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Editorial on the Research Topic

Preclinical models and emerging technologies to study the effects of the
tumor microenvironment on cancer heterogeneity and drug resistance
Cancer research has witnessed remarkable advancements in recent years, with

molecularly targeted treatments and immunotherapy revolutionizing patient care.

However, some cancer types, such as pancreatic ductal adenocarcinoma, continue to

defy treatment, and the emergence of drug resistance remains a significant challenge,

hampering efforts to achieve lasting remission, especially in metastatic disease. In the past,

cancer development was solely attributed to the appearance of genomic alterations in

cancer cells. In the last decades, a broad consensus arose about the necessity for cancer cells

to cooperate with host cells, such as fibroblasts, vascular cells, lymphatic cells, and immune

cells during carcinogenesis and cancer progression. Therefore, the focus shifted toward

understanding the tumor microenvironment (TME) heterogeneity and its impact on

cancer evolution and drug resistance. In this dynamic landscape, innovative preclinical

models and cutting-edge technologies have emerged as indispensable tools in TME

characterization and, in general, in the efforts against cancer (Figure 1).

Understanding the heterogeneous nature of tumors has presented significant

challenges, but recent insights into the TME role have lightened up new paths for

therapeutic exploration. This Research Topic examine various facets of the TME

influence on cancer heterogeneity and drug resistance, encompassing diverse cancer

types, including breast, colorectal, pancreatic, liver, and head and neck cancers. While

each article offers a unique perspective, they collectively emphasize the role of the TME in

shaping tumor behavior and response to treatment.
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Genta et al., Huang and Tu, and Proietto et al. highlight the

advances of preclinical models in deciphering the complexities of

the TME. Genetically engineered mouse models, patient-derived

organoids and xenografts, and three-dimensional (3D) cell cultures

have all emerged as essential tools to study cancer progression,

acquired heterogeneity, and predict drug efficacy with an enhanced

clinical relevance. Genta et al. encompass both in vitro and in vivo

platforms for drug testing, stressing the relevance of patient-derived

models to maintain the molecular affinity with the parental tumors

and predict patient response. However, the authors also draw

attention to the challenge that, despite their use in co-clinical

trials and their value in understanding drug resistance, the data

generated often arrive too late to modify the therapeutic plans

effectively. Huang and Tu dive into the specific challenges posed by

tumor heterogeneity and the microenvironment in vascularized

tumor models, widely discussing the advantages and limitations of

organ-on-a-chip models in replicating the vascularized tumor

microenvironment. The addition of different types of supporting

cells, namely pericytes, astrocytes, or lymphatic cells, makes those

organ-on-a-chip models closely mimic the heterotypic cellular

interactions within tumors. Further, the inclusion of organ-

specific normal cells allows for assessing general drug toxicity.

However, the authors also comment on some limitations, such as

the accessibility to quantify cellular forces and cell stiffness. Proietto

et al. extensively review the TME preclinical models and broaden

the discussion to include the role of emerging single-cell, spatial

genomic, and metabolomic technologies in understanding tumor

complexity and evolution to design better targeted therapies. The

authors highlight the need for multidisciplinary approaches to

combat the challenges posed by tumor heterogeneity. Lee et al.

remarkably contribute to further highlight the growing significance

of cutting-edge spatial omics technologies in dissecting TME

heterogeneity, also introducing the value added by artificial

intelligence in unraveling the complex interactions within the TME.

The other articles in the Research Topic offer innovative insights

on specific cancers, discussing advances in their modeling for

preclinical studies and their organotypic TME role in drug
Frontiers in Oncology 025
resistance. Yau et al. look at the importance of incorporating

diverse cell populations within colorectal cancer spheroid models to

mimic the intricate signaling pathways and heterogeneity found in

vivo. Salemme et al. extensively discuss the characteristics of breast

cancer, a highly heterogeneous disease, that leads to drug resistance

and encompass the advances in developing in vivo and in vitro

models to recapitulate breast cancer complexity. Another work about

breast cancer by Lamouline et al. focuses on in vitromodels for breast

cancer metastasis in bone, elegantly discussing the cellular

heterogeneity of this specific microenvironment, shedding light on

the critical need to account for the different microenvironments in in

vitromodels dedicated to the study of metastasis to accurately mimic

tissue-specific cell-cell and cell-extracellular matrix (ECM)

interactions when assessing drug sensitivity. Indeed, van Tienderen

et al. present a novel in vitromodel of cholangiocarcinomametastasis

by ingeniously combining patient-derived organoids with

decellularized human tissues, confirming the intricate interplay

between cancer cells and the ECM in driving dissemination to

distant organs such as lung and lymph nodes. Dedicated to

studying drug pharmacological effects and tissue physiology is the

model proposed by Greier et al. in their paper, in which they

demonstrate the promising potential of 3D primary slice cultures

to provide preclinical models for studying head and neck cancer and

obtain data in a week frame to guide clinicians in the choice of

treatments. Giustarini et al. establish human 3D heterocellular tumor

spheroids as models mirroring the complexity of the pancreatic

ductal adenocarcinoma environment. Notably, these tissue-specific

spheroids reveal immunosuppressive tendencies and mimic spatial

and cytokine signatures observed in patients, confirming their value

for better therapy testing. The more we advance our ability to

reproduce complex high-throughput systems in vitro, particularly

through the consistent and standardized utilization of patient-derived

samples for drug library testing, the sooner we will have a time-saving

and cost-effective alternative to in vivo mouse models. While very

powerful and extensively used, these animal models present ethical

and variance concerns in rigorously reflecting human tumor

evolution and heterogeneity, delaying drug development processes.
FIGURE 1

Scheme illustrating the framework of emergent technologies and preclinical tumor models for addressing the complexity of tumor microenvironment
heterogeneity in order to enhance the efficacy of anti-tumor therapies. Created with Biorender.com.
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This Research Topic presents a comprehensive picture of the

recent advancements in understanding the TME influence on cancer

heterogeneity and drug resistance. As these studies collectively suggest,

it is clear that an accurate understanding of the TME role is pivotal for

designing effective cancer therapies. This Research Topic highlights

how the essential collaboration between clinicians, researchers, and

technologists in developing advanced preclinical models and cutting-

edge technologies is uncovering the subtle interactions between cancer

cells, immune cells, and the surrounding microenvironment to develop

effective therapeutics that will tackle drug resistance and improve

patient outcomes worldwide.
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Patient-derived cancer models:
Valuable platforms for
anticancer drug testing

Sofia Genta1, Bryan Coburn2, David W. Cescon1

and Anna Spreafico1*

1Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University
Health Network, University of Toronto, Toronto, ON, Canada, 2Division of Infectious Diseases,
Toronto General Hospital, University Health Network, Toronto, ON, Canada
Molecularly targeted treatments and immunotherapy are cornerstones in

oncology, with demonstrated efficacy across different tumor types.

Nevertheless, the overwhelming majority metastatic disease is incurable due to

the onset of drug resistance. Preclinical models including genetically engineered

mouse models, patient-derived xenografts and two- and three-dimensional cell

cultures have emerged as a useful resource to study mechanisms of cancer

progression and predict efficacy of anticancer drugs. However, variables including

tumor heterogeneity and the complexities of themicroenvironment can impair the

faithfulness of these platforms. Here, we will discuss advantages and limitations of

these preclinical models, their applicability for drug testing and in co-clinical trials

and potential strategies to increase their reliability in predicting responsiveness to

anticancer medications.

KEYWORDS

patient-derived model, PDO, drug-testing, co-clinical trial, PDX, cancer
Abbreviations: ADP, Acoustic droplet printing; BC, breast cancer; BRAF, B-rapidly accelerated fibro

sarcoma; CAR-T, chimeric antigen receptor T-cell; CCN, CancerCellNet; CDX, cell line derived tumor

xenograft; CRC, colorectal cancer; CRISPR-Cas9, clustered regularly interspaced short palindromic

repeats/associated protein; CTC, circulating tumor cell; GEMM, Genetically engineered mouse model;

ECM, extracellular matrix; EGFR, epidermal growth factor receptor; HER-2, epidermal growth factor

receptor 2; HNSCC, head and neck squamous cell cancer; ICI, immune checkpoint inhibitors; IFN-g,

interferon gamma; MHC, major histocompatibility complex; NSCLC, non-small cell lung cancer; NK,

natural killer; NOD/SCID, non-obese diabetic/severe combined immunodeficient; OS, overall survival; PD-

1, protein death 1; PD-L1, protein death 1ligand; PDO, patient-derived organoid; PDX, patient derived

xenograft; TCR, T cell receptor; TEC, tumour explant cultures; TIL, tumor infiltrating lymphocyte; TME,

tumor microenvronment; TNBC, triple negative breast cancer; TSC, tumour slice cultures.

frontiersin.org01
7

https://www.frontiersin.org/articles/10.3389/fonc.2022.976065/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.976065/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.976065/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.976065&domain=pdf&date_stamp=2022-08-12
mailto:anna.spreafico@uhn.ca
https://doi.org/10.3389/fonc.2022.976065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.976065
https://www.frontiersin.org/journals/oncology


Genta et al. 10.3389/fonc.2022.976065
1 Introduction

Cancer is a genetic disease that results in cumulative alterations

of molecular pathways involved in cell growth, survival and

proliferation (1, 2). Until a few decades ago, chemotherapy and

endocrine therapy represented the only treatment options for

patients with advanced malignancies, and tumor histology was

the only benchmark for drug selection (1). The identification of

disrupted molecular pathways has notably broadened the

therapeutic opportunities for cancer patients, allowing the

development of small molecules and monoclonal antibodies

exploiting oncogenic driver alterations as drug targets (3). The

favorable therapeutic index demonstrated by several of these agents

enabled their integration into clinical practice. A large number of

such agents are now in clinical use, including epidermal growth

factor receptor (EGFR) inhibitors in EGFR mutated non-small cell

lung cancer (NSCLC) (4), anti-epidermal growth factor receptor 2

(HER2) agents in HER2-positive breast (5) and gastric cancer (6),

B-rapidly accelerated fibro sarcoma (BRAF) inhibitors for the

treatment of melanoma and other BRAF mutated tumors (7).

The advent of immunotherapy has ushered in therapeutic

strategies that promote immune response against neoplastic cells

(8). Many different types of immune-therapeutics have now entered

the clinic and some of them, such as immune checkpoint inhibitors

(ICIs) and chimeric antigen receptor (CAR)-T cells, have improved

patient outcomes (9, 10). In certain settings, including Hodgkin’s

lymphoma, melanoma, NSCLC, head and neck, urothelial and renal

cell carcinoma, ICIs have replaced previous standard therapies due

to overall survival (OS) benefits. Despite the achieved improvement

in patient outcomes with the introduction of targeted drugs and

immunotherapy, the majority of subjects do not respond to these

treatments or experience only a temporary benefit (11, 12). Primary

(or intrinsic) and secondary (or acquired) resistance, led by

resistance-driving factors in neoplastic tissue before the exposure

to an anticancer agent or as a consequence of the antitumor

treatment respectively, represent the main reasons for treatment

failure with these agents (12). To distinguish between primary and

acquired resistance is not always straightforward. Different

subpopulations of cancer cells, characterized by specific genomic

profiles, usually coexist in the same patient. The phenomenon of

intra-patient tumor heterogeneity can be spatial (e.g. in different

locations) or temporal (e.g. between primary tumor versus

metastasis) (13). Tumor heterogeneity adds complexity to the

identification of pre-existing or exposure-induced resistant clones.

Multiple mechanisms can be responsible for primary and acquired

resistance to specific compounds in different tumor types and their

identification is a crucial step in the identification of effective,

individualized treatments (14) (Figure 1). Patient-derived human

cancer models have the potential to retain their distinctive

molecular hallmarks, representing a unique opportunity to study

cancer cell survival and resistance mechanisms (15–17). If

combined with clinical studies, these tools might increase the
Frontiers in Oncology 02
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success of experimental treatments (18, 19). This review will

discuss the available preclinical models and the reliability of such

platforms to predict the responsiveness to anticancer agents,

focusing on patient-derived models (Figure 2).
2 Two- and three-dimensional cell
cultures modeling

2.1 Cancer cell lines

Human cancer cell lines represent the earliest and most widely

used preclinical model for the investigation of tumor biology and

antitumor drugs testing (20). Starting from the 1950s in vitro

cultures of immortalized cancer cells have been developed from a

wide variety of haematological and solid malignancies. These

models have been used to assess the effectiveness of

investigational anticancer compounds taking advantage of their

ease of maintenance and propagation, relatively low cost,

reproducibility and high-throughput evaluation (21). However,

antitumor activity demonstrated with this approach is often not

confirmed in clinical settings, mainly due to the low resemblance to

human cancers in vivo, and lack of well-defined parameters to

translate in vitro sensitivity into predicted clinical success (22). This

divergence depends on several factors. Firstly, the in vitro growth

process results in the selection of clones with specific features

promoting their survival, outliving other subpopulations.

Secondly, the progressive adaptation to culture conditions results

in a loss of heterogeneity and differentiation (23). Thirdly, the

absence of a natural tumor microenvironment (TME) impairs the

evaluation of drugs whose mechanism of action is based on cell-cell

interactions or is related to angiogenesis (24). To create platforms

with a higher similarity to human cancers and to represent a

broader range of tumor types, three-dimensional cultures and in

vivo models have been developed.
2.2 Spheroids

Tumor-derived spheroids are self-assembled micro-aggregates

of cancer cells grown in a culture medium, under low-adhesion

conditions. They can be generated from cancer cell cultures,

patient-derived tumor cells (tumor spheres) or from suspension

of single cells from cancer cell lines (25, 26). Spheroid generation is

characterized by an initial phase of exponential growth followed by

a period of structural organization, which leads to the formation of

an external coat of proliferating cells surrounding a necrotic core

(27, 28). The cell population located in the inner, hypoxic layers

displays a quiescent status. This results in resistance to anticancer

drugs exploiting high proliferative rate as a target, mimicking tumor

behavior in vivo (27). The source of cells used to establish the

spheroids has a big impact on the model’s characteristics: for
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example, spheroids derived from bi-dimensional cell lines will

maintain cellular clonality while tumorspheres will display a

higher heterogeneity (27, 29).
2.3 Organoids

Patient-derived organoids (PDOs) are preclinical models

generated from cancer tissue, mechanically or enzymatically

dissociated, and then embedded in an extracellular matrix.

They differ from spheroids because they are self-organized in

three-dimensional structures resembling the architecture and

genomic features of the original tissue and retain the capability
Frontiers in Oncology 03
9

to regenerate (26, 30). The time required to generate organoids is

variable and tumor dependant (31). PDOs of a wide range of

malignancies have been established, with success rates up to 80%

depending on tumor types (32–40). Mutagenesis technologies

such as clustered, regularly interspaced, short palindromic

repeats (CRISPR)/CRISPR-associated protein (Cas9) have been

used to induce cancer-driving mutations to develop tumoral

organoids starting from healthy human tissue (31, 41); an

approach particularly useful to study carcinogenesis.

Organoids derived from both neoplastic and healthy tissues

can be established from the same patient to facilitate the

identification of therapeutic agents with high antitumor

activity and low impact on physiological tissues (42).
FIGURE 1

Example of known mechanism of resistance to targeted agents and immunotherapy.
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2.4 Ex-vivo models: Organotypic tumor
slice and tumor explant cultures

The term ex-vivo is referred to models generated by tissue

samples collected from an individual and then preserved in an

artificial environment, outside the original organism (43).

Organotypic tumor slice cultures (TSCs) are obtained by

incubation of thin slices of tissue in controlled conditions

allowing oxygen and nutrient distribution (44). This approach
Frontiers in Oncology 04
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has been used to develop models of different types of

malignancies, including breast, gastric, head and neck and

pancreatic cancer (45–51). When compared to other

preclinical models, TSCs offer some advantages including the

preservation of an intact tumour microenvironment and a

quicker set up, allowing timely drug testing (47). TSCs

however, have main limitations such as rapid deterioration of

cell viability and tissue architecture as well as unfeasibility of

culture propagation (52). Moreover, the resemblance of these
A

B

FIGURE 2

Advantages and limitations of different preclinical models for anticancer drug testing; (A) patient derived models, (B) non patient-derived animal models.
GEMM, genetically engineered mouse model; GVHD, graft versus host disease; nGEMM, non-germinal genetically engineered mouse model; PDX,
patient-derived xenograft; TEC, tumor explant culture; TME, tumor microenvironment; 2D, bi-dimensional; TSC, tumor slice culture.
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models to original tissue is highly influenced by procedural

manipulation and sample processing (52). Tumour slice cultures

represent only one of the multiple approaches attempted for the

generation of ex-vivo models. Explanted cancer tissue can be

preserved by submerging it in culture media or using a support

to keep it in contact with the media such as gelatine sponges

(53), grids or culture wells coated by a matrix (54, 55). One of the

main advantages of these techniques as compared to tumor slice

cultures is that they minimize tissue manipulation and assure

higher tissue integrity. On the other hand, tissue slice models

may allow a better distribution of anticancer drugs for testing. As

for tumor slice cultures, short tissue viability is one of the main

limitations for all tumor explant platforms (56). Several attempts

have been made in order to delay models deterioration for

example through the integration of microfluidic systems

allowing prolonged tissue viablity (56).
3 In vivo models

3.1 Non-patient-derived in vivo models:
The role of engineered mouse models

In vivo models enable the evaluation of cancer biology and

treatment strategies in a complex organism.Genetically engineered

mouse models (GEMMs) are transgenic mice harbouring alleles

which lead to the spontaneous development of malignancies in

immunocompetent animals (57). The development of GEMMs

represented an important milestone in cancer research, as these

models have been used to demonstrate that oncogene expression

and tumor suppressor gene loss can induce neoplastic

transformation of normal cells (58, 59). GEMMs have several

limitations. The presence of pathogenic mutations affecting many

target cells at an organism or tissue level can result in simultaneous

development of multiple malignancies and consequently early

death of the model. Furthermore, if present in germline cells,

these mutations can affect embryonic viability, cause

developmental abnormalities or impair normal tissue

development (60). On the other hand, cancer onset in GEMMs

can be delayed due to incomplete penetrance of the mutations,

resulting in non-synchronous tumor occurrence in different mice

and thus impairing the simultaneous evaluation of multiple

anticancer agents. The development of non-germline GEMMs

and conditional GEMMs, together with novel technologies for

genome editing including CRISPR-Cas9 have helped overcome

these limitations, enhancing the reliability of engineered mouse

models in predicting drug responsiveness (59, 61, 62).
3.2 Patient-derived in-vivo models

Patient Derived Xenograft (PDXs) are preclinical models

established from human neoplastic cells injection or tumor
Frontiers in Oncology 05
11
tissue implantation in immune-deficient animal hosts. PDXs

are characterized by the maintenance of molecular and cellular

heterogeneity of the primary tumor (63). The success rate of

PDX establishment depends on multiple variables including the

animal recipient, cancer type, and the technique used to implant

the tumor (64). Metastatic tumors showing aggressive behaviour

more frequently result in successful engraftment. Specific tumor

types, such as colorectal or gastric cancer demonstrate a higher

probability of engraftment compared with malignancies

originating from other sites such as breast (particularly

hormone dependent) or kidney (64–66). Many techniques

have been used to optimize engraftment, including orthotopic

transplant or, in the case of hormone-dependant cancers, the

addition of human hormones (53, 67). Furthermore, the

probability of obtaining successful engraftment increases with

the degree of immunosuppression in the animal host. A greater

rate of success can be achieved using animal models lacking

functions of both B and T lymphocytes and of natural killer

(NK) cells such as non-obese diabetic (NOD)/severe combined

immunodeficient (SCID), in particular NOD/SCID/IL-2

receptor-g deficient (NOG and NSG) and NOD/SCID/Janus

kinase 3 deficient (NOJ) mouse models (64). Mice represent

the most common type of host used for PDX generation

however, other species can be used for this purpose (68–73).

In-vivo models can also be generated in non-mammalian

species, such as zebrafish (68). Both transgenic and xenograft

models have been established for different tumor types including

endocrine pancreatic cancer (69), multiple myeloma (74), head

and neck squamous cell cancer (75), sarcoma (76)and melanoma

(70–72), demonstrating some advantages in comparison with

traditional mouse models. These include a higher rate of

breeding, lower costs of maintenance and the possibility to

track malignant cells with fluorescent labelling in the

transparent casper zebrafish strain. Moreover, the process of

engraftment for zebrafish PDXs is easier and faster compared to

their murine counterparts (72, 73). To better recapitulate the

original TME, humanized animal models have been developed

(77, 78). These models can be obtained by xenotransplanting

human immune cells or by engineering the host to express

specific human genes. Humanized in vivo models, hosting not

only human cancer cells but also a human-like TME are

particularly suitable to test different anticancer strategies,

including immunotherapy.
4 Key features of valuable platforms
for antitumor drug testing

4.1 Genomic and transcriptomic fidelity

Faithful recapitulation of the molecular profile of the original

tumor is one of the key characteristics to predict responsiveness

to antitumor compounds. PDXs have been considered the most
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reliable reproduction of human cancers for a long time, retaining

more than 80% of the genomic alterations harboured by the

engrafted neoplastic tissue (79–81). However, several potential

discrepancies have been identified. PDXs often demonstrate a

higher aggressiveness with increased proliferation rate

-especially at later passages- than human tumors in situ.

Moreover, some evidence suggests that these models may

acquire or select for copy number alterations and single

nucleotide variants, or exhibit transcriptional alterations,

which can affect the anticancer drug sensitivity (82, 83).

Organoids and spheroids have emerged as cost-effective

alternatives to animal models, with high genomic concordance

with primary tumors (81, 84–88). Multiple factors however, can

reduce their resemblance to original cancer tissue or affect their

long-term preservation. The purity and the viability of the

cancer cells selected to initiate the culture are of crucial

importance to ensure successful generation of the model (42).

The composition of the culture medium is another key factor.

Appropriate nutrient and growth factor modulation are needed

to avoid overgrowth of normal cells that would counteract the

development of the cancer models (41). The composition of the

medium has also demonstrated to influence epigenomic

modulation and gene expression (89, 90) and to affect the

consumption of glutamine, alanine and other elements from

cancer cells (89). In vitro culture itself can lead to significant

transcriptomic changes, resulting in the upregulation of several

growth and metabolism-related pathways such as PI3K,

glycolysis and oxidative phosphorylation (90). Some attempts

have been made to compare the transcriptional faithfulness of

different types of models. As an example, Da Peng et al. have

developed the CancerCellNet (CCN), a computational tool

evaluating the transcriptomic fidelity of cancer cell lines,

PDXs, GEMMs and 3D cultures, through comparison with

The Cancer Genome Atlas dataset (91). This approach is

burdened by significant limitations, including the small

number of models for specific tumor types, the lack of

proteomic and epigenomic information, and the fact that the

transcriptomic profiles are compared with bulk RNA that

includes also non-cancer cells. However, CCN provides some

interesting insights indicating that the suitability of different

models in proving a faithful reproduction of the original tissue

may vary across tumors originating from different sites. This

should be considered in studies where generating preclinical

models across different tumor types is planned. The application

of machine learning algorithms to large datasets collecting

genomic and transcriptomic profiles from thousands of

patient-derived models can partially overcome the discrepancy

with original tumours and optimize drug testing in preclinical

studies (92–95). This approach has indeed facilitated the

identification of genomic signatures predicting drug sensitivity

with a greater precision than single-gene biomarkers (96).

Moreover, integrating tumor profiling with analysis of other

components of TME, such as the T-cells deep learning models
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can identify multidimensional biomarker signatures and unveil

mechanisms of resistance to anticancer drugs (97, 98).
4.2 Preserving tumor heterogeneity

The capability of a model to replicate the molecular features

of the original tissue is not enough to ensure success in

predicting treatment response. Tumor heterogeneity plays a

crucial role in promoting the onset and selection of genomic

alterations that lead to cancer cell survival from targeted and

immunotherapeutic agents (90). Both PDXs and 3D cultures

have been originated from different portions of a same tumor

lesion or from different metastatic sites to investigate this

phenomenon (99–101). As an example, Li et al. generated

PDOs from the primary tumour and paired liver metastases in

two patients with colorectal cancer (100). The organoids derived

from the metastases demonstrated a more aggressive phenotype

with a greater propensity for invasion and higher replication

index. Despite providing useful information, this approach is

expensive, complex and requires multiple invasive procedures.

More importantly, the understanding of genomic aberrations is

still limited to specific biopsy sites, hence not practical to predict

drug responsiveness. Circulating tumor cells (CTCs), released

into the bloodstream from the primary tumour and secondary

lesions represent a unique opportunity for the development of

complex models for broad evaluation of the genomic landscape

of metastatic tumors. CTCs are challenging to isolate as they

occur at low frequencies. Data regarding the generation of 3D

cultures from CTCs are still limited, however, some successful

attempts have been reported (33, 102, 103). In 2014 Gao et al.

generated PDOs from CTCs in one patient with prostate cancer

with extensive metastatic disease (33). Whole-exome sequencing

of PDOs and of a metastatic lymph node resected from the same

patient one year before were compared. Only 67% of the point

mutations found in the PDOs were identified in the archival

tissue. While some of the mutations might be acquired during

the culturing process this can reflect tumor heterogeneity. CTCs

have also been used to establish animal models, known as cell

line derived tumour xenografts (CDXs). Hodgkinson et al.

generated CDX models by injecting blood obtained from 4

patients with small cell lung cancer (SCLC), enriched with

CTCs (104). Genomic analysis of CDXs shown preservation of

original mutational profile, moreover these models mimicked

patients responses to chemotherapy. Despite representing a

possible strategy to overcome tumor heterogeneity, this

approach has some limitations including technical challenges

in isolation and expansion of CTCs, lack of stromal and immune

components, uncertain representation of different metastatic

sites and possible selection of specific clones (105). Despite

using CTCs to initiate a patient-derived model the

preservation of tumor heterogeneity might be challenged by

the fact that cancer cells with particular molecular alterations are
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more difficult to expand. As an example Li et al. reported a lower

rate of success for organoids generation from colorectal cancer

with microsatellite instability (MSI) or BRAF mutations (106).

Interestingly when looking at the possible causes contributing to

the failure of these models authors observed that cancer cells

harbouring MSI or BRAF mutations were more dependant for

their survivorship on other components of the tumor

microenvironment such as immune cells. This indicate that

the maintenance of a proficient TME aside from enabling the

evaluation of anticancer therapies such as immunotherapy

might be a key factor also for the maintenance of

tumor heterogeneity.
4.3 Tumor Microenvironment
Preservation

4.3.1 Tumor microenvironment preservation in
3D cultures

There has been much recent effort to develop preclinical

models with an intact TME preserving functional immune

effectors (25, 107). 3D models hosting competent immune

cells can be obtained by co-culturing previously expanded

immune cells (108). Both spheroid (109–111), and organoid

(112, 113) cultures have been developed with this technique. T

cells generated using this process were shown to efficiently kill

cancer cells, while they did not show activity against organoids

originated from healthy tissue, confirming the maintenance of

self-tolerance (112). Courau et al. used this approach to generate

immune-competent spheroids from colorectal cancer by co-

culturing these models with immune cells obtained from

healthy donors (111). They observed rapid infiltration from

allogenic transferred T and NK cells, resulting in immune-

related cell death. Moreover, they used this platform to test the

activity of antibodies targeting natural killer group 2 member D

(NKG2D) and its ligands. They observed an enhancement of

spheroids immune-mediated killing, driven by an increase of NK

infiltration, supporting the utility of this type of model to

identify new therapeutic strategies. The co-culturing approach,

however, does not fully recapitulate the complexity of the TME,

as it lacks native infiltrating immune populations and other key

factors, regulating the interaction between cancer and immune

system. The extracellular matrix (ECM), the complex of

proteins, polysaccharides and other elements surrounding the

cells, give structure and sustain both normal and neoplastic

tissues. Cancer-associated fibroblasts producing collagen as well

as alterations of other elements of ECM, such as hyaluronic acid,

metalloproteases and lysyl oxidases are known to promote

cancer initiation and invasion through ECM remodeling (114)

and have been related to resistance to multiple anticancer agents

(115). Moreover, the recognition of the key role played by ECM

in cancer resulted in the development of antitumor drugs

directly targeting ECM molecules or the cell-matrix crosstalk
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(115). This led to an urgent need of preclinical models for drug

testing retaining a functional ECM. Multiple synthetic and

biological materials have been used to develop scaffolds to

support the generation of 3D cultures, mimicking ECM.

Examples include hydroxyapatite-graphene (116), polyethylene

glycol oxide (117), chitosan alginate (118–120), collagen (76,

121) and matrigel (117, 122). Different materials present specific

advantages but also limitations. As an example hydrogels are

highly biocompatible and recapitulate the biochemical

composition of original matrix but offer low mechanical

resistance (122). To include original immune populations

different 3D models have been developed (123). The feasibility

of this approach has been initially demonstrated in healthy

human epithelial breast tissue (124). Zumwalde et al. observed

the presence of T cells in mammary ductal epithelial PDOs,

producing interferon (IFN)-g and proliferating in response to

zoledronic acid. Interestingly, these lymphocytes showed

cytotoxic activity towards a triple negative breast carcinoma

cell line. The air-liquid interface technique allows to generate

PDOs from both healthy and neoplastic tissue with preserved

epithelial and mesenchymal components, retaining proficient

immune effectors and ECM (123, 125, 126). This method enables

organoids to be propagated as epithelial-mesenchymal hybrids

using an inner collagen gel–containing transwell with direct air

exposure (127). Using this approach Neal et al. generated PDOs

from 28 distinct tumor types of human and murine malignancies

including colorectal, kidney, lung and pancreatic cancer (123).

Human PDO analysis demonstrated the presence of CD3+

tumor infiltrating lymphocytes (TILs), macrophages, B and

NK cells. Single-cell gene expression profiling indicated that

TILs present within PDOs maintained the original TCR

repertoire observed in the tumor biopsy. Protein death 1 (PD-

1) expression was observed on the surface of immune cells

included in the cultures and the exposure to anti-PD/PD-ligand

1 (PD-L1) agents resulted in the expansion of TILs and in the

promotion of neoplastic cells killing. The air-liquid interface

technique is not the only possible approach to preserve original

TME. Jacob et al. successfully generated PDOs from

glioblastoma patients performing microdissection of original

tissue into pieces of ≈1 mm diameter instead of dissociation,

in order to preserve native cell-cell interactions (128). Single-cell

transcriptome analysis shown similar cytokine expression in

macrophage and microglia from original tissue and PDOs.

Moreover, a similar distribution of cells in PDOs generated at

later time points was observed, indicating the capability of this

model to preserve and maintain at least in part the features of

parental TME. Once established, these models have been used to

test multiple antitumor compounds, including CAR-T cells. The

resemblance of PDO models to the parental cancer can be

further implemented by the organs-on-a-chip technology

(129). Through the use of customized microfluidic cell culture

devices, this approach allows the vascularization of 3D cultures,

mimicking physiological delivery of drugs through the blood
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vessels (130). Chemo- and biosensors can be integrated in this

type of models to optimize the control of oxygen and metabolites

levels (131). 3D bioprinting techniques can also be used to

develop preclinical models fully recapitulating the architecture

of parental tumors, including a functional vascular system and

enabling a uniform distribution of different cellular components

(132, 133). This approach consists in the controlled deposition of

layers of patient-derived cancer and stromal cells, signalling

molecules and other biomaterials to generate spheroids or

organoids with a functional TME. The use of 3D bioprinting is

rapidly expanding and different systems are currently available

including extrusion-based bioprinting, laser-based bioprinting,

and droplet-based bioprinting (134). 3D bioprinted PDOs and

spheroids have already been successful established for multiple

cancer types including glioblastoma, neuroblastoma, multiple

myeloma, melanoma and cholangiocarcinoma and used to test

novel anticancer treatments such as oncolytic viruses (135–141).

TEC and TSC represent another possible approach to preserve

TME and test immune-oncology strategies, despite the limited

time frame for drug-testing. As an example, Sivakumar et al.

successfully used TSC to test the effect of IFN-g and PD L1

blockage (47).

4.3.2 Immune-competent in-vivo models
The reconstruction of a proficient TME can be applied to in

vivomodels. In GEMMs, spontaneous neoplastic transformation

in immunocompetent animals leads to the onset of tumors

retaining TME (61, 142). However, the cross-reactivity

between the murine and the human targets, especially when

the tested agents need antigen presentation by human MHC

class I, limits the use of GEMMs to test immunotherapy (143).

Humanized animal models are promising platforms for the

evaluation of immunotherapeutic strategies. Knock-in mice

expressing key human genes regulating the cross-talk between

cancer and immune system have been generated, including PD-1

(144), PDL1 (145), LAG3 (145), CTLA4 (77) and IL-15 (146).

These platforms could be useful to not only to test drug

sensitivity but also to study immune related toxicities

associated with monoclonal antibodies specifically binding

human targets, such as human PD1 or CTLA4. As an

example, Du et al. used CTLA4 humanized mice to test anti-

CTLA4 antibodies including ipilimumab, alone and in

combination with an anti-PD1 (77). They observed correlation

between the development of immune related toxicity and

systemic T cell activation with an increased percentage of

effector T memory lymphocytes. Humanized PDX models

obtained with the engraftment of human immune cells into

immunocompromised animals represent another possible

approach to obtain animal models suitable for immunotherapy

testing (78). This strategy is however burdened by multiple

limitations (147). Firstly, the efficacy of the model is limited by

the severity of the immunosuppression of the PDX hosts; models
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with impaired T-cells function but maintained innate immunity

will reject human cells. Secondly, since the hematopoietic cells

cannot be propagated across multiple animals, this approach

requires sequential blood draws from the patients. Finally, the

infusion of human hematopoietic cells results in graft versus host

disease of PDXs, limiting the timeframe for observation. The

transfer of hematopoietic cells is not the only option attempted

to generate humanized PDX models. The injection of patient-

specific TILs has demonstrated to mimic antitumor responses

observed in patients (148). This technique has contributed to

identify a dysfunctional subset of CD8+ cells as possible

mechanism of resistance to PD 1 inhibitors in NSCLC (149).

Ex-vivo expansion and subsequent re-infusion of TILs is not the

only approach attempted in order to elicit antitumor activity.

Yin et al. injected nanoparticle incorporating immunostimulants

molecules to induce antitumor activity in endogenous TILs in

mouse models. This strategy resulted in CD8+ cells expansion

and reduction of regulatory T cells as well as in a delay of tumour

growth (150).
4.4 Evaluating the impact of microbiome

The human microbiota, the set microorganisms populating

human epithelial surfaces, influences the development of several

pathologic conditions, including cancer (151). For patient-

derived models, this has important conceptual implications:

First - for some patient-derived models, the microbial ecology

of the model (e.g. the experimental animal’s endogenous

microbiota) may influence experimental outcomes and

therefore must be accounted for in experimental design and

analysis. For example, in murine models, vendor-specific

microbiota (152), microbial metabolites (153) and

microbiome-tumour neoantigen cross-reactivity (154) have all

been implicated in immunotherapy responsiveness. Thus,

ignorance of the composition or contribution of the

microbiota to model outcomes may result in contradictory

findings between investigators, or even within a research

group based on variability in the composition of the

microbiome between experimental replicates. Secondly -

experimental manipulation of the microbiome in patient-

derived models may identify novel (host or microbial) targets

representing promising therapeutic avenues (155). Both 3D

cultures and animal models have been used to mechanistically

implicate the microbiome in cancer biology. Using intestinal

PDOs, Kadosh et al. observed that the addition of the microbial

metabolite gallic acid alters the effect of Trp53 gain of function

mutations from tumor-suppressive to pro-oncogenic (156). In

adenomatous polyposis coli (APC)-mutated mouse models,

depletion of Streptococcus thermophilus plays a key role in

colorectal cancer tumorigenesis (157). The impact of probiotic

and high fiber diet on immunotherapy outcomes have been
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evaluated in several studies showing controversial results (158,

159). Spencer et al. observed an association between higher

dietary fiber content and prolonged progression-free survival

in melanoma patients receiving ICI while the use of probiotic

shown a detrimental effect in the same population (160). To

validate these results, they tested the influence of fiber and

probiotics on anti-PD1 responses in patient-derived mouse

models, confirming that a diet with lower fiber content and

addition of a probiotic reduced cytotoxic TILs (160). Finally,

mice with microbiome transplanted from human donors (with

cancer) represent a type of patient-derived model themselves

(161). Routy et al. compared mice with fecal microbiomes

transplanted from human patients who responded to anti-PD1

antibody and those receiving fecal transplant from non-

responders and found a greater density of intratumoral CD8+

T cells, upregulation of PD L1 and a lower presence of myeloid

suppressive cells was in mice transplanted with responders’

stools, suggesting microbiota-induced “hot” TME (162).

Critically, these observations have led to the development of

novel, microbiome-targeting therapeutic strategies. Shi et al.

evaluated the impact of combining a probiotic agent,

Escherichia coli strain Nissle 1917, to an anti-Transforming

Growth Factor, Beta (TGF-b) compound in mice transplanted

with breast and hepatocellular carcinoma cells (163). They

reported greater tumor growth inhibition and metastasis

suppression in models receiving the probiotic. They also

observed an increase in the proportion of intratumoral CD8+

T cells and greater numbers of mature dendritic cells in tumour-

draining lymph nodes. Fecal transplants from treatment-

responsive donors have been investigated in clinical

trials assessing their potential to restore sensitivity to

immunotherapy in refractory melanoma (164, 165). These

data highlight the experimental importance and potential

utility of microbiome-informed preclinical studies and the

potential for patient-derived microbiome models for the

investigation of cancer biology and therapeutic discovery (147).
5 Inclusion of patient-derived
models in co-clinical trials

Patient-derived platforms have allowed investigators to

perform drug testing in models originated from subjects

simultaneously receiving therapy in clinical trials. These types

of studies, known as co-clinical trials, use laboratory data to

guide clinical development or treatment strategies, with the final

goal of identifying predictive biomarkers and increasing the rate

of success of experimental treatments (166). As an example, Kim

et al. tested the fibroblast growth factor receptor (FGFR)

inhibitor dovitinib in PDXs derived from squamous cell lung

cancer patients treated with the same drug in a clinical study

(167). They observed preservation of genomic and histologic
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profiles of parental tumours in PDXs. The responsiveness to

dovitinib displayed by the models recapitulated the clinical

outcomes observed in the patients. Gene expression profiling

performed in the PDXs indicated upregulation of FGF3 and

FGF19 in responders, representing a potential predictive

biomarker. The Gustave Roussy MATCH-R project is another

example of a co-clinical trial. This is a prospective study aimed at

extensive characterization of tumours with acquired resistance

to immunotherapeutic agents or targeted therapies. Generation

of PDX models for 54 patients with a success rate of 33% and the

highest probability of engraftment for urothelial bladder cancer

(72.7%) was reported (168). Despite these models being helpful

to provide further insights into the mechanism of drug

resistance, the authors reported that the outcome data from

drug testing were often not timely to guide clinical decision-

making. Having a faster turnaround time and being easier to

maintain, PDOs might be more suitable for co-clinical studies

(169). Yao et al. used PDOs originated from patients with rectal

cancer to test the efficacy of chemoradiation and compared it

with clinical outcomes (170). The authors reported poor

response to chemoradiation in 42/64 patients whose models

were resistant, and a good response in 16/17 patients with

matched responsive PDOs. They also tested the responsiveness

to single components of the chemoradiation regiment (5-FU,

irinotecan and radiation) and correlated it with clinical

responses. Good clinical outcomes were observed in patients

whose PDOs were sensitive to one, two or all the three agents. A

good clinical response was reported in 3 patients with PDOs

resistant to all three components of the chemoradiation regimen,

tested separately. Interestingly, when these models were exposed

to the combination, drug synergy was demonstrated in one of

the PDOs indicating the potential utility of these models to

explore combined treatments to overcome drug resistance. The

reliability of PDOs in predicting responses to radiation and

chemotherapy in patients with rectal cancer has been evaluated

also by further co-clinical studies (171–173). Park et al.

developed PDOs from 33 patients radiation for retal

adenocarcinoma and confirmed the possibility to use these

models to predict sensibility through a machine-learning

algorithm (171). In another study, Ganesh et al. were able to

generate 65 PDOs from 41 patients with newly diagnosed,

metastatic or recurrent rectal cancer with a success rate of 77%

(172). Interestingly, 43/65 PDOs were established from samples

obtained after exposure to 1 or 2 lines of systemic therapy

demonstrating the possibility to generate 3D cultures from pre-

treated tumors. Hu et al. have shown that is possible to minimize

the time for anticancer drug testing by using microwell arrays

that enable to evaluate PDOs sensitivity to hundreds of different

compounds at passage 0 (174). Aside from allowing a timely

determination of anticancer activity the possibility to perform

drug testing at an early stage might reduce the risk of phenotypic

changes at later passages and the need of complex culture media
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with growth factors enrichment. Acoustic droplet printing

(ADP) is another approach attempted to decrease the time

necessary for PDOs generation (134, 175, 176). This technique

enables the development of PDOs in 2 weeks, with preservation

of autologous immune cells and integration of a microfluidic

system for drug delivery (134). These characteristics make ADP-

generated PDOs a promising platform for anticancer drug

testing including immunotherapeutic agents. Another critical

step to implement co-clinical trial is the definition of fast and

standardized methods for the interpretation of antitumor

activity in the pre-clinical models. Usually drug sensitivity is

estimated using cell viability assays such as ATP-dependent

luminescence, tetrazolium-based colorimetric techniques, or

fluoresce-based assays (90). These techniques however results

PDOs death impairing sequential assessments (177). Emergent

technologies such as label-free light microscopy and positron-
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emission microscopy have been tested to evaluate the antitumor

activity of investigational agents in 3D cultures (90, 178, 179).

Light microscopy might provide a more precise measurement of

antitumor activity because it allows the evaluation of cell

viability at single organoid level (90). Moreover, this technique

demonstrated the potential to detect not only cytotoxic but also

cytostatic activity (90). With the use of positron-emission

microscopy was possible to establish that PDOs retain

metabolic characteristics of parental tumours, indicating that

this technique can be used to monitor responses in the organoid

cultures (178). Even when the data obtained from preclinical

models are not suitable to guide treatment decisions the

information provided by these platforms might be precious to

unveil mechanisms underlying drug resistances and develop

strategies to restore or increase responsiveness to treatments

(180, 181). Moreover, this approach can be used to support the
TABLE 1 Ongoing co-clinical trials using patient-derived models for drug testing.

Target population Intervention N of
patients

Type of preclinical
model

NCT
number

Stage II-III TNBC Neoadjuvant chemotherapy base clinical trial not
guided by PDX

135 PDX NCT02124902

Metastatic TNBC Personalized treatament guided by miniPDX and
RNA sequencing

100 miniPDX NCT04745975

Operated GI cancers Adjuvant chemotherapy not guided by PDX 120 PDX (zebrafish) NCT03668418

Pancreatic cancer Personalized treatment guided by miniPDX 100 miniPDX NCT04373928

Lung and HNSCC Standard or experimental systemic treatment not
guided by PDX

30 PDX NCT02597738

Metastatic NSCLC PD-L1+ who failed platinum
based treatment

Pembrolizumab not guided by PDX 50 PDX NCT03134456

Childhood cancers Personalized treatment guided by molecular profiling
and PDX

400 PDX NCT03336931

Recurrent mantle cell lymphoma Ibrutinib not guided by PDX 50 PDX NCT03219047

Localized or metastatic kidney cancer Personalised treatment guided by PDX 50 PDX NCT04602702

Metastatic CRPC Personalised treatment guided by miniPDX 15 miniPDX NCT03786848

Metastatic CRC Cetuximab not guided by PDO 80 PDO NCT04906733

Metastatic pancreatic cancer Chemotherapy guided by PDO 100 PDO NCT04931381

Resected pancreatic cancer Adjuvant chemotherapy guided by PDO 200 PDO NCT04931394

HNSCC, CRC, breast or epithelial ovarian cancer Chemotherapy guided by PDO 35 PDO NCT04279509

Non muscle-invasive bladder cancer Chemotherapy guided by PDO (instillation) 33 PDO NCT05024734

Metastatic HER2 negative BC Chemotherapy guided by PDO 15 PDO NCT04450706

Operable HER2 positive BC Chemotherapy + anti-HER2 agents not guided by
PDO

94 PDO NCT04281641

NSCLC Treatment guided by PDO 100 PDO NCT04826913

Localized and metastatic CRC Standard chemotherapy not guided by PDO 120 3D bioprinted PDO NCT04755907

Advanced BC Standard therapy not guided by PDO 15 PDO NCT04655573

Solid tumors Engineering TCR-T cells 30 PDO NCT03778814

Locally advanced resectable esophagogastric
carcinoma

Standard chemotherapy not guided by PDO 40 PDO NCT03429816

Locally advanced esophageal cancer Chemoradiation not guided by PDO 140 PDO NCT03081988
f

BC, breast cancer; CRC, colorectal cancer; CRPC, castration-resistant prostate cancer; GI, gastrointestinal; HNSCC, head and neck squamous cell cancer; NSCLC, non-small cell lung
cancer; PDO, patient-derived organoids; PDX, patient-derived xenograft; TNBC, triple negative breast cancer.
rontiersin.org

https://doi.org/10.3389/fonc.2022.976065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Genta et al. 10.3389/fonc.2022.976065
development of non-invasive techniques for the prediction of

disease response. As an example, Roy et al. used patient derived

PDXs of TNBC to identify [(18)F] fluorodeoxyglucose with

positron emission tomography radiomic signatures of response

to neoadjuvant chemotherapy (182). A list of co-clinical trials

currently ongoing is reported in Table 1.
6 Conclusion and future perspectives

Patient-derived models are powerful tools with multiple

applications in oncology. Their molecular characterization and

incorporation in multiomic biomarker-driven studies is crucial

to identify mechanisms of resistance to anticancer treatments

and guide the development of effective therapeutic strategies.

The Immune Resistance Interrogation Study (IRIS,

NCT04243720) currently ongoing at our institution, NEO-R

(NCT04504747) and PITCHER (NCT04714957) are some

examples of prospective trials using this approach. High

genomic and transcriptomic fidelity, preservation of tumor

heterogeneity and presence of a proficient TME are some of

the key factors that should be implemented to obtain results that

can be translated into clinic. The availability of large PDO and

PDX repositories combined with the development of machine

learning techniques can partially bridge the molecular gap with

original tumors and optimize drug testing in preclinical studies

(92–95). Until today, tumor heterogeneity represented a main

pitfall, jeopardizing the reliability of preclinical models in

predicting drug sensitivity. Although there is a big caveat on

the success and expansion of CTCs, there is a question of

whether they could help overcome this limitation by capturing

inter- and intratumoral heterogeneity. The use of 3D bioprinting

techniques might enable the development of complex 3D

cultures starting from CTCs, comprising proficient autologous

immune cells and vascular system. Aside from overcoming

tumour heterogeneity, the use of CTCs as primary source for

the development of cancer models may offer further advantages.

Due to its relatively low invasiveness, a liquid biopsy-based

approach might be particularly useful to investigate

mechanisms of acquired resistance through the comparison of

CDXs obtained by sequential blood draws. Finally multiple

strategies have been implemented to preserve a functional

TME leading to the development of complex in-vivo, ex-vivo

and in-vitro models. These platforms may enable a deeper

understanding of the factors regulating the networking

between cancer cells and immune system, such as microbiome

and ECM. Moreover humanized in-vivomodels and 3D cultures

retaining functional immune effectors and ECM are promising

tools to test not only immunotherapy but also novel therapeutic

strategies targeting critical processes underlying cancer initiation

and progression such as matrix deposition and remodeling.

Further elements should be taken into consideration if the
Frontiers in Oncology 11
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patient derived model is intended to guide treatment selection

in the context of a co-clinical trial. The models are highly time-

sensitive. Despite the molecular affinity with the parental

tumors, mouse PDXs need months to be established; therefore,

limiting their applicability in treatment decision making, as

demonstrated by the MATCH-R study (168). Alternative

models including 3D cell cultures, along with innovative

techniques such as 3D bioprinting and microwell arrays could

overcome these limitations and have higher molecular fidelity

thanks to the limited number of passages between tissue

collection and drug-testing.
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Cholangiocarcinoma (CCA) is a type of liver cancer with an aggressive

phenotype and dismal outcome in patients. The metastasis of CCA cancer

cells to distant organs, commonly lung and lymph nodes, drastically reduces

overall survival. However, mechanistic insight how CCA invades these

metastatic sites is still lacking. This is partly because currently available

models fail to mimic the complexity of tissue-specific environments for

metastatic CCA. To create an in vitro model in which interactions between

epithelial tumor cells and their surrounding extracellular matrix (ECM) can be

studied in a metastatic setting, we combined patient-derived CCA organoids

(CCAOs) (n=3) with decellularized human lung (n=3) and decellularized human

lymph node (n=13). Decellularization resulted in removal of cells while

preserving ECM structure and retaining important characteristics of the tissue

origin. Proteomic analyses showed a tissue-specific ECM protein signature

reflecting tissue functioning aspects. The macro and micro-scale mechanical

properties, as determined by rheology and micro-indentation, revealed the

local heterogeneity of the ECM. When growing CCAOs in decellularized lung

and lymph nodes genes related to metastatic processes, including epithelial-

to-mesenchymal transition and cancer stem cell plasticity, were significantly

influenced by the ECM in an organ-specific manner. Furthermore, CCAOs

exhibit significant differences in migration and proliferation dynamics
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dependent on the original patient tumor and donor of the target organ. In

conclusion, CCA metastatic outgrowth is dictated both by the tumor itself as

well as by the ECMof the target organ. Convergence of CCAOswith the ECMof

its metastatic organs provide a new platform for mechanistic study of

cancer metastasis.
KEYWORDS

metastatic colonization, decellularization, Cholangiocarcinoma, tumor organoids,
extracellular matrix
Introduction

Despite achievements in early detection and treatment of

primary tumors, 90% of current cancer-related death occur after

the disease has metastas ized. In bi le duct cancer

(cholangiocarcinoma, CCA), the 5-year survival rate is

approximately 7-20% (1), and drops to 2% when the cancer

metastasizes (2–4). Distant metastasis occurs relatively frequently

in CCA over the course of a patient’s disease, ranging from 36.4-

50.2% (5–7), with lung and lymph nodes the most common distant

locations of metastasis (4, 6). Treatment options are surgical

resection, liver transplantation, chemotherapeutics, intra-arterial

treatments, and local ablative therapies, of which surgical

intervention is the only potentially curative option (8). However,

a large number of patients are not eligible, approximately 60-88%,

including patients with distant metastatic loci (9). Understanding

the micro-environmental cues of metastatic disease will aid in

understanding the biology behind metastatic outgrowth and in

developing novel therapeutic options for patients with

unresectable CCA.

Tumor-derived organoids, consisting of primary epithelial

cells grown as 3D structures, have emerged in recent years as

highly promising biological disease models due to their self-

renewal and self-organization capabilities, while maintaining the

mutational landscape of the original tumor (10–12). CCA

organoids (CCAOs) have been established as an attractive

cellular source for various fundamental and translational

biological applications, including identification of biomarkers,

driver gene functionality testing, and drug screening (13–15).

However, in a metastatic setting, micro-environmental cues at

the target organ are crucial for cancer cell behavior, including

colonization and proliferation of tumor cells (16, 17). These cues

are not well recapitulated by current culture systems, as

organoids are primarily cultured in basement membrane

extracts (BME) derived from a mouse tumor (18). Particularly,

the ‘seed and soil’ hypothesis, as posted by Paget in 1889,

suggests that distant organs are different in their ability to
02
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provide a favorable environment (soil) for facilitating the

growth of metastasized cancer cells (seeds) (19, 20). Progress

in determining the role of the specific host organ, or ‘soil’, on the

behavior of disseminated cancer cell, or ‘seeds’, aiming to

colonize that organ is hindered by a lack of model systems

that accurately recapitulate native organ structure.

As part of the micro-environment, the extracellular matrix

(ECM) provides important biochemical and physical cues for

tumor cell colonization (17). To isolate the ECM and study what

the ‘soil’ comprises, decellularizationmethods can be applied. This

technique uses enzymatic and/or chemical reagents to remove

cells while preserving ECM characteristics, including architecture

and protein composition (21–23). Decellularization has been

established for many organs and tissues, including tumors. In

previous work, we have shown that CCAO recellularization of

decellularized liver and tumor scaffolds can unveil the influence of

ECM on cancer-related processes, including growth, invasion, and

chemo resistance. In CCA, location-specific metastases carry

distinct prognostic values, with lymph node showing better

prognostic outcomes compared to lung, however mechanistic

insight into what is causing this is still unknown (4, 24).

Therefore, modeling metastatic colonization in a tissue-

mimicking structure that reflects in vivo micro-environmental

cues is an outstanding challenge.

Here, we create an in vitromodel encompassing patient-derived

CCA organoids and decellularized human lung (dLu) and lymph

node (dLN) to study metastatic cell-matrix interactions. The

decellularized tissues were biochemically and biomechanically

characterized, which revealed isolation of ECM components with

an unique ECMprotein signature for dLu and dLN and retention of

tissue-specific function-related proteins. Recellularization of both

decellularized tissues with CCAOs resulted in upregulation of

different cancer stem cell populations, as determined by LGR5

and CD133, and an increased epithelial phenotype in dLN.

Furthermore, CCAO grown in dLu and dLN had different

proliferation patterns, influenced by both the original tumor and

the ECM donor. These results illustrate the unique impact of the
frontiersin.org

https://doi.org/10.3389/fonc.2022.1101901
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


van Tienderen et al. 10.3389/fonc.2022.1101901
patient-derived tumor and the ECM of the target organ on key

metastasis-related pathways and associated growth patterns.
Materials and methods

Sample procurement and
tissue collection

CCA (n=3, including n=2 intrahepatic CCA and n=1

perihilar CCA) tissue samples were obtained from patients

who underwent a curative-intent surgical resection, performed

at the Erasmus MC in Rotterdam (Table S1 for patient

information). The Medical Ethical Council of the Erasmus MC

approved the use of tissue for research purposes and patients

provided written informed consent (MEC-2013-143). Samples

were confirmed to be of tumor origin with histopathological

assessment by a pathologist. CCA samples were stored at 4°C in

Belzer UW cold storage solution (UW, Bridge to Life) and, if

used for organoid initiation, processed within 24 hours after

collection. Lung (n=3) tissue samples were obtained from donors

for lung transplantation, performed at Sahlgrenska University

hospital in Gothenburg, Sweden. Use of lung tissue was

approved by the Swedish ethical review board in Lund (Dnr.

2008/413, 2011/581 and 2013/253). Lung tissue samples of

peripheral lung was prepared by dissecting out cubes with a

side length of approximately 10 mm with pleura remaining on

one side and snap freezing them in isopentane chilled with liquid

nitrogen. Lymph nodes (n=13) were obtained from donors who

donated their liver for a liver transplantation procedure,

performed at the Erasmus MC in Rotterdam (MEC-2014-060).

The lymph nodes are hilar lymph nodes. Donor information for

both lymph node and lung can be found in table S2. Lung and

lymph node samples were initially stored at -80°C or -20°C and

processed at a later stage for decellularization.
Initiation and propagation of
human patient-derived
cholangiocarcinoma organoids

Initiation of CCAOs was done as previously described (13).

Organoids were passaged in a 1:3-1:6 ratio approximately every

7 days, depending on their proliferation rate. Expansion medium

(EM, Table S3) was refreshed every 3 or 4 days. Passaging was

done by removing the EM and collecting the organoids in a 15

mL tube by adding ice-cold Advanced DMEM/F12 (AdvDMEM,

Gibco) supplemented with 1% v/v penicillin-streptomycin, 1%

v/v hepes, 1% v/v ultraglutamine, 0.2% v/v primocin) to the wells

and scraping/pipetting. Subsequently, ± 8 ml ice-cold

AdvDMEM was added to the 15 ml tubes. After centrifugation

(453g, 5 min, 4°C), the supernatant was removed and the pellet

was re-suspended in ice-cold AdvDMEM while mechanically
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breaking the organoids by pipetting up and down. After another

centrifugation step (453g, 5 min, 4°C), the supernatant was

removed and the cell pellet was re-suspended in BME

(Cultrex). The mixture of cells and BME was plated in

droplets of 25 µl in 12-, 24- or 48-well suspension culture

plates (Greiner or Sarstedt) and cultured for 7 days before

passaging occurred again.
Decellularization procedure of human
lymph nodes and lung tissue

Lung tissues were embedded in tissue-tek optical cutting

temperature (OCT) compound, mounted on a metal holder and

cut with a cryotome (Leica) at -15°C into 400 µm thick slices. 400

µm thick lung slices and entire lymph nodes were placed in a

flask on a multi-position magnetic stirrer (Figure S1A). Lymph

nodes were not cut into smaller slices before decellularization

because of their relatively small surface area and disintegration

of the lymph nodes during decellularization. Tissue samples

were washed for 30 minutes with dH20, 1 hour with 9%

hypertonic saline (NaCl) and again 30 minutes with dH20 to

remove traces of blood, debris, and OCT compound by using

osmotic effect. Thereafter, all tissue samples were decellularized

with a solution consisting of 4% Triton-X-100 and 1% NH3

(hereafter referred to as TX-100 solution). TX-100 solution was

replaced every hour for a total of 10 cycles including two

overnight (O/N) cycles of approximately 16 hours, which

resulted in transparent tissues. Subsequently, the tissues were

washed with PBS (Gibco, HyClone) for 1 hour to remove

traces of TX-100. Thereafter, tissues were incubated with

DNase solution (2 mg/l DNase type 1 (Sigma) in 0.9%

NaCl + 100mM CaCl2 + 100mM MgCl2) for 3.5 hours at 37°C

on the magnetic stirrer. Finally, tissues were washed twice with

PBS. Biopsy samples were taken before and after

decellularization for various analysis. To note, two lymph

nodes contained >50ng/mg wet tissue after decellulariation

and were not included in subsequent experiments and/

or analyses.
Confirmation of decellularization
procedure

Biopsies and decellularized tissue were fixed in 4%

paraformaldehyde (PFA; Fresenius Kabi), solidified in 2%

agarose in PBS, embedded in paraffin and sectioned at 4 µm

using a microtome (HM 325). Slides of samples before and after

decellularization were processed for routine histological

stainings: hematoxylin and eosin (H&E), 4’,6-diamidino-2-

phenylindole (DAPI; Vectashield, Vectorlabs), Masson’s

Trichrome (TRI), Gomori’s (GOM), and picrosirius red (PSR;

Sigma). Collagen type 1 is stained according to standard protocol
frontiersin.org

https://doi.org/10.3389/fonc.2022.1101901
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


van Tienderen et al. 10.3389/fonc.2022.1101901
by the pathology department (ErasmusMC, The Netherlands).

Slides were imaged with a Zeiss Axioskop 20 microscope and

captured with the Zeiss Axiocam 305 color or imaged and

captured with Nanozoomer 2.0-HT (Hamamatsu). DAPI

stained slides were analyzed using an EVOS microscope

(Thermo Fisher Scientific). Additionally, DNA was isolated

from lung and lymph nodes, before and after decellularization,

using the QIAamp DNA Micro Kit (Qiagen) according to the

manufacturer’s protocol. Subsequently, the total DNA content

was measured using a Nanodrop spectrophotometer (Thermo

Fisher Scientific; LU n=3, LN n=13) and corrected for the

corresponding wet weight of the measured sample (ng DNA/

mg wet tissue). The wet weight of the samples was determined

before performing analysis.
Collagen and sulfated
glycosaminoglycan quantification

Total collagen content of lung and lymph nodes before and

after decellularization (lung n=3 (T=0, T=decell); lymph node

n=4 (T=0) and n=6 (T=decell)) was determined using a Total

Collagen Kit (Quickzyme Biosciences) according to the

manufacturer’s protocol. The absorbance of the collagen-

binding dye was measured in a clear 96-well plate at 570 nm

using an infinite M nano plate reader (Tecan). Background

absorbance was subtracted. The content was corrected for the

wet weight of the corresponding samples (µg collagen/mg wet

weight tissue).

Sulfated glycosaminoglycan (sGAG) content of lung and

lymph nodes before and after decellularization (lung N=3 (T=0,

T=decell), lymph nodes n=4 (T=0) and n=6 (T=decell)) was

determined using a Blyscan Sulfated Glycosaminoglycan Assay

(Biocolor) according to the manufacturer’s protocol. Samples

were digested in a Papain (Sigma) solution (10 mg/ml) at 65°C

for 3 hours. The absorbance was measured in a clear 96-well

plate at 656 nm using an infinite M nano plate reader (Tecan).

The wet weight of the samples was weighted before

performing analysis.
Nanoindentation

The effective Young’s modulus (E) of decellularized tissue

samples was measured using a Chiaro Nanoindenter (Optics11

Life) (Figure S1B). dLu (N=3) and dLN (N=3) were glued inside

a 35 mm petri dish using NOA61 or NOA81 (Norland) and a

UV torch (Walther Pro). The sample and probe were immersed

in PBS before the measurement started. The stiffness of the

probes used for dLu and dLN was respectively 0.027 N/m and

0.030 N/m. The probes had a tip radius of 3 µm and were ball

shaped. First, the sample was indented to a depth of 2 µm in 4

seconds (0.5 µm/s). Then, the indentation was held at 2 µm for 1
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second and finally the probe was retracted in 1 second. At least

one matrix scan of 3x3 with a distance of 5 µm between

indentation points was performed per decellularized

extracellular matrix (dECM). The Hertzian contact model in

the Optics 11 data viewer software (version V3.4.7) was used to

calculate the effective Young’s Modulus (E) (25). Measurements

with an unreliable model fit (R2<0.9) were considered as outliers

and disregarded from further analysis.
Rheology

A rotational rheometer (KINEXUS PRO; Technex) with a

flat parallel plate geometry with a diameter of 20 mmwas used to

determine the Young’s modulus of the decellularized tissues

(Figure S1C). All measurements were performed at 37°C and

obtained by the rSpace software. dLu (n=3, 400 µm thick) and

dLN (n=3) were placed on the bottom plate. Next, the top plate

was lowered to a gap height of 2 mm (dLu1, dLu2), 3 mm (dLu3,

dLN5) or 1.8 mm (dLN11, dLN10). First, the surface contact

point was found by decreasing the gap at a rate of 0.01 mm/s

with a measurement of the normal force every 0.01 second,

which the software used to automatically determine the contact

point. Subsequently, a shear oscillation frequency sweep (f: 10-

0.01 Hz, slope: 10 points per decade) was performed to

determine the viscoelastic properties of the samples.

Subsequently, the dECM was compressed 4*10−4 mm every

second for 13.3 minutes. Then, another shear oscillation

frequency sweep (f: 10-0.01 Hz, slope: 10 points per decade)

was performed. An approximation of the Young’s modulus (E)

was determined over the whole range of compression. The strain

was calculated by (h-h0/h0) where h is the gap while measuring

and h0 is the initial gap when the surface contact point was

found. The stress was calculated by (strain+1)*(Normal force/

initial area) where the initial area was calculated by p*(sample

radius)2, following the Cauchy stress calculations (26). In this

way, the data was corrected for the size of each sample and

increase in size after each compression step. The gradient slope

over the whole range of compression resulted in an

approximation of the Young’s modulus (E).
Proteomic sample preparation

100 µL 50 mM Tris-HCl (pH 8.0) was added to the dECM

scaffolds and the samples were snap frozen in liquid nitrogen,

followed by homogenizing using a dismembrator. The sample

was heated in a thermomixer for 5 min at 95°C. 90 µL 50 mM

Tris-HCl and 5 µL 100 mM of 1,4-dithiothreitol were added and

the sample was incubated at 50°C for 60 min. Subsequently, 5 µL

200 mM of 2-chloroacetamide was added and the sample was

incubated at RT for 30 min. Then, 100 µL 50 mM Tris-HCl and

10 µL Peptide:N-glycosidase F (500 units/mL) was added and the
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samples were further incubated at 37°C for 4 h, followed by

5 min at 95°C. Finally, 25 µL sodium deoxycholate and trypsin

was added (1:100, trypsin:protein) and the sample was incubated

in a thermomixer O/N at 30°C and 1100 RPM. The next day, 25

µL 10% trifluoroacetic acid (TFA) was added to the sample,

followed by 2X washes with ethylacetate: 300 µL ethylacetate

(H2O saturated) was added, the mixture was mixed vigorously

and then centrifuged for 2 min at 5,000 rpm. The upper layer

was removed, followed by 45 min in the SpeedVac Vacuum

Concentrator (Thermo Fisher Scientific) to evaporate the solvent

and reduce the sample volume. The protein digest was desalted

using C18 stage tips (Thermo Fisher Scientific). This was

repeated for the flow through. The stage tip was then washed

with 100 µL 0.1% TFA, centrifuged for 10 min at 2,000 rpm,

followed by 2X elution of the peptides with 75 µL 50%

acetonitrile (AcN) and centrifugation for 8 min at 2,000 rpm.

Next, peptides were dried in the speedvac and reconstituted in 25

µL 2% AcN, 0.5% formic acid. Nanoflow liquid chromatography

tandem mass spectrometry (nLC-MS/MS) was performed on an

EASY-nLC coupled to an Orbitrap Fusion Lumos Tribrid mass

spectrometer (Thermo), operating in positive mode. Peptides

were separated on a ReproSil-C18 reversed-phase column (Dr

Maisch; 15 cm × 50 mm) using a linear gradient of 0–80%

acetonitrile (in 0.1% formic acid) during 90 min at a rate of 200

nl/min. The elution was directly sprayed into the electrospray

ionization source of the mass spectrometer. Spectra were

acquired in continuum mode; fragmentation of the peptides

was performed in data-dependent mode by HCD.
Proteomic data processing

Raw mass spectrometry data were analyzed using the

Proteome Discoverer 2.3 software suite (ThermoFisher

Scientific). The Mascot search algorithm (version 2.3.2,

MatrixScience) was used for searching against the Uniprot

database (taxonomy: Homo sapiens). The peptide tolerance

was typically set to 10 ppm and the fragment ion tolerance

was set to 0.8 Da. A maximum number of 2 missed cleavages by

trypsin were allowed and carbamido-methylated cysteine and

oxidized methionine were set as fixed and variable

modifications, respectively.
Proteomic data analysis

To identify and categorize the detected proteins that are

related to the ECM, the dataset was compared to and filtered

with the MatrisomeDB database (27). MatrisomeDB uses

domain-based organization of matrisome-related proteins to

obtain a complete collection of ECM proteomic data. Proteins

identified are subdivided into ECM-affiliated proteins, secreted

factors, collagens, ECM regulators, ECM glycoproteins, and
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proteoglycans. The identified matrisome proteins were further

classified into 3 categories: a core ensemble of proteins,

differentially expressed (DE) proteins, and exclusive proteins.

The core ensemble of proteins consists of proteins that are

present in all replicates of all conditions. Proteins are

differentially expressed if the adjusted p-value is <0.05.

Proteins are identified as ‘exclusive’ if they are present in

samples of one condition, while absent in all replicates of

another condition. To note, the difference between DE

proteins and exclusive proteins is likely due to the sensitivity

of mass spectrometry. Therefore, DE proteins and exclusive

proteins were combined to apply enrichment analysis using

the fgsea (version 1.16.0) R package.
Preparation of decellularized matrices
for organoid culture

One day before recellularization, scaffolds were washed with

sterile PBS three times, followed by washing with AdvDMEM

three times. Subsequently, the scaffolds were incubated

overnight at 37°C with AdvDMEM, supplemented with 10x

the concentration of penicillin- streptomycin, primocin and

antiobiotic-antimycotic (Gibco) to avoid infections in the

recellularization experiments. Decellularized matrices were

washed three times with AdvDMEM on the day of

recellularization. The scaffolds were placed in the middle of a

new suspension or culture well plate (Greiner or Sarstedt) and

were folded out as much as possible using a needle or tweezer.
Recellularization

CCAOs (n=3) grown in BME droplets were harvested by

removing the BME droplets from the wells using ice cold

AdvDMEM as previously described. After removal of BME and

AdvDMEM from the cell pellet, 1 ml trypsin (TrypLE, Thermo

Fisher Scientific) was added. The suspension was incubated at 37°C

for 15 minutes while applying mechanical disruption with a pipette

every 5 minutes until organoid fragments were dissociated into

small aggregates and single cells. Subsequently, 10 µl of the

suspension was added to 10 µl Trypan Blue (Thermo Fisher

Scientific) for cell counting using disposable cell counting

chambers (Kova). After 15 minutes of incubation, trypsin was

directly inactivated by the addition of cold AdvDMEM. The

suspension was centrifuged for 5 minutes (453g, 4°C) and the

resulting cell pellet was resuspended in EM to obtain the total

amount of cells needed (approx. 200.000 cells/scaffold). Cells (5 µl)

in EM were added to the dECM in a 12 or 24 suspension or culture

well plate (Greiner or Sarstedt). The recellularized scaffolds were

incubated for 3 hours at 37°C before adding 350-500 µl EM to the

recellularized scaffolds. EM was refreshed every 3 or 4 days.

Organoid cultures in BME were used as a control if appropriate.
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RNA isolation, cDNA synthesis and
RT-qPCR

For RNA isolation, 3 or 4 scaffolds were added to 700 ml
Qiazol. Qiazol lysed samples (3-4 recellularized scaffolds per

replicate) were homogenized with a TissueRuptor (Qiagen).

Messenger RNA was isolated with a miRNeasy kit (Qiagen)

according to the manufacturer’s protocol. A Nanodrop

spectrophotometer (Thermo Fisher Scientific) was used to

measure RNA content. 500 ng complementary DNA (cDNA)

was made by adding 5x PrimeScript RT Master Mix and dH2O

to isolated RNA and inserted into a 2720 Thermal Cycler

(Applied Biosystems) or SimpliAmp Thermal Cycler (Applied

Biosystems). qPCR was performed according to standard

procedures with 10 µl SYBR select master mix, 1 µl primers, 4

µl dH2O and 5 µl cDNA per reaction. All the tested primer sets

are l i s ted in (Table S4) . The housekeeping genes

Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) and

Hypoxanthine-guanine-phosphoribosyl-transferase (HPRT)

were used as reference genes.
Live/dead staining

CCAOs cultured in dECM were incubated in EM

supplemented with 100 µg/ml Hoechst (Hoechst 33342,

Thermo Fisher Scientific), 50 µg/ml propidium iodide (PI,

Sigma-Aldrich) and 0.5 µM calcein (Calcein AM, Thermo

Fisher Scientific) at 37°C for 30 minutes protected from light.

Images were made with an EVOS FL fluorescent microscope

(Thermo Fisher Scientific).
Histological staining

PFA-fixed samples were solidified in 2% agarose in PBS.

They were embedded in paraffin and sectioned at 4 µm using a

microtome (HM325). Decellularized and recellularized scaffold

slides were stained with H&E according to a standard protocol.
Cell metabolic activity assessment

PrestoBlue™ Cell Viability Reagent (Thermo Fisher

Scientific) was used to assess metabolic activity of CCAOs in

dLu and dLN for the same sample at day 1, 4, 8, 11, 14 after

recellularization. Presto Blue compound was diluted 10-fold

(1:10) in EM, filtered and pre-warmed in a 37°C water bath

for 10 minutes. EM was removed from the recellularized

scaffolds and 500 µl Presto Blue solution was added to each

well. The recellularized scaffolds were incubated at 37°C for 3.5

hours protected from light. Subsequently, the medium was

plated in a 96 well plate in triplicate. The absorbance was
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measured using an CytoFluor Multi-Well plate Reader series

4000 (Perseptive Biosystems) with excitation of 530nm and

emission of 590nm. Background absorbance was measured

using non-recellularized dLu and dLN (both n=3). Background

measurements were subtracted and data was normalized to

day 1.
Statistical analysis

Statistical analyses were performed using GraphPad Prism

(version 9, GraphPad Software). Continuous unpaired variables

between two groups were tested using a Mann-Whitney-U and

presented graphically as means with standard deviation (SD).

Kruskal-Wallis test was performed when more than two groups

were compared. Two-way ANOVA test was performed for

multi-variate analysis with multiple comparison testing for

different time points or different donors (i.e. the sGAG/

collagen contents). A description of the method and test

results is noted if alternative statistical analysis was used. In all

tests, a p value of <0.05 was considered significant.
Results

Decellularization of lymph node and
lung tissue for isolation of a-cellular
ECM scaffolds

To create tissue-specific in vitro metastatic colonization

models for the lung and lymph node, we first decellularized

lung (dLu) and hilar lymph nodes (dLN) (Table S2). An identical

decellularization protocol was used for both tissue types. This

is based on a previously described method for liver and liver

tumor biopsy samples (28), so that recellularization would

be minimally affected by the method of decellularization.

Histological evaluation and DNA content quantification

revealed successful decellularization (Figure 1). Lung

sections show hollow structures of the alveoli and bronchiole

before and after decellularization and preservation of ECM

structure (Figures 1A, S2) (30). In lymph nodes, show the

typical reticular meshwork architecture in T=0 conditions

(Figures 1A, S3) (31). After decellularization, a relative dense

structure lacking cellular material is observed, indicating

preservation of overall tissue morphology. DAPI staining

confirmed the removal of nuclear material from lung and

lymph node (Figure 1B). Macroscopically, decellularization

resulted in a white, translucent appearance for both lung and

lymph node, as commonly seen for other decellularized organs

as well (Figure 1C) (32, 33). Loss of nuclear material was

confirmed by quantification of DNA. After decellularization,

DNA content was significantly decreased in lung (p<0.0001) and

lymph nodes (p=0.0022) (Figure 1D). Lymph node tissue has a
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higher cell density compared to lung, which is reflected by an

average DNA concentration before decellularization in lymph

node of 720ng DNA/mg wet tissue (n=13, SD: ± 569.8ng) and of

250.2ng DNA/mg wet tissue (n=6, consisting of 3 patients and 2
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technical replicates, SD: ± 98.7ng) in the lung. After

decellularization, the DNA content is reduced to 19.9ng DNA/

mg wet tissue (n=13, SD: ± 17.6ng) for dLN and 23.3ng DNA/

mg wet tissue (n=6, SD: ± 11.2ng) for dLu, equaling a reduction
B

C

D

A

FIGURE 1

Extracellular matrix of lung and lymph nodes obtained by decellularization. (A) Representative H&E stainings of lung and lymph node before
(T=0) and after (T=decell) decellularization show efficiently removal of cells from the scaffold and maintenance of ECM structure. Scale bars
indicate 200 µm. 1 and 2 show different donors for dLU (dLu2, dLu3) and dLN (dLN2, dLN12). (B) Representative DAPI stainings of lung (dLu2)
and lymph node (dLN6) before and after decellularization confirmed removal of nuclear material from the scaffold. Scale bars indicate 250 µm.
(C) Lung slices of 400 µm thick and an entire lymph node of 0.75 cm thick before and after decellularization, show the transformation in color
from brown/yellow to translucent white. (D) Quantitative DNA content analysis of lung (n=3 patients, with each patient measured in technical
duplicate, p=0.003) and lymph node (n=13, p=0.0002) before and after decellularization confirms successful decellularization. Error bars
indicate ± SD. ** = p-value < 0.005, *** = p-value < 0.001. Paired t-tests were used for determining significance in DNA content. The red
dotted line indicates a threshold of 50 ng DNA/mg wet tissue, which is a common criteria for adequate cell removal (29). For the DNA content
dLu1-3 and dLN1-13 were used. .
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of 97.2% and 90.7%, respectively. Both absolute values and

percentage reduction (i.e. <50 ng DNA/mg wet tissue and 90%

reduction in DNA content) adhere to common criteria for

complete cell removal (29). Thus, utilizing the same method,

both lung and lymph node tissue was successfully decellularized.
Decellularized scaffolds show retention
of ECM-related components

To further characterize the decellularized scaffolds, the level

of retention of ECM-related components was assessed. Sulfated

glycosaminoglycans (sGAG) are important regulators of various

cancer-related processes, including angiogenesis, invasion,

proliferation and metastasis (34, 35). For both lung and lymph

nodes, sGAGs were preserved after decellularization. The total

sGAG content for both lung and lymph node per mg wet tissue

decreased slightly, with a 1.4-fold and 1.9-fold decrease for dLu

and dLN, respectively (Figure 2A). The slight difference between

the tissues could be related to the higher cell density in dLN,

which means relatively more cell-associated sGAGs are lost

during the process of decellularization. Subsequently, collagen

content was assessed, as collagen is the primary structural

component of the ECM. The collagen concentration increased

for both lung (before decellularization: 3.36 µg/mg wet tissue, SD

± 0.54; after decellularization: 31.49 µg/mg wet tissue, SD± 5.94)

and lymph node (before decellularization: 1.53 µg/mg wet tissue,

SD± 0.58; after decellularization: 43.46 µg/mg wet tissue, SD±

15.63) (Figure 2B). Gomori’s staining shows the presence of

reticular fibers in lymph node tissue at T=0 and after

decellularization (Figure 2C). The relatively high retention of

collagen was confirmed by histological staining’s (PicroSirius

Red and Masson’s Trichrome), with abundant positivity in both

dLu and dLN (Figures 2D, E). In the lung, collagen type 1 is

important for mechanics and confers primarily tensile

properties, while in the lymph nodes it is part of the reticular

fibers (30, 31). Figure 2F demonstrates diffuse abundance and

presence of collagen type 1 after decellularization (black arrows).

Overall, decellularization of human lung and lymph nodes

resulted in preserved components of the ECM and in

acellular scaffolds.
Divergent mechanical properties
of decellularized lung and lymph
node scaffolds

Collagens forms a three-dimensional network, and its

architecture is central to tissue functioning through providing

mechanical properties (36). Therefore, to determine both

macro- and microscopic mechanical properties of dLu and

dLN, rheology measurements and micro-indentation were

performed, respectively. Macroscopic properties of dLu and
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dLN were determined by assessing rheological properties

under compression. The approximation of the Young’s

Modulus (E), determined over the whole range of

compression, for was 0.46 ± .18kPa for dLu and 0.53 ± .41kPa

for dLN (Figure 3A). More heterogeneity in macroscopic

stiffness is seen in dLN. On a micro-scale, by obtaining the

effective Young’s modulus by micro-indentation, the stiffness

values ranged from 0.15-52.3 kPa for dLu and 0.05-40.9 kPa for

dLN (Figure 3B). The effective Young’s modulus is defined as the

Young’s modulus without making any assumptions regarding

Poisson’s ratio. This heterogeneity is also captured on a per

donor basis, but did not show any significant differences between

donors for dLu or dLN (Figure 3C). Thus, on a micro-scale a

similar trends persists, with a large standard deviation indicating

heterogeneity in the stiffness for both tissue types, and

heterogeneity in macroscopic stiffness for dLN in particular.
Decellularized tissue scaffolds contain
common and divergent ECM proteins

We next examined whether the heterogeneity in mechanical

properties was also represented in the overall protein

composition. For this, mass spectrometry was employed to

find shared and divergent ECM proteins in dLu and dLN.

ECM-related proteins were categorized following the

matrisome classification standards: collagen, glycoproteins,

ECM regulators, ECM-affiliated proteins, proteoglycans, and

secreted factors (27). Analysis of the proteome identified

proteins in all categories, highlighting the complexity of the

dECM in both tissues (Figures 4A, B). The most abundant

proteins in both dLN and dLU are largely overlapping,

particularly collagens are present in both decellularized

scaffolds (Figure S4). However, important differences in highly

abundant proteins are also present, including elastin (ELN) in

the lung, which is important for lung development and alveolar

formation (37). Still, most differences are present in lower

abundant ECM-related proteins, highlighting the complexity

of the environments that are provided by decellularized

scaffolds (Suppl. File 2). Filtering for proteins present in all

biological replicates showed that dLu contained a larger variety

of proteins in all categories compared to dLN (Figure 4A). This

is similar when filtering for ECM proteins only present in one

replicate, although the difference between dLu and dLN becomes

less apparent, indicating a higher level of intra-dLN

heterogeneity in protein composition (Figure 4B). The larger

diversity in ECM glycoproteins and ECM regulators in dLu is

translated to a significantly higher total abundance, based on

summed tryptic peptide intensities (Figure 4C). However, dLN

had a significantly higher total collagen abundance compared to

dLu, congruent with the collagen quantification based on acid

hydrolysis (Figures 4C, 2B). Surprisingly, dissecting the higher

abundance per collagen subtype and subunit does not reveal
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major differences, with only COL6A6 (p=0.02) and COL28A1

(p=0.03) significantly upregulated in dLu compared to dLN

(Figure 4D). Principal component analysis revealed tissue-

specific signatures of ECM proteins by segregation of dLu and

dLN clusters based on PC1 (Figure 4E). Furthermore, dLN

showed a higher overall heterogeneity across donors, primarily
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displayed by PC2, which is in line with the higher heterogeneity

in stiffness across donors (Figures 4E, 3A). The different

signatures are also represented by exclusive expression of 42

proteins in dLu and 14 proteins in dLN (Figure 4F). Next, these

uniquely identified proteins were used for enrichment analysis

with the DAVID bioinformatics tool (38). The enriched terms
B

C

D

E

F

A

FIGURE 2

Preservation of ECM proteins after decellularization of human lung and lymph node. (A) Quantitative sGAG content analysis of lung (n=3, p=0.5) and
lymph node (n=5, p=0.07) before and after decellularization showing retention of sGAG. dLu1, 2, 3 and dLN17, 27, 7, 10, 11 were used. (B) Quantitative
collagen content analysis of lung (n=3, p=0.02) and lymph node (n=4, p=0.02) before and after decellularization, showing retention of collagen. dLu1,
2, 3 and dLN2, 4, 7, 15 were used. Paired t-tests were used for determining significance for determining significance in sGAG and collagen content.
*= p-value <0.05. (C–E) Lung (dLu1) and lymph node (dLN12) before (T=0) and after (T=decell) decellularization stained with Gomori’s (GOM, C),
Masson’s Trichrome (TRI, D) and PicroSirius Red (PSR, E) shows ECM architecture primarily consisting of collagen fibers. GOM shows reticulin (black),
nuclei (red), and cytoplasm (pink). TRI shows muscle (red), collagen (blue), nuclei (brown/black), cytoplasm (brick red). (F) Representative images of
collagen type 1 staining of lung (dLu1) and lymph node (dLN1) before and after decellularization. All scale bars indicate 200 µm.
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were divided into shared (Figure 4G) and distinct (Figures 4H,

I). As expected, extracellular space (GO:0005615) and region

(GO:0005576), similar enrichment terms both containing

extracellular proteins, are enriched in both dLu and dLN, as

ECM is isolated through decellularization (Figure 4G). The

distinct enriched terms reveal retention of tissue-specific

functions in the decellularized scaffolds, with enrichment of

immune response in dLN, as it function is primary immune

system-related, and basement membrane enrichment in dLu,

which in native lung is crucial for functioning of gas exchange

through binding endothelium and epithelium together

(Figures 4H, I) (39). Altogether, dLu and dLN have distinct

protein signatures, with high protein diversity and reflect tissue-

specific functional aspects.
CCAOs grown in dLu and dLN scaffolds
attain tissue-specific expression of
cancer-related genes

Next, we assessed the effect of the decellularized ECM scaffolds

on CCAOs, to mimic metastatic outgrowth in lung and lymph

node. Patient-derived CCAOs (n=3) were cultured in BME,

harvested, and seeded on dLu and dLN. CCAOs grown in BME

were spherical in shape and proliferated over time as previously

described (Figure S5) (40). In dLu and dLN, bright field microscopy

images showed the adhesion of single cell and clumps of CCAOs to

the ECM observed at day 1 of recellularization. Subsequently,

organoid-like structures appeared around day 7, which

transformed into a complete cellular layer surrounding the edge

of the ECM scaffolds at day 14 (Figure 5A).

To identify the biological processes that are important for

metastasis of CCA in the lung and lymph nodes, gene expression

profiles of CCAOs cultured in dLu, dLN, and BME were compared.

As expected, KRT7, a marker of cholangiocyte-lineage (41), was

comparable between all conditions and showed high expression,
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indicating retention of CCA phenotype (Figure 5B). Integrin b1
(ITGB1) and integrin a5 (ITGA5), both ECM binding subunits of

integrin receptors (42–44), were probed for their expression profiles

(Figure 5C). ITGB1 was significantly upregulated in dLN (versus

both dLu and BME p=0.03) revealing tissue-specific cell-ECM

interactions. ITGA5 showed high heterogeneity in expression

between different CCAOs, with a 13-fold increase of CCAO2 vs

CCAO3 in dLN (p=0.1). This suggests that in lymph node

metastasis upregulation could be patient-dependent. LGR5 and

CD133, both markers of (different) cancer-stem cell

subpopulations (45, 46), were significantly affected by the ECM

(Figure 5D). LGR5 was significantly upregulated in dLN compared

to dLu (p<0.001) and BME (p=0.005), while CD133 was

significantly higher in BME compared to both decellularized

scaffolds (both p=0.016). Thus, this indicates that there is a tissue-

specific involvement of cancer-stem cell populations in metastatic

outgrowth in CCA. Furthermore, significant higher expression of

COL1A1 in dLN (vs BME p=0.0075, vs dLU p=0.013) and COL3A1

in BME (vs dLU p=0.007) indicates that the reciprocal production

of ECM proteins by tumor cells is also affected by the ECM of the

metastatic organ (Figure 5E). Additionally, epithelial-to-

mesenchymal transition (EMT), and the reverse process of

mesenchymal-to-epithelial transition (MET) are thought to play a

role in metastatic dissemination and subsequent colonization,

respectively (47, 48). ECAD was significantly upregulated in dLN

(vs dLu p<0.001, vs BME p=0.002), indicating (re)expression

induced by the extracellular microenvironment, possibly due to

the tumor cells undergoing MET (Figure 5F). Classical EMT-

markers VIM and SNAI1 showed heterogeneous expression

(Figures S6A, B). The ECM also influences gene expression

profiles of matrix modulating genes (Figures S6C, D). Tissue

inhibitor of metalloproteinases 1 and 2 (TIMP1, TIMP2) are

significantly upregulated in dLN compared to dLU (TIMP1

p=0.026 , TIMP2 p=0.04 only for CCAO2) , whi le

metalloproteinases 2 and 9 (MMP2, MMP9) show varied

expression profiles in the different decellularized scaffolds. Overall,
B CA

FIGURE 3

Macroscopic and microscopic mechanical characterization of dLu and dLN. (A) Macroscopic compression measurements showing the Young’s
Modulus of dLu (n=3, dLu1, dLu2, dLu3) and dLN (n=3, dLN11, dLN10, dLN5). (B) Effective Young’s Modulus measured by micro-indentation (3x3
matrix scans, 5µm between indentations with a total measured area of 15x15 µm) of dLu (n=3 donors) and dLN (n=3 donors). (C) Effective
Young’s Modulus measured by micro-indentation split per donor for both dLu (dLu1, dLu2, and dLu3) and dLN (dLN11, dLN10, dLN5). Each data
point is a different region of the sample obtained in a 3x3 matrix scan.
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various cancer-related processes, including cancer stem cell

plasticity, ECM production, cell-ECM binding, and EMT/MET,

are influenced by the extracellular environment of the target

metastatic organ in a tissue-specific pattern.
Metastatic outgrowth of CCAOs is ECM
and patient dependent

In a metastatic setting, after reaching the microenvironment

of the distant organ, cancer cells will colonize the niche and often

display a state of dormancy before changing to a state of

proliferation and outgrowth (49, 50). We therefore examined
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if the ECM plays a role in the change from dormancy to

outgrowth, and the effect on the associated cell migration and

proliferation dynamics. H&E staining of CCAOs cultured in

dLN and dLu showed cell-ECM attachment, with the occurrence

of different invasive patterns (Figures 6A, B). In dLu, CCAOs

exhibited localized colonization, with extensive in-growth in the

scaffold at these locations, reminiscent of the localized growth

pattern in vivo (Figure 6A) (51). CCAOs in dLN colonized

primarily the outer rim, either in single-cell or cellular clumps,

with an epithelial-like phenotype and limited scaffold in-growth

(Figure 6B). This is congruent with the upregulation of ECAD in

CCAOs cultured in dLN compared to dLu (Figure 5F) and the

upregulation of TIMPs in dLN compared to dLU suggesting that
B C

D E F

G H I

A

FIGURE 4

Analysis of global ECM proteome derived from decellularized lung and lymph node tissue. (A, B) Global matrisome protein composition
identified by Mass Spectrometry displaying the total number of unique proteins identified in all biological replicates (A) or identified in at least 1
biological replicate (B). Only proteins overlapping with MatrisomeDB classification for ECM-related proteins are included. (C) Total abundance
values per ECM-related protein category. A two-way ANOVA with multiple comparisons per matrisome category statistical analysis was
performed (Collagen p=0.006; ECM Glycoproteins p=004, ECM Regulators p<0.0001). (D) Heat map displaying the relative log2(abundance)
values for all identified collagen subunits. Grey color indicates that no abundance value was present. *p < 0.05. (E) Scatter plot based on
principal component analysis (PCA) displays a global separation between ECM protein composition of dLN and dLu. (F) Exclusive and shared
proteins identified in dLu and dLN. (G–I) Enrichment analysis of selected biological processes and pathways for protein abundance differences
as displayed in (E) for dLu and dLN. Shared enriched processes are processes that are significantly enriched in both decellularized tissues,
distinct enriched processes are processes that are exclusively enriched in either dLu or dLN. For all mass spectrometry analysis dLu1, dLu2, and
dLu3 were used for lung, and dLN1, dLN3, and dLN13 were used for lymph node. **= p-value < 0.005; **** = p-value < 0.0001.
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the inhibition of matrix degradation is associated with the

limited invasion occurring (Figure S6C). In all, decellularized

scaffolds of lung and lymph node can induce different

migratory patterns.
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Subsequently, a metabolic assay was used to probe the

metabolic activity of the tumor organoids over time in each

condition. As a control, BME-cultured CCAOs exhibited

significant increase in metabolic activity over 14 days, as
B C

D

E F

A

FIGURE 5

Recellularization of dLu and dLN with CCAOs reveals distinct gene expression profiles. (A) Representative bright field microscopy images of CCAOs
cultured in dLu and dLN on day 1, 7 and 14 after recellularization. Day 1 scale bar indicates 1000 µm, day 7 and day 14 scale bars indicate 400 µm. Black
arrows indicate the progression from single cells at day 1 to a complete cellular layer at day 14. (B) Gene expression of KRT7 in CCAOs for BME control
and recellularized dLu and dLN. (C) Gene expression of ITGA5 and ITGB1 in CCAOs for BME control and recellularized dLu and dLN. (D) Gene
expression of LGR5 and CD133 in CCAOs for BME control and recellularized dLu and dLN. (E) Gene expression of COL3A1 and COL1A1 in CCAOs for
BME control and recellularized dLu and dLN. (F) Gene expression of ECAD in CCAOs for BME control and recellularized dLu and dLN. * = p-value <
0.05, ** = p-value < 0.005, *** = p-value < 0.0001. N.D. means that the values were not detectable. Mann-Whitney U statistical test was used for
determining significance in gene expression profiles. All gene expression profiles were normalized to GAPDH. For recellularization experiments dLu1,
dLu2, dLu3 were used for lung and dLN9, dLN8, and dLN1 were used for lymph node.
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expected and reported in literature (Figure S7A, (13)). CCAOs in

dLN (n=27, n=3 ECM donors with n=3 CCAO lines and n=3

technical replicates per combination) and dLu (n=27, n=3 ECM

donors with n=3 CCAO lines and n=3 technical replicates per

combination) also showed an increase in metabolic activity over

time (Figure 6C). However, a different growth pattern was

observed in both metastatic locations, with a significant delay

in metabolic activity increase after 10 days in dLN compared to

dLu (10.8x increase in dLU vs 24.4x increase in dLN, p=0.014).

After 14 days, no significant difference was observed (p=0.97),

indicating that it was a delay in growth, rather than a

consistently lower growth rate. Dissecting the role of seed (i.e.
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the CCAO) and soil (i.e. the ECM) reveals that in lung

metastasis, both seed and soil have a significant influence on

metastatic outgrowth (Figure 6D). This is exhibited by CCAO3

and Lu3 showing significantly higher metabolic activity after 10

and 14 days when comparing tumor and donor scaffold,

respectively. For lymph node metastasis, this effect was less

evident, with CCAO3 having a significantly larger increase in

metabolic activity after 7 days, suggesting an earlier switch from

dormancy to outgrowth in this case (Figure 6E). No ECM-

dependent differences were found in dLN (Figure 6E). To note,

no difference in initial seeding efficiency was observed between

dLN and dLu, as represented by absolute metabolic activity
B

C D

A

FIGURE 6

Proliferation and migration dynamics of metastasis in CCAOs. (A, B) Representative H&E stainings of CCAO1 (top) and CCAO3 (bottom) in dLu
(A) and dLN (B). The black rectangle shows a higher magnification image of the morphology of the CCAOs in the decellularized scaffolds. Scale
bars indicate 250 µm. (C) Metabolic activity measurements of recellularized dLN (n=27, n=3 ECM donors with n=3 CCAO lines and n=3
technical replicates per combination) and dLu (n=27, n=3 ECM donors with n=3 CCAO lines and n=3 technical replicates per combination)
consecutively measured on day 1, 4, 7, 10, and 14. All Relative Fluorescent Units (RFU) data is normalized to day 1. (D) Metabolic activity
measurements for CCAOs in dLU split based on patient origin of CCAO (i.e. separated CCAO1, CCAO2, and CCAO3) and donor of decellularized
scaffolds (i.e. separated dLu1, dLu2, and dLu3). (E) Metabolic activity measurements for CCAOs in dLU split based on patient origin of CCAO (i.e.
separated CCAO1, CCAO2, and CCAO3) and donor of decellularized scaffolds (i.e. separated dLN1, dLN2, and dLN3). * = p-value<0.05, ** = p-
value<0.005, *** = p-value<0.0001. Multiple t-test were used together with Holm-Sidak correction method to correct for multiple
comparisons. For recellularization experiments dLu1, dLu2, dLu3 were used for lung and dLN9, dLN8, and dLN1 were used for lymph node.
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values at day 1 (Figure S7B). In summary, these data suggest that

the dynamics of outgrowth after colonization are multi-factorial,

both patient and ECM related. In this model, metaphorically

both the “seed” and “soil” influence metastatic growth of cancer

cells in the lung, while in the lymph node the growth is dictated

primarily by the seed (cancer cell).
Discussion

The process of cancer metastasis consists of a multi-step

cascade during which tumor cells disseminate from the primary

tumor, survive in the lymphatic or blood circulation, and colonize

distant organs. The tumor cells are heavily influenced by the various

microenvironments that they encounter during this cascade,

including, but not limited to, the ECM of the target organ for

metastasis (52–54). Particularly, the interaction of seed (i.e. cancer

cells) and soil (i.e. ECM) that is encountered in the metastatic organ

plays a role in the dynamics of metastatic colonization (20, 55).

Herein, we show the possibility to obtain a tissue-specific metastatic

model by converging decellularized human lung and lymph nodes

with patient-derived CCAOs to investigate the role of the ECM in

metastatic outgrowth. We demonstrated the capability to

decellularize human derived tissue of distant metastatic locations

for CCA and reveal the biomechanical and biochemical

characteristics of dLu and dLN, which recapitulate the tissue of

origin. Furthermore, dLu and dLN scaffolds support adhesion and

culture of CCAOs while stimulating distinct, tissue-specific gene

expression profiles. The associated growth patterns further delineate

the role of both seed and soil in the outgrowth of colonized

metastatic CCA, with dLu inducing a significantly higher

proliferation rate compared to dLN.

The decellularization method employed in this study,

utilizing Triton X-100, was able to successfully eliminate

cellular material from both human lung and lymph node

tissue. The resulting decellularized scaffolds recapitulated the

composition of native ECM, with enrichment of basement

membrane-related proteins in dLu and immune system-related

proteins in dLN. Decellularization of human lymph nodes has

not been reported yet in literature, but employing an identical

decellularization method as lung provided comparative scaffolds

for studying cell-ECM interactions in these respective organs.

The mechanical role of ECM in cancer metastasis is highly

diverse, affecting matrix remodeling, cell spreading, migration

and metastasis (53, 56, 57). Therefore, biomechanical

characterizations of the decellularized tissue were obtained,

which indicated similar stiffness for dLu and dLN, with a

notable variability in macro-scale stiffness for dLN. Although

the obtained mechanical properties (Young’s Modulus) of dLu

are comparable to literature, these properties are only known for

animal-derived decellularized ECM, non-decellularized human

ECM or engineered hydrogels (58–62), extending the relevance

of this study. Mechanical characterization of human lymph node
Frontiers in Oncology 14
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ECM is absent in literature. The heterogeneity in mechanical

properties in dLN is mimicked by a diversity in ECM proteins,

showing the correlation between mechanical and chemical

properties of the extracellular environment. To note, causation

is not inferred, as not only molecular composition, but also

cross-linking, spatial heterogeneity, and alignment of ECM

architecture can contribute to the heterogeneity observed in

mechanical properties.

Cell adhesion to ECM is crucial for the process of metastasis,

and integrins are the main cell adhesion receptors that facilitate

these functions. In multiple cancer types, integrin b1 signaling

plays a crucial role in metastatic colonization and outgrowth

(63). In dLN, CCAOs upregulate integrin b1, indicating that the
role of integrin b1 in CCA metastasis is organ-dependent.

Furthermore, the production of ECM-proteins, and their

associated proteases, by tumor cells in a metastatic

environment can remodel the environment (64, 65). COL1A1

is upregulated in a lymph node environment, which coincides

with findings in breast cancer, where collagen 1 fiber density was

increased in lymph node metastasis, and lung cancer, where

COL1A1 expression highly correlated with lymph node

metastasis (66, 67). E-cadherin, an epithelial marker, is also

upregulated in dLN. This is corroborated by the epithelial-

phenotype present in dLN, as well as the observed limited

invasion. In other tumors, an epithelial phenotype is often

associated with formation of secondary tumors, with E-

cadherin-positive metastatic foci (68, 69). The associated lack

of invasion in dLN could be due to the absence of cellular

interactions normally present in the lymph node during the

process of metastasis, including interactions between resident

immune cells and recruited bone marrow-derived cells (70, 71).

Incorporation of these cell types in this system would allow for

even deeper understanding of metastatic colonization by

modelling the interactions between primary tumor, immune

cells, and secondary target sites.

Combining multiple decellularized scaffold donors with

patient-specific organoids allows for delineating the role of

both seed and soil in cancer metastasis. Importantly, after

arrival at a distant metastatic organ, cancer cells will colonize

the niche and often initiate a dormant phenotype (49).

Dormancy licenses the cancer cells to survive this novel

environment through chemotherapeutic resistance (i.e. less

cellular division means less susceptibility to conventional

chemotherapy) and immune cell avoidance, mediated by

downregulation of MHC-1 expression (72). Here we show that

the ECM can dictate the timing and duration of this dormancy

phase, whereby dLN (2.9-fold increase from day 4 to 10) resulted

in a slower increase in metabolic activity compared to dLu (11-

fold increase from day 4 to 10). The cause of the switch from

dormancy to proliferation is complex, and this study shows that

the ECM in isolation can influence this process.

Lymph node colonization might not be a final destination

for metastasis, and could contribute to further distant metastases
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including lung. The frequency of cells metastasizing from the

lymph node to different distant organs is dependent on the

cancer-type, and still a topic of debate (73, 74). Mechanistically,

cancer cells are able to colonize lymph nodes, invade lymph

node blood vessels and subsequently colonize the lung (75). In

our study, CCAOs cultured in dLN exhibited a significant

upregulation of LGR5, a well-recognized stem cell marker (76,

77), compared to both dLu and BME. LGR5 marks tumor-

initiating cells with a cancer stem cell-phenotype in liver cancer

(77) and these cancer stem cells are thought to be responsible for

tumor progression, including metastasis (78). Thus, the high

level of LGR5 in CCAOs that colonize the lymph node suggests

that there is a pool of cancer stem cell-like cells present which

could be responsible for migration from the lymph node to the

lungs. This is congruent with the clinical observation that lymph

node metastasis often precedes lung metastasis in CCA patients

(24), and the association of LGR5 expression with lymph node

metastases in other tumor types (76, 79).

For the lung, donor-dependent proliferation differences were

observed, with dLu3 favoring proliferation compared to dLu1

and dLu2. To note, this lung was obtained from a current

smoker, which is in contrast with the other two donors

(former smoker <10 years and never smoker). Although the

relationship between smoking and metastasis of CCA has not

been studied, it is known that smoking affects the initiation and

progression of multiple other cancers such as soft tissue

sarcoma, esophageal cancer, breast cancer colorectal cancer,

and lung cancer (80–82). Further research is necessary to

establish a direct relationship between smoking and metastasis

of CCA to the lungs, given the dependence on multiple variables.

In summary, acellular scaffolds of human lung and lymph

nodes were successfully obtained via decellularization. Biochemical

and biomechanical characterization revealed the retention of tissue-

specific characteristics, as well as expanded our understanding of

the mechanical properties of the ECM. Subsequent recellularization

revealed differences in CCA metastatic colonization in the lung and

lymph nodes through gene expression profiles and proliferation

dynamics. Converging organoids with organ-specific decellularized

ECM provides a valuable tool for probing cell-matrix interactions in

a metastatic setting.
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Nonlinear elasticity of the lung extracellular microenvironment is regulated by
macroscale tissue strain. Acta biomaterialia (2019) 92:265–76. doi: 10.1016/
j.actbio.2019.05.023

62. Júnior C, Narciso M, Marhuenda E, Almendros I, Farré R, Navajas D, et al.
Baseline stiffness modulates the non-linear response to stretch of the extracellular
matrix in pulmonary fibrosis. Int J Mol Sci (2021) 22:12928. doi: 10.3390/
ijms222312928

63. Shibue T, Weinberg RA. Integrin b1-focal adhesion kinase signaling directs
the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl
Acad Sci (2009) 106:10290–5. doi: 10.1073/pnas.0904227106

64. Sevenich L, Bowman RL, Mason SD, Quail DF, Rapaport F, Elie BT, et al.
Analysis of tumour-and stroma-supplied proteolytic networks reveals a brain-
metastasis-promoting role for cathepsin s. Nat Cell Biol (2014) 16:876–88. doi:
10.1038/ncb3011

65. Hebert JD, Myers SA, Naba A, Abbruzzese G, Lamar JM, Carr SA, et al.
Proteomic profiling of the ECM of xenograft breast cancer metastases in different
organs reveals distinct metastatic NichesECM proteomics of breast cancer
metastases in diverse organs. Cancer Res (2020) 80:1475–85. doi: 10.1158/0008-
5472.CAN-19-2961

66. Kakkad SM, Solaiyappan M, Argani P, Sukumar S, Jacobs LK, Leibfritz D,
et al. Collagen I fiber density increases in lymph node positive breast cancers: pilot
study. J Biomed optics (2012) 17:116017. doi: 10.1117/1.JBO.17.11.116017

67. Dong S, Zhu P, Zhang S. Expression of collagen type 1 alpha 1 indicates
lymph node metastasis and poor outcomes in squamous cell carcinomas of the
lung. PeerJ (2020) 8:e10089. doi: 10.7717/peerj.10089

68. Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED.
Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of
fibroblast growth factor receptor-2. Cancer Res (2006) 66:11271–8. doi: 10.1158/
0008-5472.CAN-06-2044

69. Chao YL, Shepard CR, Wells A. Breast carcinoma cells re-express e-
cadherin during mesenchymal to epithelial reverting transition. Mol Cancer
(2010) 9:1–18. doi: 10.1186/1476-4598-9-179

70. Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA, Li JH, et al.
Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature
(2019) 567:249–52. doi: 10.1038/s41586-019-1004-y

71. Wang M, Zhao X, Qiu R, Gong Z, Huang F, Yu W, et al. Lymph node
metastasis-derived gastric cancer cells educate bone marrow-derived mesenchymal
stem cells via YAP signaling activation by exosomal Wnt5a. Oncogene (2021)
40:2296–308. doi: 10.1038/s41388-021-01722-8

72. Pommier A, Anaparthy N, Memos N, Kelley ZL, Gouronnec A, Yan R, et al.
Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic
cancer metastases. Science (2018) 360:eaao4908. doi: 10.1126/science.aao4908

73. Siegel MB, He X, Hoadley KA, Hoyle A, Pearce JB, Garrett AL, et al.
Integrated RNA and DNA sequencing reveals early drivers of metastatic breast
cancer. J Clin Invest (2018) 128:1371–83. doi: 10.1172/JCI96153

74. Zhang C, Zhang L, Xu T, Xue R, Yu L, Zhu Y, et al. Mapping the spreading
routes of lymphatic metastases in human colorectal cancer. Nat Commun (2020)
11:1–11. doi: 10.1038/s41467-020-15886-6

75. Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D, et al. Lymph
node metastases can invade local blood vessels, exit the node, and colonize distant
organs in mice. Science (2018) 359:1403–7. doi: 10.1126/science.aal3622

76. Michelotti G, Jiang X, Sosa JA, Diehl AM, Henderson BB. LGR5 is
associated with tumor aggressiveness in papillary thyroid cancer. Oncotarget
(2015) 6:34549. doi: 10.18632/oncotarget.5330

77. Cao W, Li M, Liu J, Zhang S, Noordam L, Verstegen M, et al. LGR5 marks
targetable tumor-initiating cells in mouse liver cancer. Nat Commun (2020) 11:1–
16. doi: 10.1038/s41467-020-15846-0

78. Clevers H. The cancer stem cell: premises, promises and challenges. Nat
Med (2011) 17:313–9. doi: 10.1038/nm.2304

79. Wang XF, Zhang XL, Xu LP, Shi GG, Zheng HY, Sun BC. Expression of
stem cell markers CD44 and Lgr5 in colorectal cancer and its relationship with
lymph node and liver metastasis. Zhonghua yi xue za zhi (2018) 98:2899–904. doi:
10.3760/cma.j.issn.0376-2491.2018.36.005

80. Holschneider CH, Baldwin RL, Tumber K, Aoyama C, Karlan BY. The
fragile histidine triad gene: a molecular link between cigarette smoking and cervical
cancer. Clin Cancer Res (2005) 11:5756–63. doi: 10.1158/1078-0432.CCR-05-0234

81. Kenfield SA, Wei EK, Stampfer MJ, Rosner BA, Colditz GA. Comparison of
aspects of smoking among the four histological types of lung cancer. Tobacco
control (2008) 17:198–204. doi: 10.1136/tc.2007.022582
frontiersin.org

https://doi.org/10.1111/febs.14967
https://doi.org/10.3390/ijms21175983
https://doi.org/10.1007/978-0-387-73906-9_1
https://doi.org/10.1016/j.matbio.2018.01.005
https://doi.org/10.1093/bioinformatics/bts251
https://doi.org/10.1016/j.matbio.2021.11.003
https://doi.org/10.1016/j.xpro.2019.100009
https://doi.org/10.1097/00000478-200006000-00014
https://doi.org/10.1016/0092-8674(94)90209-7
https://doi.org/10.1038/s41568-018-0038-z
https://doi.org/10.1038/s41580-019-0134-2
https://doi.org/10.1038/s41580-019-0134-2
https://doi.org/10.1038/35102167
https://doi.org/10.1073/pnas.1815345116
https://doi.org/10.1016/j.devcel.2018.05.027
https://doi.org/10.3390/cancers13194985
https://doi.org/10.1016/S0065-230X(09)02003-X
https://doi.org/10.1038/s43018-021-00291-9
https://doi.org/10.1111/1759-7714.13584
https://doi.org/10.3978/j.issn.2224-4778
https://doi.org/10.1016/j.copbio.2016.02.007
https://doi.org/10.3389/fbioe.2021.625859
https://doi.org/10.1007/s00018-022-04262-w
https://doi.org/10.1016/j.csbj.2018.07.003
https://doi.org/10.1038/s41467-020-18794-x
https://doi.org/10.1159/000324896
https://doi.org/10.1089/ten.tec.2013.0325
https://doi.org/10.1002/jbm.a.35726
https://doi.org/10.1016/j.actbio.2019.05.023
https://doi.org/10.1016/j.actbio.2019.05.023
https://doi.org/10.3390/ijms222312928
https://doi.org/10.3390/ijms222312928
https://doi.org/10.1073/pnas.0904227106
https://doi.org/10.1038/ncb3011
https://doi.org/10.1158/0008-5472.CAN-19-2961
https://doi.org/10.1158/0008-5472.CAN-19-2961
https://doi.org/10.1117/1.JBO.17.11.116017
https://doi.org/10.7717/peerj.10089
https://doi.org/10.1158/0008-5472.CAN-06-2044
https://doi.org/10.1158/0008-5472.CAN-06-2044
https://doi.org/10.1186/1476-4598-9-179
https://doi.org/10.1038/s41586-019-1004-y
https://doi.org/10.1038/s41388-021-01722-8
https://doi.org/10.1126/science.aao4908
https://doi.org/10.1172/JCI96153
https://doi.org/10.1038/s41467-020-15886-6
https://doi.org/10.1126/science.aal3622
https://doi.org/10.18632/oncotarget.5330
https://doi.org/10.1038/s41467-020-15846-0
https://doi.org/10.1038/nm.2304
https://doi.org/10.3760/cma.j.issn.0376-2491.2018.36.005
https://doi.org/10.1158/1078-0432.CCR-05-0234
https://doi.org/10.1136/tc.2007.022582
https://doi.org/10.3389/fonc.2022.1101901
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


van Tienderen et al. 10.3389/fonc.2022.1101901
82. Warner ET, Park ER, Luberto CM, Rabin J, Perez GK, Ostroff JS.
Internalized stigma among cancer patients enrolled in a smoking cessation trial:
The role of cancer type and associations with psychological distress. Psycho-
Oncology (2022) 31:753–60. doi: 10.1002/pon.5859

COPYRIGHT

© 2023 van Tienderen, van Beek, Schurink, Rosmark, Roest, Tieleman,
Demmers, Muntz, Conboy, Westergren-Thorsson, Koenderink,
Frontiers in Oncology 18
40
van der Laan and Verstegen. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction
is permitted which does not comply with these terms.
frontiersin.org

https://doi.org/10.1002/pon.5859
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fonc.2022.1101901
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Giulia Adriani,
Singapore Immunology Network (A*STAR),
Singapore

REVIEWED BY

Maxine Lam,
Institute of Molecular and Cell Biology
(A*STAR), Singapore
Bingmei M. Fu,
City College of New York (CUNY),
United States

*CORRESPONDENCE

Ting-Yuan Tu

tingyuan@mail.ncku.edu.tw

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 24 January 2023

ACCEPTED 13 March 2023
PUBLISHED 30 March 2023

CITATION

Huang CBX and Tu T-Y (2023) Recent
advances in vascularized tumor-on-a-chip.
Front. Oncol. 13:1150332.
doi: 10.3389/fonc.2023.1150332

COPYRIGHT

© 2023 Huang and Tu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 30 March 2023

DOI 10.3389/fonc.2023.1150332
Recent advances in vascularized
tumor-on-a-chip

Christina Bao Xian Huang1 and Ting-Yuan Tu1,2,3*

1Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan, 2Medical
Device Innovation Center, National Cheng Kung University, Tainan, Taiwan, 3International Center for
Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
The vasculature plays a critical role in cancer progression and metastasis,

representing a pivotal aspect in the creation of cancer models. In recent years,

the emergence of organ-on-a-chip technology has proven to be a robust tool,

capable of replicating in vivo conditions with exceptional spatiotemporal

resolution, making it a significant asset in cancer research. This review delves

into the latest developments in 3D microfluidic vascularized tumor models and

their applications in vitro, focusing on heterotypic cellular interactions, the

mechanisms of metastasis, and therapeutic screening. Additionally, the review

examines the benefits and drawbacks of these models, as well as the future

prospects for their advancement.

KEYWORDS
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1 Introduction

Despite substantial efforts and advancements in cancer research, many of the

mechanisms that drive cancer progression remain to be elucidated. There is currently no

model that can perfectly recapitulate all of the components of the tumor microenvironment

(TME). The most widely used tools for cancer research are currently animal models and 2D

cell cultures. Although 2D cell culture offers simplicity and high throughput, it does not

recapitulate the complex interaction between cells in the TME. Although animal models,

which are the current gold standard, can provide a complex TME, it is not uncommon for

the results to have a poor correlation to biological response in humans, leading to a high

failure rate of drugs in clinical trials (1). This phenomenon might be due to various factors,

such as species differences, which are becoming more important as an increasing number of

biologics and cell-based therapies are being developed, and the use of

immunocompromised models, which are different from cancer patients who still have a

functional immune system. Furthermore, animal experiments usually have a longer testing

period, are costly, and are subject to tighter regulations in terms of subject numbers due to

ethical concerns.
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It is well established now that the tumor has a complex and

dynamic microenvironment comprising cancer cells, stroma cells,

and other abiotic components. Vasculature is one of the key

components affecting tumor progression and treatment response

(2, 3). Over the past decade, microfluidic models have emerged to

bridge the gap between traditional in vitro models and in vivo

models. It is a robust tool that better mimics human physiological

and pathological conditions in vitro, including cancer (4, 5). The

modular nature of microfluidic systems offers the ease of

incorporating different cell types and controlling biochemical and

biophysical factors such as concentration gradients and flow. This

allows researchers to delineate the role of different players and to

elucidate emerging behaviors more conveniently. In addition, it

offers higher throughput, spatiotemporal control, and resolution

compared to traditional in vivo models.

In addition to delivering oxygen, nutrients, and drugs, as well as

removing metabolic wastes, the vasculature also serves as an

important route for tumor metastasis, which accounts for

approximately 90% of cancer-associated deaths (6). After

invading the surrounding tissue, cancer cells reach the vasculature

and intravasate, becoming circulating tumor cells (CTCs). CTCs

circulate throughout the body either as single cells or as clusters and

may associate with other cells circulating in the bloodstream. Upon

arrest, they may extravasate from the vessel and potentially form a

secondary tumor. The design of vascularized tumor-on-a-chip

models can be customized to elucidate the mechanisms of the

various steps of cancer metastasis.

With the abovementioned advantages, microfluidic

vascularized tumor-on-a-chip models also hold great potential for

therapeutic screening applications. The presence of vasculature has

been shown to improve drug or engineered immune cell trafficking

to the tumor (3). Moreover, the minute working volume of

microfluidic devices is excellent for handling valuable samples.

Vascularized tumor-on-a-chip can be designed to match the 96-

or 384-well format compatible with high-throughput machinery,

making it an attractive tool for drug screening. It is also convenient

for assessing the dynamic TME continuously or periodically.

In this review, we first introduce the state-of-the-art strategies

for vascularizing tumors-on-a-chip and then elaborate on the recent

advances using vascularized tumors-on-a-chip for different

applications including heterotypic cellular interactions in the

TME, unveiling the mechanisms of the metastatic cascade, and

therapeutic screening. Finally, we conclude this review by discussing

the advantages, limitations, and future directions for vascularized

tumor-on-a-chip development.
2 Vascularization strategies

To establish vascularized tumor models in microfluidic devices,

vasculature can be generated separately or together with the tumor

(single cells or spheroids). To generate the vasculature itself, three

different methods can be used—endothelial cell (EC) lining,

vasculogenesis, and angiogenesis. EC lining usually generates
Frontiers in Oncology 0242
vasculature at the mesoscale (approximately a few hundred

micrometers in diameter), while vasculogenesis and angiogenesis

produce a narrower vessel lumen, which better resembles capillaries

in vivo.
2.1 Endothelial cell lining

Usually, ECs can be lined on the outer side of a gel channel, on a

membrane in a vertically stacked model (7), or on the inner side of a

prepatterned lumen (Figure 1A). EC seeding density from 1 million

cells/ml (8) to 20 million cells/ml (9) has been reported, usually

ranging about a few million cells per ml, possibly due to the

differences in geometry of the surface to be lined and other

conditions. The vessel will be ready to use for experiments as

soon as 24 h postseeding, depending on the seeding density, and

can be sustained for a few more days before the ECs overgrow. A

past application showed that the vessel had been maintained for up

to 16 days to investigate the angiogenic potential of inflammatory

breast cancer (IBC) cells (10). Another advantage of this method is

the more consistent and reproducible geometry. However, the

vessel diameter of a few hundred micrometers is much larger

than that of the capillaries in vivo. It is also convenient that

several different types of ECs can be used for this method.

In the lumen prepatterning method, a microneedle or rod of

various diameters can be inserted into the pregel and is carefully

removed after the gel has polymerized. Alternatively, lumen

formation in microfluidic channels can be achieved with the

viscous finger patterning method (11, 12), where the gel is first

injected into the microfluidic channel and subsequently displaced

with less viscous fluid, creating a hollow lumen upon gel

polymerization (Figure 1B). This step is performed to prevent

heterogeneity in the EC monolayer between the part attached to

the gel interface and the microfluidic post if directly seeded.
2.2 Self-assembling methods

To obtain a more natural vessel morphology, self-assembling

methods can be utilized. These methods usually achieve

vascularization around the tumor and even into the tumor interior.

2.2.1 Vasculogenesis
Vasculogenesis is the process of de novo formation of vessels in

the presence of endothelial (progenitor) cells at high density. For in

vitro vasculature formation, generally seeded at a density between 5

to 10 million cells/mL, together with supporting cells. Fibroblasts

are the most widely used cell stromal cells, although other cell types

have also been used depending on the microenvironment to be

mimicked (13–18). The main reason for incorporating stromal cells

is to support the formed microvasculature, which will otherwise

regress after initial formation in the EC monoculture (19).

In vasculogenesis, using a high EC density tends to result in

more opening to the lateral channel. Using high EC density,
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FIGURE 1

Vascularization strategies. (A) Endothelial cell lining on a gel channel pre-patterned using needle. Adapted with permission. Copyright 2020 Wiley
Periodicals LLC. (B) The viscous fingerprinting method is used to line the microfluidic channels, ensuring a more even endothelial cell coverage.
Adapted under the terms of the Creative Commons Attribution License (CC BY). Copyright 2022 Tu et al. (C) The two-step vasculogenesis method
allows the formation of a narrower vessel in the middle and good opening to the lateral channels. The top part and middle part show the vessel
formed under the traditional method with high and low density of EC, respectively. Adapted with permission. Copyright 2022 Wan, Zhong, et al.
Small Methods published by Wiley‐VCH GmbH. (D) Sprouting angiogenesis is enhanced by interstitial flow from upstream. Adapted under the terms
of the Creative Commons Attribution License (CC BY). Copyright 2022 Liu et al. (E) The sequential seeding of fibroblast on tumor spheroid enhances
tumor vascularization. The vascularized tumor model is used for evaluating CAR T performance. Adapted with permission. Copyright 2022 Wan,
Floryan, et al. Advanced Healthcare Materials published by Wiley‐VCH GmbH.
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however, will result in larger vessel diameter, which is different from

the small capillaries (under 10 µm) in vivo. Recently, a two-step

seeding method (20) was established to address this problem

(Figure 1C). In this method, the first step involves coating the gel

channel with fibrin gel containing a high density of EC (10 million

cells/ml). This is done by injecting the gel and cell mixture and

quickly aspirating it. The mixture of EC and normal human lung

fibroblasts (NHLFs) of lower cell density is immediately injected in

the gel. Subsequently, the device is flipped every 30 s for a few times

to distribute the cells more evenly in the vertical direction. This

method results in the middle region of the gel having a smaller

diameter vessel network and perfusable openings at the sides. It has

been demonstrated that CTC clusters consisting of a few cells are

more easily trapped in the microvascular network (MVN)

generated with two-step seeding.

One of the most attractive features of this method is the

microvasculature architecture, which is similar to in vivo

capillaries in terms of having complex branches and anastomoses,

although the lumen diameter is usually still larger than capillaries.

Perfusability is also one of the desired parameters to be evaluated

when characterizing the MVN. This feature makes it a suitable tool

for studying tumor extravasation. However, there is also a

drawback: the vasculature architecture cannot be precisely

controlled, which may, for example, make image analysis and

fluid dynamics simulations more challenging.

Moreover, vasculogenesis usually requires 4–5 days for the

vasculature to develop into a perfusable vasculature. This method is

relatively time-consuming compared to the EC lining method, which

generally only takes 1 day for the seeded ECs to form a confluent

monolayer on the patterned lumen. Despite the longer time needed

for establishment, the microvasculature network can be maintained

for up to a few weeks, making it compatible with experiments

requiring a longer time frame. To date, almost all works on

vasculogenesis require early passage (up to P7) primary cells, which

is more costly and may have batch-to-batch variation. Recent

exploration of the use of hTert-immortalized human umbilical vein

endothelial cells (HUVECs) and normal human lung fibroblasts

(NHLFs) shows that immortalized HUVECs can form a perfusable

vasculature network in the presence of Thy1+ immortalized NHLF as

a substitute for low-passage primary NHLF (21).

Fibrinogen is a glycoprotein highly abundant in plasma.

Thrombin cleavage of fibrinogen into fibrin exposes the

interaction site that allows fibrin monomers to self-polymerize

and form fibrillar structure (22). Fibrin gel is the most commonly

used ECM material for forming microvasculature networks-on-a-

chip via vasculogenesis. The final concentrations for fibrinogen

and thrombin typically range from 2 to 3 mg/ml and from 0.5 to

2.0 U/ml, respectively. Other ECM components, such as collagen I

or the mixture of fibrin and collagen I, have also been tested.

However, the vessel network formed is not as complex and

connected as that formed in fibrin gel only. Moreover, the

incorporation of collagen I leads to gel contraction and

detachment from the microfluidic channel (23). Perhaps

pre t rea tment of the channe l wi th adhes ive such as

glutaraldehyde might help resolve this issue. The following
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questions remain: Can fibrin be used as a representative ECM in

the TME, which is well known for its collagen ECM? Can the

relatively soft fibrin gel simulate the relatively stiff tumor ECM?

Recently, there have been some reports on the application of other

hydrogels on vasculogenesis, such as PEG-based hydrogel (24)

and agarose supplementation to collagen or Matrigel (25). The

hydrogels are able to support vessel network formation but further

characterization of the vessel (e.g., perfusability, junctional

integrity, and barrier function) is warranted.

2.2.2 Angiogenesis
Angiogenesis is the formation of new vessels from an existing

vessel under angiogenic stimulation. The two main mechanisms of

angiogenesis in vivo are sprouting angiogenesis and intussusception or

vessel splitting (26). Vascularizing tumor-on-a-chip using an

angiogenesis method usually refers to sprouting angiogenesis as the

vessel needs to grow into and reach the previously non-perfused region.

This is more challenging to achieve with intussusception, which mainly

gives rise to a new vessel in the area with some existing vessel.

The first step in this method is to create an endothelial

monolayer through the EC lining method, by lining either the

whole channel or only the side of the gel. Alternatively, the vessel

can also sprout from an adjacent vascular bed formed by

vasculogenesis (27). Under the stimulation of interstitial flow or

certain growth factor gradients, such as the VEGF gradient

(Figure 1D), which can be introduced by supplementing

exogenous growth factors or coculture with stromal cells or

certain types of cancer cells, ECs are activated and start to

proliferate and sprout vessels toward the direction of the stimulus

(28, 29). The direction of interstitial flow can also greatly affect

angiogenic sprouting where interstitial flow in the direction

opposite to vessel sprouting enhances angiogenesis while flow in

the same direction suppresses vessel sprouting (27). However, it

should be noted that angiogenic sprouts can sometimes be difficult

to perfuse if the sprouts do not anastomose.
2.3 Heterotypic spheroid to improve
intratumoral vascularization

Recently, quite a few groups have proposed introducing fibroblast

and/or ECs to the tumor spheroid to improve vascularization,

especially in the internal part of the tumor (17, 30–32).

To better vascularize tumor spheroid, Ahn et al. (17) use a

heterotypic spheroid that comprises HepG2 liver cancer cells and

blood ECs. In the presence of intratumoral vessels, the tumor is

found to have higher expression of genes associated with aggressive

behavior in cancer, such as EMT, cell migration, cell proliferation,

and vessel development. To further vascularize the tumor, blood

and lymphatic ECs are embedded together with the heterotypic

spheroid in fibrin gel in the microfluidic channel. Interstitial flow is

established to promote vessel network formation.

Besides forming spheroids from tumor cells and ECs, co-

culturing cancer cells and fibroblasts can also improve

vascularization. Wan et al. (30) tried two co-culture methods (1):
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mixing cancer cells and fibroblasts prior to seeding and (2)

sequentially layering tumor spheroids with fibroblasts. They

found that the lat ter method significantly improves

vascularization in the internal part and the vicinity of the

tumor (Figure 1E).

Park et al. (31) demonstrate the use of tri-culture spheroid

comprising tumor cells, ECs, and fibroblasts. The tri-culture

spheroid has a more robust intratumoral vasculature and

connects better with the external microvasculature network. They

observed the sprouting of ECs from the spheroid and the

anastomosis with the external vesse l . The improved

vascularization results in higher tumor growth and more efficient

delivery of drugs to the tumor core.

To form perfusable vessel lumen connected to the interior of

tumor, Nashimoto et al. (32) tri-cultured HUVECs, fibroblasts, and

MCF-7 as a spheroid in 96-well ULA, which was then embedded in

collagen-fibronectin hydrogel at the middle channel of a three-

channel microfluidic device. The sides of the lateral channels were

lined with HUVECs. Both HUVECs from the sides and in the

spheroid sprouted and anastomosed, forming vessels capable of

perfusing the interior of the spheroid.
3 Heterotypic cellular
interactions in the vascularized
tumor microenvironment

3.1 Tumor–vessel interactions

Tumor-on-a-chip technology has recapitulated various

phenomena of tumor–vessel interaction such as tumor

angiogenesis, vessel destruction in pancreatic cancer, and mosaic

vessel, where the vessel is composed of both ECs and cancer cells.

Furthermore, it has also been used to study the importance of

organ-specific EC.

Kim et al. (33) designed an alternative vascularized tumor-on-a-

chip model where ECs and fibroblasts are seeded in two adjacent

prepatterned channels. Mimicking the high interstitial fluid

pressure of tumors, interstitial flow is introduced in a direction

that can aid the transfer of fibroblast-secreted molecules toward the

EC channel, which promotes angiogenic sprouting toward the

fibroblast channel. It is interesting that the device allows spheroid

introduction to the fibroblast channel after the main vasculature has

matured, as early introduction of tumor cells might potentially have

an adverse effect on vessel formation (34). In this study, they

showed that tumor vascularization enhances therapeutic delivery,

whether drugs, CAR T cells, or nanoparticles (Figure 2A).

Miller et al. (35) cocultured patient-derived renal carcinoma

cells with HUVECs lining the hollow lumen created with rods.

Under perfusion, the blood vessel structure was well preserved over

time near the inlet while the vessel regressed near the outlet. In

contrast, in the coculture, more prominent angiogenic sprouts were

observed near the outlet. They hypothesized that the tumor secreted
Frontiers in Oncology 0545
pro-angiogenic that concentrate near the outlet. The results of

computational fluid dynamics (CFD) simulation also support

their hypthesis.

A recent work by Nguyen et al. (36) investigated the interaction

between a biomimetic pancreatic cancer duct and a blood vessel

positioned 500 µm apart. Intriguingly, pancreatic ductal

adenocarcinoma (PDAC) cells collectively migrated toward blood

vessels and induced contact-dependent EC apoptosis. This

phenomenon was mediated by activin and the receptor ALK7

expressed by PDAC cells. Their observation of this cancer

hallmark was validated in a mouse ectopic tumor model and

genetically engineered mouse models (GEMMs). Their results

provide an explanation for the mechanism underlying PDAC

hypovascularization despite high vascular invasiveness and

explain the high CTC load in PDAC patients. Another study

using MMTV-PyMT mouse tumor organoids (37) also described

the formation of mosaic vessels as one of results of the interaction.

Cancer cells were observed detaching from the fused organoids to

the vascular lumen. In addition, the tumor organoid constricted or

pulled the vessel.

Different cancer subtypes may have different interactions with

the vasculature. As demonstrated by Gadde et al. (10),

inflammatory breast cancer (IBC) cells did not disrupt ECs

through anoikis as severely as non-IBC cells. Instead, IBC cells

induced more angiogenic sprouting. VEGF expression levels were

also found to be higher in IBC cells. During the course of the 16-day

experiment, tumor clusters were found in the sprouted vessel. In

terms of matrix degradation, the IBC microenvironment had

increased porosity, supposedly due to degradation.

Usually, numerous spheroids or single cells are seeded in the

ECM material to mimic cancer. However, in early-stage cancer, the

tumor burden might not be that high. Thus, Li et al. (38) only added

a single, small spheroid (30, 60, or 90 µm) into the ECM, together

with ECs and fibroblasts, which formed a network through

vasculogenesis; the tumor exhibited increased migration and

spreading when ECs were present. They also observed chains of

migrating cells and vasculogenic mimicry, which refers to the ability

of cancer cells to organize themselves into vessel-like structures

(39). (Figure 2B).

The importance of using the biologically relevant EC source is

also demonstrated in the work by Gerigk et al. (40) Cultured in their

glioblastoma (GBM) microfluidic-based model, ECs derived from

the brain are shown to have lower permeability compared to

HUVEC and lung HMVEC (human microvascular ECs) as a

result of higher ZO-1 expression. Interestingly, the GBM cells

migrate further when co-cultured with brain EC.
3.2 Interactions with immune cells

In addition to vasculature formation, the other significant

advantage of the tumor-on-a-chip model is the incorporation of

immune cells. This feature of immune cell incorporation can

provide insights that are more relevant to the phenomena
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happening in the human body. The presence of vessel can better

mimic the in vivo conditions during immune cell extravasation.

Vascularized tumor-on-a-chip platforms have also been utilized to

study immune cell polarization and exhaustion in the hostile TME.

Finally, it has also been used to study the role of immune cells in

cancer extravasation.

STING (STimulator of INterferon Genes) expression and

cytokine secretion by tumors can induce T-cell chemotaxis. Using

a vasculogenic approach, Campisi et al. (41) cocultured KRAS/

LKB1 mutant lung cancer spheroids with HUVECs and observed a

synergistic effect on cytokine production. Strikingly, the re-

expression of LKB1 (upstream negative regulator of STING) in

tumors did not show a significant increase in cytokine production

in the coculture, suggesting a greater contribution from ECs.

Apparently, the paracrine effect of cGAMP from tumor spheroids

regulates STING expression in ECs. Consequently, vessel

permeability increased, and ECs upregulate adhesion molecules

for T-cell adhesion. Thus this work demonstrated an indirect

mechanism of immune escape via vasculature priming.
Frontiers in Oncology 0646
Mollica et al. (42) investigated T-cell infiltration into the

pancreatic cancer TME comprising Panc-1 cells, pancreatic

stellate cells, and HUVECs, each seeded in different microfluidic

channels. The model mimicked the increased vessel permeability in

the presence of T cells. There was also increased infiltration of

activated (through CD3/CD28 stimulation) T cells toward the

PDAC compartment. Cytokine analysis revealed that the T cells

in coculture of pancreatic cancer cells and stellate cells exhibited

stronger activation, as indicated by higher IL-2 and IFNg levels

measured by a multiplex immunoassay. Upregulation of granzyme

B, perforin, and Fas suggested that activated T cells were more

cytotoxic than nonactivated T cells in the presence of HUVECs and

Panc-1 cells. The tri-culture group showed lower levels of these

genes, suggesting that pancreatic stellate cells diminished the

inflammatory response and supported tumor growth.

By stacking tumor cell-seeded collagen gel with a porous

membrane for culturing ECs in a microfluidic channel, Lee et al.

(43) observed reduced T-cell transendothelial migration (TEM) and

extravasation in the presence of tumor cells. ECs downregulated
A B D

E

F

C

FIGURE 2

Example of the application of vascularized tumor-on-a-chip for mechanistic studies. (A) The study of tumor vascularization by angiogenesis and the
promotion of therapeutic transport. Adapted with permission. Copyright 2022 (D) Kim et al. Advanced Healthcare Materials published by Wiley‐VCH
GmbH. (B) The recapitulation of extremely early-stage tumor dynamics and interaction with blood vessel. Adapted with permission. Copyright 2021,
American Chemical Society. (C) Elucidating the role of monocyte/macrophage in forming pre-metastatic niche. Adapted with permission. Copyright
2019 (H) Kim et al. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (D) Investigating the effect of tumor-derived extracellular vesicles
in priming the pre-metastatic niche. Adapted with permission. Copyright 2020, American Chemical Society. (E) The concentric three-layer channels
to study breast cancer cell migration and intravasation. Adapted with permission. Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
(F) Investigation of tumor extravasation mechanism in a microvascular network enabled by the good live imaging resolution. Adapted under the
terms of the Creative Commons Attribution License (CC BY). Copyright 2021 Offeddu et al.
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ICAM-1 and E-selectin due to tumor VEGF production, while the

chemokines secreted from tumor cells still attracted T cells.

Humayun et al. (44) designed a microfluidic device to have a

vessel channel that is close to one side of the gel to mimic the

characteristic oxygen and nutrient tension in a large, necrotic

tumor. The device was able to show a viability gradient across the

gel. When used for NK cell TEM study, most of the extravasated

cells migrated only up to 200 µm from the vessel. Thus, NK cells

needed to be homogeneously resuspended in the gel for subsequent

NK cell exhaustion experiments. Interestingly, they observed a

lower NK cell proliferation rate and less responsiveness to

chemokines on the distant side. Immune checkpoint inhibitor

treatment alleviated exhaustion, but cytotoxicity was only

partially restored at the distal side. In their previous work using a

similar method (9), they observed poor antibody penetration into

tumor spheroids, in part due to endocytosis.

Recently, the recapitulation of indirect signaling of tumor and T

cells was confirmed in vitro (45). The researchers observed that the

microvascular network cocultured with HepG2 cells (hepatocellular

carcinoma cells) exhibited higher expression levels of FasL, which

then induced the apoptosis of T cells. In vessel monoculture,

hypoxia alone also induced the upregulation of FasL in ECs.

Moreover, the MVN perfused with conditioned medium from

HepG2 cells grown under hypoxic conditions also showed

increased FasL expression. Subsequently, they interfered with this

pathway by anti-Fas, anti-FasL, or pan-Caspase inhibitors and

observed a significant reduction in the percentage of apoptotic

T cells.

Kim et al. (46) used a basement membrane and EC-lined

microfluidic channel flanked by collagen I gel on the lateral sides

to study the role of monocytes/macrophages in establishing the

premetastatic niche. Strikingly, monocytes increased vessel

permeability by disrupting EC junctions and secreted MMP9 to

disrupt the vascular barrier, promoting tumor extravasation. As

monocytes/macrophages migrated in the lateral ECM, they left

behind microtracks, which were then utilized by the tumor cells

to more easily invade the ECM (Figure 2C).

Macrophage polarization toward the M2 (anti-inflammatory)

phenotype has been implicated in promoting cancer progression.

By culturing the microvascular network and tumor cells—in fibrin

and Matrigel growth factor reduced (GFR) basement membrane

matrix, respectively—in different microfluidic compartments, the

work by Bi et al. (47) reproduced the angiogenic potential of the

cancer, by comparing CD31 staining from the parental tumor. They

also showed how the introduction of different macrophage lineages

(nonpolarized, M1, and M2) can differentially affect the three

parameters mentioned above. Moreover, they demonstrated how

the device could be used for antibody-based drug studies. Finally,

the uniform manifold approximation and projection (UMAP) from

scRNA-seq revealed two EC populations, and immunostaining

confirmed the different locations of the populations in the

microfluidic device—the population related to tumor

development and progression was located at the center of the

vessel compartment, while the population related to the immune

pathway and cell functions was located at the periphery of the vessel
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compartment and beyond. In addition, the introduction of M2

macrophages significantly increased the population related to the

immune pathway and cell functions.

With their signature microvascular network, Boussommier-

Calleja et al. (48) investigated the influence of monocytes on

cancer extravasation. First, to elucidate whether TEM is necessary

for monocytes to mature into macrophages, they compared CD68

(macrophage marker) expression between monocytes that exited to

the stroma during perfusion and monocytes that were directly

embedded in the gel with ECs and fibroblasts. They found that

TEM was not necessary for monocyte maturation. Interestingly,

they found that the same group of tumor cells in circulation differed

in extravasation fate, suggesting that the inherent difference

between cells, not merely their position, contribute to

extravasation potential. The presence of circulating monocytes

reduced the tumor extravasation rate, while the presence of

macrophages in the stroma caused different changes in the

extravasation rate in two different cell lines.

Using a microvasculature network-on-a-chip, Chen et al. (49)

explored the role of inflamed neutrophils in tumor extravasation. In

the inflamed state, endothelial ICAM-1 and neutrophil CD11b were

upregulated to better support neutrophil and tumor cell

aggregation. This heterotypic clustering prevented tumor cell loss

due to fluid flow. In addition, the presence of an inflamed

neutrophil cluster produced IL-8, and tumor cells produced

CXCL-1. This chemotactic gradient caused neutrophils to

undergo confined migration. In addition, IL-8 caused endothelial

activation and barrier function disruption. Furthermore, the

microfluidic device design, which included two large media

reservoirs on top, allowed a steadier flow to be generated

passively to continuously perfuse the microvascular network with

neutrophils and tumor cells.

In another study on the role of neutrophils in tumor

extravasation, an MVN chip model was used to complement

mouse in vivo observations. The MVN model revealed that

neutrophils increased tumor extravasation in a paracrine manner,

facilitating cancer cell protrusion formation in the early phase of

TEM (50).

In a microvasculature network-based extravasation assay, the

introduction of platelets and neutrophils increased the tumor

extravasation rate (51). Treatment with eptifibatide, an integrin

b3 antagonist, not only prevented platelet aggregation but also

reduced tumor PAI-1 and MMP-9 expression and interfered with

tumor-EC adhesion. By blocking EC integrin b3, FAK and Src

activation were reduced, which subsequently decreased VE-Cad

phosphorylation and internalization, thus restoring the junctional

barrier. Interestingly, the researchers retrieved and sorted the cells

to perform Western blot analysis, but they did not mention the

number of devices each sample was pooled from.
3.3 Interactions with other components

Thrombocytosis, the condition where blood platelet is elevated,

is associated with adverse prognosis in various types of cancer (52–
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55). Platelets can contribute to tumor progression through a few

mechanisms. In the circulation, platelet interaction with CTCs and

ECs promotes tumor extravasation. In addition, platelet can directly

affect primary or metastatic tumor, and this requires platelet

extravasation to the tumor site (56). In microfluidic device, the

platelet–tumor interaction has been recreated for both intravascular

and extravascular context.

Using their OvCa-Chip device, which has vertically stacked

microfluidic channels with the vessel in the lower compartment and

ovarian cancer cells in the upper compartment separated by a

porous membrane, Saha et al. (57) confirmed the role of tumor

cytokines in activating the Src/ERK/FAK pathway, which led to VE-

Cad and b-catenin downregulation in ECs, compromised EC

junction integrity, and increased platelet extravasation. Statin, a

class of cholesterol-lowering drug, can be repurposed to improve

clinical outcome in cancer patients (58), although the exact

mechanism is not fully understood yet. In the context of blood

vessel, statin treatment has been shown to preserve endothelium

junctional integrity (59, 60) and to have antiangiogenic effect (58).

In this study, atorvastatin treatment “rescued” vessel integrity and

reduced the number of extravasated platelets. Their findings were

validated with patient biopsy samples.

An upgrade from their previous OvCa-Chip, the new OTME-

Chip (61) has an additional gel channel on each lateral side of the

tumor compartment separated by a micropillar, which allows the

investigation of matrix invasion. Interestingly, the tumor only

migrated to the ECM when extravasated platelets were bound to

it. The interaction involved tumor galectin-3, which binds to

platelet GPVI—a glycoprotein upregulated by shear stress. As

tumor platelet interactions have been reported to promote

chemoresistance, they utilized this platform to study the effect of

cisplatin only versus cisplatin and antiplatelet drug combinations.

Compared to cisplatin monotherapy, dual therapy showed reduced

tumor invasion and proliferation. RNA-seq was performed, with

the different cell types sorted prior to sequencing, revealing the

upregulated pathways that can potentially be targeted, such as those

regulating cell cycle.

Cancer cell-derived extracellular vesicles carry cargos such as

oncoproteins and miRNA that may aid tumor progression by

shaping the TME and establishing pre-metastatic niche (62).

Recently, Kim et al. (63) investigated the effect of breast cancer

cell-derived extracellular vesicles (cancer EVs) on priming in the

liver premetastatic niche (Figure 2D). Utilizing two-layered

microfluidics primed by cancer EVs, ECs underwent endothelial-

to-mesenchymal transition (EMT), as shown by decreased ZO-1

intensity and increased vimentin and FAPa (fibroblast activating

protein) intensity. Furthermore, priming enabled more cancer cells

to adhere to ECs.

Mechanical cues such as stiffness is well known to affect cell

function and behavior. Moreover, it has also been shown that cells

can have mechanical memory; i.e., cell behavior can be regulated by

its past mechanical environment (64, 65). Azadi et al. (66) showed

that breast cancer cells previously cultured on stiffer substrates were

associated with higher extravasation rates and migration distances

in malignant breast cancer models. This trend was found to be

correlated with increased MMP9 expression levels.
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4 Unveiling the mechanisms of
metastatic cascade using the
vascularized tumor microenvironment

4.1 Invasion and intravasation

Nagaraju et al. (67) created a microfluidic model with

concentric layers comprising, from inner to outer sides, breast

cancer cells, collagen gel, and ECs that form a microvasculature

network over a few days in culture. The incorporation of ECs

enhanced the outward migration of invasive cancer cells, likely in a

paracrine manner, as suggested by cytokine profiling. The presence

of invasive cancer cells decreased vessel diameter and increased

vessel permeability through VEGF secretion (Figure 2E).

Using the same microfluidic device setup, Truong et al. (68)

cultured glioma stem cells (GSCs) and ECs to study invasion and

extravasation. On-chip vasculogenesis requires serum, but serum

exposure can induce GSC differentiation, so the authors first formed

the microvascular network for 3 days and subsequently introduced

the GSCs into the chip. The tumor cell chain migration was

observed in both the GSC-on-a-chip model and their animal

model. In the presence of vasculature, phosphorylated CXCR4

staining in GSCs showed a punctate pattern, suggesting its

activation under the stimulation of CXCL12 secreted by ECs.

When treated with AMD3100, a CXCR4 inhibitor, GSCs

migrated over a shorter distance.

Using the vessel formed by lining ECs on rod-patterned

channels, Wong & Searson (69) observed how the location of

breast cancer cells with regard to the vessel wall and the mitosis

of cancer cells can affect the intravasation rate. The rounding of

tumor cells was proposed to exert mechanical stress on the EC

junction, causing junctional adhesion to fail when cancer cells

transmigrated successfully. Moreover, the fluid flow in the

luminal side helped to detach the cancer cells into circulation.
4.2 Extravasation

Integrin signaling plays important roles in cell migration (70).

Using an in vitro microvascular network, Gilardi et al. (71)

investigated the Cdk5/Talin-1/FAK pathway in cancer cell TEM

(transendothelial migration). Cdk5 controlled the phosphorylation

of Talin-1, which regulates FAK phosphorylation. Silencing Talin-1

was associated with compromised vascular adhesion, while

inhibiting FAK phosphorylation at S732 rendered the cells unable

to perform TEM. The lower rate of extravasation observed in vitro

was validated using an in vivo model.

Another study highlights the importance of tumor integrin b1 in
extravasation (72). The depletion of integrin b1 did not affect TEM

but arrested the tumor cell in the compartment between ECs and the

basement membrane (BM) due to the impaired integrin b1-mediated

interaction with laminin in the BM, which is crucial for the formation

of actin-rich protrusions that breach the BM. In a mouse model,

integrin b1 knockdown reduced metastatic colony formation,

corresponding with the in vitro experimental conclusions.
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In transformed breast ECs, activation of the EMT (epithelial-to-

mesenchymal transition) program upregulated the expression of

podocalyxin, which facilitated ezrin-mediated cortical actin

polarization and initial TEM (73). The use of the MVN chip here

allowed the imaging and quantification of tumor extravasation.

Extravasation requires cell−cell contact. Traditionally, the

glycocalyx is seen as a protective barrier to prevent adhesion due

to its dense and charged molecular nature (74). However, it can also

be a ligand for cellular receptors (75). Using the MVN-on-a-chip

model (Figure 2F), it was revealed that tumor cells shed hyaluronic

acid, which accumulates on ECs, thus priming their adhesion with

tumor cell CD44 and promoting extravasation (76).

Cells circulating in the vasculature is subjected to mechanical

forces arising from fluid flow that can affect cellular response (77,

78). In vivo, the fluid flow is not limited to luminal flow (fluid flow

in the vessel lumen). There are also transendothelial and interstitial

flows, which are the flow of fluid entering or exiting the vessel and

the flow offluid in the matrix, respectively. A recent study examined

the individual roles of transendothelial and luminal flow in tumor

extravasation (79). Luminal flow was found to increase the tumor

extravasation rate, while transendothelial flow accelerated the

transendothelial migration process as well as migration in the

surrounding matrix.
4.3 Other metastasis models

In ovarian cancer, tumor cells can shed into the peritoneal fluid

and adhere to and invade the mesothelium to form peritoneal

metastasis, which is common (80). To mimic the peritoneal

metastatic site, the MVN-on-a-chip model can be modified to

have an adipocyte coculture in the gel with mesothelial cells

layered on one end. Then, ovarian cancer cells can be introduced

from the reservoir on that end, mimicking the peritoneal cavity

(81). In this tri-culture platform consisting of ECs, adipocytes, and

mesothelium, vascular and mesothelial permeability were in a range

similar to that observed in vivo. Using modular combination, it was

observed that the mesothelium acted as a protective barrier, while

the presence of ECs and adipocytes increased tumor attachment to

the mesothelium. When cancer cell density was high, they clustered

and invaded the mesothelium, while low-density cancer cells

attached the mesothelium but were not capable of invading it,

suggesting the importance of cancer cell density. Adipocytes are

thought to support metastatic tumor growth by providing lipid as

an energy source (82). Interestingly, lipid droplets were also present

in cancer cells that had successfully invaded in the device.
5 Therapeutic screening

5.1 Chemotherapeutics

To study both drug-sensitive and drug-resistant clones of tumor

cell lines in the same device, Wang et al. (83) designed two-layer

vertical microfluidic channels, with the bottom layer lined with ECs

and separated from the top by membrane. The top layer consisted
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of two narrower channels for the two tumor clones. This platform

enabled simultaneous assessment of both clones while keeping them

in different compartments. However, the interpretation of the

results should be done with caution as another study has shown

that the paracrine effect from one cell type (senescent MCF10A due

to centrosome amplification) can affect the behavior of the other cell

type (MDA-MB-468 breast cancer cells) (84). This is especially

important for senescent cells, which is common in cancer drug

treatment (85).

Jing et al. (86) demonstrated the use of a vertically stacked

microfluidic device to study metastasis and drug sensitivity in

MDA-MB-231 and HepG2 cell lines. Interestingly, the tumor

clusters migrated along the flow direction of “blood vessel” fluid,

and different mechanisms of TEM were observed—paracellular in

MDA-MB-231 cells and transcellular in HepG2 cells. They also

performed a tumor adhesion assay and drug sensitivity test for 5-

fluorouracil (5-FU). There was a more pronounced decrease in the

cancer progression parameters in vascularized tumor-on-a-chip

compared to coculture in transwell inserts, suggesting the

importance of ECs and fluid flow in modulating 5-FU efficacy. A

similar setup was also used to evaluate the anti-tumor potency of

partially acetylated chitosan oligosaccharide (87).

An open microfluidic device with a 96-well plate format was

used to coculture the MVN and CRC cell lines (34). They found that

primary endothelial progenitor cell (EPC) and HUVEC source and

passage number affected their ability to form MVNs in their

rhomboidal gel chamber. EPCs or HUVECs from all sources were

able to form a network by day 6, but only ECs from three out of

seven sources tested had a perfusable network. They also observed

different network formation dynamics for different cell sources.

Among the cell sources tested, one of the two HUVEC lines showed

the most consistent network formation dynamics in the presence

and absence of HCT 116 colorectal cancer cells (which might be

important for drug screening control). The system was used to

assess drug safety by assessing tumor growth, vessel length, and cell

viability. Although some cell sources resulted in nonperfusable

MVN, the chemotherapeutic 5-FU still reached the tumor

through diffusion despite the drop in efficiency indicated by

higher IC50 compared to the cell lines capable of forming a

perfusable network. Thus, vessel network perfusability should also

be considered when assessing drug safety and sensitivity.

By reproducing GBM cells in vertically stacked microfluidic

channels, Lin et al. (88) identified that the presence of ECs

maintained the stem-cell like nature of GBM cells and weakened

the response to DNA alkylating agents, as shown by reduced 7-mG

and 6-O-mG levels assessed via LC−MS.
5.2 Antiangiogenic therapy

To better vascularize tumor spheroids, Ahn et al. (17) used

heterotypic spheroids comprising HepG2 liver cancer cells and

blood ECs. They demonstrated that in the presence of

intratumoral vessels, the tumor cells exhibited more aggressive

metastasis. To further vascularize the tumor, blood and lymphatic

ECs were embedded together with the heterotypic spheroid in fibrin
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gel in the microfluidic channel. Interstitial flow was established to

promote vessel network formation. Then, the researchers tested the

tumor response to axitinib, an antiangiogenic drug. Outside of the

chip, the heterotypic spheroids showed a dose-dependent response

to axitinib treatment. When vascularized on-chip, the tumor shows

no significant dose-dependent decrease in area in response to

treatment at the earlier time point, when the vessel network was

not properly developed yet. However, the vasculature still regresses

in a dose-dependent manner. When drug treatment is started by the

time the vasculature has already been well established (day 5

postseeding on-chip), the tumor responded to axitinib treatment,

suggesting the importance of intratumoral vascularization for

drug delivery.
5.3 Targeted therapy

Hassell et al. (7) modeled lung cancer in an orthotropic manner

where a low density of non-small cell lung cancer (NSCLC) cells
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was mixed with normal alveolar ECs and added into the top

chamber and the EC-lined bottom chamber. Interestingly,

NSCLC cells in the coculture exhibited a 12-day dormancy

period, and proliferation resumed at a lower rate than that in the

monoculture. In the presence of cyclic stretch mimicking breathing

motion, the tumor exhibited higher resistance to tyrosine kinase

inhibitors (TKIs). Additionally, EGFR expression and

phosphorylation levels were decreased under cyclic stretch. This

observation might explain the reduced growth rate of tumors under

breathing motion. The IL-8 and VEGF levels were increased in the

effluent flow from the coculture, while the IL-6 level was decreased.
5.4 Combination therapy

Kim et al. (18) recently developed an all-in-one IMPACT

device, where spheroid formation and vascularization can be

performed in the same device (Figure 3A). By injecting a small

volume of cell suspension, the droplet was maintained by surface
A

B D
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FIGURE 3

Example of the application of vascularized tumor-on-a-chip for therapeutics screening. (A) The all-in-one IMPACT device allows spheroid formation
and vascularization on the same device, making it more user-friendly. Adapted with permission. Copyright 2022 Wiley Periodicals LLC. (B) The
device design with a small hole on top of the device enabled spheroid introduction after microvascular network formation. Adapted with permission.
Copyright 2022, American Chemical Society. (C) Device design allowing oxygen gradient generation with the gas-impermeable PC cap. Endothelial
cells are seeded on lumen created by viscous finger patterning. Adapted under the terms of the Creative Commons Attribution License (CC BY).
Copyright 2021 Ando et al. (D) The multi-organ InVADE platform that enables drug sensitivity and other organs’ toxicity test in one chip. Adapted
with permission. Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
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tension. After 24 h of spheroid formation, stromal cells and

hydrogel were injected into the same space to vascularize the

spheroid. The device was subsequently used to evaluate the effect

of Taxol (chemotherapeutic) and Avastin (antiangiogenic drug) and

the combination towards patient-derived cancer spheroid and

vessel growth. After drug treatment from day 3 to day 5, all drug-

treated groups experienced significant decrease in vessel area.

Interestingly, Taxol monotherapy resulted in the highest decrease

in tumor size change. Furthermore, the bottom of the device was

detached, and the hydrogel was sectioned for high-resolution

imaging. This was done to obtain clearer confocal images of

vascularized mono- or heterotypic spheroids (cancer cells,

fibroblasts, and ECs).

The vasculogenic-formed vasculature network mimics

physiological size and architecture. However, in the commonly

used microfluidic device, tumor cells can only be seeded together

with ECs to form MVNs within tumors and are thus the size of

tumor clusters cannot be finely controlled. In the work by Hu et al.

(89), a small hole was punched on the central channel to introduce

tumor spheroids after MVN formation (Figure 3B). However, the

higher position of the spheroid in this design might potentially

reduce the imaging quality. The platform was utilized to study the

effect of HIF1a stabilization by inhibiting prolyl hydroxylase (PHD)

on improving traditional chemotherapeutic outcomes. PHD

inhibitor treatment reduced the EC apoptosis rate and vessel

permeability (vessel normalization), leading to the more effective

delivery of chemotherapeutics to the tumor.
5.5 Nanoparticles

Nanoparticles has recently emerged as a potential approach to

treat cancer that can be engineered to have advantageous effect such

as targeted-delivery and optimized drug release pattern (90),

vascularized tumors-on-chips have been utilized to study how the

presence of the endothelial barrier affects the delivery of micelle-

based nanoparticles. As expected, the delivery rate of nanoparticles

was the highest in 2D culture, followed by 3D spheroids and

vascularized tumor-on-a-chip models (91). Separately, Wang et

al. (92) investigated the effect of different mophologies of Gd2O3

NPs, namely sphere, scroll, and oblate, towards the tumor-killing

efficacy. Scroll and oblate shape NPs had similarly good adhesion on

the ECs but the oblate shape NPs was superior in supressing the

growth of lung tumor due to the larger NP surface area (92).
5.6 Cell therapy

In addition to forming spheroids from tumor cells and ECs,

sequentially layering tumor spheroids with fibroblasts can also

improve vascularization within the tumor and its surrounding

areas (30). Experiments with CAR T cells showed higher CAR T-

cell recruitment, IFNg production, and apoptotic cell number in the

tumor formed with fibroblast layering.
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To perform drug screening under hypoxia, a steep oxygen

gradient was created with a polydimethylsiloxane (PDMS) device

and polycarbonate (PC) cap (11). Tumor cells were embedded in

GelMA in the chamber underneath the PC cap, while the vessel was

created by viscous fingering of the hollow space surrounding the

tumor chamber (Figure 3C). Strikingly, no angiogenic response was

observed, but the ECs directly invaded the tumor chamber by day 7.

The vessel was found to be leaky as assessed by dextran perfusion.

Most of the CAR T cells that flowed to the vascular channel did not

attach, but when they did attach, they migrated against the flow,

suggesting active migration.
5.7 Vascularized multi organs-on-a-chip

Recently, tumor-on-a-chip has been coupled with cells derived

from other organs, such as the liver (8, 93) and heart (93, 94), to

assess toxicity to other vital organs. This investigation can be

achieved by coupling of various organ cell types in different

compartments, such as growing cancer cells in one lateral channel

and cardiomyocytes in the other lateral channel. The InVADE

platform (Figure 3D) enables this arrangement by separating the

tumor cells and organ-derived cells into different but

interconnected 96-well plates. Alternatively, Ozkan et al. (8)

created a PDMS chip with two lumenized hydrogel

compartments, one seeded with tumor cells and the other had

liver cells in it. ECs were seeded on the lumen and the two

compartments were connected with tubing.
6 Discussion and conclusions

The introduction of vasculature into the tumor-on-a-chip

method has allowed more accurate reproduction of the TME. It is

highly important for the study of tumor–vessel interactions as well

as being the platform for therapeutic evaluation, as drugs and

immune cells circulate through the vasculature. The modular

nature of microfluidic models makes them a robust tool to

delineate the contribution of each factor and to study their

interactions. In addition, compared to animal models,

microfluidic models offer better control and reproducibility while

simultaneously being rapid and cost-effective.

Perfusable vessels were successfully generated by coculturing

ECs and stromal cells. However, there are limited examples of in

vitro models where pericytes are present. Pericyte crosstalk with

ECs is important for vessel maturation and endothelial barrier

function (95, 96). HUVECs are the primary cell lines most

commonly used in vasculature-on-a-chip formation. Nevertheless,

it is known that vessel characteristics differ from organ to organ. For

example, the liver has sinusoid capillaries, the kidney has

fenestrated capillaries, and the brain has dense capillaries. For the

blood−brain-barrier (BBB) in particular, a complex vessel model

where pericytes and astrocytes are cultured together with ECs has

been generated (13). ECs form the MVN, and pericytes and
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astrocytes obtain perivascular localization. To date, most of the

studies on vascularized tumor-on-a-chip only incorporate blood

vessels. However, in an in vivo context, lymphatic vessels are also an

important route for metastasis in various types of cancer (97). Thus,

lymphatic vessels have currently been introduced together with

blood vessels for a tumor-on-a-chip model (17). These factors

might lead to discrepant or even contradictory findings when

compared to in vivo results.

Currently, microfluidic devices for organs-on-a-chip are usually

PDMS-based with coverslip bottoms. PDMS is gas-permeable,

nontoxic, and transparent, making it suitable for cell culture and

imaging applications. However, the manufacturing of this device

requires personnel skilled in microfabrication and special

instruments that are not commonly found in biomedical

laboratories. Furthermore, the fabrication process is somewhat

time-consuming, and there is also concern about the nature of

PDMS, which can absorb small-molecule drugs (98), making it not

the most ideal material for use in drug screening. To enable a wider

adoption of vascularized tumors-on-a-chip and organs-on-a-chip

methods in general, a more standardized microfluidic device is

needed. It is also preferred, especially in drug screening

applications, that the device format is compatible with high-

throughput systems. Currently, devices suitable for vascularized

tumors-on-a-chip can also be made from plastic materials and have

been made commercially available in various designs. Devices such

as OrganoPlate® Graft (Mimetas) (https://www.mimetas.com/en/

organoplate-sup-sup-product-overview/ last accessed 2023-01-10)

and OrganiX (AIM Biotech) (https://aimbiotech.com/ last accessed

2023-01-10) enable the grafting of single tumor spheroids or

organoids on/in a vascular bed. For more general applications,

devices such as IdenTX (AIM Biotech) are a more versatile option.

Another hurdle is that the workflow of cell isolation for

downstream analysis is tedious and has a higher chance of

contamination. Usually, the whole gel slab needs to be extracted

from the device, and the ECM is digested. Subsequently, the cells are

collected and sorted for further analysis. Although the small volume

allows more replicates to be produced, it prevents the ability to

perform conventional analyses, such as Western blotting, due to an

insufficient cell number. It is still possible to perform them, but cells

need to be pooled from several devices.

Tumor-on-a-chip analysis relies heavily on imaging tools and is

currently incompatible with many conventional in situ assays. For

example, in the 3D culture of cells embedded in gel, traction force

microscopy analysis remains challenging and computationally

expensive, and the potential alternative for quantifying cellular

forces is fluorescence resonance energy transfer (FRET) tension

sensors (99). To study calcium release in vascular smooth muscle

cells surrounding the MVN, Cuenca et al. (100) transduced the cells

with an ultrasensitive calcium sensor, GCaMP6f. Similar molecular

tools can be exploited for other molecules of interest. Atomic force

microscopy, a common tool to investigate tissue or cell stiffness, is

also not compatible with the geometry of most microfluidic devices.

Alternatively, Brillouin has recently been proposed to potentially

solve this problem (101, 102). However, the instrument is not very

common yet.
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In conclusion, the development of in vitro vascularized tumor

models has significantly advanced our ability to recreate a more

biologically realistic cancer microenvironment in the laboratory.

This has provided researchers with a more precise and accurate way

to study the mechanisms of cancer and evaluate therapeutic

response. With further refinement, standardization, and

simplification of the technology, we are optimistic that in vitro

microvasculature will gain wider adoption as a replacement for

animal experimentation and play a crucial role in advancing

personalized cancer therapy.
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Background: Three-dimensional primary slice cultures (SC) of head and neck

squamous cell carcinomas (HNC) are realistic preclinical models. Until now,

preserving structure and viability ex vivo for several days has been difficult. The

aim of this study was to optimize cultivation conditions for HNC SC and analyze

the added effects of platelet rich fibrin (PRF) on these conditions.

Methods: SCwere prepared from the tumor biopsies of 9 HNC patients. Cultures

were incubated for 1 and 7 days in three different media- Keratinocyte serum-

freemedium (SFM), RPMI-1640i, and 1:1 mix of both, with and without addition of

PRF. After culturing, SC were fixated, embedded, and stained with Hematoxylin-

Eosin (HE) and cleaved caspase-3. In addition, triple immune fluorescence

staining for cytokeratin, vimentin and CD45 was performed. Outcome

parameters were cell count and cell density, viability and apoptosis, SC total

area and proportions of keratinocytes, mesenchymal and immune cells. The

effects of culture time, medium, and addition of PRF were calculated in an SPSS

generalized linear model and using the Wald Chi-Squared test.

Results: Ninety-four slice cultures were analyzed. Viability remained stable for 7

days in culture. After addition of PRF, cell viability increased (p=0.05). SC total

area decreased (0.44 ± 0.04 mm2 on day 1 (95% CI: 0.35 to 0.56) to 0.29 ± 0.03

mm2 on day 7 (95% CI: 0.22 to 0.36), but cell density and cell proportions

remained stable. Differences in cultivation media had no significant impact on

outcome parameters.

Conclusion: HNC SC can be preserved for up to 7 days using the tested

cultivation media. Cell viability was best preserved with addition of PRF. HNC

SC are a versatile experimental tool to study physiology and drug actions.

Autologous PRF can help simulate realistic conditions in vitro.

KEYWORDS

head and neck cancer, tumor microenvironment, cultured neoplastic cells, platelet rich
fibrin, culture media
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1 Introduction

Head and neck squamous cell carcinomas (HNC) are

heterogeneous tumors with highly variable cellular composition,

invasion patterns, and therapy response (1). Realistic preclinical

models for personalized therapy strategies are lacking. Cell cultures

are currently the standard models (2) of basic tumor mechanisms

(3). However, without the tumor microenvironment (TME), cell

cultures are limited in their translational applicability (4, 5). Tumor

architecture, physiological state, and interactions among different

cell types (6) can play important roles in cancer progression and

invasion (7, 8). Recently, patient-derived HNC models with the

TME have been used to study tumor-specific characteristics and

develop individualized therapies (8–11). Such TME models can be

in-vivo, two- and three-dimensional co-cultures (11, 12), patient

derived xenograft models (13, 14), organoids (14, 15), microfluidic

designs (16–18), organ-on-a-chip models (19, 20), spheroids (21),

3D bio prints (22, 23), 3D collagen-based scaffolds (24) and

advanced three-dimensional spheroid models from dissected

whole tumor tissues. However, in all of the above-mentioned

models, the in situ spatial arrangement of the TME is dissolved

and interactions with neighboring tissue may be altered (24–26).

Primary slice cultures (SC) are 250 to 400 mm thick slices of tumor

tissue samples in which the original 3D structures and organization

of the TMEs are preserved (4). As SC are open systems, substances

can easily be added and therapeutic efficacy and resistance

mechanisms may be directly studied (27). The impact of the

HNC cell- microenvironment interaction on invasion patterns

and response to antitumoral treatment has become more

apparent during the last few years. Different 3D preclinical

models of HNC have thus been established recently to study

tumor cell characteristics in a “close to real life environment”

over the course of several days in a laboratory setting. 3D cultures

of oropharyngeal squamous cell carcinoma cell lines were mounted

on a collagen – based scaffold to study expression of markers of

epithelial- mesenchymal transition as well as matrix interactions

and migration behavior and drug resistance pathways both in vitro

and as xenografts (28). Gerlach and coauthors first described

cultivation of HNC SC and observed the effect of cytotoxic drugs

for up to 7 days (29). Three-dimensional organotypic co-culture

models mounted on a dermal equivalent of fibroblasts and viscose

fibers were successfully cultured for 7- 21 days to study

proliferation, infiltrative growth patterns and distribution of

cancer associated fibroblasts and leukocytes depending on HPV

status (30). Furthermore, the applicability of HNC 3D SC as a

platform to study novel therapeutic approaches such an oncolytic

virus was recently described by Runge and Mayr et al. (31).

However, viability and cell proportions may vary due to

heterogeneity of HNC tumor tissue samples, effects of culture

media, and SC incubation times. Furthermore, ex vivo viability of

HNC SC might be compromised due to a lack of several autologous

growth factors. Platelet rich fibrin (PRF), a completely autologous

substance obtained by centrifugation of peripheral venous blood,

contains platelets, leukocytes and several biologically active proteins

including platelet alpha granules, platelet−derived growth factor
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(PGDF), transforming growth factors−b (TGF−b), vascular

endothelial growth factors (VEGF), and epidermal growth factors

(32, 33) in a fibrin matrix. PRF has been suggested to have beneficial

effects on viability of tumor explants (32, 34).

The main objective of this study was to optimize HNC SC

culturing conditions over a period of seven days. Quality of SC of

different media were compared after 1 and 7 days. The effects of

autologous PRF on cell viability in HNC SC and selective effects

of different culturing media and PRF on epithelial cells, fibroblasts

and immune cells were studied.
2 Methods

2.1 Study design

In this study in HNC SC, effects of 3 experimental parameters

were examined: cultivation time of 1 day and 7 days, three

cultivation media (Keratinocyte SFM, RPMI1640, 1:1 mix of

both), and addition of autologous patient derived PRF. The

outcome parameters included SC total area (mm2), the total

number of cells in relation to the area (the “cell density”, cells/

mm2), viability (%), number of tumor cells, fibroblasts, and

leukocytes per mm2, and their relative proportions.
2.2 Patients

Tumor tissue samples from nine patients with suspected

incident, locally advanced head and neck squamous cell

carcinomas were collected, who underwent endoscopy under

anesthesia as part of their initial staging between October 2020

and June 2021 at the Department of Otorhinolaryngology, Head

and Neck Surgery, Medical University of Innsbruck (Table 1).

The samples were always collected from the primary tumor.

Approval for this study was obtained from the Ethics Committee

of the Medical University of Innsbruck (EK-number: 1199/2019,

date of approval: 19/05/2019). Written informed consent was

obtained from all patients. Inclusion criteria comprised of patient

age over 18 years, endoscopy under anesthesia, and locally advanced

primary tumor (T3-T4). Patients were excluded if there was a

contraindication for endoscopy under anesthesia or if they had

received prior treatment for HNC.
2.3 Explant collection and cutting

Samples with a diameter of > 4 mm³ were collected with biopsy

forceps from a non-necrotic tumor area during endoscopy under

anesthesia (13). After submersion in Medium 199 (#31150022,

Thermo Fischer Scientific, Rochester, NY, USA), the samples

were immediately transferred to the laboratory for installation of

SC. Afterwards, 12 slices with a thickness of 300 mm were cut from

each sample with the vibratome (VT1200S Leica, Wetzlar,

Germany; Figure 1A).
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2.4 Autologous platelet rich fibrin

To prepare PRF, one S-PRF tube (#S-PRF, Mectron, Köln,

Germany) of 4.9 ml of peripheral venous blood was obtained by

cubital venipuncture from the same HNC patients. The blood

sample was centrifuged immediately (Choukroun - PRF Duo

Quattro System centrifuge, Cologne, Germany) at 44g for 8 min

without addition of any substances. After centrifugation, 50μl of

PRF were taken from the tube and added to the corresponding well

with a syringe.
2.5 Cultivation media

For optimization of culturing conditions, separate examination

of HNC SC in three different media with and without serum,

growth factors, and PRF was performed (35). SC were submerged

in hanging membrane inserts of a 24-well plate (Corning

Incorporated-Life sciences, Durham, USA; Figures 1B, C). 50 mL
of patient derived autologous PRF were added to 12/24 inserts.

Afterwards, 150 mL of the respective medium were added. The

media used were Keratinocyte SFM enriched with human
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recombinant epidermal growth factor (rEGF), bovine pituitary

extract (BPE) (serum free medium; #10724-011, Gibco, Grand

Island, NY, USA), RPMI-1640 (#31150022 Thermo Fisher

Scientific, Rochester, NY, USA) with additional 10% fetal bovine

serum (FBS), and a 1:1 mix of Keratinocyte SFM and RPMI-1640 in

a 50 ml Falcon tube (#10788561, Szabo Scandic, Vienna, Austria).

All media were supplemented with Gibco Antibiotic-Antimitotic

(100x) (#15240062, Thermo Fischer Scientific, Rochester, NY,

USA), a mix of three antibiotics (10.000 μg/mL streptomycin, 25

μg/mL amphotericin B and 10.000 units/mL penicillin). SC were

then incubated in a 37°C incubator (5% CO2) over 1 and 7 days.
2.6 Fixation and embedding

After cultivation periods of 1 and 7 days, SC were fixed in 4%

paraformaldehyde (#FN-10000-4-1, SAV Liquid Production

GMBH, Flintsbach am Inn, Germany) overnight (4° C) and

washed with phosphate-buffered saline (PBS) (Fresenius Kabi

GmbH, Bad Homburg vor der Höhe, Germany) the next day.

Fixed SC were embedded in HistoGel (#HG-4000-012, Thermo

Scientific, Massachusetts, USA) and prepared for paraffin
FIGURE 1

Culture setup of SC. (A) SC after being cut with the Vibratome. (B) SC cultivated in a 24-well plate, submerged in medium with or without PRF.
(C) Hanging membrane insert.
TABLE 1 Patient characteristics and tumor locations.

Patient Sex Age Location of primary tumor TNM p16 status

1 male 61 Oropharynx cT4 cN1 cM0 positive

2 female 52 Oropharynx cT4a cN2c cM1 negative

3 male 73 Larynx cT4a cN1 cM0 negative

4 male 72 Larynx cT3 cN2c cM0 negative

5 male 54 Oropharynx cT3 cN2c cM0 negative

6 male 64 Hypopharynx cT4a cN3b cM0 negative

7 male 59 Hypopharynx cT3 cN3b cM0 negative

8 female 87 Oropharynx cT3 cN1 cM0 negative

9 female 31 Nasopharynx cT1 cN0 cM0 negative
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embedding via dehydration and paraffin impregnation with the

Histos 5 microwave system (Milestone, Bergamo, Italy). All steps

were performed as described by Lechner M et al. (36). Afterwards,

hardened paraffin blocks were cut into 5μm slices with the HM 355S

microtome (Microm, Walldorf, Germany) and transferred onto

Superfrost Plus slides (Menzel, Braunschweig, Germany).
2.7 Staining procedures

Prior to staining, slides were dewaxed following the protocol of

Giotakis et al. (37). Hematoxylin-Eosin (HE) staining was done

following the manufacturers´ protocol (#1.05174.0500, Merck

KGaA, Darmstadt, Germany). Following the protocol of Fischer

N et al., cleaved caspase-3 (CC3) staining was performed using the

fully automated immunostaining system (Ventana Roche Discovery

Classic, Tucson, AZ, USA) and the CC3 antibody (1:400x,

polyclonal rabbit, #9661, Cell Signaling Technology, MA, USA)

(36). Epithelial, mesenchymal and immune cells were analyzed with

triple immunofluorescence staining, containing conjugated

vimentin (eFluor 570 conjugated) (#14-9897-82, eBioscience™,

ThermoFischer, Waltham, MA United States), cytokeratin (CK)

(Alexa Fluor 488 conjugated) (#628601, BioLegend, San Diego,

United States), and CD45 (Alex Fluor 594 conjugated (#304060,

BioLegend, San Diego, United States) as described by Giotakis et al.

(37). Per slide, 8 mL of CD45 and 4 mL CK and vimentin,

respectively, were used and mixed with 100 mL of antibody

diluent (Roche, Ventana, Tucson, AZ, USA). The mix was then

pipetted manually on the slides in the Ventana Discovery Slide

Autoimmunostainer. For nuclear counterstain, 4′,6-diamidin-2-

phenylindolethen (DAPI, 1:46.000, Thermo Fisher Scientific,

Darmstadt, Germany) was pipetted onto the slides manually. To

reduce auto fluorescence, the Vector TrueVIEW Auto Fluorescence

Quenching Kit (#VEC-SP-8400, Vector Laboratories, Burlingame,

California, USA) was used (37). After staining procedures, the slides

were mounted with Vectashield Vibrance (Vector Laboratories) and

dried overnight (38).
2.8 SC quality rating

Gross quality of SC was rated microscopically after 1 and 7 days

of cultivation on HE staining. Texture and compactness of the

tissue, viability, and necrotic areas were rated from 0 to 3, with 0 as

the lowest and 3 as the highest quality score (Table 2).
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2.9 Image acquisition and analysis

TissueFAXS (TissueGnostics GmbH, Vienna, Austria) was used

for image acquisition. Viability score, SC total area, total cell count,

and total count of CC3 positive and-negative cells were analyzed in

HE and CC3 stainings with HistoQuest according to Ingruber et al.

(37) and Steinbichler et al. (39). In IF stained images, proportions

and distributions of epithelial tumor cells, fibroblasts, and

leukocytes were analyzed with TissueQuest according to Giotakis

et al. (35). Tumor cells were defined in fluorescence-stained slices as

cytokeratin or combined cytokeratin-vimentin-stained cells.

Fibroblasts were defined as single vimentin-stained cells and

leucocytes as single CD45 or CD45- vimentin combined

stained cells.
2.10 Data analysis

Given the right-skewed distributions of the outcome

parameters, a generalized linear model was used, assuming a

gamma distribution and a logistic link function. All main effects

and interactions were included. Parameters were estimated using

the maximum likelihood method, and p values and confidence

intervals were calculated according to Wald. Calculations were

performed with SPPS Statistics Ver. 27 (IBM, Armonk, NY).

Estimated marginal means (EMM) and their standard errors

(SEM) were graphically presented using GraphPad Prism 9

(GraphPad Software, San Diego, CA, USA).
3 Results

Ninety-four out of 108 SC from 9 patients were evaluable. Four

primary tumors were in the oropharynx, 2 in the larynx, 2 in the

hypopharynx, and one in the nasopharynx. The patients were between

31 and 87 years old (average 61.4 years). All patients but one were

diagnosed with UICC stage III or IV HNC by clinical and radiologic

evaluation. The cervical lymph nodes were involded in 8/9 cases,

distant metastasis was found in one patient. All but one oropharyngeal

carcinoma were p16 negative. Treatment after initial staging involved

surgery with curative intent in 5 cases, adjuvant radiation or

chemoradiation in 4 cases and primary Chemoradiation in 3 cases.

SC were generated from each of the tumor explants (Table 1).
3.1 Gross slice quality

Microscopic evaluation of gross SC quality in HE stainings

revealed differences in quality and tissue composition depending on

incubation time. After 24h, the tissue was mostly compact with

almost nonnecrotic areas (Figure 2). After 7 days, the tissue

structure and quality were still compact, but there were slightly

more necrotic and dissembled areas visible (Figure 2).

Both in parametric and non-parametric tests, there was a

significant correlation of HE quality score grade with SC total
TABLE 2 Scoring system (0-3) for SC quality in HE stained slices.

Score Description

0 ≤20% viable cells

1 21-40% viable cells

2 41-60% viable cells

3 ≥60% viable cells
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area. (Spearman´s rho=0.39; n=94; p<0.001). These tests also

revealed a statistically significant correlation of HE quality scoring

grades with the cell density (Spearman´s rho=0.6; n=94; p<0.001).
3.2 Effects of cultivation time, cultivation
medium, and PRF on SC total area and
cell density

3.2.1 SC total area
Both cultivation time and addition of PRF had significant effects

on the SC total area. Total area decreased from 0.44 ± 0.04 mm2 on

day 1 (95% CI: 0.35 to 0.56) to 0.29 ± 0.03 mm2 on day 7 (95% CI:

0.22 to 0.36; p=0.007), (Figure 3B). SC total area was larger when

cultivated with PRF (0.43 ± 0.05 mm2; 95% CI: 0.34 to 0.55;

p=0.009) than without PRF (0.29 ± 0.03 mm2; 95% CI: 0.22 to
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0.37; Figure 3A). This effect was independent of cultivation time. No

significant effect of cultivation medium on SC total area and cell

count was observed (p=0.205). Detailed patient specific data, in

correspondence to Figures 3A, B, can be found in Supplementary

Table S1.

3.2.2 SC cell density
Cell density was calculated by relating absolute cell count and

SC total area. In all 94 slices, the mean cell density was 3544 ± 334

cells/mm2. PRF reduced cell density (p=0.003). Without PRF, 4669

± 584 cells/mm2 (95% CI: 3654 to 5965) were counted in the slice

cultures; whereas with PRF, 2690 ± 377 cells/mm2 (95% CI: 2045 to

3538) were observed (Figure 3C; Supplementary Table S2).

Comparative visualization of SC after 1 and 7 days suggested

increased cell counts in some of the PRF free, but barely in PRF

containing SC (Figures 4A, B).
A B C

FIGURE 3

SC total area (mm2) (HE) (A) with and without PRF (p=0.009). (B) at day 1 and day 7 (p=0.007) (C) Cell density with and without PRF (p=0.003).
(**significant at the 0.05 level; Bars: SEM).
FIGURE 2

Hematoxylin–Eosin (HE) stained SC at day 1 and day 7. (A, A1) HE stained SC at day 1. (B, B1) HE stained SC at day 7.
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3.3 Effects of cultivation medium,
cultivation time and PRF and on
cell viability

CC3 negative cells were considered viable and viability was

calculated as the proportion of CC3 negative cells. Seventy-six SC

were included in the viability analysis. Overall cell viability was 64.3

± 2.1% (95% CI: 60.1 to 68.5). PRF increased cell viability (p=0.05).

Cell viability was 60.1 ± 3% (95% CI: 54.2 to 66) without PRF vs.

68.48 ± 3.06% (95% CI: 62.5 to 75.5) with PRF (Figure 5A). There

was no significant effect of cultivation media and cultivation time on

cell viability (p=0.546 and p=0.834, respectively). Cell viability

remained stable between 1 day (63.8 ± 2.8%; 95% CI: 58.2 to

69.5) and 7 days (64.7 ± 3.1%; 95% CI: 58.6 to 70.8; Figure 5B).

Detailed patient specific data, in correspondence to Figures 5A, B,

can be found in Supplementary Table S3.
3.4 Effects of cultivation time, cultivation
medium, and PRF on different cell types

Effects of the three media, addition of PRF, and cultivation

period on proportions of epithelial cells, mesenchymal cells and

immune cells were also studied. There was a significant effect of the

cultivation medium on leukocytes density (p=0.02). Highest

leukocyte density were detected when SC were cultivated in

combined medium (2686 ± 432 leukocytes/mm2; 95% CI: 1839 to

3534), compared to cultivation in Keratinocyte (1154 ± 367; 95%

CI: 434 to 1873) and RPMI-1640 (1449 ± 445; 95% CI: 575 to 2322)

media, respectively. Culture time and addition of PRF did not

influence leukocyte density (p=0.61 and 0.498 respectively). No

significant effect of cultivation medium, time, or PRF on tumor cells

and fibroblast density were observed (p-values 0.105-0.835 and

0.485-0.901 for tumor cells and fibroblasts, respectively).

Proportions of tumor cells, leukocytes, and fibroblasts were

investigated in the context of cultivation time, medium, and

addition of PRF. Culture time decreased the relative amount of

tumor cells (p=0.046). After 1 day and 7 days, tumor cells presented
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33% ± 3.02 (95% CI: 27.4 to 39.2) and 25% ± 3.19 (95% CI: 18.3 to

30.8) of all DAPI-positive cells. There was no significant effect of

cultivation time, media, or PRF on the relative amounts of

fibroblasts and leukocytes (Figure 6).
4 Discussion

Due to their preserved tissue architecture, native stroma, and

heterogeneity, patient derived slice cultures may be suitable for

testing patient specific treatments. HNC SC have been

established previously as a platform to study HNC and its

microenvironment and novel therapeutic approaches. Cytotoxic

effects of high doses of Cisplatin, Docetxel and Cetuximab were

studied by Gerlach et al. in HNC SC. According to their

observations, they detected fragmentation of nuclei, pygnotic

alterations and cellular polymorphisms as hallmarks of

apoptosis. Recently, Runge, Mayr et al. reported on HNC SC as

a platform to evaluate oncolytic virus action. In this study, it was

possible to observe both tumor cell killing effects of the virus and

lymphocytic tumor infiltration over the course of several days

(29, 31). The goal of this study was to optimize HNC SC

cultivation conditions and observe the effect of autologous PRF

and different cultivation media on gross quality, viability, and

composition of cell types in SC over a period of 7 days. This study

was intended to set the ground works for stable culturing

conditions over a course of several days, when effects of

cytotoxic drugs and check point inhibitors are to be studied in

close to real life in vitro conditions.
4.1 SC area and cell density, viability and
proportions on day 1 and day 7

Gross slice quality, as estimated by HE stainings, remained

stable for 7 days with intact structure, discernible cell types, and

only a few necrotic areas. An earlier cultivation cut-off due to

reduced SC quality, as described by Gerlach and coauthors, was not
A B

FIGURE 4

Pairwise visualization of slice cultures after 1 day and on day 7 without and with PRF. (A) Cell density of slice cultures without PRF on day 1 and day
7. (B) Cell density of slice cultures with PRF on day 1 and day 7.
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necessary (29). However, culturing time influenced SC total area

and SC cell density. The initial cutting process may trigger

inflammatory immune responses in SC, and modify cell growth

and/or survival. While the TME can remain intact, SC total area

may decrease over the course of 7 days, as observed in this and

previous studies (29, 37, 40). However, viability and cell

proportions, including the tumor cells as primary therapeutic
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targets, did not vary greatly between day 1 and day 7. As a result,

future preclinical targeted therapeutic trials using HNC SC may be

less biased by in vitro cell death or shifts in cell proportions. Still,

according to our observations and similar earlier studies, SC quality

is best preserved after 24-48 hours. Thus experiments need to be

performed at early time points in the culturing period for optimal

results (31). Finally, the impact of decreased SC size should be
A B

FIGURE 5

Cell density of CC3-negative stained cells in percentage in dependence of PRF and culture time. (A) Percentage of relative CC3-negative stained
cells without and with PRF in percent (p=0.05). (B) Percentage of relative CC3-negative stained cells on day 1 and day 7 (p=0.834). (*significant at
the 0.1 level, ns, not significant; Bars: SEM).
FIGURE 6

Relative distribution of the three different cell types, presented in a pie-diagram and IF triple staining using direct conjugated antibodies (CD45 conjugated
with Alexa Fluor 594 presented in yellow, vimentin conjugated with eFluor 570 presented in red, pan-cytokeratin conjugated with Alexa Fluor 488
presented in green and counterstained with DAPI presented in blue) of SC from HNSCC at day 1 and day 7 (400 times magnification; Scale bars: 50µm).
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considered when calculating the effect of cytotoxic or immune

modulating therapies in HNC SC.
4.2 SC area, cell viability, density and
proportions with and without PRF

However, the addition of PRF was beneficial for preserving the

SC total areas (p=0.023) and cell viability over several days. Similar

effects have been observed in SC with fetal bovine serum (FBS) in

other studies (41). FBS is a widely used cultivation medium rich in

growth factors, but its use is not encouraged due to ethical concerns

and the presence of highly variable amounts of xenogeneic

components which may cause adverse immunological effects.

Autologous growth factors, like those contained in PRF, may

contribute to conservation of the original tumor size and cell

viability by stimulating a biologically active “in situ” environment.

After 7 days and addition of PRF, an overall lower cell density

was observed (Figure 4). Still, cell density increased in some SC,

regardless of PRF. Standardization of growth factors and cell counts

both in PRF and in HNC SC is hardly feasible, considering the

means of material collection. As a result, cell counts may vary

during longer cultivation periods.

According to our findings, PRF may have a stabilizing effect on

cell proportions in HNC SC, even during longer cultivation periods.

This finding contradicts observations of cell proliferation of

osteoblasts and fibroblasts (42, 43). However, remodeling may

occur after time frames longer than 7 days, which was beyond the

scope of this study.
4.3 SC area and cell density, viability and
proportions in different cultivation media

Cultivation media on the other hand had no such impact on the

SC total area, cell density or viability. Keratinocyte SFM supposedly

supports the growth of anchorage independent cancer stem cells and

epithelial cells in cell cultures and spheroids. This medium contains

all essential nutrients and supplements for culturing. Addition of FBS

is not necessary, rendering cultivation conditions consistent

throughout the whole experiment. RPMI on the other hand was

supplemented with additional FBS. This medium is known to

promote the growth of many different cell types, esp. fibroblasts

and leukocytes in culture (44). In our study, Keratinocyte SFM, RPMI

+FBS and the 1:1 mix of both did not promote any specific cell type in

HNSCC SC. However, this may be different for primary cell culture.

Robust cell viability regardless of cultivation media may be attributed

to preservation of intercellular signaling and contacts as well as

protective structures such as extracellular matrix in the tumor

microenvironment of the HNSCC SC. Our results reveal that out

of the three media, Keratinocyte SFM would be beneficial for SC

culturing, due to its neutral effects and FBS-free conditions.
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For future experiments, frequent SC movement during the

culturing period should be considered. Kishan et al. observed

facilitated nutrient exchange between the medium and SC and

increased cell proliferation in floating SC installed in a shaker (45).

These results may be applicable to tumors that are subject to passive

nutrient distribution by constant muscle action, such as those in the

head and neck region.
4.4 Strengths

HNC is characterized by heterogeneity in terms of patient and

tissue characteristics, which can be fully represented in HNC SC. A

cultivation period of up to 7 days allows for sufficient observation of

treatment effects. Cultivation media seem to be interchangeable

without generating major changes in the SC. A standard biopsy of >

4 mm³, taken during routine endoscopy under anesthesia, procures

up to 12 slices with 300 μm. Out of these slices it was possible to

generate 94 SC with good quality.
4.5 Limitations

The majority (94) of the planned 108 slices were applicable for

cultivation. However, some slices were lost due to squashing or

disintegration during initial cutting and staining or after

cultivation for 7 days. Therefore, despite the already good

quality slice cultures the application of the Compresstome®

vibrating microtome (Precisionary, MA, USA) yielded a high

number of slices for further processing and statistically

significant results (unpublished additional information). The

consistency of tumor tissue was highly variable, and some

samples were harder to cut than others. Consequently, an

individual quality scoring had to be established to estimate SC

quality, which was subject to observational bias and may have led

to exclusion of further samples to achieve comparability.

Additional input parameters, such as movement, longer

incubation time, and additional media may be necessary to

further optimize HNC SC conditions.
5 Conclusions

Despite high inter-individual variations in texture and cellular

proportions, cultivation of HNSCC slice cultures up to 7 days with a

useful number of viable cells is possible. As cultivation media did

not impact SC quality, HNC SC may be highly versatile tools for

studying physiology and drug effects in HNC. The addition of PRF

provides an environment comparable to in situ conditions of the

tumor and further stabilizes SC size and cell proportions. These

results may aid in future experiments on patient-based

therapy planning.
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Even though breast cancers usually have a good outcome compared to other

tumors, the cancer can progress and create metastases in different parts of the

organism, the bone being a predilection locus. These metastases are usually the

cause of death, as they are mostly resistant to treatments. This resistance can be

caused by intrinsic properties of the tumor, such as its heterogeneity, but it can

also be due to the protective role of the microenvironment. By activating

signaling pathways protecting cancer cells when exposed to chemotherapy,

contributing to their ability to reach dormancy, or even reducing the amount of

drug able to reach the metastases, among other mechanisms, the specificities of

the bone tissue are being investigated as important players of drug resistance. To

this date, most mechanisms of this resistance are yet to be discovered, and many

researchers are implementing in vitro models to study the interaction between

the tumor cells and their microenvironment. Here, we will review what is known

about breast cancer drug resistance in bone metastasis due to the

microenvironment and we will use those observations to highlight which

features in vitro models should include to properly recapitulate these

biological aspects in vitro. We will also detail which elements advanced in vitro

models should implement in order to better recapitulate in vivo physiopathology

and drug resistance.
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1 Introduction

According to the World Health Organization, breast cancer is

the most common cancer worldwide as of 2020, with the number of

diagnoses having nearly doubled in the last two decades. Breast

cancer is the second most deadly cancer amongst women, with

mortality being especially high in countries with low income and in

women of color (1–3). If the cancer is caught early enough, the

treatments are usually very effective. However, breast cancer

frequently metastasizes to bones, especially for the more advanced

cases, rendering conventional treatments ineffective as metastases

poorly respond to chemotherapy (4). Around 70% of the patients

with advanced cancer will develop bone metastases (5).

It is now commonly accepted that breast cancer colonizes the

bone according to the “seed and soil” theory proposed by Stephen

Paget in 1889. According to this hypothesis, certain secondary

organs such as the bone are better “soils” than others and are

more at risk of developing metastases. Moreover, the primary tumor

has the capacity to prepare the secondary loci for metastatic

colonization, here the bone marrow, then cancer cells migrate

towards this newly remodeled microenvironment as disseminated

tumor cells (DTCs) through the vascular system. Once in the bone

marrow, DTCs can stay quiescent for years before invading the

surrounding bone (4). Awakened cancer cells interact with different

bone cell populations (e.g. osteoblasts, osteoclasts, immune cells,

mesenchymal stromal cells) to hijack and enhance the bone

remodeling process in order to benefit their own growth. This

process, called the vicious cycle, leads to what are known as

osteolytic lesions, which are skeletal-related events linked to a loss

of bone that causes debilitating pain for the patient. The bone is also

considered a hub for further dissemination, as cancer cells in the

bone get primed to further invade other organs (6).

To this date, no treatment to cure bone metastasis exists

and only palliative care is available due to the inability to block

the vicious cycle, as well as to drug resistance generated by

the microenvironment (7). Indeed, it is now well known that the

bone and the bone marrow exert a protective effect on cancer cells

by shielding them from cytotoxic drugs or even increasing their

aggressiveness (7–9). However, there is still a lack of knowledge

regarding the specific role that the microenvironment plays in this

process. In this context, the gold standard for pre-clinical drug

testing (i.e. 2D assays in mono or coculture) cannot give enough

information to accurately predict the effect of a drug. For example,

2D assays cannot recapitulate the bone remodeling process, even

though the vicious cycle is one of the main reasons for the

aggressiveness of bone metastasis. These models are also unable

to properly recapitulate drug pharmacokinetics due to their lack of

3D perfusable blood vessels and extracellular matrix (ECM).

The results obtained with traditional 2D assays are then generally

validated in rodents, which have a different physiology compared to

humans. Hence, the impact of the human tumor microenvironment

is underestimated or even neglected during the first steps of the

drug development process (10). For example, mouse/rat models

have a vastly different immune system compared to humans, which

affects the cancer progression as well as the metabolic reaction to
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anti-cancer drugs (11). Rodents also rarely form spontaneous

metastases to bones (12). On top of that, animal models do not

allow to easily perform parametric studies in high-throughput like

removing or adding specific cell types to study a particular feature of

the microenvironment. 3D human models hence represent a

valuable tool to complement current pre-clinical drug testing

approaches in order to more efficiently identify novel therapies.

Indeed, these models can include various human cell types

embedded in an ECM-like environment and allow for the high-

throughput study of various biological mechanisms in a controlled

and customizable setting, hence effectively predicting cancer cell

behavior in response to drugs (13). The reader can refer to the

following reviews for more details on the various existing 3D

modeling techniques focused on oncology and drug screening

(14–16). Even though it is currently not possible to completely

bypass the use of animal models in drug testing, screening and

analysis in every field, it is likely that the prevalence of complex in

vitro models could reduce or even replace the requirement of

systematic in vivo experiments in the next decades. For example,

a recent study on liver toxicology showed that an organ-on-a-chip

model outperformed conventional models, highlighting hepatotoxic

reactions that were missed in animal models (17). Therefore, having

a better comprehension of the interactions occurring in human

tissues would most likely benefit the research community and

potentially optimize the drug discovery pipeline.

In this review, we analyze the role of the bone microenvironment

in the onset of drug resistance during the progression of breast cancer

with the final goal to highlight which components and specifications

3D human bone models should include to properly recapitulate

clinical observations.
2 Breast cancer bone metastasis
and treatment

The development of bone metastases is associated with a poor

prognosis: at this date, no cure exists and only palliative treatments

are available. Moreover, the symptoms associated with bone

metastases are very debilitating. They include severe pain,

pathological fractures, nerve compression syndrome and

hypercalcemia, all of them severely impairing the patient’s quality

of life (18).

The process of bone metastasis formation is usually described

with three steps, where the role of the microenvironment is tightly

linked to the development of metastases. Firstly, the pre-metastatic

niche is created. This process allows for the cancer cells to remotely

influence the microenvironment of foreign tissues to facilitate

future colonization by recruiting specific cancer-associated cells to

remodel the ECM and create an immune-suppressive environment.

Then, “educated” stromal cells facilitate the extravasation

and attachment of DTCs (19). This process is driven by the

interaction between cancer cell receptors with blood vessel surface

ligands as well as with specific ECM proteins (e.g. laminins,

fibronectin, vitronectin, osteopontin (OPN), bone sialoprotein).

Indeed, these ECM proteins contain the arginylglycylaspartic acid
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https://doi.org/10.3389/fonc.2023.1135401
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lamouline et al. 10.3389/fonc.2023.1135401
(RGD) tripeptide that can be recognized by cancer cell surface

proteins (e.g. integrins anb3 and a4b1, C-X-C chemokine receptor 4

(CXCR4), CD44) (20, 21). Cancer cells finally settle in the bone

marrow niches (i.e. perivascular and endosteal), where they can

remain dormant for years or even decades. During dormancy, these

cells do not replicate and are able to evade the action of

chemotherapy (22).

Once awakened, these metastases disrupt the bone remodeling

process by enhancing bone resorption by osteoclasts and decreasing

bone formation by osteoblasts. This process, called vicious cycle, is

due to an increased bone resorption which releases growth factors

that further stimulate metastasis growth (21, 23). Current therapies

are generally initiated when overt metastases are already present

and challenging to eradicate, mainly due to the onset of

microenvironment-mediated drug resistance (9).

Breast cancer often becomes resistant to common therapies

(24). For estrogen receptor positive (ER+) tumors, the first line

treatment includes ER modulators or down-regulators. Currently,

there are 6 drugs on the market targeting ER+ tumors. Most of these

drugs are recommended to be used in combination with aromatase

inhibitors, which are molecules that act directly on the estrogen

production (24). Furthermore, 5 drugs are currently available for

patients with human epidermal growth factor receptor 2 (HER2)

positive tumors, all of them targeting either the extracellular or

intracellular domain of this protein (24). Finally, 19 chemotherapy

compounds have been approved for treatment, either as

neoadjuvant or adjuvant drugs (i.e. before or after surgery

resection, respectively), or for metastatic breast cancer. Though

combinations of drugs are usually administered for an early-stage

breast cancer, it appears that patients with metastatic cancer are

usually administered the drugs one at a time, with 9 drugs most

commonly prescribed (24, 25). All therapies and their effects are

detailed in Table 1.

Bone metastasis can also be targeted using radiotherapy and

immunotherapy. The latter treatment targets immune checkpoints

such as programmed cell death protein-1 (PD-1), PD-ligand 1 (PD-

L1) and cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4).

Immunotherapy has been approved in many cancers, sometimes at

stage IV [such as metastatic bladder cancer (26)], and even as a pan-

cancer treatment for the anti-PD1 antibody Pembrolizumab (as

long as the cancer has microsatellite instability) (27). For more

details, the reader can refer to these reviews (27–29). However,

targeting bone metastases with immunotherapies has been

challenging and to this date no systematic review has clearly

highlighted the impact of immune checkpoint inhibitors. Indeed,

despite the high number of immune cells in the bone marrow, most

of them are still immature and cannot overcome cancer cell

proliferation (30). Furthermore, the presence of inhibitory

immune cells such as myeloid-derived suppressor cells severely

impairs the eradication of metastases (30).

Multiple side effects can be observed upon treatment with both

chemotherapy and immunotherapy. Regarding chemotherapy,

most drugs focus on cells with a short replication time by

targeting their DNA. Hence, a high number of normal cells with
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a high replication rate are also affected. Though the most common

side effects are hair loss, soreness and digestive issues,

chemotherapy can sometimes target very specific organs like the

liver, kidneys, nerves and lungs, causing more debilitating

symptoms such as urinary dysfunctions, pain, fatigue and

dizziness, or even heart damage (31). Moreover, the higher the

dose of chemotherapy, the higher the risk of side effects. For

immunotherapy, the side effects commonly observed in

chemotherapy (e.g. gastrointestinal diseases, mucositis or

myelosuppression) are not or rarely observed. Generally, in

around 10% of patients skin reactions and flu-like symptoms are

noticed (32). The main side effects leading to casualties observed are

colitis, pneumonitis, hepatitis and neurotoxic effects, however they

tend to appear at a lower rate than with other treatments (33). Thus,

having treatments that could target the microenvironment and

increase the sensitivity of cancer cells to chemotherapy could not

only impair cancer dissemination but also diminish the risk of

side effects.

As of today, there are only two kinds of drugs specifically

targeting bone metastases (i.e. Bisphosphates and Denosumab).

These drugs are administered in combination with classic anti-

cancer drugs. Bisphosphonates are molecules that inhibit the

metabolic pathway of mevalonate, resulting in osteoclast

apoptosis (34). The most effective and commonly used

Bisphosphonate is Zoledronic Acid. This drug binds to

hydroxyapatite and is released during bone digestion by

osteoclasts. Osteoclasts then absorb it through endocytosis, where

it inhibits the mevalonate pathway which is essential for post-

translational prenylation of GTP-binding proteins. On the other

hand, Denosumab is a monoclonal antibody that binds to RANK-L

and inhibits the recruitment of osteoclasts (3). Both

Bisphosphonates and Denosumab are palliative treatments that

reduce pain and improve the quality of life of patients. However,

their contribution to completely eradicate skeletal-related events

(SREs) is limited. Moreover, these drugs are associated with side

effects such as renal impairment and acute-phase reactions for

Zoledronic Acid, and hypocalcaemia and osteonecrosis of the jaw

for Denosumab (35).

Because anti-cancer treatments generally do not take into

account the role of the bone microenvironment, with the

exception of the partially effective Denosumab and Zoledronic

Acid, it is emerging the concept that the next generation of

therapies should combine traditional anti-cancer therapies with

novel molecules targeting the other cell populations involved in the

metastatic growth. In this scenario, the design of advanced in vitro

3D models recapitulating the metastatic bone microenvironment

could significantly improve the identification of novel targets and

the design of more effective combination therapies. The integration

of these models with traditional animal studies could significantly

increase the efficiency of the drug development pipeline and

effectively identify mechanisms of drug resistance. For example,

introducing 3D models as an effective high-throughput screening

assay would help to determine with more efficacy which drugs or

combinations have an impact on the disease progression. In
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TABLE 1 Classification of currently available drugs targeting different breast cancer subtypes.

Type Name of
the drug

Name of
molecule Target Effect Side effects Current use

Endocrine
therapy for
HR+ tumors

Novaldex
(pill)

Soltamox
(liquid)

Tamoxifen ER Selective ER modulator
Blood clots, stroke,
endometrial cancer

Most prescribed Early and
advanced stage 5-10 year long

treatment

Faslodex Fulverstrant ER
Prevent oestrogen from
biding to CCs -> ER
down-regulators

ERBB2- No previous endocrine
therapy Can be taken alone or

with Ibrance

Afinitor Everolimus FKBP12
mTOR inhibition ->

restore sensitivity to ER
treatments

Stomatitis, rash
Accepted by FDA with

exemestane (aromatase inhibitor)

Ibrance Palbociclib

CDK4/6 inhibitors Stop cell division

Lung, neutropenia
(low count of white
blood cells), blood

clots
Used in combination with

Faslodexinhibitor for advanced-
stage or metastatic ERBB2-

Kisqali ribociclib
cardiotoxic, liver,

lung issues,
neutropenia

Verzenio Abemaciclib
Blood clots &

inflammation in the
lungs

End of phase III for early high-
risk to decrease the risk of relapse

+ combined with endocrine
therapy

Therapy for
ERBB2+
(HER2+)
tumors

Herceptin Trastuzumab
Extracellular

domain of ERBB2
Slow/stop CC growth +
alert immune system

cardiotoxic & lung
issues

FDA approved for metastatic
cancer

Perjeta Pertuzumab Anti-ERBB2 Ab Inhibits tumor growth Cardiac dysfunction
Can be used in combination with

trastuzumab

Kadcyla
T-DM1 =
herceptin +
emtansine

chemo + ERBB2
target

action of emtansine
without the extremely
harmful side effects

cardiotoxic, lung and
liver issues

FDA approved for advanced or
metastatic

Nerlynx Neratinib
irreversible pan-
HER chemical

inhibitor
Inhibits tumor growth renal impairement

FDA approved with capecitabine
advanced or metastatic

Tykerb Lapatinib
small-molecule
tyrosine kinase

inhibitor

blocks ERBB2 inside the
cell

small cardiotoxic
issues

FDA approved with capecitabine
or aromatase inhibitor Femara for

advanced or metastatic

Chemotherapy

Adrucil 5-fluorouracil DNA
antimetabolite - kills
cancer cell during

division
Neutropenia

Used with other chemotherapies
Early or advanced

Abraxane
Albumin-bound

Taxane
Microtubules Prevent cell division

Neutropenia,
neuropathy

Used with other chemotherapies
Advanced

Adriamycin
& Doxil

Doxorubicin
Anthracycline

DNA
Block transcription +

ROS production
cardiotoxic &
leukemogenic

Early and advanced BC

Cerubidine
&

DaunoXome

Daunorubicin
Anthracycline

DNA
Block transcription +

ROS production
cardiotoxic &
leukemogenic

Early and advanced BC

Cytoxan Cyclophosphamide DNA Alkylating agent Neutropenia Advanced BC

Ellence
epirubicin

Anthracycline
DNA

Block transcription +
ROS production

cardiotoxic &
leukemogenic

Advanced or early BC

Gemzar Gemcitabine DNA antimetabolite Neuropenia, anemia
Metastatic Used with other

treatments

(Continued)
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addition, these models could be a useful tool to tailor the correct

drug concentration, also considering potential side effects on the

surrounding tissues (16). This approach would also allow to reduce

the number of animals tested for each experiment and to limit the

risk of testing molecules that were efficient in 2D but not in a 3D

organ-specific context.
3 Role of the microenvironment
in cancer cell proliferation and
drug resistance

Multiple cell types are implicated in the bone metastasis

process. Apart from osteoblasts and osteoclasts, additional

stromal, vascular, immune and stem/progenitor cells appear to be

essential for cancer cell homing, colonization, proliferation,

quiescence and drug resistance. Here, we will describe how the
Frontiers in Oncology 0570
bone microenvironment can influence cancer cell proliferation and

drug resistance by detailing the role of cancer–associated fibroblasts

(CAFs), macrophages, mesenchymal stromal cells, hematopoietic

stem cells (HSCs) and adipocytes. Furthermore, we will analyze the

contribution that the ECM and its remodeling have in boosting

the growth of bone metastases. A graphical abstract of the role of the

bone microenvironment in drug resistance is available in Figure 1.

A summary of the main mechanisms, pathways and potential

therapies in breast cancer bone metastases is compiled in Table 2.
3.1 Osteoblasts

Together with osteoclasts, osteoblasts are known to play a role

in the proliferation of bone metastasis since they are involved in the

vicious cycle. Osteoblasts tend to show decreased activity and send

signals for the recruitment of osteoclasts, leading to enhanced bone
TABLE 1 Continued

Type Name of
the drug

Name of
molecule Target Effect Side effects Current use

Halaven Eribulin microtubules Prevent cell division
Neutropenia,

neuropathy, anemia
Metastatic BC that stopped

responding to other treatments

Ixempra Ixabepilone Tubulin Prevent cell division Metastatic Alone or with Xeloda

Lynparza Olaparib
PARP enzyme

inhibitor
prevent PARP from

reparing DNA damages
BM failure, leukemia,
anemia, neutropenia

ERBB2-, BRCA1 or BRCA2+
Already treated with

chemotherapy molecules

Mexate,
Folex,

Rheumatrex

Methotrexate =
amethopterin

DNA antimetabolite
Advanced Used with other
chemotherapy molecules

Navelbine Vinorelbine microtubules
Vinca alkaloid

Neutropenia Advanced
blocks beta-tubulin

Novantrone
Mitoxantrone
Anthracycline

DNA
Block transcription +

ROS production
cardiotoxic &
leukemogenic

Advanced BC

Talzenna Talazoparib
Inhibitor of PARP,
PARP1 & PARP2
(that repair DNA)

prevent PARP from
reparing DNA damages

BM failure, leukemia,
anemia, netropenia,
thrombocytopenia

ERBB2-, BRCA1 or BRCA2+
metastatic

Taxol Paclitaxel Taxane antimitotic drug Prevent cell division Neutropenia Most widely used anticancer drug

Taxotere Docetaxel Taxane microtubules Prevent cell division
Neutropenia,
neuropathy

Advanced metastatic BC after
other treatments

Tecentriq Atezolizumab PD-L1 inhibitor

Allow T cells to kill the
cancer cells by blockig

the PD-1/PD-L1
interaction

Lung, liver, colon,
hormone glands,
cardiotoxic issues FDA approved for metastatic TN ,

PD-L1+ with Abraxane
Neutropenia,
neuropathy

Thioplex Thiotepa DNA Alkylating agent neutropenia Advanced BC with other chemo

Xeloda Capecitabine DNA
antimetabolite Converted

in cells in 5-FU
Metastatic BC that stopped

responding to other treatments

Other

Avastin Bevacizumab VEGF anti-angiogenic
cardiotoxic and

kidney neutropenia
FDA approved with Taxol

Paraplatin Carboplatin DNA
Platinum-based Damages

the genetic material
kidney damage

advanced BC given in
combination with chemotherapy
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loss (58). Osteoblasts can also contribute to the survival of cancer

cells in the bone, as regulation of calcium intake by cancer cells

cannot be done without the presence of osteogenic cells. Indeed,

cancer cells cannot efficiently absorb calcium from the

microenvironment and a direct cell-cell connection using

Connexin 43 is used to transfer calcium ions from osteoblasts to

cancer cells (59). In this context, gap junction inhibitors like MEFL

or CBX do present a positive outcome in inhibiting this interaction,

although as a side effect they are known to increase the vertebral

curvature. On the other hand, two already approved drugs (i.e.

Danusertib and Arsenic Trioxide) were shown to effectively block

this survival mechanism.
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Osteoblasts also have a role in breast cancer drug resistance. For

example, osteoblasts are known to produce high levels of interleukin

(IL)-6 (60), which correlates to Tamoxifen resistance. Inhibition of

IL-6Ra with the FDA-approved antibody Tocilizumab was able to

sensitize resistant ER+ breast cancer cells to Tamoxifen both in vitro

and in vivo (36). Moreover, direct (through gap junction and

calcium signaling) and indirect (through fibroblast growth factor

2 (FGF2) and platelet-derived growth factor-DD (PDGF-DD)

secretion) interactions between cancer cells and osteogenic

cells leads to a reduction in estrogen receptors. This process

translates into a decreased sensitivity of ER+ breast cancer cells to

endocrine therapy, which involves an enhancer of zeste homolog 2
B

C

A

FIGURE 1

Graphical abstract. (A) Principal cellular players of the bone microenvironment. (B) Main uses for 3D in vitro models. (C) Summary of the
predominant events leading to breast cancer drug resistance due to the microenvironment. Created with BioRender.com.
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fonc.2023.1135401
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lamouline et al. 10.3389/fonc.2023.1135401
(EZH2)-mediated reprogramming that also seems to induce

stemness in breast cancer bone metastasis (37). Osteoblast lineage

cells also tend to protect cancer cells against chemotherapy in the

bone through the overexpression of Jagged1, which interacts with

the Notch1 receptor on cancer cells and circumvents apoptosis by

affecting the p53-regulated apoptotic pathway. Injection of a

Jagged1 inhibitor (such as an anti-Jagged1 monoclonal antibody,

here 15D11) in mice improved the chemosensitivity of cancer cells,

making it a promising candidate for targeting the bone

microenvironment (38). Osteoblasts can also protect breast cancer

cells from chemotherapy by inducing a dormancy state, notably due
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to the secretion of cytokines such as tumor necrosis factor a
(TNFa) and monocyte chemoattractant protein-1 (MCP1). The

first one modulates the Fas-associated death domain protein

(FADD)/tumor necrosis factor receptor type 1-associated death

domain protein (TRADD) by biding to the TNF receptor 1

(TNFR1), while MCP1 binds to C-C chemokine receptor type 2

(CCR2) and induces the phosphatidylinositol 3-kinases/protein

kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR)

cascade (39).

Osteoclasts represent the counterpart of osteoblasts in the bone

remodeling process, since they play a very important role in the
TABLE 2 Biological mechanisms and pathways involved in metastatic breast cancer drug resistance.

Cell General mechanism Involved pathways (if known) Potential therapies Reference
number

Osteoblasts Decreased sensitivity to endocrine therapy
due to loss of ER expression

IL-6/STAT3
direct cell-cell contact: gap junctions and

Ca2+ signalling
FGF2 & PDGF-DD induces

EZH2-mediated reprogramming
impacting Wnt and Notch

TNFa/TNR1
MCP1/CCR2 (PI3K/Akt/mTor cascade)

Tocilizumab (anti-IL-R6 Ab)
Sunitinib (PDGFR inhibitor)
EPZ011989 (EZH2 inhibitor)

(36)

Induction of stemness (37)

Inhibition of apoptosis Jagged1/Notch1/p-53 15D11 (anti-Jagged1 Ab) (38)

Induction of dormancy TNFa/TNR1
MCP1/CCR2 (PI3K/Akt/mTor cascade)

anti-TNR1 or anti-CCR2
antibody

(39)

MAFs Supression of T cell function Prostaglandin E2, TGF-b, VEGF (22, 40)

Collapse of blood vessels -> decreased drug
delivery

Increased collagen and hyaluronan
production

Losartan (TSP-1 inhibitor)
Angiostin signalling blockade

(41)

Induction of stemness IL-6 See above (42, 43)

TAMs Decrease endocrine therapy sensitivity secretion of CCL2 activating the PI3K/Akt/
mTor

signalling pathway

(44)

Induction dormancy GJIC (45)

MDSCs Supression of T cell function Arginase expression See paper from Chesney et al (46)

Neutrophils Inhibition of apoptosis TNF-a/CXCR2
S100A8/9

TNF-a antibody
CXCR2 blockers

(47)

MSCs Supression of T cell proliferation Secretion of TGF-b, hepatocyte growth
factors, IDO, PGE2, nitric acid

suppression of Stat5 phosphorylation

antibodies against TGF-b or
hepatocyte growth factor

inhibitors of IDO, prostaglandin
or NOS

(48)

Induction of dormancy GJIC and transfer of miNRA targeting
CXCL12

target of miRNA
target of GJIC (ex: H89)

(49, 50)

Inhibition of apoptosis polyunsaturated fatty acid (PIFA) released
upon platinium-based treatment

blockade of PIFA-producing
enzymes

(51)

TGF-b (52)

Adipocytes metabolizes and deactivates chemotherapy
molecules

(53, 54)

Microvascular
endothelium

Inhibition of cytostatic effect Secretion of integrins (b1 and avb3)
Von Willebrand Factor

VCAM1

Antibodies against integrins
b1 and avb3

(55)

ECM Inhibition of apoptosis b1 and avb3 integrins
PI3K/Akt pathway

Antibodies against integrins
b1 and avb3

(56, 57)
Mechanisms and pathways are divided based on specific cell populations of the bone microenvironment.
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vicious cycle and thereby in the aggressiveness of the tumor (58).

However, their role in drug resistance has not yet been studied.
3.2 Metastasis-associated fibroblasts

Metastasis-associated fibroblasts (MAFs) (also called CAFs for

cancer-associated fibroblasts when talking about cancer in general)

also seem to have an important role on the metastatic proliferation

of breast cancer cells into bone. MAFs can derive from multiple cell

lines including mesenchymal stromal cells (MSCs) in the bone

marrow (61), adipocytes, pericytes and even endothelial cells (62).

Furthermore, inflammatory modulators such as interleukins, direct

contact with cancer cells and physical changes in the ECM

architecture contribute to the differentiation of MAFs (62). These

activated cells produce growth factors (e.g. hepatocyte growth factor

(HGF), transforming growth factor b (TGF-b), stromal derived

factor 1/C-X-C motif chemokine ligand 12 (SDF-1/CXCL12),

vascular endothelial growth factor (VEGF), insulin-like growth

factor 1 (IGF-1)), interleukins, matrix metalloproteinases (MMPs)

and exosomes which promote primary tumor and metastatic

growth (63).

The presence of MAFs in the tumor microenvironment has

been shown to cause chemoresistance through mechanisms that are

so far poorly understood. A study showed that a few key players

(e.g. retinoic acid receptor b (RARb), peroxisome proliferator-

activated receptor b and d (PPARb/d), vitamin D receptor

(VDR), glucocorticoid receptor (GR) and androgen receptor (AR)

in the context of skin cancer) seem to be involved in both cancer

aggressiveness and drug resistance. Moreover, targeting nuclear

receptors that modulate the expression of those proteins led to a

decreased drug resistance to cisplatin (64).

MAFs also tend to suppress the normal function of immune T

cells in the microenvironment through immunosuppressive factors

(e.g. prostaglandin E2, TGF-b, VEGF). Moreover, MAFs secrete

pro-inflammatory cytokines including IL-6 that help to recruit

tumor-associated macrophages (TAMs) and promote their

transition from M0 to immune-suppressive M2 (22, 40).

MAFs are also known for stimulating angiogenesis, mostly

through secretion of VEGF, platelet-derived growth factor C

(PDGF-C) and IL-6 (22, 65). At the same time, MAFs can induce

the collapse of existing blood vessels due to increased matrix stiffness,

leading to hypoxia and to the proliferation of more aggressive

metastatic clones. This effect can be reduced by a blood-pressure

medication, Losartan, that decreases both the amount of collagen and

hyaluronan causing vessel compression, and MAF activation (41).

Importantly, this lack of blood vessels also leads to a decrease in drug

delivery, enhancing the appearance of drug resistance (41, 66).

Importantly, multiple studies also place MAFs as important

protagonists in drug resistance, although not focused specifically on

breast cancer. These studies highlight the role of MAFs in the secretion

of IL-6 which enhances drug resistance by increasing the endothelial

to mesenchymal transition (Endo-MT) and the generation of cancer

stem cells (42, 43). Finally, upon chemotherapy administration it was

shown that normal stromal fibroblasts tend to switch from an aerobic

to glycolytic metabolism, correlating with a transformation of stromal
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fibroblasts into MAFs (67). Although not directly related to drug

resistance, this study highlights how conventional therapies can

alter the microenvironment and paradoxically enhance the

metastatic dissemination.

Even though no treatment options have been tested in the

specific context of breast cancer, a few therapeutic strategies have

been evaluated to specifically target these aberrant fibroblasts. For

example, in pancreatic adenocarcinoma, administering both Nab-

paclitaxel and Gemcitabine helped in reducing the amount of CAFs

in patients. In non-small-cell lung cancer, combining Paclitaxel

with a tyrosine kinase inhibitor (i.e. Nindetanib, targeting VEGF,

FGF and PDGF) impaired the interactions between cancer cells and

CAFs. Finally, targeting TGF-b with monoclonal antibodies like

Fresolimumab or Galunisertib seems to be a promising treatment

strategy in various cancers (68).
3.3 Immune cells

3.3.1 Macrophages
Macrophages can be polarized by cancer cells towards an M2,

anti-inflammatory phenotype. These M2 macrophages make up the

majority of the so-called tumor associated macrophages (TAMs).

These cells can constitute up to 30-50% of the tumor mass in

skeletal metastases and are associated with a poor prognosis as they

promote an immunosuppressive environment (69). This

polarization towards an M2 phenotype tends to be enhanced by a

positive feedback loop where TAMs secrete C-C motif chemokine

ligand 2 (CCL2) that activates the PI3K/Akt/mTOR signaling

pathway in cancer cell. This pathway tends to increase the

resistance to ER modulators. Resistant cells then secrete TNF-a
that activates TAMs and induces their M2 polarization (44).

TAMs seems to have a role in treatment resistance, as

macrophage inhibitors (e.g. colony stimulating factor 1 (CSF-1)

inhibitor) prior to chemotherapy have been shown to enhance the

response to treatment in mammary and cervical cancer (70, 71).

Similarly, treatment of mice with Cyclophosphamide (i.e.

chemotherapy with immune-suppressive properties) combined

with CSF-1 inhibitor reduced macrophage recruitment to the

tumor and reversed chemotherapy resistance (44).

Finally, although not many studies consider the specific role of

TAMs in the bone or bone marrowmicroenvironment, it seems that

TAMs in the bone marrow are able to induce breast cancer cell

dormancy by using GJIC, a mechanism used to evade

chemotherapy which only targets rapidly-proliferating cells (45).

3.3.2 Myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) are immature

myeloid cells that later differentiate into macrophages, dendritic

cells or granulocytes. However, in presence of cancer cells there can

be an accumulation of immunosuppressive MDSCs, leading to a

suppression of both innate and adaptive immune response (46). In

bone metastasis , MDSCs are shown to contribute to

immunotherapeutic resistance by inhibiting antitumor T cell

proliferation and cytotoxic activity. They also promote the

expansion of protumorigenic T regulatory cells, thus dampening
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the host immune response against the tumor, which in turns

promotes angiogenesis, tumor invasion and metastasis (46). The

many preclinical and clinical MDSC inhibitors are detailed

elsewhere (46).

One study highlighted the role of MDSCs in drug (i.e. 5-FU)

resistance in the case of hepatocellular cancer. This effect was

mediated by the secretion of IL-6 (72), which is also known to

increase drug resistance in metastatic breast cancer (36, 42, 43, 73).

Moreover, in multiple myeloma (i.e. a bone marrow cancer) it has

been shown that MDSCs had a direct influence on resistance to

Doxorubicin and Melphalan due to the release of soluble factors

(74). However, as these soluble factors have not been identified, it

would be interesting to determine if they would induce the same

effect on other cancer cell types.

3.3.3 Neutrophils
Neutrophils are cells that tend to be cytotoxic towards cancer

cells during the first stages of the metastatic process, but that effect

appears to be lost as tumor progresses. Indeed, neutrophils create an

immunosuppressive action at the late stages of the cancer (75).

Neutrophils are also known to help with the generation of the pre-

metastatic niche by enabling circulating tumor cell (CTC) lodging

at the metastatic sites. Mature neutrophils are shown to accumulate

in the metastatic site even before the arrival of cancer cells, thereby

helping to create the pre-metastatic niche by inducing an in-situ

vascular remodeling and stimulating metastasis initiation (76).

As described with MAFs, neutrophils can also have a pro-

tumorigenic effect post-chemotherapy treatment. Indeed, release of

TNF-a by bone marrow derived cells in response to chemotherapy

treatment has been observed, which leads to the activation of

Nuclear factor kappa B (NFϰB) and secretion of CXCL1/2 by

cancer cells. These signals attract neutrophils to the tumor site

where they produce S100A8/9 enhancing cancer cell survival. The

hypothesis of anti TNF-a antibodies or CXCR2 blockers as a

treatment option is currently being investigated (47).

3.3.4 T-cells
T cells are a group of immune cells critical to the adaptive

response to pathogens and aberrant cell proliferation. They are

divided in two main categories, CD4+ (or Th, for T helper cells)

which modulate the activity of other immune cells, and CD8+ (or

CTLs, for cytotoxic T lymphocytes) which can induce cell death

(77). In cancer, immunosuppressive mechanisms are put in place,

both by cancer cells and the tumor microenvironment to hinder the

effectiveness of T cells (78). It has been shown that the presence of T

cells in the tumor site increases the chance of immunotherapy

response (79). However, a subcategory of T cells called regulatory T

cells (Tregs), known to suppress the immune response (80), seems

to have an impact on cancer cell proliferation. Indeed, tumor

growth is promoted by the infiltration of leukocytes towards

the stromal compartment of the bone marrow. This process

seems to be partially mediated by the recruitment of Tregs (81).

One of the treatments currently in place to reduce T cell

dysfunction and exhaustion, two mechanisms that contribute to

the immunosuppressive environment of the tumor, is PD-1/PD-L1
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blockade. Indeed, cancer cells overexpress PD-L1, leading to an

imbalance of the ratio of PD-1high CTLs and PD-1low CTLs, with a

higher number of PD-1high CTLs in cancer patients compared to

healthy ones that causes dysregulation and exhaustion of CTLs.

However, this blockade might stimulate the expression of PD-1 in

Tregs, which causes further immune resistance (79).

In prostate cancer, a study showed that the presence of CD4+ T

cells in the tumor site promotes chemotherapy resistance

(specifically to Enzalutamide and Doxorubicin) through the C-C

motif chemokine ligand 5 (CCL5) signaling pathway (82), known to

activate the Signal transducer and activator of transcription 3

(STAT3). This pathway could also be involved in breast cancer

chemoresistance (83).
3.4 Mesenchymal stomal cells

Mesenchymal stromal cells (MSCs) are known to have an

important role in bone metastasis development. By being the

progenitors for osteoblasts, MSCs play a critical role in osteoblast

proliferation, bus also in osteoclastogenesis, angiogenesis and

immunosuppression (84–86). MSCs are also essential for HSC

maintenance and thus contribute to the survival of the bone

marrow niche. When it comes to bone metastases, multiple

studies point towards a pro-tumorigenic role of MSCs, mainly via

activation of MMPs which promote angiogenesis, stimulate

epithelial-mesenchymal transition (EMT) and suppress the

immune response, notably T-cell proliferation through secreted

molecules or free radicals (48, 87). Moreover, MSCs may play a role

in preserving the self-renewal ability of cancer cells as they do with

HSCs, thus favoring the establishment of a tumor niche with long-

term proliferative potential (20). This ability is believed to be

effective on a small subset of breast cancer cells that show high

expression of the pluripotency marker OCT4. This subset has been

shown to create gap junctional intercellular communications

(GJICs) with bone marrow stromal cells, a process that allows the

transfer of quiescence-promoting miRNA, thus inducing dormancy

and subsequently chemotherapy evasion and cancer relapse even

after high doses of chemotherapy (88). This effect seems to be due to

miRNA targeting CXCL12 in cancer cells, leading to decreased

levels of CXCL12 and lower proliferation. These miRNAs could be a

therapeutic target (49). In order to more accurately define and

target these GJICs, a study showed that these connections were

mediated by the protein kinase A (PKA) enzyme, whose activation

could be induced or inhibited (i.e. using LY294002/LY303511 and

H89, respectively) (50).

DTCs also use chemokine gradients in the bone marrow and

adhesion molecules expressed by the HSC niche (e.g. CXCL12) that

are believed to be crucial for HSC homing and survival (89). It is

believed that cancer cells can acquire chemotherapy resistance by

using an HSC-like state of dormancy to avoid drugs targeting

rapidly-proliferating cells. Both cancer cells and HSCs use similar

pathways to induce dormancy, such as the CXCL12/CXCR4 axis.

The implication of CXCL12 in dormancy is controversial: on one

hand, it is known to promote HSC self-renewal and pool
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maintenance, either by supporting their self-division or potentially

by inhibiting their cycling status (90). On the other hand, CXCL12

is mostly known to activate key survival signaling pathways upon

biding to CXCR4, such as the PI3K/Akt, the mitogen-activated

protein/extracellular-signal-regulated kinases (MAPK/ERK) and

the Janus kinase/signal transducer and activator of transcription

(JAK/STAT). Contradicting studies have shown either an

overexpression and a dowregulation or CXCR4 in breast cancer

bone metastasis, both pointing to a proliferative role of the

CXCL12/CXCR4 axis (91–93). The mechanism leading to an

avoidance of cancer cells rapid proliferation by CXCL12 and, thus

chemotherapy treatment (94) is, so far, poorly understood. It has

also been found that this dormancy is related to the Notch2

pathway, as blocking this signal resulted in a mobilization of

previously dormant breast cancer cells (95).

The role of MSCs in breast cancer drug resistance can be

induced by chemotherapy itself. For example, platinum-based

chemotherapy, commonly used in triple negative breast cancer

(TNBC) (96), can induce resistance mechanisms due to the

reaction of MSCs to platinum. Indeed, upon platinum stimulation

MSCs can release poly-unsaturated fatty acids, which induce broad-

spectrum resistance to chemotherapeutic agents (51). In other

cancers, such as leukemia, MSCs can protect cancer cells from

further chemotherapy-induced apoptosis through the activation of

the TGF-b pathway (52).
3.5 Adipocytes

Although previously underestimated, increasing interest is

growing around the contribution of the adipogenic niche in bone

metastasis. Indeed, elderly patients are characterized by an increase

of bone marrow adipogenic niche when aging (97). Furthermore,

direct cellular interactions occur between cancer cells and

adipocytes, for instance through adipose-derived leptin and IL-1b
(65). More importantly, bone marrow adipocytes alter the

metabolism of cancer cells, stimulate cell adhesion, colonization

and proliferation, and promote resistance to chemotherapy through

various adipokines (98). For example, it has been shown that

metastatic breast cancer cells tend to migrate more towards a

medium enriched with leptin, a protein released by adipocytes

(99). Moreover, lipids arising from adipocytes have been

demonstrated to increase tumor growth and invasiveness by

increasing the expression of fatty acid binding protein 4 (FABP4,

i.e. fatty acid chaperone that is involved in glucose and lipid

metabolism), heme oxygenase 1 (HMOX) and IL-1b (100). It has

also been shown that cancer cells can hijack adipocytes and

transform them into cancer-associated adipocytes (CAAs), that

overexpress IL-6 and other pro-tumor cytokines (101). Regarding

anti-cancer treatments, a major concern around adipocytes is that

the adipose tissue is known for metabolizing and thus deactivating

chemotherapy drugs (53). Co-culture of adipocytes and cancer cells

in presence of Doxorubicin enhances the capacity of cancer cells to

store the drug in vesicles instead of in the nucleus, which further

increased the resistance of cancer cells (54). Moreover, in specific
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cases of ovarian cancer metastases, adipocytes were reprogrammed

towards a more catabolic state and secreted free fatty acids that were

used by cancer cell to generate ATP, hence conferring

chemoresistance (102). Currently, it is still unknown if these

mechanisms also happen in bone metastases from breast cancer.
3.6 Microvascular endothelium

DTCs mostly reside in the perivascular niche, which is a region

in close proximity to blood vessels. A specificity of the bone marrow

is indeed the capacity of its blood vessels to express adhesive

molecules (e.g. P-selectin, E-selectin, intracellular adhesion

molecule 1 and vascular cell adhesion molecule 1) without the

requirement of stimulation by inflammatory cytokines, contrary to

other tissues. These molecules interact with cancer cells and facilitate

their adhesion (103). Within this niche, the distance between a

cancer cell and a blood vessel is almost 30 times smaller than the

average distance between an osteoblast and a blood vessel. Following

chemotherapy treatment, the distance between cancer cells and

blood vessels is even reduced suggesting that cells located closer to

blood vessels are resistant to the treatment. This resistance seems to

be directly linked with the expression of integrin b1 and integrin avb3
on cancer cells, since inhibiting these integrins with specific

antibodies induced an increased sensitivity to Doxorubicin (55). In

this scenario, it seems that integrin avb3 protects DTCs from

chemotherapy through signaling triggered by endothelial Von

Willebrand Factor (VWF). In addition, DTC chemoresistance is

driven by vascular cell adhesion molecule 1 (VCAM1). This

endothelial surface molecule is an integrin a4b1 ligand along with

other endothelial-derived integrin a4b1 ligands. Combined

treatment with antibodies targeting both integrins b1 and avb3
leads to a higher percentage of DTC cells sensitized to

Doxorubicin both in vitro and in mice (55).

In lymphomas, which frequently metastasize to the bone

marrow, a vicious cycle between B cells and endothelial cells

occurs. FGF-4 is secreted by lymphoma cells, leading to an

activation of fibroblast growth factor receptor FGFR-1 on

endothelial cells and to an upregulation of Notch ligand Jagged1.

As a consequence, lymphoma cells increase their aggressiveness,

invasiveness and chemoresistance (104). It is important to note that

breast cancer cells also use the Jagged1/Notch pathway to promote

bone metastases (105), thus a focus on FGFR-1 expression in breast

cancer bone metastases could unveil new answers in drug

resistance mechanisms.
3.7 Tissue non-specific chemotherapy-
induced resistance

Chemotherapy itself can act as a metastasis-inducer. For

example, a chemotherapy treatment on the initial primary breast

tumor can select chemoresistant clones that could form metastases,

leading to secondary tumors already resistant to the first line of

chemotherapy (106). Moreover, a few in vitro studies demonstrated
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that preoperative/neoadjuvant as well as post-operative/adjuvant

chemotherapy can induce metastases. This phenomenon could be

due to the induction of tissue damage that the body repairs through

the secretion of cytokines that also promote the generation of

resistant clones (107). For example, Paclitaxel activates the toll-

like receptor 4 (TLR4), which is present on macrophages to

recognize polysaccharides and it is also expressed by breast cancer

cells. This activation tends to exacerbate a pro-inflammatory

microenvironment, leading to angiogenesis and cancer cell

invasion. Paclitaxel can also promote an EMT-like phenotype in

cancer cells (i.e. decreased E-cadherin expression and increased

formation of invadopodia), thus enhancing the likelihood of

metastases. Chemotherapy can also increase the risk of CTCs

invading secondary tissues by inducing the release of platelet-

derived microvesicles that bind to the CTC surface and facilitate

their attachment to the endothelium. These “coated” CTCs are also

more protected against immunological destruction by natural killer

(NK) cells (107).
3.8 ECM

Cancer cells expressing avb3 integrin, which is often

upregulated in breast cancer, bind to the ECM components

fibronectin and osteopontin, which along with vitronectin are

highly expressed in bone marrow. In epithelial cancers it has been

shown that adhesion through avb3 integrins leads to chemotherapy

resistance. A similar effect has been reported with b1 integrins, most

likely due to a protective effect of the nuclear response to DNA-

targeting agents (56). Moreover, expression of b1 integrins also

showed a drug resistance effect on Paclitaxel and Vincristine, two

molecules targeting the microtubules. The signaling pathways

activated through b1 integrin ligation induce an inhibition of

cytochrome c release and activation of the PI3K/Akt pathway,

reducing the expected apoptosis effect of the chemotherapeutic

agents (57). Even though the specific role of the ECM in

resistance is still yet to be fully understood, it seems that targeting

elements of the cell-matrix interaction (e.g. integrins) through novel

mechanobiological therapies could help to increase the sensitivity of

cancer cells to chemotherapy treatment.
4 In vitro models of bone metastasis
to analyze drug resistance

It is now becoming evident that the microenvironment plays a

non-negligible role in the homing, survival, proliferation and drug

resistance of cancer cells. In the bone, multiple cell types induce

various pathways that help the cells to avoid or resist chemotherapy

treatment. For instance, osteoblasts, MSCs or even ECM proteins can

directly influence the apoptosis pathway in cancer cells, while TAMs,

MSCs or HSCs allow cancer cells to adopt a dormancy behavior.

Furthermore, MAFs, MDSCs or MSCs can decrease the efficacy of

immunotherapy by suppressing T cell function. Other cell populations

can have a more direct impact on drug distribution: adipocytes
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metabolize and eliminate chemotherapy molecules from the tissue,

while MAFs induce the collapse of blood vessels, hence decreasing the

availability of the drug. Overall, it is clear that drug screening without

the presence of a microenvironment significantly decreases the

likelihood of recapitulating the actual action of the drug in humans.

However, so far drug screening assays have traditionally

been performed on simplified 2D cultures of cancer cell lines.

Animal and clinical studies have highlighted that the local

microenvironment is a key mediator of the drug resistance

observed in patients. Hence, the next generation of pre-clinical

models should focus on the successful integration of organ-specific,

physiological-like microenvironments to overcome limitations of

conventional systems (108–111). Indeed, in vitromodels represent a

useful tool to identify earlier potential drug resistance mechanisms

during the drug development pipeline or clarify basic mechanisms

that cannot be quickly identified with animal studies.

In this scenario, introducing a 3D microenvironment without a

complex cellular composition has already proved to be effective in

modeling biological processes or drug response. Kim et al. proposed

a microfluidic device where MCF-7 breast cancer cells were able to

aggregate into spheroids and showed that the drug sensitivity of the

cancer cells in the spheroids was decreased compared to 2D

monolayers (112). Increasing the level of complexity, some

models included a very basic 3D microenvironment. For instance,

co-cultures of cancer-associated fibroblasts with breast cancer cells

showed higher drug resistance compared to a 3D monoculture of

cancer cells (113). The authors hypothesize that this drug resistance

might be due to both reduced drug penetration in spheroids

(compared to a monolayer) and to intercellular contacts

activating cell survival pathways such as PI3K/Akt, NF-kB and

STAT3. However, the specific pathways involved were not

investigated. These results confirm that 3D models populated

with a simplified microenvironment can help to decipher

differences in drug sensitivities due the presence of both the 3D

matrix (i.e. the interactions with the ECM and the decreased drug

diffusion compared to 2D), as well as the surrounding cells.

A few biofabricated 3D models specifically focused on

studying the drug resistance of breast cancer due to the bone

microenvironment compared to a simplified control (often 2D).

Zhu et al. created a bone model using a biomimetic bone matrix

seeded with human bone marrow MSCs and MDA-MB-231 or

MCF-7 breast cancer cell lines (114). The study highlighted a higher

drug resistance when the 3D microenvironment was subject to an

anti-cancer treatment with 5-FU compared to 2D culture. However,

the authors did not propose an analysis of the pathways involved in

the observed resistance, even though they hypothesize that reduced

drug diffusion and altered transporter expression due to cell-matrix

interactions could play a role. Similarly, Kar and co-authors created

a co-culture model on a 3D polycaprolactone/hydroxyapatite PCL/

HAP clay scaffold with MSCs and either MDA-MB-231 or MCF7

breast cancer cell lines (115). The authors compared the sensitivity

to Paclitaxel of these cell lines in their 3D co-culture and 2D

monoculture showing a higher resistance in 3D. This resistance

was correlated with an up-regulation of STAT3, leading to the

overexpression of B-cell lymphoma 2 [Bcl-2, known to have an

increased expression in chemoresistant cells (116)] or multidrug
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resistant protein 1 (MRP1) and ATP Binding Cassette Subfamily G

Member 2 (ABCG2) [known to be upregulated in multiresistant

cells, meaning cancer cells resistant to multiple chemotherapeutic

drugs with different structures and mechanisms of action (117,

118)]. Likewise, Langer and co-authors assessed the effect of the

microenvironment on drug sensitivity (119). The proposed model

included fibroblasts, endothelial cells, adipocytes and bone marrow

MSCs, which have been shown to have a detrimental effect on drug

treatment. Using MCF-7 breast cancer cell line, the authors showed

that the microenvironment not only contributed to the

aggressiveness of the metastatic process, but also to drug

resistance. Indeed, the concentrations of Doxorubicin and

Paclitaxel were respectively 20 times and 5,000 times higher in

the 3D model than in the 2D control to achieve the same level of

cancer cell mortality. The study also showed that part of this effect

was due to a paracrine influence of fibroblasts by using a fibroblast-

conditioned medium in a 3D cancer cell monoculture, where the

authors still observed a lack of therapeutic response. The authors

concluded that secreted factors from fibroblasts were able to induce

resistance to mTOR inhibition. The device proposed in this study is

a great example of the usefulness of 3D models, both for the field of

drug screening but also for deciphering the molecular pathways

involved in drug resistance. Finally, another bone model composed

by bone marrow MSCs and endothelial cells on a decellularized

bone matrix (120) showed a higher drug resistance of breast cancer

cells when the whole system was subject to an interstitial flow

compared to static conditions. This phenomenon is explained by

the better maturation of the vasculature (compared to the static

condition), leading to less proliferative cancer cells. This particular

feature makes this model a great tool to study dormancy in the bone

niche. This finding highlights the importance of recapitulating both

the cellular complexity and the biophysical stimuli characterizing

the bone microenvironment in order to fully reproduce in vivo

mechanisms. These models are summarized in Figure 2.

To date, very few models are focusing on the effect of the bone

microenvironment on drug resistance, especially considering breast

cancer. Even though the field of drug testing in 3D models is still at

its infancy, many researchers are starting to highlight the benefits of

including complexity in the drug screening process. Since the

immune system plays a significant role in terms of metastatic

proliferation and drug resistance, a few models included immune

cells when studying breast cancer bone metastases. However, these

models are not yet considering drug resistance mechanisms. For

example, Crippa et al. designed a breast cancer bone metastasis

model embedding endothelial cells, bone marrow MSCs,

osteoblasts, fibroblasts and neutrophils in two separate chambers

connected by perfusable vessels (122). This study showed a higher

recruitment of neutrophils when breast cancer cells were present in

the device, as well as a higher cancer cell mortality due to neutrophil

attack. However, the authors did not perform any drug treatment

through the model. It would have been interesting to use that model

to test the influence of the immune system on drug sensitivity,

especially with neutrophils which are known to have both an anti-

and pro-tumorigenic effect. In another study, the immune system

was introduced as bone-resident macrophages (123), which

were co-cultured with breast cancer cells, endothelial cells,
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osteoblasts and osteoclasts. The model was then challenged with

Doxorubicin or Rapamycin. The authors showed that the bone

microenvironment protected cancer cells from both treatments,

hence more closely mimicking what is observed in vivo compared to

conventional 2D in vitro cultures, both regarding the arrangement

of the cancer cells (e.g. cluster formation in vivo and in the 3D

model) and their localization (e.g. close proximity to endothelial

cells and osteoclasts). Focusing on the design of a bone marrow

model, Glaser and co-authors included bone marrow MSCs,

osteoblasts, hematopoietic stem/progenitor cells (HSPCs) as

well as endothelial cells in a fibrin gel (121). In addition to

a different proliferative and invasive behavior of breast cancer

cells in their 3D coculture model compared to a fibrin-only

control, the authors also observed an altered reaction of the

microenvironment to Doxorubicin (i.e. mimicking the

neutropenic effect of chemotherapy and increasing neutrophil

production, both usually observed in vivo upon chemotherapy

treatment). This effect was not observed in 2D culture.

Unfortunately, the authors did not study the effect of

chemotherapy on breast cancer cells in their model. 3D models

can also be a great tool to study the molecular pathways leading to

drug resistance. For example, understanding how dormancy is

induced in breast cancer cells would be of great help to explore

therapeutic solutions to avoid breast cancer relapse and late

recurrence. With that goal in mind, Pradhan et al. designed a 3D

in vitro model composed of breast cancer cells, human MSCs and

fetal osteoblasts, and demonstrated that cytokines secreted by

osteoblasts (e.g. TNFa, MCP1) were able to induce dormancy in

the cancer cells (39). This mechanism could be reversed by blocking

the receptors of these cytokines with monoclonal antibodies.

Other models have been built to replicate the bone or the bone

marrow without a specific focus on breast cancer. For example, Ma

et al. created a bone model including endothelial cells, MSCs and

osteoblasts embedded in a hydrogel to test the resistance of

leukemia cells. The study showed that drug resistance of cancer

cells was higher in presence of the bone niche (124). A similar

model embedding endothelial cells, MSCs and osteoblasts also

focused on leukemia analyzing the differences in drug sensitivity

in 2D, 3D static and 3D dynamic conditions (125). The authors

demonstrated the protective role of the microenvironment by

comparing cancer cell response to a chemotherapeutic agent

(i.e. the antimetabolite chemotherapeutic drug Ara-C) and

showed increased drug resistance due to the presence of the

cells and ECM. The authors hypothesize that this observed

chemoresistance can mostly be attributed to CXCL12/CXCR4

signaling, but also to direct cell-cell interactions involving

vascular cell adhesion molecule 1/very late antigen-4 (VCAM-1/

VLA-4). These two pathways lead to the activation of the

prosurvival signaling NF-kB. Finally, several 3D models of bone

or bone marrow have been created to test the effect of a surrounding

niche on the drug sensitivity of multiple myeloma (126, 127),

prostate cancer (128), osteosarcoma (129) and Ewing sarcoma

(130, 131). All these models highlighted the requirement of a

higher dose of anti-cancer drug to reach the mortality achieved in

2D controls. This effect is mainly due to the microenvironment,

either physically preventing the drug to reach cancer cells or by
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diminishing drug efficacy. These models could be easily adapted to

study breast cancer metastases.

Taken together, these examples clearly show that a 2D assay of

chemotherapy alone cannot accurately predict the efficacy of the

drug in in vivo setting, leading to potential drug failure in clinical

trial or increased side effects. 3D models with complex

microenvironments thus seem to be a better alternative in order

to properly replicate the mechanisms involved in cancer

proliferation and drug resistance, and would benefit from being

developed further. Indeed, multiple cell types such as immune cells,

that are now known to have an effect on cancer aggressiveness and

drug resistance, have never been tested in a drug screening scenario

in a 3D setting. It is likely that introducing them within the

biofabricated microenvironment could yield results regarding

drug effectiveness better mimicking what is observed in patients.

However, it is important to remember that current in vitro 3D

models do not have the ability to fully replace rodent models, as

their complexity is highly limited by the amount of different cell

types able to co-exist in the same matrix, as well as by their

simplified architecture that can only partially mimic a real tissue

unit. Moreover, off target cytotoxicity cannot be easily tested with

3D models as it would require the development of bodies-on-a-chip

[the reader can refer to these reviews for more information about

these systems (132, 133)] that are extremely challenging to develop
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and run. At the same time, even though this and other reviews

describe in length the advantages of testing drug compounds in 3D

systems, it is worth noting that these models are still thought to be

complicated and costly, making them less attractive than 2D

monocultures in a high-throughput context (134). However, as

technological advances progress and commercially available tests

are developed, their cost is expected to become more competitive.

Cost reduction and superior performances are expected to

outperform conventional 2D screening technologies, especially in

cancer research (135, 136).
5 Conclusion and perspectives

As highlighted in this review, the microenvironment is a key

driver for the establishment of drug resistance in cancer metastases.

Unfortunately, the complexity of this microenvironment implies

that the combined action of many cell types on drug sensitivity

cannot be studied using conventional assays. Advanced in vitro 3D

models could be a great tool to better understand the mechanisms

and pathways involved in the onset of drug resistance and to

develop more effective therapeutic options.

Considering the bone microenvironment, multiple cell types

influence the behavior of cancer cells when subject to a drug
B

C

D

A

FIGURE 2

3D models focusing on drug sensitivity in breast cancer bone metastasis. (A) Model by Zhu et al. (114). Breast cancer cells and bone marrow MSCs
were seeded on a bone matrix and showed drug resistance in presence of the microenvironment compared to the 2D culture. (B) Model by
Langer et al. (119). Breast cancer cells were seeded with fibroblasts, endothelial cells, adipocytes and bone marrow MSCs. Increased cancer cell
aggressiveness and drug resistance were observed compared to the 2D control. (C) Model by Glaser et al. (121). Breast cancer cells were seeded
with bone marrow MSCs, osteoblasts, HSCs and endothelial cells. Differences in cell behavior were observed when breast cancer cells were
co-cultured with bone and stromal cells compared to fibrin only hydrogels. (D) Model by Marturano-Kruik et al., (120). Cancer cells showed drug
resistance when exposed to interstitial flow.
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treatment. By protecting cancer cells from apoptosis, guiding

them towards dormancy, or even metabolizing the drug

themselves, cells from the bone microenvironment put in place

a plethora of different mechanisms to help cancer cells to survive

chemo-, immune-, radio- or endocrine therapy. Combined with

the very high failure rate of anti-cancer drugs during clinical

trials, it is becoming clear that the current gold-standards of

preclinical testing (i.e. 2D cultures and animal models) are

lacking critical information to accurately predict how the drug

will behave in the patient. The emergence of more complex 3D

models which more accurately mimic cell-ECM and cell-cell

interactions thus seems to be a promising alternative (10).

However, to this date most bone or bone marrow models are

still focusing on the biofabrication of the scaffold and the

microenvironment and very few have tried to add cancer cells

to their model (137). Noteworthy, only a small fraction of them is

focusing on drug resistance. These models have demonstrated

that adding a chemotherapy treatment against cancer cells clearly

show the establishment of drug resistance induced by the

microenvironment (114, 115, 119, 120). This effect is not

observed in 2D or monoculture assays.

Regarding breast cancer metastases to bone, it would be

extremely helpful to create a comprehensive summary of which

cells in the bone microenvironment have an influence on cancer cell

proliferation and drug sensitivity. Compiling this summary would

require the setup of large parametric studies combining statistical

approaches of design of experiment with artificial intelligence-

driven data analysis. Having such information would allow to

create physiological-like in vitro 3D bone models that have the

best chance of mimicking accurate cell-cell interactions and identify

molecular pathways involved in drug resistance, ultimately helping

life-changing treatments to arrive quicker on the market. In

particular, these advanced models could help to observe how the

bone microenvironment is gradually skewed by cancer cells to

shield them from the effect of a given drug.

These models could also be used to test already approved drugs,

either for a different bone pathology or as a combination to tackle

breast cancer drug resistance. For instance, second line treatments

are administered when the first line has failed causing the tumor to

start its growth again due to the presence of cells fully resistant to

the first treatment (106). With this in mind, administering different

chemotherapies as a sequence or a combo before the tumor has time

to start growing back could be the future to prevent drug resistance.

Studying the onset of unknown drug resistance by testing different

treatments in a row could also be a useful technique to find ways to

counteract it. Human in vitro 3D bone models reproducing the

metastatic microenvironment would be an effective tool to perform

these studies, potentially employing patient-derived cells in the

context of personalized medicine. These models could be easily

employed for large-scale drug screenings that cannot be easily

performed with in vivo models like rodents due to higher costs,

raising ethical issues and longer experimental times. Within the

drug-discovery pipeline, using 3D in vitro bone models as a tool for

accurate large-scale drug screening before testing them in animals

could help identifying which drugs are expected to yield better
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results, thus leading to a reduction of animals needed in agreement

with the 3Rs principle [replace, reduce, refine (138)]. We thus

envision that the integration of the 3D human bone

microenvironment with high-throughput drug screening methods

would allow for a more efficient pre-clinical testing and improve the

success rate of clinical trials.

It is worth mentioning that, while 2D models can only be

ameliorated by adding additional cell types to the culture, 3D

models present a greater ability to get improved in order to more

closely resemble the organ they are mimicking. For example, while

cellular complexity seems to be essential to accurately represent

mechanisms happening between the cells of interest (e.g. cancer

cells) and their microenvironment, there can be many other ways to

improve the accuracy of the model. Incorporating a scaffold,

inorganic components present in the tissue, flow or even

mechanical or electrical simulation will make the model more

relevant. This additional level of complexity cannot be included in

conventional 2D assays. Regarding the bone, a tissue that is highly

vascularized and experiences constant compression forces,

introducing flow in a microfluidic device as well as mechanical

stimulation would be a great way to better mimic physiological

conditions. Indeed, the presence of a flow influences the behavior

of bone cells, notably by inducing the release of osteogenic factors

which influence the bone remodeling process (i.e. matrix

mineralization and collagen deposition, as well as osteoblast

proliferation) (139). A similar observation can be made when

adding a scaffold whose geometry closely mimics the one found in

human tissue units. For instance, the pattern of the scaffold can

influence the distribution of shear stress forces as well as bone cell

behavior (140). The rest of the microenvironment can also benefit

from being cultured in 3D compared to 2Dmonolayers. For example,

bone marrow adipocytes tend to adopt a more in vivo like

morphology and biochemical behavior in 3D compared to a 2D

control. Indeed, cells in a monolayer tend to be forced into a

restrictive demeanor with a forced polarity due to the presence of

altered focal adhesions. In addition, cells grown on plastic surfaces are

subject to an increased stiffness that usually leads to an improper gene

expression (141, 142), while cells cultivated on a 3D scaffold show

higher survival, differentiation as well as drug sensitivity (141).

Concluding, the field of pre-clinical assays is starting to shift

towards more accurate in vitro 3D models to predict the efficiency

of a drug. Human 3D models of the bone microenvironment have

the potential to help understanding in more depth the biological

mechanisms underlying drug resistance due to the possibility to

selectively introduce specific components (e.g. cells, matrix

proteins, growth factors) in the biofabricated model. By balancing

complexity and throughput, these systems could be designed to

perform large experimental campaigns of drug screening. On a

longer time scale, introducing patient-derived cells from biopsies of

the metastatic bone tissue would allow to create personalized

treatments based on the genetic background of the tumor and on

the response of the microenvironment. Finally, designing a tunable

microenvironment to fit the specificities of the patient (e.g.

introducing pre-existing comorbidities) could further improve the

design of patient-specific treatments.
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Heterogeneity describes the differences among cancer cells within and between

tumors. It refers to cancer cells describing variations in morphology,

transcriptional profiles, metabolism, and metastatic potential. More recently,

the field has included the characterization of the tumor immune

microenvironment and the depiction of the dynamics underlying the cellular

interactions promoting the tumor ecosystem evolution. Heterogeneity has been

found in most tumors representing one of the most challenging behaviors in

cancer ecosystems. As one of the critical factors impairing the long-term efficacy

of solid tumor therapy, heterogeneity leads to tumor resistance, more aggressive

metastasizing, and recurrence. We review the role of the main models and the

emerging single-cell and spatial genomic technologies in our understanding of

tumor heterogeneity, its contribution to lethal cancer outcomes, and the

physiological challenges to consider in designing cancer therapies. We

highlight how tumor cells dynamically evolve because of the interactions

within the tumor immune microenvironment and how to leverage this to

unleash immune recognition through immunotherapy. A multidisciplinary

approach grounded in novel bioinformatic and computational tools will allow

reaching the integrated, multilayered knowledge of tumor heterogeneity

required to implement personalized, more efficient therapies urgently required

for cancer patients.

KEYWORDS

tumor microenvironment (TME), tumor heterogeneity, tumor immune microenvironment,
heterogeneity models, human in vitro models
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1 Tumor heterogeneity: a
multifaceted phenomenon

The NCI Dictionary of Cancer describes cancer heterogeneity as

“the differences between tumors of the same type in different

patients, the differences between cancer cells within a single

tumor, or the differences between a primary (original) tumor and

a secondary tumor” ((NCI), n.d.). Tumor heterogeneity first

originates from the clonal expansion of individually mutated cells

that, interacting with the evolution of the tumor microenvironment,

provide the genetic and epigenetic material upon which Darwinian

and non-Darwinian evolutionary trajectories drive cancer evolution

(1). The cancer phenotypic properties are modulated at the

epigenetic, transcriptional, protein, and environmental levels,

where different cell types contribute to the heterogeneity of the

cancer tissue in both time (as the tumor evolves) and space, where

the evolving composition of the tumor microenvironment—that

includes dynamically interacting cancer, immune, or stromal cells—

originates the ability of the cancer tissue to respond to

environmental cues and access nutrients, growth factors, and

oxygen. In turn, this molecular and cellular heterogeneity

translates to intra- and interpatient spatiotemporal variability in

the global properties of the tumor, deeply affecting drug response

and disease outcome (2).

Intertumoral heterogeneity describes the tumor-by-tumor

differences among different patients and is dependent on

environmental factors impacting patients’ phenotypes.

On the other hand, intratumor heterogeneity (ITH) is the

cellular diversity within the same tumor or between primary and

metastatic lesions. It includes copy number variations (3),

epigenetic alterations, coding and non-coding somatic alterations,

and transcriptome, proteome, and metabolome differences

(4) (Figure 1).

In tumor sites, the accumulation of genetic and epigenetic

alterations and chromosomal aberrations is strongly accelerated

for various reasons. It can be fostered by: i) the expression of

oncogenes or the loss of tumor suppressor genes that compromise

the DNA repair mechanisms or the spindle assembly checkpoint,

causing genomic instability; ii) exposure to endogenous or

exogenous toxic factors including therapeutic agents; iii) the

tumor microenvironment (TME) (nutrient limitation/hypoxia/

immune system); iv) other genetic and non-genetic factors.

Among the several genes whose deregulation contributes to

tumor heterogeneity, the tumor suppressor TP53 stands out. The

loss of function of the TP53 gene determines the deregulation of the

cell cycle arrest checkpoint allowing cell proliferation despite the

presence of stress signals and DNA damages or skipping apoptosis

also in the presence of severe DNA damages (5). Also, the

deregulation of genes involved in the DNA repair system

(mismatch repair or proofreading machinery) drives genome

instability and subclonal heterogeneity in the tumor sites (6, 7).

Large-scale chromosomal alteration events causing the loss of

genetic material in the order of hundreds of genes greatly

accelerate subclonal evolution and increase the tumor mutational

burden (the total number of mutations per coding area of a tumor
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genome) which can positively or negatively correlate with prognosis

and pharmacological response (8).

Exogenous factors contributing to tumor heterogeneity include

physical factors, such as ionizing and non-ionizing electromagnetic

radiation (UV); chemical factors such as heavy metals and toxic

chemicals including drugs used in anticancer treatments; and

biological factors, such as viruses, bacteria, and reactive oxygen

species (ROS) arising as a by-product of the mitochondrial energy

metabolism (9). In this context, it has been shown that some types

of tumors such as melanoma and lung cancer have a high clonal

“homogeneous coding” mutational burden due to the continuous

exposure of stem cell niches to carcinogens, such as UV for skin and

tobacco for lungs.

Nutrient shortage and hypoxia experienced by the cells within

the core of a newly formed and non-vascularized tumor mass

impose profound metabolic rearrangements, selecting clones

preferring fermentative anaerobic metabolism (10–12). The TME

can also affect tumor heterogeneity in terms of quantity and

phenotypic characteristics of immune and stromal cells recruited

at the tumor site (13–15).

The stroma and immune system’s role in tumor heterogeneity

will be extensively described in Section 6.

In this manuscript, we will review established and emerging

models used to study tumor heterogeneity and how the integrated

use of these models and technologies can improve our knowledge of

tumor heterogeneity, with a special focus on the increasing role of

immune cells.
2 Non-human models to study
heterogeneity

Animal models and cellular in vitro models have long been

exploited to better understand the complex biological processes

characterizing normal human physiology and disease (Figure 2).

In particular, the mouse is the most used animal model for

biomedical research, discovery, and validation. More recently, novel

approaches leveraging bioengineering and complex culture

methods have become more present in the field. Since TME is

such a complex and dynamic microenvironment, different models

and more comprehensive ways to dissect the mechanism underlying

heterogeneity and response to treatment have been developed.

Remarkably, for every single research application and biological

question, there is a right model and strategy to apply.
2.1 Murine models used to uncover tumor
heterogeneity

The most used animal models for cancer research are

genet ica l ly engineered mice (GEMMs) . GEMMs are

immunocompetent transgenic mice that spontaneously develop

malignancies (16). GEMMs allowed the fundamental discovery

that tumor development is driven by the gene loss of a tumor

suppressor gene and/or an oncogene overexpression (17, 18).
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While the field has relied extensively in the past 20 years on Cre/

Lox models, the more recent development of CRISPR/Cas9

approaches has further accelerated the development of mouse

models of human cancers.

Because the mice used in these experiments live in

controlled environments and are genetically similar, tumor

deve lopment and as soc ia t ed phenotypes are h igh ly

reproducible, allowing longitudinal studies that are more

difficult in humans. Nevertheless, even in the most controlled

environment, mouse tumors arising from defined genetic events

do evolve to be genetically different and unique, like human

tumors (19). However, mouse tumors may evolve with a lower

level of genet ic heterogeneity due to the absence of
Frontiers in Oncology 0386
environmental mutagens in most cases leading to limited

translational value.

A great strategy to study heterogeneity in murine models is

lineage tracing allowing for the definition of the mode of tumor

growth by clonal analysis. This technique has been extensively used

in differentiation studies, and it has also been exploited in cancer.

For example, leveraging this, Schepers et al. identified Lgr5+ stem

cell activity in mouse intestinal adenomas (20).

Another simple way to mimic the human situation is to treat

mice with the same carcinogens that are known to cause cancer in

humans (21). For example, the 4NQO carcinogen present in

tobacco has been used to induce head and neck cancer

development in mice mimicking up to 94% tobacco mutational
A
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F G
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FIGURE 1

Stroma (A), immune cells (B), nutrients present in the microenvironment (C), and intrinsic factors such as DNA damage and epigenome (D) work
together to produce the primary tumor heterogeneity (E). Intratumor heterogeneity can arise from the primary tumor (F) or from its metastasis (G).
Both processes collaborate in the establishment of intertumoral heterogeneity in the population (H).
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signatures (22). The importance of these types of models is

supported by their extremely extensive use (23–25).

The use of GEMMs is limited by intrinsic problems, including

reduced viability if the mutations occur in the germline, early death

in case of simultaneous development of multiple tumors, and non-

synchronous tumor development in different mice due to

incomplete mutation penetrance (26). Some of these limitations

can be overcome with the application of novel technologies (17, 27,

28), but mostly reliable heterogeneity studies rely on patient-

derived xenograft (PDX) models (29, 30). Human tumor cells are

transplanted into an immune-deficient mouse to obtain a PDX,

maintaining the heterogeneity of the primary tumor (31). A greater

success rate can be achieved with major immunosuppression in the

animal host, and the exploitation of mice lacking B and T

lymphocytes and NK cells shows a better success rate (32). An

advantage of using PDXs is that aggressive tumors such as

colorectal and gastric cancer have more possibilities to engraft in

the host, making PDX an extremely valuable resource to study

aggressive pathologies. Human hormonal treatment of transplanted

mice can improve the engraftment rate of hormone-driven

tumors (30).

The biological differences between mice and humans are

limiting factors in the direct translation of many discoveries to

the clinical setting. Thus, a growing need for a mouse model that

better recapitulates the important features of human biology and

immunity became more urgent . With the advent of

immunotherapeutic drugs leveraging the immune system and

since the mouse immune system does not always replicate the

human one, new humanized mouse models providing the immune

components required to test new therapies have been generated.

These humanized models represent a tremendous advantage in

providing a platform resembling the human response. Humanized

mice with a partial or fully reconstituted immune system have been

developed through stem cell transplant, and they are a promising
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platform to assess the efficacy of immune checkpoint inhibitors.

However, since the human immune system engraftment process

necessitates multiple donors, this generates a high variability in the

results requiring both an increased number of donors and mice. As

an alternative, knock-in mice have been developed. These models

express human genes such as immune checkpoint inhibitors, PD-1,

allowing efficacy studies in immune-competent systems (33).
2.2 Non-murine models exploited in the
understanding of tumor heterogeneity

Although most of the research that focused on cancer

heterogeneity has relied on primary patient samples, murine

xenograft, and murine models, there are more evolutionarily

distant model organisms that are genetically, histologically, and

behaviorally similar to the human cancer disease, and they can have

a potential key role in our understanding of cancer heterogeneity.

2.2.1 Yeast
The yeast Saccharomyces cerevisiae—a eukaryotic unicellular

organism that has long been successfully used as a model organism

for human biology (34)—can grow both in liquid and solid media

using different sugars to support its growth. Approximately half of

the yeast genes exhibit periodic expression patterns when grown

under continuous, nutrient-limited conditions. The cell cycle stage

significantly exacerbates the natural variability present in the

population (35). Similarly, tumor cells could respond differently

to the TME according to their cell cycle stage.

Individual yeast cells respond differently to sugar sources, and

variability in the expression of sugar-metabolizing genes is

observed. For example, single-cell sequencing data showed that

only 1.5% of cells express genes required for galactose metabolism

without this sugar (36).
A

B

D

C

FIGURE 2

Models to study tumor heterogeneity: (A) non-murine models (Drosophila melanogaster, Danio renio, Saccharomyces cerevisiae), (B) murine models
(syngeneic models, GEMMs), (C) human in vitro models (organoids, organ-on-chip), and (D) humanized murine models.
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The group of Teusink showed that metabolic heterogeneity

within a yeast population could be established and maintained

without any genetic difference (37).

This metabolic variability is observable and even amplified in

yeast colonies growing on solid media. The cells within a yeast

colony are all the progeny from a single founder and share the same

genome. Nevertheless, individual cells in a colony have different

access to resources. Cells in the colony’s lower part—i.e., closer to

the solid medium—have easier access to nutritional resources,

expressing genes related to respiratory metabolism, while in the

upper part, the cells which cannot directly access the nutrients rely

on fermentation (38). As a result, in a single colony, a small number

of cells survive using gluconeogenesis, releasing metabolites

consumed by another subpopulation with a different metabolic

phenotype (39).

2.2.2 Zebrafish
Zebrafish and humans share 70% of protein-coding genes

(40), and their cancers are genetically and histologically similar

(41), also sharing some important drivers in the onset (42). In

the field of heterogeneity studies, zebrafish optical clarity has

been combined with tumor labeling and new imaging techniques

by White et al., who transplanted single-cell tumors into

zebrafish and studied the clonal evolution in response to drug

delivery, also taking advantage of the possibility of using

thousands of fish simultaneously, generating a massive amount

of data (41).

Stemness is another characteristic of cancer involved in the

heterogeneity process and a mechanism that needs to be

uncovered. Ignatius et al. selectively labeled differentiated and

non-differentiated cells with different fluorophores, being able to

sort through FACS the two different populations, revealing

divergent expression profiles and behaviors (with the more

differentiated cells being highly migratory) after microarray

analysis (43). FACS sorting has been also exploited to isolate

zebrafish leukemia cells and transplant them into syngeneic

recipients allowing the production of monoclonal antibodies

and paving the way to new zebrafish cancer models for drug

development (44).

It is also possible to prepare libraries of single tumors and

transplant them into recipient fish to recapitulate the ITH and to

study the effects of drugs (43, 45). The Zebrabow technology based

on the multispectral cell labeling for cell tracing and lineage analysis

in zebrafish allows the labeling of different tumor clones with

different colors and in vivo following their migrations and

competition in the heterogeneous tissue, also assessing the effects

of drug treatments (46, 47).

The optically clear immune-compromised zebrafish “casper”

allows the direct visualization of fluorescently labeled transplanted

cancer cells and supports the neovascularization and the tumor

propagation of heterogeneous clones (48). The “Modeling

Approach in Zebrafish for Rapid Tumor Initiation” (MAZERATI)

allows to express oncogenes and inactivate candidate tumor

suppressor genes using two particular CRISPR vectors, spatially

controlling the tumor spreading (49).
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2.2.3 Drosophila
Sixty percent of the Drosophila melanogaster genome is

homologous to humans, with 90% of genes involved in human

cancer development having an ortholog in the fly (50, 51). Together

with a fast generation time and low maintenance costs, these

features contributed to the development of genetic tools to use

the fly as a model organism for cancer research (52). The “genetic

mosaic technique” lately perfectioned into the “mosaic analysis with

a repressible cell marker (MARCM)” creates individually labeled

homozygous cells in a heterozygous population, generating cells

with a different genotype in a single organism, allowing the

researchers to follow the labeled subpopulation destiny (53).

MARCM revealed how a single mutated cell in a healthy tissue

does not simply overgrow but mostly stimulates the overgrowth and

metastasis in the neighbor cells, contributing to cancer progression

and probably recurrence (54). The same technique also showed that

heterogeneity induces cancer and metastasis by signal propagation

(55), molecule exocytosis (56), amino acid release (57), or ROS

production (58). Other studies highlighted how different cell

populations cooperate in generating tumors: cells mutated in the

spindle assembly checkpoints extrude from the epithelium, losing

epithelial morphology and adhesion. These mesenchymal-like cells

are unable to proliferate but establish a tumor environment by

secreting molecules which promote the growth of epithelial cells. So,

in this case, epithelial and mesenchymal/mutant cells, which at the

beginning are genetically identical, cooperate in the tumor

establishment, with the mutant cells unable to proliferate but still

activating the others (59–61).
3 Human in vitro models to study
heterogeneity

The biological similarity between animal models and humans

has been the basis of the extensive use of these approaches in the

study of cancer. However, the failure of many clinical trials and the

undeniable evidence of discrepancies in the fidelity of the different

models in replicating human physiology generated the necessity of

human-derived models.
3.1 Organoids

Organoids can be described as microscopic self-organizing,

three-dimensional structures, recapitulating many structural and

functional aspects of their in vivo counterpart organs (62).

Biological material such as primary tissues (single cells or tissue

chunks), stem cells like adult stem cells (ASCs), induced pluripotent

stem cells (iPSCs), and embryonic stem cells (ESCs) can be

employed as starting material for organoid production (63). The

cells are embedded in an extracellular matrix structure resembling

the tissue scaffold and mirroring the physiological milieu to

contemplate both matrix influence on cell growth and spatial

organization (64); the final result is a heterotypic three-

dimensional structure that replicates the multilineage composition
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of the tissue of origin as well as its molecular, metabolic, and

spatial heterogeneity.

It is possible to derive lineage heterogeneity through

organogenesis using stem cells (65), while unfortunately, the

different cell lineages are not easily preserved in patient-derived

organoids (PDOs) obtained from tumor sampling due to the

selection of epithelial cells during tissue processing (66, 67). To

work around this issue, the introduction of further cell lineages has

been applied to organoid models to depict a more complex

microenvironment. For example, the desmoplastic reaction

represents a neoplastic feature influencing inflammatory response

and drug distribution, especially in pancreatic cancer, one of the

deadliest cancers worldwide (67); to better investigate tumor–

fibroblast interactions in pancreatic ductal adenocarcinoma (68),

Biffi et al. (69) developed a co-culture system combining naive

pancreatic stellate cells, a precursor of cancer-associated fibroblast

(CAF), to organoids generated from pancreatic cancer cells arising

from a GEMM spontaneously developing pancreatic cancer. This

model was able to reproduce the functional differentiation of

pancreatic stellate cells to inflammatory CAF and myofibroblastic

CAF elicited by the tumor milieu.

Organoids are also applied to a wide range of tissues and

pathologies, e.g., breast cancer (70), liver cancer (71, 72), gastric

cancer (73), colorectal cancer (74), prostate cancer (75), and

pancreatic cancer (76–78).

In the immune context, Neal et al. (79) were able to establish a

patient-derived organoid culture from samples coming from 100

individual patients, covering 19 different tissue sites and 28

pathology subtypes using an air–liquid interface method;

however, they encountered major difficulties in preserving the

stromal population. The generated organoids mostly recapitulated

the parental tumor histology and maintained a complex tissue

architecture, but in 70% of the tumors, the stromal myofibroblast

population progressively decreased. On the other hand, they

observed that PDO-retained tumor-infiltrating lymphocytes

(CD3+) were integrally embedded in close proximity to the tumor

epithelium, macrophages, cytotoxic T cells (CD8+), helper T cells

(CD4+), natural killer (NK) cells, and natural killer T (NKT) cells,

which they were able to support using IL-2 supplementation until

60 days of culture. Instead of evaluating resident and tumor-

infiltrating immune cells, Dijkstra et al. (80) successfully

produced colon-rectal and non-small cell lung cancer PDOs, and

later, to study immune response toward cancer and delineate a

strategy to develop tailored immunotherapy, they used T-cell

populations from peripheral blood to generate a co-culture with

organoids; in such a manner, they were able to elicit a specific

antitumor immune response mediated by CD8+ T cells toward the

PDOs. Extensive genetic heterogeneity within cancer cell

populations is also documented beyond lineage heterogeneity.

ITH, as already presented, provides a substrate for tumor

development promoting drug resistance and metastasis.

Therefore, it is necessary to model the mutational diversity

associated with the branched evolution of clonogenicity, which

can be an innate characteristic of PDOs coming from the genetic

diversity in the tumor of origin (81) or can be promoted in stem

cell-derived organoids through genetic engineering (74, 82, 83).
Frontiers in Oncology 0689
Bolhaqueiro et al. (84) employed colorectal cancer PDOs to

investigate the prevalence of chromosomal instability. Single-cell

analysis through three-dimensional live-cell imaging and karyotype

sequencing highlighted a high frequency of chromosomal

instability, which results in aneuploidy and genomic heterogeneity

and promotes drug resistance in colorectal cancer.

The highlighted attention to intratumor diversity in molecular

studies is promoting an overrunning of personalized medicine and

individual clinical plan toward a precision medicine approach that

targets heterogeneity itself embracing intracellular modification

as well.

In the field of metabolism, three-dimensional organization and

multicellular diversification drive the development of differentiated

areas and layers resulting in the impaired distribution of nutrients

and oxygen with an impact on cell proliferation and metabolism

(85); indeed, metabolic heterogeneity affects drug response as well

as carcinogenesis (86). Several methodological approaches have

been developed for real-time and spatial-resolved metabolism

analysis in organoids such as extracellular flux analysis (Seahorse

XF analyzer) which allows measuring at the same time and in real

time on living cells the oxygen consumption rate (OCR) and the

extracellular acidification rate (ECAR) on both cells, spheroids, and

organoids in a microplate (87–89). Advanced metabolic flow

cytometry analysis such as SCENITH (90) monitors the

metabolism through protein synthesis, while MET-FLOW detects

rate-limiting enzymes (91). FLIM and PLIM are live-cell

microscopy techniques (70, 92–98) that provide unique sensitivity

in detecting the metabolic changes occurring during carcinogenesis

and anticancer drug response.

While PLIM requires the use of dedicated cell-penetrating

phosphorescent O2-sensitive probes to perform live-cell

microscopy of oxygen, FILM is a non-invasive, label-free, cell-

specific direct analysis of metabolism which takes advantage of

the intrinsic fluorescence properties of NADH and FAD; an

increment in the NADH/FAD ratio observed through metabolic

imaging enabled the identification of malignant cells exploiting the

Warburg effect (70). These technologies also brought the discovery

of metabolic differences between epithelial and fibroblast cells inside

an organoid (96) or the detection of intratumor differential response

to paclitaxel mediated by the heterogeneous metabolic shift among

cancer cell populations (94, 95).

The presence of intratumor multiple stemness niches could be

generated as a response to metabolic rewiring due to limited access

to nutrients or metabolic changes, which are required to adapt to

proliferation rate modifications. Sundar et al. (99) studying cancer

stem cell populations (CSCs) in glioblastoma PDO noted that

therapeutic resistance is driven by altered biological mechanisms

rather than physical limitations of therapeutic access due to the

presence of a highly heterogeneous population of CSCs and cycling/

senescent cells. Another study shows that tumor organoids

displayed spatial heterogeneity with highly proliferating outer

region cells surrounding a hypoxic core of mainly non-stem

senescent cells, sensitive to radiotherapy, and diffuse, quiescent

CSCs which on the contrary were radioresistant (100).

Ultimately, multiple approaches for the unraveling of tumor

heterogeneity have been converged in the recent study of Dekkers
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et al. With the aim to study tumor infiltration and targeting by

engineered immune cells (e.g., CAR T cells), the authors developed

BEHAV3D, an organoid-based 3D imaging transcriptomic

platform (101). This approach integrates multiple techniques to

allow functional single-cell behavior analysis of multilineage

organoids with spatial resolution (3D imaging) and integrated

transcriptomic profiling.
3.2 Microfluidic on-chip models, macro
models, and advanced co-culture systems

Although the so-far described strategies provide a valuable

complement to traditional preclinical models in the study of

tumor invasiveness or drug effects concerning specific DNA

aberrations, they lack the representation of the stromal

compartment which plays a crucial role in cell spatial

distribution, growth, invasiveness, and drug sensitivity (102, 103).

Basically, in the models mentioned above, the environmental

context, which could both contribute to the development of tumor

heterogeneity or be affected by it, is missed.

A step forward in this direction is represented by bioprinted

models (104). Indeed, combining organoids with bioprinting

technology could be a promising strategy to mimic the genetic,

histological, and functional aspects of cancer heterogeneity,

proposing it as a useful platform for personalized therapies (102).

The introduction into the system of the extracellular matrix (ECM)

with the control of its mechanical properties (e.g., matrix stiffness,

architecture, density, protein crosslinking, and fiber network

configuration) mimics cell growth, cell proliferation, and

differentiation reproducing the surrounding physiological

environment for cancer heterogeneity development. This

approach allows not only to reproduce the background behind

the tumor and tumor microenvironment heterogeneity but also to

identify the elements involved in this process, controlling and

targeting them.

A crucial element that is still missed also by the bioprinted

model is the vasculature which could significantly affect and interact

with tumor cell differentiation. In trying to overcome this limitation

and to resemble the conditions that surround the development of

tumor heterogeneity, many efforts have been done in the field of

tissue engineering (103–107). Magdeldin et al. developed

biomimetic tumoroids which recreate the spatially different

exposition to nutrients and oxygen, allowing to test how the

induced cancer cell heterogeneity affects the formation of the

vascular network and cancer-invasive capability (108). Gilardi

et al. developed a variety of in vitro assays and readouts to dissect

different extravasation steps involved in the metastatic cascade. The

authors highlighted a key role of FAK phosphorylation in trans-

endothelial migration validating the results in a metastatic in vivo

model (109). These results drag a parallel between in vitro and in

vivo fostering the employment of in vitro models in the

development of new effective antimetastatic treatments.

Another attempt aimed to include the stromal compartment

within the study of cancer heterogeneity correlates the development

of different morphological phenotypes of tumor cells with the
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heterogeneity of collagen organization confirming the key role

played by the tumor microenvironment (110).

A fundamental component of the tumor microenvironment

that develops heterogeneous phenotypes is represented by immune

cells, particularly T effector cells, T helper, NK cells, B cells, and

dendritic cells (24, 111–113). In the context of immune regulation,

many cells are involved such as T and B regulatory cells and

medullary thymic epithelial cells (mTECs); however, the most

studied are the macrophages and neutrophils (112, 114, 115),

known to be able to polarize toward both the anti- and protumor

phenotypes. Specific protocols have been developed to recreate in

vitro the polarization of immune cells, paving the way for the

possibility of better mimicking the heterogeneity of the tumor

microenvironment (116).

A promising future development is represented by on-a-chip

models, which allow complex and dynamic culture systems to

mimic the heterogeneity of the tumor microenvironment. Indeed,

these models potentially include 3D structures, such as the

microvasculature, and chemical or physical stimuli (117). Despite

their potential, these platforms have not yet been really exploited for

cancer heterogeneity studies, but they could hopefully be coupled

with patient-derived models to increase the complexity and the

reliability of preclinical studies.

Another aspect of tumor heterogeneity is represented by the

tumor surrounding environment including the cell–cell and cell–

matrix interactions and their role in the tumor fate.

The most suitable model to elucidate this is represented by

microfluidic devices which recreate a controlled 3D structure in

terms of matrix composition and stiffness, including patient-

derived materials (118) and the addition of chemical and physical

stimuli, stromal cells such as fibroblast (109) and mesenchymal cells

(119), and vascular compartments (120–123). Through microfluidic

models, it is possible to reproduce the recruitment of immune cells

(124–127) and their heterogeneous behavior able to develop both

pro- and antitumor phenotypes (127, 128).

As ide from the improvement brought by the 3D

microfluidic models , there are st i l l some important

limitations that need to be overcome. Since the complete

recreation of all cellular and structural elements of a

physiological environment is still unreachable, it is important

to carefully focus on the elements principally involved in the

pathway of study (119), trying to include at least the most

relevant ones. Indeed, the next challenges consist of increasing

the complexity of these models, extending the range of analysis

techniques applicable, and promoting the validation through

clinical studies to obtain evermore reliable platforms.

The works presented in paragraphs 2 and 3 showed the huge

ongoing effort in developing preclinical models including the

heterogenei ty of the tumor i tse l f and of the tumor

microenvironment. We showed that there are different

approaches to face this peculiar characteristic of the tumor, from

the collection of data from patients to the attempt to recreate the

heterogeneity through genetic manipulation or the stimuli and the

composition of the surrounding microenvironment. All of them

have the same goal of identifying and targeting the drug-resistant

tumor subphenotypes responsible for therapy failure.
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4 Emerging technologies to study
heterogeneity: single-cell sequencing
and spatial genomic analysis

As it will be better described later, heterogeneity depends on

cellular interactions and knowing the rules orchestrating the TME

and how different cellular subtypes correlate to the clinical relevance

would make a huge difference in improving current

therapeutic strategies.

In the past, proteomics and transcriptomics in cancer have been

studied at the macroscopic level leveraging techniques that are still

very important including bulk DNA/RNA sequencing and flow

cytometry. For studies regarding rare cellular populations within

the TME, such as immune cells, it was difficult to extensively study

the impact of the different immune populations.

In the past, bulk RNA-seq has been incredibly helpful in

identifying different tumor mechanisms. The gene expression

profiles of deconvolution methods estimating the abundance of

cells in a mixed population such as the CIBERSORTx algorithm

(129) and xCell (130) have been fundamental in understanding the

contribution of each cellular population.

More recently, with the increased awareness of the role played

by TME and the underlying complex cellular interactions, more

complex technologies providing single-cell data have been

developed. Emerging single-cell technologies and spatial

transcriptomics provide new tools to give insights at the single-

cell level within tumors and dissect the roles each cell plays in tumor

progression (Figure 3).
4.1 scRNA-seq and spatial analysis

In the last 10 years, the most used technologies to uncover

heterogeneity are represented by single-cell RNA (scRNA) and

DNA sequencing methods. scRNA sequencing allows the

identification of tumor subtypes, definition of cancer cell states,

lineage tracing and phenotyping of cellular subpopulation, and

differential expression analysis (131).

The new technology applied to cancer heterogeneity allows to

detect rare cell subpopulations within the tumor mass, which are

very important when it comes to defining the probability of relapse

leading to better precision medicine (132). Single-cell data define

divergent survival probability improving the clinical prognostic

evaluation of each case and therapeutic regimens.

Single-cell profiling of tumor heterogeneity and the

microenvironment has been done in many cancer types and

metastasis (133) including advanced non-small cell lung cancer,

triple-negative breast cancer (TNBC) primary tumor, and paired

lymph nodes (134).

Leveraging scRNA, Xue et al. stratified patients into five

separate subtypes spatially organized and associated with

chemokine networks and genomic features. Remarkably, the

authors found that tumor-associated neutrophil (TAN) enriched

in the myeloid-cell-enriched subtype was associated with a negative

prognosis (135).
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Moreover, single-cell transcriptome analysis revealed tumor

immune microenvironment heterogenicity and granulocyte

enrichment in colorectal cancer liver metastases (131), the role of

M2 macrophages in TNBC aggressiveness (136), and the role of

TLR4 and TLR8 in TNBC (137). Furthermore, single-cell

sequencing coupled with TCR and BCR sequencing allows not

only the transcriptomic analysis at the single-cell level but also the

possibility to study immune cell clonal expansion. The single-cell

level information regarding the immune populations is

fundamental to understanding how the diverse immune players

will react to different drugs boosting immunotherapy efficacy and

the complexity of researchers’ approaches to design novel and more

effective combinatorial treatments.

Huipeng Li et al. were able to exploit the single-cell approach to

discriminate into subgroups presenting divergent survival

probability tumors that were previously assigned to single

subtypes through bulk RNA-seq (138). The single-cell technology

allowed Wai-Hung Ho et al. to explore the interrelationship

between liver cancer stem cell markers reporting new

subpopulations of cells and novel stemness-related genes (132).

Single-cell sequencing revolutionized the cancer field providing

detailed information at the cellular level. However, given the

procedure used to prepare the single cells, the spatial data and all

the information regarding the hierarchical structure and how the

cells are distributed in the TME are not included in the output.

Digestion of solid tumors characterizes the single-cell RNA

sequencing (scRNA-seq) protocol eliminating spatial information

and the organization of individual cells in the neighborhood.

Tissues are characterized by hierarchical structure organizing how

the cells composing the tissue are localized reciprocally. Spatial

localization is fundamental in defining cellular interactions and

tumor progression. In fact, clones, subclones, immune cells,

endothelial cells, and stroma localize in different districts within a

tumor tissue, and the spatial information can be used as predictive

of therapy response.

Spatial phenotyping allows the combination of various markers

within the same tissue slide underlying novel patterns and

correlations that would not be evident with non-spatial

technologies. A comprehensive overview describing the

differences in spatial technologies has been extensively

reported (139).

PhenoCycler CODEX, NanoString GeoMx Digital Spatial

Profiler (DSP), CosMx, 10X Visium, and MERFISH are among

the most used technologies which allow a spatial analysis.

Meyer et al. used the highly multiplexed immunofluorescence

imaging technology CODEX to generate a tissue atlas of

inflammation in the context of ulcerative colitis compared with

healthy tissues. The authors characterized the cell types, cell–cell

contacts, and cellular neighborhoods highlighting that cellular

neighborhood dictates the functional states of the cells

composing the tissue. In addition, this analysis was able to

identify different inflammatory cell subsets and spatial

neighborhoods peculiar to patients treated with TNF inhibitors,

paving the way for targeting specific cellular niches responsible for

resistance (51). Spatially resolved data provided insights into ITH

allowing phenotype tracking and clonal evolution within tumors.
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In this context, Rovira-Clave et al. realized the in situ tracking of

barcodes in small cell lung cancer tumor microenvironment

coupling epitopes for imaging (EpicTags) and multiplexed ion

beam imaging (EpicMIBI) (140). This approach promoted the ITH

spatial investigation interrogating both cell-intrinsic and cell-

extrinsic events leading to therapeutic resistance. Hajiran et al.

compared survival outcomes to patterns of immune cell

distributions defined by spatial analysis in metastatic clear cell

renal cell carcinoma (ccRCC). In this study, augmented

macrophages together with the decrease in Th1 presence within

the tissues correlated with both poor overall survival and worse

patient outcome (141). These pieces of evidence support the

importance of spatial analysis of immune cells in the tumor

microenvironment for the future assessment of clinically relevant

associations for improved patient treatments.
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Another use of spatial technology is the study of the tumor

microenvironment profile to identify potential biomarkers to

predict clinical outcomes. Within the new technologies for spatial

analysis, 10X Visium and NanoString GeoMX DSP are the most

used and often combined (139). The first is based on fixed tissues

permeabilized to allow the RNA capture through oligo-dT

overhangs, which will be later reverse-transcribed and sequenced,

while the second is based on regions-of-interest selection guided by

fluorescence methods. Bullman’s group exploited the Visium to

study the tumor microenvironment in OSCC and colorectal cancer,

showing a spatial heterogeneity in the microbiota with bacterial

communities populating the less vascularized and highly

immunosuppressed area. Also, they showed that cancer cells

infected with bacteria can recruit myeloid cells into the bacterial

regions (142).
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FIGURE 3

Brief description of the major spatial technologies. (A) CODEX is based on a panel of antibodies that binds to specific fluorescent reporters that
reveal their position during the imaging phase. At the end of the first cycle of image acquisition, the reporters are detached, and another cycle with
new reporters starts. (B) 10X Visium is based on slides of barcoded capture probes that bind to the polyA tail of RNAs released from the tissue. RNA
is retrotranscribed into cDNA and sequenced. (C) GeoMX DSP is based on panels of antibodies or photocleavable barcoded probes. Once an area of
interest is selected, a stream of light releases the probes that are lately sequenced. (D) MERFISH is based on fluorescently tagged probes that label
RNA of interest. Sequential rounds of imaging enable spatial resolution. All the pictures have been adapted from the providers’ web pages.
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On the other hand, the GeoMX DSP approach allowed Toki

et al. to associate different series of expression patterns to

immunotherapy response. Remarkably, this study highlights that

PD-L1 expression on macrophages correlates with a positive

response to immunotherapy that could potentially be used to

predict clinical response to immune therapy in melanoma

patients (143). In the context of NSCLC, the treatment with

immune checkpoint inhibitors does not provide complete benefit

in the clinic, and one of the reasons is that there is still a lack of

effective biomarkers to stratify the patient for aPD-1 treatments.

The exploitation of the DSP technology showed that the correlation

of CD44 levels exclusively in the tumor compartment was

associated with a positive response to immunotherapy excluding

the immune cells from the analysis. This type of compartmentalized

analysis on only the tumor’s immune compartment is peculiar to

the DSP workflow and very useful for immunotherapy response

biomarker discovery. Leveraging this, Moutafi et al. identified a

novel promising biomarker to predict NSCLC sensitivity to aPD-1
therapy (143), while Rimm’s group quantified 39 immune

parameters simultaneously in four tissue compartments,

correlating overall survival with a high count of CD56+ immune

cells (143). Remarkably, Hwang et al. recently applied the power of

DSP in the context of pancreatic cancer, identifying a new neural-

like malignant progenitor enriched after chemo- and radiotherapy,

associating it with poor prognosis (144). Nirmal et al. took

advantage of the possibility of studying boundaries between

different cell populations, identifying a spatially restricted

suppressive microenvironment along the tumor stroma boundary

in cutaneous melanoma (145).

A recent upgrade of the GeoMX DSP which provides cellular-

level data is the CosMx, which brings the spatial analysis to the next

level, allowing the localization of RNAs at the subcellular level.

Despite being a very novel and recent technology, CosMx has been

exploited already by Beechem’s group who analyzed 980 RNAs in

non-small cell lung and breast cancer, identifying 10 unique tumor

microenvironments inside the cell, proving the presence of spatial

heterogeneity inside a single cell (146). A similar output has been

obtained by Xia et al. using a different technology called MERFISH,

based on a combination of imaging and in situ hybridization. The

authors determined the subcellular compartmentalization of RNAs

and identified populations that are cell cycle-dependent and

independent inside the same cell (147).

One major challenge in spatial transcriptomics is the resolution

of the data, as the number of cells within a single spatial location

(also known as a “spot”) can range from a few to several hundred.

This variability can make it difficult to accurately assign cell types

and identify spatial patterns of gene expression. Various approaches

have been developed to overcome these limitations, such as the use

of supervised learning approaches and leveraging cell type profiles

learned from scRNA-seq data (148).

The huge amount of data generated by spatial transcriptomic

technologies requires new computational methods for the storage

and annotation of spatially resolved single-cell data. Another

challenge is the integration of gene expression and spatial

information. Traditional scRNA-seq techniques do not capture

spatial information, so methods have been developed to integrate
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scRNA-seq data with spatial transcriptomics data (149, 150), as

recently reviewed by Longo et al. (151). However, these methods

can be complex and may not always produce reliable

results (151).

There is also a need for robust downstream analysis tools that

can extract biological signals from raw spatial transcriptomics data

and identify the spatial organization and cell–cell communications.

Some of the existing tools may be limited by technology-specific

biases or may not be suitable for all types of spatial transcriptomics

data. Computational methods are emerging (152). Recently, new

efforts in the field promoted the generation of new methods of

analysis of spatially resolved single-cell data allowing a more

accurate cell-type annotation and phenotyping such as Seurat,

stellaR, SpatialDecon, and tangram, summarized elsewhere (153).

These types of tools favor the discovery of new types of cells in

spatially resolved datasets at a single-cell level, a fundamental step

in the definition of tissue hierarchy and underlying biological

processes. The reader is referred to Dries et al. for a review of the

art of spatial transcriptomic data downstream analysis methods and

pipelines (154).

This recent progress is just an anticipation of how single-cell

RNA sequencing and spatial transcriptomics techniques will play an

essential role in the next future in incorporating tissue architecture

with transcriptomics data. The ability to see what is going on at the

reface of a tumor-infiltrated tissue and its healthy neighbors at the

RNA and protein levels or the possibility of visualizing what a

particular group of immune cells express when they are interacting

will greatly impact our prognostic abilities and our knowledge

on heterogeneity.

Being able to combine the data coming from different

techniques will require interdisciplinary teams composed of

molecular biologists, pathologists, and wet lab and data scientists.

Yet, the information implemented in the clinical system will unlock

enormous achievements in the field of targeted therapies to

overcome resistance to treatment and prevent metastasis.
4.2 Bioinformatics and computational
modeling

The computational approaches that are fundamental to tackle

ITH can be grouped into three families: 1) approaches that try to

infer the tree of clonal evolution from sequencing data, 2)

approaches that aim to identify the different cell types in a cancer

cell mixture from single-cell and/or spatial transcriptomics and

epigenomics data, and 3) knowledge-based models that aim at

simulating the dynamics of cancer cell populations (Figure 4).
4.2.1 Inference of cancer progression models
from sequencing data

Genomic alterations [i.e., single-nucleotide variants (SNVs);

structural variants, such as insertions and deletions; and copy

number alterations (CNVs)], which can be identified by

opportunely processing next-generation sequencing (NGS) data

(e.g., DNA-seq, RNA-seq, or ATAC-seq) of tumor samples, can
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be used to track tumor progression. The philosophy and clinical

implications of this approach are reviewed elsewhere (3).

The basic idea is that the positively selected (i.e., functionally

advantageous) genomic alterations (i.e., drivers) identified in every

cancer cell represent the clonal trunk, whereas those identified in a

subset of cancer cells defined the coexisting (sub)clones.

In the last years, a plethora of bioinformatics tools have been

developed to exploit mutational profiles of cancer samples to

reconstruct a model of cancer evolution, either at the population

or at the individual level. Genomic alterations can be used to

characterize and track down tumor progression through NGS (3).
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Population-level models are typically inferred from cross-

sectional bulk sequencing data, in which one sample is available

for each patient. The objective is to infer a unique progression

model for the patient cohort under study, which usually represents a

specific tumor (sub)type (155). In the final model (which can either

be trees or direct acyclic graphs), edges represent the most likely

trends of accumulation of genomic alteration for that specific tumor

(sub)type and can be used to both predict the next evolutionary

steps and to stratify patients in risk groups.

Individual-level models aim to reconstruct a personalized

progression model for each individual. These models ideally
A
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FIGURE 4

Schematic representation of the inputs (left) and outputs (right) of the main families of computational approaches to tackle intratumor
heterogeneity. (A) Cancer progression models. (B) Clustering of single cells. (C) Multiscale modeling and simulation.
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require multiple measurements for the same tumor, which can

either be:
Fron
• single-cell sequencing data, collected either at single (156)

or multiple time points (longitudinal), e.g., from patient-

derived cell cultures, xenografts, or organoids.

• multiregion bulk sequencing data (156).
In this case, the output model (a mutational/clonal tree) depicts

the evolutionary history of a single tumor and, in the case of

longitudinal experiments, allows one to assess the impact of

external interventions, such as therapies.

The methodology at the core of these tools is generally based on

traditional sequence-based phylogenetics (157, 158) or on Bayesian/

maximum-likelihood statistical frameworks (159–161). The main

differences between the two approaches are illustrated here (162).

Fundamental data preprocessing steps are needed upstream of all

aforementioned methodologies and differ according to the specific

experiment type (single cell or bulk) and data type (DNA, RNA,

ATAC, and related technology/protocol). A non-exhaustive list

includes the correction of sequencing reads; the correction for purity,

ploidy, absolute copy number, andmutationmultiplicity; variant calling;

and estimation of variant allele frequency (VAF), which must be

converted into a cancer cell fraction (CCF) taking into account gene

copy numbers. To maximize the sensitivity and specificity of calling

clonal and subclonal mutations, the PCAWG Evolution and

Heterogeneity Working Group and the PCAWG Consortium used an

ensemble approach integrating the output of alternative algorithms

(163). However, the number of tumor regions sequenced and the depth

and purity of what is sequenced largely affect the ability to distinguish

truly clonal from pseudoclonal mutation. Strong tumor sampling bias,

high levels of technical noise, and biological variability also hinder the

robust inference of cancer progression models. To mitigate this

problem, a recent work has proposed to use a transfer learning

approach to infer from multiregion data multiple patient evolutionary

models simultaneously, seeking to maximize their structural

correlation (164).

It remains an open question whether cancer progression models

can truly predict the likely course of tumor progression or whether

the occurrence of neutral evolution and drift may limit the ability to

predict a tumor’s next step. To address this question, Diaz-Uriarte

and Vasallo (165) analyzed four different approaches and concluded

that these methods can predict only with moderate success and only

under representable fitness landscapes and with very large sample

sizes, but even perfect algorithms might not work if intrinsic

evolutionary unpredictability is large.
4.2.2 Clustering and lineage inference from
single-cell transcriptomics and epigenomics data

Phenotypic data at the single-cell level allow variability due to

the environment and interactions among cancer subclones as well

as with the other player in the TME to be considered. In this regard,

unsupervised machine learning methods (clustering) on single-cell

RNA-sequencing data were successful in unraveling the
tiers in Oncology 1295
composition in terms of cell phenotypes of a cancer mixture (166,

167). RNA velocity and cell lineage reconstruction might also be

employed to investigate the similarity and dynamics of cancer cell

types (168). Computational methods to infer cell–cell

communication events from scRNA-seq data have also been

proposed (169), even focused on the identification of metabolic

cooperation phenomena (170).

The noisy nature of single-cell RNA-sequencing data requires

ad hoc preprocessing steps. To this aim, the best practices (171) and

tools implementing them such as Seurat (148) and Scanpy (172) are

now well established. A preprocessing stage that requires special

care and that is largely debated is denoising of scRNA-seq data, as

reviewed by Patruno et al. (173) This step becomes fundamental

when the aim is to identify metabolic subpopulations from scRNA-

seq, as demonstrated by Galuzzi et al. (174).

Approaches to integrate scRNA-seq data with other -omics

have recently emerged. For example, CONGAS integrates bulk

DNA and single-cell RNA measurements from independent

assays to jointly identify clusters of single cells with subclonal

CNAs and differences in RNA expression. The opportunity

provided by the latest technologies to simultaneously profile

intranuclear proteins, chromatin accessibility, and gene

expression in single cells is pushing forward the need for single-

cell multiomics data integration (175, 176). In particular,

methodologies for handling sequencing data that simultaneously

measure gene expression and chromatin accessibility in the same

cell are increasingly being proposed (177–179); for instance,

statistical and machine learning methods for spatially resolved

transcriptomics data analysis are currently being developed and

have been previously reviewed (179).

4.2.3 Multiscale modeling and simulation
The data science approaches described above cannot identify

mechanisms nor probe whether the correlation is causal. On the

contrary, multiscale modeling in systems biology allows the

behavior at the larger scale to emerge naturally from the

collective action at smaller scales.

Multiscale models integrate a priori knowledge from the tissue,

cellular, and molecular levels and can simulate complex cell–cell

interactions and emerging population-level dynamics. These

models are generally based on ordinary differential equations that

can simulate the integral response of the tumor to pharmaceutical

interventions (180) but fail in capturing spatial phenomena. For the

study of invasion and metastasis, models based on partial

differential equations or agent-based models are applied (181). In

particular, agent-based modeling is the most suitable framework to

model ITH because it can describe the dynamics of a large number

of heterogeneous and interacting agents (i.e., cells or clones) that act

autonomously in an environment according to certain rules. Agent-

based models have been used to study the differentiation of cancer

stem cells (182), clonal evolution (183, 184), and interaction

between different cell types (185) and different metabolic

phenotypes (186).

While multiscale models can provide unprecedented insight

into mechanistic detail, they are computationally expensive and
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require a large number of unknown parameters to be defined. Real-

world data are generally used only to fit the model parameters, for

example via approximate Bayesian computation (ABC), whereas

attempts to include omics data directly as parameters of the

multiscale model are still in their infancy (187, 188).

The definition of new computational frameworks that bridge

the gap between top-down approaches (close to the data but far

from the mechanisms) and bottom-up approaches (close to the

mechanisms but far from the data) is a key objective to enable the

reconstruction of digital twins that integrate biological knowledge

and population data with personalized data. In this regard,

machine learning and multiscale modeling can naturally

complement each other to create robust predictive models that

include physicochemical constraints (189). Data generated by

mechanism-based simulations can also supplement training data

for machine learning models.
5 Tumor heterogeneity, drug
resistance, and clinical outcomes

It is well established that tumors with high levels of ITH may

predispose patients to worse clinical outcomes (189). The main

reason is that ITH implies the coexistence of subclones with

different genetic, epigenetic, and metabolic endowments.

On the one hand, this can expose to a greater probability of

achieving in at least one tumor cell population, with subsequent

genetic and epigenetic alterations, a molecular combination that

leads to the acquisition of a physiological alteration determining a

clonal expansion in situ or dissemination, thus contributing to

tumor progression.

On the other hand, it guarantees the tumor greater adaptability

to environmental changes, possibly induced by exogenous factors

such as pharmacological treatment, and therefore, increases the

fitness and survival of cancer cells and intrinsic resistance to

therapeutic treatments that determine tumor relapse.

Resistance is considered intrinsic when conditions for escape

from the drug response are already inherent in the treated tumor. It

is considered acquired when the treatment itself activates adaptive

mechanisms that lead to resistance.

An example of intrinsic and acquired resistance is found in

tumors associated with hyperactivation of the epidermal growth

factor receptor, EGFR, which transduces the mitogenic signal in

response to the growth factor by activating Ras proteins and

their cellular effectors. The oncogenic activation of this receptor

may be due to gene amplification (copy number variation)

increasing its expression level, deletions (truncations of

regulatory regions as in EGFvII and EGFR carboxyl-terminal

deletions), or point mutations (substitutions of residues critical

for the function) that make the receptor constitutionally

activated (190, 191).

Although many effective treatments are available (192, 193),

there is also a very high percentage of patients who after a few

months of treatment manifest resistance and tumor relapse (194)

due to on-target mechanisms dependent on the coexistence of cell
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populations with different sensitivities to the drug (present before

the treatment or acquired by selective pressure) (195) and/or off-

target mechanisms depending on the oncogenic activation of other

genes and proteins (196, 197). Other examples of drug resistance

due to heterogeneity can be found in the study of Blaquier et al.

(198) and in other studies (192, 194, 199).

Another example of ITH leading to drug resistance concerns the

presence of cancer stem cell niches in the tumors, with a small

population of cells endowed with stemness properties, including

enhanced capacity for self-renewal cloning, the undifferentiated

state combined with differentiating potential, long cell cycling,

genome repair abilities, peculiar energy metabolism, ability to

educate the neighboring cells to provide nutrients although highly

resistant to lack of nutrients and hypoxia, and ability to collaborate

in the elusion from the immune system (200). Cancer stem cells

confer high plasticity to the tumor and contribute to drug resistance

with multiple mechanisms, for instance by remaining quiescent

during chemotherapeutic treatment specifically targeting

proliferating cells and then regrowing for repopulation or

effic ient ly repair ing DNA damage induced by some

chemotherapeutic agents, such as platinum drugs and

alkylating agents.

In summary, ITH and the response to drug treatment are

interdependent phenomena. On the one hand, pretreatment

tumor heterogeneity is mainly responsible for intrinsic drug

resistance and relies on multiple mechanisms including the

presence of cells in the tumor site expressing elements that bypass

target inhibition because they promote aberrant downstream

signaling (i.e., Ras oncoproteins in EGFR-hyperactivated tumors),

or cells expressing MDR pumps, or cells endowed with potentiated

DNA repair system, or cancer stem cell niches. On the other hand,

the adaptation to pharmacological treatment, particularly if directed

against a specific target as in the context of precision medicine, feeds

the ITH and predisposes it to drug resistance negatively affecting

clinical outcomes.

Historically, heterogeneity has been mostly associated with

mutations, and only recently, heterogeneity has acquired an

enlarged origin including selective stimuli from targeted therapy

and the tumor immune microenvironment. All these factors have

been known to be responsible for the heterogeneity mechanisms,

yet the emergence of new features peculiar to cancer cells only has

been associated with the generation of neoantigens correlated with a

positive outcome, especially in immunotherapy. Thus,

understanding how to modulate the immune response by

controlling heterogeneity should be further investigated to better

develop targeted therapies.
6 The role of the tumor
microenvironment in heterogeneity

Selective death in the TME can lead to heterogeneity. To explain

this concept, we will leverage a conservation biology theory by

Martin and Sapsis. The “pyrodiversity promotes biodiversity”

theory first proposed that fire promotes biodiversity by generating
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heterogeneous ecological niches and inducing species to adapt to

environmental changes (201, 202).

We can look at the cancer ecosystem in the same way. Usually,

selective pressure such as therapy (fire) eliminates all the cells.

However, in rare special niches, the conditions for clonal evolution

instead of death are presently leading to adaptation through

mutation, evolution, and in the end, cancer progression (203).

Many other different things can happen to a tumor cell exposed

to the challenges peculiar to the microenvironment. Stromal cell

interaction and immune recognition can be some of the key

heterogeneity driving factors which a cancer cell should adapt to

survive (204) (Figure 5).
6.1 Immune recognition and cancer
heterogeneity

In the past, heterogeneity has been seen as a negative factor

present in tumors correlated to an increased mutational burden,

cancer progression, and acquired resistance. In the context of

heterogeneity-involved diseases, it is dutiful to mention

metastases. Metastases are responsible for more than 90% of

cancer-related mortality, and one of the triggering processes is the

selective pressure in the TME (205–207). Thus, a deep

understanding of heterogeneity underlying these mechanisms will

provide the required insight for primary tumor and

metastasis eradication.

The advent of improved experimental technologies, such

as RNA sequencing, single cells, and spatial analysis of

tissues, together with better bioinformatic tools boosted

correlative studies between immune profiling, mutational

burden, and patient outcomes which will be discussed later

in this review.
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Neoantigens derived from cancer mutations are one of the keys

to unleash an effective and lasting immune response, yet they are

derived from mutations that are known to lead to heterogeneity and

resistance. A consistent portion of research has been done in the

neoantigens field in the last 20 years (3, 163, 208, 209). Yet, the

argument is still controversial.

Clinical studies reported a tight association between high tumor

mutational burden (TMB) and improved outcomes during immune

checkpoint inhibitor regimens. TMB is also reported as a biomarker

to predict immunotherapy and chemotherapy efficacy (210).

Ke-Yue Ma et al. (211) characterized in lung adenocarcinoma

the ITH of immune response-related genes. They showed that the

decrease in the number of neoantigens was correlated with an

acquired resistance phenotype. Moreover, the authors reported that

MHC-II genes were the common genes shared by the top favorable

prognostic pathways supporting that neoantigen presentation by

MHC-II may be a positive factor triggering cancer eradication by

immune cells.

The improved response to therapy observed in high TMB

tumors is also probably due to a broader repertoire of tumor-

specific mutant epitopes presented by antigen-presenting cells

(APCs) (212) and to enhanced epitope-spreading mechanisms

diversifying the ability of the immune cells to recognize multiple

targets (113).

Epitope spreading is a mechanism enhancing and diversifying

endogenous lymphocyte recognition to new antigens beyond the

original one which was the initial target antigen. This mechanism

can involve intramolecular antigens (recognition of epitopes within

the same protein) or intermolecular ones (involving other proteins)

and can lead to enhanced cytotoxic T-cell activity and anticancer

antibody production by B cells (213). Although epitope spreading

positively correlates with patients’ responses representing an

important predictive marker (214), it correlates also with side
A B

C

FIGURE 5

The different components of the tumor microenvironment: (A) the immune system, (B) stroma, and (C) external factors.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1164535
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Proietto et al. 10.3389/fonc.2023.1164535
effects due to T-cell recognition of autoantigens and to the

expansion of the autoantibody repertoire (215, 216).

Epitope spreading is an incredibly powerful mechanism

triggering parallel immune recognition and also autoimmunity.

Its fine regulation makes the process very complex; thus, more

efforts need to be made to be able to leverage it therapeutically to

overcome autoimmunity.

Reuben et al. (217) studying lung adenocarcinoma showed that

although an increasing variety of neoantigens promote a wider

heterogeneity in the T-cell receptor repertoire, it also correlates with

impaired survival and tumor relapse. There can be many reasons

why more neoantigens lead to negative outcomes. One of the

hypotheses can be designed by dragging a parallel between cancer

cells and pathogens. The mechanism underlying cancer immune

escape leveraging heterogeneity can be associated with the ability of

some pathogens, such as Borrelia burgdoferii, to escape immune

recognition by overwhelming the immune system with antigens

that are not determinants of pathogen eradication (218).

Other immune cells beyond lymphocytes are involved in

reshaping the heterogeneity of the TME. Clinical cancer stage and

metastatic tumor burden are linked to ineffective immune response

and increased immune suppression due to myeloid cell infiltration

in different tumor types including pancreatic cancer (219) and

breast cancer (220). In line with these findings, Zhang et al. (131)

revealed tumor immune microenvironment heterogenicity and

granulocyte enrichment in colorectal cancer liver metastases.

A common model for cancer heterogeneity is the “cancer stem

cell” in which tumor-propagating cells have the same genetic

mutations as the differentiated cells but are blocked in a different

maturation stage. This is known to correlate with poor patient

outcomes, resistance, metastasis, and immune suppression

(221, 222).

Cancer cells can leverage epigenetic reprogramming to increase

stemness and escape the immune system (223). Consistent with

this, Miranda et al. (224) described a negative parallel correlating

decreased survival, impaired T cells, natural killer cells, B-cell

immune infiltration, and increased stemness. Barker et al. (225)

identified cancer stem cells in the small intestine and colon using

Lgr5 as a marker opening the door to targeted therapy directly

tackling stem cells. This type of antigen could be exploited for

targeted immunotherapy. Another way to see stemness is that

cancer cells do not upregulate stemness on purpose. Instead, it

could be that the cells with stemness characteristics are those that

can escape the immune system recognition being the resistant ones.

Supporting this, it has been discovered in animal models that NK

recognition of metastatic cells in the liver is responsible for

dormancy (226) (a quiescent cell state often associated with

stemness), highlighting how cancer cells’ interaction within the

TME regulates cancer cell survival to modulate their behaviors to

escape (227). In another study, it has been highlighted how the

macrophage-secreted factor supports pancreatic cancer metastasis

by inducing fibrosis (228). Thus, impaired immune recognition by

the immune system due to other circumstances can lead to

metastatic overt colonization.

The so-called epithelial-to-mesenchymal transition (EMT) is

involved in cancer evolution concurring with the development of
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more aggressive subclones (229). Different studies leveraging RNA-

sequencing data correlated EMT-related gene expression profiles

with increased aggressiveness. Although these data are very

important to reveal the mechanisms involved in the TME, it is

unknown if EMT signatures were from cancer or stromal cells given

the bulk nature of the analysis. McCorry et al. (230) highlighted

EMT signatures in the stromal fibroblast within the tumor

microenvironment instead of a change in the cancer cells.

Fibroblasts within the TME are not only involved in EMT; Chen

et al. (231) showed that tumor-associated macrophages promote

EMT and cancer stem cell properties in TNBC. Altogether, these

lines of evidence show how important stromal and immune cell

heterogeneity is in tumor progression.

In clinical and preclinical work, huge efforts are currently active

toward combinatorial therapies leveraging both chemotherapy and

immune checkpoint inhibitors targeting the TME (232–235). In this

setting, while chemotherapy mediates tumor destruction which

leads to the release of tumor neoantigens, immunotherapy keeps

the immune system active, targeting exhaustion and suppression.

These combinatorial strategies tackle cancer from both angles

leveraging neoantigens (generated by mutations) as weapons to

train the immune soldiers to fight more efficiently. In solid tumors,

high quality and quantity of neoantigens correlate with improved

survival and response to immunotherapies (236, 237). In a deeper

analysis, a decrease in expressed clonal neoantigens correlates with

increased immune infiltration (238) indicating the impact of the

immune activity regulating tumor heterogeneity. Altogether, these

data show that modulating heterogeneity will be an effective way to

have controlled and targeted immunotherapy increasing efficacy

while overcoming unwanted side effects.
6.2 Stroma heterogeneity in the TME

Other cells within the tumor immune microenvironment can be

responsible for selective pressure on cancer cells since they are able

to modulate environmental conditions such as cytokines, nutrients,

metabolites, matrix stiffness, pH, and redox status.

One of the main populations involved in shaping the TME is the

fibroblast. This population of cells is heterogeneous and responsive

to different stimuli. CAFs turned out to be responsible for the

immunosuppressive microenvironment linked to therapy resistance

(239, 240) and metastatic progression (239, 241, 242). Furthermore,

fibroblasts are responsible for fibrosis leading to hypoxia, reduced

immune infiltration and vascularization, and nutrient deprivation

in pre-HCC conditions, leading to HCC cancer progression

(243–245).

The heterogeneity of CAFs has been associated with organ-specific

metastasis in pancreatic ductal adenocarcinoma (241). Furthermore, in

another study, the promotion of cholangiocarcinoma growth by

diverse cancer-associated fibroblast subpopulations has been

reported (246).

Cancer cells are also able to reprogram CAF gene expression

and metabolism (247). More recently, it has been reported that

CD10+GPR77+ CAFs promote cancer format ion and

chemoresistance by supporting cancer cell stemness (242). In the
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context of metabolism, cancer-derived exosomal HSPC111

promotes colorectal cancer liver metastasis by reprogramming

lipid metabolism in CAFs (248).

Mentioning the interaction between CAFs and immune cells,

Krishnamurty et al. (249) reported that LRRC15+ myofibroblasts

dictate the stromal setpoint to suppress tumor immunity.

Endothelial cells are fundamental players in the TME being

involved in angiogenesis and adhesion molecule expression on the

vasculature regulating immune cells and nutrient trafficking. The

endothelium is a heterogeneous tissue, and different expression

profiles have been reported characterizing endothelial cells from

different organs. Ultimately, in order to generate more effective

targeted approaches against cancer progression and metastasis, we

need to take into account the different endothelial barrier properties

contributing to organotropism metastatic behaviors of different

tumors (250).

The cellular component is not only involved in the control of

tumor heterogeneity. The sensing compartment composed of the

matrix is important as well in regulating how the cells sense the

surrounding environment. The tumor matrix stiffness plays a

role in the mechanotransduction of tumor cells involving

integrins signaling to modulate how cancer cells can feel

the microenvironment.

It has been demonstrated that different stiffness leads to

modified gene expression (251–255). Stiffness reduction has been

proven to improve bevacizumab response in metastatic colorectal

cancer (256). Changes in other parameters such as pH have also

been reported to improve immunotherapy efficacy (257).

This plethora of parameters present in the TME modulates in

turn the immune system leading to inflammation (14) or

immunosuppression (114, 115, 258). These two types of TME

determine the fate of cancer cells (229) selectively pressuring

them to evolve or perish. Learning how to control the

mechanisms underlying heterogeneity will provide knowledge to

leverage this information therapeutically. The final aim will be

modulating heterogeneity to make cancer cells seen by the

immune system to unlock immune recognition.
7 Discussion and conclusions

The recent awareness of the importance of heterogeneity in the

development and establishment of tumors opens up new

possibilities for understanding tumor development and—in

perspective—improving and personalizing therapeutic approaches

to tumors. Different technologies, some of which are discussed in

this review, open hitherto unexplored windows to the

understanding of tumor biology at the single-cell and spatial levels.

In particular, single-cell techniques enabled the discovery of

cellular differences that usually get lost during bulk RNA-

sequencing sampling methods, helping the scientific community

to understand how different cellular populations express

different sets of genes. The spatially resolved transcriptional

analysis revolutionized the study of heterogeneity allowing

transcriptome analysis without losing the spatial organization of

tissue architecture.
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Both single-cell and spatial transcriptomics can generate heavy

databases of data, challenging the scientific community in

developing new ways to analyze, store, and integrate the data.

Multiomics technologies with the promise to deliver high-

throughput genomic and epigenetic molecular data in parallel will

combine RNA, DNA, and ATAC sequencing technologies for more

comprehensive studies. For instance, scATAC-seq allows epigenetic

studies, lineage tracing, and genomic regulation, providing insights

on chromatin accessibility, and the full-length mRNA profiling in

single cells exploited to study the alternative splicing (259). The

processing of millions of cells is required to detect a rare

subpopulation of cells, and this can be achieved by single-cell

sequencing (combinatorial indexing). Accordingly, integrating

data of a widely diverse nature in terms of dimensionality of data

(a few proteins, hundreds of biochemical or imaging features, the

whole transcriptome) and experimental approach (targeted,

hypothesis-driven vs. exploratory genome-wide) is probably the

primary challenge. Therefore, it is necessary to use computer and

computational techniques for an in-depth analysis of individual

data (i.e., transcriptomic, proteomic, or any -omics data) and also to

integrate and structure data related to different layers of biological

complexity: the final aim is to describe the emergent properties

derived from the interaction of the system components and those

that cannot be derived by the mere knowledge of the properties of

the individual components (260). For instance, because of the

special role played by metabolism in orchestrating cellular

activities (261), the simulation of computational models of

metabolism acts as an integrator able to explain at the system

level the phenotypic properties of cellular systems and even their

interaction (262). The modeling approach is somehow

complementary to the artificial intelligence/machine learning

approach, which excels in differentiating and stratifying patient

populations but so far has proven less suitable for identifying the

laws governing complex biological phenomena (261, 263). Wiring

together the analytical and correlative ability of machine learning

with the ability of mathematical models of metabolism and other

cellular functions to structure biological information could allow a

quantum leap in our understanding of tumor heterogeneity.

The generation of enhanced computational models to prioritize

and predict therapeutic efficacy leveraging cancer molecular profiles

has been recently developed.

An example of successful integration of multiomics data

together with phenotypic and therapeutic response profiles falls

into the computational strategy called pharmaco-pheno-

multiomic (PPMO).

This model allowed the establishment of novel complex

biomarker profiles to predict prospective therapeutic regimen

response in acute myeloid leukemia and ovarian tumor cohorts

(264). These strategies already demonstrated their extraordinary

potential in predicting therapeutic response in human tumors and

need to be further exploited on different cancer types and broader

cohorts in the future.

The availability of different non-human models of tumor

heterogeneity is of great value since it will allow us to

experimentally test in an iterative cycle the computer-generated

predictions (265). Figure 6 graphically summarizes some of the key
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properties of different models highlighted in this review. Despite

lacking some aspects of the complexity present in mammalian

systems, non-murine models can be exploited for preliminary

screening to answer precise biological questions. Zebrafish,

Drosophila, and yeast, among others, have already proven their

efficacy in recapitulating basic and conserved biological

mechanisms, coupling this with the possibility of collecting

thousands of data points in a quick and cheap way. Although the

way of life of yeast is unicellular, yeast cells demonstrate the ability

to coordinate to form multicellular communities with specialized

subpopulations, as what happens in a tumor mass where, from a

single progenitor, many cells arise and specialize to survive. An

extra layer of complexity concerns the signaling between different

colonies, which induces metabolic reprogramming (38) to maintain

the identity of the single colony. The study of this intra-and

intercolony crosstalk could uncover evolutionarily conserved

mechanisms that can be targeted to prevent the establishment of

a colony/tumor mass in a new environment. With 90% of genes

involved in human cancer development, fast generation time, and

low maintenance costs, Drosophila is perfectly suited to study the

basic mechanisms of cancer heterogeneity. Zebrafish is a unique

model that allows extensive characterization of the mechanism of

clonal evolution, also allowing the identification of dominant

drivers. Transgenesis, transplantation, single-cell functional

assays, and live imaging can provide an economical and large-

scale in vivo screening tool which provides statistically relevant data

to complement focused studies done in mice or humans, as

published by Smith et al. (44), where a zebrafish study revealed

that one in 100 leukemia transplanted cells was able to drive tumor
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growth, a higher number than expected if compared to

mouse studies.

Models such as yeast and 2D cultures excel in their ability to

perform genetic and environmental modulation of growth

conditions and in their ability to run omics analyses, including

single-cell transcriptomics. Although the clonal nature of cell lines

grown as monolayer offers high reproducibility and low intrinsic

heterogeneity, their high intrinsic plasticity allows fostering of

different phenotypes within the same cell line, for instance by

using inflammatory cytokines and growth factors (266).

Murine models, on the other hand, provide a complex systemic

platform to evaluate biological mechanisms and both drug efficacy

and toxicity.

Since their development, mouse models have become more

sophisticated and accurate in replicating human tumors including

ad hoc models to study heterogeneity.

Among these, GEMMs and syngeneic models are exploited for

their high reproducibility and flexibility, yet mouse tumors have

different evolution routes if compared to human ones. This results

in decreased genetic heterogeneity which penalizes the clinical

translational relevance of these models. To overcome the species-

specific issues, human cell line-derived xenografts (CDXs) are

largely leveraged due to their fast and standardized growth.

Although CDXs are composed of clonal populations, their level

of genetic heterogeneity does not compare with human tumors.

Immortalization and in vitro clonal selection can be the cause of

genetic drift. In addition, the lack of cell–cell interactions within a

3D human microenvironment limits the clinical predictivity of the

findings obtained by exploiting human cell lines.
FIGURE 6

Key properties (cost, time, scalability, ease of manipulation, direct translation to TME heterogeneity) of the different models highlighted in this review.
From left to right: murine models, non-murine models, and human models. + = low, ++ = medium, +++ = good / high, ++++ = excellent / very
high.
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The type of mouse model that mostly translates the results of

the experiments to clinical response is the PDX which maintains the

heterogeneity of the patient’s primary tumor especially when used

at low passages (less than 10). PDXs have been successfully used in

the context of personalized cancer treatment as an investigational

platform for therapeutic decision-making (267).

Given the predictive capacity of PDXs in clinical translational

studies, the urgent need to leverage them to predict immunotherapy

outcomes emerged quickly. In fact, to study immune therapeutic

regimens with PDXs, the animal host requires a functional immune

system of human origin. The implementation of humanized mice

together with low-passage PDXs in the same study allows for both

the clonal heterogeneity of the human tumor and the immune

microenvironment to be reconstituted. One of the limitations is the

graft-versus-host disease (GVHD) happening when the engrafted

human immune cells are from a different donor with respect to the

PDX one. To avoid unwanted GVHD which will impair the validity

of the study results, human leukocyte antigen (HLA) matching

strategies between the donors should be done. Ideally, autologous

models can be proposed. However, this option is still very limited

given the lack of primary matched tumor and immune material

from the same patient.

In basic science and preclinical settings in the attempt to

replicate tumor heterogeneity, animal models have been

extremely powerful and extensively used. Searching for faster,

cheaper, and more ethical models to evaluate in high-throughput

entire libraries of drugs and the divergence of these models in

mimicking some aspects of human biology paved the way for the

establishment of human-derived advanced in vitro models.

Organoids and on-chip microfluidic models using human-

derived cells are great tools for retaining tumor heterogeneity,

especially when employing low-passage primary human cells.

These in vitro models are suitable for high-throughput screening

of multiple therapeutic combinations or as a platform to investigate

human key molecular pathways allowing the analysis of complex

cell–cell and cell–matrix interactions in biochemically and

biophysically controlled conditions. In addition, the reduced time

in providing the results makes the in vitro humanized models ideal

for preclinical studies adding value to the animal models, which, on

the other hand, are still essential for systemic and toxicological

studies. Despite the tremendous advances in modeling, when the

preclinical use of these models is required, researchers need to

consider that different models display variable fidelity to human

tumor biology. Organoids represent the best option to preserve

tissue heterogeneity using in vitro culture. By carefully choosing the

protocol of production, it is possible to retain molecular, spatial, and

metabolic heterogeneity of the tissue of origin. However, there are

limitations regarding the cell lineage that can survive inside the

organoids during culture (e.g., immune cells), and the sampling of

the tissue of origin can affect the heterogeneity of the cell population

itself. If there is a need to keep the model simple and preserve

reproducibility and feasibility, simplified organoids (spheroids) can

be produced starting from a single cell line. Spheroid heterogeneity

can be improved stepwise either by co-culturing different cell lines

and/or by providing a cocktail of different extracellular matrices.

Microfluidic devices are tunable platforms in which cell lines as well
Frontiers in Oncology 18101
as organoids can be cultured. The flexibility of the system allows to

compartmentalize and add different components of the tumor

including vasculature immune cells and stroma in highly

controlled experimental conditions. Given the unique

interchangeable geometry of the system, physical stimuli such as

stiffness or shear stress can be modulated in the system adding to

the level of environmental heterogeneity, known to play a key role

in tumor progression. High resolution and live imaging are still the

main readouts; thus, good image analysis expertise is required to

extract data and succeed in quantifying different parameters

including tumor growth and migration. Unfortunately, omics

analyses are not always easy to perform given the low number

of cells.

Thus, the use of each model should be carefully evaluated in

terms of its faithfulness in replicating a given human biological

feature or mechanism. In an attempt to define the transcriptional

fidelity, the Cancer Genome Atlas dataset has been compared with

cell lines, 3D cultures, GEMMs, and PDXs leveraging the

CancerCellNet (CNN) tool. Unfortunately, this effort is limited to

a small number of tumor-derived models making the validity of this

effort very limited.

Recently, immunotherapies have revolutionized the entire

cancer treatment field. Immuno-oncology studies and the

development of immune checkpoint inhibitors able to boost

cancer cell immune recognition have led to recognizing the

fundamental role of the immune system in tumor progression.

On top of this, increased awareness has been reserved regarding the

importance of stromal cells including the ones composing the

vasculature and CAFs.

Taking together all this information about the complex

hierarchy within the tumor immune microenvironment, it is clear

why, despite the different models already available, there is an

urgent need to further improve the complexity and fidelity of the

platforms replicating humanized settings.

Extending the efforts beyond generating complex models, the

need for new technologies to analyze the TME promoted the

emergence of single-cell genomics and spatial approaches as

powerful strategies in delineating the complex molecular

landscapes of cancers.

The acquired knowledge will ultimately be implemented in a

digital twin (i.e., “a virtual model” of a physical entity, with

dynamic, bi-directional links between the physical entity and its

corresponding twin in the digital domain) (268). A digital twin can

then be personalized using biological data (269). Personalized

digital twins can then be used to test treatment protocols, in the

development and identification of new pharmacological targets, and

in the rational identification of more effective combined

pharmacological protocols that will maximize the therapeutic

efficacy for each individual, minimizing the side effects.

In conclusion, understanding tumor heterogeneity and its

exploitation in the clinical field will require quantitative

determination of multiple features and their integrated analysis by

combined machine learning and simulation approaches. Only the

combined effort of an interdisciplinary team of scientists with

expertise in different fields, such as pathology, molecular biology,

bioengineering, clinic, and computation, able to communicate and
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work in synergy will provide new integration and interrogation

modality to predict therapy response and to implement more

efficient targeted and combinatorial therapies which are urgently

required for cancer patients.
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153. Kleino I, Frolovaitė P, Suomi T, Elo LL. Computational solutions for spatial
transcriptomics. Comput Struct Biotechnol J (2022) 20:4870–84. doi: 10.1016/
j.csbj.2022.08.043

154. Dries R, Chen J, Del Rossi N, Khan MM, Sistig A, Yuan GC. Advances in
spatial transcriptomic data analysis. Genome Res (2021) 31(10):1706–18. doi: 10.1101/
gr.275224.121

155. Ramazzotti D, Caravagna G, Olde Loohuis L, Graudenzi A, Korsunsky I, Mauri
G, et al. CAPRI: efficient inference of cancer progression models from cross-sectional
data. Bioinformatics (2015) 31(18):3016–26. doi: 10.1093/bioinformatics/btv296

156. Ramazzotti D, Angaroni F, Maspero D, Ascolani G, Castiglioni I, Piazza
R, et al. LACE: inference of cancer evolution models from longitudinal single-
cel l sequencing data . J Comput Sci (2022) 58:101523. doi : 10.1016/
j.jocs.2021.101523

157. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a
software platform for Bayesian evolutionary analysis. PloS Comput Biol (2014) 10(4):
e1003537. doi: 10.1371/journal.pcbi.1003537

158. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large
model space. Syst Biol (2012) 61(3):539–42. doi: 10.1093/sysbio/sys029

159. Jahn K, Kuipers J, Beerenwinkel N. Tree inference for single-cell data. Genome
Biol (2016) 17(1):17–86. doi: 10.1186/s13059-016-0936-x

160. Kuipers J, Jahn K, Raphael BJ, Beerenwinkel N. Single-cell sequencing data
reveal widespread recurrence and loss of mutational hits in the life histories of tumors.
Genome Res (2017) 27(11):1885–94. doi: 10.1101/gr.220707.117

161. Caravagna G, Graudenzi A, Ramazzotti D, Sanz-Pamplona R, De Sano L,
Mauri G, et al. Algorithmic methods to infer the evolutionary trajectories in cancer
progression. Proc Natl Acad Sci U.S.A. (2016) 113(28):E4025–34. doi: 10.1073/
pnas.1520213113

162. Holder M, Lewis PO. Phylogeny estimation: traditional and Bayesian
approaches. Nat Rev Genet (2003) 4(4):275–84. doi: 10.1038/nrg1044

163. Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J, Deshwar AG,
et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer
genomes. Cell (2021) 184(8):2239–2254.e39. doi: 10.1016/j.cell.2021.03.009

164. Caravagna G, Giarratano Y, Ramazzotti D, Tomlinson I, Graham TA,
Sanguinetti G, et al. Detecting repeated cancer evolution from multi-region tumor
sequencing data. Nat Methods (2018) 15(9):707–14. doi: 10.1038/s41592-018-0108-x

165. Diaz-Uriarte R, Vasallo C. Every which way? on predicting tumor evolution
using cancer progression models. PloS Comput Biol (2019) 15(8):e1007246.
doi: 10.1371/journal.pcbi.1007246

166. Jiang G, Tu J, Zhou L, Dong M, Fan J, Chang Z, et al. Single-cell
transcriptomics reveal the heterogeneity and dynamic of cancer stem-like cells
during breast tumor progression. Cell Death Dis (2021) 12(11).

167. Eyler CE, Matsunaga H, Hovestadt V, Vantine SJ, Van Galen P, Bernstein BE.
Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug
resistance. Genome Biol (2020) 21(1):174. doi: 10.1186/s13059-020-02085-1

168. Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, Yang D, et al.
Mapping transcriptomic vector fields of single cells. Cell (2022) 185(4):690–711.e45.
doi: 10.1016/j.cell.2021.12.045

169. Baruzzo G, Cesaro G, Di Camillo B. Identify, quantify and characterize cellular
communication from single-cell RNA sequencing data with scSeqComm.
Bioinformatics (2022) 38(7):1920–9. doi: 10.1093/bioinformatics/btac036.

170. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R.
CellPhoneDB: inferring cell-cell communication from combined expression of multi-
subunit ligand-receptor complexes. Nat Protoc (2020) 15(4):1484–506. doi: 10.1038/
s41596-020-0292-x

171. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a
tutorial. Mol Syst Biol (2019) 15(6):e8746. doi: 10.15252/msb.20188746

172. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression
data analysis. Genome Biol (2018) 19(1):15. doi: 10.1186/s13059-017-1382-0

173. Patruno L, Craighero F, Maspero D, Graudenzi A, Damiani C. Combining
multi-target regression deep neural networks and kinetic modeling to predict relative
fluxes in reaction systems. Inf Comput (2021) 281. doi: 10.1016/j.ic.2021.104798

174. Galuzzi BG, Vanoni M, Damiani C. Combining denoising of RNA-seq data
and flux balance analysis for cluster analysis of single cells. BMC Bioinf (2022) 23(Suppl
6):445. doi: 10.1186/s12859-022-04967-6

175. Chen AF, Parks B, Kathiria AS, Ober-Reynolds B, Goronzy JJ, Greenleaf WJ.
NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility
and gene expression in single cells. Nat Methods (2022) 19(5):547–53. doi: 10.1038/
s41592-022-01461-y

176. De Sanctis G, Colombo R, Damiani C, Sacco E, Vanoni M. Omics and clinical
data integration. Integration Omics Approaches Syst Biol Clin Appl (2017), 248–73.
doi: 10.1002/9781119183952.ch15

177. Ranzoni AM, Tangherloni A, Berest I, Riva SG, Myers B, Strzelecka PM, et al.
Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental
hematopoiesis. Cell Stem Cell (2021) 28(3):472–487.e7. doi: 10.1016/j.stem.2020.11.015
frontiersin.org

https://doi.org/10.1016/j.canlet.2019.10.016
https://doi.org/10.1016/j.canlet.2019.06.002
https://doi.org/10.1016/j.canlet.2019.06.002
https://doi.org/10.3389/fgene.2022.1063130
https://doi.org/10.1038/s41467-022-34581-2
https://doi.org/10.1038/s41586-022-05400-x
https://doi.org/10.1007/s00262-020-02669-7.
https://doi.org/10.1007/s00262-020-02669-7.
https://doi.org/10.1016/j.gene.2021.145728
https://doi.org/10.1038/ng.3818
https://doi.org/10.1002/biot.202100041
https://doi.org/10.1016/j.ccell.2022.09.014
https://doi.org/10.1111/cei.13567
https://doi.org/10.1158/1078-0432.CCR-19-0104
https://doi.org/10.1158/1078-0432.CCR-19-0104
https://doi.org/10.1038/s41588-022-01134-8
https://doi.org/10.1158/2159-8290.CD-21-1357
https://doi.org/10.1038/s41587-022-01483-z
https://doi.org/10.1038/s41587-022-01483-z
https://doi.org/10.1073/pnas.1912459116
https://doi.org/10.1073/pnas.1912459116
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1093/nar/gkab043
https://doi.org/10.1038/s41592-022-01459-6
https://doi.org/10.1038/s41592-022-01459-6
https://doi.org/10.1038/s41576-021-00370-8
https://doi.org/10.1038/s43588-022-00266-5
https://doi.org/10.1038/s43588-022-00266-5
https://doi.org/10.1016/j.csbj.2022.08.043
https://doi.org/10.1016/j.csbj.2022.08.043
https://doi.org/10.1101/gr.275224.121
https://doi.org/10.1101/gr.275224.121
https://doi.org/10.1093/bioinformatics/btv296
https://doi.org/10.1016/j.jocs.2021.101523
https://doi.org/10.1016/j.jocs.2021.101523
https://doi.org/10.1371/journal.pcbi.1003537
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1186/s13059-016-0936-x
https://doi.org/10.1101/gr.220707.117
https://doi.org/10.1073/pnas.1520213113
https://doi.org/10.1073/pnas.1520213113
https://doi.org/10.1038/nrg1044
https://doi.org/10.1016/j.cell.2021.03.009
https://doi.org/10.1038/s41592-018-0108-x
https://doi.org/10.1371/journal.pcbi.1007246
https://doi.org/10.1016/j.cell.2021.12.045
https://doi.org/10.1093/bioinformatics/btac036.
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.15252/msb.20188746
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.ic.2021.104798
https://doi.org/10.1186/s12859-022-04967-6
https://doi.org/10.1038/s41592-022-01461-y
https://doi.org/10.1038/s41592-022-01461-y
https://doi.org/10.1002/9781119183952.ch15
https://doi.org/10.1016/j.stem.2020.11.015
https://doi.org/10.3389/fonc.2023.1164535
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Proietto et al. 10.3389/fonc.2023.1164535
178. Cao ZJ, Gao G. Multi-omics single-cell data integration and regulatory
inference with graph-linked embedding. Nat Biotechnol (2022) 40(10):1458–66.
doi: 10.1038/s41587-022-01284-4

179. Li G, Fu S, Wang S, Zhu C, Duan B, Tang C, et al. A deep generative model for
multi-view profiling of single-cell RNA-seq and ATAC-seq data. Genome Biol (2022)
23(1):20. doi: 10.1186/s13059-021-02595-6

180. Watanabe Y, Dahlman EL, Leder KZ, Hui SK. A mathematical model of tumor
growth and its response to single irradiation. Theor Biol Med Model (2016) 13(1):6.
doi: 10.1186/s12976-016-0032-7

181. Hartung N, Mollard S, Barbolosi D, Benabdallah A, Chapuisat G, Henry G,
et al. Mathematical modeling of tumor growth and metastatic spreading: validation in
tumor-bearing mice. Cancer Res (2014) 74(22):6397–407. doi: 10.1158/0008-
5472.CAN-14-0721

182. De Matteis G, Graudenzi A, Antoniotti M. A review of spatial computational
models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer
development. J Math Biol (2013) 66(7):1409–62. doi: 10.1007/s00285-012-0539-4

183. Angaroni F, Guidi A, Ascolani G, d’Onofrio A, Antoniotti M, Graudenzi A. J-
SPACE: a Julia package for the simulation of spatial models of cancer evolution and of
sequencing experiments. BMC Bioinf (2022) 23(1):269. doi: 10.1186/s12859-022-
04779-8

184. Aubert M, Badoual M, Christov C, Grammaticos B. A model for glioma cell
migration on collagen and astrocytes. J R Soc Interface (2008) 5(18):75–83.
doi: 10.1098/rsif.2007.1070

185. Nivlouei SJ, Soltani M, Carvalho J, Travasso R, Salimpour MR, Shirani E.
Multiscale modeling of tumor growth and angiogenesis: evaluation of tumor-targeted
therapy. PloS Comput Biol (2021) 17(6):e1009081. doi: 10.1371/journal.pcbi.1009081

186. Graudenzi A, Maspero D, Damiani C. A multiscale modeling framework
combining cellular automata and flux balance analysis. J OF Cell AUTOMATA (2021)
15(1–2):75–95.

187. Zangooei MH, Margolis R, Hoyt K. Multiscale computational modeling of
cancer growth using features derived from microCT images. Sci Rep (2021) 11
(1):18524. doi: 10.1038/s41598-021-97966-1

188. Damiani C, Maspero D, Di Filippo M, Colombo R, Pescini D, Graudenzi A,
et al. Integration of single-cell RNA-seq data into population models to characterize
cancer metabolism. PloS Comput Biol (2019) 15(2):e1006733. doi: 10.1371/
journal.pcbi.1006733

189. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer
therapies. Nat Rev Clin Oncol (2018) 15(2):81–94. doi: 10.1038/nrclinonc.2017.166

190. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS. A census of
amplified and overexpressed human cancer genes. Nat Rev Cancer (2010) 10(1):59–
64. doi: 10.1038/nrc2771

191. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems
biology. Nat Rev Cancer (2012) 12(8):553–63. doi: 10.1038/nrc3309

192. Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J. Anti-
epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer
Treat Rev (2009) 35(4):354–63. doi: 10.1016/j.ctrv.2009.02.001

193. Thomas R, Weihua Z. Rethink of EGFR in cancer with its kinase independent
function on board. Front Oncol (2019) 9(AUG):800. doi: 10.3389/fonc.2019.00800

194. Bertotti A, Sassi F. Molecular pathways: sensitivity and resistance to anti-EGFR
antibodies. Clin Cancer Res (2015) 21(15):3377–83. doi: 10.1158/1078-0432.CCR-14-
0848

195. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-
cancer analysis of the extent and consequences of intratumor heterogeneity. Nat Med
(2016) 22(1):105–13. doi: 10.1038/nm.3984

196. Tisi R, Spinelli M, Palmioli A, Airoldi C, Cazzaniga P, Besozzi D, et al. The
multi-level mechanism of action of a pan-ras inhibitor explains its antiproliferative
activity on cetuximab-resistant cancer cells. Front Mol Biosci (2021) 8. doi: 10.3389/
fmolb.2021.625979

197. Johnson CW, Lin YJ, Reid D, Parker J, Pavlopoulos S, Dischinger P, et al.
Isoform-specific destabilization of the active site reveals a molecular mechanism of
intrinsic activation of KRas G13D. Cell Rep (2019) 28(6):1538–1550.e7. doi: 10.1016/
j.celrep.2019.07.026

198. Blaquier JB, Cardona AF, Recondo G. Resistance to KRASG12C inhibitors in
non-small cell lung cancer. Front Oncol (2021) 11. doi: 10.3389/fonc.2021.787585

199. Chaudhary PM, Roninson IB. Induction of multidrug resistance in human cells
by transient exposure to different chemotherapeutic drugs. JNCI: J Natl Cancer
Institute. (1993) 85(8):632–9. doi: 10.1093/jnci/85.8.632

200. Aponte PM, Caicedo A. Stemness in cancer: stem cells, cancer stem cells, and
their microenvironment. Stem Cells Int (2017) 2017:5619472. doi: 10.1155/2017/
5619472

201. Prichard SJ, Hessburg PF, Hagmann RK, Povak NA, Dobrowski SZ, Hurteau
MD, et al. Adapting western north American forests to climate change and wildfires: 10
common questions. Ecol Appl (2021) 31(8):2433. doi: 10.1002/eap.2433

202. Fox S, Sikes BA, Brown SP, Cripps CL, Glassman SI, Hughes K, et al. Fire as a
driver of fungal diversity - a synthesis of current knowledge. Mycologia (2022) 114
(2):215–41. doi: 10.1080/00275514.2021.2024422
Frontiers in Oncology 23106
203. Martinez-Outschoorn UE, Bartrons M, Bartrons R. Editorial: cancer
ecosystems. Front Oncol (2019) 9:718. doi: 10.3389/fonc.2019.00718

204. Laplane L, Duluc D, Bikfalvi A, Larmonier N, Pradeu T. Beyond the tumour
microenvironment. Int J Cancer (2019) 145(10):2611–8. doi: 10.1002/ijc.32343

205. Sun L, Kees T, Almeida AS, Liu B, He XY, Ng D, et al. Activating a collaborative
innate-adaptive immune response to control metastasis. Cancer Cell (2021) 39
(10):1361–1374.e9. doi: 10.1016/j.ccell.2021.08.005

206. Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer.
Cancer Cell (2015) 27(4):462–72. doi: 10.1016/j.ccell.2015.02.015
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267. Garralda E, Paz K, López-Casas PP, Jones S, Katz A, Kann LM, et al. Integrated
next-generation sequencing and avatar mouse models for personalized cancer treatment.
Clin Cancer Res (2014) 20(9):2476–84. doi: 10.1158/1078-0432.CCR-13-3047

268. Kamel Boulos MN, Zhang P. Digital twins: from personalised medicine to
precision public health. J Pers Med (2021) 11(8):745. doi: 10.3390/jpm11080745

269. Di Filippo M, Damiani C, Vanoni M, Maspero D, Mauri G, Alberghina L, et al.
Single-cell digital twins for cancer preclinical investigation. Methods Mol Biol (2020)
2088:331–43. doi: 10.1007/978-1-0716-0159-4_15
frontiersin.org

https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1002/path.5155
https://doi.org/10.1002/path.5155
https://doi.org/10.1186/s12964-022-00888-2
https://doi.org/10.1186/s12964-022-00888-2
https://doi.org/10.1016/S0140-6736(18)31999-8
https://doi.org/10.1016/S0140-6736(18)31999-8
https://doi.org/10.1002/cncr.30449
https://doi.org/10.3389/fphar.2021.681320
https://doi.org/10.1038/s41467-020-17670-y
https://doi.org/10.1016/j.cell.2018.09.018
https://doi.org/10.1016/j.jid.2019.01.027
https://doi.org/10.1186/s13045-019-0787-5
https://doi.org/10.1186/s13045-019-0787-5
https://doi.org/10.1158/2159-8290.CD-19-1384
https://doi.org/10.1158/2159-8290.CD-19-1384
https://doi.org/10.1158/2159-8290.CD-19-0644
https://doi.org/10.1186/s13045-021-01203-1
https://doi.org/10.1186/s13045-021-01203-1
https://doi.org/10.1016/j.cell.2018.01.009
https://doi.org/10.1002/hep4.1894
https://doi.org/10.1111/jgh.13717
https://doi.org/10.7717/peerj.14299
https://doi.org/10.1016/j.ccell.2021.03.012
https://doi.org/10.1186/s12943-019-1019-x
https://doi.org/10.1038/s41419-022-04506-4
https://doi.org/10.1038/s41586-022-05272-1
https://doi.org/10.1016/0165-6147(91)90637-8
https://doi.org/10.1186/s13046-018-0761-z
https://doi.org/10.1111/febs.15566
https://doi.org/10.1126/science.1240104
https://doi.org/10.1186/s13045-019-0795-5
https://doi.org/10.3389/fimmu.2021.791453
https://doi.org/10.1016/j.ccell.2020.05.005
https://doi.org/10.1248/bpb.b21-00076
https://doi.org/10.1016/j.immuni.2014.06.010
https://doi.org/10.1038/nbt.2282
https://doi.org/10.1126/science.283.5400.381
https://doi.org/10.1016/j.cmet.2017.02.002
https://doi.org/10.1016/j.copbio.2020.02.013
https://doi.org/10.3389/fbinf.2021.746712
https://doi.org/10.1101/2022.06.14.495846
https://doi.org/10.1007/s00294-002-0285-z
https://doi.org/10.1007/s00294-002-0285-z
https://doi.org/10.1186/1471-2407-10-411
https://doi.org/10.1158/1078-0432.CCR-13-3047
https://doi.org/10.3390/jpm11080745
https://doi.org/10.1007/978-1-0716-0159-4_15
https://doi.org/10.3389/fonc.2023.1164535
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sara Lovisa,
Humanitas University, Italy

REVIEWED BY

Paola Trono,
National Research Council (CNR), Italy
Yuzhou Chang,
The Ohio State University, United States

*CORRESPONDENCE

Joe Poh Sheng Yeong

joe.yeong.p.s@sgh.com.sg

Mai Chan Lau

lau_mai_chan@bii.a-star.edu.sg

†These authors have contributed equally to
this work

RECEIVED 23 February 2023

ACCEPTED 18 April 2023
PUBLISHED 01 May 2023

CITATION

Lee RY, Ng CW, Rajapakse MP, Ang N,
Yeong JPS and Lau MC (2023) The promise
and challenge of spatial omics in dissecting
tumour microenvironment and the
role of AI.
Front. Oncol. 13:1172314.
doi: 10.3389/fonc.2023.1172314

COPYRIGHT

© 2023 Lee, Ng, Rajapakse, Ang, Yeong and
Lau. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 01 May 2023

DOI 10.3389/fonc.2023.1172314
The promise and challenge of
spatial omics in dissecting
tumour microenvironment
and the role of AI

Ren Yuan Lee1,2†, Chan Way Ng3†, Menaka Priyadharsani Rajapakse3,
Nicholas Ang3, Joe Poh Sheng Yeong4,5* and Mai Chan Lau3,6*

1Singapore Thong Chai Medical Institution, Singapore, Singapore, 2Yong Loo Lin School of Medicine,
National University of Singapore, Singapore, Singapore, 3Singapore Immunology Network (SIgN),
Agency for Science, Technology and Research (A*STAR), Singapore, Singapore, 4Department of
Anatomical Pathology, Singapore General Hospital, Singapore, Singapore, 5Cancer Science Institute of
Singapore, National University of Singapore, Singapore, Singapore, 6Bioinformatics Institute (BII),
Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
Growing evidence supports the critical role of tumour microenvironment (TME)

in tumour progression, metastases, and treatment response. However, the in-

situ interplay among various TME components, particularly between immune

and tumour cells, are largely unknown, hindering our understanding of how

tumour progresses and responds to treatment. While mainstream single-cell

omics techniques allow deep, single-cell phenotyping, they lack crucial spatial

information for in-situ cell-cell interaction analysis. On the other hand, tissue-

based approaches such as hematoxylin and eosin and chromogenic

immunohistochemistry staining can preserve the spatial information of TME

components but are limited by their low-content staining. High-content

spatial profiling technologies, termed spatial omics, have greatly advanced in

the past decades to overcome these limitations. These technologies continue to

emerge to include more molecular features (RNAs and/or proteins) and to

enhance spatial resolution, opening new opportunities for discovering novel

biological knowledge, biomarkers, and therapeutic targets. These advancements

also spur the need for novel computational methods to mine useful TME insights

from the increasing data complexity confounded by high molecular features and

spatial resolution. In this review, we present state-of-the-art spatial omics

technologies, their applications, major strengths, and limitations as well as the

role of artificial intelligence (AI) in TME studies.

KEYWORDS

spatial omics, tumour microenvironment, artificial intelligence, machine learning, deep
learning, spatial proteomics, spatial transcriptomics, digital pathology
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Introduction

Tumour microenvironment (TME) plays an important role in

disease progression and clinical outcomes. TME is made up of

multiple components including fibroblasts, immunosuppressive

cells, immune effector cells, and cytokines (1). Specific T-cell

subsets, including CD4+ helper and CD8+ T-cells offer protective

immunity (2). On the other hand, tumour-associated macrophages

(TAM) which is the most prevalent infiltrating immune cells in the

TME can promote tumour growth when accompanied by the

activation of fibroblasts. Localization of TAM near invasive

borders correlates with unfavorable prognoses in tumors such as

colorectal cancer (CRC) (3). Similarly, tumour-associated

neutrophils (TANs) can transition from anticancer to pro-

tumorigenic phenotypes due to unclear mechanisms (4, 5). TME

influences treatment outcomes through multiple mechanisms. In

ovarian and lung malignancies, TAM-associated exosomes, which

are small membrane-bound vesicles that contain proteins, lipids,

and nucleic acids which can be transferred to neighboring cells to

influence their physiological behavior, thereby increasing tumour

proliferation, apoptosis inhibition and drug resistance (6, 7). TANs

were found to have tumour-promoting effects in the lung TME,

leading to unfavorable immunotherapy (IO) outcomes (8). Higher

mast cell levels in TME were associated with higher PD-L1

expression (9) indicating potential impact on immune checkpoint

inhibitor (ICI) efficacy. Increased CD4+ helper T-cells have been

postulated to improve IO outcomes through enhancing cytotoxic T-

cell response (10). A previous study has shown that phenotypically

defined T-cell subsets, rather than overall T-cells, may be useful in

predicting therapy outcomes (11).

While traditional immunohistochemistry (IHC) and

hematoxylin and eosin (H&E) tissue staining have been used

routinely for tumour diagnosis, their low-content limits

usefulness in TME analysis. On the other hand, high-throughput

technologies such as single-cell RNA-sequencing (scRNAseq) and

flow cytometry, despite allowing for high-content molecular

profiling, they lose spatial information during tissue dissociation.

Additionally, experimental tissue dissociation may result in

unexpected cell phenotypic alterations unrepresentative of the

actual TME. To address these issues, novel tissue-based spatial

omics approaches have recently been developed (12). These

advanced spatial techniques enable deep phenotyping, such as

distinguishing M1- from M2-polarized macrophages (13) and

mature from immature myeloid cells (14), which cannot be

achieved with IHC and H&E alone. Additionally, by conserving

the spatial information, these techniques allows identification of

unique spatial patterns of immune cells in TME with novel

biological significance, such as TAM-associated cellular

neighborhoods with different antitumor characteristics (15),

TMEs with various TAN subtypes linked to prognosis and

survival (16), differing states of T cell dysfunction contributing to

tumour propagation (17), and ligand-receptor cell interactions (18)

associated with various prognoses and treatment outcomes (19). In

this review, we will introduce and discuss how state-of-the-art

spatial proteomics (SP), spatial transcriptomics (ST) and the

utilization of artificial intelligence (AI) approaches that can
Frontiers in Oncology 02109
benefit TME analysis (Figure 1). We will also provide our

perspectives on the challenges and future development needed to

advance the field of spatial omics.
SP techniques

In this section, we discuss the two major groups of SP

techniques, namely fluorescent-labelling and metal isotope-

labelling assays (Table 1), which differ in the number of plexing,

throughput, resolution, and cost (39).
Fluorescence-labelling techniques

OPAL-based multiplex IHC (mIHC)/immunofluorescence (IF)

technique allows staining up to 9 markers on a single formalin-

fixed, paraffin-embedded (FFPE) tissue section through tyramide

signal amplification (TSA). It represents one of the most popular SP

techniques for (i) its widely validated consistency against

conventional IHC (40, 41); (ii) autostainer availability,

particularly BondMax (Leica Biosystems, Germany) for staining

consistency (39, 42–45); and (iii) clinical feasibility and usefulness

(46–48). The technique has been widely applied for investigating

the complex TME through enabling accurate and deep cell

phenotyping (e.g., macrophage polarization states, myeloid cell

maturity and immunosuppressivity, and T cell phenotypes) (13),

revealing the spatial heterogeneity of immune cells (49–51), and

characterizing immune localization patterns associated with patient

survivals or treatment outcomes (20). Using proximity analysis,

Feng et al. showed that hampered survival outcomes of oral

squamous cell cancers (SCC) was associated with CD8+ T-cells

surrounded by immunosuppressive FoxP3+ or PD-L1+ cells (52);

Väyrynen et al. showed that CRC patients with mature monocytic

cell (CD14+HLADR+) closer to tumour cells harbored better

survival (14). One disadvantage of OPAL-based mIHC/IF

technique is the possibility of physical steric hindrance caused by

multiple antibodies at a single site, resulting in noisy signals (53).

To enable comprehensive immune profiling, hyper-plex cyclic

mIHC/IF techniques have been developed, including COMET

(Lunaphore, Switzerland) and PhenoCycler (Akoya Biosciences,

USA). COMET provides an automated workflow cycling through

staining, imaging, and elution of 3 markers each time, up to 40

markers in the same tissue section, whereby fluorophores are

directly attached to secondary antibodies without TSA. This

approach not only reduces steric hindrance with lesser markers

per cycle, but also enhances signal stability through reducing

incubation time (i.e., tissue exposure time to harsh reagents).

Using a 40-plex COMET assay, Almeida et al. found that myeloid

and T regulatory cells were spatially restricted in primary lung

cancers (21). Using machine learning (ML), the authors also

identified distinct subsets of myeloid cells within the same TME.

To further reduce the steric hindrance effect, PhenoCylcer

(formerly CODEX) replaces the large molecular secondary

antibodies in the OPAL approach with DNA-conjugated

antibodies tagged to fluorescent reporters, allowing staining of up
frontiersin.org

https://doi.org/10.3389/fonc.2023.1172314
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lee et al. 10.3389/fonc.2023.1172314
to 50 markers (3 per cycle). Applying tensor decomposition, cell-

type differential enrichment and canonical correlation analysis on

PhenoCycler data, Schürch et al. found 9 distinct cellular

neighborhoods associated with survival outcomes which were

conserved across 35 CRC samples (22).
Metal isotope-labelling techniques

Metal-based methods employ stable metal isotopes to replace

the fluorophores (54), where protein expression is measured by

detecting isotope signals using laser scanning or ion beams.

Autofluorescence and background noise can be considerably

reduced with endogenous metals (55). Imaging mass cytometry

(IMC) (Standard BioTools, USA) uses high-resolution scanning

laser ablation (a fixed lateral resolution of 1,000nm) followed by

mass cytometry to quantify up to 50 markers at subcellular

resolution using fresh frozen (FF)/FFPE tissues (56–58). Using

37-plex IMC, Ali et al. identified heterotypic neighborhoods of a

specific myofibroblast phenotype which was associated with poor

outcomes in breast cancer (BC) (23).

Another metal-based method, multiplexed ion beam imaging

(MIBI) (Ionpath, USA) uses a tuneable ion beam voltage and mass

spectrometry to detect molecules of interest (24), analyzing up to

100 markers at subcellular resolution using FF/FFPE tissues (25, 59,

60). Ptacek et al. validated the robustness, sensitivity, and

reproducibility of MIBI against individual IHC stains (24), while

Angelo et al. and Rost et al. tested the consistency of MIBI against

IHC procedures for estrogen receptor alpha, progesterone receptor
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and human epidermal growth factor receptor 2 using FFPE BC

samples (60, 61). ML techniques have been extensively used in these

MIBI studies for rapid exploration and analysis of data for novel

discoveries. For examples, Keren et al. developed a computational

pipeline to chart the immune landscape in triple-negative breast

cancer. In their pipeline, they employed multiple ML techniques

such as DeepCell for cell segmentation, k-nearest neighbor

algorithm for noise filtering, quantile normalization for batch

effects correction, and hierarchical clustering to identify unique

and shared spatial interactions among patients (25). Padmanabhan

et al. built multiple DL models for segmentation of cells and regions,

and for cell classification. A containerized cluster platform that can

run a workflow comprising of pre-trained DL models as directed

acyclic graph has been used to accelerate the discovery of

associations and spatial patters in TME (26). Authors in (23, 60)

used CellProfiler, an image analysis tool encompassing number of

ML algorithms such as random forest, principal component

analysis, and neural networks (NN) to understand phenotypic

impact of genomic alterations and to gain new insights from the

combination of tissue microarchitecture with multiplexed protein

expression patterns, respectively.
ST techniques

ST methods can be broadly categorized into next-generation

sequencing (NGS)-based and imaging-based methods, measuring

either near whole-transcriptome at multi-cell (10s to hundreds)

resolution or selected genes at subcellular spatial resolution. NGS-
A B C

FIGURE 1

Simplified graphical representations of the three key spatial omics technologies, namely (A) spatial proteomics assays for in-situ single-cell
phenotyping using surface marker; (B) H&E staining for histomorphological assessment, and (C) spatial transcriptomics for in-situ transcriptomics
characterization, and representative TME analyses enabled by AI bioinformatics.
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TABLE 1 Summary of SP and ST techniques as well as their associated applications in TME analysis.

Technique Detection Vendor Profiling
technology

Plexing Tissue
Type

Companion
analytical
software

Key TME applications

Opal-based
multiplex

IHC

Proteins Akoya
Biosciences

Fluorescence-
labelling
reagent kits

9 FFPE InForm Deep phenotyping of macrophage polarization
state, myeloids, T-cell subsets (15) in CRC (14)
and pancreatic cancers (20).

COMET Proteins Lunaphore Cyclic
fluorescence
labelling
platform

40 FF/
FFPE

Phenoplex Identification of spatially restricted myeloid and T
regulatory cells in primary lung cancers (21)

PhenoCylcer Proteins Akoya
Biosciences

Cyclic
fluorescence
labelling
platform

50 FF/
FFPE

PhenoCycler
MAV software

Identification of distinct cellular neighbourhoods
with survival association in CRC (22)

IMC Proteins Standard
BioTools

Metal-based
labelling

50 FF/
FFPE

Phenoplex Study of heterotypic neighbourhoods of a specific
myofibroblast phenotype in breast cancer (23)

MIBI Proteins Ionpath Metal isotope-
labelling

100 FF/
FFPE

MIBItracker
Software

Study of the spatial organization and immuno
profile of 15 tumor types, revealing infiltration of
CD8+ cytotoxic T cells and CD68+ macrophages
in ovarian serous carcinoma TME (24); spatial
enrichment analysis revealed that tumors were
immune mixed and compartmentalized with
varying expression of PD1, PD-L1, and IDO on a
cell-type and location-specific basis, where highly
ordered structures with PD-L1 and IDO along the
tumor-immune border served as a hallmark of
tumor compartmentalization in a triple-negative
breast cancer patients (25).

Visium RNA 10X
Genomics

NGS 18000 FF/
FFPE

Spaceranger,
Loupe browser

Identification of enrichment of B-cell maturation
and anti-tumorigenic antibody production within
TLS+ compartment and positive association with
clinical outcomes of renal cell carcinoma (26);
study of long-term effects of SARS-CoV-2 in
hepatocellular carcinoma and CRC, revealing
persistent B-cell immune responses and improved
in-silico IO-response scores in SARS-CoV-2-rich
tissue regions (27).

GeoMx DSP Proteins/
RNA

nanoString NGS 100+
(proteins)/
18000+ (RNA)

FF/
FFPE

GeoMx DSP
online suite,
GeoMx tools (R
package)

Study of the association between CD66b
expression within the CD45+CD68 compartment
and ICI resistance, which however, not observed
in ICI-untreated lung cancer patients (28);
characterization of 4 molecularly unique
compartments: tumor, leukocyte, macrophage, and
immune stroma where different biomarkers in
specific compartments show improved survivals in
heck and neck SCC (29)

Slide-Seq/
Seeker

RNA Curio
Bioscience

NGS whole-
transcriptome

FF – Identification of cellular neighbourhood
archetypes associated with tumour progression
and malignancy (30); spatial TCR clonotypic effect
of IO treatment in metastatic lung cancer (31)

Stereo-seq RNA Beijing
Genomic
Institute

NGS whole
transcriptome

FF/
FFPE

Stereo-seq
Analysis
Workflow
(SAW) software
suite

Study of hepatocellular carcinoma shows that
elevated expressions of Serum Amyloid A
observed in hepatocytes located near invasive
fronts of the tumor were linked to increased
macrophage recruitment, and were associated with
a negative prognosis in intrahepatic
cholangiocarcinoma (32); study of CRC tissue
identified locoregional “warmed-up” immune
response in predefined “cold” tumor where the
"warmed-up" signature genes were found to be
indicative of improved overall survival in patients
with CRC (33).

(Continued)
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based methods acquire spatial transcriptomic data by attaching and

sequencing unique barcodes to cell subsets in designated tissue

areas such as a lattice of evenly spaced spots, user-marked regions,

or marker-stained regions. This untargeted nature of NGS based

methods make them suitable for exploratory studies (62). Imaging-

based methods quantify transcripts in-situ through direct imaging

of fluorescence dyes of the nucleic acid bases (termed in-situ

sequencing) or the target-specific/bound fluorophore (termed in-

situ hybridization (ISH)).
NGS-based ST techniques

Visium Spatial Gene Expression (10x Genomics, USA) enables

genome-wide ST profiling of FF/FFPE tissues. The slide capture

area (6.5mm2) contains ~5,000 spots, each with a 55 mm diameter.

Using Visium, Meylan et al. examined the B-cell response within

intratumoral tertiary lymphoid structures (TLS) in renal cell

carcinoma, and found positive clinical outcomes associated with

intratumoral TLS+ regions enriched with B-cell maturation and

anti-tumorigenic antibody production (26); Lau et al. examined the

long-term effects of SARS-CoV-2 in hepatocellular carcinoma and

CRC, revealing persistent B-cell immune responses and improved

in-silico IO-response scores in SARS-CoV-2-rich tissue regions

(27). Another genome-wide ST method, Slide-seq (Applied

Biotechnology Laboratory, UK), offers higher resolution (10 µm)

read-outs with a comparable capture area (in mm-range), but is

limited to FF tissues (30, 63, 64). Using Slide-seq, Avraham-Davidi
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et al. revealed three distinct cellular neighborhood archetypes

associated with tumour progression and malignancy (30). Liu

et al. further developed Slide-T cell receptor (TCR)-seq and

identified 1,132 unique clonotypes, some localized in restricted

tissue compartments in metastatic lung cancer post anti-PD-1

therapy, revealing spatial clonotypic effect of IO treatment (31).

GeoMx digital spatial profiler (DSP) (Nanostring, USA) is

capable of simultaneous ST (thousands to tens of thousands of

genes) and SP (1 nuclear and 3 surface markers) profiling of FF/

FFPE tissues of up to 36.2mm x 14.6mm in size (65). RNAs and

proteins are quantified through oligonucleotide tagging (with RNA

probes or antibodies, respectively), photocleaving, and sequencing.

DSP studies showed that higher lymphoid infiltrates and T-cell

clonality in the TME were associated with improved IC efficacy (66,

67); CD66b expression in the CD45+CD68 molecular compartment

was linked to IO therapy resistance in lung cancers (28); B2M and

CD25 levels in tumour and CD11c in stroma were correlated with

prolonged survival in head and neck SCC (29).

To address key shortfalls of the abovementioned ST methods

(i.e., the lack of single-cell resolution read-outs), Stereo-seq (BGI,

China) offers unbiased whole-transcriptomic profiling at subcellular

resolution with a maximum 1 cm2 capture area on FF/FFPE tissues.

Using Stereo-seq, Wu et al. showed that poorer prognoses of

intrahepatic cholangiocarcinoma and hepatocellular carcinoma

were associated with tumour boundaries enriched with damaged

hepatocytes, or serum amyloid A overexpression in invasive fronts

(32); Zhang et al. found a locoregional immune “warmed-up”

phenotype with enhanced cytokine secretion and upregulated

MHC-II expression in a predefined “cold” tumour of colorectal
TABLE 1 Continued

Technique Detection Vendor Profiling
technology

Plexing Tissue
Type

Companion
analytical
software

Key TME applications

MERFISH/
MERSCOPE

RNA Vizgen Imaging ~10,000 FF/
FFPE

– Identification of a shift in immune spatial
organization between tumour subtypes, namely
human mismatch repair deficient and proficient
tumours (34)

CosMx Proteins/
RNA

nanoString Imaging 100/
1000+

FF/
FFPE

AtoMx Spatial
Informatics
Platform

Quantification of proteins in NSCLC and BC
tissues down to subcellular resolution for the
identification of different cell types, unique TMEs,
and ligand-receptor pairs (35); Study of
relationships between high-dimensional cellular
heterogeneity and spatial organization of cells
within renal cell carcinoma tissues (36)

Xenium RNA 10X
Genomics

Imaging 280 and
100 more
customizable
targets; the
non-destructive
nature allows
post-Xenium
H&E and IF
staining on the
same section
rendering
additional SP
and histological
information

FF/
FFPE

Xenium
Explorer

Identification of novel markers at subcellular level
responsible for the transition between ductal
carcinoma in situ (DCIS) and invasive cancer of
human breast tissues where the myoepthelial layer
is broken (37); identification and interrogation of
the cellular composition and differentially
expressed genes among the 3 molecular subtypes
of BC (low, high-grade DCIS, and invasive cancer)
through integrating Xenium with H&E and IF
data (38).
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adenocarcinoma (33). A major challenge with Stereo-seq analysis

lies with assigning pixel-level signals to individual cells (32).
Imaging-based techniques

Multiplex error robust fluorescence in situ hybridization

(MERFISH) (Vizgen, UK) uses a combinatorial barcoding

approach and sequential rounds of imaging to decode the barcode

and its associated gene expression. The barcoding system confers

error robustness through assigning the erroneous readout to the

nearest correct barcode. MERFISH allows profiling of up to tens of

thousands of RNA species at subcellular resolution, with a

maximum 1 cm2 capture area of FF/FFPE tissues. Using a 450-

gene MERFISH panel, Price et al. reported a shift in immune spatial

organization between the two tumour subtypes i.e., human

mismatch repair deficient and proficient tumors, opening new

avenues for tumour subtype-specific treatment strategies (34).

Two other multi-spatial omics methods, namely CosMx spatial

molecular imaging (SMI) technique and Xenium (higher-resolution

advancement from DSP and Visium, respectively), enable

simultaneous ST and SP profiling of FF/FFPE tissues at

subcellular resolution. CosMx SMI allows up to 1000-plex and

offers 64 validated protein analytes (35, 36). Using CosMx, He et al.

(35) evaluated 980 RNAs and 108 proteins in lung cancer and BC

tissues, identifying over 18 different cell-types, 10 unique TMEs,

and 100 ligand-receptor pairs. While Xenium offers a 280-plex

human breast panel and 248-plex mouse brain panel, with

additional 100 customizable targets. Due to its non-destructive

nature, Xenium allows post-ST H&E staining and IF on the same

section, offering additional SP and histological data. Using Xenium,

Henley et at. revealed that invasive fronts of ductal carcinoma in

situ (DCIS) BC were characterized by disrupted myoepithelial

layers, and low KRT14 expression which were also positive for

progesterone receptor (37); Janesick et al. predicted the hormone

receptor status of three BC subtypes (low-grade and high-grade

DCIS, and invasive carcinoma) whose molecular signatures were

also characterized using whole-transcriptomics Visium on adjacent

tissue sections (38).
AI-enabled TME analysis

Digital pathology

With recent advancements in imaging techniques and

computer vision, DP has greatly emerged as a useful diagnosis

assisting and prediction tool (68), alleviating the high labor cost and

interobserver variability issues faced by conventional microscope-

based approach (69–73). While H&E-stained histomorphology

images remain the main imaging modality in DP, the use of

mIHC/IF to enable subcellular molecular profiling has become

popular (74).

Numerous studies use deep learning (DL) models to augment

DP, greatly advancing TME analysis. DL-based cell segmentation

algorithms, such as Cellpose (75) and Stardist (76), enable
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identification of individual nuclei, facilitating downstream cell

phenotyping. Supervised DL algorithms have been developed to

differentiate benign from malignant cells, and immune from

stromal cells (71, 77–79). These approaches are limited by the

availability of training labels, resulting in the development of

unsupervised approaches (80). Novel AI approaches, such as

Ronteix (81), for investigating cell-to-cell interaction have also

attracted increasing attention. Besides, as image quality and stain

consistency impact the performance of DP studies, several AI

algorithms have been developed for stain normalization through

color deconvolution (82), clustering in the hue-saturation-value

color space for color separation (72) or DL-empowered stain-to-

stain translation (83).
SP analytic methods

SP analysis involves image pre-processing to remove

background or technical noise, cell segmentation, feature

extraction (such as signal intensity, cellular area, and shape), cell

phenotyping and spatial analysis (Supplementary Table 1). While

image pre-processing steps differ across fluorescence-based and

metal-based assays, downstream spatial analysis using extracted

cell-level data are largely similar.

Composite multi-spectral images generated with fluorescence-

based techniques are firstly unmixed whereby the pixel values are

decomposed into the constituent pure spectrum (i.e., protein

markers). Spectral unmixing can be done using software like

inForm (Akoya Biosciences). Similarly, background subtraction

and noise removal are critical steps in pre-processing the multi-

channel images acquired from metal-based techniques; each

channel portraying the abundance of a protein. Moreover,

technique-specific filtering may also be needed – specifically,

aggregate removal in MIBI data to eliminate unwanted effects

from antibody aggregation, and hot pixels filtering to remove

IMC-specific noise (25, 84)

Various cell (or object) segmentation algorithms are deployed

in different image analysis tools. To this end, CellProfiler (85) offers

several classical image processing approaches; whilst Ilastik (86)

offers pixel-based random forest and NN approaches accounting for

texture and context that can better identify cells, where both

methods require user-input labels such as nuclei and background.

Segmentation masks generated by Illastik can serve as the training

labels in CellProfiler. These cell segmentation algorithms have been

integrated into end-to-end SP analysis pipelines, including IMC

Segmentation (87) and its dockerized counterpart, Steinbock (84),

adding on to the built-in DL-based Mesmer method (88). More

generic image analysis tools including QuPath (89) and ImageJ (90)

provides built-in cell segmentation algorithm and allows

customized algorithms such as Stardist (91, 92).

There are currently two main cell phenotyping approaches,

namely user-input thresholding or rule-based approach, and ML-

based supervised approach which require cell label training (93).

Using Halo (Indica Labs), Ozbek et al. (94) built a T-cell classifier

and computed the densities of 8 different T-cell phenotypes in the

tumour epithelial and stromal regions in prostate cancer.
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Furthermore, dedicated tools for proximity analysis, such as SPIAT

(95), HistoCAT (56), imcRtools (84) and Cytomapper (96), have

also been developed. These tools enable inter-cellular distance

computation, touching-cell counts, cel l neighborhood

identification, cell-type mixing score, spatial point pattern

measures (such as K-cross function), spatial heterogeneity (such

as entropy), and immune gradients across tumour margins. Like

many methodology studies, these works largely focused on

demonstrating evident spatial immunological scenarios in

individual cases. For instance, in the SPIAT work, it showed that

tumour cells were closely interacting with CD3+CD4+ and

CD3+CD8+ cells in one prostate cancer sample, while showing

the high levels of SOX10+ tumour cells did not co-exist with the

CD4+ immune cells in another prostate cancer sample. Nonetheless,

HistoCAT study demonstrated a real oncology case wherein it

revealed the enrichment and depletion of cell-cell interactions was

associated with breast cancer development.
ST analytic methods

Several open-source R tools, such as Seurat (97), standR (98),

GeoMxTools (99) and Giotto (100), enable end-to-end ST analysis,

from data preprocessing (read mapping and quality checking),

spatial clustering, spatially variable gene (SVG) identification,

cell-type deconvolution to cell-cell communication. Besides these

tools, various algorithms to enhance the performance of individual

steps have emerged (Supplementary Table 2).

Spatial clustering groups spots (neighboring cells) with similar

transcriptional profile and characterizes unique transcriptomics

niche of the TME (101). These include autoencoder-based

methods [such as STAGATE (102), SEDR (103), MAPLE (104),

and conST (105)], deep convolution neural network (CNN)

methods [such as coSTA (106), RESEPT (107), spaGCN (108),

stLearn (109) and spaCell (110), and probabilistic methods

(BayesSpace (111) and PRECAST (112)]. SVGs are genes with

expression patterns significantly dependent on their spatial

locations in the tissues. These include a neural network (NN)

method called SOMDE (113); regression modelling methods such

as SPARK (114) that uses a generalized linear regression to model

the mean-variance relation of NGS-based or imaging-based ST

data; SpatialDE (115) uses Gaussian process regression model to

decompose gene expression variability into spatial and non-spatial

components, tested on SeqFISH and MERFISH data; scGCO (116)

addresses the key challenge in SVG analysis, i.e., scalability, by

employing a hidden markov random field-based probabilistic graph

model, tested on SeqFISH, MERFISH and, 3D ST data

(STARmap) (117).

Cell-type deconvolution infers cell composition of the multi-cell

ST data, facilitating cell-type specific analysis. These include a

Bayesian modelling method called DestVI (118); methods that

infer spatial cell composition from scRNAseq data such as

CellDART (119) and Tangram (120); a graph-based CNN

method called DSTG (121) which was used to uncover cell states

of pancreatic tumor tissues. On the other hand, the ability of ST to

localize gene expression to specific cell phenotypes in the TME
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allows effective characterization of cellular communication, which is

either through cell-cell direct contact or cell signaling of

neighboring cells (122). Analytic tools developed for cellular

communication include a scalable random forest-based method

called MISTy (123), tested on human BC Visium data; a graph NN

method called NCEM (124), tested onMERFISH, PhenoCylcer, and

MIBI; a graph CNN model based on a curated list of interacting

ligands and receptors, called GCNG (125), tested on SeqFISH

and MERFISH.

Aforementioned methods have been mainly focused on

showcasing specific ST analytic methods. Studies that involve real

oncology use cases are given in (103, 111, 112). In the work of

SEDR, the authors analyzed the role of immune microenvironments

on tumor invasiveness by clustering the TME into pro-

inflammatory and anti-inflammatory regions (103); the authors of

PRECAST revealed distinguished tumor/normal epithelial regions

in hepatocellular cancers that associated with different signaling

pathways, providing higher resolution analysis of the dynamics of

tumorigenesis (112); using BayesSpace, Zhao et al. found that a

higher level of chemokine activity at the tumor border and an

elevated level of metastatic activities at the tumor center that could

aid in clinical analysis of cancer metastasis (111).
Discussion and future perspectives

Significant advancements in spatial omics and computational

techniques have unraveled many previously underappreciated roles

of immune contexture in cancer progression, immune evasion, and

treatment effect, enhancing our understanding of cancer

immunology and helping to pave the way towards precision

medicine through developing novel therapeutic targets and spatial

biomarkers. Increasing evidence show that the phenotypic and

functional states of cells, and thus their anti-tumorigenicity, are

determined collectively by the DNA, RNA, and protein expression

(126–129). Nonetheless, alternative computational solutions for

integrating multiple single-spatial omics data represent a valuable

resource given tremendous data have been generated separately and

available in the public domain. It is also worth to note that recent

development of computational methods for cohort analysis reveals

important clinical implications by associating immune spatial

patterns with treatment response (130, 131).

In our perspective, several challenges in spatial omics need to be

addressed. Firstly, advancement in antibody development,

automated workflow, image scanning quality and speed, and

multi-omics integrative algorithms are needed to enhance

robustness, dimensionality, and spatial resolution. Secondly,

consistent and quality data is a prerequisite for clinical

translation. Several taskforces, such as the Society for

Immunotherapy of Cancer (132) and the Joint Effort to Develop

Multiplex Immunofluorescence Standards (133), gather

international efforts to standardize the workflow of OPAL-based

assays, with similar efforts needed for other spatial omics

techniques. Thirdly, existing computational tools often require

extensive user inputs, such as number of clusters or neighbors,

and distance threshold, which hinders adoption. Finally, effective
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cross-spatial-modality data integration and results interpretation

for comprehensive understanding of the biological system remains

challenging, largely due to the variations in image format, scanning

techniques, sample handling as well as the demanding

requirement of computing power and data storage. When these

challenges are addressed, robust, affordable, and insightful spatial

TME studies may then be possible in helping advancing precision

cancer immunology.
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Breast cancer is a highly heterogeneous disease, at both inter- and intra-tumor

levels, and this heterogeneity is a crucial determinant of malignant progression

and response to treatments. In addition to genetic diversity and plasticity of

cancer cells, the tumor microenvironment contributes to tumor heterogeneity

shaping the physical and biological surroundings of the tumor. The activity of

certain types of immune, endothelial or mesenchymal cells in the

microenvironment can change the effectiveness of cancer therapies via a

plethora of different mechanisms. Therefore, deciphering the interactions

between the distinct cell types, their spatial organization and their specific

contribution to tumor growth and drug sensitivity is still a major challenge.

Dissecting intra-tumor heterogeneity is currently an urgent need to better define

breast cancer biology and to develop therapeutic strategies targeting the

microenvironment as helpful tools for combined and personalized treatment.

In this review, we analyze the mechanisms by which the tumor

microenvironment affects the characteristics of tumor heterogeneity that

ultimately result in drug resistance, and we outline state of the art preclinical

models and emerging technologies that will be instrumental in unraveling the

impact of the tumor microenvironment on resistance to therapies.

KEYWORDS

tumor microenvironment, cancer heterogenicity, drug resistance, molecular
mechanisms, breast cancer
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1 Introduction

Breast cancer (BC) is the second leading cause of cancer death

in women. Data fromWHO (World Health Organization) reported

about 2.3 million new cases and about 685,000 deaths from BC

globally (1). Similarly, American Cancer Society’s projections for

BC incidence in the United States in 2023 (https://www.cancer.org/

cancer/breast-cancer/about/how-common-is-breast-cancer.html),

estimate about 297,790 new cases of invasive BC in women, about

55,720 new diagnosis of ductal carcinoma in situ (DCIS), and about

43,700 death from this disease. The same statistics indicate for 2023

more than 3.8 million BC survivors in the United States, and 7.8

million worldwide, including both patients currently being treated

and making this type of cancer the most prevalent worldwide. The

median age at the time of diagnosis is 62 years and a woman’s

lifetime risk of acquiring breast cancer in the United States is

around 13%, with incidence rates rising by 0.5% annually in

recent years. Currently, a woman’s chance of dying from BC is

around 2.5%, death rates have been decreased due to improved

therapeutic regimens, as well as earlier BC detection through

screening programs and increased awareness. However, in recent

years, the trend has marginally halted.

The breast cancer mass is composed not only by epithelial

cancer cells, but also by a plethora of heterogeneous populations

coming from the host, including endothelial cells, stromal

fibroblasts, and a variety of immune cells that form the so-called

tumor microenvironment (TME) (2, 3). The TME is a highly

complex biological community embedded in a composite matrix

of structural proteins constituting the extracellular matrix (ECM),

i n wh i c h immun e c e l l s ( i n c l ud i n g ma c r oph a g e s ,

polymorphonuclear cells, mast cells, natural killer cells, dendritic

cells (DCs), and T and B lymphocytes) and non-immune cells (such

as endothelial cells and stromal cells) establish subtle interactions

with cancer cells. This cellular cross-talk is based on the production

of specific soluble (growth factors and cytokines) and insoluble

(ECM proteins) molecules, and it determines the tumor’s

natural history.

BC comprises numerous subtypes that differ genetically,

pathologically, and clinically. Indeed, it is currently considered a

group of neoplasms originating from mammary gland epithelial

cells caused by a variety of genetic alterations, with different disease

courses, responses to treatments, and clinical outcomes. This was

best exemplified by next-generation sequencing studies depicting

comprehensive molecular BC portraits in Cancer Genome Atlas (4,

5) and identifying more than 1600 likely driver mutations in 93 BC

genes (6). BC can have distinct molecular profiles from one another,

leading to a complex heterogeneity of tumor cell subpopulations

within single tumors, between primary tumors and their metastasis,

or between independent metastasis, as a consequence of tumor

clonal evolution (7, 8). In addition to clonal evolution, tumor

heterogeneity can occur also at the level of cancer cell plasticity.

The capability of BC cells to reprogram their gene expression and

change their behavior when triggered by internal or external stimuli

coming from surrounding cells and secreted factors, provides

dynamic and context-dependent features to tumor heterogeneity

(9, 10). Moreover, heterogeneity is also modulated by the different
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composition of the TME, with different ratio between tumor-

infiltrating lymphocytes, myeloid cells, macrophages (3), with the

increased presence of cancer-associated fibroblasts (CAFs) (11) and

endothelial cells that controls cancer cell properties. The

heterogeneity in components of the BC mass can be either

observed between the different BC subtypes, known as inter-

tumor heterogeneity, or within the same tumors, known as intra-

tumor heterogeneity (12).

Therapeutic approaches are still currently largely based on

clinical and pathological BC features, mostly on the presence or

absence of targets like the hormone receptors or the Human

Epidermal growth factor Receptor 2 (HER2) (13), and they are

not yet tailored to individual patients. In particular, endocrine

therapy is expected for hormone-dependent BC patients, targeted

therapy with monoclonal antibodies for HER2-positive patients,

and chemotherapy for TNBC patients. However, the different

mechanisms that contribute to the inter- and intra-tumor

heterogeneity are responsible for tumor escape from

therapeutic interventions.

Drug resistance is among the major obstacles to reach a long-

term cure, and overcoming this problem is the biggest challenge in

BC research today. Indeed, the heterogeneous pattern of molecular

aberrations found in each cancer plays a crucial role in the

resistance to anticancer treatment (14–16). The goal of cancer

therapy is to target a population of cancer cells within a

particular host environment. The pharmacological properties of

the therapy, together with intrinsic and acquired molecular features

of cancer cells, controlled also by the TME components, dictate the

therapy’s efficacy. Unfortunately, despite the clinical management

of BC improving every day, the number of patients developing

drug-resistant tumors is still high (17). The resistance can be already

present before the treatment (innate) or appear after the treatment

administration (acquired) (18–20). The innate resistance is mainly

due to intrinsic tumor heterogeneity: in primary cancer one or more

subpopulations (e.g., Cancer Stem Cells) are resistant to the

treatments from the beginning; on the contrary, the acquired

resistance becomes evident after the therapy. In the clinical

setting, innate and acquired resistance may coexist, making the

long-term fight against cancer more complex.

In BC, standard chemotherapies and targeted therapies have

both been extensively correlated to the escape of tumor cells that

shape the clonal evolution of tumors, giving rise to drug-resistant

subclones (21–23). Moreover, a comparison of the genetic diversity

between pre- and post-treatment in tumor specimens indicates the

role of therapy in selectively expanding resistant cancer clones that

were initially present but at low frequency (14). In this context,

TME cells play an important role in mediating the drug response

and educating the cancer cells to become resistant to the therapy

through extensive molecular crosstalk that we will discuss below

(24–26).

We will first describe here what is currently known regarding

inter-tumor and intra-tumor heterogeneity and the impact of TME

on cancer progression and drug resistance. Moreover we will

discuss the up-to-date tools for studying these complex

interactions in preclinical models and in patient derived samples

in cancer progression and drug resistance. We will present
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emerging technologies, such as the spatial location of tumor

subclones and TME cells within their native spatial context. We

will show how the rapid growth of these techniques together with

the multi-omics conjoint analysis mode and deep learning network

architecture, promise to provide a more comprehensive

understanding of cell-to-cell variation within and between

individual tumors.
2 Heterogeneity in breast cancer

2.1 Inter-tumor heterogeneity

Surgeons and pathologists have long reported BC heterogeneity,

and its classification system has been continuously updated as

knowledge of cancer cell biology increases (27–29). To be

exploited as a prognostic factor (to estimate disease outcome of

newly diagnosed patients) and predictive factor (to predict response

to specific treatment), the classification system has been integrated

with information on patient treatments and survival. Classical

histopathologic evaluation distinguished preinvasive (in situ) and

invasive BC based on their morphology and structural organization,

classifying the vast majority of tumors as invasive ductal carcinoma

not otherwise specified (IDC NOS, 75%), invasive lobular

carcinoma (ILC, 15%) and other special subtypes of BC, rare and

significantly different in terms of prognosis and response to

treatment (30).

Immunohistopathologic classification, based on the expression/

absence of Estrogen Receptor (ER), Progesterone Receptor (PR), or

receptor tyrosine kinase HER2, allowed the definition of the major

BC subtypes (Figure 1). This classification has strong prognostic

and predictive significance, and it is critical together with grade and
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stage in the selection of targeted therapeutic options for every

patient (31). The expression of these biomarkers is highly variable

between tumors, with ER/PR positive cells ranging from 1 to 100

percent, where a frequency of stained cells higher than 1% in tumor

biopsy is considered a cutoff for ER/PR positivity. In addition, HER2

expression is heterogeneous, and its positivity is accompanied by a

score that integrates the percentage of positive cells, staining

intensity, and membrane distribution (31). The concomitant lack

of ER, PR, and HER2 defines Triple- Negative Breast Cancer

(TNBC), a subtype that comprises 15-20% of all BC, highly

prevalent in women younger than 40, Black, or with BRCA1 gene

mutation, and represents the most challenging BC to be treated.

Molecular characterization of BC, based on gene expression

profiling (32) and the definition of distinct transcriptional

signatures, provided intrinsic molecular subtypes that partially

recapitulated the histological classification (33): 1. luminal A (ER-

positive/PR-positive, enriched in genes regulated by ER signaling

pathway), 2. luminal B (ER-positive/PR-negative, HER2-positive or

negative, enriched in genes regulated by ER signaling pathway and

proliferation-associated genes), 3. HER2 enriched (HER2-positive,

HER2-related gene expression, ER and PR-positive, and ER and PR-

negative), 4. Basal-like (enrichment for genes expressed in basal

epithelial cells, 70% of them are TNBC), 5. Claudin low (stem-like

and Epithelial-to-Mesenchymal Transition-like signatures, mainly

TNBC) (34). Contributing to heterogeneity, several genes are

mutated, amplified, or deleted in various subtypes of BC and can

be considered as drivers, the top 10 most frequent being: TP53,

PIK3CA, MYC, CCND1, PTEN, ERBB2, ZNF703/FGFR1 locus,

GATA3, RB1 and MAP3K1 (6). BRCA1 and BRCA2 germline or

somatic inactivating mutations, as well as methylation of the

BRCA1 promoter, also represent driver mutations for BC, usually

associated with many genomic rearrangements. These different
FIGURE 1

Inter-tumoral and intra-tumoral heterogeneity. BC is subdivided in three major subtypes based with inter-tumoral heterogeneity, on the expression
of hormone receptor (HR-positive, HR+), HER2 receptor (HER2-positive, HER2+) or their complete absence (TNBC, basal like/claudin low). A strong
heterogeneity inside each of these subtypes (the Intra-Tumoral Heterogeneity) is caused mainly by clonal evolution, cell plasticity (in terms of
transition between Epithelial and Mesenchimal and/or Cancer Stem Cells and non-Cancer Stem Cells), and tumor microenvironment. Created with
BioRender.com.
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transforming events can originate in different cells of the mammary

gland, and the differentiation state of these cells-of-origin plays a

role in the determination of the tumor phenotype (31, 35, 36).

Moreover, alterations in the expression of BC key genes have been

reported as associated with epigenetic changes in DNA methylation

and histone modifications, providing a further source of

heterogeneity (30).

The metastatic progression of BC reflects its heterogeneous

nature, with metastases to regional lymph nodes and in different

distant organs such as bone, liver, lung, and brain. Association of

molecular BC subtypes and metastatic sites has been reported with

an increased frequency of brain metastases in the basal-like subtype,

while showing bone metastases in luminal A and B subtypes and

soft tissue metastases in the ER-negative subtype. It is well accepted

that metastases originate from subsets of cells within the primary

lesion, and the “seed and soil” model suggests that metastasizing

cells may find in different organs the local microenvironment (the

so-called niche) that favors their growth, generating secondary

lesions that are the results of complex context-dependent

interactions (30, 37).
2.2 Intra-tumor heterogeneity

Beside the differences found between tumors in different patients,

distinct tumor cell populations, with different molecular and

phenotypic profiles have been clearly described within the same

tumor specimen, adding a further level of complexity to BC biology.

Here we will focus on clonal evolution and cell plasticity as sources of

intra-tumor heterogeneity (Figure 1).

2.2.1 Genetic diversity of cell subpopulations:
clonal evolution

Tumor initiation and progression rely on stochastic mutational

events that ultimately lead mutated cells to acquire advantageous

properties in terms of cell proliferation, resistance to cell death, and

resistance to therapy. Tumors are generally thought to originate from

a single cell, in which genetic driver alterations are followed by the

acquisition of genomic instability, generating spontaneous mutations

that can confer competitive advantages and driving the evolution of

subclones with different functional features (6, 38). As described in (8,

10, 39), tumor subclones can derive from the selective pressure of

therapy and can acquire drug resistance through i) the selection of rare

pre-existing subclones that are able to expand or ii) the presence of

new genomic/transcriptomic/epigenetic aberrations contributing to

the drug-resistant phenotype (40). However, the resistance can be pre-

existing in a large majority of the cells, and therefore the therapy does

not impact the frequency of subclones (10). Relapsed or metastatic BC

largely share the vast majority of their genomic alterations with the

corresponding primary disease indicating pre-existing resistant clones.

However, many metastatic cancers also harbor additional mutations

that were previously undetected or are subclonal in the primary

disease (8, 41).

From clonal evolution emerges the concept of temporal

heterogeneity that indicates that tumor composition constantly
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changes over time. Tumors are the result of constantly ongoing

competition between subclones under the selective pressure exerted

by other clones, TME interactions, and therapies (42–44). The

spatial distribution of the different clones is an additional source

of heterogeneity; indeed, multiple biopsies from primary BC

showed a locally constrained expansion of subclones, implicating

their clonal evolutionary outgrowth and suggesting that sampling of

a particular tumor’s area can be misleading in its molecular

characterization (9).

2.2.2 Cell plasticity: cancer stem cells and EMT
The genetic information encoded in cells’ nuclei is far from

representing the only determinant of their complex behaviors;

indeed, regulation of gene expression in response to intrinsic

signaling pathways and extracellular stimuli from the TME

strongly dictate tumor cells’ phenotype.

For a long time, mammary tumors have been considered a

hierarchical model, with some rare cells capable of self-renewing,

the Cancer Stem Cells (CSCs), relatively quiescent and resistant to

treatments at the top of the hierarchy, and a vast majority rapidly

dividing non-CSCs (45). According to this model, only CSCs, due to

their intrinsic properties, can give origin to new tumors, including

metastasis and relapse, and by asymmetric division to all the

heterogeneous cell types found in a tumor. These non-CSCs are

rapidly proliferating but poorly tumorigenic, incapable of self-

renewal, and intended to differentiate (46). As in many other cancer

types, lineage tracing experiments revealed cell plasticity in BC,

showing that in the mouse mammary tumor virus-polyoma middle

tumor-antigen (MMTV-PyMT) mouse model of mammary tumor

(see below), some CSCs can disappear and new CSCs can form,

demonstrating that stem cell state is plastic and cells can dynamically

transit between CSCs and non-CSCs (47). Tumor cells of different

phenotypic states coexist and evolve within the same tumor leading to

cell subpopulations with different functional properties. Indeed, cell

subpopulations showing stem cell-, basal- or luminal-like features

isolated from BC cell lines are capable of generating functionally

competent cells of all three phenotypes in a stochastic manner.

Interestingly, under specific environmental stimuli, all three

subpopulations efficiently seeded tumors in xenografts models,

showing the tumorigenic phenotype classically ascribed to CSCs

(48). In BC, a CSC-like phenotype can be acquired by cancer cells

upon the activation of the so-called Epithelial-to-Mesenchymal

Transition (EMT), a transient developmental program that leads to

the de-differentiation of tumor cells with the acquisition of

mesenchymal features. During EMT, cell-cell contacts between

epithelial cells are lost, and cancer cells acquire a migratory and

invasive phenotype, which can be reverted to more epithelial states via

Mesenchymal-to-Epithelial Transition (MET). EMT is emerging as a

heterogeneous range of differentiation states rather than a binary

process; indeed, distinct intermediate states have been described in

BC, with similar tumor-initiating capabilities but different plasticity

and invasive potential (49, 50). The plasticity described between

various differentiation states is not exclusively intrinsic to cancer

cells but is also sustained by signaling from the TME surrounding

CSCs and is defined as the CSC niche. Interestingly, CSC themselves
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can reprogram stromal cells to further sustain their activity, not only

in the primary tumors but also in distant organs, eventually priming

them for metastatic colonization. Indeed, it has been shown that BC

circulating cells can reach nearly every organ, but tissue-specific

microenvironments play a differential role in their engraftment and

generation of metastases (51).
3 Cellular components of the
tumor microenvironment

We will briefly introduce the main cellular components of TME

cells, such as Type 2 Tumor-Associated Macrophages (M2-TAMs),

Myeloid-Derived Suppressor Cells (MDSCs), Cancer-associated

Fibroblasts (CAFs) and Tumor Endothelial Cells (TECs)

((Figures 1, 2) (3, 11, 52–54).
3.1 Type 2-tumor associated
macrophages M2-TAM

Tumor Associated Macrophages (TAMs) are an important and

abundant immune component in the BC microenvironment. They

mainly derive from circulating monocytes that reach the primary

site, influencing several aspects of the tumor progression (53).

Generally, TAMs have been classified as M1, with anti-tumor

activity, or M2, with tumor sustaining roles.
3.2 Myeloid-derived suppressor cells

MDSCs are immature heterogeneous cells belonging to the

myeloid family. Generally, they are subdivided into two main
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groups: polymorphonuclear (PMN) and monocytic (Mo) MDSC.

The first population is characterized by the CD11b+Ly-6G+Ly-

6Clow phenotype and the expression of high levels of arginase-1

(Arg-1). The second one is identified by the expression of

CD11b+Ly-6GlowLy-6Chi surface markers (55). As underlined by

their name, the main feature of MDSCs is immunosuppression. In

cancer, several soluble molecules, such as such as for example

granulocytic-colony stimulating factor (G-CSF), C-X-C

chemokine ligand (CXCL)2, CC-chemokine ligand (CCL)2,

CCL5, CXCL5, and CXCL12 secreted by the tumor cause the

block of myeloid differentiation, affecting their mobilization from

the bone marrow and infiltration into the primary and secondary

tumors (3). G-CSFAs underlined by their name, the main feature of

MDSCs is immunosuppression. We recently described the ability of

the adaptor protein p140Cap to counteract the mobilization and

intratumor accumulation of polymorphonuclear myeloid-derived

suppressive cells (PMN-MDSC), to prevent the establishment of a

tumor conducive immune environment (56). (Salemme et al., 2023

in press).
3.3 Cancer-associated fibroblasts

Within BC TME, CAFs are a highly abundant and

heterogeneous cell population belonging to the mesenchymal

lineage. CAFs actively contribute to cancer progression via the

production and remodeling of extracellular matrix components,

secreted factors, and exosomes, influencing tumor growth and

progression, angiogenesis, immune responses, and drug resistance

(57) both in primary and metastatic lesions. Several hypotheses co-

exist regarding CAFs’ origin, ranging from recruitment of bone

marrow or adipose tissue-derived mesenchymal stem cells, EMT of

tumor cells, activation of tissue-resident fibroblasts, to the trans-
FIGURE 2

TME cellular components and drug resistance. We summarize here some molecular mechanisms through which TME cells, in particular Type 2
Tumor-Associated Macrophages (M2-TAMs), Myeloid-Derived Suppressor Cells (MDSCs), Cancer-associated Fibroblasts (CAFs) and Tumor
Endothelial Cells (TECs) are able to induce drug resistance. Created with BioRender.com.
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differentiation of endothelial cells. CAFs are also heterogeneous

from the functional point of view, with a plethora of evidence

showing their pro-tumorigenic effects (58) and some suggesting

their tumor-constraining role in the early phases of tumorigenesis

(59, 60). Limitation to our understanding of CAFs’ biology in BC

derives from the lack of specific surface markers to identify and

functionally characterize this heterogeneous cell type. Morphology

is still the most consistent manner to distinguish CAFs within the

TME, as commonly used biomarkers, such as a-smooth muscle

actin (SMA), fibroblast-specific protein 1 (FSP-1/S100A4), or

fibroblast activation protein (FAP), are neither all-encompassing

nor completely specific, suggesting that CAFs include several

subtypes of cells.
3.4 Tumor endothelial cells

The endothelium is a key component of the TME. Endothelial

cells (ECs) play a role in regulating the exchanges between the

bloodstream and the tissues. In pathological conditions, such as

cancer, the TECs show a distinct phenotype at the molecular,

structural, and functional levels. In particular, the vasculature

becomes irregular, excessively fenestrated, and loose intercellular

junctions, contributing in this way also to tumor growth,

proliferation, dissemination, and metastasis (54).
4 TME mediated drug resistance

Overall, the cellular components of the TME engage in dynamic

and extensive cross-talks based on both cell-cell interactions and

paracrine signaling between each other and with the cancer cells,

ultimately contributing to drug resistance with many mechanisms,

some of which will be underlined below.
4.1 Type 2-tumor associated macrophages

TAMs protect cancer cells from drug attacks through the

secretion into TME of numerous soluble factors, including

enzymes, exosomes, interleukins, and chemokines. Shree et al.

found that macrophages expressing cathepsin B and S protected

BC cells against paclitaxel-induced cell death. Indeed, the combined

administration of paclitaxel and cathepsin inhibitors can effectively

enhance the therapeutic response (61).

Moreover, in BC, the treatment with cyclopamine, a known

Hedgehog pathway inhibitor, increases the infiltration of M2-TAMs

that, in turn, can limit the efficacy of chemotherapy by secreting

Interleukin-6 (IL-6) (62). Interestingly, neutralizing antibodies

directed against TAMs-derived Interleukin-10 (IL-10)

significantly enhance the sensitivity of BC cells due to the

reported relationship between the IL-10/STAT3/Bcl-2 signaling

pathway and the BC cell resistance to paclitaxel treatment (63).

As a positive feedback loop between M2-TAMs and BC cells,

the TAM-mediated secretion of the chemokine CCL2 contributes to

the activation of the PI3K/Akt/mTOR pathway in BC cells,
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increasing their resistance to the anti-estrogen tamoxifen

treatment. In contrast, tamoxifen-resistant BC cells secrete Tumor

Necrosis Factor alpha (TNF-a), activate mTORC1-FOXK1, and

promote TAMsM2 polarization that, in turn, secrete a high amount

of CCL2 (64).

Another example of how TAMs are able to induce drug

resistance is provided by Niu X. et al., reporting that the M2-

TAMs activate the EGFR/PI3K/Akt pathway and, consequently, the

sodium/glucose cotransporter 1 (SGLT1) expression to promote

tamoxifen resistance in ER-positive BC cells (65).

Moreover, M2-TAMs, by secreting a variety of cytokines such as

basic Fibroblast Growth Factor (bFGF), Interleukin-2 (IL-2), IL-6,

TNF-a, prostaglandin 2 (PGE2) can trigger increased aromatase

activity and estrogen production (66–68). TAMs could mediate

doxorubicin and paclitaxel chemotherapy resistance through the

secretion of high levels of IL-10 and activation of IL-10/IL-10

receptor/STAT3/Bcl-2 signaling pathway in TNBC cells (63, 69).

In addition, in BC, resistance to carboplatin chemotherapy is related

to M2-TAMs. Interestingly, in the study, the authors described that

macrophages in the bone marrow stroma contribute to BC cell

dormancy, leading to a CSC behavior. M2-TAMs and CSCs form

intercellular gap junction communication, which is responsible for

carboplatin resistance (70).

Several articles identify the M2-TAMs’ involvement also in

resistance against targeted therapy. Ahmed S. et al. showed that,

by secreting Interleukin-8 (IL-8), the TAMs activate Src/STAT3/

ERK1/2-mediated EGFR signaling in BC cells, contributing to the

resistance of HER2-positive BC to the small drug HER2 inhibitor

lapatinib (71). Hu et al. described another interesting mechanism in

which TAMs, after neoadjuvant treatment with the anti-HER2

humanized antibody trastuzumab, develop an immunosuppressive

phenotype, upregulating B7-H4, a member of the B7 family of T cell

costimulatory molecules, and causing the immune escape of HER2-

positive BC cells (72). This TAMs’ “evolution” leads to a poor

response after trastuzumab treatment.

The immunotherapy efficacy is also affected by the M2-TAMs

infiltration into the primary tumor, as reported by Ekiz HA. et al. In

particular, the expression of the receptor tyrosine kinase RON on

macrophages inhibits the anti-tumor immune response enhancing

the PDL-1 expression on TAMs as well as the Macrophage

stimulating protein (MSP)-Macrophage Stimulating-1 Receptor

(RON) signaling up-regulates the binding of CD80 and CTLA-4

to inhibit T cell activation, reducing the effectiveness of immune

checkpoint inhibitors in the BC treatment (73).

Overall, the interactions between tumor cells and TAMs that

promote TAMs to differentiate into immunosuppressive M2-

polarized macrophages under treatment pressure play a role in

drug resistance because M2-TAMs through the mechanisms above

reported (and not only) are able to reduce the treatment efficacy.
4.2 Myeloid-derived suppressor cells

As underlined by their name, the main feature of MDSCs is

immunosuppression; indeed, both PMN- and Mo-MDSCs are able

to inhibit different types of immune cells, negatively impacting the
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ability of the host immune system to counteract the tumor

progression and affecting the efficacy of the immunotherapy (3,

52, 74).

Thus, the MDSCs are the main obstacle to cancer

immunotherapies, and the inhibition of their expansion/

recruitment into the primary/secondary tumor sites may be a

benefic i a l s t r a t egy fo r improv ing the e ffic i ency o f

immunotherapeutic interventions.
4.3 Cancer-associated fibroblasts

In BC, different subsets of CAFs have been reported to

accumulate differently in distinct subtypes and exhibit specific

spatial distribution, with myofibroblastic subtypes accumulating

in TNBC able to confer a tumor-suppressive TME (75). In

particular, CAF secrete the C-X-C Motif Chemokine Ligand 12

CXCL12 attracting and retaining both myeloid (76) and CD4

+/CD25+ T cells in the tumor, ultimately promoting their

differentiation to Tregs immune cells and their survival via the

expression of T cell interacting proteins (58, 75). BC CAFs have

been characterized at the molecular level (77). Recent single-cell

analysis of 768 CAFs isolated from the genetically engineered

MMTV-PyMT preclinical model of BC reported three

transcriptionally diverse subpopulations of CAFs, with a spatial

separation of the CAF subclasses attributable to different origins,

including the perivascular niche, the mammary fat pad, and the

transformed epithelium. Notably, gene expression profiles of the

three distinct CAFs classes correlate to different functional

programs. Moreover, these profiles had independent prognostic

values as biomarkers for metastatic disease and biomarker-driven

development of drugs for precision targeting of CAFs.

The involvement of tumor stroma in BC prognosis is so evident

that stromal gene expression can predict disease progression and

clinical outcome independently of standard prognostic factors and

published molecular signatures (11, 78–81). Moreover, in ER-

negative BC, a stromal gene signature has been identified as

associated with resistance to anthracycline-based neoadjuvant

chemotherapy (82), with a predictive value for therapy response.

CAFs’ role in conferring drug resistance has been observed in

different tumors (83–86) and can occur via the release of

paracrine survival factors or by activating pathways in tumor cells

that ultimately lead to decreased chemosensitivity, such as the

expansion of therapy-resistant tumor-initiating cells (87) and the

enhanced expression of multidrug transporters (88). However,

reflecting the heterogeneity of CAFs subpopulations and

phenotypes, a few pieces of evidence indicating a role for tumor

stroma in sensitizing BC to treatment have been reported (89).

A mechanism through which CAFs confer resistance to therapy

is mediated by their role in the deposition and remodeling of

extracellular matrix components. In particular, the integrins’

ligands collagens and fibronectin have been shown to be

responsible for the decreased drug sensitivity of different BC cell

lines to several treatments (i.e., paclitaxel, vincristine chemotherapy,

tamoxifen, ionizing radiation, lapatinib, trastuzumab) through the

activation of PI3K/AKT and Ras/Raf/MEK/ERK1-2 pathways (89).
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Tumor cells themselves can reprogram CAFs to increase the

production of collagen, leading to the generation of a niche

favoring the acquisition of CSC phenotype, resistance to

chemotherapy (90), and driving tumor progression (91, 92).

Moreover, CAFs release various soluble factors which contribute

to the evasion of cancer cells from the cytotoxic effects of

chemotherapy. CAF-secreted HGF and its receptor c-Met have

been linked to increased resistance to EGFR and HER2 inhibitors in

BC cells from different subtypes (89). An emerging technology

based on microenvironment microarray (MEMA, consisting of

printed ECM protein supplemented with soluble ligands) allowed

to monitor of the growth of tyrosine-kinase inhibitors treated BC

cells in more than 2500 different combinations of 56 soluble

components and 46 matrix proteins of the TME (86). This study

showed that specific soluble factors, highly expressed in BC CAFs,

conferred lapatinib resistance to different BC cell types: in basal-like

HER2-positive cells, HGF-mediated MET activation, while in

luminal-like HER2-positive cells, neuregulin 1 beta (NRG1b), a
ligand for the tyrosine kinase HER3, favored HER2-HER3

heterodimerization (86).

CAFs play a crucial role in sustaining tumor inflammation,

engaging in intense cross-talk based on cytokines signaling with

both TME components and tumor cells (11, 93, 94). As extensively

reviewed by Dittmer and Leyh, cytokines such as the Tumor

Growth Factor beta (TGF-b) and IL-6 are secreted by CAFs and

contribute to drug resistance through both maintenances of CSCs

and induction of EMT, whose key transcription factors (i.e., Snail,

Twist) mediate the upregulation of transporters genes responsible

for multidrug resistance. IL-6, IL-8, and complement cascade have

been recently linked to CAF-mediated BC resistance to treatment.

Indeed, a new subset of CAF defined as CD10+/GPR77+ (a C5a

receptor) has been described as functionally relevant for stem cell

maintenance. Niches formed by these CAFs foster the survival of

CSCs, providing constant IL-6 and IL-8 secretion, which leads to

persistent NF-kB signaling in BC cells and protects them from

chemotherapy-induced cell death (88), regulating ABCG2

transporter expression.

A recent work exploited 3D co-cultures and microfluidic to

unravel the dynamics of four TME cell populations (cancer,

immune, endothelial cells, and fibroblasts) in the presence of the

antibody-based HER2 targeting therapy Trastuzumab. Cell

interactions have been visualized and quantified ex vivo, showing

that Trastuzumab promotes longer interactions between cancer and

immune cells that result in an anti-tumor ADCC (antibody-

dependent cell-mediated cytotoxicity) immune response, while

CAFs antagonized this effect (95) (see below). In line with this,

recent evidence obtained analyzing 2 cohorts of Trastuzumab

treated patients and a fully humanized immunocompetent ex vivo

model of HER2-positive BC identified a population of TGF-b-
activated CAFs specific of tumors resistant to Trastuzumab therapy

(96). This CAF population has immunosuppressive functions

associated with low IL-2 activity of functional relevance since

antibody-based FAP-mediated stromal delivery of IL-2 in non-

responsive tumors restored Trastuzumab efficacy (96). Another

explanation for CAF-mediated Trastuzumab resistance resides in

the newly identified subset of BC CAFs that express CD16 (also
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known as FcgRII, a cluster of differentiation molecule found on the

surface of natural killer cells, neutrophils, monocytes, macrophages,

and certain T cells) and which abundance in HER2-positive patients

is associated with poor prognosis and resistance to Trastuzumab.

The peculiar pro-tumor effect of CD16 in this CAF subpopulation

has been explained by the ability of Trastuzumab-CD16 interaction

to activate intracellular signaling involving the SYK-VAV2-RhoA-

ROCK-MLC2-MRTF-A pathway, that ultimately leads to elevated

contractile force, enhanced matrix production, and stiffness.

Targeting of a Rho family guanine nucleotide exchange factor,

VAV2, which is indispensable for the function of CD16 in

fibroblasts rather than leukocytes, reverses desmoplasia provoked

by CD16+ fibroblasts, revealing a role for the fibroblast FcgR in drug

resistance, and suggesting that VAV2 is a promising target to

enhance the effects of Trastuzumab treatment (97).
4.4 Tumor endothelial cells

Some evidence indicates an involvement of TECs in BC drug

resistance. Bovy N. et al. reported that BC patients receiving

neoadjuvant chemotherapy showed increased miR-503

production. Interestingly, the origin of this increased production

is ascribed to the exosome released by TECs, mediating an acquired

resistance (98). Moreover, the product of the NF-kB signaling

cascade TNF-a was upregulated in BC ECs after doxorubicin

chemotherapy treatment. In turn, TNF-a induces the

overexpression of CXCL1/2 in BC cells that, through its receptor

CXCCR-2, stimulates the CD11b+Gr1+ myeloid cells to secrete

S100A8/9. The activation of the TNF-a-CXCL1/2-S100A8/9
paracrine network mediates the pro-survival effect in BC cells and

drives chemoresistance by activating ERK1/2, p38 MAPK, and

p70S6K (99). In addition, as an alternative pathway, TEC cells,

through Notch signals, are able to promote BC stemness mediating

the acquisition of resistance to therapy (100). An important role of

TECs in drug resistance against immunotherapy has been

described. In particular, TECs are able to favor the recruitment of
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immunosuppressive cells as well as to inhibit primary tumor

infiltration by anti-tumor immune cells. The downregulation of

the endothelial E-selectin/P-selectin, ICAM-1, and VCAM-1

proteins results in the inhibition of T cell adhesion as well as the

altered chemokine expression such as the nitrosylation of CCL2 by

reactive nitrogen species blocks CD8+ T cell recruitment while

improving MDSCs recruitment. Moreover, the increased expression

on TECs of both PD-L1/2 and FasL expression induces T cell

exhaustion and apoptosis, respectively (101).
5 In vivo models to mimic
BC complexity

Nowadays, preclinical mouse models are widely used to

recapitulate the tumor complexity and how this complexity affects

drug response. Accurately choosing the best model is crucial to

translate the in vivo preclinical findings to patients (Figure 3).
5.1 Orthotopic injection in syngeneic
mouse models

In syngeneic mouse models, mouse-derived BC cells are

implanted orthotopically into immune-intact mice of the same

genetic background. These immune-competent models allow the

investigation of different aspects of the tumor-immune system

crosstalk. The high engraftment rate and the rapid tumor growth

make this model an attractive approach to studying BC biology and

drug response. Nevertheless, a recent study by Zhong et al. revealed

significant differences in the genomic, proteomic, and

immunohistochemistry profile of a panel of ten commonly used

syngeneic mouse models, including the most widely used BC

syngeneic models EMT-6 and 4T1, compared to the subtype-

matched human tumors (102). It is crucial to carefully consider

that syngeneic mouse models of BC do not form these cancers

spontaneously. Therefore, they do not recapitulate the complex
FIGURE 3

Pre-clinical models to recapitulate the TME. The common in vivo platforms that mimic different aspects of the BC TME are syngeneic Genetically
Engineered Mouse Models (GEMMs), Patient-Derived Xenografts, and Humanized mouse models. Among the in vitro models we describe spheroids
and organoids co-cultures with native or reconstituted TME components, engineered extracellular matrices (ECMs), and tumor-on-a-chip platforms.
Created with BioRender.com.
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interactions between tumor cells and the TME that characterize the

slow evolution of human neoplasms (103). Indeed, most cell lines

used for syngeneic BC models are derived from advanced tumors

that have already undergone immune selection in vivo. Another

aspect that should be thoughtfully evaluated when trying to

recapitulate the human TME is optimizing the experimental

design for the in vivo tumor growth of transplantable cell lines. In

particular, injection of different numbers of cancer cells could

detrimentally affect infiltrating leukocyte populations and

response to immune checkpoint blockade (104).
5.2 Genetically-engineered mouse models

Genetically-engineered mouse models (GEMMs) develop cancer

in an autochthonous manner upon overexpression of oncogenes or

deletion of tumor suppressor genes (often combined) in a tissue-

specific and temporally controlled manner (105). Compared to

syngeneic models, GEMMs better recapitulate the multistep

pathogenesis of BC and the crosstalk between neoplastic cells and

the TME. Moreover, the competent immune system of GEMMs

makes them uniquely suited for investigating cancer

immunotherapy approaches. The Mammary-specific Polyomavirus

Middle T antigen overexpressionmouse model (MMTV-PyMT) is the

most commonly used GEMM. Although theMiddle T oncogene is not

present in human tumors, its expression in the mammary epithelia

induces transformation and generation of multifocal tumors that

readily metastasize to the lungs without the need for additional

mutations in metastasizing cells (42, 106). Interestingly, this murine

model was used to demonstrate, via intercrossing with 27 different

mouse strains, that the genetic background determines the age of

tumor onset and the development of metastases, providing the first

evidence that genetic heterogeneity plays an important role in tumor

progression (42, 107).

According to a gene expression profile analysis, the PyMT tumor

closely resembles the aggressive forms of the luminal B subtype of

human BC, exhibiting loss of ER and PR expression and

overexpression of HER2 and cyclin D1 with the progression of the

disease (108). PyMT-derived BC tumors have provided significant

genetic and mechanistic insights into breast tumorigenesis, as well as

for preclinical testing of potential therapies (82). The K14cre BRCA1f/

f Tp53f/f mouse model spontaneously develops tumors mimicking the

human clinical features and genetics of basal-like/TNBC. This model

has recently helped to provide new understandings into the crosstalk

between cancer cells-intrinsic redox mechanisms and the formation of

protumorigenic TME (110, 111). Specifically, activation of the

transcription factor aryl hydrocarbon receptor by ROS promotes the

production of chemokines to attract monocytes and activate the

proangiogenic activity of macrophages (110).
5.3 Patient-derived and humanized
mouse models

Preclinical mouse models that more likely recapitulate the

intra-tumor and inter-tumor heterogeneity of human cancer are
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the patient-derived mouse models (PDXs). These models are

becoming the standard platforms used for preclinical drug

testing since they preserve the tumor architecture and the

relative proportion of cancer cells and stromal cells. In PDXs,

cancer tissue is implanted subcutaneously, orthotopically, or

under kidney capsules in immunodeficient mice and can be

serially transplanted. The ability to preserve the TMEs’

structure, the clonal genomic landscape, transcriptomic,

epigenomic and signaling pathway signatures of the original

parental tumors makes PDXs a valuable tool for precision

medicine, enabling drug testing and resistance studies,

assessment of tumor heterogeneity and evolution during disease

progression (112–114). Indeed, they are currently used for co-

clinical trials, whereby preclinical studies are conducted in

parallel with human trials. Using an animal “avatar” allows the

integration of valuable data in a real-time manner for each

patient, thus enabling a more precise stratification and

treatment customizat ion. Many research centers and

pharmaceutical companies have successfully developed and

characterized PDXs as models for the different clinical and

molecular subtypes of BC (115–119). More recently, an

extensive collection of PDXs recapitulating the deadliest forms

of BC has been generated (120). This platform includes drug-

resistant, metastatic, endocrine-resistant estrogen ER+ and

HER2-positive tumors, many of which are primary-metastatic

pairs or longitudinal collections from an individual patient over

time. Importantly, these PDXs reflect the intrinsic heterogeneity

of the subtypes in terms of mutational signatures, paving the way

for new therapeutic opportunities for these aggressive tumors

(120). The significant disadvantage of PDXs in faithfully

representing the TME is the lack of human immune system

components, such as circulating T and B cells.
5.4 Humanized mouse models for cancer

Humanized mouse models have been developed to overcome

species-specific differences in the genetics and immune system

between mice and humans (121). Humanized mouse models of

cancer are immunodeficient mice reconst i tuted with

representative subsets of human immune cells and engrafted

with human tumors (122). The engraftment of specific cell

populations in mice will influence the relative abundance of

different human immune cell types. Therefore, it is crucial to

select the most appropriate humanized mouse platform to

specifically address the experimental question and gain

translational potential. Injection of human Peripheral Blood

Mononuclear Cells (PBMCs) into immunodeficient SCID mice

is the most straightforward method for developing humanized

models, namely the Human Peripheral Blood Leukocyte (Hu-

PBL) SCID mice. Hu-PBL-SCID mice are characterized by

limited numbers of engrafted human myeloid cells and B cells.

Conversely, CD4+ and CD8+ subsets of CD3+ T cells are

abundant, and their expansion eventually develops an acute

immune response against mouse MHC molecules, leading to

xenogeneic Graft-Versus-Host Disease (GVHD) and restricting
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the experimental window for these animals to a few weeks (123).

To overcome GVHD, genes encoding mouse MHC class I and II

molecules have been inactivated, enabling a more extended time

window for conducting experiments. Iizuka and coworkers took

advantage of a human PBMC-transplanted MHC class I- and

class II–deficient NOG mice engrafted with BC cell lines to test

the cytotoxic activity of a bispecific antibody targeting human

CD3 and B7-H4, considered to be a negative regulator of immune

responses. B7-H4 is overexpressed in many human cancers,

suggesting its potential role as a cancer therapy target. This

therapeutic strategy resulted in enhanced tumor infiltration of

activated CD8+ T cells and reduced tumor growth. Of note,

because B7-H4 is highly expressed independently of HER2 or

PD-L1 expression in breast cancers, they propose the use of this

therapeutic agent for PD-L1−B7-H4-expressing tumors or anti-

HER2 antibody nonresponsive breast tumors (124). An adequate

immune reconstitution is achieved with the human Stem

Repopulating Cell (Hu-SRC) mouse model, which results from

the engraftment of immunodeficient mice with human CD34+

Hematopoietic Stem and Progenitor Cells (HSPCs). Hu-SRC

engrafted with PDX or Cell line-Derived Xenografts (CDX)

have been used to study the human immune system–tumor

crosstalk, evaluate biomarkers, and the preclinical activity of

immuno-oncology agents (125–127). For instance, Scherer and

coworkers recently developed and characterized an immune-

humanized PDX model of estrogen-independent endocrine-

resistant ER-positive metastatic BC that harbors a naturally

occurring ESR1 mutation (126). Mutant ESR1 promotes

endocrine resistance since it renders the ER protein

constitutively active and less dependent on estrogen for its

function, limiting treatment options. Importantly, ESR1 mutant

tumors gain basal-like features associated with increased immune

activat ion, implicat ing potentia l immune therapeutic

vulnerabilities that should be deeply investigated using immune

humanized preclinical models (128). The limitations of this

model are mainly the requirement of pre-experimental sub-

lethal g-irradiation to enable engraftment and the limited

maturation of human T cells in the murine thymus (121). To

promote the development of T cells in a human thymus-like

environment, researchers have co-implanted human CD34+

HSPCs and autologous fetal thymus tissue into SCID mice,

generating a mouse model named BLT (bone marrow - liver -

thymus) (129).
6 In vitro models to mimic
BC complexity

In vitro systems have a major advantage over mouse models: the

ability to precisely control the experimental settings (Figure 3).

Indeed, in vitro platforms can recapitulate different aspects of the

TME, including the cellular compartments, physical properties, and

chemical cues (130). Compared to cell lines grown in conventional

2D culture, 3D systems enable the integration of these elements,
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capturing more faithfully the intra-tumor heterogeneity and

allowing the study of tumor-stromal interactions and drug

responses. Here, the commonly used and emerging platforms to

study the BC TME are presented (Figure 3).
6.1 Spheroids

To investigate the role of the TME in 3D conditions, researchers

have developed a variety of protocols for the generation of

spheroids, cellular entities cultured as free-floating aggregates,

with or without the addition of extracellular matrix and growth

factors (131). Mammospheres are BC spheroid cultures enriched in

progenitor cells that differentiate along multiple lineages. To this

concern, mammospheres derived from freshly isolated BC samples

exhibit CSC-like properties and multiple drug resistances (132). L.

Hamm and coworkers established a high throughput tumor

spheroid microprinting technology to produce homogeneously-

sized spheroids to model the interaction of CAFs and TNBC cells

and examine drug resistance (133). In another work, the 3D

bioprint technology was leveraged to manufacture a 3D structure

containing BC cells in the core and adipose-derived mesenchymal

stem/stromal cells (ADMSCs) in the edges. The authors proposed

the use of this 3D model for chemoresistance studies (134).
6.2 Patient-derived organoids

Tumor organoids are complex 3D structures that originate from

dissociated tumor tissues or circulating tumor cells that are

embedded into the bio-mimetic matrices with growth factor

supplements to encourage a self-organizing process (135).

Compared to spheroids, they better resemble the original tissue

both histologically and genetically Patient-derived organoids

(PDOs) largely retain the parental tumor heterogeneity, therefore

providing the enormous potential to understand resistance

mechanisms and predict response to treatment in individual

patients (136, 137). Organoids can be cryopreserved and

expanded for long-term culture. Of note, banks of human BC

organoids are currently available (120, 138). In particular, the

collection of nine sets of matched human BC tumors, PDXs, and

PDOs generated by Guillen and coworkers represent a promising

platform for drug screening treatment-resistant tumors (120).

Primary PDOs contain subsets of stromal cells, including

fibroblast and immune cells; however, these cells are gradually

lost during the long-term culture (139). Nevertheless, researchers

have grown organoids with native or reconstituted TME elements

(140). Recently, Rivas and coworkers developed an ex vivo 3D

model of HER2-positive BC that recapitulates patients’ response to

treatment, consisting of fluorescent human HER2-positive BC cells

co-cultured with patient-derived fibroblasts and naïve primary

immune cells collected from the peripheral blood of healthy

donors (96).
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6.3 Mimicking the ECM

Organoids are commonly cultured in hydrogels enriched in

extracts of ECM proteins. Among these, the basement membrane

extract Matrigel is considered the gold standard for supporting

tumor organoids’ growth. However, Matrigel typically suffers from

inherent compositional variation and lot-to-lot variability, which

can confound analysis and affect the model’s reproducibility (141).

As an alternative biomaterial, decellularized breast tumors or

Patient-Derived Scaffolds (PDSs) have been used to better

recapitulate the native tumor ecosystem. In recent work, BC PDSs

were recellularized with cancer cell lines as platforms for drug

testing, revealing that MCF7 cells enhanced their resistance against

the conventional chemotherapy drugs 5‐fluorouracil, doxorubicin,

and paclitaxel in comparison to 2D cultures (142). These data

suggest that PDSs could be exploited to examine the effects of the

ECM on cancer drug responses in the clinical setting and may

represent a significant step forward in the field of personalized

medicine (143). The MEMA platform is used to interrogate the

impact of thousands of microenvironmental proteins on the

phenotype of different cancer cells, including primary cells and

cell lines (144). By printing specific and defined combinations of

functional proteins into well plates, it was possible to study

microenvironment effects on anti-HER2 tyrosine-kinase inhibitors

response (86).
6.4 Tumor-on-a-chip

Recent advances in tissue engineering technology allow the

development of organ-on-a-chip devices in which cancer cells are

grown in a dynamic environment consisting of microchannels that

can be perfused at tailorable flow rates. The ability to finely control

mechanical stress, shear flow, and concentration gradients makes the

organ-on-a-chip technology particularly useful for studying

angiogenesis, metastasis, mechanotransduction pathways, and

cancer cell behavior under shear stress (145). However, several on-

chip models were designed to mimic tumor-stromal cell interactions.

For example, Aung and coworkers, taking advantage of a BC-on-a-

chip model consisting of a heterogeneous mix of cells and noncellular

elements, investigated the role of tumor-associated hypoxia and the

BC-immune cell interaction on T lymphocyte recruitment (146). BC-

on-a-chip platforms could represent powerful ex vivo platforms to

study, within immunocompetent settings, drug responses that depend

on the TME (95). Moreover, it is possible to integrate these platforms

with advanced live cell microscopy technologies and automated image

analysis to capture the behavior of single cells in the tumor ecosystem

and the cell-cell interactions (95).
7 Emerging technologies to study BC
complexity

Tumor profiling is a powerful tool to dissect key molecular

signatures of cancer cells and deeply investigate the sources of

diseases. The role of large landmark projects, such as The Cancer
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Genome Atlas Program (TCGA (4)) and Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC (147)), and

of specific analysis strategies, such as GSEA (148, 149), have allowed

scientists to begin to approach the complexity of the tumor system

in question, enabling accurate and precise stratification of patients.

Subsequent meta-analyses based on separate BC and TME data

showed that very different results emerge from the bulk

transcriptomic data (150).

Single-cell analysis refers to the investigation of individual cells

to obtain genomic, transcriptomic, or multi-omics information at

the single-cell level. The data obtained with these technologies have

a much higher resolution than conventional bulk sequencing

methods in terms of the number of cells. Taking advantage of

these emerging technologies, including spatial analysis and artificial

intelligence, it is possible to identify comprehensive biomarkers

allowing more precise patient stratification, signal resistance

identification as it begins, and relapse prediction (151, 152)

(Figure 4) A brief description of emerging technologies for

unravelling breast cancer complexity is included in Table 1.
7.1 Single-cell RNA sequencing

The important next step in data generation and subsequent

analysis occurred with single-cell experiments, leading to the

opportunity of analyzing the transcriptome at the single-cell level

for millions of cells in a single study. Single-cell RNA sequencing

enables scientists to characterize, discriminate, and identify each

cell at the transcriptome level, leading to the finding of rare but

functionally significant cell sub-populations (153).

Today, a growing number of modified and enhanced single-cell

RNA sequencing technologies have been designed to bring

important adjustments and improvements in sample collection,

single-cell capture, barcoded reverse transcription, complementary

DNA (cDNA) amplification, library preparation, sequencing, and

refined bioinformatics analysis. Most importantly, the cost has been

drastically decreased, while throughput and automation have both

been greatly boosted (153).

In single-cell RNA sequencing, single cells are isolated from

tissue samples, captured, and then combined with a bead inside a

nanoscale droplet (each bead contains unique molecular

identifiers). Barcoding, cDNA amplification, and the library

preparation steps follow this stage. In order to present and

categorize the landscape of gene expression in cells of a

heterogeneous population, snapshot data from single-cell RNA

sequencing can be examined (153, 154).

Single-cell sequencing technologies’ most recent technical and

computational advancements have greatly expanded researchers’

toolkits for studying TME directly from patient tissues. BC is just

one of the many tumor types for which single-cell RNA sequencing

has been extensively employed to depict the intra-tumoral immune

landscape (155).

For instance, despite the immune checkpoint blockade (ICB)

therapy having produced impressive and long-lasting clinical

responses in a limited number of cancer patients, its overall

response rate has been low, and many patients with initial
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TABLE 1 Brief description of emerging technologies for unravelling breast cancer complexity.

Technologies Description Advantages Limits References

Single-cell
sequencing

Genomic, transcriptomic, or other-omics information at the
single-cell level.

•Higher resolution compared to
conventional bulk sequencing

methods in terms of the number
of cells.

•Heterogeneity dissected at
single-cell resolution.

•Analysis of gene expression
changes upon drug. treatment.

•Relatively low cost.
•Can be integrated with other

omics approaches.

•Useful as starting point
for the other emerging
techniques, taken alone
is not much informative.

(153, 154)

Single -omic

Large-scale studies which refer to the systematic identification
and quantification of the overall components of a specific cell

domain (such as transcriptome, proteome, metabolome,
lipidome…).

•Quite a complete overview on a
single aspect of a sample of cells.
•Well-assessed and validated

methods.
•At the level of Transcriptome is

feasible also in patients but
expensive, while for proteomic,
metabolomic and lipidomic is

still far from patients.

•Single-omics data offer
only a limited amount of
information on biological
mechanisms restricted to

a single field.

(155–157)

Multi -omics
Combination and integration of several methods and data sets

of different -omic groups during the biological analysis.

•A potent integrative approach,
which provides a high amount of
information, allowing to connect
a genotype to a phenotype for a

full cellular readout.
•Depending on the type of

analysis and data sets employed
it can lead to the direct measure
of causes and consequences of

biological phenotypes.

•Highly expensive. (158, 159)

Spatial biology

Combination of different techniques of sequencing and imaging
(such as MERFISH/SeqFISH, CyCIF,IMC…) in order to

examine the types of cells, their distribution throughout the
tissue, the patterns of biomarker co-expression, and the
organization and cross-talk in their microenvironment.

•Learn new biological insights by
analyzing cells in their

environment.

•Highly expensive.
•Need of specialized

facilities.
•Complexity of data

analysis.

(160–171)
F
rontiers in Oncolog
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FIGURE 4

Flow diagram of good practice guidelines for spatial analysis users. Schematic representation of complexity and interconnectivity of single-cell
multi-omics data in spatial analysis, from experimental data to scientific report to address a biological/clinical investigation. These techniques benefit
from an integration with relative online available data and from an extensive computational analysis in order to increase the accuracy, reproducibility
and reliability of the obtained results in a specific research field.
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responses have refractory disease or have developed acquired

resistance. The observed variability in ICB efficacy has been

associated with a number of TME-related factors, through single-

cell analysis, specifically with markers of the intra-tumoral T cell

states, such as overall T cell infiltration, activation, and exhaustion.

In fact, the enhancement of single-cell transcriptomic tools applied

to TME studies improved our knowledge of tumor complexity,

adaptability, and its intricate cross-interaction between various cell

types within the TME (20, 155, 156).

With a similar approach, Gambardella et al. studied tumor

heterogeneity and drug response, providing a transcriptional

analysis of several BC lines. They demonstrated that the

expression of clinically important markers could be detected

through single-cell transcriptomics. Furthermore, they showed

that different cells within the same BC cell line express

heterogeneously relevant well-known BC receptors, including PR

and HER2. Additionally, they observed dynamic plasticity as a

consequence of drug responsiveness (157). In particular, they

developed a bioinformatics tool that, starting from single-cell

profiles, leads to drug response prediction at the single-cell level,

firstly detecting expression-based biomarkers of drug sensitivity for

several drugs, then correlating them with drug potency in different

cellular lines. To experimentally validate their bioinformatic tool,

they applied it to a BC cell line, the MDA-MB-361, identifying and

sorting two cell subpopulations for HER2 receptor expression.

Based on their computational prediction, they tested in both cell

types representative drugs, obtaining results in line with the

expected outcome (157).

Moreover, in line with these findings, the massive parallel

sequencing and other omics technologies have demonstrated the

level of heterogeneity in TNBCs, underling the potential impact of

TME in therapeutic responses (152).
7.2 Multi-omics

Researchers can now study and define the TME at single-cell

resolution thanks to the advent of multimodal omics technologies,

which presents an unprecedented opportunity to comprehend the

heterogeneous complexity of the TME (158). In fact, an efficient

way to connect the patients’ genetic background with a condition or

trait is through genome-wide association studies, which connect

genotype to phenotype, and multi-omics provides a potent

integrative approach, as it consists of the combination of data sets

of different omic groups during the biological analysis. Indeed,

multi-omics data must be integrated to increase the accuracy of

predicting the biological relationship between genotype and

phenotype because single-omics data only offer a limited amount

of information on biological mechanisms (132, 172). Moreover, a

good practice is to further integrate the obtained multi-omics data

with online available raw and processed data in the same field in

order to generate reproducible and reliable results through different

open datasets (173) (Figure 4).

There is an emerging need to construct integrated multi-omics

data databases, such as the Multi-Omics Breast Cancer Database

(MOBCdb) proposed by Xie and colleagues (174). It is an available
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library that incorporates clinical, genomic, transcriptomic,

epigenomic, and treatment response data of many BC subtypes.

By using several search methods, users of MOBCdb can receive

information on single nucleotide variation, gene expression,

microRNA expression, DNA methylation, and particular

pharmacological responses. With this online resource, users have

access to integrated multi-omics data of various BC subtypes,

allowing the identification of possible new biomarkers for

personalized medicine (174). Another example comes from the

work by Fan et al., which provides insights into the molecular

pathways behind BC prognosis, building a dataset of gene-

interaction networks in BC and describing genes linked to long-

term BC survival (132). Indeed, emerging evidence attributes multi-

omics data integration to a prognostic value; for instance, Nguyen

and colleagues identified two therapeutically relevant molecular

subgroups of BC with subgroup-specific characteristics employing

multi-omics datasets. These approaches hold the promise for the

creation of specific diagnostic tests and personalized

medicine (175).

As TME components have been shown to play a crucial role in

the occurrence, growth, and metastasis of BC, the development of

single-cell omics largely addressed the limitations of purely

biological assays and allowed us to comprehend the changes in

cell populations, metabolic profiles, and immunological state of the

TME throughout tumor progression. Now there is a better

understanding of tumor complexity thanks to the ongoing

development of integrated tools for single-cell omics that not only

detect cell heterogeneity but also expand analysis for transcription-

based cell cloning aberration (176), cell traceability (177), cell-to-

cell interaction (178, 179), rare cell resolution (180), and disease

process simulation (181). The recent single-cell omics results have

mapped out breast TME with fairly high accuracy, sorting stromal

cells and immune cells into functional populations and significantly

employing the TME components for clinical diagnosis and targeted

treatment intervention (182).

In particular, TNBC heterogeneity is characterized by genomic

instability and elevated mutation rates, with an impact on immune

surveillance (183). Therefore, to pinpoint the therapeutic approach

for TNBC, specific driver genes, and pathways should be

determined for better patient subtyping and target therapy (184).

The most frequently altered genes, the genetic profile most likely

contributing to the malignancies’ development, and the genes

associated with metastatic TNBC can all be identified through

recent advancements in whole genome sequencing. Emerging

targeted therapies may enhance therapeutic effects by overcoming

drug resistance and promoting patients’ survival (183, 184). For

instance, Xiao et al. performed an extensive immunogenomic

analysis to investigate the heterogeneity and prognostic

importance of the TNBC microenvironment using a big original

multi-omics dataset of TNBC. They also investigated TNBC’s

potential immunological escape pathways. This trial is a step in

the direction of individualized immunotherapy for TNBC patients,

as TME phenotypes were classified in different clusters and

validated with a significant prognostic efficacy (185).

Furthermore, Xie et al. focused their study on FOXO family

genes and their correlation with TME in several cancers, including
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breast. As they examined the relationship between the FOXOs score

and a variety of drugs, they showed that the FOXOs score might

reflect patients’ responses to different therapies. They discovered

that the majority of drugs’ IC50 values in pan-cancer, but

particularly in BC, were negatively linked with the FOXOs score,

corroborating the theory that a high FOXOs score would make a

patient more susceptible to chemotherapy and targeted

medications. Collectively, their data show that the FOXOs score

has a substantial correlation with the TME and may be used as a

biomarker to predict the effectiveness of various treatments,

including immunotherapy (159).
7.3 Spatial biology and phenotyping

The study of a variety of cellular landscapes across different

dimensions is known as spatial biology. Studies of spatial biology

examine the types of cells, their distribution throughout the tissue,

the patterns of biomarker co-expression, and the organization and

interactions that compose the TME, allowing to learn new

biological insights by analyzing cells in their environment

(Figure 5) (160–162).

Methods for spatial molecular profiling have dramatically

increased recently and differ in resolution, scale, and molecular

multiplexing, with an improvement of spatial methods, in particular

for transcriptomic, proteomic, and metabolomic (160). Different

length scales are used by methods to capture a variety of data: from

averages across cells spanning thousands of micrometers in spot-

based procedures like spatial transcriptomics to single-molecule

resolution in methods like MERFISH or SeqFISH. Consequently, a

variety of questions can be addressed using the most suitable

technique. The number of molecular features acquired varies

between methods as well, ranging from tens in Fluorescence In
Frontiers in Oncology 14132
Situ Hybridization (FISH), Cyclic Immunofluorescence (CyCIF),

and Imaging Mass Cytometry (IMC) to hundreds or thousands in

specialized probe-based spatial transcriptomics methods

(MERFISH or SeqFISH), imaging mass spectrometry, and tens of

thousands in spot-based spatial transcriptomics, including Slide-

Seq, Visium and High-Definition Spatial Transcriptomics (HDST)

(160, 161, 163). To detect and quantify biomarkers expression as

well as to visualize how cells interact and organize throughout the

entire tissue landscape, true spatial biology investigations exploit

whole-slide imaging at single-cell resolution. This method is also

known as spatial phenotyping.

An interesting use of this new technological branch is the one

applied to the study of TME. Studies utilizing spatial multi-omics

methods have demonstrated the complexity of the TME

heterogeneity and showed that, in addition to the cellular

composition, the relative localizations and interactions with

different cell types in the TME significantly impact tumor

formation. In fact, a better understanding of spatial interactions

led to the redefinition of tumor subtypes and the shifting of research

attention to tumor-immune interaction units, to the discovery of

additional cell types, and of the changes in the TME compartment

throughout cancer progression (160, 164). For example, in BC, the

different subclones that contribute to the heterogeneity of the

cancer mass were found to map in distinct regions (165, 166),

with a specific architecture suggestive of a deep role of the TME,

where CAFs show great heterogeneity and spatial separation (167).

Liu et al. provide a novel insight into the cellular architecture of BC

and potential therapeutic strategies, revealing differential

association with patient survival and therapeutic response

through single-cell and spatially resolved analysis (165). The

analysis of two BC samples showed that malignant subclones map

to regions of stromal cell enrichment, indicating that, even if only

two BC were analyzed in detail, the diverse abundance of genetically
FIGURE 5

Overview of spatial tumor profiling applications. Schematic representation of the main opportunity offered by spatial techniques in the molecular
biology field with possible applications to personalized medicine. Created with BioRender.com.
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and spatially distinct subclones is differently associated with patient

survival and therapeutic response (165). This evidence suggests that

it might be worth investigating how the heterogeneous architecture

of cancer cells impact therapy response.

Moreover, the treatment of several cancers has been transformed

by ICB. However, unfortunately, most patients only have minimal

benefit from ICB, even after an initial response. Multi-omics TME

assessment is indeed required for precision immune oncology in order

to discover distinctive prognostic features and proactively personalize

combinatorial treatments. Through accurate epitope colocalization,

multiplexed single-cell spatially resolved tissue analysis enables the

discernment of cellular functional states from their spatial

organization, and emerging markers evaluated in multiplexed spatial

protein analysis may help determine prognostic and predictive

patterns in BC (168).

In particular, the work from Tietscher and colleagues suggests

that single-cell data used for a comprehensive, spatially resolved,

immune-focused analysis of TME could be useful for patient

stratification to select them for ICB therapy. Indeed, they have

defined two unique immunological microenvironments in breast

tumors; each one may influence the response to immunotherapy,

considering tumor antigen presentation, T cell phenotypes,

cytotoxic potential, cellular interaction, and spatial organization.

As the primary marker currently utilized to stratify patients for

immune checkpoint treatment in BC is PD-L1, their findings imply

that PD-1, CXCL13, and MHC-I, possibly in combination with

previously identified T cell exhaustion markers like LAG-3 and

TIM-329, are more effective at differentiating immunological TME

that may show to be differentially receptive to this treatment.

Therefore, these variables may be helpful in selecting individuals

for prospective clinical trials of ICB, along with other patient

stratification techniques (169).

Further work by Kulasinghe et al. provides new insights into the

TNBC TME and its association with chemotherapeutic response

and patient survival (170). In particular, spatial studies on TNBC

samples revealed differentially expressed proteins and protein

signatures within tumors and stroma compartments that associate

with prognosis (overall survival) and treatment response. Following

this approach, they were effectively able to stratify patients by their

response to therapy (170).

Overall, recent evidence indicates that cancer study in a spatial

context will improve the current knowledge of how the complex

cross-talk between tumor and surrounding microenvironment

results in the malignant subclones’ growth and progression, with

an impact on survival and resistance to therapies (Figure 5) (171).
8 Mathematical modelling and
artificial intelligence in unraveling
BC complexity

8.1 Mathematical modelling

As well known, the origins of BC heterogeneity lie in both the

stochastic nature of biological phenomena and their nonlinear
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dynamics. In these contexts, small changes in the complex

interact ions among different genetic , epigenetic , and

environmental factors can have dramatically different effects on

the evolution of the biological system. This strong dependence on

probabilistic mechanisms and initial conditions makes it extremely

difficult to fully understand the mechanisms and implications of

heterogeneity in breast cancer.

To address this challenge, mathematical models have been

developed and widely used to study and understand the complex

processes underlying breast cancer heterogeneity. These models are

based on mathematical equations, both deterministic or

probabilistic, and simulations that allow researchers to investigate

how different factors interact with one another and how they

contribute to the development of the disease.

Examples of such models date back to at least a decade ago

(48), with studies connecting different axes of phenotypic

plasticity to explain the emergence of heterogeneity and drug

resistance (186). These models have shown how genetic and

epigenetic changes can lead to the development of different

breast cancer subtypes, and how these subtypes can respond

differently to different treatments.

Additionally, mathematical models have shown how a single

axis of plasticity can give rise to extensive diversity upon mutations

(187). This has important implications for the development of new

treatments, as it suggests that targeting specific mutations may not

be sufficient to treat breast cancer effectively. Instead, a more

comprehensive understanding of the underlying mechanisms and

interactions is needed to develop targeted and effective treatments.

In particular (48), and (187) highlight how the heterogeneity of

breast cancer rests on a stochastic and combinatorial nature of the

genetic and epigenetic elements that could interact together.

Finally, an additional dimension of non-linearity was

highlighted in two different types of epithelial-mesenchymal

transition (EMT) dynamics: one hysteretic and one non-hysteretic

(188). In particular, specific gene patterns characterized by

significant clinical prognosis value were highlighted in the EMT

hysteretic dynamics.

These modeling efforts have been demonstrated to be useful for

implementing therapeutic targets in vivo, allowing researchers

refine their understanding of the mechanisms underlying breast

cancer, to test the efficacy of new treatments and improve the

effectiveness of therapies (189).

In summary, mathematical models have proven to be valuable

tools for understanding the complexity of breast cancer

heterogeneity while providing predictive tools on how biological

systems may respond to specific perturbations.

Integration with increasingly precise and specific data, derived,

for example, from scRNA_Seq techniques, will allow these models

to help shed light on the mechanisms underlying the disease and

develop more effective treatments for patients. The availability of

increasingly rich and detailed databases has enabled the application

of powerful and versatile Machine Learning/Artificial Intelligence

systems to model and attempt to decipher additional levels of non-

linear characters of this heterogeneity as discussed in the

next paragraph.
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8.2 Artificial intelligence in BC and TME

The use of Artificial Intelligence (AI) and Machine Learning

(ML) is becoming widespread in the field of biology and life sciences

(190). The existence of large databases, such as the one derived from

the omics study in TME, necessitates the use of advanced tools and

techniques. These new AI tools are rapidly becoming important for

researchers (Figure 4) by leveraging the connection of large

amounts of data and their elaboration, simplify the discovery of

non-linear correlation in complex datasets. ML can be classified

into three main categories: supervised learning, unsupervised

learning, and reinforcement learning, where supervised learning

involves learning from labelled data to make predictions,

unsupervised learning involves finding patterns in unlabeled data,

and reinforcement learning involve learning from interactions with

an environment to maximize a reward signal (191).

Clustering is a popular omics analysis method that is used to

find regularity and patterns in the data to help differentiate cancer

molecular subtypes. One example of clustering is the assessment of

immune cell infiltration levels using neural network techniques.

This method can be used to classify patients based on the degree of

immune cell infiltration in lung cancer (192).

Another important method is feature selection with Principal

Component Analysis (PCA). This technique helps to reduce the

dimensionality of the dataset, thus reducing the number of features.

This can be done using different machine learning algorithms, such

as Random Forest, that can be very useful in identifying genes that

present a correlation with different types of cancer (193).

Feature transformation is another emerging approach that is

still under development. This method aims to merge and modify

existing features to create new ones. This can be helpful in merging

different types of data, such as in vitro and clinical data. Feature

transformation is an important approach to consider as it can

uncover new insights and relationships in the data that are not

immediately apparent.

A practical application of advanced machine learning to the

study of TME in BC is DeepSpaCE (Deep learning model for Spatial

gene Clusters and Expression), where advanced deep learning

techniques have been applied in the context of spatial

transcriptomics. In the paper (194), the authors applied a

Convolutional Neural Network (CNN) to obtain a system able to

reproduce with super-resolution the spatial gene expression from

TME samples and then predict gene-expression levels in tissue

sections within consecutive sections. This method enables users to

derive hidden histological characters via spatial transcriptome and

gene annotations, leading to accelerated biological discoveries

without additional experiments. Indeed, they confirmed its

performance using the spatial-transcriptome profiles and

immunohistochemistry images of consecutive human breast

cancer tissue sections. For example, the predicted expression

patterns of SPARC, an invasion marker, highlighted a small

tumor-invasion region that was difficult to identify using raw

spatial transcriptome data alone because of a lack of

measurements. They further developed semi-supervised

DeepSpaCE using unlabeled histology images and increased the
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imputation accuracy of consecutive sections, enhancing

applicability for a small sample size.

In particular, recent developments in ML algorithms have

shown that deep learning (DL)-based models can recognize non-

linear relationships in the data, along with linear relationships, from

highly dimensional data derived from different -omics (195). In the

context of omics and data analysis, ML, such as DL, can be used to

identify patterns and correlations in the data that would be difficult

or impossible to detect by humans (196, 197).

Finally, ML algorithms can also be applied to a well-curated

scRNA-seq dataset of breast cancer patients. In this study (198), the

authors developed an advanced ML model to identify cell lineage

and subtypes and to automatically obtain the lowest unique

molecular identifiers (UMI) threshold, reducing the time required

for these analyses and simplifying the entire procedure.
9 Conclusions and perspectives

The complexity of BC, mainly due to the intra- and inter-tumor

heterogeneity present in both primary tumors and metastatic

lesions, represents a great obstacle in unraveling drug resistance

mechanisms. In this Review, we have addressed the various

determinants that contribute to BC heterogeneity, highlighting

the primary role of the tumor microenvironment. We have deeply

discussed the recent advances in uncovering BC heterogeneity,

thanks to the ability to dissect the genetic diversity of cell

subpopulations, the cancer cell plasticity, and the complexity of

TME. We have also discussed the impact of tumor heterogeneity

and TME on tumor progression and drug resistance, with the idea

that the new molecular insights that are emerging need to be

translated into improved therapeutics (Figure 4).

How to overcome cancer heterogeneity to improve cancer

therapy remains a major challenge. Actually, mortality in BC is

generally due to resistance to successfully treating metastatic

disease. Metastases spawned via dissemination in different organs

evolve in entities that are distinct from each other and from the

primary tumor. Therefore, they need to be handled as independent

tumors, with ongoing epigenetic evolution combined with the

contribution of the specific TME in the metastatic site. Recent

results also strongly put forward that dissimilar TME can affect the

metastatic sites, leading to selection for survival and outgrowth of

genetically different metastatic variants.

We describe the developments in single-cell RNA sequencing

and in multi-omics technology on clinical samples, which are

already providing insights into the phylogenetic correlation of

primary tumors and metastases at the level of somatic tumor

genetics, and that can reveal fundamental mechanisms of the

metastatic process. However, deeper insights are needed to study

variations that occur at the epigenetic level of matched primary and

metastatic tumors of larger numbers of patient and experimental

tissue samples. An emerging field to take into account is also the

importance of the personal genetic landscape of each patient, which

can strongly modify tumor and metastasis biology, their response to

TME, and their drug responsiveness.
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The in vivo preclinical models remain fundamental to study

processes that cannot be readily inquired in humans and also to

allow the study of the natural history of disease progression in the

untreated state. However, since these studies are costly and labor-

intensive, the bright use of mouse models should take into account

the features that differ from human BC. Preclinical models,

therefore, offer an important vehicle for generating and testing

hypotheses that can then be validated across the broader human

population. Where possible, models should include an intact

immune system, the humanized mice being important platforms

to overcome species-specific differences in the genetics and immune

system between mice and humans. Moreover, attempts should be

made to incorporate genetic heterogeneity in study designs by using

several diverse models on different genetic backgrounds. On the

other hand, in vitro organoid models derived from GEMMs or

human clinical material could offer new perspectives in terms of

rapid functional screening of genes and pathways that can influence

tumor progression and of availability of material to analyze

epigenomics and chromatin landscape evolution that is currently

difficult to do using only human biopsies.

In conclusion, overcoming cancer heterogeneity to date remains

a difficult task. In terms of TME, a better understanding of its

complex organization, spatial heterogeneity, and changes in

metastatic progression under the pressure of therapy is crucial for

patient survival. The available targets are few and this field still

needs further research. In the meantime, it’s worth mentioning that

using a combination of drugs can increase therapy response, likely

due to the synergistic effect of the drugs in selectively killing cancer

cells and creating a more restrictive environment. In addition, high-

resolution sequencing techniques prior to therapy and longitudinal

sampling can provide a good source of information to delineate the

optimal therapeutic strategy.

As shown by Navarro Ocon et al., new nanomedicine-based

therapies have been proposed to alleviate immunosuppression in

tumors and reduce the emergence of tumor heterogeneity in BC

patients. Indeed, nanomedicine can improve the delivery, retention,

and release of immunostimulatory agents in targeted cells and

tumor tissues in numerous malignancies, including breast cancer

(199). Moreover, the goal of finding new ways to revert a hostile

TME by immune-activating cytokines is frequently hampered by

the severe toxicity associated with their systemic administration.

Very recent works in mouse models of glioblastoma (GBM) (200),

melanoma, and mammary tumors (201) demonstrated a TME

reprogramming toward anti-tumor activity upon targeted delivery

of IL-12 via different approaches. In particular, Birocchi et al.

describe a lentiviral vector-based platform that can engineer

hematopoietic stem cells ex vivo with the aim of releasing, via

their tumor-infiltrating monocyte/macrophage progeny, Interferon

alpha (IFN-a) or IL-12 at the tumor site with spatial and temporal
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selectivity. In a preclinical syngeneic GBM mouse model, the

inducible release of IFN-a within the TME achieved strong

tumor inhibition up to eradication and outperformed systemic

treatment with the recombinant protein in terms of efficacy,

tolerability, and specificity. Single-cell RNA sequencing of the

tumor immune infiltrates revealed reprogramming of the immune

microenvironment toward a proinflammatory and antitumoral

state, demonstrating a potential therapeutic approach for GBM

(200) and paving the way to treat with locally delivered IL-12 other

solid tumors, including melanoma and BC.
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Colorectal cancer (CRC) is a leading cause of death worldwide. Improved

preclinical tumor models are needed to make treatment screening clinically

relevant and address disease mortality. Advancements in 3D cell culture have

enabled a greater recapitulation of the architecture and heterogeneity of the

tumor microenvironment (TME). This has enhanced their pathophysiological

relevance and enabled more accurate predictions of tumor progression and

drug response in patients. An increasing number of 3D CRC spheroid models

include cell populations such as cancer-associated fibroblasts (CAFs),

endothelial cells (ECs), immune cells, and gut bacteria to better mimic the in

vivo regulation of signaling pathways. Furthermore, cell heterogeneity within the

3D spheroid models enables the identification of new therapeutic targets to

develop alternative treatments and test TME-target therapies. In this mini review,

we present the advances in mimicking tumor heterogeneity in 3D CRC spheroid

models by incorporating CAFs, ECs, immune cells, and gut bacteria. We

introduce how, in these models, the diverse cells influence chemoresistance

and tumor progression of the CRC spheroids. We also highlight important

parameters evaluated during drug screening in the CRC heterocellular spheroids.

KEYWORDS

spheroid, heterotypic 3D model, colorectal cancer, cancer associated fibroblast (CAF),
endothelial cell, gut microbiota, drug screening, tumor associated macrophages (TAMs)
Introduction

Colorectal cancer (CRC) is the third most common cancer in males and the second

most common cancer in females worldwide and continues to be a leading cause of death (1,

2). Reliable cancer models are imperative to advance cancer research and treatment (3).

The traditional two-dimensional (2D) cell culture models have been critical in developing

many first-line chemotherapeutics, such as cisplatin (4, 5). However, the limitations of

2D culture models prevent them from effectively recapitulating the physiological
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characteristics of native tumors. A key limitation of 2D cultures is the

change in cell morphology, signaling, and functions compared to in

vivo conditions in response to different external stimuli from the

culture substrate and the neighboring cells (5–7). Consequently, 2D

tumor models often overscore the effectiveness of potential drug

candidates, resulting in lower efficacy and greater toxicity than

predicted when translated into in vivo animal models or clinical

trials (8). Patient-derived tumor xenograft and in vivo tumor models

have been important for rational drug design and predicting response

and side effects of chemotherapeutic regimens (9, 10). However,

animal models often show a low success rate of engraftment (11), are

expensive, require a cross-species comparison, and raise ethical

controversies, challenging their utilization.

The TME is a complex and dynamic environment around the

tumor composed of blood vessels, fibroblasts, immune cells,

mesenchymal stromal cells, extracellular matrix, and cell-secreted

factors (12). The TME is now recognized as a leading player in

tumor development and response to chemo and immunotherapeutic

strategies (12, 13). Therefore, recapitulating in vitro the heterogeneous

human TME by introducing its main constituents in a three-

dimensional (3D) format is essential for developing preclinical

models with greater clinical relevance than 2D systems.

In this scenario, 3D tumor spheroid cultures that utilize

hydrogels made of natural biomaterials (e.g. collagens, fibrin,

hyaluronic acid) or synthetic polymers have been gaining

increasing attention to better recapitulate the structure of tissues

and native tumors compared to 2D cultures (3, 7, 14, 15). The

development of 3D tumor spheroid cultures has prompted a

paradigm shift in cancer research toward more clinically-relevant

models, further fueled by advancements in biotechnologies. For

instance, improvements in sampling and storage techniques allow

clinicians to culture patient-derived 3D spheroids to identify genetic

markers to predict disease progression and chemoresistance (16,

17). Tissue engineering techniques, such as the synthesis of scaffolds

mimicking the extracellular matrix (ECM), and advances in

microfluidic devices have improved the culture of spheroids in

3D settings to take into consideration cell-ECM and cell-cell

interactions leading to a greater correspondence with native

tumors compared to 2D cultures (18–24).

Specifically for CRC, recent reviews of 3D spheroid models

highlight the utility of spheroids for drug screening (25),

nanomedicine screening (26), and biomarker discovery (27).

These reviews discuss strategies for adapting spheroids of various

complexities for drug screening and developing better treatment

strategies. However, these reviews only partially address the

significance of recapitulating the heterogeneity of the CRC TME

for drug screening.

Various 3D CRC spheroid models were derived from cancer cell

lines only (monoculture) and used for drug screening (28–32) with

success in modeling hypoxia and necrosis associated with tumor

resistance to drugs (33).

CRC patient-derived xenografts (34) and patient-derived cells

(35, 36) have also been used for drug screening predicting the

efficacies of chemotherapy regimens in personalized medicine, as

extensively discussed in another review (37). Patient-derived
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spheroids enable the recapitulation of essential tumor tissue

characteristics, such as the integrity of the genomic profile (38). A

critical limitation of the patient-derived spheroid model remains the

accessibility of the tissue and the success rate of spheroid formation.

Unlike commercially available cell lines, in vitro cultures of patient-

derived cells require skilled technical personnel for consistent cell

isolation and culture conditions. Cell dissociation methods, either

mechanical or enzymatic, can dramatically affect the yield and quality

of the isolated cells (39). Conversely, commercially available cancer

cell lines are ideal for reproducible high-yield production of 3D CRC

spheroids for drug testing. 3D tumor spheroid models with an

increased cellular complexity have been developed by culturing

heterogeneous cell types within the spheroid, such as fibroblasts

(40, 41), immune cells (42, 43), and endothelial cells (44, 45). These

models aim to emulate the heterogeneity of the TMEbetter to achieve

a more significant physiological association with native tissue

(Figure 1). Broadening the heterogeneity of 3D cultures is essential

to drug development as cytokines released from immune cells and

fibroblasts are known to modulate chemoresistance (41, 46).

However, the validation of cell-line-derived heterotypic spheroids

in recapitulating tumor heterogeneity as observed in patients remains

challenging given the lack of a systematic comparison with patient

tissues, which are not always available for research purposes.

The integration of a microfluidic device to host the 3D CRC

spheroid culture in hydrogel has enabled greater control over the

cellular environment during therapeutic screening for monoculture

(47–49) as well as heterocellular spheroids (50, 51), including

critical molecular gradients to resemble in vivo conditions more

closely (52). CRC spheroid models are increasing their

heterogeneity by incorporating elements of the gut microbiome, a

unique component of the TME of CRC, which heavily influences

disease progression and response to anti-tumor therapies (53, 54).

Therefore, in this mini-review, we report the recent research

progress towards incorporating different cell populations in 3D

CRC spheroid models, namely CAFs, tumor-associated

macrophages (TAMs), ECs, and gut bacterial cells to mimic the

TME heterogeneity. Differently from existing reviews, we focus on

the significance of the heterogeneous cell populations during drug

screening to improve the prediction of tumor response to therapy.
3D CRC spheroid models
with fibroblasts

Fibroblasts are the major constituents of the CRC stroma and

play an essential role in tumor cell invasion and progression (55,

56). CAFs are generally characterized by an increased expression of

fibroblast activation protein (FAP) and smooth muscle alpha-actin

(a-SMA) (57) triggered by secreted factors from surrounding

cancer cells (58). CAFs secrete soluble factors, which include

cytokines, chemokines, and growth factors such as interleukin 6

(IL-6), C-type lectin domain family 3 member B (CLEC3B), C-X-C

motif chemokine 12 (CXCL12), and epidermal growth factor (EGF)

to transform the TME to support tumor growth (59–62). Elevated

serum levels of CAF-derived soluble factors stimulate signaling
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pathways that actively transform the TME to promote tumor

metastasis and survival (63). For instance, the Wnt2 secreted

from patient-derived CAFs has been shown to stimulate the Wnt

signaling pathway, enhancing colon cancer cell proliferation and

migration in vitro (64).

Recent evidence has revealed subpopulations of CAFs with

different roles and prognostic significance in CRC (65, 66). Mosa

et al., for instance, distinguished inflammatory-like CAFs (iCAFs) from

contractile cancer-associated myofibroblasts (myCAFs) by reduced

endogenous Wnt activity. Heterogeneous tumor organoids with

iCAFs observed upregulated endothelial mesenchymal transition

(EMT) markers, promoting tumor metastasis, whereas those with

myCAFs did not (67). The heterogeneity of CAFs has been

attributed to different origins and differences in secreted factors from

cancer cells at each stage of tumor development (58, 65). Besides

representing potential therapeutic targets within the TME, CAFs in

heterotypic CRC spheroids contribute to angiogenic, invasiveness, and

chemoresistance mechanisms, modulating and regulating

inflammation and immunosuppression (68, 69). Therefore, CAFs

heterogeneity should also be included in 3D CRC models, especially

when screening for immunotherapeutic therapies.

To study the impact of fibroblasts during drug screening,

Zoetemelk et al. developed a multi-cellular CRC spheroid model

grown from various CRC cell lines (DLD1, HCT116, SW620) in the

absence (monoculture) and presence (co-culture) of normal human

fibroblasts (CCD18co) within the spheroids (45). CRC spheroids

were cultured within 96 u-bottom well plates with a 0.2% gelatin-

coated surface with up to 70% fibroblast population in a mixture of

cell culture media (DMEM, RPMI and EMEM) supplemented with

2.5% Matrigel®. The co-culture spheroids also included a 5%

immortalized human EC population to mimic the tumor stroma

better (Figure 2A). Some of the co-culture spheroids displayed a

higher metabolic activity and survival compared to monoculture

CRC spheroids after 72 h of treatment with chemotherapeutic drugs

regorafenib, erlotinib, and 5-fluorouracil (5-FU). The co-culture
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spheroids also displayed striking morphological differences

compared to the monoculture spheroids, whereby the co-culture

spheroids were characterized as irregularly shaped and with multi-

directional outgrowth. The decreased sphericity potentially

contributed to the enhanced survival of the co-culture spheroids

by increasing the surface area for improved exchange of oxygen and

nutrients. The co-culture spheroids exclusively produced

fibronectin, an extracellular matrix component that assists tumor

growth, progression, and invasion (72). Notably, this heterotypic

3D culture was maintained for up to 10 days, wherein the spheroids

observed sustained continuous proliferation measured by their

increasing diameter, making it ideal for studies on drug testing

lasting up to 10 days. Zoetemelk et al. simulated a multi-dose

regimen in patients through an additional 48 h treatment of their

co-culture spheroids after the initial 72 h incubation, which

improved the treatment efficacy in comparison to the single high-

dose drug administration. Zoetemelk et al. demonstrated that the

contribution of fibroblasts to tumor survival during chemotherapy

was successfully recapitulated in the co-culture spheroids and the

possibility for heterotypic spheroids to test multi-dose regimens

in vitro.

Dolznig et al. generated co-culture CRC spheroids in collagen

matrix containing 10x PBS, fibroblast growth medium (FGM)/20%

methylcellulose and collagen in 1:4:5 volumetric ratio at neutral pH

(41). They considered various colon adenocarcinoma cell lines

(LS174T, HCT116, SW480, SW620, Colo205, and HT29), colon

fibroblast cell lines (CCD18Co, Caco-2, and BJ-1), and CAFs

isolated from patients. The tumor model containing CAFs and

LS174T cells presented an enhanced invasive potential of the cancer

cells and a higher percentage of the nuclear b-catenin positive cells,

indicating the Wnt pathway activation as observed in patients (41).

This co-culture CRC spheroid model was applied to evaluate the

therapeutic efficacy of PI3K inhibitor LY294002 in FGM

supplemented with 2.5% serum, observing up to a 3-fold

suppression of spheroid growth over 7 days of incubation (41).
FIGURE 1

Scheme of the main components of the tumor microenvironment that could be recapitulated in heterotypic 3D CRC spheroid models for drug
screening. Created with Biorender.com.
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The enhanced fibroblast-associated cancer cell proliferation and

migration in patients makes CAFs potential therapeutic targets.

Consequently, researchers can use 3D CRC spheroid models to test

therapeutic strategies modulating CAFs (alone or in combination)

as done by Dana et al. (70) (Figure 2B). They demonstrated

resveratrol-loaded liposomes (L-RES) therapeutic efficacy in

reducing fibroblast activation and increasing drug sensitivity of

co-culture spheroid during 5-FU treatment. The co-culture

spheroids were formed with HT29 colorectal adenocarcinoma cell

line and human lung fibroblasts MRC-5 cultured for 3 days in 96

well round bottom ultra-low attachment plates. For the drug

sensitivity assay, the co-culture CRC spheroids were treated

with 25 mM of L-RES in combination with 5-FU at concentrations

of 5–25 mM for 2 more days (70).

All the described 3D CRC spheroid models well mimicked the

fibroblast-associated chemoresistance and cancer progression

observed in patients (64), supporting the importance of

recapitulating the cell heterogeneity within the TME in

heterotypic 3D CRC spheroid models for drug testing. In addition

to cell viability, proliferation, and migration previously mentioned
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as quantifiable parameters, several metastatic biomarkers (e.g.,

AGR2, CacyBP, and EphA2) could be measured in these 3D

models to further assess changes in the tumor metastatic

potential. As observed in Zoetemelk et al. (45), CRC spheroid

culture can be designed to accommodate multi-dose drug testing,

although 3D in vitro tumor models are mostly conceived to achieve

a fast prediction of the drug efficacy to speed up the drug

development rather than establish long-term cultures.
3D CRC spheroid models with
fibroblasts and immune cells

Colorectal tumors often observe a robust population of

infiltrating immune cells and an increased expression of pro-

inflammatory cytokines (73). Immune cells, specifically TAMs,

and their secreted cytokines are essential components of the TME,

significantly influencing tumor progression, immunosuppression,

and, indirectly, chemoresistance (74, 75). In particular, TAMs in

CRC, as in many solid tumors, consist of pro-inflammatory M1-like
D

A B

E

C

FIGURE 2

Selected images of representative heterotypic 3D CRC models from original figures of published scientific articles. (A) Brightfield and confocal
images of intra-spheroid localization of CRC cells (HCT116 and SW620), fibroblast, and endothelial cells over time. Spheroids were formed with a 1:1
ratio of cancer cells (HCT116, SSW620) and normal human colon fibroblasts (CCD18co) with 5% of human immortalized ECs (ECRF24) and used to
study drug sensitivity (45). Scale bar = 200 µm. (B) Brightfield images of monoculture and heterotypic HT29 spheroids treated with different
concentrations of 5-FU for 48 h. Heterotypic spheroids consisted of HT29 spheroids co-cultured with (2 x 105) activated MRC-5 fibroblasts (70).
Scale bar = 500 µm. (C) Brightfield images of 3D CRC models cultured for 48 h and consisting of cancer cells (HT29) and CD19-CD14- peripheral
blood mononuclear cells (PBMC) from healthy donors to study immunomodulatory antibodies (43). Scale bar = 600 µm. (D) Confocal images of
bacteria-spheroid co-culture consisting of HT29 cancer cells and Fusobacterium nucleatum (labeled in pink), and HT29 only spheroid at 12, 24, and
36 h. Scale bar = 200 µm. (E) High magnification (63 x) confocal images of 3D CRC spheroids at 12 and 36 h with and without F. nucleatum (in pink)
(71). Scale bar = 20 µm.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1148930
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yau and Adriani 10.3389/fonc.2023.1148930
and anti-inflammatory M2-like macrophages, with a dynamic

population ratio that varies with tumor progression (76).

Väyrynen et al., for instance, observed that higher cancer survival

was associated with higher density of M1-like macrophages than

M2-like macrophages (77), in agreement with the evidence of M1-

like macrophages having anti-tumor properties (e.g., inhibiting

angiogenesis and tumor cell infiltration) whereas M2-like

macrophages promoting tumor progression (78). This suggests

that the roles and functions of TAMs must be considered during

drug screening in 3D CRC spheroid models. However, we found

only a few examples in the literature of 3D CRC spheroid models

including immune cells that were applied for testing therapeutics.

To the best of our knowledge, the only 3D CRC spheroid model

including both fibroblasts and macrophages within the tumor

spheroid used for chemotherapeutic screening was presented by

Bauleth-Ramos et al. (42). A heterogeneous CRC spheroid model

was formed in 7 days, consisting of (90.8 ± 2.4%) CRC cancer cells

(HCT116), (5.6 ± 1.6%) human intestinal fibroblasts, and (7.5 ±

1.2%) macrophages matured from blood derived monocytes from

human donors. The spheroids were developed in agarose micro-

molds produced with 3D Petri Dish® and cultured in 12 well plates

with RPMI medium for the evaluation of a combined chemo-

immune treatment for 48 h. The macrophages, identified by flow

cytometry as mixed M1/M2 population with a major proportion of

M2-like macrophages, promoted continuous tumor cell

proliferation in spheroids through days 1 to 7, whereas spheroids

lacking the macrophages demonstrated stagnant growth. The

metastatic potential of the CRC spheroids was observed as cell

dispersion from the spheroids but not quantified to compare

monoculture and triculture (42). However, the consistent increase

in diameter over time of the triculture CRC spheroids suggested a

tumor-promoting role of M2-like macrophages in line with

previous literature (79). The spheroids with increasing

heterogeneity were treated with the chemotherapeutic Nutlin-3a

(Nut3a) and granulocyte-macrophage colony-stimulating factor

(GM-CSF) loaded in spermine-modified acetylated dextran

nanoparticles (NPs). The Nut3a-loaded NPs showed a dose-

dependent anti-proliferative effect in triculture and promoted the

M1 over M2 polarization in spheroids as measured by the ratio of

CD163 (M2 marker) to CD86 (M1 marker) expression (42).

Aside from macrophages, other immune cells are found in the

TME and play important roles in regulating tumor growth,

metastasis, and drug sensitivity, including dendritic cells (80), T

cells, and NK cells (81). Courau et al. demonstrated that T cells and

NK cells, enriched from human donor peripheral blood

mononuclear cells (PBMC) and co-cultured with CRC spheroid

in RPMI medium in 96 well plates after spheroid formation,

successfully infiltrated the spheroids to initiate tumor cell

apoptosis after 48 h (Figure 2C) (43). T and NK cells'

contribution to the CRC TME is important, especially for

screening immunotherapies that have yet to achieve satisfying

clinical efficacy as CRC treatment (82). For instance, Herter et al.

developed a CRC spheroid model with cancer cells (LoVo and

LS174T) and fibroblasts (CCD18Co) in an FGM-2 medium to

evaluate an interleukin-2 variant, IgG-IL2v, as novel
Frontiers in Oncology 05145
immunotherapeutic. They measured the IgG-IL2v influence on

the infiltration of human peripheral blood monocytes into the

CRC spheroids after 72 h (40), highlighting the possibility of

studying the influence of various immune cells infiltrated within

3D CRC spheroid models.

Triculture 3D CRC spheroid models with fibroblasts and TAMs

may be considered more suited for evaluating immunotherapy

strategies compared to 3D CRC spheroid models with only cancer

cells or co-culture of cancer cells and fibroblasts. Further, as the

crosstalk among cancer, stromal and immune cells modulate the

release of immunosuppressive cytokines within the TME, impacting

cell metabolisms, cell differentiation and functions (83–85), the

stromal and immune components should be taken into

consideration for a more comprehensive evaluation when testing

not only immunotherapies (86) but any anti-tumor therapeutic,

providing insights into drug mechanisms and influence over critical

parameters in the TME.
3D CRC spheroid models with ECs

The secretion by tumor cells of pro-angiogenic growth factors,

such as vascular endothelial growth factor (VEGF) and vascular

endothelial growth factor receptor 2 (VEGFR2), promotes the

development of new irregular blood vessels that supply tumors

with nutrients and oxygen (87). The ECs contribute to a

disordered TME, influencing tumor progression (88) and

chemoresistance (89). The ECs associated with tumor angiogenesis

have demonstrated phenotypic and genetic differences from normal

ECs and are, at times, specifically referred to as tumor-associated

endothelial cells (TECs) (90, 91). Consequently, TECsmay influence

the TME and the tumor sensitivity to drugs differently from normal

ECs (92). Therefore, it is advisable to determine the nature of ECs (as

“normal” or “tumor-associated”) when integrated into spheroid

models to rationalize the contribution of incorporating the EC

population in mimicking the TME. This determination could be

performed by genomic profiling (91) or by comparing the relative

expressions of key markers of TECs such as biglycan (93).

As anticipated, Zoetemelk et al. introduced a 5% cell population

of human immortalized vascular endothelial cells, ECRF24, in their

heterogeneous human 3D CRC spheroid model containing cancer

cells and fibroblasts (45). The authors discussed the spatial

localization of ECs close to fibroblasts in the center of the

spheroids for those formed with DLD1, SW620, and HCT116

cells. However, since the drugs were screened on either

monoculture or triculture condition, no specific association

between the spheroid sensitivity and EC presence was possible.

More recently, Carvalho et al. published a quadruple multi-

cellular human CRC spheroid model by co-culturing HCT116

with human intestinal fibroblasts (HIFs), human pulmonary

microvascular endothelial cells (HPMECs) and human monocytes

to mimic a pro-angiogenic TME and test anti-angiogenic

nanoparticles (NPs) containing bevacizumab (BVZ) (94). Three

different ratios of HCT116:HPMECs:HIFs:monocytes (1:1:1:1,

1:4:4:4 and 1:4:1:4) were tested to form spheroids on agarose
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micro-molds and cultured in RPMI medium over 7 days. The

1:1:1:1 model contained the highest expression of angiogenic CD31

marker and was selected to best recapitulate the pro-angiogenic

TME. The NPs-based treatment resulted in the reduction of the

endothelial cell marker CD31 and consequently reduced the

angiogenic potential of the CRC spheroids, demonstrating

the efficiency of the CRC model in screening anti-angiogenic

drugs and nanoparticles. Furthermore, while not discussed, the

high heterogeneity of the model by inclusion of stromal, endothelial

and immune cells also enables the evaluation of chemo-

immunotherapy strategies and multi-action drugs, although a

different cell ratio may be optimal.

While vascularized heterotypic CRC spheroids will indeed

represent a pathophysiologically relevant TME for drug screening

(95) and studying the permeation of drugs through vasculature (96),

few vascularized CRC models (97, 98) have been presented.
3D CRC spheroid models
with gut bacteria

The gut microbiome is among the most important

environmental factors contributing to CRC development (53, 99,

100). The gut microbiome consists of several micro-organisms,

including bacteria, viruses, and fungi (54, 99, 101). Over 1000

species and 7000 strains of bacteria may be found in an adult gut

(53). Disturbances to the gut microbiome balance, such as an

individual’s psychosocial stress or consuming antibiotics, can

contribute to CRC (53, 54, 99, 100). For example, Clostridium

butyicum helps to generate butyrate, folate, and biotin, which are

important for regulating epithelial proliferation, thereby mitigating

the risks of specific diets for developing CRC (53). Other biotas may

have the opposite effect, secreting epigenetic factors that promote

CRC (102). For example, a high-fat diet can cause excessive

accumulation of lipopolysaccharides, a bacteria side product, that

can enter the intestinal circulation and cause inflammation which

may develop into CRC (103). Apart from carcinogenesis, the gut

microbiome has implications for the development of

chemoresistance, and it contains potential therapeutic targets

(100). For instance, Fusobacterium nucleatum (F. nucleatum) has

been linked to the chemoresistance of CRC to 5-FU through two

separate mechanisms (104). However, few 3D models have been

developed to consider the gut microbiome’s role in CRC.

Kasper et al. developed a 3D model of a spheroid derived from

CRC cell lines (HCT116 and HT29) capable of housing and

promoting the growth of two strains of the anaerobic bacteria F.

nucleatum (Figures 2D, E) after spheroid formation in McCoy’s 5 A

medium (supplemented with serum) to observe bacteria-tumor cell

interactions and metabolic crosstalk within the TME (71).

Interestingly, the tumor-bacteria spheroids shown an enriched IL-

8 metastatic signaling, mirroring the increased IL-8 expression in

CRC patients with high F. nucleatum. IL-8 has been shown to

promote proliferation and survival of cancer cells (105, 106).

However, the model has a limited culture time because the F.
Frontiers in Oncology 06146
nucleatum induced tumor cytotoxicity after 24 h (71). Therefore,

this human tumor-bacteria co-culture in a 3D setting should be

further optimized for evaluating potential drug candidates or

therapeutic regimens for treating CRC while considering the

potential chemoresistance induced by F. nucleatum.

Lee et al. evaluated the potential anti-cancer activity of another

component of the gut microbiome, the probiotic bacterium

Lactobacillus fermentum (grown and expanded in Lactobacilli De

Man, Rogosa, Sharpe broth), in their 3D CRC spheroid model

cultured in RPMI medium (supplemented with serum) in 96 well

round bottom plate (107). The effect of Lactobacillus fermentum

was observed through increased apoptosis of HCT116 cells after

72 h, which was observed solely in the 3D CRCmodel and not in 2D

monolayer cultures (107). Rubert et al. instead demonstrated that

the native (poly)phenols and gut microbial metabolites inhibited

the propagation and viability of HCT116 spheroids cultured in

RPMI medium (supplemented with serum) in 96 well round

bottom plate after 72 h incubation (108).

Indeed, the gut microbiome’s influence on CRC progression,

survival, and chemoresistance warrants research work to determine

their potential as therapeutic targets. However, 2D cultures are

insufficient to assess the gut microbiota's activity in CRC (107). In

this resepct, 3D CRC spheroid models provide an attractive in vitro

strategy for exploring the specific role of gut microbiota in

influencing chemoresistance, tumor progression, and survival. Drug

evaluations in human 3D CRC spheroid models should, therefore,

include a systematic evaluation of the activity of the gut microbiota to

better appreciate their role in the TME during treatment.
Conclusions

There needs to be more standardization and validation of the

methodologies for applying human 3D CRC spheroid models to

preclinically assess the efficacy of drugs or other therapeutic

strategies. This limitation has challenged the reproducible

implementation of 3D spheroid models in drug development and

confidence in the drug efficacies observed (109). Monoculture

spheroids are simple and quick to optimize, justifying their use for

high-throughput screening of drugs until the processes for

heterogeneous spheroid formation, treatment, and assessment are

better validated and automated. Indeed, heterogeneous spheroids

have been demonstrated to have pathophysiological similarities and

relevance to native tumor tissue. By incorporating fibroblasts, ECs,

TAMs, and gut microbiota, human CRC spheroid models enable

more in-depth investigations into the role of specific cell populations

on tumor progression, survival, and chemoresistance unfeasible in

traditional 2D cultures and spheroid monoculture. Diverse cell

populations within the 3D models also represent attractive

therapeutic targets that cannot be identified and validated in

monoculture. Heterotypic 3D CRC spheroids thereby offer great

potential for more precise predictions of the efficacy of

chemotherapies to aid the discovery and development of new drug

candidates, representing a promising preclinical tool for overcoming

some of the limitations of previous in vitro and in vivo models.
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Characterization of 3D
heterocellular spheroids of
pancreatic ductal
adenocarcinoma for the study of
cell interactions in the tumor
immune microenvironment

Giulio Giustarini 1*, Germaine Teng1, Andrea Pavesi2,3

and Giulia Adriani1,4*

1Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR),
Singapore, Singapore, 2Institute of Molecular and Cell Biology (IMCB), Agency for Science,
Technology and Research (ASTAR), Singapore, Singapore, 3Mechanobiology Institute, National
University of Singapore, Singapore, Singapore, 4Department of Biomedical Engineering, National
University of Singapore, Singapore, Singapore
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies

nowadays. The available chemo- and immunotherapies are often ineffective in

treating PDAC due to its immunosuppressive and highly desmoplastic tumor

immune microenvironment (TIME), which is hardly reproduced in the existing

preclinical models. The PDAC TIME results from a peculiar spatial organization

between different cell types. For this reason, developing new human models

recapitulating the tissue organization and cell heterogeneity of PDAC is highly

desirable. We developed human 3D heterocellular tumor spheroids of PDAC

formed by cancer cells, endothelial cells, pancreatic stellate cells (PSC), and

monocytes. As a control, we formed spheroids using immortalized epithelial

pancreatic ductal cells (non-cancerous spheroids) with cellular heterogeneity

similar to the tumor spheroids. Normal spheroids containing endothelial cells

formed a complex 3D endothelial network significantly compromised in tumor

spheroids. Monocyte/macrophages within the 4-culture tumor spheroids were

characterized by a higher expression of CD163, CD206, PD-L1, and CD40 than

those in the non-cancerous spheroids suggesting their differentiation towards an

immunosuppressive phenotype. The heterocellular tumor spheroids presented a

hypoxic core populated with PSC and monocytes/macrophages. The 4-culture

tumor spheroids were characterized by spatial proximity of PSC and monocytes

to the endothelial cells and a cytokine signature with increased concentrations of

CXCL10, CCL2, and IL-6, which have been observed in PDAC patients and

associated with poor survival. Further, 4-culture tumor spheroids decreased

the concentrations of T-cell chemoattracting cytokines, i.e., CCL4, CCL5, and

CXCL9, when compared with the non-cancerous spheroids, revealing a critical

immunosuppressive feature of the different types of cells forming the tumor

spheroids. Our results showed that the 4-culture tumor spheroids better
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resembled some critical features of patients’ PDAC TIME than monoculture

tumor spheroids. Using the proposed human 3D spheroid model for therapy

testing at the preclinical stage may reveal pitfalls of chemo- and immuno-

therapies to help the development of better anti-tumor therapies.
KEYWORDS

pancreatic ductal adenocarcinoma, cancer, spheroids, in vitro model, heterocellular,
tumor immune microenvironment, macrophages, cytokines
Introduction

Pancreatic Ductal Adeno-Carcinoma (PDAC) represents 2.6%

of the incidence of cancer worldwide, nonetheless, 4.7% of the

mortality (1). Available therapies, namely chemotherapies,

immunotherapies, and radiotherapies for treating PDAC are

characterized by a poor response associated with minimal survival

(2, 3). The lack of effective therapies undoubtfully contributes to the

10.8% 5-year relative survival of PDAC patients (4). Within the

tumor immune microenvironment (TIME), cells, extracellular

matrix, and soluble factors play a pivotal role in the resistance to

therapies (5). The available preclinical models for PDAC, including

both in vivo and in vitro models, suffer limitations in identifying

clinically effective therapies due to their inability to fully

recapitulate the complex and heterogeneous TIME observed in

patients. The development of 3D heterocellular PDAC spheroids

represents a step forward in predicting chemoresistance, better

simulating key features of PDAC pathophysiology compared to

2D in vitro tests (6). Pancreatic stellate cells (PSC) are the main

source of extracellular matrix (ECM) in PDAC (7) and have been

shown to play a key role in tumor vascularization and in

establishing an immunosuppressed environment in PDAC (8, 9).

PSC have similar functions to the hepatic stellate cells and their

transcriptional profile in response to inflammation is unique among

the other fibroblastic populations in pancreatic cancer (10),

dramatically expanding during carcinogenesis in an orthotopic

murine model (11). Recently, Helms et al. demonstrated that

PSC-derived myofibroblasts, rather than other fibroblasts of

different origins, have a non-redundant capability to shape the

desmoplastic PDAC TIME (10), although representing only 10 to

15% of the cancer-associated fibroblasts in an orthotopic murine

model (8, 9). In two different models, PSC showed their capability to

increase proliferation and expression of vimentin (mesenchymal

marker) whereas decreasing the expression of E-cadherin (epithelial

marker) in the pancreatic cancer cell line PANC-1 when co-

cultured in a 3D spheroid (12, 13). Adding MRC-5 immortalized

fibroblastic cells of fetal lung origin to 3D PDAC spheroid models

have shown to implement certain features observed in patients’

TIME, such as the differentiation of monocyte to M2-like

macrophages (14). However, is still unclear whether PSC

influences cancer cells and primary human monocytes/

macrophages in 3D co-culture systems. This uncertainty arises

because human PSC-derived fibroblasts exhibit protective effects
02151
on pancreatic cancer cells, which are not observed in co-cultures

with MRC-5 fibroblastic cells, (15).

Macrophages of both fetal and hematopoietic stem cell

ontogeny have been observed within the PDAC TIME.

Embryonically- and hematopoietic stem cell-derived macrophages

exert different functions, such as shaping the fibrotic processes and

regulating the immune responses, respectively, as demonstrated in

an orthotopic murine model of PDAC (16). In line with these

findings, clinical trials have shown that the dual inhibition of

chemotactic receptors (CCR2 and CCR5) for the recruitment of

monocytes has a beneficial effect on the anti-tumor immunity and

chemotherapeutic response in PDAC compared to either strategy

alone. This evidence tailored a fundamental immunosuppressive

and drug-resistance role for monocytes within the PDAC TIME,

underlining their involvement in response to therapies (Tomás-

Bort et al., 2020).

An abundant cell type within the PDAC TIME is represented by

endothelial cells, even though tumor vascularization is often heavily

compromised (17). To include endothelial cells (EC), a previous

study has combined human umbilical vein EC (HUVEC) with lung

fibroblasts and different pancreatic cancer cell lines to form 3D

PDAC spheroids. The heterogeneous spheroids containing the

three cell types showed stronger chemoresistance of cancer cells to

standard therapies (i.e., doxorubicin and gemcitabine) when

compared with spheroids formed by only cancer cells, underlining

important synergisms between endothelial cells and other cells in the

spheroids to reproduce drug resistance as observed in patients (18).

However, none of the 3D heterocellular PDAC spheroids

mentioned above or similar models (6, 15, 19) included immune

cells within the PDAC heterocellular spheroids.

We hypothesized that in vitro co-culture of monocytes/

macrophages with cancer, endothelial, and stellate cells in 3D

spheroids could reproduce a microenvironment similar to what

was observed in the immune niche of different tissues (20, 21), in

which cells establish a partnership promoting mutual changes in

transcription and survival, shaping their differentiation and

activation within the spheroids.

Therefore, here we present the first 3D heterocellular human

spheroid model of PDAC formed using PANC-1 cancer cells,

pancreatic stellate cells (PSC), endothelial cells (EC) and peripheral

blood mononuclear cell (PBMC)-derived monocytes. Combining

immunofluorescence, flow cytometry, and cytokine analysis, we

characterize the viability, proliferation, cytokine concentrations, and
frontiersin.org
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monocyte differentiation within the spheroids. We observed that the

4-culture spheroids were characterized by spatial proximity of PSC,

monocytes, and EC, which formed a 3D endothelial network and

were characterized by a cytokine signature resembling the one

observed in PDAC patients with poor survival. The model included

control spheroids formed using h-TERT-human pancreatic epithelial

nestin-expressing cells (HPNE), which served and will serve to

validate differences with cancer spheroids. Ultimately, we envision

that the cellular interactions within the heterocellular PDAC

spheroids containing the four cell types (cancer, stellate, endothelial

cells, and monocytes) will better simulate key features of PDAC and

our heterocellular spheroids will represent a better tool for more

complex microfluidic models studying T cell interaction with the

patient’s TIME.
Material and methods

Cell culture

PANC-1 (American Type Culture Collection, ATCC), h-TERT-

HPNE (human pancreatic epithelial nestin-expressing cells

immortalized by transducing with a h-TERT cDNA) (ATCC,

Manassas, VA, USA) (22) were maintained in Iscove Modified

Dulbecco Media (IMDM) supplemented with 10% fetal bovine

serum (FBS, ThermoScientific Cat#10082147) and penicillin/

streptomycin (100 U/mL, Invitrogen/Gibco Cat#15140122). Human

Pancreatic Stellate Cells (HPaSteC, here referred as PSC) (Gene Etichs

Cat#3830, Lot#14358) were maintained in Stellate Cell Medium

(SteCM, ScienCell Research Laboratories, Cat#5301) supplemented

with 2% FBS (ScienCell Research Laboratories, Cat#0010), 1% stellate

cell growth supplement (ScienCell Research Laboratories, SteCGS,

Cat#5352) and 1% antibiotic solution (ScienCell Research

Laboratories, Cat#0503). Human umbilical vein endothelial cells

(HUVEC, Lonza, C2519AS, Lot#633426) and RFP-HUVEC

(Angioproteomie cAP-001RFP, Lot#2021122802) were cultured in

EGM-2™ SingleQuot™ containing 0.5 ng/ml VEGF, 5 ng/ml EGF,

10 ng/ml bFGF, 20 ng/ml long R3-IGF-1, 22.5 mg/ml heparin, 1 mg/ml

ascorbic acid, 0.2 mg/ml hydrocortisone, gentamicin (1/1000 dilution)

and 2% FBS. All cells were cultured in 75 and 175 cm2 tissue culture

treated flasks in a humidified atmosphere composed of 95% air and 5%

CO2 and a temperature of 37°C. Cells were passaged every 72 h using

0.25% (PANC-1 and HPNE) or 0.05% (HUVEC and PSC) Trypsin-

EDTA (Gibco, Thermo Fisher Scientific, Cat# 25300054).
Generation of GFP-PANC-1 cells

The generation of GFP-tagged PANC-1 cells was achieved using

lipofectamine 2000-mediated transfection following manufacturer’s

instruction. Briefly, PANC-1 cells were cultured and maintained in

appropriate growth media before transfection with an enhanced

green fluorescent protein (eGFP) encoding plasmid (pEGFP-C1

EGFP-3XNLS, cat. N. #58468, Addgene) encapsulated in

Lipofectamine 2000. The lipofectamine-GFP plasmid complex

was added to the PANC-1 cells and allowed to incubate for 48 h.
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Following the transfection, the GFP-tagged PANC-1 cells were

monitored under a fluorescence microscope to confirm successful

GFP expression and subsequently FACS sorted to enrich the

positive population.
Human blood cells

Ethical approval for obtaining healthy human volunteer blood

cones was obtained by the institutional ethical review board under

the Project No.: 201306-04 and all subjects provided written

informed consent.
Monocyte isolation

Peripheral blood mononuclear cells (PBMC) were isolated from

blood cones using a density gradient of Ficoll/Paque PLUS (GE

Healthcare, Marlborough, MA, USA). The content of the blood cones

was diluted 40x in phosphate buffer saline (PBS) and placed onto a

layer of Ficoll/Pacque (density 1.077 g/L) before centrifuging at 900 x

g, at room temperature (RT) for 20 min. The obtained PBMC layer

was collected using a sterile pipette and washed with Ca-Mg- PBS

before incubation with red blood cell lysis (155 mM NH4Cl, 10 mM

KHCO3, 0.1 mM EDTA) for 5 min at RT. Cells were washed in Ca-

Mg- PBS and prepared for cryopreservation using Bambanker™

(Fujifilm Wako Chemicals U.S.A. Corporation, Richmond, VA,

USA). On the day of the experiment, cryopreserved PBMC

suspension was used for the isolation of untouched monocytes

using Pan Monocyte Isolation kit (Miltenyi Biotec, Bergisch

Gladbach, Germany). The isolated cells were characterized by the

expression of CD14 and CD16 in a CD45+/CD3- gate. Monocytes

represented more than 95% of the total CD45+ cells.
Cell labeling

Cells were collected in tubes and counted before washing them

once in PBS. Cells were spun down at 300 x g for 5 min and the

supernatant discarded. PBS containing CellTrace™ Violet (cat. n.

C34557, Thermo Fisher, dilution 1/1000), CellTracker™ Deep Red

(cat. n. C34565, Thermo Fisher, dilution 1/1000) and CellTracker™

Green CMFDA (cat. n. C2925, Thermo Fisher, dilution 1/500) was

used to stain the different cell types according to the requirements of

the experiment. The cell pellet was resuspended in PBS containing

the dyes and incubated at 37°C. After 30 min, 5 ml of medium

containing FBS was used to stop the staining reaction. Other 5 ml of

medium containing FBS was used to wash the cells before

resuspending them in EGM-2 for spheroid formation.
Hanging-drop spheroid formation

Heterogeneous cell suspensions for the spheroid formation were

obtained by mixing either PANC-1 or HPNE with PSC, HUVEC and

PBMC-derived monocytes following the ratios shown in Table 1. The
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seeding number of PANC-1 cells was determined to achieve a

minimum radius of approximately 250 µm and a viability above

90% of the spheroids at day 7. EGM-2 was adopted as medium for the

spheroid formation after we assessed no significant changes in the cell

number of PANC-1, HPNE, HPaSteC and monocytes in 2D culture

using EGM-2 compared to the respective recommended media

(Supplementary Figure 1). The PANC-1 cell number was kept

constant to better assess the contribution of each cell type on

cancer cells. The cell ratio to PANC-1 cell was tuned to observe the

arrangement of endothelial cells into a three-dimensional (3D)

network. With this aim, several preliminary ratios were investigated

for EC, PSC and monocytes. We selected the ratios supporting the

formation of the 3D EC network. The seeding number of HPNE cells

was determined by their ability to form spheroids with a radius

similar to the PANC-1 spheroids, while ensuring their viability

remains above 90%. The other cell types in the HPNE spheroids

were kept in the same number as for the PANC-1 spheroids. Cells

were resuspended in EGM-2 and seeded using a custom-made

polydimethylsiloxane (PDMS) support for the formation of

spheroids with the hanging drop technique. Spheroids were formed

in 4 or 7 days depending on the experiment.
Immunofluorescence

At day 4 or 7, spheroids were spun down at 300 x g for 1 min

and each drop was assessed for the formation of the spheroid by an

inverted microscope. All the formed spheroids were collected in 1.5

mL microcentrifuge tubes and spun down for 1 min at 300 x g.

Supernatant was removed, and spheroids were incubated with new

medium containing a dilution of the membrane impermeable

DNA-staining DRAQ7 (Thermo-Fisher Scientific, Waltham, MA,

USA) for 30 min at 37°C. Spheroids were washed in PBS before

adding PBS containing 4% paraformaldehyde. After 20 min at RT

spheroids were washed 3 times with PBS + 1% bovine serum

albumin (BSA) before proceeding with the staining. For

intracellular staining, spheroids were permeabilized using PBS Ca-

Mg- + 0.5% Triton-X-100. After 30 min, spheroids were washed two

times with PBS Ca-Mg- + 1% BSA before incubating them with PBS
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Ca-Mg- + 0.5% Triton-X-100 0.5% + 5% BSA for 3 h. After washing

with PBS Ca-Mg- + 1% BSA, spheroids were incubated overnight

with PBS Ca-Mg- + 1% BSA containing one of the following

antibodies: rat AlexaFluor594-conjugated anti-human Ki67

antibody (1:100, cat. n. 11-5698-82, EBioscience, Thermo-Fisher

Scientific), recombinant anti-human eFluor650-conjugated HIF-1a
antibody (1:50, cat. n. 190569, Abcam, Cambridge, UK) and rabbit

anti-human purified collagen I antibody (1:50, cat. n. 34710,

Abcam, Cambridge, UK). For collagen I immunofluorescent

staining, overnight incubation at 4°C with goat anti-rabbit

AlexaFluor546 anti-IgG secondary antibody (Fisher Scientific,

Carlsbad, CA, USA) in PBS Ca-Mg- + 1% BSA. Spheroids were

washed 3 times with PBS Ca-Mg- + 1% BSA. The spheroids stained

for Ki67 were incubated with Hoechst 33342 (1 mg/ml) in PBS + 1%

BSA. After 1 h, spheroids were washed with PBS Ca-Mg- + 1% BSA

before proceeding with image acquisition using an inverted

confocal microscope Olympus FV1000 (Olympus, Tokyo, Japan).
Flow cytometry

Spheroids were collected in 1.5 mL Eppendorf tubes and washed

with PBS Ca-Mg- + 1% BSA before proceeding with cell

dissociation. Dissociation was performed in 2 steps: 1) incubation

with RPMI containing 1 mg/ml Collagenase type IV (Worthington

Biochemical Corporation, USA) for 20 min at 37°C; 2) addition of

0.25% trypsin + EDTA (0.53 mM) and further incubation for 20

min. Enzymatic activity was stopped by addition of RPMI

containing 10% FBS. Cells were washed with fluorescence‐

activated cell sorting buffer (PBS containing 0.5% BSA, 0.05%

NaN3, 0.5 mM EDTA) and prepared for flow cytometry staining.

Cells were first stained with LIVE/DEAD® Fixable Dead Cell Stain

(Molecular Probes, Invitrogen, Carlsbad, CA, USA) followed by

incubation with fragment crystallizable region receptor (FcR)-

blocking antibody to block the FcR. The following antibodies

were used for the extracellular staining of cells obtained from the

spheroids: mouse PerCP-cy5.5-conjugated anti-human CD86

(clone: 2331) (cat. n. 561129, BD Bioscience, Franklin Lakes, NJ,

USA), mouse PE-conjugate anti-human CD68 (clone: Y1/82A) (cat.
TABLE 1 Composition of PANC-1 spheroids (ratios).

Condition PANC-1 HPaSteC HUVEC Monocytes

Ratio Cell number Ratio Cell number Ratio Cell number Ratio Cell number

PANC-1 1 (1500) – (-) – (-) – (-)

PANC-1+PSC 1 (1500) 2 (3000) – (-) – (-)

PANC-1+EC 1 (1500) – (-) 2 (3000) – (-)

PANC-1+Mono 1 (1500) – (-) – (-) 4 (6000)

PANC-1+PSC+EC 1 (1500) 2 (3000) 2 (3000) – (-)

PANC-1+PSC+Mono 1 (1500) 2 (3000) – (-) 4 (6000)

PANC-1+EC+Mono 1 (1500) – (-) 2 (3000) 4 (6000)

PANC-1+PSC+EC+Mono 1 (1500) 2 (3000) 2 (3000) 4 (6000)
-, Cell type not included in the spheroid.
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n. 333808, BioLegend, San Diego, CA, USA), mouse Pacific Orange-

conjugated anti-human CD14 (clone: TuK4) (cat. n. MHCD1430,

Invitrogen), mouse anti-human eFluor-450 CD206 (clone: 19.2)

(cat. n. 48-2069-41, eBioscience), mouse BUV395-conjugated CD45

anti-human (clone: HI30) (cat. n. 563791, BD Bioscience), mouse

BUV737-conjugated anti-human CD40 (clone: 5C3)(cat. n. 741847,

BD Bioscience), mouse PE-CF594-conjugated anti-human CD163

(clone: GHI/61) (cat. n. 562670, BD Bioscience), mouse PE-cy7-

conjugated anti-human CD274 (PD-L1, clone: MH3) (cat. n.

329718, BioLegend), mouse BV605-conjugated anti-human HLA-

DR (clone: L243) (cat. n. 307640, BioLegend). For those analysis

requiring the intracellular staining, after the cells were stained for

the extracellular staining, they were fixed using intracellular fixation

buffer (eBioscience). Following procedures reported in the

manufacturer’s instructions, the permeabilization buffer was used

to incubate the antibodies recognizing a-SMA and HIF-1a. The
antibodies used to recognize these proteins are the following: mouse

AlexaFluor 488-conjugated anti-human a-SMA (cat. n. 53-9760-82,

Invitrogen), recombinant eFluor650-conjugated anti-human HIF-

1a (cat. n. 190569, Abcam). After the intracellular staining cells

were resuspended in FACS buffer and prepared for acquisition at

BD FACS Symphony A3. Data were analyzed using FlowJo analysis

software (Tree Star, Inc., Ashland, OR, USA).
Microscopy

Images of the spheroids were acquired using the inverted confocal

microscope Olympus FV1000. Images were processed using IMARIS

software (v. 9.7.1, Bitplane). We identified Ki67 positive nuclei using

the functions “spots”. PANC-1 nuclei were identified selecting mean

intensity of Hoechst 33342 and GFP using background subtraction and

considering the fluorescent signal elongation due to the acquisition.

Ki67 foci positive cells were considered positive using the intensity sum

of the signal emitted by the AlexaFluor594-conjugated anti-human

Ki67 antibody within the identified nuclei. Dead cells were excluded

based on their mean intensity for DRAQ7.

Analogously, for HIF quantification nuclei were identified using

Hoechst 33342 signal using the function “spots” and HIF-

AlexaFluor647 signal was identified using a cobalt chloride

treated spheroid (positive control). HIF-1a positive control was

obtained exposing the formed spheroid to 200 µM cobalt chloride in

EGM-2 for 24 h.

Cell composition of the spheroids was identified using the

fluorescence of different CellTrackers/CellTracers, GFP-PANC-1 and

RFP-HUVEC. Cells were identified using both “spots” and “surface”

functions selecting a diameter of cells and a threshold for the mean/

median fluorescence intensities after automatic background

subtraction and considering the fluorescent signal elongation due to

the acquisition. Object to object distance was used to plot distance

between different cell types using “Vantage”. Normal spatial

distributions of the identified spots were provided by the software.

ImageJ software was used to determine the spatial distribution of the

different cell types within the HPNE/PANC-1 spheroid. Mean

fluorescence of the cells was assessed using the function “plot profile”

selecting a region of interest containing the spheroids. Diameter of the
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spheroids was used to identify an outer and inner region as depicted in

Supplementary Figure 2. Area under the curve of mean fluorescence

was calculated for each region (inner, outer) and the inner/outer ratio

of the areas (distribution ratio) plotted as arbitrary unit (A.U.).
Human cytokine multiplex bead-
based assay

The analysis of multiple cytokines in the spheroid formation

medium at day 7 was performed using the Luminex technology. For

each condition at day 7 after seeding, the spheroid formation

medium of 18 spheroids was pooled in a single Eppendorf tube.

Spheroids were centrifuged 1 min at 300 x g and supernatant

transferred in a new Eppendorf tube. First, the supernatant was

centrifuged 5 min at 400 x g. The supernatant was collected and

further centrifuged for 10 min at 2000 x g. Supernatant was

transferred in a 96 well plate and stored at -80°C until analysis.

Supernatant was thawed the day of the assay and prepared for the

use of Bio-Plex Pro Human Cytokine Screening Panel 48-Plex

(Biorad). Samples were incubated with fluorescent-coded

magnetic beads pre-coated with respective antibodies in a black

96 well clear-bottom plate overnight at 4°C. After incubation, plates

were washed 5 times with wash buffer (PBS with 1% BSA

(Capricorn Scientific) and 0.05% Tween-20 (Promega)). Sample-

antibody-bead complexes were incubated with Biotinylated

detection antibodies for 1 h and washed 5 times with wash buffer.

Subsequently, Streptavidin-PE was added and incubated for another

30 min. Plates were washed 5 times again, before sample-antibody-

bead complexes were re-suspended in sheath fluid for acquisition

on the FLEXMAP® 3D (Luminex) using xPONENT® 4.0

(Luminex) software. Data analysis was done on Bio-Plex

ManagerTM 6.1.1 (Bio-Rad). Standard curves were generated

with a 5-PL (5-parameter logistic) algorithm, reporting values for

both mean florescence intensity (MFI) and concentration data.
Statistics

Data are presented as means ± standard error of the mean

(SEM) if not differently stated in the figure caption. Statistical

significance for comparisons was determined by one- or two-way

ANOVA with different post-hoc tests. Proper post-hoc test is

indicated in the figure legend. A p-value less than 0.05 was

considered statistically significant. All data are analyzed using

GraphPad Prism (version 6.07) software (San Diego, CA, USA).
Results

HPNE and PANC-1 cells form viable
heterocellular spheroids

Heterogenous cell suspensions with the composition indicated in

Table 1 were cultured using a custom-made PDMS layer for the

spheroid formation by hanging drop technique (Figure 1A). On day
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7, the spheroids were collected and prepared for imaging to assess size

and viability (Figure 1B; Supplementary Figures 4, 5). PANC-1

spheroids with lower cell heterogeneity, namely the monoculture

PANC-1 spheroids and the bi-culture (2-culture) PANC-1+PSC

spheroids, showed a significantly smaller size when compared with

the other spheroids containing more cell types with mean radii

ranging between 248 mm for monoculture and 318 mm for quadri-

culture (4-culture) (Supplementary Figure 3A). Among the different

conditions, spheroid containing PANC-1+EC showed the highest

mean radius of 380 mm. DRAQ7+ cells, representing the non-viable

cells with a compromised cell membrane, did not exceed 10% of the

total number of cells (Supplementary Figure 3B) for all the spheroid

compositions, suggesting good viability of the spheroids at the time

point assessed. Spheroids obtained using h-TERTHPNE only slightly

increased their size accordingly with their heterogeneity without a

statistically significant difference among different spheroid
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compositions (Figure 1C). The radii of the HPNE spheroids were

shorter than the PANC-1 spheroids with the same heterogeneity.
Different cell types co-exist and interact
in the heterocellular HPNE and
PANC-1 spheroids

The cell composition analysis of the spheroids was performed

using flow cytometry after spheroid dissociation on day 7 (Figure 1C).

The cell composition was determined as percentage of each cell type

over the total cell number in the spheroid. For PANC-1 spheroids, EC

(in red in Figure 1C) were detected only in spheroids containing PSC

and were averagely of 0.5 and 1% in PANC-1+PSC+EC+Mono and

PANC-1+PSC+EC conditions respectively (Figure 1C). By contrast

for HPNE, EC were detected in all the spheroids (Figure 1C). For
A B

C

FIGURE 1

Characterization of size, viability and composition of HPNE and PANC-1 spheroids with different cellular heterogeneity. PANC-1 and HPNE cells
were combined with PSC, EC and monocytes following the ratio shown in Table 1. (A) Schematic illustration of the workflow of spheroid formation
and assays performed. (B) Representative images of monoculture, 3-culture and 4-culture of PANC-1 and HPNE spheroids at day 7 using confocal
imaging (green: nuclei, purple: PSC, red: EC, blue: monocytes); scale bar: 100 mm. (C) Parts of whole graph showing the spheroid composition as %
of each cell type on the total number of live cells, determined by flow cytometry analysis at day 7.
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PANC-1 spheroids, PSC (in purple in Figure 1C) were present in all

the spheroids. The percentage of PSC in the spheroids was ranging

from 6.7 to 9% without significant differences among the spheroid

conditions (Figure 1C). Similarly, for HPNE spheroids, PSC were

ranging between 14 to 20% without significant differences among

conditions (Figure 1C). For PANC-1 spheroids, monocytes (in blue

in Figure 1C) at day 7 were increasing their percentages accordingly

with the increase in heterogeneity of the PANC-1 spheroids. In

particular, we observed that monocytes were ~1% when cultured

alone with PANC-1 but their percentage increased to 3% in PANC-1

+EC+Mono, and 5% in PANC-1+PSC+Mono and PANC-1+PSC

+EC+Mono spheroids (Figure 1C). Although a similar percentage

increase of monocytes was observed within HPNE spheroids with a

higher heterogeneity, monocyte percentage in HPNE+EC+Mono

spheroids was not statistically different from the percentage

detected in HPNE+Mono spheroids (Figure 1C).
PSC and monocytes distribute in proximity
of a disrupted endothelial cell network
within the PANC-1 tumor spheroids

Spatial cell organization and cellular functions are interconnected

parameters as demonstrated by recent transcriptional and proteomic

studies (23). The spatial organization of individual cells into

aggregates has been shown to be dependent on self-assembly

occurring via ligand-receptor interactions (24).

It has been demonstrated that vasculature in PDAC TIME has

compromised functions due to the highly desmoplastic TIME. The

molecules contained in the ECM take part in the physical stress causing

the vessels within the tumor to collapse (25). The structures of the 3D

endothelial network did not exhibit a lumen and, for this reason, they

were not defined as vessels. However, we assessed the formation of

endothelial networks within our spheroids and whether the presence of

other cell types influences the EC organization using RFP-labeled EC

(Figure 2). The RFP-EC were imaged within the spheroids by confocal

microscopy (Figures 2A, C) and the complexity of the endothelial cell

network was quantified by measuring the volume of the RFP

fluorescence signal as percentage of the RFP-EC volume in HPNE

+PSC+EC (Figure 2B) or PANC-1+PSC+EC (Figure 2D) for HPNE and

PANC1 spheroids, respectively. We observed that HPNE spheroids

collected at day 7 showed a complex 3D endothelial network with

similar volumes in all the spheroids (Figures 2A, B). By contrast, PANC-

1 spheroids collected at day 7 had no endothelial network formation

when cultured without PSC (Figures 2C, D). The representative images

of the RFP fluorescence signal showed a distinct reduction of the 3D

endothelial network complexity in PANC-1 spheroids when compared

to HPNE spheroids (Figures 2A, C). Indeed, a disrupted endothelial

network was observed at day 7 in PANC-1 spheroids containing PSC

(Figure 2C) compared to the HPNE spheroids with the same cell

composition (Figure 2A). In addition, PANC-1+PSC+EC+Mono

spheroids showed a significant decrease of ~28% in the RFP

fluorescence volume compared to the PANC-1+PSC+EC spheroids

not containing monocytes (Figures 2C, D).

By utilizing the 3D endothelial cell network as a reference, we

evaluated the spatial cellular organization of PANC-1 4-culture
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spheroids that emerged from cell-cell interactions during the

formation of the spheroids.

Distances between different cell types were calculated using the

function “object-to-object” statistics and plotted using “Vantage”

with IMARIS software. EC were identified as “surfaces” whereas the

other cell types were identified as “spots” and the software

quantified the distance of each spot from the EC surface.

The distribution of the distances between the different cell types

showed that PSC and monocytes were at a median distance of

respectively 15.80 and 22.00 mm from the EC surface, whereas

PANC-1 cells showed a significantly greater median distance of

72.05 mm from the EC surface (Figure 3A). The cumulative

distribution function of PSC showed that 50% of the identified PSC

were located within a 26.95 mm mean distance from the EC surface

(Figure 3B) and this was not significantly affected by the presence of

monocytes within the aggregates (data not shown). The cumulative

distribution function of monocytes showed that 50% of these cells

were located within a 36.25 mm mean distance from the EC surface.

By contrast, the distribution of PANC-1 cells revealed that 50% of the

cells were located at a significant greater mean distance of 72.40 mm
from the EC surface compared to PSC and monocytes (Figure 3B).
PSC and monocytes are located in the
core of PANC-1 tumor spheroids

We assessed the spatial cell distribution within the spheroids by

dividing the spheroid in two concentric areas: an outer (OUT) and

an inner (IN) area. We defined the inner area as the circle having

half of the total spheroid radius and having the same center of the

spheroid. The remain area of the spheroid was considered the outer

area (Supplementary Figure 2). In these areas we calculated the area

under the curve (AUC) of the fluorescent signal of each cell type.

The AUC IN/OUT ratio of the fluorescent signal of each cell type

provides an understanding of the preferred location of the cells

within the spheroid.

Independently of the other cells in the PANC-1 spheroids, the

integrated fluorescence intensity signal of PSC in the inner region of

the spheroids was greater than the one detected in the outer region

with an average AUC IN/OUT distribution ratio above 1.2

(Figures 4A, B) suggesting that PSC are preferentially located in

the inner area for all spheroid conditions. A statistically significant

25% decrease of the AUC IN/OUT ratio was observed in the 4-

culture when compared to the PANC-1+PSC spheroids which

presented the greatest mean ratio among the tested conditions

(Figure 4B) suggesting that the PSC tend to distribute more

homogeneously within the spheroids when in 4-culture.

Monocyte distribution within the PANC-1 spheroids was

characterized by a statistically significant higher AUC IN/OUT

distribution ratio when co-cultured with PSC in 3-culture and 4-

culture spheroids with an average AUC IN/OUT distribution ratio

above 1.1, whereas PANC-1 spheroids not containing PSC had a

distribution ratio approximately equal to 1 (Figures 4C, D),

suggesting that the monocytes were preferentially distributed

within the inner area of the spheroids only when in co-culture

with the PSC.
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PANC-1 4-culture spheroids produce
peripheral collagen I and express HIF-1a in
the spheroid’s core

Collagen I represents one of the most abundant molecules in the

ECM of PDAC and it is often identified as the molecule responsible of

the desmoplastic reaction associated with a reduced survival in patients

(26). Hypoxic responses are often observed in collagen-rich conditions

in PDAC mostly due to the cross-linked molecules of collagen which

exert a compression on the vasculature (27). Hypoxia-related gene

transcription is regulated by a class of transcription factors called the

hypoxic inducible factors (HIFs), and in particular, the ubiquitous HIF-

1a. The activation of the hypoxic responses has a role in shaping the

TIME by mediating the transcription of genes involved in cancer cell

metabolism andmodulating the release of cytokines and growth factors

(28). Thus, we characterized the expression of collagen I and HIF-1a in

our spheroids with different cellular heterogeneity.

The immunofluorescent staining revealed that 4-culture

spheroids have a significantly greater expression of collagen I when
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compared to any other tested PANC-1 spheroid (Figure 5A). The

collagen I was mainly observed at the periphery of the spheroids,

especially in the PANC-1 4-culture spheroids (Figure 5B).

In order to quantify the activation of HIF-1a we assessed the

percentage of HIF-1a positive nuclei on the total number of nuclei

(Figure 5C). We observed that PANC-1monoculture spheroids had a

limited percentage of positive nuclei (Figure 5D) as well as 2-culture

PANC-1 spheroids. By contrast, spheroids containing monocytes had

very bright positive nuclei (Figure 5D). Interestingly, the combination

of PSC and monocytes in the 3- and 4-culture PANC-1 spheroids

resulted in a significant increase of the percentage of HIF-1a positive

nuclei when compared to the other tested spheroids (Figure 5C).

Moreover, the HIF-1a positive nuclei of 3- and 4-culture PANC-1

spheroids weremainly located in the core of the spheroids rather than

in the outer region (Figure 5D).

Using flow-cytometry we investigated the expression of HIF-1a
on the cells used to form the PANC-1 4-culture spheroids. As

showed in the histogram plot in Figure 5E, monocytes had the

greater median expression of HIF-1a among the cells within the
D

A

B

C

FIGURE 2

PANC-1 spheroids show a disrupted 3D endothelial network compared to HPNE spheroids. Spheroids were formed using RFP-EC in order to assess
by confocal microscopy the EC organization within the spheroids with different cellular composition. (A) Representative confocal images of the
different PANC-1 spheroids containing RFP-EC at day 7. (B) Bar plot of the volume of the EC network quantified as percentage of the RFP volume of
PANC-1+PSC+EC spheroids. Data shows mean ± SEM. Statistical significance for comparisons was determined by one-way ANOVA with Dunnett’s
post-hoc test **p<0.01 when compared to the volume of PANC-1+PSC+EC. (C) Representative confocal images of the HPNE spheroids containing
RFP-EC at day 7. (D) Bar plot of the volume of the EC network quantified as percentage of the RFP volume of HPNE+PSC+EC spheroids. Data shows
mean ± SEM. Statistical significance for comparisons was determined by one-way ANOVA with Dunnett’s post-hoc test.
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PANC-1 4-culture spheroids, suggesting the monocytes greatly

contributed to the high HIF-1a nuclear expression observed in

the PANC-1 3- and 4-culture spheroids.

To assess the size-dependency of the HIF-1a expression, we further

formed monoculture spheroids with the same diameter of the 4-culture

spheroids by increasing the number of initial PANC-1 cells seeded for

spheroid formation. Monocyte embedded in these spheroids were

stained with Cell Tracker Violet (CTV). Our results were confirmed

because also the bigger PANC-1 monoculture spheroids presented fewer

positive nuclei for HIF-1a compared to the PANC-1 4-culture spheroids

that presented an evident HIF-1a expression in the core. Among the

positive nuclei in the 4-culture we could detect several monocytes

although positivity was also detected into PANC-1-GFP cells (Figure 5F).
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PSC increase PANC-1 cell proliferation

Although we seeded the same number of PANC-1 cells for spheroid

formation across the different conditions, we measured an increased

number of GFP-PANC-1 cells when they were co-cultured for 7 days in

2-culture, 3-culture and 4-culture with the different combinations of PSC,

EC or monocytes (Figure 6A). To assess the proliferation of the GFP-

PANC-1 cells we measured the Ki67 expression during the spheroid

formation at day 4 and day 7. We quantified the proliferating cells by

selecting GFP+ cells (only PANC-1) expressing nuclear Ki67 and plotted

the values as percentage of the total number of GFP-PANC-1 cells at day

4 and day 7 (Figure 6B). At day 4, PANC-1 spheroids containing PSC

showed an increased percentage of proliferating PANC-1 cells which was
A

B

FIGURE 3

PSC and monocytes distribute in proximity of the EC network. (A) Distribution of cell distance from the EC surface by cell type (green: PANC-1,
purple: PSC, blue: monocytes. Statistical significance for comparisons was determined by one-way ANOVA with Kruskal-Wallis’ post-hoc test.
(B) Plot of the cumulative distribution of the distance of PANC-1, PSC and monocytes from the EC network. The plot shows also the distance from
EC at which 50% of the total number of each cell type is detected. Mean values of the 50th percentile distance was used for statistical significance
using one-way ANOVA with Dunnett’s post-hoc test. ****p<0.0001, ***p<0.001 when compared to distance from EC of the PANC-1 cells.
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averagely double the percentage of proliferating cells observed in PANC-

1 only spheroids (Figures 6B, C). In contrast, PANC-1 spheroids

containing EC or monocyte without PSC did not show any increased

Ki67 expression at day 4 (Figures 6B, C). At day 7, only PANC-1+PSC

showed an increased percentage of Ki67+ positive nuclei when compared

to the monoculture spheroids (Figure 6B).
Monocytes increased expression of CD68,
CD206, CD163, PD-L1 and CD40 in 4-
culture tumor spheroids

Dual ontogeny of macrophages in PDAC TIME has been described

by recent studies (16). Both macrophages of fetal and bone marrow

origin can be found within the PDAC TIME. To partly reproduce the

bone marrow-derived myeloid component of the tumor, we decided to

addmonocytes to the PANC-1 spheroids. To understand the effect of the

TIME on the expression of keymarkers of differentiation/polarization on

monocytes we performed flow-cytometry on cells dissociated from the
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PANC-1 and HPNE spheroids at day 7 (Figure 7). The flow cytometry

analysis confirmed our previous observations on PSC supporting role for

monocytes survival and embedding within the tumor spheroids

(Figure 4). The percentage of CD45+/CD14+ events among the live

cells, in fact, increased when monocytes were in co-culture with PSC

compared to the monoculture condition, either in PANC-1 or HPNE

spheroids. However, the increment of CD45+/CD14+ monocytes when

in co-culture with PSC was statistically significant in PANC-1 spheroids

but not in HPNE spheroids.

At day 7 monocyte-derived cells (CD45/CD14+ cells) obtained from

the 4-culture PANC-1 spheroids showed an increased expression of

CD163, CD206, CD40, CD68, and PD-L1 when compared with the

same cells obtained from the dissociation of 4-culture HPNE spheroids

(Supplementary Figure 6). The percentage of monocytes/macrophages

expressing CD68, CD163, CD206, PD-L1, CD40 in PANC-1 4-culture

spheroids was significantly greater than the one observed in the PANC-1

+PSC+Mono spheroids (3-culture) and the HPNE 4-culture spheroids

(Figures 7C–G). The higher expression of CD68, CD163, CD206 on

CD45/CD14+ cells in the 4-culture PANC-1 spheroids suggest a
D

A

B

C

FIGURE 4

PSC and monocytes spatial distribution within the PANC-1 spheroids. (A) Representative images of PANC-1 spheroids at day 7 with different
compositions acquired using confocal imaging showing only the fluorescent signal of PSC (purple). Scale bar: 100 µm. (B) Dot plot of the ratio
between the area under the curve (AUC) of the PSC fluorescent signal in the outside or inside regions of the spheroids. Data are shown as mean ±
SEM. Statistical significance for comparisons was determined by one-way ANOVA with Tukey’s post-hoc test. *p<0.05 when compared to PANC1
+PSC spheroids. (C) Representative images of PANC-1 spheroids at day 7 with different compositions acquired using confocal imaging showing only
the fluorescent signal of monocytes (blue). Scale bar: 100 µm. (D) Dot plot of the ratio between the area under the curve (AUC) of the monocyte
fluorescent signal in the outside or inside regions of the spheroids. Data are shown as mean ± SEM. Statistical significance for comparisons was
determined by one-way ANOVA with Tukey’s post-hoc test. ****p<0.0001.
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monocytes differentiation into M2-like macrophages, known to have

tumor supporting functions. The increased expression of PD-L1 on

CD45/CD14+ cells in the 4-culture PANC-1 spheroids also suggests that

these cells may have an immunosuppressive role. The higher expression
Frontiers in Oncology 11160
of the co-stimulatory molecule and M1 marker CD40 on CD45/CD14+

cells in the 4-culture PANC-1 spheroids could explain the therapeutic

effect of CD40 ligand/agonists in the treatment of PDAC, boosting an

anti-tumor response (29, 30).
D

A B

E F

C

FIGURE 5

PANC-1 4-culture spheroids are characterized by peripheral collagen I deposition and a hypoxic core. PANC-1 spheroids were collected at day 7
and prepared for immunofluorescent staining with collagen I and HIF-1a antibodies. (A) Truncated violin plot showing the volume of collagen I

fluorescent signal which was quantified as volume using IMARIS™ (red line: median, dotted line: 25th and 75th quartiles). Statistical significance for
comparisons was determined by one-way ANOVA with Dunnett’s post-hoc test. **p<0.01 when compared to PANC-1 monoculture spheroids at day
7 (B) Representative pictures of PANC-1 spheroids stained with anti-collagen I antibody and Hoechst 33342. (Collagen I: red; blue: nuclei). Scale bar:
100 µm. (C) Truncated violin plot showing the number of HIF-1a positive nuclei in the PANC-1 spheroids. Nuclei were identified as spots using

IMARIS™ and data were presented as percentage of the total nuclei (red line: median, dotted line: 25th and 75th quartiles). Statistical significance for
comparisons was determined by one-way ANOVA with Dunnett’s post-hoc test **p<0.01 when compared to PANC-1 monoculture spheroids at day
7. (D) Representative pictures of PANC-1 spheroids stained with anti-HIF-1a antibody (nuclei: blue, nuclear HIF-1a: purple). Scale bar: 100 µm.
(E) Distribution of HIF-1a fluorescent intensity assessed by flowcytometry in the different cell types within PANC-1 4-culture spheroids.
(F) Representative pictures of monoculture and 4-culture PANC-1 spheroids with similar dimensions stained with HIF-1a (PANC-1: green; HIF-1a:
cyan). Scale bar: 100 µm. *p<0.05
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The percentage of monocyte-derived cells expressing PD-L1 or

CD40 was greater in both 4-culture and 3-culture PANC-1

spheroids compared to HPNE 4-culture spheroids. By contrast,

the CD45+/CD14+ cells obtained from the HPNE and PANC-1 4-

culture spheroids did not show a statistically significant increase in

the expression of the CD86 co-stimulatory molecule, although the

average CD86 expression was higher for the PANC-1 spheroids.

Although not statistically significant, also the monocyte-derived cells of

the 3-culture PANC-1 spheroids containing PANC-1+PSC+Mono showed

an increased expression of CD163 and CD68 when compared with the 4-

culture HPNE spheroids. However, in the PANC-1 3-culture spheroids, the

percentage of CD68+ or CD163+ cells in the CD45+/CD14+ population was

not different from the one observed the HPNE 4-culture spheroids.
PANC-1 4-culture spheroid cytokine
signature mimics PDAC patient features

The cytokines released by each cell type present in the TIME affects

the proximal (within the TIME) and the distal (plasma) concentrations

of molecular signals that participate in the recruitment and activation
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of cells (31). We, therefore, conceived that a relevant spheroid model

will be able to recapitulate the production of key cytokines observed in

patients. Current monoculture tumor spheroid models lack the

presence of specific cytokines present in the PDAC TIME, such as

CCL4/MIP-1b, CCL5/RANTES, CXCL9, and CXCL10 accidentally

simulating an immune silent or excluded PDAC TIME. Indeed, these

monoculture tumor models are missing the key cellular and humoral

interplays responsible for the modulation of cytokine signaling within

the PDAC TIME, ultimately leading to immunosuppression or

immunoregulation in the context of chronic inflammation (32).

Essentially, shaping PDAC TIME requires various cytokines

produced by different cell types from the TIME cooperating with a

mutated Ras signaling in pancreatic epithelial ductal cells (31).

Established the key role of cytokines in the PDAC TIME, we

assessed the levels of some principal cytokines in the supernatant of

PANC-1 and HPNE spheroids with increasing cellular heterogeneity to

characterize the cytokine expression in our model (Supplementary

Figure 7) and compare it to PDAC patient samples. In some cases, the

cytokine analysis allowed us to identify the type of cell in the spheroid

responsible for the changes in the cytokine signaling and potential

cellular synergisms that lead to cytokine modulation.
A

B

C

FIGURE 6

PSC increase PANC-1 proliferation. GFP-PANC-1 cells were used to form the spheroids with different cellular heterogeneity and stained for the
detection of Ki67 both at day 4 and 7 and imaged with a confocal microscope (A) Truncated violin plot of the live GFP-PANC-1 cells were counted

using IMARIS™ software and identified as Hoechst 33342+ (blue)/GFP+ (green)/DRAQ7- (white) spots. Number of live GFP-PANC-1 cells were
plotted as percentage of the number of live GFP-PANC-1 cells in monoculture spheroids. Data are shown as median (red line), 25th and 75th

quartiles (dotted lines). Statistical significance for comparisons was determined by two-way ANOVA with Sidak’s post-hoc test. #p <0.0001 when
compared to PANC-1 monoculture spheroids at day 7. (B) Violin plot of the Ki67+ cancer cells (purple) plotted as percentage of live GFP-PANC-1 at
each condition. Data are shown as median (red line), 25th and 75th quartiles (dotted lines). Statistical significance for comparisons was determined by
two-way ANOVA with Sidak’s post-hoc test. #p<0.0001 when compared to PANC-1 monoculture spheroids at day 4. ^p<0.01 when compared to
PANC-1 monoculture spheroids at day 7. (C) Representative confocal images of the heterogeneous spheroids at day 4 labeled with the different
markers. Scale bar: 100 µm.
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M1 macrophage-associated cytokines are less
expressed in PANC-1 spheroids compared to
HPNE spheroids

The enrichment of M2-like macrophages in the tumor of PDAC

patients is usually described as a negative prognostic marker (33). The
Frontiers in Oncology 13162
presence of M2-like macrophages within the TIME inhibits cytotoxic

CD8 T-cell functions via the reduction of anti-inflammatory cytokines

that promote T-cell proliferation and anti-tumor responses (33). M1-

like macrophages, on the contrary, have been shown to promote anti-

tumor responses mainly via the release of pro-inflammatory cytokines

which are significantly reduced in M2-like macrophages cultures (34).
D
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FIGURE 7

Monocytes differentiate in macrophages with increased expression of M2-like markers, CD40, and PD-L1 in PANC-1 4-culture spheroids. (A) Gating
strategy of flow cytometry data to identify monocytes as CD45+/CD14+ live single cells. (B) Dot plot of the flow data showing the number of CD45
+/CD14+ monocyte as percentage of live cells for each PANC-1 and HPNE spheroids. Data are shown as mean ± SEM. Statistical significance for
comparisons was determined by one-way ANOVA with Dunnett’s post-hoc test. *p <0.05. (C–H). Expression of key macrophage markers for PANC-
1 and HPNE 4-culture (PANC-1 4-culture and HPNE 4-culture, respectively) are presented as dot plot of the fold change from the respective FMO
intensity (left plot), histograms (center plot) and as dot plot of the percentage of the total number of CD45+/CD14+ monocytes (right plot). Data are
shown as mean ± SEM in the dot plots. Statistical significance for comparisons was determined by one-way ANOVA with Dunnett’s post-hoc test.
*p<0.05, **p<0.01, ***p<0.0001.
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Our multiplex bead-based cytokine analysis showed that at day

7 pro-inflammatory cytokines were overall significantly decreased

in the supernatant of PANC-1 4-culture spheroids when compared

to those of HPNE 4-culture except CXCL10 as shown in Figures 8A,

B. Among the selected cytokines the greatest and significant

decreases between PANC-1 4-culture spheroids and HPNE 4-

culture spheroids were observed mainly in the cytokine involved

in M1 polarization (Figure 8B). In addition to pro-inflammatory

cytokines, many of the other cytokines in the panel were

significantly downregulated in cancer spheroids compared to

HPNE spheroids.

PANC-1 4-culture spheroids showed greater
concentrations of plasma-detectable cytokines
associated with poor prognosis in patients

Among the different cytokines that can be detected in plasma of

patients, an increase of IL-6, IL-8, IL-10, CCL2/MCP-1, IP-10/

CXCL10 at diagnosis have been associated with poor prognosis of

PDAC patients (35–37).

Our multiplex bead-based cytokine analysis on the supernatant

of PANC-1 spheroids at day 7, showed that IL-6, IL-10, IP-10/

CXCL10 cytokines were non-detectable (n.d. in Figures 8C, D, 9D),

whereas the MCP-1/CCL2 and IL-8 presented very low

concentrations (Figures 8E, F) in PANC-1 monoculture

spheroids. The addition of PSC to the PANC-1 cells with or

without EC made IL-6 and IL-10 detectable and increased the

concentration of MCP-1/CCL2 (Figures 8C–E). The co-culture of

monocytes with PSC, EC and PANC-1 cancer cells (PANC-1 4-
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culture) significantly increased the concentration of IL-6 when

compared to any of the spheroids with a lower cellular

heterogeneity (Figure 8C). By contrast, the PANC-1 4-culture

spheroids did not show a significant increase in the concentration

of IL-10 and MCP-1/CCL-2 when compared with any other PANC-

1 3-culture condition. However, at day 7 the concentrations of

MCP-1/CCL2 (Figure 8E) in the supernatant of PANC-1 3- and 4-

cultures spheroids were significantly higher than the one detected in

the sample s ob ta ined f rom PANC-1 2-cu l tu re and

monoculture spheroids.

Notably, concentrations of the regulatory T cell-recruiting

chemokine CXCL10 were significantly increased in PANC-1 4-

culture spheroids when compared to any other tested PANC-1 and

HPNE condition (Figure 9D).

4-culture spheroids chemotactic signals for T
cell recruitment are modulated by PANC-1 cells
and monocytes

The TIME of PDAC patients with a shorter overall survival is

usually classified as “cold”. With this term the scientific community

define a tumor lacking T cells infiltration as a result of a low

mutation burden, low major histocompatibility complex I (MHCI)

express ion , and high express ion of molecu les wi th

immunoregulating or immunosuppressive functions. Immune

profiling on PDAC patient samples revealed that accumulation of

CD3+ T cells in the tumor correlates with better survival (38). A

recent study showed that the recruitment of T cells within the

PDAC TIME and the associated anti-tumor response is dependent
D
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FIGURE 8

Expression of cytokines in the supernatant of PANC-1 spheroids and their comparison to non-cancerous HPNE spheroids. (A) Log2 fold changes of the
cytokine concentrations observed in PANC-1 4-culture spheroids at day 7 using the HPNE 4-culture spheroids as control. Dotted lines indicate ± 1.5
fold change. (B) Heatmap the multiplex bead-based cytokine analysis of the supernatant of the spheroids at 7 days of culture presenting typical M1-like
macrophage-associated cytokines as z-scores of concentrations (Log2). (C–F) Bar plots of the concentrations of IL-6 (C), IL-10 (D), MCP-1/CCL2 [(E) IL-
8 (F)] cytokines that have been detected in high concentration in the plasma of patients with poor survival.
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on the greater co-expression of 4 chemokines: CCL4/MIP-1b,
CCL5/RANTES, CXCL9 and CXCL10 (39). In order to study cell-

cell interactions within the TIME and to test immunotherapies, a

relevant cancer model should simulate the secretion of chemokines

involved in the infiltration of T cells (cytotoxic, helper or

regulatory) within the tumor as well as mimics modulation of

chemotactic and activating factors by myeloid cells, well-known to

suppress cytotoxic T cell response in cancer (40).

Concentration of T cell recruiting cytokines were undetectable or

very low in both PANC-1 and HPNE monoculture spheroids

(Figures 9A–D). The addition of monocytes to both PANC-1 and

HPNE spheroids resulted in an increase of CCL4/MIP-1b
concentrations, significantly lower in PANC-1 spheroids when

compared to HPNE analogues (Figure 9A). CXCL9 was also

detectable in presence of monocytes for both HPNE and PANC-1

spheroids. The comparison of MIG/CXCL9 concentrations between

HPNE+Mono and PANC-1+Mono showed that the expression of

this cytokine is significantly more concentrated in presence of PANC-

1 cells (Figure 9C). The presence of either PSC or EC to the PANC-1

spheroids containing also monocytes lowered the concentrations of

MIG/CXCL9 up to 23.9% and 26.3%, respectively (Figure 9C). The

PANC-1 4-culture spheroids, containing PSC, EC, and monocytes

did not further decreased the expression of CXCL9 when compared

with the PANC-1 3-culture spheroids containing monocytes. The

concentrations of RANTES/CCL5 were significantly increased in

PANC-1 spheroids containing also PSC when compared to PANC-

1 monoculture spheroids. The co-culture of PSC and EC with PANC-

1 cells significantly increased the concentrations of RANTES/CCL5

when compared to PANC-1+PSC spheroids (Figure 9B). By contrast,

the PANC-1 4-culture spheroids containing monocytes showed a

significant decrease of RANTES/CCL5 when compared to the same

spheroids not containing monocytes, showing concentrations

comparable to those detected in PANC-1 monoculture spheroids

(Figure 9B). The HPNE 4-culture spheroids showed a non-

statistically significant increase in the concentration of RANTES/

CCL5 when compared with the same spheroids not containing

monocytes. The concentrations of the chemokine IP-10/CXCL10

were increased in PANC-1+PSC spheroids and further increased with

higher cellular heterogeneity reaching the greater concentration in

PANC-1 4-culture spheroids (Figure 9D). PANC-1+EC

concentration of IP-10/CXCL10 were not detectable as observed in

PANC-1 monoculture spheroids whereas PANC-1+Mono spheroids

had 1/3 of the concentration of IP-10/CXCL10 when compared with

PANC-1+PSC. Within the PANC-1 spheroids, the combination of

PSC with monocytes or EC clearly showed a synergism of IP-10/

CXCL10 secretion which is not the mere sum of the concentrations

observed in each 2-culture condition (PANC-1+PSC, PANC-1+EC,

PANC-1+Mono) (Figure 9D). In HPNE spheroids, the detection of

IP-10/CXCL10 was only associated to the presence of monocytes and

was not detectable in HPNE+PSC. Overall, the analysis of the

cytokine/chemokine expression shows how the PANC-1 4 culture

spheroids intrinsically contains the potential of expressing crucial

chemokines contained in the PDAC TIME and the interplay among
Frontiers in Oncology 15164
the different cell types recreates an immunoregulation on those

expressed cytokines.
Discussion

To increase the number of effective therapies for the treatment

of PDAC reaching clinical trials, recapitulating the TIME in

preclinical models is imperative. Tumor preclinical models should

be designed to reproduce the composition of PDAC TIME as closely

as possible, posing particular attention to mimicking the intra- and

inter-cellular interplays occurring in PDAC TIME of patients who

do not respond to existing therapies. Currently, the available

preclinical models either do not consider interspecies differences

(animal models) or do not reasonably reproduce the TIME of

PDAC, lacking specific cell types and their 3D spatial

organization. The PDAC TIME is densely populated with non-

cancer cells like endothelial, stellate, and immune cells, which have

been shown to interact with each other shaping the TIME and

playing a critical role in establishing therapy resistance (16, 41, 42).

Stem cell-derived organoids serve as essential in vitro models for

investigating cancer cell mechanisms, especially because they

recapitulate cell lineages often organized in functional units like

organs. Regrettably, despite extensive efforts to establish

heterocellular organoids, further work is necessary to

comprehensively represent the cellular interactions among

stromal, immune and endothelial cells within the TIME (43).

Recent studies characterized 3D hetero-cellular tumor spheroids

models, accounting for different PDAC stroma cell types. However,

none simultaneously co-cultured the four most abundant and

critical cells in PDAC TIME: cancer cells, endothelial cells,

pancreatic stellate cells, and macrophages. In recent years our

work focused on improving 3D in vitro models by incorporating

complexity that is fundamental in understanding the tumor

microenvironment and the immune system interaction (44–48).

In this study, we formed and characterized, for the first time,

viable PANC-1 tumor spheroids containing human endothelial

cells, pancreatic stellate cells, and blood-derived monocytes. The

non-cancerous cell types (PSC, EC, and monocytes) were well

represented on day 7, especially in the 4-culture tumor spheroids.

The percentage of EC was low, although these cells demonstrated

the capability to interact with each other, forming 3D endothelial

networks similar to the compressed vessels observed in murine

models of PDAC and histological analysis of the patient tumors (49,

50). The difference observed in the 3D endothelial network

arrangement of PANC-1 and HPNE spheroids suggests that the

co-culturing of EC and cancer cells significantly impacts the

formation of the EC structures. Most importantly, the EC

network was only observed in tumor spheroids containing the

combination of PSC and EC, suggesting a critical pro-angiogenic

interplay between these two cell types, but also an anti-angiogenic

effect exerted by the cancer cells as previously demonstrated by Di

Maggio et al. (50). Although it cannot be entirely ruled out that the
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disrupted EC structures observed in PANC-1 spheroids are partly

attributable to EC death, it is worth considering that the typical

features of the TIME, such as lack of substrates and the elevated

production of reactive oxygen species, might have additionally

contributed to the reduced proliferation of these cells, as

previously demonstrated (51–53). The volume of the 3D

endothelial network observed in our tumor 4-culture spheroids

was also significantly reduced compared to the same tumor

spheroids lacking monocytes. We can speculate that the increased

collagen I deposition observed in the tumor 4-culture spheroids

physically compresses the EC network, as demonstrated by different

studies performed in murine models of PDAC (27, 54, 55). In these

studies, the decrease in collagen I deposition or inhibition of

enzymes deputed to collagen crosslinking was associated with the

decompression of the vessels. On the other hand, other physical and

molecular factors due to the presence of monocytes in the tumor 4-

culture spheroids may have contributed to the decreased volume of

the EC network. Additional experiments reducing the deposition of

collagen I or its crosslinking may clarify the cause of the reduced EC

network volume in tumor 4-culture spheroids.

It has been shown that vascular structures develop in an

environment in which perivascular cells, such as PSC, are

present (50, 56). Therefore, we assessed the distance between
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EC and PSC in our tumor spheroids. Through our spatial

analysis, we confirmed that PSC surrounded EC and that

monocyte-derived macrophages were also localized in the

proximity of the endothelial structures. Of note, macrophages

have been localized in the stroma of PDAC, where PSC and EC

were located in orthotopic murine tumor models (16), similar to

what was observed in our tumor spheroids. The spatial

localization of these three cell types (PSC, EC, and monocytes)

in the core of the tumor spheroids seems to rely mainly on the

presence of the PSC that localize in the core of the tumor

spheroids even when co-cultured alone with cancer cells. In

human and murine PDAC, activated PSC are the main cells

producing the stiff fibrotic ECM leading to desmoplasia and

hypoxia. Hypoxia is usually observed in the core of spheroids

larger than 200 µm (57), mainly through the nuclear

translocation of HIF-1a. It promotes the secretion of several

cytokines involved in the recruitment of fibroblasts and immune

cells (58), potentially explaining the localization of PSC and

monocytes within the core of our tumor spheroids.

When we assessed the expression and nuclear translocation of

the transcription factor HIF-1a as a key regulator of the hypoxic

response, we noticed HIF-1a expressed with two different

intensities. The high-intensity HIF-1a was mainly located in the
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FIGURE 9

Cellular interplays within the spheroids modulate the expression of T cell recruiting cytokines. Bar plots of the concentrations of T-cell attracting
cytokines, i.e. MIP-1b (A), RANTES (B), MIG (C), IP-10 (D). Statistical significance for comparisons was determined by one-way ANOVA with Dunnett’s
post-hoc test. OO p <0.01 when compared with any of the other tested conditions; ****p<0.0001; #p<0.05, ##p<0.01, ####p<0.0001 when
compared to the HPNE analogue spheroid containing the same type of additional cells; ^^p<0.01, ^^^p<0.001 when compared to PANC-1+Mono
spheroids; n.d., non detectable, a.d.l., above detection limit.
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nuclei of cells in the core of the spheroids. From the flow cytometry

analysis, it was possible to discriminate that these cells with a higher

intensity were both monocytes and PANC-1 cells (Figure 5E). To

rule out the possibility that the size of the spheroids rather than the

cell composition was affecting the HIF-1a expression, we compared

the monoculture and 4-culture tumor spheroids having about the

same size. Notably, the HIF-1a expression was significantly lower in

monoculture spheroids when compared with 4-culture spheroids

underlining that the cell composition was critical for the increased

HIF-1a expression and nuclear translocation.

Another effect of the PSC presence in the tumor spheroids was

an increased size and number of cancer cells counted in our tumor

spheroids, probably associated with the higher proliferation

observed on day 4 and in agreement with other in vitro studies

(15, 59). Instead, for the heterocellular tumor spheroids without

PSC, the increased number of cancer cells could be attributed to an

improved embedding of the cancer cells within the spheroids.

Although PSC-induced proliferation represents an interplay

between cancer cells and stellate cells, other fibroblast populations

in the PDAC TIME may contribute to cancer cell proliferation, as

observed in a recent study of PSC depletion in an orthotropic mouse

model (10). By contrast, the resistance to radiotherapy in PDAC

patients (60) seems specifically induced by PSC (15). Mantoni et al.

demonstrated that only human PSC and not MRC-5 confer

radiotherapy resistance to pancreatic cancer cells, reinforcing the

importance of developing a PDAC TIME model containing stellate

cells of pancreatic origin.

In addition to affecting cancer cell functions, PSC depletion

decreased the number of macrophages within the tumor (10).

Accordingly, we observed that the monocyte percentage in PANC-1

spheroids increases with PSC, suggesting that PSC-monocyte interplay

observed in in vivo models may occur in our in vitro model.

Characterizing the monocytes embedded within the spheroids with

different compositions further demonstrated that interaction with each

cell type contributed to the expression of key macrophage polarization

markers and the immune checkpoint PD-L1. We observed how the

polarization of monocytes toward an M2-like macrophage phenotype

occurs only in the PANC-1 4-culture at 7 days after seeding, as

demonstrated by the increased expression of CD68, CD163, and

CD206 markers in the spheroids with higher cellular heterogeneity. In

line with this observation, the PANC-1 4-culture spheroids better mimic

the M2 macrophage-populated PDAC TIME of patients with poorer

prognoses (61). Differently, the expression of critical immune regulators,

namely PD-L1 and the M1 marker CD40, on monocytes/macrophages

in our tumor spheroids depended on their co-culture with PANC-1 cells

and PSC. At the same time, we did not observe any significant increase in

the expression of either CD40 or PD-L1 in monocytes/macrophages

within HPNE spheroids. Similarly, Kung et al. elegantly showed in their

in vitro experiments (62) that under the influence of PSC, cancer cells

increased the secretion of S100A9, causing the increased expression of

PD-L1 on monocytes/macrophages.

The increased percentage of M2-like macrophages in our 4-

culture tumor model well reflects the decreased concentrations of
Frontiers in Oncology 17166
typical M1 cytokines detected in the PANC-1 spheroids compared

to the HPNE spheroids (Figure 8). The supernatant of HPNE

spheroids showed high concentrations of several pro-

inflammatory cytokines, most probably due to VEGF stimulation

and cellular stress occurring during the formation of the spheroids.

It has been demonstrated that VEGF promotes the release of

inflammatory cytokines (such as IL-6, IL-8/CXCL-8, and GRO-

a/CXCL-1) by endothelial cells through VEGF receptor 2

activation. In turn, inflammatory cytokines such as TNF-a, IL-1b,
IL-6, and IL-8/CXCL-8 induce VEGF expression, reinforcing

angiogenesis and inflammation (63). The HPNE spheroids served

as a control of inflammation to understand how the key cellular

players in the TIME modulate the secretion of key inflammatory

cytokines. In the HPNE spheroids, we observed multiple cell

interplays leading to positive and negative regulation of cytokines.

It was clear that pro-inflammatory cytokines were concentrated in

HPNE spheroids, but cancer cells contributed to reducing the

concentration of typical Th1 cytokines (e.g., TNF, IFN-y, IL-12).

From the cytokine analysis, we concluded that multicellular

interactions within the tumor spheroids determine significant

changes in the cytokine pattern, leading to the polarization of

monocytes into an M2-like phenotype. The tumor spheroids with

the higher degree of cellular heterogeneity (4-culture) better

resemble the cytokine signature observed in the plasma of

patients with poor survival and not responding to therapies (36,

37), making this model suitable for further investigations to identify

new strategies for reprogramming the PDAC TIME. Strikingly,

CCL2/MCP-1, well known to mediate the recruitment of

monocytes in the hypoxic areas (64), were more concentrated in

3- and 4-culture tumor spheroids, supporting our results on the

spatial localization of monocytes in the hypoxic area of

the spheroid.

We also assessed the expression of key cytokines involved in T-

cell recruitment and activation in PDAC patients (39). These

cytokines were highly affected by the presence of the different cell

types. Briefly, we could observe that the concentrations of these

cytokines (mainly MIP-1b/CCL4, RANTES/CCL5, MIG/CXCL9)

were kept low in PANC-1 4-culture spheroids as a result of the

combined cell types. In the tumor spheroids, we could establish the

role of each cell type on cytokine secretion by assessing their

concentrations in spheroids missing one of the cell types. T cell

recruiting cytokines identified by Romero and collaborators were

mainly suppressed by monocytes and PSC within the aggregate,

reinforcing the importance of cellular heterogeneity in spheroid

models of PDAC.

Interestingly, IP-10/CXCL10 was the only T-cell-related

cytokine among the 4 suggested by Romero et al., which was

increased in the PANC-1 spheroids. Notably, in more than one

study, high plasma concentrations of IP-10/CXCL10 have been

associated with decreased survival in PDAC patients (19, 37).

Lunardi et al. showed that IP-10/CXCL10 was increased in the

co-culture of the PSC with pancreatic cancer cells. IP-10/CXCL10

has been shown to be a chemoattractant for T cells, including CD4-
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Th1, CD8, and Tregs (65, 66). In particular, the increased

concentrations of IP-10/CXCL10 in the TIME of pancreatic

cancer have been linked to the recruitment of Tregs to the tumor

site (19), which, in turn, may contribute to disease progression (67).

This increase was also observed in our experiments and IP-10/

CXCL10 synergistically increased in the presence of EC and/or

monocytes. Lunardi et al. also demonstrated that the patients’

higher expression of IP-10/CXCL10 was associated with a denser

stroma. Accordingly, with these clinical data, in our PANC-1 4-

culture spheroids, we observed an increased expression of collagen I

associated with increased secretion of IP-10/CXCL10. Although

collagen I is not the only component of the dense PDAC stroma, it

has been shown to play a key role in the induction of the

desmoplastic response (26). Therefore, the increased collagen I

deposition observed in our PANC-1 4-culture spheroids sustains

another key similarity between our tumor model and the PDAC

TIME of patients.

In conclusion, our PANC-1 4-culture spheroids represent a

promising tool for studying cell-cell interactions in the PDAC TIME.

Future studies may also address if the PANC-1 4-culture spheroids are

recapitulating the increased infiltration of Treg as shown in the in vitro

model of Lunardi et al. More broadly, PANC-1 spheroids could be

helpful in functional assays of T and myeloid cell infiltration (68, 69) to

observe if the tumor spheroids induce chemotaxis and immune

responses similar to those observed in patients, as confinement,

anergy, and immunosuppression. Although this study aims to

develop a tool for studying cell interactions in the PDAC TIME, it is

important to exercise caution regarding potential therapeutic testing

using this system. We foresee further research studies with our PDAC

spheroids with different cellular heterogeneity embedded in

microfluidic devices to test their sensitivities to established treatments

(chemotherapy, radiotherapy, and immunotherapies) (70), aiming to

validate the model for drug screening. The PANC-1 4-culture

spheroids, as described in this study, being an in vitro tumor model,

come with intrinsic limitations when compared to a patient’s tumor.

Although the increased number of degrees of freedom resulting from

the heterogeneity of the spheroids might represent limitations for

mechanistic studies using this model, we believe that leveraging

advanced spatial transcriptomics and proteomics techniques will

enable the extrapolation of crucial molecular changes. This will

facilitate the study of mechanisms that were previously difficult to

reproduce or assess in other tumormodels. Importantly, our model still

lacks a poorly perfusable tumor-associated vasculature and mimicking

the pathophysiological recruitment of immune cells as observed in in

vivo models. With an opportune tuning of the culture conditions,

patient-derived vascularized heterocellular PDAC spheroids could be

developed to answer patient-specific questions bridging preclinical and

clinical research.
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