regression model is trained to predict the
chronological age of individuals; 2) the residuals of the
regression of predicted (biological) on observed
(chronological) age is defined as the age acceleration (or
deceleration in the case of negative values) according to the
physical fitness revealed by the set of physical tests administered.
In this context, fitAA may be used as a quantitative measure of
the difference between biological and chronological age,
allowing the identification of individuals experience
accelerated (or decelerated) aging.

When we measured the ability of this newly introduced
measure to predict health status in terms of its association

FIGURE 2
Scatterplot of chronological age (x-axis) vs. fitness age (y-axis).
Men and women are indicated with blue and red dots respectively.
Dashed lines are derived using the least squared error method.

TABLE 3 Results of the linear models in which each risk score was used as the outcome (dependent variable) and fitness age acceleration (fitAA) as the predictor,
adjusting for covariates.

Estimate 95% CI p

Framingham CVD score 0.26 (-0.04; 0.56) 0.0903

ACC AHA CVD score 0.61 (0.27; 0.95) 0.0006

MESA CVD score 0.21 (0.08; 0.35) 0.0023

Stern diabetes risk score −0.25 (-1.14; 0.63) 0.5763

Comorbidity index 0.02 (-0.05; 0.08) 0.6469

Levine mortality score 0.90 (0.43; 1.37) 0.0002

Abbreviations: fitAA, fitness age acceleration; CI, confidence interval; CVD, cardiovascular diseases; ACC, American College of Cardiology; AHA, American heart association; MESA, multi-

ethnic study of atherosclerosis. Estimates can be interpreted as the increase in the percentage risk score for each year increase in fitAA. Only significant p values should be in bold.
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with risk scores for CVD and mortality and compared it with the
conventional definition of fitness based on the 6MWT, we found
that fitAA, unlike 6MWT, was significantly associated with
major health risk scores calculated according to established
formulae (D’Agostino et al., 2008; Goff et al., 2013; Budoff
et al., 2018; Levine et al., 2018; Roffman et al., 2016): the
higher fitAA, the higher the short term risk of cardiovascular
events and death.

To improve the interpretability of our results we categorized
individuals into three groups according to their fitAA value:
individuals with fitAA lower than −2.5 years (labelled as “FIT”)
showed the highest fitness and lowest risk scores, suggesting that
they experience slower and healthier ageing. Conversely, individuals
with fitAA higher than +2.5 years showed the lowest fitness and
highest risk scores, suggesting accelerated and less healthy ageing.
Scores between these two cut-offs characterise individuals whose
biological age is close to their chronological age and with
intermediate risk scores.

Such estimates can be interpreted as the increase in the risk score
of “NORMAL” and “UNFIT” individuals compared to the “FIT”
group used as the reference. Accordingly, we estimated that an
“UNFIT” individual has, on average, around 5% higher probability

of dying or experiencing a CVD event within the next 10 years than a
“FIT” individual. This categorization allowed us to compare our
multi-level measure with that based on the conventional 6MWT.
This study’s results highlight that a composite measure of fitness
status outperforms 6MWT in estimating the state of health of an
individual.

This work has limitations. First, we collected data from a mixed
cohort of middle-aged and older adults. Further, the available
sample size does not allow us to generalise these results to the
whole population over 50 years and does not allow setting-up cut-
offs for the definition of accelerated, normal, or decelerated aging.
However, we provided proof of the advantages of using multiple
fitness tests to assess the health status of the elderly. The weights
defined in this study through the elastic net regression model must
be calibrated and validated in larger population studies before they
can be used in clinical practice.

Further, additional studies are needed to assess fitness status
separately in women and men, as the measures to evaluate it in the
elderly and the transition from adult age to elderly may behave
differently in the two sexes, even though our data consistently
ranked the TUG as the major contributor to biological age in
both men and women.

TABLE 4 Results of the linear models in which each risk score was used as the outcome (dependent variable) and categorization of the fitness status as the
predictor, adjusting for covariates. Estimates can be interpreted as the increase in the percentage risk score for individual in the NORMAL and UNFIT categories
compared to the FIT (reference) group.

Fitness status based on the 6 min walking test Fitness status based on the fitAA measure

Estimate 95% CI p Estimate 95% CI p

Framingham CVD score

Normal 0.91 (−2.45; 4.28) 0.60 0.83 (−3.05; 4.71) 0.68

Unfit −0.83 (−4.23; 2.57) 0.63 4.15 (−0.74; 9.04) 0.10

ACC AHA CVD score

Normal 0.28 (−3.40; 3.95) 0.88 0.90 (−1.78; 3.57) 0.51

Unfit −1.77 (−5.48; 1.94) 0.35 4.51 (1.13; 7.89) 0.01

MESA CVD score

Normal 0.77 (−0.76; 2.30) 0.33 0.24 (−0.82; 1.31) 0.66

Unfit 0.42 (−1.13; 1.97) 0.60 1.40 (0.05;2.74) 0.04

Stern diabetes risk score

Normal −6.33 (−15.39; 2.72) 0.17 −1.99 (−8.87; 4.88) 0.57

Unfit −6.52 (−15.68; 2.64) 0.17 −2.07 (−10.87; 6.72) 0.64

Comorbidity index

Normal 0.13 (−0.48; 0.74) 0.67 0.16 (−0.36; 0.68) 0.55

Unfit 0.15 (−0.46; 0.77) 0.63 0.06 (−0.60; 0.71) 0.87

Levine Mortality score

Normal −0.34 (−4.82; 4.14) 0.88 0.27 (−3.50; 4.05) 0.89

Unfit 1.49 (−3.02; 6.01) 0.52 4.80 (0.01; 9.60) 0.04

Abbreviations: fitAA, fitness age acceleration; CVD, cardiovascular diseases; ACC, American College of Cardiology; AHA, American heart association; MESA, multi-ethnic study of

atherosclerosis. Only significant p values should be in bold.
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Conclusion

Our results suggest that a proper evaluation of fitness status should
favor a set of physical motor tests that include the TUG, which reflects
the essential components of mobility, and handgrip strength, which is a
valid indicator of overall strength. These two simple tests proved the
best predictors of fitness age and could represent robust and feasible
tools to monitor the ageing process according to the fitness level
displayed. In conjunction with this finding, the newly introduced
measure—fitAA—that quantifies the difference between biological
and chronological age—can help to identify individuals at high risk
for non-communicable diseases in the short period, with important
advantages for public health and screening policies. Although we
examined well-validated measures of risk to assess the individual
state of health, further investigation using a longitudinal design is
needed to assess risk measures associated with accelerated fitAA more
precisely and to validate our findings.
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Type 2 Diabetes Mellitus (T2DM) is a rapidly rising disease with cardiovascular
complications constituting the most common cause of death among diabetic
patients. Chronic hyperglycemia can induce vascular dysfunction through
damage of the components of the vascular wall, such as vascular smooth
muscle cells (VSMCs), which regulate vascular tone and contribute to vascular
repair and remodeling. These functions are dependent on intracellular Ca2+

changes. The mechanisms by which T2DM affects Ca2+ handling in VSMCs still
remain poorly understood. Therefore, the objective of this study was to determine
whether and how T2DM affects Ca2+ homeostasis in VSMCs. We evaluated
intracellular Ca2+ signaling in VSMCs from Zucker Diabetic Fatty rats using Ca2+

imaging with Fura-2/AM. Our results indicate that T2DM decreases Ca2+ release
from the sarcoplasmic reticulum (SR) and increases the activity of store-operated
channels (SOCs). Moreover, we were able to identify an enhancement of the
activity of the main Ca2+ extrusion mechanisms (SERCA, PMCA and NCX) during
the early stage of the decay of the ATP-induced Ca2+ transient. In addition, we
found an increase in Ca2+ entry through the reverse mode of NCX and a decrease
in SERCA and PMCA activity during the late stage of the signal decay. These effects
were appreciated as a shortening of ATP-induced Ca2+ transient during the early
stage of the decay, as well as an increase in the amplitude of the following plateau.
Enhanced cytosolic Ca2+ activity in VSMCs could contribute to vascular
dysfunction associated with T2DM.

KEYWORDS

type 2 diabetes mellitus, intracellular Ca2+, Fura-2, freshly isolated vascular smooth
muscle cells, Zucker diabetic fatty

1 Introduction

Diabetes mellitus (DM) comprises a group of metabolic diseases characterized by an
increase in plasma glucose levels (hyperglycemia) due to defects in the secretion (type 1 DM
or T1DM) or action (type 2 DM or T2DM) of insulin (ElSayed et al., 2023). T2DM is
the most common form of DM as it constitutes 90% of all diabetic cases worldwide
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(IDF Diabetes Atlas, 2021). The most common cause of death
among diabetic patients is represented by cardiovascular
disorders with heart disease causing approximately 70% of
patients’ deaths (Gu et al., 1998; Einarson et al., 2018). Other
causes of mortality include cerebrovascular disease, myocardial
infarction, hypertension and atherosclerosis (Kennedy, 2017).

It has long been known that hyperglycemia, dyslipidemia and
insulin resistance, all of which accompany T2DM, are related to an
increase in cardiovascular risk by affecting the structural
components of blood vessels through multiple mechanisms, such
as protein glycosylation and oxidative stress, which lead to vascular
dysfunction (Szuszkiewicz-Garcia and Davidson, 2014; Mao et al.,
2022). Vascular dysfunction is a complex and multifactorial process;
however, there is strong evidence showing that T2DM alters
intracellular Ca2+ handling in vascular smooth muscle cells
(VSMCs) (Fernandez-Velasco et al., 2014; Nieves-Cintron et al.,
2021). Remodeling of Ca2+ handling in VSMCs may dramatically
alter vascular reactivity as well other processes, such as migration
and proliferation, which are involved in vascular repair and
angiogenesis (Fernandez-Velasco et al., 2014). Alterations in
these processes may favor the development of pathologies such
as hypertension and atherosclerosis. Although most of the studies
performed in animal models of T2DM hint at an increase in the
bioavailability of intracellular Ca2+ that enhances vascular reactivity
or cell migration and proliferation, depending on the VSMC
phenotype (Fernandez-Velasco et al., 2014), the cellular and
molecular mechanisms involved still remain poorly understood.
Several reports suggest that T2DM induces an increase in the
expression or activity of Ca2+-permeable channels, such as the
store-operated calcium entry (SOCE) pathway and transient
receptor potential canonical channels (TRPC) on the sarcolemma
(Chung et al., 2009; Nieves-Cintron et al., 2021), and inositol 1,4,5-
trisphosphate receptor (IP3R) Ca2+ release channels in the
sarcoplasmic reticulum (SR) (Velmurugan and White, 2012;
Nieves-Cintron et al., 2021). For instance, a recent study
suggested that SOCE is enhanced in diabetic VSMCs and
exacerbates vasoconstriction in the aorta of Zucker Diabetic Fatty
(ZDF) rats, a model widely used for the study of T2DM (Yang et al.,
2020). In addition, hyperglycemia stimulates expression of ORAI1,
thus, augmenting store-operated Ca2+-entry in primary human
aortic smooth muscle cells (Ma et al., 2020).

Only scarce information is available about the alteration of Ca2+

removal mechanisms, which significantly contribute to maintain
intracellular Ca2+ homeostasis under physiological conditions, in
VSMCs during T2DM. A study carried out on cultured A7r5 cells
showed that hyperglycemia causes an increase in the activity of
Plasma Membrane Ca2+-ATPase (PMCA), which extrudes Ca2+

across the sarcolemma, as well as a decrease in the activity of
Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA), which
sequesters cytosolic Ca2+ into the SR (El-Najjar et al., 2017).
Similarly, it has been suggested that SERCA activity is
downregulated by oxidative stress in rat aortic VSMCs from ZDF
rats, although the impact of SERCA oxidation of Ca2+ clearance has
not been directly assessed (Tong et al., 2010). Na+/Ca2+ exchanger
(NCX) represents an alternative pathway for Ca2+ extrusion across
the plasmamembrane in VSMCs, but it is still unknown whether it is
affected by T2DM. Therefore, it is mandatory to gain further
insights about the remodeling of the Ca2+ handling machinery in

an experimental model that effectively recapitulates the
pathophysiology of T2DM, such as ZDF rats. The present
investigation sought to exhaustively assess whether and how
T2DM alters the intracellular Ca2+ signaling in VSMCs from the
aorta of ZDF rats, loaded with the Ca2+-sensitive indicator, Fura-2-
acetoxymethyl ester (Fura-2/AM).

2 Materials and methods

2.1 Zucker diabetic fatty rat model

All the experiments were carried out according to the Norma
Oficial Mexicana (NOM-062-ZOO-1999, 9.4.2.1.3.) for the care and
handling of laboratory animals. The protocols were reviewed and
approved by the Animal Care and Use Committee of the Benemerita
Universidad Autonoma de Puebla, identification code: BERRSAL71,
18-05-2017. Experiments were carried out in male ZDF rats
(3 months old) from Charles River Laboratories, California,
U.S.A. Throughout the text, diabetic-obese ZDF rats (ZDF-
Leprfa/fa) will be designated as OZDF rats, and lean controls,
non-obese non-diabetic ZDF (ZDF-Lepr+/+) as LZDF. The rats
were kept at the University Animal Core Facilities under
controlled environmental temperature and, exposed to light-dark
cycles of 12 h, with ad libitum consumption of water and high energy
diet, Purina 5,008 chow.

2.2 Somatic and biochemical parameters

To determine if OZDF rats did indeed develop T2DM, 5 days
prior to the experiment, a glucose tolerance test was performed. The
animals were fasted for 6 h in metabolic cages with free access to
water. Immediately after, a glucose dose (2 g/kg of weight) was
administrated intraperitoneally. Two hours later, a blood sample
was obtained by puncture of the caudal vein to measure glucose
levels using the Accucheck® system (Roche, Mannheim, Germany).
The day of the experiment, we proceeded to measure the body mass
(weight), length (distance from the tip of the nose to the base of the
tail) and the abdominal circumference using a measuring tape.

The body mass index (BMI) was calculated using the following
equation:

BMI � Bodymass g( )

Length2 cm( )2

Finally, all the epididymal fat surrounding both testes was
accurately removed and weighed.

2.3 Isolation and culture rat aortic VSMC and
dissection of epididymal fat samples

Isolation and culture of rat VSMCs were carried out according to
the protocol previously described by Berra-Romani et al. to isolate
proliferating, non-contracting VSMCs (Berra-Romani et al., 2008).
ZDF rats were anesthetized with intraperitoneal ketamine-xylazine
solution, 0.2 mL per 100 g of weight. The thoracic aorta was
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dissected out and perfused with low-Ca2+ physiological salt solution
(PSS1, see composition in Section 2.5). Under sterile conditions the
artery was cleaned of fat and connective tissue and then incubated
for ~40 min at 37°C in PSS1 containing 1 mg/mL collagenase type 2.
After the incubation, the aorta was washed three times with
PSS1 and the adventitia was carefully stripped. The aorta was cut
longitudinally in order to expose the tunica intima and the
endothelium was mechanically removed by rubbing a
microdissection scissor against the endothelial layer. Aortic tissue
was cut in a proximately 2 mm pieces and enzymatically digested for
40 min at 37°C in PSS1 containing 2 mg/mL collagenase type XI,
0.16 mg/mL elastase type IV and 2 mg/mL bovine serum albumin
(BSA; fat free). After de digestion, VSMCs were resuspended by
gently triturating the tissue with a fire-polished Pasteur pipette. To
stop enzymatic digestion, 10 mL of Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (FBS)
was added. VSMCs were centrifugated for 10 min at 300g. The
supernatant was discarded, and the resulting cell pellet was re-
suspended in 1 mL complete medium (DMEM with 10% FBS and
1% antibiotic antimycotic solution (100x)). VSMC were plated on
35 mm culture dishes under a humidified atmosphere of 5% CO2 -
95% O2 at 37°C. Culture medium was changed on days 4 and 7 and
Ca2+ imaging experiments were performed on subconfluent cultures
on days 7 and 8. The aortic VSMCs identity was confirmed by α-
actin labelling, as shown in (Berra-Romani et al., 2008).

2.4 [Ca2+]i measurements

Cultured VSMCs were loaded with 3 µM Ca2+ indicator, Fura-2/
AM in PSS2 (see composition in Section 2.5) for 35 min at controlled
room temperature (22–23 °C). After 20 min washing in PSS2, the
culture dish was mounted onto the stage of an upright
epifluorescence Axiolab microscope (Carl Zeiss, Oberkochen,
Germany) equipped with a ×40 Achroplan objective (water-
immersion, 2.05 mm working distance, 1.0 numerical aperture) to
observe the cells. VSMCs were excited alternately at 340 and 380 nm,
and the emitted light was detected at 510 nm. A neutral density filter
(optical density = 1.0) was coupled to the 380 nm filter to approach
the intensity of the 340 nm light. A round diaphragm was used to
increase the contrast. The exciting filters were mounted on a filter
wheel equipped with a shutter (Lambda 10, Sutter Instrument,
Novato, CA, United States). Custom software, working in the
LINUX environment, was used to drive the camera (Extended-
ISIS Camera, Photonic Science, Millham, United Kingdom) and the
filter wheel, and to measure and plot on-line the fluorescence from a
number of 20–50 rectangular “regions of interest” (ROI) enclosing
20–50 single cells. Each ROI was identified by a number. The
intracellular Ca2+ concentration ([Ca2+]i) was monitored by
measuring, for each ROI, the ratio of the mean fluorescence
emitted at 510 nm when exciting alternatively at 340 and 380 nm
(shortly termed “Ratio (F340/F380)”. An increase in [Ca2+]i causes an
increase in the Ratio (F340/F380). Ratio measurements were
performed and plotted on-line every 3 s. Ratio (F340/F380) values
are expressed as arbitrary units (a.u.). Images were stored on the
hard disk and converted offline to Ratio (F340/F380) images by
ImageJ software (National Institutes of Health, United States,
http://rsbweb.nih.gov/ij/). The experiments were carried out at

controlled room temperature (22–23°C) to limit time-dependent
decreases in the intensity of the fluorescence signal.

Mn2+ has been shown to quench Fura-2 fluorescence. Since
Mn2+ and Ca2+ share common entry pathways in the plasma
membrane, Fura-2 quenching by Mn2+ is regarded as an index of
divalent cation influx. Experiments were carried out at the 360 nm
wavelength, the isosbestic wavelength for Fura-2, and in Ca2+-free
medium supplemented with 0.5 mM EGTA, as previously described
(Zuccolo et al., 2019). This avoids Ca2+ competition for Mn2+ entry
and, therefore, enhances Mn2+ quenching.

2.5 Solutions

Low-Ca2+ physiological salt solution (PSS1) had the following
composition (in mM): 140 NaCl, 5.36 KCl, 0.34 Na2HPO4,
0.44 KH2PO4, 10 HEPES, 1.2 MgCl2, 10 D-glucose and 0.05 CaCl2.
Physiological salt solution (PSS2) composition (in mM) was: 140 NaCl,
5 KCl, 1.2 NaHPO4, 5 NaHCO3, 10 HEPES, 1.4 MgCl2, 1.8 CaCl2 and
11.5 D-glucose. In Ca2+ free solution (0Ca2+), 0.05 EGTA was added. In
Mn2+-quenching experiments, 200 µM MnCl2 was added to the 0Ca2+

external solution. Solutions were titrated to pH 7.2 for PSS1 and 7.4 for
PSS2 with NaOH. The osmolality of PSS as measured with an
osmometer (Wescor 5,500, Logan, UT) was 338 mmol/kg.

2.6 Data analysis

For each protocol, data were collected from at least four rats
under each condition. The amplitude of the peak Ca2+ response to
either cyclopiazonic acid (CPA) or adenosine-trisphosphate (ATP)
was measured as the difference between the Ratio (F340/F380) at the
peak and the mean Ratio (F340/F380) of 500 s baseline before the peak
(Supplementary Figure S1). Amplitude of the late stage of the decay
(Amp600) was calculated as the difference between the Ratio (F340/
F380) 600 s after adding the agonist and the mean Ratio (F340/F380) of
200 s baseline before the peak of the Ca2+ response (Supplementary
Figure S1). The duration of the Ca2+ response to ATP was measured
as the time it takes the Ca2+ signal to be reduced at 90% (early)
(Supplementary Figure S1), 60% (intermediate) (Supplementary
Figure S1) and 30% (late) (Supplementary Figure S1) of the
initial Ca2+ peak amplitude (considered as 100%), shorty termed
as “decay time” (DT) (Supplementary Figure S1). The area under the
curve (AUC) was measured by calculating the integral of each Ca2+

tracing from when the ATP is applied until it is removed. In order to
perform the statistical comparison between the experimental groups
in the presence of selective inhibitors of Ca2+- clearing mechanisms,
we proceeded to normalize the measures to the mean value of each
parameter determined in the absence of the inhibitor within the
same experimental group (shortly termed “Δ”). For mean traces,
fluorescence levels (F) were normalized to resting fluorescence (F0)
to compare the height of the Ca2+ responses produced by cells
displaying different basal fluorescence levels (F/F0). The rate of Mn2+

influx was evaluated by measuring the slope of the fluorescence
intensity curve after Mn2+ addition (Zuccolo et al., 2019). Data
are expressed as mean ± standard error (SE). Normal data
(identified using the D’Agostino and Pearson omnibus normality
test (p < 0.05)), were statistically analyzed using an unpaired
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Student’s t-test. A p-value < 0.05 was considered statistically
significant.

2.7 Chemicals

SEA0400 was obtained from Tocris Bioscience (Bristol, United
Kindom). Collagenase type 2 and FBS were obtained from Gibco
(GIBCO BRL, Life Technologies, Grand Island, NY). All other
chemicals were purchased from Sigma-Aldrich.

3 Results

3.1 Zucker diabetic fatty rat characteristics

Somatic parameter obtained from3months old littermate LZDF and
OZDF rats are shown in Table 1. OZDF rats presented an increase of
around 66% in body mass weight (p ≤ 0.05) and of around 6.5% of the
nose-tail length (p≤ 0.05) compared with their control, LZDF rats. Given
that the increase inweight could be attributed to an increase in the rat size
(to its length), we proceeded to calculate the body mass index (BMI) to
rule out that the differences seen in the weight were due to the difference
in length between both groups. Likewise, the mean BMI value was
statistically higher (46.6%) in the OZDF rats compared to the LZDF
group (p ≤ 0.05), suggesting that the weight gain is due to obesity that has
been widely reported in the literature in this strain of rats (Shiota and
Printz, 2012; Wang et al., 2013; Al-Awar et al., 2016; King and Bowe,
2016; Berra-Romani et al., 2019). The presence of obesity in the OZDF
rats was demonstrated by the 28% and 405% increase in abdominal
circumference (p ≤ 0.05) and epididymal fat weight (p ≤ 0.05),
respectively, in OZDF vs. LZDF rats. To confirm T2DM presence in
OZDF rats, a glucose tolerance test was performed as described in
Materials and Methods section. The mean ± SE of blood glucose levels
measured 2 h after the intraperitoneal administration of glucose (2 g/kg
of weight), was approximately 90% higher (p ≤ 0.05) in the OZDF rats
compared to the LZDF rats (Table 1). Altogether the results confirm that
OZDF rats present obesity and diabetes. In addition, a deeper
biochemical analysis of LZDF rats and OZDF rats has been presented
in (Berra-Romani et al., 2019), showing that OZDF rats present: 1)

hyperlipidemia (increased total cholesterol, very low-density lipoproteins,
and triglyceride levels); 2) hyperinsulinemia both in fasting and glucose-
fed animals; and 3) insulin resistance. All together these results confirm
the presence in OZDF rats of the main characteristics of human T2DM.

3.2 T2DM shortens the early phase of the
decay and increases the plateau amplitude
of ATP-induced Ca2+ signals in rat aortic
VSMCs

Preliminary recordings revealed that resting Ca2+ levels were similar
(Supplementary Figure S2A) and that spontaneous Ca2+ oscillations
(Supplementary Figure S2B) did not occur in VSMCs from the two
animal groups. Moreover, 20 µM ATP was found to induce only a Ca2+

transient in rat aortic VSMCs from both OZDF and LZDF rats
(Supplementary Figure S3). Since we were also interested in the
impact of T2DM on the plateau phase of the Ca2+ response to
physiological autacoids (Berra-Romani et al., 2019), ATP
concentration was raised to 300 µM. In resting VSMCs from both
LZDF and OZDF rats, the application of 300 µM ATP induced an
intracellular Ca2+ signal that consisted in a rapid Ca2+ spike followed by a
slow decay phase to a sustained plateau phase, which returned to the
baseline upon agonist removal (Figure 1A). When comparing both
groups, we did not find any statistical difference in both the peak
amplitude (Figure 1B, left panel) and area under the curve (AUC)
(Figure 1D). However, decay time (DT) at 90% and 60% of total
amplitude were decreased (p ≤ 0.05) in VSMCs from OZDF rats
(Figure 1C). In addition, we found an increase in the amplitude of
the plateau phase in VSMCs fromOZDF rats compared to LZDF rats, as
shown by the increase in Amp600 value (p ≤ 0.05) (Figure 1B, right
panel). Conversely, the decay time at 30%was not different between both
groups (Figure 1C). The fastest decline of the initial Ca2+ peak could
explainwhy the increase inAmp600 does not result in an increasedAUC.

3.3 Effect of the removal of extracellular
Ca2+ (0Ca2+) on ATP-induced Ca2+ signals in
rat aortic VSMCs

Figure 2 shows the average of Ca2+ signals recorded from cultured
VSMCs obtained from LZDF (Figure 2A) and OZDF (Figure 2D) rat
aortas challenged with ATP (300 μM) in presence (dotted line; + Ca2+)
and absence (continuous line; + 0Ca2+) of Ca2+ in the extracellular
medium. Removal of extracellular Ca2+ (0Ca2+) caused a decrease in
peak amplitude, AUC, and decay time, as well as the disappearance of
the plateau phase, in ATP-induced Ca2+ transients in both LZDF
(Figures 2A-C) and OZDF VSMCs (Figures 2D–F). These findings
confirm that both endogenous Ca2+ release through ER-resident IP3Rs
and extracellular Ca2+ entry via store-operated channels (SOCs) support
the Ca2+ response to ATP in proliferating rat aortic VSMCs (Berra-
Romani et al., 2008). In accord, depletion of the ER Ca2+ store with
cyclopiazonic acid (CPA; 10 µM) prevented the subsequent Ca2+

response to ATP (300 µM) (Supplementary Figure S4). Of note,
caffeine (10 mM), a selective agonist of ryanodine receptors (RyR)
(Pulina et al., 2010) failed to elicit an increase in [Ca2+]i in rat aortic
VSMCs from LZDF rats (Supplementary Figure S3), which is consistent
with the notion that proliferating VSMCs lack RyRs (Berra-Romani

TABLE 1 Zucker Diabetic Fatty rat characteristics. Mean ± SE of somatic and
biochemical parameters measured in Zucker Diabetic Fatty (LZDF and OZDF)
rats at the age of 12 weeks. Body mass index (BMI) was calculated according to
the equation described in materials and Methods. Blood glucose levels were
measured using the Accucheck® system, 2 h after the intraperitoneal
administration of glucose (2 g/kg of weight) in 6 h fasted animals. * indicates
p ≤ 0.05 (Student’s t-test, n = 5 per group; for glucose values n = 14 per group).

LZDF OZDF

Body weight (g) 297.8 ± 3.87 494.3 ± 5.86*

Length (cm) 22.19 ± 0.25 23.64 ± 0.36*

BMI (g/cm2) 0.60 ± 0.01 0.88 ± 0.02*

Abdominal circumference (cm) 13.35 ± 0.15 17.13 ± 0.27*

Epididymal fat (g) 2.50 ± 0.15 12.63 ± 0.72*

Glucose 2h (gr/dl) 126.06 ± 5.49 239.5 ± 24.54*
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et al., 2008). Therefore, IP3Rs drive ATP-dependent SR Ca2+

mobilization under 0Ca2+ conditions. Furthermore, the Mn2+-
quenching assay, which has been widely employed to measure
SOCE in both vascular endothelial cells (Zuccolo et al., 2019) and
VSMCs (Smani et al., 2007), showed that CPA caused an increase in the
rate of Fura-2 fluorescence quenching by extracellular Mn2+

(Supplementary Figure S5). However, the rate of CPA-evoked Mn2+

entry was significantly (p < 0.05) enhanced in rat aortic VSMCs from
OZDF rats (Supplementary Figure S5), thereby confirming SOCE
upregulation by T2DM.

3.4 T2DM reduces agonist-induced SR Ca2+

release in rat aortic VSMCs

In order to assess whether IP3-induced SR Ca2+ release is affected
by T2DM, we compared intracellular Ca2+ release evoked by the IP3-
synthesizing autacoid, ATP (300 µM), in the absence of extracellular
Ca2+ (0Ca2+) in rat aortic VSMCs from LZDF and OZDF rats
(Figure 3A) (Berra-Romani et al., 2008; Berra-Romani et al.,
2019). Under these conditions, we found a reduction in both the
peak Ca2+ amplitude and AUC of the Ca2+ transient in OZDF as
compared to LZDF VSMCs (Figure 3B). Of note, the peak Ca2+

response to ATP was lower in rat aortic OZDF VSMCs in the
absence, but not in the presence, of extracellular Ca2+ (see
Figure 1B). We did not find any statistical difference in the decay
time to 90% and 60% of the total amplitude; however, the decay time
to 30% of the Ca2+ response was significantly (p < 0.05) increased in
VSMCs from OZDF rats (Figure 3C). Conversely, in the presence of
extracellular Ca2+, the early phase of the decay was faster in OZDF
VSMCs and there was no difference in the decay time at 30%
between the two animal groups (see Figure 1C). These observations
suggest that: 1) endogenous Ca2+ release is reduced and/or 2) the

Ca2+-transporting mechanisms clearing the initial Ca2+ peak are
altered by T2DM, although this dysregulation is unmasked by
removing extracellular Ca2+. The fastest decline of the initial Ca2+

peak recorded in the presence of external Ca2+ (Figure 1C) suggests
that extracellular Ca2+ entry could stimulate SERCA, PMCA and/or
NCX, as previously demonstrated in rat aortic VSMCs (Baryshnikov
et al., 2009), and thereby accelerate cytosolic Ca2+ clearance (see
Discussion). In addition, enhanced SOCE is also likely to
compensate for the lower IP3-induced SR Ca2+ release and bring
the amplitude of the initial Ca2+ peak to the same value as that
measured in LZDF rats.

3.5 T2DM does not alter SR Ca2+ content in
rat aortic VSMCs

The lower ER Ca2+ release evoked by the physiological
stimulation of IP3Rs with ATP could be due to a reduction in
the free Ca2+ concentration within the ER. Therefore, we evaluated
the amount of releasable free Ca2+ in the SR by inhibiting SERCA
activity with CPA in the absence of extracellular Ca2+ (Berra-Romani
et al., 2008; Berra-Romani et al., 2019). The application of CPA
(10 µM) induced a slow Ca2+ transient corresponding to the passive
leak of free SR Ca2+ into the cytoplasm through leakage channels that
remain to be identified (Figure 4A). Subsequently, the intracellular
Ca2+ concentration returned to the baseline because of Ca2+

extrusion across the sarcolemma by PMCA and NCX. CPA is
routinely employed to compare SR or endoplasmic reticulum
Ca2+ content between different cell types (Lodola et al., 2017;
Berra-Romani et al., 2019), including VSMCs (Berra-Romani
et al., 2008; Liu et al., 2019). No differences were found in the
peak Ca2+ amplitude and AUC of the Ca2+ response to CPA
(Figure 4B). These data indicate that there is no detectable

FIGURE 1
T2DM shortens the ATP-induced Ca2+ signal during the early phase of the decay and increases the plateau amplitude in rat aortic VSMCs. Mean
traces of the Ca2+ signal evoked by ATP (300 μM) in VSMCs from LZDF (blue tracing) and OZDF (red tracing) rats (A). Peak amplitude [(B), left)], amplitude
600 s after the application of the agonist (Amp600) [(B), right)], decay time at 90, 60% and 30% of total amplitude (DT) (C) and area under the curve (AUC)
(D) are expressed as mean ± SE. Statistical comparison between groups was performed using Student’s t-test. * indicates p < 0.05. Analysis was
performed in 121 cells obtained from 6 rats for the LZDF group (n = 6; 121 cells) and 179 cells obtained from 6 rats for the OZDF group (n = 6; 179 cells).
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difference in the SR free Ca2+ concentration between LZDF and
OZDF VSMCs. Overall, these findings suggest that IP3-induced SR
Ca2+ release is somehow tempered in rat aortic VSMCs from OZDF
rats and that there are no major differences in PMCA and NCX
activity under 0Ca2+ conditions between the two animal groups
(Figures 4A, B).

3.6 T2DM alters SERCA activity in rat aortic
VSMCs from OZDF rats

In order to assess whether the Ca2+-transporting mechanisms
clearing the initial Ca2+ peak are altered by T2DM, we separately
evaluated the contribution of SERCA, PMCA and NCX to ATP-
induced increase in [Ca2+]i in the presence and absence of
extracellular Ca2+. In accord, as anticipated above, extracellular
Ca2+ entry could change the rate of cytosolic Ca2+ clearance from
the cytosol. Therefore, the Ca2+-removal mechanisms at play during
the physiological stimulation with ATP could differ depending on
whether Ca2+ influx is activated or not.

We first evaluated whether and how T2DM alters SERCA
activity by measuring the Ca2+ response to ATP (300 µM) in the
presence of a selective SERCA inhibitor, CPA (10 µM).

3.6.1 SERCA activity changes during the decay of
the Ca2+ response to ATP in the presence of
extracellular Ca2+

In aortic VSMCs from LZDF and OZDF rats, the inhibition of
SERCA activity with CPA in the presence of extracellular Ca2+ did
not cause any significant change in the amplitude of the initial Ca2+

peak evoked by ATP (300 µM), although there was a trend towards a
reduction in LZDF rats and a trend toward an increase in OZDF rats
(Figures 5A, B). However, SERCA inhibition with CPA caused a
significant (p < 0.05) increase in ATP-induced Amp600 in both
LZDF and OZDF rats (Figure 5C). Nevertheless, the increase in the
ΔAmp600 value induced by CPA was significantly (p < 0.05) larger
in VSMCs from LZDF as compared to OZDF rats (Figure 5D).
Additionally, the pharmacological blockade of SERCA activity
induced a significant (p < 0.05) increase in the decay time to
90% and 60% in VSMCs from both LZDF and OZDF rats
(Figure 5E). However, the increase in the normalized decay time
(termed as ΔDT) to both 90% and 60% was significantly (p < 0.05)
larger in aortic VSMCs from OZDF rats (Figure 5F). In the presence
of CPA, the Ca2+ response to 300 µM ATP was maintained at such a
high plateau level (Figure 5A) that it was not possible to measure the
late (30%) clearing rates in both lean and obese animals (Figures
5E,F). Consequently, CPA caused a significant increase (p < 0.05) in

FIGURE 2
Effect of the removal of extracellular Ca2+ (0Ca2+) on the ATP-induced Ca2+ signal in rat aortic VSMCs. Mean traces of the Ca2+ signal evoked by ATP
(300 μM) in the absence (continuous light-blue line; 0Ca2+) and presence (dashed dark-blue line; Ca2+) of extracellular Ca2+ in VSMCs from LZDF rats (A).
Peak amplitude [(B), left)], area under the curve (AUC) [(B), right)] and decay time (DT) (C)of theCa2+ signal in VSMCs from LZDF rats, in presence (light blue
bars; Ca2+) and absence (dark blue bars; 0Ca2+). Mean traces of the Ca2+ signal evoked by ATP (300 μM) in the absence (continuous light-red line;
0Ca2+) and presence (dashed dark-red line; Ca2+) of extracellular Ca2+ in VSMCs fromOZDF rats (D). Peak amplitude [(E), left)], AUC [(E), right)] and DT (F)
of the Ca2+ signal in VSMCs from OZDF rats. All parameters are expressed as mean ± SE. Statistical comparison between groups was performed using
Student’s t-test. * indicates p < 0.05 (n= 6; 127 cells for LZDF Ca2+, n=6; 191 cells for LZDF 0Ca2+, n= 6; 182 cells for OZDFCa2+, n= 6; 204 cells for OZDF
0Ca2+).
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the AUC value in VSMCs from both LZDF and OZDF rats
(Figure 5G), but its elevation (termed as ΔAUC) was significantly
(p < 0.05) larger in diabetic VSMCs (Figure 5H). These data suggest
that SERCA activity is increased in OZDF as compared to LZDF rats
during the early stage of decay of the Ca2+ transient. However, this
effect is dramatically reversed during the late stage of the decay. In
accord, in rat aortic VSMCs fromOZDF rats stimulated with ATP in
the presence of extracellular Ca2+, the initial Ca2+ peak is sharper due
to the faster Ca2+ clearance by SERCA, whereas the plateau achieves
a larger value because of SOCE upregulation [see Supplementary
Figure S5 and (Yan et al., 2020)] and of slower Ca2+ clearance by
SERCA.

3.6.2 SERCA activity is reduced during the late
stage of the decay of the ATP-induced Ca2+

transient in the absence of extracellular Ca2+

In rat aortic VSMCs from LZDF rats, SERCA inhibition with
CPA under 0Ca2+ conditions significantly (p < 0.05) reduced the

Ca2+ peak amplitude of ATP-induced Ca2+ transient as compared to
the control Ca2+ trace recorded without the inhibitor (Figure 6A, B).
In addition, CPA caused a remarkable slowing down of the decay
phase, thereby significantly (p < 0.05) increasing the decay time to
90%, 60% and 30% and the AUC (Figures 6C,E). As for the OZDF
group, SERCA inhibition under 0Ca2+ conditions induced a tiny, but
not significant decrease in the Ca2+ peak amplitude (Figure 6B).
However, the decay time to 90%, 60% and 30% and the AUC were
again significantly (p < 0.05) increased as compared to the control
Ca2+ trace obtained in the absence of CPA (Figures 6C, E). When the
Ca2+ response to ATP in both rat groups was normalized, there was
no difference in the increase in the decay time (ΔDT) to 90% and
60% (Figure 6D), while the increases in the decay time to 30%
(Figure 6D) and in the AUC (ΔAUC; Figure 6F) were significantly
(p < 0.05) larger in LZDF rats. These findings support the notion
that, in rat aortic VSMCs from OZDF rats, SERCA activity is
reduced during the late stage of the decay phase (i.e., when the
[Ca2+]i returns to the 30% of the initial Ca2+ peak). In line with this
hypothesis, blocking Ca2+ clearance with CPA converted the Ca2+

transient into a biphasic Ca2+ elevation in LZDF but not OZDF rats
(Figure 6A). This means that Ca2+ pumping by SERCA is reduced
during the late stage of the decay phase in diabetic VSMCs and does
not significantly contribute to remove cytosolic Ca2+. Intriguingly,
the larger inhibition of ATP-induced Ca2+ release unmasked by
0Ca2+ conditions in LZDF VSMCs treated with CPA suggests that
SERCA activity can control the rise in [Ca2+]i rise in lean but not
diabetic animals.

FIGURE 3
T2DM reduces agonist-induced Ca2+ release from SR in rat aortic
VSMCs. Mean traces of the Ca2+ signal evoked by ATP (300 μM) in the
absence of extracellular Ca2+ (0Ca2+) in VSMCs from LZDF (blue
tracing) and OZDF (red tracing) rats (A). Peak amplitude [(B), left)],
area under the curve (AUC) [(B), right)] and DT (C) of the Ca2+ signal in
VSMCs from LZDF (blue bars) and OZDF (red bars) rats. All parameters
are expressed as mean ± SE. Statistical comparison between groups
was performed using Student’s t-test. * indicates p < 0.05 (n = 6;
191 cells for LZDF 0Ca2+, n = 6; 204 cells for OZDF 0Ca2+).

FIGURE 4
T2DM does not alter SR Ca2+ content in rat aortic VSMCs. Mean
traces of the Ca2+ signal evocked by SERCA inhibitor, CPA in the
absence of extracellular Ca2+ in VSMCs from LZDF (blue tracing) and
OZDF (red tracing) rats (A). Peak amplitude [(B), left)], area under
the curve (AUC) [(B), right)] in VSMCs from LZDF (blue bars) and OZDF
(red bars) rats. All parameters are expressed as mean ± SE. Statistical
comparison between groups was performed using Student’s t-test. *
indicates p < 0.05 (n = 6; 167 cells for LZDF, n = 6; 189 cells for OZDF).

Frontiers in Physiology frontiersin.org07

Moreno-Salgado et al. 10.3389/fphys.2023.1200115

35

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1200115


3.7 T2DM alters PMCA activity in rat aortic
VSMCs

To evaluate PMCA activity in rat aortic VSMCs during T2DM,
we used orthovanadate (OV; 500 µM) to inhibit this mechanism
during the stimulation with ATP in the presence and absence of
extracellular Ca2+.

3.7.1 PMCA-dependent Ca2+ extrusion is increased
during the decay of ATP-induced Ca2+ transient in
VSMCs from OZDF rats in the presence of
extracellular Ca2+

The inhibition of PMCA activity by using OV in the presence of
extracellular Ca2+ (Figure 7A) did not affect either the Ca2+ peak
amplitude (Figure 7B) or the decay time to 90% and 60% of the Ca2+

response to ATP in VSMCs from LZDF rats (Figure 7E). Conversely,
the value of Amp600 (Figure 7C), the decay time to 30% (Figure 7E)

and the AUC (Figure 7G) were significantly (p < 0.05) increased in
the presence of OV. As to the OZDF group, the inhibition of PMCA
activity with OV caused a significant (p < 0.05) reduction in the Ca2+

peak amplitude (Figure 7B), whereas all the remaining parameters
(i.e., Amp600, decay time and AUC) were significantly (p < 0.05)
increased (Figure 7, panels C, E and G). When the Ca2+ response to
ATP in both groups of rats was normalized, we found that the
increase in the Amp600 value (Figure 7D; ΔAmp600) and in the
AUC (ΔAUC; Figure 7H) caused by PMCA inhibition were
significantly (p < 0.05) larger in VSMCs from LZDF rats as
compared to the OZDF group. However, the increase in the
decay time to 90% and 60% (ΔDT) was significantly (p < 0.05)
larger in OZDF rats (Figure 7F). Altogether, these findings suggest
that, in the presence of extracellular Ca2+, PMCA plays a major role
in clearing cytosolic Ca2+ at the beginning of the Ca2+ response to
ATP, while its contribution decreases during the plateau phase, in
VSMCs from OZDF rats. In accord, the increase in ΔDT to 90% and

FIGURE 5
SERCA activity changes during the decay of the Ca2+ response to ATP in the presence of extracellular Ca2+. Mean traces of the ATP-induced Ca2+

transient in the absence (dashed blue line for LZDF and dashed red line for OZDF) and presence (continuous blue line for LZDF and continuous red line for
OZDF) of SERCA inhibitor, CPA (10 µM), in VSMCs (A). Peak amplitude (B), amplitude of the late stage of the decay (Amp600) (C), decay time (DT) (E) and
area under the curve (AUC) (G) of the ATP-evoked Ca2+ signal in the presence and absence (control) of CPA. Normalized values of Amp600
(ΔAmp600) (D), decay time (ΔDT) (F) and AUC (ΔAUC) (F) for comparison purposes between LZDF and OZDF groups. All parameters are expressed as
mean ± SE. Statistical comparison between groups was performed using Student’s t-test. * indicates p < 0.05. n = 6; 121 cells for LZDF control, n = 6;
127 cells for LZDF + CPA, n = 6: 179 cells for OZDF control, n = 6; 182 cells for OZDF + CPA.
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60% induced by OV indicates that the Ca2+ pumping rate of PMCA
after the initial elevation in [Ca2+]i is faster in OZDF VSMCs.
Conversely, the lower increase in ΔAmp600 suggests that SERCA
plays a minor role in removing Ca2+ during the plateau phase and,
consequently, its inhibition causes a lower elevation in plateau
amplitude. In addition, OV-induced inhibition of ATP-induced
ER Ca2+ release suggests that PMCA contributes to the
propagation of the rise in [Ca2+]i following agonist stimulation in
diabetic VSMCs. This finding is consistent with the higher activity of
PMCA at the beginning of the Ca2+ signal discussed above.

3.7.2 PMCA-dependent Ca2+ extrusion is reduced
during the early stage of the decay of the ATP-
induced Ca2+ transient in VSMCs fromOZDF rats in
the absence of extracellular Ca2+

In rat aortic VSMCs from LZDF rats, the inhibition of PMCA
with OV in the absence of extracellular Ca2+ (0Ca2+) caused a
significant (p < 0.05) reduction in the Ca2+ peak amplitude
(Figures 8A, B). Likewise, the decay time to 90%, 60%, and 30%
(Figure 8C) and the AUC (Figure 8E) were significantly (p < 0.05)
reduced. In VSMCs from OZDF rats, pretreatment with OV also
caused a significant decrease in the peak amplitude of the Ca2+

transient (Figures 8A, B). Similar to LZDF rats, we observed a
decrease in the decay time to 90%, 60%, and 30% (Figure 8C), while
the AUC was increased in OZDF VSMCs (Figure 8E). When the

Ca2+ response to ATP in both groups of rats was normalized, the
reduction in the decay time to 90% and 60% of the initial Ca2+ peak
(ΔDT) were significantly larger in OZDF as compared to LZDF rats
(Figure 8D). Conversely, the ΔAUC was significantly (p < 0.05)
larger in the OZDF group compared to LZDF (Figure 8F). These
findings confirm that PMCA activity increases during the initial
phase of the Ca2+ response to ATP in VSMCs from OZDF rats, and
that such increase in Ca2+ extrusion via PMCA is unmasked by OV.

3.8 T2DM alters NCX activity in rat aortic
VSMCs

Finally, in order to assess whether and how T2DM alters NCX
activity in rat aortic VSMCs, we inhibited this mechanism using the
selective inhibitor, SEA0400 (3 µM), in the presence and absence of
extracellular Ca2+ (0Ca2+).

3.8.1 NCX activity changes during Ca2+ response
evoked by ATP in the presence of extracellular Ca2+

in rat aortic VSMCs from OZDF rats
In VSMCs from LZDF rats (Figure 9A), blockade of NCX with

SEA0400 significantly (p < 0.05) reduced the Ca2+ peak amplitude
(Figure 9B) and increased the Amp600 (Figure 9C) of the Ca2+

response to ATP. There were no differences in decay time to 90%

FIGURE 6
SERCA activity is reduced during the late stage of the decay of the ATP-induced Ca2+ transient in 0Ca2+. Mean traces of the ATP-induced Ca2+

transient in the absence (dashed blue line for LZDF and dashed red line for OZDF) and presence (continuous blue line for LZDF and continuous red line for
OZDF) of SERCA inhibitor, CPA (10 µM), in VSMCs (A). Peak amplitude (B), decay time (C) and area under the curve (AUC) (E) of the ATP-evoked Ca2+ signal
in the presence and absence (control) of CPA. Normalized values of decay time (ΔDT) (D) and AUC (ΔAUC) (F) for comparison purposes between
LZDF and OZDF groups. All parameters are expressed as mean ± SE. Statistical comparison between groups was performed using Student’s t-test. *
indicates p < 0.05. n = 6; 191 cells for LZDF control, n = 7; 242 cells for LZDF CPA 0Ca2+, n = 6; 204 cells for OZDF control, n = 6; 221 cells for OZDF CPA
0Ca2+).
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and 30% of the total amplitude (Figure 9E), whereas the decay time
to 60% (Figure 9E), as well as the AUC (Figure 9G), were
significantly (p < 0.05) reduced. In OZDF VSMCs (Figure 9A),
SEA0400 did not significantly (p < 0.05) affect the Ca2+ peak
amplitude (Figure 9B), although it significantly (p < 0.05)
reduced the Amp600 (Figure 9C). Conversely, the decay time to
90%, 60%, and 30% were significantly (p < 0.05) increased
(Figure 9E), while the AUC remained unaltered (Figure 9G).
Clearly, there was a significant (p < 0.05) difference in the
ΔAmp600 (Figure 9D), ΔDT (Figure 9F) ΔAUC between OZDF
and LZDF rats (Figure 9H). These findings suggest that NCX
modulates the amplitude of the initial Ca2+ peak and contributes
to extrude cytosolic Ca2+ during the plateau phase, but not the early
decay phase of the Ca2+ response to ATP in LZDF rats. Conversely,
NCX is crucial to remove cytosolic Ca2+ by acting in the forward
mode during all the decay of the initial rise in [Ca2+]i but supports
Ca2+ entry by switching into the reverse mode during the plateau
phase, in OZDF rats.

3.8.2 NCX activity is reduced during the early stage
of the decay of ATP-induced Ca2+ transient in rat
aortic VSMCs from OZDF rats in the absence of
extracellular Ca2+

Under 0Ca2+ conditions (Figure 10A), the inhibition of NCX
with SEA0400 induced a decrease in the Ca2+ peak amplitude
(Figure 10B) and in the AUC (Figure 10E) of the ATP-evoked
Ca2+ transient in rat aortic VSMCs from LZDF rats. Conversely, all
the decay time were significantly increased as compared to their
control values measured in the absence of the inhibitor (Figure 10C).
Likewise, in VSMCs from OZDF rats, NCX inhibition under 0Ca2+

conditions caused a decrease in the Ca2+ peak amplitude of the ATP-
induced Ca2+ response (Figure 10B) and in the decay time to 90%
and 60% (Figure 10C). The decay time to 30% (Figure 10C)
increased, while the AUC (Figure 10E) remained unchanged
under these conditions. Because of these changes the increase in
ΔDT to 90% and 60% was significantly (p < 0.05) larger in LZDF
VSMCs (Figure 10D), as well as there was a significant (p < 0.05)

FIGURE 7
PMCA-dependent Ca2+ extrusion is increased during the decay of ATP-induced elevation in [Ca2+]i in VSMCs from OZDF rats in the presence of
extracellular Ca2+. Mean traces of the ATP-induced Ca2+ transient in the absence (dashed blue line for LZDF and dashed red line for OZDF) and presence
(continuous blue line for LZDF and continuous red line for OZDF) of PMCA inhibitor, sodium orthovanadate (OV, 500 µM) (A). Peak amplitude (B),
amplitude of the late stage of the decay (Amp600) (C), decay time (E) and area under the curve (AUC) (G) of the ATP-evoked Ca2+ signal in the
presence and absence (control) of OV. Normalized values of Amp600 (ΔAmp600) (D), decay time (ΔDT) (F) and AUC (ΔAUC) (H) for comparison purposes
between LZDF and OZDF groups. All parameters are expressed as mean ± SE. Statistical comparison between groups was performed using Student’s
t-test. * indicates p < 0.05. (n = 6; 121 cells for LZDF control, n = 6; 240 cells for LZDF OV, n = 6; 179 cells for OZDF control, n = 6; 251 cells for OZDF OV.
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difference in the ΔAUC between OZDF and LZDF rats (Figure 10F).
These findings reveal that, under 0Ca2+ conditions, NCX modulates
the amplitude of the initial Ca2+ peak in both LZDF and OZDF rats.
Conversely, NCX supports the decline of the Ca2+ response to the
baseline in LZDF, but not in OZDF VSMCs.

Simultaneous inhibition of SERCA, PMCA and NCX differently
alters the Ca2+ response to ATP in OZDF as compared to LZDF rat
aortic VSMCs.

Finally, we assessed whether and how the simultaneous
inhibition of SERCA, PMCA and NCX affects the Ca2+ response
to ATP both in the presence and absence of extracellular Ca2+.

3.8.3 Simultaneous inhibition of SERCA, PMCA and
NCX in the presence of extracellular Ca2+

In the presence of extracellular Ca2+ (Figure 11A), the Ca2+

response elicited by ATP (300 µM) in the presence of CPA (10 µM)
+ OV (500 µM) + SEA0400 (3 µM) presented a significant (p < 0.05)
decrease in peak amplitude (Figure 11B) and in Amp600
(Figure 11C) in VSMCs from both LZDF and OZDF rats. These
data are consistent with the inhibitory effect exerted by OV
(Figure 7B) and SEA0400 (Figure 9B) on peak Ca2+ amplitude in
aortic VSMCs from, respectively, OZDF and LZDF rats. Likewise,
these data are consistent with the evidence that blocking either
SERCA (Figure 5C) or PMCA (Figure 7C) activity prevents the
recovery of the initial increase in [Ca2+]i and enhances the amplitude

of the subsequent plateau phase in both animal groups, while
blocking NCX activity enhances Amp600 only in LZDF VSMCs
(Figure 9C). However, the ΔAmp600 recorded in OZDF VSMCs
under these experimental conditions is significantly (p < 0.05) lower
than in LZDF VSMCs (Figure 11D), which is consistent with a
reduction in SERCA and PMCA activity by T2DM. Because of this
complex remodelling of the Ca2+ handling machinery in obese
diabetic rats, the AUC of the Ca2+ response undergoes a
significant (p < 0.05) increase only in VSMCs from OZDF rats
(Figures 11E, F).

3.8.4 Simultaneous inhibition of SERCA, PMCA and
NCX in the absence of extracellular Ca2+

In the absence of extracellular Ca2+ (0Ca2+) (Figure 12A), the
Ca2+ response elicited by ATP (300 µM) in the presence of CPA
(10 µM) + OV (500 µM) + SEA0400 (3 µM) still presented a
significant (p < 0.05) decrease in peak amplitude (Figure 12B) in
both groups of animals. As expected, under these experimental
conditions, the initial increase in [Ca2+]i failed to fully recover to the
baseline (Figure 12A), thereby resulting in a plateau-like signal that
did not return to pre-stimulation levels. Intriguingly, the
ΔAmp600 recorded in OZDF VSMCs upon simultaneous
blockade of SERCA, PMCA and NCX was significantly (p <
0.05) lower than in LZDF VSMCs (Figure 12C). This finding is
consistent with the reduction in the activity of all these Ca2+-

FIGURE 8
PMCA-dependent Ca2+ extrusion is reduced during the early stage of the decay of ATP-induced Ca2+ transient in VSMCs from OZDF rats in the
absence of extracellular Ca2+. Mean traces of the ATP-induced Ca2+ transient in the absence (dashed blue line for LZDF and dashed red line for OZDF) and
presence (continuous blue line for LZDF and continuous red line for OZDF) of PMCA inhibitor, sodium orthovanadate (OV, 500 µM) in 0Ca2+ (A). Peak
amplitude (B), decay time (C) and area under the curve (AUC) (E) of the ATP-evoked Ca2+ signal in the presence and absence (control) of OV.
Normalized values of decay time (ΔDT) (D) and AUC (ΔAUC) (F) for comparison purposes between LZDF and OZDF groups. All parameters are expressed
as mean ± SE. Statistical comparison between groups was performed using Student’s t-test. * indicates p < 0.05. n = 6; 191 cells for LZDF control, n = 6;
308 cells for LZDF OV 0Ca2+, n = 6; 204 cells for OZDF control, n = 4; 153 cells for OZDF OV 0Ca2+.
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transporting systems under 0Ca2+ conditions. Because of this
complex remodelling of the Ca2+ handling machinery in obese
diabetic rats, the AUC of the Ca2+ response undergoes a
significant (p < 0.05) increase only in VSMCs from LZDF rats
(Figures 12D, E).

4 Discussion

4.1 Animal model

As shown in Table 1, at the age of 12 weeks, all the
morphological parameters measured (body weight, length,
abdominal circumference and epididymal fat) were significantly
increased in the OZDF rats in comparison to the LZDF
group. The increment in weight concurs with the data previously

reported by other research groups (Fridlyand and Philipson, 2006;
Tirmenstein et al., 2015; Berra-Romani et al., 2019). Since this could
be attributed to an increase in the length of the rat, we calculated the
BMI to rule out the possibility that differences in length would
interfere with our results. BMI was statistically higher in OZDF rats
compared to the LZDF group, evidencing that weight gain is indeed
due to obesity, as also reported by other studies (Shiota and Printz,
2012; Wang et al., 2013; Al-Awar et al., 2016; King and Bowe, 2016).
The presence of obesity in OZDF rats was also demonstrated by a
405% increase in the amount of adipose tissue formed around the
epididymis (epididymal fat). These results confirm that OZDF rats
present obesity at the age of 12–16 weeks. Confirming that the
animals used for the experimental protocols did indeed develop
T2DM, plasma glucose levels 2 hours after intraperitoneally glucose
administration (2 g/kg of weight) were more elevated in OZDF rats.
This information indicates that OZDF rats are glucose intolerant,

FIGURE 9
NCX activity changes during the Ca2+ response evoked by ATP in the presence of extracellular Ca2+ in rat aortic VSMCs fromOZDF rats. Mean traces
of the ATP-induced Ca2+ transient in the absence (dashed blue line for LZDF and dashed red line for OZDF) and presence (continuous blue line for LZDF
and continuous red line for OZDF) of NCX inhibitor, SEA0400 (3 µM) (A). Peak amplitude (B), amplitude of the late stage of the decay (Amp600) (C), decay
time (E) and area under the curve (AUC) (G) of the ATP-evoked Ca2+ signal in the presence and absence (control) of SEA0400. Normalized values of
Amp600 (ΔAmp600) (D), decay time (ΔDT) (F) and AUC (ΔAUC) (H) for comparison purposes between LZDF and OZDF groups. All parameters are
expressed as mean ± SE. Statistical comparison between groups was performed using Student’s t-test. * indicates p < 0.05, n = 6; 121 cells for LZDF
control, n = 6; 272 cells for LZDF SEA0400, n = 6; 179 cells for OZDF control, n = 6; 290 cells for OZDF SEA0400.
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which constitutes one of the criteria that according to the ADA, are
sufficient to diagnose T2DM in humans (ElSayed et al., 2023).

4.2 T2DM shortens the early phase of the
decay and increases the plateau amplitude
of ATP-induced Ca2+ signals in rat aortic
VSMCs

The experiments carried out in this study demonstrate that Ca2+

handling is altered in VSMCs from OZDF rats. In particular, T2DM
causes two important effects on the ATP-evoked biphasic elevation in
[Ca2+]i: 1) a significant reduction in decay time to 90% and 60% of the
initial Ca2+ peak amplitude (early stage of the decay of [Ca2+]i to resting
levels) and 2) a significant increase in the amplitude of the plateau (late
stage of the decay of [Ca2+]i and SOCE activation). Shortening of the
early phase of decay could be due to alterations in the activity of the
Ca2+-clearing mechanisms, such as SERCA, PMCA and NCX.

The role of SERCA (Zhang et al., 2018; Pereira et al., 2022); PMCA
(Pande et al., 2006; Baryshnikov et al., 2009) andNCX (Liu et al., 2016;
Yang et al., 2020) in clearing cytosolic Ca2+ upon agonist stimulation
in aortic VSMCs has extensively been reported. However, few studies
are available above the effect of DM on the activity of these Ca2+-
clearing mechanisms VSMCs. In A7r5 cells, hyperglycemia was
reported to induce a reduction in SERCA expression and activity

(Searls et al., 2010; Tong et al., 2010) and an increase in PMCA and
NCX activity (Han et al., 2022). However, our data showing that the
decay phase of the initial increase in [Ca2+]i evoked by ATP is
accelerated in OZDF rat aortic VSMCs suggests that T2DM
increases the activity of the Ca2+-clearing machinery. As to the
increase in plateau amplitude observed in OZDF rat aortic
VSMCs, this could clearly be due to SOCE upregulation, as
recently shown in (Ma et al., 2020; Zhu et al., 2021). A recent
report confirmed that SOCE was enhanced in aortic VSMCs
deriving from Zucker diabetic fatty rats due to upregulation of
Orai1 protein (Yang et al., 2020). In accord, the Mn2+-quenching
assay confirmed that extracellular Ca2+ entry evoked by the
pharmacological depletion of the ER Ca2+ store with CPA was
remarkably larger in OZDF VSMCs as compared to LZDF.
However, the increase in plateau amplitude could also reflect a
reduction in the activity of Ca2+-extruding mechanisms and/or an
increase in Ca2+ entry through the reverse mode of NCX (Zhang et al.,
2005; Pulina et al., 2010; Liu et al., 2016; Berra-Romani et al., 2019).

4.3 T2DM reduces ATP-induced SR Ca2+

release in rat aortic VSMCs

In order to elucidate the mechanism(s) whereby T2DM alters
the Ca2+ response to ATP in rat aortic VSMCs, we first stimulated

FIGURE 10
NCX activity is reduced during the early stage of the decay of ATP-induced Ca2+ transient in rat aortic VSMCs from OZDF rats in the absence of
extracellular Ca2+. Mean traces of the ATP-induced Ca2+ transient in the absence (dashed blue line for LZDF and dashed red line for OZDF) and presence
(continuous blue line for LZDF and continuous red line for OZDF) of NCX inhibitor, SEA0400 (3 µM) in 0Ca2+ (A). Peak amplitude (B), decay time (C) and
area under the curve (AUC) (E) of the ATP-evoked Ca2+ signal in the presence and absence (control) of SEA0400. Normalized values decay time
(ΔDT) (D) and AUC (ΔAUC) (F) for comparison purposes between LZDF and OZDF groups. All parameters are expressed as mean ± SE. Statistical
comparison between groups was performed using Student’s t-test. * indicates p < 0.05. n = 6; 121 cells for LZDF control, n = 6; 199 cells for LZDF
SEA0400 0Ca2+, n = 6; 179 cells for OZDF control, n = 6; 162 cells for OZDF SEA0400 0Ca2+.
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the cells under 0Ca2+ conditions. This condition is widely employed
to assess the role played by extracellular Ca2+ in shaping peak
amplitude, decay phase and plateau amplitude of the Ca2+

response to extracellular stimulation (Urena et al., 2007; Berra-
Romani et al., 2008; Linde et al., 2012). Ca2+ removal from the
extracellular solution caused a significant decrease in Ca2+ peak
amplitude and abolished the plateau phase, thus converting the
biphasic Ca2+ response to ATP in a transient elevation in [Ca2+]i in
VSMCs from both animal groups. However, ATP-induced SR Ca2+

release was remarkably lower in rat aortic VSMCs from OZDF rats.
Enhanced SOCE could therefore shift the amplitude of the initial
Ca2+ peak evoked by ATP in OZDFVSMCs to the same amplitude as
that induced in LZDF cells, which present a larger IP3-induced SR
Ca2+ release but lower SOCE. The reduced Ca2+ peak observed under
0Ca2+ conditions can be attributed to multiple factors, including
downregulation of P2Y receptors, reduced phospholipase C (PLC)
activation, lower IP3R and RyR expression and/or activity, and a
decrease in SR Ca2+ content. However, CPA-induced intracellular
Ca2+ release, which is a widely employed readout of SR Ca2+ content,
was not altered in OZDF VSMCs, as also reported in VSMCs from
diabetic mice (Velmurugan and White, 2012). In contrast, ATP-
evoked intracellular Ca2+ release, which is mainly dependent on
IP3Rs (see below), was significantly reduced in OZDF rat aortic
VSMCs. This finding suggests that either P2Y receptors are

downregulated or their downstream signalling pathways, such as
those culminating in PLC engagement and IP3R activation, are
compromised by T2DM. A study performed in systemic arterial
smooth muscle cells deriving from rat models of T1DM, as well as in
VSMCs exposed to high glucose, showed a reduction in IP3R
expression that attenuated vasopressin-induced Ca2+ response
(Searls et al., 2010). Conversely, Velmurugan et al. found that, in
aortic VSMCs from mice with T2DM, IP3R excitability was
augmented through the direct interaction with the anti-apoptotic
Bcl-2 proteins (Velmurugan and White, 2012). The discrepancy in
these results could be due to several factors, such as heterogeneity in
the vascular district, animal model, type of DM and progress of the
disease. However, the evidence that T2DM increases IP3R activity in
mouse VSMCs strongly suggests that IP3-dependent Ca

2+ release is
also enhanced in rat VSMCs. On the other hand, although DM alters
RyR function in contractile VSMCs (Fernandez-Velasco et al.,
2014), dedifferentiation induces RyR downregulation in the
proliferative phenotype of VSMCs (Berra-Romani et al., 2008;
House et al., 2008). Consistently, our Ca2+ imaging recordings
confirmed that caffeine did not induce Ca2+ signals in cultured
rat aortic VSMCs. Therefore, RyRs are unlikely to contribute to
ATP-induced endogenous Ca2+ mobilization in the VSMCs
employed in the present investigation. Likewise, ionotropic P2X
receptors are lost during the dedifferentiation of VSMCs and cannot

FIGURE 11
Simultaneous inhibition of SERCA, PMCA and NCX in the presence of extracellular Ca2+. Mean traces of ATP-induced Ca2+ signals in the absence
(dashed blue line for LZDF and dashed red line for OZDF) and presence (continuous blue line for LZDF and continuous red line for OZDF) of CPA (10 µM) +
OV (500 µM) + SEA0400 (3 µM) (+inhibitors) in normal extracellular Ca2+ concentration (A). Peak amplitude (B), amplitude of the late stage of the decay
(Amp600) (C) and area under the curve (AUC) (E) of the ATP-evoked Ca2+ signal in the presence (+inhibitors) and absence (control) of CPA + OV +
SEA0400. Normalized values decay time (ΔDT) (D) and AUC (ΔAUC) (F) for comparison purposes between LZDF and OZDF groups. All parameters are
expressed as mean ± SE. Statistical comparison between groups was performed using Student’s t-test. * indicates p < 0.05. n = 6; 121 cells for LZDF
control, n = 4; 245 cells for LZDF + Inhibitors, n = 6; 179 cells for OZDF control, n = 5; 360 cells for OZDF + Inhibitors.
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contribute to the initial Ca2+ peak induced by ATP in the presence of
extracellular Ca2+ (Erlinge et al., 1998). The evidence discussed
below that PMCA inhibition reduces the amplitude of the initial
Ca2+ peak and that PMCA is engaged by Ca2+ entry strongly suggest
that PMCA activity is required to promote full IP3R activation
in T2DM.

4.4 T2DM alters SERCA activity in rat aortic
VSMCs

The inhibition of SERCA activity with CPA in the presence of
extracellular Ca2+ elongated the decay phase of the Ca2+ transient
induced by ATP in both experimental groups. However, this effect
was greater during the early phases of decay (i.e., 90% and 60%) in
OZDF rats. This observation suggests that Ca2+ sequestration by
SERCA is enhanced during the initial stage of the Ca2+ transient and
affects the early phase of decay in OZDF VSMCs. Furthermore,
SERCA inhibition by CPA caused a larger increase in Amp600,
which is a readout of plateau amplitude, in LZDF as compared to
OZDF rats. This finding indicates that SERCA activity could
decrease during the later stages of the decay phase, which would
result in less removal of Ca2+ during the plateau phase. Therefore,
the larger Amp600 recorded in OZDV VSMCs could be underlain

by the combination of enhanced SOCE and reduced SERCA activity.
Both an increase and a decrease in SERCA activity in the presence of
DM have been reported. Particularly, in dyslipidemic diabetic pigs,
Hill et al. found an increase in Ca2+ buffering by SERCA2 in
coronary artery VSMCs isolated from dyslipidemic diabetic pigs
(Hill et al., 2003). Conversely, in rat aortic VSMCs harvested from
two different models of T1DM, Searls et al. found a decrease in the
expression of SERCA2 and SERCA3, thereby reducing Ca2+ and
attenuating the Ca2+ response to vasopressin (Searls et al., 2010).
Downregulation of SERCAwas also observed in cultured rat VSMCs
exposed to high glucose, although this did not produce any
significant alteration in the Ca2+ response to phenylephrine (El-
Najjar et al., 2017). Interestingly, the protein expression of
SERCA2B, which represents the main SERCA isoform in
proliferating VSMCs (Berra-Romani et al., 2008) can be
significantly enhanced in the thoracic and abdominal aortas of
OZDF rats (Berra-Romani et al., 2019). Conversely, SERCA2B
activity can be negatively modulated by oxidative stress (Berra-
Romani et al., 2019; Negri et al., 2021), which is dramatically
enhanced in OZDF rats (Chinen et al., 2007). It has been
recently proposed that an early increase in [Ca2+]i can stimulate
the production of reactive oxygen species (ROS) via the Ca2+-
dependent recruitment of NADPH oxidase 5 (NOX5) (Negri
et al., 2021). Additionally, ROS could be generated upon

FIGURE 12
Simultaneous inhibition of SERCA, PMCA and NCX in the absence of extracellular Ca2+. Mean traces of the ATP-induced Ca2+ signals in the absence
(dashed blue line for LZDF and dashed red line for OZDF) and presence (continuous blue line for LZDF and continuous red line for OZDF) of CPA (10 µM) +
OV (500 µM) + SEA0400 (3 µM) (+inhibitors) in absence of extracellular Ca2+ (0Ca2+) (A). Peak amplitude (B), amplitude of the late stage of the decay
(Amp600) (C) and area under the curve (AUC) (D) of the ATP-evoked Ca2+ signal in the presence (+inhibitors) and absence (control) of CPA + OV +
SEA0400. Normalized values of AUC (ΔAUC) (E) for comparison purposes between LZDF and OZDF groups. All parameters are expressed as mean ± SE.
Statistical comparison between groups was performed using Student’s t-test. * indicates p < 0.05. n = 6; 121 cells for LZDF control, n = 7; 426 cells for
LZDF + Inhibitors, n = 6; 179 cells for OZDF control, n = 6; 410 cells for OZDF + Inhibitors.
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NOX2 activation by Gq-protein Coupled Receptors (Negri et al.,
2021), such as purinergic P2Y receptors. Therefore, we hypothesize
that the initial increase in [Ca2+]i evoked by ATP is rapidly cleared
by SERCA2B in rat aortic VSMCs from OZDF rats due to its
increased expression as compared to LZDF animals. However,
ATP stimulation could also result in NOX2 and/or
NOX5 activation, thereby exacerbating the ongoing oxidative
stress and inhibiting SERCA2B activity during the plateau phase.
Overall, our findings suggest that SERCA activity is increased during
the initial phase of the Ca2+ response to an IP3-producing autacoid,
such as ATP, but the decreases during the later stages of the increase
in [Ca2+]i in aortic VSMCs from OZDF rats.

4.5 T2DM alters PMCA activity in rat aortic
VSMCs

The next Ca2+-clearing mechanism evaluated in the present
investigation was PMCA. In both experimental groups, OV
caused a larger increase in Amp600 in LZDF as compared to
OZDF rats. This finding indicates that also PMCA activity is
reduced during the plateau phase of the Ca2+ response to ATP in
diabetic animals. It turns out that blocking Ca2+ extrusion via PMCA
with OV causes a larger accumulation of cytosolic Ca2+ in LZDF as
compared to OZDF VSMCs. It is, therefore, plausible to conclude
that the increase in plateau amplitude observed in diabetic rat aortic
VSMCs is also due to a decrease in PMCA activity. As to the early
phase of the Ca2+ signal, the decay time to 90% and 60% of the initial
Ca2+ peak were significantly increased in OZDF, but not in LZDF
VSMCs. This finding suggests that Ca2+ extrusion through PMCA is
increased by T2DM at the onset of ATP-evoked increase in [Ca2+]i.
Notably, OV reduced the Ca2+ peak amplitude in diabetic but not
lean VSMCs. This finding suggests that enhanced PMCA activity is
somehow required to propagate the rise in [Ca2+]i following agonist
stimulation, as described in human platelets (Jones et al., 2010). The
increase in PMCA activation could be attributed to enhanced SOCE,
which can engage PMCA with high spatio-temporal efficiency and
thereby finely tune IP3-evoked SR Ca2+ release during the rising
phase of the Ca2+ signal.

Conversely, when PMCA was inhibited in the absence of
extracellular Ca2+, the decay time at 90%, 60% and 30% were
significantly reduced in both animal groups. This finding strongly
suggests that PMCA plays a minor role in buffering the initial
increase in [Ca2+]i under 0Ca2+ conditions. Furthermore, the
amplitude of the initial Ca2+ peak was significantly decreased also
in LZDF rat aortic VSMCs, which means that extracellular Ca2+

entry can substitute PMCA to regulate IP3-dependent SR Ca2+

release in lean animals. Interestingly, also CPA reduced the
amplitude of the initial Ca2+ peak in LZDF VSMCs stimulated
with ATP only under 0Ca2+ conditions, thereby indicating that
SERCA interacts with PMCA to finely tune IP3-induced SR Ca2+

mobilization in non-diabetic VSMCs in the absence of Ca2+ entry.
These results, therefore, set extracellular Ca2+ as a regulator of

PMCA in rat aortic VSMCs. PMCA activity is likely to be increased
during the early phase of Ca2+ response evoked by ATP in the
presence of extracellular Ca2+ in OZDF rat aortic VSMCs, while it
declines during the subsequent plateau phase. In contrast, PMCA
does not seem to have a relevant role under 0Ca2+ conditions in both

animal groups. A functional coupling between SOCE and PMCA
has long been known. Extracellular Ca2+ incoming through
Orai1 channels can stimulate adjacent PMCA in a calmodulin-
dependent manner and promote Ca2+ extrusion across the plasma
membrane (Klishin et al., 1998; Snitsarev and Taylor, 1999). PMCA
might not be engaged under 0Ca2+ conditions, so that IP3-released
Ca2+ is removed by alternative Ca2+-clearing mechanisms that
present a higher extrusion rate and therefore accelerate the decay
phase of the Ca2+ transient in both animal groups. The subsequent
inhibition of PMCA activity during the late phase of decay even in
the presence of extracellular Ca2+ could again reflect the enhanced
oxidative stress imposed to diabetic VSMCs during the development
of the Ca2+ signal. In accord, it has been demonstrated that ROS
inhibit PMCA activity and thereby favour the accumulation of
cytosolic Ca2+ (Kim et al., 2018), which is consistent with the
increase in plateau amplitude in OZDF VSMCs.

Scarce information is available regarding the mechanisms by
which T2DM affects PMCA in VSMCs; however, our results
resemble those reported by El-Najjar et al., who showed that
PMCA activity in rat aortic VSMCs exposed to high extracellular
glucose is enhanced due to the increase in PMCA4 expression (El-
Najjar et al., 2017). Similar results were observed in VSMCs from
coronary arteries of diabetic and dyslipidemic pigs (Hill et al., 2003).
Nevertheless, neither study evaluated whether PMCA activity
decreases during the Ca2+ response to an IP3-producing autacoid.

4.6 T2DM alters NCX activity in rat aortic
VSMCs

The last Ca2+-clearing mechanism evaluated in the present
investigation was NCX. As described for SERCA and PMCA,
NCX inhibition elicited different effects in lean vs. diabetic rats.
In the presence of extracellular Ca2+, SEA0400 reduced the
amplitude of the initial Ca2+ peak in LZDF but not OZDF
VSMCs. Therefore, NCX is likely to regulate IP3-induced SR Ca2+

release in rat aortic VSMCs from lean animals. Furthermore,
blocking NCX activity did not remarkably affect the decay phase,
but increased Amp600, of the Ca2+ response evoked by ATP in LZDF
rats. Conversely, SEA0400 slowed down all the decay time and
inhibited the plateau phase in OZDF VSMCs. These findings
indicate that: 1) NCX operates in the forward (i.e., Ca2+ out)
mode during the late phase of the Ca2+ response to ATP in lean
VSMCs and 2) NCX switches from the forward to the reverse-mode
(i.e., Ca2+ in) during the decay phase of the Ca2+ response evoked by
ATP in diabetic VSMCs. The Ca2+-clearing activity of NCX during
the early phase of the ATP-evoked increase in [Ca2+]i could
contribute to explain its sharper decline in OZDF VSMCs.
Conversely, under 0Ca2+ conditions, Ca2+ extrusion via NCX
seems to be decreased in diabetic VSMCs. In accord, blocking
NCX activity accelerated the decay rate, which means that NCX
is unlikely to clear cytosolic Ca2+ in the absence of Ca2+ entry. On the
other hand, SEA0400 slows down the clearing rate in LZDF VSMCs,
which indicates that in lean animals NCX drives the recovery of the
Ca2+ transient to the baseline only under 0Ca2+ conditions.

Five Similar to SERCA, it is still unclear how T2DM affects NCX
activity in VSMCs. A study performed by El-najjar et al. showed
that, in VSMCs exposed to high glucose, there were no alterations in
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NCX expression or activity (El-najjar et al., 2017). Conversely, NCX
activity was enhanced in cardiomyocytes isolated from db/db obese
type 2 diabetic mice (Pereira et al., 2006). Future studies are required
to understand whether NCX and PMCA expression are altered in
aortic VSMCs from OZDF rats. Conclusion.

Herein, we provided the first demonstration that the Ca2+-
transporting machinery is deranged in aortic VSMCs from
diabetic obese rats. The Ca2+ pumping activity of SERCA and
PMCA is increased by T2DM during the early phase of the Ca2+

transient, whereas it is remarkably slowed down during the
following plateau phase. Similarly, NCX contributes to buffer
the initial increase in [Ca2+]i by operating in the reverse-mode,
but it then reverses into the Ca2+-entry mode during the plateau
phase. Therefore, the larger plateau observed in rat aortic VSMCs
from OZDF rats is not only due to SOCE upregulation, as shown
by others and confirmed in the present study, but also to the lower
Ca2+ extrusion via PMCA and SERCA and to the activation of the
reverse-mode of NCX. This latter observation suggests that a
Na+-permeable channel is recruited or enhances its activity in
diabetic VSMCs challenged with ATP. The non-selective cation
channel, TRP Canonical 6 (TRPC6), can be gated by
diacylglycerol produced upon PLC activation and generates
local cytosolic Na+ transients beneath the plasma membrane
that drive NCX-mediated Ca2+ entry in purinergically
stimulated rat aortic VSMCs (Poburko et al., 2007). Future
work will have to assess whether TRPC6 activation is
enhanced by T2DM and contributes to further elevate the
[Ca2+]i during the plateau phase. Preliminary evidence showed
that TRPC6 protein was upregulated in caudal artery smooth
muscle from Type 2 diabetic Goto-Kakizaki rats (Mita et al.,
2010), whereas TRPC3 protein expression was increased in
platelets of patients affected by T2DM (Zbidi et al., 2009).

Intriguingly, extracellular Ca2+ entry is required to engage
PMCA and the forward mode of NCX during the decay phase.
The functional coupling between Orai1, i.e., the pore-forming
subunit of SOCs, and PMCA has been firmly established, while a
straight-forward relationship between SOCE and NCX-mediated
Ca2+ extrusion is yet to be reported. The faster decay of [Ca2+]i
observed in diabetic rat aortic VSMCs challenged with ATP in the
absence of extracellular Ca2+ and upon inhibition of either PMCA or
NCX activity suggests the involvement of an alternative Ca2+-
clearing mechanism. Mitochondrial have been shown to rapidly
buffer Ca2+ at high [Ca2+]i in rat systemic arterial smooth muscle
cells (McCarron and Muir, 1999; Kamishima et al., 2000). Although
this issue remains highly controversial, the rate of mitochondrial
Ca2+ uptake could be increased by T2DM (Belosludtsev et al., 2020).
Intriguingly, the simultaneous blockade of SERCA, PMCA andNCX
activity in the absence of extracellular Ca2+ results in a plateau-like
elevation in [Ca2+]i that presents a higher Amp600 in VSMCs from
LZDF rats. This finding implies that an additional Ca2+-removal
mechanism intervene to buffer, at least partially, the initial rise in
[Ca2+]I elicited by ATP in rat aortic VSMCs from OZDF rats. These
alterations in the Ca2+ clearing machine in aortic VSMCs could
exacerbate vascular dysfunction in diabetes. For instance, the
aberrant increase in [Ca2+]i observed could enhance VSMC
proliferation and migration, thereby favoring atherosclerotic
plaques and vascular calcification. In addition, cytosolic Ca2+

overload in VSMCs could exacerbate oxidative stress within the
vascular wall (Negri et al., 2021).
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Introduction: Aging is a process characterised by a decline in physiological
functions. Reactive species play a crucial role in the aging rate. Due to the
close relationship between aging and oxidative stress, functional foods rich in
phytochemicals are excellent candidates to neutralise age-related changes.

Aim: This investigation aims to verify the potential protective role of bergamot
(Citrus bergamia, Femminello cultivar) peel and juice extract in a model of aging
represented by human red blood cells (RBCs) exposed to D-Galactose (DGal).

Methods: Bergamot peel and juice extracts were subjected to RP-HPLC/PDA/MS
for determination of their composition in bioactive compounds. Markers of
oxidative stress, including ROS production, thiobarbituric acid reactive
substances (TBARS) levels -a marker of lipid peroxidation, oxidation of total
protein sulfhydryl groups, as well as the expression and anion exchange
capability of band 3 and glycated haemoglobin (A1c) production have been
investigated in RBCs treated with D-Gal for 24 h, with or without pre-
incubation for 15 min with 5 μg/mL peel or juice extract. In addition, the
activity of the endogenous antioxidant system, including catalase (CAT) and
superoxide dismutase (SOD), as well as the diversion of the RBC metabolism
from glycolysis towards the pentose phosphate pathway shunt, as denoted by
activation of glucose-6-phosphate dehydrogenase (G6PDH), have been explored.

Results: Data shown here suggest that bergamot peel and juice extract i)
prevented the D-Gal-induced ROS production, and consequently, oxidative
stress injury to biological macromolecules including membrane lipids and
proteins; ii) significantly restored D-Gal-induced alterations in the distribution
and ion transport kinetics of band 3; iii) blunted A1c production; iv) effectively
impeded the over-activation of the endogenous antioxidant enzymes CAT and
SOD; and v) significantly prevented the activation of G6PDH.

Discussion: These results further contribute to shed light on aging mechanisms in
human RBCs and identify bergamot as a functional food rich in natural
antioxidants useful for prevention and treatment of oxidative stress-related
changes, which may lead to pathological states during aging.
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1 Introduction

Aging is a biological process that results in a progressive and
non-reversible decline in the physiological functions of all body
organs and is caused by damage accumulation with concomitant
elevation of oxidative stress (Fukagawa, 1999; Akki et al, 2018; Akki
et al, 2019; Ferrera et al, 2021). In 1972, Denham Harman (Harman,
1972) postulated the free radical theory of aging, which points to
accumulation of reactive species as the underlying reason for the
oxidation of the biological macromolecules and consequent cell
injury, thereby explaining the alterations in cell functions during
natural aging (Junqueira et al, 2004; Remigante andMorabito, 2022).

Aerobic cell metabolism requires oxygen as the final electron
acceptor of oxidation reactions and reactive oxygen species (ROS)
represent a byproduct of this process. The physiological role of red
blood cells (RBCs) is the transport of respiratory gases from the lungs to
the tissues and vice versa, in order to supply the cells with oxygen. In the
blood stream, RBCs are continuously exposed to both endogenous and
exogenous reactive species able to injury their structure, thus impairing
their physiology and functionality (Rizvi and Maurya, 2007; Remigante
et al, 2021a; Fujii et al, 2021; Arrigo et al, 2023). Un-neutralized reactive
species react with both RBC plasma membrane lipids and proteins and
promote oxidative alterations at level of lipids (lipid peroxidation) and
proteins (protein oxidation) and/or fragmentation, respectively
(Avitabile et al, 2020). Alternatively, the accumulation of reactive
species results in the induction of glycation reactions, which leads to
the increased endogenous production of advanced glycation end
products (AGEs) (Moldogazieva et al, 2019). Non-enzymatic
glycation of membrane glycoproteins and/or haemoglobin as well as
their gradual accumulation within RBCs can account for altered
rheologic properties of RBCs (Turk et al, 1998). In RBCs, oxidative
stress-related aging is accompanied by a decrease in cell volume and
hemoglobin content and an increase in cell density (Pandey and Rizvi,
2010). These alterations are correlated with a loss of cholesterol and
phospholipids, resulting in a decrease in the surface area that reflects a
loss of membrane lipids and protein constituents. The reduction of
surface area could be explained by a gradual membrane blebbing and
vesiculation (Willekens et al., 2008), both accelerated in aged RBCs
(Pandey and Rizvi, 2011). In addition, these changes might limit the
ability of the RBCs to maintain the highly deformable biconcave shape
necessary to pass through the narrow capillaries, thus contributing to
their removal from circulation (Shiga et al, 1990; Pretorius, 2018).

One of the major goals of RBC redox regulation results in protection
of their main plasma membrane protein, band 3 (SLC4A1/AE1) (Abbas
et al, 2018). Band 3 is an integral trans-membrane protein that plays
different functions: 1) themaintenance of anion homeostasis (Reithmeier
et al, 2016); 2) the binding between plasma membrane lipids and
cytoskeletal proteins, reflecting on cell shape (De Franceschi et al,
2012; Vallese et al, 2022; Spinelli et al, 2023); 3) the docking, at level
of the N-terminal cytosolic domain that protrudes into the cytosol, of a
series of structural proteins and glycolytic enzymes (e.g., glyceraldehyde
3-phosphate dehydrogenases: GAPDH) (Campanella et al, 2008;
Puchulu-Campanella et al, 2013), as well as cytosolic proteins such as
haemoglobin (Zhang et al, 2003). Moreover, haemoglobin, in addition to

its central role of carrying oxygen from the lungs to peripheral tissues,
may serve as oxygen sensor, in order to appropriately link band 3 to
regulation of theRBCmetabolism (Ellsworth, 2000; Puchulu-Campanella
et al, 2013). In fact, several studies have provided compelling, albeit
indirect, evidence that, when not encumbered by deoxy-hemoglobin, the
N-terminal of band 3 can bind to and, in turn, inhibit the glycolytic
enzyme GAPDH (Issaian et al, 2021). Oxygen-dependent metabolic
modulation is mediated by the competitive binding of deoxy-
hemoglobin and glycolytic enzymes to the band 3 cytosolic domain.
When oxidant stress is high, GAPDH enzyme is bound to band 3 and
thereby inhibited (Reisz et al, 2016). In this context, RBCs favor glucose
oxidation through the pentose phosphate pathway (PPP), in order to
generate the reducing cofactor NADPH and fuel endogenous antioxidant
systems. On the other hand, when oxidant stress is low, haemoglobin is
deoxygenated and binds to the band 3N-terminus, which in turn favors
the release of glycolytic enzymes from the membrane to promote the
generation of energy in the form of ATP and NADH through glycolysis
(Castagnola et al, 2010). This balance may be dysregulated by early RBCs
aging and/or increased reactive oxygen species (ROS) levels, thus
depriving RBCs of their crucial metabolic plasticity and leading to
their removal from the blood circulation (Kuhn et al, 2017).
Therefore, the regulation of the balance between glycolysis and PPP is
essential and enables RBCs to counteract oxidative insults impacting on
their cell structures/functions. In addition, unusual levels of reactive
species could be the common denominator in the development and
progression of different aging-related acute and/or chronic pathologies,
although the precisemechanisms contributing to oxidative stress-induced
injury are still poorly clarified (Radi et al, 2014; Bo-Htay et al, 2018;
Martinelli et al, 2020; Emanuelli et al, 2022; Guo et al, 2022; Remigante
and Morabito, 2022).

To contain oxidative stress effects, RBCs possess an excellent
cytosolic antioxidant machinery composed of non-enzymatic as well
as enzymatic antioxidants, which represent an effective antioxidant
equipment to protect RBCs themselves along with other body cells
and tissues (Zabinski et al, 2000; Inal et al, 2001). The use of natural
secondary metabolites such as polyphenol-rich extracts with antioxidant
properties could be an excellent and workable alternative for supporting
the integrated antioxidant system (Jacob, 1995; Lunceford andGugliucci,
2005; Dorta et al, 2008; Kouka et al, 2017; Xu et al, 2019; Remigante et al,
2022a; Remigante et al, 2022b). In this regards, special attention has been
paid to the potential health benefits of the flavonoid fraction of the
bergamot (Citrus bergamia) (Russo et al, 2016).

Bergamot is a small tree belonging to Rutaceae family that is
mainly cultivated in a specific area of the region of Calabria (Italy)
known to ensure a microclimate suitable for its growth. The essential
oil of bergamot, which is obtained from the fruit peel, has been
extensively characterized and used in cosmetic and food industries,
whereas the bergamot by-products, such as the pulp and juice, have
been only recently evaluated for their beneficial properties, which
include cholesterol reduction, antioxidant and anti-inflammatory
effects (Ferlazzo et al, 2015; Russo et al, 2015; Carresi et al, 2016;
Lauro et al, 2016; Musolino et al, 2019). This reassessment may lead
to reduction in the disposal costs of industrial processes and gain of a
good source of nutraceuticals, thus representing an economic
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advantage (Russo et al, 2021). To date, no scientific study evaluating
the anti-aging properties of peel and/or juice extracts from bergamot
in human RBCs has been reported.

The long-term exposure to high doses of D-Galactose (D-Gal)
represents a good experimental model of natural aging (Azman and
Zakaria, 2019). Thus, the present investigation aims to identify the
potential beneficial effects of bergamot peel and juice extracts from
Femminello cultivar on the molecular mechanisms underlying
natural aging in RBCs, including oxidative damage, glycation
events and activation of the endogenous enzymatic defense
system. To this aim, juice and peel extracts from bergamot fruits
belonging to Femminello cultivar were subjected to RP-HPLC/PDA/
MS for determination of their precise composition in bioactive
compounds and their effects were evaluated in a D-Gal-induced
model of aging in human RBCs.

2 Materials and methods

2.1 Materials and samples for analytical
determination of bioactive molecules

Water, formic acid, ethanol, acetonitrile and methanol were
obtained from Merck Life Science (Merck KGaA, Darmstadt,
Germany). The standard compounds ferulic acid, synapic acid,
eriocitrin, narirutin, and neohesperidin were obtained from
Extrasynthese (Genay Cedex, France). Apigenin 6,8-di-
C-glucoside, diosmetin 6,8-di-C-glucoside, naringin, brutieridin,
limonin glucoside, nomilin glucoside, nomilinic acid glucoside,
limonin, melitidin, nomilin and neoeriocitrin were previously
isolated in our laboratory. Bergamot (Citrus bergamia) peels used
in this research belong to Femminellocultivar and the experimental
protocol has been performed with peels obtained from two fruits.
Fruits were collected at the same stage of ripeness from trees grown
in Calabria (Melito di Porto Salvo, Reggio Calabria, Italy) on January
2023. Fruits were washed, dried and stored at +4°C, then peeled and
squeezed. Peels were dried at 25°C for 48 h.

The juice was subjected to RP-HPLC analysis without any pre-
treatment. On the other hand, a solvent extraction procedure was
performed on peel samples before RP-HPLC analysis. The bioactive
compounds extraction procedure was previously validated by our
group (Russo et al, 2015). Briefly, 10 g of samples were extracted
with 100 mL of methanol for three times. The extract was subjected
to chromatographic analysis. The juice and the peel extract were
analysed in triplicate.

2.2 Determination of bioactive compounds
using RP-HPLC/PDA/MS

A Shimadzu Prominence LC-20A system (Shimadzu, Milan,
Italy) was employed to carry out HPLC analyses. The HPLC
instrument was equipped with SPD-M20A UV and HPLCMS-
2020 detectors. The analytical procedure was previously validated
by our group (Russo et al, 2014). This analytical method allowed to
quantify the bioactive molecule content in juice and bergamot peel
samples. Figure of merits were calculated in accordance with the
EURACHEM guidelines (Group, 1998).

2.3 Solutions and chemicals used to RBC
sample processing

Chemicals used to perform experiments were purchased from
Sigma (Milan, Italy). With regard to stock solutions, 4, 4′-
diisothiocyanatostilbene-2, 2′-disulfonate (DIDS, 10 mM) was
prepared in dimethyl sulfoxide (DMSO); D-Galactose (D-Gal,
1 M) was prepared in distilled water and N-ethylmaleimide
(NEM, 310 mM) was prepared in ethanol. H2O2 experimental
solution was obtained by dilution in distilled water from a 30%
w/w stock solution. Ethanol never exceeded 0.001% v/v in the
experimental solutions and was previously tested on RBCs to
exclude haemolysis. Peel extract obtained as described above and
juice devoid of the fibrous part were poured into freeze-drying flasks
and placed into the vacuum chamber, frozen at −50°C, and then
freeze-dried for 72 h (BenchTop K Series Freeze Dryers, VirTis
Gardiner, United States). The concentrated peel extract required a
dilution 1:100 w/v with distilled water prior to use in experiments.

2.4 Preparation of RBCs

Blood needed for the planned experiments was withdrawn from
healthy volunteers (age 25–45 years) upon their informed consent.
Whole blood samples, put in test tubes containing
ethylenediaminetetraacetic acid (EDTA) as anticoagulant, were
repeatedly washed in isotonic solution (NaCl 150 mM, 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 5 mM,
glucose 5 mM, pH 7.4, osmotic pressure 300 mOsm/kgH2O;
centrifugation with Neya 16R, 1,200 × g, 5 min) to eliminate
plasma along with buffy coat. As a further step, thus obtained
RBCs were put in isotonic solution at the haematocrit index
requested by each protocol.

2.5 Haemolysis measurement

To determine the % haemolysis, RBCs (35% haematocrit) were
treated with or without peel or juice extract in isotonic solution for
15 min at 37°C and then processed according to Remigante and
collaborators (Remigante et al, 2022b). Haemoglobin absorbance
was determined at 405 nm wavelength after subtracting the
absorbance of blank (0.9% v/v NaCl solution).

2.6 Determination of intracellular reactive
oxygen species (ROS)

The ROS levels were evaluated by the cell-permeable indicator 2′,
7′-dichlorofluorescein diacetate (H2DCFDA, D6883, Sigma-Aldrich),
according to the manufacturer’s instructions, with slight modifications.
Red blood cells were exposed to 100 mMD-Gal for 24 h at 25°C with or
without pre-incubation with different concentrations of peel or juice
extract. As the positive control, RBCs were incubated with H2O2. ROS
formation was determined by a fluorescence microplate reader (Onda
Spectrophotometer, UV-21) at excitation and emission wavelengths of
485 nm and 535 nm, respectively, after subtracting the background
fluorescence. Results are expressed in %.
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2.7 Measurement of thiobarbituric-acid-
reactive substances (TBARS) levels

TBARS levels were detected as described by Mendanha and co-
authors (Mendanha et al, 2012), with minor modifications. Red
blood cells were suspended at 20% haematocrit and incubated with
or without different concentrations of peel or juice extract. Next,
samples were incubated in 100 mM D-Gal-containing solution and
then addressed to quantification of TBARS levels obtained by
subtracting 20% of the absorbance at 453 nm from that one at
532 nm (Onda Spectrophotometer, UV-21). Finally, the results were
reported as µM TBARS levels.

2.8 Measurement of total sulfhydryl group
(-SH) content

Measurement of total -SH groups was performed according to
Aksenov and Markesbery technique (Aksenov and Markesbery,
2001) with minor modifications. Red blood cells, suspended at
35% haematocrit, were incubated with or without peel or juice
extract at different concentrations and successively exposed to
D-Gal. To obtain a complete oxidation of total -SH groups, the
treatment with NEM was used as the positive control. After that,
samples were spectrophotometrically read at 412 nm (Onda
spectrophotometer, UV-21). Data were normalised to protein
content and results reported as μM TNB/mg protein.

2.9 Analytical cytology

Band 3 expression levels were detected according to Straface and
collaborators (Straface et al, 2011). The analysis was performed by
an Olympus BX51 Microphot fluorescence microscope or by a
FACScan flow cytometer (Becton Dickinson, Mountain View,
CA, United States) equipped with a 488 nm argon laser on left
untreated RBCs or after their exposure to D-Gal, with or without
pre-incubation with peel or juice extract. The median values of
fluorescence intensity histograms were used to provide a semi-
quantitative analysis.

2.10 SO4
2− uptake measurement

2.10.1 Control condition
To establish the anion exchange via band 3, SO4

2− uptake was
measured as formerly described (Romano and Passow, 1984; Galtieri
et al, 2002; Romano et al, 2002; Morabito et al, 2013; Morabito et al,
2016; Morabito et al, 2018; Morabito et al, 2019a; Morabito et al,
2020a; Remigante et al, 2020; Perrone et al, 2023). Shortly, this
procedure allows for the determination of the kinetic of transport
and amount of SO4

2− internalized by RBCs by turbidimetric analysis
after precipitation of the cell content with BaCl2. In particular, each
sample was addressed to the spectrophotometer (UV-21, Onda
Spectrophotometer, Carpi, Modena, Italy, 425 nm wavelength)
and the obtained absorbance was successively converted to
(SO4

2−) L cells × 10–2 based on a calibrated standard curve
previously established by precipitating known SO4

2−

concentrations. Sulphate concentration was needed to quantify
the rate constant of SO4

2− uptake (min−1). To this end the
following equation was used: Ct = C∞ (1 − e−rt) + C0 (Ct, C∞,
and C0 indicate the intracellular SO4

2− concentrations measured at
time t, ∞, and 0, respectively, e indicate the Neper number
(2.7182818), r indicates the rate constant accounting for the
process velocity, t is the time at which the SO4

2− concentration
was measured). The rate constant is useful to monitor the anion
exchange process, as it specifically represents the inverse of the time
needed to reach ~63% of total SO4

2− intracellular concentration. The
parameter (SO4

2−) L cells × 10–2 reported in figures corresponds to
the micromolar concentration of SO4

2− internalized by 5 mL RBCs
at 3% haematocrit.

2.10.2 Experimental conditions
After 15 min pre-incubation with or without peel or juice

extract, RBCs (3% haematocrit) were incubated with D-Gal and
then centrifuged (Neya 16R, 4°C, 1,200 × g, 5 min) to discard the
supernatant and to suspend RBCs in SO4

2− medium. Similarly to
what described for control conditions, the rate constant for SO4

2−

uptake was quantified.

2.11 Advanced glycation end products
(AGEs): measurement of glycated
haemoglobin (A1c) levels

The glycated haemoglobin content (%A1c) was measured as
described by Sompong and collaborators (Sompong et al, 2015) with
minor modifications. To this end, RBCs pre-exposed or not to peel
or juice extract, were incubated with D-Gal and successively
addressed to spectrophotometrically analysis (BioPhotometer
Plus, Eppendorf, Manchester, United Kingdom, 610 nm
wavelength). Finally, A1c levels (%) were determined from a
standard curve obtained from known A1c doses.

2.12 Assessment of the endogenous
antioxidant activity

2.12.1 Superoxide dismutase (SOD) activity assay
Superoxide dismutase (SOD) activity was evaluated by a specific

assay kit (CS0009, Sigma-Aldrich, Milan, Italy), according to the
manufacturer’s instructions, with slight modifications. Red blood
cells were treated with D-Gal, with or without pre-incubation with
peel or juice extract. As the positive control, cells were incubated
with H2O2. Superoxide dismutase activity was determined by
reading the absorbance at 450 nm wavelength (Fluostar Omega,
BMG Labtech, Ortenberg, Germany) after subtracting the
background.

2.12.2 Catalase (CAT) activity assay
Catalase activity was evaluated by the catalase assay kit

(MAK381, Sigma-Aldrich, Milan, Italy), according to the
manufacturer’s instructions, with slight modifications. Red blood
cells were treated with D-Gal with or without pre-incubation with
peel or juice extract. As the positive control, cells were treated with
H2O2. Catalase activity was determined by reading the absorbance at
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570 nm wavelength (Fluostar Omega, BMG Labtech, Ortenberg,
Germany) after subtracting the background.

2.12.3 Glucose-6-phosphate dehydrogenase
(G6PDH) activity assay

RBCs were left untreated or treated with D-Gal, with or without
pre-incubation with peel or juice extract. Glucose-6-phosphate
dehydrogenase (G6PDH) activity was assessed using a
commercial G6PDH activity assay kit (Sigma-Aldrich, Milan,
Italy), according to the manufacturer’s instructions. The
fluorescence intensity is proportional to the G6PDH activity in
the samples. Determination of the reaction rate was performed by a
plate spectrophotometer (Onda Spectrophotometer, UV-21) to
monitor NAPDH rate of production, such molecule absorbs light
at 340 nm, over a 30 min time course. Then the obtained reaction
rate, presented as %, was normalized to total protein content by
spectrophotometrically analysis at 540 nm wavelength needed to
detect haemoglobin absorbance.

2.12.4 Reduced glutathione (GSH) content
measurement

GSH levels were quantified according to Teti and collaborators
(Teti et al, 2005). Blood samples (20% hematocrit), which were left
untreated or exposed to D-Gal with or without pre-incubation, were
centrifuged (Neya 16R, 4°C, 1,200× g, 5 min) and resuspended in
isotonic solution. After treatments, the content of GSH was
measured by Cayman’s GSH assay kit using an enzymatic
recycling method with glutathione reductase. Sample absorbance
was measured at 412 nm (Onda spectrophotometer, UV-21). The
amount of GSSG was calculated by the following formula: 1/
2 GSSG = GSH total-GSH reduced. Results are expressed as a
GSH/GSSG ratio.

2.13 Analysis and statistics

All data are expressed as arithmetic means ± standard error of
the mean. GraphPad Prism (version 9.0, GraphPad Software, San
Diego, CA, United States) and Excel (Version 2021, Microsoft,
Redmond, WA, United States) software were used to perform
statistical analysis and graphics. One-way analysis of variance
(ANOVA) followed by Bonferroni’s multiple comparison or
Dunnet’s post-test as appropriate, unless otherwise specified, was
used to determine significant differences between mean values.
Statistically significant differences between data sets were
assumed at p < 0.05; (n) corresponds to the number of
independent measurements.

3 Results

3.1 Determination of bioactive compounds

Table 1 reports qualitative and quantitative features of bioactive
molecules deriving from bergamot juice and peel samples. In
particular, thanks to the RP-HPLC/PDA/MS analyses,
26 bioactive molecules, of which three are phenolic acids, six
limonoids and seventeen flavonoids, were identified and

quantified. As seen in Table 1, the two sample sources showed
the same qualitative profile.

On the other hand, juice and peels differed from a quantitative
point of view. Peel sample was richer in bioactive molecules
(16,132.3 mg kg−1) than juice sample (498.1 mg kg−1). For both
sources, the most abundant class of bioactive molecules (88%–
94% of the total content) was represented by flavonoids.
Neohesperidin was the most abundant bioactive compound in
these samples.

3.2 Antioxidant capacity estimation of peel
and juice extract

A series of experiments were conducted with increasing
concentrations (1–250 μg/mL) of peel or juice extracts and
incubation times (15 min-3 h) to exclude a possible hemolytic
and pro-oxidant effect and estimate the antioxidant capacity of
the peel or juice extract. Incubation with 1–5 μg/mL of peel or
juice extract for 15 min at 37°C failed to induce hemolysis,
increase TBARS levels, and reduce SH group content in RBCs
(Supplementary Figures S1, S2). As expected, incubation of
RBCs with 100 mM D-Gal for 24 h at 25°C led to a
substantial increase in ROS and TBARS levels as well as a
reduction in -SH group content compared to untreated RBCs
(Supplementary Figure S3), which denotes induction of
oxidative stress and is consistent our former findings
(Remigante et al, 2022c). However, pre-incubation with 1 μg/
mL of peel or juice extract for 15 min at 37°C did not significantly
reduced ROS levels in D-Gal treated RBCs, while leading to
minor effects on TBARS levels and -SH group content
(Supplementary Figures S3A–C). Increasing concentration
and pre-incubation times revealed a clear antioxidant effect of
the peel and juice extracts, as denoted by a significant reduction
in ROS and TBARS levels, as well as increase in total SH group
content compared to D-Gal treated RBCs (Supplementary
Figures S3D–I). Based on these data, we selected the most
effective antioxidant concentration as well as the shortest
effective time of incubation and pre-treatment with 5 μg/mL
of peel or juice extract for 15 min has been chosen to carry out
the following experiments.

3.2.1 Evaluation of intracellular ROS levels
Reactive oxygen species were detected in RBCs left untreated

or, alternatively, exposed to 100 mM D-Gal for 24 h at 25°C with
or without pre-exposure to 5 μg/mL peel or juice extract for
15 min at 37°C. Figure 1A displays the intracellular ROS levels at
0 and 24 h after exposure to D-Gal. As seen, 100 mM D-Gal
treated samples showed a significant increase of ROS levels
compared to left untreated samples. In samples pre-exposed to
5 μg/mL peel or juice extract, the incubation with 100 mM D-Gal
failed to significantly increase ROS levels, which remained
unchanged when compared to control values (Figure 1A). As
expected, ROS levels of RBCs treated with 20 mM H2O2 for
30 min were significantly higher with respect to those of RBCs
left untreated (control). In addition, peel or juice extract alone
did not significantly alter the intracellular ROS levels (data not
shown).
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3.2.2 Measurement of thiobarbituric acid reactive
substances (TBARS) levels

Thiobarbituric-acid-reactive substances (TBARS) levels
measured in RBCs are reported in Figure 1B. As expected,
TBARS levels after treatment with 20 mM H2O2 for 1 h were
significantly higher than those detected in control (left untreated
RBCs). Similarly, after 24 h treatment with 100 mM D-Gal, TBARS
levels were significantly increased with respect to control.
Importantly, in RBCs pre-treated with 5 μg/mL of peel or juice

extract and then exposed to 100 mM D-Gal, TBARS levels were
significantly lower than those measured in 100 mM D-Gal-treated
RBCs. Of note, peel or juice extract alone did not significantly alter
TBARS levels (Supplementary Figures S1D, S2D).

3.2.3 Total sulfhydryl group content measurement
Figure 1C shows the total content of sulfhydryl groups in left

untreated RBCs or treated with either the oxidizing molecule NEM
as positive control (2 mM for 1 h) or D-Gal (100 mM for 24 h) with

TABLE 1 Concentration (mg Kg−1 ± standard deviation) of bioactive molecules in Femminello bergamot juice and peel. Each sample was analyzed in triplicate.

n° Compound Classa Juice Peel

1 Ferulic acid 4-O-glucosideb PA <LoDc 74.3 ± 0.27

2 Sinapoyl glucosided PA <LoDc 208.8 ± 1.40

3 Apigenin 6,8-di-C-β-D-glucoside F 4.2 ± 0.01 63.4 ± 0.80

4 Diosmetin-6,8-di-C-glucoside F 3.9 ± 0.02 83.9 ± 0.78

5 Eriocitrin F 16.0 ± 0.21 303.1 ± 3.38

6 Limonin glucoside L <LoDc 10.7 ± 0.52

7 Neoeriocitrin F 15.5 ± 0.04 947.3 ± 4.97

8 5-Sinapoyquinic acidd PA <LoDc 19.7 ± 0.94

9 Poncirine F 24.9 ± 0.07 1811.6 ± 5.32

10 Diosmetin 8-C-glucosidef F <LoDc 155.4 ± 0.05

11 Narirutin F 61.2 ± 0.21 853.4 ± 6.60

12 Naringin F 12.2 ± 0.05 383.6 ± 2.93

13 Apigenin 7-O-neohesperidosidee F 2.0 ± 0.05 65.6 ± 1.40

14 Deacetyl nomilin glucosideg L <LoDc 793.4 ± 1.94

15 Neodiosmine F 14.1 ± 0.46 1,533.9 ± 1.33

16 Apigenin 7-O-neohesperidoside-4-glucosidee F <LoDc 52.5 ± 1.22

17 Neohesperidin F 300.0 ± 3.72 6,410.6 ± 11.04

18 Nomilin glucoside F <LoDc 964.4 ± 0.58

19 Nomilinic acid glucoside F <LoDc 445.4 ± 0.16

20 Apigenin 7-O-diglucuronidee F <LoDc 13.5 ± 0.34

21 Melitidin F 10.4 ± 0.07 154.5 ± 2.08

22 Brutieridin F 33.3 ± 0.09 494.4 ± 1.11

23 Ichanginh L <LoDc 39.3 ± 0.55

24 Obacunoic acidh L <LoDc 33.7 ± 0.22

25 Limonin L <LoDc 73.9 ± 0.03

26 Nomilin L <LoDc 123.8 ± 0.03

All 498.1 16,132.3

Bioactive molecules were quantitatively determined based on calibration curves obtained with the corresponding standard compound, i.e.
aPA, phenolic acid; F, flavonoid; L, limonoid.
bferulic acid.
cLoD values ranged from 0.0.04 mg kg−–1.10 mg kg−1.
dsynapic acid.
eapigenin 6,8-di-C-glucoside.
fdiosmetin 6,8-di-C-glucoside.
gnomilin glucoside.
hlimonin. (Russo et al, 2015; Russo et al, 2016; Russo et al, 2021).
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or without pre-treatment with peel or juice extract (5 μg/mL). As
expected, treatment with NEM led to a significant reduction in the
content of the sulfhydryl groups compared to untreated RBCs
(control). Sulfhydryl groups in - RBCs treated with 100 mM
D-Gal were also significantly lower than control. The total
content of the sulfhydryl groups in 100 mM D-Gal-treated RBCs
was significantly restored in case of pre-treatment with peel or juice
extract (5 μg/mL) (Figure 1C). Additionally, peel or juice extract
alone did not significantly alter the total content of the sulfhydryl
groups (Supplementary Figures S1G, S2G).

3.3 Determination of band 3 expression
levels

The levels of band 3 expression were significantly decreased in
human RBCs incubated with 100 mMD-Gal for 24 h with respect to
control (Figure 2A). Pre-treatment with 5 μg/mL peel extract
partially restored band 3 expression in RBCs treated with
100 Mm D-Gal. Also, band 3 expression was totally restored in
RBCs pre-exposed to 5 μg/mL juice extract. Moreover, Band
3 distribution was assessed by immunofluorescence technique. In
particular, band 3 was mainly clustered (arrows) in leptocytes after
100 mM D-Gal exposure, with respect to untreated RBCs
(Figure 2B). These changes were attenuated by pre-treatment
with 5 μg/mL or juice extract. Of note, band 3 expression was
altered neither by peel nor by juice extracts given alone (data not
shown).

3.4 SO4
2− uptake measurement

To evaluate the band 3 activity, the SO42− uptake during the
time was determined in RBCs left untreated (control) or treated with
100 mM D-Gal for 24 h at 25°C, with or without pre-exposure to
5 μg/mL peel or juice extract for 15 min at 37°C (Figure 3). In left
untreated RBCs, SO42− uptake is seen to progressively increase

reaching equilibrium in 16.68 min (rate constant of SO42− uptake =
0.059 ± 0.001 min−1, Table 2). The transport rate constant in RBCs
treated with 100 mM D-Gal (0.092 ± 0.001 min−1) was significantly
increased with respect to control, thus denoting an accelerated
transport kinetics, which was in agreement with former findings
(Remigante et al, 2022c). Pre-exposure to 5 μg/mL peel or juice
extract significantly reduced the rate constant of SO42− uptake,
which did not differ from control in the case of pre-treatment with
peel extract. The SO42− amount internalized by RBCs after 45 min
of incubation in SO42− medium was not significantly altered by
D-Gal with or without peel or juice extract. In DIDS-treated cells,
rate constant of SO42− uptake and the SO42− amount internalized
were substantially reduced compared to control, consistent with a
SO42− transport via band 3 (Table 2). Red blood cells treated with
5 μg/mL peel or juice extract alone showed a time course of
SO42−uptake that was not significantly altered compared to
control (Supplementary Figure S4).

3.5 Advanced glycation end products
(AGEs): measurement of glycated
haemoglobin (A1c) levels

Figure 4 displays the % A1c determined in left untreated RBCs
or treated with 100 mM D-Gal for 24 h, with or without pre-
exposure to 5 μg/mL peel or juice extract for 15 min at 37°C. The
data obtained showed that %A1c levels measured after exposure to
100 mM D-Gal were significantly higher than those of RBCs left
untreated (control). Instead, in RBCs pre-treated with 5 μg/mL peel
or juice extract, a trend towards a decrease in %A1c levels was seen,
which was statistically significant although %A1c levels remained
elevated compared to control. In Figure 4, A1c levels measured in
diabetes patients -used as the positive control-are also reported
(Chandalia and Krishnaswamy, 2002). As expected, a significant
increase in the A1c levels were measured in RBCs from diabetic
patients. Lastly, %A1c content was not significantly altered by peel
or juice extract when applied alone (data not shown).

FIGURE 1
Antioxidant capacity estimation of peel and juice extract. human RBCs have been left untreated or exposed to 20 mMH2O2 or 2 mMNEM for 1 h or
100 mM D-Gal for 24 h at 25°C with or without pre-exposure to peel or juice extract for 15 min at 37°C. (A) estimation of ROS levels; (B) estimation of
TBARS levels; (C) estimation of total sulfhydryl group content (µM TNB/µg protein). ns, not statistically significant versus control (untreated); **p <
0.01 and ***p < 0.001 versus control, ◦◦◦ p < 0.001 versus 100 mMD-Gal, ANOVA followed by Bonferroni’s multiple comparison post-test (n = 12).
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3.6 Assessment of the endogenous
antioxidant activity

3.6.1 Activity of superoxide dismutase (SOD)
In Figure 5A, the SOD activity was evaluated in RBCs left

untreated or treated with D-Gal (100 mM for 24 h at 25°C) with
or without pre-exposure to 5 μg/mL peel or juice extract for 15 min
at 37°C. In RBCs exposed to D-Gal, the SOD activity was found

significantly increased compared to the untreated cells. Conversely,
pre-incubation with peel or juice extract resulted in a significant
recovery of SOD activity with respect to D-Gal-treated cells. As
expected, SOD activity in RBCs treated with 20 mM H2O2 for
30 min at 25°C as the positive control was significantly higher than
that of control RBCs. Of note, peel and juice extracts did not
significantly alter SOD activity when given alone (data not shown).

3.6.2 Activity of catalase (CAT)
Catalase was assayed in RBCs left untreated or treated with

D-Gal (100 mM for 24 h at 25°C), with or without pre-treatment
with 5 μg/mL peel or juice extract (15 min at 37°C). D-Gal treatment
caused an increased CAT activity compared to control cells, which
was consistent with an elevated oxidative stress (Figure 5B). Unlike,
the pre-incubation with peel and/or juice extract (5 μg/mL for
15 min at 37°C) showed a CAT activity almost comparable to
that of control (Figure 5B). Exposure to 20 mM H2O2 for 30 min
(25°C) has been considered as the positive control. As expected, CAT
activity in RBCs treated with H2O2 was significantly higher than
those of control RBCs. Moreover, the extracts of peel and juice alone
did not significantly alter CAT activity (data not shown).

3.6.3 Activity of glucose-6-phosphate
dehydrogenase (G6PDH)

In Figure 5C, G6PDH activity was measured in RBC left
untreated or treated with D-Gal (100 mM for 24 at 25°C), with or
without pretreatment with 5 μg/mL peel or juice extract (15 min at
37°C). G6PDH activity was severely stimulated by an increased
oxidative stress in the D-Gal-treated cells compared to control
RBCs. On the contrary, in cells pre-exposed to peel or juice
extract, G6PDH activity was brought back to the control levels.
As expected, G6PDH activity of RBCs treated with G6PDH positive

FIGURE 2
Flow cytometry immunofluorescence of band 3 expression. Red blood cells were left untreated or treated with 100 mMD-Gal for 24 h at 25°C, with
or without pre-exposure to 5 μg/mL peel or juice extract for 15 min at 37°C. (A) Histograms report median values of fluorescence intensity. (B) Flow
cytometry immunofluorescence representative micrographs showing band 3 distribution in left untreated RBCs, treated with 100 D-Gal, or alternatively,
pre-incubated with 5 μg/mL peel or juice extract, and then exposed to 100 mM D-Gal. Samples were observed with a ×100 objective. Note the
significant morphological changes in 100 mMD-Gal (arrows). ns, not statistically significant versus control (untreated); **p < 0.01 and ***p < 0.001 versus
control, ◦◦ p < 0.01 and ◦◦◦ p < 0.001 versus 100 mM D-Gal, ANOVA followed by Bonferroni’s multiple comparison post-test (n = 3).

FIGURE 3
Time course of SO4

2− uptake. Red blood cells were left untreated
(control) or treated with 100 mMD-Gal (24 h, at 25°C) with or without
pre-incubation with 5 μg/mL peel or juice extract (15 min at 37°C). Red
blood cells were also exposed to a specific inhibitor of band 3
(10 µMDIDS). ns, not statistically significant versus untreated (control);
**p < 0.01 and ***p < 0.001 versus control; ◦ p < 0.05 and ◦◦ p <
0.01 versus 100 mMD-Gal, one-way ANOVA followed by Bonferroni’s
multiple comparison post hoc test (n = 15).
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control supplied by the manufacturer for 30 min at 25°C was
significantly higher than that of RBCs left untreated. In addition,
both peel and juice extracts did not significantly alter G6PDH
activity (data not shown).

3.6.4 Estimation of GSH/GSSG ratio
Figure 6 displays the GSH/GSSG ratio measured in RBCs treated

with 100 mM D-Gal for 24 h at 25°C with or without pre-treatment
with 5 μg/mL peel and juice extract for 15 min at 37°C. The GSH/
GSSG ratio measured after treatment with D-Gal was significantly
lower than that detected in left untreated RBCs. This effect could be
associated with an increased GSSG levels and/or decreased GSH
levels, both of which are indicative of an increased intracellular

oxidative stress. However, pre-incubation with peel and juice extract
restored GSH levels. As expected, incubation with 2 mM NEM for
1 h (used as the positive control) led to a significant reduction in the
GSH/GSSG content compared to left untreated RBCs. On the
contrary, both peel and juice extract alone did not significantly
alter the GSH/GSSG content (data not shown).

4 Discussion

Recently, an increasing body of evidence has supported the
hypothesis that natural molecules -referred to as antioxidants-may
have a protective role in retarding or reversing the course of age-
related diseases (Tan et al, 2018; Singh et al, 2020; Lu et al, 2021;
Remigante et al, 2022b; Cui et al, 2022). These compounds are able
to compete with substrates which are sensitive to oxidation, thus
inhibiting or delaying the reactions between reactive species and
biological macromolecules (Pisoschi and Pop, 2015). Even though
reactive species are involved in several biological processes, their
over-production can lead to cell damage and consequently,
development of chronic diseases (Costa et al, 2020; Luo et al,
2020; Bertelli et al, 2021; Remigante et al, 2021b; Forman and
Zhang, 2021; Zuccolini et al, 2022). Thus, dietary intake of
natural antioxidant compounds could work as a boost to the
endogenous antioxidant machinery against reactive species and/
or free radicals, thus playing an important role in the prevention of
pathological states (Pingitore et al, 2015; Gantenbein and Kanaka-
Gantenbein, 2021). Herein, the composition in bioactive molecules
of bergamot peel and juice (Table 1) and their effects on oxidative-
stress induced aging were described in a cell-based model
represented by human RBCs subjected to prolonged (24 h)
exposure to 100 mM D-Gal. This cell-based model, which was
validated in our former studies (Remigante et al, 2022c;
Remigante et al, 2022d; Spinelli et al, 2023), recapitulates the
cellular and molecular mechanisms of natural aging,
i.e., oxidative stress and haemoglobin glycation.

Though various investigations described the numerous activities
of bioactive compounds of bergamot extracts, their effects on aging
RBCs have not yet been fully analysed. Then, the first step of the
present investigation was to test a broad range of concentrations
(from 1 μg/mL to 250 μg/mL) of bergamot peel and juice extract, as
well as increasing incubation time intervals (15 min, 1 and 3 h), to

TABLE 2 Rate constant of SO4
2− uptake, time needed to reach equilibrium, and SO4

2− quantity internalized by either RBCs untreated or treated as indicated. Data
are presented as means ± S.E.M. from (n) separate experiments. ns not statistically significant versus untreated (control); ***p < 0.001 versus untreated; ° p <
0.01 versus 100 mM D-Gal, as attested by one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test.

Experimental conditions Rate constant
(min−1)

Time
(min)

n SO4
2− amount trapped after 45 min of incubation in SO4

2−medium
(SO4

2−) l cells X 10–2

Untreated 0.059 ± 0.001 16.68 15 299.08 ± 9.95

100 mM D-Gal 0.092 ± 0.001*** 10.74 15 321.75 ± 10.57ns

5 μg/mL Peel Extract +100 mM
D-Gal

0.059 ± 0.001 ns,° 16.70 15 307.50 ± 19.75ns

5 μg/mL Juice Extract +100 mM
D-Gal

0.079 ± 0.001ns,° 12.52 15 295.25 ± 10.37ns

10 µM DIDS 0.023 ± 0.001*** 42.17 15 15.5 ± 0.37***

FIGURE 4
Glycated haemoglobin levels (%A1c). Red blood cells were left
untreated or treated with 100 mM D-Gal (24 h, at 25°C) with or
without pre-incubation with 5 μg/mL peel or juice extract (15 min at
37°C). ns, not statistically significant versus untreated; ***p <
0.001 versus untreated; ◦◦◦ p < 0.01 versus 100 mM D-Gal, one-way
ANOVA followed by Bonferroni’s multiple comparison post hoc test
(n = 10).
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exclude any damage in terms of haemolysis, lipid peroxidation and
protein oxidation that could potentially be caused by direct exposure
of RBCs to peel or juice extracts (Supplementary Figures S1, S2).
Indeed, concentrations of peel or juice extract equal to or greater
than 10 μg/mL could induce haemolysis and exhibited a pro-oxidant
effect, especially following prolonged incubation times. This is not
surprising, given that various antioxidants may act as pro-oxidants
depending on their concentration (Osseni et al, 2000; Sahebkar,
2015; Giordano et al, 2020). These and our findings point to the

importance of carefully assessing concentration and incubation time
when novel potential antioxidant compounds are tested in cell-based
assays. Based on these considerations, we selected a 15 min pre-
treatment with 5 μg/mL peel or juice extract in order to estimate the
antioxidant capacity by measuring ROS and TBARS levels, and total
content of sulfhydryl groups in RBCs incubated for 24 h with
100 mM D-Gal (Figure 1).

Red blood cells are susceptible to ROS-induced damage because
of their high polyunsaturated fatty acid content and their abundance
in iron (Fe2+)-rich haemoglobin. This latter acts as a catalyst in redox
reactions and lipid peroxidation, resulting in TBARS production as
the final product (Pandey and Rizvi, 2010). Also, RBCs often
undergo membrane protein oxidation and/or carbonylation.
Therefore, the oxidation of protein sulfhydryl groups (-SH) and/
or the formation of carbonyl groups are indicators of oxidative
injury to proteins in human RBCs. Since ROS generated during
cellular metabolism cause the oxidation of biological
macromolecules, the effect of peel and juice extract on the
intracellular ROS levels has been evaluated as a first step of the
investigation. A 15 min pre-exposure of RBCs to 5 μg/mL peel or
juice extract could effectively prevent the ROS production caused by
exposure to D-Gal (Figure 1A).

To better elucidate the process of oxidation of plasmamembrane
macromolecules, the estimation of both TBARS level and sulfhydryl
group content of total proteins, which in RBCs mainly belong to
band 3 protein (Rao and Reithmeier, 1979), have been investigated.
Our findings show that pre-exposure (15 min) to 5 μg/mL peel or
juice extract completely prevented TBARS levels increase in RBCs
treated with 100 D-Gal (Figure 1B) and could at least partially (peel)
or completely (juice) restore sulfhydryl group content (Figure 1C).
These findings denote that peel or juice extract could effectively
protect both the lipid and protein component of the RBC plasma
membrane from oxidation. Data related to oxidative stress
assessment are in line with what previously showed by other
researchers and suggest that polyphenols and phytochemicals
could play scavenger activity by directly neutralizing reactive

FIGURE 5
Effects of D-Gal (100 mM) exposurewith or without pre-treatment with peel or juice extract for 15 min in RBCs. (A) SOD activity, (B)CAT activity, and
(C) G6PDH activity. ns, not significant versus untreated (control); ***p < 0.001 versus untreated; ◦◦◦p < 0.001 versus 100 mM D-Gal, as determined by
one-way ANOVA followed by Bonferroni’s multiple comparison post hoc test (n = 10).

FIGURE 6
Assessment of the GSH/GSSG ratio measured in RBCs incubated
for 24 h at 25°C with D-Gal with or without pre-treatment with peel or
juice extract (15 min at 37°C). GSH, reduced glutathione; GSSG,
oxidized glutathione. ***p < 0.001 versus left untreated RBCs;
◦◦p < 0.01 versus D-Gal, one-way ANOVA followed by Bonferroni’s
multiple comparison post hoc test (n = 7).
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species and free radicals and avoid their detrimental impact on
biological macromolecules (Zhao et al, 2006; Kelen and Tepe, 2007;
Luo et al, 2021; Kruk et al, 2022).

One of the most interesting and still unknown implications of
oxidative stress-related aging is its impact on plasma membrane
transport systems. In this regard, several investigations
demonstrated that the aging process may impact the anion
(Cl−/HCO3

−) exchange, mediated by band 3, on the RBC
plasma membrane. The structure of this protein consists of
two rather different domains of a similar size (Arakawa et al,
2015). The C-terminal domain carries out Cl−/HCO3

− exchange
across the plasma membrane (Reithmeier et al, 2016; Remigante
et al, 2022e). This function can be monitored by the rate constant
for sulphate (SO4

2−) uptake (Morabito et al, 2016; Morabito et al,
2017a; Morabito et al, 2017b), which is slower and more easily
detectable than Cl− or HCO3

− uptake (Jennings, 1976; Romano
and Passow, 1984; Morabito et al, 2019b; Crupi et al, 2019). SO4

2−

uptake measurement has been firmly confirmed as an efficient
tool to investigate the impact of redox conditions on RBCs
homeostasis (Morabito et al, 2016; Morabito et al, 2019b;
Remigante et al, 2019). Hence, the SO4

2− uptake through band
3 was measured in RBCs after treatment with D-Gal (100 mM)
with or without pre-exposure (15 min) to 5 μg/mL of bergamot
peel or juice extract. In RBCs treated with D-Gal (100 mM), the
rate constant for SO4

2− uptake was accelerated compared to the
control (Figure 3; Table 2). The evidence that oxidative stress
provokes functional modifications of band 3 in human RBCs has
been provided also in other cell-based models of oxidative stress.
In particular, acute H2O2-induced oxidative stress provoked a
reduction in the rate constant for SO4

2− uptake (Morabito et al,
2016; Morabito et al, 2017b), whereas in an oxidative stress model
induced by high glucose concentrations an accelerate rate of ì
anion exchanging has been seen (Morabito et al, 2020b). Thus, a
possible a two-faced effect on the velocity of anion exchange
could depend on specific cell component (lipids, proteins, as well
as enzymes) affected by both the stressors and the related
pathways. In this context, although no functional alteration
was reported in RBCs treated exclusively with 5 μg/mL peel or
juice extract (Supplementary Figure S4), a 15 min pre-treatment
of RBCs formerly exposed to D-Gal partially or totally recovered
the rate constant for SO4

2− uptake (Figure 3; Table 2). Based on
data hitherto obtained, we can point out that both extracts show a
similar protective effect on anionic exchange and could,
therefore, act a key role in counteracting oxidative
stress–induced functional changes in human RBCs.

The binding sites for cytoskeletal and cytoplasmic proteins,
including haemoglobin, are located on the N-terminal
cytoplasmic domain of band 3 (Anong et al, 2009; Wu et al,
2011). Haemoglobin glycation represents a case of non-
enzymatic protein glycation associated with production of
AGEs (Luevano-Contreras and Chapman-Novakofski, 2010).
To better explore the molecular interaction between band
3 and haemoglobin, levels of both proteins were evaluated.
The data obtained show that 100 mM D-Gal treatment caused
both a loss and a redistribution of band 3, most probably due to
the shedding of protein-containing vesicles (Kuo et al, 2017)
(Figures 2A, B). Yet, despite this, band 3 expression levels were
partially or totally restored in RBCs pre-treated with 5 μg/mL

peel or juice extract, respectively (Figures 2A, B). The shedding of
membrane area is a critical point for cell fate, since a reduced
surface-to-volume ratio is thought to correlate with the early
phagocytosis of aged RBCs (Kuo et al, 2017). Consequently to
membrane shedding, the cytoskeleton reduces to a 3- to 5-fold
smaller area (Li and Lykotrafitis, 2015). The proteins affected are
mainly band 3, ankyrin, spectrin, and occasionally protein
4.2 and the Rh protein. These proteins are all part of one of
the complexes by which the cytoskeleton is anchored to the lipid
bilayer (Gardel et al, 2008; Anong et al, 2009; Vallese et al, 2022).
Presumably, damage of these proteins is responsible for the
impaired cellular deformability associated with oxidative stress
(Mohanty et al, 2014). A decrease in RBC deformability leads to
impaired microcirculation and tissue oxygenation (Schwartz
et al, 1991; Silva-Herdade et al, 2016). For example, Spinelli
and co-authors have shown that both band 3 phosphorylation
and rearrangements in cytoskeleton proteins can lead to cell
deformation and structural alteration of human RBCs during the
aging processes (Spinelli et al, 2023).

As mentioned above, haemoglobin is anchored to band
3 cytoplasmic domain. In this regard, our findings indicated
that exposure of RBCs to 100 mM D-Gal for 24 h increased the
content of A1c levels (Figure 4), contributing to both
biochemical and structural changes, including clustering of
band 3 regions. At a more advanced stage of aging, such
clusters could represent a recognition site for antibodies
directed against aged RBCs, thus triggering the early removal
of RBCs from the blood circulation (Briglia et al, 2017).
Importantly, in RBCs pre-treated with 5 μg/mL peel or juice
extract, a clear trend towards a decrease in %A1c production
was seen (Figure 4). Collectively, these findings (Figures 2, 4)
suggest that the active biomolecules of the bergamot juice or
peel extract might efficiently prevent RBCs membrane
shedding, formation of glycated haemoglobin, and RBCs
structural instability, all of which are hallmarks of aging.

At last, we investigated the activity of endogenous
antioxidant enzymes CAT and SOD (Figures 5A, B). These
antioxidant enzymes own outstanding free radical scavenging
capacities and play vital roles in human RBCs (Ulanczyk et al,
2020). The SOD and CAT activity in RBCs incubated with
100 mM D-Gal was much higher than in control cells, which
could reflect the activation of the endogenous antioxidant
defense system to suppress the formation of free radicals
(Figure 1A). Nevertheless, the increase in SOD and CAT
activity failed to compensate for the increase in free radicals
(Figure 1A), as also demonstrated by the increase in lipid
peroxidation levels as well as total protein oxidation (Figures
1B, C). Upregulation in CAT and SOD activity with concomitant
substantial elevation of oxidative stress markers might reflect
exhaustion of the endogenous antioxidant system. These
biochemical changes may provoke injury to the membrane
proteins and lipid structure. As a result, the membrane
mechanical properties could be modified, resulting in
deformability and fluidity reduction or altered permeability of
the phospholipid bilayer, which, in turn, reduce the ability of the
membrane to withstand osmotic changes (Spinelli et al, 2023). In
this context, pre-exposure of RBCs to peel and juice extracts
could significantly prevent the upregulation in both SOD and
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CAT activity observed in D-Gal-treated cells (Figures 5A, B).
These findings denote that the active biomolecules of the
bergamot juice or peel extract might act synergistically with
endogenous antioxidant system to counteract oxidative stress
in RBCs and preserve cell integrity.

RBCs are unable to generate ATP using molecular oxygen
because of lack of mitochondria. Glycolysis is the only source of
ATP generation in mature RBCs. It has been found that under
normal conditions about 90% of total imported glucose is used to
generate ATP through glycolysis and the remaining 10% of
glucose is addressed to PPP (Reisz et al, 2016). Glucose-6-
phosphate dehydrogenase (G6PDH) is a crucial enzyme of this
latter pathway, which produces reduced NADPH and represents
the most important defense mechanism for RBCs in case of
excessive oxidant generation, or of ineffective antioxidant
defense (Maha, 2009). In these conditions, glycolysis and its
key enzyme GAPDH are inhibited (Reisz et al, 2016). In
addition to its importance in the RBC as a major metabolic
determinant during oxidative stress, G6PDH activity is also
employed as an indication of cell aging (Subasinghe and
Spence, 2008). The G6PDH activity was severely stimulated -
presumably by an increased oxidative stress - in D-Gal-treated
cells compared to control RBC cells (Figure 5C), which was
consistent with inhibition of glycolysis and activation of the
PPP shunt. Vice versa, in cells pre-exposed to peel and/or
juice extract the G6PDH activity was brought back to the
control levels (Figure 5C). In addition, as already mentioned,
the underlying mechanisms of aging can severely alter enzyme
activities, including glutathione (Maher, 2005). Glutathione is an
important endogenous non-enzymatic antioxidant that
neutralizes ROS production (Ahmad and Mahmood, 2019). Its
depletion makes cells more prone to oxidative damage. Then, the
GSH/GSSG ratio was assayed. The obtained results confirmed
that 100 mM D-Gal treatment reduced the GSH/GSSG ratio.
However, the pre-incubation of RBCs with peel and juice
extract partially restored the redox balance (Figure 6). In
summary, our findings suggest that the active biomolecules of
the bergamot juice or peel extract might prevent metabolic
alterations in RBCs exposed to oxidative stress.

5 Conclusion

Here we characterize the precise composition in bioactive
compounds of the bergamot (Citrus bergamia, Femminello
cultivar) peel and juice extracts and we assess their protective
effect in an oxidative stress-related model of cellular aging in
RBCs. The data presented here indicate, for the first time, that
polyphenol-rich extracts of peel and juice from bergamot fruit may
act on oxidative stress-induced alterations of the lipid and protein
cellular components, including the endogenous antioxidant system
as well as proteins with ion transport activity and enzymatic
metabolic activity, thus protecting the structural and functional
integrity of human RBCs. This study identifies bergamot as an
antioxidant functional food and further suggests that diet
supplementation with bergamot or its derivatives might
contribute to the prevention or attenuation of pathophysiological
events linked to RBCs dysfunction during aging.
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Apoptotic volume decrease (AVD)
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Exposure to atmospheric particulate matter (PM) is recognized as a human health
risk factor of great concern. The present work aimed to study the cellular
mechanisms underlying cytotoxic effects of airborne particulate matter <10 µm
in size (PM10), sampled in an urban background site from January to May 2020, on
A549 cells. In particular, the study addressed if PM10 exposure can be amain factor
in the induction of the Apoptotic Volume Decrease (AVD), which is one of the first
events of apoptosis, and if the generation of intracellular oxidative stress can be
involved in the PM10 induction of apoptosis in A549 cells. The cytotoxicity of PM10

samples wasmeasured by MTT test on cells exposed for 24 h to the PM10 aqueous
extracts, cell volume changes were monitored by morphometric analysis of the
cells, apoptosis appearance was detected by annexin V and the induction of
intracellular oxidative stress was evaluated by the ROS sensitive CM-H2DCFDA
fluorescent probe. The results showed cytotoxic effects ascribable to apoptotic
death in A549 cells exposed for 24 h to aqueous extracts of airborne winter PM10

samples characterized by high PM10 value and organic carbon content. The
detected reduced cell viability in winter samples ranged from 55% to 100%.
Normotonic cell volume reduction (ranging from about 60% to 30% cell
volume decrease) after PM10 exposure was already detectable after the first
30 min clearly indicating the ability of PM10, mainly arising from biomass
burning, to induce Apoptotic Volume Decrease (AVD) in A549 cells. AVD was
prevented by the pre-treatment with 0.5 mM SITS indicating the activation of Cl−

efflux presumably through the activation of VRAC channels. The exposure of
A549 cells to PM10 aqueous extracts was able to induce intracellular oxidative
stress detected by using the ROS-sensitive probe CM-H2DCFDA. The PM10-
induced oxidative stress was statistically significantly correlated with cell
viability inhibition and with apoptotic cell shrinkage. It was already evident after
15 min exposure representing one of the first cellular effects caused by PM
exposure. This result suggests the role of oxidative stress in the PM10 induction
of AVD as one of the first steps in cytotoxicity.

KEYWORDS

AVD, particulate matter, apoptosis, A549 cells, oxidative stress, air pollution

OPEN ACCESS

EDITED BY

Grazia Tamma,
University of Bari Aldo Moro, Italy

REVIEWED BY

Alessia Remigante,
University of Messina, Italy
Piotr Bednarczyk,
Warsaw University of Life Sciences,
Poland

*CORRESPONDENCE

M. E. Giordano,
elena.giordano@unisalento

M. G. Lionetto,
giulia.lionetto@unisalento

RECEIVED 07 May 2023
ACCEPTED 21 June 2023
PUBLISHED 10 July 2023

CITATION

Giordano ME, Udayan G, Guascito MR,
De Bartolomeo AR, Carlino A, Conte M,
Contini D and Lionetto MG (2023),
Apoptotic volume decrease (AVD) in A549

cells exposed to water-soluble fraction of
particulate matter (PM10).
Front. Physiol. 14:1218687.
doi: 10.3389/fphys.2023.1218687

COPYRIGHT

© 2023 Giordano, Udayan, Guascito, De
Bartolomeo, Carlino, Conte, Contini and
Lionetto. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 10 July 2023
DOI 10.3389/fphys.2023.1218687

63

https://www.frontiersin.org/articles/10.3389/fphys.2023.1218687/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1218687/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1218687/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1218687/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1218687/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1218687/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1218687&domain=pdf&date_stamp=2023-07-10
mailto:elena.giordano@unisalento
mailto:elena.giordano@unisalento
mailto:giulia.lionetto@unisalento
mailto:giulia.lionetto@unisalento
https://doi.org/10.3389/fphys.2023.1218687
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1218687


1 Introduction

World Health Organization (WHO) recognizes that air
pollution is a critical risk factor for noncommunicable diseases
(NCDs) all over the world. It is estimated that air pollution is
causing 24% of global adult deaths from heart disease, 25% from
stroke, 43% from chronic obstructive pulmonary disease, and 29%
from lung cancer. Air pollution is a major risk factor for pneumonia,
being the leading cause of death in under 5 years aged children
(WHO, 2019). In particular, the particulate component of air
pollution poses a major risk to health. Atmospheric particulate
matter (PM) is a complex mixture of components with great
variability in their physical-chemical properties according to
climatic, geographical, and source-specific variables (Amato et al.,
2016; Chirizzi et al., 2017). The size of particles is directly linked to
their potential for causing health problems. Small particles less than
10 μm in diameter pose the greatest problems because they can get
deep into the respiratory tract, and some may even get into the
bloodstream, in particular fine inhalable particles. According to
WHO, exposure to PM has been identified as an important risk
factor for mortality (WHO, 2019). The International Agency for
Research on Cancer (IARC) has classified particulate matter from
outdoor air pollution as carcinogenic to humans (IARC Group 1)
(Loomis et al., 2013).

Although exposure to PM is recognized as a human health risk
factor, the causal relationship between PM exposure and the genesis of
pathological conditions and the underlying toxicological mechanisms
are to date not completely understood. Several studies outlined the
oxidative potential of PM (Chirizzi et al., 2017; Romano et al., 2020) and
its capability to induce intracellular oxidative stress (Lionetto et al., 2019;
Lionetto et al., 2021), as an important property for the outcome of
adverse health effects (Cheng et al., 2016). In general, oxidative stress
has been associated with cell homeostasis imbalance, mitochondrial
damage, and apoptosis –(Yang et al., 2018; Zhang et al., 2018). Though
numerous studies have focused on the cytotoxic effects of PM so far,
several issues remain unclarified, particularly those related to the cell
death pathways and underlying mechanisms (Chen et al., 2023).

Exposure to PM is known to be associated with apoptosis
induction in several cell types including bone marrow (BM)-
derived endothelial progenitor cells (Cui et al., 2015) through
oxidative stress induction, human epithelial lung cells (L132)
through activation of both TNF-α induced pathway and
mitochondrial pathway (Dagher et al., 2006), mice bronchial
epithelium cells via PI3K/AKT/mTOR signaling pathway (Han
and Zhuang, 2021), GC-2spd cells by activation of
RIPK1 apoptotic signaling pathway (Zhang et al., 2018), alveolar
macrophages (Wei et al., 2021), and human cardiomyocytes
(AC16 cell) (Yang et al., 2018) through mitochondria-mediated
apoptosis pathway.

The apoptotic process is associated with a distinct set of
molecular and cellular changes involving the cytoplasm, nucleus,
and plasma membrane, which include cell shrinkage, formation
of apoptotic bodies, chromatin condensation, and DNA
degradation. The apoptotic cell shrinkage is a universal
prominent feature of the cell under apoptosis and arises in
two distinct phases: The first phase starts before cell
fragmentation or formation of the apoptotic body, while the
second phase is associated with cell fragmentation (Benson et al.,

1996). The early phase, called Apoptotic Volume Decrease
(AVD) (Maeno et al., 2000), is represented by an isotonic cell
shrinkage that occurs early after apoptotic stimuli, before the
activation of caspases, the release of cytochrome c from
mitochondria and DNA fragmentation, and seems to be a
prerequisite for apoptosis (Okada et al., 2001). In a variety of
cell types, prevention of AVD inhibits subsequent apoptotic
biochemical and morphological events, and cells are rescued
from death (Maeno et al., 2000; Antico et al., 2023).

The cell volume reduction during apoptosis occurs under
normotonic conditions, independent of changes in the osmolarity of
the extracellular environment, and is the consequence of an exit of Cl−

and K+ from the cells (Bortner and Cidlowski, 2002; Lionetto et al., 2010;
Poulsen et al., 2010; Antico et al., 2023) through the activation of specific
channels. Concerning Cl− exit from the cell, volume-regulated anion
channels (VRAC) are considered the players in vertebrate cells (Maeno
et al., 2000; D’Anglemont de Tassigny et al., 2004). These channels are
formed by a hexameric assembly of members of the LRRC8 gene family
and are ubiquitously expressed in all vertebrate cells being involved in
cell volume homeostasis (Bertelli et al., 2021). The molecular
mechanisms underlying their activation have not yet been completely
understood. The proposed molecular mechanisms include low
intracellular ionic strength, membrane unfolding, oxidation,
phosphorylation, and G-protein coupling (Bertelli et al., 2021). It is
known that VRAC activation is crucial to AVD happening and it occurs
rapidly in a wide variety of cell types in both mitochondrion-mediated
intrinsic, and death receptor-mediated extrinsic apoptosis (Maeno et al.,
2000; Shimizu et al., 2004; Lee et al., 2007). Inhibition of these channels
was found to prevent AVD and subsequent downstream apoptotic steps
(Okada et al., 2006).

The present work aimed to study the mechanisms underlying
cytotoxic effects of airborne particulate matter <10 µm in size
(PM10) in A549 cells, used as a model, focusing on one of the
earliest events of apoptosis, the Apoptotic Volume Decrease (AVD).
A549 cells are representative of the human lung Alveolar Type II
pneumocytes (Foster et al., 1998), and are being widely used as a
cellular model for respiratory research and assessment of adverse
effects of PM on human health (Yi et al., 2012; Wang et al., 2013).
Type II cells are the only cells involved in surfactant secretion in the
respiratory epithelium and their damage can affect the lung defense
system against environmental stressors (Akella and Deshpande,
2013).

For the study, we used aqueous extracts of eight airborne PM10

samples, collected in an urban site (Aradeo, province of Lecce,
Puglia, Italy) potentially influenced by the local urban activities,
biomass burning, agricultural activities, and the nearby industrial
activities during the period from 14-01-2020 to 28-05-2020.
Guascito et al. (2023) described that the larger contribution of
PM10 in the study site originated from biomass burning.

The choice of water-soluble extracts of sampled PM10 arises
from the experimental need to reproduce experimental conditions
similar to the physiological exposure at the level of respiratory
epithelium, where the surface of the respiratory epithelial cells is
covered by a thin fluid layer, in which PM10 dissolves.

To the best of our knowledge, this is the first work focusing on
airborne PM and AVD induction and aims to contribute to
improving the knowledge about the mechanisms underlying the
effects of PM at the airway epithelium.
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2 Materials and methods

2.1 Sampling campaign, PM10 gravimetric
determination and chemical composition

The study was performed on eight PM10 samples chosen from
the whole sampling campaign carried out from December to May
2020 in a site located in southeastern Italy (Aradeo, Puglia, Italy)
already described in a previous work (Guascito et al., 2023). The
sampling site was located in the center of the municipality of Aradeo
(Lecce, Italy) (40◦07′47″ N; 18◦07′56″ E) with a population of
about 10,000 inhabitants. The site is an urban background site
potentially influenced by the local urban activities, biomass burning
and agricultural activities, and the nearby industrial activities
including a cement production plant located at about 7.2 km in
the northeast direction. Daily PM10 samples (starting from
midnight) were collected by an automatic low-volume sampler at
38.3 L·min−1 (Zambelli Explorer Plus) on PFTE filters (Whatman,
47 mm in diameter) located on the roof of the City Hall at about
14 m above the ground.

As widely described by Guascito et al. (2023), the larger
contribution of PM10 in the study site originated from biomass
burning.

Gravimetric determination of PM10 samples was done according
to UNI EN 12341 (2014) by weighing the filters (three replicates
before and after sampling), following stabilization for 48 h in a
conditioned room (for details see Guascito et al., 2023). The
weighing was performed using a microbalance Sartorious Cubis
(model MSx6.6S, ±1 μg resolution). Quality control of gravimetric
results was done using field blanks and periodic (once per week)
control of the inlet flow rate of the samplers with external flow
meters. Organic (OC) and elemental carbon (EC) were determined
by a Sunset laboratory carbon analyser (Sunset Laboratory Inc.,
Tigard OR, United States) using thermo-optical transmittance
(TOT) with the EUSAAR2 protocol (Cesari et al., 2018). The
analyser was calibrated using a sucrose solution as an external
standard (2.198 g/L in water, CPAchem Ltd., Bulgaria). Linear
calibration had a slope of 0.97 (±0.01), a negligible intercept,
(0.1 ± 0.2), and a determination coefficient R2 = 0.99.

The chemical composition of PM10 sampled was determined via
ICP-MS (PerkinElmer NexION 1000 and NexION 300x) for the
main metals and ion chromatography (ICS1100, Thermo Scientific)
for the water-soluble ions according to Guascito et al. (2023).

2.2 Cell viability measurement by MTT assay

Cell viability was evaluated by MTT test on A549 cells exposed
for 24 h to the water-soluble fractions of PM10 extracted from the
whole PFTE filter for each of the eight samples according to Lionetto
et al. (2021). Extraction was carried out in 10 mL ultrapure water
(Milli-Q) using an ultrasonic bath. Four cycles of sonication for a
total of 80 min were performed and each cycle was followed by
1 min vortex agitation (according to Lionetto et al., 2021). Then, the
extracts were filtered using PTFE (polytetrafluoroethylene) 0.45 μm
pore syringe filters. The assay measures the metabolic activity of the
cells as an indicator of cell viability, assessing the mitochondrial
NAD(P)H-dependent oxidoreductase enzyme activity which

reduces a yellow tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) 3-(4, 5-dimethylthiazol-
2-yl)-2, 5-diphenyltetrazolium bromide to formazan that
accumulates as crystals within healthy cells. These are dissolved
with DMSO and the absorbance of the resulting colored solution is
spectrophotometrically analyzed at 570 nm (Cytation 5, BioTek
Instruments, Winooski, VT, United States). Six replicates per
sample were carried out. The relative viability of the cells was
calculated as follows:

Relative viability of cells %( ) � [ treated cells OD( )/
× untreated cells OD( )] x 100

2.3 Morphological analysis of the cells and
cell volume change determination

A549 cells adherent to the bottom of a 96 multiwell were
exposed to the PM10 aqueous extracts for 24 h and visualized by
Cytation 5 cell imaging multimode reader (Agilent, Santa Clara, CA,
United States) (observation objective: ×40). Cell volume changes
were monitored by morphometric analysis of the cells and were
expressed as a percentage of the cell area of 2-D cell images after
PM10 exposure vs. the cell area of control cells (cells not exposed to
the PM10 extracts) according to Giordano et al. (2020) and Lionetto
et al. (2010). At least a minimum of 100 cells/field and 5 fields per
well were analyzed.

2.4 Detection of apoptosis by annexin V

One of the earliest events of apoptosis is the translocation of the
membrane phospholipid from the inner to the outer leaflet of the
plasma membrane. Once exposed to the extracellular environment,
binding sites on phosphatidylserine become available for Annexin
V, a 36 kDa Ca2+-dependent phospholipid-binding protein that has
a high affinity for the anionic phospholipid phosphatidylserine
(Leventis and Grinstein, 2010).

A549 cells exposed to PM10 aqueous extracts for 24 h were
incubated with 1 μg/mL annexin V (Alexa Fluor® 488) for 15 min
and viewed by Cytation 5 cell imaging multimode reader according
to Gelles et al. (2019).

2.5 Intracellular oxidative stress detection
assay and confocal visualization

The intracellular oxidative stress was assessed using the ROS-
sensitive cell-permeant probe 5-(6)-Chloromethyl-2′,7′-
dichlorodihydrofluorescein diacetate, acetyl ester (CMH2DCFDA)
(Ex/Em: 492–495/517–527 nm) (Thermo Fisher Scientific,
Waltham, MA, United States) according to Lionetto et al. (2021);
Giordano et al. (2020). The probe, once in the intracellular
compartment, loses its acetate group, which is cleaved by cellular
esterases, and undergoes hydrolysis. The resulting DCFH
carboxylate anion is trapped inside the cell and once oxidated by
intracellular ROS produces the fluorescent product DCF
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(Ameziane-El-Hassani and Dupuy, 2013). Fluorescence intensity
was measured using the Cytation 5 cell imaging multimode reader.
The results were expressed as a fold increase in the fluorescence
intensity compared to the negative control (untreated cells). More
details of the methodology are reported in Giordano et al. (2020).

Cells charged with CM-H2DCFDA were also visualized by
confical microscopy. Briefly, A549 cells were plated at a density
of 1 × 105 cells per mL into a chambered coverslip (IBIDI, Gräfelfing,
Germany), incubated for 24 h for the adhesion of the cells to the
bottom of the plate, then exposed for 24 h with the aqueous PM10

extracts and finally charged with CM-H2DCFDA as reported above.
The cells were viewed using a ×100 NA plan apochromatic objective
mounted on a NIKON TE300 inverted microscope coupled to a
NIKON C1 confocal laser scanning unit (Nikon, Tokyo, Japan). The
Argon 488-nm laser line was used. Unlabeled cells did not exhibit
any detectable fluorescence under the conditions used. Images were
acquired and analyzed by EZ-C1 NIKON software.

2.6 Statistics

Data are given as the mean ± S.E.M. The statistical significance
was analyzed by one-way ANOVA, and Dunnett’s multiple
comparison test.

3 Results

3.1 Effect of PM10 exposure on cell viability

The average values of PM10 concentration and carbon content of
the 8 samples used in the present study are reported in Table 1. The
sample set included six winter samples characterized by higher PM10

concentrations and two spring samples characterized by lower PM10

values in agreement with the typical seasonal PM10 concentration of
the area (Cesari et a., 2018). On average the same trend was also
observed for carbon content. Moreover, it must be considered that
the sampling campaign was carried out in 2020, when Italy was
subjected to a national lockdown and limitation to the movement of
people because of the COVID-19 pandemic. The first six samples
were collected before the lockdown period, while the other two May

samples were collected just after the lockdown when the restart of
activities was slow. Some previous evidence indicated that the
lockdown has slightly reduced the PM10 concentration in the air
at least in this region of Italy (Dinoi et al., 2021). The mean chemical
composition of the PM10 in the study site is reported in
Supplementary Table S1.

Cell viability after 24 h exposure to water-soluble extract of the
airborne PM10 samples was assessed by MTT assay on A549 cells. In
Figure 1 theMTT results obtained on the eight PM10 samples chosen
for the objective of the present study are reported. Inhibition of the
mitochondrial NAD(P)H-dependent cellular oxidoreductase
enzymatic activity after exposure of A549 cells for 24 h to the
aqueous extracts of PM10 compared to control cells was observed
in the sample data set in agreement with a previous study on the
whole sampling campaign (Guascito et al., 2023). The entity of the
inhibition varied from about 100% (detected in January samples) to
values of about 9% recorded in May samples. The dose-dependence
response of the assay for each aqueous extract was preliminarily
checked by exposure of A549 cells to increasing dilutions of the same
extract, as reported in our previous studies (Lionetto et al., 2019;
Lionetto et al., 2021). On average, winter samples showed a higher
cytotoxic potential as indicated by the high percentage reduction of
cell viability, particularly in January and February, compared to the
two May samples according to Guascito et al. (2023) in parallel to
PM10 concentration.

3.2 Cell volume alteration and apoptosis
detection in A549 cells exposed to PM10

To deepen the analysis of the mechanisms involved in PM10-
induced cytotoxicity on A549 cells, cell morphology was analyzed on
PM10 exposed cells in parallel to MTT assay using Cytation 5 cell
imaging multimode reader on the same samples.

After 24 h exposure to PM10 aqueous extracts, A549 cells
showed typical cell shrinkage detected as a percentage decrease of
the cell area of 2-D images compared to not exposed (control) cells
(Figure 2A). Cell shrinkage levels were in agreement with the

TABLE 1 Values of PM10 concentrations and carbon content (organic carbon OC
and elemental carbon EC) of the eight samples used for the study.

Sampling data PM10 (µg/m3) OC (µg/m3) EC (µg/m3)

14/1/2020 47.9 ± 2.4 29.6 ± 1.5 3.2 ± 0.2

18/1/2020 50.8 ± 2.5 21.8 ± 1.1 2.0 ± 0.1

21/1/2020 37.9 ± 1.9 17.8 ± 0.9 1.9 ± 0.1

23/1/2020 35.4 ± 1.8 4.6 ± 0.3 0.4 ± 0.1

11/2/2020 27.1 ± 1.3 4.7 ± 0.3 0.5 ± 0.1

5/3/2020 27.9 ± 1.4 11.6 ± 0.6 1.3 ± 0.1

9/5/2020 14.1 ± 0.7 3.3 ± 0.2 0.4 ± 0.1

28/5/2020 12.9 ± 0.6 2.6 ± 0.2 0.3 ± 0.1
FIGURE 1
Cytotoxicity of PM10 expressed as % cell viability inhibition
assessed by the MTT test on A549 cells exposed for 24 h to PM10

aqueous extracts.

Frontiers in Physiology frontiersin.org04

Giordano et al. 10.3389/fphys.2023.1218687

66

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1218687


NAD(P)H-dependent cellular oxidoreductase enzymatic activity
reduction, as indicated by the correlation analysis (Figure 2B).
Particularly high cell volume reduction, above 50%, was observed
in the samples which showed the highest inhibition of mitochondrial
NAD(P)H-dependent oxidoreductase activity. Cell shrinkage was
also accompanied by other typical morphological signs of apoptosis
such as cell rounding, surface roughness, blebs formation, and
annexin V positivity, visualized by the delectable green contour

of the cell plasmamembrane of cells treated with 1 μg/mL annexin V
(Alexa Fluor® 488) following exposure to PM10 extract as shown in
Figure 2A. This figure reports representative images obtained
from the sample of 14-1-2020. Similar apoptotic positive
evidence (cell rounding, surface roughness, blebs formation, and
annexin V positivity) were obtained also for the other 5 winter
samples but was not detectable for the two May samples (not
shown).

FIGURE 2
(A, B) Cell volume change in A549 cells exposed to the aqueous extracts of the 8 PM10 samples expressed as percentage cell size compared to not
exposed cells (control). Representative brightfield image of not exposed cells; representative images of PM10 exposed cells (sample of 14-1-2020).
brightfield and annexin V stained. (B) Correlation analysis between cell viability inhibition and % of cell shrinkage.
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3.3 Apoptotic volume decrease in A549 cells
exposed to PM10 aqueous extracts

After detecting reduced vitality and apoptosis appearance in
A549 cells following 24 h exposure to PM10 aqueous extracts, we
tested the hypothesis of the possible involvement of PM10 exposure
in the induction of the Apoptotic Volume Decrease (AVD), which is
one of the first events of apoptosis, occurring early in the first 1–2 h
(Chang et al., 2000; Maeno et al., 2000). Therefore, the time course of
the volume changes was monitored in A549 cells during the first 2 h
of exposure to PM10 aqueous extracts by time-lapse imaging of the
cells every 30 min. The AVD analysis was focused on
4 representative samples, two January samples, characterized by
the highest values of vitality reduction and a marked cell shrinkage
after 24 h exposure, and the two samples of May, characterized by a
reduction of the NAD(P)H-dependent cellular oxidoreductase
activity below 15% and without apparent apoptotic signs. For
each of the four filter extracts, three independent experiments
were performed.

The cells exposed to the aqueous extracts of January 18 and
21 showed a significant reduction of cell volume compared to
control cells already after 30 min exposure and the decrease
continued in the 2 h observation reaching 16% and 27%
respectively (Figure 3). If these results are compared with the
overall apoptotic cell volume reduction observed after 24 h in the
same extracts, the AVD response observed in the first 2 h
corresponds to one-third and one-half respectively of the overall
cell shrinkage produced.

On the other hand, the cells exposed to the other two spring
extracts (9-5-2022 and 28-5-2022) did not show any significant cell
size reduction compared to the control cells.

3.4 Effect of SITS in the PM10-induced
apoptotic volume decrease

AVD is known to be caused by the loss of K+ and Cl− from the
cell (Yu and Choi, 2000). Therefore, in order to investigate the
nature of the PM10-induced early isotonic cell shrinkage,
A549 cells were preincubated with 0.5 mM disulfonic stilbene

derivative (4-Acetamido-40-isothiocyanato-stilbene-2,20-
disulfonic acid), a known inhibitor of Cl− channels (Kokubun
et al., 1991) including the ubiquitously expressed volume-
regulated anion channels (VRACs) (Maeno et al., 2000;
Hoffman et al., 2015; Okada et al., 2021), which have been
demonstrated to be involved in AVD in other cell types
(Maeno et al., 2000). The cells were viewed by time-lapse
microscopy. After (4-Acetamido-40-isothiocyanato-stilbene-
2,20-disulfonic acid) preincubation, the cells were exposed to
the PM10 aqueous extracts of 18-1-2020 and 21-1-2020 for 2 h
and in this case, the PM-induced isotonic shrinkage was
completely prevented (Figures 4A, B). On the other hand,
(4-Acetamido-40-isothiocyanato-stilbene-2,20-disulfonic acid)

FIGURE 3
Time-course of cell volume change in A549 cells during the first
2 h of exposure to the aqueous extracts of 4 PM10 samples. Cell
volume changes were expressed as percentage cell size compared to
the size of the cells at time 0. *p < 0.05; **p < 0.01.

FIGURE 4
(A–D) Effect of SITS (0.5 mM) on the time-course of cell volume
change in A549 cells during the first 2 h of exposure to the aqueous
extracts each of the 4 PM10 samples. Cell volume changes were
expressed as percentage cell size compared to the size of the
cells at time 0. *p < 0.05; **p < 0.01.
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alone was not able to produce any significant alteration in cell
size. The other two extracts, not showing AVD, were also tested
and no significant effect of (4-Acetamido-40-isothiocyanato-
stilbene-2,20-disulfonic acid) treatment was observed
(Figures 4C, D).

3.5 Oxidative stress induction in A549 cells
exposed to PM10

It is known that reactive oxygen species and oxidative stress
play a pivotal role in apoptosis induction in several cell types
(Kannan and Jain, 2000; Redza-Dutordoir and Averill-Bates,
2016).

In order to test whether oxidative stress was involved in
PM10-induced apoptosis in A549 cells, intracellular oxidative
stress levels were measured in A549 exposed for 24 h to all the

eight PM10 aqueous extracts of the study using the cell-permeable
probe CM-H2DCFDA. Preliminarily, the cells were exposed to
different dilutions of the same extract. Figure 5A shows the
representative dose response for one of the tested samples (21-
1-2021) revealing that PM10 was able to induce the generation of
intracellular oxidative stress in a dose-dependent way. The
confocal representative images of cells exposed to different
dilutions of the PM10 extracts and then charged with the
fluorescent probe are reported in Figure 5B. The intracellular
fluorescence intensity of the exposed cells increases with the
concentration of the PM10 aqueous extract. At the highest
dilution tested the appearance of apoptotic blebs is clearly
evident.

The analysis of the PM10-induced intracellular oxidative stress
was applied to the eight extracts revealing a highly significant
fluorescence increase compared to control in the six winter
samples after 24 h, while no significant effect was observed in the

FIGURE 5
(A) Effect of the exposure (24 h) to increasing concentrations of the same PM10 extract (representative experiment on the sample of 21-1-2020) on
the intracellular fluorescence intensity of A549 cells charged with the ROS-sensitive probe CM-H2DCFDA and the corresponding confocal images (B);
(C) Intracellular fluorescence of A549 cells exposed to the eight PM10 aqueous extracts for 24 h and charged with the ROS sensitive probe CM-H2DCFDA
(extract dilution used for all the samples: 50%).
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two spring samples (Figure 5C). The oxidative stress data were
statistically correlated with vitality inhibition data and cell shrinkage
results (Figures 6A, B) suggesting that the generation of intracellular
oxidative stress can be one of the main underlying mechanisms of
the PM10 induction of apoptosis in A549 cells.

The investigation of the effect of PM10 exposure on intracellular
oxidative stress induction was deepened with a short-term analysis
of the intracellular fluorescence of A549 cells charged with CM-
H2DCFDA and exposed for 15 min to the 4 aqueous PM10 extracts
used for AVD analysis. As reported in Figure 7, the cells exposed to
the aqueous extracts of 18-1-2020 and 21-1-2020 expressed a
significantly increased fluorescence compared to control cells
already after 15 min exposure, suggesting that the induction of
oxidative stress by PM10 was an early event, timely
correspondent with the AVD induction sustained by VRAC
channels.

4 Discussion

The impact of air pollution on public health has become a
great concern worldwide, in particular, PM is considered one of

the main risk factors for human health (Loomies et al., 2013;
WHO, 2019). Cell death has been used as a hallmark of cell injury
induced by PM (Peixoto et al., 2017) representing a general toxic
outcome since it results from the integration of the multiple toxic
effects that PM can induce at the cellular level. Cell death has
been recognized as one important underlying mechanism of the
development or exacerbation of respiratory diseases, such as
emphysema and chronic obstructive pulmonary diseases
(Pleixoto et al., 2017).

The present work wants to contribute to the knowledge
about the mechanisms underlying the cytotoxic effects of PM
at the airway epithelium using A549 cells as a model and focuses
on the induction of apoptotic volume decrease, one of the early
events in the apoptotic process. The study was carried out on
water extracts of airborne PM coming from an urban site in the
South of Italy (Aradeo, province of Lecce, Apulia, Italy) whose
dominant PM source was represented by biomass burning
during the sampling period of the study as previously
assessed by Guascito et al. (2023). The used samples included
winter samples with high PM10 values, high carbon content
values (mainly linked to biomass combustion, as previously
assessed), and high cytotoxicity, and spring samples, collected
in the post-COVID-lockdown period, characterized by low
PM10 values, low carbon content values, and low or negligible
cytotoxicity.

Cell death has a central role in homeostasis and it is also
responsible for the onset of several pathological conditions. In
recent years, various types of cell death, such as apoptosis,
autophagy, necrosis, pyroptosis, ferroptosis, and cuproptosis, have
been elucidated (Chen et al., 2023), and an increasing number of
works have focused on the cellular death pathways related to PM
exposure. Among the death cell types, apoptosis is the most widely

FIGURE 6
(A) Correlation analysis between cell viability inhibition and
intracellular oxidative stress expressed as fold increase of the
fluorescence intensity of the CM-H2DCFDA probe compared to
control. (B)Correlation analysis between apoptotic cell shrinkage
evaluated after 24 h and intracellular oxidative stress (see above)
***p < 0.001; **p < 0.01.

FIGURE 7
Intracellular fluorescence of A549 cells exposed to the four PM10

aqueous extracts for 15 min and charged with the ROS sensitive probe
CM-H2DCFDA (extract dilution used for all the samples: 50%). The
statistical analysis of data was performed by one way ANOVA and
Dunnett’s multiple comparison test.
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investigated in PM-induced cytotoxicity and it has been related to
the appearance of pulmonary fibrosis (Yang et al., 2020).

In our study, cytotoxic effects induced by PM10 ascribable to
apoptotic death were observed in winter samples which are
characterized by the higher PM10 and organic carbon content, as
revealed by the typical apoptotic sign appearance such as cell volume
reduction, cell rounding, surface roughness, blebs formation, and
annexin V positivity. Apoptotic volume reduction was observed
early, since a significant cell shrinkage was already detectable after
the first 30 min exposure to the winter PM10 samples, while no
significant changes in cell volume were observed in spring samples
which did not show the typical sign of apoptosis. These results
clearly indicate the ability of PM10, mainly arising from biomass
burning, to induce AVD in A549 cells. AVD was triggered by the
activation of Cl− efflux, since the pretreatment with SITS, a known
inhibitor of Cl− channels including the VRAC channels, completely
inhibited the PM-induced activation of AVD. The pretreatment
with SITS did not exert any effect on cell volume in control
conditions suggesting that the channels responsible for the PM10-
induced Cl− efflux were not activated in basal conditions.

A549 cells are known to express the ubiquitous volume-
regulated anion channels (VRAC) composed of members of
the leucine-rich repeat-containing protein 8 family (LRRC8A-
E) (He et al., 2010; Canella et al., 2017; Bach et al., 2018; Centeio
et al., 2020). Normally, these channels are closed and underwent
activation following hypotonic swelling playing a key role in the
Regulatory Volume Decrease response which allows the cells to
recover their volume through the release of osmolytes (mainly K+

and Cl−) followed by loss of osmotically obliged water. In
addition, VRAC channels have been previously demonstrated
to be activated in A549 cells in normotonicity under apoptosis-
related stressful conditions such as carboplatin and ozone
exposure (He et al., 2010; Canella et al., 2017; Bach et al.,
2018) being responsible for the induction of AVD. In light of
this knowledge, our results indicate the ability of biomass-
burning-related PM10 to activate AVD in A549 cells through
the activation of VRAC channels.

As regards the PM10 components able to induce the activation
of VRAC channels, it is known that these channels are activated by
ROS in various cell types (Jiao et al., 2006; Matsuda et al., 2010;
Shen et al., 2014; Friard et al., 2021). PM is known to express an
intrinsic oxidant-generating capacity that is related with the
physical-chemical properties of the particles, such as their
surface characteristics and their chemical composition, related
to the pollutants adsorbed (such as metals, polycyclic aromatic
hydrocarbons, quinones) expressed by the PM oxidative potential
(Chirizzi et al., 2017; Carlino et al., 2023). Besides its intrinsic
oxidant-generating capacity, PM also exhibits a cell-mediated
oxidant-generating capacity once in the cells, including the
activation of intracellular signaling pathways leading to the
formation of ROS, the interference with the endogenous
production of ROS at the mitochondrial level, the release of
radical metabolites arising from the biotransformation of the
chemical contaminants of PM (Ghio et al., 2012), and the
inhibition of intracellular antioxidant defenses (Chirino et al.,
2010). The two types of PM oxidant properties (endogenous
and cell-mediated) are statistically correlated as previously
demonstrated (Lionetto et al., 2021; Guascito et al., 2023).

In our study, we found that exposure of A549 to PM10

aqueous extracts was able to induce intracellular oxidative
stress detected by the ROS-sensitive probe CM-H2DCFDA.
The oxidative stress induction, expressed as a fold increase of
the intracellular probe fluorescence, was statistically significantly
correlated with cell viability inhibition and with apoptotic cell
shrinkage. The oxidative stress induction was already evident
after 15 min exposure suggesting that the appearance of PM10

induced AVD through the activity of VRAC channels is mediated
by the PM10 induced intracellular oxidative stress, which in turn
represents one of the first PM-induced cellular effects leading to
cytotoxicity.

5 Conclusion

In conclusion, obtained results demonstrated for the first
time that exposure to airborne PM10 aqueous extracts, mainly
influenced by biomass burning, induces Apoptotic Volume
Decrease in A549 cells. AVD was prevented by the pre-
treatment with SITS suggesting the activation of Cl− efflux
presumably through the activation of VRAC channels. The
exposure of A549 cells to PM10 aqueous extracts was able to
induce intracellular oxidative stress detected by using the ROS-
sensitive probe CM-H2DCFDA. The PM10 oxidative stress
induction was statistically significantly correlated with cell
viability inhibition and with apoptotic cell shrinkage. The
oxidative stress induction was already evident after 15 min
exposure representing one of the first cellular effects induced
by PM exposure leading to cytotoxicity. Its early appearance
suggests its role in the PM10 mediated AVD induction. This
finding deserves to be in more detail evaluated in future works
addressing the efficiency of the endogenous antioxidant system in
PM treated A549 cells.

Although future studies are needed to better clarify important
aspects of the research such as the signaling pathway accounting for
AVD activation through VRAC opening and the role played by ROS
in these pathways also in relation to the chemical composition of
PM10, the manuscript contributes to improving the knowledge about
the cellular mechanisms responsible for the effects of PM at the
airway epithelium.
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Microglial crosstalk with
astrocytes and immune cells in
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Matteo Calafatti 1†, Germana Cocozza1†, Cristina Limatola2,3

and Stefano Garofalo1*

1Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy, 2Istituto di
Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy, 3Department of Physiology
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In recent years, biomedical research efforts aimed to unravel the mechanisms

involved inmotor neuron death that occurs in amyotrophic lateral sclerosis (ALS).

While the main causes of disease progression were first sought in the motor

neurons, more recent studies highlight the gliocentric theory demonstrating the

pivotal role of microglia and astrocyte, but also of infiltrating immune cells, in the

pathological processes that take place in the central nervous system

microenvironment. From this point of view, microglia-astrocytes-lymphocytes

crosstalk is fundamental to shape the microenvironment toward a pro-

inflammatory one, enhancing neuronal damage. In this review, we dissect the

current state-of-the-art knowledge of the microglial dialogue with other cell

populations as one of the principal hallmarks of ALS progression. Particularly, we

deeply investigate the microglia crosstalk with astrocytes and immune cells

reporting in vitro and in vivo studies related to ALS mouse models and human

patients. At last, we highlight the current experimental therapeutic approaches

that aim to modulate microglial phenotype to revert the microenvironment, thus

counteracting ALS progression.

KEYWORDS

amytrophic lateral sclerosis (ALS), Astrocyctes, immune cell, inflammation, microglia
1 Mechanisms of neurodegeneration in ALS

ALS is the most common adult-onset motor neuron disease, affecting the upper and

lower motor neurons (MN) in the brain and spinal cord. People with ALS develop muscle

weakness and atrophy, leading to paralysis and death from neuromuscular respiratory

failure, within 3 to 5 years after onset. Riluzole and the free-radical scavenger edaravone are

the only treatments approved to treat ALS patients, which act on survival and rate of

progression, respectively.

Traditionally, ALS has been classified as either the sporadic or familial form. Sporadic

ALS (sALS) is the most common form, accounting for around 90% of all cases (1–5).

Familial, or inherited, ALS (fALS) runs in families and accounts for the remaining 5-10% of

cases. Mutations in several genes have been implicated in fALS and contribute to the
frontiersin.org0174

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1223096/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1223096/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1223096/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1223096&domain=pdf&date_stamp=2023-07-26
mailto:stefano.garofalo@uniroma1.it
https://doi.org/10.3389/fimmu.2023.1223096
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1223096
https://www.frontiersin.org/journals/immunology


Calafatti et al. 10.3389/fimmu.2023.1223096
development of sALS (e.g. superoxide dismutase 1 (SOD1), fused in

sarcoma (FUS), TAR DNA binding protein (TARDBP) and

chromosome 9 open reading frame 72 (C9orf72) (6–8). Proteins

encoded by these genes are involved in several aspects of MN

function and in ALS pathogenesis, including protein homeostasis,

axonal transport, DNA repair, RNA metabolism, vesicle transport,

inflammation, mitochondrial dysfunction, and glial cell function

(9–11). In 1994, Gurney et al. developed the first mouse model of

ALS, a transgenic model that over-expressed the ALS-associated

mutant SOD1G93A and recapitulate some of the key clinical features

of human ALS (12). These mice showed evident progressive motor

abnormalities and paralysis, microglia acquire an inflammatory

phenotype affecting MN death, and myeloid cells expressing

mutated SOD1 promote neurotoxicity (8, 13, 14). In another ALS

mouse model based on TDP-43 mutations, the TDP-43A315T mice

showed pathological aggregates of ubiquitinated proteins in specific

neurons and reactive gliosis, with the loss of both upper and lower

MNs (15, 16). Abnormal expansion of an intronic hexanucleotide

GGGGCC (G4C2) repeat of the C9orf72 gene is ALS’s most

frequently reported genetic cause (17–20). Several transgenic

mouse models containing the full-length C9orf72 gene show

decreased survival, paralysis, muscle denervation, MN loss, and

cortical neurodegeneration (21).

Despite the advance of knowledge of the ALS pathogenesis,

most of the molecular and cellular mechanisms involved in the

progression and development of the disease remain largely

unexplored. Recently, a majority of the evidence indicates that

ALS is a non-neuronal-autonomous disease (1, 2, 13). Indeed, in

this scenario, glia and immune cells build up a complex regulatory

network involved in ALS disease, exerting both neurotoxic and

neuroprotective effects on neurons. In this review, we summarize

the role of non-neuronal cells in ALS pathology, with a particular

focus on microglia interplay with astrocytes and peripheral immune

cells that orchestrates the ALS microenvironment. We discuss the

current therapeutic approaches that aim to modulate microglial

crosstalk with non-neuronal cells, and finally look to the future of

new therapeutic trials.
2 Microglial functions in health
and disease

Microglia, which represent ~5–12% of the Central Nervous System

(CNS) cells, are the resident macrophages of the CNS (22, 23), that

originate from myeloid precursor cells which enter into the CNS during

embryogenesis (24), becoming independent self-renewing population

(25, 26). The general definition of microglial role describes them as able

to perform three essential functions: sensing their environment,

maintaining physiological homeostasis, and protecting from self and

exogenous stimuli. Microglia are able to adopt a plethora of phenotypes,

depending on the surrounding environment, which can differ in the

healthy CNS and in various disease states (27–30). Recent in vivo

imaging studies clearly demonstrate that microglial thin processes

continually explore and sample the local environment at steady state

(31, 32). Consistently, in the healthy CNS, microglia are necessary for
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proper brain development, providing trophic support to neurons,

removing apoptotic cell debris, regulating neuronal and synaptic

plasticity, developmental myelination, and tissue regeneration (33–37).

In several pathological conditions, microglia lose their homeostatic

molecular signature, resulting in rapid modification of their

morphology, transcriptional profile, and phagocytic activity, acquiring

a pro-inflammatory profile (38–44); the persistent inflammation can lead

to neurotoxicity, and ultimately to neurodegeneration (45–47). Microglia

have also been described as active participants in host defense against

pathogens and protein aggregates, such as b-Amyloid (Ab), mutant

huntingtin, prions (PrPsc), a-synuclein, oxidized or SOD1 (48–50). In

response to CNS insults, microglia initiate a defense program to restore

brain homeostasis, through different pattern recognition receptors

(PRRs), including toll-like receptors (TLRs), scavenger receptors (SRs),

and complement receptor 3 (CR3) (51–58). Furthermore, neurotoxicity

dysregulates microglial immunological checkpoints (such as Trem2 and

CX3CR1) that normally prevent their overreaction and may help to

control inflammation (52). Dysregulation of these pathways increases the

risk for Alzheimer’s disease (AD), frontotemporal lobar degeneration

(FTLD), frontotemporal dementia (FTD), and ALS (59). Dysregulation

of the host-defense pathway further, may also be caused by mutations in

specific genes, such as Trem2, HTT, and TDP43, further, resulting in an

inflammatory response and neuronal damage (60–62).
2.1 Microglia in ALS

Evidence that detrimental microglia contribute to sustaining the

inflammation in ALS is observed in imaging studies in patients with

ALS, human post-mortem samples, and rodent models of ALS (63–65).

Microglia increase the expression of CD14, CD18, SR-A, and CD68 in

ALS spinal cord, and CD68+ microglial cells are detected in close

proximity toMNs (66), and in the brain of ALS patients using Positron

emission tomography (PET) imaging (67, 68). Notably, microglia

modify their phenotype with disease progression: adult microglia

isolated from ALS mouse models at disease onset show a protective/

anti-inflammatory phenotype, while microglia isolated from end-stage

disease are toxic/pro-inflammatory (69–74). Consistently, in familial

ALS (fALS) patients with SOD1 mutations, and in the SOD1-ALS

mouse models, microglia affect MN death (75) and promote

neurotoxicity (76), as well as regulate the feeding behavior and

overall metabolism (77). Microglial-mediated MN death in ALS

occurs through an NF-kB-dependent mechanism (75) and by

secreting reactive oxygen species and pro-inflammatory cytokines

(such as interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-a)
(78, 79). Although a number of studies are in line with the

neuroinflammatory and neurotoxic microglial role observed in SOD1

mutated ALS patients andmouse models (8, 13, 14), the functional role

of microglia in familial ALS or mouse models with mutated TDP-43 is

not clear. In post-mortem human brain tissue from ALS patients and

mouse models expressingmutated TDP43, were observed aggregates of

ubiquitinated proteins in MNs, astrocytes and microglia, loss of both

upper and lower MN and intestinal dysmotility that could induce

premature death (15). On the contrary, the suppression of mutated

human(h) TDP-43 protein in neurons, dramatically increased the

microglial proliferation and changed their morphology and
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phagocytic activity against neuronal hTDP-43 (15). The partial

depletion of microglia using PLX3397, a CSF1R and c-kit inhibitor,

failed to recover motor functions in hTDP-43 mice, revealing an

important neuroprotective role for microglia (80).

Recent work showed that C9orf72 expression is highest in

myeloid cells, and loss of function of the C9ORF72 protein in

mice disrupts microglial function and may contribute to

neurodegeneration in C9orf72 expansion patients (18, 20, 81–87).

Other disease mechanisms that occur in the ALS/FTD with C9orf72

gene mutation include a gain of toxicity mediated through either the

RNA itself (88, 89) and/or the translation of aberrant dipeptide

repeat (DPR) proteins by a non-canonical translation mechanism

called repeat associated non-AUG dependent (RAN) translation

(90, 91). Immunoreactive microglia and upregulation of

inflammatory pathways have been confirmed in patients with

mutated C9orf72 and correlate with rapid disease progression

(87). Anyway, since most C9orf72 mouse models do not show

ALS motor symptoms, neurodegeneration, or inflammatory

response, it is difficult to determine the relationship between

C9orf72-specific molecular pathology and ALS.
3 Microglial dialogue with
non-neuronal cells in ALS

In the CNS, non-neuronal cells play crucial homeostatic

functions both in health and diseases. The involvement of these

cells in the pathophysiology of ALS is being increasingly

characterized. Microglia crosstalk with peripheral immune cells

and astrocytes to exert either neuroprotective or adverse effects

through a broad range of cell-to-cell interactions.
3.1 Microglia – Astrocytes crosstalk

Similar to microglia, during ALS progression, astrocytes adopt

neurotoxic properties which actively contribute to disease pathogenesis

(92). In fact, both in vitro and in vivo studies demonstrated that in ALS

mouse models, astrocytes with mutated mSOD1 protein exert

neurotoxic effects on motor neurons, by releasing pro-inflammatory

factors (93). Moreover, reactive astrocytes were described in the post-

mortem CNS tissue obtained from ALS patients (94–96). This finding

was confirmed further in vivo via diagnostic imaging using PET

scanning demonstrating cerebral white matter and pontine

astrogliosis in ALS patients (97).

In recent years, the crosstalk between astrocytes and other non-

neuronal cells has been studied in more detail. The astrocytic transition

from neuroprotective to neurotoxic was accompanied by a shift in

microglial phenotype, suggesting that astrocytes may be important

regulators of microglia activation and neuroinflammation in ALS (98).

To date, several studies demonstrated that the detrimental microglia

shape astrocyte phenotype in ALS driving disease progression. Both in

human and mouse ALS tissues it was found the presence of neurotoxic

reactive (A1-like) astrocytes since the early phase of the disease (92, 99–

101). Moreover, microglia modify their phenotype as the disease

progression: indeed, adult microglia isolated from ALS mouse
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models at disease onset show a protective/anti-inflammatory

phenotype, while microglia isolated from end-stage disease are toxic/

pro-inflammatory (67–72).

However, controversial results have been obtained on which cell

population, between microglia and astrocytes, acquires a pro-

inflammatory/neurotoxic phenotype during ALS progression. Indeed,

Alexianu et al. reported that microglia activation precedes astrocyte

reactivity (102). On the contrary, another study suggested that

astrogliosis is present since the early symptomatic stage, while

prominent microgliosis is only evident at the late phase (103).

Astrocytes have been shown to shape the microglial phenotype

according to disease stage, modulating neuroprotective and neurotoxic

functions in the pre-symptomatic and symptomatic phases of ALS,

respectively (98). In the SOD1G93A ALS mouse model, astrocytic NF-

kB activation drove microglial proliferation and leukocyte infiltration

in the CNS (98). This response was initially beneficial by prolonging the

pre-symptomatic phase, but it became detrimental in the symptomatic

phase, accelerating disease progression. Specifically, in the pre-

symptomatic phase astrocytic NF-kB activation in SOD1 mouse

models induced a Wingless-related integration site (Wnt)-dependent

anti‐inflammatory microglial response via nuclear factor kappa-B

kinase subunit beta (IKK2), resulting in neuroprotective effects on

motor neurons which translated into a delay of motor symptoms (98).

However, in the symptomatic phase, NF-kB activation in astrocytes

promoted pro‐inflammatory microglial responses (via CD68, TGF‐b,
TNF‐a) which accelerated disease progression (98). A recent study

indicated astrocytic TGF-b1 as amajormolecule modulatingmicroglial

phenotype toward detrimental one (104). Astrocyte-specific

overproduction of TGF-b1 in SOD1G93A mice interfered with the

neuroprotective effects of microglia during the pre- and early

symptomatic stages and accelerated disease progression in a non-

cell-autonomous manner. This interference resulted in reduced

production of neurotrophic factors from microglia and a reduced

number of CNS infiltrating T cells. Consistently, the expression levels

of endogenous TGF-b1 in SOD1G93A mice negatively correlated with

overall life expectancy, while the administration of a TGF-b signaling

inhibitor extended it (104). These findings raise TGF-b1 to an

important determinant of disease progression in ALS.

On the other hand, many pieces of evidence suggest that

the activation of microglia precedes the reactivity of astrocytes in

ALS (105). Brites and colleagues demonstrated that microglia

respond earlier than astrocytes to cell stress or damage by

activating NF-kB and mitogen-activated protein kinase (MAPK)

signaling pathways, thus leading to the release of pro-inflammatory

cytokines (e.g., TNF-a and IL-1b) (105). These cytokines were shown
to exert an inhibitory effect on Cx-43 expression, the main

constitutive protein of astrocytes’ gap junctions, therefore

hampering communication between astrocytes, and possibly

interfering with their neuroprotective role (106). In addition, cell–

cell contacts and microglial-derived soluble mediators are necessary

for astrocytes to fully respond to lipopolysaccharide (LPS) insult and

Toll-Like Receptor (TLR) ligation (11413), suggesting that microglia

may exert a permissive effect on astrocyte pro-inflammatory

activation. Liddelow et al. demonstrated that the microglial

derived-pro-inflammatory cytokines IL-1a, TNFa and complement

component C1q42 are necessary and sufficient to induce pro-
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inflammatory astrocytes in mice (92). Consistently, a triple knock-out

of these factors in IL-1a−/− TNFa−/−C1qa−/− SOD1G93A mice led to a

drastic reduction in the number of reactive astrocytes, improving

lifespan and delayingmotor neuron loss and disease progression (92).

This finding further supports the hypothesis of a microglia-to-

astrocyte polarization.

Since an intimate interaction/communication between

microglia and astrocytes occurs in ALS, a better understanding of

their crosstalk could help to define potential therapeutic strategies

targeting the glia in ALS.
3.2 Microglia – Natural killer cells crosstalk

NK cells contribute to ALS progression by interacting with CNS

resident cells and peripheral immune cells. Increased numbers of

NK cells have been found in the peripheral blood and CNS of ALS

patients (107), and a rich infiltrate of NK cells has been described in

the CNS of SOD1G93A mouse models (5). The NK cells - microglia

crosstalk has been recently characterized, highlighting the

importance of this interaction in the pathogenesis of ALS. Indeed,

in NK cell-depleted hSOD1G93A and TDP43A315T microglia

acquired a typical neuroprotective morphology, covering a wider

parenchymal region and increasing the branches number (108).

Moreover, NK cell-depleted hSOD1G93A mice showed a reduction

in microgliosis, indicated as the number of microglia in the ventral

horns of the spinal cord (108). In the absence of NK cells, microglia

reduced the expression of genes associated to a pro-inflammatory

phenotype, including IL-6, IL-1b, TNF-a, with the simultaneous

increase of expression of the anti-inflammatory (Chil3, Arg-1, and

TGF-b), antioxidant (Msod1) and neuroprotective (P2yr12, Trem2,

Kcnn4, Bdnf, IL-15) markers (108). The molecular link that drives

the crosstalk between microglia and NK cells in ALS is the IFN-g
produced by infiltrated NK cells during the pre-symptomatic stage

of disease. Accordingly, the IFN-g immunodepletion (via IFN-g-
blocking antibody XMG1.2 administration) had consequences

similar to NK cell depletion on microglial phenotype, switching

them toward an anti-inflammatory phenotype (108). Lastly, this NK

cell-mediated modulation of microglia resulted in an increased

number of motor neurons in the ventral horn of spinal cord, and

affected survival and onset time both in SOD1G93A and TDP43A315T

mouse models (108), These results were further validated in an

elegant study (109) exploiting Natalizumab, a blocking antibody for

the a4 integrin (anti-VLA-4) (110, 111), to reduce the transfer of

peripheral immune cells to the CNS of the hSOD1G93A ALS mouse

model. In the lumbar spinal cord of Natalizumab-treated mice was

found a reduced number of NK cells and, accordingly, microglial

cells reduced the expression of pro-inflammatory markers (IL-6, IL-

1b and tnf-a), and IFN-g level was significantly reduced compared

to vehicle-treated hSOD1G93A mice (108). However, Natalizumab

treatment showed more effects on the modulation of the

inflammation in the ALS microenvironment, suggesting a more

complex scenario due to the role of different peripheral immune

cells infiltrated in the CNS. Overall, these results point toward the

importance of microglia-NK cells crosstalk modulation to reduce

motor neuron loss in ALS.
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3.3 Microglia - T lymphocytes crosstalk

Activated T cells are present in the CNS at a steady state to

perform immunological surveillance (112) and provide

immunological responses that are modulated by cell to cell

signaling (113). Infiltration of CD4+ and CD8+ T lymphocytes

has been documented in the brain and spinal cord of ALS patients

(114, 115). Specifically, perivascular and intraparenchymal CD4+

helper T cells were found to surround degenerating corticospinal

tracts, while ventral horns were enriched with both CD4+ helper

and CD8+ cytotoxic T cells. The lymphocytic infiltration did not

correlate with the rate of progression or stage of the disease in ALS

patients (115); on the contrary, in transgenic mice expressing

mutant SOD1G93A, the number of CD4+ and CD8+ T cells

infiltrating the spinal cord increased as the disease progressed

(116, 117). Multiple levels of evidence suggest that CD4+ helper T

cells exert neuroprotective functions, especially in the initial phases

of the disease process (116, 118), while CD8+ cytotoxic T cells

present at later phases of the disease are possibly neurotoxic (119,

120). T cell functional profiles are, at least in part, shaped by a

complex dialogue with microglia and neurons, as explained below.

3.3.1 Microglia - CD4+ T lymphocytes crosstalk
CD4+ T cells comprise multiple functionally distinct cell

populations that regulate different functions, classified as Th1,

Th2, regulatory T cells (Tregs), and Th17 cells (121). Although

the role of CD4+ T cells in ALS remains controversial, the putatively

protective effect of these cells on MNs is widely accepted (122–124).

A major insight into the role of CD4+ T cells came from Beers & al.,

who bred immunodeficient mice lacking functional lymphocytes or

functional CD4+ T cells with mSOD1G93A transgenic mice and

performed selective reconstitution experiments with bone marrow

transplants (116). The lack of functional CD4+ T lymphocytes

resulted in a faster disease progression characterized at the

molecular level by the upregulated expression of pro-

inflammatory functional markers like NOX2 and pro-

inflammatory cytokines, while reconstitution of CD4+ T

lymphocytes prolonged survival and inhibited the acquisition of

pro-inflammatory phenotype in microglia (116). The absence of

functional CD4+ T cells in mSOD1G93 mice reduced the mean

survival time, supporting the neuroprotective role of these

lymphocytes. The fractalkine receptor (CX3CR1), a chemokine

receptor expressed by microglia, monocytes, dendritic cells, and

subsets of T cells, was involved in microglial neurotoxicity (125),

and consistently, was reduced in mice lacking CD4+ T cells and

increased following bone marrow reconstitution (125).

Within the CD4+ T lymphocyte subsets, endogenous Tregs are

particularly associated to neuroprotection in ALS, with a time-

specific effect (122, 123). Tregs were found to be increased in spinal

cords of mSOD1 mice after disease onset, accompanied further by

increased expression of IL-4 and higher number of neuroprotective/

anti-inflammatory microglia (122). During the progression of the

disease, there was a loss of Forkhead box P3 (FoxP3) expression in

Tregs, with a concomitant reduction of IL-4 level (122). Passive

transfer of Tregs from donor mSOD1G93A mice in the early phase of

the disease, sustained IL-4 levels and anti-inflammatory microglia,
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delaying the onset of symptoms and increasing the survival of

recipient mSOD1G93A mice (116, 122).

In ALS patients, neuroinflammation can be attributed to the

impaired suppressive function of Tregs in addition to their decreased

numbers (123, 126). Indeed, mutated SOD1 Tregs were less effective

in suppressing effector T cells (Teff) proliferation (123). With the

progress of diagnostic imaging, PET of activated microglia in ALS

patients offers a potential opportunity to assess Treg-mediated

neuroprotection (63, 67, 127). While Treg and anti-inflammatory

microglia increase in the early stage of ALS (128–130), Th1 and pro-

inflammatory microglia increased the inflammation in the

microenvironment in the later stage of ALS (131, 132).

Accordingly, a parallel shift from a neuroprotective Treg/anti-

inflammatory response to a neurotoxic Th1/pro-inflammatory

response has been postulated during ALS progression by Zhao

et al. (132). In the mSOD1 mouse model, a Treg/anti-inflammatory

response dominates the initial slowly progressing phase of the disease,

as Tregs suppress microglial toxicity and SOD1 T effector cells

through IL-4, IL-10 and TGF-b (132). During ALS progresses, the

immune response switches to a deleterious Th1/pro-inflammatory

response, where the interaction between Th1 and microglia enhances

pro-inflammatory responses, including the release of TNF-a, IL-6,
and IL-1b, and downregulates Treg suppressive functions (132).

Overall, these data support the concept of a well-orchestrated

and complex dialog among microglia and CD4+ T cells, suggesting

that different CD4+ T lymphocyte subsets play different roles in

shaping microglial functions during ALS progression.

3.3.2 Microglia – CD8+ T lymphocytes crosstalk
In the peripheral blood of ALS patients, cytotoxic CD8+ T cells

number was found to be significantly increased, suggesting a

systemic immune activation (133). However, the role of these

cells in the progression of ALS remains difficult to decipher (134).

Particularly, microglia-CD8+ T cell crosstalk is fundamental to

drive the inflammation in ALS affected regions (120). Specifically,

major histocompatibility complex I (MHCI) depletion in resident

microglia or the lack of CD8+ T cell infiltration in the spinal cord of b2
microglobulin-deficient hSOD1G93A mice (which express little if any

MHCI on the cell surface and are defective for CD8+ T cells) delayed

motor symptoms and prolonged the survival mean time, suggesting

that microglia interact with infiltrated CD8+ T cells through MHC

complex, promoting MN death in ALS. Moreover, the level of CD68+

microglia was lower in the spinal cord of b2 microglobulin-deficient

hSOD1G93A mice suggesting that the MN preservation is due to a lack

of interaction with CD8+ T cells (120). Interestingly, b2
microglobulin-deficiency in the peripheral nervous system (i.e.

sciatic nerve) impaired motor axon stability and anticipated the

onset of muscle atrophy, delineating regional differences in the role

of MHCI and CD8+ T cells in the pathogenesis of ALS (120).
3.4 Microglia – Monocytes/macrophages
crosstalk

In ALS patients, peripheral monocytes infiltrate the CNS (66), and

the monocytes isolated from peripheral blood of ALS patients show a
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pro-inflammatory profile (135). Furthermore, the degree of systemic

monocyte/macrophage activation directly correlates to the rate of

disease progression (136). In the hSOD1G93A mouse model,

inflammatory monocytes infiltrate the ALS affected regions (137),

and their progressive recruitment to the spinal cord correlates with

neuronal loss (137). Prior to disease onset, monocytes expressed a

polarized macrophage pro-inflammatory phenotype (M1 signature),

which included increased levels of chemokine receptor CCR2. This

receptor normally interacts with the ligand CCL2, controlling the

migration and infiltration of CCR2-expressing monocytes/

macrophages in a process implicated in multiple neurodegenerative

diseases. Butovsky et al. demonstrated that CCL2 expression by

microglia increases as ALS progresses (138). Mouse monocytes fall

into two phenotypically distinct subsets: Ly-6Chi (which are CCR2+)

and Ly-6Clo (which are CCR2−), corresponding to human

CD14hiCD16− and CD14+CD16+ monocytes, respectively (138).

Ly6C is a GPI-linked protein of the Ly6 family, which is found

mostly in inflammatory monocytes (139). Accordingly, hSOD1G93A

mouse treatment with anti-Ly6C monoclonal antibody reduced the

number of monocytes recruited to the spinal cord, diminished

neuronal loss, and extended survival (137).

Recently, a study by Chiot et al. (140) investigated the crosstalk

between peripheral macrophages and microglia in ALS. Targeted gene

modulation of the reactive oxygen species pathway in peripheral

myeloid cells of hSOD1G93A mice, reduced both peripheral

macrophage and microglial activation, and delayed the onset of

motor symptoms (140). Specifically, the chemotherapy agent

busulfan was used to induce myeloablation, followed by bone

marrow transplantation in which mutant SOD1-expressing

macrophages were replaced with macrophages genetically modified

with less neurotoxic properties (via downregulating of Nox2 or

overexpression of wild-type Sod1). In this model, resident microglial

cells acquired an anti-inflammatory/protective phenotype and a

reduction was found in microgliosis in the spinal cord (140). These

results indicate that the modification of infiltrating monocytes/

macrophages suppresses neurotoxic microglial responses in ALS,

suggesting direct or indirect crosstalk between these two cell

populations. The mechanisms underlying this crosstalk are not yet

clear, but the authors suggested that replacing of inflammatory

peripheral monocytes/macrophages could pave the way for a new

therapeutic approach for ALS patients.
4 Currently approved therapies in ALS

The complex pathogenesis in ALS, coupled with its clinical and

molecular heterogeneity, resulted in too many failed attempts at

drug discovery and development. The foundation for failure

includes the wrong target, route of administration, outcome

measures, and the many different pathogenic mechanisms at play

in different patients (141). Drugs undergoing clinical trials are

available on the ALS Association website (https://www.neals.org/

als-trials/search-for-a-trial/). To date, there are two FDA-approved

drugs for ALS: riluzole and edaravone. Both drugs have a relatively

small efficacy in delaying motor function deterioration, and their

effectiveness is limited during early stages of the disease (142).
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Riluzole was the first FDA drug approved for clinical use in 1995.

This drug blocks glutamate release and therefore glutamatergic

neurotransmission in the CNS, exerting neuroprotective function as

it dampens pathological excitotoxicity in ALS (143). Additional

proposed mechanisms of action include an indirect antagonism of

glutamate receptors in addition to the inactivation of neuronal voltage-

gated Na+ channel (144). Edaravone was the second FDA approved

ALS-specific drug, in 2017. Edaravone is a neuroprotective drug with

broad free radical scavenging activity that protect neurons, glia, and

vascular endothelial cells against oxidative stress (145).
4.1 Therapies targeting neuroinflammation
and microglial crosstalk with peripheral
immune cells

Multiple compounds with immune-modulatory properties have

been reported to affect the crosstalk between microglia and immune

cells. Although promising in the mouse models of ALS, preclinical

results have so far failed to translate into meaningful clinical outcomes

(146, 147). Most efforts in the development and application of

immune-modulatory drugs in ALS aimed at reducing pro-

inflammatory and neurotoxic immune responses. Among the

therapies recently developed to target neuroinflammation and

microglia phenotype in ALS, the following demonstrated significant

benefits in preclinical studies and have already or are soon to be

translated to clinical trials (Table 1).
Fron
- dl-3-n-Butylphthalide (NBP) is a small molecule compound

showing neuroprotective effects via multiple mechanisms,

including modulation of mitochondrial oxidative stress,

apoptosis and autophagy (148). In hSOD1G93A mice,

treatment with NBP extended survival by attenuating

microglial activation and motor neuron loss (149, 150). A

randomized trial (Chictr.org.cn Identifier: ChiCTR-IPR-

15007365) of NBP in the treatment of ALS patients was

conducted in China. The preliminary results indicated that
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NBP did not improve the ALS Functional Rating Scale

(ALSFRS)-R score in patients with ALS (151).

- Cannabinoids exert anti-glutamatergic, anti-oxidant and anti-

inflammatory actions through activation of the CB (1) and

CB(2) receptors, whereby receptor activation reduces pro-

inflammatory microglia, decreasing the microglial secretion

of neurotoxic mediators (152, 153). In hSOD1G93A mice,

treatment with WIN-55,212-2, a cannabinoid agonist with

higher affinity to the CB2 than the CB1 receptor (154), and

the Selective CB2 receptor agonist AM-1241 significantly

delayed disease progression and increased mean survival

time (155, 156). Although these promising results, a meta-

analysis of the studies conducted on murine models

concluded that animal studies have moderate to high risk

of bias and are highly heterogeneous. Therefore, more

standardized studies on cannabinoids are necessary before

bringing these compounds to the clinic (157).

- Ibudilast (MN-166) is a non-selective phosphodiesterase 4

inhibitor with a neuroprotective effect primarily mediated

by the inhibition of inflammatory mediators and the

upregulation of neurotrophic factors in pro-inflammatory

microglia (158). Two clinical trials with ibudilast have been

completed in ALS patients, and one is currently ongoing.

The first Phase II trial (ClinicalTrials.gov Identifier:

NCT02238626) evaluated the safety, tolerability and

clinical responsiveness of ibudilast co-administered with

riluzole. The study showed good safety and tolerability but

no overall difference in disease progression between

ibudilast and placebo treatment arms. Subgroup analysis

suggested that patients with bulbar or upper limb onset

might have more benefit from the compound (159). A

Phase IIb/III study, the COMBAT-ALS study is currently

recruiting on North America in order to evaluate the

pharmacokinetics, safety and tolerability and assess the

efficacy of ibudilast on function, muscle strength, quality

of life and survival in ALS (ClinicalTrials.gov Identifier:

NCT04057898).
TABLE 1 Therapies targeting neuroinflammation and microglial crosstalk with peripheral immune cells in ALS.

Drug Mechanism Target cells Trial number Phase

dl-3-n-Butylphthalide
(NBP)

Modulation of mitochondrial oxidative stress, apoptosis and
autophagy

Microglia, Motor
Neurons

ChiCTR-IPR-
15007365

II

Cannabinoids Anti-glutamatergic, antioxidant and anti-inflammatory actions Microglia N/A N/A

Ibudilast (MN-166) Anti-inflammatory and neurotrophic actions Microglia
NCT02238626
NCT04057898

II
IIb/III

Masitinib Anti-inflammatory; modulation of aberrant microgliosis Microglia
NCT02588677
NCT03127267

II/III
III

Minocycline Anti-inflammatory
Microglia, Motor

Neurons
NCT00047723 III

NP001 Anti-inflammatory Microglia
NCT01091142
NCT01281631
NCT02794857

I
II
II
front
N/A, not applicable.
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Fron
- Masitinib is a tyrosine-kinase inhibitor whose oral

administrat ion was shown to control aberrant

microgliosis, abrogate neuroinflammation and slow

disease progression in the hSOD1G93A mice (160). The

primary analysis of a randomized Phase II/III trial testing

masitinib in combination with riluzole for the treatment of

ALS patients (ClinicalTrials.gov Identifier: NCT02588677)

showed a significantly slowed functional decline, although

there was no discernible difference in overall survival

between the two arms (161). Long-term survival analysis

indicated that oral masitinib prolonged survival by over
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2 years as compared with placebo, provided that treatment

started prior to severe impairment of functionality (162). A

subsequent phase III clinical trial is currently ongoing

(ClinicalTrials.gov Identifier: NCT03127267).

- Minocycline is a second-generation tetracycline antibiotic, capable

to penetrate the blood-brain barrier, with anti-inflammatory

effects independent of its antimicrobial activity. The compound

has been demonstrated to dampen microglial activation (163)

and apoptosis by inhibiting mitochondrial permeability-

transition-mediated cytochrome c release (164). The

compound delayed disease onset and extended survival in the
FIGURE 1

Microglial dialogue with non-neuronal cells in Amyotrophic Lateral Sclerosis. Microglia (M) induce motor neuron (MN) degeneration in ALS by
secreting reactive oxygen species (ROS) and pro-inflammatory cytokines, such as Interleukin 1 beta (IL-1b), Interleukin 6 (IL-6) and Tumor Necrosis
Factor (TNF-a). Microglial crosstalk with non-neuronal cells shapes their phenotype, either skewing it towards a pro-inflammatory (red arrows) on
anti-inflammatory (green arrows) phenotype. Microglial-derived pro-inflammatory cytokines Interleukin 1 alpha (IL-1a), TNFa and complement
component C1q induce pro-inflammatory astrocytes (A). Conversely, activated astrocytes promote inflammatory microglial responses via
Transforming Growth Factor b (TGF-b) and TNF‐a. Reactive astrocytes also exert toxic effects on MNs by secreting inflammatory mediators such as
Prostaglandin E2 (PgE2), Leukotriene B4 (LBT4) and nitric oxide (NO). Chemokine ligand 2 receptor (CCR2)-expressing macrophages (M1) are
recruited by the Chemokine Ligand 2 (CCL2) released by microglia. ROS pathway in classically activated macrophages induces microglial activation.
Regulatory T cells (Treg) suppress microglial toxicity as well as other immune cells (not shown) through Interleukin 4 (IL-4), Interleukin 10 (IL-10) and
TGF-b. Notably, TGF-b effect on microglia is context- and cell-dependent. Microglia-CD8+ Effector T cell (Teff) crosstalk drives neuroinflammation
in ALS, with Interferon gamma (IFN-g) secreted by the latter likely playing a role. Infiltrated Natural Killer Cells (NKC) instruct microglia towards an
inflammatory profile by the release of IFN-g. Additionally, NKCs are neurotoxic to MNs via NKG2D - NKG2D ligand (MULT1) interaction.
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Fron
hSOD1G93A and hSOD1G37R transgenic models of ALS (164–

166). However, a subsequent randomized placebo-controlled

phase III trial (ClinicalTrials.gov Identifier: NCT00047723)

disproved any efficacy of the compound in patients, reporting

an ALSFRS-R score deterioration faster in the minocycline

group than in the placebo group, along with a higher

incidence of adverse events (167).

- NP001 is a highly purified form of sodium chlorite, targeting

inflammatory macrophages by down-regulating the

Nuclear Factor kB (NF-kB) inflammatory pathways (168).

Preliminary studies in hSOD1G93A mice showed a

significant increase in life expectancy compared to control

(169). A phase I trial in ALS patients (ClinicalTrials.gov

Identifier: NCT01091142) showed that NP001 was

generally safe and well tolerated, and caused a dose-

dependent reduction in expression of the pro-

inflammatory marker CD16 (170). Two subsequent

randomized phase II trials (ClinicalTrials.gov Identifier

NCT01281631, NCT02794857) suggested that NP001

slowed the progression of ALS symptoms in a subset of

patients with marked neuroinflammation (171). Combined

post hoc analysis did not show significant differences

between placebo and active treatment but identified a 40‐

to 65‐y‐old subset in which NP001‐treated patients

demonstrated slower declines in ALSFRS‐R score

compared with placebo (172).
5 Conclusions

The crosstalk between immune cells and glia contribute to MN

degeneration in ALS. Despite the advance in the scientific findings

aimed to unravel the molecular and cellular mechanisms that

induce MN to death, ALS persists without effective therapy that

improves motor symptoms and increases the life of patients. In ALS

microglia promote a pro-inflammatory microenvironment,

supported by neurotoxic astrocytes and infiltrated lymphocytes

and macrophages that exert an effective immune reaction against

MNs (Figure 1) (92, 96–108, 120, 140, 173).

Here we review the state-of-art regarding this fascinating cellular

communication, highlighting the current hypothesis that modulating

the interaction of microglia with astrocytes and immune cells could

represent a promising therapy. It is crucial to keep improving the

biological knowledge of ALS and the interplay with resident and

infiltrating immune cells in order to understand the cell-to-cell
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communication mechanisms and their role in driving disease

pathogenesis. At last, we discuss the current experimental

approaches that aim to modulate microglial phenotype to modulate

the inflammation in the CNS counteracting ALS progression.

The possibility to integrate these exciting discoveries with new

combination therapies will open new tools to treat this

devastating disease.
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87. O’Rourke JG, Bogdanik L, Yáñez A, Lall D, Wolf AJ, Muhammad AKMG, et al.
C9orf72 is required for proper macrophage and microglial function in mice. Science
(2016) 351:1324–9. doi: 10.1126/science.aaf1064

88. Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, et al.
RNA Toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense
intervention. Neuron (2013) 80:415–28. doi: 10.1016/j.neuron.2013.10.015

89. Sareen D, O'Rourke JG, Meera P, Muhammad AKMG, Grant S, Simpkinson M,
et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a
C9ORF72 repeat expansion. Sci Trans Med (2013) 5:208ra149. doi: 10.1126/
scitranslmed.3007529

90. Ash PEA, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M,
et al. Unconventional translation of C9ORF72 GGGGCC expansion generates
insoluble polypeptides specific to c9FTD/ALS. Neuron (2013) 77:639–46. doi:
10.1016/j.neuron.2013.02.004

91. Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J, et al. RAN
proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal
dementia. Proc Natl Acad Sci USA (2013) 110:E4968–77. doi: 10.1073/pnas.1315438110

92. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L,
et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature (2017)
541:481–7. doi: 10.1038/nature21029

93. Phani S, Re DB, Przedborski S. The role of the innate immune system in ALS.
Front Pharmacol (2012) 3:150. doi: 10.3389/fphar.2012.00150

94. Kawamata T, Akiyama H, Yamada T, McGeer PL. Immunologic reactions in
amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol (1992) 140:691–707.

95. Schiffer D, Cordera S, Cavalla P, Migheli A. Reactive astrogliosis of the spinal
cord in amyotrophic lateral sclerosis. J Neurol Sci (1996) 139:27–33. doi: 10.1016/0022-
510X(96)00073-1

96. Nagy D, Kato T, Kushner PD. Reactive astrocytes are widespread in the cortical
gray matter of amyotrophic lateral sclerosis. J Neurosci Res (1994) 38:336–47. doi:
10.1002/jnr.490380312

97. Johansson A, Engler H, Blomquist G, Scott B, Wall A, et al. Evidence for
astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci (2007)
255:17–22. doi: 10.1016/j.jns.2007.01.057

98. Ouali Alami N, Schurr C, Olde Heuvel F, Tang L, Li Q, Tasdogan A, et al. NF-kB
activation in astrocytes drives a stage-specific beneficial neuroimmunological response
in ALS. EMBO J (2018) 37:e98697. doi: 10.15252/embj.201798697

99. Guttenplan KA, Weigel MK, Adler DI, Couthouis J, Liddelow SA, Gitler AD,
et al. Knockout of reactive astrocyte activating factors slows disease progression in an
ALS mouse model. Nat Commun (2020) 11:3753. doi: 10.1038/s41467-020-17514-9

100. Peng AYT, et al. Loss of TDP-43 in astrocytes leads to motor deficits by
triggering A1-like reactive phenotype and triglial dysfunction. Proc Natl Acad Sci USA
(2020) 117:29101–12. doi: 10.1073/pnas.2007806117

101. Liang LL, Zhu B, Zhao Y, Li X, Liu T, Pina-Crespo J, et al. Membralin
deficiency dysregulates astrocytic glutamate homeostasis leading to ALS-like
impairment. J Clin Invest (2019) 129:3103–20. doi: 10.1172/JCI127695

102. Alexianu ME, Kozovska M, Appel SH. Immune reactivity in a mouse model of
familial ALS correlates with disease progression. Neurology (2001) 57:1282–9.
doi: 10.1212/WNL.57.7.1282

103. Yang WW, Sidman RL, Taksir TV, Treleaven CM, Fidler JA, Cheng SH.
Relationship between neuropathology and disease pro- gression in the SOD1(G93A)
ALS mouse. Exp Neurol (2011) 227:287–95. doi: 10.1016/j.expneurol.2010.11.019

104. Endo F, Komine O, Fujimori-Tonou N, Katsuno M, Jin S, Watanabe S, et al.
Astrocyte-derived TGF-b1 accelerates disease progression in ALS mice by interfering
with the neuroprotective functions of microglia and T cells. Cell Rep (2015) 11(4):592–
604. doi: 10.1016/j.celrep.2015.03.053

105. Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin:
role of glial cells and inflammation. Front Pharmacol (2012) 3:88. doi: 10.3389/
fphar.2012.00088

106. Meme W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, et al.
Proinflammatory cytokines released from microglia inhibit gap junc- tions in
astrocytes: potentiation by beta-amyloid. FASEB J (2006) 20:494–6. doi: 10.1096/
fj.05-4297fje
frontiersin.org

https://doi.org/10.1101/cshperspect.a020560
https://doi.org/10.1038/s41593-018-0242-x
https://doi.org/10.1186/s13024-017-0216-6
https://doi.org/10.1056/NEJMoa1211103
https://doi.org/10.1016/B978-0-444-63233-3.00017-8
https://doi.org/10.1371/journal.pone.0052941
https://doi.org/10.3389/fncel.2014.00117
https://doi.org/10.1007/s13311-015-0385-3
https://doi.org/10.1002/ana.10805
https://doi.org/10.1016/j.nbd.2003.12.012
https://doi.org/10.1016/j.nicl.2015.01.009
https://doi.org/10.1016/j.celrep.2013.06.018
https://doi.org/10.1093/brain/awaa309
https://doi.org/10.1016/j.bbi.2010.12.008
https://doi.org/10.1016/j.bbi.2010.12.008
https://doi.org/10.1038/nm.4397
https://doi.org/10.1016/j.cell.2018.05.003
https://doi.org/10.1016/j.neuron.2014.01.013
https://doi.org/10.1016/j.neuron.2014.01.013
https://doi.org/10.1111/bph.15665
https://doi.org/10.1038/cddis.2013.491
https://doi.org/10.1038/cddis.2013.491
https://doi.org/10.1016/j.bbi.2018.07.002
https://doi.org/10.1016/j.bbi.2018.07.002
https://doi.org/10.1038/s41593-018-0083-7
https://doi.org/10.1016/S1474-4422(12)70043-1
https://doi.org/10.1007/s00401-013-1199-1
https://doi.org/10.1016/S1474-4422(11)70261-7
https://doi.org/10.1007/s00401-013-1147-0
https://doi.org/10.1016/j.ajhg.2013.04.017
https://doi.org/10.1016/j.neurobiolaging.2014.01.016
https://doi.org/10.1016/j.neurobiolaging.2014.01.016
https://doi.org/10.1126/science.aaf1064
https://doi.org/10.1016/j.neuron.2013.10.015
https://doi.org/10.1126/scitranslmed.3007529
https://doi.org/10.1126/scitranslmed.3007529
https://doi.org/10.1016/j.neuron.2013.02.004
https://doi.org/10.1073/pnas.1315438110
https://doi.org/10.1038/nature21029
https://doi.org/10.3389/fphar.2012.00150
https://doi.org/10.1016/0022-510X(96)00073-1
https://doi.org/10.1016/0022-510X(96)00073-1
https://doi.org/10.1002/jnr.490380312
https://doi.org/10.1016/j.jns.2007.01.057
https://doi.org/10.15252/embj.201798697
https://doi.org/10.1038/s41467-020-17514-9
https://doi.org/10.1073/pnas.2007806117
https://doi.org/10.1172/JCI127695
https://doi.org/10.1212/WNL.57.7.1282
https://doi.org/10.1016/j.expneurol.2010.11.019
https://doi.org/10.1016/j.celrep.2015.03.053
https://doi.org/10.3389/fphar.2012.00088
https://doi.org/10.3389/fphar.2012.00088
https://doi.org/10.1096/fj.05-4297fje
https://doi.org/10.1096/fj.05-4297fje
https://doi.org/10.3389/fimmu.2023.1223096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Calafatti et al. 10.3389/fimmu.2023.1223096
107. Murdock BJ, Zhou T, Kashlan SR, Little RJ, Goutman SA, Feldman EL.
Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis
progression. JAMA Neurol (2017) 74(12):1446–54. doi: 10.1001/jamaneurol.2017.2255

108. Garofalo S, Cocozza G, Porzia A, Inghilleri M, Raspa M, Scavizzi F, et al.
Natural killer cells modulate motor neuron-immune cell cross talk in models of
amyotrophic lateral sclerosis. Nat Commun (2020) 11(1):1773. doi: 10.1038/s41467-
020-15644-8

109. Garofalo S, Cocozza G, Bernardini G, Savage J, Raspa M, Aronica E, et al.
Blocking immune cell infiltration of the central nervous system to tame
neuroinflammation in amyotrophic lateral sclerosis. Brain Behav Immun (2022)
105:1–14. doi: 10.1016/j.bbi.2022.06.004

110. Yu Y, Schürpf T, Springer TA. How natalizumab binds and antagonizes a4
integrins. J Biol Chem (2013) 45:32314–25. doi: 10.1074/jbc.M113.501668

111. Gan Y, Liu R, WuW, Bomprezzi R, Shi FD. Antibody to a4 integrin suppresses
natural killer cells infiltration in central nervous system in experimental autoimmune
encephalomyel i t i s . J Neuroimmunol (2012) 247 :9–15. doi : 10 .1016/
j.jneuroim.2012.03.011

112. Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to
the CNS: anatomical sites and molecular mechanisms. Trends Immunol (2005) 26
(9):485–95. doi: 10.1016/j.it.2005.07.004

113. Matejuk A, Vandenbark AA, Offner H. Cross-talk of the CNS with immune
cells and functions in health and disease. Front Neurol (2021) 12:672455. doi: 10.3389/
fneur.2021.672455

114. Engelhardt JI, Tajti J, Appel SH. Lymphocytic infiltrates in the spinal cord in
amyotrophic lateral sclerosis. Arch Neurol (1993) 50:30–6. doi: 10.1001/
archneur.1993.00540010026013

115. Fiala M, Chattopadhay M, La Cava A, Tse E, Liu G, Lourenco E, et al. IL-17A is
increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J
Neuroinflammation (2010) 7:76. doi: 10.1186/1742-2094-7-76

116. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial
neuroprotection, slow disease progression, and modify glial morphology in an animal
model of inherited ALS. Proc Natl Acad Sci USA (2008) 105:15558–63. doi: 10.1073/
pnas.0807419105

117. Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, et al. T Lymphocytes
potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc
Natl Acad Sci USA (2008) 105:17913–8. doi: 10.1073/pnas.0804610105

118. Kipnis J, Schwartz M. Controlled autoimmunity in CNS maintenance and
repair: naturally occurring CD4+CD25+ regulatory T cells at the crossroads of health
and disease. Neuromol Med (2005) 7:197–206. doi: 10.1385/NMM:7:3:197

119. Coque E, Salsac C, Espinosa-Carrasco G, Varga B, Degauque N, Cadoux M,
et al. Cytotoxic CD8+ T lymphocytes expressing ALS-causing SOD1 mutant selectively
trigger death of spinal motoneurons. Proc Natl Acad Sci U S A (2019) 116(6):2312–7.
doi: 10.1073/pnas.1815961116

120. Nardo G, Trolese MC, Verderio M, Mariani A, De Paola M, Riva N, et al.
Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous
system of ALS SOD1G93A mice. Mol Neurodegener (2018) 13(1):42. doi: 10.1186/
s13024-018-0271-7

121. Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases:
beyond the Th1/Th2 paradigm. Int Immunol (2016) 28(4):163–71. doi: 10.1093/
intimm/dxw006

122. Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S, et al. Endogenous
regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and
correlate with disease progression in patients with amyotrophic lateral sclerosis.
Brain (2011) 134(Pt 5):1293–314. doi: 10.1093/brain/awr074

123. Beers DR, Zhao W, Wang J, Zhang X, Wen S, Neal D, et al. ALS patients’
regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate
and severity. JCI Insight (2017) 2:e89530. doi: 10.1172/jci.insight.89530

124. Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: the good, the bad,
and the resting. J Neuroimmune Pharmacol (2009) 4:389–98. doi: 10.1007/s11481-009-
9171-5

125. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al.
Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci (2006)
9:917–24. doi: 10.1038/nn1715

126. Henkel JS, Beers DR, Wen S, Rivera AL, Toennis KM, Appel JE, et al.
Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and
survival. EMBO Mol Med (2013) 5(1):64–79. doi: 10.1002/emmm.201201544

127. Thonhoff JR, Simpson EP, Appel SH. Neuroinflammatory mechanisms in
amyotrophic lateral sclerosis pathogenesis. Curr Opin Neurol (2018) 31(5):635–9.
doi: 10.1097/WCO.0000000000000599

128. Liu G, Ma H, Qiu L, Li L, Cao Y, Ma J, et al. Phenotypic and functional switch
of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunol Cell Biol
(2011) 89:130–42. doi: 10.1038/icb.2010.70

129. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS.
CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human
monocytes/macrophages. Proc Natl Acad Sci USA (2007) 104:19446–51.
doi: 10.1073/pnas.0706832104

130. Savage NDL, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, Geluk A,
et al. Human anti-inflammatory macrophages induce Foxp3+GITR+CD25+ regulatory
Frontiers in Immunology 1184
T cells, which suppress via membrane-bound TGF -1. J Immunol (2008) 181:2220–6.
doi: 10.4049/jimmunol.181.3.2220

131. Gao Z, Tsirka SE. Animal models of MS reveal multiple roles of microglia in
disease pathogenesis. Neurol Res Int (2011) 2011:383087. doi: 10.1155/2011/383087

132. Zhao W, Beers DR, Appel SH. Immune-mediated mechanisms in the
pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol (2013)
8:888–99. doi: 10.1007/s11481-013-9489-x

133. Rentzos M, Evangelopoulos E, Sereti E, Zouvelou V, Marmara S, Alexakis T,
et al. Alterations of T cell subsets in ALS: a systemic immune activation? Acta Neurol
Scand (2012) 125(4):260–4. doi: 10.1111/j.1600-0404.2011.01528.x

134. Liu Z, Cheng X, Zhong S, Zhang X, Liu C, Liu F, et al. Peripheral and central
nervous system immune response crosstalk in amyotrophic lateral sclerosis. Front
Neurosci (2020) 14:575. doi: 10.3389/fnins.2020.00575

135. Zhao W, Beers DR, Hooten KG, Sieglaff DH, Zhang A, Kalyana-Sundaram S,
et al. Characterization of gene expression phenotype in amyotrophic lateral sclerosis
monocytes. JAMA Neurol (2017) 74:677–85. doi: 10.1001/jamaneurol.2017.0357

136. Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J, Hadlock K, et al. Evidence
for systemic immune system alterations in sporadic amyotrophic lateral sclerosis
(sALS). J Neuroimmunol (2005) 159(1-2):215–24. doi: 10.1016/j.jneuroim.2004.10.009

137. Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G, et al.
Modulating inflammatory monocytes with a unique microRNA gene signature
ameliorates murine ALS. J Clin Invest (2012) 122:3063–87. doi: 10.1172/jci62636

138. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal
subsets with distinct migratory properties. Immunity (2003) 19:71–82. doi: 10.1016/
S1074-7613(03)00174-2

139. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage
activation. Nat Rev Immunol (2008) 8(12):958–69. doi: 10.1038/nri2448

140. Chiot A, Zaïdi S, Iltis C, Ribon M, Berriat F, Schiaffino L, et al. Modifying
macrophages at the periphery has the capacity to change microglial reactivity and to
extend ALS survival. Nat Neurosci (2020) 23(11):1339–51. doi: 10.1038/s41593-020-
00718-z

141. Morgan S, Orrell RW. Pathogenesis of amyotrophic lateral sclerosis. Br Med
Bull (2016) 119(1):87–98. doi: 10.1093/bmb/ldw026

142. Liscic RM, Alberici A, Cairns NJ, Romano M, Buratti E. From basic research to
the clinic: innovative therapies for ALS and FTD in the pipeline. Mol Neurodegener
(2020) 15(1):31. doi: 10.1186/s13024-020-00373-9

143. Doble A. The pharmacology and mechanism of action of riluzole. Neurology.
(1996) 47(6 Suppl 4):S233–41. doi: 10.1212/wnl.47.6_suppl_4.233s

144. Cheah BC, Vucic S, Krishnan AV, Kiernan MC. Riluzole, neuroprotection and
amyotrophic lateral sclerosis. Curr Med Chem (2010) 17(18):1942–199. doi: 10.2174/
092986710791163939

145. Takei K, Watanabe K, Yuki S, Akimoto M, Sakata T, Palumbo J. Edaravone and
its clinical development for amyotrophic lateral sclerosis. Amyotroph Lateral Scler
Frontotemporal Degener (2017) 18(sup1):5–10. doi: 10.1080/21678421.2017.1353101

146. Petrov D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20
years of failure. are we any closer to registering a new treatment? Front Aging Neurosci
(2017) 9:68. doi: 10.3389/fnagi.2017.00068

147. Liu J, Wang F. Role of neuroinflammation in amyotrophic lateral sclerosis:
cellular mechanisms and therapeutic implications. Front Immunol (2017) 8:1005.
doi: 10.3389/fimmu.2017.01005

148. Luo R, Wangqin R, Zhu L, Bi W. Neuroprotective mechanisms of 3-n-
butylphthalide in neurodegenerative diseases. BioMed Rep (2019) 11(6):235–40.
doi: 10.3892/br.2019.1246

149. Feng X, Peng Y, Liu M, Cui L. DL-3-n-butylphthalide extends survival by
attenuating glial activation in a mouse model of amyotrophic lateral sclerosis.
Neuropharmacology. (2012) 62(2):1004–10. doi: 10.1016/j.neuropharm.2011.10.009

150. Zhou QM, Zhang JJ, Li S, Chen S, Le WD. N-butylidenephthalide treatment
prolongs life span and attenuates motor neuron loss in SOD1G93A mouse model of
amyotrophic lateral sclerosis. CNS Neurosci Ther (2017) 23(5):375–85. doi: 10.1111/
cns.12681

151. Liu M, Yao X, Huang X, Shang H, Fan D, He J, et al. A multicenter,
randomized, double blind, placebo-controlled clinical trial of DL-3-n-butylphthalide
in treatment of amyotrophic lateral sclerosis. Randomized Controlled Trial Chin Med J
(Engl) 136(3):354–356. doi: 10.1097/CM9.0000000000002442

152. Bilsland LG, Greensmith L. The endocannabinoid system in amyotrophic lateral
sclerosis. Curr Pharm Des (2008) 14(23):2306–16. doi: 10.2174/138161208785740081

153. Giacoppo S, Mazzon E. Can cannabinoids be a potential therapeutic tool in
amyotrophic lateral sclerosis? Neural Regener Res (2016) 11(12):1896–9. doi: 10.4103/
1673-5374.197125

154. Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, et al.
Comparison of the pharmacology and signal transduction of the human cannabinoid
CB1 and CB2 receptors. Mol Pharmacol (1995) 48(3):443–50.

155. Bilsland LG, Dick JR, Pryce G, Petrosino S, Di Marzo D, Baker D, et al. Increasing
cannabinoid levels by pharmacological and genetic manipulation delay disease
progression in SOD1 mice. FASEB J (2006) 20(7):1003–5. doi: 10.1096/fj.05-4743fje

156. Shoemaker JL, Seely KA, Reed RL, Crow JP, Prather PL. The CB2 cannabinoid
agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral
frontiersin.org

https://doi.org/10.1001/jamaneurol.2017.2255
https://doi.org/10.1038/s41467-020-15644-8
https://doi.org/10.1038/s41467-020-15644-8
https://doi.org/10.1016/j.bbi.2022.06.004
https://doi.org/10.1074/jbc.M113.501668
https://doi.org/10.1016/j.jneuroim.2012.03.011
https://doi.org/10.1016/j.jneuroim.2012.03.011
https://doi.org/10.1016/j.it.2005.07.004
https://doi.org/10.3389/fneur.2021.672455
https://doi.org/10.3389/fneur.2021.672455
https://doi.org/10.1001/archneur.1993.00540010026013
https://doi.org/10.1001/archneur.1993.00540010026013
https://doi.org/10.1186/1742-2094-7-76
https://doi.org/10.1073/pnas.0807419105
https://doi.org/10.1073/pnas.0807419105
https://doi.org/10.1073/pnas.0804610105
https://doi.org/10.1385/NMM:7:3:197
https://doi.org/10.1073/pnas.1815961116
https://doi.org/10.1186/s13024-018-0271-7
https://doi.org/10.1186/s13024-018-0271-7
https://doi.org/10.1093/intimm/dxw006
https://doi.org/10.1093/intimm/dxw006
https://doi.org/10.1093/brain/awr074
https://doi.org/10.1172/jci.insight.89530
https://doi.org/10.1007/s11481-009-9171-5
https://doi.org/10.1007/s11481-009-9171-5
https://doi.org/10.1038/nn1715
https://doi.org/10.1002/emmm.201201544
https://doi.org/10.1097/WCO.0000000000000599
https://doi.org/10.1038/icb.2010.70
https://doi.org/10.1073/pnas.0706832104
https://doi.org/10.4049/jimmunol.181.3.2220
https://doi.org/10.1155/2011/383087
https://doi.org/10.1007/s11481-013-9489-x
https://doi.org/10.1111/j.1600-0404.2011.01528.x
https://doi.org/10.3389/fnins.2020.00575
https://doi.org/10.1001/jamaneurol.2017.0357
https://doi.org/10.1016/j.jneuroim.2004.10.009
https://doi.org/10.1172/jci62636
https://doi.org/10.1016/S1074-7613(03)00174-2
https://doi.org/10.1016/S1074-7613(03)00174-2
https://doi.org/10.1038/nri2448
https://doi.org/10.1038/s41593-020-00718-z
https://doi.org/10.1038/s41593-020-00718-z
https://doi.org/10.1093/bmb/ldw026
https://doi.org/10.1186/s13024-020-00373-9
https://doi.org/10.1212/wnl.47.6_suppl_4.233s
https://doi.org/10.2174/092986710791163939
https://doi.org/10.2174/092986710791163939
https://doi.org/10.1080/21678421.2017.1353101
https://doi.org/10.3389/fnagi.2017.00068
https://doi.org/10.3389/fimmu.2017.01005
https://doi.org/10.3892/br.2019.1246
https://doi.org/10.1016/j.neuropharm.2011.10.009
https://doi.org/10.1111/cns.12681
https://doi.org/10.1111/cns.12681
https://doi.org/10.1097/CM9.0000000000002442
https://doi.org/10.2174/138161208785740081
https://doi.org/10.4103/1673-5374.197125
https://doi.org/10.4103/1673-5374.197125
https://doi.org/10.1096/fj.05-4743fje
https://doi.org/10.3389/fimmu.2023.1223096
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Calafatti et al. 10.3389/fimmu.2023.1223096
sclerosis when initiated at symptom onset. J Neurochem (2007) 101(1):87–98. doi:
10.1111/j.1471-4159.2006.04346.x

157. Urbi B, Owusu MA, Hughes I, Katz M, Broadley S, Sabet A. Effects of
cannabinoids in amyotrophic lateral sclerosis (ALS) murine models: a systematic
review and meta-analysis. J Neurochem (2019) 149(2):284–97. doi: 10.1111/jnc.14639

158. Mizuno T, Kurotani T, Komatsu Y, Kawanokuchi J, Kato H, Mitsuma N, et al.
Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death
induced by activated microglia. Neuropharmacology. (2004) 46(3):404–11.
doi: 10.1016/j.neuropharm.2003.09.009

159. Oskarsson B, Maragakis N, Bedlack RS, Goyal N, Meyer JA, Gengeet A, et al.
MN-166 (ibudilast) in amyotrophic lateral sclerosis in a phase IIb/III study: COMBAT-
ALS study design. Neurodegener Dis Manage (2021) 11(6):431–43. doi: 10.2217/nmt-
2021-0042
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Cytosolic Ca2+ signals are organized in complex spatial and temporal patterns that
underlie their unique ability to regulate multiple cellular functions. Changes in
intracellular Ca2+ concentration ([Ca2+]i) are finely tuned by the concerted
interaction of membrane receptors and ion channels that introduce Ca2+ into the
cytosol, Ca2+-dependent sensors and effectors that translate the elevation in [Ca2+]i
into a biological output, and Ca2+-clearing mechanisms that return the [Ca2+]i to pre-
stimulation levels and prevent cytotoxic Ca2+ overload. The assortment of the Ca2+

handling machinery varies among different cell types to generate intracellular Ca2+

signals that are selectively tailored to subserve specific functions. The advent of novel
high-speed, 2D and 3D time-lapse imaging techniques, single-wavelength and
genetic Ca2+ indicators, as well as the development of novel genetic engineering
tools to manipulate single cells and whole animals, has shed novel light on the
regulation of cellular activity by the Ca2+ handlingmachinery. A symposiumorganized
within the framework of the 72nd Annual Meeting of the Italian Society of Physiology,
held in Bari on 14–16th September 2022, has recently addressed many of the
unexpected mechanisms whereby intracellular Ca2+ signalling regulates cellular
fate in healthy and disease states. Herein, we present a report of this symposium,
in which the following emerging topics were discussed: 1) Regulation of water
reabsorption in the kidney by lysosomal Ca2+ release through Transient Receptor
Potential Mucolipin 1 (TRPML1); 2) Endoplasmic reticulum-to-mitochondria Ca2+

transfer in Alzheimer’s disease-related astroglial dysfunction; 3) The non-canonical
role of TRPMelastatin 8 (TRPM8) as a Rap1A inhibitor in the definition of some cancer
hallmarks; and 4) Non-genetic optical stimulation of Ca2+ signals in the cardiovascular
system.

KEYWORDS

Ca2+ signalling, lysosomal Ca2+, mitochondria-ER contact sites, TRP channels, non-
canonical signalling, optical stimulation

1 Introduction

An increase in intracellular Ca2+ concentration ([Ca2+]i) can operate over a very wide
dynamic range to specifically regulate a multitude of cellular functions (Berridge et al., 2003).
Neurotransmitter release from presynaptic terminals, as well as insulin exocytosis from
pancreatic β-cells, occur within microseconds on the elevation in [Ca2+]i, while the
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intracellular Ca2+ oscillations that drive gene expression may last for
a few hours (Berridge et al., 2003; Clapham, 2007). An additional
mechanism that enriches the versatility of intracellular Ca2+

signalling is represented by the spatial location of the Ca2+

sources, which can be physically coupled to different Ca2+-
dependent decoders (Berridge et al., 2003; Bagur and Hajnoczky,
2017; Ong et al., 2019; Barak and Parekh, 2020). Environmental cues
generate a complex choreography of intracellular Ca2+ signals
(Berridge et al., 2003; Clapham, 2007), whose spatio-temporal
malleability enables one single ion messenger to control as many
different functions as fertilization (Moccia et al., 2006), cell cycle
(Lim et al., 2003) and proliferation (Faris et al., 2019; Faris et al.,
2022), migration (Fiorio Pla et al., 2012; Zuccolo et al., 2018b),
differentiation (Maione et al., 2022), contraction (Bers, 2008;
Landstrom et al., 2017), metabolism (Patella et al., 2015),
angiogenesis (Bernardini et al., 2019; Moccia et al., 2019b;
Scarpellino et al., 2020), vasculogenesis (Moccia et al., 2012;
Moccia et al., 2013; Zuccolo et al., 2018a), and, more recently,
neurovascular coupling (Negri et al., 2021c; Soda et al., 2023). The
multifaceted nature of intracellular Ca2+ signalling can be further
appreciated by recalling that, depending on the Ca2+ source and on
the Ca2+-dependent target, an increase in [Ca2+]i may induce
opposing cellular responses, e.g., proliferation (Faris et al., 2022)
and apoptosis (Astesana et al., 2021; Faris et al., 2023), vascular
smooth muscle cell contraction (Knot and Nelson, 1998) and
relaxation (Nelson et al., 1995), neuronal depolarization
(Menigoz et al., 2016) and hyperpolarization (Tiwari et al., 2018),
long-term potentiation (Ezra-Nevo et al., 2018; Soda et al., 2019;
Locatelli et al., 2021) and long-term depression (Hirano, 2013).
Dysregulation of the sophisticated machinery that orchestrates the
Ca2+ response to physiological signals can, therefore, trigger or
exacerbate a growing list of life-threatening disorders, such as
neurodegenerative (Lim et al., 2014; Lim et al., 2021a) and
cardiovascular (Venetucci et al., 2012; Moccia et al., 2019a)
disorders, severe combined immunodeficiency (SCID) (Vaeth
et al., 2020), and cancer (Moccia, 2018; Prevarskaya et al., 2018).

The Ca2+ response to environmental cues in non-excitable cells is
usually triggered by the phospholipase C-dependent production of
inositol-1,4-5-trisphosphate (InsP3), whichmobilizes Ca2+ fromwhat
is regarded the most abundant intracellular Ca2+ reservoir, namely,
the endoplasmic reticulum (ER) (Berridge et al., 2003; Clapham,
2007). InsP3 gates the ionotropic InsP3 receptors (InsP3Rs), which are
non-selective cation channel located on ER cisternae, in the presence
of a permissive concentration of ambient Ca2+ (Prole and Taylor,
2019). Repetitive events of InsP3-evoked Ca

2+ release may be spatially
confined to peripheral InsP3Rs, which are located in close proximity
to plasmalemmal Gq-Protein Coupled Receptors (GqPCRs) (Keebler
and Taylor, 2017; Thillaiappan et al., 2017), or can propagate as
regenerative Ca2+ waves through the mechanism of Ca2+-induced
Ca2+ release (CICR) (Bootman et al., 1997). Ryanodine receptors
(RyRs), which represent the main Ca2+-releasing channel in the
sarcoplasmic reticulum (SR) and may also be present in the ER,
support InsP3-evoked regenerative Ca2+ waves in some, but not all
(Moccia et al., 2019b), cell types (Santulli et al., 2018). Depletion of
the ER/SR Ca2+ content due to cyclic Ca2+ extrusion in the
extracellular milieu by plasma membrane Ca2+-ATPase or Na+/
Ca2+ exchanger (NCX) (Moccia et al., 2002; Berra-Romani et al.,
2023) is prevented by the activation of store-operated Ca2+ entry

(SOCE) (Lewis, 2020; Moccia et al., 2023). SOCE requires the
dynamic interplay between Stromal Interaction Molecules 1 and 2
(STIM1 and STIM2, respectively), which serve as sensor of ER Ca2+

concentration ([Ca2+]ER), and the Ca2+-selective channels, Orai1-3,
on the plasma membrane (Lewis, 2020; Moccia et al., 2023). In
excitable cells, membrane depolarization evoked by excitatory
synaptic transmission (Locatelli et al., 2021) or spontaneous
diastolic depolarization (Eisner et al., 2017) can lead to
extracellular Ca2+ entry through multiple types of voltage-operated
Ca2+ channels (VOCCs), which can be followed by CICR through
RyRs and/or InsP3Rs (Bading, 2013; Eisner et al., 2017). In both
excitable and non-excitable cells, extracellular Ca2+ entry is further
mediated by the Transient Receptor Potential (TRP) family of non-
selective cation channels, most of which are polymodal Ca2+-
permeable channels able to sense chemical, thermal and
mechanical signals and thereby execute the most appropriate
cellular response (Curcic et al., 2019; Vangeel and Voets, 2019;
Diver et al., 2022). The advent of novel high-speed, 2D and 3D
time-lapse imaging techniques, single-wavelength and genetic Ca2+

indicators, as well as the development of novel genetic engineering
tools to manipulate single cells and whole animals, has shed novel
light on the regulation of cellular activity by the Ca2+ handling
machinery (Lim et al., 2016a; Bagur and Hajnoczky, 2017; Tapella
et al., 2020; Berra-Romani et al., 2021; Leoni et al., 2021; Longden
et al., 2021; Marta et al., 2022). For instance, it has been recognized
that ER cisternae may establish dynamic contacts with other
intracellular organelles, such as mitochondria (Csordas et al.,
2010; Csordas et al., 2018; Bartok et al., 2019; Lim et al., 2021a;
Sanchez-Vazquez et al., 2023) and lysosomes (Kilpatrick et al., 2013;
Atakpa et al., 2018; Faris et al., 2022), to shape intracellular Ca2+

signals. The Ca2+-dependent inter-organellar communication
between ER and mitochondria has long been known to dictate
cellular fate (Loncke et al., 2021; Bonora et al., 2022). We now
know that, although both InsP3Rs in ER cisternae and mitochondria
in the cytosol are quite motile, they can establish temporary
interactions at mitochondria-associated ER membranes (MAMs)
to increase mitochondrial Ca2+ in an InsP3-dependent manner
and stimulate cellular bioenergetics (Gherardi et al., 2020; Katona
et al., 2022). However, stress conditions, such as those that can lead to
neurodegenerative disorders, can alter the distance between the ER
and mitochondria and, thereby, impair mitochondrial Ca2+ uptake
and cellular bioenergetics that contributes to cell dysfunction (Lim
et al., 2021a; Lim et al., 2023). An unexpected mode of Ca2+-
dependent inter-organellar communication has also been
described at the membrane contact sites between ER and
lysosomes (Kilpatrick et al., 2013; Ronco et al., 2015). Herein, the
second messenger nicotinic acid adenine dinucleotide phosphate
(NAADP), which can also be synthesized upon GqPCR or
tyrosine kinase receptor (TKR) activation, gates two pore channels
(TPCs) to mediate lysosomal Ca2+ release and prime ER-embedded
InsP3Rs for InsP3-dependent activation (Patel, 2015; Galione et al.,
2023). Lysosomal Ca2+ can also be mobilized by TRP Mucolipin 1
(TRPML1), which plays a crucial role in autophagic progression
(Medina et al., 2015; Di Paola et al., 2018). TRPML1-mediated Ca2+

signals were thought to be confined to the perilysosomal Ca2+ space
(Medina et al., 2015), but recent studies unexpectedly reported
TRPML1-induced global Ca2+ signals via the Ca2+-dependent
recruitment of RyRs and InsP3Rs (Kilpatrick et al., 2016; Thakore
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et al., 2020). An additional dogma that has recently turn into a
signalling revolution regards the same operation mode of ion
channels. Channel proteins do more than simply conducting
biologically relevant ions (Montes de Oca Balderas, 2022). Indeed,
emerging evidence indicates that ion channels can signal in a flux-
independent mode, thereby widening their potential impact on cell
physiology (Borowiec et al., 2014; Vrenken et al., 2016; Chinigo et al.,
2020; Pressey andWoodin, 2021; Arcangeli et al., 2023). For instance,
the intracellular domains of some VOCCs, i.e., CaV1.2 (Gomez-
Ospina et al., 2006) and CaV2.1 (Kordasiewicz et al., 2006), as well as
some isoforms of the accessory CaVβ subunit (Hibino et al., 2003),
can translocate into the nucleus and induce Ca2+-independent gene
expression. Furthermore, some ionotropic receptors, such as
N-methyl-D-aspartate (NMDA) receptors (Montes de Oca
Balderas and Aguilera, 2015; Negri et al., 2021a) and type A γ-
aminobutyric acid (GABA) receptors (Negri et al., 2022b), can signal
an increase in [Ca2+]i in a flux-independent manner due to their
ability to interact with their corresponding metabotropic receptors.
Several members of the TRP superfamily can also function in a non-
canonical mode. For instance, TRP Melastatin type 7 (TRPM7)
channel promotes most of its effect thought the intrinsic kinase
activity that is located within its COOH-terminus (Desai et al., 2012;
Faouzi et al., 2017; Cai et al., 2018), whereas TRP Canonical type 1
(TRPC1) does not need to mediate Ca2+ to induce proliferation in
human umbilical cord vein endothelial cells (Abdullaev et al., 2008).
Finally, the versatility of the Ca2+ handling machinery has been
exploited to design alternative therapeutic avenues for many diseases
that are still waiting for an effective treatment. For instance, a light-
operated Ca2+ permeable channel (LOC) has been generated by
introducing plant-derived photosensory domain into a
cytoplasmic loop of the Orai1 channel (He et al., 2021).
Optogenetic intervention by this novel LOC proved effective to
suppress excessive hematopoietic stem cell self-renewal and to
alleviate neurodegeneration in a model of amyloidosis (He et al.,
2021).

A symposium organized within the framework of the 72nd
Annual Meeting of the Italian Society of Physiology, held in Bari
on 14–16th September 2022, has recently addressed many of the
unexpected mechanisms whereby intracellular Ca2+ signalling
regulates cellular fate in healthy and disease. The symposium,
named “Ca2+ signalling: unexpected new roles for the usual
suspect”, gathered together four renowned Italian
physiologists, who informed a numerous and very interested
audience about their novel findings regarding the following
topics: 1) the role of TRPML1 in Ca2+-mediated water
reabsorption in the kidney (Prof. Andrea Gerbino, University
of Bari Aldo Moro); 2) the modulation of the ER-mitochondria
distance to fuel cellular metabolism in astrocytes and prevent
neurodegeneration in Alzheimer’s disease (Prof. Dmitry Lim,
University of Piemonte Orientale, Novara); 3) the non-canonical
role of TRP Melastatin 8 (TRPM8) in the definition of some
cancer hallmarks (Prof. Alessandra Fiorio Pla, University of
Turin); and 4) the use of novel light-sensitive organic
actuators to stimulate angiogenesis and control cardiac cells
pacing (Prof. Francesco Lodola, University of Milan-Bicocca).
Herein, we present a full report of the symposium and discuss the
implications for the Ca2+ signalling field of the novel findings that
were presented during each lecture.

2 TRPML1 and aquaporin 2: the secret
liaison mediated by lysosomal Ca2+

Lysosomes are multifunctional organelles: apart from well-
defined digestive tasks (Xu and Ren, 2015), lysosomes act as a
regulatory hub integrating multiple cues to modulate a wide
spectrum of intracellular signaling pathways (Ballabio, 2016).
Lysosomal vesicles are emerging as a novel Ca2+ reservoir that
can finely modulate cellular fate through local or global Ca2+

signals (Patel and Cai, 2015; Galione, 2019; Galione et al., 2023).
Throughout the whole process, lysosomes can freely diffuse and
deliver/reuptake Ca2+ in the close proximity of target organelles such
as ER, mitochondria and secretory vesicles. Understanding how
lysosomes establish the Ca2+-dependent cross-talk with surrounding
organelles that orchestrate the Ca2+ response to physiological cues is
crucial to appreciate how defective lysosomal Ca2+ signalling
underpins life-threatening diseases, such as cancer (Faris et al.,
2018), viral infections (Moccia et al., 2021a), hypertension (Negri
et al., 2021b) and arrhythmias (Negri et al., 2021b), and lysosomal
storage disorders (Kiselyov et al., 2010; Lloyd-Evans et al., 2010;
Morgan et al., 2011).

The lysosomal matrix is strongly acidic with a pH of around
4.6 originated by the continuous activity of a vesicular H+-proton
pump ATPase (V-ATPase) (Xu and Ren, 2015). Lysosomes can
actively accumulate large amount of free Ca2+ (0.5 mM) through a
mechanism that is still highly debated (Yang et al., 2019). Refilling
with the Ca2+ of the lysosomal matrix could be driven either by a
putative H+/Ca2+ exchanger in a pH-dependent manner
(Christensen et al., 2002; Ronco et al., 2015; Melchionda et al.,
2016) or by extracellular Ca2+ entry through endocytosis or SOCE
(Gerasimenko et al., 1998; Sbano et al., 2017). Lysosomal Ca2+ can be
released into the cytosol through TPCs (Patel, 2015), of which two
isoforms exist in mammals (i.e., TPC1 and TPC2), and TRPML1
(Faris et al., 2018). TPCs are gated by NAADP, which can be
produced upon GqPCR or TKR activation on the plasma
membrane, and phosphatidylinositol-3, 5-bisphosphate (PIP2)
(Patel, 2015; Galione et al., 2023). Intriguingly, planar lysosomal
patch-clamp recording showed that NAADP evoked TPC2-
mediated currents that were equally mediated by Na+ and Ca2+,
while those gated by PIP2 were relatively Na

+-selective (Gerndt et al.,
2020). TPCs can be located at membrane contact sites (MCSs)
between lysosomes and ER (Kilpatrick et al., 2017; Faris et al., 2022),
where they are physiologically activated by NAADP to release
lysosomal Ca2+ and evoke global Ca2+ signals via Ca2+-induced
Ca2+ release through InsP3Rs and/or ryanodine receptors (Patel,
2015; Galione et al., 2023). According to the “trigger-hypothesis”
(Galione, 2019; Galione et al., 2023), the InsP3-induced Ca2+

response to a plethora of extracellular stimuli, including
glutamate (Foster et al., 2018; Zuccolo et al., 2019), acetylcholine
(Aley et al., 2013), foetal bovine serum (Faris et al., 2019), and
vascular endothelial growth factor (VEGF) (Moccia et al., 2021b), is
initiated by the NAADP-sensitive lysosomal TPCs. TRPML1 is a
non-selective cation permeable channel that mediates lysosomal
Ca2+, Fe2+, and Zn2+ release into the cytosol in response by either
endogenous agonists, such as phosphatidylinositol 3,5-bisphosphate
[PI(3,5)P2] (Gan et al., 2022) and reactive oxygen species (ROS)
(Zhang et al., 2016) or synthetic ligands, such as ML-SA1 (Kilpatrick
et al., 2016). TRPML1 usually mediates local events of Ca2+ release
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that stimulate autophagy by inducing the nuclear translocation of
the Ca2+-sensitive transcription factor, TFEB (Medina et al., 2015; Di
Paola et al., 2018). Furthermore, TRPML1-induced local Ca2+ release
modulates additional lysosomal functions, including lysosomal
exocytosis, membrane trafficking and biogenesis (Di Paola et al.,
2018; Medina, 2021). Recent evidence, however, showed that local
lysosomal Ca2+ release through TRPML1 can also lead to global
elevations in [Ca2+]i via CICR through InsP3Rs (Kilpatrick et al.,
2016) or RyRs (Thakore et al., 2020). The Ca2+-dependent crosstalk
between TRPML1 and ER/SR-resident Ca2+-permeable channels is,
however, seemingly looser as compared to TPCs. In agreement with
this evidence, a recent investigation showed that local Ca2+ release
events through TRPML1 control water homeostasis in the renal
collecting duct (CD, Figure 1) (Scorza et al., 2023).

Facultative water reabsorption in CD cells is finely tuned by a
plethora of intracellular signaling mediators and transcription
factors (Knepper et al., 2015). Antidiuresis is activated upon the
release of the antidiuretic hormone (ADH) by the posterior pituitary
gland. Specific binding of ADH with the vasopressin type 2 receptor
(V2R), which is localized in principal cells of the CD, stimulates the
cAMP/protein kinase A (PKA) axis leading to the apical fusion of
the water channel aquaporin 2 (AQP2)-harboring vesicles (Zhao
et al., 2023). The rapid apical accumulation of AQP2 boosts water
permeability that, in the presence of the strong osmotic gradient in
the kidney medulla, is responsible for water reabsorption in the
interstitium. The ADH-dependent increase in [Ca2+]i is likewise
important to enable the proper fusion of AQP2 vesicles with the
plasma membrane. Therefore, it does not come as a surprise that
Ca2+ signaling events can independently influence AQP2 expression

and translocation even in the absence of cAMP-mediated cues
(Chou et al., 2000; Procino et al., 2015; Mamenko et al., 2016;
Tomilin et al., 2019). For instance, the antidiabetic drug
rosiglitazone facilitates AQP2 apical accumulation and water
reabsorption by inducing massive Ca2+ influx upon the specific
activation of Transient Receptor Potential Vanilloid 6 (TRPV6)
channel (Procino et al., 2015). In addition, a wide variety of TRP
channels have been reported in CD cells and CD-derived cultures
(Woudenberg-Vrenken et al., 2009). The activation of these
channels orchestrates Ca2+ responses that are mainly driven by
remarkable Ca2+ influx often associated with additional Ca2+

release from the ER. These robust Ca2+ signals can rapidly invade
the bulk of the cytosol thus engaging a number of Ca2+-dependent
molecular effectors localized throughout the cell. Conversely, only
scarce information is currently available regarding the role of local
Ca2+ signals in AQP2-mediated water homeostasis. A recent
investigation provided the first evaluation of lysosomal Ca2+

signaling events in renal CD cells, which were evoked by either
blocking the vacuolar H-ATPase (V-ATPase) with bafilomycin
A1 to deplete the lysosomal Ca2+ pool (Morgan et al., 2015) or
activating TRPML1 with the synthetic agonist ML-SA1 (Kilpatrick
et al., 2016) (Figure 1). In CD cells, both lysosomal agonists induced
robust and long-lasting cytosolic Ca2+ oscillations sustained by tonic
ER Ca2+ release through InsP3Rs but not directly associated to
lysosomal Ca2+-triggered CICR (Scorza et al., 2023), as widely
reported for TPCs (Macgregor et al., 2007; Brailoiu et al., 2009;
Kilpatrick et al., 2013; Faris et al., 2019; Moccia et al., 2021b; Faris
et al., 2022). This finding strongly suggests that InsP3-mediated ER
Ca2+ release drives lysosomal Ca2+ refilling in CD cells. ML-SA1 and

FIGURE 1
Schematic diagram showing the effect of TRPML1 activation on AQP2-mediated water reabsorption in mouse renal collecting duct cells. ML-SA1
triggers TRPML1-dependent local Ca2+ events that are sustained by the endoplasmic reticulum (ER) Ca2+ content. Activation of theCa2+/calcineurin/NFAT
pathway determines depolymerization of the actin cytoskeleton, thus leading to accumulation of AQP2 at the apical plasma membrane and enhancing
water membrane permeability. The putative role of lysosomal Ca2+ signaling events as switch for changes in AQP2 expression level through the
modulation of the transcriptional activity of NFAT needs further investigation (question mark). Created with BioRender.com (agreement number:
FY259UYCKW).
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bafilomycin A1 differentially modulated AQP2 translocation to the
apical membrane and actin polymerization in the cytosol, since only
ML-SA1 specifically elicited submaximal water reabsorption in
collecting duct cells (Scorza et al., 2023) (Figure 1). Even though
ML-SA1 increased water permeability to the same extent as
submaximal doses of the cAMP increasing agents forskolin and
IBMX, TRPML1 activation was unable to switch on the cAMP/PKA
pathway. Currently, the cytosolic Ca2+ effectors translating
TRPML1-mediated Ca2+ release into an increase in AQP2-
containining vesicle translocation to the apical membrane remain
to be deciphered. However, TRPML1-dependent
AQP2 translocation and actin depolymerization were inhibited
by blocking the Ca2+-dependent phosphatase calcineurin (CaN)
with cyclosporine A (Scorza et al., 2023). Intriguingly, CaN is
selectively engaged by TRPML1-mediated lysosomal Ca2+ release
to drive the nuclear translocation of TFEB (Medina et al., 2015), the
master regulator of lysosomal function and autophagy (Di Paola
et al., 2018; Medina, 2021) (Figure 1). CaN activation tightly bridges
lysosomal Ca2+ signaling events and water reabsorption by directly
dephosphorylating cytoskeletal organizing proteins (cofilin,WAVE-
1 and synaptopodin) or eliciting long-lasting transcriptional effects
mediated by NFAT (Descazeaud et al., 2012). Therefore, it is
reasonable to assume that TRPML1 can regulate water balance
by influencing the polymerization state of the actin cytoskeleton
thus facilitating the fusion of AQP2-harboring vesicles with the
apical plasma membrane (Figure 1). Noteworthy, TRPML1 induced
Ca2+ events have been associated with fusion of gastric tubulovesicles
carrying the H+/K+-ATPase that pumps H+ into the gastric lumen
(Sahoo et al., 2017).

3 Ca2+ handling at the mitochondria-ER
contact sites: role in Alzheimer’s
disease-related astroglial dysfunction
and beyond

Mitochondrial enzymes and F0F1 ATP synthase require Ca2+ for
activation and maintenance of bioenergetic activity and production
of ATP. Mitochondria uptake Ca2+ with a high affinity directly from
juxtaposed InsP3Rs located in mitochondria-associated ER
membranes (MAMs) (Rizzuto et al., 1993). The morpho-
functional complex that holds together interacting ER and
mitochondria is referred to as mitochondria-ER contact sites
(MERCS) (Herrera-Cruz and Simmen, 2017). Ca2+ transfer at
MERCS occurs through a complex composed of InsP3Rs, voltage-
dependent anion channel 1 (VDAC1) and the associated protein
Grp75, and then, into mitochondrial matrix, via a low affinity
mitochondrial Ca2+ uniporter. Besides Ca2+ fluxes, MERCS are
responsible for a number of key cellular processes, such as lipid
and steroid biogenesis, mitochondrial fission and dynamics,
autophagosome formation, apoptosis induction, and others
(Barazzuol et al., 2021). Disruption of MERCS has been observed
in several neurodegenerative diseases, including Parkinson’s disease,
amyotrophic lateral sclerosis and Alzheimer’s disease (AD)
(Paillusson et al., 2016; Area-Gomez and Schon, 2017; Lim et al.,
2021a; Leal and Martins, 2021). In AD, a strengthening of the
interaction between ER and mitochondria has been found in human
brains and in animal and cellular AD models (Lim et al., 2021a).

Although such increase has been associated with mitochondrial
dysfunction and with aberrant processing of amyloid precursor
protein (APP), mechanistic aspects MERCS alterations and
cause-effect relationships with AD-related cellular pathology
remain poorly understood (Lim et al., 2021a; Lim et al., 2023).

AD, a major, yet uncurable, age-related neurological disorder,
has a long-lasting pathogenesis with poorly characterized preclinical
and prodromal phases. Cellular dysfunctions, such as alterations of
protein synthesis and degradation with associated accumulation of
misfolded/aggregated proteins, mitochondrial dysfunction with
concomitant bioenergetic deficit and oxidative stress, and
derangement of Ca2+ homeostasis and signalling, represent early
signs of AD pathology (De Strooper and Karran, 2016). Yet, these
dysfunctions have mainly been studied and interpreted from the
point of view of neuronal pathology, while alterations in glial cells,
specifically in astrocytes, have been largely overlooked (Verkhratsky
et al., 2019; Merlo et al., 2021). Astrocytes are homeostatic and
supportive cells in the central nervous system (CNS), which warrant
correct development, function and adaptation of neurons and other
cells in the CNS to activity and stress (Verkhratsky and Nedergaard,
2016; Santello et al., 2019; Tapella et al., 2020). They participate in
formation of morpho-functional units in the brain, such as blood-
brain barrier (BBB) and neurovascular unit (Schaeffer and Iadecola,
2021), and are responsible for metabolic, structural and functional
support to neurons. In AD pathogenesis, astrocytes undergo
complex biphasic alterations, first becoming asthenic and
atrophic, to turn to hypertrophy and reactivity at later AD stages
in concomitance with the development of senile plaques and
neurofibrillary tangles accompanied by remodelling of astrocytic
Ca2+ signalling (Lim et al., 2014; Lim et al., 2016b; Verkhratsky et al.,
2019). Reactive astrocytes, in association with microglial cells,
participate in the development of neuroinflammatory reaction.
During these transformations, astrocytes lose their homeostatic
and defensive functions and leave neurons to suffer damage, lose
synaptic connectivity and die. Little is known about astrocytic cell
pathology during early AD pathogenesis.

Unexpectedly, recent findings suggest that the alterations of
MERCS and ER-mitochondrial Ca2+ transport may be
responsible for a number of cellular dysfunctions, which may
explain the loss of homeostatic function by AD astrocytes. These
studies took advantage of a novel model of immortalized
hippocampal astrocytes from 3xTg mouse model of AD, which
faithfully reproduce transcriptional and functional alterations of
primary AD astrocytes (Ruffinatti et al., 2018; Rocchio et al.,
2019). Moreover, their produce and release β-amyloid peptide
and have impaired autophagic and proteasomal protein
degradation, which are signs of early cellular dysfunction in
AD (Gong et al., 2023). Immortalized WT and 3xTg-AD
astrocytes, referred to as WT-iAstro and 3Tg-iAstro, represent
versatile and easy-to-handle astrocytic AD model, well suited for
comprehensive investigation from single cell imaging and
transfection to omics analyses and sub-cellular fractionation
requiring large amount of material (Tapella et al., 2023). First,
it was assessed whether 3Tg-iAstro present mitochondrial
alterations characteristic for AD cells. 3Tg-iAstro cells have a
lower basal mitochondrial respiration and severely impaired
respiratory reserve, significantly lower mitochondrial ATP
production and significantly higher mitochondrial ROS.
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Glycolytic activity was also impaired in 3Tg-iAstro compared
with WT-iAstro cells. This was in line with recent reports on AD-
derived human iPSC-differentiated astrocytes (Oksanen et al.,
2017; Oksanen et al., 2019). Proteomics analysis on isolated
mitochondria and associated ER membranes were also
conducted. Surprisingly, differentially expressed proteins were
found to be mainly responsible for ER functions and ribosomal
proteins synthesis (Dematteis et al., 2020). Validation of these
results showed that 3Tg-iAstro cells presented a lower rate of
basal protein synthesis and low-grade chronic ER stress
accompanied by an increased phosphorylation of eukaryotic
initiation factor 2α (p-eIF2α). Gong et al. (2023) found that
proteasomal and autophagic activities are impaired in 3Tg-iAstro
cells. Moreover, 3Tg-iAstro, but not WT-iAstro cells, were
unable to promote the formation of the bidimensional tubular
network, which is the in vitro surrogate of in vivo blood vessel
formation (Balbi et al., 2019; Balducci et al., 2021), in an in vitro
astrocyte/pericyte/endothelial 3D co-culture due to a loss of
secreted factors, thereby suggesting the impairment of key
homeostatic functions (Tapella et al., 2022). These alterations
were also found in hippocampus of 3xTg-AD mice in vivo
(Tapella et al., 2022).

Next, it was investigated if 3Tg-iAstro presented alterations
of Ca2+ homeostasis (Lim et al., 2021b). A significant increase of
steady-state ER Ca2+ level and higher ATP-induced Ca2+ signals
in the cytosolic compartment, indicating a higher Ca2+ ER load
and higher InsP3R-mediated Ca2+ release, were reported. This
was in accord with previous reports (Grolla et al., 2013a; Grolla
et al., 2013b; Lim et al., 2013; Ronco et al., 2014). However,
unexpectedly, ATP-induced Ca2+ transients, measured in
mitochondrial matrix, were significantly lower in 3Tg-iAstro
compared with WT-iAstro cells, indicating on the alterations
with ER-mitochondrial Ca2+ transport. This was in line with the
increased ER-mitochondrial interaction at a distance of 8–10 nm,
which we have demonstrated using a split-GFP ER-
mitochondrial contact site sensor (SPLICS) (Cieri et al., 2018;
Dematteis et al., 2020). To investigate if the increased ER-
mitochondrial interaction and the impaired mitochondrial
Ca2+ signals were responsible for alterations of cellular
proteostasis, an artificial linker that fixes the ER and the outer
mitochondrial membrane at a short distance of about 10 nm was
overexpressed in WT-iAstro cells, thereby reproducing MERCS
and Ca2+ alterations found in 3Tg-iAstro cells. Strikingly, fixing
MERCS at 10 nm reproduced the impairment of ribosomal
protein synthesis and increased p-eIF2α levels. Moreover, as
reported for 3Tg-iAstro cells, WT-iAstro cells overexpressing
10 nm linker were unable to support tubulogenesis in vitro in 3D
co-culture with pericytes and endothelial cells (Tapella et al.,
2022).

Taken together, these results provide proof of principle that the
shortening of ER-mitochondrial distance, observed in AD, may be
causative for a number of cellular AD-related alterations.
Furthermore, our results suggest that the altered MERCS
function in AD astrocytes may result in impairment of CNS
homeostasis, BBB and neuronal dysfunction (Figure 2). Further
experiments are necessary to elucidate molecular mechanisms of
MERCS dysfunction and dissect the role of impaired ER-
mitochondrial Ca2+ transfer in AD pathogenesis.

4 Non-canonical role of TRP Melastatin
8 (TRPM8) in the definition of some
cancer hallmark

TRPM8 is a member of the TRP family primarily known for its
classical cold receptor function in sensory neurons required for cold
thermal transduction and response as well as pain sensation in
mammals (McKemy et al., 2002; Madrid et al., 2006; Dhaka et al.,
2008; Knowlton et al., 2013). The first identified “full-length”
isoform of TRPM8 consists of a homotetrameric protein of
1,104 amino acid (128 kDa) organized into six hydrophobic
transmembrane α-helices (S1-S6) with a transmembrane loop
between S5 and S6, and cytosolic tetrameric coiled-coil COOH-
terminal domain (C-term) and a large hydrophilic NH2-terminal
domain (N-term) containing ‘TRPM homology regions’ (MHR)
involved in channel assembly and trafficking (Kraft and Harteneck,
2005; Fujiwara and Minor, 2008; Yin et al., 2018). The voltage
sensor-like domain (VSLD) is defined by the first 4 TM helices (S1-
S4) and also contains the binding sites for menthol and icilin at the
cavity formed with the TRP domain (Bandell et al., 2006; Yin et al.,
2019). The pore module of TRPM8 is, instead, formed by the last
2 TM helices (S5-S6) and it is characterized by a highly conserved
hydrophobic region and a conserved aspartate residue, responsible
for ion selectivity (PCa/PNa = 3.3) (Zholos et al., 2011). Interestingly,
this full length TRPM8 is mainly localized in the plasma membrane
but is also partly present at the ER level where it functions by
releasing Ca2+ form the store (Chinigo et al., 2022).

Beside this well know role in thermal transduction, the human
TRPM8 gene was first identified and cloned from prostate tissues
and described as a new prostate-specific gene due to the peculiar
expression pattern shown during prostate cancer (PCa) progression
(Tsavaler et al., 2001). In particular, TRPM8 is upregulated in benign
hyperplasia (BPH) and during the early androgen-dependent stages
of PCa, and then downregulated in the more advanced androgen-
independent metastatic stages of the tumor. Consistent with its
unique deregulation during PCa progression, alterations in
TRPM8 channel activity have been linked to several cancer
hallmarks, including tumor cell proliferation and survival, cell
migration, and angiogenesis (Alaimo et al., 2020; Grolez et al., 2022).

However, the impact of TRPM8 in the development and
progression of PCa is subject to complex modulation
mechanisms that also underlie the expression of different
isoforms with distinct subcellular localization and activity
depending on tumor stage and androgen sensitivity. Indeed, the
expression of the full-length isoform of TRPM8 located on the
plasma membrane (TRPM8PM) is highly subject to androgen
regulation and thus is significantly downregulated in androgen
deprivation and androgen receptor (AR) loss during the late
androgen-independent phase of PCa (Zhang and Barritt, 2004;
Bidaux et al., 2005; Grolez et al., 2019). This regulation occurs
through both genomic and non-genomic mechanisms involving the
AR (Figure 3) (Bidaux et al., 2005; Grolez et al., 2019). As regarding
in particular the non-genomic action, the role of AR-TRPM8
interaction is tightly regulated by testosterone in a dose-
dependent manner: low doses of testosterone (10 nM) are
associated with AR-TRPM8 localization at the level of lipid rafts
and a significant inhibition of TRPM8 activity which in turn lead to
an increase in cell motility as compared with the absence of

Frontiers in Physiology frontiersin.org06

Moccia et al. 10.3389/fphys.2023.1210085

91

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1210085


FIGURE 2
Proposed scheme relationships between AD-related mutations, mitochondrial-ER interaction, mitochondrial and ER Ca2+ signaling, and cellular
dysfunctions in astrocytes. Altered ER-mitochondrial interaction impairs ER-mitochondrial Ca2+ transfer, resulting in mitochondrial bioenergetic deficit
and increased production of ROS, induction of a low-grade chronic ER stress and derangement of proteins synthesis and degradation. Cellular
dysproteostasis results in an impaired secretion of factors including adhesion molecules, components of extracellular matrix, pro-neurogenic and
neuroprotective molecules. Altogether, this impairs homeostatic and signaling activity of AD astrocytes eventually leading to impairment of synaptic
functions, blood-brain barrier integrity and to development of neurodegeneration.

FIGURE 3
Schematic representation of TRPM8 subcellular localization and activity in cancer cells. TRPM8 Full length isoform localizes at the plasma
membrane and is subjected to androgen regulation. Smaller isoforms typically localize in the ER andmediate Ca2+ release in the cytosol or Ca2+ transfer in
the mitochondria. TRPM8 also act independently from its channel activity as an inhibitor of the small GTPase Rap1A thus inhibiting cell adhesion and
migration. Created with BioRender.com (agreement number: AT259UYHZ3).
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testosterone; on the other hand, high doses of testosterone (100 nM)
lead to a decrease of TRPM8-AR interaction thus reverting the
inhibitory effect of AR on TRPM8 activity (Grolez et al., 2019). This
loss of interaction and delocalization of TRPM8 outside of lipid rafts,
significantly increases prostate cancer cell motility (Grolez et al.,
2019).

Beside the role of the full-length TRPM, during the transition
from androgen-dependent to androgen-independent phases of PCa,
through an alternative splicing mechanism, the “full-length” isoform
of TRPM8 gives way to a shorter isoform with typical ER
localization, known as TRPM8ER (Bidaux et al., 2007). The
TRPM8ER isoform, being able to directly release ER Ca2+ and
thereby activate SOCE on the plasma membrane, is mainly
involved in the control of Ca2+-dependent pro-apoptotic
mechanisms (Figure 3) (Thebault et al., 2005; Prevarskaya et al.,
2007). Interestingly, the pro-apoptotic role of TRPM8 has also been
confirmed in PCa cells treated with sub-lethal doses of radio,
hormonal, or chemo therapies (Alaimo et al., 2020; Genovesi
et al., 2022). Furthermore, other isoforms of the channel have
been identified to date in the prostate. A functional TRPM8ER
characterized by only 4 rather than 7 transmembrane domains
(TMDs) has been identified and characterized as a mediator of
the Ca2+ transfer from the ER to the mitochondria in PCa epithelial
cells (Figure 2) (Bidaux et al., 2018), while short non-channel
TRPM8 isoforms (sM8s) with ubiquitous cytosolic localization in
PCa were found to exert antagonist functions towards the full-length
isoform (Peng et al., 2015; Bidaux et al., 2016). sM8s are a first
example of non-channel function of TRPM8 that influences cell
behavior independently of pore function and Ca2+ mobilization
(Fernandez et al., 2012). Therefore, the growth of primary PCa as
a result of the equilibrium between proliferation and apoptosis may
depend on the relative expression levels of the different
TRPM8 isoforms with channel and non-channel functioning.

In addition, TRPM8 regulates cell migration through both Ca2+-
dependent and Ca2+-independent mechanisms. TRPM8-mediated
Ca2+ signals induce an increase in the expression and activity of
some proteins that are crucial in the epithelial-to-mesenchymal
transition (EMT), in focal adhesion dynamics and consequently
in the control of cell adhesion and migration (Noren et al., 2000;
Millar et al., 2017). In particular, Cdc42, Rac1, ERK, and FAK are
stimulated in a Ca2+-dependent manner by TRPM8 activity in PCa
cells (Yang et al., 2009; Zhu et al., 2011; Wang et al., 2012; Grolez
et al., 2022). On the other hand, the involvement of TRPM8 in the
migratory machinery goes beyond its channel function. Indeed, a
novel facet of TRPM8 as an inhibitor of the small GTPase Rap1A
that is completely independent of its cation channel activity has
recently been unveiled (Figure 3) (Genova et al., 2017; Chinigo et al.,
2022). More specifically, a direct physical interaction between
TRPM8 and Rap1A has been characterized in both PCa-derived
endothelial cells and epithelial PCa cells (Genova et al., 2017;
Chinigo et al., 2022). The interaction site is located on the NH2-
terminus of the channel and involves the glutamate 207 and the
tyrosine 240, which directly interact with some residues (including
tyrosine 32) located within the switch I region of Rap1A, responsible
for the transition from the inactive to the active form of the small
GTPase (Chinigo et al., 2022). Indeed, Rap1A, as a small GTPase, co-
exists in two different forms: an active formwhen bound to GTP and
an inactive form when bound to the GDP (Vetter and Wittinghofer,

2001). Specific guanine exchange factors (GEFs) catalyze the
exchange between GDP and GTP thereby inducing small GTPase
activation, which normally results in the promotion of cell adhesion
through the activation of the β1-integrin signaling at the plasma
membrane (Chrzanowska-Wodnicka et al., 2008; Boettner and Van
Aelst, 2009; Carmona et al., 2009; Cherfils and Zeghouf, 2013).
Recent work demonstrated that TRPM8 intracellularly binds Rap1A
mainly at the ER in its inactive form, thus hindering its translocation
to the plasma membrane and its subsequent activation (Genova
et al., 2017; Chinigo et al., 2022). This mechanism results in the
inhibition of cell adhesion and migration in PCa-derived endothelial
cells and in epithelial PCa cells, thus making TRPM8 an appealing
candidate to block both tumor invasiveness and angiogenesis
(Genova et al., 2017; Chinigo et al., 2022). Although
TRPM8 expression is sufficient to exert these functional effects,
stimulation with TRPM8 agonists, such as icilin and WS12, further
potentiates these effects not only by recruiting Ca2+-dependent
pathways, such as Cdc42, Rac1, ERK, and FAK, but also by
probably promoting TRPM8-Rap1 interaction. This could be
explained by global conformational rearrangements triggered by
agonist binding in the TRPM8 TMDs that are propagated to the
cytosolic domain where interaction with Rap1A occurs (Yin et al.,
2018; Yin et al., 2019). Rap1A is not the only GTPase involved in the
TRPM8 interactome. Indeed, TRPM8 was found to interact with the
inactive form of the G-protein subunit Gαq, which leads to the
inhibition of TRPM8 gating and, in turn, may be subject to TRPM8-
mediated metabotropic regulation (Klasen et al., 2012; Zhang et al.,
2012). These data fit into the broader context of a bidirectional close
interplay between TRP channels and small GTPases at all stages of
the metastatic cascade through both Ca2+-dependent and Ca2+-
independent pathways (Chinigo et al., 2020).

All these recent mechanistic findings on TRPM8 provide new
insights for the development of innovative and effective tools
targeting TRPM8 to block PCa progression and improve the
prognosis of the currently incurable metastatic castration-
resistant prostate cancer (mCRPC) phenotypes. In addition to
supporting a potential use of TRPM8 in anti-tumor therapy as a
dual target to simultaneously counteract metastatic dissemination
and angiogenesis, they also shed new light on the possibility of using
TRP channels as targets for the development of peptidomimetics in
cancer therapy. In fact, the administration of therapeutic peptide
mimicking the channel or part of its structure would further reduce
any side effects associated with the wide tissue distribution of TRP
channels and the multitude of intracellular signalling pathways
regulated by them, directly targeting a specific protein-protein
interaction and consequently impairing only its associated
cellular pathways (Mabonga and Kappo, 2019; Tsagareli and
Nozadze, 2020). As to TRPM8-Rap1A interaction, the
applicability of a peptide that reproduces the N-terminus of the
channel in patients in androgen-independent late stages of PCa
seems to be further supported by the fact that none of the residues
involved in this interaction were mutated in the analyzed patient
cohorts (Chinigo et al., 2022). Of note, validation of TRPM8-Rap1A
interaction in more than 1 cell line (Genova et al., 2017; Chinigo
et al., 2022), including prostate, breast, and cervical cancer cells as
well as endothelial cells, suggests a broader spectrum of action of
TRPM8 as an inhibitor of Rap1, albeit with a different impact in
terms of control of cell adhesion and migration according to the cell
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type. Therefore, this protein-protein interaction could prove to be an
interesting target in the treatment of a much wider range of
pathologies.

5 Non-genetic light stimulation of Ca2+
signals in cardiovascular research:
methodology and possible applications

The idea to use light to trigger specific biological pathways,
including Ca2+ signalling, represents one of the most fascinating
insights in modern science (Lodola and Moccia, 2022). In recent
years, photostimulation of cells and living systems has received great
interest from the scientific community due to several unique
advantages. Indeed, light is a minimally invasive biophysical tool
that can overcome the limitations of more conventional stimulation
approaches based on electrical, chemical, mechanical, or magnetic
cues (i.e., limited spatial and temporal resolution) (Di Maria et al.,
2018). The potential revolutionary role of light has been originally
suggested by Sir Francis Crick. The Nobel Prize for Physiology or
Medicine, discussing the need to achieve a selective control of
individual neurons to understand the complexity of the brain,
asserted that “The ideal signal would be light, probably at an
infrared wavelength to allow the light to penetrate far enough.
This seems rather farfetched, but it is conceivable that molecular
biologists could engineer a particular cell type to be sensitive to light in
this way” (Crick, 1999). This revolutionary concept become reality
few years later with the implementation of Optogenetics, which
consists in the expression of light-sensitive ion channels into the
cellular plasma membrane to control the activity of neurons or other
cell types with light (Deisseroth, 2011). However, the standard
method to deliver the light-sensitive sensors-actuators to the
target cells membrane impinges on viral constructs and this,
combined with the fact that the exogenous proteins are isolated
from very distant species (i.e., bacteria, algae, or unicellular fungi),
open a series of issues in the therapeutic translatability of the
approach.

An alternative strategy to still preserve the advantages of optical
stimulation, but avoiding genetic modification, relies on the use of
photosensitive transducers (Di Maria et al., 2018; Hopkins et al.,
2019). The foundation of this approach is built on the convergence
of various cutting-edge expertise ranging from biology, material
science and photonics. In recent years, both inorganic and organic
semiconductors have been used with excellent results (Di Maria
et al., 2018; Hopkins et al., 2019). In particular, the organic one has
aroused considerable interest within the scientific community due to
their unique characteristics. In fact, these materials support both
ionic and charge transfer, are soft and conformable, cost-effective
and solution processable, but most importantly their absorption
range is in the visible region, and they present a high
biocompatibility, thus proving capable of interfacing with living
matter to transduce light into a biological signal. Regioregular
polymer poly(3-hexylthiophene-2,5-diyl), referred as P3HT, is
probably the workhorse material among the organic
semiconductors and the widely studied for biological purposes
(Antognazza et al., 2015; Di Maria et al., 2018; Moccia et al., 2020).

The main photophysical mechanisms that occur at the polymer/
cell interface could be capacitive, electrochemical, or thermally

mediated. These phenomena in turn generate different cellular
response. For example, at the cellular level, planar P3HT has
been proven effective in the modulation of the membrane
potential of non-excitable cells (i.e., HEK-293 cells and
astrocytes) up to the optical stimulation/silencing of neuronal
firing (Ghezzi et al., 2011; Benfenati et al., 2014; Antognazza
et al., 2015; Feyen et al., 2016; Di Maria et al., 2018). Notably, its
efficacy is not limited to in vitro applications. Indeed P3HT-based
hybrid interfaces (Ghezzi et al., 2013; Antognazza et al., 2016; Maya-
Vetencourt et al., 2017), and more recently also nanoparticles
(Maya-Vetencourt et al., 2020), were also shown to restore light-
sensitivity and visual acuity in animal models of retinal degeneration
evidencing novel potential biomedical implications of conjugated
polymers.

The modulation of cellular fate via electrochemical and/or
thermal signals could be achieved by modulation of [Ca2+]i
(Bossio et al., 2018; Moccia et al., 2022). Recently, it has been
demonstrated that P3HT photoexcitation led to the activation of
the non-selective cation channel Transient Receptor Potential
Vanilloid 1 (TRPV1) channel (Lodola et al., 2017b; Moccia et al.,
2020; Moccia et al., 2022). TRPV1 is a non-selective cation channel

FIGURE 4
Geneless light stimulation of Ca2+ signals in cardiac cells. (A)
Polymer-mediated optical excitation induces a robust enhancement
of proliferation and bidimensional tube formation in ECFCs seeded on
top of P3HT thin films (λ = 520 nm). ECFC modulation in ECFCs
requires TRPV1 activation on the plasma membrane, which in turn
mediates extracellular Ca2+ entry to engage a NF-kB-dependent gene
expression program. (B) Ziapin2 internalizes into the plasma
membrane of human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs). Upon photoexcitation (λ = 470 nm) the
molecule isomerizes, changing hiPSC-CMs membrane capacitance.
This triggers action potential generation and consequently modulates
the “excitation-contraction coupling” process at a whole extent
opening a new way towards hybrid soft robotics and heart disease
therapies. Adapted from (Vurro et al., 2023a). Created with BioRender.
com (agreement number: RO259UYLP6).
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that can integrate a variety of extracellular cues (Moccia et al., 2020;
Moccia et al., 2022), including an increase in ROS (Guarini et al.,
2012), an increase in temperature >40 °C (Caterina et al., 1997), and
by a reduction in extracellular pH (Jordt et al., 2000). In accord,
P3HT photoexcitation can stimulate TRPV1-mediated membrane
depolarization via the local increase in temperature and ROS
concentration at the interface between PH3T thin films and cell
membrane (Lodola et al., 2017b). Further studies showed that
optical excitation of P3HT thin films induced intracellular Ca2+

oscillations in human circulating endothelial colony forming cells
ECFCs) (Negri et al., 2022a), a truly endothelial progenitor
population that is mobilized in peripheral circulation upon an
ischemic insult to regenerate the damaged vascular networks
(Moccia et al., 2018). TRPV1-mediated Ca2+ signals were mainly
elicited by local ROS generation and were supported by InsP3-
induced ER Ca2+ release and SOCE (Negri et al., 2022a). Of note,
light-induced intracellular Ca2+ oscillations were reminiscent of the
repetitive Ca2+ spikes whereby vascular endothelial growth factor
(Dragoni et al., 2011; Dragoni et al., 2015; Lodola et al., 2017a) and
the human amniotic fluid stem cell secretome (Balducci et al., 2021)
induce the nuclear translocation of NF-κB to stimulate ECFC
proliferation and tube formation. In agreement with these
observations, optical excitation of P3HT thin films was found to
boost ECFC pro-angiogenic activity by activating TRPV1 and
thereby promoting a NF-κB-dependent gene expression program
(Figure 4A) (Lodola et al., 2019a). These findings pave the way
towards the use of these materials as a reliable tool for precise and
reversible optically-driven modulation of ECFC physiological
activity (Zhang et al., 2014; Lodola et al., 2019a; Moccia et al.,
2020; Moccia et al., 2022).

The same interface has been applied also to optical increase the
contractile activity of human induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs), a process where Ca2+ is the actual
coupling between excitation occurring in the sarcolemma and the
onset of mechanical contraction (Bers and Guo, 2005). Although in
this experimental setting the physical process was photothermal,
P3HT still presents advantages over more traditional stimulation
methods, thereby opening interesting perspectives for the control of
cardiac pacing (Lodola et al., 2019b).

Within this context, an alternative approach involves
photochromic compounds (Wang and Li, 2018). These organic
molecules undergo reversible transformation between two
metastable states following the absorption of an
electromagnetic radiation and provide a conceptually simple
and convenient way to control cellular activity. Indeed,
photoswitches can bind covalently to ion channels/receptors
or be targeted directly to the plasma membrane bilayer, thus
modifying, upon photoisomerization, the ion channel dynamics
and/or the electrical properties of the membrane (Gorostiza and
Isacoff, 2008; Izquierdo-Serra et al., 2016; Leippe et al., 2017).
Recently, a newly synthetized amphiphilic azobenzene-based
photo-transducer (Ziapin2), successfully tested in bacteria,
HEK-293 cells and neurons (Paterno et al., 2020a; Paterno
et al., 2020b; DiFrancesco et al., 2020; Magni et al., 2022), has
been used as a non-invasive optical tool to trigger hiPSC-CMs
contraction behavior (Vurro et al., 2023a). Thanks to its peculiar
chemical properties Ziapin2 has the capability to dwell within the
hiPSC-CMs sarcolemma. In this environment the molecule

photoisomerization induces a heatless mechanical perturbation
upon millisecond pulse of visible light that leads to a dynamic
modulation of membrane capacitance. This change in the passive
electrical property of the cell results in a transient
hyperpolarization followed by a delayed depolarization able to
elicit an action potential. The electrical activity correlates with
changes in Ca2+ dynamics and ultimately with an increase in the
contraction rate (Figure 4B). The photopacing efficacy of the
approach has been further extended to a cardiac
microphysiological model that mimics the cellular
organization and substrate mechanical properties of native
cardiac tissue (Vurro et al., 2023b), thus proving that
Ziapin2 could be a viable tool for the modulation of the
excitation-contraction coupling with a precise spatial and
temporal punctuality.

6 Conclusion

The Symposium “Ca2+ signalling: unexpected new roles for the
usual suspect” has been one of the most attended events of the 72nd
Annual Meeting of the Italian Society of Physiology. In our opinion,
this was not only due to the widespread function of the Ca2+ handling
machinery, which plays fundamental and diversified roles in human
physiology that could of course gather vast interest by the audience.
We believe that the Symposium gathered such a large audience since it
aimed at a presenting one of the oldest signalling messengers known,
i.e., Ca2+, from a novel perspective. It is now clear that the Ca2+

handling machinery is no longer limited, to quote a few paradigmatic
examples, to intracellular Ca2+ stores that exclusively located in the ER
or to voltage-gated Ca2+ channels and ligand-gated channels on the
plasma membrane. Lysosomes and mitochondria are also crucial to
shape the physiological Ca2+ response to extracellular cues by,
respectively, amplifying, or modulating ER Ca2+ release. Altering
this delicate balance of inter-organellar Ca2+ fluxes can lead to life-
threatening disorders, such as AD, cancer, and lysosomal storage
disorders, and many more are likely to be discovered in the next
future. The non-canonical function of ion channels, exemplified by
TRPM8-Rap1A interaction, represents another revolutionary field of
research showing that classical omics technologies, such as single-cell
RNA sequencing or mass spectrometry, need to be integrated by a
physiological approach to truly understand the signalling mode of a
channel transcript/protein. These emerging pieces of information on
the heterogeneity and versatility of the Ca2+ handling machinery can
be exploited to design alternative strategies to selectively rescue the
function of diseased cells by combining novel nanotechnologies with a
proper knowledge of molecular physiology. Due to its polymodal
nature, TRPV1 is certainly the best molecular switch to translate
optical stimulation of photosensitive conjugated polymers into a
biologically relevant signal. But other candidates presenting similar
sensitivity to heat and ROS, such as TRP Ankyrin 1, are likely to be
rapidly integrated in the arsenal of Ca2+-permeable channels that
could be probed for their therapeutic potential. In conclusion, this
Symposium, which also engendered may fruitful discussions and
opened the way to new collaborations among the participants
(including many foreigner guests), confirmed that Italian
Physiology is at the forefront of research in Ca2+ signalling, as also
proven by many other oral and poster presentations of the meeting
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(Martinotti et al., 2019; Nesher et al., 2019; Badone et al., 2021;
Lazzarini et al., 2022; Michelucci et al., 2022; Sforna et al., 2022; Arici
et al., 2023; Lia et al., 2023).
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Intercellular crosstalkmediated by
tunneling nanotubes between
central nervous system cells. What
we need to advance
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Long-range intercellular communication between Central Nervous System (CNS)
cells is an essential process for preserving CNS homeostasis. Paracrine signaling,
extracellular vesicles, neurotransmitters and synapses are well-known
mechanisms involved. A new form of intercellular crosstalk mechanism based
on Tunneling Nanotubes (TNTs), suggests a new way to understand how neural
cells interact with each other in controlling CNS functions. TNTs are long
intercellular bridges that allow the intercellular transfer of cargoes and signals
from one cell to another contributing to the control of tissue functionality. CNS
cells communicate with each other via TNTs, through which ions, organelles and
other signals are exchanged. Unfortunately, almost all these results were obtained
through 2D in-vitro models, and fundamental mechanisms underlying TNTs-
formation still remain elusive. Consequently, many questions remain open, and
TNTs role in CNS remains largely unknown. In this review, we briefly discuss the
state of the art regarding TNTs identification and function. We highlight the gaps in
the knowledge of TNTs and discusswhat is needed to accelerate TNTs-research in
CNS-physiology. To this end, it is necessary to: 1) Develop an ad-hoc TNTs-
imaging and software-assisted processing tool to improve TNTs-identification
and quantification, 2) Identify specific molecular pathways involved into TNTs-
formation, 3) Use in-vitro 3D-CNS and animalmodels to investigate TNTs-role in a
more physiological context pushing the limit of live-microscopy techniques.
Although there are still many steps to be taken, we believe that the study of
TNTs is a new and fascinating frontier that could significantly contribute to
deciphering CNS physiology.

KEYWORDS

intercellular communication, tunneling nanotubes, central nervous system, in-vitro 3D
model, super resolution live-cell microscopy

1 Introduction

Cell-to-cell communication is essential for preserving tissue functions and homeostasis.
A variety of mechanisms are involved: nearby cells can communicate with each other via
connexin-formed gap junctions (GJs) and synapses, while distant cells can also do so via
paracrine secreted signals and extracellular vesicles.

In 2004, Rustom and colleagues discovered a new form of long-range cell-to-cell
crosstalk mechanism based on long plasma membrane bridges named tunneling
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TABLE 1 TNTs, in cell types of Central Nervous System.

CNS cell
type

Model Conditions Cargoes TNTs connected
cells

TNTs identification
and quantification

Software-assisted
TNTs quantification

Mechanism of
TNTs formation

3D-CNS or
animal
models

References

Brain
endothelial
cells

Murine brain
sections

Hypoxia-Ischemia None Endothelial-endothelial Confocal microscopy No No Yes Girolamo et al.
(2023)

Neurons, In vitro 2D
model

Parkinson disease α-Synuclein
(α-Syn)

Neuron-microglia Confocal microscopy No No No Chakraborty et al.
(2023b)

Microglia cells

Astrocytes, In vitro 2D
model

Physiological and
ischemic stroke

mitochondria Astrocyte-pericyte.
Endothelial cells-
pericytes.

Confocal microscopy No No No Pisani et al. (2022)

Brain
Pericytes,

Brain
Endothelial
cells.

Astrocytes Murine models Physiological EGFP Astrocytes-neurons Immunoelectron microscopy
and fluorescence microscopy.

No No No Chen and Cao (2021)

Pericytes Human Physiological and
pathological
angiogenesis

None Pericyte-endothelial
cells

Confocal microscopy No No No Errede et al. (2018)

Brain

sections

Pericytes Murine models Neurovascular
coupling

Ca2+ Pericyte- pericyte Live-animal two-photon
microscopy

No No Yes Alarcon-Martinez
et al. (2020)

Microglia In vitro 2D
model, murine
model.

Parkinson disease α-Synuclein
(α-Syn)

Microglia-microglia Flow cytometric analysis No No Yes Scheiblich et al.
(2021)

In vivo two-photon imaging

Fluorescence microscopy

Astrocytes In vitro 2D
model

Physiological EGFP Astrocytes-astrocytes Live-cell confocal microscopy No Yes No Sun et al. (2012)

Neuron In vitro 2D
model

Physiological None Neuron-astrocytes Differential interference
contrast microscopy.

No No No Wang et al. (2012)

Astrocytes Fluorescent microscopy.
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nanotubes (TNTs) (Rustom et al., 2004). In vitro, TNTs have been
described as non-adherent, actin-based cytoplasmic extensions that
serve as long-distance membranous bridges. Rustom and others have
demonstrated the presence of TNTs in various cell types, indicating
that TNTs are a widespread cellular phenomenon crucial for long-
distance cell-to-cell communication. TNTs allow the intercellular
transfer not only of small molecules, such as ions, second
messengers, and metabolic substrates, but also of macromolecules,
including proteins and nucleic acids, and organelles. This results in a
cell “support” network that plays a role in the control of tissue
functions (reviewed in (2)). For instance, mounting evidence
suggests that TNT-mediated intercellular mitochondrial transfer
can protect recipient cells from bioenergetic deficit and apoptosis,
which can be caused by pathological factors (Pisani et al., 2022).

TNTs have been observed in various cell types of the Central
Nervous System (CNS) (Khattar et al., 2022), including neurons, glial
cells, pericytes, and brain endothelial cells as listed in Table 1. Data
suggest that TNTs could play important roles in the maintenance of
neuronal networks. In this regard it has been demonstrated that TNTs
contribute to the transmission of electrical signals, to the regulation of
immune responses in the CNS and could play a role during brain
development (Wang et al., 2010; Wang et al., 2012; Wang and Gerdes,
2012; Zurzolo, 2021; Cordero Cervantes et al., 2023). Furthermore, we
have recently shown that TNTs-based crosstalk occurs between human

blood-brain barrier cells (Pisani et al., 2022). In pathological conditions
affecting the CNS, such as Alzheimer’s and Parkinson’s diseases, TNTs
may also play a role in the spread of pathological proteins (Abounit
et al., 2016; Tardivel et al., 2016; Rostami et al., 2017; Dilna et al., 2021).

Despite the many data published on this new form of
intercellular communication mechanism between neural cells, the
role of TNTs in the CNS remains largely unclear. Further
investigation and new tools are required to accelerate our
understanding of TNTs’ role in the CNS.

In this review, we briefly discuss the state of the art regarding the
identification and function of TNTs. We highlight the gaps in our
knowledge of TNTs and, more importantly, what is needed, in our
opinion, to accelerate the study of TNT-mediated intercellular
crosstalk in the CNS (Figure 1).

2 Discussion

2.1 TNTs-identification and quantification

2.1.1 We need a rapid, automatic and operator-
independent method

TNTs are described as (I) thin (20–700 nm) and straight
membranous protrusions hovering over the substrate and directly

FIGURE 1
Ideal workflow and imaging techniques to deciphering tunneling nanotubes mediated crosstalk between central nervous system cells. (A) To make
progress in understanding the triggering factors and functions of TNTs in the central nervous system, we require an integrated system including: 1)
specific in vitro and in vivomodels, 2) super-resolution live microscopy and, 3) software-assisted data analysis. In vitro and in vivomodels are valuable for
investigating the intercellular transfer of cargoes such as ions, RNAs, proteins, and organelles. High-resolution live-cell confocal microscopy
techniques, including spinning disk and structured illumination super-resolutionmicroscopy, are used to analyze thesemodels. The data produced by 3D
reconstruction are then analyzed using artificial intelligence (AI) approaches to obtain unbiased TNT quantification. For in vitro data, the AI-based
software must be capable of discriminating TNT as F-actin positive, straight structures detached from the substrate that are capable of transferring cargo
from one cell to another. With the use of these tools, we can quickly and objectively test candidate stimuli that trigger or destroy TNTs. Ultimately, this
approach could speed up the identification of specific molecular pathways involved in TNT formation and the functions of TNTs in the CNS. (B) Sample
type and imaging techniques for efficient TNTs analysis in fixed and live samples.
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connecting two (or more) cells of either the same (homotypic) or
different (heterotypic) types. They (II) contain F-actin cytoskeletal
filaments and (III) are able to transfer cargo from one cell to another
(Cordero Cervantes and Zurzolo, 2021).

Although some authors have reported the identification of
potential TNTs markers (Jung et al., 2017), no specific markers
exclusive to TNTs have been discovered to date. For this reason,
morpho-functional analysis continues to be the primary standard
for TNT identification and quantification.

Currently, high-resolution confocal microscopy followed by 3D-
reconstruction and Z-stacks analysis, live-cell fluorescence
microscopy, and analysis of intercellular transfer of cellular
cargoes are the main approaches used to identify and quantify
TNTs (as detailed in Table 1). These approaches are time-
consuming and dependent on the researcher’s expertise and
interpretation. Furthermore, fixed-cell or fixed-tissue based
approaches are affected by fixation procedures that tend to
break TNTs.

An automatic or semi-automatic TNT identification and
quantification method is mandatory to boost TNT studies. To
this aim, a method aimed at developing automated detection of
TNTs using Z-stacks confocal images was reported in a paper
published in 2006 (Hodneland et al., 2006). More recently, a
machine learning approach potentially useful for TNT
quantification was developed by Smirnov and colleagues to study
the dynamics of dendritic spines using live-cell microscopy data
(Smirnov et al., 2018). A deep-learning artificial intelligence (AI)
approach was first proposed by Ceran and colleagues for TNT
analysis (Ceran et al., 2022). All these methods were able to
identify only 50%–60% of human expert-identified TNTs.

For these reasons, to date, manual TNT counting based on
trained investigators based on fixed and live-cell microscopy analysis
remains the gold-standard method. This strongly slows the study
of TNTs.

Furthermore, only phase-contrast images or plasma
membrane fluorescent dyes of single-cell type culture, were
used as input data in these methods. No F-actin staining,
cargo tracking analysis, or intercellular transfer of cellular
cargoes were investigated. Since these are three TNT-related
properties that distinguish TNTs from other cell protrusions,
whether these approaches are really able to automatically
quantify TNTs remains elusive. We believe that taking these
additional elements into account could contribute to significantly
increase and improve the automatic quantification of TNTs. To
achieve this objective, cell culture experiments should be
conducted using co-cultures of donor and receiving cells, and
the analysis should be performed using live-cell time-lapse
confocal microscopy in 4D mode (xyz-t). Tracking analysis,
utilizing dedicated software like TrackMate, a plugin of the
free software Fiji, can assist in describing the trajectory of
cargo in the xyz dimensions over time. The main challenge
lies in implementing these analyses within the software design
of AI-based approaches. We hope in fact that recent progress in
AI-based methods will help us in this hard work. This point is
crucial to accelerate the identification of molecules and stimuli
that can affect or enhance the formation of TNTs, accelerating,
for instance, the decoding of molecular pathways involved in
TNT formation and the identification of TNT functions.

3 How cells generate TNTs is unclear

3.1 We need more molecular insights to
design more TNTs-specific experiments

The formation of TNTs is thought to occur via two main
mechanisms: 1) cell dislodgement, in which two cells that were
initially attached to one another separate, leaving a membrane
thread that develops into an actin-supported TNT, and 2) actin-
driven, in which a cell forms a precursor protrusion through actin
assembly that subsequently fuses with a recipient cell, forming a
TNT. However, it is possible that there are other mechanisms
involved in the formation of TNTs that have yet to be
discovered. There are still many questions that remain
unanswered in order to fully understand this process. For
example, what are the actin regulators orchestrating the
formation of TNTs? Do TNTs mature from a filopodia-like
precursor, or is the actin-driven mechanism of TNT formation a
de novo process? Nina Ljubojevic et al. in Ljubojevic et al. (2021).

According to imaging studies on cultured cells, TNTs can
initially form from thin, actin-driven protrusions that resemble
fingers (filopodia) or from a direct contact between cell bodies.
The resulting TNTs maintain an intercellular distance that can be up
to five hundred times greater than the TNT’s thickness (hundreds of
nanometers) while suspended between the cells.

A highly contentious issue is whether a TNT is open-ended or
close-ended in vivo as well as how short and dynamic filopodia
transform into long and stable TNTs, and what causes the filopodia
to change into TNTs. One of the newest hypotheses for the
formation of TNTs, especially the close-ended type, was recently
reported by Minhyeok Chan and colleagues. In this paper, the
authors found that TNTs develop from a double filopodial
intercellular bridge (DFB) between distant cells. The author
shows that DFB results from the dimerization of N-cadherin
extracellular domains from two different filopodia of distant cells
and that this bridge evolves into a closed-ended TNT. The transition
from a DFB to a close-ended TNT appears to be triggered by
mechanical energy accumulated in a twisted DFB. Myosin V
and/or myosin II seem to play a functional role in this twisting
mechanism. A specific biophysical mechanism of action was
proposed, and the elastic properties of TNTs and DFB were
experimentally measured (Chang et al., 2022). This intriguing
paper highlights the synergistic role of F-actin/N-cadherin and
myosin in TNT formation. Most recently, was found that F-actin
and cadherin connection control the tensile strength and flexural
strength of TNTs, respectively (Li et al., 2022). It is important to note
that, before these papers, the presence of N-cadherin and Myosin
10 in TNT structures was found in neuronal TNTs through a
correlative cryo-electron microscopy (EM) approach by Zurzolo’s
group (Sartori-Rupp et al., 2019).

Despite the conclusions proposed by Minhyeok Chan and
colleagues about TNT formation being extremely intriguing, it is
important to note that HEK andHeLa cells were used to produce wet
data and conclusions cannot be automatically extended to CNS cells.

Several molecular players have been shown to positively or
negatively regulate TNT formation, as reviewed by Ranabir
Chakraborty et al. (Chakraborty et al., 2023a). However, the
exact molecular pathways involved in TNT formation between
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neural cells remain largely unclear (as detailed only for astrocytes in
Table 1). As a result, there are currently no molecular targets that
can be used to design TNT-specific interfering experiments aimed at
selectively destroying TNTs while preserving other cell protrusions.
This greatly hinders the identification of TNT’s functions.

The only way to interfere with TNT formation currently is
through the use of F-actin depolymerizing drugs such as
Cytochalasin-D, Latrunculin B and Jasplakinolide. However, this
treatment affects other F-actin dependent mechanisms in addition
to TNT formation. Another possible approach is the use of not-in-
touch coculture, which involves the use of the Transwell® system.
Depending on the size-porosity of the separating membrane, not
only TNTs but also other long-range intercellular trafficking
mechanisms can be prevented. However, the literature is
controversial and not aligned on the size-porosity required to
exclusively exclude TNT-mediated intercellular trafficking.

Similarly, there is currently no possibility to specifically
stimulate TNT formation. Cell stress conditions such as exposure
to UV radiation (Hajek et al., 1989), oxidative stress (Wang et al.,
2011), hypoxia (Desir et al., 2016; Yang et al., 2020), and other cell
stressors upregulate TNT formation, but, under these conditions,
mechanisms other than the formation of TNT are also induced.

In summary, the lack of specific knowledge about the molecules
and pathways involved in TNT formation in neural cells, as well as
the absence of TNT-specific triggering and destroying factors, are
areas that need improvement to design more specific experiments
aimed at isolating the specific contribute of TNTs useful at
identifying TNT’s functions.

4 Dynamic and structural organization
of TNTs in CNS-cells: from 2D-models
to in-vivo brain imaging

4.1 Microscopic challenges emerge

TNT-like connections have been found in human fetal brain
sections between pericytes and between pericytes and endothelial
cells, suggesting that these elements may play a role in the initial
stages of brain vascularization (Errede et al., 2018). Fixed and live-
cell experiments have shown that astrocytes, oligodendrocytes, and
neurons can all form TNTs in both physiological and pathological
conditions (as reviewed by Khattar and colleagues (Khattar et al.,
2022)). Additionally, in recent research, we have shown that TNTs
occur between human blood-brain barrier cells (Pisani et al., 2022).
While these studies have demonstrated different TNT-mediated
transport of cellular cargoes and stimuli in both physiological
and pathological 2D in vitro models, conclusions regarding TNT
functions remain confined to the in vitro model used, and whether
TNTs exist in multicellular 3D-CNS models and in CNS in general
remains unclear.

However, the use of 3D-CNSmodels such as humanmini-brains
and murine models generated through induced human pluripotent
stem cell (iPSC) technology and cell-specific differentiation could
strongly contribute to filling this gap. These models recapitulate in
vivo tissue architecture more effectively than neural 2D-cultures [as
reviewed in (Hou and Kuo, 2022; Kofman et al., 2022; Wang et al.,
2023)] and could help investigate TNT functions in CNS physiology

(as detailed in Table 1). Although the use of 3D models is largely
accessible for many laboratories, whether TNTs exist in these
models remains unknown.

A recent technical advance in microscopy could revolutionize
TNT analysis in the 3D models and in CNS slices. Zurzolo’s
group recently analyzed the transient external granular layer of
the developing cerebellum through high-resolution, serial-
sectioning, scanning electron microscopy supported by 3D-
reconstruction and deep-learning approaches. This innovative
approach has revealed unprecedented details about the spatial-
temporal connectivity between neural cells (Cordero Cervantes
et al., 2023) and could represent a new frontier for TNT
identification in CNS sections. More specifically, this study
highlights the potential of a newly developed software
designed for tracing cell-to-cell connections in 3D samples.
The software utilized for this purpose is CellWalker, which is
accessible at (https://github.com/utraf-pasteur-institute/
CellWalker). CellWalker streamlines the processing of
segmented microscopy images, thereby simplifying the
identification of intercellular bridges within 3D images. This
could significantly aid in the identification of TNT-like
structures in CNS sections.

The step forward towards demonstrating the existence of TNTs
in the living CNS was published by Alarcon-Martinez and colleagues
in two recent, elegant in vivo studies. For the first time, the authors
showed that TNTs exist in the mouse retina. Specifically, they
demonstrated that inter-pericyte TNTs-mediated (IP-TNTs)
intercellular Ca2+ waves control neurovascular coupling in the
retina in physiological conditions, and that this mechanism is
altered in glaucoma (Alarcon-Martinez et al., 2020; Alarcon-
Martinez et al., 2022).

In these papers, non-invasive live retinal imaging using two-
photon laser-scanning microscopy was used to investigate IP-TNTs
function in vivo. The authors found that IP-TNTs had an open-
ended proximal side and a closed-ended terminal (end-foot) that
joined with distal pericyte processes via gap junctions. They also
discovered that IP-TNTs transport organelles such as mitochondria,
which can move along these processes, and act as a conduit for
intercellular Ca2+ waves, mediating communication between
pericytes. These data represent the first and only available data
about TNTs in the living retina.

However, the question remains: do TNTs also exist in the
living brain? To investigate this possibility, specific tools and
animal models are required. One useful tool is based on the
expression of cell-type-specific fluorescent proteins, ion trackers,
and organelle-specific fluorescent proteins in a CNS-cell type-
specific manner. For example, mice that express red fluorescent
protein (Ds-RED) under the control of the NG2 promoter
(Cspg4) can help identify NG2-positive pericytes in the central
nervous system. Another tool is the expression of the genetically
encoded Ca2+ indicator GCaMP6 under the NG2 promoter,
which enables the tracing of calcium dynamics in NG2-
positive pericytes. Animal models that express a
mitochondrial-specific version of Dendra2 in a cell-specific
manner can also be used. These tools are commercially
available from The Jackson Laboratory and were used in
previous studies (Alarcon-Martinez et al., 2020; Alarcon-
Martinez et al., 2022). However, it should be noted that these
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animal models do not allow for the unequivocal distinction of cell
types expressing the proteins of interest. Furthermore, it would
be useful to have various fluorescent cargoes available, in order to
discriminate cargo-specific differences in the TNTs-mediated
intercellular transfer. This represents a significant obstacle for
the in vivo study of TNTs.

What is the main limiting factor for investigating TNTs using in
vivo approaches when animal models are available? The real limit is
represented by the microscopic approaches needed to correctly
describe the dynamics and structure of TNTs in the living CNS,
especially in the living brain. The reason for this technical limit is
intrinsic to the structure and dynamics of TNTs, which pose
different microscopic challenges for visualizing their dynamics at
a nanometric resolution in the brain.

TNTs are thin (20–700 nm) and highly dynamic structures. In
just a few minutes, they can assemble, transport an organelle
(hundreds of nanometers), or a molecule (sub-nanometers), and
transfer these objects to another distant cell. How can we describe
this rapid process with high spatial-temporal resolution while
preserving cells from phototoxicity? Notably, phototoxicity is
particularly crucial for TNT analysis, as it could induce TNT
formation. This represents the main point that must be
addressed in live-cell microscopy approaches useful for
investigating TNTs in 2D and 3D models and in vivo.

The major approaches used in the literature for live-cell TNT
analysis in 2D models are based on spinning-disk microscopy
(SDM) approaches. This approach is widely used to describe
neural complexity and functionality while preserving neurons
from phototoxicity (Manzella-Lapeira et al., 2021).

Another opportunity comes from the use of holotomography
(3D holographic) microscopy (HM), which is a label-free live-cell
imaging approach recently reported for TNT investigation by Hans
Zoellner and colleagues (Zoellner et al., 2020).

More recently, three-dimensional multi-color live-cell super-
resolution imaging at high speed was achieved through the
Structured Illumination Microscopy (SIM) approach. In SIM, the
sample is illuminated with patterned light to minimize photon dose.
After image acquisition, dedicated software analyzes the
information, obtaining a reconstruction with a resolution about
2-fold higher than the diffraction limit. The spatial resolution of
commercially available SIM microscopes is similar to other super-
resolution microscopy techniques (e.g., STED and STORM), but the
temporal resolution of SIM is better. In addition, SIM requires lower
light intensity for imaging compared to STED and STORM, strongly
preserving cell integrity and reducing phototoxicity more that SDM
(reviewed in (Badawi and Nishimune, 2020). Furthermore, SIM can
also be used for thicker sections, such as organotypic brain slice
cultures (Olenick et al., 1988) and, recently, was further improved
using a rationalized deep learning approach pushing the super-
resolution limit of the technique in live-imaging of subcellular
processes (Qiao et al., 2023). Consequently, SIM appears to be
more appropriate for investigating the high dynamicity of TNTs
at a nanometric resolution. Considering the various microscopy
approaches currently employed, it is evident that much remains to
be done to achieve an effective analysis of TNTs in vivo.

5 Conclusion

Upon reviewing the current literature on TNTs-based
intercellular crosstalk, it seems that AI approaches, 3D in-vitro
and animal models, and microscopic techniques currently
available, could be useful in deciphering TNT’s structure,
functions, and dynamics (Figure 1). In particular, super-
resolution microscopy such as SIM, which is useful for analyzing
live cells at nanometric resolution, could represent a great
opportunity towards this aim.

Given the range of possibilities currently available, we believe
that the question of whether TNTs are present in the brain could be
successfully addressed in the near future. This breakthrough could
represent a new frontier in neuroscience, providing valuable insight
into intercellular connectivity in the brain.
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Introduction: Much interest has been addressed to antioxidant dietary 
supplements that are known to lower the risk of developing glaucoma or delay 
its progression. Among them, niacin and citicoline protect retinal ganglion cells 
(RGCs) from degeneration by targeting mitochondria, though at different levels. 
A well-established mouse model of RGC degeneration induced by experimental 
intraocular pressure (IOP) elevation was used to investigate whether a novel 
combination of niacin/citicoline has better efficacy over each single component 
in preserving RGC health in response to IOP increase.

Methods: Ocular hypertension was induced by an intracameral injection of 
methylcellulose that clogs the trabecular meshwork. Electroretinography 
and immunohistochemistry were used to evaluate RGC function and density. 
Oxidative, inflammatory and apoptotic markers were evaluated by Western blot 
analysis.

Results: The present results support an optimal efficacy of niacin with citicoline 
at their best dosage in preventing RGC loss. In fact, about 50% of RGCs were 
spared from death leading to improved electroretinographic responses to flash 
and pattern stimulation. Upregulated levels of oxidative stress and inflammatory 
markers were also consistently reduced by almost 50% after niacin with citicoline 
thus providing a significant strength to the validity of their combination.

Conclusion: Niacin combined with citicoline is highly effective in restoring RGC 
physiology but its therapeutic potential needs to be  further explored. In fact, 
the translation of the present compound to humans is limited by several factors 
including the mouse modeling, the higher doses of the supplements that are 
necessary to demonstrate their efficacy over a short follow up period and the 
scarce knowledge of their transport to the bloodstream and to the eventual target 
tissues in the eye.
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1. Introduction

Glaucoma is a chronic optic neuropathy characterized by progressive 
degeneration of retinal ganglion cells (RGCs), which leads to progressive 
visual loss (1, 2). Elevated intraocular pressure (IOP) and the derived 
mechanical stress are classically considered as the main causes of RGC 
death. In fact, increased IOP leads to excessive production of reactive 
oxygen species (ROS) that plays a role in the pathogenesis of glaucoma 
stimulating apoptotic and inflammatory pathways and promoting RGC 
apoptosis. Lifestyle and dietary supplementation may influence some of 
the risk factors and pathophysiological mechanisms underlying 
glaucoma development and progression. Antioxidant, anti-inflammatory 
and neuroprotective properties of ingredients in the dietary regimen 
have shown promising results in the management of chronic 
degenerative ocular diseases including glaucoma. For instance, 
intervening on the chronic intake of active molecules such as caffeine 
has been recently reported to exert protective effects on RGCs through 
anti-inflammatory action (3). In addition, impairment of mitochondrial 
function by mechanical stress and decreased blood perfusion due to IOP 
increase is likely to affect RGC survival thus eliciting a great interest on 
strategies that intervene on mitochondrial dysfunction in order to delay 
or even halt RGC loss (4–6). Some dietary supplements targeting 
mitochondrial dysfunction have been demonstrated to lower the risk of 
developing glaucoma and potentially slow disease progression. Among 
them, niacin (vitamin B3 or nicotinamide, a precursor of nicotinamide 
adenine dinucleotide, NAD+) is largely present in healthy diets while 
citicoline (Cytidine 5′-diphosphocholine), an intermediate in the 
generation of phosphatidylcholine from choline, is found in small 
amount in only a few food groups. Although acting at different cellular 
levels, both compounds represent to date some of the most promising 
neuroprotective supplements in ophthalmology with growing evidence 
demonstrating their efficacy against RGC degeneration (7–10). In 
particular, niacin acts as a crucial regulator of mitochondrial metabolism 
and redox reactions (11) while citicoline stabilizes cell membranes 
through the synthesis of phospholipids (12) and the production of 
cardiolipin, thus inhibiting mitochondria-mediated apoptosis (13). In 
glaucoma models, diets supplemented with niacin have been 
demonstrated to protect RGCs from degeneration by supporting 
mitochondrial health and metabolism (14–16). In this respect, vitamin 
B3 has been included in the panel of neuroprotective strategies in 
glaucoma patients in which low vitamin B3 levels have been 
demonstrated (17). Accordingly, vitamin B3 supplementation appears 
to counteract RGC dysfunction. In fact, in humans, increased niacin 
intake is associated with a lower likelihood of glaucoma (18) and NAD 
precursors seem to reduce the RGC vulnerability to increased IOP (19). 
In addition to niacin, citicoline protection against RGC damage has been 
extensively demonstrated in different models of RGC injury (20, 21). At 
the clinical level, citicoline administration to glaucoma patients appears 
to slow down glaucoma progression by exerting neuroprotective effects 
(22, 23). Preclinical and clinical data on the efficacy of citicoline 
supplementation in glaucoma have been comprehensively reviewed by 
Grieb et al. (24). The fact that glaucomatous degeneration encompasses 
multiple molecular pathways with intricate interactions suggests an 
important role of multitarget approaches based on the use of agent 
combinations acting on complementary pathogenic mechanisms. For 
in-stance, oxidative stress leads to dysfunctional mitochondria, which in 
turn may modulate inflammatory processes, while pro-inflammatory 
mediators also alter mitochondrial function (25). In fact, the excess of 

reactive oxygen species (ROS) not compensated by endogenous 
antioxidant defenses can damage lipids, DNA, and proteins leading to 
RGC degeneration and can also activate the release of inflammatory 
mediators that participate to ROS-mediated RGC apoptosis (26). To this 
end, dietary supplements have been recognized as a promising adjuvant 
therapy in glaucoma since they may counteract oxidative stress and 
mitochondrial dysfunction (27, 28). The fact that both niacin and 
citicoline tar-get mitochondria made us to hypothesize that their 
association could be  more effective than the action of each single 
molecule. Therefore, aim of this study has been the evaluation of the 
efficacy of a dietary supplementation with niacin and citicoline in a 
mouse model of ocular hypertension induced by the injection of 2% 
methylcellulose (MCE) into the anterior chamber (29, 30). In this model, 
the efficacy of niacin/citicoline, either alone or in association, has been 
determined on the pathological hallmarks leading to RGC death – 
including oxidative stress and inflammation – both converging on the 
apoptotic cascade that culminates in RGC loss. Further evidence on the 
combination efficacy on RGCs survival have been also provided by the 
electrophysiological assessment of RGC function (29–31).

2. Materials and methods

2.1. Animals

C57BL/6 J male mice (2-month-old) were purchased from Charles 
River Laboratories Italy (Calco, Italy). Mice were housed in a constant 
environment (23 ± 1°C, 50 ± 5% humidity) with a 12 h light/dark cycle 
(lights on at 08.00 a.m.) and fed with a standard diet and water ad 
libitum. Before starting the study, all mice were acclimatized for 7 days 
to handling and tonometry. This study was carried out in compliance 
with the ARVO Statement for the Use of Animals in Ophthalmic and 
Vision Research. The present study follows the European Communities 
Council Directive (2010/63/UE) and the Italian guidelines for animal 
care (DL 26/14, permission number: 132/2019PR). The 3Rs principles 
for ethical use of animals in scientific research guided our efforts to 
reduce both the number and suffering of the animals used in the 
present study. A total of 60 mice with an average body weight of 
20–25 g were randomly assigned to 10 different groups as reported in 
Table 1.

2.2. Experimental model of ocular 
hypertension

Ocular hypertension was induced by an intracameral injection of 
2% MCE in agreement with previous studies (29, 30). MCE (M0512; 
Sigma Aldrich, St. Louis, MO, United States) was dissolved at 2% in 
sterile saline to obtain an aqueous solution with a viscosity ranging 
from 3,500 to 5,600 cps. Mice were anesthetized with an intraperitoneal 
injection of avertin (1.2% tribromoethanol and 2.4% amylene hydrate 
in distilled water, 0.02 mL/g body weight: Sigma-Aldrich) and injected 
into the anterior chamber with 5 μL of MCE in both eyes by means of 
a Hamilton syringe equipped with a 36-gauge needle. The needle was 
inserted in the iridocorneal angle at about 1 mm from ora serrata and 
oriented parallelly to the iris surface. After MCE injections, mice were 
daily monitored for any alteration in ocular tissues (e.g., cataract, 
corneal opacity or edema).
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2.3. Oral supplementation with niacin and 
citicoline or their combination

Niacin and citicoline powders were supplied by Fidia Farmaceutici 
(Abano Terme, PD, Italy) and dissolved in drinking water either alone 
or in association. In light of pre-liminary observations showing an 
average daily drinking volume of 5 mL/mouse/day and assuming an 
average mouse body weight of 20 g, niacin was dissolved at low (2 mg/
mL) or high concentration (10 mg/mL) in order to obtain a 
corresponding daily dosage of 0.5 g/Kg (low dose; N low) or 2.5 g/Kg 
(high dose; N high). Similarly, citicoline was dissolved in the drinking 
water at low (2 mg/mL) or high concentration (4 mg/mL) to obtain a 
corresponding daily dosage of 0.5 g/Kg (low dose; C low) or 1 g/Kg 
(high dose; C high). Niacin and citicoline doses used here are in line 
with those reported in previous studies (21, 32, 33). Treatments 
providing different dose combinations of the two components were 
obtained by dissolving both niacin and citicoline in the same solution 
at the corresponding concentration. Mice were treated 14 days before 
and 14 days after the induction of ocular hypertension.

2.4. IOP measurement

IOP was non-invasively assessed every day using rebound 
tonometry (TonoLab, Icare Finland Oy, Helsinki, Finland). Mice were 
gently restrained, with the probe of the tonometer aligned to the eye 
optical axis at a 1–2 mm distance from the cornea. After habituation, 
the average of 5 consecutive recordings was considered as a reliable 
measure of IOP.

2.5. Electroretinogram

Full field photopic ERG was recorded in control mice and in mice 
that received MCE, untreated or treated with niacin and citicoline 
either alone or in combination. Mice dark-adapted overnight were 
anesthetized with intraperitoneal injection of avertin and placed on a 
heating pad. The body temperature was maintained at 38°C using a 

homeo-thermic controller. To maintain dark adaptation all handling 
and experiments were performed under a dim red light. ERG 
responses were recorded using Ag/AgCl corneal electrodes. A 
reference electrode was inserted on the forehead, while a ground 
electrode was inserted at the base of the tail. The cornea was 
intermittently irrigated with saline solution to prevent clouding of the 
ocular media. Electroretinographic recordings were made using an 
ERG setup (Retimax Advanced, CSO, Firenze, Italy). Following light-
adaptation (10 min to 30 cd-s/m2) to suppress the rod response, 
photopic responses were obtained following the delivery of 10 
consecutive stimuli at 3 cd-s/m2 with an interstimulus interval of 3 s 
and averaged to minimize the noise contribution. In the photopic 
ERG, the photopic negative response (PhNR) was measured from the 
baseline (0 μV) to the trough of the negative response following the 
positive b-wave.

PERG responses were evoked by delivering visual stimuli 
consisting of black-white horizontal bars (0.05 cycles/deg. black and 
white bars reversing at 1 Hz presented at 98% contrast) generated on 
a light emitting diode display with a mean luminance of 50 cd/m2 
aligned at about 25 cm from the cornea surface. A total of 300 
consecutive signals was averaged to reduce noise contamination. 
PERG responses were analyzed by measuring the N35-P50 amplitude 
(from the negative peak, N35, to the positive peak, P50) and the 
P50-N95 amplitude (from the positive peak, P50, to the negative 
peak, N95).

2.6. Retinal ganglion cell 
immunohistochemistry

After ERG recording, mice were sacrificed by an overdose of 
avertin and their eyeballs enucleated. Then, 6 random retinas were 
isolated and fixed in in 4% paraformaldehyde in 0.1 M phosphate 
buffered saline (PBS) for 2 h at room temperature. Contralateral 
retinas were used for molecular analyses. Retinas were rinsed with 
PBS and incubated for 24 h at 4°C with the primary antibody directed 
to RBPMS (ABN1376, Merck, Darmstadt, Germany) diluted 1:100 in 
PBS containing 2% TritonX-100 and 5% BSA. Retinas were then 
rinsed with PBS and incubated for 2 h with FITC-conjugated anti-
guinea pig secondary antibody (F6261, Merck) diluted 1:200 in PBS 
containing 5% BSA and 2% TritonX-100. Finally, retinas were rinsed 
in PBS, flat mounted on polarized glass slides with the RGC layer 
facing up and coverslipped with a mounting medium. Images were 
acquired using an epifluorescence microscope (Ni-E; Nikon-Europe, 
Amsterdam, Netherlands) equipped with a digital camera (DS-Fi1c 
camera; Nikon-Europe). The number of RBPMS immuno-positive 
RGCs (number of cells per mm2) was compared between the 
experimental groups. Quantification was performed in a masked 
manner, with the operator ignoring the treatment received by the 
donor animal.

2.7. Western blot

Isolated retinas were homogenized in RIPA lysis buffer (Santa 
Cruz Biotechnology, Dallas, TX, Unites States) containing a cocktail 
of protease and phosphatase inhibitors (Roche Ap-plied Science, 
Indianapolis, IN, Unites States). Protein concentration of retinal 

TABLE 1 Experimental groups.

Experimental 
group

MCE Treatment Sample 
size

Control Water 6

MCE MCE injection Water 6

N low MCE injection Niacin 0.5 g/Kg/die 6

C low MCE injection Citicoline 0.5 g/Kg/die 6

N high MCE injection Niacin 2.5 g/Kg/die 6

C high MCE injection Citicoline 1 g/Kg/die 6

N low + C low MCE injection Niacin 0.5 g/Kg/die + 

citicoline 0.5 g/Kg/die

6

N high + C low MCE injection Niacin 2.5 g/Kg/die + 

citicoline 0.5 g/Kg/die

6

N low + C high MCE injection Niacin 0.5 g/Kg/die + 

citicoline 1 g/Kg/die

6

N: niacin; C: citicoline.

111

https://doi.org/10.3389/fmed.2023.1230941
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Melecchi et al. 10.3389/fmed.2023.1230941

Frontiers in Medicine 04 frontiersin.org

homogenates was quantified by Micro BCA Protein Assay (Thermo 
Fisher Scientific, Waltham, MA, United States). Thirty micrograms of 
proteins from each sample were run on 4–20% SDS-PAGE gels 
(Bio-Rad Laboratories, Inc., Hercules, CA, Unites States) before 
transferring samples onto polyvinylidene difluoride membranes. 
Membranes were blocked for 1 h with 5% skim milk and then 
incubated overnight at 4°C with the solutions of primary antibodies 
listed in Table 2 using β-actin as the loading control. Membranes were 
then incubated for 2 h with rabbit polyclonal anti-mouse 
HRP-conjugated (A9044, Sigma-Aldrich) or goat polyclonal anti-
rabbit HRP-conjugated (170–6,515, Bio-Rad Laboratories, Inc.) 
secondary antibodies (1:5000) and developed with the Clarity Western 
enhanced chemiluminescence substrate (Bio-Rad Laboratories, Inc.). 
Images were acquired using the ChemiDoc XRS+ (Bio-Rad 
Laboratories, Inc.). The optical density (OD) of the bands was 
evaluated using the Image Lab 3.0 software (Bio-Rad Laboratories, 
Inc.) and data were normalized to the corresponding OD of β-actin or 
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) 
p65 as appropriate.

2.8. Statistical analysis

Data were analyzed by the Shapiro–Wilk test to verify their 
normal distribution. Statistical analysis was carried out with Graph 
Pad Prism 8.0.2 software (GraphPad Soft-ware, Inc., San Diego, CA, 
United States). Multiple comparisons among groups were analyzed by 
two-way ANOVA followed by the Tukey post hoc test. Data are 
expressed as mean ± SEM of the indicated n values. Differences with 
p < 0.05 were considered as significant.

3. Results

3.1. Effect of dietary supplementation with 
niacin and citicoline on MCE-induced IOP 
elevation

IOP levels were determined in both untreated and treated mice 
before and after MCE injection. As shown in Figure 1, during the 

14 days preceding MCE injection, IOP levels were stable at about 
14 mmHg with no difference between treated and untreated 
groups, while 24 h after the injection, IOP levels significantly 
increased to reach a peak at about 32 mmHg. MCE-induced ocular 
hypertension was maintained up to 14 days in agreement with 
previous findings (29, 30). Either individual or combined 
administration of niacin and citicoline did not influence the 
MCE-induced IOP elevation.

3.2. Effect of dietary supplementation with 
niacin and citicoline on MCE-induced RGC 
dysfunctional activity

The effect of niacin and citicoline administration, either alone or 
in combination, on MCE-induced retinal dysfunction was assessed by 
photopic ERG recordings, including the b-wave as a cone-driven post-
receptor response and the photopic negative response (PhNR) as a 
RGC-related response (Figure  2A). In MCE-injected mice, the 
amplitude of the photopic b-wave did not display any statistical 
difference from the control group independent on treatment 
(Figure 2B). Conversely, PhNR amplitude in untreated mice receiving 
MCE injection, was significantly decreased by about 42% as compared 
to controls. Mice receiving single treatments with low dose of either 
niacin or citicoline displayed a PhNR amplitude comparable to that of 
MCE untreated mice. In contrast, single treatments with niacin or 
citicoline at high dose prevented the MCE-induced decrease in PhNR 
responses. When used in combination, either low or high dose of 
niacin preserved the PhNR amplitude only in the presence of citicoline 
at low dose, while the PhNR amplitude remained rather similar to that 
of MCE untreated mice in the presence of citicoline at high dose 
(Figure 2C).

The RGC-specific activity in each experimental group was 
assessed by analyzing both the positive (N35-P50) and the negative 
components (P50-N95) of pattern ERG (PERG) responses 
(Figure 3A). MCE-injected mice showed a significant decrease in both 
N35-P35 and P50-N95 amplitudes as compared to controls (50% and 
53%, respectively), without any significant effect exerted by individual 
treatments with either niacin or citicoline at low dose. On the contrary, 
the individual treatment with niacin or citicoline at high dose partially 

TABLE 2 Western blot antibodies.

Antibodies Dilution Source Catalogue

Rabbit polyclonal anti-Nrf-2 1:1000 Abcam (Cambridge, UK) ab92946

Rabbit polyclonal anti-HO-1 1:500 Abcam ab13243

Rabbit monoclonal anti-pNF-kB p65 (Ser 536) 1:1000 Abcam ab76302

Rabbit polyclonal anti-NF-kB p65 1:1000 Abcam ab16502

Mouse monoclonal anti-IL-6 1:500 Santa Cruz Biotech sc-57,315

Rabbit monoclonal anti-GFAP 1:5000 Abcam ab207165

Rabbit monoclonal anti-cleaved caspase 3 1:1000 Cell Signaling Technology (Danvers, MA, United States) 9,664

Rabbit monoclonal anti-Bax 1:500 Abcam ab182733

Rabbit polyclonal anti-Bcl-2 1:500 Abcam ab194583

Mouse monoclonal anti-cytochrome c 1:250 BD Biosciences (San Diego, CA, United States) 556,433

Mouse monoclonal anti-β-actin 1:2500 Sigma-Aldrich A2228
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prevented the MCE-induced decrease in PERG responses, which still 
resulted about 25% lower than in controls. Both N35-P35 and 
P50-N95 amplitudes were preserved to control levels following the 
combined administration of niacin (at either low or high dose) with 
citicoline at low dose. In contrast, combined administration of 
citicoline at high dose did not influence PERG response amplitudes, 
which were comparable to those of MCE untreated mice 
(Figures 3B,C).

3.3. Effect of dietary supplementation with 
niacin and citicoline on MCE-induced RGC 
loss

Together with RGC dysfunction, the progressive decrease in RGC 
density represents a hallmark of MCE-induced glaucomatous damage. 
After recording RGC activity, we examined whether the improved 
retinal function after niacin (at either doses) and citicoline at low dose 

FIGURE 1

Effect of individual or combined administration of niacin and citicoline on methylcellulose (MCE)-induced ocular hypertension. Longitudinal evaluation 
of intraocular pressure (IOP) levels as assessed by rebound tonometry in control and MCE injected mice either untreated or treated with niacin and 
citicoline (individual or combined). Data are expressed as mean  ±  SEM of n  =  6 mice.

FIGURE 2

Effect of individual or combined administration of niacin with citicoline on photopic electro-retinogram (ERG). (A) Representative waveforms of 
photopic ERG in control and methylcellulose (MCE)-injected mice either untreated or treated with individual niacin and citicoline or their combination. 
(B) Mean amplitude of photopic b-wave. (C) Mean amplitude of photopic negative response (PhNR) as measured from the baseline (0  μV) to the trough 
of the negative response following the positive b-wave. Data are expressed as mean  ±  SEM (n  =  6 mice for each experimental group). *p  <  0.01, 
**p  <  0.001, and ***p  <  0.0001 vs. control; §p  <  0.01, §§p  <  0.001 vs. MCE (two-way ANOVA followed by Tukey’s multiple comparison post-hoc test).
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was accompanied by a reduced RGC loss by evaluating the density of 
RNA-binding protein with multiple splicing (RBPMS) positive RGCs 
in retinal flat mounts. As shown by the representative images in 
Figure 4A and their related quantification (Figure 4B), after MCE 
injection RGC density decreased by about 63% as compared to 
controls with no significant effects of the individual administration of 
niacin or citicoline at low dose. In mice receiving niacin or citicoline 
alone at high dose, RGC density was higher than in MCE untreated 
mice, but still 39% lower than in controls. The combined 
administration of niacin (at either doses) and citicoline at low dose 
preserved the RGC density to control levels. Both doses of niacin in 
combination with citicoline at high dose was found to slightly increase 
the RGC density that remained about 40% lower than in controls.

3.4. Effect of dietary supplementation with 
niacin and citicoline on oxidative stress and 
inflammatory markers

In the glaucomatous damage to RGCs, oxidative stress and 
inflammation represent primary events driving the progressive loss of 
RGC activity and viability. Retinal levels of typical markers of oxidative 
stress and inflammation were assessed following the individual or 
combined administration of niacin and citicoline to MCE-injected mice. 
In Figure 5, oxidative stress was evaluated by measuring protein levels 
of nuclear factor erythroid 2-related factor-2 (Nrf-2), a ROS-sensitive 
transcription factor, and the antioxidant enzyme heme oxygenase-1 
[HO-1; (34)]. Protein levels of both Nrf-2 and HO-1 in-creased in 
MCE-untreated mice by about 270% and 272%, respectively, as 
compared with controls. Protein levels of both markers did not differ 
from those of MCE untreated mice after the administration of niacin or 
citicoline at low dose, while they were significantly decreased following 
the treatment with high dose of niacin (Nrf-2: −35%, HO-1: −25%) or 

citicoline (Nrf-2: −34%, HO-1: −25%) as compared to MCE untreated 
mice. Combined administration of niacin (at either low or hi gh dose) 
with citicoline at low dose further decreased oxidative stress markers to 
levels comparable to those in controls, whereas the combination of 
niacin (at either low or high dose) with citicoline at high dose only 
partially affected oxidative stress markers (Nrf-2: about −24%, HO-1: 
about −27%) as compared to MCE untreated mice.

Inflammation processes and associated glial reactivity were 
evaluated by measuring the protein levels of the phosphorylated 
form of the p65 subunit of nuclear factor kappa-light-chain-
enhancer of activated B cells (pNF-kB), a master transcriptional 
regulator of pro-inflammatory factors including interleukin (IL)-6 
(35) and the glial fibrillary acid protein (GFAP) as a gliosis marker. 
In untreated mice injected with MCE, the protein level of pNF-kB 
was significantly increased by about 92% (Figure 6A) while the 
protein level of IL-6 increased by about 98% (Figure  6B). The 
individual administration of niacin or citicoline at low dose did not 
influence the MCE-induced increment in pNF-kB and IL-6, while 
their administration at high dose significantly reduced the levels 
of both inflammatory markers, although they remained still higher 
than in controls (+40% and + 45%, respectively). The combined 
administration of niacin with citicoline at low dose prevented the 
MCE-induced increase of pNF-kB and IL-6. The combination 
efficacy on pNF-kB increase was lost when citicoline was 
administered at high dose, while a slight decrement was observed 
on IL-6 protein levels (−19%). MCE-induced increase in GFAP 
protein levels (+95%) was significantly decreased by individual 
niacin and citicoline at high dose (−42% and −43%, respectively). 
Niacin (at either doses) in combination with citicoline at low dose 
preserved GFAP at levels similar to those in controls, while in 
combination with at high dose had lower efficacy on MCE-induced 
GFAP accumulation that remained about 55% higher than in 
controls (Figure 6C).

FIGURE 3

Effect of individual or combined administration of niacin and citicoline on methylcellulose (MCE)-induced dysfunctional pattern electroretinogram 
(PERG). (A) Representative waveforms of PERG in control and MCE-injected mice either untreated or treated with individual niacin and citicoline or 
their combination. (B,C) Mean amplitudes of the N35-P50 (B) and P50-N95 (C) waves. Data are expressed as mean  ±  SEM (n  =  6 mice for each 
experimental group). *p  <  0.05, **p  <  0.001, and ***p  <  0.0001 vs. control; §p  <  0.01, §§p  <  0.001, §§§p  <  0.0001 vs. MCE (two-way ANOVA followed by 
Tukey’s multiple comparison post-hoc test).
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3.5. Effect of dietary supplementation with 
niacin and citicoline on intrinsic apoptotic 
pathway

Altered oxidative stress and inflammatory processes lead to 
progressive RGC death by triggering the apoptotic cascade in which the 
final executioner is the active caspase-3. As shown in Figure 7A, in MCE 
untreated mice, the level of caspase-3 was increased with respect to 
controls (+84%). It was not significantly affected by the administration 
of niacin or citicoline at low dose while it was drastically reduced by their 
administration at high dose (about −45%). Combined administration of 
niacin (at either low or high dose) with citicoline at low dose further 
decreased caspase-3 protein levels which became comparable to those 
in controls. Conversely, combined treatment with citicoline at high dose 
did not affect caspase-3 levels that remained comparable to those in 
untreated MCE mice. To evaluate the combination efficacy on the 
mitochondrial-dependent intrinsic apoptotic pathway, we assessed the 
ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2 proteins as a major 
checkpoint in the intrinsic apoptotic pathway, and the retinal levels of 
cytochrome c, which acts as a primary trigger of the apoptotic caspase 
cascade. As shown in Figure 7B, the Bax/Bcl-2 ratio increased by about 
300% in MCE untreated mice as compared with controls. Niacin or 
citicoline at low dose did not influence the MCE-induced increase in 

Bax/Bcl-2 ratio, while at high dose, the ratio was reduced to about 50%. 
The combined administration of niacin with citicoline at low dose, 
further reduced the Bax/Bcl-2 ratio, reaching levels comparable to those 
in controls. Conversely, the Bax/Bcl-2 ratio did not significantly differ 
from that of MCE untreated mice after niacin combined with citicoline 
at high dose. The same trend of variations applies to the efficacy of the 
single components or their combined administration on protein levels 
of cytochrome c with higher efficacy of citicoline at low dose in 
combination with niacin at either low or high dose (Figure 7C).

4. Discussion

Increased intraocular pressure (IOP) is the main risk factor for 
developing glaucoma that is characterized by progressive optic nerve 
degeneration resulting in RGC death. Oxidative stress and 
inflammation work together to trigger apoptotic cell death by affecting 
mitochondrial dynamics. IOP elevation, characteristic of hypertensive 
glaucoma, was mimicked here by injecting the anterior chamber of the 
mouse eye with MCE, which clogs the trabecular meshwork and 
impairs the aqueous humor outflow. Sudden elevation of the IOP 
remains stable for almost 2 weeks, thus closely simulating the human 
hypertensive glaucoma. As shown by the present findings, a novel 

FIGURE 4

Effect of individual or combined administration of niacin and citicoline on methylcellulose (MCE)-induced retinal ganglion cell (RGC) loss. (A) Representative 
images of RNA-binding protein with multiple splicing (RBPMS) positive RGCs in whole-mount retinas of control and MCE mice either untreated or treated 
with individual niacin and citicoline or their combination. Scale bar: 50  μm. (B) Quantitative analysis of RBPMS-positive cell density. Data are expressed as 
mean  ±  SEM (n  =  6 retinas for group). *p  <  0.0001 vs. control; §p  <  0.0001 vs. MCE (two-way ANOVA followed by Tukey’s multiple comparison post-hoc test).
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combination of niacin with citicoline has better efficacy over each 
single component in preserving RGC health in response to IOP 
increase by reducing inflammation and oxidative stress, which are the 
main triggers of RGC apoptotic death and retinal dysfunctional activity.

4.1. Characterization of the MCE model

Mechanic stress at the optic nerve head impairs RGC survival by 
activating multifactorial mechanisms among which the inflammatory 
cascade associated to glial cell activation triggers NF-κB, a transcriptional 
factor which enters the nucleus to generate high levels of 
pro-inflammatory cytokines, also including IL-6 (35). The inflammatory 
response is closely related to increased oxidative stress by enhancing the 
production of oxidative metabolites through the overexpression of 
ROS-producing enzymes (36). On its hand, increased oxidative stress, 
as determined by upregulated levels of the ROS-sensitive transcriptional 
factor Nrf-2 and its target HO-1, promotes an intracellular signaling 
cascade that activates a variety of transcription factors leading to 
enhanced pro-inflammatory gene expression (37). Upstream the 

IOP-associated oxidative stress, elevated mechanic stress and insufficient 
retinal perfusion impair mitochondrial biogenesis by affecting the 
activity of the electron transport chain, thus contributing to increased 
production of ROS finally leading to mitochondrial dysfunction and 
DNA alterations, eventually triggering the apoptotic cascade (38). 
Accordingly, we found that MCE injection leads to increased Bax/Bcl-2 
ratio resulting in cytochrome c release as demonstrated by its increased 

FIGURE 5

Effect of individual or combined administration of niacin and 
citicoline on MCE-induced oxidative stress. (A) Representative 
Western blots and densitometric analysis of nuclear factor erythroid 
2-related factor-2 (Nrf-2) and (B) heme oxygenase-1 (HO-1) levels in 
control and MCE mice either untreated or treated with individual 
niacin and citicoline or their combination. Data are expressed as 
mean  ±  SEM (n  =  6 retinas for group). *p  <  0.0001 vs. control; 
§p  <  0.01, §§p  <  0.001, and §§§p  <  0.0001 vs. MCE (two-way ANOVA 
followed by Tukey’s multiple comparison post-hoc test).

FIGURE 6

Effect of individual or combined administration of niacin and citicoline 
on MCE-induced in-flammatory response. (A–C) Representative 
Western blots and densitometric analysis of the phosphorylated form 
of the p65 subunit of nuclear factor kap-pa-light-chain-enhancer of 
activated B cells (pNF-kB) and NF-kB (A), interleukin (IL)-6 (B) and glial 
fibrillary acidic protein (GFAP; C) levels in control MCE mice either 
untreated or treated with individual niacin and citicoline or their 
combination. Data are expressed as mean  ±  SEM (n  =  6 retinas for 
group). *p  <  0.01, **p  <  0.001, and ***p  <  0.0001 vs. control; §p  <  0.01, 
§§p  <  0.001, and §§§p  <  0.001 vs. MCE (two-way ANOVA followed by 
Tukey’s multiple comparison post-hoc test).
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expression. Then, activation of the apoptosis effector caspase-3 leads to 
a drastic decrease in immunostaining with RBPMS, a well-established 
marker of RGCs (39). Decreased density of RGCs is accompanied by 
impaired electroretinographic recordings of their activity. In fact, PhNR, 
a slow negative component of the photopic ERG that provides specific 
information about RGC activity, and PERG, an electrophysiologic 
response to a pattern reversing stimulus that objectively measures RGC 
function, are both reduced in amplitude in line with previous findings 
from different animal models of glaucoma with spontaneous or induced 

ocular hypertension (29, 30, 33, 40–43). Alterations in PhNR and PERG 
are also typical of glaucoma patients in which they have been possibly 
related to early RGC loss (9).

4.2. Efficacy of diet supplements

The MCE model used in this study has been previously employed to 
assess the efficacy of treatment strategies aimed at counteracting 
glaucomatous RGC degeneration by acting on IOP elevation or 
downstream inflammatory and oxidative processes. For instance, oral 
administration of nutritional products based on antioxidant/anti-
inflammatory components effectively counteract MCE-induced RGC 
degeneration independently on IOP lowering (29) at variance with 
topically administered melatoninergic compounds, which exert a strong 
hypotensive effect (30). As shown by the present results, non-IOP-related 
mechanisms mediate the protective action of dietary supplementation 
with niacin and citicoline at their best dosage either alone or in 
combination. In particular, single administration of niacin or citicoline at 
doses in line with those previously reported to exert beneficial effects in 
preclinical models (21, 33), efficiently counteracts the major pathological 
signs of glaucoma at morpho/functional and molecular levels. Niacin 
supplementation would act by replacing the glaucoma-associated 
depletion of NAD+, a coenzyme involved in oxidative phosphorylation 
leading to ATP production. In fact, niacin has been shown to influence 
mitochondrial metabolism and its supplementation has been 
demonstrated to improve mitochondrial structure with the formation of 
more tightly folded cristae thus increasing the ATP-generating surface 
area (44, 45). On the other hand, citicoline exerts broader effects by 
elevating neurotrophin levels, ameliorating axonal transport deficits, 
restoring membrane integrity and improving mitochondrial function 
including cardiolipin synthesis that participates to ATP production (46).

4.3. Combined administration of niacin 
with citicoline

As also shown by the present results, the combined administration 
of niacin and citicoline at calibrated amounts is more effective than 
each single ingredient confirming the rationale for their association to 
limit retinal damage. This finding is in line with previous results 
demonstrating that the co-administration of vitamin B3 and citicoline 
also in combination with coenzyme Q10 is generally more effective 
than the single ingredients in reducing oxidation and inflammation 
(47). Combined efficacy of citicoline with CoQ10 has been 
demonstrated in many retinal pathologies including glaucoma (8). 
Accordingly, combined drug treatments acting by multitarget 
approach have been shown to be more effective compared with single-
drug treatments (48). In combination, drugs could be used at doses 
lower than standard, thus displaying safer and more efficient activity. 
In the case of the MCE model of glaucoma used here, assuming that 
mitochondrial dysfunction mainly contributes to glaucoma-associated 
retinal damage and considering that mitochondrial cristae are the 
main target of vitamin B3, the obtained results demonstrate that the 
concomitant administration of niacin and citicoline has the theoretical 
advantage of better recovering mitochondrial health. However, the 
possibility that the combined efficacy of niacin and citicoline would 
not be limited to the improvement of mitochondrial health cannot 
be excluded given the broad spectrum of effects of citicoline, other 

FIGURE 7

Effect of individual or combined administration of niacin and 
citicoline on MCE-induced apoptotic cascade. (A–C) Representative 
Western blots and densitometric analysis of caspase 3 (A), Bax/Bcl-2 
ratio (B) and cytochrome c (C) in control and MCE mice either 
untreated or treated with individual niacin and citicoline or their 
combination. Data are expressed as mean  ±  SEM (n  =  6 retinas for 
group). *p  <  0.05, **p  <  0.001, and ***p  <  0.0001 vs. control; §p  <  0.01, 
§§p  <  0.001 and §§§p  <  0.001 vs. MCE (two-way ANOVA followed by 
Tukey’s multiple comparison post-hoc test).
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FIGURE 8

Schematic diagram depicting possible mechanisms of action of niacin and citicoline on hypertensive glaucoma. Niacin/citicoline, by intervening on 
dysfunctional mitochondria, would reduce oxidative stress and inflammation both resulting in preserved apoptotic cascade leading to retinal ganglion 
cell survival thus limiting visual loss.

than those specifically involving mitochondrial function. For instance, 
citicoline, acting as a source of phosphatidylcholine, has been shown 
to prevent neuronal membrane breakdown and apoptosis, thus 
providing neuroprotection (7). Moreover, citicoline may act as a 
choline donor for the synthesis of neurotransmitters such as 
acetylcholine (46). Given the evidence of the protective efficacy of 
acetylcholine receptor agonists on IOP-dependent RGC degeneration 
(49), the possibility exists that the neuroprotective effect of citicoline 
might also depend on enhanced cholinergic signaling.

As also shown by the present results, the efficacy of the combined 
administration of niacin and citicoline depends on their relative 
concentration, with best efficacy of each of them at high doses when 
administered alone, and even better efficacy when citicoline is 
administered at low dose in combination with niacin at either high 
or low dose. Combination of niacin with citicoline at their optimal 
ratio consistently acts on the different players in the molecular 
cascade triggered by IOP elevation towards RGC morpho-functional 
rescue (see the schematic diagram in Figure  8). Whether the 
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combination efficacy depends on its preventive administration or 
rather reflects restored RGC health secondary to IOP injury 
remains to be answered although evidence is accumulating about 
lower-risk and high-benefit of dietary supplements in preventive 
care in respect to curative intervention (50).

The protective effects of niacin and citicoline are directly 
proportional to their concentration when given alone. Such effects 
can be  improved by the association of either doses of niacin 
despite only in combination with low-dose citicoline. This finding 
is in line with the concept that low doses of two compounds that 
have different modes of action may provide additive effects to 
achieve better efficacy than high doses alone. On the other hand, 
the additive effect of the combination may vary according to the 
doses and the different proportions of each component in the 
combination (51). In the case of citicoline, previous evidence from 
a rat model of embolic stroke demonstrated that a suboptimal 
dose of citicoline combined with a thrombolytic therapy provided 
an additive efficacy on the reduction in infarct volume while 
increasing the dose of citicoline in the combination was less 
effective than its low dose (52) suggesting some kind of negative 
interference. We  are currently unable to provide a clear 
explanation about the lack of combined efficacy when citicoline 
is given at high dose, but we can speculate about its reason. It is 
usually assumed that ingested citicoline is quickly hydrolyzed into 
cytidine and choline of which choline concentration in the plasma 
is much lower than cytidine thus preventing cholinergic toxicity 
(53). When high-dose citicoline is given in combination with 
niacin then choline concentration might exceed its physiological 
level as nicotinamide potentiates choline availability by blocking 
its clearance (54). Additional choline availability might derive 
from niacin interaction with activated phospholipase A2, which 
releases choline from choline-containing phospholipids (55). The 
final effect would be an intracellular choline accumulation beyond 
the level of toxicity (56). This would counterbalance the protective 
effect of each molecule either alone or in combination at low doses 
to ultimately drive apoptotic RGC death. Additionally, citicoline 
transport may be  limited by high extracellular choline 
concentration with higher uptake maintained in the presence of 
low compared with high substrate level. Vitamin B3 diffusion, in 
contrast, involves high-affinity carrier-mediated mechanisms that 
render its transport less dependent on the substrate concentration.

4.4. Conclusion

Combination efficacy of niacin with citicoline is founded on 
multifactorial mechanisms of action that lead to improved 
mitochondrial resilience against glaucomatous stress. While drug 
combination is extensively studied for increasing therapy efficacy, 
preventing drug resistance and reducing therapy duration, less 
information is available on combined activity of distinct dietary 
supplements. In fact, supplement interactions are difficult to 
interpret because the variability in supplement constituents, 
quality, and dosage makes it difficult to dissect the efficacy of 
each component in respect to supplement combination.

Although the present findings suggest a potential effect of 
the combination in the experimental mouse model of 
hypertensive glaucoma, these results need to be  further 
elucidated and reproduced in humans mostly in respect to the 
short follow up period in the MCE model. In this respect, the 
gradual increase in IOP with age associated to progressive loss 
of RGCs in the DBA/2J inbred mouse strain would allow us to 
follow for a longer time the temporal profile of RGC loss and 
IOP elevation (57). Additional restrictions apply on the daily 
doses allowed in humans that are much lower in respect to those 
used in animal models. Considering the different metabolism 
and size of a mouse, the doses used in this study are 50 to almost 
260 times higher for niacin and 5 to 10 times higher for 
citicoline. This is justified by the fact that the insurgence of 
glaucoma and RGC apoptotic death occurs within 2 weeks in the 
mouse model as compared to decades in humans, thus much 
higher doses of the supplements are necessary to demonstrate 
their efficacy. In addition, there are many persistent gaps in our 
knowledge of supplement transport from the gut to the 
bloodstream and to the eventual target tissues in the eye. Further 
limitations include the difficulty to conduct large clinical trials 
using diet supplements to assess their impact on human health. 
In the case of vitamin B3, for instance, short-term clinical 
studies in glaucoma patients have demonstrated its efficacy in 
improving visual function, but additional clinical trials with 
longer follow-up are needed before vitamin B3 may 
be  incorporated into clinical practice. In the case of niacin 
combination with citicoline, the present findings are highly 
suggestive of the possibility that it may become part of the 
adjuvant treatment of glaucoma although its therapeutic 
potential needs to be further explored with both preclinical and 
randomized clinical trials.
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Restoring autophagic function: a 
case for type 2 diabetes mellitus 
drug repurposing in Parkinson’s 
disease
Marco Greco 1†, Anas Munir 1,2†, Debora Musarò 1, Chiara Coppola 1,2 
and Michele Maffia 1*
1 Department of Biological and Environmental Science and Technology, University of Salento, Lecce, 
Italy, 2 Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy

Parkinson’s disease (PD) is a predominantly idiopathic pathological condition 
characterized by protein aggregation phenomena, whose main component is 
alpha-synuclein. Although the main risk factor is ageing, numerous evidence 
points to the role of type 2 diabetes mellitus (T2DM) as an etiological factor. 
Systemic alterations classically associated with T2DM like insulin resistance and 
hyperglycemia modify biological processes such as autophagy and mitochondrial 
homeostasis. High glucose levels also compromise protein stability through the 
formation of advanced glycation end products, promoting protein aggregation 
processes. The ability of antidiabetic drugs to act on pathways impaired in both 
T2DM and PD suggests that they may represent a useful tool to counteract the 
neurodegeneration process. Several clinical studies now in advanced stages are 
looking for confirmation in this regard.

KEYWORDS

type 2 diabetes mellitus, Parkinson’s disease, alpha-synuclein, islet amyloid peptide 
protein, insulin-resistance, autophagy, hyperglycemia

1. Introduction

Parkinson’s disease (PD) is an irreversible and progressive neurological condition that affects 
8.5 million people worldwide (World Health Organization, 2022), with an incidence expected 
to double by 2040 (Dorsey and Bloem, 2018). PD classically involves midbrain structures, 
causing the depletion of the residing dopaminergic neuronal population and a predominantly 
motor symptomatology. The disease belongs to the class of proteinopathies and, apart from 5% 
of genetically linked cases, it is considered idiopathic (Reed et al., 2019).

Proteinopathies are chronic conditions characterized by an imbalance between protein 
synthesis and degradation (Bayer, 2015). This imbalance, which is caused by ageing, 
mitochondrial dysfunction, oxidative stress, inflammation and alterations in post-translational 
processes (PTMs), is responsible for protein aggregation and Lewy bodies formation at the 
neuronal level in PD. Type 2 diabetes mellitus (T2DM) is another proteinopathy with an 
alarming prevalence rate of 536 million worldwide, characterized by peripheral insulin 
resistance, high blood glucose levels and increased insulin secretion, which in time lead to a 
diminishment of β-cell functionality and number (Sun et al., 2022). Furthermore, these disease 
symptoms when sustained cause mitochondrial dysfunction, inflammation, and 
protein misfolding.
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An association between type 2 diabetes mellitus (T2DM) and PD 
has long been advocated (Sandyk, 1993), and subsequently 
strengthened by a better understanding of the underlying pathologically 
involved pathways. Numerous population-based studies have failed to 
unequivocally confirm the hypothesis of a causal relationship, with 
often contradictory conclusions requiring further investigation (Driver 
et al., 2008; Cereda et al., 2011, 2012; Schernhammer et al., 2011; Savica 
et al., 2012; Lu et al., 2014; Pagano et al., 2018). However, because of the 
brain requirement of insulin and the similar signaling mechanisms in 
the two body districts, impaired insulin release or uptake can contribute 
to both T2DM and PD pathogenesis. Both the conditions share 
pathophysiological elements like chronic inflammation, lysosomal and 
mitochondrial disfunction, whose molecular bases are associated with 
a loss in glucose metabolism (Burbulla et al., 2017; Ma et al., 2017). 
Moreover, insulin signaling has been shown to be involved in several 
mechanisms regulating apoptosis and oxidative stress prevention, with 
a profound role as neuroprotective agent (Duarte et al., 2008; Serhan 
et al., 2020; Gayen et al., 2022).

Furthermore, the dysfunction of glucose metabolism, typical of 
T2DM has been demonstrated as an early marker of PD (Dunn 
et al., 2014). Another important process that is impacted in both 
diseases is the cellular recycling and degradation mechanism of 
autophagy, which is interestingly both disturbed and contributes to 
the overwhelming aggregation of proteinaceous Lewy bodies and 
amyloid plaques in PD and T2DM, respectively (Hou et al., 2020). 
Moreover, mutations in autophagy-related genes (ARGs) also 
inherently impair the autophagic flux in both the diseases (Simón-
Sánchez et al., 2009; Cui and Li, 2023). In view of this, a limited 

number of studies have demonstrated that the activation of 
pathways like the mammalian target of rapamycin (mTOR) can 
restore autophagy, alleviating symptoms in in vitro and in vivo 
models of the two diseases (Pupyshev et al., 2021; Cui and Li, 2023). 
Targeting autophagy, therefore, presents a lucrative drug target 
common to both disorders.

2. Protein aggregation as a two-way 
connection

It has long been known, thanks to the pioneering observations of 
Polymeropoulos and co-workers first, Spillantini and colleagues later, 
that Lewy bodies in PD, initially localized in the substantia nigra pars 
compacta, are predominantly composed of alpha-synuclein (aS) 
protein (Polymeropoulos et al., 1997; Spillantini et al., 1997). It was 
subsequently discovered by Fujiwara et al. (2002) that aggregates were 
mainly composed of the phospho-Ser129 form of the protein 
(Fujiwara et al., 2002). The loss of function of the protein because of 
its aggregation has several consequences in dopaminergic neurons, it 
being involved in the modulation of neurotransmitter synthesis and, 
once incorporated into vesicles, also in their transport and release 
(Abeliovich et al., 2000; Cabin et al., 2002). Interactors of aS include 
tyrosine 3-monooxygenase (TH), the rate-limiting dopamine 
biosynthetic enzyme (Perez et al., 2002), dopamine decarboxylase 
(Tehranian et al., 2006), protein phosphatase 2A (PP2A) (Qu et al., 
2018), vesicle membranes (Jao et  al., 2004) and SNARE proteins 
(Burré et  al., 2014). An important but still poorly understood 
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This figure represents the shared elements between neurodegeneration and β-cell dysfunction, linked through the overarching condition of 
hyperglycemia.
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interactor of aS is the Kir6.2 (internal rectifier potassium channel 6.2) 
subunit of the ATP-sensitive potassium (KATP) channel and its 
associated sulfonylurea receptor 1 (SUR1). This interaction modulates 
dopamine release by reducing it (Vidal-Martinez et  al., 2018; 
Choudhury et al., 2022).

A similar function for the protein was observed by Geng and 
colleagues in pancreatic β-cell, where it has been shown to act as a 
regulator of the release of insulin-containing vesicles, in response to 
glucose concentration (Geng et al., 2007). Aggregation is observed in 
these cells during T2DM; the major component of which is islet 
amyloid polypeptide (IAPP) (Cooper et  al., 1987), although 
immunoreactivity for phospho-Ser129-aS has also been observed 
(Martinez-Valbuena et al., 2018).

The fibrillation process of aS passes through the formation of 
oligomeric structures which are neurotoxic formations able to pierce 
membranes and spread. At this point, the protein can be internalised 
by other cells or flow through the cerebrospinal fluid (CSF) to the 
bloodstream (Menéndez-González et  al., 2018; Karpowicz et  al., 
2019). A role for aS active internalization process seems to be played 
by surface prion protein (PrP), expressed both at the nervous and 
pancreatic levels, where it modulates insulin and glucose homeostasis 
through metal interaction (Ashok and Singh, 2018; Jucker and Walker, 
2018; De Riccardis et al., 2019). Recently, Martinez-Valbuena et al. 
(2021) have found the presence of cytoplasmic aggregates containing 
IAPP and phospho-Ser129-aS interacting with PrP in human post-
mortem pancreatic tissues (Martinez-Valbuena et al., 2021). This offers 
a new perspective towards a two-way connection between the 
pathogenesis of T2DM and PD.

3. Insulin resistance and the 
impairment of autophagic processes

A persistent condition associated with T2DM is insulin resistance, 
which determines a loss of glycemic control mechanisms in peripheral 
organs. The brain, however, is capable of managing its own glucose 
requirements independently of insulin, although new evidence is 
casting doubt on this assumption (García-Cáceres et  al., 2016; 
Kleinridders, 2016; Pomytkin et al., 2018). Therefore, in the brain, 
insulin resistance results mainly in an altered signaling pathway.

Encephalic insulin receptors are predominantly expressed in 
neurons, where they play a role in modulating dendritic and synaptic 
plasticity, being most highly expressed at these levels (Sportelli et al., 
2020). The hormone is associated with a plethora of activities in the 
brain, such as learning, memory, cognitive functions (Craft et al., 
1993), neurotransmitter release (de Bartolomeis et  al., 2023), 
neuroprotection, neuronal proliferation, migration, and differentiation 
(Roger and Fellows, 1980; Schubert et al., 2003; Xu et al., 2004; Sousa-
Nunes et al., 2011). These activities are all modulated by the binding 
of insulin to its receptors and the activation of their downstream 
pathways, for instance, Raf-1/MAPK/ERK or PI3K/protein kinase B 
(AKT) (Arnold et al., 2018). These effectors then modulate mTOR 
activity, promote protein synthesis activating ribosomal protein S6 
kinase (S6K) (Huang et al., 2019), inhibiting the eukaryotic translation 
initiation factor 4E-binding protein 1 (4E-BP1) (Le Bacquer et al., 
2007), while activating transcription factors like forkhead box protein 
O1 (FoxO1) (Tsai et  al., 2003), sterol regulatory element-binding 
protein (SREBP) and carbohydrate-responsive element-binding 
protein (ChREBP) (Iizuka et al., 2004; Suzuki et al., 2010).

The mTOR protein, a central element of the mTORC1 and 
mTORC2 complexes, modulated by the PI3K/AKT pathway, regulates 
the autophagic process. Alterations in this mechanism are associated 
with protein aggregation and reduction in ATP/ADP and NAD+/
NADH ratios (Heras-Sandoval et al., 2014; Steinberg and Carling, 
2019; Katsyuba et al., 2020). A 2010 study found high amounts of 
autophagosomes with permeabilized lysosomes, indicating a shunted 
lysosomal-mediated autophagosome clearance contributing to disease 
onset in post-mortem PD brain (Dehay et al., 2010). This, in addition 
to the high levels of autophagic markers that colocalize with aS in 
Lewy bodies, such as microtubule-associated proteins 1A/1B light 
chain 3B (LC3) in its lipidated form LC3-II and ubiquitin-binding 
protein p62 (sequestosome-1), provides important evidence for a 
failure of the autophagic process during the disease (Alvarez-Erviti 
et al., 2010; Fellner et al., 2021).

4. Hyperglycemia compromises 
cellular proteostasis

An impaired protein degradation, although sufficient to alter cellular 
proteostasis, is not the only event observed during T2DM. Increased 
level of circulating glucose also has detrimental effects on cellular 
homeostasis and protein function. An engulfment of the glycolytic 
pathway diverts glucose towards the polyol pathway (Du et al., 2003). 
Then, the sustained activity of aldose reductase and sorbitol 
dehydrogenase causes the depletion of NADPH and NAD+, which 
impairs the capability of the cell to restore reduced glutathione (GSH) 
levels and causes inhibition of GAPDH (Mathebula, 2015; 
Lutchmansingh et al., 2018). The accumulation of triose phosphates 
results in methylglyoxal (MG) formation, an α-keto reactive aldehyde, 
and then to advanced glycation end products (AGEs) (Strom et al., 2021). 
Hyperglycemia also impairs the hexosamine pathway, increasing 
UDP-N-acetylglucosamine levels and altering PTMs (Du et al., 2000; Del 
Coco et al., 2023). As the MG detoxification is mainly mediated by the 
highly conserved glutathione-dependent glyoxalase I/II (GloI/II) system, 
a reduction in intracellular levels of GSH is toxic for the cells (Blair et al., 
1979; Yadav et al., 2005). Altered glycosylation and glycation processes 
involve both aS and IAPP, promoting their aggregation and impairing 
their degradation (Vicente Miranda et al., 2017; Milordini et al., 2020).

5. Mitochondrial dysfunction as a fatal 
consequence

Insulin resistance and hyperglycemia cause mitochondria 
dysfunction, with ROS increase and loss in Ca2+ homeostasis further 
contributing to AGEs formation (Soejima et al., 1996). Mitochondria 
are responsible for cellular energy metabolism, regulating also 
proliferation (Diers et al., 2012), apoptosis (Wang and Youle, 2009), 
protein degradation (Liao et al., 2020), neurotransmitter transport, 
uptake and recycle (Varoqui and Erickson, 1996; Gasnier, 2000; Vos, 
2010). Their dysfunction is strongly related to inflammation, which in 
the brain is supported by microglia through the release of 
pro-inflammatory cytokines.

Hyperglycemia causes alterations in the organelle morphology, 
triggering fission processes (Wang et al., 2012). Mitophagy, a selective 
form of autophagy, is responsible for the removal of damaged 
mitochondria; during this process, organelles are labelled for 
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degradation by PTEN-induced putative kinase 1 (PINK1), E3 
ubiquitin-protein ligase Parkin, Ubiquitin and Sequestosome-1 (Lewis 
and Lewis, 1915; Palikaras et  al., 2018). An important role in 
mitochondria homeostasis is held by DJ-1 protein; it acts as a 
transcription factor and an antioxidant and modulates chaperones, 
proteases, and mitochondria activity. DJ-1 functions are modulated 
by its oxidative state in the cell (Canet-Avilés et al., 2004; Hao et al., 
2010; Wilson, 2011; Takahashi-Niki et al., 2017).

Finally, DJ-1 has a key role in repairing MG-related damages, with 
a recent study demonstrating glyoxalase and weak deglyoxalase 
activity for the protein (Mazza et al., 2022). Mutations in PINK1, 
Parkin and DJ-1 are correlated with the onset of monogenic forms of 
PD (Guadagnolo et al., 2021). This emphasizes how mitophagy and 
organelle homeostasis are crucial for cell well-being, and how glycemic 
dyshomeostasis can induce PD.

6. Autophagy and hyperglycemia as 
new drug targets

The pharmacological approach to PD is merely symptomatic, 
therefore the identification of a trigger capable of inducing the 
pathology, and its medication, stand to represent a new complementary 
route of intervention. Hyperglycemia, hyperinsulinemia, 
hypercholesterolemia, inflammation, mitochondrial dyshomeostasis, 
oxidative stress, alteration of protein-degrading pathways, and 
aggregation are all potential targets to be exploited.

Several widely used antidiabetic and hypoglycemic drugs are 
currently undergoing pharmaceutical trials in various studies on 
cohorts of PD patients with a perspective of drug repurposing 
(Table 1).

In line with this premise, this review focuses on the compilation 
of a list of main drugs initially developed for treating hyperglycemia 
in the context of diabetes, but the activation of whose principal 
molecular pathways is potentially beneficial in the context of PD. The 
knowledge of these drugs from a pharmacokinetic and toxicological 
point of view has great advantages, allowing for drastically shortened 
trial times.

6.1. Metformin

Metformin is considered the first-line treatment for T2DM since 
the early 2000s, according to the guidelines of the International Diabetes 
Foundation (IDF Clinical Guidelines Task Force, 2006), but it is 
currently also considered a prime candidate for PD therapy. It inhibits 
hepatic gluconeogenesis, increases peripheral insulin sensitivity and 
glucagon-like peptide 1 (GLP-1) secretion, promoting peripheral 
glucose uptake, and reducing its bowel absorption at the same time. The 
mechanism of action is thought to be mainly through the inhibition of 
complex I of the mitochondrial transport chain, lowering ATP levels 
and indirectly activating the cellular metabolic state sensor AMPK 
(Zhou et al., 2016; Bahne et al., 2018; Baker et al., 2021; Drzewoski and 
Hanefeld, 2021). This increases fatty acid oxidation, reduces ROS 
production, and inhibits mTORC1 activating autophagic pathways and 
lysosomal biogenesis (Amin et al., 2019; Ma et al., 2023). Metformin 
also activates several downstream interactors including Bcl-1, CREB 
and PGC1, that promote cell viability and rescue mitochondrial defects, 

increasing their mass and improving their function (Kang et al., 2017; 
de Marañón et al., 2022). Finally, by modulation of Nrf2, FoxO3 and 
NF-κB activity, it exerts a protective effect in astrocytes and microglia 
(Ryu et al., 2018, 2020; Zhou et al., 2021).

In recent years, metformin has shown neuroprotective effects in 
both in vitro and in vivo models of PD, in the latter case by decreasing 
the loss of dopaminergic neurons and reducing motor symptoms, 
countering phospho-Ser129-aS aggregation in several ways. Pérez-
Revuelta and colleagues have observed that metformin promotes the 
activity of PP2A, an enzyme of primary importance in reducing 
intracellular levels of phospho-Ser129-aS (Pérez-Revuelta et al., 2014; 
Greco et al., 2021); PP2A activity has indeed been shown to inhibit 
mTOR, promoting autophagy. Experiments in C. elegans and murine 
models of PD have both confirmed the effect of metformin in lowering 
phospho-Ser129-aS levels through an evolutionarily conserved 
mechanism (Pérez-Revuelta et al., 2014; Katila et al., 2017; Saewanee 
et al., 2021). Finally, metformin shows anti-glycating properties, acting 
as a scavenger of the aldehydic part of MG, preventing the 
accumulation of AGEs in subjects with T2DM (Kinsky et al., 2016).

6.2. GLP-1 agonists

Secreted by intestinal cells in response to food intake, especially 
carbohydrates, GLP-1 acts on several organs regulating glucose 
homeostasis. It stimulates insulin secretion from pancreatic β-cells in 
a glucose-dependent manner, reduces the secretion of glucagon, slows 
down gastric emptying, reduces the perception of hunger and thirst, 
and enhances peripheral glucose uptake (Hira et al., 2021).

Studies have shown that GLP-1 can inhibit mTOR stimulating 
autophagy in pancreatic β-cells and neurons. The binding of GLP-1 
with its ubiquitously expressed membrane receptor GLP-1R triggers 
activation of the PI3K/AKT pathway. Subsequently, several 
downstream actors such as GSK3-β, FoxO1, NF-κB and Nrf2 exert 
cytoprotective effects (Buteau et al., 2006; Dai et al., 2013; Park et al., 
2018; Costantino and Paneni, 2019; Li et al., 2020).

Interestingly, GLP-1R presence has been observed in the 
dopaminergic neuron of the encephalic area postrema, known for its 
role in modulating autonomic and reward responses, but also addiction 
mechanisms. GLP-1 seems therefore to be  involved, at least in this 
specific region of the nervous system, in the modulation of dopamine 
synthesis and release (Yamamoto et al., 2003; Jensen et al., 2020).

Among the most important GLP-1R artificial agonists are 
exenatide, liraglutide, lixisenatide, semaglutide and NLY01. This class 
of molecules, found to be neuroprotective in mouse models treated 
with 6-OHDA or MPTP, is now a subject of interest for human use 
(Aviles-Olmos et  al., 2013; Aslan et  al., 2014; Jalewa et  al., 2017). 
Promising results have been observed, with early-PD patients 
responding better to the treatment and showing motor and cognitive 
improvements (Athauda et al., 2019).

6.3. Glitazones

Glitazones, which includes pioglitazone, lobeglitazone and 
rosiglitazone are a class of oral antidiabetic drugs used in patients 
where first-line therapies fail to achieve glycemic control. Exerting 
their effect as agonists of the peroxisome proliferator-activated 

125

https://doi.org/10.3389/fnins.2023.1244022
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Greco et al. 10.3389/fnins.2023.1244022

Frontiers in Neuroscience 05 frontiersin.org

TABLE 1 Clinical trials on anti-diabetic drugs in PD.

Drug Molecule 
class

Anti-diabetic mechanisms 
of action

Clinical 
studies

ClinicalTrials.
gov identifier

Status Sponsor/
collaborators

Metformin Biguanides

Inhibition of hepatic gluconeogenesis 

(Madiraju et al., 2018; Agius et al., 2020)

Restoration of peripheral insulin 

sensitivity and glucose uptake (Li et al., 

2011; Ruegsegger et al., 2019b)

Reduction of intestinal absorption of 

glucose (Horakova et al., 2019; Sansome 

et al., 2020)

Modulation of GLP-1 release (Amadi 

et al., 2021; Lee C. B. et al., 2021)

Modulation of lipid metabolism by 

reducing LDL cholesterol and triglycerides 

levels (Han et al., 2019; Hu et al., 2021; 

Tarry-Adkins et al., 2021; Xing et al., 

2022)

Anti-inflammatory and antioxidant effect 

(Tian et al., 2019; Luo et al., 2020)

Clinical study to 

evaluate the 

possible efficacy of 

metformin in 

patients with 

Parkinson’s disease

NCT05781711 Phase 2 – 

Recruiting

Tanta University, 

Tanta, Egypt

Exenatide

GLP-1 agonists

Stimulation of GLP-1 receptors 

(Helmstädter et al., 2020; Sterling et al., 

2020; Angarita et al., 2021; Cardoso et al., 

2023)

Promotion of insulin secretion (Yaribeygi 

et al., 2019)

Pro-survival effect on β-cells (Tanday 

et al., 2022; Zhou et al., 2022)

Inhibition of glucagon release (Bai et al., 

2022)

Slowing of gastric emptying (Geyer et al., 

2019; Shang et al., 2021; Jensterle et al., 

2023)

Loss of appetite (Yamamoto et al., 2003; 

Jensen et al., 2020; Kadouh et al., 2020)

Reduction of weight (Kadouh et al., 2020; 

Lee S. E. et al., 2021; Arastu et al., 2022; 

Borlaug et al., 2023)

Anti-inflammatory and antioxidant effect 

(Sterling et al., 2020; Martins et al., 2022; 

Meurot et al., 2022; Luna-Marco et al., 2023)

Exenatide once 

weekly over 2 years 

as a potential 

disease modifying 

treatment for 

Parkinson’s disease

NCT04232969 Phase 3 – 

Active, not 

recruiting

University College, 

London, 

United Kingdom

Trial of exenatide 

for Parkinson’s 

disease

NCT01971242 Phase 2 – 

Completed

University College, 

London, 

United Kingdom

Exenatide treatment 

in Parkinson’s 

disease

NCT04305002 Phase 2 – 

Active, not 

recruiting

Center for Neurology, 

Stockholm, Sweden

Karolinska Institutet, 

Solna, Sweden

Effects of exenatide 

on motor function 

and the brain

NCT03456687 Phase 1 – 

Completed

University of Florida, 

Gainesville, FL, 

United States

National Institute of 

Neurological 

Disorders and Stroke 

(NINDS), Bethesda, 

MD, United States

Liraglutide

Safety and efficacy 

of liraglutide in 

Parkinson’s disease

NCT02953665 Phase 2 – 

Completed

Cedars Sinai Medical 

Center, Los Angeles, 

CA, United States

The Cure Parkinson’s 

Trust, London, 

United Kingdom

Novo Nordisk A/S, 

Bagsværd, Denmark

Semaglutide

GLP1R in 

Parkinson’s disease

NCT03659682 Phase 2 – Not 

yet recruiting

Oslo University 

Hospital, Oslo, 

Norway

NLY01

A clinical study of 

NLY01 in patient’s 

with early 

Parkinson’s disease

NCT04154072 Phase 2 – 

Active, not 

recruiting

Neuraly, Inc., 

Gaithersburg, MD, 

United States

(Continued)
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receptor PPARγ, a transcription factor of the nuclear ligand-activated 
receptor family, they increase tissues’ insulin sensitivity (Nanjan 
et al., 2018).

PPARγ induces the expression of a plethora of genes related to 
carbohydrate and lipid metabolism; at an encephalic level, expressed 
mainly in regions controlling reward and movement mechanisms 
such as the basal ganglia it has neuroprotective, with antioxidant, 
anti-inflammatory and anti-apoptotic properties (Warden et  al., 
2016; Villapol, 2018; Sonne et al., 2023). These effects, also linked to 
the downstream NF-κB signaling pathway activation, appear to 
be able to attenuate cognitive decline in various neurological diseases 
and neurodegenerative conditions (Delerive et  al., 1999; Behl 
et al., 2021).

In several in vivo studies in PD-induced mice models, PPARγ 
agonists have shown a protective effect on dopaminergic neurons, 

with an improvement in motor symptoms. This is probably due to an 
inhibition of MAO-B, COX-1, COX-2 and iNOS activity, which 
reduce inflammation and preserve mitochondrial function and 
morphology (Xing et al., 2007; Quinn et al., 2008; Barbiero et al., 2014).

6.4. Insulin

The neuromodulatory, neurotrophic, and neuroprotective 
properties of insulin on the encephalon are well-known, therefore, its 
use in neurodegenerative contexts presents several potential beneficial 
effects (Yang et al., 1981; Shah and Hausman, 1993; Shuaib et al., 
1995). However, two problems have hindered this approach until 
recently: the poor permeability of the blood–brain barrier (BBB) to its 
passage (Margolis and Altszuler, 1967) and the effect on hematic 

TABLE 1 (Continued)

Drug Molecule 
class

Anti-diabetic mechanisms 
of action

Clinical 
studies

ClinicalTrials.
gov identifier

Status Sponsor/
collaborators

Pioglitazone Thiazolidinediones

PPARγ agonist effect (Soliman et al., 2019; 

Nazreen, 2021)

Inhibition of hepatic gluconeogenesis 

(Rahimi et al., 2020; Asakawa et al., 2023)

Promotion of fat cells maturation (Yu 

et al., 2023)

Promotion of fat deposition into 

peripheral tissues (Lee et al., 2023; Liu 

et al., 2023)

Promotion of HDL cholesterol levels 

increase and triglycerides levels decrease 

(Alam et al., 2019; Lian and Fu, 2021)

Restoration of insulin sensitivity (Al-

Muzafar et al., 2021; Fiorentino et al., 

2021)

Anti-inflammatory effect (Radwan and 

Hasan, 2019; Pakravan et al., 2022)

Pioglitazone in 

Early Parkinson’s 

Disease

NCT01280123 Phase 2 – 

Completed

University of 

Rochester, Rochester, 

NY, United States

National Institute of 

Neurological 

Disorders and Stroke 

(NINDS), Bethesda, 

MD, United States

Michael J. Fox 

Foundation for 

Parkinson’s Research, 

New York, NY, 

United States

Insulin Hormone

Reduction in hematic glucose levels 

(Rahman et al., 2021)

Increase in peripheral glucose uptake via 

GLUTs transporters translocation toward 

plasma membrane (Turner et al., 2020)

Suppression of hepatic gluconeogenesis 

and promotion of glycogen synthesis 

(Rahman et al., 2021)

Promotion of protein synthesis (Khalid 

et al., 2021)

Inhibition of lipolysis and promotion of 

fatty acid synthesis and storage (Ahmed 

et al., 2021; Grabner et al., 2021)

Ketone bodies formation inhibition 

(Garcia et al., 2020)

Inhibition of catabolic processes (Batista 

et al., 2021)

Intranasal Insulin in 

Parkinson’s Disease

NCT04251585 Phase 2 – 

Recruiting

HealthPartners 

Neuroscience Center, 

Saint Paul, MN, 

United States

Intranasal Insulin 

and Glutathione as 

an Add-On Therapy 

in Parkinson’s 

Disease

NCT05266417 Phase 2 – 

Recruiting

Gateway Institute for 

Brain Research, Fort 

Lauderdale, FL, 

United States

Treatment of 

Parkinson Disease 

and Multiple 

System Atrophy 

Using Intranasal 

Insulin

NCT02064166 Phase 2 – 

Completed

Peter Novak, Boston, 

MA, United States

University of 

Massachusetts, 

Worcester, MA, 

United States

Studies that have passed the completion date and whose status has not been verified for more than 2 years are not reported. Information extracted from clinicaltrials.gov, access date 
07-10-2023.
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glycemia when parenterally administered. Therefore, new 
formulations have been studied to circumvent this problem; the most 
promising is via inhalation which exploits the permeability of the 
cribriform plate, shortening drug delivery to the target site and 
allowing precise modulation of administration. Several in vivo studies 
on murine PD models have demonstrated the efficacy of the molecule 
in this form and its neuroprotective activity (Fine et  al., 2020; 
Iravanpour et al., 2021). Rajasekar and colleagues have shown how the 
use of intranasal insulin in mice treated with streptozocin was able to 
improve insulin-signaling cascade and attenuate neuroinflammation, 
neuronal loss, and protein aggregation. This was explained to be due 
to the modulation of NF-κB and PI3K/Akt pathway (Rajasekar 
et al., 2017).

Indeed, when intranasal insulin is administered, a canonical 
activation of PI3K/AKT and MAPK pathways is observed. From a 
neuroprotective perspective, there is an increased hypoxia-inducible 
factor-1 (HIF-1) activity, resulting in angiogenesis and endothelial 
proliferation (Zelzer, 1998). Furthermore, altered insulin signalling is 
associated with reduced mitochondrial fusion processes at the expense 
of organelle fission, resulting in increased ROS and reduced ATP 
levels (Kelley et al., 2002; Bach et al., 2003; Jheng et al., 2012).

Ruegsegger and colleagues demonstrated the ability of intranasal 
insulin to counteract these processes through the observation of an 
increase in the MFN1, MFN2, and OPA1 proteins, and a decrease in 
the DRP1 protein, involved in mitochondrial fusion and fission, 
respectively, (Ruegsegger et  al., 2019a). Moreover, insulin also 
regulates mitochondrial quality control mechanisms by restoring the 
compromised activity of PINK1 and DJ-1. This appears particularly 
beneficial in brain areas of high mitochondrial activity such as the 
hypothalamus, and hippocampus (Onphachanh et  al., 2017; 
Ruegsegger et al., 2019a; Su et al., 2020). Finally, insulin contributes to 
the removal of aggregates by promoting PP2A activity, which inhibits 
mTOR1 and dephosphorylates ULK1, initiating the autophagic 
process (Axe et al., 2008).

A 2018 clinical interventional study conducted at the University 
of Massachusetts on 15 patients for 4 weeks, involving intranasal 
administration of insulin, showed encouraging results. In this study, 
an improvement in motor performance, visuospatial memory, and 
verbal fluency was observed in PD subjects compared to placebo, due 
to a better ability to draw on mnemonic data (Novak et al., 2019).

7. Conclusion

To date, multiple pieces of evidence link T2DM to the onset of PD 
and other proteinopathies. The absence of cures for such medical 
conditions and the expected increase in their incidence in the coming 
years is driving clinical research. Hyperglycemia and insulin 
resistance, with the resulting protein aggregation, oxidative stress, and 
mitochondria dysfunction represent important and promising 
common medical targets, justifying interest in antidiabetic drugs, 
albeit the apparently different clinical settings. A large body of 
evidence on the efficacy of such drugs on pathways known to 

be  involved in proteostasis and disrupted in PD exists. The data 
gathered in in vivo and in vitro models, together with the results of 
clinical trials leads to the view that the use of antidiabetic drugs, in 
combination with the current symptomatic medications is 
extremely encouraging.
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AAPH-induced oxidative damage
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(SLC4A1/AE1) activity in human
red blood cells: protective effect
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Introduction: During their lifespan in the bloodstream, red blood cells (RBCs) are
exposed to multiple stressors, including increased oxidative stress, which can
affect their morphology and function, thereby contributing to disease.

Aim: This investigation aimed to explore the cellular and molecular mechanisms
related to oxidative stress underlying anion exchanger 1 activity (band 3, SLC4A1/
AE1) in human RBCs. To achieve this aim, the relationship between RBC
morphology and functional and metabolic activity has been explored.
Moreover, the potential protective effect of an anthocyanin-enriched fraction
extracted from Callistemon citrinus flowers was studied.

Methods:Cellular morphology, parameters of oxidative stress, as well as the anion
exchange capability of band 3 have been analyzed in RBCs treated for 1 h with
50mM of the pro-oxidant 2,2′-azobis (2-methylpropionamide)-dihydrochloride
(AAPH). Before or after the oxidative insult, subsets of cells were exposed to
0.01 μg/mL of an anthocyanin-enriched fraction for 1 h.

Results: Exposure to AAPH caused oxidative stress, exhaustion of reduced
glutathione, and over-activation of the endogenous antioxidant machinery,
resulting in morphological alterations of RBCs, specifically the formation of
acanthocytes, increased lipid peroxidation and oxidation of proteins, as well as
abnormal distribution and hyper-phosphorylation of band 3. Expected, oxidative
stress was also associated with a decreased band 3 ion transport activity and an
increase of oxidized haemoglobin, which led to abnormal clustering of band 3.
Exposure of cells to the anthocyanin-enriched fraction prior to, but not after,
oxidative stress efficiently counteracted oxidative stress-related alterations.
Importantly, protection of band3 function from oxidative stress could only be
achieved in intact cells and not in RBC ghosts.

Conclusion: These findings contribute a) to clarify oxidative stress-related
physiological and biochemical alterations in human RBCs, b) propose
anthocyanins as natural antioxidants to neutralize oxidative stress-related
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modifications, and 3) suggest that cell integrity, and therefore a cytosolic
component, is required to reverse oxidative stress-related pathophysiological
derangements in human mature RBCs.

KEYWORDS

oxidative stress, erythrocytes, anthocyanins, anion, exchange, methemoglobin

1 Introduction

Human red blood cells (RBC) have maximized their functional
capacity to transport and deliver oxygen to tissues and cells of the
body through the progressive loss of the cytoplasmatic organelles,
including nuclei, which occurs during their maturation process from
erythroid precursors to reticulocytes, and ultimately, to mature
biconcave RBCs (Moras et al., 2017). As a result, each mature
RBC encloses about 250–270 hemoglobin million copies, which
account for 98% of the cytosolic proteome (D’Alessandro and Zolla,
2017). At full oxygen saturation, mature RBCs can carry up to
1 billion molecules of oxygen/cell (Mohanty et al., 2014). Therefore,
the major endogenous source of intracellular reactive species in
RBCs is the slow auto-oxidation of haemoglobin, which produces
non-functional methaemoglobin and superoxide radicals that
rapidly dismutase to form hydrogen peroxide (H2O2) (Fujii et al.,
2021). In addition, exogenous reactive molecules can be released in
the bloodstream by macrophages, neutrophils, and endothelial cells
(Pretini et al., 2019). Oxidative damage to any of the biological
macromolecules (Akki et al., 2018; Akki et al., 2022) of RBCs can
affect the integrity and stability of their cellular structure and their
functional and metabolic activity (Xiong et al., 2013; Vona et al.,
2019; D’Alessandro et al., 2021). Lipid peroxidation is one of the
most damaging reactions of free radicals in RBCs. It is well
documented that lipid peroxidation is the outcome of the
oxidation of membrane polyunsaturated fatty acids (PUFA),
which interferes with the canonical structure and physiological
functions of the RBC plasma membrane. These oxidative events
generate hydroperoxides and secondary products that ultimately
result in structural disruption of cell-surface lipid bilayer and protein
carbonylation and/or protein thiol oxidation of plasma membrane-
bound proteins (Pandey and Rizvi, 2011; Contreras-Puentes et al.,
2019; Zhang et al., 2019; Amezaga et al., 2020; Akki et al., 2022;
Remigante and Morabito, 2022).

Since RBCs are larger than the diameter of capillaries in the
micro-circulation, they have to deform and squeeze into blood
capillaries to deliver oxygen to the cells and tissues of the body as
needed (Ebrahimi and Bagchi, 2022). In this context, oxidative
damage to the plasma membrane as well as cytoskeletal proteins
impairs the rheologic properties of circulating RBCs (Mazzulla et al.,
2015). These abnormalities include i) decreased deformability, ii)
increased membrane micro-viscosity, and iii) increased RBC
aggregation (Maruyama et al., 2022). There is a number of
investigations showing that injury at the level of the plasma
membrane and cytoskeletal proteins impairs RBC deformability.
To name just a few examples, Jiang and co-authors proved that
increased spectrin glycosylation induced by augmented intracellular
oxidative stress condition led to deformability abnormalities in rat
diabetic RBCs, which is not surprising, as diabetes generates oxygen
free radicals (Jiang et al., 1990). Additionally, a recent study performed

by Spinelli and collaborators demonstrated that oxidative stress
related to natural aging impaired human RBCs deformability,
resulting in structural rearrangements of the membrane
cytoskeleton-associated proteins spectrin, ankyrin, and protein 4.1,
and increased tyrosine phosphorylation of plasma membrane-bound
band 3 protein (Vallese et al., 2022). Band 3 (SLC4A1/AE1)
(Remigante et al., 2022b), the most abundant RBC membrane
protein, possesses two different cytosolic domains (Arakawa et al.,
2015). At high oxygen saturation, the N-terminal domain can serve as
an inhibitory docking site for glycolytic enzymes. On the contrary, at
low oxygen saturation, deoxyhemoglobin competes with the glycolytic
enzymes and displaces them from the plasma membrane to boost
glycolysis and stimulate both ATP and 2,3-diphosphoglycerate
production. Prolonged oxidant stress, for example, during RBC
storage in blood banks, triggers proteolysis of the band 3 N-
terminal domain, thus provoking the loss of this RBC oxygen-
dependent metabolic modulation pathway (Mandal et al., 2003;
Rinalducci et al., 2012; Matte et al., 2013). Moreover, oxidative
stress-related events are well known to cross-link band 3 dimers
and tetramers and, also, band 3 and haemoglobin, thus leading to the
formation of high molecular mass aggregates (Rinalducci et al., 2012).
On the other hand, the C-terminal domain contains the anion-
transport functional region that mediates the chloride-bicarbonate
exchange across the RBC membrane (Reithmeier et al., 2016).
Membrane ionic transport systems, including band 3, are involved
in the maintenance of cellular homeostasis during exposure to
stressors and are therefore accurately regulated to respond to stress
conditions (Remigante et al., 2021a).

To cope with the oxidative stress effects, RBCs have developed
extensive endogenous antioxidant machinery involving both non-
enzymatic antioxidants, such as glutathione, and enzymatic
antioxidants, including catalase, superoxide dismutase,
peroxiredoxin-2, and glutathione peroxidase (Martemucci et al.,
2022). Also, natural secondary metabolites with antioxidant
properties might play a protective function in this context.
Multiple polyphenol-rich extracts of plant origin have been
proven as an excellent and workable alternative for supporting
intracellular antioxidant defense during elevated oxidative stress
owing to their activity as ROS scavengers and/or inhibitors
(Niedzwiecki et al., 2016; Kouka et al., 2017; Philip et al., 2019;
Luo et al., 2021; Monjotin et al., 2022). By definition, antioxidants
are molecules capable of inhibiting and/or quenching free radical
reactions in order to delay or prevent cellular injury. In this context,
an anthocyanin-enriched fraction extracted from Callistemon
citrinus (Curtis, skeels), which is an ornamental and medicinal
plant from the Myrtaceae family, showed antioxidant power
in vitro and in cell-based assays (Lagana et al., 2020).
Anthocyanins are water-soluble pigments belonging to the
polyphenol class of compounds and are responsible for
conferring red colors to flowers. The study of the constituents of
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therapeutic plants is of great value and essential for identifying novel
antioxidants (Larayetan et al., 2017; Maury et al., 2020; Nishikito
et al., 2023). However, the molecular mechanisms underlying the
antioxidant action of polyphenol compounds in human RBCs have
not yet been fully clarified and are still a matter of considerable
debate.

Among the various cell-based models of oxidative stress, 2,2′-
azobis (2-methylpropionamide)-dihydrochloride (AAPH)-
stimulated RBCs represent a useful system to study oxidative
stress-related pathological states affecting the integrity of human
RBC and leading to multi-organ dysfunction, such as haemolytic
anemia, vaso-occlusion, chronic inflammation, and tissue damage
(Zheng et al., 2016) (Figure 1). Thus, the present investigation aimed
to explore the cellular and molecular mechanisms related to
oxidative stress underlying anion exchanger 1 (band 3) activity in
human RBCs. To achieve this aim, the relationship between RBC
morphology, integrity, and functional activity has been explored.
Moreover, the potential protective effect of an anthocyanin-enriched
fraction extracted from Callistemon citrinus flowers was studied.

2 Results

2.1 Determination and quantification of
phenolic compounds

An acidified ethanolic extract from Callistemon citrinus flowers
was submitted to reverse phase high performance liquid

chromatography coupled with diode array detection (RP-HPLC-
DAD). The compounds found in the anthocyanin-enriched fraction
are reported in Table 1. The inspection of UV spectra recorded
between 200 and 800 nm, and simultaneous detection by diode array
performed at 260, 290, 330, 370, and 520 nm only showed the
presence of anthocyanin compounds in significant amounts, which
was in agreement with literature data previously published by our
group (Lagana et al., 2020), in particular: cyanidin-3,5-
O-diglucoside (cyanin, 1); peonidin-3,5-O-diglucoside (peonin, 2);
cyanidin-3-O-glucoside (3) and cyanidin-coumaroylglucoside-
pyruvic acid (4). The most abundant compound was, by far,
cyanidin-3,5-O-diglucoside (305.13 ± 2.82 mg/100 g DE) followed
by peonidin-3,5-O-diglucoside and cyanidin-3-O-glucoside
(172.06 ± 1.10 and 43.07 ± 0.61 mg/100 g DE, respectively),
while the last compound (cyanidin-coumaroylglucoside-pyruvic
acid) was present in significantly lower amount with respect to
the other derivatives (9.75 ± 0.17 mg/100 g DE). Peak identity was
confirmed by comparing their retention times and absorption
spectra with those of pure (≥99%) commercially available
standards and comparison with literature data.

2.2 Anthocyanin-enriched fraction prevents
cell shape modifications in AAPH-Incubated
RBCs

In the present investigation, the first step was to assay a broad
range of concentrations (from 0.01 μg/mL to 100 μg/mL) of an

FIGURE 1
Schematic representation of AAPH decomposition in human RBCs. Inside the cell, the decomposition of AAPH at physiological temperature (37°C)
generates free radicals (peroxyl radicals, alkoxyl radicals and hydroperoxide) that can attack the RBC membrane and induce lipid peroxidation leading to
cell hemolysis. However, the generated radicals remain underneath the membrane bilayer then causing, oxidation of oxygenated hemoglobin to
methemoglobin (Zimowska et al., 1997).

TABLE 1 Identification and quantification of anthocyanin profile of the anthocyanin-enriched fraction by RP-HPLC-DAD analysis. Results are expressed as mean ±
SD of three independent experiments (n = 3), and are quantified as mg cyanidin-3-O-glucoside equivalents (CyG) per 100 gr of dry extract (DE).

PEAK Compound Rt (min) mg CyG/100 g DE

1 Cyanidin 3,5-O-diglucoside 17.8 305.13 ± 2.82

2 Peonidin-3,5-O-diglucoside 20.3 172.06 ± 1.10

3 Cyanidin-3-O-glucoside 22.5 43.07 ± 0.61

4 Cyanidin-coumaroylglucoside-pyruvic acid 25.3 9.75 ± 0.17
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anthocyanin-enriched fraction as well as different incubation time
intervals (30 min, 1 h, and 2 h), to exclude any damage in terms of
haemolysis, lipid peroxidation, and protein oxidation, including the
production of MetHb, which could be potentially provoked by direct
exposure of RBCs to the extract (Supplementary Figure S1). This
experimental procedure points to the importance of carefully
establishing the proper concentration and incubation time for
testing novel potential antioxidant compounds in cell-based
assays. Based on these considerations, we selected a 1 h pre- and
post-treatment with 0.01 μg/mL anthocyanin-enriched fraction, in
order to estimate its potential antioxidant capacity.

Based on these results, as shown in Figure 2, treatment for 1 h at
37°C with 50 mM AAPH provoked morphological changes in
human RBCs. Indeed, in these experimental conditions, 23% of
acanthocytes (surface blebs) were reported by scanning electron
microscopy analysis. However, in samples pre-incubated with
0.01 μg/mL anthocyanin-enriched fraction (for 1 h, at 37°C) and
then treated with 50 mM AAPH (1 h, at 37°C), the percentage of
morphologically modified cells was reduced to 21%. Therefore, the
generation of acanthocytes was not completely avoided by the pre-
treatment with the anthocyanin-enriched fraction (Table 2). On the
contrary, in human RBCs incubated with 50 mM AAPH and then
exposed to 0.01 μg/mL anthocyanin-enriched fraction, we only
noticed 9% of acanthocytes.

2.3 Determination of released lactate
dehydrogenase (LDH) amount

As expected, in RBCs treated with 50 mMAAPH (1 h at 37 °C), a
moderate (about 1.8-fold) increase of released LDH was observed
compared to cells left untreated (Figure 3). However, pre-exposure
of cells to 0.01 μg/mL anthocyanin-enriched fraction (1 h at 37 °C)
significantly decreased the amount of LDH released. On the
contrary, in RBCs first exposed to 50 mM AAPH (1 h at 37°C)

FIGURE 2
Evaluation of RBC morphology. Representative SEM images showing human RBCs with a canonical biconcave shape (A) untreated cells); (B)
acanthocytes (arrows) after treatment with 50 mM AAPH (for 1 h, at 37°C); (C). Pre-incubation with anthocyanin-enriched fraction (0.01 μg/mL for 1 h, at
37°C) still showed a remarkable cell morphology modification. On the contrary, (D) post-treatment with anthocyanin-enriched fraction (0.01 μg/mL for
1 h, at 37°C) attenuated the morphological changes compared to 50 mM AAPH exposure. Magnification 1,500×.

TABLE 2 Percentage of morphological alterations in RBCs left untreated or
treated as reported. Data are presented as means ± S.E.M. from three
independent experiments, where ns, not statistically significant versus
untreated and 50 mM AAPH; ***p < 0.001 versus untreated; p < 0.001 versus
50 mM AAPH, one-way ANOVA followed by Bonferroni’s multiple comparison
post-hoc test.

Experimental conditions Acanthocytes

Untreated 5% ± 1

50 mM AAPH 23% ± 3***

0.01 μg/mL Extract + 50 mM AAPH 21% ± 0.1ns

50 mM AAPH + 0.01 μg/mL Extract 9% ± 0.5ns

FIGURE 3
Determination of released LDH amount. Released LDH amounts
were detected in RBCs left untreated or incubated with 50 mM AAPH
(1 h at 37°C) with or without pre- and post-exposure to the
anthocyanin-enriched fraction (0.01 μg/mL) for 1 h at 37°C. ns,
not statistically significant versus control (untreated) cells and 50 mM
AAPH; ***p < 0.001 versus untreated; p < 0.001 versus 50 mM AAPH,
one-way ANOVA followed by Tukey’s test (n = 3).
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and then incubated with the anthocyanin-enriched fraction
(0.01 μg/mL for 1 h at 37°C), the LDH amount released was not
different compared to that measured in RBCs treated with 50 mM
AAPH. The anthocyanin-enriched fraction alone did not affect the
released LDH amount (data not shown).

2.4 Measurements of the mean corpuscular
volume (MCV)

Figure 4 reports MCV values measured in in left untreated RBCs
or treated with 50 mM AAPH (1 h, at 37°C) with or without pre- or
post-treatment with anthocyanin-enriched fraction (0.01 μg/mL)
for 1 h at 37°C. This parameter is a surrogate measure of the
average cellular size. In human RBCs treated with 50 mM AAPH,
MCVwas significantly lower than those measured in untreated cells.
On the contrary, the MCV values in RBCs pre-treated with
anthocyanin-enriched fraction were statistically higher than those
measured in 50 mMAAPH-treated cells. Instead, the post-treatment
with anthocyanin extract was ineffective. Anthocyanin-enriched
fraction alone did not affect such parameter.

2.5 Oxidative stress assessment

2.5.1 Evaluation of intracellular ROS levels
The measurement of ROS levels was performed by flow

cytometry in RBCs that were left untreated or, alternatively,

exposed to 50 mM AAPH for 1 h at 37°C with or without pre- or
post-exposure to the anthocyanin extract (0.01 μg/mL) for 1 h at
37°C. Figure 5A displays the intracellular ROS levels. Blood samples
incubated with AAPH showed a significant increase of intracellular
ROS levels compared to untreated samples. In samples exposed to
the anthocyanin extract before or after exposure to AAPH, ROS
levels were significantly reduced. Notably, in samples first treated
with AAPH and successively exposed to the anthocyanin extract,
ROS levels did not differ from those of control RBCs. As expected, in
RBCs exposed to 20 mMH2O2 for 1 h at 25°C, the intracellular ROS
content was significantly higher than that of control RBCs, whereas
the anthocyanin extract (0.01 μg/mL) alone did not affect the
production of intracellular ROS (data not shown).

2.5.2 Measurement of thiobarbituric-acid-reactive
substances (TBARS) levels

Figure 5B shows the TBARS levels in RBCs left untreated or,
alternatively, treated with 50 mMAAPH for 1 h at 37°Cwith or without
pre- or post-exposure to the anthocyanin extract (0.01 μg/mL) for 1 h at
37°C. As expected, TBARS levels of RBCs treated with 20 mMH2O2 for
1 h were significantly higher than those of untreated RBCs. In parallel,
in RBCs pre-incubated with the anthocyanin extract and then treated
with AAPH, TBARS production, although significantly reduced
compared to RBCs treated with AAPH alone, remained significantly
elevated compared to control values. Conversely, in RBCs first
incubated with AAPH and then exposed to the anthocyanin extract,
TBARS levels were not significantly different from control values. Of
note, anthocyanin extract alone did not affect TBARS levels (data not
shown).

2.5.3 Measurement of total sulfhydryl group
content

Figure 5C displays the total content of sulfhydryl groups in RBCs
left untreated or treated with either the oxidizing compound NEM
(2 mM for 1 h at 25°C) as the positive control or 50 mM AAPH for
1 h at 37 °C with or without pre- or post-treatment with the
anthocyanin extract (0.01 μg/mL) for 1 h at 37°C. NEM
incubation led to a significant reduction in sulfhydryl group
content compared to control values. Sulfhydryl groups were also
significantly reduced in AAPH-treated RBCs. Pre- and post-
treatment with the anthocyanin extract completely restored the
total levels of sulfhydryl groups. Noteworthy, the anthocyanin
extract alone did not induce oxidation of sulfhydryl groups (data
not shown).

2.5.4 Evaluation of methemoglobin (MetHb) levels
Figure 5D displays the MetHb levels measured in RBCs left

untreated or treated with 50 mM AAPH for 1 h at 37°C with or
without pre- or post-treatment with the anthocyanin extract
(0.01 μg/mL) for 1 h at 37°C, or alternatively, exposed to the
well-known MetHb-forming compound NaNO2 (4 mM for 1 h at
25°C). Methemoglobin levels measured after treatment with NaNO2

were significantly higher than those detected in untreated RBCs.
Alongside, MetHb levels measured after exposure to AAPH were
significantly higher than those measured in untreated cells, while
both pre- and post-treatment with the anthocyanin extract
significantly reduced the production of MetHb levels. The
anthocyanin extract alone did not affect MetHb levels.

FIGURE 4
Measurement of Changes in the Mean Corpuscular Volume
(MCV). RBCs were left untreated or treated with 50 mM AAPH (1 h at
37°C) with or without pre- and post-exposure to 0.01 μg/mL
anthocyanin-enriched fraction for 1 h at 37°C.ns, not statistically
significant versus untreated; **p < 0.01 and ***p < 0.001 versus
untreated; p < 0.05 and p < 0.001 versus 50 mM AAPH, one-way
ANOVA followed by Bonferroni’s multiple comparison post-hoc test
(n = 15).
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2.6 Detection of protein expression by
western blotting analysis

2.6.1 Detection of band 3 protein levels
Figure 6A shows the levels of band 3 in human RBCs treated

with 50 mM AAPH for 1 h at 37°C with or without pre-exposure to
0.01 μg/mL anthocyanin extract for 1 h at 37°C. In all conditions

tested, band 3 levels were not significantly different with respect to
those determined in untreated RBCs.

2.6.2 Detection of band 3 tyrosine phosphorylation
and SyK kinase levels

Figure 6B reports both tyrosine phosphorylation (p-Tyr) levels of
band 3 and SyK kinase levels in human RBCs incubated with 50 mM

FIGURE 5
Evaluation of oxidative stress. (A) Detection of ROS levels. ROS levels were detected in RBCs left untreated or treated with 50 mM AAPH for 1 h at
37°C with or without pre- or post-exposure to the anthocyanin extract (0.01 μg/mL) for 1 h at 37°C. 20 mM H2O2 (1 h at 37°C) was used as the positive
control. ns, not statistically significant versus control (untreated); ***p < 0.001 versus control, p < 0.01 and p < 0.001 versus 50 mM AAPH, one-way
ANOVA followed by Bonferroni’s post-hoc test (n = 15). (B) Estimation of TBARS levels. TBARS levels (µM) were detected in RBCs left untreated or
treated with 50 mM AAPH for 1 h at 37°C with or without pre- or post-exposure to the anthocyanin extract (0.01 μg/mL) for 1 h at 37°C. 20 mMH2O2 (1 h
at 37°C) was used as the positive control. ns, not statistically significant versus control; **p < 0.01 and ***p < 0.001 versus control; p < 0.01 and p <
0.001 versus 50 mM AAPH, one-way ANOVA followed by Bonferroni’s post-hoc test (n = 15). (C) Evaluation of sulfhydryl group content. Sulfhydryl group
content (µM TNB/µg protein) was detected in RBCs left untreated and in RBCs treated with 50 mM AAPH for 1 h at 37°C with or without pre-or post-
exposure to the anthocyanin extract (0.01 μg/mL) for 1 h at 37°C. NEM (2 mM for 1 h at 37°C) was used as a positive control. ns, not statistically significant
versus control; ***p < 0.001 versus control, p < 0.01 and p < 0.001 versus 50 mM APPH, one-way ANOVA followed by Bonferroni’s post-hoc test (n = 15).
(D)Determination of MetHb (%) levels. MetHb levels were detected in RBCs left untreated or incubated with 50 mM AAPH (1 h, 37°C) with or without pre-
or post-exposure to the anthocyanin extract (0.01 μg/mL) for 1 h at 37°C. NaNO2 (4 mM for 1 h at 37°C) was used as the positive control. ns, not
statistically significant; ***p < 0.001 versus control; p < 0.001 versus 50 mM AAPH, one way ANOVA followed by Bonferroni’s post-hoc test (n = 15).

FIGURE 6
Measurement of Protein Levels by Western blot Analysis. (A) Band 3 levels in human RBCs left untreated or exposed to 50 mM AAPH for 1 h at 37°C
with or without exposure to 0.01 μg/mL anthocyanin-enriched fraction for 1 h at 37°C; ns not statistically significant versus control (untreated), one-way
ANOVA followed by Bonferroni’s multiple comparison post-hoc test (n = 3). (B) p-Tyr (tyrosine) levels in RBCs left untreated or exposed to 50 mM AAPH
for 1 h at 37°C with or without exposure to 0.01 μg/mL anthocyanin-enriched fraction for 1 h at 37°C. ns, not statistically significant; ***p <
0.001 versus untreated; p < 0.01 and p < 0.001 versus 50 mMAPPH, one-way ANOVA followed by Bonferroni’smultiple comparison post-hoc test (n = 3).
(C) Syk levels in RBCs left untreated or exposed to 50 mMAAPH for 1 h at 37°Cwith or without exposure to 0.01 μg/mL anthocyanin-enriched fraction for
1 h at 37°C; ns not statistically significant versus control, one way ANOVA followed by Bonferroni’s post-hoc test (n = 3).
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AAPH for 1 h at 37°C with or without pre-incubation with the
anthocyanin-enriched fraction (0.01 μg/mL) for 1 h at 37°C.
Exposure of RBCs to AAPH caused an intense band
3 phosphorylation (Figure 6B). Importantly, treatment with the
anthocyanin-enriched fraction before or after exposure to 50 mM
AAPH prevented the increase of tyrosine phosphorylation of band 3
(Figure 6B). Anthocyanin-enriched fraction alone did not significantly
affect tyrosine phosphorylation levels (data not shown). In parallel, Syk
kinase, which is responsible for the phosphorylation of band 3, was
detected (Figure 6C). No Syk kinase expression changes were detected
in humanRBCs treatedwith 50 mMAAPH, or alternatively, exposed to
the anthocyanin-enriched fraction before or after exposure to AAPH.
Also, anthocyanin-enriched fraction alone did not significantly modify
Syk kinase expression (data not shown).

2.7 Band 3 exposition level determination by
flow cytometry analysis

Expression levels of band 3 (median values of fluorescence obtained
by flow cytometry) observed in human RBCs exposed to the
anthocyanin-enriched fraction or to AAPH were comparable to those
reported in untreated RBCs (Figure 7A). Although data were not
statistically significant, an increased exposition of band 3 was detected
in human RBCs treated with 50mMAAPH for 1 h at 37°C with respect
to untreated cells. Representative immunofluorescence images of band
3 distribution in untreated cells (left panel) and in 50mMAAPH-treated
RBCs (middle and right panels) are shown, respectively. Results
demonstrated that band 3 was mainly clustered (red arrows) in
acanthocytes after 50 mM AAPH treatment with respect to untreated
RBCs (Figure 8B). Moreover, band 3 exposition was not altered by the
anthocyanin-enriched fraction given alone (data not shown).

2.8 Measurement of SO4
2− uptake through

band 3 in intact RBCs

Figure 8 shows the SO4
2− uptake as a function of time in RBCs

untreated and in RBCs treated with 50 mMAAPH for 1 h at 37°C with
or without pre- or post-treatment with 0.01 μg/mL anthocyanin-
enriched fraction for 1 h at 37°C. In untreated samples, SO4

2⁻ uptake
gradually increased and reached equilibrium within 45 min (0.057 ±
0.001 min−1). Blood samples treated with the anthocyanin-enriched
fraction alone showed a rate constant of SO4

2− uptake not significantly
different with respect to control (data not shown). On the contrary, the
rate constant (0.046 ± 0.001 min−1) in RBCs treated with AAPH was
significantly decreased with respect to control (***p < 0.001). Notably,
in RBCs pre-incubated with the anthocyanin-enriched fraction and
then treated with 50 mM AAPH, the rate constant (0.060 ±
0.001 min−1) was significantly higher (p < 0.001) than that of RBCs
treated with AAPH alone and was not significantly different with
respect to control (Table 3). In contrast, in RBCs first incubated
with AAPH and then treated with the anthocyanin-enriched
fraction, the rate constant (0.041 ± 0.001 min−1) was not
significantly different with respect to that of RBCs treated with
AAPH alone (Table 3). SO4

2⁻ uptake via band 3 was almost totally
blocked by DIDS (10 µM) applied at the beginning of incubation in
SO4

2⁻medium (0.04 ± 0.001 min−1, ***p < 0.001, Table 3). In addition,
the SO4

2⁻ amount internalized by AAPH-treated RBCs after 45 min of
incubation in SO4

2⁻ medium was significantly lower than untreated
(Table 3). Conversely, the SO4

2⁻ amount internalized by RBCs pre-
incubated with the anthocyanin-enriched fraction and then exposed to
AAPH was not significantly different compared to that measured in
untreated RBCs (Table 3). In DIDS-treated samples, the SO4

2⁻ amount
internalized was significantly lower than that of both untreated and
treated RBCs (***p < 0.001, Table 3).

FIGURE 7
Flow cytometry immunofluorescence of band 3 levels. Red blood cells were left untreated or treated with 50 mM AAPH for 1 h at 37°C, with or
without pre- and post-exposure to 0.01 μg/mL anthocyanin-enriched fraction for 1 h at 37°C. (A) Histograms reporting median values of fluorescence
intensity. (B-D) Flow cytometry immunofluorescence representative micrographs showing band 3 distribution in untreated RBCs and RBCs treated with
50 mM AAPH. Samples were observed with a ×100 objective. (B) Significant morphological changes in 50 mM AAPH-treated RBCs were reported
(red arrows). (C) Hemichromes formation is reported (7,000x magnification). ns, not statistically significant versus untreated, ANOVA followed by
Bonferroni’s multiple comparison post-test (n = 10).
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2.8.1 Measurement of SO4
2− uptake through band

3 in resealed ghosts
Figure 8B reports the time course of SO4

2⁻ uptake in resealed
ghosts. The rate constant of SO4

2⁻ uptake (0.082 ± 0.002 min−1,
Table 3) in RBCs treated with 50 mM AAPH (1 h, at 37°C) was
significantly decreased with respect to untreated RBCs (0.049 ±
0.001, ***p < 0.001, Table 3). SO4

2⁻ uptake via band 3 was almost
totally blocked by DIDS applied at the beginning of incubation in
SO4

2⁻ medium (0.024 ± 0.001 min−1, ***p < 0.001, Table 3). In

addition, the SO4
2⁻ amount internalized by AAPH-treated RBCs

after 45 min of incubation in SO4
2⁻ medium was significantly lower

than the control (Table 3). In DIDS-treated samples, the SO4
2⁻

amount internalized was significantly lower than both untreated and
treated RBCs (***p < 0.001, Table 3). In RBCs pre-incubated with
the anthocyanin extract and then treated with 50 mM AAPH, the
rate constant (0.048 ± 0.001 min−1) was not different than that of
RBCs treated with 50 mM AAPH alone and was significantly
different with respect to control (Table 3). In parallel, in RBCs

FIGURE 8
Time course of SO4

2⁻ uptake. (A) Intact RBCs were left untreated or treated with 50 mM AAPH (1 h, at 37°C) with or without pre- and post-exposure
to 0.01 μg/mL anthocyanin-enriched fraction for 1 h at 37°C, or alternatively, exposed to 10 µM DIDS. ns, not statistically significant versus untreated and
50 mM AAPH; ***p < 0.001 versus control; p < 0.001 versus 50 mM AAPH, one way ANOVA followed by Bonferroni’s post-hoc test. (B) Resealed ghosts
were left untreated or treated with 50 mM AAPH (1 h at 37°C), or alternatively, exposed to 10 µM DIDS. ***p < 0.001 versus untreated; one-way
ANOVA followed by Bonferroni’s post-hoc test.

TABLE 3 Rate constant of SO4
2⁻ uptake and amount of SO4

2⁻ trapped in human RBCs untreated and RBCs treated as indicated. Results are presented as means ±
SEM. from separate experiments (n), where ns, not statistically significant versus untreated and/or 50 mM AAPH; ***p 0.001 versus untreated (intact RBCs, or
alternatively, in resealed ghosts); p < 0.001 versus 50 mM AAPH, one-way ANOVA followed by Bonferroni’s multiple comparison post-hoc test.

Experimental conditions Rate constant
(min-1)

TIME
(min)

n SO4
2- amount trapped after 45 min of incubation IN SO4

2- medium
[SO4

2-] l cells x10−2

INTACT RBCS

Untreated 0.057 ± 0.001 17.16 10 311 ± 8.95

50 mM AAPH 0.046 ± 0.001*** 21.44 10 200 ± 10.25***

0.01 μg/mL Extract + 50 mM
AAPH

0.060 ± 0.003ns 16.43 10 348 ± 18.65 ns

50 mM AAPH + 0.01 μg/mL
Extract

0.041 ± 0.002ns,*** 23.8 10 173 ± 11.37 ns,***

10 µM DIDS 0.024 ± 0.001*** 41.66 10 15.5 ± 0.37***

RESEALED GHOSTS

Untreated 0.049 ± 0.001*** 12.01 10 284 ± 0.35

50 mM AAPH 0.082 ± 0.002*** 20.40 10 142.3 ± 0.50***

0.01 μg/mL Extract + 50 mM
AAPH

0.048 ± 0.002***, ns 20.62 10 158.05 ± 0.42***,ns

50 mM AAPH + 0.01 μg/mL
Extract

0.041 ± 0.002***, ns 23.87 10 150.05 ± 0.32***,ns

10 µM DIDS 0.023 ± 0.001*** 43.47 10 14.3 ± 0.29***
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first incubated with 50 mM AAPH and then treated with the
anthocyanin-enriched fraction, the rate constant (0.041 ±
0.001 min−1) was not significantly different with respect to that
of human RBCs treated with 50 mM AAPH alone (Table 3). SO4

2⁻

uptake via band 3 was almost totally blocked by DIDS applied at the
beginning of incubation in SO4

2⁻ medium (0.023 ± 0.001 min−1,
***p < 0.001, Table 3). In addition, the SO4

2⁻ amount internalized by
AAPH-treated RBCs after 45 min of incubation in SO4

2⁻ medium
was significantly lower than untreated cells (Table 3). Also, the SO4

2⁻

amount internalized by RBCs pre- and post-incubated with the
anthocyanin-enriched fraction and exposed to 50 mM AAPH was
significantly different compared to that measured in untreated RBCs
(Table 3). In DIDS-treated samples, the SO4

2⁻ amount internalized
was significantly lower than that of both untreated and treated RBCs
(***p < 0.001, Table 3).

2.9 Assessment of the Endogenous
Antioxidant Activity

2.9.1 Determination of reduced glutathione (GSH)
levels

Figure 9A reports the GSH levels measured in human RBCs
treated with 50 mM AAPH for 1 h at 37°C with or without pre- and
post-treatment with the enriched anthocyanin fraction (0.01 μg/mL
for 1 h at 37°C). The reduced GSH levels measured after incubation
with AAPH were significantly lower (~45%) than those detected in
untreated RBCs. Nevertheless, pre-incubation with the
anthocyanin-enriched fraction completely restored the GSH
content. On the contrary, in human RBCs first exposed to
50 mM AAPH (1 h at 37°C) and then treated with the
anthocyanin-enriched fraction (0.01 μg/mL for 1 h at 37°C), the

GSH content was not different compared to that measured in RBCs
treated with 50 mM AAPH. The anthocyanin-enriched fraction
alone did not significantly modify the GSH levels (data not shown).

2.9.2 Catalase (CAT) activity assay
Catalase was assayed in human RBCs untreated or treated with

50 mMAAPH for 1 h at 37°C with or without pre- or post-treatment
with the anthocyanin-enriched fraction (0.01 μg/mL) for 1 h at 37°C.
The treatment with AAPH provoked an increased CAT activity
compared to cells left untreated, which was consistent with an
elevated oxidative stress (Figure 10A). Unlike, the pre- and post-
incubation with anthocyanin-enriched fraction (0.01 μg/mL for 1 h
at 37 °C) reduced the CAT activity to control values (Figure 9B).
Exposure to 1 mMH2O2 for 30 min at 25°C has been considered as a
positive control. As expected, CAT activity in human RBCs treated
with H2O2 was significantly higher than that of control RBCs,
whereas anthocyanin-enriched fraction alone did not significantly
modify CAT activity (data not shown).

2.9.3 Superoxide dismutase (SOD) activity assay
In Figure 9C, the SOD activity was measured in human RBCs

untreated or treated with 50 mM AAPH for 1 h at 37°C with or
without pre- or post-treatment with the anthocyanin-enriched
fraction (0.01 μg/mL) for 1 h at 37 °C. In AAPH-treated RBCs,
SOD activity was found significantly increased compared to the
cells left untreated. On the contrary, both pre- and post-incubation
with the anthocyanin extract resulted in a significant inhibition of
SOD activity with respect to AAPH-treated cells. As expected, SOD
activity in RBCs treated with 1 mM H2O2 (30 min at 25 °C) was
significantly higher than that of control RBCs. Anthocyanin-
enriched fraction did not significantly modify SOD activity when
given alone (data not shown).

FIGURE 9
Evaluation of Endogenous Antioxidant Activity. Red blood cells were treated with 50 mM AAPH for 1 h at 37°C with or without pre- and post-
treatment with the anthocyanin-enriched fraction (1 h at 37°C). (A) ns, not statistically significant versus untreated RBCs and 50 mM AAPH; ***p <
0.001 versus untreated; p < 0.01 versus pre-treatment, one-way ANOVA followed by Tukey’s test. (n = 8). (B) CAT activity and (C) SOD activity. ns, not
significant versus untreated RBCs; ***p < 0.001 versus untreated RBCs; p < 0.001 versus 50 mM AAPH, one-way ANOVA followed by Bonferroni’s
multiple comparison post-hoc test (n = 8).
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3 Discussion

Red blood cells are the most numerous cells of the human blood.
Their discoid donut-like shape is essential for their physiological
functions as it enhances cellular flexibility and favours a high cellular
surface area-to-volume ratio, thus allowing efficient gas (O2 and
CO2, respectively) exchange from the lungs to the tissues and vice
versa (Sicinska, 2018). However, these cells are constantly exposed to
stressors during their 120-day lifespan, resulting in biochemical and
structural modifications. These alterations could impair the ability of
the RBCs to transport oxygen and eventually trigger their removal
from the blood circulation (Kuhn et al., 2017). The processes
triggering RBC removal have been partly investigated. As many
of these processes involve the increase of oxidative stress levels, the
present investigation aimed to explore the cellular and molecular
mechanisms underlying oxidative stress in human AAPH-
stimulated RBCs. To achieve this aim, the relationship between
RBC morphology and functional activity has been explored.

Plant-based antioxidant compounds could help reduce the effect
of increased ROS levels and the resultant oxidative stress and can
boost the endogenous antioxidant system against oxidizing
molecules, thus playing a crucial role in the prevention of
oxidative stress-related pathological states (Ugusman et al., 2023).
In this context, the potential protective activity of an anthocyanin-
enriched fraction extracted from Callistemon citrinus flowers
(Table 1) for counteracting oxidative stress events was also
studied. An interesting issue concerning the benefits of
phytochemicals in human health is their combined
administration. Combinations of several phytochemicals can
cause a change in both final biological effects and bioavailability
of each component. These combinations can improve or reduce the
benefits conferred by individual bioactive compounds, as well as

may induce facilitation/competition for cellular absorption and
transport (Wang et al., 2011). Synergistic interactions between
antioxidants can be explained by the theory of antioxidant
regeneration: one antioxidant protects another antioxidant from
oxidative degradation or isomerization by its own oxidation. In this
context, Bendokas and collaborators stated that a complex mixture
of anthocyanin metabolites in the plasma rather than a single type of
anthocyanins may cause beneficial effects in humans (Bendokas
et al., 2020).

The possible beneficial effect has been assayed by applying the
extract either before treatment of RBCs with the established pro-
oxidant AAPH (pre-treatment) or after treatment with AAPH (post-
treatment) Although multiple investigations reported the beneficial
properties of extracts of plant origin, the anthocyanin effects on
oxidative stress events in human RBCs have not yet been fully
investigated.

The susceptibility of RBCs to AAPH exposure was investigated in
terms of morphological changes by scanning electron microscopy
(SEM). The images (Figure 2) revealed significant changes in the
cellular shape, as the canonical biconcave shape was lost in a notable
number of cells, which displayed surface blebs known as
acanthocytes. However, post-treatment with the anthocyanin-
enriched fraction attenuated the morphological modifications
(Figure 2), with a significant reduction of the acanthocyte
percentage. The morphology of circulating RBCs has a
fundamental influence on the rheological properties of the blood
(Gyawali et al., 2012; Gyawali et al., 2015). The cell integrity, one of
the major determinants of blood rheological properties, implies that
human RBCs are capable of reversible deformation in the different
conditions of shear in the bloodstream. In this context, LDH release
is commonly considered as a marker of loss of cell membrane
integrity in response to elevated oxidant stress levels. This enzyme is

FIGURE 10
Time course of experimental procedures. AAPH: 2,2′-Azobis (2-methylpropionamidine) dihydrochloride.
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normally compartmentalized within the RBCs, but its activity is
significantly increased in the extra-cellular side as a result of cellular
damage (Franca et al., 2014; Morabito et al., 2014). To better explore
this characteristic, the amount of released LDH was also quantified.
As expected, in human RBCs treated with 50 mMAAPH amoderate
increase in released LDH was detected (Figure 3). However, the pre-
exposure to the anthocyanin-enriched fraction significantly
decreased the released LDH amount, which returned to control
values. Conversely, in RBCs first exposed to 50 mMAAPH and then
incubated with the anthocyanin-enriched fraction, the amount of
released LDH was not different compared to that measured in
50 mM AAPH-treated RBCs, but was significantly higher than
that of untreated RBCs. These results indicate that anthocyanins
can prevent but not reverse an oxidative stress-induced loss of cell
membrane integrity. Red blood cells membrane mechanical
properties can be remodeled by oxidative stress, thus resulting in
a reduction of deformability, or alternatively, in altered permeability
of the phospholipid bilayer, which, in turn, limits plasma membrane
ability to counter osmotic variations (Spinelli et al., 2023). Among
the main determinants of RBC deformability (Maruyama et al.,
2022), the mean corpuscular volume (MCV, as a measure of cellular
size) was considered. Our results demonstrated that pre-treatment
with the anthocyanin-enriched fraction reverted the cell size
reduction provoked by exposure to AAPH (Figure 4). The reduced
membrane surface area following oxidative stress was confirmed by
both reduced cell size (MCV) and the presence of acanthocytes
(Figure 4).

It is interesting to point out that oxidative stress events, as well as
oxidative stress-related diseases (Remigante et al., 2021b; Zuccolini
et al., 2022), are associated with RBC shrinkage (Rinalducci et al.,
2011). In ?-thalassemic RBCs, a pro-oxidant environment favours
the abnormal band 3 clusterization, inhibition of the Ca-ATPase
pump, and activation of Ca-permeable unselective cation channels
(Crupi et al., 2010; Voskou et al., 2015). The consequent increase in
intracellular Ca2+ activates the K+/Cl− co-transporter (KCC), which
causes the leakage of K+ from the cell and results in cellular
shrinkage and impaired deformability. An increase in
intracellular calcium also activates calpain and some caspases
that can degrade and/or crosslink cytoskeletal proteins and lead
to eryptosis (De Franceschi et al., 2013). Eryptosis mimics the
programmed cell death of nucleated cells (apoptosis). This
phenomenon is characterized by a gradual increase in membrane
phospholipid asymmetry and ATP consumption, which results in
the externalization of phosphatidylserine to the outer leaflet of the
plasma membrane (Yasin et al., 2003; Bosman et al., 2011). The
externalization of phosphatidylserine on the surface of eryptotic cells
can have two pathophysiological consequences: on one hand, it
starts the RBC phagocytosis; on the other hand, it favours RBC
adherence to vascular endothelial cells, which express
phosphatidylserine receptors. Exposure to AAPH did not induce
the translocation of phosphatidylserine at the outer plasma
membrane leaflet (Supplementary Figure S2), thus demonstrating
that, in this model of acute oxidative stress, human RBCs remain in
an early and vital phase of the oxidizing process. Human RBCs may
respond to any form of insult by changing their morphology
following alterations in the biochemical composition of the
plasma membrane. Red blood cells are extremely susceptible to
ROS-induced injury because of their high polyunsaturated fatty acid

content and their abundance in iron (Fe2+)-rich haemoglobin. The
latter acts as a catalyst in redox reactions and lipid peroxidation,
resulting in TBARS as the final product (Pandey and Rizvi, 2010).
Also, RBCs often undergo plasma membrane protein oxidation
(Tsamesidis et al., 2020). Therefore, the oxidation of protein
sulfhydryl groups is a typical indicator of oxidative damage at the
protein level in human RBCs. These phenomena could alter plasma
membrane properties and, consequently, cell shape. Since ROS
generated during cellular metabolism cause the oxidation of
macromolecules, the effects of the anthocyanin extract on the
intracellular ROS content have been evaluated. Our results show
that both pre- and post-treatment with the anthocyanin-enriched
fraction induced a reduction of ROS generation induced by AAPH

(Figure 5A). Also, pre- and post-treatment with the anthocyanin-
enriched fraction avoided the lipid peroxidation of plasma
membranes caused by AAPH (Figure 5B) and protected RBC
protein sulfhydryl groups from oxidative injury (Figure 5C).
These results demonstrate the antioxidant capacity of
anthocyanins. These plant-derived components properly protect
both the lipid and protein components of RBC membrane from
oxidative injury, and may act as scavengers for neutralizing both
reactive species and free radicals. These data are in line with what
was previously reported by other authors (Heo and Lee, 2005;
Fernandes et al., 2013; Speer et al., 2020; Hu J. et al., 2023; Hu
X. et al., 2023).

Band 3 (SLC4A1/AE1) is the dominant integral transmembrane
protein in the human RBCs (Mohandas and Gallagher, 2008). This
protein plays different important functions, such as a) maintenance
of anion homeostasis through the C-terminal domain that carries
out Cl-/HCO3

− exchange across the plasma membrane (Reithmeier
et al., 2016), b) maintenance of cell shape because of the binding
between the plasma membrane and cytoskeletal structures (Vallese
et al., 2022), and c) maintenance of the interaction of some cytosolic
proteins with the plasma membrane through the N-terminal
domain that extends into the intracellular side. In particular, this
region of band 3 competitively binds both haemoglobin and
glycolytic enzymes (Issaian et al., 2021). The band 3 function can
be investigated via the measurement of the rate constant for sulfate
(SO4

2−) uptake (Morabito et al., 2016; Morabito et al., 2017a;
Morabito et al., 2017b; Morabito et al., 2018; Remigante et al.,
2020; Remigante et al., 2022c; Remigante et al., 2022d; Remigante
et al., 2022e), which is slower and more easily measurable than the
physiological uptake of Cl− or HCO3

− (Jennings, 1976; Romano and
Passow, 1984; Morabito et al., 2019a; Crupi et al., 2019). This
methodological approach is as a valid tool to study the impact of
oxidative stress on mature RBCs homeostasis (Morabito et al., 2016;
Morabito et al., 2019a; Remigante et al., 2019; Remigante et al.,
2022a; Remigante et al., 2023b; Perrone et al., 2023). Based on this
background, SO4

2− uptake through band 3 was measured in mature
RBCs after exposure to AAPH with or without pre- and post-
treatment with the anthocyanin-enriched fraction. In RBCs
incubated with AAPH, the rate constant for SO4

2− uptake was
decreased compared to the untreated cells (Figure 7A; Table 3).
The finding that increased oxidative stress caused functional
alterations of band 3 activity in mature RBCs has been
demonstrated also in other cell-based models of oxidative stress.
To name just an example, Morabito and collaborators have
demonstrated that not haemolytic concentrations of H2O2
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(300 μM, for 30 min, at 37°C) induced a reduction of band
3 transport efficiency (Morabito et al., 2017b). Such a reduction,
which was associated with significant oxidative stress, could be
attenuated by a short-time pre-exposure of mature RBCs to low
(10 μM, for 10 min at 37°C) H2O2 concentrations. The pre-exposure
induces RBCs to adapt to a mild and transient oxidative stress and
allows for an increased endurance to a subsequent stronger oxidant
condition. Such an adaptation response, known as pre-conditioning,
did not involve the phosphorylation (p-Tyr) pathways of band 3 but
is mediated by the increase of CAT activity. In fact, this strategy
enabled RBCs to improve the endogenous antioxidant defence
performance, in order to provide a better protection against
oxidative injury (Morabito et al., 2017b). Although no alterations
in band 3 protein expression were reported in RBCs treated with
AAPH with or without exposure to the anthocyanin-enriched
fraction (Figure 7A), the pre-exposure of RBCs previously treated
with AAPH to the anthocyanin-enriched fraction totally restored
the rate constant for SO4

2− uptake (Figure 7A; Table 3). On the
contrary, the post-treatment did not enable recovery of the rate
constant of SO4

2− uptake (Figure 7A; Table 3).
Based on data hitherto showed, we can confirm that the

anthocyanin extract displays a beneficial effect on the anionic
exchange and could play a crucial role in counteracting oxidative
stress-related functional modifications in mature RBCs. In elevated
oxidative stress conditions, phosphorylation of proteins acts a
crucial role in the modulation of the plasma membrane elasticity,
resulting in the deformability of mature RBCs. For instance, tyrosine
phosphorylation of the band 3 cytoplasmic domain breaks the
interaction between band 3 and ankyrin, which connects the
cytoskeleton spectrin to the plasma membrane, and induces
metabolic changes via the reduction of anion transport (Cilek
et al., 2023). The redox regulation of band 3 (p-Tyr)
phosphorylation requires the action of two specific enzymes, Lyn,
which allows for tyrosine 359 phosphorylation, and Syk, which
allows for tyrosine 8 and 21 phosphorylation (Brunati et al., 2000;
Bordin et al., 2009; Marchetti et al., 2020). It is well established that
post-translation modifications (Costa et al., 2020) can impair
cytoskeleton (spectrin)-band 3 binding and provoke
modifications in the deformability and cell shape of mature RBCs
(Lin and Brown, 2005). In this regard, AAPH-caused oxidative stress
provoked a significant increase of band 3 tyrosine phosphorylation.
However, both pre- and post-treatment with the anthocyanin-
enriched fraction avoided these post-translational modifications
(Figure 6B). Overall, no alteration in the Syk kinase expression
levels was shown after treatment with AAPH with or without pre-
and post-incubation with the anthocyanin-enriched fraction
(Figure 6C). The oxidation of the band 3 cytoplasmatic domain
is likely induced by the increase of the intracellular ROS production.
Elevation of ROS allows for Syk docking to band 3 and suppresses
the action of the tyrosine phosphatases (Pantaleo et al., 2016;
Pantaleo et al., 2017). It is well known that the binding site for
oxidized haemoglobin (MetHb) is also located in the band 3 N-
terminal cytoplasmic domain (Mollan et al., 2013). In RBCs, the
production of ROS favours the haemoglobin denaturation, resulting
in the release of heme iron (Reeder, 2023). This process can be auto-
catalytic, thus leading to ever-increasing oxidative stress. To better
explore the molecular relationship between band 3 and oxidized
haemoglobin, MetHb levels were assayed. Our findings showed that

exposure to AAPH increased the levels of MetHb in mature RBCs
(Figure 5D). These modifications can initiate a cascade of
biochemical and/or structural changes, including the release of
micro-particles containing both hemichromes and clustering of
band 3 regions (Low et al., 1985; Mannu et al., 1995; Pantaleo
et al., 2016). When intracellular oxidants are produced in excess, the
balance between antioxidant and pro-oxidant capacity can be
modified. Here, band 3 clusters could facilitate the recognition by
antibodies directed against aging cells, thus triggering the premature
removal of senescent RBCs from circulation before the physiological
end of their 120-day life span. Interestingly, both pre- and post-
treatment with the anthocyanin-enriched fraction prevented
AAPH-induced MetHb production (Figure 5D). As mentioned
above, another special feature of RBC oxidation is the band
3 clustering process. To better clarify band 3 distribution in
conditions of elevated oxidative stress, the exposition of this
protein was investigated by immunofluorescence analysis. Data
displayed that, following exposure to AAPH, band 3 re-arranged
in surface blebs, thus leading to the formation of clustered band 3
(Figures 8C,D). In particular, Figure 8C shows an aggregation of
fluorescent bodies, most probably caused by the association between
band 3 andMetHb. These data confirmed that MetHb binding to the
C-terminus domain of band 3 induces clustering of band 3, thus
leading to hemichromes formation. Yet, despite this, band
3 exposition levels were recovered in RBCs pre- and post-treated
the anthocyanin-enriched fraction (Figure 8A).

To confirm the hypothesis that intracellular content could be
involved in the AAPH-induced oxidative stress response, we
measured band 3 exchange capability in resealed ghosts, which are
composed of reconstituted plasma membranes but deprived of
intracellular cytoplasmatic content. Resealed ghosts represent a valid
tool for investigating band 3 activity as well as its interaction with
cytoplasmic proteins (Morabito et al., 2016). In resealed ghosts, the
exposure to AAPH induced a reduction of the rate constant of SO4

2-

uptake with respect to untreated ghosts (Figure 7B; Table 3), thus
suggesting that the prime target of AAPH seems to be the lipid
component of the plasma membrane. The pre- and post-treatment
with the anthocyanin-enriched fraction did not restore the anion
exchange capability through band 3 (Figure 5B). In these
experimental conditions, human RBCs were deprived of intracellular
cytoplasmatic content, includingmethaemoglobin reductase. Normally,
this enzyme converts methaemoglobin back to haemoglobin (Kuma,
1981). As demonstrated, haemoglobin is also able to bind the
N-terminal domain of band 3 and supports the anion exchange
activity. However, the lack of methaemoglobin reductase in AAPH-
treated resealed RBCs did not allow for such a conversion, resulting in
an altered band 3 function (Figure 7B). The data obtained indicate that
the anthocyanin-enriched fraction may protect the enzyme activity,
including that of methaemoglobin reductase, in order to reduce
excessive oxidative stress levels. Not surprisingly, mature RBCs are
equipped with a battery of different antioxidant mechanisms, a
combination of both antioxidant enzymes and non-enzymatic
compounds, to inactivate the oxidizing species (Moller et al., 2023).
Such efficient detoxification system keeps RBCs functional for 120 days
in the bloodstream. Antioxidant enzymes possess an excellent free
radical scavenging capacity and play crucial roles in mature RBCs
(Ulanczyk et al., 2020). Glutathione is the main non-enzymatic
endogenous antioxidant. This molecule affects the pentose
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phosphate pathway through the glutathione reductase enzyme, which
generates NADP, as a result of the reduction of GSSG with NADPH +
H+. In human RBCs, the reduced GSH amount displays a wide inter-
individual variability from 0.4 to 3.0 mM. However, it has been widely
demonstrated that different factors, including oxidative stress-related
diseases, can alter reduced GSH levels (van ’T Erve et al., 2013; Bertelli
et al., 2021; Ferrera et al., 2021; Remigante et al., 2023a). The data
obtained confirmed that exposure to AAPH reduced (~45%) GSH
levels (Figure 9). The anthocyanin-enriched fraction exhibited a double
response on the damaged RBCs. On one hand, the pre-incubation of
human RBCs with the anthocyanin-enriched fraction completely
restored GSH levels (Figure 9A). On the other hand, the post-
incubation did not revert the effects of the oxidizing agent.
However, these findings are in line with those reported in a former
investigation (Lagana et al., 2020), which demonstrates that an
anthocyanin-enriched fraction is able to scavenge different free
radical species. This has been demonstrated via Electron Transfer
and Hydrogen Atom Transfer reaction-based assays.

Antioxidant enzymes can work together to scavenge excessive
ROS levels and maintain the redox balance in mature RBCs. For
example, the SOD enzyme catalyses the dismutation of harmful O2

•−

into O2 and H2O2. The H2O2 generated can then be decomposed
into nontoxic H2O and O2 by means of other antioxidant enzymes
such as catalase (CAT). In this regard, both SOD and CAT activity
were investigated. The activity of both enzymes was much higher in
RBCs incubated with AAPH than in untreated cells, which could
reflect the activation of the endogenous antioxidant defense system
to suppress the production of free radicals (Figures 9B,C). However,
increased SOD and CAT activity failed to counterbalance the free
radical rise, as demonstrated by the increase in lipid peroxidation
levels as well as protein oxidation (Figures 5B,C). In this context,
pre-exposure of RBCs to the anthocyanin-enriched fraction
significantly prevented the upregulation in both SOD and CAT
activity reported in AAPH-treated cells (Figures 9B,C). Both
upregulation in CAT and SOD activity and concomitant
substantial elevation of oxidative stress levels could reflect
exhaustion of the endogenous antioxidant battery. These
biochemical modifications may induce significant damage to the
plasmamembrane lipid components as well as protein structures. As
a result, the membrane mechanical properties could be altered,
resulting in a reduction of fluidity and deformability or altered
permeability of the phospholipid bilayer, which, in turn, reduces the
ability of the plasma membrane to withstand osmotic changes
(Spinelli et al., 2023). These data indicate that anthocyanins
might behave synergistically with the endogenous antioxidant
machinery to counteract oxidative stress events in mature RBCs
and preserve cellular integrity.

4 Materials and methods

4.1 Preparation of anthocyanin-enriched
fraction of acidified ethanolic extract from
Callistemon citrinus flowers

Flowers of Callistemon citrinus were collected from local
nurseries in Messina (Italy), hair dried until they reached a
moisture content lower than 2%, powdered with a mortar, and

used for the extraction of anthocyanins. A total of 1 g of powder was
extracted several times with a 1:10 (w/v) acetic acid:ethanol:water (1:
70:29, v/v/v) mixture. The volume obtained was concentrated to
5.0 mL with a rotary evaporator, extracted again, and concentrated,
followed by a solid phase extraction (SPE) by a Supelclean™ LC-18
SPE cartridge (Supelco Ltd., Bellefonte, PA, USA). The final elution
has been performed with an acetic acid:ethanol:water (1:70:29, v/v/
v) mixture. The anthocyanin-rich fraction was dried with a yield of
~21%. The powder obtained was stored in the dark at 4°C.

4.2 Anthocyanin profile characterization by
RP-HPLC-DAD

Qualitative and quantitative determination of anthocyanins was
carried out using a Shimadzu system, consisting of an LC-10AD pump
system, a vacuum degasser, a quaternary solvent mixing, an SPD-
M10A diode array detector, and a Rheodyne 7725i injector. The
chromatographic separation was carried out using a Luna Omega
PS C18 column (150 × 2.1 mm, 5 μm; Phenomenex) with solvent A
(formic acid 0.1%) and solvent B (acetonitrile), according to the
following gradient elution program: 0–3 min, 0% B; 3–9 min, 3% B;
9–24 min, 12% B; 24–30 min, 20% B; 30–33 min, 20% B; 33–43 min,
30% B; 43–63 min, 50% B; 63–66 min, 50% B; 66–76 min, 60% B;
76–81 min, 60% B; 81–86 min, 0% B, and equilibrated 4 min for a total
run time of 90 min. The flow rate, injection volume, and column
temperature were 0.4 mL/min, 5 μL, and 25 °C, respectively. UV-visible
spectra of anthocyanins were recorded between 220 and 800 nm
wavelength and chromatograms were acquired at 260, 290, 330, 370,
and 520 nm wavelength to detect the eventual presence of different
polyphenols classes. The peak identity was confirmed by comparing
retention times and UV-visible spectra with those reported in the
literature and with authentic standards when commercially available.
Due to the presence of poly-glycosylated and polymeric anthocyanins,
the anthocyanin content was expressed as cyanidin-3-O-glucoside
equivalents/100 g of dry extract (DE) by using an external
calibration curve made with a reference standard.

4.3 Solutions and chemicals for RBC sample
processing

All chemicals were purchased from Sigma (Milan, Italy).
Regarding stock solutions, 4,4′-diisothiocyanatostilbene-2,2′-
disulfonate (DIDS, 10 mM) and 2,2′-Azobis (2-
methylpropionamidine) dihydrochloride (AAPH, 0.5 M) were
dissolved in dimethyl sulfoxide (DMSO); N-ethylmaleimide
(NEM, 310 mM) was dissolved in ethanol. H2O2 experimental
solution was obtained by diluting a 30% w/v stock solution in
distilled water. Both ethanol and DMSO never exceeded 0.001%
v/v in the experimental solutions and were previously tested on
RBCs to exclude possible haemolytic damage.

4.4 Preparation of human RBCs

The experiments were carried out on male (mean age 53 ±
5 years) and female (mean age 54 ± 5 years) non-smoking donors.
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Following the rules of good medical practice, the nature and purpose
of the study were explained to all participants who then gave their
informed consent. All donors had stopped taking aspirin or NSAIDs
at least 1 week before the start of the study. To exclude the
interference of sex hormones with the aggregation of red blood
cells, only menopausal women who had not taken hormone
replacement therapy were enrolled. Whole human blood was
collected in test tubes containing ethylenediaminetetraacetic acid
(EDTA). Red blood cells were washed in isotonic solution (NaCl
150 mM, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES) 5 mM, glucose 5 mM, pH 7.4, osmotic pressure
300 mOsm/kgH2O) and centrifuged (Neya 16R, 1,200×g, 5 min)
to discard both plasma and buffy coat. Then, RBCs were suspended
to different haematocrits in isotonic solution according to the
experimental tests. The experimental design shown in Figure 2
was applied.

4.5 Analysis of cell shape by scanning
electron microscopy (SEM)

RBCs samples were left untreated or exposed to a 50 mM AAPH-
containing isotonic solution for 1 h at 37 °C with or without pre- or
post-incubation with 0.01 μg/mL Callistemon citrinus extract for 1 h at
37°C. Next, RBCs were collected, plated on poly-l-lysine-coated slides,
and fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4)
at room temperature for 20 min. Then, samples were post-fixed with
1% OsO4 in 0.1 M sodium cacodylate buffer and dehydrated via a
graded series of ethanol solutions from 30% to 100%. Then, absolute
ethanol was gradually substituted by a 1:1 solution of
hexamethyldisilazane (HMDS)/absolute ethanol and successively by
pure HMDS. As a further step, HMDS was completely removed and
samples were dried in a desiccator. Dried samples were mounted on
stubs, coated with gold (10 nm), and analysed by a Cambridge
360 scanning electron microscopy (Leica Microsystem, Wetzlar,
Germany), as formerly described (Straface et al., 2002). The number
of RBCs with an altered shape (acanthocytes) was evaluated by
counting ≥ 500 cells (50 RBCs for each different SEM field with a
magnification of 3,000x) from samples in triplicate.

4.6 Determination of lactate dehydrogenase
(LDH) release

To evaluate the amount of lactate dehydrogenase (LDH)
released, the human RBCs were left untreated or treated with
50 mM AAPH for 1 h at 37 °C with or without pre- or post-
treatment with the anthocyanin-enriched fraction (0.01 μg/mL)
for 1 h at 37 °C. The RBCs were centrifuged at 1,200 ×g for
10 min to save the supernatant. The latter was used for the
determination of the amount of LDH released and was
homogenized by sonication and centrifuged at 14,000xg for
10 min. The amount of LDH released has been quantified as
lactate conversion to pyruvate using nicotinamide adenine
dinucleotide (NAD+) as a hydride acceptor. LDH activity is
directly proportional to the absorbance decrease at 340 nm
wavelength. The amount of LDH released has been expressed as
% of the maximum amount of LDH in an untreated sample.

4.7 Measurements of mean corpuscular
volume (MCV)

Mean corpuscular volume (MCV) is the average volume of
RBCs. It has been measured by automated haematology analyser
(BC-6800 PLUS, Medical Systems, Milan, Italy) in left untreated
RBCs or treated with 50 mM AAPH (1 h, at 37°C) with or without
pre- or post-treatment with anthocyanin-enriched fraction (0.01 μg/
mL) for 1 h, at 37°C. Such parameter was calculated from
haematocrit and RBC count, as follows: MCV in fl=(Hct [in
L/L]/RBC [in x10-12/L]) x 1,000.

4.8 Assessment of oxidative stress
parameters

4.8.1 Detection of reactive oxygen species (ROS)
levels

To evaluate intracellular ROS content, RBCs, left untreated or
exposed to AAPH-containing solution (for 1 h, at 37°C) with or
without pre- or post-treatment with anthocyanin-enriched fraction
(0.01 μg/mL, for 1 h, at 37°C) were incubated in Hanks’ balanced salt
solution, pH 7.4, containing dihydrorhodamine 123 (DHR 123;
Molecular Probes) and then analyzed with a FACScan flow
cytometer (Becton-Dickinson, Mountain View, CA, USA). At
least 20.000 events were acquired. The median values of
fluorescence intensity histograms were used to provide a semi-
quantitative analysis of ROS production (Lucantoni et al., 2006).

4.8.2 Measurement of TBARS levels
Thiobarbituric-acid-reactive substances (TBARS) levels were

measured as reported by Mendanha and collaborators
(Mendanha et al., 2012). TBARS are derived from the reaction
between thiobarbituric acid (TBA) and malondialdehyde (MDA),
which is the end-product of lipid peroxidation. Red blood cells were
incubated with 50 mM AAPH for 1 h at 37 °C with or without pre- or
post-incubation with the anthocyanin extract (0.01 μg/mL) for 1 h at
37 °C. Successively, samples were centrifuged (Neya 16R, 1,200 ×g,
5 min) and suspended in isotonic solution. Samples (1.5 mL) were
treated with 10% (w/v) trichloroacetic acid (TCA) and centrifuged
(Neya 16R, 3,000 ×g, 10 min). TBA (1% in 0.5 mM NaOH hot
solution, 1 mL) was added to the supernatant and the mixture was
incubated at 95 °C for 30 min. At last, TBARS levels were obtained
by subtracting 20% of the absorbance at 453 nm from the
absorbance at 532 nm (Onda Spectrophotometer, UV-21). Results
are indicated as µM TBARS levels (1.56 × 105 M−1 cm−1 M extinction
coefficient).

4.8.3 Measurement of total -SH content
Measurement of total -SH groups was carried out according to

the method of Aksenov and Markesbery (Aksenov and Markesbery,
2001). In short, RBCs were left untreated or exposed to an isotonic
AAPH-containing solution for 1 h at 37 °C with or without pre- or
post incubation with the anthocyanin extract (0.01 μg/mL) for 1 h at
37 °C). Next, RBCs were centrifuged (Neya 16R, 1,200 ×g, 5 min)
and a 100 µL sample was haemolysed in 1 mL of distilled water. A
50 μL aliquot of the haemolysis product was added to 1 mL of
phosphate-buffered saline (PBS, pH 7.4) containing EDTA (1 mM).

Frontiers in Physiology frontiersin.org14

Remigante et al. 10.3389/fphys.2023.1303815

147

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1303815


Then, the addition of 5,5′-Dithiobis (2-nitrobenzoic acid) (DTNB,
10 mM, 30 μL) initiated the reaction and the samples were incubated
for 30 min at 25°C protected from light. Control samples without cell
lysate or DTNB were processed in parallel. After incubation, sample
absorbance was measured at 412 nm (Onda spectrophotometer,
UV-21) and 3-thio-2-nitro-benzoic acid (TNB) levels were
detected after subtraction of blank absorbance determined on
samples containing only DTNB. To achieve full oxidation of -SH
groups as the positive control, an aliquot of RBCs was incubated
with 2 mM NEM for 1 h at 25 °C (Morabito et al., 2015; Morabito
et al., 2016). Data were normalised to protein content and results
reported as μM TNB/mg protein.

4.8.4 Measurement of methaemoglobin (MetHb)
levels

The MetHb content was determined as reported by Naoum and
collaborators (Naoum and Magaly Da Silva, 2004). This assay is
based on MetHb and (oxy)-hemoglobin (Hb) determination by
spectrophotometry at 630 and 540 nm wavelength, respectively.
After incubation with 50 mM AAPH for 1 h at 37 °C with or
without pre- or post-treatment with the anthocyanin extract
(0.01 μg/mL) for 1 h at 37°C, 25 μL of RBCs resuspended were
lysed in 1975 μL hypotonic buffer (2.5 mM NaH2PO4, pH 7.4,
4°C). Then, samples were centrifuged (13,000 ×g, 15 min, 4°C;
Eppendorf) to remove plasma membranes and the absorbance of
the supernatant was measured (BioPhotometer Plus; Eppendorf). To
induce a complete haemoglobin (Hb) oxidation, a sample of RBCs
was incubated for 1 h at 25 °C with 4 mM NaNO2, a well-known
MetHb-forming compound. The percentage (%) of MetHb was
determined as follows: % MetHb= (OD 630/OD 540) × 100
(OD), where OD is the optical density.

4.9 Preparation of RBC membranes

Cell plasmamembranes were processed as described by Pantaleo
and collaborators (Pantaleo et al., 2016). Blood samples were
suspended in hypotonic cold solution (2.5 mM NaH2PO4)
containing a protease inhibitor mixture and were centrifuged
(Eppendorf, 4 °C, 18,000 ×g, 10 min) to discard haemoglobin.
Plasma membranes were then solubilized with SDS (1% v/v) and
put on ice for 20 min. The supernatant containing the solubilized
plasma membrane proteins was finally conserved at −80 °C.

4.9.1 SDS-PAGE preparation and western blotting
analysis

Red blood cell plasma membranes were heated for 10 min at
95 °C after dissolving in Laemmli buffer (Laemmli, 1970). The
proteins were separated using SDS-polyacrylamide gel
electrophoresis and transferred to a polyvinylidene fluoride
membrane by maintaining a constant voltage for 2 h. Membranes
were blocked for 1 h at 25 °C in BSA and incubated at 4°C with the
primary antibodies diluted in TBST (mouse monoclonal anti-band
3, B9277, Sigma-Aldrich, Milan, Italy, 1:1,000; mouse monoclonal
anti-P-TyR antibody (tyrosine), T1325, Sigma-Aldrich, Milan, Italy,
1:1,000; and rabbit monoclonal anti-Syk, SAB4500552, Sigma-
Aldrich, Milan, Italy, 1:500). Successively, membranes were
incubated with peroxidase-conjugated goat anti-mouse/rabbit IgG

secondary antibodies (A9044/A0545, Sigma-Aldrich, Milan, Italy)
diluted 1:10,000/1:20,000 in TBST solution for 1 h at 25 °C. To
quantify the protein in equal amounts, a mouse monoclonal anti-
GAPDH antibody (SC-32233, Santa Cruz Biotechnology, Italy, 1:
10,000 in TBST), was incubated with the same membrane, as
reported by Yeung and co-authors (Yeung and Stanley, 2009). A
system of chemiluminescence detection (Super Signal West Pico
Chemiluminescent Substrate, Pierce Thermo Scientific, Rockford,
IL, USA) was employed to obtain the signal for image analysis
(Image Quant TL, v2003). The intensity of protein bands was
determined by densitometry (Bio-Rad ChemiDocTM XRS+).

4.10 Analytical cytology

Red blood cells were left untreated or exposed to an AAPH-
containing isotonic solution for 1 h at 37 °C with or without pre- or
post-incubation with the anthocyanin extract (0.01 μg/mL) for 1 h at
37 °C). Next, RBCs were fixed with 3.7% formaldehyde in PBS
(pH 7.4) for 10 min at room temperature and then washed in the
same buffer. Cells were then permeabilized with 0.5% Triton X-100
in PBS for 5 min at room temperature. After washing with PBS,
samples were incubated with a mouse monoclonal anti-band
3 antibody (Sigma, Milan, Italy) for 30 min at 37°C, washed, and
then incubated with a fluorescein isothiocyanate (FITC)-labeled
anti-mouse antibody (Sigma, Milan, Italy) for 30 min at 37°C
(Giovannetti et al., 2012). Cells incubated with the secondary
antibody given alone were used as the negative control. Samples
were analyzed by an Olympus BX51 Microphot fluorescence
microscope or by a FACScan flow cytometer (Becton Dickinson,
Mountain View, CA, USA) equipped with a 488 nm argon laser. At
least 20,000 events have been acquired. The median values of
fluorescence intensity histograms are given to provide a
semiquantitative analysis. Fluorescence intensity values were
normalised for those of untreated erythrocytes and expressed in %.

4.11 Measurement of SO4
2− uptake

4.11.1 Control condition
The anion exchange through band 3 was determined as the uptake

of SO4
2− in RBCs, as described elsewhere (Romano and Passow, 1984;

Romano et al., 1998; Morabito et al., 2018; Morabito et al., 2019b).
Briefly, after washing, RBCs were suspended in 35 mL SO4

2− medium
(composition in mM: Na2SO4 118, HEPES 10, glucose 5, pH 7.4,
osmotic pressure 300 mOsm/kgH2O) and incubated at 25 °C for 5, 10,
15, 30, 45, 60, 90, and 120 min. After each incubation time, DIDS
(10 μM), which is an inhibitor of band 3 activity (Jessen et al., 1986), was
added to 5 mL sample aliquots, which were kept on ice. To eliminate
SO4

2− from the external medium, samples were washed three times in
cold isotonic solution and centrifuged (Neya 16R, 4 °C, 1,200×g, 5 min).
Distilled water was added to the cell pellet to induce osmotic lysis and
perchloric acid (4% v/v) was used to precipitate proteins. After
centrifugation (Neya 16R, 4 °C, 2,500 ×g, 10 min), the supernatant,
which contained SO4

2− trapped by erythrocytes during the fixed
incubation times, was subjected to the turbidimetric analysis. To this
end, 500 μL of the supernatant were sequentially mixed to 500 μL
glycerol diluted in distilled water (1:1), 1 mL 4M NaCl, and 500 μL
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1.24M BaCl2•2H2O. Finally, the absorbance of each sample was
measured at 425 nm (Spectrophotometer, UV-21, Onda
Spectrophotometer, Carpi, Modena, Italy). A calibrated standard
curve, which was obtained in a separate experimental set by
precipitating known SO4

2− concentrations, was used to convert the
absorbance into [SO4

2−] L cells × 10–2. The rate constant of SO4
2− uptake

(min−1) was derived from the following equation: Ct = C∞ (1 − e−rt) +
C0, where Ct, C∞, andC0 indicate the intracellular SO4

2− concentrations
measured at time t, ∞, and 0, respectively, e represents the Neper
number (2.7182818), r indicates the rate constant of the process, and t is
the specific time at which the SO4

2− concentration was measured. The
rate constant is the inverse of the time needed to reach ~63% of total
SO4

2− intracellular concentration (Romano et al., 1998). Results are
reported as [SO4

2−] L cells × 10–2 and represent the SO4
2− micromolar

concentration internalized by 5 mL erythrocytes suspended to 3%
haematocrit.

4.11.2 Experimental conditions
After treatment with AAPH (50 mM) for 1 h at 37 °C proceeded

or followed by 1 h incubation with or without the anthocyanin
extract (0.01 μg/mL at 37°C), RBCs (3% haematocrit) were
centrifuged (Neya 16R, 4°C, 1,200 ×g, 5 min) and suspended in
the SO4

2− -containing supernatant. The rate constant of SO4
2−

uptake was then determined as described for the control condition.

4.12 Preparation of resealed ghosts and
SO4

2− uptake measurement

Resealed ghosts were prepared from human RBCs as described by
Morabito and co-authors (Morabito et al., 2016; Morabito et al., 2020).
In short, RBC samples were washed, suspended in 35 mL of cold hypo-
osmotic buffer (NaH2PO4 2.5 mM, HEPES 5 mM, pH 7.4), and
incubated for 10 min at 0 °C. Successively, the intracellular
haemoglobin was discarded by multiple centrifugations (Neya 16R,
4 °C, 13.000 ×g, 30 min). The supernatant was replaced by 35 mL of
isotonic resealing medium (NaCl 145 mM, HEPES 5 mM, glucose
5 mM, pH 7.4, 300 mOsm/kgH2O, 37°C). The plasma membranes
were then incubated for 45 min at 37°C to allow for the correct
resealing. Finally, resealed ghosts, which contained ~10% of the total
haemoglobin, were treated with AAPH (50 mM) for 1 h at 37°C
preceded or followed by incubation with or without the
anthocyanin-enriched fraction (0.01 μg/mL) for 1 h at 37°C. The
SO4

2- uptake was measured according to the protocol described
above for intact RBCs.

4.13 Assessment of the Endogenous
Antioxidant Activity

4.13.1 Determination of reduced glutathione (GSH)
levels

After treatment with 50 mMAAPH for 1 h at 37 °C with or without
pre- or post-treatment with the anthocyanin-enriched fraction (0.01 μg/
mL for 1 h at 37 °C), RBC samples were centrifuged at 1,200 xg for
10 min to discard the supernatant. Each sample was homogenized by
sonication and an aliquot was withdrawn and diluted with an equal
volume of 5-sulfosalicylic acid solution (5%) to accomplish sample

deproteinization. Samples were then centrifuged at 13,000 xg for
10 min. Intracellular reduced glutathione (GSH) levels were assayed
according to Alisik and collaborators (Alisik et al., 2019). The
quantification was performed by a standard curve obtained with
pure GSH. Results are indicated as mM GSH. Both AAPH and the
anthocyanin-enriched fraction did not interfere with the determination
of GSH levels.

4.13.2 Catalase (CAT) activity assay
Catalase (CAT) activity was evaluated by the catalase assay kit

(MAK381, Sigma-Aldrich, Milan, Italy), according to the
manufacturer´s instructions. RBCs were exposed to 50mM AAPH
for 1 h at 37°C with or without pre- or post-incubation with the
anthocyanin extract (0.01 μg/mL) for 1 h at 37 °C. As the positive
control, cells were exposed to 20mM H2O2 for 30 min. After each
treatment, the incubation medium was discarded and cells were washed
in PBS 1X. Subsequently, cells were lysed in 0.2 mL catalase assay buffer
and centrifuged at 10,000 for 15 min at 4 °C. The supernatant (50 µL)was
incubated with 12 µL of 20 mMH2O2 for 30 min at 25 °C. Stop solution
(10 µL) and developer reaction mix (50 µL) were added and the samples
were incubated for 10 min at 25 °C. CAT activity was determined by
reading the absorbance at 570 nm wavelength (Fluostar Omega, BMG
Labtech, Ortenberg, Germany) after subtracting the background.

4.13.3 Superoxide dismutase (SOD) activity assay
Superoxide dismutase (SOD) activity was evaluated by a specific

assay (CS0009, Sigma-Aldrich, Milan, Italy), according to the
manufacturer´s instructions. RBCs were exposed to 50 mM AAPH
for 1 h at 37 °C with or without pre- or post-incubation with the
anthocyanin extract (0.01 μg/mL) for 1 h at 37°C. As the positive
control, cells were exposed to 20 mM H2O2 for 30 min.
Subsequently, cells were lysed in 1:5 distilled water. The lysate was
collected in 0.5 mL tubes and centrifuged at 10,000 ×g for 10 min at 4°C.
The supernatant (20 µL) was transferred to a 96-well plate. Then, 20 µL
dilution buffer, 160 µL WST solution and 20 µL xanthine oxidase
solution were sequentially added. The samples were incubated for
1 h at 25 °C and SOD activity was determined by reading the
absorbance at 450 nm wavelength (Fluostar Omega, BMG Labtech,
Ortenberg, Germany) after subtracting the background.

4.14 Experimental data and statistics

All data are expressed as arithmetic mean ± SEM. For statistical
analysis and graphics, GraphPad Prism (version 8.0, GraphPad
Software, San Diego, CA, USA) and Excel (Version 2019;
Microsoft, Redmond, WA, USA) software were used. Significant
differences between mean values were determined by one-way
analysis of variance (ANOVA) followed by Bonferroni’s post-hoc
test. Statistically significant differences were assumed at p < 0.05; (n)
corresponds to the number of independent measurements.

5 Conclusion

In conclusion, exposure of RBCs to AAPH increased oxidative
stress levels, resulting in morphological alterations, namely, the
formation of acanthocytes, increased lipid peroxidation and
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oxidation of proteins, as well as abnormal distribution and hyper-
phosphorylation of band 3. Expected, AAPH incubation was also
associated with a decrease of the band 3 functional activity and an
increased amount of oxidized haemoglobin, which led to abnormal
clustering of band 3. Finally, exposure to AAPH provoked both the
consumption of reduced GSH and the over-activation of the
endogenous antioxidant machinery, represented by catalase and
superoxide dismutase. Pre-treatment of RBCs with an anthocyanin-
enriched fraction effectively prevented all these oxidative stress-
related alterations to a significant extent. In contrast, exposure of
RBCs to the antioxidant compounds after the oxidative insult was
less effective. These results reveal that most oxidative stress-
associated modifications in RBCs are irreversible, but early
implementation of natural antioxidant compounds can prevent
or neutralize oxidative stress.

Indeed, exposure of RBCs to the anthocyanin fraction prior to, but
not after, oxidative stress could protect band 3 function from oxidative
stress-dependent inhibition. However, this effect can only be observed
in intact RBCs but not in RBC ghosts, pointing to the fact that cellular
integrity and preservation of a cytosolic component are essential
prerequisites for the prevention of oxidative stress-related functional
alterations in RBCs. In addition, the present study provides mechanistic
insights into the different benefits deriving from the use of naturally
occurring anthocyanins against oxidative stress on a cellular level.
Taking into account that oxidative stress is involved in a large
number of pathologies, new biomarkers of oxidative stress with
diagnostic and monitoring potential are needed. In this regard,
blood can be obtained from patients with minimally-invasive
procedures, reflects the physiological states of peripheral tissues and
cells, and could be considered as a remarkable source of oxidative stress
biomarkers. In particular, we propose band 3 (SLC4A1/AE1) activity as
a novel oxidative stress biomarker. Further studies (ex vivo) are needed
to clarify themechanisms underlying the oxidative stress events on RBC
homeostasis, including potential effects on the interaction between band
3 and the cytoskeletal proteins ankyrin and spectrin, their possible post-
translation modifications, as well as the mechanisms by which
metabolism of RBCs regulates the transport systems of gas exchange.
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Traumatic brain injury (TBI) is described as a structural damage or physiological
disturbance of brain function that occurs after trauma and causes disability or
death in people of all ages. New treatment targets for TBI are being explored
because current medicines are frequently ineffectual and poorly tolerated. There
is increasing evidence that following TBI, there are widespread changes in
autophagy-related proteins in both experimental and clinical settings. The
current study investigated if Boswellia Sacra Gum Resin (BSR) treatment
(500 mg/kg) could modulate post-TBI neuronal autophagy and protein
expression, as well as whether BSR could markedly improve functional
recovery in a mouse model of TBI. Taken together our results shows for the
first time that BSR limits histological alteration, lipid peroxidation, antioxidant,
cytokines release and autophagic flux alteration induced by TBI.

KEYWORDS

TBI, autophagy, apoptosis, behavioral, Boswellia sacra

1 Introduction

With more than 1.7 million new cases each year and 60% of all trauma-related deaths in
the U.S., TBI is a significant public health issue. TBI causes secondary brain injury, which sets
off a chain reaction of pathophysiological events that cause neuronal cell death, brain edema,
and neurological impairments. These events include oxidative stress, autophagy,
inflammation, and apoptosis. However, there are currently no viable treatments for TBI
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patients undergoing clinical intervention. Understanding the
pathophysiological mechanisms following TBI and locating new
therapeutic methods are thus crucial and urgent (Zeng et al., 2020).
The latter indicates delayed and perhaps reversible molecular and
cellular pathophysiological pathways that start shortly after the first
injury and may last for months or years (Bramlett and Dietrich,
2007; Wu and Lipinski, 2019). Despite the fact that most current
research has focused on the earliest cellular and molecular events,
experimental and clinical data indicate that central nervous system
(CNS) trauma-mediated pathophysiological changes may persist for
years, causing chronic post-mitotic cell loss and activation of
microglia and astrocytes as well as chronic functional deficits
(Ramlackhansingh et al., 2011). A growing database of research
shows that substantial changes in autophagy-related proteins occur
after TBI in both experimental and clinical settings (Zeng et al.,
2020). Neurological impairments and mortality are mostly caused
by cell death following neurotrauma. Even though CNS damage
affects many different cell types, including neurons and
oligodendrocytes, the mechanisms of neuronal cell death have
received most of the attention. Multiple cell death mechanisms
exist in the damaged CNS after trauma such as apoptosis and
autophagy (Stoica and Faden, 2010; Schoch et al., 2012). Long-
lived cytosolic proteins and damaged organelles increase a defective
autophagic machinery that could lead to apoptosis. The transfer of
the desired components to the lysosome includes a series of
sequential steps, including the creation of a double membrane,
elongation, and ultimately vesicle maturation. The morphology of
apoptotic cell is the best way to explain it. Cell rounding, membrane
blebbing, cytoskeletal collapse, cytoplasmic condensation and
fragmentation, nuclear pyknosis, chromatin condensation and
fragmentation, and the development of membrane-encased
apoptotic bodies—bodies that are quickly phagocytosed by
macrophages or nearby cells—are its distinguishing features
(Ghavami et al., 2014). It is interesting that the Bcl-2 family of
proteins and other regulatory elements such as AMP-activated
protein kinase (AMPK) that are shared by both apoptosis and
autophagy (Pattingre et al., 2005). The variety of cell death
routes, which have overlapping and different molecular causes, as
well as the limited therapeutic window for some types of neuronal
cell death, are barriers to effective therapy against neurotrauma-
induced neuronal cell death (Faden, 2002).

At present time, there are no effective therapies available for TBI
patients receiving clinical intervention. Oral supplementation with
vegetal bioactive compounds shows promise in delaying the
irreversible course in this discouraging situation (Stacchiotti and
Corsetti, 2020). However, given that the “one-drug, one-target”
approach to treating the complex pathophysiology of traumatic
brain injury (TBI) has not proven to be effective in clinical
settings, traditional medicinal herbs or plants could have a
pleiotropic effects and may offer a viable therapeutic
supplementation (Di Paolo et al., 2019). Various substances have
been employed thus far to control autophagic activity after traumatic
brain injury. For instance, apocynin, quercetin, luteolin, polyphenols
baicalin andmore are found in a wide variety of fruits and vegetables
as a modulator of TBI-related neuronal injury (Zeng et al., 2020).
The botanical name for frankincense is Boswellia sacra Fluck, and it
is a member of the Burseraceae family. The majority of these
Boswellia species’ chemical components are comparable. The

most widely used type of Boswellia in Arab nations is Boswellia
sacra, often known as “Omani Luban” which has long been used to
cure a variety of illnesses (Al-Yahya et al., 2020; Alyahya and Asad,
2020). Acetyl-11-keto-beta-boswellic acid (AKBA) and 11-keto-
beta-boswellic acid (KBA), which have been investigated for their
possible pharmacological and therapeutic qualities, are the two most
powerful anti-inflammatory boswellic acids found in Boswellia
(Asad and Alhomoud, 2016). The bioactive phytoconstituents of
boswellia, boswellic acids and pentacyclic triterpenoids have
demonstrated encouraging outcomes in both experimental and
clinical research. It is thought to be a potentially useful natural
pharmacophoric molecule that could be important for finding anti-
inflammatory and therapeutic drugs (Iram et al., 2017). It is
traditionally used to cure stomach, skin, ear, and throat
infections, to relieve menstruation pain, cardiovascular and
neurological issues, etc. It is also chewed as a mouth freshener in
many nations. Additionally, goods derived from Boswellia oleo gum
resin are sold all over the world for a variety of purposes
(Hamidpour et al., 2013; Liu et al., 2018; Mojaverrostami et al.,
2018). In this study, we examined the neuroprotective effects of
Boswellia Sacra Resin (BSR) against apoptosis TBI-induced with a
particularly attention to autophagic flux modulation.

2 Materials and methods

2.1 Reagents and gases

Acetone, acetonitrile, and formic acid (purity > 99.9%) were
purchased from Sigma Aldrich (Amsterdam, Holland); hydrochloric
acid was purchased from Carlo Erba (Milan, Italy). The standard
solutions (purity > 99.9%) at 1,000 mg L−1 of gallic acid, catechin,
caffeic acid, syringic acid, rutin, ellagic, hesperidin, ferulic acid,
myricetin, quercetin, apigenin, naringenin and kaempferol were
purchased from Sigma-Aldrich S. r.l. (Milan, Italy); chlorogenic
acid was purchased from VWR (Milan, Italy). Apigenin and
kaempferol were dissolved in aqueous solution at pH > 8.

2.2 Sample extraction

The sample extraction was carried out according to protocols
previously reported (Puigventos et al., 2015). In brief, 0.1 g of sample
was weighted and added to 10 mL of acetone/water/hydrochloridric
acid solution (70:29:0.1 v/v/v). The mixture was sonicated for
30 min. Subsequently, the mixture was centrifugated for 15 min
at 3,500 rpm, and the supernatant filtered with 0.45 μm nylon filters
and stored at −4°C until the analysis.

2.3 Materials

Oleo gum resins were collected from verified Boswellia sacra
Fluck trees of Wadi Doka (Najdi type resin) on the plateau region
north of Salalah during 2023. The sample was collected by
traditional method. This region experiences a desert climate, with
low rainfall (<100 mm annually) and sharp temperature variations
throughout the day. The oleo gum resin was authenticated by
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comparison with preserved voucher samples stored at the
Herbarium of Nizwa University, Oman. Unless otherwise stated,
all compounds were purchased from Sigma-Aldrich.

2.4 LC-HRMS conditions and validation of
the method

The chromatographic separations were carried out as reported
before with a Raptor C18 column (2.1 mm × 100 mm, 1.7 μm)
(Cammilleri et al., 2023). The mobile phase consisted of eluent A:
H2O + formic acid 1%, eluent B: acetonitrile + formic acid 1% for a
total run time of 14 min with a flow rate of 0.3 mL min-1.

As a mass spectrometer, a Q ExactiveTM Plus Hybrid
Quadrupole-Orbitrap™ (Thermo Fisher Scientific, California,
United States) was employed The Full MS scan/dd-MS2–SIM
mode was used to collect all data. The resolution of the Orbitrap
was adjusted to 70,000 FWHM (scan range 100–1,000 m/z). For a
maximum injection period of 200 ms, the automatic gain control
(AGC) was set to 3 × 106 ions. The product ions were discovered by
raising the normalized collision energy until the precursor ions were
completely fragmented. Each analyte was assigned a normalized
collision energy (NCE) value. The retention time (tR), accurate
mass, and distinctive fragmentation were used to identify the
analytes. Each day before the study, an external calibration for
mass accuracy was done. The Thermo Xcalibur ™ version
4.0 software was used to record and expound on acquisition data.
The method’s performance was evaluated for linearity, specificity,
and trueness in compliance with Commission Decision 2002/657.
The limits of detection and quantification (LODs and LOQs) were
determined by the 3σ and 10σ approach. The linearity test yielded
good results for all analytes tested (r2 > 0.993). Trueness by recovery
yielded values ranging between 80% and 105%. The polyphenols
concentrations were expressed as µg/Kg.

2.5 Extraction of the Boswellia sacra gum
resin (BSR) acid fraction

The particle size of the harvested oleo gum of Boswellia sacra
resin (BSR) was reduced to a coarse powder with a mortar and a
pestle for 2 hours. A fine powder was produced with an electrical
grinder. 200 g were placed into a 5,000 mL bottom flask, 2 L of
distilled water were added. A hydro distillation with a Clevenger
type apparatus was performed under atmospheric pressure. The
resulting essential oil was collected (14.2 mL). After 6–8 h no further
increase of essential oil was observed. The remaining mixture was
filtered (Whatman filter paper, grades 1,2 and 3), the residue was
washed out with hot water 3–4 times. The filtrate was cold down to
0°C to obtain a precipitate. After 60 min the precipitate was collected
and washed out several times with cold distilled water, dried under
vacuo and powdered with the electrical grinder. To reduce the water
content below the powder was transferred into a desiccator and this
is followed by sieving the powder into a very fine mesh at 40°C for
5 days. The final particle size (3–5 mm) the resulting BSR acid
fraction (80 g) was produced by grinding the material at a
temperature below 0°C.

2.6 HPLC analysis of BSR for pentacyclic
triterpenic acids

For chemical characterization of the BSR acid fraction, eight
pentacyclic triterpenic acids (PTA), alpha-boswellic acid (alpha-
BA), acetyl-alpha-boswellic acid (alpha-ABA), beta-boswellic acid
(beta-BA),acetyl-Beta-boswellic acid (B-ABA), 11-keto-beta-
boswellic acid (KBA), acetyl-11-keto-beta-boswellic acid (AKBA),
lupeolic acid (LA), and acetyl-lupeolic acid (ALA), were quantified
by HPLC analysis. For detailed information please see our previous
work (Schmiech et al., 2019).

2.7 Animals

CD1 male mice (8-week-old, 18–24 g) were acquired from
Envigo (Milan, Italy) and located in a controlled environment
and provided with standard rodent chow (Teklad standard diet
acquire from Envigo) and water available ad libitum. They were
housed 5 mice/cage and maintained in a 12:12 h light–dark cycle at
21°C ± 1°C and 50% ± 5% humidity. The University of Messina
Review Board for animal care (OPBA) approved the study
(P.R. 89126.8).

2.8 Experimental design and groups

The controlled impactor device Impact OneTM Stereotaxic
impactor for controlled cortical impact (CCI) (Leica, Milan, Italy)
was used to create a cortical contusion on the exposed cortex after a
craniotomy (tip diameter: 4 mm; cortical contusion depth: 3 mm;
impact velocity: 1.5 m/s). The clinical symptoms and weight of the
animals were monitored daily and recorded. Sham mice underwent
the identical surgical procedure but were not injured (Impellizzeri
et al., 2017; Fusco et al., 2020; Campolo et al., 2021).

Mice were divided as following:

• Sham + vehicle group: mice were subjected to the surgical
procedures as above except that the impact was not applied,
and animals were treated o. s. with vehicle (data not shown).

• Sham + BSR: mice were subjected to the surgical procedures as
above except that the impact was not applied, and animals
were treated o. s. with 500 mg/kg on BSR in saline 1 h after TBI
medical procedures.

• TBI: mice were subjected to CCI plus administration of
vehicle (saline).

• TBI + BSR: As for the TBI + vehicle group but BSR was
administered o. s. at 500 mg/kg in saline 1 h after TBI.

Taking into account that there is no discernible difference
between the Sham and Sham + BSR groups we choose to shown
in the figures Sham + BSR group. The animals of the first set of
experiment were sacrificed 24 h after TBI induction. The animal of
the second group pf experiment were sacrificed 30 days after TBI
induction, and they received every days for 30 days starting 1 h after
the damage orally administration of BSR at the dose of 500 mg/kg
(see Supplementary Material for experimental design graph).
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2.9 Behavioural analysis

30 days after the trauma induction, a designed group of animals
underwent behavioural testing. Mice were moved to the behaviour
testing room 30 min before the first trial started so they could
become accustomed to the environment. Based on behavioural
tests that were used to keep the environment as uniform as
feasible, animals were trained to use the equipment before every
recording. The behavioural tests were conducted by three distinct
trustworthy experts who were blinded to the animals’ damage state.
Below a brief description of tests.

2.9.1 Force swimming test (FST)
The method is based on that which Porsolt et al. described

(Porsolt et al., 1979). Briefly, FST is used to assess depressive-like
conditions. Mice are placed in an impenetrable, transparent tank
filled with water, and their movement behaviour related to escape is
recorded. In this experiment, for 6 minutes, each mouse was gently
placed in the cylinder, and the duration of floating was recorded.
During the final 4-min of the test, immobility was examined
(Genovese et al., 2021).

2.9.2 Open field test (OFT)
The OFT, created by Calvin S. Hall, is an experiment that

measures a rodent’s general locomotor activity levels, anxiety,
and exploratory willingness. Each mouse in this experiment was
trained before being put in the centre of the box, where activity
was then recorded for 5 minutes of exploration (Prut and
Belzung, 2003).

2.9.3 Elevated plus maze (EPM)
Utilizing the Elevated Plus Maze (EPM) test, rodents’

anxiety-related behaviour is evaluated. The EPM device is
made up of a core region, two oppositely positioned open
arms, two oppositely positioned closed arms, with an elevated
"+"-shaped maze. A video camera set above the maze records the
subjects’ actions while they freely navigate it, and their actions are
then analysed. After training, it was counted how many times the
mice entered each arm and how long they spent in open arms
(Pellow et al., 1985).

2.9.4 Morris Water Maze (MWM)
Hippocampal-dependent spatial learning and memory were

assessed using the MWM test (Zhao et al., 2017; Siebold et al.,
2020). Following a training session, a mouse was placed in the water
in each of the three separate quadrants and given 1 minute to swim
there. The platform was taken away for the test 1 day following the
navigation experiment. It was noted howmuch time was spent in the
target quadrant.

2.9.5 Novel object recognition (NOR)
The NOR test was used to determine whether mice had a

natural tendency to spend time studying unfamiliar or familiar
objects. Mice were placed in the box for 5 min after a training
session, during which the examiner replaced one of the familiar
objects with a novel one at random. Each object’s total amount of
mouse exploration time was recorded (Siracusa et al., 2017; Pan
et al., 2018).

2.10 Histological brain analysis

After the experiment, brain tissue was removed, fixed at room
temperature in buffered formaldehyde solution (10% in phosphate
buffered saline), dehydrated by graduated ethanol, and then embedded
in paraffin. Light microscopy was used to examine tissue sections that
were 7 um thick after being deparaffinized with xylene and stained with
haematoxylin/eosin (Bio-Optica,Milan, Italy). The number of damaged
neurons was counted, and the grey matter’s histopathologic alterations
were graded on a 6-point scale: No lesion was found, 1; 1–5 eosinophilic
neurons were present in the Gray matter, 2; 5–10 eosinophilic neurons
were present, 3; more than 10 eosinophilic neurons were present, 4; a
small infarction (less than one third of the grey matter area), 5; a
moderate infarction (one third to one half of the Gray matter area); and
6, a large infarction (more than half of the grey matter area). To
determine a final score for each mouse, the results from every part of
each brain were averaged. The slices were then analysed by a blinded
histopathologist using an optical microscope using a Leica
DM6 microscope (Leica Microsystems Spa, Milan, Italy) (Petrosino
et al., 2017).

2.11 Cytokines measurement

Using commercially available enzyme-linked immunosorbent
assay (ELISA) kits (R&D Systems, Minneapolis, MN, United States)
in accordance with the manufacturer’s instructions, TNF-α, IL-1β,
and IL-6 levels from brain were measured as previously described
(Cordaro et al., 2020a).

2.12 Antioxidants and malondialdehyde
measurement

The supernatant of the brain tissue homogenate was centrifuged
(14,000 rpm at 4°C for 30 min) as previously described (Marklund
and Marklund, 1974; Rajasankar et al., 2009). ELISA kits (R&D
Systems, Minneapolis, MN, United States) were used to measure
superoxide dismutase (SOD) and glutathione (GSH-Px) levels. The
test procedure was described in detail in the manufacturer’s
manuals. Levels of malondialdehyde in brain tissue were
determined as an indicator of lipid peroxidation (Ohkawa et al.,
1979). Briefly, brain tissues were weighed and homogenized in a
1.15% (wt/vol) KCl solution. 100 μL aliquots of homogenate were
then removed and added to a reaction mixture containing 200 μL
8.1% (wt/vol) lauryl sulfate, 1.5 mL 20% (vol/vol) acetic acid
(pH 3.5), 1.5 mL 0.8% (wt/vol) thiobarbituric acid, and 700 μL
distilled water. Samples were then boiled for 1 hour at 95°C and
centrifuged at 3000g for 10 min. The absorbance of the supernatant
was measured spectrophotometrically at 532 nm. MDA levels were
expressed as nmol/mg of tissue (Di Paola et al., 2009; Genovese
et al., 2022).

2.13 Apoptosis and autophagy detection

The level of mRNA expression of apoptosis-related cytokines
caspase-3, caspase-8, caspase-9, Bax, Bcl-2, and cytochrome c and
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autophagy markers such as Beclin-1, LC3 AMPK and p62 were
determined using real-time quantitative RT polymerase chain
reaction (RT-PCR) as previously described (Liu and Saint, 2002;
Hu et al., 2011; Wang et al., 2013; Ze et al., 2014; Wang et al., 2022):
Caspase-8 Forward primer ATCTGCTGTATCCCAGC Reverse
primer AGGCACTCCTTTCTGGAAGTTAC; Caspase-9 Forward
primer GCGGTGGTGAGCAGAAAGA Reverse primer CCTGGG
AAGGTGGAGTAGGA; Caspase-3 Forward primer CTGACTGGA
AAGCCGAAACTC Reverse primer GACTGGATGAACCACGAC
CC; Bax Forward primer GGATGCGTCCACCAAGAAG Reverse
primer CAAAGTAGAAGAGGGCAACCAC; Bcl-2 Forward
primer TGTGGTCCATCTGACCCTCC Reverse primer ACA
TCTCCCTGTTGACGCTCT; Cytochrome c Forward primer
CATCCCTTGACATCGTGCTT Reverse primer GGGTAGTCT
GAGTAGCGTCGTG; LC3 Forward primer AACGTAGGCACC
CACATAGG Reverse primer GAAGAGACTGCCCCTGACAC;
Beclin1 Forward primer GAACTCTGGAGGTCTCGCT Reverse
primer CACCCAGGCTCGTTCTACC; p62 Forward primer AGT
CCAGAATTCCTGCCTGA Reverse primer TTCATTCGGCTT
CACATGAA; adenosine monophosphate (AMP) activated
protein kinase (AMPK) Forward primer GTGATCAGCACTCCG
ACAGA Reverse primer TCTCTGGCTTCAGGTCCCTA; β-actin
Forward primer AATGTGTCCGTCGTGGATCTGA Reverse
primer AGTGTAGCCCAAGATGCCCTTC.

2.14 Western Blots

Cytosolic extracts were prepared as previously described
(Cordaro et al., 2017; Di Paola et al., 2021a; Di Paola et al.,
2021b). The following primary antibodies were used: anti-Bax (1:
500; SCB, B-9 sc-7480), anti-Bcl-2 (1:500; SCB, C-2 sc-7382), Beclin-
1 (1:500; SCB, sc-48381) and LC3 (1:500; SCB, sc-271625) in 1× PBS,
5% w/v non-fat dried milk, 0.1% Tween-20 at 4°C overnight
(Impellizzeri et al., 2016a; Paterniti et al., 2017; Cordaro et al.,
2018; Cordaro et al., 2020b; Crupi et al., 2020). Blots were further
probed with an anti-β-actin protein antibody (1:500; SCB) for the
cytosolic fraction to make sure that they were loaded with an
equivalent number of proteins (Di Paola et al., 2016a; Cordaro
et al., 2020c). As directed by the manufacturer, signals were
evaluated using an enhanced chemiluminescence (ECL) detection
system reagent (Thermo, Monza, Italy) (Akki et al., 2018; Remigante
et al., 2022). Using BIORAD ChemiDoc TM XRS + software and
densitometry, the relative expression of the protein bands was
measured and standardized to the levels of b-actin and lamin
A/C (Paterniti et al., 2015; Di Paola et al., 2016b; Esposito et al.,
2016; Siracusa et al., 2018; Peritore et al., 2020).

2.15 Statistical evaluation

The data in this study are presented as the average ± SEM and
represent at least three experiments conducted on various days. N
denotes the number of animals utilized in in vivo experiments. The
G*Power 3.1 software (Die Heinrich-Heine-Universitat Dusseldorf,
Dusseldorf, Germany) was employed to calculate the number of
animals used in in vivo research. A competent histopathologist
examined the data, without knowledge of the treatments. In all the

statistical studies, GraphPad Software Prism 9 (La Jolla, CA,
United States) was used. One-way ANOVA was used to examine
the data, and then a Bonferroni post-hoc test for multiple
comparisons was used. A p-value of 0.05 or less was regarded as
significant. In figure: ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001;
****p ≤ 0.0001.

3 Results

3.1 Polyphenols contents and HPLC-MS/MS
analysis in BSR

The polyphenols contents found in the B. Sacra samples
followed the order Petunidin > Pelargonidin > Cyanidin >
Myricetin > Quercetin. Among the anthocyanins, a high presence
of Petunidin (925.85 μg/Kg) (Figure 1A) was found, followed by
Pelargonidin (2.36 μg/Kg) (Figure 1D) and Cyanidin (0.56 μg/Kg)
(Figure 1E). Myricetin (47.10 μg/Kg) (Figure 1B) and Quercetin
(1.78 μg/Kg) (Figure 1C) were the only flavonols detected. No
cinnamate esters, hydroxycinnamic acids and other sub-classes of
polyphenols were found. For chemical characterization of the BSR
acid fraction were quantified by HPLC analysis eight pentacyclic
triterpenic acids: alpha-boswellic acid (alpha-BA), acetyl-alpha-
boswellic acid (alpha-ABA), beta-boswellic acid (beta-BA),acetyl-
Beta-boswellic acid (B-ABA), 11-keto-beta-boswellic acid (KBA),
acetyl-11-keto-beta-boswellic acid (AKBA), lupeolic acid (LA), and
acetyl-lupeolic acid (ALA) (Figure 1F).

3.2 Effects of BSR on memory performance,
locomotor activity changes brought on by
TBI, and spatial learning

The MWM test was used to determine whether BSR could help
with memory problems brought on by TBI. When compared to the
controls, TBI-subjected animals took longer to find the platform
during training (Figure 2A). In addition, the injured animal spent
less time throughout the probe experiment in the target quadrant of
the platform (Figure 2B). The escape latency was dramatically
decreased (Figure 2A) and the duration spent in the target
quadrant was increased (Figure 2B) after oral administration of
BSR at a dose of 500 mg/kg, demonstrating an improvement in
the cognitive deficiencies brought on by the trauma. We evaluated
any shortcomings in their social interaction and exploratory
behaviour using the NOR (Figure 2C) test. In this test, we
discovered that after TBI, the amount of number of contacts were
statistically reduced (Figure 2C). The administration of BSR, on the
other hand, considerably improves the memory function harmed by
trauma. The EPM test was also applied to mice to evaluate risk-taking
behaviours and post-injury anxiety. According to the bibliography,
fictitious animals spend more time in open arms whereas injured
animals spend more time in closed arms, which also lowers the
number of entries. However, compared to the TBI group, the animals
that got oral BSR treatment spent longer time in the open arms and
made more entrances (Figure 2D). The OFT was utilized to assess
locomotor activity further.We found that following TBI injuries, mice
spent less time in the centre and made fewer crossings, in contrast to
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sham animals. In this case, BSR was successful in resuming locomotor
activity and the frequency of crossings (Figure 2E).

3.3 BSR limits histological alteration induced
by TBI

Histological analysis of a brain sample taken from the TBI group
24 h after the TBI injury revealed significant tissue damage,
inflammation, and architectural alterations when compared to brain
from the sham group (Figures 3A, A’ for sham; Figures 3B, B’ for TBI,
see histological score 3D). When administered at a dose of 500 mg/kg,
BSR significantly lessened the severity of brain injury when compared to
the TBI group (Figures 3C, C’ see histological score Figure 3D).

3.4 BSR administration modulates lipid
peroxidation, antioxidant, and
cytokines release

Given the high concentration of polyunsaturated fatty acids in the
brain, lipid peroxidation is the main manifestation of oxidative stress
following TBI. Comparing the TBI group to the sham mice, we
discovered that there was a considerably higher level of lipid
peroxidation that was significantly attenuated following oral
administration of BSR (Figure 4A). The cell is shielded from
oxidative stress by enzymes that neutralize superoxide and H2O2.

The primary defensive enzymes against superoxide radicals are
GSH-Px and SOD (Cordaro et al., 2021a; Cordaro et al., 2021b).
Oxidative stress impairs mitochondria’s ability to function and move
to synaptic areas, which causes synaptic dysfunction and
neurodegeneration. After controlled cortical impact, we observed
lower levels of SOD (Figure 4B) and GSH-Px (Figure 4C) compared
to shammice, according to the literature. Following oral administration
of BSR at a dose of 500 mg/kg, physiological levels were practically
repristinate. Cytokines storm promotes the inflammatory response by
activating microglia and increasing the synthesis of chemokines, and
preclinical models show that TBI causes neuronal injury with these
raised levels (Ahmad et al., 2013; Gugliandolo et al., 2018). We used
ELISA kits tomeasure the levels of TNF-α (Figure 4D), IL-6 (Figure 4E),
and IL-1β (Figure 4F). While the sham group had only trace quantities
of this cytokine, brain samples from TBImice had a substantial increase
in all cytokines that was significantly reduced after oral administration
od BSR at the dose of 500 mg/kg.

3.5 BSR limits neuronal death TBI

The discovery that caspase-mediated programmed cell death
plays a significant role in secondary brain injury raises the possibility
of a connection between pathogenic molecular pathways and
healing (Jarrahi et al., 2020). For this reason, we made RT-PCR
for Caspase-3 (Figure 5A), Caspase-8 (Figure 5B), Caspase-9
(Figure 5C), Bax (Figure 5D), Bcl-2 (Figure 5E), and Cytochrome

FIGURE 1
Polyphenols contents found in the BSR. Chromatogram of a B. Sacra sample analyzed by the LC-HRMS method. (A) = Petunidin;
(B) = Myricetin; (C) = Quercitin; (D) = Pelargodin; (E) = Cyanidin. HPLC (F) analysis for pentacyclic triterpenic acids: alpha-boswellic acid
(alpha-BA), acetyl-alpha-boswellic acid (alpha-ABA), beta-boswellic acid (beta-BA), acetyl-Beta-boswellic acid (B-ABA), 11-keto-beta-boswellic
acid (KBA), acetyl-11-keto-beta-boswellic acid (AKBA), lupeolic acid (LA), and acetyl-lupeolic acid (ALA).
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C (Figure 5F). We found a significantly increase in apoptosis in
animal subjected to the injury compared with the sham group except
for BCL-2 in which we found a decrease of this expression. The same
trend was also observed by western blot analysis of Bax and Bcl-2
(Figure 5G). On the other hand after BSR administration at the dose
of 500 mg/kg all the expression of apoptotic marker were brought
back to physiological levels.

3.6 BSR stimulate autophagic flux

Previous study demonstrates that the administration of
Boswellia was able to stimulates autophagic flux in an
experimental model of rotenone-induced neurotoxicity (Shadfar
et al., 2022). In our work we found after RT-PCR analysis that
after TBI there were an increase in autophagic flux as demonstrate
by AMPK (Figure 6A), Beclin-1 (Figure 6B), LC3 (Figure 6C) and
p62 (Figure 6D) compared to the control animals. The same trend
was also observed by western blot analysis of Beclin-1 and LC3
(Figure 6E). Additionally, The single oral administration of BSR at
the dose of 500 mg/kg significantly increased autophagic flux.

4 Discussion

TBI is regarded as a serious health issue that frequently results in
mortality and disability and places a significant burden on medical

resources. The development of therapeutic methods to treat brain injury
was not very rapid. Neuroprotection and neurorecovery are still the
primary therapeutic approaches in development, aside from conservative
care (Zhang et al., 2014). Studies have shown that secondary cell death,
which may eventually make up as much as 40% of the total tissue loss,
affects the prognosis after a TBI and so presents a significant
pharmacological target for neuroprotective treatment (Smith et al.,
2000). Since the dawn of medicine, natural compounds made from
plants have been employed in healing. The phytochemicals have
undergone substantial evaluation for drug development in recent
decades. However, only a small number of these plant species have
undergone thorough scientific scrutiny. Therefore, research into the
bioactivities of these plants and phytochemicals is necessary. Even
now, several of these historically utilized herbs and compounds
produced from plants are still useful pharmacologically. One such
healing plant is the Burseraceae genus Boswellia Sacra. Typically,
triterpenoidal principles, essential oils, and carbohydrates make up
the normal oleo-gum resin. Boswellic acids include β-boswellic acid,
11-keto-β-boswellic acid, and acetyl-11-keto-β-boswellic acid make up
most of the oleo-gum resin. It is safe to use up to oral doses of
1,000 mg/kg in rats, as revealed by Al-Yahya and colleagues, who also
showed that the methanolic extract of Boswellia sacra oleo gum resin did
not create any significant effect on the kidney and liver with repeated
dose administration for 28 days (Al-Yahya et al., 2020). Another study
assessed the oral and intraperitoneal toxicity of boswellic acids in mice,
rats, andmonkeys for acute, subacute, and chronic effects. Boswellic acids
were discovered to be safe up to the 2.0 g/kg investigated dosing levels

FIGURE 2
Effects of BSR on spatial learning, memory function, anxiety, and locomotor activity. Morris Water Maze training (A) and probe (B); novel object
recognition (C); elevated plus maze test (D); Open field (E). As showed in panel 2, BSR administration significantly improve behaviorural recovery in terms
of spatial learning, memory function, anxiety, and locomotor activity after TBI. The graphs are representative of at least three experiments performed on
different experimental days. Each data is expressed as mean ± S.E.M. from n = 6 male mice for each group. TBI + BS7 vs Sham.
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(Khan et al., 2016). With this background in our mind we want to
elucidate the molecular pathways by which BSR could have a
neuroprotective effects in an experimental model of TBI. It is
common practice to examine the prevalent clinical problem in people
using animal models of trauma. After a controlled cortical impact,
animals that lead to neurological diseases such seizures and
deteriorated memory and learning. In our investigation, a single oral
dose of BSR at the dose of 500mg/kg given 1 hour after trauma induction
was able to reduce post-traumatic stress disorder symptoms such anxiety
and altered locomotor activity while also improving spatial learning and
memory. CCI is a consolidated models of brain trauma that induce a
significantly alteration in histological architecture (Campolo et al., 2014;
Impellizzeri et al., 2016b; Cordaro et al., 2016; Impellizzeri et al., 2017;
Gugliandolo et al., 2018; Fusco et al., 2020; Cordaro et al., 2021a; Cordaro
et al., 2021b). In our study we found that in the mice subjected to the
trauma the perilesional area revealed considerable tissue damage,
inflammation, and architecture alterations 24 h after TBI injury that
was significantly reduced after the administration of BSR at the dose of
500mg/kg. A common underlying cause of many neuropathologies is
the overproduction of reactive oxygen species (ROS), reactive nitrogen
species (RNS), and cytokines which have been demonstrated to harm a

variety of cellular components, including proteins, lipids, and DNA.
Superoxide dismutase (SOD) and reduced glutathione (GSH), two
endogenous defensive enzyme systems, can be overwhelmed by free
radicals, especially superoxide (O2-), and non-radicals such hydrogen
peroxide (H2O2) (Slemmer et al., 2008). In our study we found a
significantly increase in lipid peroxidation as well as in pro
inflammatory cytokines in animals subjected to the injury compared
to the control group and a significantly reduction in physiological
antioxidant system as demonstrated by the analysis of SOD and
GSH-Px. On the other hands, a single oral administration of BSR,
have been significantly limited these alterations. The three main types of
cell death are necrosis, apoptosis, and autophagy. Apoptosis, in contrast
to necrosis, is a tightly controlled and energy-intensive process that can
be started by the original necrosis. We concentrated on apoptosis and
autophagy because there were no specific ways to identify necrosis. The
pathophysiology of brain injury in the TBI model heavily depends on
apoptosis. The relative amounts of these genes, Bcl-2 and Caspases,
which are commonly regarded as the most significant apoptotic
regulators, influence the fate of cells (Zhang et al., 2014). In our
study we found a significantly increase in apoptotic pathway as
demonstrated by the increase in Caspase-3, Caspase-8, Caspase-9,

FIGURE 3
BSR limits histological alteration induced by TBI. Representative images of histological structure of: Sham (A) and higher magnification (A9) TBI (B)
and higher magnification (B9) and TBI + BSR (C) and higher magnification (C9); histological score (D). The figures are representative of at least three
experiments performed on different experimental days. Each data is expressed as mean ± S.E.M. from n = 6 male mice for each group.
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FIGURE 4
Effects of BSR administration on lipid peroxidation, antioxidant enzymes and cytokines release. MDA (A), SOD (B) and GSH-Px activity (C) TNF-α (D),
IL-6 (E), and IL-1β (F). The graph is representative of at least three experiments performed on different experimental days. Each data is expressed as
mean ± S.E.M. from n = 6 male mice for each group.

FIGURE 5
BSR reduced apoptosis TBI-induced. RT-PCR for Caspase-3 (A), Caspase-8 (B), Caspase-9 (C), Bax (D), Bcl-2 (E), and Cytochrome C (F); Western
Blots and relative densitometric analysis of Bax and BCL-2(G). The graphs are representative of at least three experiments performed on different
experimental days. Each data is expressed as mean ± S.E.M. from n = 6 male mice for each group.
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Bcl-2 and Cytochrome C (and obviously in a decrease of Bcl-2)
founded in mice subjected to the trauma compared to the control
group. After the single administration of BSR we found an
important return to the physiological levels of the apoptotic
pathway. Numerous and various experimental models of brain
injury, including trauma, show increased autophagy (Wang et al.,
2013). It is unknown, though, whether autophagy plays a
beneficial or harmful function in the recovery of brain-
damaged neuronal tissue (Raghupathi, 2004). It is likely that
the function of autophagy following brain damage depends on
the cell’s ability to react to the accumulation of broken or
dysfunctional macromolecules and organelles. Enhancing
autophagy would probably be advantageous if the increase in
autophagic capacity is minimal (Zhang et al., 2005). Although
maintaining ATP homeostasis and controlling metabolism are
two of AMPK’s most well-known jobs, it has recently been
suggested that AMPK also controls cell apoptosis or survival
under stressful circumstances. Independently of the stimuli,
AMPK activation can induce the autophagic process
(Villanueva-Paz et al., 2016). Moreover, its well know that the
increasing of microtubule-associated protein light chain 3 (LC3)-
III and beclin-1, while a decreasing in p62 are autophagy markers
demonstrating that autophagic activity is persistently activated
after TBI in a controlled cortical impact (CCI) system model of
TBI in vivo and in vitro (Liu et al., 2008; Au et al., 2017; Sebastiani
et al., 2017). In our study we found a physiological activation of
autophagic flux that were significantly improved after BSR
administration as demonstrated by the analysis of AMPK,
Beclin-1 and LC3. Additionally, cytoplasmic organoids are
ubiquitinated by the adaptor protein p62 before being

transported to the autophagosome and destroyed by the
autolysosome. As a result, the downregulation of p62 points to
an autophagic flux (Klionsky et al., 2016). According to
bibliography, in our work we found a decrease in p62 in the
animals subjected to the trauma compared to the control group
that were significantly restored after BSR administration at the
dose of 500 mg/kg.

5 Conclusion

Acute neuroprotective treatments try to stop the molecular chain
reaction that results in damage after TBI. Although neuroprotection is a
key strategy for treating this injury, no efficient neuroprotective
medications have been discovered from TBI clinical trials to date.
However, additional research is required to fully understand the
cascade of events that starts with the impact and continues
throughout the patient’s life. Using natural substances is the only
way to completely avoid all the negative effects of pharmacological
therapy. Future directions of our research could include testing BSR on
many components of trauma that have not yet been considered to see if
it can function on several fronts due to the special combination of
this molecule.
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FIGURE 6
BSRmodulates apoptotic and autophagic pathways. RT-PCR for AMPK (A), Beclin-1(B), LC3 (C) and p62 (D). Western Blots and relative densitometric
analysis of Beclin-1and LC3 (E). The graph is representative of at least three experiments performed on different experimental days. Each data is expressed
as mean ± S.E.M. from n = 6 male mice for each group.
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