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Editorial on the Research Topic

Wastewater-based epidemiological surveillance of respiratory pathogens

Monitoring the concentration of human pathogens in wastewater for public health has

existed for over 80 years (1) but has rarely been performed for respiratory viruses until

recently. Indeed, before the COVID-19 pandemic, there were few attempts by public health

organizations to integrate the detection of respiratory pathogens in wastewater into their

surveillance programs to monitor the prevalence of these infections in the population.

This absence of enthusiasm may be explained by the unawareness that fecal (and urinary)

shedding of respiratory viruses has a similar profile as the much-better-known respiratory

shedding, making wastewater surveillance a potentially valuable indicator to monitor the

dynamics of a respiratory epidemic. The COVID-19 pandemic has demonstrated the

utility of wastewater-based epidemiology (WBE) during a major epidemiological event

involving a respiratory pathogen and its potential value if integrated into existing epidemic

surveillance programs.

This Research Topic showcases studies that highlight the emergence of the surveillance

of respiratory pathogens from wastewater samples and also the potential challenges ahead.

Wastewater-based surveillance brings many potential benefits to public health activities,

notably to complement (but not replace) other data sources as de Melo et al. show

with student absenteeism data. One of the main goals of wastewater surveillance is

to link the pathogen concentration in wastewater with hospitalizations associated with

the pathogen. But, as Kadonsky et al. hint, the pathogen concentration in wastewater

may be affected by factors unrelated to its epidemiology and perturb the wastewater

concentration/hospitalization relationship. Normalization techniques (such as the one

proposed by Dhiyebi et al.) are still being explored to account for exogenous effects to correct

non-epidemiological effects on the wastewater signal.

Fecal shedding kinetics for an infected individual, a cornerstone of WBE, is poorly

known for most pathogens. Even for the well-studied SARS-CoV-2, we don’t know how

(or even if) fecal shedding changed as the population got exposed to successive variants and

different vaccines. In that spirit, Rioux et al. propose a clinical-data-drivenmethod to correct

initial assumptions about fecal kinetics.

Laboratory methods that accurately quantify viral concentration in wastewater are still

in their early stages. We are probably several years away from a gold-standard laboratory

method, assuming that “gold standard” even makes sense, given the diversity of the

wastewater matrix across different sampling situations. In this Research Topic, the studies
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by Lucansky et al., Shinde et al., Nagelkerke et al., and Zhao et al.

are moving research in that direction.

As an emerging field, WBE must find its place beside more

established public health surveillance programs. There is probably

no one-size-fits-all solution, but the study by Clark et al. can be

helpful as they share a comprehensive framework that has been

implemented in a large North American jurisdiction.

The COVID-19 pandemic showed the unexpected utility of

WBE for respiratory pathogens. Leveraging this success, many

jurisdictions are expanding their WBE to other respiratory

pathogens, notably seasonal influenza (de Melo et al.) and RSV,

historically the most burdensome respiratory diseases. Prioritizing

and right-sizing WBE to new pathogens will be key to improving

public health but may also be challenging given the specificities of

each jurisdiction. To support such efforts, Gentry et al. propose

a ranking system that was applied in a large North American

urban center.

The choice regarding the geographical location of sampling

sites can provide different spatial levels for epidemiological

analyses. Sampling wastewater at wastewater treatment plants is

a popular and practical choice to monitor the prevalence of

a given infection at the (sub)municipal level. However, more

focused sampling can bring unprecedented insights into fine-

grained transmission patterns at key “hot spots”. For example,

the study by Corchis-Scott et al. in this Research Topic samples

university residences.

Clearly, WBE for respiratory pathogens is still in its infancy,

and many knowledge gaps need to be filled. This Research

Topic is a step in that direction. Given the recent expansion

of WBE in many different jurisdictions worldwide, it is exciting

to see research in this new field that promises to improve

public health.
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Introduction: Coronavirus SARS-CoV-2 is a causative agent responsible for the

current global pandemic situation known as COVID-19. Clinical manifestations

of COVID-19 include a wide range of symptoms from mild (i.e., cough, fever,

dyspnea) to severe pneumonia-like respiratory symptoms. SARS-CoV-2 has been

demonstrated to be detectable in the stool of COVID-19 patients. Waste-based

epidemiology (WBE) has been shown as a promising approach for early detection

and monitoring of SARS-CoV-2 in the local population performed via collection,

isolation, and detection of viral pathogens from environmental sources.

Methods: In order to select the optimal protocol for monitoring the COVID-19

epidemiological situation in region Turiec, Slovakia, we (1) compared methods for

SARS-CoV-2 separation and isolation, including virus precipitation by polyethylene

glycol (PEG), virus purification via ultrafiltration (Vivaspin®) and subsequent

isolation by NucleoSpin RNA Virus kit (Macherey-Nagel), and direct isolation from

wastewater (Zymo Environ Water RNA Kit); (2) evaluated the impact of water

freezing on SARS- CoV-2 separation, isolation, and detection; (3) evaluated the

role of wastewater filtration on virus stability; and (4) determined appropriate

methods including reverse transcription-droplet digital PCR (RT-ddPCR) and

real-time quantitative polymerase chain reaction (RT-qPCR) (targeting the same

genes, i.e., RdRp and gene E) for quantitative detection of SARS-CoV-2 in

wastewater samples.

Results: (1) Usage of Zymo Environ Water RNA Kit provided superior quality of

isolated RNA in comparison with both ultracentrifugation and PEG precipitation.

(2) Freezing of wastewater samples significantly reduces the RNA yield. (3)

Filtering is counterproductive when Zymo Environ Water RNA Kit is used. (4)

According to the specificity and sensitivity, the RT-ddPCR outperforms RT-qPCR.

Frontiers in PublicHealth 01 frontiersin.org7

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1116636
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1116636&domain=pdf&date_stamp=2023-03-07
mailto:vincent.lucansky@uniba.sk
mailto:marek.samec@uniba.sk
https://doi.org/10.3389/fpubh.2023.1116636
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1116636/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lucansky et al. 10.3389/fpubh.2023.1116636

Discussion: The results of our study suggest that WBE is a valuable early warning

alert and represents a non-invasive approach to monitor viral pathogens, thus

protects public health on a regional and national level. In addition, we have shown

that the sensitivity of testing the samples with a nearer detection limit can be

improved by selecting the appropriate combination of enrichment, isolation, and

detection methods.

KEYWORDS

SARS-CoV-2, wastewater, WBE, droplet digital PCR (ddPCR), real-time quantitative

polymerase chain reaction (RT-qPCR), COVID-19

1. Introduction

SARS-CoV-2 is a novel member of the coronavirus genus

identified in late 2019. It is a causative agent of the infectious

disease COVID-19 that can lead to a wide range of manifestations

from mild respiratory symptoms or even an asymptomatic course

to severe viral pneumonia resulting in death (1). Due to high

infectivity and death toll, COVID-19 has become a disease with

a significant impact on the health status of the world population

as well as on the world economy and politics. On January

30, 2020, the World Health Organization (WHO) Emergency

Committee designated COVID-19 as a global health emergency (2).

Approximately 648,131,832 cases and 6,640,702 deaths have been

attributed to COVID-19 worldwide so far (December 1st, 2022) (3).

Testing soon became an essential part of the COVID-19

pandemic management. However, the strategical selection of

appropriate diagnostic approach and its settings is crucial for

the quality and usefulness of the COVID-19 testing. An attempt

to perform nationwide screening (4) turned out to be cost-

ineffective, unpopular, logistically challenging, and potentially risky

due to the huge spatiotemporal accumulation of tested individuals.

Moreover, the nationwide screening did not provided any long-

term improvement of the epidemiological situation or gave any

reliable information about the actual dynamics of the pandemic.

As we showed in our previous work (5), the usage of rapid antigen

testing is not reliable due to a high number of misdiagnosed

false-negative virus carriers. The individual real-time quantitative

polymerase chain reaction (RT-qPCR) testing is also biased due to

the fact that many tested subjects undergo diagnostic procedures

not randomly but their participation is motivated by symptom

occurrence either on themselves or on the person sharing their

work or living environment, thus driven by suspicion. Vice versa,

many individuals with in apparent infection are not tested and are

not included in case reports.

On the contrary, environmental monitoring of wastewater is

independent of the testing of individuals and can therefore become

a critical tool for monitoring the epidemiological situation of

COVID-19 (6, 7). The presence of SARS-CoV-2 in wastewater

has been reported in several studies (6–10). Based on clinically

confirmed cases, the observed viral titers were significantly higher

than expected viral titers (11). The correlation between SARS-CoV-

2 RNA concentration in sewer and the occurrence of new cases has

showed to be stronger than that of active cases and cumulative cases

obtained by individual testing (12).

Hence, we decided to test several protocols enabling COVID-19

surveillance in sewer water. In particular, we established three

concentration protocols for the enrichment of viral RNA from

wastewater and its subsequent isolation, followed by two different

detection methods. We are aware that the spectrum of techniques

is much broader. However, our selection was influenced by a

combination of our previous hands-on experience, workplace

availability as well as an effort to cover principally different

approaches. For the enrichment of viral particles in wastewater,

polyethylene glycol (PEG) precipitation and centrifugal membrane

concentrator protocols were used. Both methods were followed

by an utilization of virus RNA isolation kit. The third approach

was applied using the kit combining viral enrichment with RNA

isolation in a single protocol. Subsequent detection was performed

with the utilization of either quantitative RT-PCR (RT-qPCR), the

commonly used diagnostic method for SARS-CoV-2 during the

COVID-19 pandemic (13), or reverse transcription-droplet digital

PCR (RT-ddPCR) that is considered to provide higher sensitivity

and specificity rate compared to RT-qPCR RT-ddPCR thus avoid

more false-negative results of samples with low viral load (14). Both

PCR assays detected matching genes, namely RdRp and E, which

facilitated the comparison of obtained data.

2. Materials and methods

2.1. Enrichment and SARS-CoV-2
RNA isolation

The wastewater samples were obtained at the sewage treatment

plant in Vrútky, which collects wastewater from Martin city

and parts of the Turiec region. Sewage water samples for our

experiment were collected from April to July 2022. At that time,

the epidemiological situation in the Slovak republic was relatively

stabilized, characterized by a decline of newly diagnosed cases;

thus, SARS-CoV-2 presence in sewage was expected to be at very

low levels (see Supplementary Table A in Supplementary material).

Samples were transported to the laboratory on ice and then kept

at 4◦C until further processing on the same day. The first step

was debris removal by centrifugation at 4,000 g for 30min at 4◦C.

Next, half of the supernatant was filtered using 0.45µm syringe

filters. Samples of both filtered and unfiltered wastewater were

either frozen at−20◦C or processed further immediately.

For PEG precipitation, the supernatant was incubated with

8% PEG-8000 (Merck), and 0.3M NaCl (Sigma-Aldrich) overnight
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(app. for 16 h) at 4◦C. Centrifugation was performed at 10,000 g for

120min, at 4◦C, then the supernatant was removed and the pellet

was diluted in 500 µl Opti-MEMTM (Gibco).

When using the Vivaspin centrifugal filter device/molecular

weight cut-off 50 kDa (Sartorius), the supernatant was concentrated

by centrifuging at 4,000 g for 30min at 4◦C. This centrifugal step

was repeated to pass through the entire 50ml supernatant volume

until the final volume of the concentrated sample reached 500 µl.

Then the enriched sample was collected and further processed.

Further, after both PEG precipitation and centrifugal filter

enrichment protocols, total RNA isolation was carried out using

the NucleoSpinTM RNA Virus column (Macherey Nagel). Then,

RNA was eluted with 30 µl of RNase-free water according to

the manufacturer’s protocol. All RNA isolations were performed

in triplets.

Zymo Environ Water RNA Extraction kit (Zymo) covers viral

enrichment, sample homogenization, and RNA purification in one

workflow protocol. We used 5ml of wastewater that was aliquoted

into five separated tubes (1 ml/each). Subsequently, we added 70 µl

of Water Concentrating Buffer into each tube. Further steps were

processed according to the manufacturers’ recommendations.

2.2. SARS-CoV-2 RNA detection

Detection of SARS-CoV-2 viral RNA in the sample of

wastewater was performed by a one-step RT-qPCR method

using IVD-certificated kit gb SARS-CoV-2 Multiplex (GENERI

BIOTECH s.r.o., Hradec Králové, Czech Republic). This kit allows

the detection of viral E and RdRP genes within one reaction with

a limit of detection of 2.13 copies of viral RNA per reaction

(95 % CI). To avoid false negative results, the PCR process

was verified by external positive control (EPC) added to the

reaction. Reactions were prepared according to the manufacturer’s

instructions. Briefly, the PCR reaction with a volume of 20

µl contained 10 µl of Master Mix OneStep Multi, 5 µl of

multiplexed Assay CoV-2 E-RdRP, 0.25 µl of EPC Template RNA,

and 5 µl of extracted RNA. Positive control as well as NTC

with distilled water was included in each run. PCR conditions

were as follows: reverse transcription at 42◦C for 30min, initial

denaturation at 95◦C for 3min, 50 cycles consisting of two steps

(denaturation at 95◦C for 10 s and annealing plus elongation

at 60◦C for the 30 s). The fluorescence signal was measured in

the FAM channel for viral gene E, in the HEX channel for

viral RdRP gene, and in the Cy5 channel for EPC. Reactions

were evaluated as invalid if the signal in the Cy5 channel was

not detected.

Reverse transcription-droplet digital PCR (RT-ddPCR) was

performed in 20 µl reaction volume, consisting of 17 µl of

master mix and 3 µl of the sample. Mastermix contained 5 µl

of supermix, 2 µl of reverse transcriptase (RT), and 1 µl of

300mM dithiothreitol (DTT) solution, all included in One-Step

RT-ddPCR Advanced Kit for Probes (Bio-Rad Laboratories,

Hercules, California, USA), primers and probes (Generi Biotech,

Hradec Králové, Czech Republic) at a final concentration of

500 and 250 nM, respectively. Primer and probe sequences

were as follows: RdRp (F): GTGAAATGGTCATGTGTGGCG,

RdRp (R): AATGTTAAAAACACTATTAGCATAAGCA, RdRp:

CAGGTGGAACCTCATCAGGAGATGC/HEX-IBFQ; E (F):

ACAGGTACGTTAATAGTTAATAGCGT, E (R): ATATTGC

AGCAGTACGCACA, E: ACACTAGCCATCCTTACTGCGC

TTCG/FAM-IBFQ; GAPDH (F): AGTCAGCCGCATCTTCT

TTT, GAPDH (R): CCCAATACGACCAAATCCGT, GAPDH:

GCGTCGCCAGCCGAGCCACA/HEX-IBFQ. Commercially

available SARS-CoV-2 Standard (Exact Diagnostics, Bio-Rad

Laboratories, Fort Worth, Texas, USA) manufactured with

synthetic RNA transcripts containing five gene targets (E, N,

ORF1ab, RdRP, and S of SARS-CoV-2) was used as a ddPCR

quantitative positive control. All samples were analyzed in

duplicates for GAPDH and single wells for each viral gene,

RdRp + GAPDH and E + GAPDH. Droplets were generated

by an automated droplet generator (Bio-Rad Laboratories,

Hercules, California, USA) according to the manufacturer’s

instructions. PCR was performed using a T100 thermal cycler

(Bio-Rad Laboratories, Hercules, California, USA) with the

following cycling conditions: reverse transcription at 50◦C for

60min, denaturation at 95◦C for 10min, followed by 40 cycles

of denaturation at 94◦C for 30 s, followed by annealing/extension

at 54◦C for 1min, and droplet stabilization at 98◦C for 10min.

Samples were then analyzed using QX200 Droplet Reader (Bio-

Rad Laboratories, Hercules, California, USA). Thresholding

was carried out by using QuantaSoft Software manually at the

lowest amplitude that captures true negative clusters based

on the signals of the negative control and positive control

samples. The results were reported as positive when at least

five copies of each viral gene (RdRp, E) occurred (15). Data

are interpreted as copies per reaction according to previous

works evaluating the presence of SARS-CoV-2 in samples by

RT-ddPCR (16).

For the schematic visualization of the complete workflow, see

Figure 1.

3. Results

3.1. Comparison of two detection methods
for the detection of SARS-CoV-2
RNA/sensitivity

To perform the most precise detection of SARS-CoV-2 in

wastewater, we compared two quantitative analysis methods,

namely RT-qPCR (qTOWER—Analytic Jena) and ddPCR

(QX200 Droplet digital PCR system—Biorad). All samples

were analyzed in triplicates for higher statistical power of the

experiment. The samples were collected three times from April

to May 2022. Using filtered wastewater, RT-ddPCR identified

21 positive samples compared to 12 positive results analyzed

by RT-qPCR. Furthermore, significant differences were detected

in unfiltered wastewater in which RT-ddPCR identified 19

positive samples compared to 12 positive results detected by

RT-qPCR (Table 1) Additional information is summarized

in the Supplementary material (see Supplementary Table B in

Supplementary material).
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FIGURE 1

Schematic visualization of complete workflow for processing raw sewer sample, enrichment, isolation of RNA, and detection of SARS-CoV-2 in

wastewater.

3.2. Comparison of three methods for the
concentration and isolation of SARS-CoV-2
RNA

In our study, we compared three different methods for

virus concentration and purification (Vivaspin and PEG) and

RNA isolation, including NucleoSpin RNA Virus, Mini kit for

viral RNA (Macherey-Nagel), and Zymo Environ Water RNA

Kit (Zymo) to select the appropriate protocol for subsequent

downstream analyses. Using PEG-8000 and NucleoSpin RNA

Virus Mini kit, we identified eight positive results in filtered

wastewater and nine positive results in unfiltered wastewater

using RT-ddPCR. RT-qPCR detected three positive samples (in

filtered wastewater), while only one sample was positive for SARS-

CoV-2 in unfiltered wastewater. Virus separation using Vivaspin

columns and subsequent isolation by NucleoSpin RNA Virus
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TABLE 1 Comparison of detection methods for viral RNA and workflows suitable for purification, concentration, and isolation of SARS-CoV-2 in

wastewater.

Filt./Unfilt.
wastewater

Separation and
isolation method

Sample
(replicates)

Detection method
(RT-ddPCR/RT-qPCR)

Wastewater collection

1. 2. 3.

Filt. PEG-8000 1 RT-ddPCR + + +

2 + + +

3 + + ?

1 RT-qPCR ∗ + +

2 ∗ ∗ ∗

3 ∗ + ?

Vivaspin 1 RT-ddPCR + + ?

2 + + ?

3 ? ? –

1 RT-qPCR ? – ∗

2 ? – –

3 ? – –

Zymo 1 RT-ddPCR + + +

2 + + +

3 + + +

1 RT-qPCR + + +

2 + + +

3 + + +

Unfil. PEG-8000 1 RT-ddPCR + + ?

2 + + +

3 + + +

1 RT-qPCR ? ∗ ?

2 ∗ – ?

3 – + ?

Vivaspin 1 RT-ddPCR ? ? ?

2 + ∗ –

3 + ? ?

1 RT-qPCR ? ∗ ∗

2 ? + –

3 ? + –

Zymo 1 RT-ddPCR + + +

2 + + +

3 + + +

1 RT-qPCR + + +

2 + + +

3 + + +

RT-ddPCR, reverse transcription-droplet digital PCR; RT-qPCR, realtime-quantitative PCR; PEG-8000, polyethylene glycol-8000; Filt., filtered; Unfil., unfiltered.

+, positive; –, negative; ∗ , different coronavirus; ?, invalid result.

Mini kit detected SARS-CoV-2 positivity in four cases (filtered

wastewater) compared to two positive outputs after RT-ddPCR

analysis identified in unfiltered wastewater. The same workflow

applied for RT-qPCR detected the absence of positivity in filtered

wastewater; only two positive samples were confirmed in unfiltered

wastewater. The protocol for virus purification and RNA isolation
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(Zymo Environ Water RNA Kit) identified positivity in all samples

after RT-ddPCR as well as RT-qPCR analysis in both filtered and

unfiltered wastewater (Table 1).

3.3. Analysis of the usage of unfiltered
wastewater vs. wastewater filtered with
0.22µm strainer using RT-ddPCR

In accordance with our experiment workflow, the collected

wastewater included: (1) filtrated with a 0.22mm strainer or (2)

used for further analysis without requiring a filtration step. In

the next step, both wastewater samples (filtered/unfiltered) were

processed by the aforementioned separation and isolation protocols

(Table 1). Data were assessed as copies of viral RNA per reaction

using RT-ddPCR. We observed a significantly lower number of

copies of viral RdRp between samples processed by PEG and

samples processed by Vivaspin columns and Zymo kit (p < 0.05)

using filtered wastewater in the first analysis. Moreover, the level of

GAPDH copies was significantly lower in samples isolated by Zymo

kit compared to samples processed by PEG (p< 0.05). In unfiltered

wastewater, the number of GAPDH copies was significantly lower

(p < 0.01) in samples purified and isolated by Zymo kit than in

samples after PEG precipitation and subsequent RNA isolation by

the NucleoSpin RNA Virus kit. The second analysis of wastewater

showed a significant decrease in the number of gene E (p < 0.05),

RdRp (p < 0.05), and GAPDH (p < 0.05) copies in the samples

concentrated by Vivaspin columns compared to samples after PEG

precipitation and RNA isolation. Statistical significance was also

observed in the number of gene E (p < 0.05), RdRp (p < 0.01),

and GAPDH (p < 0.01) copies in samples processed by Zymo

kit compared to samples after PEG-mediated virus precipitation

and RNA isolation in unfiltered wastewater in the second round

of analysis. In addition, a comparison between a number of gene

copies in samples processed using Vivaspin and Zymo kit showed

significant differences in RdRp (p < 0.05) and GAPDH (p <

0.01) (in filtered water) and RdRp (p < 0.001), E (p < 0.01), and

GAPDH (p < 0.001) in unfiltered wastewater. The third analysis

showed similar results between samples processed via Vivaspin

and Zymo kit. The number of RdRp (p < 0.05) and GAPDH (p

< 0.01) copies was significantly higher in filtered wastewater after

the Zymo purification and isolation step. Also, there was statistical

significance between RdRp (p < 0.05), E (p < 0.01), and GAPDH

(p < 0.05) in unfiltered wastewater processed by Vivaspin and

Zymo workflow. Finally, a significantly increased number of RdRp

copies (p < 0.05) was observed in samples after Zymo processing

than those after PEG separation in the third analysis. All data are

summarized in Figure 2.

3.4. Analysis of the usage of unfiltered
wastewater vs. wastewater filtered with
0.22µm strainer using Zymo Environ Water
RNA Kit analyzed by RT-ddPCR

According to previous results, we compared unfiltered and

filtered wastewater processed by Zymo Environ Water RNA

kit. In the first analysis, there was no statistical significance

between filtered and unfiltered wastewater in the number of

viral gene copies (E, RdRp) as well as in housekeeping gene

GAPDH. The second analysis evaluated by RT-ddPCR revealed

differences between the amount of GAPDH copies (p <

0.05) in unfiltered wastewater compared to filtered wastewater.

In the third analysis, we observed a significantly increased

level of viral gene E (p < 0.05) in unfiltered wastewater

(Figure 3).

3.5. Determination of suitability of the
usage of frozen wastewater vs. fresh

To determine the impact of thaw/freeze on the stability

of viral RNA in wastewater samples, we analyzed frozen

filtered and unfiltered wastewater (frozen aliquots from the

first three collections). In the filtered fraction of wastewater,

we observed a significantly decreased number of GAPDH

copies in samples processed by Vivaspin protocol compared

to PEG processing (p < 0.05) and an increased number of

GAPDH in wastewater processed by Zymo kit compared to

Vivaspin (p < 0.05) in the second analysis. On the other

hand, unfiltered fractions manifested more diverse results. In

the first analysis, the level of GAPDH was decreased in samples

processed by both Vivaspin (p < 0.05) and Zymo kit (p <

0.01) protocols compared to PEG workflow. Moreover, the level

of RdRp was lower (p < 0.01) in samples concentrated by

Vivaspin columns than in those processed by PEG precipitation.

The second analysis revealed a decrease in GAPDH (p <

0.01) in samples after Vivaspin centrifugation and Zymo kit

processing compared to samples after PEG-mediated precipitation.

Furthermore, significance was confirmed between a number of

RdRp (p < 0.05) and GAPDH (p < 0.05) copies after purification

and RNA isolation mediated by Zymo kit and samples selected

for Vivaspin centrifugation. The last analysis of unfiltered frozen

wastewater showed a significantly decreased level of GAPDH in

samples after processing by Vivaspin (p < 0.01) and Zymo kit (p

< 0.001) workflow than in samples processed by PEG precipitation

(Figure 4).

3.6. Example of the usage of the selected
protocol in practical settings

We received total 10 samples (analyzed as triplicates) of

wastewater collected over the 2-month period between May 2022

and July 2022. Except for one replicate, all 10 samples were positive

for SARS-CoV-2, analyzed by RT-ddPCR. On the other hand,

results from RT-qPCR showed inconsistency characterized by

negative and invalid results or the presence of different coronavirus

(Table 2).

Long-term monitoring revealed an increased amount of SARS-

CoV-2 viral gene copies in wastewater samples compared to

expectations based on national data acquired by individual testing

using RT-qPCR (17). This trend was consistent throughout the last

5 weeks of the analysis (Figure 5).
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FIGURE 2

The number of copies of SARS-CoV-2 genes (RdRp, E) and GAPDH between filtrated and unfiltered wastewater processed by di�erent separation and

isolation protocols measured by RT-ddPCR. Acquired data are expressed as mean ± SEM. Significant di�erence, *p < 0.05, **p < 0.01 vs. PEG, #p <

0.05, ##textitp < 0.01, ###p< 0.001 vs. VIVASPIN.

FIGURE 3

The number of copies of SARS-CoV-2 genes (RdRp, E) and GAPDH between filtrated and unfiltered wastewater processed by Zymo Environ Water

RNA Kit analyzed by RT-ddPCR. Acquired data are expressed as mean ± SEM. Significant di�erence, *p < 0.05 vs. PEG.
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FIGURE 4

The number of copies of SARS-CoV-2 genes (RdRp, E) and GAPDH between frozen filtrated and unfiltered wastewater processed by di�erent

separation and isolation protocols measured by RT-ddPCR. Acquired data are expressed as mean ± SEM. Significant di�erence, *p < 0.05, **p < 0.01,
***vs. PEG,#p < 0.05 vs. VIVASPIN.

TABLE 2 Comparison of detection methods for viral RNA in weekly analyses of SARS-CoV-2 in wastewater.

Detection method Replicate 2.5. 9.5. 16.5. 23.5. 30.5. 6.6. 13.6. 20.6. 27.6. 4.7.

2022 2022 2022 2022 2022 2022 2022 2022 2022 2022

RT-ddPCR 1 + + + + + + + + + +

2 + + + + + + + + + +

3 + + + + + – + + + +

RT-qPCR 1 + + – + ∗ ? – ∗ + +

2 + + + – – ? – + – ∗

3 + + – + – – + + + ∗

RT-ddPCR, reverse transcription-droplet digital PCR; RT-qPCR, realtime-quantitative PCR.

+, positive; –, negative; ∗ , different coronavirus; ?, invalid result.
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FIGURE 5

The number of copies of viral genes (RdRp and E) evaluated by RT-ddPCR periodically, from May 2022 to July 2022 in comparison with the

epidemiology situation (new cases) in the Slovak republic.

4. Discussion

Waste-based epidemiology (WBE) of SARS-CoV-2 provides a

powerful tool for epidemiological monitoring. Specifically, WBE

analyses the signals of viral load in wastewater samples pooled

by the whole population, regardless of symptoms occurrence,

willingness to undergo the testing procedure, or to report the

results to the authorities. Hence, WBE offers the possibility of

an early warning system for the COVID-19 in the population.

Therefore, WBE has rightfully became one of the most potent

means for health authorities worldwide to monitor COVID-19

(18). In fact, the predictions of viral transmission dynamics based

on such data are resistant to changes in the behavior of the

public (e.g., testing practices, healthcare-seeking behavior, etc.)

(19). On the other hand, certain limitations like environmental

conditions (e.g., actual water temperature, dilution of wastewater

due to the increased rainfall, the intermittent presence of

chemical compounds that can act as PCR inhibitors, and

sampling design) can potentially affect the results of WBE (12).

Also, the access of particular demographic groups with specific,

often risky, patterns of behavior to the sewage system can be

limited. Despite these facts, which indeed need to be taken into

consideration, WBE provides the most representative data source

for epidemiological surveillance.

The importance of early SARS-CoV-2 detection in wastewater

was documented in a recent study by Medema et al. The authors

had observed the presence of SARS-CoV-2 RNA in sewage 6

days before the first cases reported in Amersfoort, Netherlands

(20). Moreover, Randazzo et al. detected SARS-CoV-2 RNA in

wastewater before the first COVID-19 cases confirmed by local

authorities in the region of Murcia, Spain (10). Thus, the early

identification of SARS-CoV-2 from sewage can play a crucial role

in the surveillance of SARS-CoV-2 variants to support public health

decision-making concerningmeasures to limit SARS-CoV-2 spread

or allocation of testing or SARS-CoV-2 vaccination (21). Therefore,

there is an imminent need to choose the most sensitive and

cost-effective workflow for daily routine diagnosis of SARS-CoV-2

from wastewater as a tool to track COVID-19 incidence dynamics

through time, even if the positivity rates tested by individual RT-

qPCR or rapid antigen tests are low.

In addition to untreated wastewater, primary sludge can also

be used as a primary source of viral RNA in the monitoring of the

initial, exponential, and re-emergence phase at the epidemic level

(22–24). Recent evidence proposed that using a wastewater sludge

can be source of SARS-CoV-2 (enveloped virus in wastewater

absorbed onto organic matter, resulting in a higher concentration

of viral RNA in sludge) (25). Still, wastewater testing remains the

most used approach for tracking COVID epidemiology that is

appropriate for long-term monitoring of SARS-CoV-2 spreading

on the regional level due to inexpensive and easy set-up for

laboratory staff (26). However, using the sludge fraction is

incompatible with our downstream protocol steps.

The majority of protocols for SARS-CoV-2 RNA

isolation from wastewater use initial centrifugation for

the removal of debris prior to processing (7, 27, 28). This

step is important for reducing the turbidity of wastewater

via removing larger particles and finer particles, which

could inhibit PCR reaction as well as improve virus

recovery (mainly for samples nearer the limit of detection)

(7, 29–31).
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In our study, we compared three different isolation and two

detectionmethods. Centrifugal concentration through the Vivaspin

column failed in our experimental settings, although such protocols

were successfully performed by other groups (6, 29, 32). We can

speculate whether it was caused by the specific physicochemical

properties of local wastewater or by the presence of inhibitors that

were not removed by filtering procedure, among others. However,

due to limited capacity, we did not further investigate the failure

of Vivaspin column, just concluded this method as not suitable for

our conditions.

We are aware of the existence of multiple variants of PEG

precipitation protocols including different combinations of usage

of PEG-6000 (33, 34) or PEG-8000 (35, 36), different PEG

concentrations ranging from 8%, 10% up to 50% (29, 34), different

NaCl concentrations (37–39), and different times of incubation

varying from 15min to overnight (18 h) (11, 40). Not having

the capacity to test all of them, we decided to use the protocol

utilizing 10% PEG-8000 with 0.3M NaCl overnight incubation.

Despite hands-on experience with this particular procedure, which

we performed successfully multiple times, we do not dare to claim it

as an optimal technique. Our data are in agreement with Flood et al.

and Câmara et al. who concluded that utilization of PEG method

provide better virus recovery than the ultrafiltration-basedmethods

(39, 41).

Nevertheless, we demonstrated that the best results were

obtained with the Zymo EnvironWater RNA Extraction Kit, which

is dedicated for the isolation of the RNA from the water medium.

Moreover, the Zymo EnvironWater RNA kit was the most effective

and efficient kit of the four commercial kits tested by O’Brien (42).

RT-qPCR is a commonly used mean of SARS-CoV-2 genome

detection for both individual testing (13) and WBE. Only a

minority of research groups have carried out molecular assays

using RT-ddPCR (43). In contrast, RT-ddPCR demonstrated better

results in detecting SARS-CoV-2 gene targets when compared

with RT-qPCR in tested wastewater samples (39). According to

our experience, RT-ddPCR could identify positive samples more

reliably compared to RT-qPCR. For example, sampling from June

6, 2022 provided wastewater with contaminant causing darkish

to the black coloration of the specimen that could not been

removed by centrifugation nor filtration. The results of that day

were particularly wrong (two positive results and one negative

for RT-ddPCR vs. two invalid results and one negative for RT-

qPCR) but still in a favor of RT-ddPCR. An explanation of this

observation can be associated with the fact that ddPCR shows

increased tolerance to inhibit substances due to the distribution

and separation of individual micro-reactions, which mitigates the

impact of inhibitors on PCR amplification by retaining discernible

positive signal even if moderate PCR inhibition is occurring in a

droplet (44). Moreover, ddPCR is considered to be more sensitive

than RT-qPCR (45). These phenomena support the role of ddPCR

as an attractive alternative to qPCR for diagnostic applications in

conditions when increased sensitivity and processivity is necessary.

We have tested whether our protocol setup for SARS-CoV-2

isolation and detection would be functional if frozen samples were

processed. The outcome clearly suggested that, even though the

possibility of utilization of such stored material would be beneficial,

our optimized workflow does not provide satisfactory results in

this case.

Similarly, pre-treatment of wastewater by filtration through

a 0.45µm filter was not beneficial when Zymo Environ Water

RNA Kit was used. On the contrary, several non-significant trends

were observed in the case of Vivaspin ultrafiltration and PEG

precipitation; however, we did not further investigate these two

methods due to their inefficiency.

In this work, we have optimized protocol for the detection of

SARS-CoV-2 RNA in wastewater in the conditions of our region.

However, this workflow or its modifications can be utilized in

similar environments elsewhere or can serve as a basis for the

development of tools for WBE of SARS-CoV-2 or other pathogens

that can be found in sewage system.

5. Conclusion

In conclusion:

◦ Usage of Zymo Environ Water RNA Kit provided

superior quality of isolated RNA in comparison with

both ultracentrifugation and PEG precipitation.

◦ RT-ddPCR outperforms RT-qPCR.

◦ Freezing of wastewater samples significantly reduces the

RNA yield.

◦ Filtering is counterproductive when Zymo Environ Water

RNA Kit is used.

◦ WBE is a useful and cost-effective tool for SARS-CoV-2

pandemic management with great potential for application on

other pathogens.

◦ We have shown that the sensitivity of testing the samples

with a nearer detection limit can be improved by selecting

the appropriate combination of enrichment, isolation, and

detection methods.
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Molecular analysis of public wastewater has great potential as a harbinger for

community health and health threats. Long-used to monitor the presence of

enteric viruses, in particular polio, recent successes of wastewater as a reliable

lead indicator for trends in SARS-CoV-2 levels and hospital admissions has

generated optimism and emerging evidence that similar science can be applied

to other pathogens of pandemic potential (PPPs), especially respiratory viruses

and their variants of concern (VOC). However, there are substantial challenges

associated with implementation of this ideal, namely that multiple and distinct

fields of inquiry must be bridged and coordinated. These include engineering,

molecular sciences, temporal-geospatial analytics, epidemiology and medical,

and governmental and public health messaging, all of which present their own

caveats. Here, we outline a framework for an integrated, state-wide, end-to-end

human pathogen monitoring program using wastewater to track viral PPPs.

KEYWORDS

wastewater, virus, pathogens, detection, epidemiologic, public health, early warning
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Historical backdrop

“A sewer is a cynic. It tells everything.” Victor Hugo, Les

Miserables (1892).

In 1939, a plane departed Detroit in route to Connecticut

carrying a very unusual piece of cargo. Destined for the laboratories

of Drs. John Paul and James Trask at Yale University, the package

consisted of several samples of Detroit city sewage. Years earlier,

Paul and Trask reasoned that since the virus that causes polio

could be found in fecal matter [first reported in 1912 (1)], it

may also be shed into city wastewater (2). When macaques were

injected with the sewage (there was no PCR at the time and

microscopy was still developing) showed signs of poliomyelitis, a

result confirmed by researchers in Stockholm (3), it suggested a

human virus found in public excrement might report on the state

of disease at the population level. However, it was a mentee of Paul,

Dr. Joseph Melnick, who showed in the 1940s that polio levels in

stool and sewage are associated with the number of severe cases

in the population (a result that prompted him to search for viral

prevalence based on fecal shedding rates), studies that birthed the

field of wastewater-based epidemiology (WBE) (1, 4, 5). This led to

the implementation of environmental poliovirus surveillance (EPS)

systems in countries where polio cases are still endemic, and the

emergence of WBE for poliovirus and other pathogens (6).

Recent SARS-CoV-2
experience—Rebirth

Success of the use of wastewater to monitor SARS-CoV-2 levels,

and forecasting future trends aiding in public preparation and

hospital-readiness, has reinvigorated viral WBE. Consensus is that

similar approaches may be applied to other human viral pathogens,

including adenoviruses, enteroviruses, noroviruses, rotavirus, and

hepatitis viruses. The Centers for Disease Control and Prevention

(CDC) initiated the National Wastewater Surveillance System

(NWSS) in September 2020 to track the dispersion of SARS-CoV-

2. Our own team’s activity began in April of 2020 in the cities

of Houston and El Paso, Texas, both of which have implemented

a city-wide SARS-CoV-2 wastewater (WW) monitoring program

(7–9). Recently, the CDC expanded their SARS-CoV-2 wastewater

testing program to include poliovirus after vaccine derived

poliovirus was detected in New York state (10). This implies a

U.S. readiness to apply such a program and science to other

viral pathogens.

SARS-CoV-2 and other respiratory viruses are well-known to

cause gastrointestinal (GI) symptoms like diarrhea and vomiting

(11–16). The GI manifestations are associated with viral RNA and

infectious virus in fecal samples and can be detected throughout

the course of infection (17–19). Additionally, histologic studies

have shown SARS-CoV-2 virions damaging the GI epithelium

(17, 19, 20). SARS-CoV-2 infected persons have peak viral loads 1–

3 days before symptom onset and can shed virus for three or more

weeks (21, 22). Both symptomatic and asymptomatic individuals

can transmit the virus efficiently and can have prolonged viral

shedding (23–25). Although it cannot be expected that all human

viruses will present with an infection biology and natural history

that is conducive to WBE (such as SARS-CoV-2), there is reason

to believe many viruses like adenoviruses and enteroviruses with

major epidemic potential will be amenable to similar WBE. This is

the impetus for the efforts described in this perspective.

To our knowledge, comprehensive province/state or

nationwide monitoring of various human pathogens in wastewater

has not been implemented anywhere. Even the monitoring of

illicit drug use, which was proposed by the U.S. Environmental

Protection Agency 2 decades ago (though it is more commonly

used in European cities), appears to have no standardized

widespread use (26, 27). On the city level, SARS-CoV-2 has been

monitored in wastewater in every continent except Antarctica

(8, 28–32). The closest any country has come to implementing

SARS-CoV-2 wastewater monitoring on the national level may

be, as described above, the National Wastewater Surveillance

System (NWSS) in the U.S. by the Centers for Disease Control

and Prevention and the U.S. Department for Health and Human

Services in September 2020 (33). Most of the recently published

WBE studies appear to be the work of academic researchers

analyzing samples they have been given access to or local health

departments (or equivalent) working with academic researchers

to monitor SARS-CoV-2. The NWSS was started to coordinate

these SARS-CoV-2 wastewater monitoring efforts in the U.S. What

started with pilot sites in 8 states in 2020 now has over 1,250

sites covering over 100 million people (33). However, the NWSS

Committee on Community Wastewater-Based Infectious Disease

Surveillance points out a major shortfall with the NWSS in that

it currently “. . . consists of localities, tribes, and states that were

willing and able to participate during the pandemic emergency. . . ”

and this pandemic emergency, “. . . spurred many researchers and

utilities to volunteer their labor and donate resources in support

of the effort, but the vision of a sustained national wastewater

surveillance system necessitates a shift from volunteerism to

a strategic national plan with well-defined roles supported by

federal investments” (33). Given the success of the NWSS in

tracking SARS-CoV-2 and citing success in tracking vaccine-

derived polio outbreaks in London and New York, and success

in rapidly tracking monkeypox, the aforementioned committee

has recommended expanding the NWSS efforts to monitor other

human pathogens (10, 33–37).

Reminiscent of the NWSS in the U.S., national and

international efforts to track SARS-CoV-2 have recently been

made in Israel and the European Union, respectively. In Israel,

researchers at the Israel Ministry of Health have described their

methods of tracking SARS-CoV-2 and SARS-CoV-2 variants

in wastewater using PCR on samples from 13 treatment plants

that cover more than 50% of Israel’s population (38). In 2021,

the European Commission adopted a Recommendation that

EU Member States work toward monitoring SARS-CoV-2 in

wastewater (39). As of March 2022, more than 1,370 wastewater

treatment plants are under surveillance (40). However, to our

knowledge, no effort to expand these efforts to other pathogens in

a routine manner has been made.

A statewide pandemic preparedness
initiative

In the Spring of 2021, the 87th Texas Legislature established

the Texas Epidemic Public Health Institute (TEPHI). Housed
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within The University of Texas Health Science Center at

Houston (UTHealth Houston), TEPHI’s mandate is to work

collaboratively with state, local, and federal agencies, academic

institutions, professional associations, businesses, and community

organizations to better prepare the state for public health threats.

TEPHI’s mission and structure is informed by lessons learned

during the Texas response to the COVID-19 pandemic to address

gaps in public health organization and infrastructure in order to

better inform, train, and protect Texans.

As part of the effort, TEPHI is launching numerous programs

to support community preparedness across the state, including

a collaboration with Baylor College of Medicine (BCM) and the

UTHealth Houston School of Public Health (SPH) to establish

a statewide Texas Wastewater Environmental Biomonitoring

(TexWEB) network. The TWC (TEPHI Wastewater Consortium)

will (1) partner with state utilities and public health departments to

promote the virtues of wastewater science; (2) establish standard

operating procedures (SOPs) for the detection of viral and/or

other pathogen nucleic acid from complex wastewater sludge; (3)

incorporate the latest cutting-edge technologies to enhance target

detection; (4) serve as the state’s real-time and ongoing wastewater

pathogen monitoring system (prioritizing disease-causing human

viruses in the first stages); (5) generate health department, health

care and community data repositories that allow users to assess

risks and trends in their counties; and (6) establish an effective

chain-of-command reporting network that informs public health

departments and state governments concerning levels and trends of

viral PPPs in sentinel communities across the state. Charges 5 and

6 are particularly important, specifically for ensuring agreement

when a detection event poses an immediate or sustained health

concern, and the processes by which stakeholders are notified. This

article provides an overview of the planning and effort for the first

6 months of the program, hopefully serving as a guide for other

states to consider implementation of similar monitoring endeavors.

Figure 1 demonstrates the specific procedural and methodological

elements of this program, which are outlined in detail below.

Nucleic acid: The universal viral WBE
detection target

The hallmark principle of WBE is to translate the upstream

detection of a chemical or biological substance into reasonable

public health information or action. Some of the earliest WBE

involved monitoring for pollutants in the early 20th century in

England (41, 42). Contemporary WBE has expanded to include

pesticides (43) macrolide antibiotics (44), organophosphate esters

(45), illicit substances (46–55), antibiotic resistance (56–58), and

the topic herein, pathogenic viruses. Regardless of what is detected,

all detection activities are unified around the assumption that the

concentration of a substance, biologic (here a virus) and/or other

agent will be proportional to the amount excreted by the population

or contaminating the water supplies. The levels of this agent are

thought then to be reflective of the relative risk or status of the

health of the population that sheds or is exposed to the agent.

To this point, most non-pathogen WBE has been based on

chemical analysis of small molecules or chemical substances.

Since each substance has its own unique chemical characteristics,

the method by which the agent is detected must be tailored

to utilize these properties. This dilemma is potentially less of a

concern for viral WBE for two main reasons, which, in theory,

may facilitate the monitoring of many viruses of concern using

a shared or single methodological platform. These features are

(1) the universal presence of nucleic acid (DNA and RNA) in

all pathogens, including viruses and (2) the invention of oligo-

based priming and amplification of said DNA by polymerase

chain reaction (PCR) or of RNA by the reverse transcription of

RNA into DNA with subsequent amplification of the DNA target

(RT-PCR). The first feature simplifies detection technology to a

narrow chemical space (nucleic acid, being composed of only four

bases, is much more chemically similar to all other nucleic acid,

regardless of the source pathogen). The second feature facilitates

the massive amplification of trace amounts of this molecule to

greater than a trillion times its original concentration, thereby

enhancing sensitivity. The high specificity of primers matched

to the target in question and the measurement of light-emitting

probes bound to amplified products (RT-PCR) generates a highly

sensitive DNA/RNA detection system, regardless of pathogen.

When also applied to modern DNA sequencing technologies

to derive a genetic barcode of the amplified nucleic acid, the

unambiguity of sequence information makes identification of the

pathogen unequivocal. As such, these principles and technologies

are/have been used detect the presence of viral and bacterial

pathogens, fecal bacteria, and antibiotic resistance genes (59–65).

The Consortium’s methodological
approach to viral detection

In the WBE efforts proposed herein, the Consortium

has leveraged the above principles to implement two

methodological approaches to track human viruses in wastewater

(Supplementary Figure 1). The first (so-called “targeted”

method) uses RT-PCR and Digital PCR to detect respiratory,

gastrointestinal, and blood-borne viruses that are either commonly

transmitted in community settings (e.g., SARS-CoV-2, Flu, RSV,

norovirus) or are periodically endemic to the Southern part

of the U.S. (some arboviruses, including dengue viruses). The

advantage of a targeted approach is sensitivity and speed. By using

well-designed primers to the virus in question and a validated

PCR assay, very low levels of viral nucleic acid can be detected

in hours. Digital PCR increases sensitivity by diluting the sample

into hundreds to thousands of partitions, thereby ensuring that

inhibitors of a reaction may be “diluted out” of some partitions.

The technique is useful for detecting nucleic acid that may be in

low abundance for one reason or another (see below).

PCR contrasts with the second method, termed by the

Consortium “agnostic” or “comprehensive.” Past efforts to

characterize the virus metagenome (all the genomes of viruses

in a sample) have relied on enrichment of virus-like particles,

the capture of viral nucleic acid with probe-based pulldowns, or

shotgun whole genome sequencing (66–69). The preponderance

of plant viruses or phage in these datasets, and/or the use of

probes designed for only a subset of human viruses, limits a

pan assessment of disease-causing human viruses. The agnostic

approach used by this Consortium employs a next-generation
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FIGURE 1

Formation of an end-to-end, statewide wastewater viral epidemiology program. Step 1—utility onboarding; Step 2—sample procurement, shipping

and intake; Step 3—sample processing and molecular analysis; Step 4—targeted and comprehensive detection with targeted validation; Step

5—analysis; Step 6—positive detection response; Step 7—health department notification, communication to government stakeholders and

community data update.

probe-based capture sequencing panel (TWIST Comprehensive

Viral Research Panel) capable of detecting over 3,000 human and

animal viruses, as well as novel variants of known viruses targeted

by the panel. Additionally, while the enrichment step utilized prior

to next-generation sequencing vastly lowers the amount of off-

target sequencing generated from other WW components, the

sheer number of detectable viruses necessitates deep sequencing

to achieve both the breadth and depth of reads needed for

reliable viral detection. While the cost of sequencing continues to

decrease year-over-year, the agnostic approach is more expensive

than the targeted approach. Importantly, whereas the agnostic

approach might have reduced sensitivity as compared to the

targeted approach, its value is that it provides an unbiased “whole

virome” analysis of a complex sample. This allows the Consortium

to capture “everything else” not covered by the targeted analysis,

which may prove useful for hundreds of other viruses that cause

human diseases, variants of specific viruses (because sequence

information increases specificity), as well as novel emerging viruses

that are not yet on any clinical radar. Unlike the targeted

approach, the agnostic method takes a few weeks for a full analysis

to be finished, incurs additional costs, and requires significant

technical expertise. A summary of advantages and disadvantages to

each technique outlined here can be found in Supplemental Table 1.

Validation and limitations of current
methodological approaches

Although nucleic acid provides for streamlining of the

detection pipeline, there are recurring concerns that one must be

aware of and require further investigation. We briefly discuss some

here so that others who wish to consider this work are informed.

Because each virus has its own biology, chemistry, and natural

history of infection, each of these attributes will affect viral levels

detected in WW. Some overriding determinates are that the virus

or its nucleic acid (1) must be shed in human excrement (or enter

wastewater in some consistent way); (2) must be relatively stable

in raw sewage exposed to a harsh chemically and environmentally-

shifting conditions; and (3) be enriched during the viral capture

steps. Many viruses have a human infection biology that likely

precludes them from excretion into the WW (perhaps their

infection tropism has nothing to do with the gastrointestinal or

urinary tract). Even if excreted, others have a capsid or membrane

structure that is unstable, thereby exposing their sensitive nucleic

acid to harmful sludge conditions. Finally, viruses may be excreted

and be stable but if the targeted or capture method fails to bind

them, they cannot be detected. Thus, any pipeline attempting to

provide universal (or even highly targeted) detection may have one

or more of these issues affecting the outcome.

When conditions 1–3 above are met, other factors may limit

sensitivity or reproducibility. Adding to the list above, these

include, but are not limited to; (4) the number of infected people;

(5) the amount or frequency of shedding; (6) transit time to

the plant; (7) composition of the plant sewage (8) environmental

changes such as rainfall or temperature; (9) collection technique

and sample transport; (10) storage of sample; (11) capture

technique (e.g., size, ionicity); (12) co-purifying inhibitors of the

capture or detection methods (including non-specific binding of

viral material to wastewater matter or direct inhibition of this

matter of downstream processes); (13) whether the liquid or solid

phase is examined; and finally (14) sensitivity, specificity, and

genome coverage of the probes and primers, homology of the

primers to variants and emerging pathogens, and so forth. A

summary of limitations and associated reasons that impact viral
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and pathogen detections can be found in Supplemental Table 2.

Where possible, care should be taken to limit the negative impact

of these on the process to limit attrition of signal. In the targeted

approach, this is easier to achieve because the emphasis is on

a single virus. Use of the targeted virus or its nucleic acid as a

proxy (“spike-in”) during tests of the pipeline can determine what

factors affect levels and signal (attrition). However, in the agnostic

approach, because of the sheer magnitude of total viruses surveyed,

it is not currently possible to optimize capture, amplification, and

detection for every virus. In these cases, a best-fit approach is taken,

whereby what works for a subset of key viruses (we use SARS-

CoV-2 as a representative constituent) provides confidence that the

methodological conditions are conducive to detectingmany but not

all viruses.

How will detection events be validated? The PCR technology

itself has shortcomings in that nucleic acid shearing can reduce

priming (false negative), while the lack of primer specificity can

produce off-target amplification (false positive). One common

method for validating the targeted method (here PCR) is to have

the test repeated in a second, independent laboratory (70, 71).

However, a second laboratory testing the same corrupted sample

may produce the same result. One benefit of using a two-pronged

approach (i.e., targeted and agnostic as described above) is the

orthogonal nature of verification; if two distinct tests are positive,

and detection is achieved via different methods, there is strong

evidence the signal is real. In time, we hope to add a third assay,

so-called “targeted sequencing,” which will employ primers that

tile across the entire viral genome of the virus in question, to

produce sequence information that coverages at or near 100% of

the genome. Not only does this provide confidence the detection is

real, it also has the value of increasing the ability to identify variants

that are present or emerging (72–74).

Onboarding utilities and safety

Successful upstream of viral detection requires public works

utilities to gain access to wastewater samples and expertise

in wastewater treatment processes and engineering. Specific

legal agreements regarding disclosures of sampling sites, use of

the information, and general risk assessment may be required

between those analyzing the samples and those providing them.

There are costs associated with sampling, including personnel,

equipment needed for sampling, and shipment of the sample

itself. Many utilities already understand the risks associated

with working with such material, but detection science may

reveal additional pathogens not routinely considered for risk

assessment. Quantitative microbial risk assessment (QMRA) is a

systematic approach to estimating the probability or likelihood

of infection, illness and death from exposure to disease-causing

pathogens. The dynamic, four-component framework of hazard

identification, dose-response assessment, exposure assessment,

and risk characterization defines an iterative process that

comprehensively evaluates the pathogen-host interaction (75).

The focus of a QMRA is the pathogen, with data generated

from field and/or laboratory studies to inform its occurrence

in the environment, its survivability and virulence properties,

and its transmission pathways. Previous human dose-response

studies are available for many pathogens transmitted through

environmental sources (such as air, water, food and fomites), and

best-fit mathematical models have been developed to represent

infection probabilities for specific microorganisms (76).

One of the objectives of our TWC pipeline is to develop a

reverse QMRA to public health readiness, for example to estimate

the number of infections in a community based on viral levels in

WW. The data obtained in a traditional QMRA is pathogen specific

with information characterizing the host-pathogen interaction

including incubation period, morbidity ratios, range of symptoms,

likelihood of secondary transmission, and specific sequelae, such

as excretion patterns. By applying the appropriate dose-response

model in a reverse QMRA, the number of infections within a

community can be estimated based on the microbial composition

of the sewage serving that municipality. This QMRA approach

can be used to interpret wastewater monitoring trends observed

over time, with qualitative characterization revealing unseasonal

pathogens due to unexpected community infections and illnesses.

Algorithms can then be developed to estimate the number of

community infections after a PCR or sequencing result is attained.

Through integration, the qualitative and quantitative QMRA

output can estimate the likelihood of community transmission,

determine whether an outbreak is occurring, or estimate if an

epidemic is imminent. At the moment, reverse QMRA seems

possible for SARS-CoV-2, influenzae, norovirus, monkeypox, and

possibly respiratory syncytial virus (RSV). Such output will address

the assumption described earlier that the amount of pathogen

detected in sewage is proportional to the amount excreted by

the population served by that wastewater system, as well as help

estimate the possible number of people infected.

Data analysis and statistics

It has been reported that SARS-CoV-2 detection in wastewater

leads case reports by 2–14 days, though it has been argued that a

4-day lead time is the most plausible (8, 77, 78). Estimations of

lead times for hospitalizations have been reported to be 4–8 days

(79, 80). Though limitations of such WBE lead time calculations

have been noted, it has been calculated for other pathogens such

as influenza virus A, where wastewater detection led clinical case

detection by 17 days, and RSV, where wastewater detection led

clinical detection by about 1 week (77, 78, 81). Olesen et al. (77)

succinctly argued some of the issues with the currently ill-defined

idea of “lead times” in WBE and how the term has been used

in different circumstances. They outlined these circumstances

as, (1) “qualitative detection of disease presence/absence,” (2)

“independent, quantitative estimate of community-level disease,”

and (3) “quantitative estimate of rapid changes in disease incidence”

(77). For the purposes of TEPHI, the first circumstance—

“qualitative detection of disease presence/absence”—is the initial

goal when dealing with non-SARS-CoV-2 pathogens.

Essential to viral WBE is the formation of predictive or

forecasting models that provide lead-time warning of outbreaks,

transmission, or an ongoing epidemic or pandemic. Formation

of such models requires data analysis on historical data with

both wastewater and epidemiological/clinical data to establish

the relationships between viral nucleic acid detected in the
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wastewater and the epidemic severity (e.g., reported case rates),

from which models may be further developed for forecasting. As

an example, various studies have reported the promising potentials

of WBE during the SARS-CoV-2 pandemics, however challenges

remain. A recent review by Faraway 2022 made recommendations

in building quantitative prediction models using WBE (82),

emphasizing key factors that determine the accuracy of any

forecasting models including: (1) sampling design; (2) sensitivity

and reproducibility of the measurement process; (3) availability of

the auxiliary environmental variables; (4) the amount of clinical

data to provide for cross correlation; and (5) prior knowledge of the

particular disease under study (more difficult for newly emerging

pathogens, for example Zika). All of these are being addressed by

the TEPHI Wastewater Consortium in some fashion. In addition,

we identified other obstacles as: (6) the lack of state and/or

countrywide data repositories accessible to interested stakeholders;

(7) fragmented clinical data sets that lack metadata; and (8) lack of

robust real-time data sharing portals (not only among investigators

in the same fields but also in distinct fields, example linking viral

PCR data to nasal testing data for SARS-CoV-2).

The Consortium’s public health
approach to viral WBE

Equally challenging as viral detection is the use of this

information for public health action. Although the practice is still

developing, some broadly agreed-upon actions are emerging. At

this juncture it is important to emphasize the complementary

nature of WBE, traditional public health and clinical surveillance.

Clinical observation of an infected patient for a rare condition or an

increase in frequency of infections in the population for a common

condition often proceeds meaningful signal in wastewater at a

distant locality. For example, in the recent pandemic, SARS-CoV-2

in Wuhan, China and Lombardy, Italy were examples of what the

rest of the world was going to experience. In this context, WBE

can then be tailored to look for the appearance of the pathogen

in other locations. In our network, for example, El Paso, TX is a

border town that, because of its arid location, recycles nearly 100%

of its water. It is also a global leader in wastewater technologies and

a lead city for the monitoring programmentioned herein. Houston,

on the other hand, is amajormetropolis withmany catchment areas

and receives international travelers. In these cases, WBE can be

used to catalyze development of a local response plan to an initially

“far-off” threat. As the local response plan is initiated, WBE may

activate alerts in nearby or more remote cities to initiate, intensify,

or expand their monitoring programs. One might think of certain

cities as canaries for a country (a good example for the U.S. might

be large coastal cities that receive international travelers such as

New York and Houston). Another way that WBE can be used

following changes in reported cases is to answer the question of

how broad the geographic distribution of an early outbreak is. For

example, is the recent observation of a paralytic poliomyelitis case

in NY a bellwether for reemergence of polio in the United States?

Observations from clinical and public health surveillance does not

necessarily have to precede WBE, and one reason to continue to

improve WBE operations and laboratory sensitivity and specificity

is to improve early detection before a local outbreak reaches the

clinical horizon. The lead time examples of both polio and SARS-

CoV-2 cases serve here to show that detection can significantly

precede clinical detection.

Public health surveillance and action need to be seen as

complementary and occurring simultaneously. For example, West

Nile is a virus being monitored in our program. However, before

West Nile is observed in an area, public health activities and

educational programs should be working to eliminate standing

water and implement other mosquito control measures. Second,

what actions must be performed for the detection of less common

but very concerning viruses? Following the 2014 occurrence of

Ebola in Dallas, TX, protocol development, table-top exercises and

personnel training for handling these and similar patients became

a regular feature of public health, emergency management, first

responders and health care. As we work to better understand how

syndromic surveillance, healthcare case trend monitoring, WBE,

and public health can better coordinate and communicate, it is

important that WBE be included in the preparedness and response

process with full knowledge of its strengths and weaknesses.

Managing expectations is critical. At the moment, it is not certain if

viruses of substantial concern such as Ebola or Smallpox can even

be detected in public WW, and, if so, whether it will be a lead

indicator of more transmissions.

The Consortium has identified four examples of public health

and clinical actions informed by WBE that are of clear benefit,

which include: (1) upstaffing in response to a detection event

or trend. For example, during the COVID-19 pandemic it was

not unusual for health care systems to employ contract nurses

to meet surge capacity during a peak of the infection driven

either by seasonality or emergence of novel SARS-CoV-2 variants.

Similarly, wastewater-based forecasting has been used to aid in

planning staffing needs and visitation policies at nursing home

facilities; (2) In 2022, the United States had a summer monkeypox

outbreak in multiple cities. At the time, vaccine supply was limited,

so it was important to quickly develop strategies for getting

the most population-benefit from the available orthopox vaccine.

Mobile or pop-up vaccine units can be set-up in areas where the

virus is present and at-risk individuals frequent; (3) related to 2

above, the Consortium is working to detect vaccine-preventable

viruses such as measles and rubella. Given resistance against

routine vaccination, it is possible viral WBE may report areas of

vaccine fallout (for example, lowered vaccination rates leading to

reemergence of vaccine-preventable diseases (of note, it is now

reasonable to add SARS-CoV-2 to this list); (4) Finally, WBE can be

a sturdy bridge to community engagement and education. An often

over-looked but critical communication need is public awareness of

WBE is presentation of a complex process into layperson digestible

information, and what the information means for the community

and its members (relative risk and behavior). For example, the

Consortium aims to generate three types of data sets that scale in

complexity depending on the stakeholders engaged. The first set

will be highly technical, designed mostly for scientists developing

the methodologies of detection and downstream analysis. The

second will be a slightly less detailed but broad summary of

levels aimed for public health and government officials. Finally,

the last set includes community interactions (possibilities include
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FIGURE 2

The wastewater detection notification scheme and network. Validated viral detection events of concern are assessed first for whether they are on the

DSHS immediate notification list. DSHS as well as other stakeholders (local public health experts, state leaders, and/or utilities) are notified with

additional action dependent on the threat of the concern (for example, smallpox vs. influenzae). Additional actions such as consultation with

stakeholders and/or a press release may be needed. Viruses of seasonal or endemic nature (influenzae, SARS-CoV-2, RSV) are automatically entered

into a real-time trend analysis with user-friendly reports provided on a regular basis (dependent on whether the targeted or agnostic method is being

used). Long-term goals include a user-friendly community data set segmented in time, space, and viral species or variant detected.

dashboards, togglable linksmore in-depth information about threat

levels or risk, etc) relevant to public health. This final set requires

investigation into what is appropriate to report. Community

engagement and buy-in (town halls) are critical, as some viruses can

be stigmatizing to communities (for example, HIV). A summary of

the Consortium’s current plan for a public health arm following a

validated detection event is shown in Figure 2.

The future

Outside of the clear opportunities and challenges presented

above with implementation of the TWC program, there are

other exciting areas and challenges to consider as this field

evolves and matures. On the detection front, the “what to

detect” seems to be ever-changing and is always of importance.

The U.S. Environmental Protection Agency has identified many

pathogens that might be present in WW, including bacteria (V.

cholera, Salmonella typhi, enteropathogenic E. coli, Campylobacter

jejuni, shigella dysinteriae, and Yersinia entrocolitica), protozoa

(Giardia, Cryptosporidium, E. histolytica), and helminths Ascaris,

Ancylostoma, Trichuris, and Strongiloides (83). It is absolutely

clear that WW harbors bacteria carrying genetic elements that

confer resistance to antibiotics. This “silent pandemic” is expected

to claim 10 million lives annually by 2050 and, since tracking

of the emergence of resistant genes can prepare clinicians

for where to provide antibiotic stewardship, WBE may be

a useful source of such information. Although currently not

considered by the Consortium, one also wonders if a community’s

immunologic status may be inferable from WBE, especially as it

relates to inflammation or neutralizing antibody status to certain

pathogens (one application of QMRA). On the public health

front, it is clear relaying the information to stakeholders and

the downstream steps they take are of substantial priority. This

requires integration of utilities and their expertise in wastewater

management, molecular scientists and technicians detecting the

agents, the statistical and computer scientists analyzing the data,

and the liaisons to connect these parties to the public health

network, government officials and community. The Consortium

is building a unified and integrated program that links these

stakeholders in Texas. Finally, one wonders if the principles,

pipeline, and program constructed from viral WBE may be

applied to other medium monitoring activities, particularly air,

which TEPHI plans to expand. Detection of viruses in air

samples has already been demonstrated (84–87), but is associated

with its own set of challenges, including sampling equipment

(pump type, collection media), protocols (sampling volume,

time, rate), varying sampling conditions (temperature, humidity),

transport and storage conditions, and the type of virus to be

detected (88).

In summary, the Consortium has begun efforts to implement

a robust, real-time, and reliable viral WBE program across the

state of Texas that brings utilities, microbiologists, chemists,

clinicians, epidemiologists, statisticians, and public health experts

together to identify and appropriately respond to viruses of

pandemic potential. Some early success has been realized in

utility onboarding, implementation of at least two molecular

detection methods, and the creation of an integrated team that

span the above fields of inquiry. In time, we hope to report

further gains and obstacles in the coming year as the science and

programmatic features of viral WBE continue to grow locally,

nationally, and internationally.
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SUPPLEMENTARY FIGURE 1

The molecular platform for viral wastewater detection and epidemiology.

Wastewater samples are collected, shipped, and either immediately

processed or stored. Large solids are sedimented and cleared supernatants

are applied to electronegative filters for viral capture and nucleic acid

extraction. Samples are then either tested by RT-PCR (“targeted” approach)

or sent for library preparation and sequencing using a comprehensive

human virus probe set (“agnostic” approach). The final stages include a

statistical analysis of the data, examination of trends, and the production of

a data report for health networks and the public.
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Wastewater surveillance has gained traction during the COVID-19 pandemic as 
an effective and non-biased means to track community infection. While most 
surveillance relies on samples collected at municipal wastewater treatment 
plants, surveillance is more actionable when samples are collected “upstream” 
where mitigation of transmission is tractable. This report describes the results 
of wastewater surveillance for SARS-CoV-2 at residence halls on a university 
campus aimed at preventing outbreak escalation by mitigating community 
spread. Another goal was to estimate fecal shedding rates of SARS-CoV-2  in a 
non-clinical setting. Passive sampling devices were deployed in sewer laterals 
originating from residence halls at a frequency of twice weekly during fall 2021 
as the Delta variant of concern continued to circulate across North America. A 
positive detection as part of routine sampling in late November 2021 triggered daily 
monitoring and further isolated the signal to a single wing of one residence hall. 
Detection of SARS-CoV-2 within the wastewater over a period of 3 consecutive 
days led to a coordinated rapid antigen testing campaign targeting the residence 
hall occupants and the identification and isolation of infected individuals. With 
knowledge of the number of individuals testing positive for COVID-19, fecal 
shedding rates were estimated to range from 3.70 log10 gc ‧ g feces−1 to 5.94 
log10 gc ‧ g feces−1. These results reinforce the efficacy of wastewater surveillance 
as an early indicator of infection in congregate living settings. Detections can 
trigger public health measures ranging from enhanced communications to 
targeted coordinated testing and quarantine.
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1. Introduction

SARS-CoV-2 is the virus responsible for COVID-19 (Coronavirus 
Disease 2019). SARS-CoV-2 infection produces less severe illness than 
SARS-CoV and MERS-CoV with lower mortality (1, 2). However, the 
basic reproduction number (R0) of SARS-CoV-2 is substantially 
higher than previous coronavirus epidemics (1). Strong evidence of 
airborne transmission largely explains higher transmissibility of 
SARS-CoV-2 (3, 4). Additionally, asymptomatic cases of COVID-19 
likely promote transmission as individuals can pass the infection 
without knowing they are contagious (5, 6). Testing populations 
widely is complicated by the fact that clinical testing is expensive and 
can overwhelm healthcare resources. Alternate means of ascertaining 
disease prevalence has emerged as an important public health goal for 
pandemic management.

SARS-CoV-2 can be  shed in the digestive tract of infected 
individuals and excreted in feces (7, 8). Consequently, SARS-CoV-2 
RNA can be detected in untreated wastewater (9) following collection 
at wastewater treatment facilities (10, 11). Correlations have been 
found between the amount of SARS-CoV-2 viral material in 
wastewater and the prevalence of disease within the community 
served, (12) with many instances demonstrating that wastewater 
surveillance may provide early warning of increases in clinical cases 
(12–17).

Testing the footprint of disease within an entire community can 
help to inform public health decision making (18). However, testing 
wastewater “upstream” of treatment facilities arguably produces more 
immediately actionable data that may be used to mitigate disease 
transmission (19–21). During the COVID-19 pandemic, wastewater 
surveillance of congregate living settings has been adopted by many 
universities to assess disease prevalence on campus (22–27). In this 
setting, it has been shown to be a cost-effective means of detecting 
cases among individuals in high density housing, especially in 
comparison with clinical testing protocols (28). Wastewater 
surveillance can also warn of outbreaks in other congregate living 
settings. This type of “upstream” monitoring has been implemented 
in homeless shelters (29) and in long-term care facilities (30) where 
early detection and mitigation of transmission is especially important 
as the monitored populations are more susceptible to mortality 
associated with COVID-19 infection (31).

Upstream sampling modalities can rely on the same 
methodologies employed to monitor wastewater at centralized 
wastewater treatment facilities where composite samples are collected 
by autosampler. This type of sampling does not always lend itself to 
upstream locations where practical considerations such as autosampler 
deployment and variable flows can preclude sampling. Passive 
samplers offer an alternative, especially in logistically challenging 
settings where they can detect a single case per 10,000 individuals 
(32). Moore Swabs are a class of passive sampling device composed of 
absorptive material placed in a flowing medium to continuously filter 
particulate material for analysis (33). Moore Swabs have been used in 
wastewater surveillance at broad and fine spatial resolutions (i.e., 
monitoring upstream and at the community level) and have been 
shown to be equivalent to or outperform grab and composite sampling 
(34–36).

In February 2021, the University of Windsor implemented a 
program to monitor wastewater in a single residence hall on campus. 
During spring 2021, wastewater surveillance likely averted a 

COVID-19 outbreak by detecting an infection using passive samplers 
and analysis by RT-qPCR. The detection led to a public health 
response which included a testing campaign at the residence and the 
eventual quarantine of an infected individual and their close contacts 
(20). The campus monitoring program was expanded at the beginning 
of the 2021 fall semester to include three residence halls. This report 
focuses on a second occurrence in which wastewater surveillance may 
have prevented an outbreak. In addition to resulting in an actionable 
public health response, data generated provided taxonomic resolution 
of the variant of SARS-CoV-2 responsible and estimation of fecal 
shedding rates for the variant.

2. Methods

2.1. Sample collection

Passive samplers were deployed once weekly at three campus 
residence halls beginning in summer 2021 to establish a baseline prior 
to students moving to campus. Beginning in fall 2021, sampling 
frequency was increased to twice weekly. Swabs passively interacted 
with wastewater for approximately 24 h before they were collected. 
Once collected, swabs were placed in sealable plastic bags and 
transported to the laboratory on ice for immediate processing. 
Samplers consisted of a feminine hygiene product (Tampax Cardboard 
Tampons, Regular Absorbency, Procter & Gamble, Cincinnati, OH, 
United States) clipped to a carabiner which was attached to the interior 
of the rim of a sewer cover via fishing line and a magnet. Duplicate 
tampons were placed within each monitored sewer lateral to increase 
the volume of liquid absorbed.

2.2. Sample processing

At the laboratory, liquids and solids were expelled manually by 
massaging the tampons while still in the sealed plastic bag. A mean 
volume of 35 mL (SD ± 10) was eluted from each swab. The liquid and 
suspended solids were decanted into a sterile 50 mL conical 
polypropylene tube and centrifuged at 4820 × g for 40 min at 4°C. The 
supernatant was collected and passed through a 0.22 μm Sterivex 
cartridge filter (MilliporeSigma, Burlington, MA, United  States). 
Filters were flash frozen in liquid nitrogen and were stored in liquid 
nitrogen at −196°C until extraction. RNA was extracted from the 
filters using the AllPrep PowerViral DNA/RNA kit (Qiagen, 
Germantown, MD, United States) modified by addition of 5% (v/v) 
2-mercaptoethanol to the lysis buffer. RNA was eluted in 50 μL of 
RNAse-free water.

2.3. RT-qPCR

Template was analyzed undiluted and diluted 1:5 with RNAse-free 
water to relieve PCR inhibition. RT-qPCR targeted the conserved N1 
and N2 regions of the nucleocapsid (N) gene of SARS-CoV-2 (37). 
RT-qPCR was also performed to evaluate the levels of Pepper Mild 
Mottled Virus (PMMoV) within the wastewater as an indicator of 
human fecal matter (38–40) using primers and probes described 
previously (41). RT-qPCR reactions for SARS-CoV-2 contained 10 μL 
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of 2× RT-qPCR master mix (Takyon Dry One-Step RT Probe 
MasterMix No Rox; Eurogentec, Liege, Belgium), 5 μL of template and 
the remaining 5 μL consisted of forward primer (final concentration 
of 300 nM), reverse primer (final concentration of 300 nM) and probe 
(final concentration of 150 nM). All samples were run in technical 
triplicates for each target assayed. The thermocycling protocol for each 
of the gene targets was consistent. Reverse transcription was 
performed for 10 min at 48°C, followed by an enzyme activation step 
at 95°C for 3 min and 50 cycles of denaturation and annealing/
extension at 95°C for 10 s and 60°C for 45 s, respectively. This protocol 
was carried out using a MA6000 thermocycler (Sansure Biotech, 
Changsha, China). No template controls were included with each 
RT-qPCR run and a 7-point standard curve for SARS-CoV-2 derived 
from serial dilution of a synthetic RNA standard (Exact Diagnostics, 
Fort Worth, TX, USA) was run with each set of samples. A standard 
curve for the quantification of PMMoV was generated through serial 
dilution of a custom Gblock. All standard curves were made in 
RNAse- free water. No amplification was observed for process controls 
(extraction blanks) or in no template controls. The LOD of the N1 and 
N2 assays is 1 copy·μL−1 of template, corresponding to a greater than 
95% probability of detection. LOD was determined through analysis 
of 20 replicate 7-point standard curves. Standards for each target met 
the minimum requirements from Protocol for Evaluations of 
RT-qPCR Performance Characteristics: Technical Guidance (slope 
from −3.1 to −3.6 and an R2 value of at least 0.98) (42).

Samples were also analyzed by RT-qPCR primer extension assay 
targeting the mutation D63G on the N gene, which is unique to 
sublineages of the Delta (B.1.617.2) variant of concern (43, 44). RNA 
extract was diluted 1:5 with RNase-free water and 5 μL of sample was 
mixed with 10 μL of 2 × RT-qPCR master mix (Eurogentec), 500 nM 
primers and 125 nM probe in a final reaction volume of 20 μL. Reverse 
transcription was performed for 10 min at 48°C, this was followed by 
an enzyme activation step at 95°C for 3 min, 45 cycles of denaturation 
and annealing/extension at 95°C for 10 s and 55°C for 45 s, 
respectively. Primer and probe sequences were previously described 
(45). To quantify the SARS-CoV-2 viral load, a standard curve was 
generated using a synthesized gblock DNA fragment serially diluted 
in RNAse-free water (Supplementary Table S1).

2.4. Fecal shedding calculation

Estimation of fecal shedding rates followed an approach previously 
described (46) adopting modifications made describing a previous 
outbreak on the University of Windsor campus (20). The formula used 
to estimate fecal shedding rate was:

 
FS =

VC ×Q× h
G × I

( )
( )

where VC is the estimated concentration of N1 gene found in the 
wastewater in gene copies·L−1. Q is the approximate flow rate of water 
leaving the residence hall in L·min−1 and h is a constant that allows the 
conversion of units. In the denominator, G is the median per capita 
wet weight mass of feces from high income countries (47) and I is the 
number of infected individuals contributing to shedding SARS-CoV-2 
viral material into the sewer. As in previous work regarding fecal 

shedding, the absolute gene copies·L−1 of N1 was calculated using the 
median PMMoV (2.32 × 106 gene copies·L−1) from 17 grab samples 
collected in February and March, 2021 (20). This was necessary since 
it is challenging to produce accurate estimates of SARS-CoV-2 gene 
concentration in the sampled water itself using passive samplers. 
However, an accurate back estimation may be made using the ratio 
between SARS-CoV-2 and PMMoV gene concentrations found in the 
material collected by the passive samplers. This assumes that the 
passive sampling device captures PMMoV and SARS-CoV-2 with 
equal efficiency. Sample calculations can be  found in the 
Supplementary Material.

Flow rates were determined by examination of the water usage 
within the residence as recorded by a utilities meter within the 
building. This method of determining the flow was necessitated by the 
challenges associated with mounting a flow meter within the sewer 
and the inconsistent flow, which was often too low to be detected by a 
flow meter. Since monitoring was conducted at each of the laterals 
associated with the building but SARS-CoV-2 was only detected in 
one of the two laterals, flow per resident was calculated and adjusted 
to reflect the number of residents housed in the north portion of the 
building (corresponding to the lateral that tested positive for 
SARS-CoV-2).

2.5. Ethics review

The information on the cases described are considered exempt 
from ethics review under the Canadian Tri-Council Policy Statement: 
Ethical Conduct for Research Involving Humans – TCPS 2 (2018) 
Articles 2.4 and 2.5.

3. Results and discussion

3.1. Campus wastewater surveillance

During summer 2021, student residence halls at the University 
were minimally occupied with ~30 students residing in one building. 
The occupied building was monitored once weekly over the summer 
semester with no detections of SARS-CoV-2. The University opened 
3 residence halls (hereafter referred to as Residence A, Residence B 
and Residence C) in late August 2021. In preparation for the 
resumption of occupancy for these 3 buildings, frequency of 
wastewater monitoring was increased to twice weekly the week before 
students resumed occupancy. A total of 526 students inhabited the 3 
residence halls at the beginning of the fall semester. As part of the 
University’s Return to Campus initiative, students living in residence 
halls were required to have at least 1 dose of a vaccine approved by 
Health Canada.

Wastewater testing yielded no detections of SARS-CoV-2 at 
residence halls through the beginning of the semester (Figure 1). This 
trajectory mirrored the low incidence of COVID-19 in the Windsor-
Essex region at this time (Supplementary Figure S1). It was likewise 
consistent with low concentration of SARS-CoV-2 detected in 
municipal wastewater following an August–September 2021 
resurgence due to the Delta variant of concern (VOC) 
(Supplementary Figure S1). Also contributing to the apparent absence 
of disease on campus was a relatively low student population housed 
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in residence halls combined with suspension of most in person classes 
during fall semester. Additionally, the University’s vaccination policy 
for on-campus students likely helped to reduce the chance of an 
outbreak prior to the November–December infections detailed in this 
report. Given the regularity in which monitoring was conducted and 
the duration of passive sampler deployment, it is unlikely that 
surveillance efforts during the fall semester failed to capture cases of 
COVID-19 within the residence halls monitored.

Following nearly 3 months of non-detects for SARS-CoV-2, on 
November 26, 2021, a wastewater sample collected at Residence A 
tested positive with triplicate technical replicates for the N1 gene 
region yielding a mean pepper biomarker normalized ratio of 
9.4 × 10−5 (±1.4 × 10−5SD; Figure  1). The detection triggered daily 
sampling of each residence hall and prompted separate sampling of 
sewer laterals serving distinct wings of Residence A allowing spatial 
isolation of SARS-CoV-2 signal. Subsequent samples collected from 
Residence B, Residence C and Residence A South sewer lateral showed 
no SARS-CoV-2 signal (Figure 1). The initial detect of SARS-CoV-2 
was followed by a weak signal from a sample collected the following 
day where only a single technical replicate amplified for the SARS-
CoV-2 N1 gene target. The reasons for this weak signal are unknown 
but the concentration of fecal biomarker from this sample was also 
low suggesting that the sample was dilute or that inhibition was 
present within the wastewater matrix. Alternatively, the initial infected 
individual(s) may not have contributed to the wastewater sampled 
either due to irregular defecation patterns (48) and the weak signal 
caused by residual SARS-CoV-2 material within the sewer lateral. 
Sample placement, timing and duration are important considerations 
for accurate monitoring (49). Whatever the reason for the weak detect, 
this signal invited the possibility that the initial detect was caused by 
a transient visitor rather than an occupant. Therefore, public health 

action was paused while a third sample was collected. Passive samplers 
placed on November 27 were collected the following day. Residence 
B, Residence C and Residence A South showed no signs of COVID-19 
infections. However, the sample collected from Residence A North 
yielded a robust SARS-CoV-2 signal with a mean pepper-normalized 
SARS-CoV-2 ratio of 9.2 × 10−4 (±3.6 × 10−5 SD), one order of 
magnitude higher than the initial detect (Figure 1). The lower Ct 
values associated with this sample as well as the persistence of the 
signal over 3 days led to the conclusion that an individual within the 
building was likely infected with COVID-19. This information was 
communicated to the University leadership and daily sampling was 
continued to achieve high temporal resolution monitoring of the 
sewage leaving the residence hall. A sample collected on November 30 
showed a continued upward trend in SARS-CoV-2 signal intensity at 
Residence A North (N1:PMMoV mean 1.8 × 10−3 ± 5.9 × 10−4) with the 
biomarker-normalized SARS-CoV-2 ratio having increased by two 
orders of magnitude over the initial detection (Figure 1). Viral signal 
was absent at all other monitored sites. Daily testing of the wastewater 
at all residence halls on campus continued for the next 3 days. The 
signal at Residence A North waned rapidly to levels that were 
undetectable by December 3. SARS-CoV-2 was not detected in 
campus wastewater for the remainder of the semester.

Wastewater monitoring at upstream sites may act as mirrors of 
trends within the community (Supplementary Figure S2) (50, 51). 
Additionally, variant-specific assays as well as sequencing of variants 
within upstream sites can provide insight about variants of SARS-
CoV-2 within the larger population. It is easier to resolve variants in 
upstream sewage than sewage from community level wastewater 
treatment plants since fewer individuals contribute to the signal. 
During the outbreak on campus, the Delta VOC was dominant within 
the southwest region of Ontario as confirmed by variant-specific 

FIGURE 1

SARS-CoV-2 in campus residence hall wastewater plotted as the ratio of gene copies (gc) of SARS-CoV-2:PMMoV against COVID-19 cases in the 
Windsor-Essex region by reported date. Sampling the wastewater at 3 residence halls with Moore swabs twice weekly over a 12-week period showed 
no detectable SARS-CoV-2 following which detection related to the outbreak described here commenced with a sample collected on November 25, 
2021. SARS-CoV-2 remained detectable through December 2 albeit yielding a weak signal on that date (blue star) and RT-qPCR amplification of only 
two technical replicates, both yielding Ct values outside the range of the standard curve. Thereafter, SARS-CoV-2 was not detected in campus 
residence sewer laterals through the remainder of the fall semester.
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RT-qPCR (Supplementary Figure S1), as well as wastewater 
sequencing and sequencing of a subset of clinically confirmed cases 
(52). The Delta VOC was characterized by increased transmissibility, 
higher replication efficiency and viral loads, shorter incubation times 
and vaccine evasion (53–55). RT-qPCR analysis conducted on RNA 
extracted from the wastewater sample collected at Residence A North 
on November 30 showed evidence of the presence of the D63G 
mutation in the N gene which is diagnostic of the Delta VOC (43, 44). 
Next-Generation sequencing of this sample confirmed that the strain 
responsible for the outbreak was likely the Delta sublineage AY.103 
(Supplementary Data). Province-wide, this sublineage represented 
~20% of reported cases based on sequencing of clinical samples 
between epi weeks 45–48 (November 7 to December 4, 2021) only 
trailing sublineage AY.25 as the dominant circulating strain in the 
province (56). However, within the Windsor-Essex region, sublineage 
AY.103 was dominant, accounting for 47.9% of the 885 cases reported 
by the health unit over this same period (56).

Wastewater surveillance also facilitated estimates of fecal shedding 
rates calculated based on the ratio between gene copies of N1 and 
PMMoV for each day of the outbreak. Shedding rates were calculated 
for each sample and with different assumed numbers of infected 
individuals contributing to the SARS-CoV-2 signal (Table 1). Rates of 
shedding increased over the first 5 days of the outbreak, likely 
corresponding to progression in infection and/or new infections. This 
is consistent with literature indicating that viral shedding peaks 
4–6 days following infection, coincident with symptom onset (57–60). 
In this study we report fecal shedding rates ranging from 3.70 log10 
gc ‧ g feces−1 to 5.94 log10 gc ‧ g feces−1. This range is lower than 
expected given reports of higher viral titres for the Delta VOC (53–55) 
but it is similar to what was calculated in a previous outbreak on the 
University campus that was attributed to the Alpha VOC (3.93 log10 
gc ‧ g feces−1 to 5.99 log10 gc ‧ g feces−1) (20). The reported maximum 
of 5.94 log10 gc‧g feces−1 likely represents a maximal or near maximal 
viral load as it was estimated approximately 5 days after the initial 
SARS-CoV-2 detection (54, 55) and was the peak level measured in 
the wastewater stream. Estimates of fecal shedding rates were 
indirectly ascertained based on the ratio of SARS-CoV-2:PMMoV 
(Supplementary Table S3) in wastewater concentrated from a passive 
sampling device and must be  cautiously interpreted. Further 
uncertainty in the estimate may be attributed to the flow rates used in 
the calculation being estimated based on facility water usage. However, 
estimated fecal shedding rates largely fall within the range produced 
by direct measurement of stool samples of COVID-19 patients 

reported in select recent studies, supporting the validity of 
approximation methods (Supplementary Table S4). Finally, multiple 
studies have shown that not all infected individuals shed SARS-CoV-2 
RNA in stool (58, 61).

The vaccination status of the cases in the present outbreak is 
unknown but should not influence the viral concentration as the viral 
loads for vaccinated and unvaccinated individuals infected with the 
Delta VOC are similar (60, 62, 63).Understanding fecal shedding rates 
in a more controlled congregate living setting can allow for better 
interpretation of community level wastewater surveillance data 
especially in estimating the number of cases associated with the 
catchment of a particular wastewater treatment plant. This application 
is especially important as wide-scale clinical testing waned during the 
emergence of the Omicron VOC, and public health has become more 
reliant on wastewater data to track the progression of the pandemic 
(52). Hence, using small scale studies to determine fecal shedding 
rates may aid in more accurate estimation of SARS-CoV-2 caseloads 
in the community (64, 65). Some studies have attempted to quantify 
SARS-CoV-2 shedding rates with a top down approach by using the 
number of reported cases within a population and back calculating 
fecal shedding rates by considering the SARS-CoV-2 gene 
concentrations within the wastewater collected at treatment facilities 
(66). However, these attempts rely on the assumption that case counts 
are accurate and do not properly account for loss in signal within the 
sewershed from adsorption to solids, oxidation and microbial activity 
(67). Thus, outbreaks in upstream monitoring locations offer better 
opportunities to calculate fecal shedding rates.

3.2. Public health response

All campus residence hall occupants were messaged on the 
evening of November 27 notifying them of the positive wastewater 
results at Residence A and reinforcing University COVID-19 
protocols including health self-assessments, physical distancing, 
hand washing and mask wearing. They were also asked to refrain 
from receiving visitors from other residence halls. With continued 
positive wastewater results from Residence A North, residents of 
this hall were again messaged the morning of November 29 
encouraging residents to avail themselves of on-campus COVID-19 
rapid testing and informing them of the temporary closure of 
common areas in the building. The campus testing center received 
35 students on November 30 of which one occupant of Residence 

TABLE 1 Calculation of fecal shedding rates.

Fecal shedding rate (log10 gc ‧ g feces−1)

Persons infected

Date (2021) 1 2 3 4 5 6 7 8 9 10

11–28 5.62 5.32 5.14 5.02 4.92 4.84 4.78 4.72 4.67 4.62

11–29 5.55 5.25 5.07 4.95 4.85 4.77 4.70 4.64 4.59 4.55

11–30 5.94 5.64 5.46 5.34 5.24 5.16 5.09 5.03 4.98 4.94

12–01 4.93 4.63 4.45 4.33 4.23 4.15 4.09 4.03 3.98 3.93

12–02 4.30 4.00 3.83 3.70 3.60 3.52 3.46 3.40 3.35 3.30

A range of rates were calculated taking into consideration the possible number of infected individuals who contributed to the wastewater stream during this outbreak. Given the immediate 
rapid decline of wastewater signal following the removal of the 4 infected individuals identified with rapid tests, it is likely that the number of infected individuals contributing to the signal was 
no larger than 4. In addition, rates were calculated for each day of the outbreak based on the change in SARS-CoV-2 signal intensity.
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A North tested positive and was moved, along with a close contact, 
to a quarantine floor in a separate building by late afternoon. Two 
additional students reported positive tests on December 1 and were 
relocated to quarantine by noon that day. Testing was moved 
on-site at Residence A on December 1 to attract more students for 
testing but resulted in only 2 additional students submitting to 
rapid testing. Also on December 1, the Office of Health and Safety 
issued an update to the University community alerting all students, 
faculty and staff to the evolving situation. On December 2, an 
additional positive case was reported who along with 3 close 
contacts was relocated to quarantine. On December 4, the 
University released a press statement indicating that a total of 4 
cases had been detected and identified wastewater surveillance as 
the main indicator that triggered the identification of the cases 
(68). Several close contacts voluntarily isolated off campus and 
their infection status is unknown. No additional cases of 
COVID-19 were reported among student residents through to the 
end of fall semester in contrast to the winter 2022 semester 
(Supplementary Figure S2).

Rapid communication of monitoring data is critical in using 
wastewater-based surveillance as a tool to mitigate spread of 
COVID-19. A wastewater monitoring program implemented by 
the University of California San Diego focused on high frequency 
testing and rapid information dissemination to diagnose an 
estimated 85% of COVID-19 cases on campus early in the course 
of the disease (69). The authors stressed the importance of timely 
reporting and coordination between wastewater surveillance 
campaigns and clinical testing efforts, an opinion echoed across 
upstream monitoring programs (20, 70). In the present case, once 
it was confirmed that the SARS-CoV-2 detected within the sewer 
lateral for Residence A was not an anomaly, action was taken by 
the University in consultation with the local public health unit. 
Messaging targeting building occupants encouraged voluntary 
testing and reinforced COVID-19 protections and protocols in 
effect at the University. Only ~10% of the Residence A occupants 
submitted to rapid antigen tests administered on-site. In contrast, 
a similar incident on the University campus the previous spring 
resulted in a much higher uptake of testing (27). The lower uptake 
reported here may be related to pandemic fatigue as adherence to 
transmission mitigation policies is prone to decline over time (71, 
72). Despite the lower test uptake, this study represents the 
successful implementation of wastewater-based surveillance in 
coordination with clinical testing to reduce the impact of an 
outbreak. Without the application of wastewater surveillance, these 
cases may have infected others on campus and within the larger 
community (73). Here we  demonstrate that wastewater-based 
surveillance at fine spatial resolution can produce actionable data.

If the population under surveillance is informed about wastewater 
monitoring and trusts the results, clinical testing may not always 
be necessary to prevent spread. Instead, promoting awareness of the 
likely presence of COVID-19 infections and advising the adoption of 
transmission mitigating practices may be enough to curtail outbreaks. 
In fact, because of monitoring efforts on campus, signs are now posted 
within each of the monitored residence halls to inform students of 
wastewater results. Signs are updated on a weekly basis, are color-
coded for easy interpretation, and are designed to encourage behaviors 
that reduce the likelihood of the transmission of respiratory infections. 
Continued challenges in the use of wastewater surveillance include 

variability in the wastewater matrix leading to quantification issues, 
ensuring continued buy-in from administrators, residents, and public 
health agencies as well as convalescent shedding that can obscure the 
relevancy of signals (especially in larger congregate living settings 
where recovering cases and new infections cohabitate) (74). Despite 
these challenges, wastewater-based surveillance for monitoring 
respiratory and other transmissible infections in congregate living 
settings is a promising direction that can produce highly actionable 
data for public health agencies and other administrations responsible 
for the health of residents. Possible extensions of SARS-CoV-2 
surveillance include use of these methodologies to monitor other 
respiratory pathogens such as Respiratory Syncytial Virus (RSV) and 
Influenza (75, 76).
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Introduction: Throughout the coronavirus disease 2019 (COVID-19) pandemic,

wastewater surveillance has been utilized to monitor the disease in the

United States through routine national, statewide, and regional monitoring

projects. A significant canon of evidence was produced showing that wastewater

surveillance is a credible and e�ective tool for disease monitoring. Hence, the

application of wastewater surveillance can extend beyond monitoring SARS-CoV-

2 to encompass a diverse range of emerging diseases. This article proposed a

ranking system for prioritizing reportable communicable diseases (CDs) in the

Tri-County Detroit Area (TCDA), Michigan, for future wastewater surveillance

applications at the Great Lakes Water Authority’s Water Reclamation Plant (GLWA’s

WRP).

Methods: The comprehensive CD wastewater surveillance ranking system

(CDWSRank) was developed based on 6 binary and 6 quantitative parameters.

The final ranking scores of CDs were computed by summing the multiplication

products of weighting factors for each parameter, and then were sorted based

on decreasing priority. Disease incidence data from 2014 to 2021 were collected

for the TCDA. Disease incidence trends in the TCDA were endowed with higher

weights, prioritizing the TCDA over the state of Michigan.

Results: Disparities in incidences of CDs were identified between the TCDA

and state of Michigan, indicating epidemiological di�erences. Among 96 ranked

CDs, some top ranked CDs did not present relatively high incidences but were

prioritized, suggesting that such CDs require significant attention by wastewater

surveillance practitioners, despite their relatively low incidences in the geographic

area of interest. Appropriate wastewater sample concentration methods are

summarized for the application of wastewater surveillance as per viral, bacterial,

parasitic, and fungal pathogens.

Discussion: The CDWSRank system is one of the first of its kind to provide an

empirical approach to prioritize CDs for wastewater surveillance, specifically in

geographies served by centralized wastewater collection in the area of interest.

The CDWSRank system provides a methodological tool and critical information

that can help public health o�cials and policymakers allocate resources. It can

be used to prioritize disease surveillance e�orts and ensure that public health

interventions are targeted at the most potentially urgent threats. The CDWSRank

system can be easily adopted to geographical locations beyond the TCDA.

KEYWORDS

wastewater surveillance, communicable disease (CD), ranking system, COVID-19,

emerging disease
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1. Introduction

Since the beginning of the coronavirus disease 2019 (COVID-

19) pandemic, wastewater surveillance has been consistently

applied to monitor severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) viral RNA worldwide (1–10). Wastewater

surveillance epidemiology is a translation of the theory that human

wastewater can serve as a representative community-composite

sample to monitor fluctuations of disease incidence. A pathogen

that can be detected in bodily fluids, including excreta, urine,

sputum, and saliva, has the potential to be detected and thus,

monitored (2, 11–14). Wastewater surveillance and epidemiology

has a diverse range of benefits, including (1) circumventing the

need for mass clinical testing, (2) conserving health, economic,

and societal resources, (3) providing unbiased and unspecific

monitoring of disease incidence regardless of symptomatic or

asymptomatic conditions, and (4) providing early warnings of

impending disease surges (4, 5, 7, 10, 12, 15). Wastewater

surveillance has been extraordinarily successful at monitoring

multiple pathogens, including SARS-CoV-2 (2, 4–7, 11, 16),

hepatitis A and hepatitis E (17), herpesviruses (18), poliovirus (19,

20), and others. Despite its great potential, most wastewater disease

monitoring to date has been limited to SARS-CoV-2. Notably,

recent exceptions encompass poliovirus (21) and monkeypox virus

(22–24). Thus, it is paramount that the adoption and integration of

this scientifically-validated methodology is accelerated, particularly

among emerging disease, neglected disease, or diseases of high

outbreak potential.

Communicable diseases (CDs), for instance, tuberculosis (TB)

and sexually transmitted infections (STIs), are among the leading

causes of death and disability worldwide, according to the WHO

(who.int). CDs are caused by microorganisms including bacteria,

viruses, fungi, or various parasites that can be transmitted widely

and quickly within human populations (25). Some infectious

diseases are transmitted through “bites” from insect vectors, while

others can be caused by ingesting contaminated food or water

(who.int). The WHO, U.S. NIH, U.S. AID, U.S. CDC, and the

international scientific community has long recognized the need

to develop a comprehensive education, prediction, and prevention

system for CDs (13, 26, 27).

A few studies have developed methodologies for ranking

CD threats to the public (28–30). However, these systems have

limitations and cannot be directly used by local health department

Abbreviations: CCL, Contaminant Candidate List; CDWSRank system,

communicable disease wastewater surveillance ranking system; CDs,

communicable diseases; GI, Gastrointestinal Illness; GLWA, Great Lakes

Water Authority; HIV/AIDS, Human Immunodeficiency Virus and Acquired

Immunodeficiency Syndrome; TCDA, Tri-County Detroit Area; MDHHS,

Michigan Department of Health and Human Services; MDSS, Michigan

Disease Surveillance System; WDR, MDHHS/MDSS Weekly Disease Report;

NNIDCL, National Notifiable Infectious Disease and Conditions List; STDs,

sexually transmitted diseases; U.S. EPA, United States Environmental

Protection Agency; U.S. AID, United States Agency of International

Development; U.S. CDC, United States Centers for Disease Control and

Prevention; U.S. NIH, United States National Institutes of Health; WHO, World

Health Organization.

to make decisions regarding appropriate targets for wastewater

surveillance. Briefly, they relied heavily on subjective assessments of

weights given by experts to multiple parameters. They were lacking

critical quantitative information such as incidence of diseases based

on clinical data, and basic reproduction numbers of CDs. Besides,

most parameters were assigned a value according to the Delphi

Method, which consists of gathering expert opinions to weight a

disease on a parameter then multiplied by a scale of numbers such

as 1–5 (29) or 0–7 (31) in terms of level of importance.

The objective of this study is to develop a comprehensive

communicable disease ranking system (“CDWSRank” system)

that prioritizes CDs for wastewater surveillance (Figure 1). To

this end, we investigated 96 CDs in the Tri-County Detroit

Area (TCDA), Michigan, Unites States, reported through the

Michigan Disease Surveillance System (MDSS). All CDs were

ranked through the CDWSRank system, which involved 2

categories of parameter: binary and quantitative. Binary parameters

examine the presence or absence of CDs in the following

inventories: (1) CDC National Notifiable Infectious Disease and

Conditions List (NNIDCL), (2) Michigan Department of Health

and Human Services (MDHHS) Weekly Disease Report, (3) EPA

Contaminant Candidate List (CCL), (4) CDC bioterrorism agents

list, (5) pathogen’s detectability in wastewater or excreta, and

(6) association of disease with single or multiple pathogens.

Quantitative parameters include: (1) clinical case trend in

Michigan, (2) clinical case trend in the TCDA, (3) ratio of clinical

case incidence betweenMichigan and the TCDA (geographic ratio),

(4) annual clinical cases inMichigan, (5) annual clinical cases in the

TCDA, and (6) the R0 (basic reproduction number) of the disease.

The CDWSRank system is one of the first of its kind to provide

an empirical method for selecting CDs for wastewater surveillance,

in geographies serviced by centralized wastewater collection and

treatment. To demonstrate the importance of site-specific ranking,

CD trends were analyzed for both the TCDA and Michigan as

a whole for the period between 2014 and 2021. This manuscript

will moreover summarize wastewater sampling methods based on

pathogen type. Ultimately, this article should contribute to the

reduced impact of CDs by procuring valuable information for

public health practitioners, researchers, and medical professionals.

2. Materials and methods

2.1. Communicable disease data acquisition

Weekly reports from the MDSS between 2014 and 2021

were accessed from the MDHHS website (michigan.gov/mdhhs).

Data in the weekly reports were provisional, based on current

data at the time that the report was published. Communicable

disease incidence (per 100,000) for the state of Michigan

are shown in Figure 2. Similar data was collected for the

TCDA, including City of Detroit, and Wayne, Macomb, and

Oakland Counties. Examples of disease trends between 2014

and 2017 are shown in Figures 3–6. MDSS weekly disease

reports define the epidemiological “week” in concurrence with

the CDC’s Morbidity and Mortality Weekly Report (MMWR)

(cdc.gov/mmwr), which runs from Sunday (day 1) to Saturday

(day 7). All CDs were cross-referenced against multiple regulatory
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FIGURE 1

Overall schematic of CDWSRank system. *marked parameter indicates that the annual caseload for Michigan from 2014-2021 was divided by the

annual caseload for the TCDA, where the average of those was then taken for downstream analyses. The A+1 value was assigned to those CDs with

an average ratio of <1.

lists including the U.S. CDC’s NNIDCL (cdc.gov/nndss), the

U.S. EPA’s CCL (epa.gov/ccl), and the U.S. CDC’s bioterrorism

agents list (cdc.gov/bioterrorism). Additionally, the detectability

of the pathogens associated with each CD in human excreta

and wastewater, which is crucial evidence for the applicability

of wastewater surveillance for monitoring CDs, was investigated

through an extensive literature review (Tables 1–4). R0′s were

also collected through a literature review and are summarized

in Table 5.

2.2. The CDWSRank system

The following sections demonstrate the design of the

CDWSRank system and its associated parameters. The presence

and absence of all CDs in regulatory lists including NNIDCL,

WDR, and CCL, as well as being described as a bioterrorism agent,

the association of the disease with a single or multiple pathogens,

and detectability of pathogens in human wastewater were modeled

as binary parameters. Quantitative parameters include: (1) clinical

case trend in Michigan, (2) clinical case trend in the TCDA,

(3) ratio of clinical case incidence between Michigan and the

TCDA (geographic ratio), (4) annual clinical cases in Michigan,

(5) annual clinical cases in the TCDA, and (6) the R0 (basic

reproduction number) of the disease. The overall schematic of the

parameters and weighting factors of each parameter is presented

in Figure 1.

2.2.1. Binary parameters
The presence or absence of CDs for each binary parameter was

treated as a ×1 weighting factor (multiplier) and ×0 weighting

factor (multiplier), respectively, which were then summed for the

final ranking score. The CDC’s NNIDCL provides comprehensive

reporting of CDs that occur in the USA. Diseases that are reported

in the NNIDCL are considered notifiable, but whether or not

they are reported at the state level, varies (cdc.gov). Furthermore,

internationally notifiable diseases reported in WHO’s International

Health Regulations (IHR), such as cholera, are also reportable in

NNIDCL (cdc.gov). The IHR covers not only CDs but also other

public health concerns including chemical and radiological threats

(cdc.gov). All CDs were assessed for whether they are listed on

the CDC’s NNIDCL, and the corresponding presence or absence

was marked with “Y” (presence in NNIDCL) or “N” (absence in

NNIDCL). A multiplier of 1 was assigned to any CD’s presence on

NNIDCL. Similarly, the presence of a CD in the MDHHS Weekly

Disease Report (WDR) was given a weighting factor or “multiplier”

of 1.

The EPA’s CCL includes drinking water contaminants that are

recognized or expected to occur in public water systems and are

not currently subject to EPA drinking water regulations (epa.gov).

The EPA uses the CCL to identify priority contaminants for

regulatory decision-making and information gathering (epa.gov).

The EPA announced Draft CCL 5 on July 19, 2021, followed by

the publication of Final CCL 5 on November 14, 2022 (epa.gov).

All CDs were assessed for whether they appear on EPA CCL 5,
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FIGURE 2

Disease incidence (per 100,000) for 95 CDs between 2014 and 2021 in the state of Michigan (Disease incidence for Monkeypox was unavailable

during this period).
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FIGURE 3

Comparison of selected CDs incidences (per 100,000) between TCDA and MI (ratio < 1).

FIGURE 4

Comparison of selected CDs incidences (per 100,000) between TCDA and MI (ratio > 1).

and the corresponding presence or absence was marked with a “Y”

(presence in CCL) or “N” (absence in CCL).

The CDC classifies bioterrorism agents into 3 categories,

namely, A, B, and C, depending, primarily, on how easily the

diseases can be transmitted and the severity of illness (cdc.gov).

Agents in category A are considered of the highest risk, as they can

be easily transmitted within human populations and can result in

high death rates and significant public health impacts. Examples

include anthrax and plague. Agents in category B have the second

highest priority risk, as they are moderately easy to spread and can

result in moderate morbidity rates. Examples include Q fever and

typhus fever. Agents in category C are considered the third highest

priority risk and they can easily spread among humans and cause

health impacts (cdc.gov). Examples include hantavirus and Nipah

virus. The presence of CDs as CDC-defined bioterrorism agents

was marked with “∗” for category A and “∗∗” for category B. A

weighting factor or multiplier of 1 was assigned to a CD listed as

a CDC bioterrorism agent, regardless of category.

The detectability of pathogens causative of CDs in human

wastewater is crucial to the successful implementation of

wastewater surveillance. Following extensive literature reviews, the

detectability of the causative pathogen in excreta or wastewater

was marked with a “Y” (detectable), “N” (non-detectable), or

“N/A” (data unavailable) in Tables 1–4. For the final ranking

score, a multiplier of 1 or 0 was given to CDs with a causative

pathogen that is detectable or non-detectable, respectively, in

excreta and/or wastewater.

The binary parameter of disease associated with single or

multiple pathogens considers the exact source of a causative

pathogen of a CD. In this system, CDs with multiple
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FIGURE 5

Comparison of selected CDs incidences (per 100,000) between TCDA and MI (ratio ≈ 1).

FIGURE 6

Selected CDs incidences potentially a�ected by the COVID-19 pandemic.

causative pathogens would make them nearly impossible to

be determined or detected. Therefore, CDs with multiple

causative pathogens were assigned a multiplier of 0 at the final

ranking score, to moderate the over-ranking of these CDs. A

final ranking multiplier of 1 was assigned to CDs with a single

causative pathogen.

2.2.2. Quantitative parameters
Quantitative parameters include: (1) clinical case trend in

Michigan, (2) clinical case trend in the TCDA, (3) ratio of clinical

case incidence betweenMichigan and the TCDA (geographic ratio),

(4) annual clinical cases inMichigan, (5) annual clinical cases in the

TCDA, and (6) the R0 (basic reproduction number) of the disease.

Clinical case trends in Michigan as a whole and in the TCDA

specifically, were determined by calculating the correlation R-value

between disease incidence (per 100,000) each year (2014 to 2021)

and the given year, for all CDs. The weighting factor or multiplier

of 1.5 and 2.5 were assigned to clinical case trends in Michigan and

the TCDA, respectively, providing greater emphasis on the TCDA.

The ratio of clinical case incidence between Michigan and the

TCDA is assessed through calculating case incidence (per 100,000)

for each CD, for the state of Michigan, then the TCDA. Next, the

ratio of these values is calculated as the quotient of Michigan cases

and TCDA cases, done for each year in the study period. Finally, the

average of annual ratios was calculated, and each CD was assigned

a value of 1 if the average was less than 1 (indicating that the CD

was more prevalent in the TCDA than the state of Michigan as a

whole). A CD was assigned a value of 0 if the ratio was equal to, or

greater than 1. A weighting factor or “multiplier” of 2 was given to

this metric.

Clinical cases in Michigan and in the TCDA were determined

by computing the decadic log of the average clinical caseload for

the years studied. Taking the common logarithm was necessary

as clinical caseloads varied greatly in magnitude; this operation,

therefore, allowed for the comparison of CDs even with disparate

magnitudes of caseloads, while still preserving accurate variation

measures. The weighting factor or “multiplier” of 1.5 and 2.5 were

assigned to clinical cases in Michigan and the TCDA, respectively,

providing greater emphasis on the TCDA.

The R0 of CDs were determined through literature

investigation (Table 5). This parameter was included to increase the

ranking score of CDs that can be transmitted efficiently, through

person-to-person contact (167). This parameter prioritizes CDs

that have the potential to spread rapidly. This parameter was given

a weighting factor of 1.
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TABLE 1 MDHHS-reported conditions associated with viruses that can potentially be monitored with wastewater surveillance.

Disease name Virus potentially associated
with the disease

Found in
excrement

Found in
wastewater

CDC
NNIDCL?

EPA CCL?

Acute flaccid myelitis (AFM) West Nile, enteroviruses, other viruses Yes Yes N Y

Chickenpox (Varicella) Varicella-Zoster Virus Yes Yes Y N

Chikungunya Chikungunya Virus Yes N/A Y N

Coronavirus disease 2019

(COVID-19)

Severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2)

Yes Yes Y N

Dengue fever Dengue Virus Yes Yes Y N

Flu like disease Multiple viruses N/A Yes N N

Gastrointestinal illness Multiple viruses, bacteria, parasites Yes Yes Y N

Hepatitis A Hepatitis A Virus N/A Yes Y Y

Hepatitis B Hepatitis B Virus Yes Yes Y N

Hepatitis C Hepatitis C Virus Yes Yes Y N

Hepatitis E Hepatitis E Virus Yes Yes N N

Human Immunodeficiency

Virus (HIV) Infection

HIV virus Yes Yes Y N

Influenza Influenza virus N/A Yes Y N

Measles Measles virus Yes Yes Y N

Meningitis - Aseptic Several kinds of viruses. Most

Commonly nonpolio enteroviruses

N/A Yes N N

Monkeypox Monkeypox virus Yes Yes N N

Mumps Mumps virus Yes N/A Y N

Norovirus Norovirus Yes Yes N Y

Polio Poliovirus Yes Yes Y N

Rubella Rubella virus N/A Yes Y N

Shingles Varicella-Zoster virus Yes Yes N N

VZ Infection, Unspecified Varicella-Zoster virus Yes Yes Y N

West Nile Virus West Nile virus Yes Yes N N

Yellow Fever Yellow fever virus Yes N/A Y N

Zika Zika virus Yes Yes Y N

MDHHS, Michigan Department of Health and Human Services; NNIDCL, National Notifiable Infectious Disease and Conditions List; CCL, Contaminant Candidate List. N/A indicates the

information was unavailable at the time that the study was conducted. Data sources: (4–7, 13, 24, 32–55).

2.2.3. Overall CDWSRank system ranking score
An overall ranking score (RCD) of the CDWSRank system for

CDs is calculated using the following Eq. (1), where RCD is the

overall ranking score of the ith CD, Wi is the weighting factor

for binary parameters, Ni is the weighting factor for quantitative

parameters, Bi represents binary parameters, Qi represents

quantitative parameters, Di represents the detectability of causative

pathogens in human excreta or wastewater, and Mi represents the

association of a CD with a single or multiple pathogens.

RCD = (Wi

n∑

i=1

Bi + Ni

m∑

i=1

Qi)× Di ×Mi (1)

An equation for calculating an overall rank score of the ith

CD with all binary and quantitative parameters displayed, can be

expressed as follows:

RCD = [1 × (NNIDCL) + 1 × (WDR) + 1 × (CCL) + 1 ×

(Bioterrorism) + 2 × (Geographic ratio) + 1.5 × (Clinical case

trend inMichigan)+ 2.5× (Clinical case trend in the TCDA)+ 1.5

× (Clinical case in Michigan)+ 2.5× (Clinical case in TCDA)+ 1

× (R0)] × [1 × (Detectability in human excreta or wastewater)] ×

[1× (Association of disease with single or multiple pathogens)] (2)

For example, an overall rank score of SARS-CoV-2 can be

computed as: [1 × (1) + 1 × (1) + 1 × (0) + 1 × (0) + 2 × (1)

+ 1.5 × (0.57) + 2.5 × (0.6) + 1.5 × (5.39) + 2.5 × (4.98) + 1 ×

(2.11)]× (1)× (1)= 29.
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TABLE 2 MDHHS-reported conditions associated with bacteria that can potentially be monitored with wastewater surveillance.

Disease name Bacteria potentially
associated with the
disease

Found in
excrement

Found in
wastewater

CDC
NNIDCL?

EPA CCL?

Anthrax∗ Bacillus anthracis N/A Yes Y N

Botulism∗ Clostridium (botulinum,

butyricum, baratii)

Yes N/A Y N

Brucellosis∗∗ Brucella spp. N/A Yes Y N

Campylobacter Campylobacter spp. Yes Yes Y Y∧

Chlamydia (Genital) Chlamydia trachomatis Yes N/A Y N

Cholera∗∗ Vibrio cholerae Yes N/A Y N

CP-CRE Enterobacter resistant to

carbapenem

Yes Yes Y Y

Gonorrhea Neisseria gonorrhoeae Yes N/A Y N

Guillain-Barre

Syndrome

Campylobacter jejuni, several

viruses

N/A Yes N Y

H. Influenzae Disease -

Inv.

Haemophilus influenzae Yes N/A Y N

Legionellosis Legionella pneumophila Yes Yes Y Y

Leprosy Mycobacterium leprae Yes N/A N N

Leptospirosis Leptospira spp. Yes N/A Y N

Listeriosis Listeria monocytogenes N/A Yes Y N

Lymphogranuloma

Venereum

Chlamydia trachomatis L1, L2, L3 Yes N/A Y N

Nontuberculous

Mycobacterium

Mycobacteria spp. Yes Yes N N

Paratyphoid Fever Salmonella Paratyphii A, B, and C Yes Yes N N

Plague∗ Yersinia pesits N/A Yes Y N

Psittacosis Chlamydia psittaci Yes N/A Y N

Q Fever∗∗ Coxiella burnetti N/A Yes Y N

Salmonellosis Salmonella Yes Yes Y Y

Shiga Toxin-producing

Escherichia Coli (STEC)

E. coli N/A Yes Y Y

Shigellosis Shigella Yes Yes Y Y

Streptococcus

Pneumoniae, Drug

Resistant

Streptococcus pneumoniae Yes N/A N N

Streptococcus

Pneumoniae, Inv

Streptococcus pneumoniae Yes N/A N N

Syphilis Treponema pallidum Yes N/A Y N

Toxic Shock Staphylococcus and streptococcus

bacteria

N/A Yes Y N

Trachoma Chlamydia trachomatis Yes N/A Y N

Tuberculosis Mycobacterium tuberculosis Yes Yes Y N

Typhoid Fever Salmonella typhii Yes Yes Y N

VISA/VRSA Staphylococcus aureus N/A Yes Y N

MDHHS, Michigan Department of Health and Human Services; NNIDCL, National Notifiable Infectious Disease and Conditions List; CCL, Contaminant Candidate List. N/A indicates the

information was unavailable at the time that the study was conducted. ∗indicates bioterrorism category A. ∗∗indicates bioterrorism category B. Data sources: (56–86).
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TABLE 3 MDHHS-reported conditions associated with parasites that can potentially be monitored with wastewater surveillance.

Disease name Parasite(s) potentially
associated with the disease

Found in
excrement

Found in
wastewater

CDC
NNIDCL?

EPA CCL?

Amebiasis Entamoeba histolytica Yes Yes N N

Cryptosporidiosis∗∗ Cryptosporidium parvum Yes Yes Y N

Cyclosporiasis Cyclospora cayetanensis Yes Yes Y N

Giardiasis Giardia duodenalis Yes Yes Y N

Malaria Plasmodium falciparum Yes N/A Y N

MDHHS, Michigan Department of Health and Human Services; NNIDCL, National Notifiable Infectious Disease and Conditions List; CCL, Contaminant Candidate List. N/A indicates the

information was unavailable at the time that the study was conducted. ∗∗indicates bioterrorism category B. The parasitic category is designated for pathogens caused by parasitic organisms,

excluding fungal, bacterial, and viral pathogens. Data sources: (87–95).

TABLE 4 MDHHS-reported conditions associated with fungi that can potentially be monitored with wastewater surveillance.

Disease name Fungus potentially
associated with the disease

Found in
excrement

Found in
wastewater

CDC
NNIDCL?

EPA CCL?

Blastomycosis Blastomyces dermatitidis and gilchristii Yes N/A N N

Candida auris Candida auris Yes Yes Y N

Cryptococcosis Cryptococcus neoformans N/A Yes N N

MDHHS, Michigan Department of Health and Human Services; NNIDCL, National Notifiable Infectious Disease and Conditions List; CCL, Contaminant Candidate List. N/A indicates the

information was unavailable at the time that the study was conducted. Data sources: (96–99).

2.3. Wastewater surveillance concentration
methods based on pathogen type

In addition to the development of the CDWSRank system,

a comprehensive literature review was conducted to summarize

appropriate wastewater sample concentration surveillancemethods

based pathogen type, namely: bacterial, fungal, parasitic, and viral

(Table 6).

3. Results

3.1. Classification of CDs

Tables 1–3 present viruses, bacteria, parasites and fungi

that are detectable in human excrement or wastewater,

indicating their potential to be monitored by wastewater

surveillance. Notably, some of the listed pathogens were

successfully detected in worldwide wastewater samples, with

disease incidence monitored using wastewater surveillance.

These include dengue virus (32), hepatitis B (33), monkeypox

virus (22–24), norovirus (168, 169), Poliovirus (19, 20),

SARS-CoV-2 (2, 4–7, 10, 16), yellow fever virus, and zika

virus (32).

Twenty-five CDs are associated with viral pathogens, including

chickenpox, COVID-19, monkeypox, norovirus, West Nile fever

and so on (Table 1). The viruses that are associated with the

diseases are also summarized in Table 1. For instance, varicella-

zoster virus is the causative agent of chickenpox. Notably,

only 3 of the 25 viruses, including acute flaccid myelitis-

related enterovirus, hepatitis A, and norovirus, appear on the

EPA’s CCL. Some viral diseases can be found on the CDC’s

NNIDCL, including COVID-19, HIV/AIDS, and Zika. No viral

CDs in the list are classified as CDC bioterrorism agents. Table 2

shows 31 CDs associated with bacterial pathogens, including

anthrax, cholera, gonorrhea, plague, syphilis, and so forth. The

bacteria that are potentially associated with the diseases were

also summarized in Table 2. For instance, clostridium (botulinum,

butyricum, baratii) is the potential causative agent associated

with botulism. Seven of the 31 bacteria are listed on the EPA’s

CCL, including chlamydia, CP-CRE, Guillain-Barre syndrome,

legionellosis, salmonellosis, STEC, and shigellosis. And 25 of

the 31 of the bacterial-related CDs are listed on the CDC’s

NNIDCL. Six of 31 bacterial-related CDs are not listed on the

CDC’s NNIDCL, including Guillain-Barre syndrome, leprosy, non-

tuberculous mycobacterium, paratyphoid fever, and streptococcus

pneumoniae. Among all bacterial CDs, anthrax, botulism, and

plague are listed in bioterrorism category A, while brucellosis,

cholera, and Q fever are listed in bioterrorism category B.

Table 3 includes 5 parasitic CDs that can be detected in

either human excreta or wastewater. The potentially causative

agents of these diseases were also summarized in Table 3. For

instance, cryptosporidium parvum is the parasite associated with

cryptosporidiosis. None of pathogens related to parasitic CDs are

listed on the EPA’s CCL, and 4 of them are listed on the CDC’s

NNIDCL, including cryptosporidiosis, cyclosporiasis, giardiasis,

and malaria, expect for amebiasis. Cryptosporidiosis is listed

in the CDC’s bioterrorism category B. Lastly, Table 4 shows 3

fungal-related CDs, including blastomycosis, cryptococcosis, and

candidiasis. The fungi associated with the diseases are summarized

in Table 4. For instance, blastomyces dermatitidis and gilchristii are

the potential causes of blastomycosis. None of them are listed on

the EPA’s CCL and only candidiasis (candida auris) was listed on

the CDC’s NNIDCL (Table 4).
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TABLE 5 R0 values for 96 CDs.

Disease name Ro Value Source

Acute flaccid myelitis (AFM) 0 N/A

Amebiasis 7 (100)

Anthrax 1.251 (101)

Babesiosis++ 1.56 (102)

Blastomycosis 0 N/A

Botulism (Total) 0 N/A

Brucellosis 0 N/A

Campylobacter 0 N/A

Candida auris 0 N/A

Chancroid 0 N/A

Chickenpox (Varicella) 11 (rcpi.ie)

Chikungunya 3.4 (103)

Chlamydia (Genital) 0.55 (104)

Cholera 2.15 (105)

Coccidioidomycosis 0 N/A

CP-CRE 0 N/A

Creutzfeldt-Jakob Disease 0 N/A

Cryptococcosis 0 N/A

Cryptosporidiosis 0 (106)

Cyclosporiasis 0 N/A

Dengue Fever 10 (107)

Diphtheria 7.2 (108)

Ehrlichiosis 0 N/A

Encephalitis 0 N/A

Flu Like Disease 1.5 (vdh.virginia.gov)

Gastrointestinal Illness 0 N/A

Giardiasis 4.181 (109)

Gonorrhea 0.89 (110)

Granuloma Inguinale 0 N/A

Guillain-Barre Syndrome 0 N/A

HIV 3.5 (netec.org)

H. influenzae Disease - Inv. 0 N/A

Hantavirus 0 N/A

Hemolytic Uremic Syndrome 0 N/A

Hemorrhagic Fever 1.62 (111)

Hepatitis A 0 N/A

Hepatitis B (Total) 9.175 (112)

Hepatitis C (Total) 2.12 (113)

Hepatitis E 6.5 (114)

Histoplasmosis 0 N/A

Influenza (Total) 1.5 (vdh.virginia.gov)

(Continued)

TABLE 5 (Continued)

Disease name Ro Value Source

Kawasaki 0 N/A

Latent Tuberculosis 0 N/A

Legionellosis 0 N/A

Leprosy 2.75 (115)

Leptospirosis 1.52 (116)

Listeriosis (Total) 0 N/A

Lyme Disease 0 N/A

Lymphogranuloma venereum 3.5 (netec.org)

Malaria 0 N/A

Measles 15 (117)

Melioidosis 0 N/A

Meningitis - Aseptic 1.048 (118)

Meningitis - Bacterial Other 1.048 (118)

Meningococcal Disease 1.36 (119)

Monkeypox 2.1 (120)

Multisystem Inflammatory

Syndrome

0 N/A

Mumps 11 (health.gov.au)

Nontuberculous

Mycobacterium

9 (121)

Norovirus 2 (122)

Paratyphoid Fever 2.8 (123)

Pertussis 5.5 (124)

Plague 1.45 (125)

Polio 12 (126)

Psittacosis 0 N/A

Q Fever (Total) 0 N/A

Rabies 0 N/A

Reye Syndrome 0 N/A

Rheumatic Fever 0 N/A

Rickettsial Disease - Spotted

Fever

1.7 (127)

Rickettsial Disease - Typhus 0 N/A

Rubella (Total) 6.6 (128)

Salmonellosis 0 N/A

SARS 2.11 (129)

STEC 1.5 (130)

Shigellosis 1.29 (131)

Shingles 0 N/A

Streptococcal Dis, Inv, Grp A 0 N/A

Streptococcal Toxic Shock 0 N/A

Streptococcus pneumoniae,

Drug Resistant

1.5 (132)

(Continued)
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TABLE 5 (Continued)

Disease name Ro Value Source

Streptococcus pneumoniae,

Inv

1.5 (132)

Syphilis (Total) 1.5 (133)

Tetanus 0 N/A

Toxic Shock 0 N/A

Trachoma 2.8 (134)

Trichinosis 0 N/A

Tuberculosis 8 (115)

Tularemia 1.57 (135)

Typhoid Fever 2.8 (123)

VISA 0 N/A

VRSA 0 N/A

VZ Infection, Unspecified 6.5 (136)

West Nile 0 N/A

Yellow Fever 0 N/A

Yersinia enteritis 0 N/A

Zika 3.8 (137)

N/A indicates the informationwas unavailable at the time that the studywas conducted. Those

pathogens for which the Ro is unknown will have zero (0) added to their cumulative score.

3.2. Observations of CDs’ incidence and
trend

3.2.1. Comparison of CD incidence in the TCDA
vs. the state of Michigan

All CD incidences (per 100,000) from 2014 to 2021 inMichigan

are demonstrated in Figure 2. Influenza, “influenza-like” or “flu-

like” diseases, chlamydia, gonorrhea, and gastrointestinal illness

(GI) have among the highest average incidences in Michigan.

Notably, multiple CDs presented lower incidences (per

100,000) in the TCDA than in broader Michigan (Figure 3). GI

presented much higher cases per 100,000 in Michigan than in

TCDA. Between 2017 and 2019, more than 1,400 incidences

per 100,000 were observed in Michigan. In contrast, during

the same period, approximate 400 incidences per 100,000 were

observed in TCDA (Figure 3). Likewise, incidences per 100,000 of

cryptosporidiosis, giardiasis, and norovirus were observed as much

as twice higher in Michigan than in TCDA.

On the contrary, multiple CDs presented higher incidences (per

100,000) in the TCDA than in broader Michigan (Figure 4). CDs,

such as gonorrhea, which can cause severe and permanent health

issues (cdc.gov), has increased continuously and dramatically from

5,245 cases in 2014 to 12,034 cases in 2020 (and slightly decreased

to 10,483 cases in 2021) in the TCDA. Gonorrhea incidence in

TCDA is approximately five times higher than the rest of Michigan

(Michigan.gov). Likewise, sextually transmitted diseases such as

HIV, syphilis, and chlamydia were observed with consistent higher

incidences per 100,000 in TCDA than in statewide Michigan

TABLE 6 Concentration methods for wastewater surveillance by

pathogen type.

Pathogen
type

Concentration
methods

Reference

Bacterial Centrifugation (138–141)

Membrane filtration (142, 143)

Precipitation and filtration (144)

Fungal Centrifugation and culture (145, 146)

Plate culture growth (147–149)

Parasitic Centrifugation (150–156)

Filtration and centrifugation (157, 158)

Viral Aluminum-driven flocculation (159)

Concentrator instrument (2)

Centrifugation (160, 161)

Electronegative membrane vortex (162)

Filtration (160, 163)

Membrane adsorption (159, 164)

Organic flocculation (163)

PEG (5, 160, 162, 163)

Precipitation (164)

Ultracentrifugation (164)

Ultrafiltration (8, 11, 160–162,

164, 165)

VIRADEL (4–8, 17, 165, 166)

Without

pre-treatment/concentration

(16)

(Figure 4). Also, West Nile fever incidences per 100,000 have

increased dramatically in TCDA from 2019 to 2020 (Figure 4).

Figure 5 demonstrates selected CDs with approximately the

same disease incidence (per 100,000), between the TCDA and

Michigan, including AFM, brucellosis, Guillain-Barre syndrome,

hepatitis E and C, as well as shigellosis.

3.2.2. Potential impact of COVID-19 pandemic on
CDs

Multiple CDs were potentially affected by the COVID-19

pandemic (Figure 6). For instance, cases of hepatitis B surged from

675 (Michigan) and 1,081 (TCDA) in 2019, to 3,064 (Michigan) and

4,007 (TCDA) in 2020, during the inchoate stages of the COVID-19

pandemic. Afterwards, incidences in both Michigan and the TCDA

decreased significantly, during COVID-19 stabilization, suggesting

that a pandemic could cause an impact on disease incidence.

The pandemic also affected the incidence of several vector-borne

diseases, for example Lyme disease. Lyme disease surged in both

Michigan as a whole and the TCDA between 2020 and 2021

(Figure 6). The incidence of influenza per 100,000 individuals in

both TCDA and Michigan has been consistently decreasing since

2018. However, the decrease has been particularly significant from

2020 to 2021, concurring with the global spread of COVID-19.
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This may suggest that the health control measures implemented

in response to the COVID-19 pandemic, such as shelter-in-place

orders and social distancing, have had a positive impact on reducing

the incidence of influenza.

3.3. Overall ranking

Figure 7 presents the final ranking (top 30 out of 96 CDs)

generated from the CDWSRank system, prioritizing wastewater

surveillance target applications in the TCDA. Several CDs caused

by viruses that are detectable in human excreta or wastewater were

among the top 30 listed. These include COVID-19 (ranked 1st),

hepatitis B (ranked 2nd), measles (ranked 3rd), influenza (ranked

6th), hepatitis C (ranked 8th), polio (ranked 18th), HIV/AIDS

(ranked 19st), hepatitis E (ranked 21st), and norovirus (ranked

27th). Among the top 30 ranked CDs, some did not present

relatively high incidences but were prioritized upon using the

CDWSRank system. Examples include measles, polio, HIV/AIDS,

hepatitis E, and norovirus, suggesting that such CDs require

significant attention by wastewater surveillance practitioners,

despite their relatively low incidence rates in the geographic study

area in recent years.

Though not unexpected, the highest ranked CDs are those that

do not spread solely by direct contact with animals, but rather those

that are transmitted from person to person or from food or fomites.

Only one vector-borne disease appears within the top 30, which is

West Nile fever (ranked 29th). Over 50% (16/30) of CDs in the top

30 are either foodborne or STIs.

It is worth noting that 4 of the top 30 ranked CDs are known

to health agencies to be vaccine preventable, highlighting the need

for surveillance to warn against conditions that are not easily

preventable, or those that could be particularly devastating to those

not able to be immunized, such as infants or the immunodeficient.

One CD ranked by this system was assigned a negative RCD,

melioidosis. This indicates that, though detectable using wastewater

surveillance methods, this disease has been trending downward in

the geographic areas and timeframe of this study, precluding it as a

priority for monitoring.

Additionally, certain CDs (mentioned in Sections 3.2.1 and

3.2.2) received a ranking score of 0 since a multiplier of 0

for binary parameters was assigned. Lyme disease, for example,

received a score of 0 since the detectability of Lyme disease in

excreta or wastewater was set to 0. It was set to 0 because at

the time of this study there were no published reports available

indicating the ability to detect the bacteria (Borrelia burgdorferi

and Borrelia mayonii) that causes Lyme disease in excreta or

wastewater. As research efforts of the scientific community progress

this may change.

4. Discussion

4.1. Di�erences of CDs in TCDA and state
of Michigan

Differences in incidence among CDs in the TCDA vs. the

state of Michigan demonstrate epidemiological trends that differ,

possibly due to population density, wildlife/ecology, climate,

socioeconomic and racial inequities, cultural or behavioral

differences, age distribution, and access to healthcare and/or

medical insurance (170–174). The ranking system results focus

on TCDA which is an urban area with high-density population.

However, as of 2021 (175), approximately 1.8 million residents,

which accounts for nearly 20 percent of Michigan’s population,

live in rural areas. Consequently, Michiganders as a whole

face a relatively elevated risk of contracting CDs such as

cryptosporidiosis, giardiasis, and norovirus (Figure 3).

Residents in rural areas may have limited accessibility to

medical care for diseases that require extensive or sophisticated

care regimens (176). A study demonstrated possible causes for

disparities between urban and rural areas by comparing outdoor

time, where longer outdoor time were spent by rural residents than

their urban counterparts (174), potentially creating an elevated risk

of being infected by zoonotic pathogens. In rural areas, zoonotic

diseases are of particular concern for farm workers, especially

those working with livestock (177). In addition to zoonotic disease,

residents of rural areas of Michigan are of great concern for

vector-borne diseases, such as babesiosis (Figure 3), and others

(178). It is important to note that human behavior, such as water

related human activities, can also impact the transmission of vector-

borne diseases, in addition to the effects of a warming climate in

Michigan, especially the TCDA area (179). For example, higher

average incidence ofWest Nile fever in the TCDA than in statewide

Michigan can be attributed to both factors (180, 181).

Multiple CDs presented higher incidences per 100,000 in

TCDA than in statewide Michigan, such as HIV and syphilis.

This could possibly be related to a limited access to healthcare

among the socioeconomically disadvantaged and racial minorities

in TCDA (182). There are multiple causes of higher disease

incidence of HIV and other STIs in TCDA, such as gonorrhea

and syphilis (Figure 4). Briefly, a recent investigation indicated

that elevated HIV prevalence in the TCDA was associated with

minorities, gay and bisexual populations up to 29 years old, and

the socioeconomically disadvantaged, such as those experiencing

homelessness, poverty, and unemployment (170). It is worth noting

that this trend is observed nationwide (183, 184). Researchers

have also found that TCDA had a TB incidence twice than

that of Michigan, affected by both racial inequity and places of

interaction (185).

4.2. Impact of COVID-19 pandemic on CDs
in TCDA and state of Michigan

Incidences per 100,000 of diseases such as hepatitis B, influenza

and others, in both Michigan and the TCDA changed significantly,

during COVID-19 inception, suggesting that a pandemic could

cause an impact on disease incidence (Figure 7). This was

corroborated in recent studies (186–188), and has been shown in

countless epidemics worldwide (189, 190). Interestingly, several

CDs whose incidences fell during the pandemic were those that

traditionally rose in the other reported years, such as influenza.

It is likely that reduced human contact and heightened hygiene

in response to COVID-19 may have caused the dramatic decrease
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FIGURE 7

Top 30 CDs by CDWSRank system for prospective wastewater surveillance in the TCDA.

(191). On the contrary, Lyme disease surged in both Michigan

as a whole and the TCDA between 2020 and 2021 (Figure 6).

This may be attributable to an increasing number of outdoor

recreational activities as result of diminished indoor options,

due to COVID-19 social distancing restrictions (192). Another

potential explanation for the pandemic’s effect on CD incidence

is that some CDs are caused by opportunistic pathogens that

reactivate in a host when an individual’s immune response is

weakened, often by another pathogenic condition (193). The

renewed prevalence of these CDs can be a direct effect of COVID-

19 disease, creating the conditions of pathogen reactivation or new

infections (194).

Studies have investigated the impact of the COVID-19

pandemic on sexually transmitted infections (STIs), such as syphilis

(Figure 4) (195, 196). The disease incidence (per 100,000) of

syphilis increased significantly between 2020 and 2021 in both

the TCDA and broader Michigan, amid the pandemic (Figure 4).

Potential causes may include the diversion of funding and health

resources from STI programs, shutdown of STI clinics, less

available treating physicians, a reticence to appear in-office to meet

clinicians, and longer laboratory turnaround times (195). It is

worth noting that during the COVID-19 pandemic, many health

reporting systems faced challenges due to the increased workload

and limited resources in the public health workforce (197). This
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may have led to delays in reporting some diseases or with lower-

quality data. However, it is important to note that COVID-19 has

also resulted in improvements in health reporting systems in some

areas, as public health agencies and governments have recognized

the importance of timely and accurate reporting of disease data

(198). The impact on health reporting systems by COVID-19

pandemic varied depending on the region, the disease, and the

public health response to the pandemic.

4.3. Wastewater surveillance for viral CDs

CDWSRank placed 16 viral CDs in the top 30 for wastewater

surveillance (Figure 7). Hepatitis B, for example, ranked 2nd

(Figure 7). Recently, researchers conducted wastewater surveillance

to monitor hepatitis B in 19 cities across China, after clinical cases

had increased dramatically (33). The wastewater surveillance

results were consistent with the prevalence reported in surveys,

indicating that estimating Hepatitis B prevalence through

wastewater surveillance is feasible in large cities in Southern

China. Hepatitis C ranked 8th in CDWSRank for the TCDA

region. Its RNA was detected and quantified in human fecal

specimens in multiple studies, suggesting a significant potential

for using wastewater monitoring as a tool for detecting hepatitis

C virus (199). Chickenpox (ranked 11th) has been persistent in

the statewide Michigan between 2014 and 2021, as shown in

Figure 2. A few studies have attempted to test human bodily fluids,

particularly urine, for monitoring varicella-zoster virus (which

causes chickenpox and shingles), and other similar pathogens,

such as in the Poxviridae family (34, 200). Notably, belonging

to the same orthopoxvirus genus as varicella-zoster (201), the

monkeypox virus has been spreading worldwide (outside of its

traditional range) since May 2022. The virus has been detected

in wastewater in Rome, Italy (23), and California, USA (24),

showcasing the immense potential of wastewater surveillance as a

tool for monitoring viruses in the Poxviridae family (200).

Viral pathogens, such as measles virus (measles is ranked 3rd)

and varicella-zoster (shingles is ranked 23rd) were detected in

urine specimens, indicating their potential to bemonitored through

wastewater surveillance as well (35, 202). Influenza, which ranked

6th on CDWSRank, was investigated in previous studies regarding

the potential of wastewater surveillance (203).

Notably, polio ranks 18th in our CDWSRank system primarily

due to its high R0 value, indicating that it has the potential to spread

widely and quickly. Although polio cases have not been identified

in Michigan between 2014–2021, the disease can have severe health

consequences and can be dangerous if it emerges. It is worth noting

that the data published by the MDHHS is subject to yearly review.

New information and inclusion of recent data could potentially

affect the ranking of polio or any other CDs in our CDWSRank

system. Polio’s inclusion in our system is based on its potential to

pose a significant public health threat, highlighting the importance

of ongoing disease surveillance efforts to prevent the resurgence

of CDs like polio. Overall, our CDWSRank system is designed

to indicate which diseases should be prioritized in the context of

wastewater surveillance for TCDA based on local clinical data and

other parameters such as R0.

4.4. Wastewater surveillance for bacterial,
fungal, and parasitic CDs

CDWSRank placed 12 bacterial CDs ranked in the top

30 (Figure 7). These include tuberculosis (ranked 9th), CP-CRE

(ranked 17th), legionellosis (ranked 15th), salmonellosis (ranked

26th), and shigellosis (ranked 28th), all detecteble both in human

excreta and wastewater. Also, campylobacter (ranked 13th) was

identified as a highly-sensitive pathogen for wastewater surveillance

(204). Bacterial pathogens, such as Chlamydia trachomatis can be

detected in wastewater (205). Despite being detectable in human

excreta and wastewater, paratyphoid fever, Q fever, and typhoid

fever were not ranked among the top 30 CDs.

Only two parasitic CDs, giardiasis (ranked 20th) and amebiasis

(ranked 25th) ranked among the top 30. No fungal CDs were

ranked among the top 30 CDs. Despite this, fungal CDs, including

blastomycosis and cryptococcosis have great potential to be

monitored using wastewater, as they can be detected in either

human excreta or wastewater (Table 4).

4.5. Strengths and limitations of CDWSRank
system

The goal of this study is to develop a quantitative prioritization

system for wastewater surveillance of CDs in the TCDA. Several

studies have developed methodologies to rank the threat of CDs

with different scopes and methodologies (28–31). However, these

studies have many limitations in their ranking systems which were

refined and improved by the CDWSRank system.

Firstly, these ranking systems did not include parameters such

as actual disease cases and basic reproduction numbers (R0) for

CDs (28–31). For instance, Balabanova et al., applied criteria such

as incidence rate to prioritize 127 CDs in Germany (28). However,

the study did not include the actual annual incidence number of

the CDs. Instead, the importance of incidence for each disease was

evaluated by weights given by experts. In our CDWSRank system,

the actual disease incidence data between 2014 and 2021 for 96 CDs

were extensively investigated and included in the system. Besides, in

this study we investigated the R0 for 96 CDs and incorporated them

in the system when available.

Secondly, existing ranking systems relied heavily on experts’

opinions on weighting the parameters when ranking the diseases

(28–31). For instance, Cardoen et al., proposed a ranking

system for 51 zoonotic agents which replied on scores given

by 35 scientific experts in the field of animal and public

health, food, clinical microbiology, and epidemiology (30).

Likewise, Humblet et al., applied multicriteria decision-making

methodologies based on expert opinions and data to rank 100

infectious diseases, in a system that included 57 criteria and 5

categories encompassing epidemiology, economy, public health,

society, and prevention/control (31). The systems are affected by

individual opinions of experts evaluating qualitative parameters.

Experts’ opinions could be subject to bias, which can affect

the final ranking results. The subjective nature of weighting

parameters by individuals for some criteria, such as public health

impact, animal health impact, and food impact, can lead to
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uncertainty and variation in final ranking scores depending on

individual interpretations of these parameters (30). In contrast,

to circumvent the bias of subjective opinions of experts, we

designed the CDWSRank system based on a data-driven approach

that considers critical factors including quantitative parameters

of disease incidence and trend, geographical ratio, and R0 for

all CDs. In this way, the proposed ranking system differs from

existing systems that are primarily based on the subjective, albeit

expert, opinions. Besides, the weights given by experts for the

specific locations can be hardly applied to other areas. However,

by replacing the quantitative parameters in CDWSRank system,

it can be applied beyond TCDA to other locations with accessible

data. For instance, the clinical case trend in the State of Michigan

and TCDA can be replaced by clinical disease databases based

on different geographical information, henceforth enhancing the

CDWSRank system’s potential for wider applications.

Thirdly, the ranking systems in previous studies were designed

for specific events or areas, which can be hardly applied beyond

their scope. For instance, Balabanova et al. (28) included notifiable

diseases in Germany and reportable diseases within the European

Union. Likewise, Economopoulou et al. (29) focused only on

the risk of CDs associated with the hosting of the London 2012

Olympic Games. To circumvent those biases, the 96 CDs included

in CDWSRank system were selected based on U.S. CDC reportable

disease lists and other governmental lists including the EPA CCL

and CDC Bio-terrorism List, and local disease report lists including

MDHHS WDR, which distinguishes it from all previous ranking

systems for ranking CDs (28–31). This proposed ranking system

is highly adaptable to other regions, especially those with similar

reporting models which most states in the United Sates have,

as a result of the CDC National Notifiable Disease Surveillance

System requirements. Furthermore, to the best of our knowledge,

there have been no published studies ranking CDs of public health

importance that can be monitored using wastewater surveillance.

The goal of this study was to develop a prioritization system for

wastewater surveillance of CDs in the TCDA. Limitations of this

study are expounded below. Firstly, a multiplier of 0 was applied

to a given CD if their causative pathogen has not been detected

in wastewater or human excreta according to published studies

thus far. This excludes potentially harmful CDs which can result

in severe public health consequences, such as anthrax, hantavirus,

and plague. Secondly, the weighting factors or multipliers for both

binary and quantitative parameters were determined by researchers

of this study and specifically designed with an emphasis on the

TCDA. Nonetheless, weighting factors are adjustable and can vary

across studies and regions with dissimilar research emphases.

Thirdly, data unavailability limited the parameter types that could

be involved in the proposed ranking system. For instance, mortality

rate, case fatality, or incidence rate of some CDs could not be

located in any published studies or publicly-available datasets for

the TCDA. Additionally, due to a lack of R0 information on some

CDs, the ranking system may have disregarded diseases that are

potentially harmful to human health but that do not yet have an

established, specific R0. R0 values are situation-dependent and can

significantly affect the rank (167). Besides, the CDWSRank system

is limited since it does not explore the connection between severity

and economic impact of the diseases ranked in this study. The

severity of the disease in many instances would vary significantly

with access to health care and the economic impact would vary

with the severity. Despite the researchers’ initial attempts to include

parameters of mortality rate and severity, very few studies were

found that adequately quantified these values in the TCDA region.

It is, however, possible to include these parameters when adapting

the CDWSRank system for a different locale if those data are

available in the new area studied. Another significant limitation on

the CDWSRank system is its reliance on case data being publicly

and readily available. The implications of this limitation become

particularly salient in locations where clinical data and information

for reportable diseases are unavailable. However, as the CDWSRank

system did produce a ranking score for Monkeypox, a disease

without the case numbers published at the time of study, it is

evident that the system can still create a ranking based on the other

parameters. Hence, the CDWSRank system retains its utility in

settings where access to data is restricted.

Social determinants of health such as socioeconomic status,

environment, race and ethnicity, gender, culture, and access to

health care would be other parameters for future development

of the CDWSRank system. However, measuring and quantifying

these factors for all 96 CDs in TCDA pose significant challenges,

given the limited availability and accessibility of relevant data.

Nonetheless, the insights generated by the CDWSRank system

can be particularly valuable for guiding wastewater surveillance

of emerging CDs which is beneficial for socioeconomically

disadvantaged communities with limited healthcare access or

traditional surveillance systems. Nevertheless, it is critical to note

that as the aforementioned constraints become known, updating

the CDWSRank system becomes necessary.

It is worth noting that some of the diseases of concern are

seasonal (such as influenza) or rare (such as polio) and therefore

only occasional surveillance may be recommended. In addition,

some CDs, such as chlamydia, gonorrhea, and HIV, prioritized by

CDWSRank system in TCDA are associated not only with urban

areas, but also with socioeconomical and racial inequality, which

can skew statistical designs. Social determinants of health, such

as poverty, poor housing conditions, lack of access to healthcare,

can disproportionately affect certain racial or ethnic groups and

increase their risk of contracting and transmitting communicable

diseases (170–173). For example, individuals living in crowded and

unsanitary conditions aremore likely to contract infectious diseases

like TB or hepatitis A (206, 207). Therefore, surveillance of specific

regions of concern may be recommended.

4.6. Future directions

In the State of Michigan, as in multiple other regions across

the nation, the COVID-19 pandemic prompted the creation of

wastewater surveillance networks. As the primary health focus

shifts away from COVID-19 these currently available networks

and their infrastructure and resources can be adapted to monitor

other emerging diseases. This study offers a tool for transitioning

to wastewater surveillance programs beyond COVID-19. By

identifying and ranking the CDs that pose the most significant

risk to public health in TCDA, the CDWSRank system provides

a methodological tool and critical information that can help

public health officials and policymakers allocate resources more
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effectively. This information can be used to prioritize disease

surveillance efforts and ensure that public health interventions are

targeted at the most potentially urgent threats.

Furthermore, with regards to the extension of the CDWSRank

system’s applicability beyond the TCDA region, it is worth noting

that the quantitative parameters heavily rely on local clinical

data, while the binary parameters are primarily developed from

regulatory lists obtained from local health departments as well as

from U.S. governmental agencies. It is worth mentioning that all

states in the U.S. are mandated to report to the C.D.C. and have

their respective local health departments responsible for reporting

notifiable diseases. Therefore, extending the application of the

CDWSRank system to other regions within the U.S. would be

relatively straightforward.

5. Conclusion

In this study, we developed a comprehensive and effective

ranking system (CDWSRank) of wastewater surveillance

prioritization for 96 CDs in the Tri-County Detroit Area

(TCDA), Michigan, USA. The CDWSRank system comprises 6

binary and 6 quantitative parameters, with CDs classified into four

groups: viral, bacterial, fungal, and parasitic. Critical regulatory

lists, including the CDC’s NNIDCL, MDHHS’s WDR, EPA’s CCL,

and CDC’s bioterrorism agents list were incorporated into the

CDWSRank system. Disease incidences and trends of reportable

CDs in the TCDA and broader state of Michigan were also

incorporated into the system. Disparities in incidences of CDs were

identified between the TCDA and state of Michigan, indicating

epidemiological differences. Appropriate sampling and sample

concentration methods for wastewater surveillance application

were summarized as per our four categories, viral, bacterial, fungal,

and parasitic.

The CDWSRank system is one of the first of its kind with

the potential to prioritize resources and efforts toward monitoring

and preventing the spread of CDs through wastewater surveillance.

It helps researchers and public health practitioners to identify

CDs that at a higher risk of disease transmission and prioritize

monitoring efforts tomitigate their spread. The CDWSRank system

provides an evidence- and data-based approach to decisionmaking,

ensuring the resources are allocated for wastewater surveillance

beyond the COVID-19 pandemic. Ultimately, the development

and implementation of the CDWSRank system for CDs can

help reduce the impact of CDs on public health and promote

broader applications of wastewater surveillance for public health

benefits. CDWSRank can and should be adopted for ranking

CDs in other geographical locations, with updated etiological and

epidemiological information.
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Introduction: There have been a few reports of viral load detection in stool 
and urine samples of patients with coronavirus disease 2019 (COVID-19), and 
the transmission of the virus through faecal oral route. For clinical diagnosis and 
treatment, the widely used reverse transcription-polymerase chain reaction (qRT-
PCR) method has some limitations.

Methods: The aim of our study to assess the presence and concentration of 
SARS CoV-2 RNA in stool and urine samples from COVID-19 patients with mild, 
moderate, and severe disease, we  compared a traditional qRT-PCR approach 
with a ddPCR. ddPCR and qRT-PCR-based target gene analysis were performed 
on 107 COVID-19-confirmed patients paired samples (N1 and N2). The MagMax 
magnetic beads base method was used to isolate RNA. Real-time qRT-PCR and 
dd PCR were performed on all patients.

Results and Discussion: The average cycle threshold (Ct) of qRT-PCR was highly 
correlated with the average copy number of 327.10 copies/l analyzed in ddPCR. In 
ddPCR, urine samples showed 27.1% positivity while for stool it was 100%.

Conclusion: This study’s findings not only show that SARS CoV-2 is present in 
urine and faeces, but also suggest that low concentrations of the viral target 
ddPCR make it easier to identify positive samples and help resolve for cases of 
inconclusive diagnosis.

KEYWORDS

droplet digital PCR, N-gene, real time qRT-PCR, SARS-CoV-2, stool, urine

1. Introduction

On December 31, 2019, China reported the first cases of pneumonia from an unidentified 
source to the World Health Organization (WHO), and on March 11, 2020, WHO declared the 
coronavirus disease of 2019 (COVID-19) as a pandemic. Over 6.4 million fatalities and 605 
million confirmed cases of COVID-19 infections had been documented globally as of 
September 11th, 2022 (1). It has been almost 3 years since the COVID-19 pandemic started and 
it continues to affect the global population, as new strains of the virus keep emerging. In spite 
of developing newer treatment and diagnostic modalities, including very effective vaccines, the 
disease remains one of the major challenges countries across the globe face today. The World 
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health organization estimates that till now about 400 million people 
have had the disease and 5 million have died because of its 
complications. This large number indicates the rapid transmission of 
this disease, which has been proven to spread through more than one 
route. It is known that the SARS CoV-2 presents differently in 
infected people, it can range from asymptomatic or mild respiratory 
infection to severe pneumonia with acute respiratory distress 
syndrome or multi organ failure, which might have a fatal outcome. 
Among those who develop symptoms the majority present with 
symptoms of fever, cough, fatigue, myalgia and rhinitis. A significant 
proportion of infected people also present with gastrointestinal 
symptoms including diarrhoea, abdominal pain, and vomiting. 
Occasional observation of dominance of gastro-intestinal symptoms 
without any respiratory symptoms have also been noted, the possible 
reason proposed for this finding is the circulation of two types of 
SARS CoV-2, one with gut tropism and another with lung tropism.

The gold standard method to assess genomic or complimentary 
DNA levels is quantitative PCR (qPCR), but without proper sample 
and primer validation and verification, the resulting data might 
be very varied, false, and impossible to reproduce. Poor data quality 
has its origins in the insufficient dilution of chemical and protein 
impurities that, in varying degrees, block Taq polymerase and primer 
annealing. The samples with the lowest expression differences of 
twofold or less and the least numerous targets are the most vulnerable, 
frustrating, and frequently most intriguing. In this study, Droplet 
Digital PCR (ddPCR) and quantitative PCR (qPCR) systems were 
directly compared for the detection of gene expression in well-
characterized samples utilizing small amounts of pure, synthetic 
DNA under the same reaction conditions. Quantitative Real-time 
reverse transcriptase polymerase chain reaction (qRT-PCR) detection 
of SARS CoV-2 RNA in nasopharyngeal swabs is used to diagnose 
the majority of COVID-19 cases (The qRT-PCR technology has two 
advantages: high throughput and sensitivity). Numerous testing 
platforms have received FDA and CE IVD approval and have been 
clinically used to diagnose SARS CoV-2 infection as of the first 
quarter of 2021. These point-of-care tests are quick, but many of them 
have low sensitivity and high false-negative rates, as a disadvantage 
or better which limit their use (2). qRT-PCR technology may detect 
small amounts of virus with high throughput, although faint positives 
Ct > 35 may be challenging to separate from technical artifacts. The 
current gold standard for the etiological diagnosis of COVID-19 is 
viral nucleic acid detection by reverse transcription PCR (RT-PCR) 
which targets viral genes such ORF1a/b, E, S, and N genes. The 
sensitivity and accuracy of RT-PCR, however, have been questioned 
because some patients who had a high degree of clinical suspicion for 
the disease based on their exposure history and clinical presentation 
had negative results as well as positive findings in some confirmed 
cases after recovery (3, 4). Additionally, the RT-PCR technique is 
unable to assess the efficacy of antiviral medications and has 
limitations on viral load analysis for determining disease progression 
and prognosis. Droplet digital PCR (ddPCR) has the benefit of 
absolute quantification and is more sensitive for virus identification 
than RT-PCR, according to a number of studies (5, 6).

ddPCR is an orthogonal technique that can be used to detect and 
measure accurate nucleic acid copy numbers as well as incredibly low 
amounts of nucleic acid. Several investigations have shown that 
ddPCR could detect SARS CoV-2 RNA in various body fluids, such 
as plasma (7, 8).

ddPCR is a very sensitive PCR technique for absolute nucleic acid 
quantification without the need for a reference curve. Although ddPCR 
utilization in research labs has grown over the past 10 years, this method 
is rarely employed in clinical labs, mostly because of its high cost (9).

In order to assess the presence and concentration of SARS CoV-2 
RNA in stool and urine samples from COVID-19 patients with mild, 
moderate, and severe disease, we compared a traditional qRT-PCR 
approach typically used in clinical microbiology laboratories with 
a ddPCR.

2. Materials and methods

2.1. Patients and sampling

All of the registered patients were recruited from the different 
hospitals in the Pune, Deenanath Mangeshkar, Jehangir, and 
Lokmaanya hospitals in Pune, Western India, between May 2020 and 
August 2021. Real-time reverse transcription polymerase chain 
reaction (qRT-PCR) results on oro/nasopharyngeal swab samples 
showed that all of the registered patients were positive for SARS 
CoV-2 RNA. The study was approved by the Institutional Ethics 
Committee of ICMR-National Institute of Virology, Pune, 
Maharashtra, India (No. NIV/IEC/June/2020/D-14 dated 24th June 
2020). Workflow for the molecular diagnosis of SARS CoV-2 from 
stool and urine specimens was represented in Figure 1.

In total, 107 patients were enrolled in the study. Patients who had 
been diagnosed with COVID-19 in a lab had their faeces and urine 
samples taken. Prior to being tested for SARS CoV-2, all hospital samples 
were transported to the ICMR-National Institute of Virology in Pune 
and stored at −20°C. Samples were stored at −20°C for up to 3 days and 
subsequently transferred to −80°C until analysis. We included twenty 
normal samples as a control to check the specificity of assay.

2.2. Sample processing

To remove debris, 30% faecal suspensions in 0.01 M phosphate 
buffered saline (PBS), pH 7.4, were centrifuged at 4000 rpm (Hettich 
Universal 320R centrifuge) for 10 min. 10 mL of urine sample was 
collected in a 15 mL sterile tube. Centrifugation was performed at 
500 g for 20 min at 4°C. The supernatant was removed, and the pellet 
was used to extract RNA (Figure 1).

2.3. RNA extraction

The viral RNA was extracted from 30% (w/v) suspensions of 
faecal and urine samples using spin columns and the Qiagen Viral 
RNA extraction Kit (Cat No52904) as directed by the manufacturer 
(Qiagen, Hilden, Germany).

2.4. Construction of RNA standards

Forward primers with a T7 promoter tag at the 5′ end were created 
to amplify full-length E gene and N gene sections because the whole 
SARS CoV-2 genome was taken from the public database and primers 
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were designed. To obtain the desired PCR result, gene-specific PCR 
was conducted. Amplicons were cleaned by using Qiagen direct PCR 
purification kit (Cat No- 28104 Qiagen, Hilden, Germany). In Vitro 
Transcribed (IVT) RNA was synthesized using T7 Riboprobe® 
Systems (Cat No: P1440, Promega, United States) in accordance with 
the kit’s instructions. Each IVT RNA product was serially diluted 10 
times before being tested for specific detection and determination of 
limit of detection using the appropriate gene primer probe sets (10).

The concentration of synthetic fragment of transcribed RNA was 
measured by fluorometric analysis (Qubit, Thermo Scientific), and 
then standard curve was constructed by using tenfold serial dilutions 
of RNA. The copy numbers of the standard RNAs ranged from 2.5 to 
2.5 x 108/xuL, were used for the consctruction of standard curve for 
absolute quantification in qRT-PCR. After standardizing the qRT-PCR 
data using the standard curve in the instrument software (CFX96™ 
thermocycler), the Ct value for both genes was determined (Bio-Rad, 
Hercules, California, United States). For data comparison, the Ct of 
each analysis was taken into consideration.

2.5. Real-time qRT-PCR assay based on N1 
and N2 gene

Using a CFX96™ thermocycler and the Qiagen SARS CoV-2 
N1 + N2 assay kit (Cat. No. 222015, Qiagen, Germany), qRT-PCR was 
carried out with 5 μL of total RNA isolated from stool and urine 
samples (Qiacuity QX-200, Qiagen, Germany). The N1 and N2 genes, 
which code for the viral nucleocapsid, the E gene, which codes for the 
viral envelop, as well as the RNAse P gene as an internal control, are all 
detected by this kit. In accordance with the manufacturer’s 
recommendations, samples were deemed positive for SARS CoV-2 if 
any of the genes (E or N) it detects had a Ct value below 37.

All the twenty normal samples showed negative results by using 
Q-PCR targeting this multiplex N1 + N2 assay kit.

2.6. Droplet digital qRT-PCR (dd qRT-PCR) 
assay based on N1 and N2 gene

SARS CoV-2 RNA was detected and quantified in 5 μL of total 
RNA obtained from stool and urine specimens using the SARS CoV-2 
N1 + N2 assay kit according to manufacturer’s instructions on a 
QX-200 ddPCR platform (Qiacuity QX-200, Qiagen, Germany) and 
a recent published literature on waste water (11). The SARS CoV-2 
CoV-2 N1 + N2 Assay is a mixture of four primers and two probes 
purified by HPLC at a 20x concentration. These four primers are based 
on the CDC design, targeting the regions N1 and N2 of the viral 
genome. The two probes are coupled with FAM as a reporter dye and 
use ZEN™ quenchers for enhanced sensitivity. For the N1 and N2 
assays, the concentrations of the primer and probe, as well as the 
annealing temperature and duration, were optimized. N1 and N2 
assays were carried out in 40 μL reaction mixtures using the QIAcuity 
One-Step Viral qRT-PCR Kit (Cat no. 1123145, Qiagen) on 26,000 
24-well Nanoplates under ideal circumstances (catalog no. 250001, 
Qiagen). The microfluidic dPCR plates 26,000 QIAcuity 24-well 
Nanoplates enable 24 samples to be run with up to 26,000 partitions/
well. Each partition has a volume of 0.91 nL and the PCR takes place 
within each partition.

2.7. Statistical analysis

The Mann–Whitney U test was used to make comparisons 
between the two groups. The Spearman correlation test was used to 

FIGURE 1

Workflow for molecular testing SARS CoV-2 from stool and urine specimens.
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examine the relationship between the Ct values of qRT-PCR and the 
viral load determined by ddPCR. Statistical significance was defined 
as a p value less than 0.05 (two sided). The analyzes described above 
were carried out with either Prism 7.0 (GraphPad, La Jolla, CA, 
United States) software.

3. Results

3.1. Baseline demographic characteristics 
of patients

In this study, 107 COVID-19 positive patients confirmed by real 
time qRT-PCR from all age groups who were admitted in different 
COVID Care Center of Pune District were enrolled, in which 40 
(37%) were female, & 67 (63%) were male. The demographic and 
clinical details of the patients are described in Figure 2. According to 
the age distribution, the median age was 32 years, with 16 participants 
belonging to the 0–17 age range, 42 participants to the 18–35 age 
range, 26 participants to the 36–53 age range, 20 participants to the 
54–71 age range, and 3 participants to the 72–89 age range. Most of 
the participants (68 patients) who had COVID-19 infection were in 
the 18–35, 36–53, and 0–17 age range.

At the time of admission, fever (78.50%), cough (58.88%), loss 
of taste or smell (43.93%), diarrhoea (33.64%), sore throat (27.10%), 
nausea and vomiting (26.17%), runny nose (24.30%), bloody 
sputum (16.82%), chest discomfort (14.95%), and abdominal pain 
(14.02%) were the signs and symptoms that were most prominent. 
Among these 107 participants, 19 (18%) participants were in close 
contact with known positive case of COVID-19 patient, while 88 
(82%) were not having any close contact with known case in last 
14 days.

After admission to the COVID Care Center, stool & urine 
specimens were collected from the patient from day 0, i.e., day on 
which patient was admitted, while maximum number of specimens 
were collected on Day 1, 2, 3, and 6.

3.2. Performance of the assays

The quantification for the N1 and N2 qRT-PCR standard curves 
ranged from 2.5×108 to 2.5 gene copies/reaction. The approach 
revealed a strong linear correlation (R2 = 0.999) between predicted 
and actual SARS CoV-2 measurement (Figure 3).

The amplification efficiencies, y-intercepts and the correlation 
coefficient (r2) were 88.3%, 49.73 and 0.999 for N gene assay (Figure 3). 
The qRT-PCR assay limits of detection was 1.8-gene copies/reaction 
for N1 + N2 assay.

3.3. Comparative analysis of qRT-PCR and 
ddPCR in stool and urine specimens

A total of 214-paired samples from the 107 confirmed 
patients were tested by both qRT-PCR and ddPCR, including 
stool and urine sample. According to the qRT-PCR results, 106 
samples were positive for stool and one for urine by N-gene. The 
ddPCR results of the 106 positive stool samples were also positive, 
and the Ct value of qRT-PCR was highly correlated with the 
copy number determined by ddPCR (N-gene, R2 = 0.89; N, R 
2 = 0.20). In 107 patients, all the stool samples showed 
99.06% positive concordance by both methods. Among the 106 
negative urine samples identified by qRT-PCR, 77 (72.6%) 
samples were negative by ddPCR, and 29 samples were positive 
(Table 1). The median for ddPCR of the copy number for stool 
and urine samples was 11.30 and 0 respectively, whereas lowest 
copy number detected in ddPCR for both stool & urine sample 
was 0.048 copies/μL. Statistically difference was observed in 
urine specimens by using two tailed analysis [p < 0.0001] 
(Figure 4).

Our findings demonstrated that whereas ddPCR performed better 
at detecting samples with low viral loads, like urine, qRT-PCR was 
equally as accurate and reliable in the identification of viruses from 
stool samples.

FIGURE 2

Baseline demographic and clinical characteristics of the study population.
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4. Discussion

From the beginning of the pandemic, qRT-PCR was used all over 
the world for the detection of the virus. During the most recent 
pandemic, qRT-PCR was regarded as the gold standard for virus 
detection. However, the failure of qRT-PCR in some cases in detecting 
the genes encoding the spike protein is a matter of concern. Besides 
that, qRT-PCR is also unable to quantify the viral load from borderline 
samples. Recent study showed that detection of COVID-19 virus form 
wastewater treatment by targeting the N1 and N2 coding genes 
showed positive results (11). Studies of viral load detection from 
plasma (12), nasopharyngeal swab (13), and sputum (14) showed that 
ddPCR is more sensitive in detecting the virus in comparision to 
qRT-PCR. However, this type of comparative studies until have not 
been reported from stool or urine samples.

The COVID-19 pandemic caused by the SARS CoV-2 virus 
motivates a variety of diagnostic strategies because of the novel 
causing pathogen, poorly known clinical consequence, and the 
limitation of testing resources. Furthermore, although the presence of 
SARS CoV-2 RNA in wastewater effluents has been established, viral 
infectivity of positive samples in cell cultures has not yet been 

established (15). SARS CoV-2 infectivity is sustained for more than 
3 h in experimentally produced aerosols (16), and respiratory droplets 
and aerosols may contain high titers of virus particles (17–19). It 
should be noted that several research looking at viral shedding and 
faecal PCR in COVID-19 patients revealed a weak connection 
between positive stool PCR and level of gastrointestinal symptoms or 
disease activity (20). Furthermore, it is not yet known whether each 
stool PCR positive sample contains a live virus or only RNA pieces 
that have been discharged from the GI tract. Because of the variability 
in viral load across and within patients, it is crucial for diagnosis and 
surveillance to directly quantify absolute viral load from crude lysate. 
Here, in our study we look at the possibility of measuring SARS CoV-2 
viral load using digital droplet PCR (ddPCR) directly from faecal and 
urine specimens. Using many partitioned reactions, digital droplet 
PCR quantifies the target nucleic acid sequences. Unlike qRT-PCR, 
which determines concentrations by comparing amplification rates to 
a standard curve, ddPCR cycles the sample to the endpoint and then 
counts target molecules directly by counting positive droplets. In 
comparison to qRT-PCR, this method offers a number of benefits, 
such as more accurate measurements and absolute quantification 
without the requirement for a standard curve (21, 22). The human 
immunodeficiency virus (HIV) (23), the cytomegalovirus (CMV) (24) 
and the human herpes virus 6 (HHV-6) (25) can all was detected 
using ddPCR. Purified RNA extracts used in ddPCR of COVID-19 
patients show advantages for diagnosis and monitoring, especially in 
those with low viral loads (26–28).

One hundred and seven COVID-19 confirmed patients were tested 
to assess the viral load of SARS CoV-2 in stool and urine sample, and 
to measure the effectiveness of ddPCR in detecting the virus. For 
samples with high viral loads, we observed that both qRT-PCR and 

FIGURE 3

Quantification of SARS-CoV-2 by qRT-PCR. (A) Standard curve for the real-time PCR targeting N gene. The X-axis represents copies of the plasmids, 
and the Y-axis represents the cycle threshold (Cq). The assays were linear from 2.5 × 108 to 2.5 gene copies/reaction. (B) q-RT PCR results from the fecal 
and urine specimens of the individuals infected with SARS CoV-2\u00B0C. q-RT PCR from the Non COVID-19 normal individuals for the specificity of 
the assay.

TABLE 1 Comparative analysis of DD PCR and q-PCR in both stool and 
urine specimens from SARS CoV-2 positive patients.

Stool Urine

qRT PCR DD-PCR qRT PCR DD-PCR

Positive 106 107 1 29

Negative 1 0 106 78
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ddPCR provided reliable results; however, ddPCR performed better for 
those with low viral loads. It has been observed that the faeces contain 
higher viral load than the urine samples. Analyzing the stool and urine 
samples from 107 COVID-19 positive patients, we  observed that 
ddPCR detects the virus with 100% concordance with qRT-PCR in the 
case of fecal specimens. While 29 urine samples out of 107 (27.1%) 
urine samples showed positive results in ddPCR, but qRT-PCR shows 
positive result for only two (1.86%) patients sample. These observations 
support that ddPCR is more sensitive in detecting the virus as 
compared to qRT-PCR. Although reverse transcription-PCR is 
sensitive and trustworthy, low-viral-load samples were more effectively 
detected by ddPCR in low viral load condition. Studies across the globe 
have identified the presence of live infective SARS CoV2 RNA particles 
in untreated sewage samples thus emphasizing the need for continuous 
environmental surveillance. Furthermore, it was observed that there is 
an association between the SARS CoV-2 RNA concentrations found in 
the water samples and the number of clinical cases reported in a 
particular area, thus implying that the surveillance of RNA 
concentrations of virus can be used as a potential early warning system 
to tract the community spread of the disease. There are several studies 
on the wastewater-based epidemiology (WBE) reported across the 
globe after the COVID-19 pandemic. WBE is being used globally to 
track SARS CoV-2 infections at the community level to aid public 
health responses to COVID-19. Regarding the sensitivity of WBE and 
its application in low prevalence situations, concerns still exist. 
Therefore, such assays will be good for monitoring infectious diseases, 
such as COVID-19, in the communities in the early stage. However, 
doing routine surveillance will not be an easy and cost effective task, 
since a huge number of pathogens are to be monitored regularly. The 
development of novel techniques in meta-genomics can be used in this 
regard for the simultaneous environmental surveillance of multiple 
pathogens, thus reducing the cost of such surveillance in resource 
poor settings.

The study was constrained by the small sample size for various types 
of samples and the fact that some patients did not have access to specific 
clinical information, which prevented results from being connected with 
symptoms or illness history. It is necessary to conduct further research 

on individuals who have comprehensive temporal and symptoms data 
as well as specimens that were collected sequentially from several sites.

5. Conclusion

Due to the diarrhoea symptom, stool is a more accurate signal of 
viral replication in the body along with throat and nasal swabs, and 
the viral load in stool samples tends to rise and then fall during the 
course of the illness. The COVID-19 pandemic spurred caused by the 
SARS CoV-2 virus sparks a variety of diagnostic strategies because of 
the novel causing pathogen, poorly known clinical consequence, and 
the limitation of testing resources. Because of the variability in viral 
load across and within patients, it is crucial for diagnosis and 
surveillance to directly quantify absolute viral load from crude lysate. 
Here, in our study we  look at the possibility of measuring SARS 
CoV-2 viral load using digital droplet PCR (ddPCR) directly from 
fecal and urine specimens. Our study fills a gap of detection or the 
presence of SARS CoV-2 viral particles in urine samples that is a 
much easier specimen to get from patients than stools. 
We  demonstrate that SARS CoV-2 standards can be  properly 
quantified by ddPCR using pure RNA and a variety of sample 
matrices, including the widely used viral transport medium (VTM).
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Introduction: Over a third of the communities (39%) in the Central Valley of California, 
a richly diverse and important agricultural region, are classified as disadvantaged—with 
inadequate access to healthcare, lower socio-economic status, and higher exposure 
to air and water pollution. The majority of racial and ethnic minorities are also at 
higher risk of COVID-19 infection, hospitalization, and death according to the Centers 
for Disease Control and Prevention. Healthy Central Valley Together established a 
wastewater-based disease surveillance (WDS) program that aims to achieve greater 
health equity in the region through partnership with Central Valley communities and 
the Sewer Coronavirus Alert Network. WDS offers a cost-effective strategy to monitor 
trends in SARS-CoV-2 community infection rates.

Methods: In this study, we evaluated correlations between public health and wastewater 
data (represented as SARS-CoV-2 target gene copies normalized by pepper mild 
mottle virus target gene copies) collected for three Central Valley communities over 
two periods of COVID-19 infection waves between October 2021 and September 
2022. Public health data included clinical case counts at county and sewershed scales 
as well as COVID-19 hospitalization and intensive care unit admissions. Lag-adjusted 
hospitalization:wastewater ratios were also evaluated as a retrospective metric of 
disease severity and corollary to hospitalization:case ratios.

Results: Consistent with other studies, strong correlations were found between 
wastewater and public health data. However, a significant reduction in 
case:wastewater ratios was observed for all three communities from the first to 
the second wave of infections, decreasing from an average of 4.7 ± 1.4 over the 
first infection wave to 0.8 ± 0.4 over the second.
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Discussion: The decline in case:wastewater ratios was likely due to reduced 
clinical testing availability and test seeking behavior, highlighting how WDS 
can fill data gaps associated with under-reporting of cases. Overall, the 
hospitalization:wastewater ratios remained more stable through the two waves 
of infections, averaging 0.5 ± 0.3 and 0.3 ± 0.4 over the first and second waves, 
respectively.

KEYWORDS

SARS-CoV-2, COVID-19, environmental surveillance, wastewater clinical case ratios, 
health metrics

1. Introduction

California experienced approximately ten million infections and 
100,000 deaths between January 2020 and December 2022 from the 
coronavirus disease (COVID-19) pandemic, caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) (1). Individuals 
infected with SARS-CoV-2 often shed viral particles and associated 
ribonucleic acid (RNA) in their feces regardless of experiencing 
gastrointestinal symptoms (2). Fecal shedding dominates the total 
SARS-CoV-2 RNA load in community-level wastewater surveillance 
compared to other viral shedding routes such as respiratory fluids, 
saliva, and urine (3). The strong presence of SARS-CoV-2 RNA in 
wastewater settled solids allows for wastewater-based disease 
surveillance (WDS) to be utilized as a highly sensitive method to track 
the environmental persistence and community transmissivity of the 
virus (along with other highly infectious diseases) (4–6).

WDS involves collection of community-pooled samples of 
uninfected, asymptomatic, pre-symptomatic, and symptomatic 
infected individuals from centralized wastewater treatment plants 
(WWTPs), or, less often, from sewer collection systems (7). Traditional 
epidemiological monitoring through clinical surveillance is dependent 
upon infected individuals seeking clinical testing and the availability 
of clinical tests. WDS offers a less biased mechanism to track viral 
outbreaks and community infections and can serve as an early 
indicator of increased COVID-19 community transmission by 
detecting the virus before symptom onset (8).

Communities around the world rapidly implemented WDS early 
on in the pandemic. COVIDPoops19, a global ArcGIS dashboard, 
monitored the growth of WDS implementation since September 2020, 
including in California (9). Approximately 90% of California’s 
population is serviced by publicly owned centralized WWTPs, with 
the remaining population serviced by onsite septic systems (10). As of 
August 2021, 48 of 384 WWTPs in California were monitoring for 
SARS-CoV-2 RNA in their communities. The majority of WDS 
programs (70%), at the time, were located in urban areas of Coastal 
and Southern California. Only 30% of WDS programs were located in 
rural areas of Central and Northern California (11). Most WWTPs in 
California are small or moderate in size (10), and more likely to lack 
the necessary resources and funding to support WDS programs.

Healthy Central Valley Together (HCVT) was launched in the 
summer of 2021 to expand WDS as a public health tool for greater 
health equity in rural and disadvantaged communities (DACs). The 
Central Valley is located in the heart of California, encompassing 
communities in nineteen counties (12). Over a third of the Central 

Valley communities (39%) are classified as DACs by CalEnviroScreen 
4.0, compared to 31% of communities in California that are DACs 
overall (13). Approximately 40% of the population in the Central 
Valley are located within a DAC, compared to 29% of the overall 
population in California that live in a DAC (13). Of the 10 WDS 
programs located in California’s DACs as of August 2021, one was in 
the Central Valley. The racial and ethnic demographics of DACs in the 
Central Valley are as follows: 43% Hispanic or Latino, 35% White, 12% 
Asian, 7% Black or African American, 2% American Indian and 
Alaska Native, and 1% Native Hawaiian and Other Pacific Islander 
(compared to the national averages: 19%, 59%, 6.1%, 14%, 1.3%, and 
0.3%) (14).

As of September 2022, ethnic minorities (Hispanic or Latino, 
Asian, Black or African American, and American Indian or Alaska 
Native) all had higher risk of COVID-19 cases, hospitalizations, and 
deaths compared to White, Non-Hispanic persons according to the 
Centers for Disease Control and Prevention (CDC) (15). Moreover, 
from 2019–2021 the life expectancy decreased by 5.74 years for 
Hispanic or Latino, 3.84 years for Black or African American, 
3.04 years for Asian, and 1.90 years among White, Non-Hispanic 
populations due to the COVID-19 pandemic in California (16). 
Historically, residents of the Central Valley have suffered from a 
disparity in health care access. Specifically, DACs in this region have 
access to 1.01 hospitals and medical centers on average per 100 k 
population while the state averages 2.55 hospitals and medical 
centers per 100 k population (14, 17). The Central Valley is 
predicted to experience an 18.7% shortage in primary care 
physicians by 2025 (18).

HCVT established and supports WDS in disadvantaged and 
rural communities in California’s Central Valley through 
partnerships with local public health departments, wastewater 
municipalities, and analytical laboratory partners. HCVT is an 
extension of WDS implemented in Davis, California through 
Healthy Davis Together (HDT) (19, 20) in partnership with the 
Sewer Coronavirus Alert Network (SCAN) (21). WWTPs were 
selected from communities with high COVID-19 infection rates, 
below average vaccination rates (based on fully vaccinated 
individuals), and from public health department recommendations. 
The present study describes the initial phase of HCVT in three 
counties (Merced, Stanislaus, and Yolo). We  compare temporal 
trends between SARS-CoV-2 RNA levels in wastewater settled 
solids and key health metrics collected in each region, and we report 
on an inter-laboratory comparison of wastewater settled solids 
analysis. Correlations amongst WDS and health metrics were 
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analyzed for two surges of COVID-19 infections in the region, the 
first caused by the Omicron BA.1 variant and the second attributed 
to the BA.2, BA.4, and BA.5 variants (22). We hypothesized that: (1) 
correlations between wastewater and health metric data in Central 
Valley communities would remain strong even with lower access to 
health resources such as clinical testing and hospitals, (2) changes 
in testing availability and test-seeking behaviors would lead to 
changes in case:wastewater ratios observed through time, and (3) 
hospitalization:wastewater ratios would be  more stable through 
time than case:wastewater ratios.

2. Materials and methods

2.1. Partner engagement and facility 
onboarding

Merced and Stanislaus Counties were identified as counties of 
interest due to lower than state average vaccination rates (35% and 
39%, respectively, compared to 52% statewide) as of June 2021 
(Table 1) (1, 23). Yolo County was selected as a continuation of WDS 
launched in 2020 through the HDT and SCAN partnership. 
Vaccination rates by demographic for each county are shown in 
Supplementary Table S1. Public health departments were consulted 
to help determine cities for which WDS data would provide value 
for tracking COVID-19 burden within each county. Figure 1 displays 
the locations of partner WWTPs in Merced (southernmost location), 
Modesto (middle location), and Davis (northernmost location) as 
well as hospital and medical centers in each associated county (1, 
17). The Davis WWTP in Yolo County served as an inter-laboratory 
control for two analytical laboratories used in this study (referred to 
as Lab 1 and Lab 2) from May through September 2022. Table 2 
provides a summary of the sample type and collection frequency, 
approximate population served (provided by the WWTP), WWTP 
capacity (MGD), and percentage of industrial input for each 
treatment plant. Supplementary Table S2 displays city-level data for 
percent population fully vaccinated, cumulative cases per 100 k 
population, and total number of hospitals and medical centers (1, 
17, 23, 24).

2.2. Sample collection and handling

This study used wastewater solids for wastewater monitoring. 
Viral nucleic acids and/or viral particles have been shown to 
preferentially adsorb to the solids in wastewater in a number of 
studies. Their concentrations in solids have been shown to be higher 
by three orders of magnitude compared to wastewater influent (27–
32). Wastewater solids represent natural concentrators of viral 

nucleic-acids, and therefore a useful matrix for carrying out WDS. The 
study period occurred from October 20, 2021 through September 
29, 2022.

2.2.1. Sample processing for lab 1
Samples were handled and processed by commercial partner Lab 1 

for Merced and Modesto samples collected prior to May 1, 2022 and for 
samples collected for Davis throughout the entirety of the study period 
(Table 2). At each location, grab samples of settled solids processed by Lab 
1 were collected 7 days per week directly from the primary clarifier sludge 
outlet. Methodology followed by Lab 1 for wastewater sample preparation, 
RNA extraction and droplet digital reverse transcriptase polymerase 
chain reaction (ddRT-PCR) are described in detail elsewhere (6, 33–35). 
In short, solids were dewatered using centrifugation and then suspended 
in a buffer, containing added bovine coronavirus (BCoV) vaccine at 
10,000 copies/mL. The solids concentration in that solution was ~75 mg/
mL. That solution was then homogenized using bead beating, and then 
centrifuged, and nucleic acids were extracted from the supernatant. All 
details for these and additional sample processing steps are precisely 

TABLE 1 Comparison of percent population fully vaccinated, cumulative cases per 100k population, and total number of hospitals and medical centers 
between Merced, Stanislaus, and Yolo Counties to statewide metrics from January 1st, 2021 to June 30th, 2021 (1, 17, 23, 24).

Health metrics in June 2021 Merced County Stanislaus County Yolo County Statewide

Percent population fully vaccinated 35% 39% 55% 52%

Cumulative cases per 100 k population 3,859 3,599 2,267 3,015

Hospitals and medical centers 2 7 2 383

FIGURE 1

Locations of Merced, Modesto, and Davis WWTPs as well as hospital 
and medical centers in Merced, Stanislaus, and Yolo Counties 
compared to disadvantaged communities in California (12, 13, 17, 25, 
26).
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provided in other peer-reviewed publications (6) and on protocols.io (33, 
34), including the methods for determining the dry weight of solids.

The only modification of sample processing implemented by Lab 1 
compared to published methods was a 10-fold dilution of extracts from 
the city of Modesto implemented from December 30, 2021 to May 1, 
2022. Extract dilution was necessary to mitigate inhibition. BCoV was 
used as a process control and was greater than 10% in all samples. 
Supplementary Figure S1 shows box-and-whisker plots of the fractional 
recovery of BCoV. The centerline of the box represents the median value 
(1.05 for Lab 1). The lower detection limit using these methods is 
500–1,000 copies/g dry weight solids for Merced and 5,000–10,000 
copies/g dry weight for Modesto after the 1:10 template dilution. The 
exact value within the range depends on the dry weight of solids 
which varied.

2.2.2. Sample processing for lab 2
Samples were handled and processed by commercial partner Lab 2 

for Merced and Modesto samples collected after May 1, 2022 and for 
duplicate samples from Davis also collected after May 1, 2022 for an inter-
laboratory comparison (Table 2). Lab 2 closely followed the methodology 
and protocols developed and reported by Lab 1 (33, 36), with sample 
processing, RNA extraction, and ddRT-PCR methods and modifications 
detailed in this and the following sections. At each location, grab samples 
of settled solids for Lab 2 were collected 4 or 5 days per week directly from 
the primary clarifier sludge outlet in 250-mL HDPE bottles 
(Environmental Sampling Supply, San Leandro, CA). Reduction in 
sampling frequency to 4 or 5 days per week from daily allowed for the 
project to expand sampling to more sites in the region. Chan et al. (37) 
and Schoen et al. (38) found that a minimum sampling frequency of four 
or five samples per week was sufficient for acceptable trend analysis. Once 
collected, samples were immediately stored on ice and transported to Lab 
2. If samples could not be immediately transported to the laboratory (i.e., 
due to weekend sample collection), samples were stored at 5°C on site 
until laboratory transportation. Samples were processed immediately 
upon arrival and all laboratory processes were completed within 24 h.

Settled solids samples were homogenized by inverting the HDPE 
bottle multiple times to mix, and a 50 mL aliquot was transferred to a 
50 mL conical tube. Settled solids were dewatered by centrifugation at 
24,000 × g for 30 min at 4°C. A stock solution of BCoV (BCoV, Calf-
Guard Cattle Vaccine, PBS Animal Health) in DNA/RNA Shield 
(Zymo Research Corporation, Irvine, CA) was prepared at a 
concentration of 500,000 genome copies/mL. For samples processed 
prior to July 29, 2022, four or five aliquots of approximately 75 mg of 
dewatered solids were transferred into new 50 mL conical tubes, 
weighed, and an appropriate amount of the BCoV solution was 
pipetted into each tube to achieve 1 mL DNA/RNA shield per 75 mg 

dewatered solids. For samples processed from July 29, 2022 onwards, 
a single 750 mg aliquot of dewatered solids was diluted to the same 
final ratio of DNA/RNA shield to settled solids mass.

RNA was extracted from dewatered solids using the MagMAX™ 
Microbiome Ultra Nucleic Acid Isolation Kit (Applied Biosystems by 
Thermo Fisher Scientific) following manufacturer protocols (Pub. No. 
MAN0018071 Rev. C.0). This protocol deviates from the published 
methods from Lab 1 by use of KingFisher Flex in place of the Perkin 
Elmer Chemagic 360. Positive extraction controls (BCoV spike, SARS-
CoV-2 genomic RNA: ATCC VR-1986D™ and PolyA: Roche 
10108626001) and negative extraction controls (nuclease-free water) 
were included to check for process validity and to ensure no 
contamination. RNA extraction was immediately followed by PCR 
inhibitor removal using the Zymo™ OneStep-96 PCR Inhibitor Removal 
Kit (Zymo Research Corporation, Irvine, CA) following manufacturer 
protocols, with minor modifications. In the sample preparation stage, 
silicone plates were prepared by centrifuging for 10 min at 2576 g. After 
samples were added, the plates were spun again for 6 minutes at 2576 g. 
The RNA extracts were stored on ice for same-day ddRT-PCR reactions 
and transferred to −80°C for long-term storage. The median fractional 
recovery of BCoV was 0.96 for Lab 2 (Supplementary Figure S1).

2.3. Digital droplet reverse transcriptase 
PCR (ddRT-PCR)

The following assays were performed to quantify total SARS-
CoV-2 concentrations in wastewater samples: N-gene, BCoV, and 
pepper mild mottle virus (PMMoV). The design and validation of 
these assays are described by Wolfe et al. (35) and Topol et al. (34). 
ddRT-PCR protocols implemented by Lab 1 are described in the 
preceding references. PMMoV is abundant in human fecal matter and 
its quantified measurements are used to normalize observed SARS-
CoV-2 gene target quantitative measurements (6, 39).

The following information describes methods implemented by Lab 
2. Primers and probes were purchased from Integrated DNA Technologies 
(IDT1) and positive controls were purchased from American Type Culture 
Collection (ATCC), Twist Biosciences and IDT. N-gene was run as a 
triplex assay along with a SARS-CoV-2 S-gene target and an additional 
variant-specific mutation target (data not included in this analysis). BCoV 
and PMMoV were run as a duplex assay. ddRT-PCR was performed in 
22.5 μL reaction volumes which included 5.5 μL template, 5.5 μL ddPCR 

1 https://www.idtdna.com

TABLE 2 Characteristics of wastewater treatment plants (WWTPs) and primary clarifier sludge samples collected in this study.

Name of 
WWTP

Sample 
Type

Population 
served

WWTP 
capacity 
(MGD)

Industrial 
input (%)

Samples collected 
for Lab 1  

(date range)

Samples collected 
for Lab 2  

(date range)

Davis WWTP Primary sludge 70,717 7.5 0 7 days per week  

(10/20/21–9/29/2022)

4–5 days per week 

(05/01/22–9/29/2022)

Merced WWTP Primary sludge 91,000 12 12.5 7 days per week  

(10/20/21–4/30/2022)

4–5 days per week 

(05/01/22–9/29/2022)

Modesto WWTP Primary sludge 230,000 19.1 51.3 7 days per week  

(10/20/21–4/30/2022)

4–5 days per week 

(05/01/22–9/29/2022)
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One-Step RT-ddPCR Advanced Kit for Probes (1,864,021, Bio-Rad, 
Hercules, CA), 2.2 μL reverse transcriptase, and 1.1 μL 300 mM 
dithiothreitol (DTT). Duplex assays included 2.2 μL primer probe mix 
and 5.5 μL nuclease-free water. Triplex assays included 3.3 μL primer 
probe mix and 4.4 μL nuclease-free water. The final concentration of 
primers and probes in the reactions was 900 nM and 250 nM, respectively 
(35). Reactions were performed in sets of four replicates for samples 
collected between May 2, 2022 and May 29, 2022, and subsequently 
performed in sets of five replicates from May 30, 2022 forward.

Droplets were generated using the AutoDG automated droplet 
generator from Bio-Rad. PCR was performed on the C1000 Touch 
Thermal Cycler (Bio-Rad): the cycling conditions were reverse 
transcription at 50°C for 60 min, enzyme activation at 95°C for 
10 min, followed by 40 two-step cycles of denaturation at 94°C for 30 s 
and anneal/extension at 58°C (for SARS-CoV-2, PMMoV, and BCoV 
targets) for 1 min. This was followed by enzyme deactivation at 98°C 
for 10 min, droplet stabilization at 4°C for 30 min, and indefinite hold 
at 4°C. Droplets were analyzed using the QX200 droplet reader from 
Bio-Rad. Thresholding was performed on QX Manager (Bio-Rad: QX 
Manager Software Regulatory Edition Version 1.2) (6). Concentrations 
of assay targets were calculated as copies per gram of dry weight, 
details of which are described by Wolfe et al. (35). Calculation of the 
limit of detection for the ddRT-PCR assay implemented by Lab 2 
followed protocols recommended by Bio-Rad Laboratories and with 
further details are included in the supplementary information 
(Supplementary Table S3) (35, 40).

2.4. County health metrics

California county clinical data for Merced, Stanislaus, and Yolo 
Counties from October 20, 2021 to September 29, 2022 were 
downloaded from the Official California State Government website 
which provided the COVID-19 data from the California Health & 
Human Services Agency (CHHS). The data accessed included fully 
vaccinated individuals, hospitalization, and county cases. Fully 
vaccinated data are defined as follows: “2 Pfizer doses > = 17 days apart, 
2 Moderna doses > = 24 days apart, 1 dose of J&J, a combination of 
Pfizer and Moderna doses > = 17 days apart, three or more vaccination 
records, or only one dose in IRIS labeled as dose number 2” (23).

Hospitalization data used for this analysis included COVID-19 
confirmed patients and ICU COVID-19 confirmed patients. The 
hospitalized COVID-19 confirmed patients are identified as all inpatients, 
in ICUs and Medical/Surgical units, with laboratory-confirmed 
COVID-19 results (excluding patients in affiliated clinics, outpatient 
departments, emergency departments, and overflow locations awaiting 
an inpatient bed) (41). The ICU COVID-19 confirmed patients are 
defined as patients in the ICU at the hospital with a laboratory confirmed 
positive COVID-19 result which includes neonatal intensive care unit 
(NICU), pediatric intensive care unit (PICU), and adult (41). Hospitalized 
and ICU patient data are reported based on the county and zip code the 
hospital is located in, and does not include the county or zip code of 
residence for each individual patient. To capture as accurately as possible 
the number of facilities only housing COVID-19 inpatients, the hospital 
and medical center data used to calculate the number of hospitals and 
medical centers in each county excludes rehabilitation centers and 
specialty hospitals. The hospitalization data is dependent upon the 
number of hospital beds per inpatient facility, and this was not accounted 
for in the analysis (42).

County case numbers are defined as laboratory-confirmed 
COVID-19 cases at dates determined by the date of symptom onset, 
and represent the county of residence for each case (24). Percentage 
of positive cases in a population were calculated by dividing the 
number of positive cases from the data by the population count 
provided by Merced County (population of 287,420), Stanislaus 
County (population of 562,303), and Yolo County (223,612). The 
population values in the data collected were taken from the California 
Department of Finance (DOF) estimates for January 2022 (23, 24, 41). 
The data for the number of hospitals and medical centers in each 
county were collected from CHHS and DOF (17). For additional 
information on how categories were defined, see the data dictionary 
for individual data sets provided in reference material (23, 24, 41).

2.5. Statistical analysis

A 10-day moving average was applied (the mean of the current 
day and the previous 9 days) to wastewater data to reduce uncertainty 
and minimize daily fluctuations of the normalized N gene metric. The 
cases, hospitalization, and ICU in each figure represent the 7-day 
moving average at the county-level per 100 k population, accessed 
from the CHHS dataset (17).

It is expected that a patient who is hospitalized will likely be admitted 
several days after a confirmed COVID-19 diagnosis or the onset of 
viremia. Therefore, the number of hospitalizations reported on a specific 
day will lag cases reported and wastewater data. A correlation analysis was 
performed with the smoothed data to find the lag between wastewater 
and each of the metrics analyzed (cases, hospitalizations, and ICU). The 
lag that provided the highest correlation between these metrics and the 
wastewater data using a grid search was chosen (Supplementary Table S4). 
Analyses were carried out for the time period of Wave 1, specified for each 
county, using the R function “cor” to determine the Pearson correlation 
between county cases, ICU patients, hospitalizations, and wastewater data.

A Pearson correlation coefficient (r) and line of best fit (linear 
regression, R2) was calculated and analyzed between health metrics 
(county-level hospitalization, county-level ICU confirmed patients, 
county-case data, and the California Department of Public Health 
provided sewershed case data) and WDS data (the normalized N-gene/
PMMoV unitless metric and the non-normalized N-gene concentration 
in gene copies per gram dry weight). The statistical analysis was 
conducted between seven different time periods: entire sample 
collection, Wave 1, Peak 1, Wave 2, Peak 2, and Lab 1 and Lab 2 sample 
collection periods. The start and end dates for each “wave” (Table 3) 

TABLE 3 Time periods for COVID-19 Central Valley wastewater statistical 
analysis.

Treatment 
plant

Analysis 
period

Start Peak End

All
Full Sampling 

Period
10/20/2021 09/29/2022

Merced
Wave 1 12/19/2021 01/17/2021 03/08/2022

Wave 2 05/02/2022 07/14/2022 09/29/2022

Modesto
Wave 1 12/28/2021 01/23/2022 02/26/2022

Wave 2 05/14/2022 07/13/2022 09/29/2022

Davis
Wave 1 12/19/2021 01/09/2022 03/15/2022

Wave 2 04/27/2022 06/24/2022 09/29/2022
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were defined by visually identifying surges in infections for each city 
and selecting boundaries for the minimum wastewater concentrations 
surrounding a given “peak.” Each “peak” date corresponded to the local 
maximum N/PMMoV from the 10-day moving average. Correlations 
assessed for waves included data from the start to end dates indicated 
for each city. Correlations assessed for peaks used data between the 
start date and peak date within each wave. Rates of full vaccination 
were also compiled for each analysis period (Table 4).

2.6. Limitations

We note several limitations of this study. First, wastewater 
surveillance data at the sewershed or city-level was compared to health 
metrics at the county-level. The wastewater data from one city may not 
be  representative of that county. We  selected the largest population 
centers in each county (Modesto population ~ 230,000, Merced ~ 90,000, 
and Davis ~ 70,000) to help mitigate this concern. Second, case data and 
wastewater data are subject to different sources of variability and bias. For 
instance, case data captures the population with access to healthcare 
testing and/or infected individual seeking healthcare, while wastewater 
data is not subject to this bias. Wastewater concentrations are dependent 
upon fecal shedding of SARS-CoV-2 RNA, and fecal shedding rates are 
variable per infected individual, while case counts are less impacted by 
this variability. Third, hospitalization and ICU data is based on individuals 
admitted and not separated by county of residence. Therefore, individuals 
seeking care from other counties may result in an overcount of cases in 
the county with the hospital and an undercount in their county of 
residence. Our study used the CHHS database, which receives data from 
the California Hospital Association and reports based on the county of 
hospitalization (41). Nevertheless, when the patient is at a hospital, they 
will be shedding SARS-CoV-2 in feces collected by the local treatment 
plant, which is not necessarily the same WWTP for their residence.

3. Results

3.1. Trends in health metrics over the study 
period

Merced, Stanislaus, and Yolo County health metric data are 
co-plotted with 10-day moving averages of N-gene/PMMoV 
wastewater concentrations from November 1, 2021 to September 29, 
2022 for the corresponding WWTP monitored in each county 
(Figures 2–4). Supplementary Figure S2 includes the Davis data for 
only Lab 1. Wastewater data collected from each treatment plant 
captured two distinct waves of infections. The first wave of infections 

during the study period occurred from approximately December 2021 
to March 2022 (referred to herein as Wave 1), and corresponds to a 
surge in infections predominantly from the Omicron BA.1 variant in 
the region (43). The second wave of infections during the study period 
occurred from April 2022 to September 2022 (referred to herein as 
Wave 2), and corresponds to the surge in infections predominantly 
from the BA.2, BA.4, and BA.5 variants in the region (43).

Throughout Wave 1, Yolo County exhibited a somewhat greater 
number of cases, but lower levels in ICU patients and hospitalizations, 
compared to Merced and Stanislaus Counties. Stanislaus County 
experienced higher hospitalizations and ICU patients, and similar 
county case counts, compared to Merced County. The local maxima 
of N/PMMoV determined by Lab 1 for Wave 1 were similar amongst 
the three treatment facilities (0.00043 for Merced, 0.00047 for 
Modesto, and 0.00043 for Davis). In Wave 2, there were much fewer 
cases, hospitalization, and ICU patients in all three counties. 
Wastewater levels also declined overall for both Merced and Modesto 
in Wave 2 compared to Wave 1. However, the local maximum of N/
PMMoV for Davis increased for Wave 2 compared to Wave 1.

For visualization of correlations amongst health and wastewater 
data, hospitalizations and ICU patient counts are shifted in 
Figures 2–4 by the lag period identified to maximize correlations 
with wastewater data. For Merced County, hospitalizations exhibited 
a 14-day lag and a 9-day lag for ICU patients. In Stanislaus County, 
a 10-day lag in hospitalizations and a 15-day lag for ICU patients was 
identified compared to the wastewater data. Yolo County exhibited 
a 14-day lag for hospitalizations, and a 15-day lag for ICU patients 
compared to the wastewater data. There was no lead or lag identified 
for wastewater data compared to clinical case data reported by the 
date of symptom onset.

3.2. Inter-laboratory comparison for 
analysis of settled solids

Wastewater settled solids samples collected by Davis during Wave 
2 were processed by both Lab 1 and Lab 2 using highly similar analytical 
methods (modifications of Lab 1 methods that were implemented by 
Lab 2 are detailed in the methods). N/PMMoV data from the two labs 
were strongly correlated, with a near 1:1 linear relationship (Figure 5). 
Lab 2 results yielded somewhat lower concentrations of both N and 
PMMoV gene copies compared to Lab 1, and similar recovery of BCoV 
(Supplementary Figures S1, S3-S7). Reporting the normalized statistic 
(N/PMMoV) helps correct for laboratory variations by using PMMoV 
as an internal process control (44). The N/PMMoV results determined 
by Lab 2 were somewhat higher on average than corresponding 
measurements by Lab 1 (Figure 5). Results indicate overall agreement 

TABLE 4 Percent of the population fully vaccinated across all three counties at the start and end of Waves 1 and 2 with the percent increase in 
vaccination after each wave (23).

Estimated 
Wave time 
periods

Start Wave 1 
(11/30/21)

End Wave 1 
(03/01/22)

Percent 
change 
Wave 1

Start Wave 2 
(04/05/22)

End Wave 2 
(09/27/22)

Percent 
change 
Wave 2

Merced 48% 53% 10% 53% 55% 2.8%

Stanislaus 52% 56% 7.6% 57% 58% 2.2%

Yolo 65% 71% 7.8% 71% 73% 2.2%
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in trends observed during Wave 2 and demonstrate similar correlations 
with the health metric data acquired (Figure 6).

3.3. Relationships between wastewater and 
health metric data for successive surges

From visual inspection of Figures  2–4, it is apparent that the 
relative magnitudes of wastewater results compared to the health 
metric data changed from Wave 1 to Wave 2. The relationships 
between the wastewater data and health metric data were thus 
assessed: (1) over the full study period, (2) for each full wave of 
infection separately, and (3) using only data on the run-up to each 
maxima for Wave 1 and Wave 2 (referred to herein as Peak 1 and Peak 
2, respectively). Correlations between wastewater data and health 

metric data were evaluated using linear regressions. Correlations were 
assessed separately at the county-level and within each WWTP 
sewershed. The Pearson correlation coefficient (r), lag-time delay, and 
analysis periods for each county for each analysis period are available 
in Supplementary Table S5. Lines of best fit (coefficient of 
determination, R2) between wastewater data and health metric data 
for each wave of infection are displayed in Figures 6–8. Figures 9–11 
show the relationships between N/PMMoV to county and sewershed 
cases for Peak 1 and 2 (including only data leading up to the maxima 
of each wave of infection). Correlation plots for wastewater to 
hospitalization and ICU patient data are in Supplementary Figures 
S8–S19.

As expected from visual inspection, correlations between health 
metrics and wastewater data were stronger overall within each wave 
of infection compared to data assessed over the full study period. The 

FIGURE 2

City of Merced wastewater concentrations for 10-day average for N/PMMoV compared to weekly average of Merced County cases per 100 k 
population, weekly average county hospitalizations with 14-day lag, and weekly average county ICU patients with 9-day lag.

FIGURE 3

City of Modesto wastewater concentrations for 10-day average for N/PMMoV compared to weekly average of Stanislaus County cases per 100 k 
population, weekly average county hospitalizations with 10-day lag, and weekly average county ICU patients with 15-day lag.
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strongest correlations observed were between wastewater data and 
case data compiled at either the county or sewershed scale. The slopes 
of the linear relationships for each infection wave were used to 
determine case:wastewater, hospitalization:wastewater, and 
ICU:wastewater ratios (Supplementary Table S5, Figures S8–S19). The 
health metric:wastewater ratios decreased for all counties from Wave 
1 to Wave 2 (by 14 to 94%), with the most significant declines generally 
observed for case:wastewater ratios.

R2 values displayed in Figures  6–11 exhibit the percentage 
variation in y values that is explained by x, signifying the variability 
between each parameter. Notably for Modesto, lower correlation 
coefficients (and high variability) within Wave 1 (Figure 8) and high 
correlation coefficients (low variability) within Peak 1 (Figure 10) 
signified that wastewater and health metric data increased together, 
but the metrics were more decoupled on the decline from a peak. 
Since the slope impacts R2 values, systematic declines in the 
coefficient of determination from Wave 1 to Wave 2 are largely 

statistical artifacts as the slope deviated further from 1:1. The 
relationships between N/PMMoV to county and sewershed cases 
are also represented in Supplementary Table S5 through the Pearson 
correlation coefficient (r), the degree of relationship between the 
two parameters. The Pearson r between wastewater data and health 
data were generally high, demonstrating strong relationships 
between health metric and wastewater data 
(Supplementary Table S5).

4. Discussion

Case:wastewater ratios (regression slopes) consistently declined 
for all three counties from the first surge in infections observed in 
this study to the second. The average case:wastewater ratio of 4.7 ± 1.4 
over the first wave (calculated using county case data) declined to 
0.8 ± 0.4 over the second wave. Factors that may lead to systematic 

FIGURE 4

City of Davis wastewater concentrations for 10-day average for N/PMMoV compared to weekly average of Yolo County cases per 100 k population, 
weekly average county hospitalizations with 14-day lag, and weekly average county ICU patients with 15-day lag.

FIGURE 5

Inter-lab comparison of N/PMMoV between Lab 1 and Lab 2 for the city of Davis.
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declines in case:wastewater ratios include: (1) reduced clinical testing 
availability and/or participation, (2) replacement of clinical tests by 
increased use of at-home tests, for which data are not reported to 
public health officials (45), and (3) changes in the duration or 
magnitude of fecal shedding (e.g., due to increased rates of 
vaccination, acquired immunity, new variants, etc.), although little 

information is available to quantitatively assess this factor (46). Of 
these factors, we suspect that an increased use of at-home tests and/
or changes in test-seeking behavior were especially strong drivers for 
the declines observed in case:wastewater ratios. While the number of 
at-home tests conducted in lieu of clinical tests cannot be discerned, 
discussions with HCVT public health partners affirmed this change 

FIGURE 6

City of Davis N/PMMoV vs. Yolo County cases per 100 k population (left) and city of Davis N/PMMoV vs. sewershed cases per 100 k population (right) 
between Wave 1 (all Lab 1) and Wave 2 (Lab 1 and Lab 2 separate).

FIGURE 7

City of Merced N/PMMoV vs. Merced County cases per 100 k population (left) and city of Merced N/PMMoV vs. sewershed cases per 100 k population 
(right) between Wave 1 (Lab 1) and Wave 2 (Lab 2).

FIGURE 8

City of Modesto N/PMMoV vs. Stanislaus County cases per 100 k population (left) and city of Modesto N/PMMoV vs. sewershed cases per 100 k 
population (right) between Wave 1 (Lab 1) and Wave 2 (Lab 2).
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FIGURE 10

City of Modesto N/PMMoV vs. Stanislaus County cases per 100 k population (left) and city of Modesto N/PMMoV vs. sewershed cases per 100 k 
population (right) between Peak 1 (Lab 1) and Peak 2 (Lab 2).

FIGURE 11

City of Davis N/PMMoV vs. Yolo County cases per 100 k population (left) and city of Davis N/PMMoV vs. sewershed cases per 100 k population (right) 
between Peak 1 (Lab 1) and Peak 2 (Lab 2).

in testing behaviors over the study period. More information is 
needed to fully assess the contribution of fecal shedding dynamics 
towards changes in case:wastewater ratios through time.

Unlike the case:wastewater ratios, the hospitalization:wastewater 
ratios and ICU:wastewater ratios (adjusted for lags) remained 

relatively more stable over the two surges in infections monitored in 
both Merced and Stanislaus counties. The average 
hospitalization:wastewater ratio was 0.5 ± 0.3 over the first wave and 
0.3 ± 0.4 over the second wave. Hospitalizations are known to be a 
more reliable indicator of severity of infections and, like wastewater 

FIGURE 9

City of Merced N/PMMoV vs. Merced County cases per 100 k population (left) and city of Merced N/PMMoV vs. sewershed cases per 100 k population 
(right) between Peak 1 (Lab 1) and Peak 2 (Lab 2).
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data, are less susceptible to individual choice than test-seeking 
behaviors. However, hospitalization data within each county is less 
likely than clinical testing data to be geographically aligned with 
wastewater data, as patients commonly receive hospital services 
outside of their residential or workplace jurisdictions. 
Notwithstanding challenges associated with geographic alignment of 
wastewater and hospitalization data, the hospitalization:wastewater 
ratio may be a useful retrospective metric to assess disease severity of 
an illness, especially when reduced reporting of cases compromises 
the accuracy of case counts. Wastewater measurements capture 
information from asymptomatic, mild, and moderate cases, filling 
data gaps that lead to overestimated hospitalization:case ratios when 
such cases are counted inaccurately (47).

Three notable differences were observed for Yolo County compared 
to Merced and Stanislaus Counties. First, a greater number of cases were 
counted in Yolo County in Wave 1 compared to Merced and Stanislaus 
Counties. From November 2020 through June 2022, Yolo County and 
the city of Davis offered community-wide, free clinical testing services 
through Healthy Yolo Together (HYT) and HDT (19). Participation in 
each program was high, even for asymptomatic individuals, leading to 
more comprehensive case counts. Retrospective assessments 
demonstrated the efficacy of the programs at reducing transmission in 
the county. The timing of the second infection wave corresponded to 
the end of the HDT and HYT testing programs (June 30, 2022). The 
change in programming resulted in dramatic reductions in clinical tests 
performed in Yolo County.

Second, Yolo County exhibited higher vaccination rates overall. Sixty-
five percent of Yolo County was fully vaccinated at the start of the 
Omicron wave compared to Merced (48%) and Stanislaus (52%) Counties 
(Table 4). Vaccination rates had increased in each county by 7.8%, 10%, 
and 7.6% in Yolo, Merced, and Stanislaus Counties, respectively, by the 
end of the estimated first wave of infections (March 1, 2022).

Third, the hospitalization rates were lower in Yolo County compared 
to Merced and Stanislaus Counties. On average during the first wave of 
infections, there were approximately 5 hospitalizations per 100 k 
population in Yolo County, compared to approximately 15 in Merced 
County and 41 in Stanislaus County. The approximate average number 
of ICU admittance per 100 k population for the first wave were more 
similar amongst the counties, but still lowest in Yolo County (2 in Yolo, 
3 in Merced, and 6 in Stanislaus). Hospitalizations and ICU admittance 
declined in all three counties during Wave 2 compared to Wave 1, with 
Yolo County maintaining lower rates than Merced and Stanislaus 
(Supplementary Table S6). Higher vaccination rates in Yolo County for 
65+ populations (Supplementary Table S7) may have contributed to the 
lower ICU admittance and hospitalizations (Supplementary Table S6) 
observed for Yolo County compared to Merced and Stanislaus Counties. 
Approximately 93% of the 65+ population in Yolo County was fully 
vaccinated at the start of the first Omicron wave compared to 78% in 
Merced, and 83% in Stanislaus Counties.

The results from this study correspond well with other wastewater 
solids analysis in other locations. Wolfe et  al. (6), found strong 
correlations between SARS-CoV-2 RNA wastewater settled solids 
concentrations and COVID-19 sewershed cases in eight publicly 
owned, Northern Californian treatment works from December 2020–
March 2021. Wolfe et  al. (21) further expanded their analysis to 
treatment plants in New  York and Illinois, and still found strong 
correlations with COVID-19 cases. The waves of infection captured in 

our study also have similar timing to the decline in the BA.1 variant 
in March and emergence of BA.2 in another Californian wastewater 
solids study (48). Outside of the United States, Hegazy et  al. (49) 
analyzed composite primary clarifier sludge from two treatment plants 
in Ontario, Canada. They found strong correlations to COVID-19 case 
rates during the Omicron BA.1 surge (49). Hegazy et al. (49) observed 
poorer correlations between wastewater data and COVID-19 cases 
during the Delta wave (July–December 2021), potentially due to 
higher immunity from vaccinations and prior infection. These 
findings were similar to the decrease in COVID-19 case correlations 
observed in Wave 2 (BA.2, BA.4, BA.5) in our study, alongside 
corresponding increases in vaccinations, boosters, and acquired 
immunity. Another wastewater solids study that included seven 
Canadian cities reported changing wastewater to clinical case ratios 
for different “waves” or dominant variants during the pandemic (50). 
Similar to our results, Hegazy et al. (49) observed strong correlations 
with hospitalizations and ICU admissions.

Analysis of wastewater data against health metric data compiled at 
both the county and city scales offers one strategy to assess population 
mobility and regional reporting. Wastewater data collected is inherently 
place-based, while health metrics may be reported in other regions 
depending on place of residency, place of work, and access to medical 
centers and hospitals, amongst a myriad of factors. Public health 
authorities partnered with the HCVT project offered Merced County as 
one example whereby the closest medical center for residents located in 
the northern part of the county lies across the county border in 
Stanislaus County. Further evaluation of wastewater data collected from 
additional cities across each county is likely to provide insights into 
disease dynamics across the rural and agricultural communities 
characteristic of the Central Valley. Integration of wastewater data at 
regional scales and use of the CalREDIE database (51, 52) for 
hospitalizations based on county of residence may also offer more 
representative hospitalization:wastewater ratios when using data from 
hospitals that serve populations traveling from sewersheds in multiple 
counties. The California Department of Public Health (CDPH), for 
instance, assesses population-weighted wastewater data for five public 
health regions (53) in the state, complementing wastewater data 
reported at the county and sewershed scales from the CDPH wastewater 
surveillance network (54).

WDS provides vital public health information to communities by 
filling gaps in public health data that result from reductions in clinical 
testing availability, test-seeking behavior, and reporting of test results. 
WDS data is critical to public health decision-makers in regions where 
access to and/or utilization of public health resources is inadequate. The 
HCVT project applied a health equity framework in the selection and 
implementation of new WDS sites, prioritizing underrepresented regions 
in California that also exhibited relatively lower vaccination rates, and 
where higher proportions of the population are identified as 
disadvantaged. This study demonstrated that WDS still has high 
correlations with health metric data in areas with lower health care access 
and reporting. HCVT had open communication on WDS data with 
public health departments, wastewater treatment plant staff, and city 
officials from Merced, Stanislaus, and Yolo Counties through weekly 
email updates, a public website, and bi-weekly meetings throughout the 
duration of the project. From this communication, public health 
departments informed local hospitals and skilled nursing facilities of 
increasing and decreasing wastewater levels. As WDS programs become 
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further integrated into long-term public health decision-making criteria, 
a critical assessment of WDS using equity metrics should be considered 
(e.g., evaluating proportional access to WDS data based on racial and 
ethnic demographics, disadvantaged community status, and access to 
public health resources). Integration of equity-based WDS program 
criteria into public health policies will help support initiatives for greater 
health equity.
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Targeting a free viral fraction 
enhances the early alert potential 
of wastewater surveillance for 
SARS-CoV-2: a methods 
comparison spanning the 
transition between delta and 
omicron variants in a large urban 
center
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Introduction: Wastewater surveillance has proven to be  a valuable approach to 
monitoring the spread of SARS-CoV-2, the virus that causes Coronavirus disease 
2019 (COVID-19). Recognizing the benefits of wastewater surveillance as a tool 
to support public health in tracking SARS-CoV-2 and other respiratory pathogens, 
numerous wastewater virus sampling and concentration methods have been tested 
for appropriate applications as well as their significance for actionability by public 
health practices.

Methods: Here, we  present a 34-week long wastewater surveillance study that 
covers nearly 4 million residents of the Detroit (MI, United States) metropolitan area. 
Three primary concentration methods were compared with respect to recovery of 
SARS-CoV-2 from wastewater: Virus Adsorption-Elution (VIRADEL), polyethylene 
glycol precipitation (PEG), and polysulfone (PES) filtration. Wastewater viral 
concentrations were normalized using various parameters (flow rate, population, 
total suspended solids) to account for variations in flow. Three analytical approaches 
were implemented to compare wastewater viral concentrations across the three 
primary concentration methods to COVID-19 clinical data for both normalized and 
non-normalized data: Pearson and Spearman correlations, Dynamic Time Warping 
(DTW), and Time Lagged Cross Correlation (TLCC) and peak synchrony.

Results: It was found that VIRADEL, which captures free and suspended virus 
from supernatant wastewater, was a leading indicator of COVID-19 cases within 
the region, whereas PEG and PES filtration, which target particle-associated 
virus, each lagged behind the early alert potential of VIRADEL. PEG and PES 
methods may potentially capture previously shed and accumulated SARS-CoV-2 
resuspended from sediments in the interceptors.

Discussion: These results indicate that the VIRADEL method can be  used to 
enhance the early-warning potential of wastewater surveillance applications 
although drawbacks include the need to process large volumes of wastewater to 
concentrate sufficiently free and suspended virus for detection. While lagging the 
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VIRADEL method for early-alert potential, both PEG and PES filtration can be used 
for routine COVID-19 wastewater monitoring since they allow a large number of 
samples to be processed concurrently while being more cost-effective and with 
rapid turn-around yielding results same day as collection.

KEYWORDS

wastewater surveillance, SARS-CoV-2, COVID-19, virus adsorption-elution, 
polyethylene glycol precipitation, filtration, lead/lag time, dynamic time warping

1. Introduction

Wastewater surveillance has been widely adopted by researchers and 
health agencies as an effective tool for tracking Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater amid the 
Coronavirus Disease 2019 (COVID-19) pandemic (1–13). SARS-CoV-2 
was first identified in Wuhan, Hubei, China, and was designated a Public 
Health Emergency of International Concern on January 30th, 2020, by 
the World Health Organization (WHO). COVID-19 was later declared 
a pandemic on March 11th, 2020 (who.int). Numerous studies have 
demonstrated that SARS-CoV-2 can be shed from the gastrointestinal 
tract of infected individuals and its viral RNA can persist and be detected 
in wastewater (14–18). To increase the sensitivity of the assay used to 
detect viral RNA in wastewater, samples are routinely concentrated prior 
to quantification (19–21).

Methods used in published studies to recover and concentrate 
SARS-CoV-2 viral RNA from wastewater encompass a wide range of 
techniques including Virus Adsorption-Elution (VIRADEL), 
polyethylene glycol precipitation (PEG), ultrafiltration, 
ultracentrifugation, concentrating pipette, filtration and so forth. Some 
of the methods, such as VIRADEL, exclude large solids and focus on free 
and suspended viral particles in supernatant wastewater. Other methods, 
such as PEG precipitation and filtration, target particulate matter and the 
associated viruses that are sorbed onto solids. Notably, this fraction may 
preferentially settle within the sewer when flow is reduced and likewise 
is susceptible to resuspension when flows are elevated (3, 22).

The recovery efficiencies of concentration methods are variable, 
differing between method, virus type and conditioning of the 
wastewater sample. Notably, VIRADEL was found to be effective for 
concentrating viruses from water samples with recovery efficiencies 
of more than 90% for poliovirus (23, 24), 54.4% for murine norovirus 
(MNV) (25), 51% for echovirus (26), 35% for enteric virus (27), and 
4.7% for adenovirus (28). Likewise, PEG was found to be effective for 
concentrating viruses in water samples, with recovery efficiencies of 
89.5% for echovirus (29), 86% for hepatitis A virus (30), 68% for 
poliovirus (30), and 56.7% (31) and 26.4% (32) for SARS-CoV-2. 
Filtration was reported to recover virus from wastewater samples with 
recovery efficiencies ranging from 26.7 to 65.7% for murine hepatitis 
virus (33), and 90% for human betacoronavirus OC43 (34).

Applying different concentration methods can achieve different 
goals. For instance, use of VIRADEL to concentrate SARS-CoV-2 can 
provide early warnings of impending COVID-19 cases (1, 3, 13). PEG 
precipitation is an economical and widely adopted method that allows 
a large number of samples to be processed concurrently and it is suitable 
for routine COVID-19 wastewater monitoring (22, 35). Likewise, 
filtration presents a cost-effective and simple approach commonly 
applied to recover cells and viral particles from environmental samples 

for nucleic acid extraction (36), which has also been applied to recovery 
of SARS-CoV-2 from wastewater (12, 35, 37, 38).

Here we  present a comparison of three primary concentration 
methods (VIRADEL, PEG and filtration) to detect SARS-CoV-2 viral 
RNA in wastewater, in relation to COVID-19 cases amid the transition 
from Delta to Omicron Variants of Concerns (VOCs) circulating in the 
Detroit, MI metropolitan area. Similarities and correlations were 
examined among the three concentration methods with both normalized 
and non-normalized data. The lead/lag time of each method in relation 
to the total COVID-19 cases was also assessed. The results presented in 
this study will assist researchers and public health practitioners to select 
appropriate primary concentration methods for the recovery of SARS-
CoV-2 from wastewater for different wastewater surveillance practices.

2. Materials and methods

Untreated wastewater samples were collected weekly from the Water 
Resource Recovery Facility (WRRF) of the Great Lakes Water Authority 
(GLWA) located in Detroit, MI, United States, between October 1, 2021, 
and May 31, 2022. The WRRF serves the needs of Detroit and 76 area 
communities with a service area of more than 2,450 square kilometers 
serving nearly 4 million people. WRRF collects and treats stormwater, as 
well as residential, industrial, and commercial waste, depending on 
service areas, with its semi-combined sewershed system. WRRF receives 
wastewater via three main interceptors including the Detroit River 
Interceptor (DRI), the North Interceptor-East Arm (NIEA), and the 
Oakwood-Northwest-Wayne County Interceptor (ONWI) (Figure 1), 
serving the City of Detroit as well as the three largest Michigan counties 
by population: Wayne, Oakland, and Macomb. Composite samples 
collected over 24-h were used to compare the polyethylene glycol (PEG) 
precipitation and filtration methods, however, the larger volumes required 
by the virus adsorption-elution (VIRADEL) method necessitated a 
targeted approach with samples collected between 15:30 to 18:00 each 
afternoon. The samples were collected from the three interceptors at the 
point of discharge into the WRRF and maintained chilled on ice during 
transport to the lab for primary concentration and sample analysis.

2.1. Virus adsorption-elution method

The United  States Environmental Protection Agency virus 
adsorption-elution (VIRADEL) method employing electropositive or 
electronegative filters was reported to recover and concentrate viruses 
from wastewater samples previously (1–4, 13, 20, 35). Electronegative 
filters require preconditioning such as adjusting the pH, prior to 
downstream concentration processes. Electropositive filters do not 
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require any preconditioning (20, 35). In this study, depending on the 
quantity of suspended solids in the wastewater, 10 to 50 L of untreated 
wastewater (grab sample) was passed through NanoCeram 
electropositive cartridge filters (Argonide, Sanford, FL, United States) at 
a rate less than 11 L/min using a previously described method (1–4). 
Flow meter readings were tracked at the beginning and end of each 
sampling event to measure the total volume of wastewater passing 
through the filters. Following sampling, the NanoCeram filters were 
transported on ice to the lab for sample analysis within 24 h. The elution 
process releases viral particles captured by the filters (20). Viruses were 
eluted using 1.5% beef extract containing 0.05 M glycine, based on a 

previously described method (1–4). Subsequently, the eluates containing 
viruses were flocculated by adjusting the pH, following multiple 
centrifugations and resuspension of particles in sodium phosphate. 
Afterwards, supernatants containing viruses were separated by adjusting 
the pH and centrifugation. Finally, the supernatants containing viruses 
were passed through 0.45 μm and 0.22 μm Millipore filters 
(MilliporeSigma, Burlington, MA, United States), which were followed 
by aliquoting and storage of the final aliquots at -80°C for downstream 
molecular analysis (1–4, 20). Bacteriophage Phi6 was applied as a proxy 
virus to estimate the recovery efficiency during virus concentration (3, 
29, 39). Figure 2 demonstrates the workflow of the VIRADEL method.

FIGURE 1

GLWA interceptor tributary map.
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2.2. Polyethylene glycol precipitation 
method

From a 24-h composite sample of untreated wastewater collected 
in a 1 L Nalgene bottle, 100 mL samples were mixed with 0.2 M sodium 
chloride and 8% polyethylene glycol (w/v). Samples were mixed gently 
on a magnetic stirrer at 4°C for 2 h, followed by centrifugation at 
4700 × g for 45 min at 4°C. The supernatant was removed, and the 
pellet was resuspended in the remaining liquid (approximately 
2-3 mL). The final concentrate volumes were between 1 to 6 mL. All 
sample concentrates were then subjected to downstream analysis 
including RNA extraction and RT-ddPCR (Figure 3).

2.3. Filtration method

Composite samples of raw wastewater collected as for the PEG 
method were concentrated by filtering 50-120 mL through 0.22 μm 
Sterivex PES cartridge filters (MilliporeSigma, Burlington, MA, 
United  States) using a 50 mL syringe fitted into a caulking gun. 
Immediately following filtration, the filters were sealed and flash-
frozen through immersion in liquid nitrogen as described previously 
(38). Subsequently, filters were subjected to downstream processes 
including RNA extraction and RT-qPCR (Figure 4).

2.4. RNA extraction, RT-ddPCR, RT-qPCR

Following VIRADEL and PEG methods, viral RNA was extracted 
using the QIAamp Viral RNA kit (Qiagen, Germantown, MD, 
United States), following the manufacturer’s protocol modified by use 

of 140 μL elution buffer to extract the viral RNA (1–4). RT-ddPCR was 
performed on a QX200 AutoDG Droplet Digital PCR system (Bio-
Rad, Hercules, CA, United States), using the One-step RT-ddPCR 
Advanced Kit for Probes (Bio-Rad, Hercules, CA, United States) as 
described previously (2, 3). United States Centers for Disease Control 
and Prevention (US CDC) primers and probes that target the N1 and 
N2 genes of SARS-CoV-2 were used (2, 3, 13). N1 N2 gene Duplex 
Assay Reaction Mixture was reported previously (2, 3, 13). Following 
the preparation of the Duplex Mixture and oil droplets generation, 
samples were run on a C1000 Touch Thermal Cycler (Bio-Rad, 
Hercules, CA, United  States) using the thermocycling conditions 
which were reported previously (2, 3, 13). Subsequently, the 
measurement of fluorescence was performed on a QX200 Droplet 
Reader (Bio-Rad, Hercules, CA, United States). For each RT-ddPCR 
run, positive controls (PTCs), negative controls (NTCs), and process 
negative controls were included, which were described previously (3). 
All samples were run in triplicate. The Limit of Detection (LOD) and 
Limit of Blank (LOB) for RT-ddPCR were described and determined 
previously (2, 3, 13).

Following the filtration method, filters were thawed, and RNA was 
extracted from the filters using the AllPrep PowerViral DNA/RNA kit 
(Qiagen, Germantown, MD, United States) modified by addition of 
5% 2-mercaptoethanol (v/v). RNA was eluted in 50 μL of RNAse free 
water. Samples were not treated with DNase upon extraction. Assays 
for SARS-CoV-2 targeted regions of the nucleocapsid (N) gene using 
US CDC primers and probes for the N1 and N2 regions (40). Reagents 
were supplied by Integrated DNA Technologies (Coralville, IA, 
United States). Reactions contained 5 μL of RNA template mixed with 
10 μL of 2 × RT-qPCR master mix (Takyon TM Dry One-Step RT 
Probe MasterMix No Rox, Eurogentec, Liège, Belgium) and primers 
and probes in a final reaction volume of 20 μL. Reaction inhibition was 

FIGURE 2

Illustrative flowchart of the VIRADEL concentration method and downstream analysis.
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assessed using VetMAX XENO Internal Positive Control RNA 
(Applied Biosystems Corp., Waltham, MA, United States). Due to 
repeated incidence of inhibition with wastewater samples processed 
by filtration, template was diluted 1:5  in all reactions. Technical 
triplicates were run for detection of gene targets. Thermal cycling was 
performed using a MA6000 qPCR thermocycler (Sansure Biotech, 

Changsha, China). RT was performed at 48°C for 10 min, followed by 
polymerase activation at 95°C for 3 min, and 50 cycles of denaturation, 
annealing/extension at 95°C for 10 s, then 60°C for 45 s, respectively. 
The EDX SARS-CoV-2 synthetic RNA standard (Exact Diagnostics, 
Fort Worth, TX, United States) was used to create a 7-point standard 
curve to quantify N1 and N2 gene targets. No template controls 

FIGURE 3

Illustrative flowchart of the PEG concentration method and downstream analysis.

FIGURE 4

Illustrative flowchart of the filtration concentration method and downstream analysis.
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yielded no amplification, and we report a limit of detection of 5 gene 
copies of N1 and N2 per reaction containing 5 μL of template RNA for 
RT-qPCR.

2.5. COVID-19 clinical data

Publicly available clinical data were accessed on August 22, 2022, 
for the period between October 1, 2021, and May 31, 2022, for the city 
of Detroit, as well as Wayne, Macomb, and Oakland counties 
(Figure 5A).1 Clinical data with a 7-day moving average (3, 41, 42) was 
used for further statistical analysis (Figure 5B). COVID-19 clinical 
data were only available per city/county for the Detroit metropolitan 

1 michigan.gov/coronavirus/stats

area. Each interceptor received wastewater from portions of each city/
county. Therefore, only the total SARS-CoV-2 concentrations can 
be correlated to the total COVID-19 cases of each city/county (3, 13).

2.6. Data analysis and visualization

Data were tracked and organized using Microsoft Excel version 
16.66.1. R version 4.1.3 was applied to perform data analysis including 
Pearson and Spearman correlations, Dynamic Time Warping (DTW), 
Time Lagged Cross Correlation (TLCC) and peak synchrony, 
depending primarily on ggplot2 package for visualization, and 
packages including dtw, synchrony, dplyr, and ggpubr. Missing data 
from samples were filled using linear interpolation for further analysis 
(3, 13, 43). For VIRADEL samples, 128 genes concentrations were 
measured for both N1 and N2 genes between 10/1/21 and 5/31/22. For 
PEG samples, 88 gene concentrations were measured for both N1 and 

FIGURE 5

(A) COVID-19 cases in the City of Detroit, as well as Wayne, Macomb, and Oakland counties; (B) 7-day moving average of the COVID-19 cases.
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N2 genes between 10/1/21 and 5/31/22. For filtration samples, 66 gene 
concentrations were measured for both N1 and N2 genes between 
10/1/21 and 5/31/22. To perform correlation analysis between weekly 
gene concentrations and daily clinical cases, linear interpolation was 
conducted to generate daily data based on weekly measurements. The 
number of interpolated daily gene concentrations were 179, 199, and 
210 for VIRADEL, PEG, and filtration, respectively.

To account for the changing flow in wastewater, dilution events, 
and variability in the solids portion of the wastewater, four approaches 
(flow rate, flow rate/population, TSS, flow rate×TSS) of normalizing 
the N1 and N2 gene concentrations (gc/L) were implemented using 
Eq. (1), Eq. (2), Eq. (3), and Eq. (4) (3, 44, 45). TSS, or “Total 
Suspended Solids,” is an estimate of the entire solids in wastewater in 
contrast to the liquid fraction or dissolved matter (45). In addition, 
other parameters, including sanitary percentage and Biological 
Oxygen Demand (BOD), proved ineffective for normalizing N1 and 
N2 gene concentrations for the Detroit area and other areas, thus, they 
were not considered in the current study (3, 9). SARS-CoV-2 gene 
concentrations measured in the wastewater following VIRADEL, 
PEG, and filtration methods are reported as gene copies per L (gc/L). 
The units after normalization using flow rate, flow rate/population, 
TSS, and flow rate×TSS, are gene copies per day (gc/day), gene copies 
per day per person (gc/day/person), gene copies per mg TSS (gc/mg 
TSS), and gene copies per L per pounds/day {gc/[L(pounds/day)]}, 
respectively.
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C 1( ) is the normalized concentration of SARS-CoV-2 in gc/day. 
C 2( ) is the normalized concentration of SARS-CoV-2  in gc/day/
person. C 3( ) is the normalized concentration of SARS-CoV-2 in gc/
mg TSS. C 4( ) is the normalized concentration of SARS-CoV-2 in gc/
[L(pounds/day)]. V  is the volume of wastewater flowing into WWTP 
interceptors during sampling events (MGD). f  is the conversion 
factor between L and MGD. k  is the conversion factor between mg 
and pounds. P is the total population in the Detroit metropolitan area 
served by WRRF’s interceptors including ONWI, NIEA, and DRI. TSS 
represents the total suspended solids (mg/L).

2.6.1. Correlations among N1 and N2 gene 
concentrations by VIRADEL, PEG, and filtration

Multiple studies investigated the applications of both Pearson and 
Spearman correlations on analyzing the relationship between 
wastewater viral concentrations of SARS-CoV-2 and COVID-19 
clinical cases as well as the relationship among wastewater viral 

concentrations by different genes or methods (9, 46, 47). In this study, 
Pearson and Spearman correlations were performed among N1 and 
N2 gene concentrations {gc/L, gc/day, gc/day/person, gc/mg TSS, gc/
(L[pounds/day)]} by VIRADEL, PEG, and filtration methods. The 
Pearson correlation measures how two time series among VIRADEL, 
PEG, and filtration gene concentrations covary during the study 
period, and indicate their linear relationships. The Spearman 
correlation coefficient is a simple and straightforward approach to 
analyze the degree of associations between two time series (48).

2.6.2. Dynamic time warping
One commonly used algorithm for quantifying the similarities/

dissimilarities between time series data is the Euclidean distance 
(ED), but numerous studies demonstrated that ED is insensitive to 
time shifting and patterns between time series since it compares the 
data points of time series in a settled sequence and cannot consider 
time shifting or patterns (49, 50). Dynamic time warping (DTW) is 
a well-established algorithm that circumvents the limitations of ED 
and compares two time series by computing dynamic distances 
between them considering regional distortions, time shifting, and the 
optimal warping that best aligns the time series between each other 
(50, 51). Therefore, similar patterns that occur at different times 
between time series can be  considered as matching, thus, the 
similarity of time series can be  evaluated considering their time 
shifting and shapes by DTW algorithm (50). The DTW algorithm 
was proposed previously (51).

The outcome of DTW analysis indicates two time series with the 
most similar patterns by calculating the minimum overall dissimilarity 
or the DTW minimum distance where data points on one time series 
best align data points on another time series (51). Multiple studies 
investigated the similarities between time series using DTW algorithm 
(50, 52, 53). However, to our knowledge, this is the first study to apply 
DTW algorithm to compare the similarities between wastewater gene 
concentrations data by three concentration methods (VIRADEL, 
PEG, and filtration), as well as comparing the similarities between 
wastewater gene concentrations data and COVID-19 clinical data. In 
this study, package dtw and related packages in R (version 4.1.3) were 
implemented to calculate DTW for the normalized {gc/day, gc/day/
person, gc/mg TSS, and gc/[L(pounds/day)]} and non-normalized 
(gc/L) data to analyze the similarities/dissimilarities between 
VIRADEL, PEG, and filtration methods.

One limitation is that the minimum DTW distance can be affected 
by the scaling factor of time series data. For instance, the minimum 
DTW distance between PEG (gc/day/person) and COVID-19 cases 
can be smaller than the distance between VIRADEL (gc/day/person) 
and cases, indicating that PEG presents higher similarity to cases than 
VIRADEL. However, this was affected by the population factor which 
is a constant number but is not dynamic time series data. Using flow/
population normalization including a constant factor intentionally 
changed the similarities among time series data. Therefore, the 
minimum DTW distance with flow/population normalized data was 
not considered for further discussions.

2.6.3. Time lagged cross correlation and peak 
synchrony

To estimate the leading or lagging relationships between 
wastewater viral concentrations by three concentration methods 
(VIRADEL, PEG, and filtration) and total COVID-19 cases, TLCC 
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and peak synchrony were performed where the total COVID-19 
cases were shifted over time and correlated with wastewater viral 
concentrations for each concentration method. TLCC refers to 
correlations between two time series shifted relatively in time. It 
can identify the direction and relationship between two time series, 
for instance, a leader-follower relationship, where the leader time 
series develop a pattern which is repeated by the follower time 
series (54). TLCC is widely applied in analyzing time series 
especially delay, lead/lag time, and lagged cross correlation and so 
forth (44, 54–56). TLCC is an effective approach to estimate the 
dynamic relationships between two time series and demonstrate 
how they shift over time (44).

In this study, TLCC is measured by gradually shifting total 
COVID-19 cases between -20 days (lagging) and + 20 days (leading), 
and constantly calculating the Pearson’s correlation coefficients 
between two time series for each shifting. Peak synchrony occurs 
when the peak correlation is observed. For instance, if the peak 
correlation is observed at the center where the lag time or offset is 
0 day, this condition indicates that the time series are most 
synchronized at day 0 demonstrating no shifting or lag time. However, 
the peak correlation can be at a different offset if one time series is 
leading or lagging another one. R package “synchrony,” “devtools,” and 
related packages were implemented to calculate the TLCC and peak 
synchrony between gene concentrations (both normalized and 
non-normalized data, by VIRADEL, PEG, and filtration methods) and 
7-day moving average total COVID-19 cases.

3. Results

3.1. SARS-CoV-2 viral RNA concentrations 
in wastewater derived by three 
concentration methods spanning the 
transition between delta and omicron 
VOCs

RT-ddPCR (VIRADEL and PEG samples) and RT-qPCR 
(filtration samples) targeting the N1 and N2 genes was used to 
quantify SARS-CoV-2 RNA concentrations in wastewater samples 
collected at GLWA’s WRRF over 34 weeks. The study period captured 
the third major resurgence of COVID-19 cases in the region 
corresponding to the transition from SARS-CoV-2 Delta (B.1.617.2) 
variant to Omicron (B.1.1.529) variant (3, 44).

Filtered samples yielded N1 and N2 gene concentrations higher 
than those of VIRADEL but lower than those of PEG, for both 
normalized and non-normalized data (Table  1). Filtered samples 
yielded mean N1 and N2 gene concentrations of 3.22E+04 and 
1.50E+04 gc/L, respectively. VIRADEL samples yielded mean N1 and 
N2 gene concentrations of 1.61E+03 and 1.63E+03 gc/L, respectively. 
PEG samples yielded mean N1 and N2 gene concentrations of 
1.61E+05 and 1.50E+05 gc/L, respectively. The overall observed trends 
of the VIRADEL total N1 and N2 gene concentrations increased 
steeply from early December 2021 and reached a peak in late 
December 2021 (Figure  6A), which heralded the major wave of 
COVID-19 cases in late December 2021 and early January 2022. 
Likewise, VIRADEL N1 and N2 gene concentrations increased in 
early April 2022, which preceded a resurgence of COVID-19 cases 
later in mid-April 2022.

Previous reports have demonstrated that the VIRADEL 
method can serve as a leading indicator of COVID-19 cases (1, 3, 
13). By contrast, PEG measured N1 and N2 gene concentrations 
were more variable and increased significantly in January 2022, 
lagging the major wave of COVID-19 infections (Figure 6B). PEG 
N1 and N2 gene concentrations increased simultaneously with the 
surge of COVID-19 cases in mid-April 2022, into May 2022. N1 
and N2 gene concentrations yielded by the filtration approach 
increased in early November 2021 and decreased in early 
December 2021. Thereafter, gene concentrations rapidly increased 
starting in mid-December 2021, peaking in mid-January 2022, 
which later significantly decreased to a low level in February 2022 
(Figure  6C). Notably, the peak in SARS-CoV-2 measured in 
wastewater by this approach was staggered, lagging the major 
wave of COVID-19 cases.

TABLE 1 Total N1 and N2 gene concentrations measured in wastewater 
samples by VIRADEL, PEG, and filtration methods.

Gene Methods

VIRADEL PEG Filtration

N1 (gc/L) Maximum 5.64E+03 7.02E+05 1.12E+05

Minimum 9.01E+02 3.18E+04 5.12E+02

Mean 1.61E+03 1.61E+05 3.22E+04

N2 (gc/L) Maximum 4.95E+03 5.48E+05 7.34E+04

Minimum 9.01E+02 2.97E+04 3.13E+02

Mean 1.63E+03 1.50E+05 1.50E+04

N1 (gc/day) Maximum 5.24E+12 4.07E+14 7.40E+13

Minimum 5.39E+11 2.36E+13 4.12E+11

Mean 1.35E+12 1.18E+14 2.52E+13

N2 (gc/day) Maximum 4.62E+12 3.18E+14 4.77E+13

Minimum 5.84E+11 2.21E+13 2.93E+11

Mean 1.37E+12 1.12E+14 1.14E+13

N1 (gc/day/

person)

Maximum 1.69E+00 1.31E+02 2.38E+01

Minimum 1.74E-01 7.58E+00 1.32E-01

Mean 4.34E-01 3.79E+01 8.11E+00

N2 (gc/day/

person)

Maximum 1.49E+00 1.02E+02 1.54E+01

Minimum 1.88E-01 7.12E+00 9.43E-02

Mean 4.41E-01 3.59E+01 3.65E+00

N1 (gc/mg 

TSS)

Maximum 5.82E+01 5.72E+03 1.19E+03

Minimum 6.85E+00 2.20E+02 2.91E+00

Mean 1.69E+01 1.53E+03 2.97E+02

N2 (gc/mg 

TSS)

Maximum 5.21E+01 4.66E+03 6.60E+02

Minimum 6.71E+00 1.99E+02 3.84E+00

Mean 1.69E+01 1.44E+03 1.41E+02

N1 (gc/

(L(pounds/

day)))

Maximum 2.94E-02 4.96E+00 8.83E-01

Minimum 2.00E-03 6.48E-02 1.77E-03

Mean 9.83E-03 1.01E+00 1.89E-01

N2 (gc/

(L(pounds/

day)))

Maximum 2.70E-02 4.01E+00 4.84E-01

Minimum 1.96E-03 5.90E-02 2.06E-03

Mean 9.84E-03 9.37E-01 9.27E-02
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3.2. Correlations and similarity analysis 
among three concentration methods

3.2.1. Correlations of N1 and N2 gene concentrations 
among three concentration methods

Multiple studies have applied Pearson and Spearman 
correlations to analyze the relationships between wastewater 

SARS-CoV-2 gene concentrations and COVID-19 cases (3, 9, 46), 
as well as the relationships among gene concentrations of SARS-
CoV-2 in wastewater (47, 57). In this study, we tested the Pearson 
and Spearman correlations among N1 and N2 gene concentrations 
by VIRADEL, PEG, and filtration with normalized and 
non-normalized data (Table 2). A value of p that is less than 0.05 is 
considered statistically significant. For the non-normalized data 

FIGURE 6

N1 and N2 gene concentrations (gc/L) by three concentration methods: (A) VIRADEL, (B) PEG, (C) Filtration, plotted against total COVID-19 cases.
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(gc/L), the highest correlation was observed between PEG and 
filtration with N2 gene concentration (Pearson’s r = 0.67, Spearman’s 
r = 0.6). The lowest correlation was found between VIRADEL and 
PEG for N2 gene concentration (Pearson’s r = 0.12, Spearman’s 
r = 0.34). For non-normalized data (gc/L), the correlations between 
PEG and filtration were stronger than the correlations between 
VIRADEL and filtration, which in turn was stronger than the 
correlations between VIRADEL and PEG. For normalized data, the 
highest correlation was found between PEG and filtration for N1 
(Pearson’s r = 0.73, Spearman’s r = 0.66) and N2 (Pearson’s r = 0.76, 
Spearman’s r = 0.64) gene concentrations in gc/[L(pounds/day)]. 
Significant correlations (Pearson coefficient > 0.63, Spearman 
coefficient > 0.6) were observed between PEG and filtration in gc/L, 
gc/mg TSS and gc/(L(pounds/day)) (Table  2). VIRADEL has 
stronger correlation to filtration than to PEG for both normalized 
and non-normalized data.

Normalizations using flow rate and flow rate/population 
reduced the correlations of gene concentrations among VIRADEL, 
PEG, and filtration compared to the correlations using the 
non-normalized data (gc/L) (Table 2). For instance, both Pearson 
and Spearman correlation coefficients between PEG and filtration 
were reduced from 0.67 (N2, Pearson, gc/L) and 0.6 (N2, Spearman, 
gc/L) to 0.45 (N2, Pearson, gc/day) and 0.5 (N2, Spearman, gc/
day), respectively (Table 2). Conversely, normalizations using TSS 
and flow rate×TSS enhanced the correlations of gene concentrations 
among the three methods. For instance, higher correlation 
coefficients (Pearson’s r ranged from 0.73 (N1 gene) to 0.76 (N2 
gene), Spearman’s r ranged from 0.64 (N2 gene) to 0.66 (N1 gene), 
all p < 0.05) were observed between PEG and filtration gene 
concentrations after normalization using flow rate×TSS compared 
to the correlation coefficients for non-normalized data (gc/L) 
(Pearson’s r ranged from 0.63 (N1 gene) to 0.67 (N2 gene), 
Spearman’s r = 0.6 (both N1 and N2 gene), all p < 0.05).

3.2.2. Dynamic time warping of N1 and N2 gene 
concentrations among three concentration 
methods

Detecting patterns and comparing similarities of gene 
concentration time series data are critical for comparing the 
concentration methods. Dynamic time warping (DTW) identifies 
the most similar patterns and the optimal warping match between 
two time series by calculating the minimum DTW distance (51, 
53, 58). Shorter DTW distances indicate higher degree of 
similarity in patterns/shapes between two time series (59, 60). 
Table 3 presents the DTW minimum distances among the N1 and 
N2 gene concentrations by VIRADEL, PEG, and filtration 
methods. Smallest DTW distances were observed between 
VIRADEL and filtration for both non-normalized and normalized 
data, which indicated that VIRADEL has a higher degree of 
similarity with filtration than with PEG. Largest DTW distances 
were observed between VIRADEL and PEG for both 
non-normalized and normalized data, indicating that VIRADEL 
and PEG have the least similarity. This finding was consistent with 
the sampling and concentration mechanisms since VIRADEL 
targets free and suspended viral particles in the dissolved phase of 
wastewater, whereas PEG targets particle-associated viruses, some 
of which may represent previously shed and accumulated viruses 
in the sewer stream (3, 22).

Normalization using flow rate decreased the similarity among 
methods. For instance, the DTW distance between VIRADEL and 
filtration increased significantly after normalizing using flow rate 
(gc/day), indicating that the similarity between VIRADEL and 
filtration was reduced after normalization (Table 3). Conversely, 
normalization using TSS and flow rate×TSS strengthened the 
similarity among methods. For instance, the DTW distances 
decreased in gc/mg TSS and gc/(L(pounds/day)) comparing to the 
DTW distance in gc/L among the methods, indicating the 

TABLE 2 Correlation coefficients among gene concentrations by VIRADEL, PEG, and filtration methods.

Methods (Unit) Gene (Correlation)

N1 (Pearson) N1 (Spearman) N2 (Pearson) N2 (Spearman)

V-P (gc/L) 0.17 0.36 0.12 0.34

V-P (gc/day) 0.10 0.17 0.11 0.13

V-P (gc/day/person) 0.10 0.17 0.11 0.13

V-P (gc/mg TSS) 0.29 0.41 0.27 0.46

V-P (gc/(L(pounds/day))) 0.46 0.58 0.43 0.62

V-F (gc/L) 0.41 0.46 0.23 0.40

V-F (gc/day) 0.26 0.13 0.04 0.05

V-F (gc/day/person) 0.26 0.13 0.04 0.05

V-F (gc/mg TSS) 0.49 0.47 0.27 0.39

V-F (gc/(L(pounds/day))) 0.59 0.64 0.41 0.60

P-F (gc/L) 0.63 0.60 0.67 0.60

P-F (gc/day) 0.46 0.51 0.45 0.50

P-F (gc/day/person) 0.46 0.51 0.45 0.50

P-F (gc/mg TSS) 0.67 0.63 0.68 0.60

P-F (gc/(L(pounds/day))) 0.73 0.66 0.76 0.64

V represents VIRADEL, P represents PEG, F represents filtration.
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improvement of similarity among methods after normalization 
(Table 3).

3.3. Similarity and TLCC analysis between 
three concentration methods and 
COVID-19 cases

3.3.1. Dynamic time warping between three 
concentration methods and COVID-19 cases

Wastewater surveillance data for COVID-19 primarily contain 
temporal data of viral gene concentrations and clinical cases. DTW 
analysis were performed between gene concentrations derived from 
the three concentration methods (VIRADEL, PEG, and filtration) 
and the 7-day moving average of total COVID-19 cases for both 
normalized and non-normalized data. For non-normalized data 
(gc/L), the smallest DTW distance was found between VIRADEL 
and total COVID-19 cases (Table 4). This indicates that VIRADEL 
(gc/L) has the highest similarity to total COVID-19 cases among the 
three concentration methods tested. The largest DTW distance was 
found between PEG (gc/L) and total COVID-19 cases, indicating the 
PEG method for concentration yields the least similarity to clinical 
cases. Normalizing gene concentration data using flow (gc/day) 
demonstrated similar findings. Conversely, normalization using TSS 
and flow×TSS can significantly increase the similarity between PEG 
and total COVID-19 cases but concurrently decrease the similarity 
between VIRADEL and total COVID-19 cases. Specifically, for 
normalized data (gc/mg TSS, gc/L(pounds/day)), the smallest DTW 
distance was identified between PEG and total COVID-19 cases, 
indicating the PEG has the highest similarity to total COVID-19 
cases. The largest DTW distance was identified between VIRADEL 
and COVID-19 cases, indicating that VIRADEL has the lowest 
similarity to total COVID-19 cases.

3.3.2. Time lagged cross correlation and peak 
synchrony between three concentration 
methods and COVID-19 cases

The relative timing of the wastewater gene concentrations {gc/L, 
gc/day, gc/day/person, gc/mg TSS, and gc/[L(pounds/day)]} of 
VIRADEL, PEG and filtration were compared to the total COVID-19 
cases using TLCC and peak synchrony. To evaluate if wastewater viral 
concentrations of the three methods lead or lag COVID-19 cases, the 
total COVID-19 case data were shifted by a period of −20 (lagging) to 
+20 days (leading) and the Pearson’s correlation coefficients were 
calculated between cases and wastewater viral gene concentration for 
each shift. The leading or lagging metric varied for each method, 
which was determined by comparing the strongest Pearson’s 
correlation coefficient.

For the VIRADEL method, both N1 and N2 gene concentrations 
(gc/L) were strongly correlated with COVID-19 cases, covering 
shifting windows between −20 and + 20 days (Figure 7A). The highest 
correlation coefficient was observed when offset is +12 days 
(Figure 7A), indicating that SARS-CoV-2 gene concentrations (gc/L) 
in wastewater by the VIRADEL method lead COVID-19 cases by 
12 days, which concurred with previous findings of a 35-day lead time 
of gene concentrations preceding total COVID-19 cases prior to the 
Omicron surge (3). For both non-normalized and normalized data, 
VIRADEL always led COVID-19 cases with a variety of lead times 
(Table 5).

For the PEG method (gc/L), the strongest correlation coefficients 
were observed with an offset of -12 days, indicating that SARS-CoV-2 
gene concentrations by the PEG method lagged reported COVID-19 
cases by 12 days during the study period (Figure 7B).

For the filtration method (gc/L), the highest correlation 
coefficient was observed with an offset of -7 days for the N1 gene 

TABLE 3 Dynamic time warping (DTW) minimum distances among gene 
concentrations by VIRADEL, PEG, and filtration methods.

Methods (Unit) Gene

N1 N2

V-P (gc/L) 4.37E+07 4.07E+07

V-P (gc/day) 3.23E+16 3.06E+16

V-P (gc/day/person) 1.04E+04 9.83E+03

V-P (gc/mg TSS) 3.93E+05 3.68E+05

V-P (gc/(L(pounds/day))) 2.42E+02 2.23E+02

V-F (gc/L) 7.51E+06 3.14E+06

V-F (gc/day) 5.87E+15 2.35E+15

V-F (gc/day/person) 1.89E+03 7.56E+02

V-F (gc/mg TSS) 6.74E+04 2.84E+04

V-F (gc/(L(pounds/day))) 4.33E+01 1.92E+01

P-F (gc/L) 2.60E+07 2.85E+07

P-F (gc/day) 1.83E+16 2.27E+16

P-F (gc/day/person) 5.89E+03 7.30E+03

P-F (gc/mg TSS) 2.45E+05 2.94E+05

P-F (gc/(L(pounds/day))) 1.46E+02 1.66E+02

V represents VIRADEL, P represents PEG, F represents filtration.

TABLE 4 Dynamic time warping (DTW) minimum distances between gene 
concentrations by VIRADEL, PEG, as well as filtration methods and total 
COVID-19 cases.

Method-cases (Unit) Gene

N1 N2

V-cases (gc/L) 1.04E+05 1.28E+05

V-cases (gc/day) 4.72E+14 4.86E+14

V-cases (gc/day/person) 4.61E+05 4.61E+05

V-cases (gc/mg TSS) 4.55E+05 4.54E+05

V-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05

P-cases (gc/L) 4.39E+07 4.08E+07

P-cases (gc/day) 3.30E+16 3.14E+16

P-cases (gc/day/person) 4.43E+05 4.42E+05

P-cases (gc/mg TSS) 9.87E+04 1.14E+05

P-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05

F-cases (gc/L) 7.35E+06 2.95E+06

F-cases (gc/day) 6.20E+15 2.82E+15

F-cases (gc/day/person) 4.57E+05 4.59E+05

F-cases (gc/mg TSS) 2.87E+05 3.92E+05

F-cases (gc/(L(pounds/day))) 4.61E+05 4.61E+05

V represents VIRADEL, P represents PEG, F represents filtration, cases represents total 
7-day-moving-average clinical cases.
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and -11 days for the N2 gene, indicating that SARS-CoV-2 gene 
concentrations in wastewater lagged reported COVID-19 cases for 
7 days (N1) and 11 days (N2), respectively (Figure 7C). Likewise, 
similar observations were found for normalized data where the 
filtration method yielded data that lagged clinical cases (Table 5). 

Table 5 summarized the lead/lag time between VIRADEL, PEG, 
and filtration methods and total COVID-19 cases. The length of 
the leading or lagging time differed with dissimilar normalizations. 
However, the leading or lagging pattern of each method did not 
change, where VIRADEL measurements were always leading 

FIGURE 7

Pearson correlation coefficients for TLCC and peak synchrony between wastewater viral concentrations and COVID-19 cases with offsets between 
−20 (lagging) and  +  20 (leading) days for the three methods, including (A) VIRADEL, (B) PEG, and (C) Filtration.
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COVID-19 cases, whereas PEG and filtration measurements 
routinely lagged COVID-19 cases.

4. Discussion

There is an ongoing effort to optimize methods to recover and 
concentrate SARS-CoV-2 from wastewater in support of 
actionable public health outcomes (33, 61). In this study, three 
concentration methods were evaluated for concentrating SARS-
CoV-2 from wastewater, spanning the transition between Delta 
and Omicron variants circulating in the Detroit, MI metropolitan 
area. The three methods share common characteristics, especially 
downstream where they follow similar procedures of nucleic acid 
extraction and quantification such as RT-ddPCR or 
RT-qPCR. Likewise, their recovery efficiencies are reported as 
comparable (2, 3, 22, 34, 62).

4.1. VIRADEL: opportunities and obstacles

Several studies have previously adopted VIRADEL as the 
concentration method for SARS-CoV-2 in wastewater (1–4, 13). 
An attribute of the VIRADEL method is the ability to process large 
volumes (10 – 50 L) of wastewater, thus facilitating capture of free 
and suspended viral particles that are arguably most representative 
of viruses shed by recently infected individuals (3, 35). This 
establishes VIRADEL as a concentration method capable to 
provide early warning that leads case reporting (1, 3), which was 
also verified by TLCC analysis in this study (Table 5). Limiting 
widescale adoption of VIRADEL is labor-intensive preparation of 
sampling units which require extensive washing and disinfection 
prior to use. VIRADEL (63) also requires access to large volumes 
of wastewater which may not be  available to all researchers. 
Further, the required large volumes may necessitate use of grab 
samples which typically yield higher variability than composite 
samples which is the sampling method of choice for many 
wastewater surveillance efforts (64). VIRADEL requires trained 
personnel for comparatively laborious work with limited samples 
(n = 15) processed over a relatively long time (4-6 h). VIRADEL 
also requires multiple large centrifuges as well as expensive and at 
times, supply chain-limited consumables. Therefore, VIRADEL 
may not be an ideal choice for routine wastewater surveillance 
projects in common microbiology laboratories. However, it was 
clear from the comparative analysis conducted that VIRADEL has 

clear potential to be  implemented as a tool to provide early 
warning to inform public health actions (1, 3, 13).

4.2. PEG: opportunities and obstacles

Apart from requiring access to a centrifuge, the consumables 
required are widely available and relatively inexpensive, lending itself 
as one of the most broadly applied concentration methods for routine 
wastewater surveillance (3, 22, 31, 33, 62, 63). On the other hand, PEG 
is restricted to processing smaller volumes of wastewater (usually 0.05 
to 2 L) and only a portion of the sample pellet is used to recover and 
extract RNA, which can be affected by the variation of samples and 
representation of all viruses in wastewater (3, 22, 33, 35).

Unlike VIRADEL, PEG targets particle-associated viruses 
consistent with reports that identify solids as the phase yielding 
highest SARS-CoV-2 concentrations in wastewater (63). While a 
fraction of these particles will represent recently deposited SARS-
CoV-2, the majority may represent previously shed and accumulated 
viruses in the sewer stream and later resuspended during flow 
fluctuations, thus providing a mechanism for the method to yield data 
lagging clinical COVID-19 cases. Though the exact mechanism of 
PEG is not well understood, several studies proposed that it captures 
viruses that are sorbed to larger precipitates and solids, consistent with 
a high quantity of TSS in wastewater (3, 22). In this study, through the 
DTW analysis, PEG yielded data were normalized using TSS and flow 
× TSS, which increased the degree of similarity between PEG and total 
COVID-19 cases (Table 4). This demonstrated that PEG yielded data 
were largely affected by the presence of TSS. VIRADEL, instead, 
captured free and suspended viruses in the supernatant wastewater. 
Thus, normalizing the VIRADEL data using TSS and flow × TSS 
decreased the similarity between VIRADEL and cases (Table 4).

Through the TLCC analysis, this study also demonstrated that 
PEG gene concentrations lagged COVID-19 cases (Table 5), which 
embraced the aforementioned sampling mechanism of PEG (22). PEG 
method did not provide an early warning (leading window) for 
COVID-19 cases which concurred with our previous findings, 
whereas VIRADEL provided early warnings ahead of clinical cases 
while PEG lagged clinical cases for the Detroit area (3).

However, several studies using PEG provided early warnings of 
impending COVID-19 cases (65). Notably, in these studies, PEG was 
applied to different types of samples such as primary sewage sludge, 
which is a different sample matrix from untreated wastewater samples, 
thus needing more investigation on the impact of sample types on 
early warnings (65). Kumar et al. (66) identified early warnings using 

TABLE 5 Lead/lag time between wastewater viral concentrations by VIRADEL, PEG, as well as filtration methods and total COVID-19 cases.

Units Method (Gene)

V (N1) V (N2) P (N1) P (N2) F (N1) F (N2)

gc/L* +12 +12 -12 -12 -7 -11

gc/day +13 +13 -6 -6 -2 -10

gc/day/person +13 +13 -6 -6 -2 -10

gc/mg TSS +11 +11 -9 -9 -7 -12

gc/(L(pounds/day)) +9 +9 -14 -14 -11 -13

V represents VIRADEL, P represents PEG, F represents filtration, * was demonstrated in Figure 7., + indicates lead time, – indicates lag time.
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PEG in the early stage of the pandemic in August 2020 in India (66). 
PEG and other concentration methods [such as ultrafiltration (17, 67) 
and adsorption-precipitation (68)] identified early warnings in the 
early stage of the pandemic when testing capacities were largely 
limited, and societal responses to the pandemic and clinical data 
reporting were significantly delayed (3, 69). In addition, earlier 
prevalent COVID-19 variants including Alpha, Beta and Gamma were 
reported with longer incubation times than Delta and Omicron 
variants, leading to prolonged early warning potentials of wastewater 
surveillance in the early stages of the pandemic (70).

Though PEG was reported to provide early warnings, it may have 
a shorter early warning window than VIRADEL due to the 
fundamental disparity of their targets, that being newly contributed 
free and suspended viral particles versus particle-attached virus, some 
of which may be considered previously shed and accumulated and 
subsequently resuspended from sediment (3). In the current study, 
PEG was shown to lag clinical cases while VIRADEL was leading 
clinical cases for both normalized and non-normalized data (Table 5). 
Overall, the early warning potential of PEG needs further 
investigations in terms of sample types, sampling mechanisms and 
locations, stage of the epidemic, among other factors.

4.3. Filtration: opportunities and obstacles

Filtration is commonly applied to recover and concentrate viral 
RNA in water samples. It achieves generally good recovery efficiencies, 
is relatively inexpensive using commonly available lab equipment and 
simple protocols and provides consistent performance and inclusive 
measurement since it captures viruses from both solids and liquid 
fractions by nature of forcing free viral particles across trapped solids 
(33, 37). However, filtration has several drawbacks. First, the number 
of available filtration units restricts the number of samples that can 
be processed concurrently (33). Meanwhile, clogging of filters can 
occur due to high variations of turbidity in wastewater. While this can 
be offset in part by use of a caulking gun to exert more pressure on the 
sample being filtered, in reality, volumes are limited to 
~0.1 L. Additionally, filtration measurements lagged the COVID-19 
clinical cases in the current study, thus, its ability to provide early 
warnings for impending cases is called into question. The recovery 
efficiencies also differ with different filters (33).

4.4. Future directions

The mechanism and implications of primarily collecting viruses 
attached to solids that may have settled and resuspended before sampling, 
such as by the PEG, needs further investigations. Notably, multiple 
studies have reported that the integrity of SARS-CoV-2 RNA was higher 
when sorbed to suspended solids, organic matter, and large bio-solids 
which provide protection from predation and inactivation. This can 
be  explained by the hydrophobicity of SARS-CoV-2 viral particles, 
leading to their adherence to wastewater solids and longer persistence 
compared to free viruses in the supernatant wastewater (71–73).

The implications of seasonal variations in SARS-CoV-2 
persistence in wastewater needs further investigations. Seasonal 
variations of wastewater temperature and pH are reported to affect 
the persistence of viral RNA in wastewater (74). However, 

SARS-CoV-2 RNA was shown to be highly stable at 4°C aqueous 
environment or in a wide pH range at room temperature (75, 76). 
Multiple studies reported the detectability and persistence of SARS-
CoV-2 RNA in untreated wastewater solids samples. For instance, 
researchers found that SARS-CoV-2 RNA was consistently detected 
for 29 days and 64 days at 4°C and -20°C, respectively in wastewater 
solids pelleted by centrifugation (77). Another study indicated that 
only minimal reduction of SARS-CoV-2 RNA was observed for 
wastewater solids samples after 100 days (78). Additionally, 
researchers established models to indicate that viral RNA can 
be detected in wastewater even with long sewer travel time (100 h), 
especially with lower average wastewater temperature in northern 
cities such as Detroit (74). A recent study also indicated that 
biofilms could mediate the fate of SARS-CoV-2  in wastewater, 
especially leading the viral RNA to prolonged presence (79).

The effect of varying sampling volumes needs further investigation. 
Some studies indicated that a larger sampling volume can increase the 
sensitivity of the sampling method, suggesting that it will detect lower 
levels of viral RNA in wastewater samples (80). Similarly, researchers 
suggested that processing of larger sample volumes may help to lower 
the method detection limits (74). But at the same time, keeping the 
required samples sizes low can reduce shipping costs between sampling 
location and the analytical laboratory as well as reduce space for 
storage (74). Other researchers indicated that detection sensitivity can 
be improved by increasing the sample volume from 100 mL to 500 mL 
wastewater for testing SARS-CoV-2 (6).

However, other researchers presented that large-volume sampling 
did not significantly enhance the sensitivity of methods (81). For 
instance, Zheng et  al. (81) found that wastewater concentration 
methods (they used ultracentrifugation) using less volume of 
wastewater was preferable than larger volume of wastewater in terms 
of sensitivity for testing SARS-CoV-2. The study revealed that when 
using the same concentration methods, no significant difference was 
observed in the viral RNA concentrations between experiments 
conducted with a larger volume of wastewater and those conducted 
with a smaller volume (81). Some studies indicated that a larger 
sampling volume may also dilute the wastewater sample, which can 
lead to a lower viral RNA concentration (82).

Overall, the sampling volume for wastewater surveillance of 
SARS-CoV-2 using different concentration methods will depend on 
several factors, including the sensitivity of the method, the 
concentration of viral RNA in the wastewater, and the size of the 
population being monitored. It is critical to consider and address these 
factors when analyzing wastewater surveillance data and more 
in-depth research on how the sampling volume affect statistical results 
are needed.

The time of sampling may potentially affect results in sewershed 
sampling. The effect of sampling time in large interceptors, like the 
ones sampled in this study, is less significant, since the interceptor 
wastewater is mixed at the pumping stations. A few studies have 
reported gene concentration varying on an hourly basis (83, 84) 
although the temporal variability of SARS-CoV-2 concentrations in 
wastewater remains ambiguous (83, 85). It has been suggested that 
composite samples may circumvent the within-day variation of viral 
concentrations (83). Whereas both the PEG and filtration methods 
used composite samples, the large volume required for VIRADEL 
necessitated separate sampling which was conducted over a period of 
several hours to help reduce temporal variability. Further, considering 
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the vast sewersheds and population of nearly 4 million people that 
GLWA’s three interceptors serve, the concentrations of SARS-CoV-2 in 
wastewater may be  highly diluted and within-day variations can 
be negligible. Future studies are called to examine within-day variation 
of SARS-CoV-2.

Admittedly, there are caveats to the current study that should 
be considered and discussed. The study period was limited to the 
transition between Delta and Omicron VOCs that occurred between 
fall 2021 and winter 2022. With each successive resurgence of COVID-
19, differences are reported related to disease trajectory including 
incubation time, shedding dynamics and disease severity (18, 86). For 
instance, the incubation time was shorter during the Omicron surge 
compared to the previous variants, inevitably reducing the early 
warning potentials of wastewater surveillance in the later stage of the 
pandemic (3, 86). Further, the changing viral shedding dynamics, viral 
decay kinetics, and shedding duration of the Omicron variant are not 
well understood and many uncertainties remain (18, 87). As such, the 
lead and lag times reported here cannot be extrapolated to past or 
future SARS-CoV-2 variants. In addition, sampling frequency was 
limited to weekly samples and thus less informative for establishing 
time series or less likely to depict accurately the actual fluctuations of 
wastewater viral concentrations (cdc.gov). Feng et al. (88) proposed a 
minimum of two samples collected weekly to establish the time series 
data of wastewater viral concentrations for continuous trend analysis. 
Some researchers have even suggested daily or very frequent sampling, 
if the laboratory is capable of handling increased numbers of samples, 
considering rapid resurgence of COVID-19 cases (89). Indeed, the 
filtration method has been used to analyze samples 5 days weekly since 
the emergence of the Omicron VOC as part of Ontario’s Wastewater 
Surveillance Initiative in the Windsor-Essex region located across the 
international border with Detroit (Q. Geng, R. Corchis-Scott, 
R.M. McKay, unpublished). While SARS-CoV-2 signal intensity 
derived from this approach does not provide a clear early warning of 
clinical cases, preliminary analysis supports its use as a leading 
indicator of COVID-19-related hospitalizations in the region 
(Q. Geng, R. Corchis-Scott, R.M. McKay, unpublished). This is 
important considering that clinical testing capacity across North 
America was overwhelmed by infections attributed to Omicron and 
is thus no longer a reliable indicator of disease prevalence (90).

5. Conclusion

This study is among the first to implement, evaluate, and compare 
commonly applied wastewater virus concentration methodologies to 
recover and concentrate SARS-CoV-2 from wastewater amid the 
transition between Delta and Omicron VOCs. Analytical approaches, 
including Pearson and Spearman correlations, Dynamic Time 
Warping (DTW), and Time Lagged Cross Correlation (TLCC) and 
peak synchrony, were performed to analyze the relations among three 
methods as well as the relations between methods and COVID-19 
cases. To our knowledge, this is the only study to implement Dynamic 
Time Warping to compare wastewater surveillance time series data 
and successfully identify the similarities/dissimilarities among the 
methods and between methods and clinical data. The analytical 
approach used can be  applied to different sample processing and 
concentration methods under various pandemic scenarios to evaluate 
method efficacy for different public health practices.
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Seasonal influenza is an annual public health challenge that strains healthcare

systems, yet population-level prevalence remains under-reported using standard

clinical surveillance methods. Wastewater surveillance (WWS) of influenza A can

allow for reliable flu surveillance within a community by leveraging existing

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) WWS networks

regardless of the sample type (primary sludge vs. primary influent) using an RT-

qPCR-based viral RNA detection method for both targets. Additionally, current

influenza A outbreaks disproportionately a�ect the pediatric population. In this

study, we show the utility of interpreting influenza A WWS data with elementary

student absenteeism due to illness to selectively interpret disease spread in the

pediatric population. Our results show that the highest statistically significant

correlation (Rs = 0.96, p = 0.011) occurred between influenza A WWS data

and elementary school absences due to illness. This correlation coe�cient is

notably higher than the correlations observed between influenza A WWS data and

influenza A clinical case data (Rs = 0.79, p= 0.036). This method can be combined

with a suite of pathogen data from wastewater to provide a robust system for

determining the causative agents of diseases that are strongly symptomatic in

children to infer pediatric outbreaks within communities.

KEYWORDS

influenza A, SARS-CoV-2, student absenteeism, wastewater, RT-qPCR

1. Introduction

As the world continues to deal with ongoing challenges associated with the COVID-19

pandemic, the re-emergence of seasonal respiratory pathogens such as influenza poses an

additive threat to public health. Influenza and pneumonia are ranked among the top 10

leading causes of death in Canada. It is estimated that influenza causes approximately

12,200 hospitalizations and 3,500 deaths per year (1). With numerous non-pharmaceutical

interventions placed during the COVID-19 pandemic, the dynamics of influenza exposure

and transmission, incidence rates, and symptom severity may have changed. This is evident

by the current increase in influenza infections and influenza-associated hospitalization rates

in Canada, which are above-expected levels that are typical for the flu season, spanning from

August 2022 to February 2023 (1, 2). Thus, there is now an immediate demand for improved

surveillance of this contagious disease.

Influenza viruses arise from the family Orthomyxoviridae. This family is unique in

that they are enveloped viruses with genomes that consist of negative-sense single-stranded

RNA segments (3). There are four types of influenza viruses, A, B, C, and D. Within these,
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influenza A is the only flu virus known to cause flu pandemics

(4). The influenza A type virus is further classified into subtypes,

clades, and subclades based on the presence of surface viral proteins

hemagglutinin (H) and neuraminidase (N). Currently, the most

commonly detected subtypes found circulating in human infections

are A(H1N1) and A(H3N2) (4). The most commonly reported

symptoms of the virus are fever, cough, runny nose, body aches,

and sore throat (4).

One of the important lessons learned from the COVID-

19 pandemic is that monitoring respiratory pathogens through

conventional clinical testing (nasal swabs, sample collection, and

RT-qPCR) presents many challenges and may not be sufficient

for pathogen surveillance where timely information is required.

Thus, the surveillance of pathogens in wastewater has been

successfully implemented as a credible technique to complement

monitoring SARS-CoV-2 infections within communities (4, 5).

When clinical SARS-CoV-2 tests were widely available in Canada,

they provided a reliable and robust metric that correlates with

SARS-CoV-2 RNA concentrations in domestic wastewater (5,

6). However, interpreting SARS-CoV-2 wastewater data has

been challenging (variable correlation strength, lack of reported

cases, and inconsistent lead vs. lag association to clinical data).

Additionally, public accessibility to clinical COVID-19 PCR tests

has been greatly limited in Canada and is currently only available

to high-risk groups.

Similar to current COVID-19 testing, influenza A testing is

limited to people in hospitals or associated with an institutional

outbreak (7). As such, there are incomplete incidence data available

to compare withWWS viral signals, thus making the interpretation

of wastewater epidemiology data very complex.

Wastewater monitoring is quickly emerging as a powerful

epidemiological tool in public health surveillance and the early

detection of contagious diseases. It is unbiased, inexpensive, and

can be implemented easily, as one wastewater sample can be used to

test small communities as well as large populations (8). In addition

to SARS-CoV-2, wastewater surveillance can also be applied to

target influenza and other pathogens using similar a DNA/RNA-

based RT-qPCR detection methodology (9). For example, Mercier

et al. (10) recently reported the feasibility of monitoring influenza

A viral RNA gene copies in wastewater primary sludge within three

distinct communities in Ottawa, Canada, with lead times between

14 and 21 days over clinical testing data.

In this study, we aimed to contribute to the growing WWS

knowledge base by exploring other methodological approaches

that aid in the interpretation of WWS data, particularly where

the clinical case data are limited. Using a detection method

focusing on primary influent, we explored the efficacy of school

absences due to illness as a proxy measure of community influenza

A prevalence and compared these inferred cases with influenza

A viral loads in local domestic wastewater samples from Ajax,

Ontario, Canada. This analysis will also allow the monitoring

of influenza infections in the pediatric population, which likely

serves as a major driver of total population influenza A prevalence

in sewershed communities that flow into municipal wastewater

treatment plants.

Using time-step Spearman’s rank correlation analysis

and pepper mild mottle virus (PMMoV) normalization

to rescale influenza A and SARS-CoV-2 RNA gene

copies in wastewater, we compared the relationships

between levels of influenza A and SARS-CoV-2 gene

copies and (1) student absences due to illness and (2)

clinical cases of influenza A to determine the lead and

lag time of influenza A WWS data using 1-, 3-, and 5-day

averaging times.

2. Materials and methods

2.1. Wastewater sample collection and
PEG-NaCl viral concentration

Raw wastewater samples were collected 3 days/week for almost

13 weeks from 15 September to 13 December 2022, from a

sanitary sewershed pumping station in Ajax, Ontario, Canada

that captures domestic wastewater from approximately 150,000

people. The sewershed primarily reflects a suburban residential

area (>80%), with some commercial and light industries. Each

sample represented hourly sub-samples of equal volume collected

over a 24-h period, for a final composite sample volume of 500mL

that was stored at 4◦C. Wastewater samples were transported

in sterile, sealed 500mL plastic containers at 4◦C to Ontario

Tech University, Oshawa, Ontario, Canada. Upon arrival, the

samples were stored at 4◦C for up to 24 h until processing

and analysis.

To precipitate the influenza viral particles and PMMoV

particles from wastewater, all samples were mixed thoroughly

before 30mL of wastewater was transferred to the NalgeneTM

Oak Ridge High-Speed PPCO Centrifuge Tubes (Thermo Fisher

Scientific, MA, USA) containing 10mL of 4X PEG–NaCl

buffer (40% w/v PEG 8,000 and 1.5M NaCl), vortexed briefly

and centrifuged using a SORVALL RC 6+ Ultracentrifuge

(Thermo Fisher Scientific, MA, USA) at 12,000 x g for

2 h at 4◦C (11, 12). After discarding the supernatant, a

second centrifugation step at 12,000 x g for 10min was

performed to help solidify the pellet. The PEG–NaCl method

was utilized for all experimental samples to concentrate the

viral particles. Before RNA extraction, the pellet mass for all

samples was measured using a top-loading balance (Sartorius,

Goettingen, Germany).

2.2. Nucleic acid extraction

Total RNA was extracted from the concentrated wastewater

pellets using the RNeasy R© PowerMicrobiome R© Kit (Qiagen,

Germantown, MD) with the following alterations from the

recommended protocol: 100 µL of phenol–chloroform–isoamyl

alcohol (25:24:1, pH 6.5–8) was added to each sample prior to

the lysis step (Thermo Fisher Scientific, MA, USA). The pellet was

resuspended with 650 µL of the lysis buffer and transferred to the

PowerBead (glass, 0.1mm) tubes (QIAGEN, Germantown, MD).

The subsequent steps were performed following the recommended

protocol from the manufacturer’s kit. The total RNA was eluted

from the kit spin column using 100 µL of RNase-free water.
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2.3. Quantitative reverse transcription PCR

Quantification of the influenza A matrix (M) gene, SARS-

CoV-2 viral nucleocapsid (N) gene, and the PMMoV coat protein

gene in the composite wastewater samples was performed using

the Reliance One-Step Multiplex RT-qPCR Supermix (Bio-Rad,

Hercules, CA) utilizing a TaqMan-MGB (Applied Biosystems,

Massachusetts, USA) probe-based approach. Gene copy numbers

of influenza A in wastewater were determined using the WHO

influenza A M gene primer/probe to target a region of the M gene

that encodes for the M1 protein. The gene copy numbers of SARS-

CoV-2 in wastewater were determined using the US CDC 2019-

nCoV N2 Assay RUO primer/probe mix to target a region of the

N gene and have been discussed previously (13). PMMoV gene

copy numbers were determined using PCR primers developed by

Zhang et al. (14) to target a region of the PMMoV strain S genomic

sequence. All probes/primers used in this study and their sequences

are shown in Table 1.

For each wastewater sample, technical replicates were run in

triplicate, and serial dilutions of the Twist Synthetic H3N2 RNA

Control (Twist Bioscience, CA, USA) were run on every plate

to quantify the gene copies of influenza A (M gene) using the

standard curve method. Each reaction comprised a mixture of 5

µL of RNA template, 600 nM (M1) of each forward and reverse

primer, 100 nM (M1) probe, and 5 µL of 4X Reliance master mix

for a final reaction volume of 20 µL. Reactions were performed

in a CFX Connect Real-Time PCR Detection System (Bio-Rad,

Hercules, CA) beginning with a reverse transcription (RT) step at

50◦C for 10min, followed by a polymerase activation at 95◦C for

10min, and then 45 cycles of denaturation and annealing/extension

at 95◦C for 10 s and then at 60◦C for 45 s. The RT-qPCR analysis

was validated with no-template controls (NTCs) using PCR grade

water instead of RNA, no-reverse transcriptase controls (NRTs),

and the presence of PCR inhibitors was determined using a serial

dilution. All samples analyzed were quantified according to the

MIQE recommendations (15) using the standard curve method

with a synthetic RNA standard (Twist Synthetic H3N2 RNA

Control, Catalog #: 103002) that contains the complete genome

of influenza A/H3N2. A minimum 7-point standard curve with

technical triplicates for each point was performed for every RT-

qPCR experiment. The primer efficiency of influenza A (M1) was

approximately 91%. The R2 value was ≥0.99, and the slope of

the standard curve was ∼3.55. The limit of detection for the

influenza A M1 gene with a 95% coefficient of variation was

13.71 copies/mL of wastewater. Any crossing threshold values

above 40 cycles were identified as negative reactions, assuming

no amplification/detection occurred. The dynamic range of our

linear standard curve was between 1 × 103 copies/µL and 1.37 ×

100 copies/µL.

2.4. Influenza A case data

Influenza A case data for the city of Ajax were provided by

the Durham Region Works and Health Department (DRHD) and

represented cases identified within the sewershed when they were

reported to DRHD.

2.5. School absences

DRHD also collected student absence data due to illness for all

elementary and secondary schools within the region, as all schools

are required to report absences due to illness. Within the region of

Durham, the city of Ajax, ON, contains a total of 24 elementary

schools (J.K.–grade 8) with approximately 13,500 students and a

total of 3 secondary schools (grades 9–12) with approximately 6,000

students. The absenteeism data provided for this study did not

include specific absenteeism for each school in Ajax, but rather

a separate daily total percent (%) of absence due to illness (# of

students absent due to illness/total student population ∗ 100) for

elementary and secondary schools. Absences due to illness were

also collected for some Child Care Centers (CCC); however, these

data were limited because CCC absence reporting was voluntary,

and thus the sample size was too small for analysis.

The percentage of student absences due to illness obtained

from DRHD is a measure of the cumulative prevalence of illness

across schools (similar to the total number of cases). However,

TABLE 1 Listed are the primers and probes used to obtain WWS data.

Viral target Primer/Probe Sequence (5′ -> 3′) References

Influenza A MP-39-67For CCMAGGTCGAAACGTAYGTTCTCTCTATC (33)

MP-183-153Rev TGACAGRATYGGTCTTGTCTTTAGCCAYTCCA (33)

MP-96-75ProbeAs VIC-ATYTCGGCTTTGAGGGGGCCTG-MGBNFQ (33)

SARS-CoV-2 2019-nCoV_N2 For TTACAAACATTGGCCGCAAA (34)

2019-nCoV_N2 Rev GCGCGACATTCCGAAGAA (34)

2019-nCoV_N2 Probe FAM-ACAATTTGCCCCCAGCGCTTCAG-MGBNFQ (34)

Pepper mild mottle virus

(PMMoV)

PMMoV For GAGTGGTTTGACCTTAACGTTGA (14)

PMMoV Rev TTGTCGGTTGCAATGCAAGT (14)

PMMoV Probe VIC-CCTACCGAAGCAAATG-MGBNFQ (14)

Materials were obtained from Applied Biosystems (MA, USA). M= A/C, Y= C/T, R= G/A.
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given that WWS captures the daily abundance of viral genes within

the catchment area, for comparison purposes, we transformed the

% school absence due to illness data to represent the changes in

the daily incidence rate of illnesses in schools by calculating the

overall percent change (daily % absence due to illness reported–

% absence due to illness from the previous school day) for

primary and secondary schools in Ajax. Positive percent change

values represented the increase in daily incidence of illness within

schools, while negative values represented a decrease in illness

(students re-attending after recovery). Since we are not evaluating

the effectiveness of non-pharmaceutical interventions, only positive

percent changes in absences due to illness were used to infer the

incidence of new cases.

2.6. PMMoV normalization for comparisons
with influenza A case data and school
absenteeism

Viral WWS data are normalized with PMMoV to account for

the human fecal content in wastewater as PMMoV is generally

found at consistent levels in wastewater (WW) and reflects

population-level variability in waste production (14). PMMoV can

also be used to account for variability caused by slight changes

in extraction efficiency due to the complexity of the WW matrix

and variability in pellet weight. This normalization approach is

commonly used (10, 16–18) and helps not only reduce noise

due to variability but also helps to scale the data for comparison

with clinical surveillance data. Since PMMoV acts as a min–max

normalization factor to scale the data, the maximum andminimum

values are mostly within a 0 to 1 scale. This allows for comparison

with other data from different time periods or even different

sampling sites.

2.7. Statistical analysis

All data were assessed for normality. Wastewater viral

concentrations and % change in absenteeism due to illness were

not in compliance with parametric assumptions. Thus, a non-

parametric Spearman’s rank correlation coefficient (Rs) analysis

was performed using the daily PMMoV-normalized viral signals for

influenza A: (1) the associated influenza A cases clinically reported

and (2) the percentage (%) of change in school absenteeism for

primary and secondary schools. To examine if the strength of

associations between WWS data and clinical and absenteeism data

can be improved with smoothed data, the correlation was also

analyzed for 3-day and 5-day averages for both WWS data and the

absence/case data.

In addition, to examine the maximum Spearman’s correlation

values, a time-step correlation analysis was conducted between

WWS data and % change in school absenteeism and clinically

reported cases with a data offset of a range of +/– 7 days applied

to the % change in school absenteeism due to illness and reported

cases time series data. This data shift in clinical and absenteeism

metrics was applied to observe whether the correlation would be

stronger with a lead (– shifted) or lag (+ shifted) time for up to 7

days. Zero-day offset refers to the correlation between wastewater

signals and the case counts on the day of the wastewater sampling.

Lead times refer to wastewater data being correlated with later case

counts (e.g., a lead time of 3 days refers to the correlation between

wastewater data and clinical cases 3 days later). Lag times refer to

the wastewater data being correlated with earlier case counts (e.g., a

lag time of 3 days refers to the correlation between wastewater data

and clinical cases 3 days later). Corresponding p-values (obtained

using the Mann–Whitney test) were also calculated to determine

the statistical significance of each correlation (α = 0.05). Only

p-values for strong correlation values (Rs > 0.50) are discussed

below. For each averaging time, WWS data were only compared to

absences/case data for the same averaging time. As per other studies

(17) performing similar tests, the averages did not overlap, meaning

it was not a moving average.

3. Results and discussion

3.1. Time-step correlation analysis between
PMMoV-normalized WWS data and clinical
surveillance metrics

Time-step correlation analyses were performed using PMMoV-

normalized influenza A WWS data and cases of influenza A

reported in the catchment area, which showed a strong correlation

between influenza A WWS data and clinical surveillance data

(Figure 1A). Comparisons of the daily PMMoV-normalized

influenza A signal to the daily number of clinically reported cases

showed a maximum Spearman’s rank correlation coefficient value

Rs = 0.80 (p = 0.579) when the data were adjusted with a 4-day

lead time. Comparing the 3-day average for PMMoV-normalized

influenza A WWS data to the 3-day average influenza A cases

by reported date, the highest correlation (Rs = 0.75, p = 0.168)

was observed with a 6-day lead time. However, these correlation

values were not statistically significant. Only the 5-day average for

PMMoV-normalized influenza A WWS data compared with the

5-day average influenza A cases demonstrated a strong significant

correlation with clinically reported cases of influenza A (Rs = 0.79,

p= 0.036) with a 5-day lead time (Figure 1A).

Time-step correlation analyses between PMMoV-normalized

WWS data and clinical surveillance metrics have been previously

explored and shown to effectively determine a lead time for

COVID-19 WWS surveillance data (8, 17–23). Although, many

have stated that the differences in gastrointestinal replication and

fecal shedding of SARS-CoV-2 and influenza A were a cause for

concern with respect to the effective detection[/interpretation] of

influenza A in wastewater (12, 24–28). Our study has demonstrated

that a 5-day lead time between smoothed datasets (5-day averaged

influenza A WWS data and 5-day averaged influenza A cases)

provided a strong significant correlation (Rs = 0.79, p = 0.036),

indicating the presence of influenza genes in wastewater was found

5 days before the increase in clinically reported influenza cases.

This successful detection of influenza in raw influent

wastewater and its correlation to clinical cases complements

other recent studies (10, 25) that have also documented successful

influenza A detection in both influent and sludge samples.

Researchers examining primary sludge from communities in
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FIGURE 1

Results of time-step Spearman’s rank (Rs) correlation analysis with a 7-day lag to a 7-day lead. Maximum Spearman’s rank correlation for each

averaging time highlighted if Rs > 0.50 (strong correlation) or Rs > 0.30 but < 0.50 (moderate correlation) (A) PMMoV-normalized influenza A (M1

gene) viral signal vs. influenza A cases by reported date, (B) PMMoV-normalized influenza A (M1 gene) viral signal vs. % change in elementary school

absences due to illness, (C) PMMoV-normalized influenza A (M1 gene) viral signal vs. % change in secondary school absences due to illness, (D)

PMMoV-normalized SARS-CoV-2 (N2 gene) viral signal vs. % change in elementary school absences due to illness, and (E) PMMoV-normalized

SARS-CoV-2 (N2 gene) viral signal vs. % change in secondary school absences due to illness.

Ottawa were able to detect influenza A with a 14–21-day lead

time against reported clinical case data (10). We were unable to

detect influenza A in wastewater prior to the first identified case of

influenza A within the catchment. However, this is unsurprising

given the differences in the viral abundance of enveloped viruses

that have been identified between primary sludge and primary

influent (17, 21, 29, 30).

3.2. Correlation between
PMMoV-normalized viral WWS data and %
change in absences due to illness in
elementary and secondary schools

Examining the correlation between the daily PMMoV-

normalized influenza A WWS signal and the daily percentage of

change in elementary school absences (see Figure 1B), the time-

step correlation analysis showed that the maximum significant

correlation value was obtained with a 4-day lead time (Rs =

0.96, p = 0.011). Comparisons of the smoothed 3-day averages of

influenza AWWSdata and% change in elementary school absences

due to illness produced only a weaker correlation with a 6-day lead

time (Rs = 0.62, p = 0.035), while no correlation (Rs < 0.5) was

observed with the 5-day averaged dataset. The correlation of daily

WWS data to primary school absenteeism (Rs = 0.96) with a 4-

day lead time was much higher than associations with clinically

reported cases (Rs = 0.79, p= 0.036) with a 5-day lead time.

In terms of the correlation between influenza AWWS data and

the daily % change in absences due to illness in secondary schools

(see Figure 1C), the time-step correlation analysis demonstrated a

weak significant correlation with a 7-day lead time (Rs = 0.52, p

= 0.011). Moreover, weak correlations (Rs < 0.50) were observed

when averaging the data across 3 and 5 days.

We also concurrently monitored for the presence of SARS-

CoV-2 RNA viral signal in wastewater from the same samples.

This demonstrated that our experimental method can be utilized

to detect both SARS-CoV-2 and influenza in wastewater influent.

For elementary schools, only the correlations between the daily

PMMoV-normalized SARS-CoV-2 WWS data and the daily %
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FIGURE 2

PMMoV-normalized viral wastewater signals vs. clinical surveillance metrics over the study period (1 September 2022 to 13 December 2022). (A) daily

PMMoV-normalized influenza A (M1 gene, WHO) viral signal plotted with the number of new influenza A cases by reported date. (B) Daily

PMMoV-normalized influenza A (M1 gene, WHO) viral signal plotted with daily % change in elementary school absences due to unspecified illness.

(C) Daily averaged PMMoV-normalized influenza A (M1 gene, WHO) viral signal plotted with daily % change in secondary school absences due to

unspecified illness. (D) Daily PMMoV-normalized SARS-CoV-2 (N2 gene, CDC) viral signal plotted with daily % change in elementary and secondary

school absences due to unspecified illness.

change in elementary absences due to illness showed a moderate

significant correlation (Rs = 0.60, p= 0.017) with a 3-day lead and

2-day lag time of WWS data. However, in contrast to influenza A,

the daily PMMoV-normalized SARS-CoV-2 WWS data showed a

stronger statistically significant correlation (Rs = 0.76, p = 0.005)

with the % change in secondary school absences due to illness, with

a 3-day lag time (see Figure 1D).

When comparing the correlations between influenza A WWS

data and % change in absences due to illness for elementary

and secondary schools, the maximum Spearman’s rank correlation

coefficients were observed when looking at elementary absences (%

change) due to illness. For each data set, regardless of the daily, 3-

, or 5-day averages, elementary school absenteeism was observed

to correlate significantly higher with influenza A WWS data than

secondary school absences. This suggested that influenza A was

potentially a causative agent in the absences of the elementary

school students in the studied sewershed. Conversely, a strong and

significant correlation was found between SARS-CoV-2 WWS data

and secondary school absences (% change) due to illness. This may

be due to the notable differences in disease presentation between

influenza A and COVID-19 in children, where the former is

commonly symptomatic compared to the latter (31, 32). However,

due to the limited data, we could not confirm the number of SARS-

CoV-2 cases in secondary school students (14–18 years old) to

corroborate our findings.

3.3. PMMoV-normalized viral WWS data
trends over time

The monitoring of PMMoV-normalized influenza and SARS-

CoV-2 viral signals over time is shown in Figure 2. An increase in

influenza WW signal can be observed from 13 October 2022 to 13

December 2022 along with increasing numbers of new influenza

cases reported within that time period which demonstrated that

WWS data may have an equivalent predictive power as clinical

testing. The PMMoV-normalized influenza wastewater signal to %

change due to absenteeism in elementary and secondary school

is also shown in Figures 2B, C. Thus, wastewater surveillance

was successfully employed using primary influent samples and

identified the influenza A outbreak within the community.

4. Conclusion

This study confirms that a primary influent-based wastewater

surveillance method is effective at monitoring influenza viral loads

in wastewater and that it can be monitored concurrently with other

infectious viruses such as SARS-CoV-2 using the same viral RNA

concentration and RT-qPCRmethod for both targets. Additionally,

this study demonstrated that school absenteeism may be a useful

tool for interpreting influenza A disease prevalence within a

pediatric population, and by extension, the total population within

a given sewershed.

Our results show that the highest statistically significant

correlation (Rs = 0.96, p = 0.011) occurred between daily

influenza A WWS data and elementary school absences due

to illness. This correlation coefficient is notably higher than

the highest statistically significant correlations observed between

influenza A WWS data and influenza A clinical case data

(Rs = 0.79, p = 0.036). Correlations between influenza A WWS

data and absences in secondary school were the lowest overall (see

Figure 1C). Interestingly, SARS-CoV-2 showed contrasting results

compared to influenza A WWS data, and the highest statistically

significant correlation observed was between SARS-CoV-2 WWS
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data and secondary school absences (Rs = 0.76, p = 0.005).

While SARS-CoV-2 WWS data and elementary absences showed

inconclusive results.

While absenteeism is a more coarse metric and relatively

ambiguous compared to clinical data, absences are less influenced

by sampling bias than clinical tests. This sampling bias is due to

clinical tests being reserved for a relatively small subset of the

population (typically the elderly or young children) that elect to

seek a healthcare intervention, whereas school absences are legally

required to be reported to the school by caregivers.

Overall, our results show great promise for inferring influenza

A prevalence in sewage-surveilled communities by adding student

absenteeism to the wastewater epidemiologist’s toolbox. However,

the application of this tool comes with some advantages and

disadvantages. With respect to advantages, we have confirmed that

there is a strong correlative relationship between specific clinical

indicators (influenza A cases) and WWS data. In addition, we

found an even stronger correlative relationship between a non-

specific clinical indicator (% change in elementary absences due

to illness) and WWS data. However, this method of comparing

non-specific clinical indicators of the pediatric population with

WWS data could be further improved by supplementing with

moreWWS data representing other clinically significant pathogens

circulating within the pediatric population such as respiratory

syncytial virus (RSV). For example, RSV also has a notable

symptomatic presentation in pediatric populations compared

with older age children. Another potential limitation with this

approach may be that the WWS data are impacted by “legacy

viruses” that remain pseudo-persistent in wastewater and are later

resuspended under high flow or other turbulence events and

detected at higher concentrations using qPCR. However, the fate

and stability of viruses in wastewater have not yet been determined.

Introducing an effective sampling strategy where sampling sites

are carefully selected and composite sampling is utilized with a

higher sampling frequency can increase the chances of monitoring

for “legacy viruses” due to resuspension or sloughing events.

The success of SARS-CoV-2 surveillance programs worldwide has

demonstrated that WWTP from different countries, populations,

catchment sizes, and designs, can all be sampled and provide a

very strong estimation of COVID-19 prevalence without being

affected by legacy virus concentrations (6, 26, 35). This WWS

method for the detection of influenza is not capable of predicting

or forecasting the number of students absent due to a specific

pathogen. However, this method, combined with a suite of

pathogen data from WWS, is reasonable enough to provide a

robust system for determining the causative agents of diseases that

are strongly symptomatic in children to infer pediatric outbreaks.

This kind of information could then be used to inform public

health interventions aimed at pediatric populations as well as the

larger community.
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Background: Wastewater surveillance (WWS) of pathogens is a rapidly evolving

field owing to the 2019 coronavirus disease pandemic, which brought about

a paradigm shift in public health authorities for the management of pathogen

outbreaks. However, the interpretation of WWS in terms of clinical cases

remains a challenge, particularly in small communities where large variations in

pathogen concentrations are routinely observed without a clear relation to clinical

incident cases.

Methods: Results are presented for WWS from six municipalities in the eastern

part of Canada during the spring of 2021. We developed a numerical model

based on viral kinetics reduction functions to consider both prevalent and incident

cases to interpret the WWS data in light of the reported clinical cases in the six

surveyed communities.

Results: The use of the proposed numerical model with a viral kinetics reduction

function drastically increased the interpretability of the WWS data in terms of

the clinical cases reported for the surveyed community. In line with our working

hypothesis, the e�ects of viral kinetics reduction modeling were more important

in small communities than in larger communities. In all but one of the community

cases (where it had no e�ect), the use of the proposed numerical model led to

a change from a +1.5% (for the larger urban center, Quebec City) to a +48.8%

increase in the case of a smaller community (Drummondville).

Conclusion: Consideration of prevalent and incident cases through the proposed

numerical model increases the correlation between clinical cases and WWS data.

This is particularly the case in small communities. Because the proposed model

is based on a biological mechanism, we believe it is an inherent part of any

wastewater system and, hence, that it should be used in any WWS analysis where

the aim is to relate WWS measurement to clinical cases.
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1. Introduction

The main objective of the epidemiology of infectious diseases

is to assess the distribution and effects of the etiologic agents on

the health and wellbeing of human populations. In the context

of the 2019 coronavirus disease (COVID-19) pandemic, this

has led to large-scale testing of suspected infected individuals

who underwent nasal and/or throat swab sampling followed by

polymerase chain reaction (PCR) assay detection of severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2). The objectives

of these campaigns were 2-fold: (i) to identify positive virion

carriers and (ii) to evaluate the acute progression of the pandemic

in the population. These data are fundamental for predicting

short-term demands on the healthcare system and assisting in the

pandemic management decision-making process. However, the 2

years of the pandemic have shown that obtaining population data

through individual tests is expensive both in terms of human and

monetary resources.

An alternative approach based on wastewater surveillance

(WWS) (1, 2) was proposed in the early phase of the COVID-

19 pandemic (3). WWS provides two types of information. The

first is the absence–presence in the community, which makes

WWS a tool corollary to a canary in coal mines. The second type

of information is the trend in the number of infections in the

population, which has the potential to detect trends earlier than by

monitoring clinical manifestations.

When coupled with a Geo-Data software (e.g., ArcGiS), WWS

allows us for the first time to obtain on a daily basis real population

health data. It is likely the first epidemiological data that are

truly populational in nature. This reality needs to be emphasized

as this new approach to generating population health data is

an open field of research that did not previously exist. Classical

epidemiological data are obtained from individuals presenting with

clinical manifestations of infection with or without confirmatory

molecular testing. Hence, classical data provide two specific types

of information: positivity and identity of the carrier. In the case of

WWS, information is populational. This means that one obtains

information on the presence and abundance of an etiologic agent

in a population of interest but not on the identity of the carriers.

Thus, the data provide an indication of the health of the community

as a whole. This is especially important to consider in an outbreak,

such as the COVID-19 pandemic, because the optimal exploitation

ofWWS population data in relation to public health intervention is

not straightforward and requires a new paradigm.

Correct interpretation of WWS data remains challenging

as viral concentrations can vary substantially from 1 day to

the next (4). In addition to the inherent daily variability in

the concentration of SARS-CoV-2 in wastewater, the midterm

temporal dynamics differs between large (collecting wastewater

from hundreds of 1,000’s of individuals) and small (collecting

wastewater from a few tens of 1,000’s of individuals) sewer systems.

Although the temporal trends of SARS-CoV-2 concentrations in

large systems (urban centers) typically follow a wave-like pattern

over several weeks consequent to local outbreaks (4), these trends

exhibit rapid increases and decreases in small systems (towns

and rural communities) (5). Similar observations are reported

here for samples obtained from sewer systems of different sizes.

These strong signal oscillations make it challenging to adequately

interpret wastewater data in small communities. Is the increasing

trend observed today a strong indication of an increased number

of incident1 cases in screened populations? To be a useful early

indicator of population viral infection, WWS data need to be

interpreted in terms of an overall viral attack in the population,

hence presenting as little unexplainable variability as possible. It is

hypothesized that the variability in temporal trends originates from

the different aspects of the system being analyzed. Two important

contributing factors are (i) interhuman variability in viral excretion

kinetics coupled with the size of the outbreaks and (ii) the structure

of the sewer system under study (including the water residence

time and accumulation of solids). Following this hypothesis, large

systems cover large populations with a high number of incident and

prevalent2 cases at any time and with long water and solid residence

times. Together, these elements tend to smooth out the variation

in SARS-CoV-2 concentrations. Conversely, small systems receive

fecal discharges from only a small number of prevalent cases at any

time and are characterized by short water residence times.

From a biological perspective, we would expect prevalent

cases to excrete a dwindling quantity of virions down to a

null value within a certain number of days following infection.

Concentrations measured from WWS reflect the combination of

several individuals at different stages of infection. From this work

hypothesis, we assumed that considering prevalent cases using a

reduction function to consider the evolution of virions in time

would better correlate with WWS data than simply considering

incident cases. Because this effect is more impactful in small

sewer systems, we hypothesized that considering viral excretion

kinetics would improve the interpretability of WWS data in small

sewer systems.

To test our hypothesis, we aimed to differentiate the effects

of incident and prevalent COVID-19 cases on temporal trends

in SARS-CoV-2 concentrations observed in wastewater samples

from wastewater treatment plant influents in large urban settings

and small towns and rural communities. To this end, we built a

numerical model that explicitly considers the evolution of viral

excretion over time. The main novelty of this work is that it

identifies key differences in the interpretation of WWS data

from large (densely populated) and small (with low population

density) sewer systems (where data are sparser than in large

communities) (6) and quantifies the effects of viral excretion

kinetics in different contexts.

2. Materials and methods

2.1. Sampling

Our study was conducted in six municipalities of different

sizes between January and June 2021 (Table 1). The size of the

communities included in our study ranged from 2,000 to> 540,000

citizens. Table 1 shows the type of raw wastewater samples and the

frequency of sampling used in each municipality. Grab samples

1 Individuals changing in status from non-disease to disease carrier (new

cases).

2 Individuals with positive disease over a specified period of time (existing

cases).
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refer to samples where all volumes are collected at instant t.

Composite samples refer to either samples where constant volumes

are collected over the course of a certain time (Composite 24 h) or

samples where the volume collected during a time interval varies

depending on the instantaneous flow rate (Composite-Flow 24 h).

The concentrations of SRAS-CoV-2 in grab samples typically show

a good correlation with the ones in composite samples (7–10).

However, grab sampling taken in mid to late mornings leads to

higher day-to-day variability and often to higher concentrations

than composite sampling (7–10). In most communities, direct

measurement of the flow rate was not possible, and the value was

estimated based on the pump power and time of usage.

Generally, samples were either analyzed the day they were

sampled or refrigerated (4◦C) for no more than 2 days before

analysis. Some specimens (4 January to 15 January) sampled at

the beginning of the project before the laboratory equipment for

analysis was ready were frozen. Two different temperatures were

used for frozen specimen: −20 and −80◦C. Although reported

work shows no loss of signal within 58 days at either −20 or

−75◦C (11), Centers for Disease Control and Prevention standards

suggested the use of < −70◦C for the preservation of samples (12).

2.2. Molecular analyses

The laboratory analysis of the samples was performed in

three steps. Filtration was performed to concentrate the organic

materials on the filters. SARS-CoV-2 virions tend to agglomerate

with organic material rather than to float in free water. Thus, the

collection of such organic materials and their concentrations on a

filter during the filtration phase is crucial. Each sample underwent

the first treatment in duplicate with a volume of 100mL (50mL

for Quebec City) and was stirred at 200 rpm for 30min at room

temperature. After stirring, the pH was adjusted to 4.0 ± 0.5, and

magnesium chloride (final concentration, 25mM) was added. Each

sample was filtered on 0.2µm mixed cellulose ester filters with

47mm diameter and stored at−80◦C until further analysis.

RNA was extracted using the Qiagen RNeasy

PowerMicrobiome Extraction Kit (QIAGEN). Briefly, all

sample filters were cut into eight pieces and placed in 1.5mL

centrifuge tubes. In each tube, 100 µL of bovine respiratory

syncytial virus (BRSV) was added as external control marker,

and a reference sample of BSRV was extracted simultaneously

to obtain the recovery rate to validate the extraction process.

The remaining samples were extracted according to the

manufacturer’s instructions.

A one-step reverse transcription quantitative PCR (RT-qPCR)

approach was used to quantify SARS-CoV-2, pepper mild mottle

virus (PMMoV), and BRSV gene markers in wastewater samples.

All primers and probes used in this study are listed in Table 2.

For all samples, amplification reaction mixtures (final volume,

20 µL) contained 5 µL template RNA, 10 µL of 2 × Luna
R©

Universal Probe One-Step RT-qPCR (BioLabs Inc., New England),

0.25µM for each forward and reverse primer, 0.125µM of probe,

and 1 µL of RT enzyme mix. The thermal cycling protocol

was as follows: 10min at 55◦C for RT denaturation and 5min

at 95◦C for initial denaturation followed by 40 cycles of two

steps consisting of 10 s at 95◦C and 30 s at 60◦C. All RT-qPCR

analyses were performed in triplicate (duplicate in Quebec) and

in multiplex mode using a real-time PCR apparatus. Calibration

curves were generated using the 2019-nCoV_N_Positive Control

provided by Integrated DNA Technologies. The internal marker

was PMMoV (14) and the external marker was BRSV. SARS-CoV-2

concentrations (gc/mL) were calculated from the cycle threshold

(Ct) values using a calibration curve. Ct values < 38 were

considered positive for SARS-CoV-2.

2.3. Mathematic modeling and statistical
analyses

For each sample, external and internal markers were

assessed for aberrant data. Mean Ct values were converted into

concentrations (gene copies per volume) using SARS-CoV-2

standard curves.

Viral load excretion from affected individuals varies with time

from a maximal value to a null value at time t. Hence, incident

cases obtained from health authorities from populational screening

were used along a kinematic reduction-viral load function to

consider this evolution in time. The modeled data comprise our

first dataset and are referred to in the rest of the work as themodeled

equivalent shedding cases. These modeled equivalent shedding cases

were subsequently compared with the second dataset composed

of SARS-CoV-2 concentrations obtained from the wastewater

sample analyses. The main objective is to establish whether it is

possible to define a function between SARS-CoV-2 concentration

data and modeled data using regression analysis, assuming that

modeled cases represent the real prevalence of viral infection in the

population (or a close approximation). If applicable, this function

would theoretically allow the calculation of an approximate number

of prevalent cases based on WWS data.

To define the relationship between the two datasets, we

hypothesized that the evolution of viral load shedding over time

was an important factor. We call this evolution of the time of the

viral load the kinetics reduction-viral load function.

To define the kinetics reduction-viral load function, we sought

clinical data from anal swab and/or fecal analyses, where viral

concentrations were measured at different time intervals. Positive

carriers carry higher viral loads from throat swabs at or just before

the onset of symptoms and that viral loads recede monotonically,

leading to a significant decline in infectiousness 8–9 days after

symptoms (15). For anal swabs, data (16) indicate that the mean

duration of SARS-CoV-2 shedding is 17.2 days in feces, although

live viruses have not been reported beyond 9 days of illness. Cevik

et al. (16) also reported studies that show that the viral shedding

duration is positively associated with age and severity of illness

and that asymptomatic SARS-CoV-2 infection is associated with

significantly lower viral loads after the initial stages compared with

symptomatic individuals (faster clearance), although the initial

viral load might be similar in both asymptomatic and symptomatic

individuals. Because little is known about the Ct threshold used

and because virus isolation was not conducted in studies on feces,

it is difficult to establish a clear comparison. Considering these

facts, the following hypotheses were used in this study to construct
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TABLE 1 Municipalities and their specifics.

Municipality Population Start month
in 2021

Sampling
frequency

TypeI Area
classification∗∗

Average

flow (m3/d)

In sewershed Density
(citizen/km²)

Québec City 542,300 1,210 February Daily 1 Large urban 359,000

Rimouski 48,650 146 January 3/week 1 Rural area 30,600 (est.∗)

Rivière-du-Loup 19,450 237 Mars 1/week 1–2 Rural area 15,250 (est.)

3/week

Drummondville 68,600 310 April 3/week 1 Rural area 61,700 (est.)

Saint-Alexandre-

de-Kamouraska

2,050 18 April 3/week 1 Rural area 1,185

La Tuque 11,125 0.39 Mars 2/week 1 Rural area 6,010 (est.)

∗Flow rate estimated based on pump power and usage.
IType: 1 is composite sample (24 h), and 2 is grab (instantaneous) sample.
∗∗Classification based on POPCTRs (21).

TABLE 2 Sequences of primers and probes for the detection of SARS-CoV-2, PMMoV, and BRSV.

Target Primer/probe name Primer/probe sequence References

SARS-CoV-2 Forward primer GAC CCC AAA ATC AGC GAA AT (12)

Reverse primer TCT GGT TAC TGC CAG TTG AAT CTG

Probe (FAM) FAM ACC CCG CAT/ZEN/TAC GTT TGG TGG ACC IABkFQ

BRSV Forward primer GCA ATG CTG CAG GAC TAG GTA TAA T (13)

Reverse primer ACA CTG TAA TTG ATG ACC CCA TTC T

Probe (Cy5) Cy5 ACC AAG ACT/ZEN/TGT ATG ATG CTG CCA AAG CA IABkFQ

PMMoV Forward primer TAC TTC GGC GTT AGG CAA TCA G (14)

Reverse primer TGA AAC CAG TAG CAG GAA ATC TAA C

Probe (HEX) 5HEXCA GCA GTT CZENT CTG ATG TGT GG3IABkFQ

a recursive curve for viral loads: (i) the maximum viral load is

assumed to be on the day of symptom onset (assumed to be

on the day of a positive screening test), and (ii) the viral load

monotonically decreases from the maximum value to zero at a

certain time t (Equation 1):

Ŵ(t)v = Ŵ0(1− β(t)) (1)

where Ŵ0 is the maximal viral load and β (t) is the function that

correlates the viral concentration at time t with the value of Ŵ0. The

shape and value of8t = (1−β (t)) is dependent on assumption (ii),

which translates to a specific shape for the kinetics reduction shape

function (8(t)). Several candidate 8t functions were tested, and

their relative efficiencies in relating the SARS-CoV-2 concentration

to the modeled cases were evaluated using the squared residual

approach (Equation 2):

r2 = 1−
SSR

TSS
(2)

where r² is the coefficient of determination, SSR is the sum of

squares of the residuals, and TSS is the total sum of squares.

Specifically, we tested different hypotheses on the decay intensity

for Ŵ0 to recede to a null value. All shape functions assumed an

exponential form with varying degrees of decay between days 4 and

9. The regressions are based on linear and polynomial functions

(third order). The r² value for each regression in each city, as

presented in Table 1, was calculated to establish the efficiency of the

proposed procedure. We have included Supplementary material

describing the other curves. However, because it was statistically

impossible to distinguish between each curve and because the aim

of this study was to demonstrate the usefulness of viral kinetics

modeling, we presented only the curve that best fitted our data,

based on Equation 2, and applied it to all municipalities:

8t = 1− β(t) (3)

β(t) = 1− 0, 455 ln (t) : t∈ N | [0, 9] (4)

The data obtained from 8t (Equation 3) are compared with

incident cases, that is, for β (1) = 0, β (1+ 1t) = 1.

With an in-house built code using TcL, a matrix of incident

(d0) and prevalent (dt) cases [C] by the day of sampling (d) was

compiled. The 1-β(t) coefficient is then provided in the form of

a column vector quantity {1-β} so that the modeled equivalent
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TABLE 3 Candidate shape function parameter values.

Days from
symptoms onset

β

Viral kinetic
function

Incident

1 0 0

2 0.315 1

3 0.5 1

4 0.631 1

5 0.732 1

6 0.815 1

7 0.885 1

8 0.946 1

9 1 1

shedding cases for each day of the study are obtained in a vector

form {ς(d)} using Equation 1:

ς(d) = C(d, t) 8(t) (5)

This is a simple vector-matrix product. To illustrate this process,

we considered five incident cases at d = 0. The following day (d =

1), four incident cases occurred, and the next day (d= 2), seven. In

this example, the [C] matrix is a 3×3 matrix, with three rows for d

= 1, 2, and 3, and with three columns representing the day t that is

appropriate for the 1-β(t) coefficient, where β(t) is given in Table 3

and ς(d) obtained by matrix × vector multiplication resulting in

the following values:

C =




5 0 0

4 5 0

7 4 5



 8 (t) =






1

0.68

0.5





ς

(
d
)
=




5 0 0

4 5 0

7 4 5



 ∗






1

0.68

0.5






=






5

7.4

12.2





(6)

This simple matrix × vector product provides a time-dependent

cumulative contribution of all incident and prevalent cases to the

evolution of the viral load excreted, which better relates to the actual

WWS measurements. This allowed us to consider the effects of

viral kinetics by multiplying each incident and prevalent case by an

appropriate factor. These factors are dependent on the assumptions

considered in defining the viral kinetics reduction function.

Figure 1 illustrates this mathematical approach. The horizontal

axis in Figure 1 displays the day, whereas the vertical axis represents

the number of clinical cases (or modeled equivalent shedding

cases). In the example used, there were four incident cases on

day 1. On day 2, there were 15 incident cases. Continuing with

this logic would lead to the incident case curves (red dotted line)

displayed in Figure 1. However, as previously stated, there is no

logic behind the idea that incident cases from the previous day

would stop contributing to the virion concentration measured in

the WWS samples. Consider an example of the period between

days 1 and 5. If we consider only incident cases, we would expect

to observe a decrease in the trend of cases. However, from a

wastewater concentration perspective, this would not be the case

because prevalent cases still excrete virions in the sewers. Our

proposed model, using shedding curves that decrease over time

(dotted black lines, Figure 1), allows the effects of prevalent cases to

be included in the modeled equivalent shedding cases (solid black

curves, Figure 1).

For example, on day 4, the total number of modeled equivalent

shedding cases is the sum of the contributions of all previously

determined incident cases (days 1, 2, 3) and the incident cases on

that day. This provides a significantly different portrait of what is

happening, as can be observed by comparing the incident cases

(dashed red line, Figure 1) with the modeled equivalent shedding

cases (solid black line, Figure 1). This approach is underlined

by a simple biological mechanism, that is, sick individuals keep

excreting a receding number of virions during the course of the

disease, from a peak at symptom onset to a null value after

a certain amount of time. The work hypothesis was that the

modeled equivalent shedding cases would be better related to the

WWS concentration.

3. Results

Figure 2 shows the curves of SARS-CoV-2 (Gc) in Rimouski

City during the screening period (Table 1). The graph also displays

the curves for incident cases. The incident case curve was highly

jagged compared with the SARS-CoV-2 signal. Consequently, the

relationship between the two datasets was not good, with an

r² of 0.61 using conventional linear regression. Figure 2 shows

the modeled COVID-19 cases obtained using Equation 1. Using

Equation 1 led to the smoothing of the curves by considering

the prevalent cases and their evolution over time. The r² between

the modeled COVID-19 cases and the SARS-signal datasets

significantly increased and reached a value of 0.69 for a standard

linear regression. Using a third-order polynomial regression, r²

reached a value of 0.82, which was remarkably good given the

uncertainty in the physical process being modeled.

There was a clear effect, for Rimouski city’s dataset, when

adding the effects of prevalent cases through viral kinetics

reduction curves in the relationship between measured SARS-

CoV-2 concentration in wastewater samples and populational

COVID-19 cases. This is logical and follows a significantly simple

biological mechanism; during the course of COVID-19 infection,

the excretion of virions into the sewer network varies in time, with

a maximum value at the beginning and dwindling down to a null

value after a certain amount of time.

In the case of larger communities, such as Quebec City, the

picture is less clear. Figure 3 shows the evolution of SARS-CoV-

2 signal in the wastewater samples from Quebec City. The graph

also shows the values of the incident cases and the modeled

COVID-19 cases (incident and prevalent) using the same viral

kinetics reduction function as used by Rimouski.

The results in Figure 2 showed that using viral kinetics

reduction led to the smoothing of the COVID-19 cases compared

with the incident case curve. When considering the r² value,

using viral kinetics reduction led to a marginal decrease of r²,
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FIGURE 1

E�ects of viral kinetics reduction on correlation with COVID 19 cases—Rimouski (more explanation, see text).

FIGURE 2

E�ects of viral kinetics reduction on correlation with COVID 19 cases—Rimouski.
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FIGURE 3

E�ects of viral kinetics reduction on correlation with COVID 19 cases—Quebec.

passing from 0.63 for the incident case dataset to 0.62 with the

modeled datasets in standard linear regression and from 0.66 to

0.67 using the third order polynomial regression. We explain this

by considering that the large number of incident cases reduces the

effects of the prevalent cases in this population.

3.1. Population biomarkers

Before presenting the complete results (see Section 3.2), it

is important to detail how SARS-CoV-2 concentrations were

normalized before being used in the regression. Based on previously

published documentation available early during the pandemic (17,

18), PMMoV was initially considered to normalize the SARS-CoV-

2 concentration. This biomarker is thought to be abundant in bell

pepper-based foods, is unaffected by seasonal changes, and persists

in wastewater (with a half-life of 6–10 days) from populated areas

(19). Population biomarkers are important for two reasons. First,

these biomarkers validate the presence of a sufficient quantity of

organic materials in samples. Second, they can be used to normalize

the concentration of detected virions to account for changes in

wastewater dilution and differences in relative human waste input

over time due to tourism, weekday commuters, and temporary

workers (19). However, based on these data, PMMoV was a poor

biomarker (Figure 4).

In fact, normalization of the SARS-CoV-2 concentration with

PMMoV reduced the quality of the correlation obtained from the

linear regression compared with the raw data. This result is in

accordance with the recently published literature (19). The data

indicate that flow rate is the most important factor related to virion

concentration in the reported cases, and this conclusion is in line

with that of a prior study (20).

3.2. Linear regression analysis results

As shown in Section 3, the data collected in spring 2021 showed

a rapid increase and decrease when plotting COVID-19 incident

cases vs. SARS-CoV-2 concentrations measured in wastewater

samples obtained from small communities. Hence, in this study,

we consider the effects of prevalent cases using a viral kinetics

reduction function, as described previously. In this section, the

results of the linear and polynomial regression analyses for all

municipalities involved in the project are presented (Table 1).

Linear and third-order polynomial regression analyses

were performed for each municipality. Graphs of SARS-CoV-2

concentration versus modeled equivalent shedding cases for all

regression analysis are shown in Supplementary material.

Table 4 compares the r² coefficients of all regressions for all

communities considered between the datasets with incident cases

only and those considering the modeled data.

4. Discussion

Values of r2 considering both incident and prevalent cases

using third-order polynomial regression along with a viral kinetics

reduction function led to an increase in the correlation between

the WWS data and clinical data (Table 4). This is particularly

true in small communities. For urban centers with low population

densities (Rimouski, Drummondville, and La Tuque), the modeled

cases of COVID-19 were better correlated with SARS-CoV-2

concentrations measured in wastewater when prevalent cases

were included according to the model. In the case of the city

of Drummondville (+48.8%) WWS data were simply unusable

without considering the viral kinetics evolution. In the case of

a large community (Quebec, +1.5%), inclusion of viral kinetics
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FIGURE 4

Comparison of the e�ect of pepper mild mottle virus and flow for normalization of data to modeled equivalent shedding cases—Rimouski.

TABLE 4 Summary of the regression analyses for all of the studied cities.

Municipality r² r²

Linear
incident

Linear
kinetics
reduction

Variation (%) Poly (3rd)
incident

Poly (3rd)
kinetics
reduction

Variation
(%)

Québec City 0.63 0.62 −1.6 0.66 0.67 +1.5

Rimouski 0.61 0.69 +13.1 0.6 0.82 +36.7

Rivière-du-Loup 0.7 0.69 −1.4 0.87 0.87 0.0

Drummondville 0.02 0.0054 −73.0 0.41 0.61 +48.8

Saint-Alexandre-de-Kamouraska 0.62 0.6 −3.2 0.88 0.91 +3.4

La Tuque 0.7 0.77 +10.0 0.63 0.83 +31.7

had a less profound effect. This can be explained by the

following mechanism.

4.1. Biological mechanism underlying the
importance of viral kinetics

An individual’s quantity of virions excreted in the feces

varies during the course of SARS-CoV-2 infection. The maximum

excretion of virions closely matches the initiation of disease

symptoms and gradually decreases to a null value. When plotted

in the time domain, variations in virion excretion can be described

by a viral kinetics reduction function. During a viral outbreak,

several individuals become ill at different times. Hence, the virion

concentration in wastewater is a superposition of several individual

viral kinetics reduction functions (Figure 1). It appears logical that

as the number of infected individuals increases, this effect becomes

less evident because of the cumulative effects of incident cases.

However, when a limited number of individuals are affected, as is

the case in small communities, failing to consider this effect may

lead to a large discrepancy between the measured concentration in

wastewater and clinical cases, making the interpretation of WWS

data cumbersome.

To highlight this biological mechanism, we built a

mathematical model that explicitly considers viral excretion

kinetics. The main novelty of this work is that it identifies

key differences in the interpretation of WWS data from large

(densely populated) and small (with low population density) sewer

systems and quantifies the effects of viral excretion kinetics in

different contexts. Through regression analysis of SARS-CoV-2

measurements in wastewater samples from six municipalities

located in Quebec (Canada), we showed that the inclusion

of a viral kinetics reduction function to consider prevalent

COVID-19 cases in the screened population led to an increase

in correlation. The effect of this increase was especially visible in

low-affected communities, where viral transmission remained low

during SARS-CoV-2 screening. The impact was less evident in
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communities where a large number of incident cases concealed the

effect of viral reduction.

4.2. E�ects

Our results show that it is possible to accurately estimate

prevalent cases at time t in a population usingWWS data. However,

making a good estimate requires the definition of a well-defined

(data-supported) viral kinetics reduction function. Currently, the

authors of this paper are unaware of any data that can provide

specific viral kinetics reduction functions for the expression of

SARS-CoV-2 virions in the feces of infected individuals in the

general population. As stated previously, most supporting data

originated from hospitalized individuals whose virion excretion

might differ significantly from that of the general population.

Furthermore, vaccination and varying viral lineages may produce

different viral kinetics reduction functions. However, defining the

maximum and minimum virion excretion evolutions in time based

on a statistical analysis of data collected from voluntarily sick

individuals representative of the general population would allow for

a good estimation of population cases at any time based on WWS

data. This would be revolutionary for WWS usage in epidemiology

because WWS falls short when interpreting data. The ability to

estimate population cases fromWWS data using a sound biological

mechanism would maximize the efficiency of WWS in future

pandemic surveillance.

5. Conclusion

The data collected in this study support the hypothesis that

the viral kinetics reduction function is a fundamental aspect

of describing the biological evolution of SARS-CoV-2 virion

shedding, which should be considered in the analysis. In all six

municipalities studied, except for Rivière-du-Loup, the inclusion

of such a reduction function led to an increase in the correlation

for the third-order polynomial regression. For the specific cases

of Rivière-du-Loup, we explained the negative effect of the nature

of the COVID-19 infection in this particular community during

our screening time. During our screening, the Rivière-du-Loup

community observed two large outbreaks related to workers

in a large company, but there was little contamination in the

community. This means that, in both situations, we observed a

large increase in incident cases on a daily basis over a relatively long

period of time (≈ days). In this context, the effect of the reduction

in virions from the prevalent individual’s excretion is lost in the

increase in newly affected individuals.

This study aimed to differentiate the effects of incident and

prevalent COVID-19 cases on the temporal trends in SARS-CoV-

2 concentrations observed in wastewater samples from large urban

settings and small towns and rural communities. Therefore, it

was essential to consider the smoothing effect. There were more

incidents in large cities than in small communities. In absolute

terms, SARS-CoV-2 concentrations measured in wastewater were

also higher in larger cities than in small communities. Because

the incident cases are larger in number, the variation in SARS

concentration is less significant from 1 day to the next because the

kinetics of viral excretion is overwhelmed by the large number of

incident cases, which contributes to the smoothing effect. Thus, the

consideration of prevalent cases is important in small communities

where fewer incident cases occur. When there are few incident

cases in a population, the contribution of the prevalent cases to the

SARS-CoV-2 signal is more significant.

However, our data suggest that the normalization of

SARS-CoV-2 concentrations in wastewater samples should

consider the flow rate and that there is a lack of consensus on

a good biomarker for population normalization and a need for

studies on this particular question.

The specific contributions of this work include (1) compelling

evidence from several rural and urban municipalities to robustly

demonstrate that viral kinetics-induced variability needs to be

considered, especially in lower-density communities, and (2) a

simple model to account for this viral kinetics effect and its

application to regression analysis for estimating SARS-CoV-2

prevalence in screened populations.

6. Limitations and recommendations

Because the biological model proposed in this study was

established based on the basic assumption of disease progression,

it is thought to be general and applicable to various types of

biological etiologic agents worldwide. However, the specific shape

function used in the model varies, depending on several factors. For

example, in the case of SARS-CoV-2, the vaccination status, age,

and viral lineage are all susceptible to influence the function used

in the model. It is expected that virus different from that of SARS-

CoV-2 has different shape functions. Hence, our results should

be understood in this context as a general demonstration of the

importance of considering disease evolution in affected individuals

in the interpretation of wastewater data while keeping in mind that

the specific function developed in this study should not be directly

used in another context.

These findings highlight the need for further studies on the

temporal evolution of virion excretion in different pathogens,

including different SARS-CoV-2 lineages. If wastewater data are

used to estimate infection in a population, which should be the

main objective of this technique, studies on the evolution of virion

excretion in body fluids are fundamental to refining the reduction

function used in our model and allowing such estimates to be made

on a sound basis.

Data availability statement

The datasets used for the regression analysis in this article can

be found at https://zenodo.org/record/8010506.

Author contributions

FG, J-FL, PQ, and NA substantially contributed to the

article by providing data for Drummondville, Sainte-Alexandre-de-

Kamouraska, and La Tuque and suggested ideas for the writing

of the article. KL, KD, PV, and TM substantially contributed to

Frontiers in PublicHealth 09 frontiersin.org111

https://doi.org/10.3389/fpubh.2023.1141837
https://zenodo.org/record/8010506
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Rioux et al. 10.3389/fpubh.2023.1141837

the article by providing data for Rimouski, Quebec, and Rivière-

du-Loup and suggested several important modifications to the

article. M-DR contributed to the article by producing the numerical

model, making the calculations, producing the image, writing the

article, and maturing key ideas with the other authors of the paper.

DF contributed to the article by reviewing key ideas, suggesting

several critically important intellectual elements of the model, and

rewriting several parts of the document. PD contributed to the work

by providing key intellectual ideas and important data. All authors

contributed to the article and approved the submitted version.

Funding

This work was made possible by funding from the Fond

de Recherche du Québec—Nature et Technologie (1,000,000$),

the Molson Foundation (300,000$), the Trottier Foundation

(357,000$), the Centre Intégré de Santé et Services Sociaux

du Bas-Saint-Laurent and Santé Publique du Bas-Saint-Laurent

(20,000$), CentrEau (20,000$), CNETE (50,000$), and the McGill

Interdisciplinary Initiative in Infection Immunity (300,000$).

Acknowledgments

The authors wish to thank the Fond de Recherche du Québec—

Nature et Technologie, Molson Foundation, Trottier Foundation,

McGill Interdisciplinary Initiative in Infection and Immunity,

and CentrEau, Québec’s Water Research Center for financially

supporting this project. The authors also wish to thank the

Centre Intégré de Santé et Services Sociaux du Bas-Saint-Laurent

and Santé Publique du Bas-Saint-Laurent for their financial and

logistical support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.2023.

1141837/full#supplementary-material

References

1. Ahmed W, Tscharke B, Bertsch PM, Bibby K, Bivins A, Choi P, et al. SARS-CoV-
2 RNA monitoring in wastewater as a potential early warning system for COVID-
19 transmission in the community: a temporal case study. Sci Total Environ. (2021)
761:144216. doi: 10.1016/j.scitotenv.2020.144216

2. Pöyry T, Stenvik M, Hovi T. Viruses in sewage waters during
and after a poliomyelitis outbreak and subsequent nationwide oral
poliovirus vaccination campaign in Finland. Appl Environ Microbiol. (1988)
54:371–4. doi: 10.1128/aem.54.2.371-374.1988

3. Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: potential
health risk, but also data source. Lancet Gastroenterol Hepatol. (2020) 5:533–
4. doi: 10.1016/S2468-1253(20)30087-X

4. Nourbakhsh S, Fazil A, Li M, Mangat CS, Peterson SW, Daigle J, et al.
A wastewater-based epidemic model for SARS-CoV-2 with application to three
Canadian cities. medRxiv. (2021) 2021:21260773. doi: 10.1101/2021.07.19.2126
0773

5. Daigle J, Racher K, Hazenberg J, Yeoman A, Hannah H, Duong D, et al.
A sensitive and rapid wastewater test for SARS-CoV-2 and its use for the early
detection of a cluster of cases in a remote community. Appl Environ Microbiol. (2022)
88:e0174021. doi: 10.1128/aem.01740-21

6. Hubert CRJ, Acosta N, Waddell BJM, Hasing ME, Qiu Y, Fuzzen M, et al.
Tracking emergence and spread of SARS-CoV-2 Omicron variant in large and small
communities by wastewater monitoring in Alberta, Canada. Emerg Infect Dis. (2022)
28:1770–6. doi: 10.3201/eid2809.220476

7. Kmush BL, Monk D, Green H, Sachs DA, Zeng T, Larsen DA. Comparability of
24-hour composite and grab samples for detection of SARS-2-CoV RNA in wastewater.
FEMS Microbes. (2022) 3:17. doi: 10.1093/femsmc/xtac017

8. George AD, Kaya D, Layton BA, Bailey K, Mansell S, Kelly C, et al.
Impact of sampling type, frequency, and scale of the collection system on
SARS-CoV-2 quantification fidelity. Environ Sci Technol Lett. (2022) 9:160–
5. doi: 10.1021/acs.estlett.1c00882

9. Augusto MR, Claro ICM, Siqueira AK, Sousa GS, Caldereiro CR,
Duran AFA, et al. Sampling strategies for wastewater surveillance: evaluating
the variability of SARS-CoV-2 RNA concentration in composite and grab
samples. J Environ Chem Eng. (2022) 10:107478. doi: 10.1016/j.jece.2022.
107478

10. Bivins A, North D, Wu Z, Shaffer M, Ahmed W, Bibby K.
Within- and between-day variability of SARS-CoV-2 RNA in municipal
wastewater during periods of varying COVID-19 prevalence and positivity.
ACS ES&T Water. (2021) 1:2097–108. doi: 10.1021/acsestwater.1c
00178

11. Hokajärvi A-M, Rytkönen A, Tiwari A, Kauppinen A,
Oikarinen S, Lehto K-M, et al. The detection and stability of the
SARS-CoV-2 RNA biomarkers in wastewater influent in Helsinki,
Finland. medRxiv. (2020) 2020:20234039. doi: 10.1101/2020.11.18.202
34039

12. Centers for Disease Control and Prevention (CDC), National Wastewater
Surveillance System (NWSS). Developing a Wastewater Surveillance Sampling
Strategy. (2020).

13. Boxus M, Letellier C, Kerkhofs P. Real Time RT-PCR for
the detection and quantitation of bovine respirtory syncytial virus.
J Virol Methods. (2005) 125:125–30. doi: 10.1016/j.jviromet.2005.
01.008

14. Kitajima M, Sassi HP, Torrey JR. Pepper mild mottle virus as a water
quality indicator. NPJ Clean Water. (2018) 1:19. doi: 10.1038/s41545-018-
0019-5

15. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics
in viral shedding and transmissibility of COVID-19. Nat Med. (2020) 26:672–
5. doi: 10.1038/s41591-020-0869-5

16. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A.
SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration

Frontiers in PublicHealth 10 frontiersin.org112

https://doi.org/10.3389/fpubh.2023.1141837
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1141837/full#supplementary-material
https://doi.org/10.1016/j.scitotenv.2020.144216
https://doi.org/10.1128/aem.54.2.371-374.1988
https://doi.org/10.1016/S2468-1253(20)30087-X
https://doi.org/10.1101/2021.07.19.21260773
https://doi.org/10.1128/aem.01740-21
https://doi.org/10.3201/eid2809.220476
https://doi.org/10.1093/femsmc/xtac017
https://doi.org/10.1021/acs.estlett.1c00882
https://doi.org/10.1016/j.jece.2022.107478
https://doi.org/10.1021/acsestwater.1c00178
https://doi.org/10.1101/2020.11.18.20234039
https://doi.org/10.1016/j.jviromet.2005.01.008
https://doi.org/10.1038/s41545-018-0019-5
https://doi.org/10.1038/s41591-020-0869-5
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Rioux et al. 10.3389/fpubh.2023.1141837

of viral shedding, and infectiousness: a systematic review and meta-
analysis. Lancet Microbe. (2021) 2:e13–22. doi: 10.1016/S2666-5247(20)3
0172-5

17. Rosario K, Symonds EM, Sinigalliano C, Stewart J, Breitbart M. Pepper mild
mottle virus as an indicator of fecal pollution. Appl Environ Microbiol. (2009) 75:7261–
7. doi: 10.1128/AEM.00410-09

18. Kitajima M, Iker BC, Pepper IL, Gerba CP. Relative abundance and treatment
reduction of viruses during wastewater treatment processes–identification of potential
viral indicators. Sci Total Environ. (2014) 488–9:290–6. doi: 10.1016/j.scitotenv.2014.
04.087

19. Hsu SY, Bayati MB, Li C, Hsieh HY, Belenchia A, Klutts J, et al.
Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based
epidemiology.medRxiv. (2022) 2022:22272359. doi: 10.1101/2022.03.14.22272359

20. Isaksson F, Lundy L, Hedström A, Székely AJ, Mohamed N.
Evaluating the use of alternative normalization approaches on SARS-
CoV-2 concentrations in wastewater: experiences from two catchments in
northern sweden. Environments. (2022) 9:39. doi: 10.3390/environments90
30039

21. Canada Go. Population Centre and Rural Area Classification. Stats Can: 2016
06-09-2022. (2017).

Frontiers in PublicHealth 11 frontiersin.org113

https://doi.org/10.3389/fpubh.2023.1141837
https://doi.org/10.1016/S2666-5247(20)30172-5
https://doi.org/10.1128/AEM.00410-09
https://doi.org/10.1016/j.scitotenv.2014.04.087
https://doi.org/10.1101/2022.03.14.22272359
https://doi.org/10.3390/environments9030039
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Frontiers in Public Health 01 frontiersin.org

Assessment of seasonality and 
normalization techniques for 
wastewater-based surveillance in 
Ontario, Canada
Hadi A. Dhiyebi 1*, Joud Abu Farah 1, Heather Ikert 1, 
Nivetha Srikanthan 1, Samina Hayat 1, Leslie M. Bragg 1, 
Asim Qasim 2, Mark Payne 2, Linda Kaleis 2, Caitlyn Paget 2, 
Dominika Celmer-Repin 3, Arianne Folkema 3, Stephen Drew 3, 
Robert Delatolla 4, John P. Giesy 5,6 and Mark R. Servos 1*
1 Department of Biology, University of Waterloo, Waterloo, ON, Canada, 2 Regional Municipality of York, 
Newmarket, ON, Canada, 3 Regional Municipality of Waterloo, Waterloo, ON, Canada, 4 Department of 
Civil Engineering, University of Ottawa, Ottawa, ON, Canada, 5 Department of Biomedical Sciences and 
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Introduction: Wastewater-based surveillance is at the forefront of monitoring for 
community prevalence of COVID-19, however, continued uncertainty exists regarding 
the use of fecal indicators for normalization of the SARS-CoV-2 virus in wastewater. 
Using three communities in Ontario, sampled from 2021–2023, the seasonality of a 
viral fecal indicator (pepper mild mottle virus, PMMoV) and the utility of normalization 
of data to improve correlations with clinical cases was examined.

Methods: Wastewater samples from Warden, the Humber Air Management Facility 
(AMF), and Kitchener were analyzed for SARS-CoV-2, PMMoV, and crAssphage. 
The seasonality of PMMoV and flow rates were examined and compared by 
Season-Trend-Loess decomposition analysis. The effects of normalization using 
PMMoV, crAssphage, and flow rates were analyzed by comparing the correlations 
to clinical cases by episode date (CBED) during 2021.

Results: Seasonal analysis demonstrated that PMMoV had similar trends at Humber 
AMF and Kitchener with peaks in January and April 2022 and low concentrations 
(troughs) in the summer months. Warden had similar trends but was more 
sporadic between the peaks and troughs for PMMoV concentrations. Flow 
demonstrated similar trends but was not correlated to PMMoV concentrations 
at Humber AMF and was very weak at Kitchener (r  =  0.12). Despite the differences 
among the sewersheds, unnormalized SARS-CoV-2 (raw N1–N2) concentration in 
wastewater (n  =  99–191) was strongly correlated to the CBED in the communities 
(r  =  0.620–0.854) during 2021. Additionally, normalization with PMMoV did not 
improve the correlations at Warden and significantly reduced the correlations at 
Humber AMF and Kitchener. Flow normalization (n  =  99–191) at Humber AMF and 
Kitchener and crAssphage normalization (n  =  29–57) correlations at all three sites 
were not significantly different from raw N1–N2 correlations with CBED.

Discussion: Differences in seasonal trends in viral biomarkers caused by differences 
in sewershed characteristics (flow, input, etc.) may play a role in determining how 
effective normalization may be  for improving correlations (or not). This study 
highlights the importance of assessing the influence of viral fecal indicators 
on normalized SARS-CoV-2 or other viruses of concern. Fecal indicators used 
to normalize the target of interest may help or hinder establishing trends with 
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clinical outcomes of interest in wastewater-based surveillance and needs to 
be considered carefully across seasons and sites.

KEYWORDS

fecal indicators, normalization, seasonality, SARS-CoV-2, PMMoV, crAssphage

Introduction

Due to the COVID-19 pandemic, there has been increased interest 
in wastewater-based surveillance (WBS) to monitor community 
prevalence of SARS-CoV-2, with the majority of studies taking place in 
high-income countries (1). A number of these studies have compared the 
raw SARS-CoV-2 concentration to clinical metrics (e.g., active cases, new 
cases, or hospitalizations) [see Li et  al. (2) for a review]. However, 
wastewater systems are very diverse with contrasting infrastructure (3) 
even within regional settings. The characteristics of the sewer (e.g., 
sanitary or combined with stormwater, network dynamics, residence 
time) can influence the fate of fecal matter and viral pathogens, such as 
SARS-CoV-2, and pose challenges for the interpretation of WBS data. 
Industrial or commercial inputs and inflow and infiltration (I/I) events 
can also cause challenges to WBS due to inhibition, dilution, or scouring 
of settled material (4). Normalization of the viral signal to fecal indicators 
or flow is frequently done to partially address these concerns. However, 
normalization of the viral signal is often done without consideration of 
the complexity of the wastewater or the sewershed and may lead to 
additional variability. A better understanding of the variability of 
parameters used to normalize the viral signal and the relationship to key 
clinical indicators is needed to ensure WBS is optimized for 
each community.

Several wastewater parameters have been used as fecal indicators for 
normalization of SARS-CoV-2 in many studies including the pepper mild 
mottle virus (PMMoV) and cross-assemblage phage (crAssphage). 
PMMoV is a highly abundant RNA virus found on plants that are 
commonly found in human diets. It is consistently found in human feces 
and therefore has been recommended and applied widely as a fecal 
contamination indicator (5–7). crAssphage is a DNA-based bacteriophage 
that has been proposed as another human fecal contamination indicator 
as it is highly associated with human feces, is abundant and ubiquitous in 
wastewater (8, 9), and has been used in previous studies to normalize viral 
signals (10). Commonly measured wastewater parameters such as flow, 
NH3, total Kjeldahl nitrogen (TKN), total suspended solids (TSS), 
carbonaceous biological oxygen demand (CBOD), pH, and biological 
oxygen demand (BOD) have also been proposed and used for 
normalization of viral signals (11, 12). Other normalization techniques 
using chemical tracers such as artificial sweetener (acesulfame), caffeine, 
and its metabolite paraxanthine as well as human metabolites (creatine, 
5-hydroxyindoleacetic acid) have also been used with various success 
(13, 14).

In some sewersheds, normalization of SARS-CoV-2 using fecal 
indicators has been shown to improve correlations with clinical metrics 
(15, 16). However, others have shown normalization by fecal indicators 
has minimal improvement or negatively impacts correlations between the 
SARS-CoV-2 wastewater measurements and clinical metrics (13, 17, 18). 
Many factors may influence the patterns of each fecal indicator, including 
seasonal patterns in sewer flow (e.g., I/I), and sources. For example, 

PMMoV may be influenced by the seasonal availability of produce or 
consumption patterns in diets (6). There is therefore a need to investigate 
why normalizations with fecal indicators seem to be  useful in some 
sewersheds and not others, including the influence of seasonal differences. 
As WBS will undoubtedly continue to be  a widely applied tool, 
understanding and reducing the uncertainty regarding the value of 
normalizing will be important for future surveillance programs. This 
study examines the value of viral signal normalization by assessing 
wastewater measurements from three communities in Ontario over an 
extended period during the COVID-19 pandemic (January 2021–
February 2023). The seasonal variability in the fecal biomarker PMMoV 
is examined and the utility of using biomarkers (i.e., PMMoV, crAssphage) 
and flow to improve the correlations between SARS-CoV-2 wastewater 
estimates and clinical cases by episode date (CBED) is assessed across 
seasons and sites.

Methods

Wastewater sampling and locations

Twenty-four-hour time-weighted composite influent wastewater 
samples were collected at the Kitchener municipal wastewater treatment 
plant (Kitchener, Ontario, Canada) and at a well at the Humber Air 
Management Facility (AMF) pumping station that collects wastewater 
from the west side of Vaughan, Regional Municipality of York (York 
Region). A third site (Warden main sewer line in York Region) was grab 
sampled due to the depth of the sewer. Three grab samples were collected 
at the same time each sampling day and were combined, mixed, and then 
sub-sampled. The 2021 populations served in the three wastewater 
sampling sites were approximately 256,000, 105,000, and 659,000 at the 
Kitchener, Humber AMF, and Warden sewersheds, respectively. Samples 
were stored in pre-cleaned HDPE containers, kept at 4°C, and transported 
to the University of Waterloo (Waterloo, Ontario, Canada) for nucleic acid 
concentration, extraction, and qPCR analysis. As part of a surveillance 
program, the data were analyzed and normally reported within 3 days of 
receiving the samples. Wastewater parameters (i.e., TSS, pH, TKN, 
CBOD, BOD, and NH3) and flow rates were provided by the public works 
department of the respective regions and are summarized in 
Appendix Table S1.

Nucleic acid concentration, extraction, and 
quantification via RT-qPCR

A modified PEG-precipitation/centrifugation method was used 
for each wastewater sample as described in Dhiyebi et al. (19). Briefly, 
a 40 mL wastewater sample was added to a 50 mL Falcon centrifuge 
tube with PEG 8000 (4 g) and NaCl (0.9 g). The sample was shaken on 
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ice for 2 h and left to settle at 4°C overnight. The sample was then 
centrifuged at 12,000 g for 1.5 h at 4°C with no brake to concentrate 
the virus into the solids with the supernatant discarded. A second 
centrifugation step at 12,000 g for 15 min at 4°C with no brake was 
used to solidify the pellet and discard any remaining supernatant. 
Nucleic acids were extracted and purified from the solids using Power 
Microbiome Kit (QIAGEN, United  States) following the 
manufacturer’s protocol with up to 250 mg (wet weight) of the pellet 
resuspended in a TRIzol/PM1 solution, respectively, using an 
automated QIAcube (QIAGEN, United States). The DNase step was 
excluded from extraction to allow for the measurement of crAssphage, 
a DNA virus. The nucleic acids were eluted in 100 μL nuclease-free 
water. Extracted nucleic acids then underwent one-step RT-qPCR for 
SARS-CoV-2 N1, N2 gene targets (20) and PMMoV (21). A subset of 
samples was later analyzed by qPCR to measure crAssphage [CPQ056; 
(9)]. The PCR assays, cycling conditions, and performances are 
described in Appendix Tables S2–S4, respectively. Each sample was 
also assessed for inhibition (reverse transcription and PCR) and each 
plate had standard curves, positive control, and non-template controls 
(NTCs) as recommended by the MIQE guidelines (22). Samples that 
were inhibited were removed from the dataset prior to analysis and 
accounted for less than 10% (46/477) of the total samples analyzed. As 
there was a strong correlation between N1 and N2 concentrations 
(Pearson’s r = 0.858) and it is essentially measuring the same virus, the 
SARS-CoV-2 concentrations were presented as the mean of N1 and 
N2 (N1–N2) to reduce variability and improve the estimate. PCR data 
is presented as log2 concentration (gene copies/mL).

Assessing seasonal trends

Seasonality was assessed with a Seasonal-Trend-Loess (STL) 
decomposition (23) with the “timetk” R package (version 2.8.2). STL 
decomposition is a robust method to filter a time series into 3 
components: Seasonal, Trend, and Remainder using LOESS (23). This 
method allows for determining any temporal patterns (seasonal or 
trend) within a timeseries dataset and minimizes the effects of 
outliers. The frequency was defined as 1 week intervals and the trend 
was defined as 3 months intervals. PMMoV seasonality was analyzed 
from all sites for the entire study period for each site. For Humber 
AMF and Kitchener, the sample dates ranged from January 2021 to 
February 2023, while for Warden the sampling began in April 2021. 
Flow rates from Humber AMF and Kitchener (minimum of three 
measurements a week) were available, but Warden flow rates were not 
available from the main sewer line (a modelled estimate of 150 ML/d 
was provided by York Region). Flow rates were used to determine the 
possible impact of rain events and snowmelt (e.g., storm water/
infiltration) on wastewater endpoints. Data are presented as monthly 
boxplots and STL decomposition plots (i.e., observed, trend).

Clinical cases correlation comparison

SARS-CoV-2 copies/mL was determined as the mean of N1 and N2 
(N1–N2) in each sample. All viral concentrations were log2(x) 
transformed and CBED was transformed as log(x + 1) prior to analysis for 
normality. The Pearson’s correlation (pairwise) was performed the 
transformed SARS-CoV-2 concentrations (raw or PMMoV normalized) 

and CBED between January and 1 December 2021. During this period, 
the number of daily clinical tests (mean ± standard deviation) conducted 
in the province was 34,585 ± 15,040 (24). This timeframe was chosen as 
clinical testing was conducted at a high level in Ontario until the 
emergence of the Omicron variant overwhelmed the testing capacity and 
testing eligibility was changed, resulting in a bias that underestimated 
clinical cases after late December 2021 (19). The relationships between 
clinical metrics (i.e., clinical cases or hospitalizations) and wastewater may 
also be confounded by the emergence of variants (e.g., Delta) and changes 
in the vaccination status of the population and test-seeking behaviors 
(25–27). The emergence of the Delta variant in the mid-summer of 2021 
may have partially changed the wastewater ratio in some Ontario 
communities but not others (25). In the US, the appearance of Delta may 
have only weakly altered the relationship to COVID-19 incidence rates at 
other sites (28). The entire period prior to the appearance of Omicron was 
therefore used for the comparison between the raw and normalized 
correlations to CBED. A time-step comparison of the correlations 
between CBED and wastewater for up to 10 days lag was also conducted. 
A subset of samples was later analyzed for crAssphage to compare the 
crAssphage normalization technique directly to the PMMoV normalized 
or raw signal (n = 32, 31, and 57 for Warden, Humber AMF and 
Kitchener respectively).

The “cocor” R package (version 1.1.4) was then used to compare 
whether these correlations between clinical cases by episode date 
(CBED) and the raw or normalized (PMMoV or crAssphage) SARS-
CoV-2 concentrations were significantly different from one another 
(29). This package offers a wide range of statistical tests to compare 
correlations (29). The comparisons were between two overlapping 
correlations based on dependent groups. The correlations were 
overlapping since CBED was used in all correlation comparisons and 
dependent as the same N1–N2 concentration was used for both the 
raw and normalized values (i.e., the same wastewater sample). The 
correlations were deemed significantly different (α = 0.05) if the 
confidence interval did not include zero (30).

Results

Trend/seasonality analysis

At all sites, PMMoV concentrations were consistently high 
between January and May 2021 (Figures 1, 2). PMMoV concentrations 
were the lowest between the summer months and early fall (June–
October). There were two main peaks at Humber AMF and Kitchener 
for PMMoV concentrations in January and April 2022 with monthly 
median values of 15.8 log2 copies/mL for both months in Kitchener 
and 16.9 and 16.5 log2 copies/mL, respectively, for Humber AMF. At 
Warden, PMMoV concentrations appeared to follow the general trend 
of the other two sites with peaks in the late fall and early winter months 
(November to February) and lower concentrations in the summer 
months. However, PMMoV concentrations were more sporadic 
between the peaks and troughs at Warden due to the lower interquartile 
range (IQR; 0.75 log2 cp/mL) compared to the other two sites 
(IQR = 0.98–1.11 log2 cp/mL; Appendix Table S5). This variability in 
PMMoV concentrations over the entire period in Warden compared 
to the other two sites is further demonstrated in the violin distribution 
plots (Figure 3), where there are more concentrations that have higher 
probability densities compared to Humber AMF and Kitchener.
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FIGURE 1

Monthly log2 PMMoV concentrations (copies/mL) from January 2021-Februrary 2023 at the Warden (A), Humber AMF (B), and Kitchener 
(C) wastewater sampling sites.

FIGURE 2

PMMoV Seasonal Trend Loess (STL) decomposition plots for the Warden (A), Humber AMF (B), and Kitchener (C) wastewater sampling sites. The 
frequency was set as 1  week and the trend length was 3  months.
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The seasonal flow trends in Humber AMF and Kitchener 
were higher in the spring and fall seasons with the late summer 
months having the lowest flow. Specifically, in March 2022, both 
sites had the highest median flow at the sampling location with 
Humber AMF having a median of 40.7 ML/d and Kitchener 
having a median of 78.1 ML/d. In general, the peak flow seasons 

in Humber AMF were March–April and August–September, 
whereas in Kitchener the changes in flow rates seemed to be more 
gradual with a few exceptions (Figures  4, 5). There was no 
correlation and a weak correlation (r = 0.12) between flow rates 
and PMMoV concentrations at Humber AMF and Kitchener, 
respectively. conveys the intended meaning.

FIGURE 3

Violin distribution plots for the Warden, Humber AMF, and Kitchener wastewater sampling sites. Warden collections were from April 2021 to February 
2023, and Humber AMF and Kitchener collections were from January 2021 to February 2023.

FIGURE 4

Monthly wastewater flow (ML/d) from January 2021 to February 2023 at the Humber AMF (A) and Kitchener (B) wastewater sampling sites.
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FIGURE 5

Flow Seasonal Trend Loess (STL) decomposition plots for the Humber AMF (A) and Kitchener (B) wastewater sampling sites. The frequency was set as 
1  week and the trend length was 3  months.

Clinical cases correlation comparisons

Raw N1–N2 and PMMoV normalization 
compared to clinical cases in 2021

A comparison of correlations using a time lag between the CBED 
and wastewater signals determined that it did not impact the relative 
differences between the raw and normalized relationships 
(Appendix Table S6). Additionally, there were no significant 
differences (α = 0.05) in the correlation estimates between the highest 
correlation with lag and correlations with no lag (Appendix Table S7), 
so only the data without consideration of a lag is presented further for 
clarity. At Humber AMF and Kitchener, the raw mean N1 and N2 
copies/mL (N1–N2) correlations with CBED were significantly better 
than the normalized (N1–N2/PMMoV) correlations with CBED 
(Figure 6; Table 1). At Kitchener, the normalized correlation (Pearson’s 
r) was substantially lower than the raw N1–N2 (non-normalized) 
correlation (0.167 compared to 0.620, Table 1). However, at Warden, 
there were no significant differences between the PMMoV normalized 
correlation and the raw N1–N2 correlation for the entire study period. 
The flow normalization correlations were not significantly different 
from the raw correlations with r = 0.856 for Humber AMF and 
r = 0.613 for Kitchener.

Subset of data with crAssphage normalization
For Kitchener, the correlation between the raw concentration of 

SARS-CoV-2 and cases by episode date was significantly better than 
the PMMoV normalization and the crAssphage normalization 
(Figure 7; Table 2). However, in the subset data, the correlation of 
clinical cases with the PMMoV normalized concentration was 
significantly higher than using the raw concentration or the 
crAssphage normalized concentrations at Warden. Interestingly, at 
Humber AMF, there were no significant differences between the raw 
concentration correlation and both the PMMoV and the crAssphage 
normalization correlations (Table 2).

Discussion

PMMoV normalization did not improve the correlations between 
wastewater SARS-CoV-2 concentrations and clinical cases at three 
Ontario sites sampled in 2021. The raw N1–N2 concentrations had 
significantly better correlations with clinical cases at both Kitchener 
and Humber AMF compared to the PMMoV-normalized correlations 
with clinical cases. At Warden, the raw and PMMoV-normalized 
correlations were similar. This may be  due to the different 
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characteristics of this sewershed, such as higher flow (nearly double 
the other two sites), potentially longer travel time (up to 24 h), and a 
larger population covered. The lack of improved correlations with 
clinical cases using PMMoV normalization is in agreement with other 
studies that also did not report a consistent advantage in normalizing 
the SARS-CoV-2 concentration (16–18, 31). Maal-Bared et al. (17) 
found that PMMoV normalization only improved correlation to 
clinical cases in 2 of 12 sites in Alberta, Canada, and Duvallet et al. 
(32) found that normalization of 55 sites in the United States was 
inconsistent in improving correlations. At all sites, crAssphage 
normalization did not improve correlations to clinical cases compared 
to the raw N1–N2 correlations using a subset of the data (i.e., 
Figure  7). However, using this subset of data from Warden, the 
PMMoV normalization correlation to clinical cases was slightly better 
than the raw N1–N2 correlation (95% confidence interval of the 
difference, 0.268 to 0.006), which is in contrast to the larger dataset 
where there was no difference. This demonstrates the complexity of 
wastewater-based surveillance and how difficult it is to establish these 
relationships, especially with small datasets. Normalization of the 
SARS-CoV-2 signal with PMMoV may be an advantage in some sites 
or times possibly by accounting for variation in flow, fecal content, or 
sampling technique, but great care needs to be  taken with the 

interpretation of normalized data. It may be dependent on the source 
of the sample (pipe, influent, sludge), and characterizing over multiple 
seasons would greatly improve our insights into how these biomarkers 
might be used effectively.

Numerous studies have shown that fecal biomarker normalization 
(PMMoV or crAssphage) is very site-specific in terms of improving 
correlations with clinical cases (16, 33, 34). Normalization might help 
in comparisons among sites, however, within sewersheds 
normalization might not assist in enhancing the relationships with 
clinical cases (35). The differences observed across sites indicate that 
in some cases normalization with fecal indicators could play an 
important role in improving WBS trends, but this needs to be assessed 
on a site-specific basis using statistical approaches such as STL analysis 
and the correlation comparisons described in this study.

The usefulness and appropriateness of normalization remains 
a topic of considerable debate. The limitations of using fecal viral 
biomarkers, such as PMMoV and crAssphage, include the 
uncertainty associated with relative fecal shedding rates of viruses 
and their fate in the sewershed. However, recent studies on 
individual shedding rates of SARS-CoV-2 (36) and fecal 
biomarkers (37) are addressing this knowledge gap although 
there remains considerable uncertainty. Additional studies on the 

FIGURE 6

Clinical cases by episode date (purple circle) and wastewater SARS-CoV-2 in raw (green triangle) and PMMoV normalized (yellow square) N1–N2 
concentrations from the Warden (A), Humber AMF (B) and Kitchener (C) Wastewater sampling sites. Warden sample dates were from April to 
December 2021. Humber AMF and Kitchener sample dates were from January to December 2021.
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FIGURE 7

Scatterplots of new cases by episode date (CBED) and the raw (N1–
N2), crAssphage normalized (N1–N2/crAssphage), and pepper mild 
mottle virus normalized (N1–N2/PMMoV) wastewater concentrations 
at Warden (n  =  32, A), Humber AMF (n  =  29–31, B) and Kitchener 
(n  =  57, C).

TABLE 2 Pearson correlation coefficients (r) between cases by episode 
date and wastewater measure on the subset of data from the Warden, 
Humber AMF, and Kitchener wastewater sampling sites.

Site (n) Raw 
N1–N2

PMMoV 
normalized 

N1–N2

CrAssphage 
normalized 

N1–N2

Warden (32) 0.608a 0.712b 0.553a

Humber AMF (29–31) 0.726 0.696 0.767

Kitchener (57) 0.833a 0.766b 0.751b

Comparisons were done on two overlapping correlations based on dependent groups with 
the cocor package using 95% confidence intervals (30). Letters indicate significant 
differences between correlations (p = 0.05).

fate of viruses once in the sewershed are needed as this is 
important for the interpretation of the surveillance results. In 
addition, it has been shown that viruses partition differently 
under various conditions (38, 39). Flow has been used to 
normalize SARS-CoV-2 as well (10, 19), however, in this study 
flow normalization correlations were not significantly different 
from unnormalized correlations. A limitation of flow 
normalization is that flow measurements may be unobtainable at 
some locations due to site characteristics (such as the Warden site 

in this study). In addition, rapid access to flow data, if available, 
may also be  a limitation. Despite all these limitations, 
normalization and specifically measuring fecal biomarkers can 
be  effective as a quality check of wastewater samples and lab 
processes and therefore has additional value (40).

Despite the weak or lack of correlation between PMMoV and 
flow rates at Humber AMF and Kitchener, the PMMoV 
concentrations were generally higher during the higher flow 
seasons. This suggests that environmental factors, such as rain 
events, were not diluting fecal material but in fact, the high flow 
events were scouring settled materials in the sewer and increasing 
the concentration of PMMoV at the collection site. PMMoV tends 
to partition primarily to the supernatant fraction, likely associated 
with very fine particles or colloids of the wastewater samples even 
after centrifugation at 12,000 g, however, a substantial proportion 
(~15%) of PMMoV is still associated with solids (39). The fate of 
PMMoV in the sewer may therefore differ from SARS-CoV-2 
which is more evenly partitioned between the solids and 
supernatant (39). If wastewater volume increases because of 
environmental effects (i.e., rain events, snow melt) it would 
be anticipated that the viral concentration of the biomarker would 
decrease as wastewater gets diluted. However, this pattern was not 
observed in the three Ontario sites in the current study. 
Additionally, even though the temperature in the sewershed does 
not fluctuate as much as air temperature (e.g., Warden wastewater 
ranged from 10.4°C to 20.2°C), it may still play a significant role 
in the prevalence of PMMoV. This adds additional uncertainty 
when assessing the suitability of PMMoV as a fecal indicator and 
might be  one of the contributions to the variability in the 
normalized SARS-CoV-2 signal at some sites.

The higher variability of PMMoV in Warden might be due in part 
to the collection approach applied at this site. Grab samples, even 
when well mixed from large flows, may not be as representative as 24 h 
composite sampling. In the case of SAR-CoV-2 wastewater sampling, 
Bivins et al. (41) demonstrated temporal variability in concentration 
during the day. This variability may lead to lower detection rates of 
grab samples, especially in small sewersheds (42, 43). However, others 
have seen good concurrence for the detection of SARS-CoV-2  in 
wastewater when directly comparing grabs and composite samples 
(44–46). Grab samples from the Warden site represent a major 
wastewater flow and large population which results in batch samples 
having some variability, but still relatively consistent PMMoV over 
time. Additional studies comparing the two sampling approaches 
from a single site over an extended period of time would be helpful to 
understand the impact of the sampling approach. In situations where 

TABLE 1 Pearson correlation coefficients (r) between cases by episode 
date and wastewater measure between January 15th and December 1st, 
2021 at the Warden, Humber AMF, and Kitchener wastewater sampling 
sites.

Site (n) Raw N1–N2 PMMoV normalized 
N1–N2

Warden (99, 98) 0.781 0.696

Humber AMF (191) 0.854* 0.702

Kitchener (175) 0.620* 0.167

Comparisons were done on two overlapping correlations based on dependent groups with 
the cocor package using 95% confidence intervals (30). An * indicates significantly different 
correlations (p = 0.05).
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there is considerable sample or temporal variability, normalization 
may still provide an advantage.

The goal of early studies using fecal indicators, such as PMMoV and 
crAssphage, was for the detection of fecal contamination of surface/source 
water, therefore a good indicator would be highly abundant in wastewater 
to increase the sensitivity of detection (6). However, for the normalization 
of respiratory or enteric viruses, the goal is to have an indicator that 
reflects the inputs and fate of fecal material in the sewershed so that 
variations in the sewershed, environmental conditions, and flow can 
be accounted for. This poses a challenge for the selection of a robust 
endpoint that can be used for normalization to improve the correlation of 
the viral signal to clinical endpoints of interest. As PMMoV and 
crAssphage are present at much higher levels (105 to 109 copies/mL) in 
wastewater compared to SARS-CoV-2 concentrations (usually less than 
103 copies/mL) considerable variation can be added when normalizing. 
Ideally, the viral signal would be normalized with a marker that has 
similar properties and fate in the sewershed, can be reliably detected, and 
is strongly correlated with the source of the viral signal of interest. 
Currently, there are no ideal indicators available to universally normalize 
viral signals, such as SARS-CoV-2, in wastewater. Identification of reliable 
and validated indicators (e.g., viruses, bacteria, human genes, or 
chemicals) or groupings of indicators, that can be used to normalize viral 
signals in wastewater will greatly enhance the application of WBS and our 
ability to correlate wastewater signals to clinical endpoints of concern.
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Since the start of the COVID-19 pandemic in 2020, wastewater surveillance 
programs were established, or upscaled, in many countries around the world 
and have proven to be  a cost-effective way of monitoring infectious disease 
pathogens. Many of these programs use RT-qPCR, and quantify the viral 
concentrations in samples based on standard curves, by including preparations 
of a reference material with known nucleic acid or virus concentrations in the RT-
qPCR analyses. In high-throughput monitoring programs it is possible to combine 
data from multiple previous runs, circumventing the need for duplication and 
resulting in decreased costs and prolonged periods during which the reference 
material is obtained from the same batch. However, over time, systematic shifts in 
standard curves are likely to occur. This would affect the reliability and usefulness 
of wastewater surveillance as a whole. We aim to find an optimal combination of 
standard curve data to compensate for run-to-run measurement variance while 
ensuring enough flexibility to capture systematic longitudinal shifts. Based on 
more than 4000 observations obtained with the CDC N1 and N2 assays, taken as 
a part of the National Sewage Surveillance program at the Dutch National Institute 
for Public Health and the Environment, we  show that seasonal and long-term 
shifts in RT-qPCR efficiency and sensitivity occur. We find that in our setting, using 
five days of standard-curve data to quantify, results in the least error prone curve 
or best approximation. This results in differences up to 100% in quantified viral 
loads when averaged out over a nationwide program of >300 treatment plants. 
Results show that combining standard curves from a limited set of runs can be a 
valid approach to quantification without obscuring the trends in the viral load of 
interest.
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1. Introduction

The idea of monitoring pathogens through wastewater has 
been  applied for decades (1, 2), but interest in waste waterbased 
epidemiology (WBE) has significantly increased with its applications 
during the COVID-19 pandemic. SARS-CoV-2 detection in 
wastewater is currently employed as a monitoring tool in over 70 
countries, with several programs reaching significant population 
coverage (3).

Many of these surveillance programs, and WBE studies on SARS-
CoV-2  in general, make use of reverse transcription quantitative 
polymerase chain reaction (RT-qPCR) on one or more regions of the 
virus genome as the primary method to quantify the number of RNA 
copies in wastewater samples (4, 5). Absolute quantification of RNA 
concentrations in this way relies heavily on the use of standard curves 
with which the initial RT-qPCR results, in the form of cycle threshold 
values (Ct-values), are converted to a known concentration.

Similar to virtually all measurement instruments, RT-qPCR is 
known to produce results with test–retest variability. That is, multiple 
tests of the same sample are known to result in slightly different 
Ct-values. This not only applies to the results of the Ct-values of 
samples, but also to the Ct-values of the standard dilutions that result 
in PCR efficiency estimates and ultimately determine the standard 
curve that is used for quantification. Although such variation is 
smaller in (synthetic) preparations with known RNA particle counts, 
this variation can still affect the quantification process. Therefore, it is 
recommended to construct a standard curve using multiple replicates 
and dilutions for each assay (6–8).

The sources of variation in outcomes between duplicate analyses 
are plentiful and often hard to identify, as it may be any external factor 
that has the potential to affect the efficiency and sensitivity of the 
RT-qPCR, as small as changes in mains voltage (9). These may cause 
stochastic measurement error, where variations occur due to, e.g., 
randomness in the chemical processes during the RT-qPCR, 
temperature fluctuations, or external factors such as minor differences 
in the preparations made by laboratory technicians. Yet, other sources 
of variation in outcomes, such as the use of different batches of 
chemicals, seasonal differences in laboratory atmosphere, or general 
wear and tear of equipment may result in longer-term, 
systematic changes.

On the one hand, in a more traditional research setting with a 
predetermined number of experiments conducted in a limited 
timeframe, such structural external influences are easier to control 
than in a long-term monitoring setting. When analyses continue over 
a period of multiple years, it becomes prohibitively difficult to 
guarantee exactly identical circumstances, chemicals from the same 
batch run out, and there is personnel turnover. On the other hand, 
with continuous analyses, the opportunity exists to combine standard 
curve data from multiple runs, avoiding the need to duplicate the 
dilutions of the reference material in each run.

This implies that a trade-off exists between on the one hand 
combining duplicates between runs that reduce random variation 
caused by stochastic measurement error, and on the other hand 
updating the standard curve over time to take systematic shifts into 
account that would bias the quantification process when ignored. This 
issue of systematic shifts is also identified by Bivins et al. (10), who 
suggest to monitor shifts in Ct-values over time to determine when to 
replace the reference material, or use an overall calibration curve 

based on a mixture model to incorporate run-to-run variability. The 
trade-off is implicitly recognized throughout the literature where 
duplication is often recommended, but with consideration for 
between-run variability (e.g., 8).

Here we investigate this trade-off and present the results from the 
Dutch National Wastewater Surveillance (NRS) program, based on 
more than 4000 standard curves obtained using the US CDC SARS-
CoV-2 assay targeting two parts of the nucleocapsid protein (N1 and 
N2 assays) (11), between September 2021 and November 2022. Based 
on these data we propose and investigate an approach of combining 
observations of the standard from multiple runs to reduce the effect 
of random variations in the analyses, while still taking systematic 
shifts in RT-qPCR efficiency and sensitivity into account. This 
approach has the potential to be  a cost-saving method in high-
throughput programs, when it can reduce or eliminate the requirement 
to duplicate reference material series per run, and may allow 
quantification of samples from successful PCR runs with an erroneous 
standard curve. Conversely, in programs with lower analysis 
frequencies the method may instead lead to a reduction of unwanted 
variation in standard curve estimation without extra resources, when 
the results for the reference material can be  combined over 
multiple runs.

2. Materials and methods

2.1. Standard curve methodology

2.1.1. Log-linear standard curves
Absolute quantification by using a standard curve is an intuitive 

solution to the problem that initial values are only comparable within 
one PCR run (12). By including a consistent reference material with, 
in the case of SARS-CoV-2 analysis, a known RNA concentration the 
relationship between the Ct-value this reference material produces 
and its concentration can be  determined. By including multiple 
dilutions of reference material, a curve can be constructed that allows 
interpolation of the relationship between the Ct-value and the RNA 
concentration. These standard dilutions are generally 10-fold because 
of practical considerations in laboratory protocols. Due to the 
expected exponential growth of particles in the RT-qPCR process, the 
theoretical relationship between the Ct-value and concentration can 
be described as:

 Ct Intercept Slope Concentration= + ∗ ( )log10  (1)

Since not the Ct-value is of interest, but the RNA concentration of 
the sample, this is rewritten as:

 log /10 Concentration Ct Intercept Slope( ) = −( )  (2)

With the increasing popularity of RT-qPCR, advances to the basic 
approach have been developed, many of them focusing on the implicit 
assumption that the efficiency is equal for all samples included in a 
PCR run (13–15). Further improvements focus on better estimates of 
the efficiency, and a higher precision of the resulting standard curve 
(16–18). However, despite these efforts, simple ordinary least squares 
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(OLS) curve estimation is still predominant in current research. This 
may be  explained by the intuitive theory behind it, the need to 
maintain comparability to earlier studies, and the varying results of 
alternatives (14, 19). Moreover, it is surprisingly rare that obtaining 
the true RNA or DNA particle count is needed, and in the vast 
majority of applications maintaining an acceptable level of unbiased 
comparability between analyses suffices.

Since RT-qPCR is an approximately exponential process whereby 
PCR doubles the number of DNA particles per cycle, the ideal 
circumstance would be that each unit increase in Ct-value leads to 
exactly doubling the number of particles per amplification cycle. On 
a base-10 logarithmic scale this results in a slope of −3.32. That is, 
under ideal circumstances, a 3.32 point increase in Ct-value should 
occur per 10-fold dilution, regardless of the dilution’s absolute 
particle count.

In that light, the slope of a standard curve is determined by the 
relative distance between Ct-values of the dilutions of the reference 
material, assuming that log-linearity holds. As a result, the slope and 
associated efficiency are primarily indicative of the difference in 
concentration between high- and low concentration samples or 
dilutions. Anything that affects the RT-qPCR process in full, is 
captured in the intercept and could be  deemed indicative of 
the sensitivity.

Of course, directly controllable factors such as the threshold of the 
analyses linearly affect the resulting Ct-values and can be  chosen 
arbitrarily as long as they are placed in the log-linear phase of the 
amplification process. However, other factors can impact run-to-run 
comparability as they may shift the intercept of the standard curve, 
such as equipment wear and tear, differences between batches of 
materials and reagents, and laboratory temperatures or humidity. Such 
factors may affect both the degree of fluorescent luminescence of the 
sample material, as well as the sensitivity of sensors to the fluorescence 
(16). When such external factors affect the process equally for all, or 
a majority, of the dilutions of the reference, the resulting Ct-values 
change by an approximately equal amount. This would result in a 
largely unchanged slope, and an increase or decrease of the intercept 
proportional to the change in Ct-values.

The above has led to suggesting different ways to construct the 
standard curve when multiple analyses are conducted, based on the 
circumstances. Generally, when quantifying RNA or DNA from 
samples, researchers use either the Ct-values of the standard curve per 
run, or use a master curve where multiple runs are combined. Neither 
option is very useful or theoretically sensible in long-running 
surveillance programs, because these would either allow stochastic 
variance to affect trend estimation, or cause structural changes in 
quantification parameters to be ignored over time.

Two alternative approaches are based on multilevel random 
intercept and random slopes mixture models. These approaches 
combine information from all runs to reduce stochastic error, but 
allow either the intercept to vary with a fixed slope, or allow both the 
intercept and slope to vary per run (16). Although elegant solutions, 
there are some caveats when applying them for long-term, real-time 
monitoring. Firstly, these methods are introduced with the assumption 
that the complete data is available before standard curve estimation, 
and would require extensive computation after each PCR analysis in 
a continuous monitoring setting. Secondly, and more problematic, is 
that the approaches do not guarantee that shifts over time are properly 
captured. The estimation assumes that between-run variation 

randomly fluctuates around a midpoint. That midpoint, however, 
suffers the same problem as a master curve and is slow to incorporate 
systematic shifts due to it being based on all historically available data.

2.1.2. Rolling window master curve
To overcome the latter point, we here suggest an approach that 

uses historic data on standard curves within a rolling window as a 
pragmatic way to take advantage of the continuous observations of the 
standard in a monitoring setting. Such an approach may 
simultaneously reduce unwanted, stochastic variance by using more 
of the available data while still being able to incorporate longitudinal 
shifts in RT-qPCR efficiency and sensitivity. Due to its widespread use 
we do so using common standard curve methodology, where future 
steps are to combine these findings with advances such as using 
mixture models in curve estimation to allow plate-specific variance in 
efficiency estimation.

The assumption here is that, on average, an ideal amount of 
historic data of the reference dilutions exists. Using the data from this 
period reduces stochastic error in standard curves more than error 
that is introduced by structural shifts in the standard curves. 
Specifically, the distance between the expected Ct-values based on the 
current standard curve, and the Ct-values from the standard curve 
based on earlier observations of the reference material can 
be minimized. At the point of the smallest error, the standard curve 
based exclusively on historic data is the best approximation of the 
current standard curve parameters. That is, we propose an analysis 
using previously obtained standard curves, or measurements of the 
reference dilutions, whereby these observations of dilution series are 
used to obtain a standard curve that is compared to the current curve.

Because systematic changes are a function of time, the curves 
based on previous observations of the reference material are here 
obtained per day, but the span could be  any theoretical sensible 
timeframe, or can be  a number of previous runs. Based on the 
observations within this historical span a standard curve can 
be constructed using the observed Ct-values of the dilution series. 
Subsequently, the root mean square error (RMSE) between the curve 
based on a given number of previous days and the per-run curves of 
today can then obtained by computing the Ct-values associated with 
the known particle counts on the line per run, and the difference to 
the Ct-values resulting from the line based on historical data. Note 
that the error should be  obtained per current day run, and only 
subsequently be  aggregated. Not doing so would average out any 
differences between standard curves before obtaining the residual, 
which would significantly reduce the potential impact of individual 
runs. Doing the above for different amounts of historical data, e.g., 1 
through 20 days prior to today, the span that on average best 
approximates all standard curve observations of today can 
be determined by minimizing the RMSE. The expectation here is that 
the ideal tradeoff between systematic and random error can 
be determined. As more data is used, stochastic error variance will 
be reduced, but error due to systematic shifts in the standard curve 
parameters will increase. At the point with the lowest RMSE the 
reduction in stochastic variance is smaller than the error introduced 
due to systematic shift in standard curves, identifying the ideal size of 
the window of the smoothed, rolling window curve.

Further note that the curves estimated on data obtained in the 
preceding days should be based exclusively on data preceding the 
current day or current run. Including observations from the current 
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run or day in this analysis would give an arbitrary advantage to curves 
based on less historic data, since current observations are the best 
approximation of themselves and would form a larger share of the data 
when less previous information is used. For this same reason the most 
current data does need to be incorporated for the final curve that is 
used for quantification.

As a final remark, in the presented situation, curves based on one 
or two previous days are systematically missing due to weekends and 
national holidays. This is resolved by using the last estimate available 
in the cases where no data is observed on days prior to today. This 
would be the most pragmatic solution when applying the idea of a 
rolling window in practice.

2.2. Reference material

A synthetic DNA construct containing complementary sequences 
of the CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel, 
consisting of primers and probes that target the nucleocapsid (N) gene 
(11, G-block sequence in S1), downstream of a T7 RNA-polymerase 
promotor (Thermo Fisher Scientific) was used to transcribe RNA 
using the MEGAshortscript™ T7 Transcription Kit (Thermo 
Fisher Scientific).

Following transcription, and after a DNase step to remove the 
synthetic DNA construct, the generated RNA was quantified using a 
clinical isolate with a known concentration of SARS-CoV-2 genome 
copy numbers. In RT-qPCR, each assay, consisting of different 
primers/probes, has a different priming reaction. Therefore the 
performance of the N1 and N2 assay on the generated standard RNA 
has to be evaluated separately (11).

Ten-fold serial dilutions of the generated standard RNA were 
tested to determine which dilutions could be  included in the 
quantification curve, resulting in five dilutions of the RNA standard 
generating a positive signal.

The generated standard RNA was aliquoted in large batches of 
7 μL per tube (for single use) and stored in a −80°C freezer. Before 
each RT-qPCR run the standard RNA is serially diluted for direct use. 
Per 96-wells PCR plate the RNA of 20 samples are tested in duplicate 
using the N1 and N2 assays. The RT-qPCR is performed as prescribed 
previously (11) with minor modifications; Each reaction contained 1x 
TaqMan Fast Virus 1-step Master Mix (Thermo Fischer Scientific) and 
a final concentration of 0.5 μM and 0.25 μM of primers and probes, 
respectively. In each RT-qPCR run, for each assay, a negative control, 
a positive control and five dilutions of the standard RNA are included. 
All analyses were performed in an in-house laboratory at the Dutch 
National Institute for Public Health and the Environment, using nine 
different QIAquant 96 5-plex instruments (Qiagen). The threshold 
with which a Ct-value is determined is fixed across all runs in the 
log-linear phase of the RT-qPCR process.

2.3. Data

Data collection took place between September 1st 2021 and 
November 11th 2022 as part of the Dutch NRS program. During 
this period approximately 125 to 250 wastewater samples were 
quantified daily, resulting in four to ten PCR runs on average. In 

each run, five 10-fold dilutions of the RNA standard were included. 
However, the most diluted reference resulted in inconsistent 
Ct-values that strongly affect estimated standard curves. Therefore, 
only the other four standard dilutions are used for the analyses 
below. To improve readability of figures these are referred to as −04 
to −07 in the following. Although general recommendations for 
dilution series include 5–6 points, we  have confidence that the 
obtained standard curves are adequate, as they very closely 
match the curves reported in Bivins et al. (10) for the N1 and N2 
CDC assay. Furthermore, if additional 10-fold dilutions were added 
these can occasionally fall outside the log-linear phase of the 
quantification curves.

The procedures for the quantification are based on the 
NEN-EN-ISO-15216-1 (20) standard for hepatitis A virus and 
norovirus quantification in food chain microbiology. The 
construction of standard curves prescribed follow the widely used 
criteria for standard curve estimation, requiring a minimum of 
three 10-fold dilutions. These should log-linearly result in a slope 
between −3.60 and −3.10, which equates to a PCR efficiency 
estimate of 90 to 110%, and a minimum correlation between 
standard dilutions of 0.99, which translates to an R-squared of 
0.980 or higher. In the assessment of RT-qPCR data obvious 
deviations in the results of the reference dilutions are manually 
removed before standard curve construction. An example would 
be two wells with reference material resulting in almost identical 
Ct-values.

The ISO standard further allows the removal of dilutions based on 
outlying Ct-values, maintaining the minimum requirement of three 
or more observed dilutions per standard curve. Here the following 
procedure is applied: a standard curve is estimated on all four directly 
observed dilutions, or three in the case of aforementioned reasons for 
removal. When the resulting curve does not adhere to the criteria, but 
an acceptable curve exists when excluding any one out of the four 
dilutions, we use the combination excluding the most diluted reference 
that leads to an acceptable curve.

Standard curves were obtained on 308 out of 437 days. All days 
without data are weekends or national holidays. A total of 2282 unique 
runs were performed, the majority of which contain two series of RNA 
standard for both the N1 and N2 gene, respectively resulting in 4455 
and 4442 approved dilution series. Applying curve construction as 
described, this leads to 3755 (84%) and 3145 (71%) curves that adhere 
to the criteria.

To approximate the comparison between using historical data 
and the recommended duplication of dilution series of the standard, 
one line per RT-qPCR duplication is constructed for the results in 
section 3.3. As mentioned, samples within the NRS program are 
analyzed in duplicate for both N1 and N2 genes, where 40 wells are 
used for N1 and 40 wells for N2 on a 96-wells plate. Both runs 
contain a dilution series. The between-plate dependence of these 
analyses is high, plates contain identical reference material, and 
although two separate instruments are often used, the external 
circumstances are close to identical. These two sets of dilutions 
from the duplicate runs are combined to better approach the 
situation in which reference material is duplicated, and a standard 
curve is estimated on 3 – in the worst case scenario where one of 
the standard curves is unusable – to 8 dilutions, after which the 
same criteria as before are applied.
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3. Results

3.1. Univariate descriptive statistics

To be  able to combine the generated data and give a single 
overview, dependencies in the performance of the different qPCR 
instruments (QIAquants) are tested by conducting an ANOVA on the 
slopes and intercepts of constructed standard curves. A description and 
the results of this analysis can be  found in S2. The largest mean 
difference in standard curve intercepts between two machines equals 
0.157 for the N1 assay, and 0.220 on the N2 assay. Explained variance 
in the estimated intercepts by differences in qPCR instruments does 
not exceed 0.43% for N1 (F(8, 3634) = 1.96, p = 0.048), and 1.12% for 
N2 (F(8, 2985) = 4.24, p < 0.001). The statistical significance is a result 
of the large sample sizes, whereas the practical implication of these 
differences is negligible. With regard to the slopes, the mean differences 
and explained variance are, respectively, 0.024 and 0.38% for N1, and 
0.048 and 0.85% for N2. Although this does not exclude temporary, 
larger differences between pairs of instruments, the results give 
confidence that the qPCR results from instruments can be combined.

In Figures 1, 2, the density estimates and mean Ct-values for all 
observations of the four standard dilutions are shown when any 
combination leads to a curve within the criteria. Summary statistics 
are presented in Table  1. For both N1 and N2 the different 
concentrations show very comparable distributions. Combined with 
Figures  3, 4, which show a relatively stable long-term slope, the 
different dilutions seem to be affected in a similar fashion over time. 
This also explains the slight right-tail skew of the distribution as the 
intercept is, on average, trending upwards over time. The decreasing 
kurtosis of the distributions indicates larger variability in lower 
concentrations, which is expected given the higher levels of 
uncertainty in PCR analyses in more diluted samples.

3.2. Temporal trends in curve parameters

In Figures 3, 4 the curve parameters estimated on each set of 
reference material are shown, where the colored scatter indicates 
standard curves that fall within the selection criteria described in 
section 2.3. Locally estimated scatterplot smoothing (loess) is used 
for trend estimation.1 Long-term, structural fluctuation in the 
standard curves, as well as significant run-to-run variation in both the 
slope and intercept terms are visible. The former, structural trend, 
mostly manifests itself in terms of the intercept, which implies that all 
dilutions of the standard are similarly affected by the external factors 
that cause the shift, and the standard curve as a whole shifts upwards 
or downwards over time, in line with Figures 1, 2. Shifts in both the 
N1 and N2 curves are substantial, with approximately 2 Ct difference 
between the highest and lowest points. A difference of this magnitude 
will have a notable impact on the virus concentration obtained for the 
samples. The slopes of the standard curves, and associated efficiency 
of the analyses, show less structural fluctuation, indicating that the 
sensitivity of analyses varies more strongly and systematically than 
their efficiency.

Moreover, the trends in the N1 and N2 intercepts deviate from 
one another, and often show shifts in opposite directions, while the 
RNA is generated using the same G-block. For example, in the period 
from January to February 2022 the N1 assay shows a decrease in 
sensitivity (increasing intercept Ct-value) and the N2 assay shows an 

1 With a span of 0.25 a quarter of all points is used at each given day, which 

have a weight based on distance as (1−(distance/distancemax)3)3. This gives 

points closest to the day of interest a much higher weight than more 

distant points.

FIGURE 1

Density plot for the Ct-values per N1 reference dilutions. Dotted lines and values indicate the mean value, and distances between the mean values. 
Sample sizes are 3754, 3753, 3754, 3689, respectively.
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almost equal increase in sensitivity. This is plausible given that the 
N-gene primers and probes show different concentrations after 
preparation, but also implies that they react to different external 
factors, or react differently to similar external factors.

Disregarding the seasonal variation in Figures 3, 4, both assays 
also show a steady upward trend over the year. This is less apparent for 
the N2 assay from the figure, due to the trendline being somewhat 
distorted at the endpoints. The first and last week of data have above 
and below average intercept estimates, respectively. This upward trend 
is seemingly small (N1; B = 0.004, t = 39.72, p < 0.001. N2; B = 0.003, 
t = 24.65, p < 0.001), but results in a theoretical shift of 1.57 Ct for N1 
and 1.18 Ct for N2 over the course of one year, which will cause a 
significant upward trend in terms of the obtained viral concentrations 
from samples. We assume this to be the result of general wear and tear, 
as all data is obtained from PCR equipment that was brand new at the 
start of the measurements when sensitivity is expected to decline faster 
during a period of breaking in the new instruments. A similar trend 
is not observed in data before September 2021 obtained in a laboratory 
with older equipment.

The slopes in the second panel of the figures indicate good 
efficiency, but structurally result in efficiency estimates just below the 

90% limit. The net result of this is hard to determine. A steeper slope 
causes smaller differences in concentration for equal differences in 
Ct-values. However, this may cause both over- and underestimation, 
and is further compounded by the interaction between the slope and 
the intercept terms. One explanation may be so-called compound 
errors; the different standard RNA dilutions are obtained through 
serial dilution of one batch preparation. In practice it is almost always 
the case that when minor variations occur, too little standard material 
is pipetted, causing the assumed concentration to be higher than the 
true concentration. This error is then carried over to any dilutions 
made afterwards.

To inspect if the mentioned interaction between slope and 
intercept terms does not result in systematic bias, the log10 viral load 
of three Ct-values associated with high (29) / medium (33) / low (37) 
viral concentrations is plotted over time in Figure  5. Here any 
systematic over- or underestimation of samples with different 
concentrations would result in diverging trends over time (i.e., 
increasing or decreasing distances between the respective log10 
concentrations), of which there is no evidence. In addition, the N1 and 
N2 gene show the same overall trend, but have almost diametrically 
opposed short-term fluctuations, again indicating that external factors 

FIGURE 2

Density plot for the Ct-values per N2 reference dilutions. Dotted lines and values indicate the mean value, and distances between the mean values. 
Sample sizes are 3144, 3140, 3144, 3049, respectively.

TABLE 1 Summary statistics of the reference dilutions.

N1 N2

Mean Median Density Var Mean Median Density Var

St-04 23.17 (−) 23.08 (−) 23.09 (−) 0.50 23.87 (−) 23.64 (−) 23.37 (−) 0.90

St-05 26.52 (3.35) 26.39 (3.31) 26.21 (3.12) 0.61 27.27 (3.43) 27.08 (3.44) 26.98 (3.61) 1.03

St-06 29.92 (3.40) 29.83 (3.44) 29.46 (3.25) 0.61 30.81 (3.54) 30.60 (3.52) 30.28 (3.31) 1.12

St-07 33.39 (3.48) 33.25 (3.42) 33.13 (3.67) 1.13 34.36 (3.55) 34.18 (3.58) 34.15 (3.87) 1.50

Distances between dilutions between parentheses.
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affect the sensitivity, efficiency, and quantification of the 
samples differently.

3.3. Rolling window master curve

In Figure 6 the RMSE between the Ct-values associated with the 
different dilutions of the reference material are shown, per number of 
previous days included in the curve based on historic data.

In line with the expectation, including more data to reduce 
random variance works for a brief period of time, signified by the 
error reduction as a result of using data over one through four days. 
The shifts in error reduction on day three for the N2, and between 
days six and fifteen of the N1 assay can both be explained by the 
remaining effects of days without observations. The average age of the 
data used to approximate the current curve fluctuates, and is oldest 
when Monday is predicted using last week’s data. That is, due to having 
no new data in the weekend, a prediction based on three days of data 
causes a prediction of Monday by only using Friday, which explains 
the sudden increase of error for the N2 assay. This effect re-occurs 
every seven days, where there is a transition between having either 
more data available, and that data being older data on average.

Figure 7 shows the aggregated error between the historic curve 
and the curves obtained on the current day. The weekend-weekday 
effect is amplified here, as the error is combined across dilutions. It is 
nonetheless apparent that using standard curves estimated on the data 

of four days prior gives the best approximation of today’s standard 
curves, although it should be noted that using between four and seven 
days would not give significantly different results, both in the statistical 
and substantive sense.

Figure 8 contains the slopes and intercepts for three methods 
– duplicate standard combined in two simultaneous runs, a 
cumulative master curve using all data up to that point, and the 
suggest rolling curve over five days of data – when used to estimate 
standard curves using the Ct-values of the N1 standard dilutions 
(see S3 for N2). To depict the trend in the day-to-day quantification, 
a line is also estimated using the combined data from each day. As 
previously mentioned, the rolling curve was re-estimated to include 
a total of five days: the four previous dates as shown in Figure 6, 
plus today.

The suggested approach of including five days of data results in 
standard curves that follow the trend in day-to-day variation, with the 
exception of October 2021, and the third week of August 2022. In 
contrast, the master curve clearly shows increasing underestimation 
of the intercept and steepness of the slope compared to the other 
methods. Note that the slope is negative, and a shallower, less negative, 
slope indicates increased efficiency. This result is, of course, specific to 
the trends in standard curve parameters that are observed in the data 
from the NRS program, where a steady increase in intercepts, and 
decrease in slopes occur in the data.

Whether or not over- or underestimation of the concentration 
occurs depends on the observed Ct-value of a sample, and the over- or 

FIGURE 3

Slope and intercept for the N1 Target. loess smoothing with span  =  0.25, degree  =  2. N  =  3755/4455. Vertical lines indicate a new preparation from the 
CDC assay. Blue dots indicate line parameters of accepted standard curves, gray dots show rejected curves. For readability 242 and 650 observations 
are beyond the y-axis limits for the intercept and slope, respectively.
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underestimation of the intercept and slope. For example, when a high 
intercept and steep slope are found, it may be  the case that the 
concentration of samples with low Ct-values may be underestimated 
based on the high number of cycles associated with the intercept. 
However, due to the steep slope, using the same curve may cause 
overestimation of the concentration of samples with high Ct-values.

3.4. Trends in quantified viral 
concentrations

In Figure 9 a fixed Ct-value of 30 is quantified using the different 
standard curves, of which the parameters are plotted in Figure 8. Note 
that general trends occur gradually even when new preparations of the 
standard are made, and these do not seem to cause sudden changes.

Figure  9 makes clear how relatively limited changes in the 
standard curve parameters can have large effects on the sample 
concentrations due to the logarithmic relationship between 
Ct-values and concentration. Even when applying replication of the 
standard dilutions, run-to-run variation can be high between days 
and regularly causes extreme values. Standard curves of these runs 
adhere to the specified criteria and although their intercept terms, 
for which no criterion is applied, are relatively high, they are not so 
high as to raise immediate suspicion in light of the daily variation 
observed. Concentrations of that magnitude would, of course, 
be subject to further inspection after quantification as clear outliers, 

but the properties of the standard curve do not indicate problems 
in isolation.

The proposed approach of including several previous days reduces 
the run-to-run, and day-to-day variance. Due to the outlying virus 
concentrations based on per-run standard curves, Figure 9 does not 
do full justice to the day-to-day variance. For example, in December 
2021 there is an almost 100% larger shift in viral concentration based 
on daily standard curves than based on the other approaches to 
quantification. Moreover, daily runs already partially use historical 
data due to the use of the ISO criteria for the curves and using the 
most recently accepted curve if the current curve is problematic. This 
paradoxically leads to the situation where the daily standard curves 
capture less of the variance in standard curve variance, and would 
occasionally show almost equally extreme concentrations as run-based 
curves when they are used on face value.

Finally, in Figure 10 a selection of 44500 samples from the NRS 
program, collected between January 1st and November 11th 2022 are 
quantified and aggregated to country level using the described 
methods. For details on sample collection, aggregation, and 
hospitalization data, see Geubbels et  al. (21). Samples are only 
included if a standard curve is available for the RT-qPCR run on 
which they were originally analyzed. Note that due to data selection, 
and not using inflow or inhabitant corrections for the final 
concentration, the trend presented cannot be interpreted as the viral 
trend in The Netherlands. It does nonetheless track the virus 
concentration to an acceptable level for the purpose of this study.

FIGURE 4

Slope and intercept for the N2 Target. loess smoothing with span  =  0.25, degree  =  2. N  =  3145/4442. Vertical lines indicate a new preparation from the 
CDC assay. Green dots indicate line parameters of accepted standard curves, gray dots show rejected curves. Note: For readability 548 and 855 
observations are beyond the y-axis limits for the intercept and slope, respectively.
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FIGURE 5

Average daily log10 concentration of three Ct-values when quantified with the standard curves per run on that day. N1 (blue) and N2 (green) trends are 
superimposed on all three Ct-value sets (black lines), which are plotted on a base-10 log-scale to be able to distinguish them from each other.

FIGURE 6

Mean RMSE between the Ct-values interpolated from the standard curve per run, and the standard curve based on x previous days, per dilution, per 
gene target.
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The master curve starts of performing very similar to the 5 day 
rolling window standard curves. However, as can also be seen from 
Figures 3, 4, 8, increasingly underestimate the virus concentrations 
over time compared to the other methods, where the signal is 
decreased to about 50% of the virus loads compared to the alternative 
approaches. Per run curves show more, and especially in the beginning 
of 2022, unrealistic levels of variance, with changes in estimated virus 

concentrations occasionally in- or decreasing more than 100% 
between days.

Differences between the rolling and run-to-run quantification 
approaches can exceed 400%, but these cases are an exception where 
the standard curve of one run is markedly different from the rolling 
window curve. The median absolute difference on the daily nationwide 
average equals 8%, Some noticeable, prolonged periods of larger 

FIGURE 7

Mean RMSE between the Ct-values interpolated from the standard curve per run, and the standard curve based on x previous days, per gene target.

FIGURE 8

Estimated standard parameters for the N1 target, based on estimation per run (gray), on all daily observations of standard dilutions (red), on all 
observations within a five day rolling window (blue) and on all cumulative data up to that point (green). Vertical lines indicate a new preparation from 
the CDC assay.
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differences, upwards of 25% between the approaches, can be seen in 
the first and third peak in the data. The median absolute difference on 
the daily nationwide average equals 8%, with prolonged period in the 

first and third peak in the data showing differences upwards of 25%. 
The difference between the reported median percentages also 
illustrates that on a higher level of aggregation the effect of a different 

FIGURE 9

Estimated concentrations for a fixed Ct-value of 30, based on standard curves per duplicate run (gray), per day (red), on a five day rolling window 
(blue), and cumulative master curve (green).

FIGURE 10

National level aggregate virus loads from January 1st 2022 to November 11th 2022 as obtained from a standard curve per run (black), on a 5-day 
rolling window (red), or a cumulative master curve (blue), compared to daily hospitalizations.
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standard curve will be smaller, as the viral loads averages out over 
many observations. On more regional, or on WWTP level, trend 
estimates will show more marked differences.

This is far from being definitive proof, but when comparing the 
virus concentrations to the number of daily hospitalizations as a proxy 
variable, the standard curves using several previous days of data seem 
to outperform the other methods in capturing the correct levels of 
virus concentration on the aggregate level. Note that the lower peaks 
in hospitalizations do not indicate better performance of the master 
curve, as immunity through vaccination changed the ratio between 
viral load and hospitalizations over time (22, 23). This is especially 
important toward the end of 2022, as the standard curve affects 
estimated trends more severely in high virus concentrations: Small 
shifts in the curve intercept and slope have the potential to cause large 
trend variations by the nature of Ct-values being logarithmically 
related to virus concentration.

4. Conclusion

We present the resulting standard curves from more than 4000 
analyses of standard dilutions constructed from the CDC 2019-nCoV 
Real-Time RT-PCR Diagnostic Panel over the period of sixteen 
months. Further we propose a method of combining observations of 
standard dilutions over multiple runs in a high-throughput wastewater 
monitoring setting.

Results indicate that both the slope and intercept parameters of 
standard curves show high levels of run-to-run variance, and are 
subject to systematic shifts over a year that can exceed 2 Ct-values. 
Especially the sensitivity of the RT-qPCR process varies, as indicated 
by changes in the intercept of the standard curves. This is an important 
finding with regards to commonly applied criteria for standard curve 
construction, as the intercept is often, and surprisingly, absent from 
the quality indicators. As a result it may be a parameter that receives 
less attention when efficiency estimates are within their bounds, 
despite the potentially large impact on the concentrations obtained 
from samples.

The systematic fluctuations in the estimated standard curves make 
the application of a general master curve problematic. As time 
progresses the amount of data required to shift a master curve toward 
its current true value becomes exceedingly large, until the curve is 
virtually constant. In contrast, concentrations obtained from standard 
curves obtained from individual dilution series, even when duplicated 
on simultaneous runs, can result in large variation, with obtained 
sample concentrations that can exceed surrounding measurements by 
an order of magnitude.

Using the proposed approach of combining standard curve data 
from multiple runs, may not only have the practical benefits of 
extending the period for which the reference batch is identical, and 
cost-saving through less wells per run being occupied by reference 
dilutions. Results indicate that it also has the potential to solve 
problems associated with standard curve estimation, as a more 
plausible degree of variation in curve parameters is obtained than 
from run based standard curves, while systematic changes are properly 
captured. Both of these can be  beneficial in high throughput 
surveillance programs, such as wastewater surveillance.

The newest data is often of major importance to fulfill the real-
time monitoring objective that many surveillance programs are 

tasked with. Problematic or outlying concentrations can compromise 
this task, given potential delays through re-testing or partial 
rejection of output. Depending on the degree to which true variance 
is captured by partially smoothed standard curves, the proposed 
approach can reduce such problematic data where they are caused 
by standard curves that contain significant measurement error. 
Furthermore, trends in the data roughly coincide with meteorological 
seasons. Although multiple years of data would be required and 
controlled for laboratory atmosphere to ascertain this with certainty, 
if these trends do indeed have a yearly recurrence they may cause 
the viral load signal of interest to be  dampened or amplified. 
Specifically during autumn and winter seasons there is a potential 
for these trends to coincide with seasonal variations of certain 
infectious disease prevalence, most notably respiratory viruses such 
as influenza and SARS-CoV-2.

Despite promising results, this work should be seen primarily as 
a proof of concept, since the major caveat is that the true standard 
curve is unknown. Given the observed changes in qPCR efficiency and 
sensitivity, and the theoretical basis for standard curve estimation, 
usage of a master curve for a longer period of time can be advised 
against. However, whether short term variance is captured to a 
sufficient degree when using standard curve estimation on a rolling 
window requires further work through a simulation study in which 
the properties of the true standard curves are known, and recovery of 
those curves can be investigated.

Such a study would further allow investigation of the required 
density of standard curve data. Preliminary results obtained over the 
year prior, where the weekly analysis frequency was one fourth of the 
data presented, show similar results. However, whether or not good 
approximation of standard curves per run is possible by using a rolling 
window, is dependent on the specific properties of the RNA or DNA 
target, the reference material used, and the laboratory setup and 
equipment, combined with data availability over a given period 
of time.
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