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Atopic dermatitis (AD) is a common chronic allergic skin disease characterized

clinically by severe skin lesions and pruritus. Portulaca oleracea L. (PO) is

a resourceful plant with homologous properties in medicine and food. In

this study, we used two different methods to extract PO, and compared

the therapeutic effects of PO aqueous extract (POAE) and PO ultrasound-

assisted ethanol extract (POEE) on 2,4-dinitrochlorobenzene (DNCB)-induced

AD mice. The results showed that in POAE and POEE, the extraction rates

of polysaccharides were 16.95% and 9.85%, while the extraction rates of

total flavonoids were 3.15% and 3.25%, respectively. Compared with AD

mice, clinical symptoms such as erythema, edema, dryness and ulceration

in the back and left ear were alleviated, and pruritus behavior was reduced

after POAE and POEE treatments. The thickness of the skin epidermis was

thinned, the density of skin nerve fibers labeled with protein gene product

9.5 (PGP9.5) was decreased, and mast cell infiltration was reduced. There

was a decrease in blood lymphocytes, eosinophils and basophils, a significant

decrease in spleen index and a noticeable decrease in serum immunoglobulin

E (Ig E). POEE significantly reduced the concentration of the skin pruritic

factor interleukin (Il)-31. POAE and POEE reduced the concentration of skin

histamine (His), down-regulated mRNA expression levels of interferon-γ (Ifnγ),

tumor necrosis factor-α (Tnf-α), thymic stromal lymphopoietin (Tslp) and Il-4,

with an increase of Filaggrin (Flg) and Loricrin (Lor) in skin lesions. These results

suggested that POAE and POEE may inhibit atopic response and alleviate

the clinical symptoms of AD by inhibiting the expression of immune cells,

inflammatory mediators and cytokines. PO may be a potential effective drug

for AD-like diseases.

KEYWORDS

atopic dermatitis, Portulaca oleracea L., immunomodulation, anti-inflammatory,
anti-pruritic, 2,4-dinitrochlorobenzene (DNCB)

Frontiers in Nutrition 01 frontiersin.org

5

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.986943
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.986943&domain=pdf&date_stamp=2022-08-16
mailto:gdszyysjb@gzucm.edu.cn
mailto:maowei@gzucm.edu.cn
mailto:shining@scau.edu.cn
https://doi.org/10.3389/fnut.2022.986943
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.986943/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-986943 August 10, 2022 Time: 15:7 # 2

Lv et al. 10.3389/fnut.2022.986943

Introduction

Atopic dermatitis (AD) is a common, chronic, inflammatory
skin disease, which is often accompanied by severe pruritus and
high recurrence rate. Children have the highest incidence and
are prone to relapse in adulthood. According to an extensive
epidemiological survey, the prevalence rate is about 15–30% for
children and 2–10% for adults around the world (1). In recent
years, the incidence of AD shows a rising trend (2).

The clinical symptoms of AD include severe pruritus,
impaired skin barrier, edema, erythema, dryness, ulcers, etc. In
addition, AD is a primary immune abnormality, with elevated
serum immunoglobulin E (Ig E) and immune cell infiltration.
Because of the obvious appearance of the lesions, the tendency
of the disease to recur, and the high cost of long-term treatment,
the quality of work and life of AD patients are seriously affected,
and even their emotions are inevitably disturbed (3). Therefore,
it is of great significance to find some potential therapeutic
agents for AD with low economic burden and effective in
relieving dermatitis symptoms.

The pathogenesis of AD is not completely clear. Studies have
shown that AD is driven by defects in terminal keratin-forming
cell differentiation and strong type 2 immune responses (4).
Currently, clinical medications used to treat AD include basic
moisturizing creams, external application therapies, vitamin
D supplements, topical corticosteroids, oral anti-inflammatory
and antihistamines (5, 6). Steroids and calcineurin inhibitors
(cyclosporine, tacrolimus) are still the first choice of drugs in
acute attacks of AD (7). However, there is still a large unmet need
for novel therapeutic approaches as these drugs have serious side
effects, including adrenal failure, skin atrophy, neurotoxicity,
nephrotoxicity and skin canceration (8).

Herbs have been reported to improve the severity of
symptoms such as skin lesions and pruritus in AD (9). Clinical
studies have found that the use of herbal medicines, such
as Xiao-Feng-San, Glycyrrhiza uralensis Fisch., and Lonicera
japonicaThunb., reduces the frequency of corticosteroid use and
decreases exposure to corticosteroids in children with AD (10).
Given the heterogeneity of the disease and the limitations of
studies, more research is needed to demonstrate the effectiveness
of herbs for AD. Portulaca oleracea L. (PO), which is called
longevity vegetable in folklore, a medicinal food homolog (11).
External use of PO for treating skin injuries and dermatitis
has also been reported extensively. In general, the role of PO
is to stimulate the angiogenesis of injured skin, regulate the
proliferation of skin fibroblasts, promote the production of
collagen fibers in the skin, and accelerate wound healing in
the skin (12, 13). Previous studies on the active ingredients
have revealed that polysaccharides and flavonoids of PO play
important roles in the treatment of various diseases (14).
However, the underlying mechanisms are still unclear.

In this study, the aqueous and ultrasound-assisted ethanolic
extracts of PO (POAE and POAE) were used to compare the

extraction rates of polysaccharides and total flavonoids. As well,
we investigated the therapeutic effect of external application of
PO on mice with AD-like lesions.

Materials and methods

Drug preparation

PO aqueous extract
PO (30 g), purchased from Guangzhou Nanbei Traditional

Chinese Medicine Decoction Pieces Co., Ltd. (China), was first
soaked in 300 mL of distilled water for 30 min. Then heated up
to 180◦C and maintained at 80◦C for 30 min and filtered out
the first extract. Repeat the above steps with another 300 mL of
distilled water. Mix the extracts obtained. After concentrated to
30 mL by rotary evaporator, the aqueous extract of PO with the
concentration of 1 g/mL was obtained and stored at 4◦C. Our
preliminary study found that 1 mg/mL POAE was more effective
than 0.5 mg/mL POAE, so we chose this concentration as the PO
extract concentration (Supplementary Figure 1).

PO ultrasound-assisted ethanol extract
PO (30 g) were broken to pieces and sieved through 60

pieces of mesh, dissolved in 600 mL of 70% ethanol, and
extracted with ultrasound at 50◦C for 40 min. The extract was
filtered, and the upper layer of the solution was centrifuged and
collected. After concentrated to 30 mL by rotary evaporator, the
ethanol extract of PO with the concentration of 1 g/mL was
obtained and stored at 4◦C.

Hydrocortisone butyrate cream
0.1% hydrocortisone butyrate cream (HBC) was purchased

from Shubang Pharmaceutical Co., Ltd. (China), as a positive
control drug in this study.

Determination of polysaccharide and
total flavonoid contents

The concentrations of polysaccharides in POAE and
POEE were measured using a multimode reader (EnSight,
United States) at a wavelength of 490 nm, compared with
glucose. The absorbance was measured at 510 nm and compared
with rutin to calculate the total flavonoid concentration in
POAE and POEE. Polysaccharide and total flavonoid extraction
rates were expressed as a percentage of polysaccharide and
total flavonoid content and PO raw material mass. Anhydrous
glucose standard (NO. MO309BS) purchased from Dalian
Meilun Biotechnology Co., Ltd. (China), and rutin standard
(NO. PRF21071301) was purchased from Chengdu Biopurify
Phytochemicals Co., Ltd. (China).
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Animals

Following AAALAC guidelines, all animal experimental
procedures comply with the standards of the South China
Agricultural University Experimental Animal Ethics
Committee. The animal experimental procedures were
approved by the Ethics Committee.

Six-week-old KM male mice, weighing 30 ± 2 g, purchased
from the Experimental Animal Management Center of Southern
Medical University. Animals were kept in the South China
Agricultural University Laboratory Animal Center (SYXK 2019-
0136) at a room temperature of 25 ± 2◦C and relative humidity
of 55± 5%. Mice were free to feed and drink.

Sensitization and treatment of AD mice

After 7 days of adaptation, all mice were shaved on the
back (2.5 cm × 2.5 cm). The mice were randomly divided
into 5 groups: Control, DNCB, HBC, POAE, POEE groups, 5
mice in each group.

Sensitization: 2% DNCB and 0.5% DNCB dissolved in a
mixture of acetone and olive oil (3:1 v/v) (15, 16). 2% DNCB
was challenged on the dorsal skin (200 µL) and left ear (100 µL)
of the DNCB, HBC, POAE and POEE groups, followed by 0.5%
DNCB every two days starting on day 3 for 4 weeks. Equal
volumes of acetone and olive oil mixture were used as controls
in Control group.

Intervention: Starting from the second week (day 8), each
group of mice was given external drug intervention on the dorsal
skin twice a day for 3 weeks (until day 28). POAE group was
treated with 3 mL 1 g/mL POAE, POEE group was treated with
3 mL 1 g/mL POEE, HBC group was treated with 1 g 0.1%
HBC, while Control and DNCB group was treated with 3 mL
0.9% normal saline (NS). At the end of the animal experiments,
samples were collected as needed.

Clinical symptoms and SCORing of
atopic dermatitis

Mental status, activity and mortality were observed and
recorded for each group of mice. According to a previous study,
dorsal skin severity scores were recorded weekly for AD mice
based on four skin symptoms (erythema, edema, dryness and
ulceration) (17). The scoring range indicators were 0 (none),
1 (mild), 2 (moderate) and 3 (severe). The specific symptom
classification is shown in Table 1. The sum of the four symptom
scores was calculated to assess SCORing of atopic dermatitis
(SCORAD), with a maximum score of 12. In addition, the
thickness of the skin lesion area and left ear of the mice
were measured using electronic Vernier calipers (18). We got
the skin images of the mice’s dorsal surface with a camera
after anesthesia.

TABLE 1 AD score reference (maximum score: 12).

Score 1 Erythema

0 No erythema

1 Faintly visible punctate erythema

2 Patchy red papules

3 Dark red irregularly raised

Score 2 Edema

0 No edema

1 Slight edema

2 Localized edema with pitting exudate

3 Massive edema, more oozing, crusting

Score 3 Dryness

0 No dryness

1 Slight dryness of epidermis

2 Moderately dry epidermis with peeling

3 Severe dryness of epidermis with flaking

Score 4 Ulceration

0 No ulceration

1 Mild epidermal ulceration

2 Moderate epidermal ulceration

3 Severe infected epidermal ulcers

Scoring of pruritic behavior

Pruritic behavior was observed. The pruritus score was
defined by the duration of the pruritus behavior, that is, the
time spent scratching and rubbing the skin of the ears and back
with the limbs (16, 18, 19). On the last day of the experiment,
the total duration of pruritic behavior of mice within 20 min
was recorded with a high-definition camera. Scratching time
less than 1.5 s was added 1 point each time; scratching time
less than 3 s was added 2 points each time; scratching time
more than 3 s was added 3 points each time; no scratching
was scored 0 points. The total score was recorded as the
pruritus score of mice.

Pathological histological analysis of
skin lesions

The dorsal skin of mice was collected and fixed in 10%
neutral formalin for more than 48 h. The tissues were made into
paraffin-embedded sections and stained with hematoxylin and
eosin (H&E) and toluidine blue (TB). The histological changes
of skin pathology on the dorsal skin of mice were observed
under a light microscope at 100 ×magnification. The thickness
of the epidermis was measured, and the mast cell infiltration in
the dermis was counted.
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Immunofluorescence staining analysis

The growth of PGP9.5 nerve fibers in the dorsal
lesions of mice were analyzed by immunofluorescence
staining of skin paraffin sections and observed under a
fluorescent microscope. PGP9.5 antibody was purchased
from Wuhan Servicebio Technology Co., Ltd. (China).
Under ultraviolet laser, cell nuclei showed blue light
after DAPI treatment, and PGP9.5 showed red light
under the labeling of fluorescent secondary antibody.
The fluorescence area and intensity were analyzed using
Image J software.

Calculation of spleen index

On the last day of the experiment, the spleens were
weighed, and the splenic indices (spleen weight/body weight)
were calculated.

Immune cell counting

Blood was collected into tubes with EDTA, and the numbers
of lymphocytes, eosinophils and basophils were counted using a
hematology analyzer (Mindray).

Enzyme-linked immunosorbent assay

The blood was collected and centrifuged at 3,000 r/min
for 5 min, then the upper serum layer was separated and
stored at –80◦C. Serum levels of Ig E were determined using
enzyme-linked immunosorbent assay (ELISA) kits (CUSABIO)1

according to the manufacturer’s instructions. Serum levels
of Histamine (His) and Il-31 were measured by ELISA
kit purchased from Shanghai Enzyme-linked Biotechnology
Co., Ltd. (China).

1 https://www.cusabio.com/

Real-time quantitative PCR

Total tissue RNA was extracted using the RNA isolater Total
RNA Extraction Reagent kit, and RNA was reverse transcribed
to cDNA using the HiScript III RT SuperMix for qPCR (+ gDNA
wiper) reverse transcription kit. The reaction system was
configured and performed according to the ChamQ Universal
SYBR qPCR Master Mix kit. These kits were purchased from
Nanjing Vazyme Biotech Co., Ltd. (China). The primers were
synthesized by Beijing Tsingke Biotechnology Co., Ltd. (China).
The primer sequences are listed in Table 2. The relative
expression of target genes was analyzed by the 2-1 1Ct method.

Statistical analysis

The experimental data were statistically analyzed using
GraphPad Prism 7.0 software. Data comparison between
two groups was analyzed by t-test. Multiple data groups
were compared using one-way ANOVA and Tukey’s multiple
comparisons to analyze the variability between groups. P < 0.05
were considered statistically significant.

Results

Extraction rates of polysaccharides and
total flavonoids from PO aqueous
extract and PO ultrasound-assisted
ethanol extract

Measurements of the phenol-sulfuric acid method showed
that the polysaccharide extraction rates of POAE and POEE
were 16.95% and 9.85%, respectively. The results of NaNO2-
Al (NO3)3 colorimetric method showed that the extraction
rate of total flavonoids in POAE and POEE were 3.15% and
3.25%, respectively (Figures 1A,B). The above results indicated
that the extraction rate of PO total flavonoids was similar,
while the extraction rate of polysaccharides of POAE was better
than that of POEE.

TABLE 2 Sequence of primers used for quantitative RT-PCR assay.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

β-Actin TGCTGTCCCTGTATGCCTCTG CTGTAGCCACGCTCGGTCA

Flg CAATCCCACTCCAAACCATCTCCAG GACTGTCCTCTGCCTCCTGATCC

Ifn-γ CTCAAGTGGCATAGATGTGGAAG TGACCTCAAACTTGGCAATACTC

Il-4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT

Lor TTACTCCTCTCAGCAGACCAGTCAG CCTCCACAGCTACCACCTCCTC

Tnf-α CTGATGAGAGGGAGGCCATT GCCTCTTCTCATTCCTGCTTG

Tslp CTGCCATGATGAGGTGGTCTGAA TCTGCTCACGAATTGTACTGTCCT
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FIGURE 1

Polysaccharide and total flavonoid extraction rates of POAE and POEE in this study. (A) Polysaccharide and total flavonoid extraction rates of
POAE. (B) Polysaccharide and total flavonoid extraction rates of POEE. Absorbance was measured at least 3 times and calculated based on the
standard products (Glucose and Rutin). The data were expressed as mean.

PO aqueous extract and PO
ultrasound-assisted ethanol extract
significantly alleviate
2,4-dinitrochlorobenzene -induced AD
clinical symptoms in mice

We established a model of AD-like lesions in KM mice
induced by DNCB and used HBC as a positive drug to
investigate the role of POAE and POEE in AD mice (Figure 2A).
Photographs of the dorsal skin of mice (Figure 2B) and
SCORAD scores (Figure 2C) showed that POAE and POEE
interventions significantly alleviated the clinical symptoms of
dorsal skin. Pruritus lasted longer in the DNCB group, while
the scratching behavior was strongly reduced after POAE
and POEE interventions, comparable to that of the Control
group (Figure 2D). The thickness of the dorsal skin and
the left ear were effectively reduced after POAE and POEE
treatments (Supplementary Figure 2). Generally, POAE and
POEE interventions alleviate the symptoms of skin lesion and
pruritus in AD mice.

PO aqueous extract and PO
ultrasound-assisted ethanol
extractreduced the density of nerve
fibers in the dorsal skin

Next, we took a more in-depth observation of the dorsal
skin of the mice. H&E-stained sections showed significant
epidermal thickening in DNCB mice, whereas there was no
significant difference between POAE and POEE groups and
Control group (Figures 3A,B). Immunofluorescence-labeled
skin sections showed that the fluorescence area of protein gene
product 9.5 (PGP9.5) in the dorsal skin tissue of the DNCB

group was obviously increased compared to Control group,
indicating that repeated stimulation of the dorsal skin of mice
by DNCB increased the density of nerve fibers. After treatment,
the PGP9.5 fluorescence area was significantly reduced and
nerve fiber density was decreased in the POAE and POEE
groups compared with the DNCB group, which was remarkable
(Figures 3C,D).

PO aqueous extract and PO
ultrasound-assisted ethanol extract
reduced the number of immune cells
and abnormal increase in serum Ig E in
AD mice

It is well-known that the spleen serves as the main organ
of the body’s immunity, and an enlarged spleen indicates the
activation of an immune response in metaplastic diseases (20).
We found a significant increase in spleen index in DNCB-
induced AD mice, while there was a marked decrease in
spleen index in AD mice after POAE and POEE treatments
(Figure 4A). The number of lymphocytes, eosinophils and
basophils was significantly increased in the AD mice of the
DNCB group, while POAE and POEE interventions caused
different decreases in the number of these immune cells
(Figures 4B–F). TB-stained sections of the dorsal skin showed
severe mast cell infiltration in the dermis in the DNCB group,
while mast cells were greatly reduced in the POAE and POEE
groups (Figures 4G,H). In addition, serum Ig E levels were
increased in the DNCB group compared to the control group,
which were an important clinical indicator of AD; while serum
Ig E was significantly decreased in the POAE and POEE groups
compared to DNCB-induced mice (Figure 4I). The results
showed that POAE and POEE reduced the number of immune
cells and serum Ig E levels in mice.
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FIGURE 2

POAE and POEE significantly alleviate DNCB-induced AD clinical symptoms in mice. (A) Animal experiments. (B) Representative dorsal skin
photographs of each group of mice. (C) SCORAD scores of each group of mice. (D) Pruritus scores of mice in each group. The data were
expressed as mean ± SD (n = 5 per group). ###P < 0.001, vs. control groups; *P < 0.05, **P < 0.01, ***P < 0.001, vs. model (DNCB) groups.

PO aqueous extract and PO
ultrasound-assisted ethanol extract
inhibit skin lesions and
pruritus-associated cytokines in AD
mice

His is an important mediator of pruritus. Compared to the
control group, DNCB induced an increase in skin His content
in mice, while POAE and POEE were effective in reducing skin
His concentration compared to the DNCB group (Figure 5A).
In addition, the level of skin pruritic factor Il-31 was significantly

increased, and it was lower in the POEE group (Figure 5B).
The relative mRNA expression of inflammatory factors in
skin lesions showed that interferon-γ (Ifn-γ), tumor necrosis
factor-α (Tnf-α), thymic stromal lymphopoietin (Tslp) and Il-
4 were significantly increased in DNCB-induced AD mice, and
the relative mRNA expressions of Ifn-γ, Tnf-α, Tslp and Il-4
were significantly decreased after POAE and POEE treatments
(Figures 5C–F). In addition, the relative mRNA expression of
Filaggrin (Flg) and Loricrin (Lor) was impaired in AD mice,
whereas POAE and POEE increased the mRNA levels of skin
barrier proteins Flg and Lor (Figures 5G,H). The above results
showed that POAE and POEE reduced the levels of skin His and
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FIGURE 3

POAE and POEE reduced the density of nerve fibers in the dorsal skin. (A) Representative photographs of H&E staining of the dorsal skin of each
group of mice (Scale bar: 200 µm). The black arrow indicates the epidermal layer of the skin. (B) Thickness of the epidermal layer of the dorsal
skin of each group of mice (n = 3 per group). (C) Immunofluorescence staining of representative dorsal skin nerve fibers from each group of
mice (Scale bar: 50 µm). The nuclei showed blue fluorescence after DAPI staining, and PGP9.5 showed red fluorescence under the labeling of
fluorescent secondary antibody. (D) The ratio of PGP9.5/DAPI fluorescence area in each group of mice (n = 4 per group). The data were
expressed as mean ± SD. ###P < 0.001, vs. control groups; **P < 0.01, ***P < 0.001, vs. DNCB (model) groups.

Il-31 and down-regulated the mRNA levels of skin lesion-related
factors, thereby suppressing the excessive immune response to
AD and increasing the expression of skin barrier proteins.

Discussion

PO has a high content of vitamins, minerals, omega-3
fatty acids, and is also rich in polysaccharides, flavonoids,
alkaloids, terpenoids, and sterols. Thus, it is not only rich

in nutritional value, but also has excellent pharmacological
properties, and has great potential for use under sustainable
development strategies (21). Recent reports indicate that PO has
neuroprotective, antibacterial, antidiabetic, antioxidant, anti-
inflammatory, anti-ulcer and anticancer activities, and plays an
important role in alleviating symptoms such as inflammation,
fever, headache, and insomnia (22, 23). Moreover, PO can
regulate the gut microbiota, promote probiotics and inhibit
pathogenic bacteria (24). Several studies have shown that PO
has strong immunomodulatory effects, improving T-helper (Th)
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FIGURE 4

POAE and POEE reduced the number of immune cells and abnormal increase in serum Ig E in AD mice. (A) Spleen indices of mice in each group
(n = 5 per group). (B–F) The number of lymphocytes, eosinophils, basophils, monocytes and neutrophils in each group of mice (n = 5 per
group). (G) Pictures of representative dorsal skin TB staining of each group. Red circles mark some of the mast cells (Scale bar: 200 µm). (H) The
number of mast cells in the dermis of each group (n = 3 per group). (I) Serum Ig E concentration of mice in each group (n = 3 per group). The
data were expressed as mean ± SD. ##P < 0.01, ###P < 0.001, ####P < 0.0001, vs. control groups; *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001, vs. model (DNCB) groups.

1/Th2 and Th2/regulatory T (Treg) balance and reducing Ig E
levels, thus exerting anti-inflammatory effects (25–27).

It has been reported that external application of a
mixture of herbal extracts can alleviate skin inflammation
and restore skin barrier integrity in AD mice (28). Studies

show that Huanglian jiedu decoction can treat AD by
modulating the antigen-presenting function of dendritic cells
and attenuating T-lymphocyte activation, in turn exerting
anti-inflammatory and anti-pruritic effects (29). Considering
the abundant resources and numerous medicinal values of
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FIGURE 5

POAE and POEE inhibit skin lesions and pruritus-associated cytokines in AD mice. (A) Skin His concentrations in each group of mice. (B) Skin
Il-31 concentrations in each group of mice. (C–H) Relative mRNA expression of Ifn-γ, Tnf-α, Tslp, Il-4, Flg, and Lor in each group of mice. The
data were expressed as mean ± SD (n = 3 per group). #P < 0.05, ##P < 0.01, ###P < 0.001, vs. control groups; *P < 0.05, **P < 0.01,
***P < 0.001, vs. model (DNCB) groups.

PO, we wondered whether external application of PO could
alleviate AD-like skin lesions. Evidently, our studies showed
that PO significantly alleviated the clinical symptoms and
pathological changes of AD.

AD is a chronic recurrent skin disease characterized by
eczematous, inflammatory, and severe pruritus. Previous
study found that children with a family history of
allergic disease or a parental history of AD were more
likely to develop AD (30). Since AD is a heterogeneous
disease with unique clinical manifestations in different
age and ethnic groups, its pathogenesis is not yet
completely clarified (31). In general, the pathogenesis of
AD includes both genetic and external environmental
factors of the organism. Imbalance of the body’s immune
system, disruption of the skin barrier, induced infections
and dysregulation of the skin microbiota, especially

Staphylococcus aureus, also contribute to the pathogenesis
of AD (32).

It is reported that Ig E and reactive T cells contribute to the
pathophysiological development of AD (33). The increased level
of Ig E is a sign of AD occurrence, as Ig E binds to numerous
immune cells via high-affinity Ig E receptors, mediating the
development of allergic inflammation (34). In this study,
external application of POAE and POEE significantly reduced
the serum Ig E levels in DNCB-induced AD mice. Moreover,
lymphocytes, eosinophils and basophils were also reduced to
varying degrees in the intervened AD mice. Eosinophils and
mast cells mediate a large number of inflammatory molecules,
including histamine, leukotrienes and interleukins, causing
pruritus and mossy lesions in patients with AD (35). We found
that the thickened epidermal layer and mast cell infiltration in
AD-like lesioned mice were alleviated after PO intervention.
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As mentioned above, pruritus is one of the most prominent
and difficult features of AD. On the one hand, acute scratching
serves as an adaptive defense against pruritogenic substances;
on the other hand, chronic pruritus exacerbates the pruritic-
scratching circulation, continuously leading to hair loss and
skin damage (36). The sensation of pruritus is triggered by
excitation of the nerve endings of the sensory nerves in
the skin; furthermore, inflammatory mediators released by
immune cells or skin cells may also sensitize sensory nerves
and further exacerbate pruritic sensations (37). There are two
main signals of pruritus in AD, histamine-dependent and
non-histamine-dependent pathways, which seem completely
independent, although the two systems are closely related (38).
Histamine is an important pruritic mediator that induces a
histamine-dependent pruritic response by binding to H1 or H4
histamine receptors and activating transient receptor potential
vanilloid-1 (TRAV1) channels (39). Il-4 can rapidly amplify
neuronal sensitization, including histamine-induced scratching
behavior in response to various pruritogens. Non-histamine-
dependent pruritic mechanisms involve numerous cytokines,
neuropeptides, endogenous secretory factors, and sensitized
nervous system (40). Abnormal increase in cutaneous nerve
fibers is thought to be an important factor in causing pruritus
symptoms in AD. In our study, skin nerve fiber density in AD
mice was explored by using immunofluorescence to visualize
protein gene product 9.5 (PGP9.5) + nerve fibers (41). The
external application of PO reduced the skin nerve fiber density
in AD mice, which was important in alleviating the exacerbation
of skin lesions in AD mice caused by intense pruritus.

Abnormal immune responses in Th1/Th2 have been
proposed to be critical in the development of AD. Most studies
hold the view that Th2-type cells play a key role in acute
AD and Tnf-α is required for antigen-specific Ig E production
and induction of Th2-type cytokines and chemokines (42).
Tslp is a key cytokine to promotes the Th2 immune response
that is essential for the regulation of downstream Il-4/Il-13
and Th2 differentiation (43). Il-4, secreted by Th2 cells, is a
cytokine closely related to the biological function of AD and
continuously activate mast cells to produce more Ig E (44).
It has been shown that elevated Th2 cytokines Il-4/Il-13 in
AD lesions inhibit keratinocyte differentiation markers (FLG,
LOR, keratin 1, and keratin 10) to impair skin barrier function
(45). Accordingly, down-regulation of Il-4 expression is an
important strategy for the treatment of AD. Transient receptor
potential A1 (TRPA1) is mainly involved in non-histamine
such as Il-31, Tslp-related pruritus, which is associated with
pruritic transmission in the central nervous system (46). Il-
31 is produced by activated T cells and is capable of inducing
nerve fiber elongation (47). Il-31 can not only promote the
release of pruritus-related neuropeptides, but also regulate the
pathogenesis of AD by activating TRPV1 + /TRPA1 + sensory
neurons (48). In addition, overexpression of Il-31 induced AD-
like lesions, and comparison of TH1/TH2 cytokines suggested

that Il-31 expression is associated with Il-4 and Il-13 but not
Ifn-γ (49). The chronic phase of AD exhibits a local Th1
response, mainly associated with Ifn-γ. The down-regulation
of Ifn-γ expression in patients after successful treatment of
atopic dermatitis is remarkable (50). Mature Th1 cells secrete
Ifn-γ and promote more Th1 cell differentiation. Dominance
of Ifn-γ-producing T cells leads to chronicity of AD lesions
and determines disease severity (51). Consistent with this,
we observed that DNCB-induced AD-like lesion mice showed
abnormal immune responses of Th1 and Th2, whereas external
application of PO extract effectively reversed the significant
elevation of serum Ig E, skin His, Il-31 levels and mRNA levels
of Il-4, Tslp, Tnf-α and Ifn-γ, thereby alleviating AD-like atopic
lesions and pruritus. These results suggest that PO is effective in
ameliorating DNCB-induced AD in mice.

In conclusion, the main therapeutic targets in AD are Il-
4/13, Il-5, Il-12/23, Il-17, Il-22, Il-31, Il-33, Tslp, and IgE (52).
So far, what has been proven is that T cells are important
drivers of AD and that the Th2 axis (especially Il-4/13, Il-31)
contributes considerably to human AD. Therefore, most of the
advanced AD drugs act on Th2 immunity, including the Il-4r
antagonist Dupilumab, the biologic agent Dupixent targeting Il-
4/13, the biologic agent Lebrikizumab targeting Il-13, and the
humanized monoclonal anti-IL-31Rα antibody Nemolizumab
(53). In addition, oral JAK inhibitors are considered promising
drugs because they block a range of cytokine, growth factor,
and hormone receptor signaling pathways (54). The oral JAK
inhibitors Baricitinib and Abrocitinib are highly anticipated
(55). But predictably, these emerging drugs would be extremely
expensive. So, it would be an utmost blessing for AD patients
to find cheaper yet effective drugs. Evidently, our study strongly
supports that PO is a promising herb for the management of AD.

According to the results of this study, we found that PO
can repair the skin barrier function (Flg and Lor) and also
broadly modulate cytokines. PO reduces the release of Tnf-
α from macrophages, Il-4, Il-31, and Tslp from the Th2 axis,
and Ifn-γ from the Th1 axis, regulates the balance of immune
cells, reduces the number of mast cells, lymphocytes, monocytes,
neutrophils, eosinophils and basophils, reduces the secretion
of His and Ig E, and thus alleviates allergic reactions, skin
nerve fiber density and pruritus (38). We therefore speculate
that the mechanism by which PO alleviates AD may be related
to the inhibition of the release of Th1 and Th2 immune
factors. PO plays an effective role in the management of AD
lesion-like lesions by influencing the activity of immune cells
through immunomodulatory effects. However, more detailed
mechanisms need to be further investigated.

Conclusion

In summary, this study provides an insight into the
beneficial effects of PO on AD, which can help develop effective
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prevention or treatment strategies to combat AD and other
inflammatory skin diseases. More detailed mechanistic,
clinical and translational studies are needed to further
substantiate the potential application of PO as a
therapeutic agent for AD.
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Cancer is a major public health problem that threatens human life worldwide.

In recent years, immunotherapy has made great progress in both clinical

and laboratory research. But the high heterogeneity and dynamics of tumors

makes immunotherapy not suitable for all cancers. Dietary polyphenols have

attracted researchers’ attention due to their ability to induce cancer cell

pyroptosis and to regulate the tumor immune microenvironment (TIME).

This review expounds the regulation of dietary polyphenols and their new

forms on cancer cell pyroptosis and the TIME. These dietary polyphenols

include curcumin (CUR), resveratrol (RES), epigallocatechin gallate (EGCG),

apigenin, triptolide (TPL), kaempferol, genistein and moscatilin. New forms

of dietary polyphenols refer to their synthetic analogs and nano-delivery,

liposomes. Studies in the past decade are included. The result shows that

dietary polyphenols induce pyroptosis in breast cancer cells, liver cancer

cells, oral squamous cells, carcinoma cells, and other cancer cells through

di�erent pathways. Moreover, dietary polyphenols exhibit great potential

in the TIME regulation by modulating the programmed cell death protein

1(PD-1)/programmed death-ligand 1 (PD-L1) axis, enhancing antitumor

immune cells, weakening the function and activity of immunosuppressive

cells, and targeting tumor-associated macrophages (TAMs) to reduce their

tumor infiltration and promote their polarization toward the M1 type. Dietary

polyphenols are also used with radiotherapy and chemotherapy to improve

antitumor immunity and shape a beneficial TIME. In conclusion, dietary

polyphenols induce cancer cell pyroptosis and regulate the TIME, providing

new ideas for safer cancer cures.

KEYWORDS

tumor immune microenvironment, dietary polyphenols, pyroptosis, curcumin,

antitumor immunity
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Introduction

The incidence of cancer has continually risen to 25% since

the 20th century. The ever-increasing incidence of cancer is

associated with increased production patterns, lifestyles, and life

expectancy (1). According to the latest projections from the

American Cancer Bureau, 1,918,030 people will be diagnosed

with cancer every day in the United States in 2022. In the

end, 609,630 people will die of cancer (2). Going back to

the nature of cancer itself, cancer can originate in any organ

and structure of the body. Unlike other cells, cancer cells can

continue to proliferate, replicate indefinitely, and resist death.

Even cancer cells can lure immune cells to escape immune

evasion (3). Therefore, it is especially difficult to cure cancer.

As the three most important treatments, surgery, radiotherapy

and chemotherapy have long been and will continue to be the

weapons in the fight against cancer. However, all three methods

have their own shortcomings and limitations. There is an urgent

need to develop more effective anticancer approaches.

Cancer treatment has made landmark achievements in

the past decade. In fact, cancer is not a direct cause of

death. The weakened immunity and complications of cancer

are. Immunotherapy aims to promote the “rebuilding” of

the immune system. Some cancer-fighting immune cells are

engineered to fight cancer. This involves a new concept of

the TIME. In short, the TIME refers to the microenvironment

formed by the interaction of tumor cells and immune cells.

Some immune checkpoints and cytokines are also included. The

TIME is the foundation of immunotherapy. In recent years,

research related to immunotherapy has grown exponentially.

Clinically, dendritic cells (DC) vaccines, CAR-T cell therapy,

adoptive cell transfer, and immune checkpoint inhibitors have

achieved surprising results (4).

Immunotherapy is not perfect due to tumor

heterogeneity and dynamics. Therefore, it is particularly

important to deepen the understanding of the TIME

and to find drugs to enhance anti-tumor immunity.

In view of this situation, dietary polyphenols have

attracted the attention of some researchers due to

their superior anti-inflammatory, anticancer, and

immunomodulatory functions. Moreover, dietary polyphenols

are widely present in everyday foods. They are safe and

easily available.

Pyroptosis is a type of programmed cell death. Pro-

inflammatory is the most significant feature of pyroptosis

that distinguishes it from other programmed cell death such

as apoptosis and autophagy (5). Is it possible to artificially

induce cancer cell pyroptosis to make cancer regress? This

issue is widely discussed. In the study, it is surprisingly

found that dietary polyphenols not only induce cancer cell

pyroptosis, but also drive a favorable anticancer immunity in

the TIME.

Pyroptosis

Pyroptosis is an inflammatory programmed cell death

performed by a gasdermin (GSDM) protein family. When

pyroptosis is activated, GSDM is cleaved into an auto-inhibitory

C-terminal and an active N-terminal (NT). GSDM-NT then

punches holes in the cell membrane, causing the cell to swell

until it bursts. And a large amount of cellular contents, such as

pro-inflammatory factors and lysosomes, are released, resulting

in an inflammatory cascade (see Figure 1).

GSDM protein family includes GSDMA, GSDMB,

GSDMC, GSDMD, and GSDME. In cancer, GSDMD and

GSDME are the most studied. GSDMD induces pyroptosis

mainly through two pathways (6). In the classical pyroptosis

pathway, inflammasomes recognize pathogen-associated

molecular patterns (PAMPs) or damage associated molecular

pattern molecules (DAMPs). Then caspase-1 is activated and

upregulated, and cleaves GSDMD into GSDMD-NT. This is the

first pyroptosis pathway to be studied. In the non-canonical

pyroptotic pathway, GSDMD cleavage is performed by caspase-

4, 5 (human) and caspase-11 (mouse). Like GSDMD, GSDME

also has two pathways. Typically, chemotherapeutic drugs

induce caspase-3 to cleave GSDME to perform pyroptosis (7).

Recently granzyme B (GZMB) was found to cleave GSDME at

D270 to induce pyroptosis instead of caspase-3 (8).

Each GSDM protein has a high degree of expression

variability and tissue specificity (8). This is rare in mammals.

In different cancers, GSDMD and GSDME have different

expression levels and functions. In gastric cancer cells, GSDMD

is underexpressed and promotes proliferation (9). In non-

small cell carcinoma, GSDMD is highly expressed and indicates

higher invasiveness (10). In human colorectal cancer, GSDMD

is underexpressed, which is detrimental to patient survival (11).

In addition, high expression of GSDMD is associated with poor

prognosis of lung adenocarcinoma and osteosarcoma (12). It

can be seen that the expression and role of GSDMD in cancer

are complex and variable. Even the subcellular localization

of GSDMD affects cancer progression and immune response

(13). Therefore, the idea of targeting GSDMD to induce cancer

cell pyroptosis requires more careful selection and more in-

depth exploration.

Different from GSDMD, GSDME acts more as a tumor

suppressor. GSDME is normally expressed in the heart, kidney

and brain. In most cancers, epigenetics and mutations lead to

silencing of the GSDME gene (14). Different expression levels

of GSDME determine whether cancer cells tend to apoptosis

or pyroptosis during chemotherapy. In cancer cells with high

expression of GSDME, caspase-3 specifically cleaves GSDME

to convert apoptosis into pyroptosis (7, 15). However, caspase-

3 tends to induce apoptosis in cancer cells with low GSDME

expression. This phenomenon provides a new idea for anti-

apoptotic cancer therapy. In addition to inhibiting cancer
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FIGURE 1

Regulation of dietary polyphenols on cancer cell pyroptosis and the TIME. Dietary polyphenols are ingested orally and interact with food in the

stomach. Subsequently, dietary polyphenols undergo phase I and phase II metabolism in the liver. In the gut, dietary polyphenols are

metabolized and absorbed by intestinal epithelial cells and gut microbes. The absorbed and digested dietary polyphenols then travel with the

blood to the TIME. Immune cells in the TIME are influenced by dietary polyphenols. At the same time, cancer cell pyroptosis was activated by

dietary polyphenols. The blue arrow represents promotion and the red arrow represents inhibition.

cell proliferation, GSDME promotes immune cell infiltration

(16, 17). Its expression in tumors converts immunologically

“cold” tumors into “hot” tumors, thereby activating antitumor

immunity (18).

GSDMA, GSDMB, GSDMC are less studied in cancer. But

that doesn’t mean they are not important (see Table 1). Using

drugs to induce pyroptosis of cancer cells is an important

research direction at present. Various studies have shown that

pyroptosis has broad prospects in cancer therapy.

TIME

The TIME is a complex ecosystem that acts as a double-

edged sword in the progression of cancer. On the one hand,

antitumor cells such as NK cells and cytotoxic T lymphocytes

(CTLs, mainly CD8+ T cells) can identify and eliminate

cancer cells. They play a role in cancer immune monitoring

(21–23). On the other hand, immunosuppressive cells such

as regulatory T cells (Tregs), TAMs, and myeloid-derived

suppressor cells (MDSCs) protect cancer cells by evading

immune surveillance. Subsequently, cancer cells can continue

to invade, metastasize and induce angiogenesis (21–23). At

the same time, cancer cells can induce, expand and recruit a

large number of tumor-promoting myeloid cells to establish

a tumor immunosuppressive microenvironment by driving

immunosuppression, regulating the generation of immune

cell subtypes (21, 22). With the joint efforts of anti-tumor

immune cells and cancer cells, cancer develops to malignant.

However, the role of immune cells in the TIME is not

immutable. For example, TAMs, signals in the TIME can

directly affect the differentiation of TAMs and polarization

between M1 and M2. The interaction between antitumor cells,

immunosuppressive cells, and tumor cells is mainly achieved

through exosomes, chemokines, and cytokines (see Figure 2)

(24–31). This interaction plays a key role in the development

of cancer.

All kinds of evidence show that pyroptosis is closely

related to the TIME. For example, GSDMB/E can induce

pyroptosis after specific cleavage by GZM secreted by CTLs.

It was also recently found that macrophage-derived TNF-

α activates caspase-8 to cleave GSDMC, resulting in cancer

cell pyroptosis (20). However, the role of pyroptosis in the

TIME is ambiguous. On the one hand, inflammatory factors

released accompanying cancer cell pyroptosis form a chronic

inflammatory microenvironment, including NLRP3, IL-18 and

IL-1β. This chronic inflammatory microenvironment has been
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TABLE 1 GSDMs and their pathway of pyroptosis.

GSDMs Pathway References

GSDMB CTLs/GZMA/GSDMB (19)

GSDMC Caspase-8/GSDMC (20)

GSDMD PAMPs or DAMPs/caspase-1/GSDMD (6)

LPS/caspase-4, 5, 11/GSDMD

GSDME Chemotherapy drugs/caspase-3/GSDME (7, 8)

CTLs/GZMB/GSDME

shown to help cancer cells evade innate immune responses and

promote cancer progression (10, 32–36). On the other hand,

pyroptosis triggers strong antitumor immunity. Pyroptosis

significantly increases the accumulation of immune cells and

immune factors in solid tumors (37–39). Targeting pyroptosis

and stimulating the TIME is a new idea for cancer treatment

(40, 41).

The PD-1/PD-L1 axis is a core immunosuppression pathway

in the TIME. For a long time, the PD-1/PD-L1 axis has

been widely studied due to its immune checkpoint function.

However, non-immune checkpoint functions of the PD-1/PD-

L1 axis have been identified in studies of pyroptosis. Antibiotic

chemotherapeutics induce GSDMC-mediated pyroptosis in

hypoxic tumor environments by upregulating the nPD-L1/pro-

signal transducer and activator of transcription 3 (p-STAT3)

complex (20). In addition, the inflammatory environment

created by pyroptosis may enhance the efficacy of anti-PD-

L1 therapy. Whether pyroptosis have adverse effects on the

immunity of cancer patients? No clear conclusions have been

drawn. Is there a substance that can induce cancer cell

pyroptosis, and promote anti-tumor immunity at the same time?

Dietary polyphenols caught our eye.

Dietary polyphenols

Polyphenols, which literally means “having multiple

phenolic groups,” are mostly found in plant foods. They are

widely found in the daily human diet, including nuts, vegetables,

fruits, dark chocolate, tea, red wine, and some natural Chinese

herbal medicines. They are called “the seventh type of nutrient.”

Most natural dietary polyphenols exist in the form of glycoside

esters or free aglycones and are biotransformed mainly in the

gastrointestinal tract, liver, and gut microbiota (see Table 2) (42–

54). Due to factors such as chemical structure and biometabolic

properties of dietary polyphenols, their low bioavailability has

become a major factor that limits their efficacy in vivo and in

clinical trials. Chinese herbal medicines rich in polyphenols have

been widely used clinically. For example, turmeric, Polygonum

cuspidatum, and Tripterygium wilfordii are used to treat

cardiovascular disease, rheumatoid arthritis, and systemic lupus

erythematosus (55, 56). In recent years, dietary polyphenols

have been proven to have a wide range of biological activities.

And their effective anti-inflammatory, antioxidant, anticancer,

immunomodulatory, and cardiovascular protective properties

have made them widely studied and used in food additives, skin

care, medicine, health care (57). The anticancer properties of

dietary polyphenols are mainly manifested in inhibiting tumor

development (proliferation, growth, invasion, metastasis, and

angiogenesis), regulating programmed cell death (apoptosis and

pyroptosis), inhibiting chemoresistance, enhancing anticancer

immune response, and regulating the TIME. In this review,

we focus on the properties of dietary polyphenols that induce

pyroptosis and regulate the TIME in cancer.

Regulation of various dietary
polyphenols on cancer cell
pyroptosis

Clinically, insufficient intake of dietary polyphenols does

not cause a certain disease. However, dietary polyphenol

intake is positively correlated with body health (58). As the

study of pyroptosis becomes more and more extensive, the

inner link between pyroptosis and disease is being revealed.

It was found that dietary polyphenols have different effects

on pyroptosis in different diseases. Microglia are phagocytic

cells that reside in the brain. They play an important role

in the immune response after central nervous system injury.

Studies have shown that dietary polyphenols protect microglia

by inhibiting pyroptosis. This is beneficial for Parkinson’s

patients and those with spinal cord injuries (59–61). In addition,

dietary polyphenols can reduce cardiomyocyte pyroptosis

caused by chemotherapeutic drugs (doxorubicin) and adverse

environment (ischemia/hypoxia) (62, 63). Studies have also

reported that dietary polyphenols inhibit the pathological

pyroptosis of liver and kidney cell (64, 65). Dietary polyphenols

reduce cell pyroptosis induced by toxic heavy metals. It is of

great significance for heavy metal exposure-related diseases.

Therefore, we can conclude that dietary polyphenols protect

the body by resisting pyroptosis. However, in cancer, dietary

polyphenols tend to induce cancer cell pyroptosis to promote

the body’s victory over cancer. In this section, we discuss how

dietary polyphenols induce cancer cell pyroptosis (see Figure 1).

Dietary polyphenols induce
GSDMD-mediated pyroptosis of cancer
cells

CUR induces pyroptosis in MCF-7 breast cancer cells

through the autophagy/cathepsin B (CTSB)/NLRP3/caspase-

1/GSDMD signaling pathway (66). Anthocyanin activates
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FIGURE 2

The interaction between antitumor cells, immunosuppressive cells and tumor cells. a: ADCC/apoptosis/pyroptosis; b: IFN-γ,TNF-α:

anti-proliferative, anti-angiogenic, pro-apoptosis; c: TGF-β, IL-10, IL-35, GZMB, perforin; d: TGF-β, IL-10, IL-35, GZMB, perforin, CTLA-4, PD-1;

e: PD-L1↑, HIF-1α↑, TGF-β, IL-10, CCL4, CCL5; f: IFN-γ: induce activation; g: IFN-γ, LTα, IL-2; h: M2a: IL-4,IL-13; M2b: immune complex with

IL-1β/LPS; M2c: IL-10,TGF-β; IL-6,LIF; i: dual blockade of PI3K-γ pathway and CSF-1/CSF-1R; CD40 agonist; j: pro-proliferative, pro-invasion,

pro-metastasis, angiogenesis; k: IL-4→ IFN-γ↓; l: MHCI↓→ escape; m: PD-1/PD-L1→ hijack; miR-214→ proliferation; n: cytokine↓;

degranulation↓; metabolism↓; mTOR signal↓. ADCC, antibody-dependent cell-mediated cytotoxicity; TGF-β, transforming growth factor-β;

CTLA-4, cytotoxic T lymphocyte-associated antigen-4; LIF, leukemia inhibitory; CSF-1, colony-stimulating factor 1 factor; mTOR, mammalian

target of rapamycin.

pyroptosis of Tca8113 and SCC15 oral squamous cell

carcinoma cells through the NLRP3/caspase-1/GSDMD

pathway. Besides, anthocyanin inhibits cancer cell viability,

invasion, and metastasis (67). Similar to anthocyanin,

chrysophanol up-regulated the expression of NLRP3

in gastric cancer cells. Subsequently, the caspase-

1/GSDMD pathway is activated to induce cancer cell

pyroptosis (68).

Dietary polyphenols induce
GSDME-mediated pyroptosis of cancer
cells

By treating different head and neck cancer cells with

TPL, it has been found that TPL selectively induced

pyroptosis in an HK1 squamous cell carcinoma cell line

and a FaDu hypopharyngeal carcinoma cell line. This

pyroptosis was achieved by inhibiting the expression of

c-myc and mitochondrial hexokinase II (HK-II) in cancer

cells, leading to the activation of the BAD/BAX-caspase-3

cascade, and then cleaves GSDME (69). CUR up-regulates

ROS levels, down-regulates pro-caspase-3 expression,

and up-regulates GSDME-NT expression in a time- and

dose-dependent manner to promote pyroptosis in HepG2

hepatoma cells (70). Kaempferol has been shown to trigger

GSDME-mediated U87MG and U251 glioblastoma cell

line pyroptosis by inducing high levels of ROS autophagy

and activating inflammasome/caspase-1/IL-1β signaling

in vitro and in vivo experiments (71). In another study

on glioblastoma, researchers used genomic data to find

that human gliomas express higher levels of GSDME than

normal brains. Subsequently, in vivo and in vitro tests were

carried out. They found that galangin induces GSDME-

mediated pyroptosis in glioblastoma cells (72). Neobractatin

is a kind of dietary polyphenol extracted from Garcinia

bracteata. In esophageal cancer cells with high GSDME

expression, neobractatin induces pyroptosis through the

caspase-3/GSDME pathway. After GSDME was knocked

out, pyroptosis transformed into apoptosis. Neobractatin

treatment of esophageal cancer showed significant tumor

regression (73). Spatholobus suberectus Dunn is called “Ji

Xue Teng” in Chinese. Its percolation extract contains

various dietary polyphenols such as catechin, procyanidin
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B2, epicatechin, genistein, and formononetin. Spatholobus

suberectus Dunn percolation extract induced pyroptosis of

triple-negative breast cancer cells is also mediated by GSDME.

However, GSDME is activated by caspase-4 rather than

caspase-1 (74).

Related research on dietary
polyphenol-induced pyroptosis of cancer
cells

In some studies, dietary polyphenols have been shown

to induce cancer cell pyroptosis. But the pyroptosis pathway

was not revealed. These findings are also included in

this review.

CUR delivers a double whammy against malignant

mesothelioma cells. It induces pyroptosis through activation

of caspase-1 by ROS. Moreover, CUR significantly down-

regulated the expression levels of inflammasome-related

genes such as NF-κB, toll-like receptor (TLR), and IL-1β

(75). Researchers linked CUR to sound photodynamic

therapy (SPDT). In vitro experiments showed that

HepG2 cells underwent pyroptosis and apoptosis with

CUR-PLGA-MB-SPDT (CUR-loaded poly (L-lactide-co-

glycolide)-microbubble (MB)-mediated SPDT) treatment.

The underlying mechanism is related to the loss of

mitochondrial membrane potential (MMP) and the increase of

ROS (76).

Moscatilin and RES can act as radiosensitizers in

combination with 1Gy X-ray or 200 J/m2 UV-C radiation.

Overlapping cell death pathways were activated by this

combination in HepG2, SH-SY5Y and HaCaT cell lines,

including necroptosis and pyroptosis (77). Moscatiline induces

immunogenic death of cancer cells. The combination of

Moscatiline and radiation induces pyroptosis of cancer cells,

eventually leading to necroptosis (77). These findings validate

the fact that dietary polyphenols induce cancer cell pyroptosis

(see Table 3).

In fact, dietary polyphenols induce not only cancer cell

pyroptosis but also various regulated cell deaths such as

apoptosis, ferroptosis and autophagy (78–80). While one of

cell death is inhibited, dietary polyphenols enhance other

cell death (72). This is due to the crosstalk between

different cell deaths. Therefore, targeting pyroptosis may be a

potential therapy for some apoptosis-resistant cancer. And as

mentioned in the section 3, pyroptosis may have a positive

effect on the TIME. Taken together, targeting cancer cell

pyroptosis is undoubtedly important and meaningful. So,

we focused on the role of dietary polyphenols on cancer

cell pyroptosis in this review. However, it is extremely

important that dietary polyphenol-induced cancer cell death is

not single.

Regulation of various dietary
polyphenols on the TIME

Dietary polyphenols shape an
advantageous TIME by modulating the
PD-1/PD-L1 axis

Among all immune checkpoint inhibition points, the PD-

L1/PD-1 axis was the most well-studied. Because of its value as

a therapeutic target for patients with multiple malignancies and

advanced cancers, the PD-L1/PD-1 axis has received extensive

attention. PD-L1 binds to PD-1 on the surface of antigen-specific

T cells, and suppress antitumor immunity and maintain self-

tolerance by regulating the number and activity of antigen-

specific T cells in the TIME (81). Some studies have shown that

dietary polyphenols can regulate the PD-1/PD-L1 axis between

tumor cells and immune cells, driving the TIME to develop in

an antitumor direction.

Studies have found that RES directly destroys the N-

linked glycan modification and dimerization of PD-L1 in

JIMT-1 breast cancer cells, inhibits the correct localization

of glycosylated PD-L1 to the cell membrane, blocks the PD-

1/PD-L1 axis between CTLs and cancer cells. The destruction

of PD-1/PD-L1 axis by RES reduces the immune escape

of cancer cells and enhances the immune activity of CTLs

(82). RES upregulated PD-L1 expression in lung cancer cells

in vitro and significantly induced apoptosis in Jurkat T

cells with high PD-1 expression. The mechanism is related

to the activation of the canonical Wnt signaling pathway

and the reduction of IFN-γ in Jurkat T cells (83). Both

luteolin and apigenin can inhibit STAT3 phosphorylation

in non-small cell lung cancer (NSCLC) cells, down-regulate

IFN-γ-induced PD-L1 expression, increase the activity and

function of CD8+ T cells, and enhance the infiltration of

CD8+ T cells in tumors (84). Like luteolin and apigenin,

CUR can reduce STAT1 phosphorylation and inhibit IFN-

γ-induced PD-L1 up-regulation in A375 human melanoma

cells in vitro (85). For tongue squamous cell carcinoma,

CUR down-regulates PD-L1 expression in vitro and in vivo

and inhibits immunosuppressive signaling. CUR also increases

CD8 + T cells in immune infiltration, promotes anti-tumor

immunity (86).

It is not difficult to see the synergistic effect of dietary

polyphenols and anti-PD-1. And this inference has been

confirmed in multiple studies. For luteolin and apigenin,

anti-PD-1 can amplify the TIME-regulating effect of luteolin

and apigenin and significantly enhance the anticancer effect,

providing a prospective treatment strategy for KRAS-mutated

NSCLC (84). CUR can reduce the expression of TGF-β1 and PD-

L1 on the surface of hepatoma cells and inhibit the PD-1/PD-L1

axis both in vitro and in vivo. At the same time, the proportion

of CD8+ T cells increased and the expression of Foxp3+ Tregs

decreased, which promoted anti-tumor immunity. Besides, the
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TABLE 2 Dietary polyphenols involved in this review and their names, chemical formulas, structural formulas and metabolic absorption.

Name Molecular

formula

Structural formula Primary

source

Absorption

site

Metabolic

site

Metabolites (Enzymes) References

RES C14H12O3 Nuts, grapes,

apples, hops,

red Fruits,

black olives,

capers, red

rice, red wine,

peanuts,

berries

Small

intestine

Gut Trans-resveratrol-3-O-sulfate

(SULT1A1)

Trans-resveratrol-4’-O-sulfate

(SULT1A2)

Trans-resveratrol-3,4’-O-disulfate

(SULT1A2; SULT1A3)

Trans-resveratrol-3-O-glucuronide

(UGT1A1; UGT1A9)

Trans-resveratrol-4’-O-glucuronide

(UGT1A1; UGT1A9)

Dihydroresveratrol/DHR

3,4’-O-dihydroxy-trans-stilbene

Lunularin

(42)

Apigenin C15H10O5 Celery,

parsley, peas,

chamomile,

belimbi fruit,

goji leaves

From stomach to

colon

Liver;

intestine

Glucuronidated apigenin

(Phase II Enzymes)

Sulphated apigenin

(Phase II Enzymes)

Luteolin

(43, 44)

CUR C21H20O6 Turmeric,

curcuma,

calamus

Intestinal lumen,

liver

Curcumin glucuronides

(UGT1A1;UGT1A8;UGT1A10)

Curcumin sulfates

(SULT1A1;SULT1A3)

Hexahydrocurcumin;

Tetrahydrocurcumin (CYP450)

(45, 46)

Anthocyanin

R1/R2 =H,OH,OCH3

Blue, purple,

and red fruits,

flowers, leaves

From stomach to

jejunum

Small

intestine; big

intestine;

liver

Anthocyanin glucuronides

Anthocyanin methylates

Phenolic acid

Phenolic acid conjugates

(47)

EGCG C22H18O11 Green tea Intestine Gut microbiota;

liver

EGC

Gallic acid

5-(3,5-dihydroxyphenyl)-

4-hydroxyvaleric acid

(3,5-dihydroxyphenyl)-γ-valerolactone

(-)-5-(5’-hydroxyphenyl)-(4R)-

γ-valerolactone 3’-O-β-glucuronide

(UGT1A1, 1A8 and 1A9)

4’-O-methyl-EGCG (COMT)

4”-O-methyl-EGCG (COMT)

4-4”-di-O-methyl-EGCG (COMT)

(48, 49)

Quercetin C15H10O7 Onions,

apples,

tea, red wine,

edible portion

Small

intestine

Liver enteric

bacteria;

intestinal

mucosal

epithelial cells;

colon bacteria

Thmethylated quercetin

Quercetin sulfate

Quercetin glucuronidate

Phenolic acid

Smaller phenolics

(50)

(Continued)
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TABLE 2 Continued

Name Molecular

formula

Structural formula Primary

source

Absorption

site

Metabolic

site

Metabolites (Enzymes) References

TPL C20H24O6 Tripterygium

wilfordii

Hook. f.

Liver

microsomes

M1:17-Hydroxytriptolide

M2:16-Hydroxytriptolide

M3:tripdiolide

M4:15-Hydroxytriptolide (CYP3A)

(51, 52)

Genistein C15H10O5 Alfalfa, clover

sprouts,

broccoli,

cauliflower,

sunflower,

barley meal,

caraway, and

clover seeds

Small

intestine

Liver; small

intestine; colon

bacteria

Glucuronides

(UGT1A8, 1A9, 1A10, 1A1)

Sulfates

(SULT1A1, 1A2, 1E, 2A1)

3’-OH-Gen, 6-OH-Gen, 8-OH-Gen

(CYP1A2, CYP2E1, CYP2D6,CYP3A4)

Dihydrogenistein

(53)

Kaempferol C15H10O6 Spinach, kale,

dill, chives,

tarragon

Small

intestine

Liver Kaempferol-3-glucuronide

Kaempferol mono- and di-sulfates

(54)

combination of anti-PD-1 and CUR significantly enhanced the

TIME regulation function of CUR (87).

Bidirectional regulation of the TIME by
dietary polyphenols by enhancing
antitumor cell e�ects and attenuating
immunosuppressive cell e�ects

As mentioned in section 2, antitumor cell immunity and

immunosuppression in the TIME are in a state of mutual

confrontation that is like two sides of a scale. Regardless of

the form of action, dietary polyphenols always tip the balance

in favor of the antitumor side (see Figure 1). CUR inhibits

the maturation and immunosuppressive function of MDSCs by

inhibiting the levels of arginase-1 (Arg-1), ROS, and IL-6 in

the Lewis lung cancer model, reducing the inhibitory effect of

MDSCs on T cell proliferation (88). The proportion of IFN-γ

and CD8+ T cells increased and the proportion of CD4+ T

cells decreased when huh-7 human hepatoma cells were treated

with CUR. The addition of taurine significantly enhanced the

effect of CUR (89, 90). In another study, it was found that

curcuminoids promoted pancreatic cancer cell apoptosis by

enhancing the cytotoxicity of NK cells (90, 91). Subsequent

experiments showed that the combination of CUR, omega-

3 fatty acids and Smartfish (antioxidant-rich lipid emulsion)

further enhanced the toxic effects of NK cells on pancreatic

cancer cells. And CUR prevents NK cells from producing IFN-

γ (90, 91). The researchers attempted to compare and combine

CUR with Poly I: C (Toll-like receptor 3 agonist, PIC). It was

demonstrated that CUR effectively inhibited PIC-dependent

NF-κB activation and Tregs recruitment in head and neck

squamous cell carcinoma, demonstrating a beneficial TIME

regulation (92). In the co-culture system of MDA-MB-231 and

NK-92, CUR bidirectionally enhanced the anticancer activity

of NK-9 cells. CUR increases the expression and proportion

of Stat4 and STAT5 in CD16+ and CD56dim NK-9 cells. In

addition, the expression of pErk and PI3K in MDA-MB-231 was

significantly downregulated by CUR (93). In the A375 mouse

xenograft model, apigenin was observed to inhibit melanoma

growth by significantly enhancing immune cell infiltration and

T-cell-mediated tumor-cell killing (85). By comparison, CUR

also has the same TIME-regulating effect as apigenin but is not

as significant as that of apigenin (85).

CUR is the most dietary polyphenol in regulating the

TIME, but other dietary polyphenols such as RES, EGCG,

anthocyanins, and genistein are not inferior. RES enhances the

overall cytotoxicity of NK cells, resulting in strong activation

of NK cells in the TIME. The addition of IL-2 enhanced the
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activation of NK cells in tumors (94). When non-cytotoxic

concentrations of RES were used to treat hepatocellular

carcinoma mice, RES was found to enhance anti-tumor

immunity by reducing levels of Tregs and M2 macrophages

and up-regulating levels of CD8+ T cells (95). Meanwhile,

RES also modulated the TIME by regulating related cytokines,

for example, up-regulating the anti-tumor cytokines TNF-

α and IFN-γ, and down-regulating the immunosuppressive

cytokines TGF-β1 and IL-10 (95). Anthocyanin treatment of

N-nitrosomethylbenzylamine-induced esophageal papilloma in

rats showed good antitumor properties (96). Anthocyanins

significantly reduced the recruitment and infiltration of

CD68+/CD163- macrophages and CD163+ macrophages

in tumors and reduced the accumulation of neutrophils

(96). EGCG increased the proportion of CD4+ Tregs and

CD8+ T cells in the breast cancer TIME and enhanced

the antitumor immune response (83). In addition, EGCG

targeted MDSCs in tumors through the Arg-1/iNOS/Nox2/NF-

κB/STAT3 classical pathway and non-classical pathways, such

as the PI3K-Akt signaling pathway, focal adhesions, and ECM-

receptor interactions, reducing their proportion (97). Genistein

significantly reduced immune avoidance marker Foxp3 in

tumors and upregulated cytotoxic T cell marker Cd8a at mRNA

level. And lifetime intake of genistein improves anti-tumor

immune response (98).

Dietary polyphenols targeting TAMs
promote antitumor immunity in the TIME

TAMs affect tumor progression in different ways. They

can be roughly divided into two distinct polarization states:

antitumor M1 type and pro-tumor immunosuppressive M2

type. In recent years, TAMs targeting strategies have become

a hot spot in antitumor therapy. Some dietary polyphenols

inhibit the infiltration and polarization of TAMs to M2 type

or promote TAMs polarization from M2 type to M1 type

in the TIME. Studies found that apigenin restored SHIP-

1 expression in pancreatic cancer mice, promoted MDSCs

homeostasis, increased M1 expression and M2 polarized to

M1, resulting in tumor regression (99). EGCG up-regulates

Mir-16 in breast cancer cell exosomes both in vitro and in

vivo. Subsequently, TAMs received mir-16 transferred from

exosomes. Finally, TAMs infiltration and M2-type polarization

were inhibited to inhibit NF-κB activity through the IKKα/Iκ

B/NF-κB pathway (100). Hs-1793, a synthetic RES analog,

induces upregulation of IFN-γ in tumor tissue in breast

cancer mice, leading to a significant reduction in M2

invasion and reprogramming. Favorable TIME changes were

associated, such as decreased infiltration of Tregs and decreased

immunosuppressive mediators (101).

Novel forms of dietary polyphenols
enhance their bioavailability and enhance
their TIME-regulating activity

Due to low solubility and bioavailability of dietary

polyphenols, it is difficult to reach serum concentrations in

clinical experimental models. Therefore, dietary polyphenols

have certain shortcomings in clinical applications. In recent

years, researchers have used liposome coating, nano-delivery

systems, and synthetic analogs to improve this problem.

The anticancer and the TIME-regulating effects of dietary

polyphenols were significantly enhanced.

Cur-loaded nanomicelles (CUR@PPC) showed good TIME-

regulating activity against melanoma in vitro in two aspects.

First, it affects the expression of cytokines, including down-

regulation of CCL-22, PD-L1, TGF-β and IL-10, and up-

regulation of IFN-γ and TNF-α. Second, it affects immune cell

infiltration, including reducing Tregs and enhancing CD8+

T cell immune infiltration (102). This study also found that

anti-PD-1 and T cell-delivered NF-κB inhibitors synergized

and promoted each other with CUR@PPC, showing good

TIME regulation and antitumor effects. This founding provides

a new idea for the combined treatment of cancer with

dietary polyphenols and immunotherapy (102). In a study of

glioblastoma (GBM), researchers found that both liposomal

TriCurin (CUR: EGCG: RES = 4:1:12.5) and phytosomal CUR

(CCP) therapy induced GBM cells, GBM stem cells apoptosis,

and M2-to-M1 polarization (103, 104). In studies using CCP,

a large number of activated NK cells were found in the TIME,

accompanied by M2-to-M1 polarization. It is speculated that

monocyte chemoattractant protein-1 (MCP-1/CCL2) produced

by M1 microglia in CCP-induced GBM first acts to induce

M1 activation and release IL-12. Subsequently, IL-12 stimulates

NK cells to express Cc chemokine receptor 2 and recruit NK

cells to the TIME (104). In another experiment using tricurin,

the researchers found similar results. Tricurin induces M2 to

M1 polarization in human papillomavirus tumors, and IL-12-

dependent NK cells and CTLs were recruited to the TIME

(105), Nano-curcumin and RES work together to arrest the

cell cycle reduce cell viability in rectal cancer cells. In vivo

experiments, nanocurcumin and RES promoted macrophage

recruitment and enhanced T lymphocyte infiltration (106). In

vitro experiments, nano-curcumin was reported to support

antitumor cells against pancreatic cancer through various

pathways, including enhancing the expression of CD86 and

driving DC maturation; significantly reducing the levels of

various pro-inflammatory cytokines, such as TNF-α, IL-8, IL-6,

IL-10, and IL-1 in activated T cells; and down-regulating IL-8

and up-regulating IFN-γ expression in CTLs (107, 108). CUR

analog GO-Y030 exerts potent anticancer effects by reducing the

generation, stability, and secretion (TGF-β, IL-10) of Tregs in
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TABLE 3 Related studies on dietary polyphenols-induced pyroptosis of cancer cells.

Dietary

polyphenols

Experimental

model

Dose; treatment

time

Mechanism Pyroptosis

pathway

References

CUR In vitro: MCF-7 breast

cancer cell line

8µM; 24 h ↑LC3, CTSB, ASC, pro-caspase-1,

GSDMD, NLRP3, caspase-1,

GSDMD-N, IL-1β, IL-18

↓P62

Autophagy/CTSB/NLRP3/

caspase-1/GSDMD

(66)

In vivo: Six-week-old SPF

female BALB/c nude mice

vaccinated with MCF-7;

5pcs/group, 2 groups

200 µg/kg/d; 4 weeks

Anthocyanin In vitro: Tca8113 and

SCC15 oral squamous cell

carcinoma cell lines

250µg/ml; 48 h ↑NLRP3, caspase-1,GSDMD, IL-1β NLRP3/

caspase-1/GSDMD

(67)

TPL In vitro: HK1 squamous

cell carcinoma cell line

In vitro: FaDu

hypopharyngeal

carcinoma cell line

0, 5, 25, 50, 150 nM; 24 h,

48 h

↓HK-II

↑BAD/BAX-caspase-3, GSDME

HK-II/(BAD/

BAX-caspase-3)/GSDME

(69)

In vivo: 5-week-old male

BALB/c nude mice

1 mg/kg/d; 10 d

CUR In vitro: HepG2 human

liver cancer cell line

0, 20, 30µM; 12 h ↓full length GSDME,

pro-caspase-3; Bcl-2

↑GSDME-N, Bax, ROS, LDH

ROS/caspase-3

/GSDME

(70)

Kaempferol In vitro: U87MG and

U251 Glioblastoma cell

line

0, 20, 40, 80, 120µM; 24 h ↑ROS, IL-1β, ASC, P62, caspase-3,

GSDME

ROS/caspase-3

/GSDME

(71)

In vivo: 6-week-old male

immune-deficient

BALB/c nude mice

vaccinated with U87MG

40 mg/kg/2d; 3 weeks

CUR In vitro: HMESO

malignant mesothelioma

cells

40µM; 48h ↓NF-κB, TLR, IL-1β, ASC

↑caspase-1, HMGB1, ROS

— (75)

In vivo: allograft model: 8

week-old male C57/BL6

mice vaccinated with

mouse MM cells,

4-8 pcs/group

In vivo: xenograft

model:6–8 week-old male

Fox Chase SCID mice

vaccinated with HMESO

cells, 4-8pcs/group

—; 3 weeks

CUR-PLGA-MB-

SPDT

In vitro: HepG2 human

liver cancer cell line

0, 1.25, 2.5, 5, 10, 20, 40,

80µM, 2/3 h

↑ROS, mitochondrial

depolarization

— (76)

Moscatilin RES In vitro: HepG2,

SH-SY5Y, HaCaT cell line

1, 10, 12.5µg/ml 5µg/ml

moscatilin/resveratrol+

X-ray (1Gy)/UV-C (200

J/m2)

↑cell-cycle arrest, radiosensitivity — (77)
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the melanoma TIME (109). Trans-Scirpusin A (TSA), a natural

oligomer of RES. It reduces the number and ratio of Tregs and

MDSCs in mouse colorectal cancer tumor tissue and induces

antitumor immunity (108).

Dietary polyphenols play a role as
adjuvants in regulating the TIME to
improve the e�cacy of chemotherapy
and radiotherapy

Although immunotherapy and precision medicine have

risen rapidly with the deepening of research in recent years.

Surgery, chemotherapy, and radiotherapy are still the most

utilized cancer treatments in clinical practice. Some scholars

have tried to use dietary polyphenols to alleviate the interference

of chemotherapy resistance and radiotherapy on the TIME, and

have made some progress.

TPL reduces cisplatin (DDP) resistance in epithelial ovarian

cancer mice and synergizes with DDP (110). Both TPL and TPL

combined with DDP significantly increased the levels of NK cell-

related proteins CD16 and CD56 in the TIME, and promoted

cancer cell apoptosis. It provides a new possibility for improving

the survival rate of patients with chemotherapy-resistant

advanced ovarian cancer (110). Mammary chimeric mice that

received sparse ionizing radiation (SIR) and dense ionizing

radiation (DIR) had higher tumor incidence and tumor growth

rates, accompanied by a distinct tumor immunosuppressive

microenvironment (111). It manifested as a lack of lymphocyte

infiltration, increased immunosuppressive myeloid cells, a lack

of CD8+ T cells in some aged and fast-growing tumor mice,

and a high expression of COX-2, PD-L1, and TGF-β (111).

However, Phenyl caffeate was reported to effectively reverse

this adverse effect of irradiation on the TIME (111). Joong

Sun Kim et al. combined HS-1793 with radiotherapy. They

found that HS-1793 could effectively alleviate the adverse

effects of radiotherapy on the TIME in FM3A tumor-bearing

mice by reducing the number and the infiltration of Tregs in

tumor tissue. Meanwhile, HS-1793 upregulated the number of

CD8+ T cells and upregulated IFN-γ secretion to attenuate

TAM-induced immunosuppression (112). In another study, it

was also found that modulated electrothermal therapy could

create a more favorable TIME and significantly enhance the

immunomodulatory and antitumor effects of nanocurcumin

and RES (106) (see Supplementary Table 1).

Conclusions

In this review, we systematically reviewed the effects

of dietary polyphenols on cancer cell pyroptosis and the

TIME. The results showed that dietary polyphenols induced

pyroptosis in cancer cells mainly through the GSDMD and

GSDME pathways. Furthermore, dietary polyphenols regulate

the TIME by enhancing antitumor immune cells and weakening

immunosuppressive cells. At the same time, TAMs are targeted

by dietary polyphenols and reduce their tumor infiltration and

promote their polarization fromM2 toM1 type. Of course, there

are also some issues that deserve to be considered.

Elevated IL-18, IL-1β, NLRP3 are one of the main features

of pyroptosis. These three inflammatory factors are often

used as indicators of pyroptosis. However, overproduction

of IL-18/1β and NLRP3 leads to neonatal-onset multisystem

inflammatory disease (NOMID) which damages the spleen,

skin, liver, and bone a lot. Studies have shown that the

pathogenesis of NOMID is GSDMD-dependent (113). The

concomitant effects of IL-18, IL-1β and NLRP3 elevation were

ignored in studies claiming that GSDMD mediates pyroptosis

in cancer cells. The same problem exists in all studies targeting

pyroptosis to treat cancer. Some studies of dietary polyphenols

inducing pyroptosis in cancer cells were performed only in

cells. Unfortunately, in the in vitro studies, the effects of

pyroptosis on the TIME and inflammation were ignored too.

This may affect the prognosis and complications of cancer

patients. There is no doubt that dietary polyphenols are

beneficial for anti-tumor immunity in patients. But does this

conclusion hold when using drugs to induce pyroptosis in

cancer? It is a pity that this question has not been explored

in depth.

Dietary polyphenols can reduce levels of pro-inflammatory

mediators. This conclusion has been verified in many

experiments. Taking CUR as an example, CUR alleviates

inflammatory diseases by reducing major markers of

inflammation, such as IL-6 and TNF-α, malondialdehyde,

sensitive C-reactive protein, MCP-1 (114–116). The anti-

inflammatory effect of dietary polyphenols is the basis of their

biological activity. Are dietary polyphenols beneficial to the

release of inflammatory factors induced by pyroptosis in cancer

cells? This requires further research and discussion. Perhaps,

we should consider the inflammatory nature of pyroptosis,

the TIME, and pyroptosis as a whole. The global effects of

dietary polyphenols targeting pyroptosis need to be discussed

systematically. Accelerate the pace of dietary polyphenols from

laboratory to clinical.

There is no doubt that the TIME is a huge, complex

system. How to adjust the TIME to make it a tool to

fight cancer will be a research hotspot into the future.

Deeper research and exploration are required on other

pathways and mechanisms of pyroptosis incancer, the role

of pyroptosis in tumor development, the impact of cancer

cell pyroptosis on the TIME, and the appropriate degree

of cancer cell pyroptosis. Among the above issues, dietary

polyphenols deserve further attention. Of course, when it comes
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to dietary polyphenols, their limited bioavailability cannot

be ignored. Related researchers have greatly improved the

bioavailability of dietary polyphenols by using nano-delivery

systems, liposome coating. Dietary polyphenols are one step

closer to clinic.

Pyroptosis is a new field. Targeting pyroptosis to treat cancer

holds a aboard future. Dietary polyphenols offer a safer option.

Based on the current research, it is also a good idea to combine

dietary polyphenols with other drugs. Dietary polyphenols are

also excellent as adjuvants for chemotherapy and radiotherapy.
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Koidz binding with zinc oxide
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immunological effect and
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Atractylodes macrocephala Koidz (A. macrocephala) has been used both as a

traditional medicine and functional food for hundreds of years in Asia. And it

has a variety of biological activities, such as enhancing the ability of immunity

and modulating effect on gastrointestinal motility. In this study, a water-

soluble polysaccharide with molecular weight of 2.743 × 103 Da was isolated

from the root of A. macrocephala. Polysaccharide from A. macrocephala

(AMP) consisted of arabinose, galactose, glucose, xylose, mannose, ribose,

galactose uronic acid, glucose uronic acid, with a percentage ratio of

21.86, 12.28, 34.19, 0.43, 0.92, 0.85, 28.79, and 0.67%, respectively. Zinc

plays an important role in immune system. Therefore, we supposed that

AMP binding with zinc oxide (ZnO) nanoparticles (AMP-ZnONPs) might

be an effective immunostimulator. AMP-ZnONPs was prepared by Borch

reduction, and its structural features were characterized by Scanning Electron

Microscope (SEM), Transmission electron microscope (TEM), TEM-energy

dispersive spectroscopy mapping (TEM-EDS mapping), Fourier transform

infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), X-ray

diffraction (XRD), particle size and zeta-potential distribution analysis. Then,

its immunostimulatory activity and the underlying mechanism were evaluated

using RAW264.7 cells. The results showed that AMP-ZnONPs remarkably

promoted cell proliferation, enhanced phagocytosis, the release of nitric

oxide (NO), cytokines (IL-6 and IL-1β) and the expression of co-stimulatory

molecules (CD80, CD86 and MHCII). Moreover, AMP-ZnONPs could promote
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the expression of Toll-like receptor 4 (TLR4), Myeloid differentiation factor

88 (MyD88), TNF receptor associated factor 6 (TRAF6), phospho-IκBα (P-

IκBα) and phospho-p65 (P-p65), and TLR4 inhibitor (TAK242) inhibited the

expression of these proteins induced by AMP-ZnONPs. Therefore, AMP-

ZnONPs activated macrophages by TLR4/MyD88/NF-κB signaling pathway,

indicating that AMP-ZnONPs could act as a potential immunostimulator in

medicine and functional food.

KEYWORDS

polysaccharide from Atractylodes macrocephala Koidz, zinc oxide nanoparticles,
immunostimulatory activity, TLR4 signaling pathways, potential immunostimulator

Introduction

In recent years, immunoregulatory polysaccharides are
considered important macromolecules for stimulation of
immune response, then gradually become a major research hot
spot (1, 2). Atractylodes macrocephala Koidz (A. macrocephala)
has been used both as traditional medicine and functional
food for hundreds of years in Asia, and it was approved as
a functional food by the National Health Commission of the
People’s Republic Health of China (3–5). Polysaccharide from
A. macrocephala (AMP) has a variety of biological activities,
such as enhancing the ability of immunity, modulating effect
on gastrointestinal motility and decreasing the blood glucose
level (6–8). However, a lot of natural polysaccharides exhibit
only weak bioactivities due to the limitation of structural and
conformational properties (9). Thus, further research about
enhancing bioavailability of AMP is necessary.

Zinc (Zn) deficiencies in the body is a serious problem,
which severely harms the health of the organism and causes the
etiology of myocardial apoptosis, deregulated homeostasis (10–
12). In addition, zinc is important for cellular homeostasis and
also serves as a regulatory signaling molecule for immune cells
(13, 14). Zinc oxide (ZnO) is listed as “commonly considered
as safe” by the US Food and Drug Administration (FDA) (15).
Some studies have shown that Zn has a significant role in
the development and activation of effector cells of the innate
and adaptive immune systems (16–18). ZnO nanoparticles
(ZnONPs) have been exploited in biomedical and preclinical
research for their advantages such as non-toxicity and low cost
(19, 20). However, ZnONPs are limited their application in drug
delivery due to their poor water solubility, strong agglomeration
and less dispersion. Hence, it is imperative to develop an
effective, safe and high-content Zn-supplement. To improve the
dispersion of particles in water, a silane coupling agent (KH550)
was used to modify the ZnONPs (21). In addition, KH550 was
easily grafted at the ZnONPs interface, and the other side of
KH550 carries an amino group that was easily grafted with
polysaccharides.

Macrophages are one of the most important effector cells
of the immune system, and play pivotal roles in the immune
response (22). Phagocytosis is a marker of their activation. Upon
activation, macrophages release NO, diverse cytokines and co-
stimulatory molecules (23, 24). Many natural polysaccharides
modulate the immune system through the activation of TLR4 in
macrophages (25–29). Toll-like receptor 4 (TLR4), a key pattern
recognition receptor involved in the activation of macrophages,
is reported the major component of the signaling including
nuclear factor-κB (NF-κB) signaling pathway.

We supposed that AMP binding with ZnONPs (AMP-
ZnONPs) might provide a novel way to explore an effective
immunostimulator. To enhance the dispersive capacity of
ZnONPs in the water, γ-aminopropyltriethoxy silane (KH550)
was applied to modify its surface. Then, AMP-ZnONPs was
successfully prepared by the binding of KH550-ZnONPs and
AMP via the Borch reduction between -NH2 group and -CHO
group (Figure 1). Its structural properties were characterized
and then its immunostimulatory activities including cell
viability, phagocytosis, surface molecules, cytokines release
were evaluated using RAW264.7 cells. To further reveal the
mechanism of immune stimulation, the effects of AMP-ZnONPs
on the TLR4/MyD88/NF-κB signaling pathways were analyzed.
This study is expected to provide new ideas for the development
and utilization of polysaccharides and microelements in the
food and pharmaceutical industry.

Materials and methods

Reagents and materials

A. macrocephala was purchased from the Tongrentang
Company in Beijing. The plant material was identified by Prof.
Jingui Li. The purified AMP was prepared in our laboratory
and the polysaccharide content was 96% (UV). RAW264.7 cells
were obtained from American Type Culture Collection (ATCC,
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FIGURE 1

Schematic illustration of AMP-ZnONPs synthesis. The surface of ZnONPs was modified with KH550 through Borch reduction and then AMP was
bond to the KH550-ZnONPs.

Rockville, MD, United States). Fucose (Cat No. B25632),
arabinose (Cat No. B65342), rhamnose (Cat No. B50770),
galactose (Cat No. B21893), glucose (Cat No. B21882), xylose
(Cat No. B21880), mannose (Cat No. B21895), fructose (Cat No.
B21896), ribose (Cat No. B21897), galacturonic acid (Cat No.
B21894) and glucuronic acid (Cat No. B25302) were purchased
from Shanghai Ye Yuan Biotechnology Co., Ltd. FITC-dextran
(Cat No. 60842-46-8) and fetal bovine serum (Cat No. F8318)
were purchased from Sigma Corporation of America. DMEM
culture solution (Cat No. SH30022.01) was purchased from
HyClone. NO test kit (Cat No. S0021) was obtained from
Beyotime Biotechnology. Silane coupling agent (KH550, Cat
No. A7440) and ZnONPs (purity 99.9%, Cas No. 1314-13-2)
were the products of Sinopharm Chemical Reagent Ltd. RNA-
easy Isolation Reagent (Cat No. R701) was purchased from
Vazyme Biotech Co., Ltd. The CCK8 (Cat No. 40203ES80),
Hifair R© III 1st Strand cDNA Synthesis SuperMix for qPCR
(gDNA digester plus) (Cat No. 11141ES60) and Hieff

R©

qPCR
SYBR Green Master Mix (High Rox Plus) (Cat No. 11184ES08)
were the products of Yeasen Biotech Co., Ltd. Rabbit Anti-
CD80 Polyclonal Antibody (Cat No. bs-1479R), Rabbit Anti-
CD86 Polyclonal Antibody (Cat No. bs-1035R) and Rabbit

Anti-MHC Class II/HLA DMB Polyclonal Antibody (Cat No.
bs-4107R) were purchased from Biosynthesis Biotechnology
Inc. (Beijing, China). Antibodies of TLR4 (Cat No. 14358s),
TRAF6 (Cat No. 67591s), MyD88 (Cat No. 4283s), phospho-
IκBα (P-IκBα) (Cat No. 4812s), phospho-p65 (P-p65) (Cat
No. 8242s) and β-actin (Cat No. 4970s) were the products of
Cell Signaling Technology Pathways. TLR4 inhibitor (TAK242,
Cat No. M4838) was purchased from Abmole (Houston, TX,
United States).

Extraction and purification of
polysaccharide from Atractylodes
macrocephala

AMP was extracted by water extraction and alcohol
precipitation methods. Briefly, A. macrocephala was first
extracted with alcohol for 2 times to remove the impurity.
Second, A. macrocephala was decocted in water. The aqueous
extract was concentrated under a vacuum. After that, a threefold
volume of alcohol was added, the precipitated was washed
three times with anhydrous ethanol, acetone and diethyl
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(30). Then, the protein was removed using sevage methods
(31). The polysaccharide was dialyzed for 24 h. We further
purified the crude polysaccharide through Sephadex G-100
column. Finally, the purified extraction was lyophilized and the
polysaccharide content of AMP was determined by UV-VIS
absorption spectrometry.

Molecular weight measurement of
polysaccharide from Atractylodes
macrocephala

The molecular weight of purified samples was determined
by high-performance gel permeation chromatography (HPGPC;
Agilent 1,260 Infinity). Three gel permeation columns (KS-
805, KS-804 and KS-802) were linked in serials. The column
temperature was kept at 70◦C. Double distilled water was used
as mobile phase and the flow rate was kept at 1 mL·min−1.
The calibration curve was constructed using different molecular
weights of Dextran standards, and the molecular weight of AMP
was calculated by Dextran standards.

Monosaccharide composition analysis
of polysaccharide from Atractylodes
macrocephala

5 mg of AMP and 1 mL of trifluoroacetic acid (TFA,
2 M) were hydrolyzed at 121◦C for 2 h. The mixture was
dried with nitrogen, and then washed with methanol 2–3
times followed. The monosaccharide standards included fucose,
arabinose, rhamnose, galactose, glucose, xylose, mannose,
fructose, ribose, galacturonic acid and glucuronic acid. Finally,
samples were analyzed via high-performance anion-exchange
chromatography (HPAEC) (ICS5000, Thermo Fisher Scientific,
United States) with DionexTM CarboPacTM PA-20 column
(150 mm × 3.0 mm, 10 µm). Mobile phase A was 0.1 M
NaOH, mobile phase B was 0.1 M NaOH, 0.2 M NaAc. The
composition of eluent A was adjusted to 95% at 0 min, 80%
at 30 min, 60% at 30.1 min, 60% at 45 min, 95% at 45.1 min,
95% at 60 min. The column temperature was 30◦C. The flow
rate was 0.5 mL·min−1 and the injection volume was 5 µL. The
determination of monosaccharide composition was made with
an electrochemical detector and the peaks were processed using
Chromeleon 7.2 CDS (Thermo Scientific).

Preparation of AMP-ZnONPs

In order to fully hydrolyze KH550, 4 mL KH550 was added
to 400 mL of equal volumes of alcohol and water, the mixture
was reacted for 10 min under ultrasonication, and then agitated
for 20 min on a magnetic stirrer. The pH of the solution was

adjusted to between 6.5 and 7.0 with 0.2 M HCl to generate
silicon-oxygen bonds for grafting the ZnONPs. Then, 4.5 g
of ZnONPs was added to this solution, sonicated for 30 min,
agitated for 30 min at 200 rpm on a magnetic stirrer (80◦C),
and then the mixture was collected and lyophilized. The surface
of ZnONPs was modified with KH550 by these processes.
KH550-ZnONPs (10 mg) was added to water (20 mL). After
sonicating for 1 h, AMP was added to the KH550-ZnONPs
(mAMP: mKH550−ZnONPs = 4:1) and stirred for 24 h. The -CHO
of AMP and the -NH2 of ZnONPs were linked to assemble
AMP-ZnONPs by Borch reduction.

Characterization of AMP-ZnONPs

Scanning Electron Microscope (SEM, Zeiss Supra55,
Germany) was used to detect the samples of ZnONPs, KH550-
ZnONPs, AMP and AMP-ZnONPs, the image magnification
was 5,000 x. The morphology of samples was also observed via
a Transmission electron microscope (TEM, HT7800, Hitachi,
Japan). The element distribution was observed by Transmission
electron microscope-energy dispersive spectroscopy mapping
(TEM-EDS mapping, Tecnai G2 F30 S-TWIN, FEI, US) to verify
the connection of the ZnONPs and AMP. The Fourier transform
infrared spectroscopy (FT-IR, Thermo Electron Corporation,
United States) spectra were recorded in the mid-infrared
region. The samples were determined at room temperature
on an X-ray diffraction (XRD, D8 Advance, Germany), and
operated at 40 kV and 40 mA. The samples were determined
with X-ray photoelectron spectrometer (XPS, ESCALAB 250Xi,
United States). Data were analyzed using the Avantage software.
The laser particle size analyzer (NanoPlus 3, Micromeritics
Instrument Corp., United States) was applied to measure
average particle size, polydispersity index (PDI) and zeta-
potential.

Cell culture

RAW264.7 cells were cultured in the Dulbecco’s modified
Eagle’s medium (DMEM) with 10% fetal bovine serum. Cells
were maintained under a humified atmosphere at 37◦C
with 5% CO2.

Cell activity assay

The cell activity of AMP and AMP-ZnONPs on RAW264.7
cells was determined according to the CCK-8 method. Cell
viability of RAW264.7 cells was evaluated after treatment
with AMP and AMP-ZnONPs (0.06–250 µg·mL−1) for 24 h.
Following this, the supernatants were discarded, then added
fresh DMEM medium (100 µL·well−1) containing CCK8 (10
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µL·well−1) and cultivated for 1.5–4 h at 37◦C. Finally, the
absorbance at 450 nm was measured by microplate reader. The
cell survival rate was calculated as follows:

Cell activity (%) = A2/A1 × 100%

(Where A1 and A2 are the absorbances of the control and
test samples, respectively).

Measurement of nitric oxide

In brief, RAW264.7 cells (1 × 105 cells·mL−1) were
separately exposed to ZnONPs, AMP-ZnONPs and AMP
(1.95 µg·mL−1) for 24 h at 37◦C in a constant temperature
incubator ventilating with 5% CO2. At the end of incubation,
the NO amount in the supernatant was measured by a Griess
reagent system kit K.

Quantitative real-time polymerase
chain reaction

Real-time polymerase chain reaction (PCR) was employed
for the determination of cytokines (IL-6 and IL-1β) and
TLR4, MyD88, TRAF6 mRNA expression. The total RNA of
RAW264.7 cells was obtained with Trizol reagent, and then
synthesized the corresponding cDNA. The Hieff qPCR SYBR
Green Master Mix was employed to perform Quantitative real-
time PCR assay. The primer sequences of genes were displayed
in Table 1. The following PCR protocol was referenced by our
previous report (32). The expression of each gene was analyzed
by the 2−11ct comparative method.

Determination of phagocytic function
using CytExpert flow cytometer

RAW264.7 cells (1 × 106
·mL−1) were cultured in 6 well

plates at 37◦C for 12 h, and then exposed to ZnONPs, AMP,
AMP-ZnONPs (1.95 µg·mL−1) or LPS (0.5 µg·mL−1) for
24 h, respectively. The cells were incubated with 1 mg·mL−1

FITC-dextran for 1 h, then the reaction was stopped by
cold PBS. The FITC-dextran intensity of cell samples was
analyzed by CytExpert flow cytometer (Beckman Coulter,
CA, United States).

High-resolution laser confocal
microscopy

Cells were seeded at 1 × 105 cells·mL−1 on coverslips
in a 24 well plate, then stimulated with ZnONPs, AMP,

AMP-ZnONPs (1.95 µg·mL−1) or LPS (0.5 µg·mL−1), and
incubated with 1 mg·mL−1 FITC-dextran (1 mg·mL−1) at 37◦C
for 1 h. After incubation, RAW264.7 cells were fixed with
4% paraformaldehyde for 10 min. Cell samples were stained
with phalloidin for 1 h under dim light, followed by DAPI
staining. The green fluorescence was measured by laser confocal
microscopy (LSCM) (TCS SP8 STED, Germany).

Expression of cell surface molecule
CD80, CD86, and MHCII

The cells (1 × 106 cells·mL−1) were treated with AMP-
ZnONPs for 24 h in a 6-well plate. Then, the cells were
suspended and incubated with anti-CD80, anti-CD86 and
anti-MHCII at 4◦C for 30 min, and analyzed by the
CytExpert flow cytometer.

Cell morphological observation

The cells (1 × 105 cells·mL−1) were plated on coverslips
in 24-well plates, and then treated with ZnONPs, AMP, AMP-
ZnONPs (1.95 µg·mL−1), LPS (0.5 µg·mL−1) or DMEM. The
RAW264.7 cells with glutaraldehyde-treated were prepared for
24 h. Next, the cells were evaporated using a 30, 50, 70, 80,
90, 95, and 100% ethanol gradient (10–15 min each time);
then displaced in Na2SO4, dried at a tipping point, and finally
scanned by SEM (HT7800, Hitachi, Japan) at 1,000 and 8,000×.

Western blotting analysis

The BCA protein assay kit was employed to detect the
protein concentrations. Equal amounts (30 µg) of total protein
were separated and transferred to the NC membrane (33). The
membrane was incubated with 5% skim milk for 2 h and then
incubated with gentle shaking with primary antibodies at 4◦C
overnight. Later incubated NC at 4◦C with antibodies of TLR4
(rabbit, 1: 1,000), TRAF6 (rabbit, 1: 1,000), MyD88 (rabbit, 1:
1,000), P-p65 (rabbit, 1: 1,000), P-IκBα (rabbit, 1: 1,000) and
ß-actin (rabbit, 1: 1,000). After incubation with the primary
antibody, the membrane was exposed to goat anti-rabbit
secondary antibody (1: 5,000) at room temperature for 1 h.
The membrane was washed with TBST for 3 times, membrane-
bound antibodies were visualized using the ECL Enhanced
Chemiluminescence system, the protein band intensity was
analyzed with Image J Analysis Software.

Statistical analysis

GraphPad Prism 5.0 Software was utilized for statistical
analysis. Data were analyzed by one-way analysis of variance
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(ANOVA) followed by Dunnett’s multiple comparisons test. All
the data were expressed using mean ± standard deviation (SD).
The criterion of significance was P < 0.05.

Results and discussion

Molecular weight and monosaccharide
composition of polysaccharide from
Atractylodes macrocephala

As shown in Figure 2A, the results of HPGPC implied
a good homogeneity of AMP. The retention time was
24.98 min. The chromatographic result of HPGPC showed
that AMP had one peak, which indicated that AMP was
homogeneous polysaccharides. Based on the regression
equation of the dextran standard curve, y = 11.864079–
0.338831×–0.005080×ˆ2 + 0.000195×ˆ3, the molecule weight
of AMP was calculated as 2.743 × 103 Da (Figure 2B). The
result of monosaccharide composition obtained from AMP
was described by HPAEC (Figures 2C,D). AMP was composed
of arabinose, galactose, glucose, xylose, mannose, ribose,
galactose uronic acid, glucose uronic acid, with a percentage
ratio of 21.86, 12.28, 34.19, 0.43, 0.92, 0.85, 28.79, and 0.67%,
respectively.

Characteristics of AMP-ZnONPs

Morphological characteristics of AMP-ZnONPs
Untrastructure of ZnONPs, KH550-ZnONPs, AMP and

AMP-ZnONPs was obtained with the SEM (Figure 3A). The
AMP exhibited an irregular surface with many folds. ZnONPs
showed rod morphology and a nano-lamellar structure. The
KH550-ZnONPs after the surface modification displayed
particles with uniform size, good monodispersity, and no
obvious agglomeration. The surface of AMP appeared to
be covered by rod-shaped ZnONPs, which was attributed
to the strong interaction between amino in ZnONPs and
hemiacetal in AMP because of hydroamination. Ultrastructure
of ZnONPs, KH550-ZnONPs, AMP and AMP-ZnONPs as
shown in Figure 3B. The ZnONPs showed strong clustering and

exhibited aggregation. The KH550-ZnONPs had smaller clusters
and showed a homogenous dispersion, all aggregation was
disrupted. As shown in the AMP-ZnONPs, KH550-ZnONPs
were connected to the surface of AMP. The TEM-EDS mapping
and EDS spectra showed that C, O and Zn elements were present
in AMP-ZnONPs (Figure 3C). Therefore, the results strongly
supported the formation of AMP-ZnONPs.

Fourier transform infrared spectroscopy
analysis

As shown in Figure 4A, FT-IR spectra of AMP revealed
that the characteristic peaks of polysaccharide at 3366.9 cm−1,
2931.4 cm−1, and 1427 cm−1 were attributed to O-H stretch
vibration of hydroxyl group, C-H stretch vibration and O-H
bending vibration, respectively (34). Moreover, the weak bands
around 935.6 cm−1 and 818.9 cm−1 indicated that there were
α-configuration and β-configuration (35, 36). FT-IR spectra
of ZnONPs showed an intense peak at 571.1 cm−1 and a
broad peak at 3442.1 cm−1. The weak absorption peak at
3442.1 cm−1 could be attributed to stretching vibration of
associating hydroxyls formed by weak hydrogen bonding as
well as van der Waals interaction (37). The stretching vibration
band at 571.1 cm−1 corresponding to the Zn-O bond (38).
Compared with ZnONPs, KH550-ZnONPs displayed a new
typical characteristic absorption peak of -NH2 at 1582.6 cm−1,
which was attributed to the characteristic absorption peak of
KH550. The AMP-ZnONPs spectra showed the characteristic
absorption peaks of ZnONPs, KH550 and AMP. In addition,
the signal in 1058.9 cm−1 was mainly assigned to the
stretching vibration of the C-O-C group, the absorption peak
at 1,629 cm−1 corresponded to N-H stretching vibrations (39,
40). FT-IR spectra of AMP showed that the band at 1636.2 cm−1

corresponding to the C = O bond (41). There was no N-H
bond in AMP, after connecting to ZnONPs, the presence of an
N-H bond in AMP-ZnONPs indicated a possible connection.
The result provided evidence for the successful grafting of the
KH550-ZnONPs by the NH2 groupings in KH550 agents onto
AMP.

X-ray diffraction analysis
XRD, as a valuable instrument (42), could be used to further

confirm the composition of AMP-ZnONPs (Figure 4B). The

TABLE 1 The primer sequences of target genes.

Gene Sense (5′–3′) Antisense (5′-3′)

IL-6 TTCCATCCAGTTGCCTTCTTG AATTAAGCCTCCGACTTGTGAA

IL-1β ATCTCGCAGCAGCACATCA CCAGCAGGTTATCATCATCATCC

TLR4 TGGTCAGTGTGATTGTGGTATC GCTTTCTCCTCTGCTGTACTT

MyD88 TCGATGCCTTTATCTGCTACTG GGTCGGACACACACAACTTA

TRAF6 GCTGAGCCACAATACTCACTAA TTCTAGCGGATGGACATTACAC

GADPH ATGGTGAAGGTCGGTGTGAA CCTTGACTGTGCCGTTGAAT
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FIGURE 2

Molecular weight and monosaccharide composition of AMP. The peak at retention time of AMP (A) and molecular weight distribution (B) of
AMP. HPAEC chromatograms of AMP (C) and monosaccharide standards (D). Fuc, fucose; Ara, arabinose; Rha, rhamnose; Gal, galactose; Glc,
glucose; Xyl, xylose; Man, mannose; Fru, fructose; Rib, ribose; Gal-UA, galacturonic acid; Glu-UA, glucuronic acid.

characteristic peaks located at 2θ = 31.7, 34.4, 36.2, 47.5, 56.6,
62.8, 66.3, 67.9, 69.1, 72.5, 76.9, corresponding to the (100),
(002), (101), (102), (110), (103), (200), (112), (201), (004), (202)
planes, respectively, match well with characteristic reflections
of ZnONPs (P63mc, JCPDS no. 89-0511). A similar curve
of ZnONPs modified by KH550 proved that modification of
KH550 did no effect on the phase formation of ZnONPs. The
XRD results of AMP recorded between 10◦ and 30◦ suggested
the presence of crystalline components, with major reflections
at 12.0◦, 17.7◦ and 21.8◦. This profile was also observed in other
different polysaccharides (43, 44). The XRD profile of AMP-
ZnONPs showed that the main characteristic peaks of ZnONPs,
confirming that the hexagonal structure of the ZnONPs was not
affected after binding with AMP. Moreover, as sreov-shapederot
affected aft θ = 10–20, the modified AMP molecule maybe
undergo a chemical structure change and convert to amorphous
materials under this circumstance.

X-ray photoelectron spectrometer analysis
XPS was depicted in Figure 4C to investigate the surface

compositions of the ZnONPs (45, 46). Compared with
ZnONPs, the XPS spectra of the KH550-ZnONPs exhibited
the characteristic peak components of Zn2p3, O1s, N1s, C1s
and Si2p, suggesting that silane had successfully modified on
the surface of ZnONPs. The AMP showed a Zn-free surface,
the two peaks at 285, and 532 eV correspond to C1s and
O1s, respectively. The C1s core-level spectrum of the KH550-
ZnONPs was divided into three peak components: C-C, C-N

and C-Si (Figure 4D). The C1s core-level spectrum of the
AMP was divided into two peak components: C-C and C-O
(Figure 4E). The peaks of C-O (286.6 eV), C-C (284.8 eV),
C-N (286.3 eV) and C-Si (283.5 eV) were also observed in the
C1s spectrum of the AMP-ZnONPs (Figure 4F), the C-N single
bond peak was introduced by KH550, and the C-O peak was
introduced by AMP. The presence of a C-N bond confirmed
that there was a cross-linking reaction between the AMP and the
KH550-ZnONPs. Although the Zn2p3 peak was reduced due to
the AMP shielding, some active sites of ZnONPs remain even.
These results were in good agreement with previous results of
XRD and FT-IR, indicating that the successful grafting of AMP
and KH550-ZnONPs.

Particle size, polydispersity index and zeta
potential

The particle size (Table 2 and Figure 5A) of the
ZnONPs was larger than that of the KH550-ZnONPs,
this result revealed that after KH550 being modified on
the surface of ZnONPs promoted the particle size to be
smaller. The particle size of AMP-ZnONPs was slightly
larger than KH550-ZnONPs, which may be caused by
the AMP binding on KH550-ZnONPs. The PDI values of
AMP-ZnONPs was lower than 0.3, which was considered
optimal for the dispersion and homogeneity (47). The zeta
potential of AMP-ZnONPs was more negatively charged
than KH550-ZnONPs (Figure 5B), with AMP-ZnONPs
gaining additional negative charge of –4.43 mV. Negatively
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FIGURE 3

The SEM analyzes of ZnONPs, KH550-ZnONPs, AMP and AMP-ZnONPs (A). The TEM analyzes of ZnONPs, KH550-ZnONPs, AMP and
AMP-ZnONPs (B). TEM-EDS mapping image of AMP-ZnONPs (C), TEM image (a), corresponding elements distribution of C (b), O (c) and Zn (d),
merge (e), EDS spectrum (f).

charged nanoparticles are more likely to be internalized by
cells than positively charged nanoparticles, this property
underlies the fact that AMP-ZnONPs stimulates phagocytosis
of RAW264.7 cells more significantly than either ZnONPs or
AMP alone.

Cell viability
The cell viability of ZnONPs, AMP and AMP-ZnONPs on

RAW264.7 cells were shown in Figure 6A. Compared with the
control group, ZnONPs, AMP and AMP-ZnONPs exerted no
damaging effect and promoted cell proliferation to a certain
extent at a concentration of 0.24–1.95 µg·mL−1. When the
concentration of AMP-ZnONPs was 0.49–3.91 µg·mL−1, the
proliferation effect was proportional to the concentration. To
compare the immune effects of ZnONPs, AMP and AMP-
ZnONPs at the same concentration level, the concentration

of ZnONPs, AMP and AMP-ZnONPs at 1.95 µg·mL−1 were
chosen in the following experiments.

AMP-ZnONPs induced cells nitric oxide
production

NO is an important active substance associated with the
immunomodulatory effect (48), which participates in apoptosis
regulation and host defense function (49). The NO production
was calculated from the standard curve formula. The results of
NO release in AMP-ZnONPs were shown in Figure 6B. As a
positive control, the NO content of LPS group (0.5 µgPS −1)
showed significantly higher than the control group (P < 0.001).
And the release of NO in AMP-ZnONPs group was higher
than that of the control, ZnONPs group (P < 0.001) and AMP
group (P < 0.05). Therefore, AMP-ZnONPs could stimulate NO
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FIGURE 4

Spectroscopic characterization and curve-fitting spectra of AMP-ZnONPs. The FT-IR pattern (A), XRD pattern (B), XPS spectra (C) of
AMP-ZnONPs (a), AMP (b), KH550-ZnONPs (c) and ZnONPs (d). The curve-fitting of C1s (D) spectra of KH550-ZnONPs. The curve-fitting of C1s
(E) spectra of AMP. The curve-fitting of C1s (F) spectra of AMP-ZnONPs.
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TABLE 2 The particle size, PDI, and zeta potential of ZnONPs, KH550-ZnONPs and AMP-ZnONPs (n = 3).

Samples ZnONPs KH550-ZnONPs AMP-ZnONPs

Size (nm) 211.89± 8.98 136.73± 3.12 391.37± 3.27

PDI 0.095± 0.053 0.391± 0.137 0.206± 0.086

Zeta potential (mV) –33.20± 1.11 –10.97± 0.32 –15.40± 0.35

FIGURE 5

The particle size (A) and Zeta potential (B) of ZnONPs, KH550-ZnONPs and AMP-ZnONPs.

release more than AMP and ZnONPs in RAW264.7 cells, this
suggested that ZnONPs displayed synergy with AMP.

AMP-ZnONPs induced cells cytokines secretion
Cytokines are the central logical targets for immune

modulation as they influence the formation of a phenotype.
They act as immunoregulators by either inducing or suppressing
the production and maturation of immune cells (50). IL-1β is a
major mediator of inflammation secreted by various activated
innate immune cells, such as macrophages, monocytes and
dendritic cells (51). IL-6 is also one of the important mediators
that can stimulate antibody production and participate in

immune response. Both IL-1β and IL-6 are of great importance
for immune homeostasis and barrier immunity. To further
investigate the immunological activity of AMP-ZnONPs on
RAW264.7 cells, the cytokine (IL-1β and IL-6) contents in
cells were evaluated by RT-qPCR in this study (Figures 6C,D).
LPS stimulated the production of IL-1β and IL-6 by more
than 2,000 times compared to the control group (P < 0.001),
which indicated that LPS could promote inflammation and
lead to excessive cytokine release (52). Notably, AMP-ZnONPs
treatment exerted a significant action on IL-1β and IL-
6 secretion than both AMP and ZnONPs (P < 0.001),
which showed ZnONPs exerted a synergistic effect with
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FIGURE 6

The proliferative activity of RAW264.7 cells stimulated by ZnONPs, AMP and AMP-ZnONPs (A). NO content of cell culture supernatant (B) and
the mRNA expression of IL-1β (C), IL-6 (D) in RAW264.7 cells of different groups. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs.
AMP-ZnONPs).

AMP. The results indicated that the AMP-ZnONPs had
immunostimulatory effect, but it did not cause cell inflammation
like LPS.

AMP-ZnONPs enhanced cells phagocytosis
Macrophages exist in virtually all tissues, phagocytosis,

which is a classic index to evaluate macrophage activation, plays
a critical role in the uptake and degradation (53–55). In addition,
it is a signal-inducing process in which phagosomes bind to
the antibody on the cell surface, consequently, cell morphology
and signaling pathways are affected (56). The enhanced
phagocytosis is one of the remarkable characteristics of activated
macrophages, meanwhile indicating the activation of innate
immunity. The results showed that compared with the control
and ZnONPs, AMP-ZnONPs and AMP could significantly
promote cell phagocytosis of macrophages (Figures 7A,B).
Meanwhile, it should be highlighted that the stimulating effect

of AMP-ZnONPs on phagocytosis was remarkably higher than
AMP (P < 0.05). Furthermore, FITC-dextran accumulation in
RAW264.7 was measured by LSCM. As shown in Figure 7C,
AMP-ZnONPs treatment markedly enhanced the fluorescence
intensity of tested cells relative to AMP and ZnONPs, and
the FITC-dextran were mainly distributed in the cytoplasm.
These results demonstrated that the AMP binding with ZnONPs
significantly improved the immune activity of RAW264.7, which
indicated ZnONPs and AMP acted in synergy of immune
system.

AMP-ZnONPs promoted cells costimulatory
molecules expression

The activation and further differentiation of T cells and
cellular immune function are closely related to the function
of antigen-presenting cells (APC), especially macrophages,
considered as professional antigen-presenting cells (57). CD80
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FIGURE 7

The phagocytosis was evaluated by flow cytometry (A). The histogram showed the positive rate of cells for FITC-dextran (B). (**P < 0.01,
***P < 0.001 vs. AMP-ZnONPs). Enhanced FITC-dextran uptake into RAW264.7 cells following incubation with AMP-ZnONPs. FITC-dextran
(green) was mixed with ZnONPs, AMP, AMP-ZnONPs, LPS and DMEM medium (control) overnight avoiding light. Cytoskeleton and cell nuclei
were stained with phalloidin (red) and DAPI (blue) respectively, (C).
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and CD86 may differentially control the T-cell activation
because of the distinct properties of each molecule. Once
presented to T cells by MHCII, peptide antigens generally
stimulate a typical T cell-dependent immune response and
the induction of immune memory (58). In this study,
the expression of phenotypic markers of CD80, CD86 and
MHCII up-regulated after the RAW264.7 cells were exposed
to LPS for 24 h (Figure 8A). Figures 8B–D documented

a significant increase in the percent of RAW264.7 cells
positive for the expression of CD80, CD86, and MHCII
following incubation with AMP-ZnONPs as compared to the
control, ZnONPs and AMP. The results proved that AMP-
ZnONPs significantly increased the expression of CD80, CD86
and MHCII compared with ZnONPs or AMP alone, which
indicated ZnONPs and AMP showed synergetic effect with each
other.

FIGURE 8

The production of CD80, CD86, MHCII in RAW264.7 cells were analyzed by flow cytometry (A). The histogram showed the positive rate of
CD80 (B), CD86 (C), MHCII (D) in cells. (*P < 0.05, **P < 0.01, ***P < 0.001 vs. AMP-ZnONPs). SEM analysis for morphological changes of
RAW264.7 cells in different groups (E).
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FIGURE 9

The relative expressions of proteins (A,B) and mRNAs (C) of the critical nodes in the TLR4/MyD88/NF-κB signaling pathways. Effects of TAK242
on TLR4, MyD88, TRAF6, P-IκBα and P-p65 expression stimulated by AMP-ZnONPs or not (D,E). The results were expressed as the mean ± SD
(n = 3) (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. AMP-ZnONPs).

FIGURE 10

Schematic illustration depicts that a new approach was carried out to bind AMP with ZnONPs as an immunostimulator. AMP-ZnONPs could
significantly activate RAW264.7 cells by TLR4/MyD88/NF-κB signaling pathway to improve its immune function. Therefore, AMP-ZnONPs
remarkably enhanced phagocytosis, the release of NO, cytokines and the costimulatory molecules of RAW264.7 cells.

AMP-ZnONPs induced cells morphological
changes

Macrophages engulf nutrients and pathogens by stretching
their arms (59). The morphology was observed by SEM as shown
in Figure 8E. Cells in the control group had a round shape and
microvilli-like structures on the cell surface. RAW264.7 cells
showed elongated and polygonal with many filopodia in the LPS
group than in the other groups. In the AMP-ZnONPs group,
even in the case of round-shaped RAW264.7 cells, their arms
were stretching in various directions. The size, microvilli-like
structures and surface folds of the AMP-ZnONPs treated group

were more than ZnONPs and AMP. These results indicated that
AMP-ZnONPs could induce RAW264.7 cells activation visibly,
which was inconsistent with the results of phagocytosis and
cytokine secretion.

AMP-ZnONPs regulated the expression of
TLR4/MyD88/NF-κB associated proteins

As an important member of the TLR family, TLR4 has
been widely reported to recognize and bind to different
pathogen-related molecular patterns, initiate intracellular signal
transduction pathways, cause the release of cytokines or
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chemokines, and play an effective innate immune response (60).
Whether AMP-ZnONPs could mediate the immunomodulatory
effect on RAW264.7 cells by the TLR4 signaling pathway was
explored. The RT-qPCR and Western blot were used to detect
the mRNA and proteins of key nodes in the TLR4/MyD88/NF-
κB signaling pathways. As shown in Figures 9A,B, compared
with AMP group, the protein expression levels of TLR4, MyD88,
TRAF6, P-IκBα and P-p65 were upregulated in AMP-ZnONPs
group. As shown in Figure 9C, AMP-ZnONPs significantly up-
regulated the mRNA expression of TLR4, MyD88, TRAF6 in the
RAW264.7 cells, compared with those in control, ZnONPs and
AMP group. Therefore, the results indicated that AMP-ZnONPs
was more effective than ZnONPs and AMP in activating the
TLR4/MyD88/NF-κB signaling pathway.

AMP-ZnONPs downregulated expression of
TLR4/MyD88/NF-κB associated proteins after
treating with the TLR4 blocker TAK242

TAK242 is a specific inhibitor of TLR4 that affects the
downstream signal transduction of TLR4 by interfering with
the intracellular segment of TLR4 (61). In order to further
verify that AMP-ZnONPs could activate the TLR4/MyD88/NF-
κB signaling pathway, RAW264.7 cells were treated with the
TLR4 antagonist TAK242, and the expression of key proteins
in the pathway were detected. After adding TAK242, the
expression of each protein in the TLR4 pathway was shown in
Figure 9D. Compared with the control group, the expression of
TLR4, MyD88, TRAF6, P-IκBα and P-p65 were increased after
treatment with AMP-ZnONPs (Figure 9B), while the expression
of the above proteins was significantly reduced after TAK242
was added (Figure 9E).

TLR4 generally signals via a MyD88-dependent pathway,
then IKK phosphorylates IκB and p65 resulting in degradation
of IκB and activation of NF-κB, a nuclear factor that is
responsible for the production of many cytokines (IL-6, IL-1β)
and the costimulatory molecules (CD80, CD86, MHCII). In this
study, AMP-ZnONPs could significantly activate RAW264.7
cells by TLR4/MyD88/NF-κB signaling pathway to improve its
immune function. TAK242, a specific TLR4 inhibitor, reversely
demonstrated that AMP-ZnONPs could promote the expression
of TLR4 pathway-related proteins. In conclusion, this study
can provide a new research idea for the development and
utilization of polysaccharides and microelements in the food
and pharmaceutical industry and presents a theoretical basis
for research and development into new immunomodulatory
nutraceutical or immune adjuvant (Figure 10).

Conclusion

In summary, by Borch reaction between AMP and ZnONPs
modified by KH550, the AMP-ZnONPs was successfully
prepared and its characterization was evaluated. AMP-ZnONPs

showed excellent immunostimulatory activity on macrophages
and the activities were much better than those of ZnONPs
or AMP applied alone. Furthermore, this study clarified
that AMP-ZnONPs could significantly activate RAW264.7
cells by TLR4/MyD88/NF-κB signaling pathway to improve
its immune function. These data demonstrated that AMP
binding with ZnONPs could potentially be used as an
easily available source for immunomodulatory nutraceutical or
immune adjuvant, which can be widely used in the food or
medicine industry in the future.
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1New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation,
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Cholestasis is a common, chronic liver disease that may cause fibrosis

and cirrhosis. Tripterygium wilfordii Hook.f (TWHF) is a species in the

Euonymus family that is commonly used as a source of medicine and

food in Eastern and Southern China. Triptolide (TP) is an epoxy diterpene

lactone of TWHF, as well as the main active ingredient in TWHF. Here, we

used a mouse model of common bile duct ligation (BDL) cholestasis, along

with cultured human intrahepatic biliary epithelial cells, to explore whether

TP can relieve cholestasis. Compared with the control treatment, TP at a

dose of 70 or 140 µg/kg reduced the serum levels of the liver enzymes

alanine transaminase, aspartate aminotransferase, and alkaline phosphatase

in mice; hematoxylin and eosin staining also showed that TP reduced

necrosis in tissues. Both in vitro and in vivo analyses revealed that TP

inhibited cholangiocyte proliferation by reducing the expression of RelB.

Immunohistochemical staining of CK19 and Ki67, as well as measurement

of Ck19 mRNA levels in hepatic tissue, revealed that TP inhibited the BDL-

induced ductular reaction. Masson 3 and Sirius Red staining for hepatic

hydroxyproline showed that TP alleviated BDL-induced hepatic fibrosis.

Additionally, TP substantially inhibited BDL-induced hepatic inflammation. In

summary, TP inhibited the BDL-induced ductular reaction by reducing the

expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis,

and inflammation.
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RelB, bile duct ligation (BDL), triptolide, TNFSF14, cholangiocyte
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Introduction

Cholestasis can reflect either a functional defect in
bile formation at the hepatocyte level or impairment in
bile secretion/flow at the bile duct level (1). Cholestasis
manifests as the excessive accumulation of biliary
components (e.g., bile acid, cholesterol, and bilirubin) in
the liver and systemic circulation. The clinical symptoms
include liver injury, severe pruritus, jaundice, and fatigue;
severe cases can cause acute liver failure (2). Chronic
cholestasis may eventually lead to liver fibrosis and
cirrhosis (3).

Ursodeoxycholic acid and chenodeoxycholic acid are the
preferred drugs for treatment of cholestasis (4). However,
tolerance may develop (5). Recently, obeticholic acid (a 6-
ethyl derivative of chenodeoxycholic acid) was approved for
the treatment of primary biliary cirrhosis—in conjunction with
ursodeoxycholic acid—in patients with inadequate responses
to ursodeoxycholic acid; it was approved as monotherapy
for patients who are unable to tolerate ursodeoxycholic
acid (6–8). However, hepatic decompensation, liver failure,
and death have been reported in patients with Child-Pugh
B or C cirrhosis who receive doses of obeticholic acid
above the recommended level. Thus, the Food and Drug
Administration placed a black box warning on the obeticholic
acid label for patients with decompensated liver disease. New,
inexpensive therapeutic agents are needed for effective relief of
cholestasis symptoms.

Traditional Chinese medicine dietary supplements alleviate
various forms of liver injury including cholestasis (9–12).
Tripterygium wilfordii Hook.f (TWHF) is a species of
Tripterygium in the Euonymus family (13); the dried root
(“thunder god vine”) serves as a “bitter and cold” traditional
Chinese medicine (14) in Eastern and Southern China. The
root is also cooked in southern China. Triptolide (TP) is
an epoxy diterpene lactone of TWHF (15), as well as the
principal active ingredient in TWHF (13). TP exhibits potent
immunosuppressive and antiproliferative activities (16); it
effectively treats rheumatoid arthritis (17), diabetic kidney
disease (18), and prostate cancer (19, 20). A TP dietary
supplement reportedly alleviates senile osteoporosis (21),
reduces stress, and increases longevity (22). We previously
showed that TP was active against colon cancer (23, 24). The
NF-κB protein complex regulates cell survival (25), aging
(26), cytokine production (27), and obesity (28); NF-κB is the
principal target of TP. NF-κB transcriptional inhibition by TP
can suppress inflammation (29) and tumor growth (30). Thus
far, the effects of TP on cholestasis remain unknown. In this
study, we used a mouse model of common bile duct ligation
(BDL) to explore whether TP can effectively treat cholestasis.
Our findings provide a rationale for TP as complementary
medicine of the preferred drugs or alternative medicine
for cholestasis.

Materials and methods

Materials

Triptolide (CAS number 38748-32-2, purity > 98%) was
purchased from Sanling Biotech (Guilin, China). TNFSF14 Elisa
Kit (CSB-EL023991MO) was purchased from Cusabo (China).

Primary antibodies against RelB (10544), α-SMA (19245)
and F4/80 (70076) was purchased from Cell Signaling
Technology (USA). Primary antibody against CK19 (TROMA-
III) was purchased from DSHB (USA). Primary antibody against
GAPDH (60004-1-Ig) was purchased from Proteintech (China).
Primary antibody against Ki67 (ab16667) was purchased form
Abcam (USA). Primary antibody against Ly6g (4-5931-82)
was purchased from Thermofisher (USA). Rabbit and Mouse
secondary antibody (31460, 31430) were purchased from
Thermofisher (USA). Rat secondary antibody (GB23302) were
purchased from Servicbio (China).

Animal surgery procedure

Male C57BL/6J mice (6–8 weeks) were supplied by
Shanghai SLAC Laboratory Animal Co., Ltd (Shanghai,
China). The animal study was reviewed and approved by
the China Pharmaceutical University Experimental Animal
Ethics Committee. Mice were housed in conditions with
controlled light (12 h light/dark cycle), temperature (24 ± 2◦C),
and humidity (50–60%) and had adequate food and tap
water. Cholestasis was induced by common bile duct ligation
(BDL). Mice were anesthetized using 3% isoflurane and kept
under anesthesia using 2–3% isoflurane during the entire
infection procedure, where the abdominal cavity was opened
from the abdominal midline. All experiments on mice were
performed under the guidelines of Ethical Committee of China
Pharmaceutical University. Triptolide in powder was suspended
in 0.5% CMC-Na and administered to mice by gavage. The
doses selected for TP in animal experiments were 70 µg/kg
and 140 µg/kg (31). The common bile duct was ligated twice
with a 7-0 nylon suture. The sham operation group involved
the same operation, but the common bile duct was not ligated.
After one-week acclimatization, the mice were then randomly
separated into four groups (n = 6 per group): (1) Control mice
(sham operated); (2) BDL mice; (3) BDL with TP at 70 µg/kg
administration; (4) BDL with TP at 140 µg/kg administration.
BDL performed at three days after TP treatment. Mice in sham
and BDL group were given corresponding vehicle. After BDL the
mice still were treated with TP once a day. Seven days after BDL
surgery, mice were sacrificed (Figure 1A).

Serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels were measured using
kits from Whitman Biotech (Nanjing, China). Hepatic
hydroxyproline was measured using kits from Nanjing
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FIGURE 1

Triptolide alleviates liver injury induced by bile duct ligation. Male C57BL/6 mice were sacrificed at seven days after BDL or sham surgery. (A) The
diagrammatic experimental procedures. (B) Body weight of mice (each group n = 6). (C) Serum levels of ALT, AST and ALP in mice sacrificed at
7 days after BDL or sham surgery. (D) Representative images of H&E (The black dotted line indicates the necrotic area) from liver tissues.
Necrosis area statistics of H&E. Scale Bar: 100µm. Data are shown as the mean ± SD. Data represent at least 6 independent experiments with
triplicate measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance different from BDL group.

Jiancheng Bioengineering Institute (Nanjing, China). All kits
were used according to the manufacturer’s protocols. Fragments
of mouse livers were fixed overnight in buffered formaldehyde

(10%) and embedded in paraffin for immunohistochemistry
(IHC), hematoxylin and eosin (H&E), Masson’s trichrome
and Sirius Red. H&E staining of liver tissue was carried out to

Frontiers in Nutrition 03 frontiersin.org

51

https://doi.org/10.3389/fnut.2022.1032722
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1032722 October 8, 2022 Time: 16:5 # 4

Yuan et al. 10.3389/fnut.2022.1032722

FIGURE 2

Triptolide inhibits proliferation and RelB expression in HiBEC. (A) The growth curve of HiBEC after transfection of siRNA-Relb. (B) The protein
level of RelB in HiBEC after TP treatment. (C) The growth curve of HiBEC after TP treatment. (D) Double immunofluorescence staining for CK19
(green) and Ki67 (red) from HiBEC after TP treatment. Nuclei were counter-stained with DAPI (blue). (E) Relb, Tnfsf14 and Ltβ mRNA was
measured in HiBEC after TP treatment. Data are shown as the mean ± SD. Data represent at least 3 independent experiments with triplicate
measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance different from control group.
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FIGURE 3

Triptolide inhibits BDL induced RelB and its downstream gene expression. (A) Western blot analysis of RelB in liver. (B) The serum TNFSF14 levels
(ELISA data) of mice. (C) The mRNA level of Relb, Tnfsf14 and Ltβ in liver tissues. Data are shown as the mean ± SD. Data represent at least 6
independent experiments with triplicate measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance
different from BDL group.

observe pathological changes. All slides were scanned with a
NanoZoomer S60 (Hamamatsu, Japan).

Cell culture

Human intrahepatic biliary epithelial cells (HiBEC)
were purchased from ScienCell and cultured in a EpiCAM
(ScienCell) (Zhongqiaoxinzhou) containing 2% fetal bovine
serum (FBS), EpiCGs (ScienCell), 5 µg/mL insulin and
0.5 µM hydrocortisone.

Small interference RNAs (siRNA) were purchased
from GenePharma (Shanghai). The siRNA sequences
used in this study are as follows: RelB-1 siRNA
sense: 5′-GCCCGUCUAUGACAAGAAATT-3′; antisense:
5′-UUUCUUGUCAUAGACGGGCTT3′. RelB-2 siRNA
sense: 5′-GCACAGAUGAAUUGGAGAUTT-3′, antisense:
5′-AUCUCCAAUUCAUCUGUGCTT-3′, Negative control
siRNA: 5′-UUCUCCGAACGUGUCACGUTT-3′. HiBECs
were seeded in six-well plate one day before transfection.
HiBECs were transfected using Lipofectamine 3000 transfection
kit (thermofisher, USA) according to the manufacturer’s
instructions. Transfected cells were used for the subsequent
experiments 48 h after transfection.

The growth cure of HiBECs was measured with the cck-
8 kit (vazyme, China) assay. HiBEC were seeded in 96-well
plate (5000 cells per well). The plates were incubated in full
EpiCAM. Cck-8 working fluid were added in the plate 100 µL
per well at 24h, 48h, 72h, 96h. After 1 h incubation with cck8,

OD450 was detected using a spectrophotometer (Multiskan
MK3, Thermofisher, USA).

Quantitative real-time polymerase
chain reaction

RNA from tissues and cells was extracted with TRIzol
(vazyme, China). The RNA concentration was determined using
Nanodrop2000 Spectrophotometers (Thermo Scientific, USA).
cDNA was generated using BIO-RAD MyCyclerThermal Cycler
(BIO-RAD, USA) and the HighCapacity cDNA Reverse Kit.
qPCR was performed using StepOnePlus (Applied Biosystems,
USA) with specific primers (Table 1). Primers were purchased
from Genescipt (China). Results were normalized using
GAPDH as an internal control.

Immunoblot analysis

Protein content was analyzed by lysing tissues and cells with
RIPA buffer containing protease inhibitors and the Bradford
Protein Assay Kit. Western blot analysis was performed
following a previously described method (32). Protein bands
were detected with a Tanon 5200Muti (Tanon, China) using ECL
reagents. The gray density of the protein bands was determined
using ImageJ. All quantitative comparisons between samples
were on the same gels/blots.
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FIGURE 4

Triptolide relieves BDL-induced bile duct hyperplasia. (A) Representative images of IHC for CK19 and Ki67 (The black arrows indicate the
regenerated cholangiocytes) from liver tissues. Scale Bar: 100 µm. (B) Statistical analysis of immunohistochemically positive regions of (A). (C)
The mRNA level of Ck19 in liver tissues. Data are shown as the mean ± SD. Data represent at least 6 independent experiments with triplicate
measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance different from BDL group.

TABLE 1 Primer sequences used for RT-PCR analysis.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

mouse Ccn2 GGGCCTCTTCTGCGATTTC ATCCAGGCAAGTGCATTGGTA

mouse Gapdh CTTTGGCATTGTGGAAGGGC CAGGGATGATGTTCTGGGCA

mouse Acta2 TGCTGACAGAGGCACCACTGAA CAGTTGTACGTCCAGAGGCATAG

mouse Col1a1 CCTCAGGGTATTGCTGGACAAC CAGAAGGACCTTGTTTGCCAGG

mouse Tgf-β1 GCCACTGCCCATCGTCTACT CACTTGCAGGAGCGCACAAT

mouse F4/80 CGTGTTGTTGGTGGCACTGTGA CCACATCAGTGTTCCAGGAGAC

mouse Il-1β TGGACCTTCCAGGATGAGGACA GTTCATCTCGGAGCCTGTAGTG

mouse Krt19 AATGGCGAGCTGGAGGTGAAGA CTTGGAGTTGTCAATGGTGGCAC

mouse Tnf- a GGTGCCTATGTCTCAGCCTCTT GCCATAGAACTGATGAGAGGGAG

mouse Relb GTTCTTGGACCACTTCCTGCCT TAGGCAAAGCCATCGTCCAGGA

mouse Tnfsf14 GGAGACATAGTAGCTCATCTGCC CCACCAATACCTATCAAGCTGGC

mouse Ltβ CCTGTTGTTGGCAGTGCCTATC GACGGTTTGCTGTCATCCAGTC

Human Relb TGTGGTGAGGATCTGCTTCCAG TCGGCAAATCCGCAGCTCTGAT

Human Tnfsf14 GGTCTCTTGCTGTTGCTGATGG TTGACCTCGTGAGACCTTCGCT

Human Ltβ GGTTTCAGAAGCTGCCAGAGGA CGTCAGAAACGCCTGTTCCTTC

Human Gapdh GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA
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FIGURE 5

Triptolide relieves BDL-induced liver fibrosis. (A) Representative images of Masson 3, Sirius Red, and IHC for α-SMA from liver tissues. Scale Bar:
100 µm. (B) Collagen positive area statistics of Masson3 and Sirius Red. (C) Hydroxyproline assay of liver tissues. (D) The mRNA levels of Acta2,
Col1a1, Ccn2, and Tgf-β1 from liver tissues. Data represent at least 6 independent experiments with triplicate measurements. Analysis of
variance (one-way ANOVA) was used. p values represents significance different from BDL group.
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Immunofluorescence

Cells on coverslips were fixed in 4% paraformaldehyde
for 15 min, washed with PBS, and permeabilized in PBS
with 1% Triton for 10 min. Cells were then incubated
with 5% goat serum in PBS for 1 h at room temperature
before being incubated with antibodies overnight at
4◦C. The next day, cells on a round coverslip were
washed three times with PBS and incubated for 1 h at
room temperature with secondary Alexa antibodies and
DAPI. Fluorescence images were scanned using a FV3000
(Olympus, Japan).

Statistical analysis

All data were shown as mean ± SD and at least three
replicate experiments were performed in vitro and in vivo. The
necrotic, Masson3 positive and Sirius Red positive area were
analyzed using Image J software. Statistical significance was
determined using one-way analysis of variance as appropriate
(GraphPad Prism 9, GraphPad Software Inc., CA).

Results

Triptolide alleviates bile duct
ligation-induced liver injury

To explore the effects of TP on cholestasis-induced liver
injury, we established a mouse model of BDL and administered
two TP doses by oral gavage; such doses were previously
reported to attenuate chronic kidney disease (31). A schematic
of the mouse model is depicted in Figure 1A. Figure 1B shows
that TP at a dose of 70 or 140 µg/kg attenuated the BDL-
induced weight loss. BDL increased the serum levels of the liver
enzymes alanine transaminase, aspartate aminotransferase, and
alkaline phosphatase. Either dose of TP substantially reduced
the levels of these enzymes (Figure 1C). Histopathological
staining revealed less necrosis around the portal tract when BDL
mice were treated with TP (Figure 1D). Thus, TP effectively
treated BDL-induced liver injury.

Triptolide inhibits proliferation and
RelB expression in human intrahepatic
biliary epithelial cells

Bile duct hyperplasia is common in patients with cholestasis;
cholangiocyte proliferation and a ductular reaction contribute
to the onset and progression of liver disease (32–34). Members
of the NF-κB family of transcription factors act through

a canonical pathway and a non-canonical pathway. Non-
canonical NF-κB signaling activates predominantly p100-
sequestered NF-kB proteins, the most important of which is
RelB (35). This protein is involved in the ductular reaction;
the bile ducts of patients with primary sclerosing cholangitis
and primary biliary cirrhosis exhibit increased levels of RelB.
RelB and its downstream target lymphotoxin β (LTβ) affect the
proliferation of bile duct epithelial cells (36). TP inhibits the
expression of NF-κB proteins (37). Here, we analyzed HiBECs
in vitro. We hypothesized that TP would reduce cholangiocyte
proliferation by inhibiting the expression of RelB.

Growth curve analyses showed that siRNA-mediated RelB
knockdown inhibited the growth of HiBECs (Figure 2A).
Western blotting revealed that TP (100 nM) significantly
inhibited the expression of RelB in HiBECs (Figure 2B).
TP at 50 and 100 nM inhibited the growth of HiBECs
(Figure 2C); this was confirmed (for TP at 100 nM) by
immunofluorescence staining of CK19 and Ki67 (proliferation
markers) (Figure 2D). Quantitative polymerase chain reaction
(qPCR) analysis demonstrated that TP significantly reduced the
mRNA expression levels of Relb and the downstream genes
Tnfsf14 and Ltβ (Figure 2E).

Triptolide inhibits bile duct
ligation-induced expression of RelB
and downstream genes

Western blotting revealed that the protein level of RelB
increased after BDL. Both TP doses substantially reduced the
level of RelB (Figure 3A). Enzyme-linked immunosorbent assay
analysis showed that BDL increased the expression of serum
tumor necrosis factor superfamily member 14 (TNFSF14),
whereas TP inhibited this increase (Figure 3B). qPCR analysis
of hepatic tissue showed that BDL upregulated the mRNA
expression levels of Relb, Tnfsf14, and Ltβ, but these increases
were inhibited by TP at a dose of 70 or 140 µg/kg (Figure 3C).

Triptolide relieves bile duct
ligation-induced bile duct hyperplasia

The above results indicated that TP inhibited the BDL-
induced upregulation of Relb and downstream genes (Tnfsf14
and Ltβ) in hepatic tissue. Increased levels of RelB lead to a
ductular reaction. Cytokeratin-19 (CK19) is solely expressed
by cholangiocytes. Immunohistochemical analysis of CK19
revealed that BDL induced prominent bile duct hyperplasia; TP
inhibited this process (Figures 4A,B). Immunohistochemical
analysis of Ki67 revealed many positive cells (black arrows) in
bile ducts after BDL; TP significantly reduced the numbers of
these cells (Figures 4A,B), indicating that TP alleviated bile duct
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FIGURE 6

Triptolide relieves BDL-induced liver inflammation. (A) Representative images of IHC of F4/80 and LY6G from liver tissues. Scale Bar: 100 µm. (B)
The liver mRNA levels of F4/80, IL-1β and Tnf-α from liver tissues. Data represent at least 6 independent experiments with triplicate
measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance different from BDL group.

hyperplasia. qPCR analysis showed that TP significantly reduced
the BDL-induced upregulation of Ck19 (Figure 4C).

Triptolide relieves bile duct
ligation-induced liver fibrosis

TNFSF14, which acts downstream of RelB, promotes hepatic
stellate cell activation and exacerbates liver fibrosis (38). Staining
with Masson 3 and Sirius Red confirmed that TP decreased
collagen deposition around the portal fields in BDL mice
(Figures 5A,B). α-Smooth muscle actin [also known as actin
alpha 2 (ACTA2)] is a marker of hepatic stellate cell activation;
immunohistochemical staining of α-smooth muscle actin

decreased around the portal area (Figure 5A). Hydroxyproline
is a characteristic component of collagen; in BDL mice, the
hepatic levels of hydroxyproline were substantially lower after
treatment with TP at a dose of 70 or 140 µg/kg, compared
with those levels in the control group (Figure 5C). Next,
we examined the expression of liver fibrosis-related genes.
Col1a1 is an important collagen component, and its expression
significantly increases in fibrotic tissues. Connective tissue
growth factor [also known as cellular communication network
factor 2 (CTGF/CCN2)] and transforming growth factor beta-
1 (TGF-β1) are markers of liver fibrosis, and they both directly
activate hepatic stellate cells and promote collagen deposition;
BDL elevates the levels of both proteins (39, 40). The mRNA
expression levels of Acta2, Col1a1, Ccn2, and Tgf-β1 were
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FIGURE 7

TP inhibited the BDL-induced ductular reaction by reducing the expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis, and
inflammation. Created with BioRender.com.

downregulated when BDL mice were treated with TP at a dose
of 70 or 140 µg/kg (Figure 5D).

Triptolide relieves bile duct
ligation-induced hepatic inflammation

Ductular reactions are often accompanied by inflammatory
infiltrates (33, 41). Therefore, we examined the effect of TP
on hepatic inflammation. For this purpose, we conducted
immunohistochemical staining of F4/80 (also known as mouse
EGF-like module-containing mucin-like hormone receptor-like
1), which is expressed by various mature macrophages including
Kupffer cells; we also performed immunohistochemical staining
of the lymphocyte antigen 6 complex locus G6D (LY6G),
a neutrophil-specific marker. BDL-induced enhancement of
F4/80 and LY6G staining was decreased by TP at a dose of 70 or
140 µg/kg; thus, TP reduced hepatic inflammatory infiltration
(Figure 6A). The mRNA expression levels of genes encoding the
inflammatory factors F4/80, interleukin-1β, and tumor necrosis
factor-α were significantly reduced when BDL mice received
TP at a dose of 70 or 140 µg/kg (Figure 6B). These findings

indicated that TP attenuated hepatic inflammatory infiltration
in BDL mice.

Discussion

We explored whether TP protected against liver injury
progression in a mouse model of common BDL. TP at a
dose of 70 or 140 µg/kg effectively treated BDL-induced liver
injury. Liver enzyme measurement and H&E staining revealed
that TP at a dose of 70 or 140 µg/kg significantly alleviated
liver damage. Analysis of the liver hydroxyproline content,
along with Masson 3 and Sirius Red staining, revealed that
TP inhibited BDL-induced liver fibrosis. qPCR analysis of
Ck19 transcripts, as well as immunohistochemical staining
of CK19 and Ki67, showed that TP significantly inhibited
the BDL-induced ductular reaction. TP substantially reduced
hepatic inflammatory infiltration after BDL, as revealed by
immunohistochemical staining of F4/80 and Ly6G, as well
as the mRNA expression levels of F4/80, Il-1β, and Tnf-
α in hepatic tissue. In vitro analysis demonstrated that
TP dramatically downregulated the protein and mRNA
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expression levels of RelB, as well as the downstream genes
Tnfsf14 and Ltβ, thereby slowing the growth of HiBECs.
Assessment of protein and mRNA expression levels in
hepatic tissue revealed that TP attenuated the BDL-induced
upregulation of RelB and downstream genes. The serum
TNFSF14 assay confirmed that TP alleviated the BDL-
induced upregulation of RelB. Graphic abstract was shown in
Figure 7.

Tripterygium wilfordii Hook.f (TWHF) exhibits anti-
inflammatory (41), anti-fertility (42), anti-colitis (43), and
anti-cancer activities (44). At present, the clinical medication
of TWHF is mainly used for rheumatoid arthritis, lupus
and purpuric nephritis, psoriasis, erythroderma and allergic
diseases. There are no clinical trials linking TWHF with
cholestatic disease. However, the therapeutic window
for TP is narrow; clinical applications are compromised
by severe toxicities, including hepatotoxicity (37). The
doses in this study were chosen because TP at a dose of
70 µg/kg substantially alleviated chronic kidney disease
(31); we also used a higher dose for comparison. In our
previous study, it was found that there was no obvious liver
toxicity and cholestasis symptoms when TP 250 µg/kg was
administered for 7 days (45). Therefore, we believe that
the TP dose used in this study is a safe dose. TP-induced
hepatotoxicity cannot be ignored. We previously found
that TP was hepatotoxic at a dose of 500 or 600 µg/kg
(46, 47). Evidently, TP at a dose of 70 or 140 µg/kg
significantly alleviated BDL-induced liver injury, liver
fibrosis, the ductular reaction, and hepatic inflammatory
infiltration. Therefore, the role of TP in cholestasis is
dose-dependent. The specific mechanism may be related
to the complex immune homeostasis in the liver, and the
specific mechanism will be carried out in future studies. The
above content shows that TP needs more research before
clinical treatment of cholestasis and may require structural
modification and more accurate individualized diagnosis and
treatment strategies.

Cholestasis can be caused by certain drugs, abnormal
hormone levels, hepatitis, and dietary habits, but the underlying
mechanism remains unknown (48). Recent studies have shown
that the ductular reaction plays an important role in cholestasis-
induced liver fibrosis and injury. The ductular reaction,
characterized by cholangiocyte hyperproliferation, is commonly
observed in patients with biliary disorders such as primary
biliary cirrhosis, primary sclerosing cholangitis, or biliary
atresia; this reaction is usually associated with liver fibrosis,
and the extent of fibrosis is often correlated with mortality (32,
34). We presume that the reaction reflects the intense local
inflammatory microenvironment present in cholangiocellular
cholestasis; damaged cholangiocytes proliferate to compensate
for reduced biliary cell function. The ductular reaction
exacerbates hepatic inflammation, inhibits liver regeneration,
and promotes fibrosis (41, 49–52). Previous studies showed that

inhibition of the ductular reaction alleviated cholestasis-induced
liver damage, inflammation, and fibrosis (53, 54).

Some authors reported that the level of RelB was
directly related to the extent of ductular reaction. RelB and
LTβ were highly expressed in cholangiocytes from patients
with chronic liver diseases (hepatitis C and hepatitis B
virus infections, alcoholic liver disease, non-alcoholic fatty
liver disease, and autoimmune hepatitis) or cholangiopathies
(primary biliary cirrhosis and primary sclerosing cholangitis)
(36). The activation of RelB in cholangiocytes and hepatocytes
induces the secretion of LTβ, which activates cholangiocyte
RelB in both an autocrine and paracrine manner through
the LTβ receptor, thereby stimulating bile duct proliferation.
Thus, RelB is essential for cholangiocyte proliferation and the
ductular reaction. But so far, there are no drugs targeting
RelB yet in clinical, therefore, the design of new drugs for
RelB has broad prospects. Accordingly, we first examined
the effect of TP on cholangiocyte proliferation in vitro. As
expected (37), TP (an NF-κB inhibitor) significantly reduced
cell proliferation, as well as the expression of RelB and its
downstream genes. In vivo analysis showed that TP significantly
alleviated the BDL-induced upregulation of RelB. This finding
suggested that TP reduces cholangiocyte expression of RelB,
thus suppressing cholangiocyte proliferation; alleviating the
BDL-induced ductular reaction; and reducing liver damage,
inflammation, and fibrosis.

RelB is frequently associated with liver fibrosis. In addition
to its presence in cholangiocytes, RelB is expressed in Kupffer
cells (55) and hepatocytes (36). RelB-regulated TNFSF14 is
presumed to promote hepatic stellate cell activation and the
resulting liver fibrosis (38). Our assays of serum TNFSF14 levels
indicated that TP reduced the BDL-induced increase in the
TNFSF14 level; this may partly explain why TP relieves hepatic
inflammation and fibrosis.

Finally, TP is a small-molecule drug and may thus act via
several mechanisms. We focused on RelB. More detailed clinical
and translational studies are needed to substantiate the potential
utility of TP as a cholestasis treatment. Careful dosing studies
are also essential.

Conclusion

Triptolide (TP) at certain doses improved cholestasis. TP
may be useful in the prevention or treatment of cholestasis-
induced liver injuries, fibrosis, and other inflammatory diseases.
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colitis in mice by regulating the
Th17/Treg cell balance
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Mohammed Ismail Abdelmotalab1, Qing Wen1, Yuzhu Yuan1,
Yongrui Zhao1, Qingyu Li1, Chunyu Liao1, Xin Huang1,
Zhenzhou Jiang1, Chenghan Chu1, Chunhua Jiao2*

and Lixin Sun1*

1Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University,
Nanjing, China, 2Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical
University, Nanjing, China
Atractylodes macrocephala Koidz. is one of the most frequently used traditional

Chinese medicines for the treatment of ulcerative colitis (UC). The beneficial

effect of polysaccharide from Atractylodes macrocephala Koidz. (PAMK) on UC

has been reported, while the underlyingmechanism and target remain unclear. In

this study, we systematically investigated the therapeutic effect and the underlying

mechanism of PAMK in UC based on a mouse model of dextran sodium sulfate

(DSS)-induced colitis. PAMK treatment (100 mg/kg, 200 mg/kg and 400 mg/kg)

significantly ameliorated DSS-induced colitis, manifested as a reduction in weight

loss, disease activity index (DAI), colon shortening, spleen index and histological

score. Moreover, PAMK treatment inhibited inflammation and improved the

integrity of the intestinal barrier in colitis mice. Mechanistically, microarray

analysis determined the critical role of the immunoregulatory effect of PAMK in

alleviating UC. Flow cytometry analysis further demonstrated that PAMK

treatment regulated the balance between T helper (Th) 17 and regulatory T

(Treg) cells in the mesenteric lymph nodes (MLN) and spleen in mice with colitis.

In addition, PAMK treatment downregulated the expression of IL-6 and

suppressed the phosphorylation of STAT3. Together, these data revealed that

PAMK treatment alleviated DSS-induced colitis by regulating the Th17/Treg cell

balance, which may be dependent on the inhibition of the IL-6/STAT3 signaling

pathway. Our study is the first to elucidate that the underlying mechanism by

which PAMK treatment alleviates DSS-induced colitis is associated with an

improved the Th17/Treg cell balance. Collectively, the study provides evidence

for the potential of PAMK to treat UC.

KEYWORDS

polysaccharide from Atractylodes macrocephala Koidz., ulcerative colitis,
transcriptional profile, Th17/Treg cell balance, IL-6/STAT3
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Introduction

Ulcerative colitis (UC), a subtype of inflammatory bowel

disease (IBD), is characterized by chronic and relapsing mucosal

inflammation initiating in the rectum and extending upward

through part or the entire colon in a continuous fashion (1).

The worldwide prevalence of UC has increased in the last few

decades. Currently, 5-aminosalicylic acid agents, corticosteroids,

immunomodulators, and surgery are the main treatments for UC,

which are limited in clinical practice due to common

nonadherence, serious adverse effects and heavy financial

burden (2). Thus, it is imperative to develop new alternative

treatments for UC.

Atractylodes macrocephala Koidz. (Baizhu) has been used for

improving gastrointestinal function and treating digestive

disorders for thousands of years (3), and is currently one of the

most frequently used traditional Chinese medicines (TCMs) for

the treatment of UC (4). Previous studies demonstrated that

combination therapy of a Chinese herbal compound containing

Baizhu and mesalazine was more effective in improving the

clinical symptoms of UC patients than mesalazine alone (5).

Polysaccharide from Atractylodes macrocephala Koidz. (PAMK),

one of the main components inAtractylodes macrocephala Koidz.,

promoted the proliferation and survival of intestinal epithelial

cells in vitro (6) and prevented intestinal barrier dysfunction in

colitis mice (7). However, the underlying mechanism by which

PAMK treatment alleviates colitis remains unclear.

Aberrant immune responses are a hallmark of UC. In UC,

large numbers of immune cells are recruited into the inflamed

colonic mucous, and then they produce excess ive

proinflammatory cytokines, resulting in intestinal barrier

impairment, gut microbiota dysbiosis and perpetuation of

inflammation (8). Immunotherapy drugs, such as anti-IL-12/

IL-23 antibodies, have emerged as important treatments for UC

by inhibiting the activation of immune cells and the production

of their mediators (9). The immunoregulatory effect of PAMK

has been determined in previous studies, including promoting

the differentiation of Treg cells in vitro (10) and enhancing

mucosal immunity in the intestine (11). Thus, we investigated

the mechanism of PAMK in a mouse model of dextran sodium

sulfate (DSS)-induced colitis and hypothesized that the

immunoregulatory function plays a key role in its beneficial

effect of PAMK on colitis.
Materials and methods

Drug

Polysaccharide from Atractylodes macrocephala Koidz.

(PAMK, purity ≥98.0%) used in our study was purchased

from Shanxi Ciyuan Biotechnology Co., Ltd. (Xian, China).
Frontiers in Immunology 02
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PAMK was extracted from Atractylodis macrocephalae

Rhizoma from Zhejiang Province, China. During the

production process, the manufacturer implemented strict

process parameters and quality inspection of the intermediates

in key processes, such as properties and polysaccharide content.

The purity, molecular weight and monosaccharide composition

of all final products were investigated. The quality inspection

reports offered by the manufacturer showed that there were few

differences in the molecular weight and monosaccharide

composition between different batches of PAMK, indicating

the stable reproducibility of PAMK preparation.
Reagents

Dextran sulfate sodium (DSS, MW 36000-50000) was

obta ined f rom MP Biomedica l s (CA, USA) . The

myeloperoxidase (MPO) assay kit was obtained from Jiancheng

Bioengineering Institute (Nanjing, China). Zonula occludens

protein 1 (ZO-1) and Occludin antibodies were obtained from

Affinity (Liyang, China). FITC anti-CD4, PE anti-Foxp3, and PE

anti-IL-17A antibodies were obtained from Biolegend (CA, USA).

CD3e antibody, APC anti-CD25 antibody, Foxp3/transcription

factor staining buffer set and IC fixation buffer were obtained from

eBioscience™ (CA, USA). CD16/CD32 antibody was obtained

fromBDBiosciences (CA, USA). STAT3 and phospho-STAT3 (p-

STAT3) antibodies were obtained from Cell Signaling Technology

(MA, USA). The QuantiCyto® Mouse TNF-a enzyme-linked

immunosorbent assay (ELISA) kit was obtained from

NeoBioscience (Shenzhen, China).
Characterization of PAMK

UV spectra analysis
The UV spectrum of PAMK aqueous solution (40 mg/mL)

was recorded with a Nanodrop 2000 system in a region of 220-

350 nm to detect free proteins and nucleic acids.

Molecular weight analysis
PAMK (11 mg) was dissolved in 1 mL of distilled water and

then applied to a gel permeation chromatography system using a

PL aquagel-OH MIXED-M column (7.5×300 mm) maintained at

a temperature of 40°C. The sample was eluted with 0.1 M NaNO3

at a flow rate of 1.0 mL/min. The calibration curve was obtained

based on the T-series dextran standards of different molecular

weights (T-5, T-10, T-40, T-100, T-500, T-1000 and T-2000).

Determination of monosaccharide
composition

The monosaccharide composition of PAMK was determined

by high-performance liquid chromatography (HPLC). A total of
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0.5 mL of 19.4 mg/mL PAMK aqueous solution was hydrolyzed

with 0.5 mL of 4 M trifluoroacetic acid (TFA) at 110°C for 2 h.

After removal of TFA, the residue was dissolved in 0.5 mL of

distilled water, and 200 mL of the solution was acetylated with

120 mL of 0.5 M 1-phenyl-3-methyl-5-pyrazolone (PMP) and

120 mL of 0.3 M sodium hydrate solution in a water bath at 70°C

for 2 h. Then, the product was neutralized with 120 mL of 3 M

hydrochloric acid and extracted with 2 mL of chloroform thrice

with sufficient blending. The aqueous phase was filtered with a

0.22 mmmicroporous filter and analyzed on a Hypersil BDS-C18

chromatographic column (4.6×150 mm, 5 mm) at 30°C. The

mobile phase consisted of phosphate buffer (20 mM, pH 6.7) and

acetonitrile as eluents A and B (82:18 v/v). The flow rate was 1.0

mL/min, and the wavelength for UV detection was 250 nm.

Eight standard monosaccharides, namely, mannose, rhamnose,

glucuronic acid, galacturonic acid, glucose, galactose, arabinose

and fucose, were used as references.
Animals

Specific-pathogen-free (SPF)-grade male C57BL/6J mice

weighing 20 ± 2 g were obtained from Shanghai Lingchang

Biological Technology Co., Ltd. (Shanghai, China, certificate No.

SCXK (hu) 2018-0003). The animals were housed in a specific

pathogen-free condition (ambient temperature of 22 ± 2°C,

relative humidity of 60 ± 5%, and light-dark cycle of 12 h). All

animal experimental protocols were approved by the Ethics

Committee of China Pharmaceutical University (No. 2021-

09-001).
Animal experiment

Mice were fed adaptively for 7 days before the experiment

and randomly divided into five groups (Control, DSS, DSS+100

mg/kg PAMK, DSS+200 mg/kg PAMK, and DSS+400 mg/kg

PAMK). Acute colitis was induced by distilled water containing

3% DSS for 7 days, and the Control group was only given

distilled water. From day 8 to day 14, the mice in the five groups

received one of the following treatments: Control group (1 ml/

100 g normal saline, i.g.), DSS group (1 ml/100 g normal saline,

i.g.), DSS+100 mg/kg PAMK (100 mg/kg PAMK, i.g.), DSS+200

mg/kg PAMK (200 mg/kg PAMK, i.g.), and DSS+400 mg/kg

PAMK (400 mg/kg PAMK, i.g.). The experimental scheme is

shown in Figure 2A.
Evaluation of colitis severity

The body weight, stool consistency and blood in stool were

recorded daily during the whole experimental period, and the
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scoring criteria are shown in Supplementary Table 1. The

aggregate of all three observations was taken as a disease

activity index (DAI). On the 15th day, the mice were

sacrificed, and spleen weight and colon length were measured.

For histological evaluation, the distal colon tissues were fixed in

10% neutral formaldehyde, dehydrated, and embedded in

paraffin. The colon specimens were cut into slices,

deparaffinized, stained with hematoxylin and eosin (H&E),

and observed under a microscope. The scoring system was

based on four independent parameters (Supplementary

Table 2), and the summation of these scores provided a

histopathological score.
Determination of TNF-a level in plasma

The content of TNF-a in plasma was determined by an

ELISA kit according to the manufacturer’s instructions.
Measurement of MPO activity in colon

The weighed colonic tissue was homogenized with PBS to

prepare a 5% homogenate and centrifuged at 12,000

rpm for 5 min. Then, the supernatant was collected, and

the MPO activity was determined according to the

manufacturer’s protocol.
Microarray analysis

The Agilent Mouse ceRNA Microarray 2019 (4×180K,

Design ID:086242) was used for microarray analysis of the

colonic tissues of the Control, DSS and DSS+PAMK (200 mg/

kg PAMK, i.g.) groups (n=3). RNA was extracted by a

mirVana™ RNA isolation kit following the manufacturer’s

instructions. The purity and integrity of total RNA were

determined with a NanoDrop ND-2000 and Agilent 2100

bioanalyzer, respectively. RNA was transcribed to cDNA, and

then cRNA was synthesized and labeled with Cyanine-3-CTP

(Cy3). The labeled cRNA was hybridized onto the microarray.

Slides were scanned immediately after washing on the Agilent

DNA Microarray Scanner (G2505C), and the scanned images

were analyzed with Feature Extraction Software 10.7.1.1

(Agilent) to obtain raw data. Raw data were normalized with

the quantile algorithm. Differentially expressed genes (DEGs)

and differentially expressed mRNAs (DEMs) were identified

through a fold change ≥2 as well as a P ≤0.05 calculated with

a t test. Gene Ontology (GO) enrichment and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses of DEMs were performed to determine the roles of

DEMs based on the hypergeometric distribution.
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Quantitative real-time polymerase chain
reaction (qRT‒PCR) analysis

Total RNA was extracted from colonic tissues with TRIzol

reagent. The concentration and purity were measured by a

Nanodrop 2000.Then, cDNA was synthesized with HiScript®

Q RT Super Mix, and PCRs were performed with AceQ® qPCR

SYBR Green Master Mix as directed by the manufacturer’s

protocols. The expression of genes was normalized to the Actb

gene on the basis of the 2−DDCT algorithm. The primers used in

the research are listed in Supplementary Table 3.
Western blotting

The total protein of colonic tissue was extracted using RIPA

buffer containing protease inhibitor and phosphatase inhibitor,

and the content was determined using a BCA kit. Proteins were

separated by SDS‒PAGE and transferred to a PVDF membrane.

The membrane was blocked with 5% BSA buffer for one hour at

room temperature, followed by incubation with p-STAT3

antibody (1:2000) overnight at 4°C and secondary antibodies

for an hour at room temperature. The protein bands were

visualized by an automated chemiluminescence Western blot

detection system. Then, the same blots were stripped and

reprobed with STAT3 antibody (1:1000). Densitometry

analysis of bands was performed using ImageJ.
Flow cytometry analysis

For T helper (Th) 17 cells staining, cells isolated from the

spleen and mesenteric lymph nodes (MLN) were stimulated with

phorbol-12-myristate-13-acetate (100 ng/mL), ionomycin (1 mg/
mL) and brefeldin A (10 mg/mL) at 37°C for 5 h. After blocking

with anti-CD16CD32 antibody, the cells were labeled with FITC

anti-CD4 antibody. Then, the cells were fixed and permeabilized,

followed by intracellular staining with PE anti-IL-17A antibody.

Similarly, the surface markers FITC anti-CD4 and APC anti-

CD25 antibodies and the intranuclear marker PE anti-Foxp3

antibody were used to label regulatory T (Treg) cells. The data

were analyzed using FlowJo 10 software. The proportions of

Th17 and Treg cells, and the ratios of Th17/Treg cell in the

spleen and MLN in the DSS group and all PAMK treatment

groups were normalized to those in the Control group.
Immunofluorescence staining

The sections of colonic tissues were fixed in 4%

paraformaldehyde. For ZO-1 and Occluding staining, the

samples were permeabilized with 0.3% Triton X-100 at room
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temperature for 15 min and blocked with 5% goat serum buffer.

For p-STAT3 staining, the samples were permeabilized with

methanol at -20°C for 10 min and blocked with 5% goat serum

buffer containing 0.3% Triton X-100. Then, the sections were

incubated with ZO-1 (1:200), Occludin (1:200) or p-STAT3

(1:100) antibodies overnight at 4°C. The next day, the

secondary antibody and 4,6-diamidino-2-phenylindole (DAPI)

were used to stain the samples. The stained sections were

observed under a fluorescence microscope.
Statistical analysis

All statistical analyses were performed using GraphPad

Prism 8, and the data are presented as the mean ± standard

error of the mean (SEM). One-way ANOVA and two-way

ANOVA were used for multiple comparisons. A P <0.05 was

recognized as statistically significant.
Results

Structural characterization of PAMK

The UV scanning spectrum revealed no apparent light

absorption at 260 nm and 280 nm, indicating that free

proteins and nucleic acids were not present in PAMK

(Figure 1A). The molecular weight of PAMK was determined

to be 2.45×103 Da (Figure 1B). Based on the HPLC retention

times of standard sugars, the monosaccharide composition of

PAMK mainly consisted of mannose, rhamnose, glucuronic

acid, galacturonic acid, glucose, galactose, arabinose and fucose

in a molar ratio of 7.64, 0.25, 0.17, 0.13, 70.14, 1.00, 6.59, and

0.23 (Figures 1C, D).
PAMK treatment ameliorated DSS-
induced colitis

The beneficial impacts of PAMK on intestinal functions

were examined in a mouse model of DSS-induced colitis. During

the experimental process, DSS treatment resulted in weight loss,

diarrhea and bloody stool. A significant reduction in weight loss

and a marked decrease in the DAI score were observed in all

PAMK treatment groups compared with the DSS group

(Figures 2B, C). PAMK treatment significantly inhibited colon

shortening and improved splenomegaly in the mice with colitis

(Figures 2D–F). H&E staining was performed to systematically

evaluate colonic injury. The mice in the DSS group exhibited

serious pathological injury, as evidenced by surface epithelium

erosion, inflammatory cell infiltration, mucosal ulceration, crypt

loss, and goblet cell depletion. These pathological injuries were

significantly relieved, and the histological scores significantly
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decreased after PAMK administration in a dose-dependent

manner (Figures 2G, H). Together, these results indicated that

PAMK treatment significantly ameliorated DSS-induced colitis.
PAMK treatment inhibited the
inflammatory response and improved the
intestinal barrier in DSS-induced colitis
mice

To further assess the effect of PAMK on colitis, MPO activity

in colon tissue, an important biomarker of the extent of

neutrophil infiltration, was measured, and the data showed

that PAMK treatment could decreased MPO activity in colitis

mice (Figure 3A). UC is known to be caused by overstimulation

of proinflammatory cytokines. The level of TNF-a in plasma

significantly increased in the DSS group and decreased after

PAMK treatment (Figure 3B). Similarly, PAMK treatment

lowered the expression of proinflammatory cytokines

(Figures 3C–F), including Tnfa, Il1b, Il18 and Il23, which have

been reported to be increased in UC patients (12, 13). Among
Frontiers in Immunology 05
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the various doses used in the study, 200 mg/kg PAMK treatment

showed the strongest anti-inflammatory effect. Impaired

intestinal barrier is one of the major pathological features of

UC, and tight junction proteins, such as ZO-1 and Occludin,

contribute to the integrity of the epithelial barrier (14). The

immunofluorescence staining results showed that DSS treatment

caused damage to the intestinal barrier in mice, as evidenced by

lower expression of ZO-1 and Occludin. PAMK treatment

significantly increased the expression of the tight junction

proteins (Figures 3G, H). The above results indicated that

PAMK treatment inhibited inflammation and maintained the

integrity of the intestinal barrier in the colon of mice with UC.
PAMK treatment altered the
transcriptional profile in DSS-induced
colitis mice

Microarray analysis was performed to investigate the

underlying mechanism for the therapeutic effect of PAMK on

colitis. As shown in the principal component analysis (PCA) of
A B

DC

FIGURE 1

The structural characterization of PAMK. (A) UV scan spectrum. (B) Gel permeation chromatography spectrum. (C) HPLC spectrum of standard
monosaccharides. (D) HPLC spectrum of PAMK. The peaks numbered 1 to 8 represent mannose, rhamnose, glucuronic acid, galacturonic acid,
glucose, galactose, arabinose and fucose, respectively.
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DEGs, no obvious separation was observed among the Control,

DSS and DSS+PAMK groups (Figure 4A). We identified 1144

upregulated DEGs and 484 downregulated DEGs upon

comparing the DSS group and Control group. A total of 392

DEGs were upregulated, and 455 DEGs were downregulated in
Frontiers in Immunology 06
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the DSS+PAMK group compared with the DSS group

(Figure 4B; Supplementary Excel Sheet). A Venn diagram

showed the DEGs in the comparisons between the DSS vs

Control group and the DSS+PAMK vs DSS group (Figure 4C;

Supplementary Excel Sheet). Since there was no significant
A

B D

E F G

H

C

FIGURE 2

PAMK treatment ameliorated DSS-induced colitis. (A) Experimental scheme, (B) Daily body weight, (C) Daily disease activity index (DAI) scores, (D)
Representative images of colons, (E) Length of colons, (F) Spleen index, (G) Histological scores of colons, (H) Representative images of H&E staining
of colon tissue (magnification 100× and 200×). All data are presented as the mean ± SEM (n≥ 6). **P < 0.01 vs Control group; #P < 0.05, ##P < 0.01
vs DSS group.
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difference in DEGs between the Control, DSS and DSS+PAMK

groups, we focused on the analysis of DEMs. The PCA of DEMs

showed that the Control group and DSS group were clearly

separated and that the DSS+PAMK group was distinct from the

DSS group and tended to be closer to the Control group

(Figure 4D). We found that 702 DEMs were upregulated and

103 DEMs were downregulated in the DSS group compared with

the Control group. A total of 125 DEMs were upregulated and

204 DEMs were downregulated in the DSS+PAMK group

compared with the DSS group (Figure 4E; Supplementary
Frontiers in Immunology 07
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Excel Sheet). PAMK treatment led to the downregulation of 99

DEMs that were significantly increased in the DSS group and

resulted in the upregulation of 10 DEMs that were significantly

decreased in the DSS group (Figure 4F; Supplementary Excel

Sheet). Thus, 99 upregulated DEMs (DSS vs Control) and 10

downregulated DEMs (DSS vs Control) were considered critical

genes reversed by PAMK treatment. The results are presented in

the heatmap (Figure 4G). These results indicated that PAMK

treatment altered the transcriptional profile in the colonic tissues

of DSS-induced colitis mice.
A B

D E F

G
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C

FIGURE 3

PAMK treatment inhibited the inflammatory response and improved the intestinal barrier in DSS-induced colitis mice. (A) MPO activity in the
colon. (B) The concentration of TNF-a in plasma. The relative expression of Tnfa (C), Il1b (D), Il18(E) andIl23 (F) in the colonic tissue.
Representative images of immunofluorescence staining of Occludin (G) and ZO-1 (H) in colonic tissue (magnification 200×). All data are
presented as the mean ± SEM (n≥ 6). *P <0.05, **P <0.01 vs Control group; #P < 0.05, ##P < 0.01 vs DSS group.
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Cluster analysis of DEMs revealed that
regulating the Th17/Treg cell balance
may be the mechanism of the
therapeutic effect of PAMK treatment on
DSS-induced colitis

To further investigate the mechanism of the therapeutic

effect of PAMK on DSS-induced colitis in mice, we conducted a

trend analysis of the microarray data. The total DEMs were

clustered into 16 profiles (from profiles 0 to 15) based on the

expression patterns of genes using Short Time-series Expression

Miner (STEM) software. Among the 16 profiles, profile 14

(reaching the peak in the DSS group and decreasing in the

DSS+PAMK group), profile 11 (reaching the peak in the DSS

group and remaining in the DSS+PAMK group) and profile 10

(reaching the peak in the DSS group and returning to the level of

the Control group in DSS+PAMK group) were identified with

significant (P<0.05) expression patterns (Figure 5). Profile 14

and profile 10 were the most representative expression patterns.

GO enrichment and KEGG enrichment analyses were

performed to evaluate the potential functions of DEMs from

profile 14 and profile 10. GO analysis, commonly used to analyze

the function of genes, showed that the top 30 enriched GO terms

of profiles 14 and 10 included immune system process,

inflammatory response, immune response, acute-phase

response and innate immune response (Figures 6A, B). The

GO analysis indicated that the beneficial effect of PAMK on

DSS-induced colitis may rely on the regulation of the immune

response. In addition, the KEGG enrichment of profiles 14 and

10 showed multiple immune-related pathways among the top 30

pathways, including the IL-17 signaling pathway, Th17 cell

differentiation, Th1 and Th2 cell differentiation, TNF signaling

and the chemokine signaling pathway (Figures 6C, D).

Therefore, the effect of PAMK on colitis may depend on the

immunoregulatory function of PAMK by maintaining Th17/

Treg cell homeostasis.
PAMK treatment regulated the Th17/Treg
cell balance in the MLN and spleen in
DSS-induced colitis mice

To examine the effect of PAMK on the Th17/Treg cell

balance in DSS-induced colitis mice, we measured the

proportions of both Th17 cells and Treg cells in the CD4+ T

cells compartment of the MLN and spleen by flow cytometry. As

shown in Figures 7, 8, the proportions of Th17 cells in the MLN

and spleen of the DSS group mice were significantly increased

compared with those in the Control group mice, and PAMK

treatment significantly decreased the proportions of Th17 cells

in the MLN and spleen. However, PAMK treatment did not
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increase the frequency of Treg cells in the MLN and spleen

compared with those in the DSS group. The ratios of Th17/Treg

cells in the MLN and spleen were shown to decrease after PAMK

administration, supporting the role of PAMK in the resumption

of the Th17/Treg cell balance in colitis mice.

Then, Th17- and Treg-specific transcription factors RORgt
and Foxp3, as well as the associated cytokines IL-17A, IL-10 and

TGF-b1, were analyzed using qRT‒PCR to further investigate

the regulatory effect of PAMK on the Th17/Treg cell balance.

Significantly increased Rorc expression was found in colitis mice

in comparison with the Control group, and PAMK treatment

significantly decreased the mRNA level of Rorc (Figure 9A). In

addition, the expression of Foxp3 significantly decreased in

colitis and slightly increased in the PAMK treatment groups

(Figure 9B). The results showed that the expression of Th17- and

Treg- associated cytokines was consistent with that of specific

transcription factors. IL-17A is secreted specifically by Th17

cells, and TGF-b1 and IL-10 are secreted specifically by Treg

cells. The expression level of Il17a significantly increased in the

colon of the DSS group and decreased after PAMK

administration (Figure 9C). In contrast, PAMK treatment

slightly increased the expression of Tgfb1 and Il10 in colitis

mice (Figures 9D, E). Collectively, these data confirmed the effect

of PAMK on maintaining the homeostasis of Th17 and Treg

cells in DSS-induced colitis.
PAMK treatment inhibited the IL-6/STAT3
signaling pathway in DSS-induced colitis
mice

The role of the IL-6/STAT3 signaling pathway in the

differentiation of Th17 and Treg cells has been reported in

multiple studies. Activation of the IL-6/STAT3 signaling

pathway drives naïve T cells to differentiate into Th17 cells,

resulting in a Th17/Treg cell imbalance (15). Thus, we analyzed

the IL-6/STAT3 signaling pathway to explore the mechanism by

which PAMK administration modulated the Th17/Treg cell

balance. qRT‒PCR results showed that the Il6 mRNA level in

colonic tissue was significantly reduced in the PAMK treatment

groups compared to the DSS group (Figure 10A). The Western

blotting results showed that the level of STAT3 in colonic tissue

increased in colitis mice and decreased after PAMK treatment

(Figures 10B, C). A comparison of p-STAT3/STAT3 in colonic

tissues from the DSS and PAMK treatment groups revealed that

PAMK treatment decreased the ratio of p-STAT3/STAT3,

indicating that PAMK treatment suppressed the activation of

STAT3 (Figure 10D). The immunofluorescence analysis showed

a similar result (Figure 10E). Our findings demonstrated that

PAMK treatment effectively inhibited the activation of IL-6/

STAT3 signaling.
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Discussion

UC, a chronic and recurring intestinal disease, is

characterized by abdominal pain, diarrhea and hematochezia,

and persistent colitis increases the risk of colorectal cancer (16).

5-aminosalicylic acid (5-ASA) is a first-line therapy for the

treatment of UC (17). However, many patients suffer a

recurrence after 5-ASA is discontinued, and those patients are
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recommended to undergo treatment with thiopurines, anti-TNF

agents and immunosuppressive therapy despite serious adverse

effects (18). Thus, alternative medicines have recently attracted

attention in treating UC. Inspiringly, TCMs and polysaccharides

from TCMs have become promising alternative and

complementary therapies for UC treatment with fewer side

effects (19). Jia et al. conducted frequency analysis and found

that Atractylodes macrocephala Koidz. is one of the most
A B

D E F

G

C

FIGURE 4

PAMK treatment altered the transcriptional profile in DSS-induced colitis mice. (A) Principal component analysis (PCA) of all RNAs from the
microarray dataset (n=3). (B) The number of differentially expressed genes (DEGs) in the DSS vs Control and DSS+PAMK vs DSS groups (n=3).
(C) Venn diagram of DEGs in the Control, DSS and DSS+PAMK groups (n=3). (D) PCA of mRNAs from the microarray dataset (n=3). (E) The
number of differentially expressed mRNAs (DEMs) in the DSS vs Control and DSS+PAMK vs DSS groups (n=3). (F) Venn diagram of DEMs in the
Control, DSS and DSS+PAMK groups (n=3). (G) Heatmap of DEMs among the Control, DSS and DSS+PAMK groups (n=3). DEGs and DEMs were
identified through a fold change ≥2 as well as a P ≤0.05 calculated with a t test.
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frequently used TCMs in 177 Chinese herbal compound

prescriptions used in the clinical treatment of UC (4). Thus,

we investigated the effect and the underlying mechanism of

PAMK on colitis. This study is the first to elucidate the

underlying mechanism of the therapeutic effect of PAMK on

colitis and determine that the regulation of the Th17/Treg cell

balance of PAMK plays a critical role in alleviating colitis.

The common preclinical murine models of UC include the

DSS-induced colitis model, trinitrobenzene sulfonic acid

(TNBS)-induced colitis model and IL-10-deficient mouse

model (20). Various studies have demonstrated that IL-10

suppresses inflammation in colitis by regulating innate and

adaptive immune responses, such as promoting the expansion
Frontiers in Immunology 10
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of Treg cells to suppress the immune response mediated by Th17

cells, which indicates that IL-10-deficient mice were not suitable

for the present study (21). TNBS treatment promoted an

immune response mediated by Th1 cells, resembling Crohn’s

disease but not UC in humans (22). The DSS-induced colitis

model is the most widely used murine model of colitis due to its

reproducibility, controllability and similarities of pathological

and clinical manifestations with UC patients (23). In addition,

DSS, as a chemical toxin, causes the damage to the epithelial cells

and does not directly activate the adaptive immune system (24),

supporting that DSS-induced colitis is the most suitable model

for this study. The results showed that PAMK treatment

significantly ameliorated DSS-induced colitis manifested as
A

B DC

FIGURE 5

Trend analysis of DEMs. (A) Short time-series transcriptomic analysis of DEMs in the Control, DSS and DSS+PAMK groups (n=3). (B–D) The
statistically significant profiles (P < 0.05) of DEMs in the Control, DSS and DSS+PAMK groups (n=3).
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relief of symptoms, inflammation inhibition and intestinal

barrier maintenance.

The effects of polysaccharides are intimately associated with

their structural properties, especially monosaccharide

composition. Numerous studies have demonstrated that the

most common monosaccharides contained in polysaccharides

from TCMs include glucose, mannose, galactose and arabinose

(25). Consistent with the monosaccharide composition of these

polysaccharides, the monosaccharide components of PAMK

used in our study are mainly glucose, mannose, arabinose and

galactose. The effects of monosaccharide treatment on DSS-

induced colitis have been determined in previous studies. For

instance, both mannose and arabinose treatment alleviated DSS-

induced colitis by suppressing the inflammatory response and

improving barrier damage (26–28). Galactose is essential for

immune system function, and Astragalus polysaccharide with
Frontiers in Immunology 11
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higher galactose content showed a more beneficial effect on DSS-

induced colitis (29). Therefore, we considered that the protective

effect of PAMK against colitis may depend on mannose,

arabinose and galactose. However, high glucose treatment

exacerbated colitis pathogenesis in mice (30), which may

explain why 400 mg/kg PAMK treatment did not exert a more

beneficial effect on DSS-induced colitis than 200 mg/kg PAMK

treatment. In addition, extensive studies have demonstrated that

the polysaccharides from TCMs rich in mannose, arabinose and

galactose in colitis, such as polysaccharides from Inonotus

obliquus (31), Ganoderma lucidum (32)and Dendrobium

fimbriatum Hook (33), alleviate DSS-induced colitis by

modulating the immune response. Consistent with these

results , our study determined the key role of the

immunoregulatory effect of PAMK in ameliorating DSS-

induced colitis.
A B

DC

FIGURE 6

GO enrichment and KEGG pathway enrichment of DEMs. The GO analysis from DEMs of profile 14 (A) and profile 10 (B) among the Control,
DSS and DSS+PAMK groups (n = 3) showed the top 30 enriched biological functions. The KEGG analysis from DEMs of profile 14 (C) and profile
10 (D) among the Control, DSS and DSS+PAMK groups (n = 3) showed the top 30 enriched signaling pathways.
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The multifactorial pathophysiology of UC includes

environmental factors, disordered intestinal flora, impaired

epithelial barrier, genetic predisposition and dysregulated

immune responses (34). Among them, a dysregulated immune

system accelerates the development of UC (1). In UC, the

increasing permeability of the colonic mucosal and epithelial

barrier lead to the migration of intestinal flora and triggers the

activation of the immune system (35). Stimulated by innate

immune cells secreting cytokines, naive CD4+ T cells are induced

to differentiate into effector CD4+ T cells, including Th17 cells

and Treg cells (36). The KEEG enrichment analysis revealed that

the effect of PAMK on colitis was associated to the Th17/Treg

cell balance. Under physiological conditions, Th17 cells protect

the host against infection and mediate the immune response by

secreting inflammatory cytokines. Treg cells maintain immune

tolerance and prevent an excessive immune response by

secreting anti-inflammatory cytokines (37). In UC patients,

Th17 cells infiltrate the gastrointestinal mucosa and produce
Frontiers in Immunology 12
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excessive inflammatory cytokines, such as IL-17A, initiating a

more intense inflammatory response that Treg cells are not able

to tolerate (38). Thus, Th17/Treg cell imbalance is a crucial

factor in the occurrence and development of UC, and targeting

the regulation of the Th17/Treg cell balance has been a

promising strategy for treating UC (15). In our study, PAMK

treatment significantly decreased the frequency of Th17 cells in

the spleen andMLN, and the expression of Il17a in colonic tissue

in colitis mice. In UC patients, the proportion of Treg cells is

decreased in peripheral blood, while it is increased in the

inflamed mucosa of the colon, which may be attributed to the

active recruitment of Treg cells in inflamed areas to maintain

immune tolerance and inhibit the inflammation (39).

Consistently, our study also showed that the frequency of Treg

cells in the MLN and spleen increased in colitis mice. However,

the instability of Foxp3+ Treg cells in colitis has been identified,

and multiple studies have demonstrated that the expression of

Foxp3 in Treg cells isolated from inflammatory sites decreased,
A

B
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FIGURE 7

PAMK treatment regulated the Th17/Treg cell balance in the MLN of colitis mice. Flow cytometry of Th17 (CD4+IL-17A+) cells (A) and Treg
(CD4+CD25+Foxp3+) cells (B) in the MLN. The frequency of Th17 (C) and Treg cells (D) in the MLN. (E) The Th17/Treg ratio in the MLN. The
frequency of Th17 and Treg cells and the ratios of Th17/Treg in the DSS group and PAMK treatment groups were normalized to those in the
Control group. All data are presented as the mean ± SEM (n≥ 6). *P < 0.05, **P < 0.01 vs Control group; #P < 0.05, ##P < 0.01 vs DSS group.
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indicating a loss of Foxp3 expression (40), which may explain

why the proportions of Treg cells increased in colitis mice, while

the expression of Foxp3, Il10 and Tgfb1 decreased. The

upregulation of Foxp3, Il10 and Tgfb1 expression in the

PAMK treatment groups indicated that PAMK treatment

enhanced the activation of Treg cells. Our study indicated that

PAMK treatment alleviated DSS-induced colitis by regulating

the Th17/Treg cell balance.

Finally, we explored the pathways that promoted

differentiation and enhanced the secretion of Th17 cells.

Genome-wide association studies have determined that STAT3

is linked to UC susceptibility. STAT3 is expressed in mucosal

immune cells, and STAT3 activation enhances the inflammatory

response in the intestine (41). IL-6 initiates the phosphorylation

of STAT3 by binding the membrane-bound IL-6 receptor (42),

and p-STAT3 is an essential mediator of the Th17/Treg cell

balance and upregulates the expression of Th17-specific genes,

such as IL-17A (38). Thus, the IL-6/STAT3 signaling pathway
Frontiers in Immunology 13
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plays a pivotal role in the differentiation of Th17 cells. In UC, the

phosphorylated STAT3 levels were significantly increased in

actively inflamed colons (43, 44). Target blockade of the IL-6/

STAT3 signaling pathway, such as blockade with IL-6

antagonists, JAK inhibitors and direct STAT3 inhibitors, can

effectively prevent and treat UC (45). Many polysaccharides

from TCMs have been demonstrated to inhibit the IL-6/STAT3

pathway in DSS-induced colitis mice (46, 47). Our results

showed that the regulatory effect of PAMK on the Th17/Treg

balance in colitis may depend on the inhibition of the IL-6/

STAT3 pathway.
Conclusion

The study evaluated the effect of PAMK on colitis and

determined the underlying mechanism based on a mouse
A

B
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FIGURE 8

PAMK treatment regulated the Th17/Treg cell balance in the spleen of colitis mice. Flow cytometry of Th17 (CD4+IL-17A+) cells (A) and Treg
(CD4+CD25+Foxp3+) cells (B) in the spleen. The frequency of Th17 (C) and Treg cells (D) in the spleen. (E) The Th17/Treg ratio in the spleen. The
frequency of Th17 and Treg cells and the ratios of Th17/Treg in the DSS group and PAMK treatment groups were normalized to those in the
Control group. All data are presented as the mean ± SEM (n≥ 6). **P < 0.01 vs Control group; #P < 0.05, ##P < 0.01 vs DSS group.
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FIGURE 10

PAMK treatment inhibited the IL-6/STAT3 signaling pathway in DSS-induced colitis mice. (A) The relative expression of Il6 in the colonic tissue.
(B) Western blot analysis of STAT3 and p-STAT3 expression levels in colonic tissue. (C) Densitometric analysis of STAT3 expression. (D)
Quantitative analysis of p-STAT3/STAT3. (E) Representative images of immunofluorescence staining of p-STAT3 in colonic tissue (magnification
200×). All data are presented as the mean ± SEM. *P < 0.05 vs Control group; #P < 0.05 vs DSS group.
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FIGURE 9

PAMK treatment regulated the levels of Th17- and Treg-specific transcription factors and associated cytokines. The relative expression of Rorc
(A), Foxp3 (B), Il17a (C), Tgfb1 (D), andIl10 (E) in the colonic tissue. All data are presented as the mean ± SEM (n≥ 6). *P< 0.05,**P < 0.01 vs
Control group; #P < 0.05, ##P < 0.01 vs DSS group.
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model of DSS-induced colitis. PAMK improved colitis

symptoms, alleviated pathological injury, inhibited the

inflammatory response and improved the intestinal barrier in

colitis mice. In addition, the beneficial effect of PAMK on colitis

depended upon the immunoregulatory effect. Our results

suggested that PAMK treatment regulated the Th17/Treg cell

balance to attenuate DSS-induced colitis in mice, which may be

dependent on the inhibition of the IL-6/STAT3 signaling

pathway. These findings provide further evidence for the

potential of PAMK for treating UC.
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Moringa oleifera leaf
polysaccharide alleviates
experimental colitis by inhibiting
inflammation and maintaining
intestinal barrier
Hosameldeen Mohamed Husien1,2,3†, WeiLong Peng1,2†,
Hongrui Su1,2, RuiGang Zhou1,2, Ya Tao1,2, JunJie Huang1,2,
MingJiang Liu1,2, RuoNan Bo1,2* and JinGui Li1,2*
1College of Veterinary Medicine, Yangzhou University, Yangzhou, China, 2Jiangsu Co-innovation
Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses,
Yangzhou, China, 3College of Veterinary Medicine, University of Albutana, Albutana, Sudan

The characteristic of ulcerative colitis (UC) is extensive colonic mucosal

inflammation. Moringa oleifera (M. oleifera) is a medicine food homology

plant, and the polysaccharide from M. oleifera leaves (MOLP) exhibits

antioxidant and anti-inflammatory activity. The aim of this study to investigate

the potential effect of MOLP on UC in a mouse model as well as the

underlying mechanism. Dextran sulfate sodium (DSS) 4% in drinking water

was given for 7 days to mice with UC, at the same time, MOLP (25, 50,

and 100 mg/kg/day) was intragastric administered once daily during the

experiment. Structural analysis revealed that MOLP had an average molecular

weight (Mw) of 182,989 kDa and consisted of fucose, arabinose, rhamnose,

galactose, glucose, xylose, mannose, galactose uronic acid, glucuronic acid,

glucose uronic acid and mannose uronic acid, with a percentage ratio

of 1.64, 18.81, 12.04, 25.90, 17.57, 12.01, 3.51, 5.28, 0.55, 1.27, and 1.43%,

respectively. In addition, the features of MOLP were identified by Fourier-

transform infrared (FT-IR) and spectra, X-ray diffraction (XRD). The results

showed that MOLP exhibited protective efficacy against UC by alleviating

colonic pathological alterations, decreasing goblet cells, crypt destruction,

and infiltration of inflammatory cells caused by DSS. Furthermore, MOLP

notably repressed the loss of zonula occludens-1 (ZO-1) and occludin

proteins in mucosal layer, as well as up-regulating the mRNA expression

of interleukin-10 (IL-10) and peroxisome proliferator-activated receptor-γ

(PPAR-γ), whereas down-regulating the activation of Toll-like receptor 4
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(TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor-

kappa B (NF-κB) signaling pathway and the production of pro-inflammatory

cytokines. Therefore, these results will help understand the protective action

procedure of MOLP against UC, thereby providing significance for the

development of MOLP.

KEYWORDS

inflammatory bowel disease, Moringa oleifera leaves polysaccharide, intestinal injury,
inflammatory signaling pathway, tight junction expression

Introduction

Ulcerative colitis (UC), a common consequence of
inflammatory bowel disease (IBD), is a chronic recurring
intestinal disease, indicated by abdominal pain, losing weight,
and bloody stools (1). Recently, anti-inflammatory drugs
(sulfasalazine or mesalazine), common immunosuppressive
agents (glucocorticoids, azathioprine, methotrexate, and
cyclosporine A), and biological products, such as infliximab and
adalimumab, have been shown to help relieve UC symptoms
(2, 3). Nevertheless, these treatments are restricted due to
their side effects or serious adverse events, such as steroid
dependence and secondary infection (4). Consequently,
developing effective alternative strategies for preventing and
mitigating UC is critical.

Damage to the intestinal mucosal barrier allows external
antigens (LPS et al.) and pathogens to infiltrate and activate
immune cells in the body’s lamina propria. The activated
immune cells then initiate an inflammatory cascade marked by
elevated levels of pro-inflammatory cytokines such interleukin-
1β (IL-1β) and tumor necrosis factor alpha (TNF-α), as well
as a reduction in the anti-inflammatory cytokine interleukin-
10 (IL-10) (5). Pro-inflammatory factors motivate macrophage
and neutrophil infiltration, stimulate mucosal permeability, and
reduce tight junction (TJ) proteins, ultimately leading to tissue
injury (6).

Moringa oleifera (M. oleifera), a perennial plant with
considerable nutritional and medicinal benefits, is a component
of the Moringa family. It grows widely throughout Southeast
Asia, Africa, China’s southern region, and even the rest
of the world (7). The World Health Organization (WHO)
has recommended M. oleifera leaves as a highly nutritious

Abbreviations: UC, ulcerative colitis; IBD, inflammatory bowel disease;
MOLP, Moringa oleifera leaves polysaccharide; TNF-α, tumor necrosis
factor alpha; DSS, dextran sulfate sodium; MPO, myeloperoxidase;
TJ, tight junction; DAI, disease activity index; PPAR-γ, peroxisome
proliferator-activated receptor-γ; HMGB1, High mobility group box 1;
ZO-1, zonula occludens-1; TLR4, Toll-like receptor 4; NF-κB, nuclear
factor-kappa B; IκBα, inhibitor of kappa B alpha; MyD88, myeloid
differentiation primary response 88.

alternative to imported food sources for the treatment of
malnutrition (8). The leaves are healthful whether eaten
fresh or cooked. Furthermore, M. oleifera leaf extracts have
a variety of biological characteristics, such as antioxidants
activity, hypoglycemic activity, anti-inflammatory activity, and
immunomodulatory activity (9, 10).

Recent research indicates that polysaccharides extracted
from M. oleifera leaves have acquired popularity due to their
diverse and excellent biological activity. For example, a novel
arabinogalactan (MOP-1) with considerable in vitro antioxidant
activity was extracted from the leaves of M. oleifera (11).
Dong et al. obtained another polysaccharide (MOP-2) from
the leaves of M. oleifera and measured its immunomodulatory
activity in vitro (12). However, the potential effect of M. oleifera
leaf polysaccharide (MOLP) against UC and the underlying
mechanism unclear.

In this study, we examine the potential protective effect
of MOLP on dextran sulfate sodium (DSS)-induced UC in
mice by detecting colonic histopathological alterations, Toll-like
receptor 4 (TLR4), Myeloid differentiation primary response 88
(MyD88), Nuclear factor-kappa B (NF-κB) signaling pathways
and the corresponding inflammatory cytokines, TNF-α, high
mobility group box 1 (HMGB1), peroxisome proliferator-
activated receptor-γ (PPAR-γ) and so on. In addition, mucosal
permeation related TJ protein levels were also analyzed. These
findings can serve as a theoretical foundation for the further
development and implementation of MOLP.

Materials and methods

Reagents and materials

M. oleifera leaves were purchased from Yunnan Ruziniu
Biotechnology (Yunnan, China). The plant material was
identified by Prof. Jingui Li. Dextran sulfate sodium (DSS;
product code # 160110; MW: 36000–50,000) was obtained from
MP Biomedicals (Solon, USA). Myeloperoxidase (MPO) (Cat
No. A044-1-1) was obtained from the Jiancheng Bioengineering
Institute of Nanjing (Nanjing, China). LPS (Cat No. 21100201)
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was obtained from the Xiamen Bioendo Technology Co.,
Ltd. Primers and a bicinchoninic acid (BCA) protein assay
kit were provided by Solarbio, Beijing, China. Immobilon-P
polyvinylidene fluoride (PVDF) membranes (size: 0.45 µm)
were obtained from Merck Millipore (Billerica, USA). RNA-
easy Isolation Reagent (Cat No. R701) was purchased from
Vazyme Biotech Co., Ltd. Hifair R© 1st Strand cDNA Synthesis
SuperMix for qPCR (gDNA digester plus) (Cat No. 11141ES60)
and Hieff

R©

qPCR SYBR Green Master Mix (High Rox Plus)
(Cat No. 11201ES08) were the products of Yeasen Biotech Co.,
Ltd. Antibodies of TLR4(Cat No. 14358s), MyD88 (Cat No.
4283s), phospho-IκBα (P-IκBα) (Cat No. 4812s), phospho-p65
(P-p65) (Cat No. 8242s) and β-actin (Cat No. 4970s) were the
products of Cell Signaling Technology Pathways. TLR4 inhibitor
(TAK242, Cat No.M4838) was purchased from Abmole
(Houston, TX, USA). Primary antibodies against Occludin and
claudin-1 (ab242370) were purchased from Abcam (Cambridge,
United Kingdom). The corresponding horseradish peroxidase
(HRP)-conjugated secondary antibodies (111–035–003 and
115–035–003) were bought from Jackson Immuno Research
(West Grove, PA, United States). Secondary antibody which
conjugated tofluorescence (ab150077 and ab150116) was bought
from Abcam (Cambridge, United Kingdom). ELISA kits for
TNF-α (Cat No. ck-E20852), IL-1β (Cat No. ck-E20174), IL-10
(Cat No. ck-E20162), and HMGB1 (Cat No. ck-E20318) were
purchased from Shanghai Beyotime Biotechnology Co., Ltd.
(Shanghai, China).

Preparation and extraction of
polysaccharide from Moringa oleifera

The crude polysaccharide was extracted from the leaf
powder of M. oleifera using the procedures reported in earlier
investigations (13). The polysaccharide was extracted three
times using deionized water at a 1:10 (w/v) ratio at 70◦C for
90 min, followed by centrifugation at 4,000 rpm for 20 min.
Mixing and evaporating the collected supernatants with a rotary
evaporator. Following an overnight incubation at 4◦C, then the
concentrations were precipitated by adding dehydrated ethanol
to a final concentration of 80% (v/v). The obtained precipitates
were washed with 95% ethanol and dissolved in deionized water
following centrifugation. The dialysate solution was freeze-
dried, then deproteinated using the sevage method (14). Final
solution was freeze-dried to obtain MOLP.

Determination of molecular weight

The weight average molecular weight (Mw) of MOLP was
determined using SEC-MALLS-RI, which was described in a
previous study (15). A DAWN HELEOS-II laser photometer
(Wyatt Technology Co., USA) equipped with three tandem

columns (300 8 mm, Shodex OH-pak SB-805, 804 and
803; Showa Denko K.K., Tokyo, Japan) was utilized for the
determination. MOLP solution (1 mg·mL−1) filtered through
a filter of 0.45 µm pore size, which was held at 45◦Cusing a
model column heater by Sanshu Biotech. Co., Ltd. (Shanghai,
China) and flow rate 0.4 mL·min−1 with 0.1 M NaNO3 aqueous
solution containing 0.02% NaN3. The Mw was calculated by
reference to the standard curve of a Dextran series.

Monosaccharide composition analysis

5 mg of sample was hydrolyzed with trifluoroacetic acid
(TFA, 2 M) at 121◦C for 2 h in a sealed tube. The sample was
dried with nitrogen. Add methanol to wash, then blow dry,
repeat methanol wash 2–3 times. The monosaccharide standards
included fucose, arabinose, rhamnose, galactose, glucose, xylose,
mannose, fructose, ribose, galacturonic acid and glucuronic
acid. Finally, samples were analyzed by high-performance
anion-exchange chromatography (HPAEC) on a CarboPac PA-
20 anion-exchange column (3 by 150 mm; Dionex) using a
pulsed amperometric detector (PAD; Dionex ICS 5000 system).
Flow rate, 0.5 mL/min; injection volume, 5 µL; solvent system
A: (ddH2O), solvent system B: (0.1 M NaOH), solvent system
C: (0.1 M NaOH, 0.2 M NaAc); gradient program, volume ratio
of solution A, B, C was 95:5:0 at 0 min, 85:5:10 at 26 min,
85:5:10 at 42 min, 60:0:40 at 42.1 min, 60:40:0 at 52 min, 95:5:0
at 52.1 min, 95:5:0 at 60 min. Data were acquired on the ICS5000
(Thermo Fisher Scientific), and processed using chromeleon 7.2
CDS (Thermo Fisher Scientific).

Fourier transform-infrared
spectroscopy

3 mg of MOLP sample was combined with KBr powder
(100 mg) and pressed into thin slices, which were then evaluated
in a wave number range of 4,000–400 cm−1 using an Fourier
transform-infrared (FT-IR) spectrometer (Cary 670-IR + 610-
IR, Agilent Company, USA).

X-Ray diffraction

Five milligram of MOLP sample was measured at an
angle of 0.8–140◦ using an X-ray diffractometer (D8 Advance,
Bruker AXS, Germany).

Scanning electron microscope

MOLP sample was coated with gold powder, and its
structural characteristics were analyzed using a scanning
electron microscope (SEM) system (S-4800, Hitachi, Japan).
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Animals and experimental design

Male BALB/C mice (6–8 weeks old), weighing 20 ± 2 g,
were obtained from Yangzhou University Laboratory Animal
Co., Ltd. (Yangzhou, China). Forty mice were housed under
standard laboratory conditions (12 h light-dark cycle, 25 ± 2◦C
and 60–80% relative humidity), and fed standard laboratory
chow and sterile, distilled water ad libitum in the animal room.
All animal study was reviewed and approved by Institutional
Animal Care and Use Committees (IACUC) of Yangzhou
University. After 1 week of acclimatization, the mice were
randomly categorized into five groups (n = 8). The experimental
design was illustrated in Figure 1A. All experimental groups
were administered distilled water for the first 3 days, control
group was administered 0.9% (0.2 mL) sodium chloride (NaCl)
from days 4 to 10. DSS group was administered 4% (w/v) DSS
from days 4 to 10. DSS + MOLP-L group, DSS + MOLP-M group
and DSS + MOLP-H group were given oral administration
with different doses of MOLP (25, 50 and 100 mg/kg/day,
respectively), along with the oral administration of 4% (w/v)
DSS from days 4 to 10 for 7 days. All mice were injected
with 0.1% (50 mg/kg, i. p.) pentobarbital sodium and sacrificed
after 10-day experimental period. The weight of liver and
spleen were measured and recorded. The entire colon was
quickly removed and washed with cold phosphate-buffered
saline (PBS). The distal part was fixed in 10% buffered formalin
for histological analysis, and other parts were then stored at –
80◦C for immunological assays.

Disease activity index and histological
injury analysis

The body weight of mice was recorded using an electronic
analytical balance. The following analysis of a disease activity
index (DAI) indicator score, which included body weight loss,
stool consistency, and blood in the stools, was performed in
accordance with the literature (16). Briefly, (a) body weight
loss: 0 points = none; 1 points = 1–5% loss; 2 points = 5–10%
loss; 3 points = 10–20% loss; 4 points = over 20% loss. (b)
Diarrhea: 0 points = normal; 1 point = soft but still formed; 2
points = soft; 3 points = very soft and wet; 4 points = watery
diarrhea. (c) Hematochezia: 0 points = negative hemoccult;
1 point = weakly positive hemoccult; 2 points = positive
hemoccult; 3 points = blood traces in stool visible; 4
points = gross rectal bleeding.

Using the previously published method (17), paraffin-
embedded colonic tissues were sectioned and stained
with hematoxylin and eosin (H&E) for evaluation and
histopathologic scoring of UC. Briefly, (a) severity of
inflammation: 0 points = none; 1 points = mild; 2
points = moderate; 3 points = severe. (b) Extent of
inflammation: 0 points = none; 1 points = mucosal; 2

points = mucosal and submucosal; 3 points = transmural.
(c) Crypt damage: 0 points = none; 1 points = basal 1/3; 2
points = basal 2/3; 3 points = crypts lost but surface epithelium
present; 4 points = crypts and surface epithelium lost.

Determination of myeloperoxidase
activity, inflammatory cytokines and
lipopolysaccharide content

Myeloperoxidase (MPO) activity, and inflammatory
cytokines such as TNF-α, IL-1β, HMGB1 and IL-10 levels
in colonic tissues, and serum lipopolysaccharide (LPS) levels
were assessed using ELISA kits in accordance with the
manufactures instructions.

Analysis of colon tissues after dextran
sulfate sodium-treatment using
qRT-PCR

Using Trizol reagent, total RNA was isolated from colon
tissue samples and examined using a NanoDrop 2000 UV-
vis spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, USA). The Hifair R© I1st strand cDNA synthesis SuperMix
was used to create the cDNA samples. Utilizing the CFX96TM

connect real-time PCR system (Bio-Rad, USA) and SYBR
R©

Green Master Mix Kit, the expression levels of IL-1β, IL-
10, TNF-α, HMGB1 and PPAR-mRNA in colon tissues were
determined. GAPDH was designated as the housekeeping gene
for the 2−1 1 CT technique to calculate relative mRNA
levels. The specific primers for the target genes are shown in
Table 1.

Western blotting analysis

The colon tissue was homogenized and lysed in RIPA
buffer with a PMSF protease inhibitor on ice, homogenized,
and centrifuged at 12,000 rpm for 10 min. The amount
of proteins in the supernatant was then measured using a
BCA protein assay kit. After boiling with loading buffer,
equal quantities of protein from each sample were prepared
for electrophoresis on 10% SDS-PAGE under reducing
conditions, transferred to the PVDF membrane, blocked for
2 h with 5% skim milk, and then overnight incubated with
primary antibodies (1:1,000 dilution) at 4◦C (all antibodies
were diluted following instructions). The membrane was
treated with species-specific secondary antibodies together
with horseradish peroxidase (1:1,000 dilution) at room
temperature for 1 h after three TBST washes. Using an
enhanced chemiluminescence kit, protein signal bands

Frontiers in Nutrition 04 frontiersin.org

81

https://doi.org/10.3389/fnut.2022.1055791
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1055791 November 4, 2022 Time: 15:45 # 5

Mohamed Husien et al. 10.3389/fnut.2022.1055791

FIGURE 1

Effect of MOLP on the symptoms of mice with ulcerative colitis. The experimental design (A), changes of body weight (B), DAI (C), the status (D)
and length (E) of colon, indexes of liver (F) and spleen (G). Data are presented as mean ± SEM (n = 8), ∗∗∗P < 0.001, DSS vs. Control; #P < 0.05,
##P < 0.01, ###P < 0.001, DSS + MOLP-L, DSS + MOLP-M and DSS + MOLP-H vs. DSS.
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TABLE 1 List of primer sequences used for qRT-PCR.

Gene Sense (5′–3′) Antisense (5′–3′)

IL-1β CCAGCAGGTTATCATCACATCC ATCTCGCAGCAGCACATCA

IL-10 GGCAGCCTTGTCCCTTG AACATACTGCTAACCGACTCCTT

TNF-α TGAAGCAGCAGCCAGCAA GCAGCCTGTCTCCTTCTATGA

HMGB1 ATGGGCAAAGGAGATCCTA ATTCATCATCATCATCTTCT

PPARγ CCCACCAACTTCGGAATCAG TGCTGGAGAAATCAACCGTGGTA

GAPDH CACCATCTTCCAGGAGCGAG GGGGCCATCCACAGTCTTC

were observed on a Chemidoc XRS (BIO-RAD, Marnes-
la-Coquette, France) following three washes with TBST
(Merck Millipore, Billerica, USA). and quantified using
Image J software.

Immunohistochemistry analysis

Paraffin-embedded slices of colonic tissue were
deparaffinized, rehydrated, rinsed with distilled water,
and then placed in citrate buffer for antigen thermal
retrieval. After that, the cells were washed three times
with PBS for 5 min each, incubated for 60 min at
room temperature with blocking buffer (3% BSA in
PBS), and then incubated overnight at 4◦C with anti-
zonula occludens-1 (ZO-1) and anti-occludin primary
antibodies. The primary antibody was incubated with
the secondary antibody for 50 min at room temperature
before being rinsed three times with PBS for 5 min each
and stained with DAPI for 10 min. After being acquired
with a fluorescent microscopy imaging system (Nikon
Corporation, Tokyo, Japan), the sections were quantified using
Image J software.

Statistical analysis

The data is displayed as the mean ± standard error of the
mean. GraphPad Prism’s one-way ANOVA test was utilized for
statistical analysis (version 8.0). P < 0.05, P < 0.01, or P < 0.001
indicates statistical significance.

Results and discussion

Molecular weight and monosaccharide
composition

The Mw distribution of MOLP was determined by SEC-
MALLS-RI. As shown in Figure 2A, a single, sharp, and
symmetrical peak at 42.95 min was observed, indicating that

MOLP was a homogeneous polysaccharide. The Mw of MOLP
was estimated to be 182,989 kDa.

The monosaccharide composition analysis of MOLP was
shown in Figure 2B, MOLP was composed of fucose, arabinose,
rhamnose, galactose, glucose, xylose, mannose, galactose uronic
acid, glucuronic acid, glucose uronic acid and mannose uronic
acid, with a percentage ratio of 1.64, 18.81, 12.04, 25.90, 17.57,
12.01, 3.51, 5.28, 0.55, 1.27, and 1.43%, respectively. According
to the standard curve (Figure 2D), the result indicated that
MOLP was a hetero-polysaccharide.

Fourier-transform infrared
spectroscopy analysis

The FT-IR spectrum of MOLP revealed typical
polysaccharide absorption peaks in the ranges of 4,000–
400 cm−1. As shown in Figure 2C, the strong absorptions at
3401.1 and 2919.4 cm−1 showed O–H and C–H stretching
vibrations, respectively (18). The absorption peak at
1628.4 cm−1 was given the C = O stretching vibration.
The absorption peak at 1242.8 cm−1 was identified as the
source of the S = O stretching vibration. The absorption peak
at 1105.8 cm−1 was also attributed to the C–O stretching
vibration. Additionally, a pyranose ring was discovered by the
848.5 cm−1 absorption, it is similar with the previous studies on
the polysaccharides extracted from the leaves of M. oleifera (19,
20).

X-ray diffraction analysis

An obvious dispersing peak was observed at 19.80◦

according to the XRD curve of MOLP (Figure 2E). However,
no obvious characteristic peaks were observed, only a few small
dispersing absorption peaks at 29.12◦ and 35.50◦, respectively.

Scanning electron microscope analysis

The SEM image of MOLP was illustrated in Figure 2F. The
surface of MOLP was smooth and mainly exhibited sheet and
needle or rod-like shape.
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FIGURE 2

Structural characterization of MOLP. The peak at retention time of MOLP (A). The monosaccharide composition analysis of MOLP (B). FT-IR
spectrum of MOLP (C). Monosaccharide standards (D). Fuc, fucose; Ara, arabinose; Rha, rhamnose; Gal, galactose; Glc, glucose; Xyl, xylose;
Man, mannose; Gal-UA, galacturonic acid; Glu-UA, glucuronic acid; Man-UA, mannose uronic acid. XRD (E), and SEM (F) of MOLP.

TABLE 2 Effects of MOLP on MPO activity and LPS content.

Groups Control DSS DSS + MOLP-L DSS + MOLP-M DSS +MOLP-H

MPO (U/g) 0.11 ± 0.03 0.54 ± 0.07** 0.33 ± 0.03 0.29 ± 0.09# 0.15 ± 0.08##

LPS (EU/mL) 1.61 ± 0.06 4.87 ± 0.57*** 3.71 ± 0.18 2.53 ± 0.07## 2.37 ± 0.09##

Data are presented as mean ± SEM (n = 8), **P < 0.01, ***P < 0.001, DSS vs. Control; #P < 0.05, ##P < 0.01, DSS + MOLP-M and DSS + MOLP-H vs. DSS. MPO, Myeloperoxidase; LPS,
Lipopolysaccharide; DSS, Dextran sodium sulfate; MOLP-L, low dose of Moringa oleifera leaf polysaccharide; MOLP-M, medium dose of Moringa oleifera leaf polysaccharide; MOLP-H,
high dose of Moringa oleifera leaf polysaccharide.

Moringa oleifera leaves polysaccharide
improved colitis symptoms in dextran
sulfate sodium-treated mice

The change in body weight was calculated and shown in
Figure 1B. The DSS treatment led to a significant weight loss.
Nonetheless, MOLP administration had a protective effect and
reduced the trend in body weight loss in a dose-dependent

manner, indicating that MOLP reduced body weight loss in
DSS-induced UC mice.

DAI scores were used to detect the progression of DSS-
induced UC (21). Colonic contraction has been identified as
the primary feature of UC, and shortening of colon length is
clearly associated with disease severity (22). As illustrated in
Figure 1C, DSS treatment significantly increased DAI score in
model mice after 10 days. However, MOLP supplementation
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FIGURE 3

Effect of MOLP on histopathological changes of mice with ulcerative colitis. Histology analysis of colon tissues by HE staining (A), histological
sore (B). Data are presented as mean ± SEM (n = 8), ***P < 0.001, DSS vs. Control; ##P < 0.01, ###P < 0.001, DSS + MOLP-L, DSS + MOLP-M
and DSS + MOLP-H vs. DSS.

inhibited the elevation of DAI scores in the low, medium,
and high dose groups. In contrast, the DSS group showed
a significant contraction in mouse colon length. Nonetheless,
intervention with MOLP at medium and high doses effectively
prevented colon shortening (Figures 1D,E). Similar to Zhang
et al. (23), which indicated that 5-ASA and (MOPE) isolated
from M. oleifera treatments reduced inflammatory symptoms
in the colon of mice. Our results suggested that the MOLP
supplementation has a preventative effect on UC induced by
DSS.

Spleen index is regarded as a key indicator of immunological
function (24). In this study, DSS challenge significantly reduced
the liver index while increasing the spleen index when compared
to the control. However, the high dose of MOLP significantly
increased the liver index while decreasing the spleen index in
DSS-induced UC mice (Figures 1F,G). Taken together, all the
findings showed that MOLP reduced clinical symptoms and
anatomical changes in DSS-induced UC.

Moringa oleifera leaves polysaccharide
ameliorated the colonic
histopathological changes

As shown in Figure 3, the histology of the control group
was normal, with dense columnar epithelium, intact intestinal
crypts, and abundant goblet cells. There was epithelial rupture,

irregular crypt architecture, submucosal edema, goblet cell
reduction, and neutrophil hyper-infiltration in the DSS group.
On the contrary, MOLP intervention significantly improved
these DSS-induced histopathological scores. According to
previous studies, the impaired function of the intestinal mucosal
barrier is directly related to the development of UC (25) and was
characterized by epithelial rupture, irregular mucosal and crypt
structure, and reduction of goblet cells. And also neutrophils
are one of the infiltrating cells that cause inflammation in
colitis (26). This is consistent with the findings of Hong et al.
(27), which indicated that a high dose of (MOP) extracted and
purified a peptide from M. oleifera seeds significantly reduced
such mucosal damage (including the greater crypt depth),
decreased in goblet cells and inflammatory cell infiltration,
leading to lower histological scores in DSS-induced UC mice.
Therefore, these results showed that MOLP supplementation
could improve the histopathological changes in DSS-induced
UC.

Moringa oleifera leaves polysaccharide
decreased myeloperoxidase activity in
colonic tissues and serum
lipopolysaccharide level

MPO is a peroxidase that reflects infiltration and
inflammation levels directly (28). LPS is another inflammatory
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FIGURE 4

Effect of MOLP on serum cytokine levels and colon tissues in mice with ulcerative colitis. The concentrations of TNF-α (A), IL-1β (B), IL-10 (C)
and HMGB1 (G) detected by (ELISA) (n = 8). The mRNA expression levels of TNF-α (D), IL-1β (E), IL-10 (F), HMGB1 (H) and PPARγ (I) (n = 5). Data
are presented as mean ± SEM, ∗∗P < 0.01, ∗∗∗P < 0.001, DSS vs. Control; #P < 0.05, ##P < 0.01, ###P < 0.001, DSS + MOLP-L, DSS + MOLP-M
and DSS + MOLP-H vs. DSS.

stimulator that promotes the release of pro-inflammatory
cytokines, inflammatory signaling, and tissue damage in a range
of inflammatory diseases (29). We examined MPO activity
in colon tissues and serum LPS levels in DSS-induced UC
mice. As shown in Table 2, MPO activity and LPS level raised
significantly in the DSS treatment relative to the control group.
Additionally, administration reduced tissue MPO activity and
serum LPS levels in the DSS + MOLP-M and DSS + MOLP-H
groups when compared to the DSS group. This is in line with
the results of Hong et al. (27), which indicated that a high dose
of (MOP) decreased MPO in the serum of DSS-induced UC
mice. These findings suggest that MOLP plays a protective role
against DSS-induced UC by inhibiting MPO activity and serum
LPS levels.

Anti-inflammatory effect of Moringa
oleifera leaves polysaccharide in the
colon tissues

TNF-α is a major factor promoting damage to the intestinal
epithelial barrier, is associated with the development of UC,
and has the potential to stimulate the production of IL-1β

(30, 31). The anti-inflammatory cytokine IL-10 can inhibit
the production of pro-inflammatory cytokines such as TNF-
α and IL-1β (4). In addition, HMGB1 is a key mediator
in the pathogenesis of systemic inflammation in a variety
of inflammatory diseases, with a strong ability to trigger
inflammatory responses (32). In order to determine whether
MOLP intervention might alleviate DSS-induced colonic
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FIGURE 5

Effect of MOLP on colon tissues in mice with ulcerative colitis. Western blot analysis of key signaling proteins in colonic tissue (A), TLR4 (B),
MyD88 (C), NF-κB p65/p-P65 (D) and p-IκBα/IκBα (E). Data are presented as mean ± SEM (n = 3), **P < 0.01, ***P < 0.01, DSS vs. Control;
#P < 0.05, ##P < 0.01, ###P < 0.001, DSS + MOLP-L, DSS + MOLP-M and DSS + MOLP-H vs. DSS.

inflammation by modulating the inflammatory response,
the levels of inflammatory cytokines and their mRNA in
colon tissues were measured. The expression levels of pro-
inflammatory cytokines TNF-α, IL-1β and HMGB1 were up-
regulated after oral administration of DSS compared with the
control group (Figure 4). However, the expression levels of
TNF-α, and IL-1β were dramatically reduced in the colon
tissue of colitis mice after MOLP intervention at all doses
(Figures 4A,B). While, the IL-10 expression level in colon
tissues was up-regulated after the medium and high doses of
MOLP treatment (Figure 4C). Only at the high dose of MOLP
intervention was the level of HMGB1 significantly lower than in
the DSS group (Figure 4G).

Similar trends were shown in terms of mRNA expression
levels of inflammatory cytokines in colon tissues. The
mRNA expression levels of TNF-α, IL-1β and HMGB1 were
significantly up-regulated by DSS challenge. In contrast, the
mRNA expressions levels of TNF-α and IL-1βwere significantly
down-regulated by MOLP administration at the medium and
high dosages (Figures 4D,E). And the level of HMGB1 mRNA
expression in the DSS + MOLP-H group was significantly lower
than that in the DSS group (Figure 4H). However, the IL-10
mRNA expression levels were significantly increased in the
DSS + MOLP-M and DSS + MOLP-H groups (Figure 4F).
Previous studies reported that polysaccharides play important
roles in cytokine homeostasis by regulating inflammatory factor
levels (33, 34).

PPAR-γ is highly expressed in intestinal and colonic
mucosal epithelial cells, as well as macrophages (35). The level
of PPAR-γ mRNA expression in colon tissue was investigated.
As showed in Figure 4I, DSS treatment alone significantly
down-regulated the PPAR-γ mRNA expression level. However,
the DSS-induced change in mice may incrementally revert
to normal level by the high dose of MOLP administration.
Previous studies reported that mRNA PPAR-γ expression were
decreased in active UC compared to the UC in remission (36),
and also its expression were significantly lower in comparison
to healthy controls (37). According to Li et al. (13) MOP
supplementation effectively suppressed serum concentration
levels of TNF-a and IL-1β, and regulated the mRNA expression
level of PPARγ in high-fat diet (HFD)-induced C57BL/6J mice.
Our findings suggested that MOLP supplementation regulated
inflammatory responses in DSS-induced UC by suppressing
anti-inflammatory cascades.

Moringa oleifera leaves polysaccharide
inhibited the TLR4/MyD88/NF-κB
signaling pathway in colonic tissues

NF-κB signaling pathway is important in the development
of UC (38, 39). In comparison to the DSS group, medium
and high doses of MOLP supplementation effectively reduced
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FIGURE 6

Effect of MOLP on the tight junction of mice with ulcerative colitis. Sections of colon tissues were immunostained with DAPI and antibodies and
then observed under 200 × fluorescence microscope. The green fluorescence represents the amount of ZO-1 (A). The red fluorescence
represents the amount of occludin (B). The blue fluorescence is the nucleus stained by DAPI. (C) quantified results from (A), (D) quantified
results from (B). Data are presented as mean ± SEM (n = 3), ∗∗∗P < 0.001, DSS vs. Control; #P < 0.05, ##P < 0.01, ###P < 0.001, DSS + MOLP-M
and DSS + MOLP-H vs. DSS.
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FIGURE 7

Diagram showing the effect of MOLP on DSS-induced UC. MOLP alleviated colonic pathological alterations, decreased goblet cells, crypt
destruction, and infiltration of inflammatory cells caused by DSS (A), and decreased the histological score (B). MOLP repressed the loss of ZO-1
and occludin proteins in mucosal layer. MOLP suppressed TNF-α, IL-1β, and HMGB1 production. MOLP increased the mRNA expression of IL-10
and PPAR-γ, and decreased the activation of MyD88/NF-κB signaling pathway.

the up-regulation of TLR4 and MyD88 expression in colonic
tissues induced by DSS (Figures 5B,C). Oral administration
with DSS resulted in a marked increase in IκBα phosphorylation
(p-IκBα), IκBα is a key inhibitor of NF-κB activation, and
MOLP inhibited p-IκBα (Figure 5E). Furthermore, elevated
phosphorylation of NF-κB p65 (p-NF-κB p65) was observed
in colon tissue after DSS challenge, whereas high-dose MOLP
supplementation significantly blocked DSS-induced p-NF-κB
p65 (Figure 5D). Previous studies found that MOPE reduced the
protein expression of NF-κB p65 and p-IκBα while increasing
the expression of IκBα (23). Therefore, these results suggested
that MOLP may suppress inflammatory responses by inhibiting
TLR4/MyD88/NF-κB signaling pathways (Figure 5A), thereby
reducing DSS-induced UC in mice.

Moringa oleifera leaves polysaccharide
attenuated dextran sodium sulfate
-induced loss to colonic epithelial tight
junction proteins

The intercellular TJ proteins are essential components of the
intestinal mechanical barrier and are responsible for epithelial
permeability, paracellular spreading, and intercellular adhesion
(40, 41). TJs, including ZO-1 and occludin, are essential to
maintain intestinal integrity (42). However, natural extracts
have been shown in clinical studies to improve the expression
of TJ proteins, thereby maintaining the intestinal barrier and
preventing the development of UC (43). Previously, alterations
in the TJ protein of colonic epithelial cells exacerbate colitis

(44). In this study, immunofluorescence staining was used in
the colons of mice to detect the distribution and expression of
the intracellular scaffold protein ZO-1 and the transmembrane
TJ protein occludin to see whether physiological changes in the
barrier were related to changes in TJ protein distribution. As
showed in the Figure 6, the fluorescence intensity of ZO-1 was
significantly attenuated in DSS treated mice, and similar to the
changes in the occludin expression. However, the medium and
high doses of MOLP administration maintained the expression
and distribution of these two proteins. Previous research (27)
found that MOP reduced the levels of occludin and ZO-1
in DSS-induced UC mice. These findings indicated that the
protective roles of MOLP in the intestinal epithelium may be
associated with its ability to improve compromised TJs in DSS-
induced UC.

Taken together, MOLP alleviated colonic pathological
alterations, decreased goblet cells, crypt destruction, and
infiltration of inflammatory cells caused by DSS. MOLP
suppressed the loss of ZO-1 and occludin proteins in mucosal
layer and the production of TNF-α, IL-1β and HMGB1.
Furthermore, MOLP increased the mRNA expression of IL-10
and PPAR-γ, and decreased the activation of TLR4, MyD88,
NF-κB signaling pathway (Figure 7).

Conclusion

Our study confirmed that the polysaccharide obtained from
M. oleifera leaf exhibited prophylactic efficacies on DSS-induced
UC by reducing intestinal damage, suppressing the activation of
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TLR4/MyD88/NF-κB signaling pathway, as well as the release
of cytokines that promote inflammation, whereas maintaining
the goblet cells and expression of TJ proteins. These findings
will make a better understanding of the protective action
of MOLP against UC, thereby providing a rationale for the
development of MOLP.
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Berberine (BBR), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has

a long history of treating dysentery in the clinic. Over the past two decades, the

polytrophic, pharmacological, and biochemical properties of BBR have been

intensively studied. The key functions of BBR, including anti-inflammation,

antibacterial, antioxidant, anti-obesity, and even antitumor, have been

discovered. However, the underlying mechanisms of BBR-mediated

regulation still need to be explored. Given that BBR is also a natural nutrition

supplement, the modulatory effects of BBR on nutritional immune responses

have attracted more attention from investigators. In this mini-review, we

summarized the latest achievements of BBR on inflammation, gut microbes,

macrophage polarization, and immune responses associated with their

possible tools in the pathogenesis and therapy of ulcerative colitis and

cancer in recent 5 years. We also discuss the therapeutic efficacy and anti-

inflammatory actions of BBR to benefit future clinical applications.

KEYWORDS

berberine, ulcerative colitis, inflammation, microbes, cancer
Introduction

In modern medicine, natural products are closely linked to numerous health

complications treatment and great therapeutic approaches. In particular, the functional

metabolites derived from plants are suggested to perform various biological activities

involving anti-obesity, anti-inflammation, antibacterial, anti-fatty liver, and anti-cancer

(1, 2). Alkaloids act as the chemical defense in plants when producing secondary

metabolites with beneficial pharmacological roles and account for 3/5 of plant-derived
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medicals. The bioactive components of alkaloids have been used

for immunomodulatory therapeutic potentials and anti-

inflammation (3). Among them, berberine (BBR) is an

isoquinoline alkaloid purified from Chinese herbs and a

naturally occurring compound extracted from Coptidis

Rhizoma (4). In recent years, a series of actions of BBR-

mediated anti-intestinal diseases, anti-cancer, antioxidative

stress, and anti-inflammatory has been reported in vivo and in

vitro (5–7). Indeed, intestinal disorders and cancer are tightly

associated and always characterized by inflammation, oxidative

stress, and a couple of immune outputs (8). Inflammation

response of the body would benefit the recovery when exposed

to infection or invasion events. In this process, immune cells are

stimulated by BBR to fight the inflammatory responses in these

diseases (9). It has been reported that the potential mechanisms

of the anti-inflammation of alkaloids would be attributed to the

inhibition of several pro-inflammatory enzyme complexes

enrolled in inflammatory signaling processes (10). Moreover,

evidence indicates that BBR could ameliorate intestinal lesions

and tumor development by reducing macrophage and oxidative

stress inflammatory responses (11). The possible underlying

mechanisms, in particular, of signaling pathways, have been

documented (12). It is plausible that at least part of the observed

anti-inflammation roles is due to the activations of classic

inflammatory signaling factors, including adenosine

monophosphate-activated protein kinase (AMPK) and Wnt/b-
catenin (13). Additionally, the extracellular signal-regulated

protein kinase 1/2 (ERK1/2) (14), signal transducer and

activator of transcription 1 (STAT1), protein kinase B (AKT),

nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB), and nitric oxide (NO), prostaglandin E2 (PEG2), along

with chemokines and cytokines (15–18) have also been

illustrated. Again, the modulation of gut microbes and

microphage polarization has previously been registered in

BBR-mediated inflammatory regulation (19). This mini-review

aims to collect updated information on BBR in the fields of

inflammation and immune responses for a better understanding

of the potential mechanisms in the pathogenesis process of

various human and animal ulcerative colitis (UC) and cancer

research. This will encourage researchers to explore further

addressing all aspects of the utilization of BBR for new

treatments and therapeutic strategies.
BBR in ulcerative colitis-the anti-
inflammatory, immunomodulatory
effects and potential mechanisms

Ulcerative colitis (UC) is a chronic inflammatory disease of

the bowel with unclear etiology. It is characterized by mucous

purulent, abdominal pain, and recurrent diarrhea and is a

modern refractory disease with an extremely high risk of

colorectal cancer (CRC) (20). Currently, immunosuppressants,
Frontiers in Immunology 02
93
anti-inflammatory drugs, and biological agents are the main

therapeutic approaches for UC. However, it is still difficult to

cure because none of the approaches can reverse the colon

injury, and a proportion of patients will have recurrent attacks

once ceasing the treatments (21). Emerging evidence suggests

that traditional Chinese medicine has positive clinical outputs

for UC, including reducing recurrent diarrhea, ameliorating

intestinal inflammatory responses, and improving the patient’s

life quality (22, 23). Given that BBR has a long history in Chinese

medicine used as an antibacterial agent to treat dysentery, it is

promising to repurpose BBR for UC and other inflammatory-

associated diseases. Tang and coworkers have recently

demonstrated in a rodent model that oral administration of

BBR effectively alleviates animals’ colitis symptoms when

combined with another Chinese herb Atractylodes

macrocephala Koidz (24). The underlying mechanisms involve

local- and systemic regulations of the immune system, including

the reduced pro-inflammatory cytokines IL-4, IL-6, IL-1b, TNF-
a, and myeloperoxidase (MPO), and IgA, IgG levels. Indeed,

large-scale genome-wide association studies (GWAS) revealed

hundreds of loci associated with UC and implicated genes and

core cytokines pathways underlying inflammatory pathology.

Such as IFN-g, IL-17, and IL-13, etc., by which immune cells

coordinate their functions and intercellular communications

(25). In the dextran sulfate sodium (DSS)-induced colitis mice

model, treatment of BBR attenuated all pathologic alterations,

especially the suppression of the IFN-g signaling pathway. BBR

treatment consistently down-regulated the IFN-g targeted genes

(e.g., IRF8, IRF1, Ifit1 and Ifit3) in UC mice. In addition, BBR

markedly decreased serum pro-inflammatory cytokines/

chemokines IL-17, TNF-a, CXCL1, and CXCL9 levels (26). In

contrast, studies demonstrate that BBR can block the excessive

pro-inflammatory cytokine production in UC rodents via the IL-

6/STAT3/NF-kB signaling pathway (27, 28). Following this

signaling, BBR exerts antisepsis and antioxidative stress

activities by affecting mucosal immunity while improving gut

barrier function (27–29). Moreover, theWnt/b-catenin signaling

is pivotal for intestinal epithelial homeostasis and tissue

regeneration and is dysregulated during inflammatory

responses (30). In line with this, Dong et al. demonstrated that

BBR acts as an effective drug for UC treatment in a Wnt/b-
catenin signaling-dependent manner (31) where BBR

administration maintained intestinal mucosal barrier

homeostasis and modulated the colonic T cell response,

including the transcription and populations of Th17 and

regulatory T cells (Treg).

Notably, in the phase I clinical trial, BBR is shown to lower the

Geboes Score (GS, a histological score as aUC indicator) inUCpatients

from a Chinese cohort (32). Accordingly, it suggests that the GS

lowering, inflammation suppression, and tissue-repairing effects of BBR

in UCmay be mediated via the chemosensory Tuft cells-controlled IL-

25/C2/13 immune pathway in the colon tissues (33). Meanwhile, Li

et al. reported that BBR reduces the colonic infiltration of neutrophils,
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macrophage and dendritic cells, and innate lymphoid cells (ILCs) and

decreases NK cell activation in UC (34). It impedes the colitis from

further advancing via the JAK-STAT, ERK, and AKT signaling in

intestinal stromal cells. Moreover, a protective effect is observed where

BBR preserves the colonic mucosal tight junction and modifies the

Th17/Treg dynamic equilibrium in DSS-induced colitis mice (35). In

addition, the crosstalk of enteric glial-intestinal epithelium-immune

cells has been suggested in the BBR regulation of colitis, where Th17

inhibition is a key component (36, 37). With a similar pathway, in

another intestinal lesion model induced by cecal ligation and puncture,

BBR is demonstrated to exert a protective effect on cecal ligation and

puncture (CLP)-induced intestinal injury by reducing the pro-

inflammatory response (38). The mechanisms of BBR’s mediation

should result from the accumulated proportion of Treg cells and

CTLA-4 linked cell-cell contact pathway. Shaping of intestinal

macrophage function is a key element of infection resistance and

tissue reparation. Therefore, it plays a dominant role in UC

pathogenesis and regulation. In this regard, maintaining macrophage

polarization homeostasis is critical for UC treatment (22). It is worth

mentioning that BBR has been validated to target macrophage

polarization and its downstream regulation in health and

inflammation; therefore could be a potential therapeutic approach for

UC (20, 39, 40).

Microbiology studies in human and animal models have

shown that UC stems from skewed immune responses toward

one’s commensal microflora or microbiota dysbiosis. In contrast,

numerous studies indicate that maintaining gut microbiota

homeostasis or providing beneficial microbes/probiotics can

substantially improve mucosal barrier function and ameliorate

UC (20, 41). Intriguingly, BBR regulates intestinal microbiota,

possibly via boosting Blautia sp., Lactobacillus sp., Bacteroides sp.,

Bifidobacterium sp., and Akkermansia sp. growth while inhibiting

the pathogenic bacteria Enterococci sp. and Escherichia coli in mice

with inflammation (42). It is worth noting that BBR has been

shown to improve gut tight junction (TJ) protein expression and

reduce the Th17/Treg ratio in DSS-induced colitis by promoting

intestinal Bacteroides fragilis and the associated IL-6 inhibition

(35). Again, BBR could modulate intestinal microecology by

boosting specific microflora (e.g., bifidobacteria), and enriching

bacterial fermentation. Therefore, BBR-promoted gut microbiota

balance facilitates its protection of intestinal mucosa and barrier

integrity in UC (33). Because gut microbiota is vulnerable to high-

fat diets, BBR effectively ameliorates the expression of genes

involved in short-chain fatty acids synthesis, improves mucosal

immunity, and enhances the host inflammatory response against

gut lesions induced by the high-fat challenge (43). In contrast,

BBR-mediated actions are sensitized to the gut microbiome. For

example, BBR weakens the generation of trimethylamine by

microbiota to lessen choline-induced atherosclerosis in mice

(44). With the enrichment of quote-generating gut microbiome,

BBR attenuates ovariectomy-triggered anxiety-like illness. In a

human study, BBR exhibits an antidiabetic function in type 2

diabetes by reducing secondary bile acid by repressing
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Ruminococcus bromii growth (45). These studies provide clues

of BBR-derived regulations via gut microbiome in inflammatory-

associated diseases. However, the deep mechanism of BBR on the

interaction between gut microbiota and colitis still needs to

be explored.
The anti-tumor activity of BBR and its
potential roles in cancer therapy

The antitumor actions of BBR mainly include inducing tumor

cell apoptosis, suppressing cancer cell proliferation via cell cycle

arrest, autophagy, scavenging free radicals, and inhibiting the

metastasis of tumor cells without causing overt side effects on

normal cells (46, 47). In comparison, a number of pathways of

these actions have been studied such as inhibition of the PI3K/

AKT/mTOR, Wnt/b-catenin, MAPK/ERK, EGF receptor, Her2/

neu, and the VEGF receptor signaling along with induction of

Cip1/p21, Rb expression, p53, and Kip1/p27. These are associated

with BBR’s anti-inflammation and antioxidant properties (46, 48).

It is well-known that chronic inflammation is one of the main

factors to cause human cancers (49). And cancer-linked

inflammation indicates the seventh hallmark of cancer

development and progress (49). In this process, tumor-

infiltrating immune cells produce inflammatory mediators

involving cytokines, reactive oxygen species (ROS), and free

radicals, resulting in a pre-malignant state (50). Subsequently,

the released pro-inflammatory cytokines and growth factors

stimulate signaling pathways like PI3K/AKT/mTOR, MAPK/

ERK, STAT3, and NF-kB. By inhibiting these cascades,

medicinal plants or their bioactive extracts, including BBR, can

have a preventative effect on tumor onsets (51).

Cancer development is observed when AKT/PI3K/mTOR

pathway is activated. At the same time, BBR performs a vital

function in tumor management by strongly suppressing the

PI3K/AKT/mTOR signaling (46). In a study of gastric cancer,

BBR is validated to increase cellular apoptosis, blocks PI3K/

AKT/mTOR, and causes the dephosphorylation of the AKT and

p38 pathways (52). Inflammation-linked cancer could produce

several chemokines and cytokines via NF-kB, which directly

binds to the specific gene promoters (53). BBR administration

efficiently decreases the NF-kB signaling accompanied by pro-

inflammatory cytokines IL-1, IL-6, and TNF-a productions (54).

It has been noted that BBR drastically suppresses lung cancer cell

proliferation via NF-kB/COX-2 (55). Furthermore, BBR reduces

the activation of the NF-kB pathway via enhancing IkBa and

inhibits the elevated phosphorylation of c-Fos/Jun in the

scratched cancer cells MDA-MB-231 (56). Again, the pro-

inflammatory cytokines, interleukins and TNF-a are all

suppressed in response to BBR treatment in TNBC cells, this

would further inhibit the tumor metastasis (57). Moreover, BBR

blunts cancer metastasis of melanoma cells by the reduction of

ERK signaling and the activation of the AMPK pathway (58). In
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agreement, BBR-activated AMPK is a dominant reason to

inhibit colorectal carcinogenesis, which could suppress the

growth of a colon xenograft tumor when AMPK is activated

via phosphating AMPK signaling at Thr172 (59). Interestingly,

p53 and p38 AMPK are also reported functioning in antitumor

processes with BBR treatment (60, 61). In contrast, when BBR

inhibits the MAPK/mTOR/p70-S6K pathway, gastric cancer cell

growth is markedly suppressed due to cytostatic autophagy (62).

It is noteworthy that Wnt/b-catenin signaling activation is

strongly associated with CRC initiation (63). BBR presents a

strong cytostatic efficiency against human CRC via blocking the

Wnt/b-catenin pathway to stimulate the caspase‐dependent

apoptosis and diminish cancer cell survival (64). This further

inhibits the metastasis of CRC because of the cell cycle arrest at

G1/S and G2/M phases, DNA damage, and topoisomerase

poisoning in colon tumor cells (65).

It suggests that macrophages play complicated roles in cancer

depending on cytokines derived from the microenvironment (20).

Notably, it has been reported that BBR manipulates the

macrophage polarization, reducing the IL-10 and TGF-b
pathways in a mouse melanoma model to reinstall their anti-

tumor immune responses (66). By increasing the MHC-II and

CD40 expression on macrophages, BBR also activates the

cytotoxic T lymphocytes (CTL) activity and stimulates the

CD4+ T-cells derived IFN-g production (66). Furthermore, BBR

performs anti-tumor roles in diffuse large B cell lymphoma

(DLBCL) related to rituximab-based immunochemotherapy and

CD47-targeted immunotherapy (67). BBA exerts a remarkable

synergistic action to enhance the CD47 inhibition resultant-tumor
Frontiers in Immunology 04
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repression by c-myc and promote the phagocytosis of

macrophages (67). Finally, BBR could prevent lung cancer by

modulating the peptidylarginine deiminase 4 (PADI4)-related

macrophage inflammatory responses by up-regulating CD86

and decreasing CD163 and CD206 in the PADI4 overexpressed

macrophages (68).

Gut bacteria are tightly linked to cancer oncogenesis and

progression, while BBR has exhibited therapeutic potential in

bacteria-induced cancer (69). BBR maintains Fusobacterium

nucleatum-induced intracellular signaling pathways and

reduces the secretion of mucosal immune factors, including

IL-21, IL-22, IL-31, and CD40 (70). Therefore, BBR facilitates

intestinal microbiota homeostasis by increasing Tenericutes

and Verrucomicrobia populations and reduces F. nucleatum

colonization. BBR modulates the intestinal microbiome by

regulating sodium butyrate production and inhibits colon

cancer (71). BBR boosts the a and b diversity of microbiota,

and the abundance of Bacteroidetes and Proteobacteria,

whereas alters the biomarkers and metabolic outputs of the

intestinal microbe and decreases the abundance of

Ruminococcus (71). Given that immunotherapy is a critical

part of cancer treatment, BBR has been validated to function

on the immune system, showing great potential in cancer

immunotherapy (72). For instance, BBR serves as a dopamine

D1- and D2-like receptor antagonist to diminish IL-6, IL-1b,
IFN-g, and TNF-a production in the LPS-stimulated

lymphocytes (73). It is also addressed that BBR boosts

autoimmune neuropathy via decreasing IL-1 and TNF-a
concentrations together with suppressing CD4+ T cell
FIGURE 1

Schematic illustration depicting that berberine actions on ulcerative colitis and cancer therapy via multiple mechanisms. Berberine is an
isoquinoline alkaloid purified from Chinese herbs and a naturally occurring compound extracted from Coptidis Rhizoma. There are 5 potential
functions of BBR on the treatment of ulcerative colitis and cancer, including: inflammatory signaling pathways (NF-kB, STAT3, PI3K, Wnt/b-
catenin, AMPK, mTOR); gut microbes (F. nucleatum, Tenericutes, Verrucomicrobia, Ruminococcus, Lactobacillus, Blautia, Bacteroides,
Bifidobacterium, Clostridiales); immune responses (IL-6, IL-1b, IL-17, TNF-a, IFN-g, Th17, CTLA-4, CD98, CD4+, CD40, CD47); macrophage
polarization; Oxidative Stress (ROS, free radicals, LOOH, GPX, SOD, CAT, GSH, NRF2).
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proliferation (74). Again, IFN-g-induced indoleamine-2,3-

dioxygenase 1 (IDO1) expression is reduced when BBR

causes the inhibition of STAT1 phosphorylation (75).

Moreover, BBR inhibits the PD-1/PD-L1 pathway by

inactivating CSN5 deubiquitination in non-small-cell lung

carcinoma (NSCLC) and improves anti-cancer T-cell

immunity (9). It suggests a rationale for the therapeutic

potential of BBR, which can be used as an efficient

antagonist of PD-L1 in cancer immunotherapy.
Conclusions and perspectives

In the past several decades, we have witnessed a tremendous

advance in exploring the potential mechanisms behind the

pathogenesis of ulcerative colitis and cancer therapy.

Nevertheless, the therapeutic approaches are still waiting for the

findings of more reliably targetable players and available

administrators. BBR is a multi-functional herbal medicine. The

characteristics of BBR offer it a pivotal candidate for

inflammation-associated UC and cancer treatment and attract

more attention to study its targets and modes. In this mini-review,

we summarized the latest advances in the main actions of BBR on

inflammation and immune responses in UC and cancer research.

As shown in the schematic diagram (Figure 1), inflammatory and

immune factors include the signaling pathways of MAPK, NF-kB,
Akt, AMPK, and Wnt/b-catenin interleukins, TNF-a, CD4+,
CD40, and gut microbes, as well as macrophage polarization,

are addressed. Although BBR exerts the marked repression of

various targets as aforementioned in basic research, the preventive

and therapeutic use of BBR against UC and cancer must be

explored and validated in clinical studies.
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Desmosterol: A natural product
derived from macroalgae
modulates inflammatory
response and oxidative stress
pathways in intestinal
epithelial cells

Huan Qu1, Qiufang Zong1, Ping Hu1, Zhaojian Li1,
Haifei Wang1,2, Shenglong Wu1,2, Hao-Yu Liu1,2*,
Wenbin Bao1,2* and Demin Cai1,2*

1College of Animal Science and Technology, Yangzhou University, Yangzhou, China, 2Joint
International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University,
Yangzhou, Jiangsu, China
The serum level of cholesterol and its biosynthetic intermediates are critical

indicators to access metabolism-related disorders in humans and animals.

However, the molecular actions of these intermediates on gene functions and

regulation remained elusive. Here, we show that desmosterol (DES) is the most

abundant intermediate involved in cholesterol biosynthesis and is highly

enriched in red/brown algae. It exerts a pivotal role in modulating core genes

involved in oxidative stress and inflammatory response processes in the ileum

epithelial cells (IPI-2I). We observed that the DES extracted from red algae did

not affect IPI-2I cell growth or survival. A transcriptomic measurement revealed

that the genes enrolled in the oxidative process and cholesterol homeostasis

pathway were significantly down-regulated by DES treatment. Consistent with

this notion, cellular reactive oxygen species (ROS) levels were markedly

decreased in response to DES treatment. In contrast, key inflammatory genes

including IL-6, TNF-a, and IFN-g were remarkably upregulated in the RNA-seq

analysis, as further confirmed by qRT-PCR. Given that DES is a specific agonist

of nuclear receptor RORg, we also found that DES caused the elevated

expression of RORg at mRNA and protein levels, suggesting it is a potential

mediator under DES administration. Together, these results underscore the

vital physiological actions of DES in inflammatory and oxidative processes

possibly via RORg, and may be helpful in anti-oxidation treatment and

immunotherapy in the future.
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1 Introduction

Red algae are ubiquitous marine macroalgae that have

developed bioactive plasticity and compound diversity. It is

known that desmosterol (DES) is a dominating sterol in red

macroalgae with 87-93% of total sterol contents (187-337 mg/g
dry weight) (1). Sterols are fundamental components of cell

membranes’ phospholipid bilayer that include molecules (such as

cholesterol and DES) and are responsible for structural and

functional roles. DES, a biosynthetic cholesterol intermediate of

the Bloch pathway, plays essential roles in some specific

circumstances. DES may contribute to cell membrane fluidity and

promote sperm maturation. For instance, DES accounts for 25% of

sperm sterol in males (2), and the proportion reaches 60% in several

animals (3). Furthermore, DES maintains cell proliferation and

survival with or without cholesterol supplementation in Dhcr24-

defective J774 cells (4). Interestingly, DES acts as a precursor of

steroidogenesis even better than cholesterol (4). Additionally,

biosynthetic DES is an emergent regulator of macrophages during

the process of lipid overload (5). Although a number of biological

functions have been reported, the molecular actions of DES on gene

functions and its direct regulation have remained elusive.

Cholesterol deposition or prolongation facilitates a progressive

inflammatory response and immune response associated with disease

development (6). Specifically, the innate immune system amplifies

the inflammatory signal by modulating cholesterol homeostasis (6).

Notably, the balance of cholesterol metabolism protects cells from

oxidative stress by reinforcing cell membranes to limit oxygen

availability (7). Interleukin-17 (IL-17)-producing T helper 17

(Th17) cells fulfill an essential role in immune induction and

mediation of tissue-resident homeostasis (8). In the intestine, Th17

cells contribute to maintaining the integrity of the intestinal barrier

(9) and are implicated in oxidative stress generated by imbalanced

oxidative phosphorylation (OXPHOS) (8). As the last intermediate in

cholesterol biosynthesis, DES may have alternative effects to

cholesterol due to their similar molecular structure. Accordingly,

besides involving cholesterol-mediated oxidative stress and

inflammatory responses, DES also functions as an endogenous

ligand for Th17-targeted key transcription factor RORgt (10).

Therefore, the effects of DES on intestinal cell inflammation and

oxidative stress pathways deserve further attention.

To explore the molecular regulation actions in the gut, we

investigated the potential of DES in core genes involved in the

inflammatory response and oxidative stress in the porcine ileum

epithelial cells (IPI-2I). We isolated and extracted DES from red

macroalgae to generate the natural compounds for cell treatment.

The transcriptomic analysis and molecular biological validations

were used to evaluate the transcriptional modulation of DES in

IPI-2I. Pigs are biomedical models for humans owing to the

similarities in physiology and metabolism (11). Thus, our study

would provide new insights for further understanding DES

physiological functions to benefit human intestinal health

through anti-oxidation or immunotherapy.
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2 Materials and methods

2.1 Samples, chemicals, and standards

For sample preparation, the amounts of crude powders (500

g) of macroalgae were sieved and placed into a conical flask, and

95% ethanol was added. Then, the mixed solution was extracted

by ultrasound at 60°C for 1 h. Continuous extraction and

concentration until ethanol is wholly volatilized. Next, the

concentrated extract was successively extracted with an equal

volume of petroleum ether, dichloromethane, ethyl acetate, and

n-butanol. Further, the organic phase of ethyl acetate was

collected and concentrated for DES extraction.

All solvents and reagents were analytical grade or better: 95%

ethanol, petroleum ether, dichloromethane, ethyl acetate, n-

butanol, methanol, formic acid, acetonitrile, and DES standards

(GlpBio, Shanghai, China). The stock solution concentration was

calculated considering the purity of commercial standards. Work

standard solutions were prepared from the stock solution and

diluted with methanol before analysis. Stock solutions containing

1 mL of ethyl acetate were prepared in HPLC-grade methanol.

Linear calibration curves (y=189476x+24442) were obtained in

the tested concentration ranges for the samples.
2.2 LC-MS evaluation of DES content in
ethyl acetate extraction solution

DES extractions from macroalgae were determined by a

triple quadrupole mass spectrometer LCMS-8050 (Shimadzu,

Kyoto, Japan). HSS T3 analytical columns (2.1 mm × 50 mm, 1.8

µm) were used by chromatographic separation, along with 0.4

mL/min flow rate at 40°C. Formic acid in water (0.1%, v/v,

solvent A) and acetonitrile (solvent B) were performed as the

mobile phase. Solvent A gradient of 0.5 min 25% solvent B, 2

min 25–95% solvent B, 1 min 95% solvent B, 0.1 min 95–25%

solvent B, and 2.4 min 25% solvent B was used. The optimized

mass parameters: nebulizing gas flow (3 L/min), drying gas flow

(15 L/min), interface voltage (3.5 kV), collision-induced

dissociation argon gas pressure (270 kPa), desolvation line

temperature (250°C), and heat block temperature (400°C). The

mass transition for DES was set as m/z 383.25 > 113.20 (-).
2.3 Cell culture and cell
counting experiment

IPI-2I is obtained from the European Collection of

Authenticated Cell Cultures (ECACC). IPI-2I cells were

maintained in regular RPMI-1640 medium (Hyclone, UT,

USA) supplemented with 10% FBS (Gbico, NY, USA) and 100

mg/mL penicillin-streptomycin (Solarbio, Beijing, China) at

37°C in a 5% CO2 humidified atmosphere.
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IPI-2I cells were seeded in the 12-well culture plates at a

density of 1.5 × 105 cells/well for 12 h and divided into the

vehicle group and DES group. The concentration of 5 mM/10

mMDES or DMSO was treated in the indicated wells for another

72 h. The viable cell numbers were counted at 0, 24, 48, and 72 h

with a hemocytometer chamber under the microscope.
2.4 Cell counting kit-8 assay

To further assess cell viability, cells were seeded in 96-well

culture plates at approximately 5 × 103 cells/well in 100 mL of the
medium. After 3 days of indicated treatment, 10 mL CCK-8

solution (Dojindo Molecular Technologies Inc., Kumamoto,

Japan) and 90 mL Opti-MEM (Gbico, NY, USA) were added

to each well with incubation at 37°C for 3 h. Then, a multimode

microplate reader determined the absorbance at 450 nm

(Spark™ 10M, Tecan GmbH, Austria).
2.5 Real-time quantitative PCR

Total RNA extracted from IPI-2I cells using TRIzol Reagent

(Takara Biotech, Dalian, China) was reverse-transcribed into cDNA

using HiScript® II Q Select R.T. SuperMix (Vazyme, Nanjing,

China) according to the manufacturer’s instructions and previous
Frontiers in Immunology 03
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report (12, 13). qRT-PCR analysis was performed by an ABI

StepOne Plus Real-Time PCR System (Applied Biosystems, CA,

USA) using AceQ® qPCR SYBR Green Master Mix (Vazyme,

Nanjing, China). The sequences of primers are exhibited in Table 1.

The results of relative gene expression were normalized to GAPDH

and were calculated using the 2−DDCT method.

2.6 RNA-seq analysis

Total RNA was extracted from the IPI-2I cells in the vehicle

and DES groups. The concentration of RNA was measured with

a NanoDrop 2000 spectrophotometer (Thermofisher Scientific,

CA, USA), and its quality was evaluated with an Agilent

Bioanalyzer 2100 system (Agilent Technologies, CA, USA).

The RNA‐seq libraries were constructed using Illumina Tru-

Seq RNA Sample Prep Kit (Illumina, CA, USA). The libraries

were deeply sequenced using an Illumina HiSeq 2000 sequencer

at BGI Tech (Wuhan, China), according to the manufacturer’s

instructions. Clean reads with higher quality were aligned to

Sscrofa11.1 using TopHat2. For subsequent analysis, the

cufflinks software was performed to obtain the quantitative

fragments per kilobase of exon model per million mapped

fragments (FPKM) values. DESeq 2 software was utilized to

perform differential expression of genes between the DES and

vehicle groups. The differentially expressed threshold for genes

was set as |Log2(fold change) | > 1 and adjusted P < 0.05.
TABLE 1 Real-time PCR primer sequences.

Name Primer sequences (5’-3’) Products Length(bp)

IL-1b
F: AAGAAAGTGCGGCGGAAAGTA
R: CCACAGAAGTCCCATCCTTAC

177

IL-6
F: ATCTGGGTTCAATCAGGAGACCT
R: ATTTGTGGTGGGGTTAGGGG

208

TNF-a
F: CCTACTGCACTTCGAGGTTATC
R: GCATACCCACTCTGCCATT

158

IFN-g
F: CAGCTTTGCGTGACTTTGTG
R: GATGAGTTCACTGATGGCTTT

381

CAT
F: GCTGGTTAATGCGAGTGGAGAGG
R: GGGAAAGTCGTGCTGCGTCTTC

101

SQLE
F: ATGTGGACCTTTCTCGGCATTGC
R: GGTAGCGACAGCGGTAGGACAG

145

LRP1
F: TCTACCACCAGCGGCGTCAG
R: CAGCAGGCAGATGTCAGAGCAG

95

STAT3
F: TGGAGAAGGACATCAGCGGTAAGAC
R: AGGTAGACCAGCGGAGACACAAG

148

NOD1
F: GACAACTTGCTGCACAACGACTAC
R: ACGAAGAACTCCGACACCTCCTC

137

RORC
F: CAATGGAAGTGGTGCTGGTCAGG
R: GGGAGCGGGAGAAGTCAAAGATG

150

GAPDH
F: ACATCATCCCTGCTTCTACTGG
R: CTCGGACGCCTGCTTCAC

187
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2.7 Kyoto encyclopedia of genes and
genomes and gene ontology analysis

Gene Set Enrichment Analysis (GSEA 4.1.0) software was

used to identify GO terms enriched in differentially expressed

genes (DEGs). Furthermore, statistically enriched biological

processes or pathways of DEGs were ranked and classified by

the Metascape database (http://metascape.org/) for GO and

KEGG pathways. KEGG pathway plot, Volcano plot, and

Venn diagram were plotted by an online platform for data

analysis and visualization (http://www.bioinformatics.com.cn).
2.8 Western blot assay

The cells were seeded in 6-well culture plates and treated as

described above (vehicle and DES groups). After washing thrice

with cold PBS, cells were lysed on ice with 300 mL RIPA buffer

(Beyotime, Shanghai, China) containing protease inhibitors.

Cellular proteins were obtained by centrifugation at 12000 × g for

10 min at 4°C and determined using the BCA Protein Assay Kit

(CWBiotech, Beijing, China). Proteins were separated in 8-10%

SDS-PAGE gels and transferred onto PVDFmembranes (Millipore,

MA, USA). The membranes were blocked with 5% skimming milk

and incubated with RORg primary antibody (Invitrogen, MA, USA,

14-6988-82, 1:1000) and GAPDH primary antibody (Proteintech

Ltd, Wuhan, China, 10494-1-AP, 1:1000) overnight at 4°C. Then

the membranes were incubated with HRP-conjugated secondary

antibodies. Finally, the membranes were visualized with an

Enhanced ECL Chemiluminescent Detection kit (Vazyme,

Nanjing, China) using the automatic chemiluminescence imaging

analysis system (Tanon, Shanghai, China). The relative integrated

density was normalized against GAPDH expression. Western blot

bands were quantified using the Image J software.
2.9 ELISA detection

The concentrations of pro-inflammatory cytokines (IL-1b, IL-6,
TNF-a, and IFN-g) in the cell supernatant were determined using

porcine ELISA kits (Solarbio, Beijing, China) according to the

manufacturer’s instructions.
2.10 Reactive oxygen
species determination

Intracellular ROS abundance was determined by the ROS assay

kit (Solarbio, Beijing, China). After the DES treatment, the cells

were incubated with DCFH-DA probes at 37°C for 30 min,

according to the manufacturer’s instructions. Thereafter, the

collected cells were measured using a microplate reader (SparkTM
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10M, Tecan GmbH, Austria). The relative fluorescence intensity

(RFI) was measured at 488/525 nm.
2.11 Statistical analysis

Statistical analysis was performed with GraphPad Prism 8.0

software by Student’s t-test to compare the means, and data were

shown as mean ± SD. The differences were considered significant

at P < 0.05. All figures were displayed with GraphPad Prism 8.0

software. All data were repeated at least 3 times.
3 Results

3.1 Linear calibration curves construction
and contents detection

In this study, LC-MS analysis and MRM workflow were

performed to quantify the contents of DES extractions

(Figures 1A, B). An internal standard calibration curve was

constructed with standard solutions of DES ranging from 0.025

to 0.25 mg/mL. As shown in Figures 1C, D, the linear regression

equation y=189476x+24442 was used to determine the content of

DES in the pretreatment sample as 125 mg/mL. These results

provide the processes of DES extraction and content measurement.
3.2 DES does not affect cell growth and
survival in IPI-2I cells

To investigate the protective function of DES in intestinal

epithelial cells, cell proliferation assay was performed in IPI-2I

and IPEC-J2 cells with different concentrations of DES (0, 2.5, 5,

and 10 mM). The result of cell viability showed that DES treatment

had no effects on cell proliferation in IPI-2I at the indicated time (0,

24, 48, and 72 h), compared to that in the vehicle (Figure 1E).

Consistently, DES also had no effects on the cell counting analysis

ranging from 0 to 72 h (Figure 1F). Similarly, the effects of DES on

IPI-2I and IPEC-J2 were further evidenced by the inconspicuous

changes in cell morphology and cell number (Supplementary

Figures 1A, B). These results demonstrated that DES does

maintain the physiology of the intestinal epithelial cells.
3.3 DES drives inflammatory response
and alleviates oxidative stress

To identify the key transcriptional pathway regulated by DES,

transcriptome analysis was performed using the IPI-2I cells treated

with or without DES (5 mM/10 mM). In total, we identified 441

DEGs (|Log2(fold change) |> 1, P < 0.05) between DES (10 mM) and

vehicle groups, comprising 224 upregulated and 217 downregulated
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genes (Figure 2A, Table S1). Further function annotations of

transcripts are shown in Figures 2B, C and Table S2. The GO

and KEGG pathway enrichment analysis of DEGs revealed that

genes were most enriched in the inflammatory response and

OXPHOS pathways. Further analysis by GSEA also demonstrated

that the signatures involving OXPHOS, ROS, and cholesterol

homeostasis pathways were strongly downregulated by DES

(Figure 2D, Table S3). In association with the GO and KEGG

pathway enrichment, the pathway-focused genes subset indicated
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that a vast majority of the OXPHOS, inflammatory response, and

cholesterol homeostasis pathways were significantly altered

(Figures 2E–L, Table S4). It indicated their roles in response to

the pro-inflammatory and anti-oxidative stress effects of DES.

Intriguingly, the DES (5 mM) treatment showed a similar

alteration of these pathways (Supplementary Figures 2A–E,

Tables S5–8). Collectively, these findings indicated that

inflammatory response and oxidative stress regulated by DES

treatment might be the predominant processes in IPI-2I cells.
A

B D

E F

C

FIGURE 1

DES does not affect cell growth and survival in IPI-2I cells. (A) Overview of sample preparation and detection workflow. (B) DES was determined
by LC-MS and quantified with multiple reaction monitoring (MRM) mode. MRM chromatograms of DES standards in 250 mg/mL (C) and 25 mg/
mL (D) determined by LC-MS. (E) DES (5 mM/10 mM) treatment in IPI-2I cells for 0, 24, 48, and 72 h by CCK-8 detection. (F) Cell counting
analysis at the indicated time (0, 24, 48, and 72 h) with DES (5 mM/10 mM) treatments in IPI-2I. The data are shown as the means ± SD, n ≥ 3 per
group. The experiments were repeated 3 times. ns, represents differences not significant, using Student’s t-test analysis.
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FIGURE 2

DES drives inflammatory response and alleviates oxidative stress pathways in IPI-2I cells. (A) Volcano plot visualization of the differential gene
expression profiles between the DES (10 mM) and vehicle group by transcriptome analysis. (B) Genes expression involved in the inflammatory
response pathway were among the most enriched pathways analyzed by GO. (C) DEGs involved in the OXPHOS pathway were the most
abundant downregulated enrichments analyzed by the KEGG. (D) The GSEA depicting the enrichment of DEGs downregulated in the cholesterol
homeostasis, OXPHOS, and ROS pathways from DES (10 mM) versus vehicle in IPI-2I. FDR, false-discovery rate. (E–H) Heatmaps of mRNA
expression (RNA-seq, Log2 transformed) changes of the aforementioned (B–D) pathways. (I–L) Volcano plot visualization of DEGs in the
aforementioned (B–D) pathways from DES (10 mM) versus vehicle in IPI-2I.
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3.4 RORg acts as a key factor to regulate
inflammatory response and ROS

Having shown the potential pathway enrichment of DES in the

IPI-2I cells, we further explored which DEGs exert critical roles in

the pathways mentioned above. Accordingly, 23 upregulated DEGs

in the inflammatory response pathway were identified with DES (5

mM/10 mM) supplementation in the Venn diagram (Figure 3A).

Moreover, a critical anti-oxidative stress gene GPX4 involved in

both OXPHOS and ROS pathways was highly enriched withDES (5

mM/10 mM) addition (Figure 3B). To further validate the expression

pattern of DEGs, 9 genes (LRP1, STAT3, NOD1, IL-6, TNF-a, IFN-
g, IL-1b, CAT, SQLE) were quantified by qRT-PCR (Figure 3C).

Similarly, the expression patterns of detected genes showed a high

concordance with differential analysis results of RNA-seq. In line

with the mRNA expression, pro-inflammatory cytokines (IL-6,

TNF-a, and IFN-g) in the supernatant were also significantly

elevated by the DES treatment (Figure 3D, P < 0.05). In contrast,

ROS abundance was significantly reduced by DES (10 mM)

(Figure 3E). Notably, nuclear receptor RORg is a promising

therapeutic target of the inflammatory response and has a

mechanistic link with oxidative stress. We found that the mRNA

(Figure 3F) and protein expressions (Figures 3G, H) of RORg were
upregulated by DES. Interestingly, STRING-ELIXIR analysis

demonstrated that the putative transcriptional activators STAT3,

IL-6, and GPX4 interacted with RORg (Figure 3I, Table S9). Taken
together, these results suggest that DES promotes the RORg pivotal
regulation associated with genes involved in the inflammatory

response and oxidative stress.
4 Discussion

In recent years, increasing attention has been devoted to the

influences of inflammation and immune regulation by cholesterol

metabolism. Three essential possibilities have been proposed to

explain the cholesterol potential roles: (1) as an important precursor

to steroid hormones that regulate immune response (14); (2) as an

endogenous intermediate in the bile acids conversion to activate

innate immune signaling (15); (3) as metabolites in bile acids that

regulate their derivatives (isoallolithocholic acid) on differentiation

of anti-inflammatory regulatory T cells (Treg) (16). As described by

Hu et al. (10) and Santori et al. (17), cholesterol precursor (DES) has

been proven to bind to RORg and directly regulate its

immunoactivity in Th17 cells. In the present study, we analyzed

the main regulatory effects of DES in porcine intestinal epithelial

cells, involving cholesterol homeostasis, RORg expression,

OXPHOS, ROS, and inflammatory response pathways. A graphic

illustration of the DES-mediated transcriptional regulation of DES

in pro-inflammatory and oxidative stress is the process shown in

Figure 4. RORg, an orphan nuclear receptor, can directly bind to

intermediates of cholesterol biosynthesis or interact with SREBP2 to
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facilitate cholesterol synthesis (18, 19). Meanwhile, as a nuclear

hormone receptor, the activity of RORg is also influenced and

tightly regulated by endogenous ligands (20). Here we show that

DES administration significantly increases RORg expression in IPI-

2I cells. Upregulated expression of RORg further causes the

activation of endogenous cholesterol synthesis. Indeed, increased

cholesterol contents lead to the inhibition of OXPHOS pathways.

Moreover, RORg expression improves pro-inflammatory cytokine

expression and attenuates ROS abundance by interacting with anti-

oxidative genes. Therefore, a logical hypothesis will be that by DES

co-option effectively enforce their immunity-activation response

and anti-oxidative stress program with activated RORg in IPI-

2I cells.

The role of cytokines has been implicated in both maintaining

homeostasis and inflammatory intestinal disorders (21). Among

them, pro-inflammatory cytokines as classical regulators that

modulate inflammatory responses and facilitate intestinal

homeostasis (22). In the present study, we found that cell

supernatant concentration of IL-6, TNF-a, and IFN-g was

increased by DES treatment. Notably, apart from producing the

classical cytokines in response to inflammation, DES also mediates

inflammatory response by activating some non-typical genes (such

as STAT3, NOD1, and LRP1) expression. Elevated IL-6 levels are

observed in inflammatory processes, stimulating the JAK/STAT3

signaling hyperactivation and inducing immunosuppression (23).

Furthermore, the NOD1/NF-kB signaling pathway is activated by

LPS to produce the pro-inflammatory cytokines, resulting in

inflammation (24). LRP1 can reduce oxidative stress-induced

apoptosis to alleviate pathological damage (25). We observed that

these factors involved in the inflammatory response pathway are

upregulated following DES treatment. It may be a protective

response to exogenous st imuli . Indeed, CYP27A1-

27hydroxycholesterol-modulated reduction of cholesterol density

inhibits the activation of IL6-JAK-STAT signaling pathway (26).

Our results further provide evidence that the genes enriched in the

inflammatory response are related to oxidative stress and

cholesterol homeostasis pathways in the STRING-ELIXIR

analysis. Increased expression of RORg may result from Th17 cell

differentiation, which enhances defensive inflammation response.

The different cytokines facilitate activated T-cell differentiation into

various lineages of effectors (10). In agreement with this notion,

Tregs are also crucial for immune tolerance and homeostasis (27).

There is evidence that the depletion of Treg can provoke and

enhance immune response (27). However, other regulation

processes could be beyond the pathways mentioned above, which

is a limitation and warrants further investigation.

The influences of marine algae extract, such as amino acids,

fatty acids, polyphenolic compounds, and vitamins, on

inflammation and ROS have already been reported in different

models (28–30). We found that DES, a red algae extract, can also

function as a pro-inflammatory and anti-oxidant scavenger. This

versatility and capability to act directly or indirectly to improve

immunity make natural DES extract highly appealing for
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FIGURE 3

RORg acts as a potential factor to regulate inflammatory response and oxidative stress pathways. (A) Venn diagram of the genes with
significantly differential expression (Log2 fold change > 0.5) shared by DES (5 mM) versus vehicle and DES (10 mM) versus vehicle in inflammatory
response pathway. (B) Venn diagram of the genes with significantly differential expression (Log2 fold change < -0.5) shared by DES (5 mM) versus
vehicle and DES (10 mM) versus vehicle in ROS and OXPHOS pathways. (C) A heatmap shows fold change (in Log2) of 9 genes determined by
qRT-PCR analysis in IPI-2I treated with DES (10 mM) for 72 h (D) Protein levels of IL-6, TNF-a, IFN-g, and IL-1b in the cell supernatant. (E)
Measurement of ROS (DCFH-DA) fluorescence abundances with DES (10 mM) treatment. (F) RNA-seq (FPKM value) and qRT-PCR analysis of
RORC gene expression by DES (5 mM/10 mM) treatment. (G) Western blot analysis of RORg protein expression in the DES (10 mM) group. (H) The
relative protein expression of RORg was normalized to the GAPDH. (I) The interactions among inflammatory response, ROS, and cholesterol
homeostasis pathway key proteins involved in RORg transcriptional regulation were predicted by STRING-ELIXIR analysis. The data are shown as
the means ± SD, n ≥ 3 per group. The experiments were repeated 3 times. *P < 0.05, **P < 0.01, using Student’s t-test analysis.
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nutraceutical development. As safe and healthy products, DES

can enhance disease resistance and has excellent application

prospects for humans and animals. Next, we would focus on

toxicity evaluation, and safety validation of DES extract in

animals to refine the overall exploration of its function. It is

noteworthy that we also have provided a reliable extraction

method for both marine algae and other sterols.

Collectively, supplementation of the DES provides a set of

negative feedback signals leading to changes in cholesterol

metabolism and then action on the inflammatory processes,

immune response, and oxidative stress. DES-triggered biological

events are probably via the activation of RORg-mediated

transcription. Although primarily descriptive, we provide

evidence that DES is a natural candidate for nutraceutical and

health product development.
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FIGURE 4

Schematic illustration of the DES-mediated transcriptional regulation in cholesterol biosynthesis, pro-inflammatory and oxidative stress. DES
causes the highly expressed RORg in the IPI-2I and facilitates cholesterol production. The increased cholesterol inhibits the endogenous
cholesterol de novo synthesis in a negative feedback loop. Again, DES exerts anti- oxidative effects by downregulating oxidative stress-
regulated gene expression (GLRX, PRDX4, ATOX1, GLRX2, etc.). Moreover, DES also upregulated the expression of inflammation-related genes
(IL-6, TNF-a, STAT3, LRP1, etc.) to activate the immune response.
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Three-phase extraction of
polysaccharide from
Stropharia rugosoannulata:
Process optimization,
structural characterization
and bioactivities

Xinxin Li1,2,3†, Zhiqiang Zhang2†, Li Wang1*, Haoqiang Zhao1,
Yahui Jia1, Xia Ma3*, Jinzhan Li4, Yi Wang5 and Bingji Ma1*

1Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou, China,
2School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China, 3College of
Animal medcine, Henan University of Animal husbandry and Economy, Zhengzhou, China, 4Henan
Jinlong Mushroom Industry Co. LTD, Shangqiu, China, 5Business Development, GeneGenieDx
Corporation, San Jose, CA, United States
The isolation of Stropharia rugosoannulata polysaccharide (SRP) by three-

phase extraction was optimized, and its structure and biological activities

were identified. The optimal extraction conditions were: mass fraction of

ammonium sulfate, 20%; volume ratio of sample solution to t-butanol, 1:1.5;

extraction temperature, 35°C. Under these conditions, the yield of SRP was

6.85% ± 0.13%. SRP was found to be composed of glucose (35.79%), galactose

(26.80%), glucuronic acid (9.92%), fructose (8.65%), xylose (7.92%), fucose

(4.19%), arabinose (3.46%) and rhamnose (3.26%), with the molecular weight

of 27.52 kDa. The results of DPPH, hydroxyl, ABTS+ radical scavenging and

reducing power tests showed that SRP had good antioxidant capacities. SRP

had no cytotoxic effect on RAW264.7 macrophages at the concentrations of

25-200 mg/mL, and could significantly promote phagocytosis activity and cell

migration according to CCK-8 assay, phagocytosis assay and cell scratch

experiment. SRP can significantly stimulate the transcript expression levels of

TNF-a, IL-1b and IL-6, as determined by RT-PCR and Western blot assays. SRP

activated the TLR4/NF-kB signaling pathway, and autophagy also occurred.

These results suggest that SRP is a safe antioxidant and immunomodulator, and

that it can be used in the development of functional foods and/

or pharmaceuticals.

KEYWORDS

Stropharia rugosoannulata, polysaccharide, three-phase extraction, structure, bioactivities
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1 Introduction

Stropharia rugosoannulata Farlow (SR) is a mushroom, also

known as wine cap stropharia. It is one of the mushrooms

recommended by the Food and Agriculture Organization of the

United Nations (FAO) for cultivating, so it is now grown in

many developing countries (1). The fruiting body of SR has been

reported to include multiple beneficial components, such as

flavonoids, vitamins, polysaccharides, and protein. Thus it has

potential medicinal value (2).

Fungal polysaccharides have been isolated from fruiting bodies

or from fungal mycelia in fermentation broth. Researches have

demonstrated that fungal polysaccharides have anti-virus (3), anti-

tumor (4), immunomodulatory and anti-aging activities (5). Many

have already been developed into a variety of drugs and functional

food additives (6). Recently, fungal polysaccharides and their

complexes have attracted more attention. S. rugosoannulata

polysaccharide is one of many fungal polysaccharides and its

medicinal value has been gradually recognized. Many studies

have shown that polysaccharides from mushrooms have

immunomodulatory act ivi ty and are good natura l

immunomodulatory adjuvants (3, 5).

The method of extracting polysaccharides from fungal

mycelia affects not only yield but also the structure and

biological activities of the polysaccharides extracted. At

present, the conventional extraction method is water

extraction followed by ethanol precipitation (7). This method

has the shortcomings of long time and low efficiency. Three-

phase extraction is a new method to extract active ingredients. It

has the advantages of high efficiency and environmental

sustainability. Recently, this method has been applied to

extract polysaccharides from animal material (e.g., shrimp

shell (8); Corbicula fluminea (9)), plant material (e.g., aloe

(10)), and microorganisms. However, there are few reports of

using it to isolate polysaccharides from edible or medicinal fungi.

In this research, the polysaccharides of S. rugosoannulata

were extracted by three-phase extraction. Physicochemical

properties such as molecular weight and monosaccharide

composition were determined. Scanning electron microscopy

(SEM) was used for morphological studies. Antioxidant and

immunomodulatory properties were evaluated comprehensively

through in vitro antioxidant experiments and cell models. The

results provide information for the development of SRP as a

functional component in foods or medicine.
2 Materials and methods

2.1 Reagents

S. rugosoannulata was collected from a field in Yucheng

County, Henan Province, China. Trypsin and RPMI1640 were
Frontiers in Immunology 02
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purchased from Gibco (Grand Island, NY, United States). The

Cell counting kit-8 (CCK-8) was purchased from Han Heng

Biotechnology Co., Ltd. (Shanghai, China). Lipopolysaccharide

(LPS) was purchased from Sigma Chemical Co. (St. Louis, MO,

USA). The remaining chemicals or reagents were all of

laboratory or analytical quality.
2.2 Extraction and preparation of SRP

Referring to the method of Yan (9), we made minor

modifications. The fruiting body of SR was dried at 45°C in

the air-drying box and then ground into powder with a grinder.

Then, 95% ethanol (1:200, g/mL) was refluenced 5 hours,

repeated 3 times, which was designed to skim and decolorize.

Distilled water was added according to the ratio of 1:30 (w/v),

and extracted by stirring in a water bath at 100°C for 2 hours.

After continuous extraction for two times, the filtrate was

merged for two times and concentrated. Added 15-35% (NH4)

2SO4 (w/v) to SR powder and vortexed gently. The suspension

was then diluted with t-butanol at a ratio of 1.5:1 to 1:2.5 (v/v).

Kept the combination at 20-40°C for an hour. Then, the mixture

was placed in a centrifuge at 4000 RPM/separation center for 10

minutes to accelerate three-phase extraction. After

centrifugation, the three phases formed were carefully

separated. The lower phase is mainly ammonium sulfate and

polysaccharides, and polysaccharides were freeze-dried after

removing inorganic salts by molecular dialysis (3500 Da).
2.3 Structural characterization and
molecular morphology

2.3.1 Physicochemical characterizations of SRP
The basic components of carbohydrate, protein and

polyphenol were detected according to our previous methods

(11, 12).

2.3.2 Molecular weight determination
Gel permeability chromatography (GPC) was used to

determine the molecular weight distribution of SRP using a

Sugar KS805 column fitted with an Agilent refractive

index detector.

2.3.3 Studies on the composition of
monosaccharides

Using high-performance anion exchange chromatography

(HPAEC) coupled with a pulse ammeter detector, we

determined the monosaccharide composition of SRP. Gas

chromatography (GC) was used to determine the

monosaccharide composition of SRP following the procedure

described by Yang (13). 5 mg of SRP was dissolved in 1mL 2.5 M
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trifluoroacetic, and was mixed by the vortex. The sample was

placed in the oven for 1.5 hours at 121°C, during which the

sample was vortexed every 30 minutes. Once the SRP were

hydrolyzed, they were diluted, filtered, and injected into an

HPAEC system (Dionex, ICS-5000+, USA) using an ASAP

automatic sampler and a calcium carbonate PA-20 column

(3×150 mm, Dionex). The monosaccharides in SRP were

determined by eight different monosaccharides.

2.3.4 X-ray diffraction test
Empyrean X-ray diffractometer (panalit LTD., Netherlands)

was used to record the diffraction patterns of SRP at 40kV and 15

mA. The scanning speed was 3°/min, the step size was 0.01, and

the 2 range was 2 to 40°.

2.3.5 SEM analysis
An SEM Model S-4800 II FESEM (Hitachi, Japan) was used

to study the molecular morphologies of SRP. A layer of gold foil

was laid on the sample and then placed on the substrate. Under a

high vacuum and 10.0 kV voltage, the image was observed by a

magnification of 100× or 500× fold.
2.4 Antioxidant activities analysis
in vitro of SRP

2.4.1 Analysis of DPPH free radical scavenging
The DPPH radicals scavenging activity of SRP was

determined according to the method of Wang et al. (11). 500

mL different concentrations of SRP (0.05, 0.1, 0.5, 1, 2, 4, 6, 8, 10

mg/mL) were mixed with the newly configured 2-diphenyl-1-

picrylhydrazyl (DPPH) solution (dissolved in ethanol) in equal

volume, and the reaction solution was left in a dark place at 26°C

for half an hour. The blank group consisted of the same volume of

distilled water as the sample solution, and the positive control had

the same concentration of Vc. The absorbance of the reaction

mixture was determined at 517 nm. Scavenging activity (percent)

against DPPH was calculated by using the following equation:

Scavenging ability  %ð Þ  =   1 − AX –AX0ð Þ=A0½ � � 100

Where A0 was the absorbance of the blank control; AX was

the absorbance of the sample solution; AX0 was the background

absorbance of the sample solution.

2.4.2 Analysis of hydroxyl free radical
scavenging

Added 400 mL FeSO4 solution to 400 mL different

concentrations of SRP (0.05, 0.1, 0.5, 1, 2, 4, 6, 8, 10 mg/mL).

After adding 800 mL of H2O2 solution, the reaction was started

and the solutionwas left to react at 37°C for 30minutes. The blank

group consisted of the same amount of distilled water that was

used to replace the sample solution as the positive control had the
Frontiers in Immunology 03
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same concentration of Vc. The 510 nmwavelength of the reaction

solution was measured. To determine the hydroxyl scavenging

capacity (in percent), the following equation was used:

Scavenging ability  %ð Þ  =   1 − AX –AX0ð Þ=A0½ � � 100

Where A0 was the absorbance of the blank control; AX was

the absorbance of the sample solution; AX0 was the background

absorbance of the sample solution.

2.4.3 Analysis of ABTS+ free radical scavenging
ABTS+ radicals removing capacity of SRP was according to the

work of Qiu et al. (14). The ABTS+ working solution was made by

reacting 7 mmol/L of ABTS+ solution with 2.45 mmol/L of K2S2O8

solution at 26°C for 16 hours in the dark. When using, adjust the

absorbance of the ABTS+ working solution at 734 nm. Then, took

100 mL different concentrations of SRP (0.05, 0.5, 0.1, 0.5, 1, 2, 4, 6,

8, 10 mg/mL), added 0.6 mL ABTS+ solution, mixed evenly and

placed at 26°C for 10 minutes. The same concentration of Vc

solution as the positive group. The reaction solution’s absorbance at

734 nm was measured. Using these formulae, we were able to

determine the ABTS+ scavenging efficiency (in percentage):

Scavenging ability  %ð Þ  =   1 − AX –AX0ð Þ=A0½ � � 100

Where A0 was the absorbance of the blank control; AX was

the absorbance of the sample solution; AX0 was the background

absorbance of the sample solution.

2.4.4 Analysis of reducing ability
The method of Gao et al. (15) was used for sample reduction

force detection, and somemodifications were made. In brief, 200 mL
different concentrations of SRP (0.05, 0.1, 0.5, 1, 2, 4, 6, 8, 10 mg/

mL) were taken and 500 mL PBS and 100 mL 1% (w/v) iron oxide

clock solution was added, then the reaction system was incubated in

50°C for 20 minutes. After quick cooling, it was combined with a

500 mL 10 percent (w/v) trichloroacetic acid solution, and then

centrifuged. Next, took 500 mL supernatant, added 500 mL distilled

water and 100 mL 0.1% (w/v) FeCl3 solution successively, then

mixed them evenly at 26°C. The absorbance of the reaction solution

was measured at 700 nm and a standard solution with the same

quantity of Vc was employed as the positive control. The sample’s

reducing power is proportional to its absorbance value, which

measures the reaction system’s efficiency.
2.5 Immunomodulatory activity assay
of SRP

2.5.1 Cell culture
RAW 264.7 macrophages were grown in an incubator with

5% CO2 at 37°C in RPMI1640 media supplemented with 10%

fetal bovine serum, 100 U/mL penicillin, and 100 g/mL

streptomycin. Every 2-3 days, new media will be added.
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2.5.2 Cell viability
The cell viability of SRP was detected by the CCK-8 method

(16). RAW 264.7 macrophages were placed onto a 96-well plate

with 100 mL/well cell suspension and cultured in the cell

incubator for 24 hours. 10 mL varying quantities of SRP (25,

50, 100, 200, 400, 600, 800 mg/mL) and LPS (1 mg/mL) were set

as normal group and posititive group, each group was set up

with 4 multiple wells, and blank medium group was put in a 37°

C, 5 percent CO2 cell incubator for a length of time. Then, CCK-

8 with 1/10 volume of cell culture media was added to it, and the

absorbance of the reaction solution was measured at 450 nm

after incubation in a constant temperature incubator.

2.5.3 Assay of phagocytosis
When the confluence of RAW264.7 macrophages reached 80%,

the medium was used to dilute the cell density to 1×104 cells/mL. A

96-well plate containing a cell suspension of RAW 264.7

macrophages at a concentration of 100 mL/well was placed in a

cell incubator for 24 hours. 100 mL varied doses of SRP (25, 50, 100,

200 mg/mL) and LPS (1 mg/mL) were added and cultured in a cell

incubator for 24 hours, adding 100 mL 0.1 percent of the neutral red
tom each well, and the final concentration of neutral red in each well

is 1 mg/mL. After washing with PBS, 100 mL cell lysis solution was

added to each well and gently shaken for 15 seconds, then left the

plate at 37°C for 2 hours. The absorbance of the reaction solution

was measured at 540 nm.

2.5.4 Cell scratch experiment
Cell scratch experiment was detected and the method was

according to the report of Zubair et al. (17). RAW264.7

macrophages were seeded at a density of 1 ×106 cells per well

and cultured in a 6-well plate for 24 hours before being scratched

with the tip of a 200 mL pistol to ensure even damage. Then

washing with PBS for 3 times to remove the scratched cells, and

the medium with different concentrations of SRP (25, 50, 100,

200 mg/mL) and LPS (1 mg/mL) were added and incubated for 24

hours. The medium without drugs was used as the blank control

group. The samples were taken and the migration of cells at the

same location was recorded.

2.5.5 Extraction of mRNA and RT-PCR
Table 1 displayed primer sequences that were developed

using real-time PCR primer design concepts. Total RNA was
Frontiers in Immunology 04
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isolated using the Trizol procedure, and its concentration and

quality were evaluated using a Nanodrop 8000. Then, the

obtained RNA were used as templates, cDNA were synthesized

by reverse transcription using qPCR (+gDNA) of HiScriptIII RT

SuperMix. The fluorescence quantitative reaction system was

prepared according to Taq Pro Universal SYBR qPCR Master

Mix. After the reaction, the relative gene expression changes

were recorded by the 2-DDCT method.

2.5.6 Western blot analysis
Total cell protein was isolated using a protein lysate. Protein

was quantified using a kit (Bicinchoninic acid, BCA method),

transferred to a PVDF membrane using SDS-PAGE gel

electrophoresis, blocked in skim milk for 2 hours, and then

incubated at 4°C overnight with a diluted primary antibody. The

next day, we washed away the residual primary antibody with

TBST solution, added the appropriate secondary antibody, and

incubated everything at 26°C for 2 hours. After three washes in

TBST buffer solution, any lingering secondary antibodies were

removed, and an ECL luminous reagent was poured into an

automated chemiluminescence imager. Image J was used to save

and examine the data.
2.5.7 Statistical analysis

SPSS 21.0 was used to conduct the statistical analysis, and

one-way analysis of variance (ANOVA) was employed for the

multiple comparisons. In this study, significant differences were

defined as those with a probability level of less than 0.05

(represented as “mean ± standard deviation”).
3 Results and analysis

3.1 Univariate experiments

3.1.1 Effect of ammonium sulfate
concentration on SRP yield

As shown in Figure 1A, as the concentration of ammonium

sulfate rose from 15%-35%, the yield of SRP increased first and

then decreased. When the mass fraction of ammonium sulfate

was 20%, the yield reached the maximum value of 7.20%. The
TABLE 1 Sequences for RT-PCR primers.

Primer Forward (5’-3’) Reverse (5’-3’)

TNF-a GACGTGGAACTGGCAGAAGAG TTGGTGGTTTGTGAGTGTGAG

IL-1b GGGCCTCAAAGGAAAGAATC TACCAGTTGGGGAACTCTGC

IL-6 AGTTGCCTTCTTGGGACTG CAGAATTGCCATTGCACAA

b-actin ACCCCAGCAAGGACACTGAGCAAG GGCCCCTCCTGTTATTATGGGGGT
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extraction yield of polysaccharides was diminished because of

the high salt concentration’s potential to disrupt the hydrogen-

bond network between SRP and water molecules. Similar to our

study, Wang et al. also showed that the extraction efficiency of

rice bran polysaccharides decreased with the increase of the

concentration of ammonium sulfate (18).

3.1.2 Effect of the sample solution to t-butanol
ratio on SRP yield

As shown in Figure 1B, the yield of SRP increased gradually

with the increasing proportion of t-butanol volume up to a

certain point; this was presumably due to increased interaction

between increased t-butanol and ammonium sulfate (19). When

the ratio of sample solution to t-butanol was 1:1.5 (v/v), the yield

reached the maximum value of 7.0%. With further increase of t-

butanol, however, the yield of SRP was decreased, thus reducing

the overall extraction yield of SRP. This reduction may be due to

a lack of sufficient water to hydrate sulfate ions adequately (11).

3.1.3 Effect of the temperature on SRP yield
As shown in Figure 1C, the yield of SRP increased gradually

with the increase of extraction temperature from 20-30°C; above

30°C, the yield of SRP showed a downward trend. This may be

because high temperature accelerated the thermal movement of

molecules in the three-phase extraction system, and thus
Frontiers in Immunology 05
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enhanced the hydrophilicity of polysaccharides (20).

Therefore, the yield of SRP reached its highest value at the

tested temperature, 30°C.

Using the single factor investigation results, an orthogonal

test was used to optimize the three extraction parameters of mass

fraction of ammonium sulfate, t-butanol volume ratio and

extraction temperature, and three levels were set for each

factor (Table 2). Without considering interaction, an L9(33)

orthogonal experiment was conducted to optimize

the extraction.

As can be seen from the R-value in the Table 3, the influence of

these three parameters on the yield of polysaccharides is as follows:

B (t-butanol volume ratio) > C (extraction temperature) > A

(ammonium sulfate mass fraction). On this basis, the optimum

extraction conditions were determined as follows: mass fraction of

ammonium sulfate, 20%; volume ratio of sample solution to t-

butanol, 1:1.5; extraction temperature, 35°C.
3.2 Physicochemical properties

3.2.1 Physicochemical composition and
monosaccharide composition

As shown in Table 4, the extraction yield of SRP was 6.85%,

and the carbohydrate content of SRP was 56.18%. The protein
A B

C

FIGURE 1

Effect of different factors on SRP yield. (A) Concentration of ammonium sulphate; (B) Slurry to t-butanol ratio; (C) Temperature.
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content was 6.78%, and the polyphenol content was 1.73%. The

XRD pattern showed a small diffraction peak at 20°, which

indicated that SRP has an amorphous structure. Its crystallinity

was 18.21%. The crystal structure is directly determined by

properties such as elasticity and swelling (21).

Molecular weight is an essential physicochemical parameter

closely related to the biological activity of polysaccharides. The

weight average molecular weight (Mw) of SRP was 27.52 kDa,

and its number average molecular weight (Mn) of SRP was 26.07

kDa, which was similar to Chen (22). The polymer dispersion

index Mw/Mn of SRP was 1.06, and the closer the dispersion

index was to 1, the more evenly the polysaccharide

was distributed.

3.2.2 Monosaccharide composition of SRP
Monosaccharide composition results (Table 5) showed that

the SRP sample was composed of fucose, rhamnose, arabinose,

galactose, glucose, xylose, fructose and glucuronic acid in a

molar ratio of 4.19: 3.46: 3.26: 26.80: 35.79: 7.92: 8.65: 9.92.

Galactose and glucose were the most abundant. The results

showed that SRP was heteropolysaccharide. Liu et al. (2)

identified mannose, galactose and glucose as the main

monosaccharide components in SRP. Similarly, Diego Morales

et al. found that the monosaccharide components of Lentinula

edodes polysaccharides are mainly glucose, galactose and
Frontiers in Immunology 06
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mannose (23). Different sources of raw materials and

preparation conditions may be responsible for the differences.

3.2.3 SEM analysis
The morphology of SRP was characterized by SEM. SRP had

a rough surface, irregular flake and massive distribution, and

pores on the surface after magnification (Figure 2). These

microstructure characteristics may be caused by the

destruction of cell wall structure and the decomposition of

polysaccharide aggregates during the three-phase extraction

processes. The surface topographic characteristics and

microstructure change of SRP may be related to its

physicochemical properties and antioxidant activity (24). SRP

obtained by the three-phase extraction method is due to the joint

action of ammonium sulfate and tert-butanol, which is affected

by various forces and forms an obvious flake structure.
3.3 Antioxidant activity analysis
in vitro of SRP

3.3.1 DPPH radical scavenging ability of SRP
The antioxidant potential of polysaccharides may be easily

guaranteed by measuring their capacity to scavenge DPPH free

radicals. In general, the eliminated ability of polysaccharides to
TABLE 3 Results and analysis of orthogonal experiment of SRP.

No A B C Yield (%)

1 1 1 1 5.72

2 1 2 2 6.56

3 1 3 3 5.63

4 2 1 2 6.13

5 2 2 3 7.12

6 2 3 1 5.81

7 3 1 3 6.5

8 3 2 1 6.06

9 3 3 2 6.27

K1 17.91 18.35 17.59

K2 19.06 19.74 18.96

K3 18.83 17.71 19.25

R 1.15 2.03 1.66
fro
TABLE 2 Orthogonal test factor level table.

Levels Factors

Ammonium sulfate mass fraction (%) T-butanol volume ratio Extraction temperature (°C)

1 15 1:1 25

2 20 1:1.5 30

3 25 1:2 35
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DPPH free radicals relies on the hydrogen supply ability of the

antioxidant (25). Figure 3A displayed SRP’s capacity to scavenge

DPPH free radicals. The scavenging activities of SRP reached

88.60 percent when the SRP reached 2 mg/mL. The result

indicated that SRP had the ability to clear DPPH, which was

similar to Wang et al. (26).

3.3.2 Hydroxyl radical scavenging ability of SRP
Excessive levels of hydroxyl radical, one of the most powerful

free radicals in the body, may disrupt the delicate equilibrium of

the body. Upon contact with nearby biomolecules, hydroxyl

radicals may cause extensive damage, and in extreme cases, even

cell death (27). Figure 3B displayed SRP’s ability to quench

hydroxyl radicals. Generally, SRP had potential scavenging

activity on hydroxyl radical. SRP’s scavenging activity rose to

94.46 percent at 6 mg/mL. When the SRP concentration was 10

mg/mL, its scavenging efficiency was 98.06%. SRP was shown to

have a clear capacity to scavenge hydroxyl radicals, as shown by

the findings. SRP had the potential to remove hydroxyl radical

because it has a better scavenging power on hydroxyl radical.

3.3.3 ABTS+ radical scavenging ability of SRP
The antioxidant potential of polysaccharides may be easily

neutralized using the ABTS+ free radical technique (28). ABTS+

free radical scavenging experiments are based on electron

transfer from antioxidants to ABTS+ free radicals. SRP’s
Frontiers in Immunology 07
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capacity to scavenge ABTS+ radicals were shown in Figure 3C.

As a positive control, the scavenging power of Vc remained

stable between 88.13% and 99.83% in the range of experimental

concentrations. At 2 mg/mL, SRP showed an 89.44 percent

increase in scavenging activities. These results showed that

SRP had the ability to scavenge ABTS+ radical.

3.3.4 Reducing power of SRP
In Figure 3D, the lowering power of SRP compared to the

positive control, Vc. The concentration of SRP has a positive

correlation with the reducing power. SRP had an absorbance of

0.66 at 700 nm at a dosage of 10 mg/mL. These findings

demonstrated that SRP has some degree of astringent activity.
3.4 Measurement of immunomodulatory
activities of SRP

3.4.1 Cell viability
The results of testing the viability of cells treated with SRP

were shown in Figure 4A. By comparing with the blank group,

different concentrations of SRP had different effects on

RAW264.7 macrophages activity. When SRP ≤ 200 μg/mL,

SRP can significantly promote cell growth (p<0.05) indicating

that SRP had no toxicity to cells. Concentrations greater than or

equal to 400 μg/mL inhibited cell proliferation, indicating

some toxicity.

Therefore, based on these results, a concentration between

25-200 μg/mL could be used for experimental treatment of cells,

specifically for evaluating the immune regulatory effect of SRP

on RAW264.7 macrophages.

3.4.2 Effect of SRP on phagocytosis of
RAW264.7 macrophages

The effect of SRP on phagocytosis was detected by

macrophage uptake of neutral red (29). The results were

shown in Figure 4B. When the concentration of SRP was

between 25-200 mg/mL, all samples significantly promoted the

uptake of neutral red by RAW264.7 macrophages compared

with the blank control group (p<0.05). The results showed that

SRP significantly promoted the uptake of neutral red by

macrophages, thus further regulating immune activity.
3.4.3 Effect of SRP on RAW264.7 macrophages
migration

The most direct method to detect cell migration is the

scratch test (30). As shown in Figure 5, RAW264.7

macrophages were treated with LPS (1 mg/mL) and different

concentrations of SRP (25-200 mg/mL), and the percent of cell

scratch healing on the macrophages was observed. The results

showed that SRP significantly improved cell scratch healing at all

tested concentrations between 25-200 mg/mL compared with the
TABLE 5 Monosaccharide composition of SRP.

Monosaccharides Molar ratio (%)

Fucose 4.19

Arabinose 3.46

Rhamnose 3.26

Galactose 26.8

Glucose 35.79

Xylose 7.92

Fructose 8.65

Glucuronic acid 9.92
TABLE 4 Physicochemical composition and molecular weight.

Sample SRP

Yield (%) 6.85 ± 0.13

Carbohydrate (%) 56.78 ± 1.34

Protein (%) 6.78 ± 0.15

Polyphenol (%) 1.73 ± 0.0050

Degree of crystallinity (%) 18.21 ± 0.34

Molecular weight (kDa)

Weight-average molecular weight (Mw) 27.52

Number-average molecular weight (Mn) 26.07

Polymer dispersity index (PDI) 1.06
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blank group (p<0.05), and the scratch healing rate of the

RAW264.7 macrophages at 25-50 mg/mL SRP was higher than

that at 100-200 mg/mL.

3.4.4 RT-PCR test results
Cytokines are produced by activated immune cells and are

considered to be major immune mediators (31). The transcription
Frontiers in Immunology 08
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levels of the three cytokine genes IL-1b, IL-6 and TNF-a were

detected by RT-PCR. Figure 6 showed that transcription levels of all

three were significantly increased within the limits of SRP (25-50

mg/mL) or LPS (1 mg/mL) groups compared with the blank group

(p<0.05). The result was similar to the results reported by Liu on the

immunomodulatory activity of Sinonovacula constricta

polysaccharide (32).
A B

DC

FIGURE 3

Antioxidant activity of SRP (A-D) DPPH, Hydroxyl, ABTS+ radical scavenging ability and reducing power.
FIGURE 2

SEM images (magnification 100× and 500×). (A, C) (100 µm); (B, D) (500 µm).
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3.4.5 Protein expression of
TLR4/NF-kB pathway

NF-kB plays a crucial role in immune regulation and

inflammatory responses (33). TLR4 is a significant member of

the Toll-like receptor family, and breakthroughs have been made

in research on TLR4. A variety of signaling pathways have been

confirmed to be related to mediating immune responses (34). To

determine whether the immune activity of SRP is mediated by

the TLR4/NF-kB signaling pathway, we investigated western

blot analysis was performed to analyze the effect of SRP on the

expression levels of key proteins in the TLR4/ NF-kB signaling

pathway in RAW 264.7 cells.

Figure 7 showed the influence of SRP on the expression

levels of the key proteins TLR4, MyD88 and NF-kB in the TLR4/

NF-kB signaling pathway (b-actin as internal reference).

Compared with the positive control group, SRP groups

showed decreased the protein expression levels. Compared
Frontiers in Immunology 09
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with the blank group, SRP (25-50 mg/mL) and LPS groups

showed significantly increased expression of TLR4, MyD88

and NF-kB protein (p<0.05). We speculated that SRP activates

RAW264.7 macrophages by up-regulating the expression of key

proteins in the TLR4/NF-kB pathway.

3.4.6 Expression of autophagy proteins
Autophagy is a cellular mechanism of self-degradation,

transformation and energy production. Autophagy is closely

related to inflammation. The activation of pattern recognition

Toll-like receptor can induce autophagy, and autophagy can

regulate the inflammatory response. Defective autophagy can

induce inflammation (35). LC3 is a hallmark protein of

autophagy. p62 is a substrate for autophagy degradation; it

plays an important role in the recognition and encapsulation

of degraded substrates. Beclin 1 over expression promotes

autophagy in mammalian cells, and the expression increases
A

B

FIGURE 5

Results of the macrophages RAW264.7 scratch experiment. (A) Image of the cell scratch: a-f indicates the control, LPS, SRP (25, 50, 100, 200
mg/mL) groups; (B) Percent of cell scratch healing. Significant differences with the control group: *p< 0.05 and **p< 0.01.
A B

FIGURE 4

Cell viability and phagocytic capacity of the SRP. (A) Cell viability; (B) Phagocytic capacity. Significant differences with the control group:
*p<0.05 and **p<0.01.
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with the enhancement of autophagy. LC3, Beclin 1 and p62 are

all used as indicators of autophagy (36).

Autophagic protein expression results were shown in Figure 8.

The expression of autophagic protein in the positive control group

was higher than in the blank group. Compared with the positive

control group, the protein expression levels of LC3 and Beclin 1

increased and the protein expression levels of p62 decreased in SRP

with different mass concentrations. Compared with the blank

group, the protein expression levels of LC3, Beclin 1 and p62 in

different mass concentrations of SRP were significantly increased

(p<0.05), which indicated that SRP can promote autophagy in cells.
4 Discussion

Recently, many studies have been carried out on the

extraction of polysaccharides from S. rugosoannulata, which

due to its better biological. The main extraction methods are

solvent extraction, ultrasonic extraction, alkali-assisted

extraction (2), etc. However, these extraction methods are

complex, typically requiring a long processing time.

As a new protein separation and purification technology, three-

phase extraction is a safe, effective, and environmentally friendly

green technology, including salting out, isoelectric point
Frontiers in Immunology 10
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precipitation and solvent precipitation (37). However, most

researchers mainly focus on the protein phase (38). It is rarely

reported that polysaccharides are isolated and purified from edible

fungi by three-phase extraction. Ours may be the first attempt to

isolate SRP by three-phase extraction. Three-phase extraction is

relatively simple, safe, and environmentally friendly compared to

conventional extraction methods. Furthermore, the method

preserves the biological activity of the polysaccharides better than

the existing method.

In this study, single factor and multiple factor orthogonal

tests were used to obtain the optimal extraction conditions for

extracting polysaccharides. These conditions were: mass fraction

of ammonium sulfate, 20%; volume ratio of sample solution to t-

butanol, 1:1.5; and extraction temperature, 35°C. Under these

conditions, the yield of SRP was 6.85% ± 0.13%, which was

higher than that of the traditional method of water extraction

and alcohol precipitation (39).

The physiological functions of polysaccharides are closely

related to structure. Some scholars have studied the structure

and function of polysaccharides of S. rugosoannulata. Chen et al.

(22) obtained a polysaccharide by hot water extraction, and

proved this structure was mainly composed of five

monosaccharides, predominaatly xylose, galactose and glucose,

with a relative molecular weight of about 22 kDa. Liu et al. (2)
A B

C

FIGURE 6

Effects of SRP on the expression of cytokine genes in RAW264.7 macrophages. (A-C) Expression of TNF-a, IL-1b and IL-6 mRNA. Significant
differences with the control group: *p< 0.05 and **p< 0.01.
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A B

DC

FIGURE 7

Effect of SRP on the protein expression levels of the TLR4/NF-kB pathway. (A) Western blot analysis of protein bands; (B) TLR4; (C) MyD88; (D)
NF-kB protein expression. Significant differences with the control group: *p< 0.05 and **p< 0.01.
A B

DC

FIGURE 8

Expression of autophagic proteins. (A) Western blot analysis of protein bands; (B-D) LC3, Beclin1 and p62 protein expression. Significant
differences with the control group: *p< 0.05 and **p< 0.01.
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isolated two components, SRP-1 and SRP-2 from the fruiting

body of S. rugosoannulata. Both components contained glucose

and galactose, but SRP-2 also contained ribose and uronic acid.

We speculate that these differences in monosaccharide

compositions of S. rugosoannulata were due to differences in

the source material.

In our study, the polysaccharide from S. rugosoannulata was

extracted by three-phase extraction. According to our analysis,

the polysaccharide was heteropolysaccharide composed of 8

monosaccharides, and the molecular weight was 27.52 kDa,

which was larger than that polysaccharides obtained by hot

water extraction (22). The molecular mass of SRP was bigger, the

monosaccharide composition was richer, and its physiological

activity was stronger. At the same time, this method also had a

positive effect on the structure modification, which can interrupt

the long molecular chain of polysaccharides and the change of

molecular aggregation state, so that the structure of

polysaccharides can be changed. Finally, three-phase extraction

affects the biological activity and chemical and physical

properties, such as improving the antioxidant activity of the

polysaccharides (40).

Polysaccharides can improve the immune activity of cells in

vitro. MOP-3, a novel polysaccharide extracted from Moringa

oleifera leaves, can enhance the ability of macrophages to secrete

reactive oxygen species (ROS), nitric oxide (NO), interleukin-6

(IL-6) and tumor necrosis factor a (TNF-a), indicating that the
polysaccharide can activate macrophages to produce cytokines,

thus achieving the purpose of fighting pathogens (41). In this

experiment, compared with blank control group, the the SRP-

treated group showed increased proliferation, phagocytosis and

cell migration of 25-200 mg/mL.

Numerous studies have shown that polysaccharides can

activate intracellular signaling pathways through TLR4

receptor-mediated macrophages, promote the release of related

cytokines, and play immunomodulatory roles. For example,

mushroom polysaccharides can act ivate peritoneal

macrophages through the TLR4/NF-kB pathway, and

significantly enhance the secretion of cytokines (42). Our

study results showed that SRP significantly enhanced the

protein expression of TLR4, MyD88 and NF-kB in the range

of 25-50 mg/mL, and activated the TLR4-mediated MyD88

dependent pathway, which confirmed that TLR4/NF-kB
signaling pathway is one of the important pathways through

which polysaccharides exert immunomodulatory effects.

Autophagy is a highly conserved metabolic pathway in

organisms. It can selectively degrade intracellular harmful

components and play an important role in regulating

immunity (35). At present, no articles related to SRP and

autophagy have been found. So, this study confirmed that SRP

can up-regulate autophagy related proteins LC3 and Beclin1,

and down-regulate the expression of p62 protein to induce

increased autophagy. This indicates that the mechanism of

SRP’s effect on inflammation is related to autophagy
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induction. Moreover, the expression levels of related proteins

and autophagy proteins in the TLR4/NF-kB signaling pathway

were significantly increased in the macrophage SRP groups

treated with 25-50 mg/mL, suggesting that SRP can activate the

TLR4/NF-kB signaling pathway and autophagy.
5 Conclusion

In this study, a polysaccharide was extracted from the

mushroom Stropharia rgosoanmulata, using a new method,

three-phase extraction. Extraction parameters were optimized

as follows; mass fraction of ammonium sulfate, 20%; volume

ratio of sample solution to t-butanol, 1:1.5; and the extraction

temperature, 35°C. With these parameters, the yield of

polysaccharides was 6.85% ± 0.13%. SRP had the molecular

weight of 27.52 kDa. SEM showed that SRP surface was rough

and flakey. XRD analysis showed that it had both crystalline and

amorphous structures. The results of antioxidation experiments

showed that SRP has antioxidant activity. The results of CCK-8

method showed that the polysaccharide concentration in the

range of 25-200 mg/mL promoted cell proliferation and had no

cytotoxicity. This means that SRP is safe for clinical applications.

RT-PCR results confirmed that SRP can significantly promote

the release of cytokines such as IL-6 and TNF-a from peritoneal

macrophages in the range of 25-100 mg/mL, and the purpose of

immune enhancement by enhancing the activity of cytokines.

Western blot results showed that SRP induced macrophages

RAW264.7 to activate the TLR4/NF-kB signaling pathway

of autophagy.

In conclusion, S. rugosoannulata has antioxidant and

immunomodulatory activities. It appears to be safe. Thus, S.

rugosoannulata has a broad prospect for further development as

a new immunomodulator and antioxidant..
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Increase in drug resistance as well as ineffective immunization efforts against

various pathogens (viruses, bacteria and fungi) pose a significant threat to the

poultry industry. Spirulina is one of the most widely used natural ingredients which

is becoming popular as a nutritional supplement in humans, animals, poultry and

aquaculture. It contains protein, vitamins, minerals, fatty acids, pigments, and

essential amino acids. Moreover, it also has considerable quantities of unique

natural antioxidants including polyphenols, carotenoids, and phycocyanin. Dietary

supplementation of Spirulina can beneficially affect gut microbial population,

serum biochemical parameters, and growth performance of chicken.

Additionally, it contains polyphenolic contents having antibacterial effects.

Spirulina extracts might inhibit bacterial motility, invasion, biofilm formation, and

quorum sensing in addition to acting directly on the bacterium by weakening and

making the bacterial cell walls more porous, subsequently resulting in cytoplasmic

content leakage. Additionally, Spirulina has shown antiviral activities against certain

common human or animal viruses and this capability can be considered to exhibit

potential benefits against avian viruses also. Spirulan, a calcium-rich internal

polysaccharide of Spirulina, is potentially responsible for its antiviral effect

through inhibiting the entry of several viruses into the host cells, boosting the

production of nitric oxide in macrophages, and stimulating the generation of

cytokines. Comparatively a greater emphasis has been given to the immune

modulatory effects of Spirulina as a feed additive in chicken which might boost

disease resistance and improve survival and growth rates, particularly under stress

conditions. This manuscript reviews biological activities and immune-stimulating
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properties of Spirulina and its potential use as a dietary supplement in poultry to

enhance growth, gut health and disease resistance.
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Introduction

Numerous diseases continue to occur in the poultry industry

despite the widespread use of vaccines and medications, resulting in

financial losses. For instance, avian viral infections such as avian

influenza (AI), infectious bronchitis (IB), infectious bursal disease

(IBD), and Newcastle disease (ND) lead to significant economic

losses, particularly in broilers, due to respiratory distress, increased

mortality, reduced growth, and immunological suppression (1). The

same is true for coccidiosis and bacterial infections like Salmonella, E.

coli, etc. Until the emergence of resistant strains, chemical

antimicrobials and antiprotozoals successfully inhibited and

suppressed bacteria and protozoa. So there is a persistent need to use

natural substances to address this issue. Algae, for instance, is a source

of vital biological useful components, making the use of natural habitats

as a source of these chemicals a viable strategy for creating innovative

cuisines (2, 3). One of the greatest sources for organic nutrients among

edible algae is the microscopic blue-green alga Spirulina (Arthrospira),

which is used as a nutritional supplement for both human and animal

feed globally (4). Spirulina platensis is a filamentous commercial

cyanobacterium that is utilized as dietary and feed supplement in

humans, aquaculture, livestock and poultry industry. Spirulina can

grow in both saline and fresh water, and it is semi- and mass-cultivated

in several countries. Dried spirulina is a rich nutritional source, with a

high protein content (260-770 g/kg) representing 70% dry weight and a

large fat content (10-140 g/kg) (5–7). Additionally, it has been observed

that these microalgae have a high nutrient digestibility that was superior

or equivalent to that of other vegetable diets and feeds (6, 8). Therefore,

Spirulina has the potential to partially replace the traditional protein

sources, particularly soybean meal (9). Oleic acid, linoleic acid, gamma-

linolenic acid, docosahexaenoic acid (DHA), sulfolipids, and glycolipids

are among the many polyunsaturated fatty acids found in spirulina, in

addition to Omega-3 and -6 polyunsaturated fatty acids that are

abundant in spirulina (25% and 60% of the total fatty acids) (5, 10).

Spirulina also contains pigments, such as carotenoids (4000 mg/kg),

which include b-carotene and zeaxanthin (10, 11), and chlorophyll

pigments (12–14). Phycobiliproteins (15), vitamins (16), and macro-

and micromineral components like calcium, iron, magnesium,

manganese, potassium, zinc, and selenium are also found in spirulina

(10, 17). Moreover, polysaccharides, pro-vitamin A, vitamin E, vitamin

K and various B vitamins (10) as well as antioxidants are also important

constituents of spirulina (18).

Spirulina is used as a dietary additive in a wide variety of food

products due to its exceptional and impressive nutrient composition.

This helps to improve the nutritional qualities of the products, as well
02124
as their potential to improve reproductive and productive

performance, general health, and the symptoms of various animal

diseases like arthritis, diabetes, anaemia, hypertension, and

cardiovascular disorders. Spirulina are strong contenders as an

alternative to antibiotics in chicken feed. These substances exhibited

potential medicinal properties like antimicrobial, antioxidant, anti-

cancer, anti-inflammatory, immune-enhancing, and colourants (18–

20) in addition to their metalloprotective, radioprotective, and

hypocholesterolemic effects (4, 10). Additionally, Spirulina (SPA)

with antiviral properties has shown to strengthen the immune

system, and its rich nutritional profile promoted growth

performance by improving the intestinal villi length and number of

the epithelial cells particlulary goblet cells (21). For a sustainable and

feasible future of food security, spirulina is becoming a more

affordable method of increasing poultry output (9). Here,

therapeutic and immune-stimulating benefits of Spirulina were

reviewed from another angle in case they could actually be used as

nutritional supplement with antibiotic or vaccine to fight off various

diseases of chicken (Figure 1).
Effects of Spirulina platensis on
productive performance

Numerous studies have supported spirulina’s ability to promote

growth. From the embryonic stage until the egg is laid, spirulina can

be supplemented in poultry diets. Spirulina platensis in ovo injection

enhanced the expression of genes associated to immunity,

antioxidants, and hatchability in quail chicks (22). Ibrahim et al.

(23) reported that spirulina in drinking water for 4 weeks at levels of

0.5, 1 and 2 g/Liter significantly increased the average body weight

gain, health, with the highest chick viability percent, best significant

feed conversion ratio (FCR), feed efficiency, European Production

Efficiency values, increase in the relative weights of carcass and

internal organs with the significantly lowesr abdominal fat.

Spirulina supplemented (1 or 2 g/kg diet) in diets containing

vegetable and animal protein in Japanese quails improved the

growth performance without affecting meat quality or gut flora in

quails fed with vegetable protein source but no effect was observed in

animal protein based diet (24).

K-strain White Cornell Leghorns and broiler chicks grown to ages

of seven and three weeks, respectively, on diets containing varied

concentrations (10, 100, 1,000, and 10,000 ppm) of Spirulina platensis

exhibited higher body weights than control birds (25). With 0.7 and

0.9 g of Spirulina platensis per kg of feed, Cobb broiler chickens’
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growth performance, blood parameters, biochemical changes in

serum, and microbial load could all be improved (26).

Dietary supplementation of Spirulina at 10g/kg of diet showed

significantly higher body weight gain and, consequently, linear

improvements in FCR was observed in Cobb broilers during 35

days experimental period. Additionally, dietary Spirulina levels

resulted in a rise in intestine Lactobacillus sp. while decreasing

Escherichia coli populations (27).

Hajati and Zaghari (28) advocate utilizing Spirulina at dosages of

5 and 3 g/kg food during the Japanese quail’s growth and laying

periods, respectively, using a range of varied doses. During the first 35

days of life, a diet of 5 g/kg induced a significant increase in body

weight gain, breast percentage, and European production efficiency

factor. When added to the diet of layers, Spirulina at a level of 3 g/kg

considerably reduced the amount of cholesterol per gram of yolk

while also improving the color of the egg yolks.

However, daily feed intake, FCR, the percentage of broken eggs,

eggshell thickness, albumen height, Haugh unit, and egg weight were

unaffected by dietary Spirulina up to 0.9%. When compared to non-

supplemented birds, 0.6% algae significantly increased egg mass and

production as well as egg yolk colour in laying chickens between 26

and 37 weeks of age (29).

For improved reproductive and productive performance,

Mobarez et al. (30) suggested adding Spirulina to Golden

Montazah layer diets. When given the basic diet with 2 or 3 g

Spirulina/kg diet during the laying period from 29 to 40 weeks of

age, hens and cocks had significantly improved FCR compared to

the control group. Additionally, chickens fed a diet containing 3 g

of Spirulina/kg had the highest levels of high-density lipoprotein

(HDL), total antioxidant capacity (TAOC), glutathione peroxidase

(GPx), egg quantity, egg weight, and hatchability percentage.

Blood cholesterol, total lipids, and low-density lipoprotein (LDL)
Frontiers in Immunology 03125
were all significantly reduced with Spirulina administration at

both dosages.

Microalgae in quail diets (5%, 10%, and 15%) increased egg

quality and provided benefits to consumer health by functioning as

an immune-stimulant and antioxidant (31). However, they had no

effect on egg production. This was because it boosted amounts of

monounsaturated fatty acids, which are good for consumer health,

and decreased levels of harmful saturated fatty acids. Additionally, egg

yolk antioxidant levels increased, which reduced lipid peroxidation.

On the other hand, 32 reported a lower performance of broiler

chickens supplemented with Spirulina by 15%, for 2 weeks period

(21st -35th day old), compared to non-supplemented birds. They

attributed this negative effect to the high digesta viscosity induced by

the gelation of indigestible proteins of Spirulina. Even addition of

exogenous enzymes like lysozyme or Rovabio Excel AP resulted in the

same worse findings, although lysozyme succeeded in breaking

Spirulina’ cell wall. Pestana and hos co-authors suggested that this

microalga’s proteins may be more easily digested and prevented from

harmfully gelling if lysozyme and an exogenous specialised peptidase

were combined.
Effects of Spirulina platensis on the
immune system

Supplementing with spirulina boosts many immune processes.

Spirulina has shown a specific action on monocytes and natural killer

(NK) cells, which are essential components of the innate immune

system. Administration of Spirulina exhibited to enhance

macrophage phagocytic response and activity of NK cells in chicken

and humans (25, 33, 34). The phagocytic activity of macrophages

isolated from cats was also found to be increased in response to
FIGURE 1

Overall applications and effects of Spirulina on poultry performance and health.
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antigen exposure in the presence of Spirulina (25). A polysaccharide

extract of Spirulina platensis has hsown to increase white blood cells

in a haematopoietic system damaged by irradiation (35). Oral

administration of Spirulina platensis in healthy male volunteers

increased IFN-g production and phagocytic activity of isolated NK

cells stimulated with IL-12/18. Beside this, Spirulina also enhanced

Toll like receptor (TLR)-2 and 4 mediated production of IL-12 from

peripheral blood mononuclear cells, thus indicating Spirulina first

activates monocytes and macrophages to produce cytokines that

stimulate NK cells (34). An action through TLR-2 or -4, leading to

NF-kB activation, has been suggested in studies in human monocytes

(36, 37).

Spirulina’s immune-modulatory action on mice through

increased IL-1 antibody production was observed in 1994 for the

first time (38). In this regard, Kaoud (39) found that chicken groups

fed diets containing spirulina had higher relative and absolute thymus

and bursa weights than the control group. Similarly, in comparison to

the untreated control, the addition of S. platensis at levels of 0.7 and

0.9 g/kg broiler diet resulted in a considerable rise in the weights of the

bursa, thymus, and spleen (26). However, broilers and K-strain chicks

given Spirulina (0, 10, 100, 1,000, and 10,000 ppm) did not change in

bursal or splenic weight, but the K-strain chicks had significant larger

thymuses than the controls (25).

A considerable rise in white blood cell count and increased

macrophage phagocytic activity in broilers treated with S. platensis

algae suggested that the immune system of the animals was

strengthened (40).

According to Al-Batshan et al. (33) feeding Spirulina platensis

increases macrophage phagocytic activity in terms of the average

number of sheep red blood cells (SRBC) per phagocytic macrophage

(range = 2.2 to 3.6 versus 1.8 to 2.5 in the basal group) and the overall

phagocytic percentage (range = 28 to 39% versus 24 to 25% in the

basal group). Over the course of the three developmental ages,

Escherichia coli lipopolysaccharides-induced nitrite levels in

macrophages (increased nitric oxide synthase activity) ranged from

60 to 278 microM in the basal diet group, but they were significantly

higher in all Spirulina dietary groups (0.5% group range = 198 to 457

microM; 1.0% group range = 161 to 359 microM; and 2.0% group

range = 204 to 420 microM).

Spirulina supplementation at 10000 ppm of diet also doubled the

activity of NK cells and showed a greater PHA-P-mediated

lymphoproliferative response compared to controls. All Spirulina

groups (10, 100, 1000, 10000 ppm) demonstrated greater

macrophages phagocytic capacity than the 0 ppm group in K-strain

and broilers (25).

When compared to 1 g Spirulina/kg, laying Japanese quails given

3 or 5 g Spirulina/kg had significantly enhanced cutaneous basophil

hypersensitivity after 12 or 24 hours of phytohemagglutinin injection

(28). A substantially less heterophil and more lymphocytes than the

control treatment were obtained by 1, 1.5, and 2 g spirulina/kg fed to

broilers for 42 days (21). It has been demonstrated to increase the

potential for disease resistance in chicken by activating their

mononuclear phagocytic system (41). Improvement in cellular

immunity observed in response to dietary supplementation of

Sprirulina might be attributed to higher Zn concentration in

spirulina like this (42, 43).
Frontiers in Immunology 04126
In Cornell K-strain White Leghorns and broiler chicks fed to 7

and 3 weeks of age, respectively, with meals containing varying

amounts of Spirulina platensis (0, 10, 100, 1,000, and 10,000 ppm),

anti-sheep red blood cell antibodies were not different throughout the

initial reaction. However, all Spirulina-dietary groups with K-strain

chicks exhibited greater total anti-SRBC titers during the secondary

response, with the 10,000-ppm group having the highest (6.8 Log2)

compared to the 0 ppm (5.5 Log2) group (25). In laying Japanese

quails, different concentrations of Spirulina (1, 3 or 5 g/kg food)

resulted in significantly greater levels of total antibody against SRBC

and IgG titers (28).

Khan et al. (21) showed that the use of spirulina considerably

enhanced growth performance, gut integrity, and immunity in broiler

production while also providing better economics and supplementing

with spirulina significantly affected the antibody titer against the

ND vaccination.

In growing Japanese quail chicks, adding Spirulina at

concentrations of 0.5, 1 and 2 g/Liter significantly raised the

amount of serum antibodies against the Newcastle virus (NDV)

and the plasma total protein profile (23).

Additionally, Golden Montazah laying hens and cocks

supplemented with 3 g Spirulina/kg diet during the laying period

recorded significantly higher antibody titers against NDV, Avian

Influenza (AI), antibody against SRBC, and Interferon proteins (IFN-

g) concentration (30). Similarly Nia et al. (29) revealed that Spirulina by

levels 0.3%, 0.6% or 0.9% in Lohmann Selected Leghorn (LSL) laying

hens between the ages of 26 and 37 weeks had a substantial impact on

the antibody titer in birds that had received the Newcastle vaccine.

However, the ratio of heterophiles to lymphocytes, humoral immunity

against SRBC, cell-mediated immunity response to PHA injection, and

the relative weight of the bursa and spleen were not significantly

affected by this dietary Spirulina.

Additionally, the immunosuppressive effects of diclofenac

sodium, which were manifested by decreased phagocytic activity,

phagocytic index, and a significant decrease in the titer of antibodies

formed against NDV were significantly reversed by oral

supplementation of broiler chicks with Spirulina at a dose of 10

gm/kg in their diet, either on therapeutic or preventive regimes (44).
Antioxidant effects and Spirulina
platensis’s impact on meat quality

Because microalgae are a significant source of C-phycocyanin, an

antioxidant pigment with hypolipidemic activity, birds fed Spirulina

showed improved antioxidant activity, which is another benefit of

Spirulina feed (45, 46). Phycocyanin, carotene, and xanthophyll

phytopigments, tocopherols, linolenic acid, and phenolic

compounds are some examples of naturally occurring components

in Spirulina that have been demonstrated to have strong antioxidant

properties and potent scavenging activities against Reactive Oxygen

Species like superoxide and hydrogen peroxide radicals (4).

Abdelkhalek et al. (47) reported that spirulina dramatically

stimulates the activity of antioxidant enzymes preventing lipid

peroxidation, DNA damage, and free radical scavenging. The total

antioxidant capacity and thyroxin (T4) content were dramatically
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enhanced in growing Japanese quail chicks when Spirulina levels of

0.5, 1 and 2 g/Liter were used. Plasma cholesterol, total lipids, ALP,

ALT, and AST activity, however, had significantly lower levels (23).

Additionally, in ovo injections of Arthrospira (Spirulina) platensis

at doses of 0.75–3.5 mg/egg in Japanese quails and 25–35 mg/egg in

broiler breeders enhanced chick hatchability and IFN-gamma

expression. In quails, 2.5 or 3.5 mg Spirulina dramatically reduced

expression of HSP70 and considerably boosted Catalase activity and

GPX gene expression in hatchlings. The lowest HSP70 in chicks was

induced by in ovo injection of 25 or 35 mg Spirulina in broiler

breeders (22).

Moreover, spirulina inclusion in the poultry feed affects meat

quality parameters like color, flavor, polyunsaturated fatty acids

composition, and oxidative stability. Therefore, in terms of

oxidative stability and the enhancement of omega-3 fatty acids

like those of linolenic and docosahexaenoic acid by Spirulina

feeding, 1.5% fed to Cobb 500 broiler chicks for 5 weeks could

be potential functional ingredients to generate value-added broiler

meat (breast and thigh meat) (48). Similarly, Abbas et al. (49)

demonstrated that 3% and 4% of dietary Spirulina significantly

increased the content of oleic acid, palmitic acid, docosahexaenoic

acid, and linoleic acid in broiler carcass. Additionally, throughout

the 30-day storage period, 4% Spirulina considerably decreased the

value of peroxide. For the 60-day storage period, both Spirulina

treatments significantly reduced the oxidation indices of total

volatile nitrogen (TVN) and thiobarbituric acid (TBA), while the

sensory evaluation ratings for the chest and thigh slices did not

change. 50 reported an unchange of the amount of gamma-

linolenic acid or omega-3 in the intramuscular fat by 75% and

50% Soy bean replacement by Spirulina in starter and grower feed,

respectively, although the richness of Spirulina with poly

unsaturated fatty acids. Moreover, when Spirulina-based meat

samples were wrapped in highly oxygenated modified

environment packaging, they showed higher rates of lipid

oxidation than soybean meal-based meat samples (50). On

another side, color of meat was improved by inclusion of

spirulina at high doses in the feed that may be due to high level

of carotenoids. Altmann et al. (51) found that when Spirulina

replaces 50% of the soy protein in broiler diets, meat color could be

increased to be dark reddish-yellowish flesh. Similarly, Altmann

et al. (50) observed a more intensive color (higher red (a*) and

yellow (b*)) for breast and thigh meat as well as an increased

umami and chicken flavor were reported for broiler meat. 51

reported a positive effect of Spirulina on flavour breast filets

through decreasing the score of metallic flavor (off-flovor) of

breast meat, besides increasing pH value after 24 hours after

death that was associated with softness and tenderness of breast

filets. Feeding broiler chickens with Spirulina 15% for two, the

breast and thighs exhibited higher values of yellowness (b*)

compared to the control, as well as total carotenoids and

saturated fatty acids were increased, but levels of n-3

polyunsaturated fatty acids and a-tocopherol were reduced (32).

Neverthless, Park et al. (52) found that the quality of the breast

meat of broilers fed Spirulina diets (0.25, 0.5, 0.75, or 1.0%) for 35

days was not substantially altered while seven-day drip loss was

linearly reduced.
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Anti-pathogenic effects of
Spirulina platensis
Dietary spirulina have shown good response in several infections

in vivo in poultry (Table 1). A wide variety of influenza viruses,

including oseltamivir-resistant strains, were blocked by the cold-

water Spirulina extract from forming viral plaques. Inhibition of

influenza hemagglutination was revealed to be one of the ways by

which spirulina extract acts early in the course of infection to lower

viral production in cells and increase survival in influenza-infected

mice (58). The ethanol extract of Spirulina platensis had an antiviral

effect in vitro, decreasing the infectious units of adenovirus types 7,

Coxsackievirus B4, astrovirus types 1, rotavirus Wa strain, and

adenovirus types 40 by respective amounts of 53.3%, 66.7%, 76.7%,

56.7%, and 50% (59).

It was reported that a calcium-rich intracellular polysaccharide

called spirulan found in Spirulina platensis prevents multiple viruses

from replicating in vitro by preventing the virus’ entry into the

various host cells that are being utilized (60, 61), increases

macrophage nitric oxide synthesis and stimulates cytokine

production (62). Broiler hens infected with the H5N1 Avian

Influenza virus had cardiac necrosis, although 20% of spirulina had

no discernible effect on this. However, it boosted leukocytes

associated with an immune function, which prevented mortality vs

30% death in the non-supplemented group (41).

Regarding Newcastle disease, most investigations such as (53, 54)

found that Spirulina had an impact on viral challenge in birds that

had received live, attenuated, and/or inactivated vaccinations. As a

result, the effect of Spirulina supplementation was seen as an

immune-stimulating effect that dramatically improved clinical

protection against heterologous strains and the capacity to decrease

NDV shedding. In 2019, Kumari et al. discussed an indirect benefit of

spirulina on infectious bursal disease. The decreasing effect of

intermediate plus vaccine (hot strain given at the age of 17 days) on

serum total protein concentration was greatly reduced by spirulina

supplementation at 1.0% in feed from 10 to 20 days of age.

Cyanobacteria might be considered a suitable source for the

manufacturing of antimicrobial agents as purified antimicrobial

compound produced by S. platensis were more effective against

Gram positive, Gram negative, and C. albicans, a unicellular fungus.

Organic and aqueous extracts of S. platensis were tested in vitro and

demonstrated broad-spectrum antibacterial and antifungal action. 63

showed that the highest biological activity of them was against

Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and

Aspergillus niger. Compared to ethanol or aqueous extracts,

methanol extract exhibited superior antibacterial activity against all

tested bacterial strains (Gram positive bacteria, Gram negative

bacteria, and Candida sp.), particularly against Gram positive

bacteria (Staphylococcus aureus, Streptococcus pneumoniae,

Bacillus cereus, and Enterococcus faecalis). For the various strains

examined, the lowest inhibitory concentration value of ethanol and

methanol extract ranged between 5-100 mg/mL (64). Similarly,

compared to other extracts, the methanolic extract of Spirulina

showed a larger total phenolic content and more antibacterial

activity (65, 66).
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TABLE 1 Efficacy of Spirulina platensis (SP) supplementation in cases of various infectious diseases in poultry.

Algae/dose Route of
administration/

duration

Birds Vaccination/
Age

Infectious
challenge/
Age/dose/

route

Main results Reference

Avian Influenza

S. platensis 0%, 10%, 20% Drinking water/7th

day to 32nd day
Broiler
chickens

No vaccine Avian
Influenza
H5N1/26 days
old/0.1 ml
inoculum
containing 107

EID50/nose
drops

Myocardial necrosis did not
differ significantly from either
group.
Comparing SP 10% and 20%
to a control therapy without
it, more leukocytes were
produced.
20% SP showed no mortality,
but 0% and 10% spirulina
revealed 30% mortality.

(41)

New Castle disease

S. platensis 0, 0.5, 1, 1.5 and 2 g/kg of ration Feed at 7 days of
age

SPF
chickens

Commercial
inactivated
Newcastle
disease (ND)
vaccine at 21
days of age

NDV
genotype VII/
28 days post-
vaccination/
0.5 mL/bird
containing 106

EID50/
intramuscular
(I/M)

Compared to untreated
vaccinated hens, offered
adequate protection against
heterologous challenge virus
(90%, 100%, 100%, and
100%, respectively).
Compared to the untreated
group (46%), treated
vaccinated hens excreted
fewer viruses (55%, 65%,
76%, and 87%).

(53)

0, 1% of Microalgae (Scenedesmus obliquus,
Scenedesmus quadricauda, Ankistrodesmus,
Coelastrum microporum, Selenastrum, Oocystis
parva, Dictyosphaerium pulchellum, Coelastrum
reticulatum, Pediastrum gracillimum, Siderocells
elegans, Eudorina elegans, Clamydomonas
reinhardi and Micractinium pusillum (green algae
group), Euglena sp. (Euglenophyta), Oscillatoria
limnetica (blue-green algae group) and Nitzschia
linearis (diatoms group)

Feed (1st -40th day
of age)

Broiler
chickens

▪live NDV La
Sota strain by
oculo-nasal
route at 5th day
and/or
▪Inactivated
NDV genotype
II vaccine S/C
at 18th day

vvNDV
genotype
VIId/6-Log-10
EID50 given
0.5 ml/bird
via I/M at
28th day

The serological response,
viral shedding after viral
challenge, protection rate,
and body weight increase of
the chicken groups that
received either a microalgae-
free diet or one that included
microalgae were comparable.

(54)

Infectious bursal disease

Probiotic S. platensis
0, 1%

Feed (10th -20th

day)
chickens IBDV

intermediate
plus strain
vaccine (hot
strain)/17 days

– The adverse effects of the
IBD vaccine’s hot strain on
blood total protein and
albumin levels could be
slightly mitigated by SP
supplementation.

(55)

Salmonellosis

S. platensis at 0, 1, and 2 g/kg diet Feed (7th day–
experimental end)

quail – S. enteritidis/
orally/21st

day/1ml of
1.00x107)

SP dramatically increased IL-
10, antioxidant and serum
biochemical markers, and
growth performance.
It decreased the post-
challenge death rate from
23.33% in the untreated
group to 10% in the groups
who received both doses of
treatment and had
significantly lower clinical
symptoms.
It considerably decreased
organ colonization (liver,
heart, spleen, caecum).
The expression of the genes
for serum amyloid and the
pro-inflammatory IL-6, IL1 ß,

(56)

(Continued)
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Kaushik and Chauhan (67) reported that the minimum inhibitory

concentrations (MIC) of the methanol extract against S. aureus and E.

coli were 128 g/ml and 256 g/ml, respectively while it had no effect

was against Klebsiella pneumoniae. Nevertheless, Spirulina acetone

extract shown strong biological activity against Klebsiella

pneumoniae and modest activity against Salmonella typhi and

Pseudomonas aeruginosa (68). By using an ethanol extract of

Spirulina platensis, inhibitory zones against Enterococcus faecalis

and Candida albicans were seen using the disc diffusion technique

(59). The effectiveness of Spirulina’s antibacterial actions in vivo was

assessed by Abd El-Dayem et al. (56) as adding 1 and 2 g of spirulina

per kg of diet significantly increased growth performance, antioxidant

levels, and the production of the anti-inflammatory cytokine (IL-10)

while reducing organ colonization and gene expressions of IL-6, IL-

1ß, and TNF-a as compared to positive and negative control groups.

According to 69, pathogens use the same adhesion and invasion

mechanisms to invade the guts of both people and animals, and the

antibacterial action of spirulina might be attributed to its ability to

prevent pathogen motility, invasion, biofilm formation, and quorum

sensing. In addition, Spirulina’s bioactive ingredients have shown to

weaken bacterial cell walls making it more permeable, that

subsequently led to leakage of cytoplasmic contents (65).

Furthermore, when broilers were given the 10X Coccivac-B52

vaccine orally while being fed microalgae-derived feed components,

the intestinal integrity of the birds during coccidiosis was conserved,

and the jejunal villus height was protected as early as 7 days after the

challenge (57). However, the algal element changed the immune

response (splenic T cells) in a way that decreased recruitment from

secondary lymphoid organs (57).

Spirulina was also a powerful binder for aflatoxins in broiler

breeders (70). The negative effect of 300 ppb aflatoxin on broiler

chicken growth rate and lymphoid organ weights might be partially

mitigated by the addition of spirulina at a level of (0.05%) although
Frontiers in Immunology 07129
there was no positive impact on feed consumption, the serum protein

concentration, liver weights, or cholesterol levels (71). Likewise,

Spirulina inclusion (0.02%) in feed had positive effects on growth,

ready to cook yields, bursa weight, and cellular immune response in

chicks fed aflatoxin (300 ppb) although there was no effect of

Spirulina on feed intake, feed conversion efficiency, leg abnormality

scores, SRBC response, and weights of the liver, giblets, spleen, and

abdominal fat (72). Dietary inclusion of Spirulina is also

recommended to protect against other toxins as shown in Table 1.
Effects of Spirulina on the
managemental and nutritional
shortages
A crucial component of broiler productivity, especially with

the use of antibiotics being reduced, is immune system health.

Natural antibiotic alternatives and nutritional factors like crude

protein % are being studied to understand how they affect

immunity. The positive benefits of Spirulina in reversing the

management and nutrient deficits in poultry were displayed in

Table 2. A promising development for reducing feed costs without

compromising the health of the bird is the ability of natural feed

additives to counteract the negative effects that low crude protein

has on immunity in birds (74). Spirulina is an alternative protein-

containing component that manufacturers are considering

because of both its great nutritional value and its capacity to

strengthen the immune system. For instance, the addition of

spirulina to low protein chicken diets resulted in reduction of

systemic inflammation and bacterial translocation indicating its

suitability as a alternative protein source (73). Additionally, the

low crude protein (LCP) diet-Spirulina supplemented reversed the
TABLE 1 Continued

Algae/dose Route of
administration/

duration

Birds Vaccination/
Age

Infectious
challenge/
Age/dose/

route

Main results Reference

and TNF-a in the cecum was
considerably downregulated.

Coccidiosis

Microalgae-derived feed ingredients at 0.175% Feed up to 42 days
old

Ross
308
broilers

– 10X Coccivac-
B52 vaccine/
orally/at 14th

day of age

Birds fed algae shed 2.3 times
more oocysts than birds fed
the control diet.
Algal inclusion had no
impact on the rate of growth
and did not shield birds that
had been injected with
Eimeria from the
modifications that Eimeria
caused to their splenic T
cells.
However, algae significantly
protected jejunal villus height
as early as 7 day post
infection and maintained
intestinal integrity during
coccidiosis.

(57)
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TABLE 2 Efficacy of Spirulina platensis (SP) in cases of nutritional deficiencies and managemental defects in poultry.

Algae/dose route of
administration/

duration

Birds Nutritional or
managemental

defect

Main results Reference

Low protein diet

S. platensis at 0, 100
g/kg

Feed/14th -37th day
of age

Ross 708
male broiler
chickens

Low protein diet (LCP)
(17%) compared to basal
diet (21%)/14th -37th day of
age

SP decreased hepatic bacterial translocation brought on by a
LCP and systemic inflammation based on the percentage of
basophils. Birds were given the SP had significantly reduced
levels of circulating pro-inflammatory cytokines (IL-3, IL-6,
IL-4, IL-18, and tumour necrosis factor), chemokines (CCL-
20), and NOD-like receptor family pyrin domain containing
3 inflammasome than birds given the control diet.

(73)

S. platensis at 0, 100
g/kg

Feed/14th -37th day
of age

Ross 708
male broiler
chickens

LCP (17%) compared to
basal diet (21%)/14th -37th

day of age

The LCP-SP diet lessened the effects of the LCP diet,
resulting in levels and ratios of monocytes that were similar
to those of the control diet.

(74)

S. platensis at 0,
10%

Feed/15th day-35th

day of age
Ross 708
female
broiler
chickens

Low protein diet (LCP)
(17%)/15th day-35th day of
age compared to basal diet
(20%)/

Broilers fed SP in their diets saw considerably lower body
weight gain but considerably higher feed conversion ratio
compared to the other two treatments

(75)

Mycotoxins and other toxins

S. platensis at 0,
0.02%

Feed/10th day-45th

day of age
Commercial
Broiler
chickens

Aflatoxin (300 ppb)/10th

day-45th day of age
SP fed to chicks who had been exposed to aflatoxin had
positive benefits on their development, ready-to-cook yields,
bursa weight, and cellular immune response, but SP had no
impact on feed intake, feed conversion efficiency, leg
abnormality scores, SRBC reaction, or the weights of the
liver, giblets, spleen, or abdominal fat.

(72)

S. platensis at 0,
0.05%

Feed/8th day – 42nd

day of age
Commercial
Broiler
chickens

Aflatoxin 0, 300 ppb B1/8
th

-42nd day of age
SP slightly mitigated the adverse effects of aflatoxin on body
weight gain and the weights of the thymus and spleen, but
not on the weights of the liver and kidney, proteins in the
serum, or cholesterol.

(71)

S. platensis at 0 and
0.1%

Feed for three
periods of 21 days
each starting from
28th week.

Broiler
breeder hens

Aflatoxin 0, 300, 400 and
500 ppb for three periods,
each with duration of three
weeks in broiler breeders
from 28 to 36 weeks of age.

SP did not change the weights of the liver or the levels of
kidney, proventriculus, or gizzard lesions in groups that were
either fed alone or in conjunction with various amounts of
AF.

(70)

S. platensis at 20 g/
kg

Feed for 35 days Cobb broiler
chickens

-Deltamethrin/300 mg/kg
diet for 35 days

Deltamethrin levels in meat, skin, and liver were all
significantly lowered by SP, falling by 63.01, 63.00, and
62.90%, respectively. When compared to the group that got
Deltamethrin, Sp increased protein and significantly lowered
fat, cholesterol, and triglycerides.

(76)

S. platensis at 30, 60
and 120 mg/L

in drinking water
daily for 90 days
starting from day
15

Male
ducklings

Arsenic trioxide:100 mg/L
drinking water daily for 90
days

The not gained body weight in ducks was better in the
arsenic and SP-treated groups (4.08-11.26%) than in the
arsenic-only (14.93%).
The drop in Total Erythrocyte Count, Hb, and PCV was less
in the arsenic plus SP-treated groups than in the arsenic
treated groups.

(77)

S. platensis at dose
(10 gm/kg of diet)

in diet for two
weeks after
treatment
(therapeutic) or
before the
treatment
(preventive)

Broiler
chicks

Hepatotoxic effect of
diclofenac sodium: (2.5 mg/
kg.b.wt., i.m)/at 21 days of
age old for 3 days

In the preventative and treatment groups, the death rate
dropped from 64% in the control birds to 8% and 32%,
respectively.
Preventive treatment improved lower haematological
parameters, WBCs, absolute lymphocyte, eosinophil, and
monocyte counts as well as decreased AST, ALP, uric acid,
and cholesterol, as well as oxidative stress better than
therapeutic group.
Both SP-treated groups dramatically enhanced phagocytic
activity, phagocytic index, and HI antibody against NDV

(44)

Heat stress

S. platensis at 0, 0.5
and 1 g/kg diet

Feed from 4th week
– 14th week of age

Gimmizah
local
Egyptian
strain chicks

Chronic heat stress
condition (38°C ± 1; 55-
65% RH)/3 days per week
from 11.00 am to 15.00 pm/

Without affecting body weight gain or FCR, different
Spirulina concentrations dramatically reduced the negative
effects of heat stress on feed intake, the immune system, total
lipids, LDL, WBCs, RBCs, albumin, globulin, creatinine, and
liver enzymes (ALT, AST.

(78)

(Continued)
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effects of the LCP diet, causing the monocyte proportions and

concentrations in Ross 708 old male broilers to be similar

statistically to those of the control base diet (74). However,

compared to 20% crude protein without Spirulina, using a diet

of 17% crude protein with 10% S. platensis for Ross 708 broiler

females exhibited no detrimental effects on the health of broilers

but substantial reduction in body weight in supplemented group

led to economoic losses (75).

Dietary supplementation of S. platensis in broiler hens has shown

to alleviate the adverse effects of high ambient temperature, including

impaired enzymatic antioxidant system, raised stress hormone, and

altered lipid profile (84). There was a dose-related modification of

productivity, physiological, and immunological parameters when

chickens under heat stress were given Spirulina in drinking water

or feed (78, 82). Additionally, in ovo injection of S. platensis improved

the broiler embryo’s ability to tolerate heat in the last days of

incubation (22).
Frontiers in Immunology 09131
Limitations of Spirulina as a
feed additive and future directions
for its use

Spirulina as a feed additive can have implications for productivity

and end product quality, depending on the system of animal

production. Both swine growth performance and product quality

were not negatively affected in response to dietary supplementation

with spirulina which might be attributed to lower protein requirements

in finishing diets. However, Spirulina negatively affected chicken and

fish production performance besides altering product quality,

particularly meat color, according to the consumer’s opinions (85).

One of major challenges regarding use of Spirulina as a feed addtitve at

high level is that the gelation of its indigestible proteins causing birds to

perform worse due to the increased digesta viscosity (32). Therefore the

golden standard level of Spirulina inclusion into the feed should be
TABLE 2 Continued

Algae/dose route of
administration/

duration

Birds Nutritional or
managemental

defect

Main results Reference

(4 weeks of
age)

from 4th week – 14th week
of age

S. platensis at 0, 0.5
and 1%

Feed from 17th day
to 45th day of age

Cobb 500
Broiler
chickens

Heat stress (36°C for 6 h/d)
from 38th to 44th day of age

Spirulina supplementation increased humoral immunity
response and elevated antioxidant status while decreasing
concentrations of stress hormone and several serum lipid
markers.
However, it had no appreciable impact on performance
traits.

(79)

S. platensis at 0, 0.1,
0.3, and 0.5%

Feed for 6 weeks laying
Japanese
quails (98
days old)

Heat stress (8h of 34 ± 1°C;
60-70% RH) for 6 days

Different Spirulina concentrations had no appreciable impact
on feed intake, FCR, egg weight, and hen day egg production
percentage.
The lowest ileal E. coli count, blood MDA, heterophil, and
H/L ratio was obtained significantly by SP at 0.5%.

(80)

S. platensis at 0, 0.5,
1 or 1.5%.

Feed from 21st day
to 42nd day of age

Cobb-500
broiler
chicks

Cyclic heat stress (34 ± 1°C
for 8 h per day)

SP reduced the deleterious effects of heat stress on the final
average daily increase, body weight, and FCR, with the
chickens given 1% Spirulina showing the highest results.
SP raised Hb, hematocrit and HDL levels and markedly
reduced LDL and lipid peroxidation levels compared to
stressed non-supplemented group.
SP 0.5 or 1% enhanced carcass dressing, breast, and leg %

(81)

S. platensis at 5, 10,
15 and 20 g/L

Drinking water/in
the morning
(06:00–12:00 PM)
for 6 weeks

White
broilers

The experiment was
conducted using a deep
litter rearing system during
the hot, humid summer
months (for 6 weeks)

It had neither negative nor positive effects on the
performance of broilers but had a considerable impact on
Hb, RBCs, and shank pigmentation.
SP by 15 and 20 g/L raised blood protein concentration and
reduced serum fat content and transaminases.
SP by 20 g/L significantly improved humoral immunity
against ND vaccination and cell-mediated immunity to
phytohemagglutinin-P.

(82)

S. platensis at levels
of 0, 5, and 10 g kg-
1 individually and
in combination with
selenium
nanoparticles
(SeNPs) at 0, 0.1,
and 0.2 mg.kg-1

Feed for 5 weeks Ross-308
broiler
chicks

Heat stress (34 ± 2°C for
24 h for first 14 days. Then,
34 ± 2°C for 12 h (from
9:00 to 18:00) for three
consecutive days a week
and then 25 ± 2°C during
the remaining experimental
period).

Significant improvements were made in growth performance,
blood lipid profile, carcass dressing, and carcass yield
percentages thanks to SP and SeNPs combinations.
Both supplements induced greater levels of the IgG, IgM, and
IgA and rose antibody titers to IBD, AI, and ND
quantitatively compared to the control group.
All groups, except SP 5g, had elevated levels of glutathione
peroxidase, superoxide dismutase, and blood
triiodothyronine.
The greatest favourable effects were obtained by SP 5g plus
SeNPs 0.2 mg kg-1 and SP 10 g plus SeNPs 0.1 mg kg-1.

(83)
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highlighted and interpreted to be applied in the field. In addition, trials

to increase digistability of Spirulina should be rescearced. Another

major challenge regarding use of Spirulina as a feed addtitve is its quite

higher cost compared to other protein ingredients such as soybean meal

(58, 86). However, improving production efficiency and using waste

streams as culture media, spirulina could replace fishmeal by becoming

competitive for fish feed due to higher cost of fishmeal (86). Second

major challenge with spirulina is limitation of its large scale production

as presently it is produced at a smaller scale primarily for the nutritional

supplement sector with few exceptions (58). Third challenge is with

sustainable production of spirulina as compared to the other protein

ingredients like soybean which is mainly attributed to the sensitivity of

spirulina to the production system and regional climate (87). Therefore

serious research and development efforts are required to improve yield

of spriulina and make its production more sustainable. For example

some research initiative targeted to improve sustainability of

production by using biogas effluent (88) or wastewater (89) as

production media. Additionally, waste heat sources (e.g. heat

produced during biogas production) can be integrated as spirulina

requires warm temperature (35–37°C) for cultivation (5, 90).

Consequently, above mentioned challenges could be overcomed by

upscaling and optimizing production of spirulina. Moreover, advanced

techniques can also fascilitate improvement in yield and protein quality

of spirulina through breeding and Finally, although spirulina has a high

proportion of crude protein, improvements to protein quality could be

possible through breeding and nutrition/production research (91).

Therefore, future research focused on sustainable production and

product processing and acceptance should investigate the trade-offs

of incorporating spirulina into poultry diets.
Conclusion

Bioactive metabolites are abundant in natural products and have

been used for their medicinal properties. Spirulina that was regarded

as a blue-green filamentous algae with a spiral shape, it has been

identified as a genus of photosynthetic bacteria (Arthrospira) more

recently. It is a highly nutritious and antioxidant natural product and

having the ability to improve production performance either growth,

hatchability, or egg production. The cell-mediated and humoral

immune response as well as antimicrobial activities of spirulina

promoted disease resistance and improved survival and growth

rates in chicken. However, further studies on optimum dose of

Spirulina for different poultry species, age groups, and production
Frontiers in Immunology 10132
systems as well as the type of used Spirulina extract, organic or

aqueous are required.
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Transcriptomics and
metabolomics analysis reveal
the anti-oxidation and immune
boosting effects of mulberry
leaves in growing mutton sheep

Xiaopeng Cui, Yuxin Yang, Minjuan Zhang, Shuang Liu,
Hexin Wang, Feng Jiao, Lijun Bao, Ziwei Lin, Xinlan Wei,
Wei Qian, Xiang Shi, Chao Su* and Yonghua Qian*

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
Introduction: Currently, the anti-oxidation of active ingredients in mulberry

leaves (MLs) and their forageutilization is receiving increasing attention.Here,we

propose that MLs supplementation improves oxidative resistance and immunity.

Methods: We conducted a trial including three groups of growing mutton

sheep, each receiving fermented mulberry leaves (FMLs) feeding, dried

mulberry leaves (DMLs) feeding or normal control feeding without MLs.

Results: Transcriptomic and metabolomic analyses revealed that promoting

anti-oxidation and enhancing disease resistance ofMLs is attributed to improved

tryptophan metabolic pathways and reduced peroxidation of polyunsaturated

fatty acids (PUFAs). Furthermore, immunity was markedly increased after FMLs

treatment by regulating glycolysis and mannose-6-phosphate pathways.

Additionally, there was better average daily gain in the MLs treatment groups.

Conclusion: These findings provide new insights for understanding the

beneficial effects of MLs in animal husbandry and provide a theoretical support

for extensive application of MLs in improving nutrition and health care values.

KEYWORDS

mulberry leaves, anti-oxidation, peroxidation of polyunsaturated fatty acids,

tryptophan metabolism, immunity, glycolysis
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Introduction

Currently, a number of medicinal plants are widely used as

functional foods and alternative medicine to prevent and treat

chronic diseases (1). This is due to the numerous bioactive

components with anti-oxidant capabilities, such as phenolic

compounds and flavonoids (2), which may help improve

immunity by coordinating the metabolism of the body.

Mulberry leaves (MLs) have been used as feed for silk worms

for hundreds of years and also as a traditional Chinese medicine,

according to the classical medicine books. Owing to their anti-

oxidative, anti-inflammatory, anti-bacterial, and anti-

hyperlipidemic properties, mulberry leaves are gaining

increasing attention for use in Chinese herbal medicines (3).

To date, the hypoglycemic and lipid-lowering effects of extracts

or active ingredients in MLs are well established, against

diabetes, fatty liver, and some similar diseases related to

disorders in glucose and lipid metabolism. In addition,

accumulating evidence have validated the promotion of

growth and rumen development, anti-oxidant properties, and

improvement in milk production by MLs or their active

ingredients in livestock (3–6). However, the underlying

mechanism of MLs, as an unconventional feed with both

nutritive and medicinal properties, on anti-oxidation and

immunity in livestock remains poorly understood. In recent

years, an explosion has occurred in the acquisition of biological

data through the use of so-called ‘omics’ techniques. Whilst

many different omics technologies are now featured in the

literature, the most frequently used omics are genomics,

transcriptomics, proteomics and metabolomics (7). Thus, the

aim of the present study was to evaluate the roles of MLs in

growth promoting and animal welfare improving aspects of

mutton sheep in terms of antioxidant and immune properties

and explore the mechanism by methods of transcriptomic and

metabolomic.Our study provides novel insights into the role of

MLs in livestock yield and the application of natural

functional fodder.
Materials and methods

The experiment was conducted in accordance with the

Chinese Guidelines for Animal Welfare and Experimental

Protocols, and approved by the Animal Care and Use

Committee of the Institute of Northwest A & F University.
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Preparation and chemical indexes
measurement of fermented mulberry
leaves and dried mulberry leaves

MLs (species 707) are harvested in July 2021 at the Institute

of Sericulture and Silk in Zhouzhi, Shaanxi Province, China. One

half is sun-dried for seven days, next well-sealed in woven bags

after a little rubbing and then stored in a dry, dark place for

acquiring DMLs for use in feeding experiment. The other half

with 65.03%moisture content after wilted by sun-shine for a half

day, is a little smashed and vacuum sealed in fermentation-

special bags to ferment with 5% Lactobacillus plantarum

inoculation at room temperature (27.5-28°C) for thirty days in

a dry, dark place for preparation for FMLs. Here 5% is adding 5

mL of bacterial culture suspension to 100 grams of MLs and the

concentration of bacterial culture suspension is 1×108 CFU/mL.

Lactobacillus plantarum (CICC 23941) purchased from the

China Center of Industrial Culture Collection (www.china-

cicc.org). Before feeding experiments, the pH, crude protein,

crude fiber as well as gross energy of FMLs and DMLs are

determined according to standard methods of AOAC. And their

contents are shown in Table 1. FMLs are deemed qualified

without aflatoxin B1 detected at a minimum checked value of

0.1 mg/kg by Huayan Testing Group Co., Ltd in Xi’an City,

Shaanxi Province (Detection number: SP202115450).
Experimental design and feeding diets

Animal experiments are conducted on six-month-old

healthy female mutton sheep (white-headed Suffolk

sheep♂×Hu sheep♀) weighing 30.41kg at average without

genetic modification in Gansu Qinghuan Meat Sheep Seed

Production Co. Ltd (Huan County, Qingyang City, Gansu

Province, China). The animals were randomly assigned to

group Con feeding a normal control diet (n=18), group TR1

feeding an experimental diet with FMLs (n=18) and group TR2

feeding an experimental diet with DMLs (n=18) and then treated

for an experiment of fifty days. Each group had 6 replicates with

3 sheep per replicate. Before the feeding experiment, animals

undergo an acclimatization period of six days to obtain an

appropriate feed intake, during which they were allowed

unlimited access to their corresponding experimental diet and

tap water. Experimental sheep were housed in sheepfold and

given self-help feeding in three groups every day. The
TABLE 1 Chemical composition of FMLs and DMLs.

Items DM loss/% pH Crude protein/% Crude fiber/% Gross energy/(MJ/kg)

FMLs 4.6 3.98 14.69 8.35 15.92

DMLs 6.20 15.15 9.72 14.28
FMLs, fermented mulberry leaves; DMLs, dried mulberry leaves.
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ingredients and chemical composition of three experimental

diets are shown in Table 2. The chemical compositions of

three experimental diets are determined by Ulanqab Yima

Agriculture and Animal Husbandry Technology Co., Ltd

(Ulanqab City, Inner Mongolia, China).
Weighing and sample collection

Prior to the experiments, all sheep are driven to be weighed

by an automatic weighing system to obtain the initial body

weights. Afterwards, body weights on day 25th and 50th are

weighted to calculate daily gains. On the 50th day, blood from

the jugular vein was collected and placed in 5mL vacuum

negative-pressure tubes with yellow cap containing separation

gels for serum separation and then leave to set for one to two

hours to collect rough 2.5mL serum, which is immediately stored

in liquid nitrogen and taken to the lab for further analysis. At the

end of the experimental period, 6 sheep per group which were

representative in terms of average weight (inclusion criteria) of

group were selected and slaughtered for tissue sample collection.

Tissue samples (about 0.5×0.5×0.5cm3) of longissimus dorsi

muscle and subcutaneous fat from the left side of the carcass
Frontiers in Immunology 03
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are packed into 2 mL cryopreserved tube and frozen in liquid

nitrogen immediately within 20 min of slaughter for biochemical

indexes and omics analysis. Weighting samples contain 18

biological repeats of each group.
Analysis of biochemical indexes

Growth hormone (GH), total antioxidant capacity (TAOC),

superoxide dismutase (SOD), catalase (CAT), glutathione

peroxidase (GSH-Px) and malondialdehyde (MDA) are

determined using commercially available kits (HY-60021, HY-

60001, HY-M0018, HY-60005, HY-60003; Beijing Huaying

Biotechnology Research Institute, Beijing, China). Serum

immunoglobulin A, M, G (IgA, IgM, IgG) and tumor necrosis

factor (TNFa) were determined by commercially available kits

(HY-N0048, HY-N0049, HY-N0050, HY-H0019; Beijing

Huaying Institute of Biotechnology Research Institute, Beijing,

China). Immunoglobulin (IG) is the sum of immunoglobulins

IgA, IgM and IgG. Muscle tissue samples contain 5 biological

repeats (group Con), 6 biological repeats (group TR2) and 5

biological repeats (group TR2), respectively. Adipose tissue

samples contain 5 biological repeats (group Con), 5 biological
TABLE 2 Ingredients and chemical composition of three experimental diets.

Items Con TR1 TR2

Ingredients

DMLs/% 0 0 7.11

FMLs/% 0 16.59 0

Oat hay/% 12.43 24.88 17.77

Corn silage/% 29.00 8.29 24.88

Corn/% 19.34 16.59 16.59

Wheat/% 20.72 17.77 17.77

Concentrate/% 17.68 15.17 15.17

Limestone/% 0.83 0.71 0.71

Total/% 100 100 100

Nutrients (based on dry matter)

Dry matter/% 72.50 66.10 66.40

Crude protein/% 16.40 16.70 16.60

Metabolizable Energy/(MJ/kg) 10.46 10.63 10.30

Crude fat/% 3.00 3.40 3.00

Crude ash/% 9.58 9.24 10.59

Acid detergent fiber/% 16.80 17.50 15.30

Neutral detergent fiber/% 27.80 28.47 25.76

Lignin/% 4.30 4.40 4.80
frontier
sin.org

https://doi.org/10.3389/fimmu.2022.1088850
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cui et al. 10.3389/fimmu.2022.1088850
repeats (group TR2) and 5 biological repeats (group TR2),

respectively. Serum samples contain 8 biological repeats

(group Con), 7 biological repeats (group TR2) and 8 biological

repeats (group TR2), respectively. Technical repetition is no less

than 2 for all samples. No data point from the analysis

is excluded.
Widely target metabolomics analysis

Tissue samples of muscle are extracted by Metware

according to standard procedures. The sample extracts were

analyzed using an LC-ESI-MS/MS system (UPLC, ExionLC AD,

https://sciex.com.cn/; MS, QTRAP® System, https://sciex.com/).

LIT and triple quadrupole (QQQ) scans were acquired on a

triple quadrupole-linear ion trap mass spectrometer (QTRAP),

QTRAP® LC-MS/MS System, equipped with an ESI Turbo Ion-

Spray interface, operating in positive and negative ion mode and

controlled by Analyst 1.6.3 software (Sciex). Instrument tuning

and mass calibration were performed with 10 and 100 mmol/L

polypropylene glycol solutions in QQQ and LIT modes,

respectively. A specific set of MRM transitions were monitored

for each period according to the metabolites eluted within this

period. Significantly regulated metabolites between groups were

determined by variable importance in projection (VIP)≥1 and

absolute Log2FC (fold change)≥1. VIP values were extracted

from OPLS-DA result, which also contain score plots and

permutation plots, was generated using R package

MetaboAnalystR. The data was log transform (log2) and mean

centering before OPLS-DA. In order to avoid overfitting, a

permutation test (200 permutations) was performed.
Transcriptomic analysis

RNA-extract and RNA-seq of muscle are conducted

according to standard procedures of Majorbio with the

Illumina HiSeq xten/NovaSeq 6000 sequencer (2×150bp read

length). The raw paired end reads were trimmed and quality

controlled by SeqPrep (https://github.com/jstjohn/SeqPrep) and

Sickle (https://github.com/najoshi/sickle) with default

parameters. Then clean reads were separately aligned to

reference genome with orientation mode using HISAT2

(http://ccb.jhu.edu/software/hisat2/index.shtml) software (8).

The mapped reads of each sample were assembled by

StringTie (https://ccb.jhu.edu/software/stringtie/index.shtml?t=

example) in a reference-based approach (9). To identify DEGs

(differential expression genes) between two different samples,

the expression level of each transcript was calculated according

to the transcripts per million reads (TPM) method. RSEM

(http://deweylab.biostat.wisc.edu/rsem/) (10) was used to

quantify gene abundances. Essentially, differential expression

analysis was performed using the DESeq2 (11)/DEGseq
Frontiers in Immunology 04
138
(12)/EdgeR (13) with Q value ≤ 0.05, DEGs with |log2FC|>1

and Q value ≤ 0.05(DESeq2 or EdgeR)/Q value ≤ 0.001(DEGseq)

were considered to be significantly different expressed genes. The

transcriptomic sequence data have been deposited in the NCBI

database (Accession No. PRJNA898816).
Statistical analysis

Statistical analysis was performed by the SPSS 19.0 software

(IBM-SPSS Statistics, IBM Corp., Armonk, NY, United States).

Data were evaluated using a one-way ANOVA followed by

Turkey’s multiple range tests for physiological and biochemical

indexes. Significance was declared if p<0.05. Additionally, omics

sequencing data are analyzed using online platforms for data

analysis, including Metware cloud tools (https://cloud.metware.

cn/#/tools/tool-list) and Majorbio cloud platform (https://cloud.

majorbio.com/). Histograms and metabolic pathway maps are

drawn respectively using Graphpad Prism 8 and Adobe

Illustrator CS6.
Results

Growth performance

Throughout the trial, no significant differences were detected

in daily gain (0–25d) (Con<TR2<TR1) and feed to gain ratio (F/

G) (Con>TR2>TR1) (p>0.05, Table 3), although group TR1

which were fed with FMLs demonstrated a little increase in daily

gain (0–25d) and a slight decrease in F/G. Apparently,

treatments with FMLs and DMLs (group TR2) generated an

obvious increase in ADFI during the overall raising period

(p<0.05), which suggests MLs are a delicious feed for

promotion. In addition, ADG, daily gain (25–50d) and serum

growth hormone levels were significantly improved in both

MLs-treatment groups (p<0.05) in the study. Further, FMLs

feeding resulted in a significant increase in the final body

weight (p<0.05).
Anti-oxidant properties

As shown in Table 4, SOD (superoxide dismutase), CAT

(catalase), GSH-Px (glutathione peroxidase) and TAOC (total

antioxidant activity) in serum and muscle were significantly

increased in the MLs treatment group, especially in the FMLs

treatment group (p<0.05); SOD and GSH-Px in adipose tissue

also increased significantly (p<0.05), CAT and TAOC tended to

increase (Con<TR2<TR1, p>0.05). In addition, feeding MLs

significantly decreased the content of MDA in serum and

muscle of mutton sheep (p<0.05), the content of MDA in

adipose tissue was Con>TR2>TR1 (p>0.05).
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To further explore how MLs cause a differences in

promoting oxidation resistance, muscle widely target

metabolomics was applied. A total 43 significant differential

metabolites (DEMs), including 19 upregulated and 24

downregulated DEMs after FMLs treatment, were filtered

according to the criteria that the metabolite contents were
Frontiers in Immunology 05
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within FC≥2 or FC ≤ 0.5, and VIP≥1 (Figure 1A). On this

basis, the p-value is listed ascending order and absolute value of

log2FC is listed in descending order of 43 DEMs to further

obtain the leading 20 DEMs, shown in Figure 1B. These top-

ranking DEMs were mainly involved in lipid, carbohydrate,

amino acid, and organic acid metabolism. As the heatmap
TABLE 4 Anti-oxidant properties of serum, muscle and adipose tissues.

Items Con TR1 TR2 SEM P-value

Serum

SOD 58.72c 77.94a 66.56b 2.021 0.000

CAT 32.80c 58.95a 45.22b 2.489 0.000

GSH-PX 358.13c 543.05a 476.41b 17.737 0.000

TAOC 7.37c 10.84a 8.49b 0.366 0.000

MDA 5.09a 4.05b 4.60ab 0.150 0.013

Muscle

SOD 5.55c 9.64a 7.67b 0.475 0.000

CAT 2.37c 4.49a 3.56b 0.241 0.000

GSH-PX 23.12c 31.81a 27.35b 1.029 0.000

TAOC 3.18c 5.10a 4.47b 0.226 0.000

MDA 4.33a 3.31b 3.98a 0.134 0.001

Adipose

SOD 2.18c 5.23a 3.58b 0.371 0.000

CAT 0.72 1.68 0.98 0.201 0.126

GSH-PX 6.01c 11.17a 8.20b 0.691 0.003

TAOC 0.98 2.05 1.26 0.254 0.212

MDA 1.32 1.17 1.00 0.185 0.809
fron
SOD, superoxide dismutase; CAT, catalase; GSH-PX, glutathione peroxidase; TAOC, total antioxidant capacity; MDA, malonaldehyde; muscle, longissimus dorsi, adipose, subcutaneous fat.
Different letters in the same row (a–c) differed (p<0.05).
TABLE 3 Growth performance.

Items Con TR1 TR2 SEM P-value

Initial BW/kg 30.36 30.36 30.50 0.589 0.994

Final BW/kg 38.03b 42.05a 40.86ab 0.696 0.050

ADFI/kg 1.79b 2.31a 2.35a 0.033 0.000

Daily gain (0-25d)/g 95.56 125.56 97.64 6.999 0.145

Daily gain (25-50d)/g 211.11b 342.22a 317.64a 16.330 0.001

ADG (0-50d)/g 156.11b 233.89a 205.56a 7.876 0.001

F/G 13.38 10.26 11.79 1.026 0.483

GH 4.81c 5.84b 7.28a 0.265 0.000
BW, body weight; ADFI, average daily feed intake; ADG, average daily gain; F/G, ADFI/ADG; GH, growth hormone; SEM, standard error mean; Different letters in the same row (a–c)
differed (p<0.05).
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shows, anti-oxidant properties were negatively correlated (dark

blue) with products of lipid metabolism (8-iso Prostaglandin

F2a, 11b-Prostaglandin F2a, 8-iso Prostaglandin F2b, (±)8-
HETE, 13-HOTrE, Carnitine C8:1), and were positively

correlated (dark red) with D-Glucose 6-Phosphate, D-Fructose

6-Phosphate-Disodium Salt, D-Fructose-1,6-Biphosphate-

Trisodium Salt, and D-Mannose 6-phosphate, which are

related to carbohydrate metabolism (Figure 1C). This suggests

that lipid metabolism and carbohydrate metabolism in FMLs

treatment regulate the anti-oxidant process. More importantly,

the correlation analysis suggests that the increased expression of

5-Hydroxy-L-Tryptophan and indoleacrylic acid produced by

tryptophan metabolism may play crucial roles in anti-oxidant

regulation. Figure 2A exhibited the DEMs from Con vs. TR2,

including 16 upregulated and 39 downregulated, 55 in total

DEMs, based on the same screening criteria as FMLs treatment.

Similarly, the top-ranking 20 DEMs in Figure 2B obtained in the

same method, are also mainly involved in lipid metabolism (8-

iso Prostaglandin F2a , 11b-Prostaglandin F2a, 8-iso

Prostaglandin F2b, 13-HOTrE, Carnitine C8:1), carbohydrate

metabolism (D-Mannose 6-phosphate, D-Glucose 6-Phosphate,
Frontiers in Immunology 06
140
D-Fructose 6-Phosphate-Disodium Salt), amino acid

metabolism and organic acid metabolism. However, few

correlation relationships (yellow in Figure 2C) between

carbohydrate metabolism and anti-oxidant properties in

heatmap analysis show that DMLs supplementation might

slightly, or not facilitate oxidation resistance by regulating

carbohydrate metabolism.

Considering the 20 DEMs and antioxidant performance

indexes between Con vs. TR1 and Con vs. TR2, It is not too

difficult to discover the importance of lipid metabolism,

especially the peroxidation of polyunsaturated fatty acids

(PUFAs), amino acid metabolism (mainly tryptophan

metabolism) for MLs treatment, and carbohydrate metabolism

(mainly glycolysis and mannose 6-phosphate pathway) only for

FMLs treatment in promoting oxidation resistance. The

tryptophan metabolism and peroxidation of PUFAs could be

promising MLs-dependent biomarkers of the anti-oxidant

metabolism pathway. Indoleacrylic acid and 5-hydroxy

tryptophan (5-HTP) obtained from the two routes of

tryptophan metabolism (Figure 3) were significantly

upregulated. Indolelactic acid, an upstream metabolite of
A B

C

FIGURE 1

DEMs from Con vs. TR1. Upregulated, downregulated and total numbers of DEMs from Con vs. TR1 (A), the 20 leading DEMs from Con vs. TR1
(B), a correlation heat map between the 20 leading DEMs from Con vs. TR1 and their indexes of antioxidant performance (C).
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indoleacrylic acid, was also significantly increased in FMLs

treatment (p=0.015). Moreover, the markedly decreased 8-

HETE, 13-HOTrE, 8- i so Prostag landin F2a , 11b-
Prostaglandin F2a, and 8-iso prostaglandin F2b levels and

increased carnitine C8:1 are present after MLs treatment.

Transcriptome analysis was performed to further verify that

reducing the peroxidation of PUFAs could indeed promote

oxidation resistance. All filtered sequenced genes were used for

weighted gene co-expression network analysis (WGCNA)

analysis. Correlation analysis of different module genes and

grouping factors and six DEMs related to PUFAs metabolism

(8-iso Prostaglandin F2a, 11b-Prostaglandin F2a, 8-iso

Prostaglandin F2b, (±)8-HETE, 13-HOTrE, carnitine C8:1) are

shown in Figure 4A. Three module genes (underlined module in

red in the Figure 4A) with almost the same correlation with the

grouping factors and DEMs were integrated for further analysis.

Subsequently, 14 target DEGs were obtained from the integrated

genes with two criteria that their p-value must be less than 0.05,

and absolute log2FC (Con vs. TR1) value must be not less than 1.

Subsequently, they were gathered with six DEMs for network
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map analysis (Figure 4B). The relative expression levels of these

14 target DEGs in the three groups are shown in Figure 4C.

Relative expression levels of GCNT1, IFITM10, EXTL1, RILP,

BBC3, RAB9A,MOB3B, SESN1, CDH4,MEIS1, RAB9A,NUDT7,

FMO2 and NUDT7 was decreased siginificantly (p<0.05).
Immune response

Serum immuno globulin G (IgG) and total immuno globulin

(Ig) levels increased in the FMLs (p<0.05) remarkably and DMLs

fed groups (p>0.05). The pro-inflammatory tumor necrosis

factor-a (TNF-a) was dramatically reduced by both MLs

treatments (Figure 5A) (p<0.05). However there is a distinctive

decrease in immuno globulin M (IgM) following FMLs

treatment (p<0.05). The decreased IgM following FMLs

treatment is related to a transition in antibody class from IgM

to IgG, over the course of an immune response (14) (Figure 5B).

As reported by Wu et al. (15), muscles support a strong

immune response. To validate the promotion of the immune
A B

C

FIGURE 2

DEMs from Con vs. TR2. Upregulated, downregulated and total numbers of DEMs from Con vs. TR2 (A), the 20 leading DEMs from Con vs. TR2
(B), a correlation heat map between the 20 leading DEMs from Con vs. TR2 and their indexes of antioxidant performance (C).
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process of FMLs, all DEGs of FMLs treatment in muscle

analyzed by transcriptomics were applied for enrichment

analysis, and the top eight KEGG pathways are represented in

a histogram (Figure 5C). The four leading enriched pathways

(arrow’s place in Figure 5C) are closely related to apoptosis and

immune processes. Subsequently, a total of six annotated DEGs

from the leading four pathways and immune indices were

combined to analyze the relevance and a clear relationship was

shown in the circular map (Figure 5D). After MLs treatment, the

relative expressions of the DEGs, including DOCK2, BBC3,

MYO10, PIK3R3, PLA2G4D, GADD45A, were markedly

altered (Figure 5E).

Previously, we found that FMLs improves carbohydrate

metabolism, and glycolysis is one of the key processes. It has

been found that it can provide biosynthetic intermediates and

reducing power for the growth and proliferation of immune

cells. MLs treatments raise levels of glucose, the central substrate

of glycolysis and FMLs supplementation significantly increases

the contents of glucose-6-P, glyceraldehyde-3-P (p<0.05) and

almost significantly increases fructose-6-P (p=0.054) (Figure 6).

Additionally, there are significantly increased D-mannose in

DMLs treatment (p<0.05) and mannose-6-P in FMLs treatment
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(p<0.05) (Figure 6). These two are both derived from mannose-

6-P pathway.
Discussion

Numerous studies have shown the diverse growth-

promoting effects of MLs (4, 16). Our study also proves this

point. In addition, this study also found that FMLs are superior

to FMLs in palatability and growth promotion, which is a rare

feed additive, and its application prospects in animal husbandry

production appear considerable.
Anti-oxidation activity

Oxidation in biological systems ismainlymediated by a series of

redox enzymes. Peroxidation caused by free radical chain reactions

may lead to oxidative stress (17). SOD, CAT and GSH-Px are

common enzymatic antioxidants. SOD can convert free radicals

(O2−•) generated in the body’s peroxidation reaction into H2O2

(18), and H2O2 can then be converted into H2O by CAT and GSH-
FIGURE 3

Peroxidation of PUFAs and tryptophan metabolism. Elevated metabolites are highlighted in red, reduced metabolites are shown in blue; the
contents of painted green or red metabolites from top 20 DEMs and antioxidant biochemical indexes are displayed in heat map (*p<0.05,
**p<0.01, * and ** are TR1 or TR2 compared to Con). (MLs, mulberry leaves; FMLs, fermented mulberry leaves; DMLs, dried mulberry leaves; LP,
Lactobacillus plantarum; LAB, lactic acid bacteria; PUFA, polyunsaturated fatty acids; ALA, a linolenic acid; ARA, arachidonic Acid; CPT1/CPT2,
carnitine palmitoyltransferase 1/2; NFA, medium-chain fatty acid; 5-HTP, 5-hydroxytryptophan; 5-HT, serotonin; AAAD, aromatic amino acid
decarboxylase; TPH1/2, tryptophan hydroxylase 1/2).
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Px to reduce the damage resulting from free radical to the body

and improve antioxidant performance. MDA is one of

the representative end products under non-enzymatic lipid

peroxidation, indicating the extent of lipid peroxidation (19).

Meanwhile, MDA is also an important indicator of membrane

damage and body aging, and one of the toxic substances produced

by the increase of ROS (20). The increase of SOD, CAT, GSH-Px,

TAOC and the decrease of MDA in this study all indicate that MLs

can improve the antioxidant performance of the body, which is

consistent with the results of previous studies (3, 21–23). The reason

is that MLs are rich in bioactive ingredients. In addition, this study

also found that FMLs have the strongest antioxidant properties,

mainly because of their higher active ingredients than DMLs (24).

Indoleacrylic acid derived from tryptophan metabolism, has

been shown to have significant anti-inflammatory effects in vitro

and vivo (25) and also have beneficial effects on the intestinal

epithelial barrier function (26). Indolelactic acid, an upstream

metabolite of indoleacrylic acid has been shown to possess

antimicrobial, anti-oxidative, anti-inflammatory activities (26, 27)

and can potentially modulate immune function (28). L-5-

hydroxytryptophan (5-HTP) is a monoamine neurotransmitter

involved in the modulation of mood, cognition, reward, learning,
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memory, sleep, and numerous other physiological processes (29),

and can also suppress inflammation and arthritis by decreasing the

production of pro-inflammatory mediators (30). Overall, MLs,

especially FMLs, must endow anti-bacterial, anti-oxidant, anti-

inflammation, and immunity-enhancing properties via

tryptophan metabolism.

L ino l e i c a c i d (LA) , a r ach idon i c a c i d (ARA) ,

eicosapentaenoic acid (EPA) and a-linolenic acid (ALA) are

representative of the main PUFAs, and the major metabolic

pathways of peroxidation described in mammals are both

enzymatic (cyclooxygenase, COX; lipoxygenase, LOX;

cytochrome P450, CYP) and non-enzymatic (31) oxidation. 8-

HETE and 13-HOTrE are all oxylipins, a group of oxidized

metabolites derived from PUFAs (32). Generally, the synthesis

of oxylipins fluctuates with the changes of physiological or

pathological states (33).13-HOTrE is derived from ALA via

the COX enzymatic pathway. Studies have revealed that 13-

HOTrE levels are significantly increased in some diseases (34,

35), such as acute liver injury. Therefore, it is generally thought

to be a proinflammatory factor. HETEs are derived from ARA

through COX catalysis. Hayashi et al. (36) reported that several

ARA-derived (18-HETE/20-HETE) and ALA-derived (13-
A B

C

FIGURE 4

DEGs related with peroxidation of PUFAs. Module analysis of DEMs related with PUFAs metabolism and all filtered genes (Underlined modules
in red represent selective modules; A, carnitine C8:1; B, 8-iso-prostaglandin F2a; C, 11b-prostaglandin F2a; D, 8-iso-prostaglandin F2b; E, (±)
8-HETE; F, 13-HOTrE) (A), network map analysis of selective twelve DEGs and DEMs related with PUFAs metabolism (circle size represents
absolute log2FC (Con vs TR1) value; blue, red and green divisions in every circle are on behalf of contents of some DEGs or DEMs in Con, TR1,
TR2 in turn; The thickness of the connecting wire represents the degree of connectivity) (B) and the relative expression levels of selective twelve
target DEGs in three groups (*represents p<0.05, ** represents p<0.01, ns represents no differences) (C).
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HOTrE) oxylipins tend to increase in bovine mastitic milk. In

this study, MLs treatments reduced the 8-HETE contents.

Meanwhile Ma et al. (37) also reported that 8-HETE is

relevant for the efficacy of Zuojin pill treatment in chronic

nonatrophic gastritis, as the level of 8-HETE was higher before

treatment than after treatment. Thus, decreased oxylipins in this

study with MLs treatments probably improve the antioxidant

performance and immunity of the body and will be promising

markers for livestock welfare.

8-iso Prostaglandin F2a, as a final product of lipid

peroxidation, is generated from ARA interacting with ROS

through nonenzymatic routes and is a robust oxidative stress

biomarker of some diseases (32, 38). 8-iso Prostaglandin F2b is a

constitutional isomer of 8-iso Prostaglandin F2a. Oliveira et al.
(39) found that 8-iso Prostaglandin F2b has much lower potency

than 8-iso Prostaglandin F2a with an a-configuration. 11b-
Prostaglandin F2a, as a metabolite of 8-iso Prostaglandin F2a,
have been found to be associated with levels of oxidative stress in
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specific diseases (40). Thus, the markedly decreased 8-iso

Prostaglandin F2a, 11b-Prostaglandin F2a, and 8-iso

prostaglandin F2b levels after MLs treatment indicate a

decline in the peroxidation of PUFAs, which will produce

benificial effects on lowering oxidative stress and enhancing

disease resistance.

Carnitine plays a key role not only in fatty acid b-oxidation,
but also in immunity enhancement and disease resistance. Guo

et al. (41) found that carnitine C8:1 was significantly decreased

the in non-alcoholic steatohepatitis group, and this could be

profoundly reversed after luteolin treatment. Studies have

reported decreased serum acyl-carnitine concentrations

in patients with cancer (42). It can be hypothesized

that increased carnitine C8:1 levels altered by MLs

supplementation might accelerate mitochondrial b-oxidation
(43) thereby enhancing immunity and disease resistance.

Previous studies have shown that increased GCNT1,

IFITM10, EXTL1, RILP, BBC3, RAB9A, MOB3B, SESN1,
A B

D

E

C

FIGURE 5

Indexes of immune properties and DEGs related to immune response. Immune indexes of serum (A) a transition from IgM to IgG in immune
B cells over the course of immune response (Heat maps show the relative amounts of substances in group Con, TR1 and TR2 from left to
right; * represent p<0.05, indicative of the significant difference by comparing TR1 or TR2 to Con) (B), kegg enrichment analysis of all DEGs
from TR1 vs. Con (C), Circular correlation analysis of six selective DEGs from top 4 kegg pathway and immune indexes of serum (D), Relative
expression levels of six selective DEGs related to immune response (E) (* represents p<0.05, ** represents p<0.01, ns represents no
differences in histograms).
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CDH4, MEIS1, RAB9A, NUDT7, and FMO2 are related to

immune deficiency, autophagy inhibition, disease sensitivity

and oxidative stress. Therefore, after treatment of MLs, the

decreased peroxidation of PUFAs (the decreasing in

peroxidation products) reduced the expression of the above

genes, thus improving the immune and antioxidant properties.

In addition, Shumar et al. (44) and Kerr et al. (45) suggest that

decreased NUDT7 may reduce the accumulation of peroxisome

through regulating the b-oxidation of peroxisome fatty acids,

thus improving the antioxidant performance; Ge et al. (46)

found that the decrease of NUDT7 enhanced the immune

defense response; Taniguchi et al. (47) and Liu et al. (48)

reported that NUDT7 with low expression may up-regulate

heme biosynthesis and contribute to meat-redness enrichment.

Therefore, the addition of MLs can not only reduce the

peroxidation of PUFAs, enhancing the antioxidant capacity

and immunity of the body, but also improve meat redness.

Overall, oxidation resistance is closely related to the immune

response. Our study proved that MLs supplementation is

effective in promoting oxidation resistance and disease

resistance, which is attributed to its function in reducing

peroxidation of PUFAs and increasing tryptophan metabolism.

Additionally, as lipid oxidation products affect the shelf life (49),

sensory characteristics (50), and nutritional composition of meat

(51), the role of MLs in reducing the peroxidation of PUFAs is

speculated to be linked to the improvements in meat quality.
Immune response

According to Sundling et al. (52), secreted antibodies confer

immune protection by first attaching to foreign antigens through

the paired variable regions of their immunoglobulin heavy and

light chains. Immunity was enhanced with increased Ig, IgG and

reduced TNFa in both MLs treatments. In addition, the FMLs

induced maximum immunity in animals with a transition in
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antibody class from IgM to IgG, over the course of an immune

response (14), During which, early low-affinity IgM antibodies

are progressively replaced by more-effective, high-affinity IgG

antibodies (53) to achieve effective serological immunity (52).

DOCK2 regulates the migration of certain subsets of

immune cells via Rac activation (54) and plays an important

anti-inflammatory role in the development of various

inflammatory diseases (55). BBC3 is a transcriptional apoptotic

target gene and participates in the activation of cell death

processes (56). Pozo et al. (57) reported that pro-inflammatory

MYO10 mediates inflammation in cancer by regulating genomic

stability. Studies have shown that PIK3R3 is a multifunctional

gene related to inflammatory diseases, livestock coat color, and

cell proliferation (58–60). Shao et al. (61) clarified that

PLA2G4D, a major pro-inflammatory factor, facilitates CD1a

expression, which can be recognized by lipid-specific CD1a-

reactive T cells, leading to the production of IL-22 and IL-17A.

According to Ehmsen et al. (62) and Jiang et al. (63), the

increased expression of GADD45A, a cell cycle regulator, can

ameliorate liver fibrosis in rats and is a protective modifier of

neurogenic skeletal muscle atrophy. Collectively, MLs

supplementation improves muscle immune response and

disease resistance.

Glycolysis is a critical process closely related to the immune

response, as well as provides biosynthetic intermediates and

reducing power for cell growth and proliferation of immune cells

(64). The pentose phosphate pathway (PPP) from glucose-6-P to

glyceraldehyde-3-P provides immune cells with key metabolites

for immune function, such as reducing power for the synthesis

of ROS and antioxidants in phagocytic cells and for

phospholipid synthesis in dendritic cells. The hexosamine

biosynthesis pathway, originating from fructose-6-P, provides

substrates for the glycosylation of lipids and proteins that are

important for Treg and M2 macrophage lineages (64). Thus

FMLs treatment may enhance immunity by glycolysis, which in

turn provides key metabolites for immune function.
FIGURE 6

Glycolysis and the mannose-6-P pathway in immune function. Heat maps show the relative amounts of substances in group Con, TR1 and TR2
from left to right; * represent p<0.05, indicative of the significant difference by comparing TR1 or TR2 to Con; M1, type 1 macrophages; M2, type
2 macrophages; Treg, regulatory T cells; P, phosphatase.
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D-mannose serves a vital function in T cell immune responses

and is currently receiving increasing attention, although its normal

physiological blood concentration is less than one-fiftieth of that of

glucose. Zhang et al. (65) recognized that D-mannose induces

regulatory T cells and suppresses immunopathology both in vivo

and in vitro. Mannose-6-phosphatemetabolized byD-mannose is a

novel regulator of T cell immunity (66) and a promising target

ligand in cancer therapy, as well as confers a better efficacy and

lower toxicity in healthy tissues (67). Moreover, mannose-6-P not

only plays a crucial role in lysosomal functions (such as autophagy)

but also in regulating lysosome biogenesis (68). Thus, significantly

increased D-mannose in DMLs treatment (p<0.05) and mannose-

6-P in FMLs treatment (p<0.05) (Figure 6) via the mannose-6-P

pathway enhances T cell immunity and likely regulates the

lysosome biogenesis in autophagy.

Taken together, FMLs supplementation could improve the

immune response via glycolysis and the mannose-6-P pathway

and induce class switch from low-affinity IgM to high-affinity

IgG antibodies.
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