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Editorial on the Research Topic
Advances and applications of passive seismic source characterization

Introduction

Source characterization is a fundamental task of passive seismic monitoring. Spatial-
temporal evolution of both, point sources and finite-fault source, provides essential
information for timely seismic hazard assessment and advanced analysis of the
seismicity in the monitored areas. During the past few decades, the rise of dense seismic
arrays and development of advanced array-based techniques lead to studies using recorded
wavefields in great detail. Moreover, emerging technologies like distributed acoustic sensing
(DAS) and machine learning also show great potential in advancing passive seismic imaging
and source characterization. Besides, non-earthquake sources and ambient noise are also
contributing to infrastructure monitoring and subsurface imaging, due to the utilization of
sensitive sensors and modern techniques like seismic interferometry.

An improved characterization of passive seismic sources is beneficial to a better
understanding of physical source properties, including both industry-related
microseismicity and tectonic-related earthquakes. Microseismic monitoring is an
important means to characterize small-scale fractures and reservoirs. Besides,
microseismic events are crucial for mapping fault geometry, stress changes, fluid
migration, and identifying seismogenic mechanisms. Passive seismic sources also
play an important role in characterizing velocity structures by tomographic
techniques. However, there are still many new challenges and opportunities in
this field. For example, the full potential of dense arrays requires further
exploration, the influence of different factors on source characterization at
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different scales has not been thoroughly studied, and the
applicability and performance of machine learning
algorithms in seismic source inversion and imaging require
more investigations.

Progress in the Research Topic

The introduced Research Topic was organized to collect
theoretical and methodological progress related to passive seismic
source characterization associated with different scenarios, and
promote development and application of advanced seismic source
imaging and inversion at different scales. There are 11 papers from
59 authors in the Research Topic. We summarize the contributions
as three aspects and provide comments on the related prospects.

Microseismic data processing and
inversion

To better understand the impacts of model parameters on
microseismic location, Zheng et al. analyze the sensitivities for
anisotropic parameters and event locations in a vertical
transversely isotropic (VTI) media. Yu et al. introduce a novel
probabilistic method of P-wave polarization analysis for receiver
orientation and event back-azimuth estimation in downhole
microseismic monitoring. The method can improve the
accuracy of the receiver orientation angles and event back-
azimuths. Anikiev et al. propose to use a feed-forward artificial
neural network (ANN) for microseismic source location by
training it on synthetic travertine data. The method is suitable
for monitoring areas with no previously observed microseismicity.
Real data examples demonstrate the method is efficient
and exhibits a high location accuracy. Adinolfi et al. design
a software platform, TREMOR, for efficient and reliable
characterization of microseismicity. The platform integrates
several open-source seismological algorithms and has great
potential for natural or induced microseismicity monitoring.

Advanced and comprehensive techniques are urgently
needed to tackle the challenges of a large data volume,
low signal-to-noise ratio, and high frequency components
associated with microseismic data. Machine learning
algorithms can help achieve more efficient and reliable
microseismic event detection and source characterization.
More integrated workflows will be proposed to promote
microseismic processing and interpretation.

Natural earthquake studies

Zhou et al. investigate velocity changes associated with the
2021 MS 6.4 Yangbi earthquake by passive seismic

interferometry, which is based on cross-correlation and
autocorrelation of continuous ambient noise waveforms.
They interpret the velocity changes as a combined effect of
near-surface physical damage and static stress changes. Sun
et al. perform a three-dimensional (3D) P-wave velocity
structure analysis and seismic relocation using double-
difference tomography based on over 13,000 earthquakes in
the Yunnan area, China. The tomography results indicate that
the Yangbi earthquake might have been related to the intrusion
of the soft material flow. Song et al. evaluate the effects of 3D
velocity heterogeneity on source mechanism inversion, and
present an improved moment tensor catalog based on 3D
full-waveform simulations in the southern Korean Peninsula
(KP). They conclude that improved source mechanisms could
benefit a reliable assessment of seismic hazards in regions with
complex structures and sedimentary basins. Luo et al. adopt the
natural orthogonal method to calculate the strain fields of
3 Ms > 6 earthquakes in Menyuan, Qinghai, China. They
reveal that the method could help obtain the spatiotemporal
anomalies of strain field preceding strong earthquakes, when
combined with numerical simulations.

Natural earthquakes are important data sources for
subsurface velocity imaging, and strong earthquakes are
disasters that can directly endanger human safety. Along with
dense monitoring networks and comprehensive geological
knowledge, seismic imaging and inversion can help us reveal
velocity anomalies in detail and better understand seismogenic
mechanisms. More reliable seismic processing is needed to
achieve more reasonable interpretation, timely hazard
evaluation, and effective earthquake prediction.

Advanced techniques associated with
passive seismic sources

Hu et al. propose the Waveform Energy Focusing
Tomography (WEFT) method for passive seismic tomography.
The method updates the velocity model by maximizing the
stacking energy of the moment time functions and can
provide an intermediate and more accurate velocity model for
subsequent inversion. Anyiam et al. apply Vp/Vs consistency-
constrained double-difference seismic tomography to determine
high-resolution velocity models and constructed a structural
framework for induced seismicity in the southern Sichuan
Basin, China. The 3D crustal velocity analyses show that
seismicity beneath the Changing salt mining area and the
Xingwen shale gas block are caused by unique inducing
mechanisms. Lecoulant et al. attempt to invert seismic
moment tensors of induced microearthquakes recorded by
distributed acoustic sensing (DAS) observations. They develop
the strain-based forward modeling and prove the reliability of the
method with both synthetic and field data.
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Advanced techniques have been successfully utilized for
source and structure characterization varying from induced
microearthquakes to natural regional earthquakes. Novel
algorithms and methodologies are still needed to handle new
data acquisitions, such as DAS and highly dense networks in
more complex environments.
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Waveform Energy Focusing
Tomography With Passive Seismic
Sources
Yueqiao Hu1, Junlun Li1,2* and Haijiang Zhang1,2

1Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, China, 2Mengcheng National Geophysical Observatory, University of Science and Technology of
China, Hefei, China

By taking advantage of the information carried by the entire seismic wavefield, Full Waveform
Inversion (FWI) is able to yield higher resolution subsurface velocity models than seismic
traveltime tomography. However, FWI heavily relies on the knowledge of source information
and good initial models, and could be easily trapped into local minima caused by cycle
skipping issue because of its high nonlinearity. Tomitigate these issues in FWI, we propose a
novel method called Waveform Energy Focusing Tomography (WEFT) for passive seismic
sources. Unlike conventional FWI, WEFT back-propagates the seismic records directly
instead of the data residuals, and updates the velocity models by maximizing the stacking
energy for all the moment tensor components from back-propagated wavefields around the
sources. Therefore, except for source locations and origin times, WEFT does not require
other source attributes in advance for the inversion. Since WEFT does not aim at fitting
synthetic and observed waveforms, it has lower nonlinearity and is less prone to the cycle
skipping issue compared to FWI. For the proof of concept, we have validated WEFT using
several 2D synthetic tests to show it is less affected by inaccurate source locations and data
noise. These advantages render WEFT more applicable for tomography using passive
seismic sources when the source information is generally not accurately known. Although
the invertedmodel fromWEFT is inevitably influenced by the source distribution as well as its
radiation patterns, and its resolution is likely lower than that of FWI, it can act as an
intermediate step between traveltime tomography and FWI by providing a more reliable and
accurate velocity model for the latter.

Keywords: waveform tomography, passive seismic sources, energy focusing, seismicmoment tensor, time-reversal
method

INTRODUCTION

Seismic tomography is an essential approach for imaging the subsurface structure. The well-
established seismic traveltime tomographic methods based on ray theory have had many
successful applications in imaging structures at different scales in the past few decades (e.g.,
Bording et al., 1987; Lanz et al., 1998; Rawlinson and Sambridge, 2003; Zhang and Thurber,
2003). More recently, Full Waveform Inversion (FWI) has also been developed and applied at many
different scales (Ravaut et al., 2004; Bleibinhaus et al., 2007; Fichtner et al., 2013; Adamczyk et al.,
2015; Bozdağ et al., 2016), as it can potentially obtain models with higher resolution by using more
information carried in the waveforms (Virieux and Operto, 2009; Alkhalifah, 2014).
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Traditional FWI inverts for subsurface velocities by minimizing
the L2-norm misfit between the observed and simulated seismic
waveforms (Tarantola, 1984; Pratt and Worthington, 1990). In
spite of some successful applications on both active and passive
seismic data (Brenders and Pratt, 2007; Fichtner et al., 2009, 2013;
Tape et al., 2009, 2010; Warner et al., 2013; Operto et al., 2015),
there are still practical issues and challenges yet to be solved in
FWI. One of the critical issues is that FWI tends to fall into local
minima when the time delay between the synthetic and observed
waveforms is larger than half a cycle due to inaccurate starting
velocity models, which is referred to as the cycle skipping (Virieux
and Operto, 2009). Many efforts have been devoted to solving this
problem from different aspects. For example, the multiscale
strategy (Bunks et al., 1995; Sirgue and Pratt, 2004), which
sequentially performs inversion from lower to higher
frequencies, can efficiently avoid cycle skipping since waveforms
at lower frequencies have broader cycles. Shin and Cha (2008), Shin
and Cha (2009) extended the time-domain FWI to the Laplace-
domain and Laplace-Fourier domain to build long-wavelength
velocity models and increase the stability of the inversion. Choi and
Alkhalifah (2015) developed the unwrapped phase inversion
combined with exponential damping, which can avoid cycle-
based jumps even when low-frequency information is missing.

Since the objective function based on the L2-norm often has
stronger nonconvexity, a variety of misfit functionals have
been proposed to measure the discrepancies between the
observed and synthetic waveforms. The cross-correlation
based objective functions (e.g., Luo and Schuster, 1991; van
Leeuwen and Mulder, 2010) were proposed to measure the
similarity between the observed and synthetic data, which are
more dependent on the waveform kinematics and thus
mitigate issues related to amplitudes. Although these
objective functions are less susceptible to cycle skipping, a
band-limited or non-impulsive source function may still affect
the measurement of waveform discrepancies. The
deconvolution-based objective function (Luo and Sava 2011)
is thus proposed to alleviate the issue. The misfit measured by
the discrepancy in waveform envelopes can be used to retrieve
the long-wavelength component of a velocity model, and thus
reduce the dependence of FWI on the initial model (Bozdağ
et al., 2011; Wu et al., 2014; Luo and Wu, 2015; Oh and
Alkhalifah, 2018). In addition, the misfit functions based on
the optimal transport provide an alternative in an attempt to
overcome the cycle skipping issue (Engquist and Froese, 2013;
Métivier et al., 2016; Yang and Engquist, 2018). Recently, the
new methods related to non-physical model extensions, such
as reconstructed wavefields (van Leeuwen and Herrmann,
2013; Wang et al., 2016; Alkhalifah and Song, 2019), time
lag extension (Yang and Sava, 2013; Biondi and Almomin,
2014), and matching filter (Luo and Sava, 2011; Warner and
Guasch, 2016; Huang et al., 2017; Sun and Alkhalifah, 2019; Li
and Alkhalifah, 2021) are also attractive for their stronger
resistance to cycle skipping.

The source information is essential for FWI when calculating
the synthetic waveforms, which is oftentimes inaccurate or even
unknown. For an active seismic survey, though the source wavelet
(or source time function) can be extracted directly from the near-

offset traces (Schuster, 2017), the extraction is often successful
only for data with high signal-to-noise ratios (SNRs). Owing to
the linear relationship between the source attributes and the
seismic data, the source wavelet can be obtained by solving a
linear equation by assuming a relatively accurate velocity model is
available (Pratt, 1999). Additionally, several strategies were also
proposed to remove the influence of source wavelet based on
convolution (Choi et al., 2005; Cheong et al., 2006; Choi and
Alkhalifah, 2011; Wang and Alkhalifah, 2018; Wang et al., 2020)
or deconvolution (Lee and Kim, 2003; Xu et al., 2006) of reference
traces in both time and frequency domains. However, it may not
be a trivial task to choose a reference trace for real-data
applications.

In addition to the source time function, for passive seismic
sources, the source moment tensor is also needed for FWI. Using
the information from first motion polarities (e.g., Rau et al., 1996;
Hardebeck and Shearer 2002), and/or the S/P amplitude ratios
(Julian et al., 1998; Hardebeck and Shearer, 2003), to full
waveforms (Li et al., 2011; Zhu and Ben-Zion, 2013; Willacy
et al., 2019), source moment tensors can be characterized with
increasing reliability. However, the inversion process inevitably
becomes more computationally expensive and more complicated,
and it generally requires a more accurate velocity model (Kim
et al., 2011; Eyre and van der Baan, 2015). When the surface
seismic acquisition array is dense, Time Reversal (TR) methods
(Larmat et al., 2006; Kawakatsu and Montagner, 2008; Artman
et al., 2010; Gharti et al., 2011; Chambers et al., 2014; Nakata and
Beroza, 2016; Sun et al., 2016) based on seismic migration can be
used to image the source attributes directly by back-propagating
the observed data. For instance, for the microseismic datasets
which have relatively lower SNR, not only phase picking is
avoided, but also the influence of noise can be mitigated by
stacking the back-propagated wavefields from many individual
receivers with the TR methods (Gharti et al., 2011). However, the
source attributes may not be well reconstructed if the observation
array cannot record a sufficient amount of wavefield information
from the source (Bazargani and Snieder, 2016). Furthermore,
methods based on the machine learning, which demand less
processing effort and computational costs, have become more
appealing for obtaining the information of passive seismic
sources (Kriegerowski et al., 2019; van den Ende and
Ampuero, 2020; Wang and Alkhalifah, 2021; Smith et al.,
2022). The seismic moment tensor can be determined
according to the first-motion polarities picked by deep
learning (Ross et al., 2018; Hara et al., 2019; Uchide, 2020).
Kuang et al. (2021) proposed the Focal Mechanism Network
(FMNet) to determine the seismic moment tensor directly from
seismic waveforms. Based on the Bayesian Neural Networks
(BNNs), Steinberg et al. (2021) estimated the moment tensor
of earthquakes as well as parameter uncertainties. Although the
machine-learning based methods can efficiently estimate source
mechanisms, those methods are still limited by predefined Earth
models and station distributions used for training the neural
networks.

In order to overcome the aforementioned problems, many
methods have been developed to invert for the velocity models
with passive seismic sources. Using the variable projection
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method, Sun et al. (2016) developed a framework of joint full-
waveform inversion to obtain velocity models and passive
seismic source locations simultaneously. Song et al. (2019a)
proposed an objective function to invert for velocities and
estimate source locations together by penalizing source energy
away from the source location. Based on the geometric-mean
imaging condition (Nakata and Beroza, 2016), Lyu and
Nakata (2020) performed passive-source location and
velocity inversion using FWI iteratively. However, these
methods failed to consider the influence of the source
radiation pattern, and corresponding FWI schemes still
have high nonlinearity. By focusing different modes (PP, SS
and PS) of the source images, a variety of methods for
determining source locations as well as velocity models
(Vp, Vs.) (Witten and Shragge, 2017; Rocha et al., 2019;
Oren and Shragge, 2021; Oren and Shragge, 2022) have
been developed using different imaging conditions. Since
modeling elastic wavefields (both P- and S wave) is
necessary for these methods, the computational cost is
rather demanding, especially for 3D cases. Inspired by the
TR principle, Lellouch and Landa (2018) used a minimum
variation criterion to evaluate the coherency among focused
sources and estimated the velocity model. Nevertheless, the
influence of the source radiation pattern from different source
mechanisms was still ignored, and trace normalization was
used instead to mitigate the source effect.

For seismic exploration data using active seismic sources, to
mitigate the aforementioned challenges in FWI, Zhang andWang
(2009) proposed a newmethod implemented in the tau-p domain
by maximizing the stacking energy of the back-propagated
wavefield at the source locations. Jin and Plessix (2013)
further modified this method and used a volume centered at
the source position instead of a single grid point for energy
stacking in the data domain. Though the dependence on
waveform fitting and the initial model is largely relaxed with
the energy stacking approach, their methods were designed for
active sources and are not directly applicable for earthquake
sources with distinct source radiation patterns, which emanate
waves with varying amplitudes and polarities in different
directions.

In this study, we further extend the method of Jin and Plessix
(2013) to passive sources. Since the locations of passive seismic
sources and accompanying 1D layered structures (Kissling et al.,
1995) or full 3D velocity models (Thurber, 1992) can be
determined simultaneously using arrival times picked
manually or automatically, we assume that the rough source
locations are known a priori in this study while the uncertainties
are also taken into consideration. The new method inverts for the
velocity model by maximizing the spatiotemporally stacking
energy for all the moment time functions from the back-
propagated wavefields around the source location over a short
time window and a limited volume, and the source attributes
except for the rough source locations are therefore not required in
advance. A multiscale strategy is also applied to stabilize the
inversion. We will first present the newly proposed method and
then validate the method with several numerical examples in two
dimensions for simplicity.

WAVEFORM ENERGY FOCUSING
TOMOGRAPHY FOR PASSIVE SEISMIC
SOURCES
Based on the reversibility of wave propagation through
simulation means, the time-reversal technique can refocus the
back-propagated wavefields and maximize the stacking energy at
the source location and origin time if the velocity model is correct
(McMechan, 1982; Fink, 1997). Therefore, the amount of energy
focused around the source can be used as the criterion for
optimizing a velocity model when the source location is
roughly known (Zhang and Wang, 2009; Jin and Plessix,
2013). For passive seismic sources, we measure the stacking
energy for all the moment time functions from back-
propagated wavefields. For simplicity, we first propose the
method based on the 2D observation geometry in this study.
The corresponding objective function in 2D is

E(v) � −1
2
∫tmax

~t0

(M̂TR2

xx (ξ, t) + M̂
TR2

xz (ξ, t) + M̂
TR2

zx (ξ, t) + M̂
TR2

zz (ξ, t))dt (1)

where M̂
TR
ij (ξ, t) denotes the moment tensor components

estimated from the back-propagated wavefields at the source
location ξ, and M̂

TR
ij2 (ξ, t) denotes the stacking energy. The ~t0

and tmax define the time duration for stacking. With a negative
sign, the criterion is to minimize the negative of the stacking
energy.

With the time-reversal imaging (TRI), M̂
TR
ij (ξ, t) can be

estimated by (Kawakatsu and Montagner, 2008)

M̂
TR

ij (ξ, t) � Eijn(ξ, t; xr, 0) p un(xr,−t) (2)
where un(xr,−t) is the nth component of time-reversed version
of the observed displacement at the receiver location xr, the
symbol p denotes convolution, and Eijn is the strain Green’s
tensor defined as

Eijn(ξ, t; xr, 0) � cij(zGin(ξ, t; xr, 0)
zξj

+ zGjn(ξ, t; xr, 0)
zξi

) (3)

in which cij = 1/2 for i = j and cij = 1 otherwise. Thus, Equation 2
can be rewritten as

M̂
TR

ij (ξ, t) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zGin(ξ, t; xr, 0)
zξ i

p un(xr,−t), i � j

(zGin(ξ, t; xr, 0)
zξj

+ zGjn(ξ, t; xr, 0)
zξ i

) p un(xr,−t), i ≠ j

(4)
Using the relationship with differentiation, the estimated

moment tensor components can be derived by taking a partial
derivative of back-propagated wavefield ubi (x, t) with respect to
the source coordinates ξj

M̂
TR

ij (ξ, t) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

zub
i (x, t)
zξ i

, i � j

zub
i (x, t)
zξj

+ zub
j(x, t)
zξ i

, i ≠ j

(5)
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Considering thatmany well-established seismic locationmethods,
including the ray-based (Waldhauser and Ellsworth, 2000; Zhang
and Thurber, 2003; Eisner et al., 2009), migration-based (McMechan,
1982; Artman et al., 2010; Sava, 2011; Nakata and Beroza, 2016; Song
and Alkhalifah, 2019; Song et al., 2019b) and full-waveform-based
(Kaderli et al., 2015;Wang and Alkhalifah, 2018; Willacy et al., 2019)
methods, have been widely employed, we assume that the source
locations are provided a priori and the influence of location error will
be discussed later. Tomitigate the effect of the source location error, a
spatialtemporal weighting function w(x, t) is defined for calculating
the stacking energy around the source location. Thus, the objective
function in Equation 1 can be rewritten as

E(v) � −1
2
∫tmax

~t0

∫
x

w(x, t)((zub
x

zx
)2

+ 2(zub
x

zz
+ zub

z

zx
)2

+ (zub
z

zz
)2)dtdx (6)

where x represents spatial coordinates [x, z] in the 2D
domain. The spatiotemporal weighting function w(x, t),
which defines a small spatiotemporal cube centered at the
source, is given as

w(x, t) � ∏
γ � x,z,t

f(γ − γs
lγ

)T(γ − γs
lγ

) (7)

where γs ∈ {ξx, ξz,~t0} is the spatiotemporal coordinate of the source,
f(γ−γslγ

) is a boxcar function whose value is one for |γ−γslγ
|≤ 1 and zero

otherwise, and lγ defines a small aperture centered at each source
coordinate γs. T(γ−γslγ

) can be a Gaussian taper, a cosine taper, or
other types of tapers that make the weighting function smoother.
While the temporal aperture (i.e., duration) is determined by the
frequency range of the used data, the spatial aperture could be a small
value if the initial velocity model and the pre-determined source
location are relatively accurate. Otherwise, a larger spatial aperture
should be usedwhen the initial velocitymodel or the pre-determined
source location is not accurate.

To update the velocity model, we need to calculate the
derivative of E(v) with respect to the velocity v(X) and the
adjoint-state method is used (Plessix, 2006). Using the 2D
acoustic wave equation, the back-propagation of the wavefield
can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zvbx
zt

+ 1
ρ

zpb

zx
� fx

zvbz
zt

+ 1
ρ

zpb

zz
� fz

zpb

zt
+ ρv2(zvbx

zx
+ zvbz

zz
) � 0

(8)

where vbx and vbz are particle velocities and pb is the pressure. The
source fi is the time-reversed version of observed seismic data
di (i ∈ [x, z]):

fi(x, t) � ∑nr
r�1

δ(x − xr)di(xr, tmax − t) (9)

According to the Lagrange multiplier method (Hestenes,
1969), we define a new function

S(v) � E(v) + ∫tmax

~t0

∫
χ

λ(x, t)F(v)dxdt (10)

where λ(x, t) � (λx, λz, λp)T denotes the adjoint-wavefield and
Equation 8 can be obtained by setting F(v) � 0. Substituting
Equations 6, 8 into Equation 10, we obtain

S(v) � −1
2

∫tmax

~t0

∫
χ

w(x, t)((zub
x

zx
)2

+ 2(zub
x

zz
+ zub

z

zx
)2

+ (zub
z

zz
)2)dtdx+

∫tmax

~t0

∫
χ

λx(zvbx
zt

+ 1
ρ

zpb

zx
− fx)dtdx + ∫tmax

~t0

∫
χ

λz(zvbz
zt

+ 1
ρ

zpb

zz
− fz)dtdx+

∫tmax

~t0

∫
χ

λp[zpb

zt
+ ρv2(zvbx

zx
+ zvbz

zz
)]dtdx

(11)

where the displacement ui in the i direction can be expressed as

ui � ∫t

0
vidt (12)

After substituting Equation 12 into (Equation 11) and
letting the partial derivatives of Equation 11 with respect to
vbx, v

b
z and pb equal to zero, we obtain the adjoint-state equation

system

FIGURE 1 | The workflow of WEFT for passive source tomography.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zλx
zt

+ ρv2
zλp
zx

� −∫t
~t0

w(x, t)(z2ub
x

zx2 + 2
z2ub

z

zxzz
+ 2

z2ub
x

zz2
)dt

zλz
zt

+ ρv2
zλp
zz

� −∫t
~t0

w(x, t)(z2ub
z

zz2
+ 2

z2ub
x

zxzz
+ 2

z2ub
z

zx2 )dt

zλp
zt

+ 1
ρ
(zλx
zx

+ zλz
zz

) � 0

(13)

For time-reversal imaging, Equation 13 can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zλx
zt

+ ρv2
zλp
zx

� −∫t
~t0

w(x, t)⎛⎝zM̂
TR

xx(x, t)
zx

+ 2
zM̂

TR

xz (x, t)
zz

⎞⎠dt

zλz
zt

+ ρv2
zλp
zz

� −∫t
~t0

w(x, t)⎛⎝zM̂
TR

zz (x, t)
zz

+ 2
zM̂

TR

zx (x, t)
zx

⎞⎠dt

1
ρ
(zλx
zx

+ zλz
zz

) + zλp
zt

� 0

(14)
and the adjoint source of WEFT can be defined as

Si � −∫t
~t0

∑2
j�1
cijw(x)

zM̂
TR

ij (x, t)
zj

dt (15)

in which cij = 1 for i = j and cij = 2 otherwise, the adjoint-state
equation system can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zλx
zt

+ ρv2
zλp
zx

� Sx

zλz
zt

+ ρv2
zλp
zz

� Sz

zλp
zt

+ 1
ρ
(zλx
zx

+ zλz
zz

) � 0

(16)

which is similar to Equation 8.
Solving Equation 11, the gradient of the objective function can

be expressed as

zE
zv(x) �

zS(v)
zv(x) � 2ρv ∫tmax

~t0

λp(zvbx
zx

+ zvbz
zz

)dt (17)

According to the relationship between the pressure and
particle velocity in Equation 8, the gradient can be written as

FIGURE 2 | 2D velocity models used for synthetic tests with WEFT. (A)
The true model adapted from the Marmousi model. (B) The initial model used
for WEFT. The inverted triangles at the top of the model denote the 201
receivers with an interval of 20 m, and the asterisks within the model
denote the 31 earthquake sources. The yellow asterisks and the yellow
inverted triangle indicate the sources and receiver used for the data
comparison in Figure 8.

FIGURE 3 | Velocity inversion with WEFT using passive sources with a
uniform radiation pattern. (A) The inverted velocity model by WEFT using the
multiscale strategy. The source radiation pattern is indicated by the small
adjacent ring. (B) The focused energy with iterations at the source
locations. For the focused energy, their values are renormalized by the
respective values at the first iteration in every frequency band (indicated by
different colors). Waveforms in four frequency bands, 1–5 Hz, 1–9 Hz,
1–16 Hz, and 1–28 Hz are sequentially used for updating the velocity model,
with 10 iterations in each band. (C) The normalized model misfit measured by
L2-norm as a function of iterations.
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zE
zv(x) � −2

v
∫tmax

~t0

λp(x, t; ξ) zp
b(x, t; xr)
zt

dt (18)

where λp(x, t; ξ) denotes the forward-propagated pressure
wavefield excited by the adjoint source of WEFT Si, and
pb(x, t; xr) denotes the back-propagated pressure wavefield.
Equation 18 means the gradient in WEFT can be calculated by
correlating the time derivative of the back-propagated wavefield
with forward-propagated wavefield defined by the equation system
(Eq. 16), which is very similar to FWI (Zhong and Liu, 2019).

The workflow of WEFT is summarized in Figure 1. In each
iteration, there are two essential steps: 1) the observed data are
first back-propagated and the adjoint source is constructed; 2) the
gradient is calculated by correlating the time derivative of back-
propagated wavefield with the forward wavefield emanating from
the adjoint source according to Equation 18. Then the conjugate
gradient method (Mora, 1987) is used to update the velocity
model iteratively and the backtracking line search method is
applied to determine the proper step length. When the pre-
defined number of iterations is reached or the increase in
energy levels off, the inversion is terminated. Though there are
many similarities in the implementation between WEFT and
FWI, some noticeable differences still exist. The major difference
is thatWEFT back-propagates the recorded seismic data, whereas
FWI back-propagates the residual waveforms between the
recorded and synthetic data. Moreover, the moment time
functions for a source must be provided a priori in FWI,
whereas the source attributes except for rough source locations
are not required for WEFT in advance.

NUMERICAL TESTS

To validate WEFT, we perform a series of synthetic tests using
heterogeneous models in 2D. The true velocity model

(Figure 2A) used for the following numerical experiments is
adapted from the widely used Marmousi model (Martin et al.,
2002). Both the true and smooth initial velocity models (Figures
2A,B) are from Schuster (2017). A Ricker wavelet with central
frequency of 15 Hz is chosen as the source time function. The
source-receiver configuration consists of 201 receivers on the
surface with an interval of 20 m, and 31 passive sources located in
the subsurface (Figure 2). These sources are distributed into 6
clusters. We should emphasize that the synthetic model used here
is for the proof of concept for the proposed WEFT method and
may not follow the actual scenarios for earthquake monitoring.
However, with more and more dense seismic arrays used for
monitoring induced seismicity, the distribution of dense receivers
and shallow passive seismic sources are actually expected, such as
the dense geophones used for monitoring shale gas hydraulic
fracturing (Eisner et al., 2010; Staněk and Eisner, 2013; Anikiev
et al., 2014).

Following the approach now commonly used in FWI, which
sequentially utilizes observed data with increasing frequencies
(Bunks et al., 1995), a multiscale strategy is also adopted in
WEFT. After a predefined number of iterations is reached for a
certain frequency band, the final velocity model is used as the
initial model for the next frequency band. Since the source
location used in this case is accurate, we choose a small spatial
aperture lx � lz � 40m, and the temporal aperture is larger than
the half-width of the source wavelet. To improve the resolution of
the inverted model, the spatial aperture lx,z in Eq. 7 for evaluating
the focused energy is gradually decreased with increasing
frequencies. We first test the WEFT using passive seismic
sources with a uniform radiation pattern (indicated by the
small adjacent ring in Figure 3A). Four frequency bands of
1–5 Hz, 1–9 Hz, 1–16 Hz, and 1–28 Hz are adopted. It can be
seen that the inverted model (Figure 3A) is hardly affected by the
source radiation pattern although the source moment time
function is not provided for the inversion. The focused energy
(Figure 3B) increases with iterations in each frequency band and

FIGURE 4 | Velocity inversion with WEFT using passive sources with varying radiation patterns. (A) Distribution of six seismic clusters (colored asterisks), each of
which has a distinct radiation pattern indicated by small adjacent rings. The true velocity model is shown in the background. (B) The model inverted by multiscale WEFT
with seismic sources in (A). (C)The focused energy with iterations at the source locations. (D) The normalized model misfit measured by L2-norm as a function of
iterations.
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its growth levels off gradually. Meanwhile, the model misfit
measured by the L2-norm also decreases with iterations, as
shown in Figure 3C.

We further test a more complicated scenario where six seismic
clusters having different types of source moment tensors
(Figure 4A). The spatialtemporal aperture used here is the
same as in the previous case. The model inverted by the
multiscale WEFT is shown in Figure 4B. Though the varying

FIGURE 5 |Comparison of the velocity inversion results with different focusing apertures and with or without source location errors. (A) Themodel inverted with the
smaller apertures (lx � lz � 40m) while the source locations (black asterisks) deviate from their correct positions (red circles). (B) The model inverted with larger apertures
(lx � lz � 100m) under the same conditions as (A). (C) The model inverted with smaller apertures as (A) when source locations are accurate (red asterisks). (D) The true
model for comparison.

FIGURE 6 | Comparison of the objective functions between FWI and
WEFT. (A) The source-receiver configuration used for calculating the objective
functions. The source radiation pattern is indicated by the small adjacent ring.
The velocity model is homogenous with Vp equal to 2000 m/s. (B)
Comparison of the normalized objective functions for FWI (blue) and WEFT
(red) with respect to different velocities.

FIGURE 7 | The inverted models using traveltime tomography and
WEFT from a rather smooth initial model. (A) The rather smooth initial model.
(B) The model inverted by traveltime tomography. (C) The model inverted by
multiscale WEFT. (D) The model further inverted by multiscale FWI
starting from the WEFT model in (C).
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radiation patterns from different clusters pose a considerable
challenge for waveform inversion, WEFT still inverts for the
heterogeneous Marmousi model accurately. Compared to the
true model, there are some minor artifacts in the inverted model,
which are probably caused by the varying radiation patterns that
can result in complicated directional illuminations in resolving

the model. Although the stacking energy (Figure 4C) increases
with iteration in each frequency band as expected, the model
misfit (Figure 4D) undesirably also increases slightly in the last
frequency band, which suggests the inversion was trapped in a
local minimum for high-frequency data. Nevertheless, this
example demonstrates that WEFT can be applied directly to

FIGURE 8 | Comparison of waveforms for the (A) vx and (B) vz components at a particular receiver from different sources using various velocity models. The black
lines denote the observed data. The blue, magenta, red and orange lines denote the synthetic data with the initial model (Figure 7A), the final velocity models from
traveltime tomography (Figure 7B), WEFT (Figure 7C) and FWI (Figure 7D), respectively. The subplots in each column show data from a different source. The locations
of the receiver (yellow triangle) and the sources (yellow asterisks) are shown in Figure 2A. The waveforms are filtered between 1 and 28 Hz, and the true source
moment time functions are used.
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surface seismic monitoring datasets in which seismic sources
occur on different faults are with varying orientations and
slipping angles.

DISCUSSIONS

Influence of Uncertainty in Source Location
In WEFT, the source location is used to determine the spatial
volume for evaluating the focused energy (Equation 7), and for
the adjoint source injection when calculating the adjoint
wavefield (λp in Equation 15). As discussed earlier, in WEFT
it is assumed that the source location and origin time are
predetermined from other methods, e.g., the NonLinLoc
method (Lomax et al., 2000), the double-difference location
method based on traveltimes (Waldhauser and Ellsworth,
2000; Zhang and Thurber, 2003), or the recently developed
location methods based on machine learning (Kriegerowski
et al., 2019; Zhang et al., 2020; Wang and Alkhalifah, 2021).
Thus, the source location may deviate from its true position
owing to an inaccurate velocity model (Thurber, 1992) and arrival
times. In WEFT, a way to mitigate the influence of inaccurate
source locations is to expand the spatial aperture for evaluating
the focused energy (determined by lx and lz in Equation 7). That
is, the spatial aperture should be designed based on the source
location uncertainty so that the true location is contained in the
volume for evaluating the focused energy. To some extent,

however, this strategy may also compromise the accuracy and
resolution of the inverted velocity model, since the back-
propagated wavefields using a slightly incorrect model may
still focus well within an enlarged volume. When the source
locations are known accurately, the inverted model using a
smaller spatial aperture with lx � lz � 40 m is shown in
Figure 5C, and the model misfit is reduced by about 30%.
However, when the source locations are not accurate, the
result using the same spatial apertures shows a slightly
distorted inclined high-velocity layer at the bottom of the
model (x ≈ 3000m, z ≈ 1000m) and a blurred inclined thin
layer with low velocity (x ≈ 3000m, z ≈ 600m) (Figure 5A).
The model misfit in this case is only reduced by 10%. If we enlarge
the apertures to lx � lz � 100 m, not only the model misfit is
reduced by about 18% of the original, but also the distortion is
suppressed and the low-velocity thin layer is better recovered
(Figure 5B). By comparing models in Figure 5A,B,C, we notice
that some artifacts around the sources are introduced with
inaccurate source locations.

Comparison With Full Waveform Inversion
and Seismic Travel Time Tomography
Since WEFT evaluates the magnitudes of the back-propagated
energy focused around the hypocenters instead of matching the
wiggles between the observed and synthetic waveforms at the
receivers, the proposed method has less nonlinearity and is more

FIGURE 9 | The comparison between the noisy and noise-free synthetic data used for WEFT. (A) Noisy and noise-free traces at selected receivers. The source
radiation pattern is the same as that shown in Figure 3. The black lines indicate the noise-free data, and the red lines indicate the noisy data by superposing the noise-
free data with randomGaussian noise with limited bandwidth. The distributions of the sources and receivers are the same as those shown in Figure 2. (B) and (C) show
the snapshots of the back-propagated wavefield with noise-free and noisy data, respectively.
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robust since there is less cycle-skipping issues as commonly seen
in conventional FWI. Figure 6B shows a comparison of objective
functions of FWI and WEFT for a simple source-receiver
configuration (Figure 6A), where the passive source is located
at 1,000 m in depth and a single receiver is on the surface. It is
obvious that the objective function of FWI has multiple local
minima compared to that of WEFT, which has a more convex
behavior globally and has only a single global minimum for this
scenario.

The lower nonlinearity of WEFT can also facilitate velocity
inversion from a poor initial velocity model. In Figure 7, we
further compare the inversion results between WEFT and
conventional traveltime tomography using an even smoother
initial velocity model (Figure 7A). Compared to the true
model, many small heterogeneities and contrasts are recovered
in the inverted model by WEFT (Figure 7C), while only the tilted
high-velocity bodies at the bottom of the model are distorted. In
comparison, the inverted model by traveltime tomography
(Figure 7B) appears much smoother and lack fine details.
Starting from the final inverted model from WEFT, we
perform FWI to further update the velocity (Figure 7D), and
even more details are added to the model. It should be stressed
again that WEFT does not require source moment time functions

in the inversion, while FWI does. Using the final velocity models
inverted by WEFT and traveltime tomography shown in
Figure 7, we generate synthetic waveforms and compare the
vx and vz components (Figure 8). Significant time delays can be
found between the “observed” data from the true model (black
lines) and the ‘synthetic’ data generated based on the initial model
(blue lines). Although the model inverted by traveltime
tomography considerably mitigates the time delays between
the observed and synthetic data, wiggles in the two datasets
still differ markedly. In comparison, the waveform matching
between the synthetic and observed data improves
considerably using the velocity model derived by WEFT, with
many later-arrived wiggles successfully modeled. When using the
model inverted by FWI starting from the final model of WEFT,
the synthetic and observed waveforms are almost the same. This
nice agreement in waveforms indicates that though the objective
function of WEFT only considers the energy focusing at the
sources directly, the waveform matching at the receivers is
nevertheless satisfactory owning to a correctly updated model.

Influence of Noise
We further test the stability and accuracy of WEFT with noisy
observed data (Figure 9A). In this experiment, the synthetic data
are contaminated by random Gaussian noise, which is not
coherent among receivers, and the SNR is about 0.3. For the
noisy data, it is difficult to obtain a relatively accurate velocity
model by conventional FWI without sophisticated data
preprocessing. However, it is still possible to apply WEFT with
the noisy data. This is because although the seismic signals are
initially buried in the noise, the coherent signals can be gradually
enhanced against the inherent noise with back-propagation. In
other words, wavefield back-propagation specifically focuses the
energy of the microseismic event and thus suppresses incoherent
noise, which can be seen in the snapshots of the back-propagated
wavefields at a certain time with noise-free and noisy data
(Figures 9B,C, respectively). Compared with the inverted
model from the noise-free data (Figure 3), the inverted model
with the noisy data is similar (Figure 10A), and the model misfit
(Figure 10C) still shows a considerable reduction. This test
demonstrates that WEFT is rather resilient to incoherent
noise, which can be a considerable advantage over FWI.

Influence of Source Distribution
Considering that the distribution of sources and the source
mechanisms may have a noticeable influence on the inverted
model, we further perform a challenging test where 10
earthquakes with a uniform radiation pattern are distributed
within a narrow depth range of 60 m, as shown in
Figure 11A. Starting from the initial model shown in
Figure 11B, two distinct source mechanisms are used for
comparison. The inverted models using sources with different
radiation patterns (indicated by the small adjacent ring) are
shown in Figures 11C,E, respectively. The comparison of the
velocity profiles at the position x = 2,310 m is shown in Figures
11D,F, respectively. We found that, as expected, most of the
effective update is within the central part of the model above the
earthquake sources due to the limited source illumination.

FIGURE 10 | Results of multiscale WEFT using data with random
Gaussian noise with limited bandwidth. (A) The inverted velocity model with
multiscale WEFT. (B) The focused energy with iterations at the source
locations. The parameters used in the inversion are similar to those used
in Figure 3. (C) The normalized model misfit measured by L2-norm as a
function of iterations.
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Besides, different source mechanisms, which result in varying
illumination patterns, inevitably have an impact on the inverted
models. Due to the poor source distribution, the recovered
models are not as good as those shown before. However, both
inverted models are updated successfully compared to the initial
one, especially the model shown in Figures 11C,D.

CONCLUSION

We propose a new seismic tomography method called Waveform
Energy Focusing Tomography for passive seismic sources.
Compared to FWI, WEFT inverts for the velocity model by
maximizing the energy of the moment time functions from back-
propagated wavefields around the sources, instead of matching
synthetic and observed waveforms at the receivers. As a result,
WEFT has lower nonlinearity in the inversion and can avoid the
cycle skipping issue in FWI. More importantly, except for the source
locations and origin times, WEFT does not require other source
attributes including source time functions and focal mechanisms.
This means that more earthquakes with smaller magnitudes and
unknown source mechanisms can also be used by WEFT.

We have shown the effectiveness and advantages of WEFT
through several 2D synthetic tests based on the Marmousi model.
WEFT can still perform well on different challenging cases when
passive seismic sources have different radiation patterns, when
the initial velocity model is rather smooth, and when waveforms
are very noisy. Nevertheless, the quality of inverted models can
still be affected by uneven illumination due to distributions and
mechanisms of sources. Although waveform matching at the

receivers is not directly considered in the objective function of
WEFT, the synthetic tests show that the waveform matching
using the inverted model by WEFT is still satisfactory, much
better than the velocity model inverted by traveltime tomography
using arrival times. It should be noted that WEFT yields velocity
models with slightly lower resolution compared to FWI.
Therefore, WEFT can act as an intermediate step between
seismic traveltime tomography and FWI by providing a more
accurate and reliable starting velocity model for the latter.

In this study, for simplicity we validate WEFT with passive
seismic sources under the 2D acoustic assumption. This method
can also be extended to 3D for real applications such as dense-
array monitoring of local seismicity from fault zones or hydraulic
fracturing when the receivers are not distributed along a straight
line or the passive sources have an areal distribution, which will
be shown in a future study.
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Moment Tensor Solutions for
Earthquakes in the Southern Korean
Peninsula Using Three-Dimensional
Seismic Waveform Simulations
Jung-Hun Song1, Seongryong Kim2*, Junkee Rhie1 and Donghee Park1,3

1School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea, 2Department of Earth and
Environmental Sciences, Korea University, Seoul, South Korea, 3Central Research Institute, Korea Hydro & Nuclear Power Co.,
Ltd., Daejeon, South Korea

Precise estimates of earthquake source properties are crucial for understanding
earthquake processes and assessing seismic hazards. Seismic waveforms can be
affected not only by individual event properties, but from the Earth’s interior
heterogeneity. Therefore, for accurate constraints on earthquake source
parameters, the effects of three-dimensional (3D) velocity heterogeneity on seismic
wave propagation need evaluation. In this study, regional moment tensor solutions for
earthquakes around the southern Korean Peninsula were constrained based on the
spectral-element moment tensor inversion method using a recently developed high-
resolution regional 3D velocity model with accurate high-frequency waveform
simulations. Located at the eastern margin of the Eurasian plate, the Korean
Peninsula consists of complex geological units surrounded by thick sedimentary
basins in oceanic areas. It exhibits large lateral variations in crustal thickness (>
10 km) and seismic velocity (>10% dlnVs) at its margins in the 3D model. Seismic
waveforms were analyzed from regional earthquakes with local magnitudes > 3.4 that
occurred within and around the peninsula recorded by local broadband arrays.
Moment tensor components were inverted together with event locations using the
numerically calculated Fréchet derivatives of each parameter at periods ≥ 6 s. The
newly determined solutions were compared with the results calculated from the one-
dimensional (1D) regional velocity model, revealing a significant increase in a double-
couple component of > 20% for earthquakes off of the coastal margins. Further,
compared to initial solutions, ≤ 5 km change in depth was observed for earthquakes
near the continental margin and sedimentary basins. The combination of a detailed 3D
crustal model and accurate waveform simulations led to an improved fit between data
and synthetic seismograms. Accordingly, the present results provide the first
confirmation of the effectiveness of using 3D velocity structures for accurately
constraining earthquake source parameters and the resulting seismic wave
propagation in this region. We suggest that accurate 3D wave simulations, together
with improved source mechanisms, can contribute a reliable assessment of seismic
hazards in regions with complex continental margin structures and sedimentary basins

Edited by:
Mourad Bezzeghoud,

Escola de Ciência e Tecnologia,
Universidade de Évora, Portugal

Reviewed by:
Rohtash Kumar,

Banaras Hindu University, India
Bouhadad Youcef,

National Earthquake Engineering
Center (CGS), Algeria

José Borges,
University of Evora, Portugal

*Correspondence:
Seongryong Kim

seongryongkim@korea.ac.kr

Specialty section:
This article was submitted to

Solid Earth Geophysics,
a section of the journal

Frontiers in Earth Science

Received: 16 May 2022
Accepted: 14 June 2022
Published: 05 July 2022

Citation:
Song J-H, Kim S, Rhie J and Park D
(2022) Moment Tensor Solutions for
Earthquakes in the Southern Korean
Peninsula Using Three-Dimensional

Seismic Waveform Simulations.
Front. Earth Sci. 10:945022.

doi: 10.3389/feart.2022.945022

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9450221

ORIGINAL RESEARCH
published: 05 July 2022

doi: 10.3389/feart.2022.945022

21

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.945022&domain=pdf&date_stamp=2022-07-05
https://www.frontiersin.org/articles/10.3389/feart.2022.945022/full
https://www.frontiersin.org/articles/10.3389/feart.2022.945022/full
https://www.frontiersin.org/articles/10.3389/feart.2022.945022/full
https://www.frontiersin.org/articles/10.3389/feart.2022.945022/full
http://creativecommons.org/licenses/by/4.0/
mailto:seongryongkim@korea.ac.kr
https://doi.org/10.3389/feart.2022.945022
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.945022


from offshore earthquakes whose seismic waveforms can be largely affected by 3D
velocity structures.

Keywords: earthquake source parameters, seismic waveform simulation, 3D velocity model, spectral-element
method, Southern Korean Peninsula

INTRODUCTION

Accurate determination of earthquake source parameters (e.g.,
hypocenter, focal mechanisms, and moment tensors) is
important for understanding earthquake processes, elastic
responses of a medium to tectonic stresses, and strong ground
motions affected by the sources (Talwani, 2014; Gallovič et al.,
2019). Notably, seismic waveforms have been routinely used to
improve source property estimates (Ekström et al., 2012), as they
contain more information due to the superposition of different
seismic signals across amplitudes and phases (Dreger and
Helmberger, 1993; Kim et al., 2011). Seismic waveforms are
responses to wave propagation through the Earth’s structure,
as well as earthquake processes. Though averaged one-
dimensional (1D) structural models are useful in most
practices (Dreger and Helmberger, 1993; Ford et al., 2009),
constrained source properties can often be biased from
unaccounted for three-dimensional (3D) structural
heterogeneity (Hejrani et al., 2017; Li et al., 2018), such as
thick sedimentary basins, or sharp lateral variations in crustal
thickness at the continental margin (Tape et al., 2010).
Additionally, signals from small-to-moderate regional
earthquakes (moment magnitude (Mw) ~3.0–5.5) are generally
detected by regional arrays (epicentral distance < 500 km) over
relatively shorter period bands (< 40 s), in which seismic wave
propagation becomes increasingly sensitive to smaller volumetric
or sharp interfacial structures in the crust and upper mantle (e.g.,
Fichtner and Tkalčić, 2010). Therefore, for more precise
constraints on earthquake source parameters across various
magnitudes, the effects of 3D velocity heterogeneity on seismic
wave propagation require evaluation.

With recent advancements in computational capacity, the
calculation of 3D seismic wave simulations has become more
readily attainable and has been successfully applied for
synthesizing full seismic waveforms and ground shaking with
the inclusion of more accurate 3D Earth structures (Liu et al.,
2004; Lee et al., 2022). Indeed, 3D velocity model analyses have
shown to improve moment tensor solutions for a more accurate
alignment with actual regional tectonic features (Hejrani et al.,
2017; Takemura et al., 2020). Further, accurate wave simulations
enabled with a 3D velocity model show that slip processes can be
resolved more precisely at higher frequencies (> 0.1 Hz) for
earthquakes at shallow depths (< 2 km; Hejrani and Tkalčić,
2020) or complex tectonic systems (Julian et al., 1997; Vavryčuk,
2011). Despite the effectiveness of considering 3D velocity
structures, the number of local and regional studies
constraining earthquake source parameters based on the
calculations of 3D wave propagations is limited to Iceland
(Fichtner and Tkalčić, 2010), Taiwan (Lee et al., 2010), the
Australian region (Hingee et al., 2011; Hejrani and Tkalčić,

2020), Papua New Guinea and the Solomon Islands (Hejrani
et al., 2017), the Kanto region (Takemura et al., 2020), Los
Angeles region (Wang and Zhan, 2020), Groningen Field
(Willacy et al., 2018), and the southern Sichuan Basin (Huo
et al., 2021). In part, this limitation is due to the lack of regional
3D velocity models with reasonable resolutions and/or
insufficient computational resources to accommodate accurate
3D wave simulations.

Here, we present a newly estimated moment tensor catalog
based on 3D full-waveform simulations in the southern Korean
Peninsula (KP). The combined presence of a regional high-
resolution 3D velocity model and accelerated processing
through advanced graphical processing units (GPUs) allow for
the more efficient calculation of synthetic waveforms reflecting
the 3D heterogeneity. The KP is a continental part at the eastern
margin of the Eurasian plate. Tectonically, the KP is under a
stable intraplate regime, with compressive tectonic forces
controlled by the convergence of the Eurasian plate (EP),
Philippine Sea plate (PSP), and the Pacific plate (PP;
Figure 1). Although this region has been classified as a
tectonically stable intraplate area, several small-to-moderate
sized earthquakes (Mw ~3–5) occur annually, with two of the
largest earthquakes (Mw > 5.4) in instrumentally recorded history
(generating ground shaking-caused damages near the epicenters
and felt throughout the southern KP) occurring within the last
5 years, (Kim Y. et al., 2016; Kim K. H. et al., 2018). Previous
studies have applied various techniques for estimating detailed
earthquake moment tensors and resultant ground shaking based
on 1D regional velocity models (Rhie and Kim, 2010; Kim et al.,
2011; Hong and Choi, 2012; Hong et al., 2020; Park et al., 2020).
With increasing concern of possible damaging earthquakes,
several seismic stations have been deployed over the past
decade in the southern KP (Figure 1A). The accumulated
continuous waveform records from these stations have enabled
the development of high-resolution crust and upper mantle
velocity models through ambient noise tomography for the
southern KP and northeast Asia, resolving lateral structures
down to ~20 km (Lee et al., 2015; Kim. et al., 2016b; Rhie
et al., 2016). Elsewhere, a regional 3D velocity model has
successfully enhanced the accuracy of hypocenter locations of
the 2017 Pohang earthquake sequences (Jung et al., 2022).
Further, seismic wave propagation simulations calculated with
the 3D velocity model have shown that local amplification of
ground motions caused by complex wave propagation effects can
be reproduced accurately up to 1 Hz, with improved predictive
accuracy (Lee et al., 2022). These results support that 3D models
well represent fine details of velocity heterogeneity in this region.
Furthermore, GPUs were employed here to accelerate the spectral
element wavefield simulation (Komatitsch et al., 2010), as they
can reduce the computational time of synthetic wave propagation
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by ≤ 20-times compared to CPU clusters (Komatitsch et al.,
2010). Synthetics and their Fréchet derivatives were computed for
six moment tensor components and three location parameters
(longitude, latitude, and depth) to be used for the inversion of
earthquake source parameters for each earthquake. In particular,
shorter period waveforms (6–30 s) were incorporated to better
resolve source complexities and reduce moment tensor
dependencies in source depth (Julian et al., 1997; Mustać
et al., 2020). The inversion results and synthetic waveforms
obtained with the regional 3D and 1D velocity models were
compared, ultimately revealing that the more accurate waveform
simulation technique with the 3D velocity model resulted in
generally better fits between data and synthetic seismograms, with
more reliable focal mechanism solutions in this region.

DATA AND METHOD

Event Data and Initial Solutions
Regional earthquakes with local magnitudes (ML) > 3.4 occurring
between 2003 and 2021 within and around the southern KP
(33.0°–38.2° N, 123.8°–130.3° E) were identified from the event

catalog of the Korean Meteorological Agency (KMA; N = 73
events). Further, we obtained three-component seismic
waveforms for these events recorded by broadband
seismometers from various networks (Figure 1A). The raw
seismogram data were deconvolved from instrument responses
and converted to displacement. Two horizontal components (E
and N components) were rotated to radial (R) and tangential (T)
components based on the KMA-provided event locations. Station
orientations were corrected based on the measurement of
seismometer misorientation by teleseismic P-wave polarization
(Son et al., 2021). To obtain initial earthquake moment tensor
solutions for the subsequent 3D analysis and reject earthquakes
with poor data quality, we performed 1D time-domain moment
tensor inversions (TDMT, Dreger and Helmberger, 1993) with a
regional 1D velocity model (Kim et al., 2011). Green’s functions
were calculated using a frequency-wavenumber integration
method (Saikia, 1994) based on the actual epicentral distances
of each station. For larger earthquakes, we applied a 20–40 s
band-pass filter, and for smaller events (Mw < 4), a relatively
short-period band of 10–30 s was used to account for frequency
contents of corresponding earthquakes and to increase signal-to-
noise ratios of the observed waveforms (Rhie and Kim, 2010). We

FIGURE 1 | Distribution of seismic stations and earthquakes within the study area. (A) Stations are indicated by solid symbols, with different colors and shapes for
different networks—KMA, Korea Meteorological Administration; KIGAM, Korea Institute of Geoscience and Mineral Resources, KHNP, Korea Hydro & Nuclear Power;
NIED, National Research Institute for Earth Science and Disaster Resilience; JMA, Japan Meteorological Agency; GSN, Global Seismic Network. Black circles indicate
local events (ML > 3.4) occurring between 2003 and 2021, with corresponding circle sizes indicating magnitude. Red lines delineate major faults (Chough et al.,
2018), whereas gray shaded regions indicate sedimentary basins with a thickness > 1 km (Straume et al., 2019). (B) a regional tectonic setting, where subduction
boundaries are indicated by red saw-toothed lines, while other convergent plate boundaries are indicated by gray lines (Bird, 2003). Red arrows indicate the movement
direction of the Philippine Sea and Pacific plates with respect to the Eurasian Plate (velocities indicated). The study area is indicated by the black square. EP, Eurasian
Plate; PP, Pacific Plate; PSP, Philippine Sea Plate; NA, North American Plate.
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inverted for deviatoric moment tensor solutions of each event
with varying centroid depths, while fixing lateral locations
(i.e., longitude and latitude), as provided by the earthquake
catalog. The event depth varied between 0 and 30 km at
increments of 0.5 km, and the final depth was determined to
have the lowest misfit between the synthetic and observed
waveforms. During the inversion process, time shifts of each
station were determined for the alignment of synthetic
seismograms with the observed waveforms based on cross-
correlations to account for unmodeled propagation effects.
Ultimately, 45 events were obtained for which both moment
tensors and centroid depths could be stably determined, with
variance reductions > 60% and the number of stations showing
clear three-component waveforms > 10. Events that occurred in
the northern KP were excluded due to limited regional resolution
of 1D and 3D velocity structures. The chosen events were

analyzed further in the moment tensor inversion via the 3D
waveform simulation.

Three-Dimensional Velocity Model
The 3D regional velocity model of the southern KP was
constructed based on ambient noise tomography (Figure 2).
The model data were obtained from multiple regional ambient
noise datasets with different spatial scales. In the southern KP, the
velocity model was constructed using 1–6 s group velocity data
measured at 150 accelerometer stations and 5–30 s group and
phase velocity data estimated at 37 regional broadband stations
(Rhie et al., 2016). The velocity model outside the southern KP
was constrained by 25–40 s phase velocity data collected at
broadband stations in northeast Asia (Kim. et al., 2016b). The
lateral variations of phase and group velocity for period ranges ≤
1 Hz were calculated based on the trans-dimensional and

FIGURE 2 | Regional three-dimensional seismic velocity model of the southern Korean Peninsula: (A) Horizontal cross-section of P-wave velocity at 10 km depth.
Black solid lines indicate the boundaries of different geologic provinces; (B) Horizontal cross-section of S-wave velocity at 10 km depth; (C,D) represent vertical cross-
sections of P- and S-wave velocities, respectively. Gray solid curves are Moho depths from receiver function studies (e.g., Chang and Baag, 2007; Kim et al., 2015).
Locations of vertical profiles are indicated in B: GB, Gyeongsang Basin; GM, Gyeonggi Massif; IB, Imjingang Belt; OB, Okcheon Belt; YM, Yeongnam Massif.
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hierarchical Bayesian inversion technique (Kim. et al., 2016a;
Rhie et al., 2016). The 1D depth profiles from surface-wave
dispersions were inverted via a Bayesian approach and used to
construct the 3D shear velocity model (Kim et al., 2017). Based on
the lateral variation of the compressional to shear-wave velocity
ratio (Vp/Vs) estimated from the receiver function method
(Chang and Baag, 2007), 3D modeled P-wave velocities were
converted from the shear velocity. A simple empirical
relationship between seismic velocity and density (Christensen
and Mooney, 1995) was employed to construct a density model
covering the southern KP and its coastal regions, including the
western part of the East Sea (Sea of Japan) and the eastern Yellow
Sea, extending to depths of 120 km. For the crust and uppermost
mantle, the horizontal resolution of the 3D model extended to
25–30 km within the continental area and 50–75 km in the
offshore regions. These resolutions were determined based on
synthetic recovery test results using checkerboard and structural
patterns (Kim. et al., 2016b; Rhie et al., 2016). We confirmed that
the modeled region successfully recovered the original input
pattern. The velocity grids in the continental and oceanic
regions were sampled at horizontal intervals of 5 and 25 km,
respectively, with a common depth spacing of 0.5 km.

Waveform Simulations Using
Spectral-Element Method
The spectral-element method implemented in the SPECFEM3D
Cartesian software package (Komatitsch and Tromp, 1999) was
used for the accurate calculation of 3D elastic wave propagation.
This method has previously been used to simulate seismic wave
propagation on both global and regional scales with 3D Earth
structures (Komatitsch and Tromp, 2002; Tape et al., 2009).
Further, this method exploits the geometric flexibility of the
finite-element method with an accurate representation of the
wave fields based on high-degree Lagrange polynomials via
pseudospectral techniques (Komatitsch et al., 2004). Surface
topography, bathymetry, and internal discontinuities (e.g.,
Moho) can be accommodated into the spectral element mesh.
We constructed a mesh that covers 817.1 x 713.4 km
(123.5°–132.5° E and 32.8°–39.3° N) and extends to 85 km
depth. The mesh encompasses all stations and earthquakes in
the southern KP, as well as its coastal regions (Figure 1A).
Spectral elements were defined to maintain a regular spacing
of ~3 km in the model domain, which contained 1.89 x 106

elements with 1.19 x 108 grid points. We applied a free surface
condition at the topographic surface and the Stacey absorbing
boundary condition at the bottom and sides (Komatitsch and
Tromp, 2003). Based on the minimum shear wave velocity of the
regional velocity model and spacing of spectral elements,
synthetic seismograms could be resolved up to 0.5 Hz. We
employed a GPU-enabled spectral-element solver of the
seismic wave equation.

Moment Tensor Inversion
A seismic moment tensor and event location were determined
using the regional 3D velocity model based on the spectral-
element moment tensor inversion method (Liu et al., 2004).

This method uses spectral-element simulations to calculate the
sensitivity of seismic waveforms to source parameters (i.e., the
Fréchet derivatives). For each earthquake, we inverted six
moment tensor components (Mrr, Mtt, Mpp, Mrt, Mrp, and
Mtp) and three location components (longitude, latitude, and
depth). Accordingly, a total of 10 simulations were conducted, of
which 9 consisted of calculating synthetics for the Fréchet
derivatives, and the remaining simulation constructed
synthetic seismograms with an initial moment tensor solution
determined by the TDMT method. As the synthetics (s) can be
represented by linear combinations of the moment tensor
elements (m), the derivatives ds

dmi
(where index i varies from 1

to 6) can be obtained by forward calculations for moment tensors
that have a nonzero element for an individual ith component,
while all other elements are zero. In the case of an inversion for
the six elements of the moment tensor m �
[Mrr, Mtt, Mpp, Mrt, Mrp, Mtp] , the synthetics s(t, m) may
be represented by linear combinations of the Fréchet derivatives
with respect to moment tensor elements: Eq. 1

s(t, m) � ∑6
i�1

ds

dmi
(t)mi (1)

The Fréchet derivatives of location parameters can be
constructed based on the differences between synthetic
seismograms computed with a moment tensor, that is,
spatially separated from the initial location and the initial
synthetic seismograms. In contrast to the moment tensor
components, the synthetic waveforms have a nonlinear
relationship with location parameters. Assuming that the
initial solution was close to the true solution, a linear gradient
calculated with step lengths of 1 km for depth, and 250 m for
latitude and longitude, was applied from the initial location. Step
lengths were determined based on the numerical test results
showing the quasi-linearity of gradients around the initial
location (Liu et al., 2004). Using the initial point-source
parameters as the starting solution (m0) , the synthetics can
be linearized with respect to the initial parameters as Eq. 2

s(t, m) � s(t, m0) +∑n

i�1
ds

dmi
(t, m0)(mi −m0

i ), (2)

where n is the number of inversion parameters, which include
six elements of moment tensor with three location parameters.
Given a set of source parameters, the misfit between the data and
the synthetics was defined as the least-square waveform misfit
function Eq. 3

E(m) � 1
2A

∑N

j�1wj ∫[dj(t) − sj(t, m)]2dt, (3)

where A is a normalization factor, N is the number of individual
waveforms, andwj is the weights of jth station data, which is based
upon the station’s azimuth, epicentral distance, and data
components (Liu et al., 2004). The nonlinear Newton’s iterative
solver (Conte and Boor, 1980) was applied to resolve this nonlinear
equation that minimizes a waveform misfit function based on the
calculated gradients (For details about derivation of the nonlinear
equation and data weights, see the appendix of Liu et al., 2004).
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We applied a band-pass filter with a period range from 6 to
30 s for the synthetic seismograms, their derivatives, and
observed data. Time windows of waveforms were selected to
be used for the inversion process via an automated time-window
selection software (FLEXWIN, Maggi et al., 2009). This program
automatically selects time windows around potential seismic
phases based on quantities evaluating waveform shape (e.g.,
amplitudes, signal-to-noise ratio, short-term-average/long-term
averages) for comparing synthetic and observed seismograms.
Selected time windows were manually checked for all
seismograms. Only those that included waveforms showing
high similarities (cross-correlation coefficients > 0.7, log
amplitude ratios < 1.5) between the observed and synthetics
generated by the initial focal mechanism were incorporated.
During the inversion process, time shifts of the synthetics with
respect to the data were applied to obtain the optimal correlation
between the two, as such calculations help extract the
contributions of the 3D velocity structure to seismic
waveforms and source parameters by removing time shifts
originating from errors in event origin time, location, or
derived from inaccuracies in the 3D velocity structure due to
limited resolution (Komatitsch et al., 2004; Hejrani et al., 2017).
Although the application of time shifts has been demonstrated to
be useful for reducing travel time effects of lateral velocity
heterogeneity (Zhao and Helmberger, 1994), they cannot fully
account for the complex nature of 3D wave propagation effects in
regions where seismic phases and amplitudes can be distorted
(Liu et al., 2004).

Bootstrap analyses were conducted to assess uncertainties of
the determined source parameters and the reliability of reduction
of an amplitude misfit following inversion. We generated 100
solutions based on randomly selected seismograms of each event
and calculated averages and standard deviations of locations,
moment tensor components, a percentage of a double couple
(DC) component, and the misfit between synthetic and observed
waveforms.

RESULTS

We compared the inversion results obtained with waveform
simulations using the 3D and the 1D velocity models, and
Figure 3 shows focal mechanism solutions and percentages of
the DC component for each event. The results indicated general
increases in the proportion of DC components (3–25%) for the
earthquakes in the continental southern KP, as well as the
continental margin off the east coast when the 3D velocity
model was used (Figure 3A). The continental events exhibited
high DC proportions overall (> 80%) in both models (Figures
3A,B), with small increases (3–7%) in the 3D model. These
increases in the DC component were considered reliable given
that the moment tensor components were determined with small
uncertainties (< 3%) (Figure 4B). Relatively large increases in DC
components (15–25%) were found for earthquakes in the offshore
southeastern continental margin, and these increments were
deemed reliable given that the uncertainty of a DC component

FIGURE 3 | Moment tensor solutions obtained with the: (A) regional 1D velocity model and (B) regional 3D velocity model. Beach balls in A and B indicate focal
mechanisms, with the projection of the fault orientation and slip on the lower half of a sphere surrounding the hypocenter, and the colored (non-colored) quadrants
indicating motion towards (away) those quadrants. Colors of each beachball indicate the proportion of a double couple component (DC %). (C) Differences in the DC
component proportions between 3D and 1D focal mechanisms. Black and white circles on each beach ball indicate the directionality of the maximum andminimum
principal compressive stresses P and T axes, respectively. Colored boxes at the bottom are enlarged maps of regions indicated by orange and blue squares.
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was determined to be < 10% for these earthquakes (Figure 4B).
Meaningful increases in the percentage of DC components also
exist for earthquakes in the Yellow Sea and the northwestern
continental margin of the southern KP. The mainshock (Mw =
5.4) of the earthquake sequences in the Pohang area (Figure 3,
top of the blue box) and a moderate-sized (Mw ~5) earthquake
offshore of Uljin in the eastern continental margin show
comparably low DC percentage than other earthquakes in the
3D model.

All comparisons between the observed and synthetic
waveforms calculated using the 1D and 3D models were made
after applying a band pass filter to each dataset within a common
period range. A meaningful decrease in waveform misfit
(~5–50%) between synthetic and observed waveforms was
found when the 3D velocity model was used (Figure 4).
Notable improvements (> 30%) in waveform fitting were
found for the events in the offshore eastern and western
coastal margins. There were notable differences in amplitudes
and arrival times of surface waves for the synthetic waveforms
between the 1D and 3D velocity models when assessing offshore
earthquakes (Figure 5), where 3D model synthetic waveforms
showed a better fit with observations.

Figure 6 shows the changes in centroid depths for source
parameters determined with the 3D velocity model as compared
to the initial solutions, revealing an overall increase in depth
(~1–5 km) for the offshore events along the eastern continental
margin. Given that uncertainties in centroid depth were

estimated as ~0.3 km (Figure 4C), the observed depth changes
were significant. The determined centroid depths here for events
at the offshore eastern coastal margins extended deeply to ~19 km
(Figure 6A, cross-section a-a’).

Figure 7 compares the moment magnitude (Mw) constrained
with 3D and 1D velocity models. Generally, the magnitude values
showed a 1:1 correlation between estimates. Relatively large
discrepancies (~0.05–0.1) were found for those that occurred
in the offshore continental margin.

DISCUSSIONS

The overall high DC values (>80%) of continental earthquakes
indicated that the moment tensor of earthquakes was well
represented by shear slip on a planar fault. Most of the regional
earthquakes in the southern KP exhibited shear slip on a planar
fault with a high DC percentage (>80%) (e.g., Rhie and Kim, 2010;
Kim Y. et al., 2016), which can be reasonably considered as point
sources with minimal fault geometry and slip history complexity,
owing to their small magnitudes (Mw < 5). Therefore, additional
increases in DC values with the 3D model potentially suggest that
the moment tensor solutions can bemore precisely constrained via
the calculation of accurate wave propagations.

Except for some earthquakes (especially in volcanic and
geothermal areas) or explosions, rupture processes of most small-
to-moderate sized tectonic earthquakes can be represented by shear

FIGURE 4 | (A)Reduction of amplitude misfits between the observed and synthetic seismograms for the wave simulations using source parameters constrained by
the 3D vs. 1D velocity models. The misfit reduction was calculated as 100 × (residual misfit in 1D−residual misfit in 3D

residual misfit in 1D ) , where residual misfits indicate the remaining amplitude
misfits following the source parameter inversion process. Only misfit reduction values > 1 standard deviation (as determined by bootstrap analysis) are colored. (B)
Uncertainties in the proportion of DC components for the focal mechanism solutions, as determined by the 3D velocity model. (C) Uncertainties in focal depth
determined with the 3D velocity model. Boxes at the bottom are enlarged maps of regions indicated by black and gray squares.
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faulting on a planar fault, in which the moment tensor components
are composed solely of DC components (i.e., DC = 100%; Julian
et al., 1998); however, the moment tensors constrained with real
datasets often reveal DC percentages < 100%. Such decreases in DC
percentage can be derived from various origins, including
uncertainties in source parameters due to limited station
azimuthal coverage, lower signal-to-noise ratios of the observed
waveforms, inaccurate waveform predictions due to unaccounted
for 3D heterogeneity, or complex source properties (e.g., slip on a
non-planar fault) (Julian et al., 1998). Under the same condition in
dataset and source-receiver pairs, the meaningful increases in DC
components with the 3-D regional velocity model here indicate that
portions of a non-DC component of source parameters can be
reduced by accounting for lateral velocity variations. Relatively large
increases in DC components (15–25%) were observed for
earthquakes in the offshore southeastern continental margin,

where large lateral velocity variations (> 10%) in the crust existed
for the eastern continental margin of the KP. The structures reflect
transitions from the continental to oceanic crust, or thick
sedimentary basins formed by late Cretaceous to Cenozoic rifting
processes (Cho et al., 2004; Hong, 2010; Kim et al., 2019). The
present results show that these complex structures were well
reflected in the regional 3D velocity model (Figure 2B), thereby
improving the depiction of seismic full waveforms by accurately
constraining moment tensors for offshore events.

Even with datasets of clear waveforms and good azimuthal
coverage, themainshock (Mw = 5.4) of the earthquake sequences in
the Pohang area (Figure 3, top of the blue box), consistently
showed low DC percentage in both models (1D ~ 35%, 3D ~ 45%).
Notably, this event has been reported to be the first non-DC event
in South Korea (Song et al., 2018; Lee et al., 2020). Further, there
are general increments in DC percentage with overall high DC

FIGURE 5 | Example comparisons of synthetic seismograms and observations: (A,C) Waveforms of the event (moment magnitude (Mw) 4.7) that occurred along
the southeastern offshore of the Korean Peninsula at 11:33:03 (UTC) on 7-5-2016, and (B,D)Waveforms of the event (Mw 4.1) that occurred in the Yellow Sea at 00:40:
40 (UTC) on 8-21-2021. A and B show tangential component waveforms, where wiggles in black are the observed seismograms, while those in green are the synthetic
seismograms calculated with moment tensor solutions constrained by time-domain moment tensor inversions (TDMTs) via the regional 1D velocity model. Red
seismograms are the synthetics of 3D waveform simulation calculated with moment tensor solutions obtained from the regional 3D velocity model. Beach balls in gray
indicate focal mechanisms of each event. Frequency bands for the waveforms inA andC ranged from 0.033 to 0.33 Hz, whereas those inB andD ranged from 0.033 to
0.18 Hz.
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values for nearby earthquakes when the 3D velocity model was
used, indicating that the origin of a high non-DC component for
the Pohang mainshock could be attributable to its source
properties. Previously, the large non-DC component was
explained by the slip motions on two intersecting faults (Grigoli
et al., 2018; Son et al., 2020;Woo et al., 2020). Similar to the Pohang
mainshock, there was a moderate-sized (Mw ~5) earthquake with a
relatively lower DC percentage (~65%) offshore of Uljin in the
eastern continental margin (Figure 1A). This event occurred on a
deep-seated (> 10 km) pre-existing feature that was expressed on
the surface as the basement escarpment along the western slope of
the Ulleung Basin (Kim G. B. et al., 2018). Given that other
adjacent earthquakes generally showed increases in DC
percentages for the 3D velocity model (producing overall high
DC values > 80%), the relatively high non-DC fraction of this
earthquake could be due to complex source processes (e.g., non-
planar fault slips). Structures of curved dipping faults (i.e., listric
faults) have been found on the eastern continental shelf (e.g., Han
et al., 2019; Moon et al., 2022). There were formed by tectonic
processes associated with back-arc rifting and breakup in the East
Sea during the late Oligocene to early Miocene (Chough et al.,
2018) and perhaps being reactivated by an east-west compressional

stress regime in the late Cenozoic (Kim et al., 2006; Choi et al.,
2012). Pre-existing fault structures with curvature could
accommodate slips that could not be represented by those on a
single planar fault, potentially generating high non-DC
components (Julian et al., 1998). Relatively small decreases
(5–10%) in DC percentages were observed in the 3D velocity
model, especially for those of small magnitudes (Mw < 4). This
could be due to uncertainties in source parameters constrained by
datasets with limited azimuthal (or distance) coverages
maintaining low signal-to-noise ratios, or the inaccuracy of 3D
velocity structures due to limited resolutions at model boundaries;
however, complex rupture characteristics cannot be ruled out for
moderate-sized (Mw ~ 4–5) earthquakes in the Yellow Sea or
southern offshore region of the continental margin.

It was also noticed that the proportion of DC components
increased by 15–20% for the offshore earthquakes (Figure 3C),
where there were large lateral velocity gradients in the crust
(dlnVs/Horizontal distance ~ 10%/50 km; Figure 2A). The
reduced waveform misfits between the observed and synthetic
values, together with decreases in DC fractions of focal
mechanisms, strongly supported the efficacy of using the 3D
velocity model for reproducing more accurate seismic wave

FIGURE 6 | (A) Variation in centroid depth of events constrained with the 3D velocity model compared to the initial solutions determined using the TDMT method
(Dreger and Helmberger, 1993). (B) Event locations with moment tensor solutions constrained by the 3D velocity model at different cross-sections. Locations of velocity
profiles are shown as gray lines in A, with the range of plotted focal mechanisms indicated by dashed rectangles.

Frontiers in Earth Science | www.frontiersin.org July 2022 | Volume 10 | Article 9450229

Song et al. 3D Moment Tensor Inversion

29

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


propagations with improved constraints of source parameters
(Hejrani et al., 2017). The improvements in waveform fitting are
likely attributable to a better depiction of marginal structures in
the 3D velocity model (Figure 2), and the more accurate
reproductions of seismograms leading to improvements in the
focal mechanism solutions (Figure 3B). A similar example
showing waveform complexity that can be reproduced by the
3D velocity model was found for a Yellow Sea event (Figure 5B)
occurring at a very shallow depth (~2 km), adjacent to a
sedimentary basin with a thickness of > 1 km (Figure 1A).
Surface waves originating from this event were strongly
dispersed while propagating through the sedimentary basin
with low shear wave velocity (< 2 km s−1; Figure 5B, cross-
section b-b’; Feng and Ritzwoller, 2017), which were
successfully reproduced in the 3D model.

The variations of centroid depths weremeaningful, while lateral
locations were not significantly changed compared to initial values.
Previous studies have found increases in crustal velocity from the
eastern margin of the KP towards the East Sea correlated with
decreasing crustal thickness (Kim et al., 2003). Since the regional
1D velocity model was constructed for the continental KP (Kim
et al., 2011), this model exhibited relatively slower velocities than
the 3Dmodel at the continental margin. Accordingly, using the 1D
velocity model for the analysis of initial source mechanisms could
create biases towards shallower depths by predicting delayed
arrival times. The crust thins out towards the east and reached
~20–25 km (Figure 2C). Seismogenic depths ≤ 19 km potentially

indicate that pre-existing features extend down to lower crusts (as
suggested by previous studies—Kim et al., 2006; Moon et al., 2022),
along with rheological condition changes (Prieto et al., 2017; Tape
et al., 2018), or crustal thickening due to more mafic lower crustal
compositions (Albaric et al., 2009). There were slight decreases
(~0.1–0.6 km) in centroid depths from 2–7 km to 1.4–6.7 km for
the Pohang area earthquake sequences. These results are consistent
with hypocenters determined via travel time calculations using
local 3D velocity structures (Jung et al., 2022). Earthquake depths
in the KP inland generally ranged from 1.4 to 15 km,
corresponding to the upper to middle crust (Kim et al., 2011).
Events at comparably shallow depths (< 2 km) were mostly found
adjacent to sedimentary basins in oceanic regions.

A clear 1:1 correlation between the moment magnitudes
estimated from the 1D and 3D velocity models indicates that
the event magnitudes can be determined consistently by both
models, which agrees with previous findings indicating that the
moment magnitude was less dependent on the velocity model
(Hejrani et al., 2017). Relatively large discrepancies (~0.05–0.1)
between the two magnitudes found for those occurred in the
offshore continental margin, possibly due to the effects of 3D
heterogeneity, which can cause non-radial seismic energy
propagation from the source due to refraction (Koketsu and
Kikuchi, 2000) or waveguide effects (Denolle et al., 2014). These
effects could lead to the variable intensity and magnitude
estimates depending on station locations. Other effects of 3D
heterogeneity include seismic attenuation, where a portion of
seismic energies can be dissipated via anelastic properties of the
medium, resulting in apparently lower magnitudes if left
unaccounted for (Hong, 2010). For more detailed analyses of
event magnitudes, further investigations are needed accounting
for attenuation effects with precise information of event locations,
and constrained by 3D velocity models.

The results here show that the combination of improved
source parameters and accurate wave propagation calculations
in 3Dmediums can reproduce synthetic waveforms that are more
comparable to observations. Improvements in moment tensor
solution quality via 3D waveform simulations have been reported
for other geographic regions. For example, a new centroid
moment tensor catalog based on a 3D Earth model for
northern Australia (Hejrani et al., 2017; Hejrani and Tkalčić,
2020) produced a meaningful increase in the DC percentage (up
to 70%) compared to the Global Centroid Moment Tensor
solutions (Ekström et al., 2012), with a source mechanism that
was in better accordance with local tectonic features. In addition,
studies that analyzed source parameters of earthquakes in
Southern California found that waveform simulations with a
high-resolution 3D velocity model yielded substantial
reductions in the uncertainties and non-DC components by
reproducing the observed waveforms with reduced misfits (Liu
et al., 2004; Wang and Zhan, 2020). Similar results obtained in
this study support the use of a regional 3D velocity model for
more accurate constraints on the source mechanism and seismic
waveforms. Compared to the 1D velocity model, we found
significant differences in waveform shapes and amplitudes
when a 3D velocity effect was considered, particularly for
earthquakes adjacent to coastal and offshore areas. From 2003

FIGURE 7 |Comparisons of event magnitude determined via the 3D and
1D velocity models. Circles indicate the magnitudes of the analyzed events.
Gray solid and dashed lines indicate a 1:1 correlation between the
magnitudes, and its two standard deviations (~0.05), as calculated
based on the uncertainties of moment tensor components from bootstrap
analyses averaged over all events. Blue, green, and red circles indicate events
(Mw > 4) whose magnitude differences exceeded the uncertainty ranges, and
the corresponding focal mechanisms are shown in the inset map in the
lower right.
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to 2021, > 50% of the events with Mw > 3.3 occurred in offshore
regions. Placing accurate constraints on source parameters and
the resultant ground shaking calculated via the high-resolution
regional 3D velocity model, can thereby contribute to improved
assessments of potential seismic hazards from these earthquakes
to major cities with high populations or nuclear power plants
adjacent to the coastal regions (Figure 1A).

CONCLUSION

We determined the regional moment tensor and locations of
seismic events that occurred in and around the southern KP
based on the spectral element moment tensor inversion method
with a regional 3D crustal and upper mantle model. The recent
development of a high-resolution 3D velocity model in this
region, together with a high-performance computing system,
allowed for the calculation of full waveforms and their
derivatives with respect to source parameters in the 3D
velocity model. The 3D model depicted lateral variation in
seismic velocity that accords with surface geological and
tectonic features. Synthetic waveforms and their derivatives
were accurately calculated for source parameters using the
spectral element method and 3D velocity model at periods ≥
6 s. Ultimately, improvements in waveform fitting between
synthetic and observation values were observed, particularly
for events that occurred in the offshore areas when the
moment tensor solutions and wave propagations were
determined with the regional 3D velocity model. The results
indicated the importance of employing a 3D velocity model for
accurately constraining source parameters and the resultant
ground shaking. Accordingly, we anticipate that the accurate
wave simulations, together with improved source mechanisms
determined via the 3D velocity model, can be applied for the
reliable assessment of seismic hazards in regions with complex
velocity structures (e.g., continental margin, sedimentary basins).
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Traveltime-based microseismic
event location using artificial
neural network
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Geosciences, Potsdam, Germany, 2King Fahd University of Petroleum and Minerals, Dhahran, Saudi
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Location of earthquakes is a primary task in seismology and microseismic

monitoring, essential for almost any further analysis. Earthquake hypocenters

can be determined by the inversion of arrival times of seismic waves observed at

seismic stations, which is a non-linear inverse problem. Growing amounts of

seismic data and real-time processing requirements imply the use of robust

machine learning applications for characterization of seismicity. Convolutional

neural networks have been proposed for hypocenter determination assuming

training on previously processed seismic event catalogs. We propose an

alternative machine learning approach, which does not require any pre-

existing observations, except a velocity model. This is particularly important

for microseismic monitoring when labeled seismic events are not available due

to lack of seismicity before monitoring commenced (e.g., induced seismicity).

The proposed algorithm is based on a feed-forward neural network trained on

synthetic arrival times. Once trained, the neural network can be deployed for

fast location of seismic events using observed P-wave (or S-wave) arrival times.

We benchmark the neural network method against the conventional location

technique and show that the new approach provides the same or better

location accuracy. We study the sensitivity of the proposed method to the

training dataset, noise in the arrival times of the detected events, and the size of

the monitoring network. Finally, we apply the method to real microseismic

monitoring data and show that it is able to deal with missing arrival times in

efficient way with the help of fine tuning and early stopping. This is achieved by

re-training the neural network for each individual set of picked arrivals. To

reduce the training time we used previously determined weights and fine tune

them. This allows us to obtain hypocenter locations in near real-time.

KEYWORDS

microseismic, source location, machine learning, neural network, induced seismicity,
earthquakes
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1 Introduction

Earthquakes observed in the crust and the upper mantle are

caused by natural forces or induced by human activity (possibly

both in the case of triggered seismicity). Location of the observed

earthquakes is one of the crucial tasks of seismology and

microseismic monitoring as hypocenters play key role in

interpretation for natural seismic hazards (earthquake

disasters, tsunamis) or in mitigation of unwanted induced

seismicity and interpretation of microseismicity related to

human activity (oil and gas reservoirs, geothermal extraction,

CO2 sequestration, etc.). For example, a rapid and automated

earthquake location using initially identified arrivals of direct

P-waves is needed for early warning systems (e.g., Cremen and

Galasso, 2020) or tsunamis to be able to determine size of the

natural earthquake and mitigate hazards associated with

unpredictable seismicity.

Induced seismicity, whether in mines (e.g., Foulger et al.,

2018) or induced by unconventional production (Ellsworth,

2013) requires locations for mitigation of felt seismicity in

previously seismically quiet intraplate areas in different parts

of the world. The induced seismicity hazards use the so-called

‘traffic light system’ (TLS) originally developed for mitigation of

seismicity in geothermal exploration (Häring et al., 2008) and

later applied to a wide range of underground operations (e.g.,

Verdon and Bommer (2020); Schultz et al. (2020)). This TLS

usually requires real-time detection, location and size

characterization of induced seismicity. Real-time locations of

weak induced earthquakes (microseismic events) are used to

image subsurface stimulations, delineate fault movements and

optimize energy extraction (Maxwell et al. (2010) or Duncan and

Eisner (2010)). All of these methods utilize automatic location

algorithms.

The automatic location methods for induced seismicity have

been studied for at least two decades (see, e.g., Foulger et al.

(2018) for an overview). Traditional location techniques use

arrival times of the direct P- or S-waves and are mainly used

in downhole monitoring (Rutledge and Phillips, 2003), while

more recent techniques use diffraction stacking to locate

microseismic events by enhancing signal-to-noise ratio (e.g.

Duncan and Eisner, 2010; Anikiev et al., 2014). Both

techniques are used for automated location from local

monitoring arrays (with thousands of channels in surface

monitoring). The advantage of using arrival times or

diffraction stacking is in lower requirements on accuracy of

velocity model, as only direct arrival times are needed.

At the same time, the full-waveform-based location methods

do not require picking (e.g., Li et al., 2020) and allow

implementations independent of variability in the acquisition

geometry from event to event. This is not the same for picking-

based locations where picks may and may not be available on

certain stations as discussed later. In this study we focus on a

location method using direct P-wave arrivals, a classical

seismological problem which requires only the P-wave velocity

model. This location method requires pre-existing picking

(automated or manual) of multiple P-wave arrival times but is

less sensitive to velocity model errors.

The machine learning (ML) methodologies are

increasingly applied to seismic data processing to provide

real-time results, deal with consistently increasing amount of

data and take advantage of growing computational resources

which can handle them. ML attracts increasing attention in

geoscience (Dramsch, 2020) and geophysics (Yu and Ma,

2021) in general, as well as in seismology (Kong et al.,

2019), mainly for detection and location tasks (e.g., Zhu

and Beroza, 2018; Mousavi and Beroza, 2020; Mousavi

et al., 2020; Saad and Chen, 2021), but also for de-noising

(e.g., Saad et al., 2021; Birnie and Alkhalifah, 2022), source

mechanism determination (e.g., Nooshiri et al., 2021;

Steinberg et al., 2021), reconstruction of ground-shaking

fields (e.g., Fornasari et al., 2022) and other purposes. The

use of ML algorithms also brings consistency in processing

rarely achievable by manual processing.

In supervised ML one constructs a mathematical model,

which is trained by using labeled data (also called training

data), to make predictions (of, e.g., hypocenter locations) from

new unseen data (data which were not labeled). For example,

Perol et al. (2018) studied induced seismicity in Oklahoma,

United States, using a convolutional neural network (CNN).

They trained the network on data from 2709 events recorded

on two stations to roughly locate earthquakes belonging to one of

six regions. Kriegerowski et al. (2018) applied CNNmethodology

to swarms of natural earthquakes from 8 to 12 km depth in West

Bohemia, recorded on nine local stations, they located clustered

earthquakes with greater consistency than manual processing.

Tous et al. (2020) reported the results of applying a deep CNN for

P-wave earthquake detection and source region estimation in

North-Central Venezuela. Zhang et al. (2021) developed a deep

learning early earthquake warning system that utilizes fully

convolutional networks (FCN) to simultaneously detect

earthquakes and estimate their source parameters from

continuous seismic waveform streams. To train the network,

they collected 773 cataloged earthquakes with magnitude ranging

from 2.0 to 3.7.

Previously mentioned methods reveal a certain limitation, as

they require large manually pre-processed historical catalogs for

training the CNNs or FCNs. Generally, those solutions are quite

demanding in terms of the amount of training data needed, as

well as in terms of training time costs. For example, a CNN-based

method that does not rely on the historical database was

proposed by Vinard et al. (2021), who applied CNNs trained

on synthetic data to improve result obtained by an imaging

method based on a grid search. Usage of a neural network with a

simpler architecture that needs less or no training data (and

therefore is faster to train) is needed for induced seismicity as

often there is no pre-processed historical dataset which can be
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used. Simply there are many cases when there is no seismicity

recorded prior to any activity that may induce it.

In this study, we propose a new method of utilizing a feed-

forward artificial neural network (ANN) to determine

hypocenters, which is trained on synthetic traveltime data to

overcome the problem when there are no real samples in the

study area. We found this easier to train than CNN and it does

not require any historical dataset. Original methodology and tests

on synthetic datasets are summarized in Hao et al. (2020) where

an initial implementation of the idea was demonstrated on a 2D

synthetic model. This was followed by the first testing on real data

presented in Anikiev et al. (2021). In this paper, we extend the

method and analyze the results to develop a practical location

method based on our initial results reported earlier. In particular,

here we study the method on 3-D synthetics and extend the

analysis to field data towards developing a practical approach to

the problem.

All earthquake location techniques require a seismic velocity

model and depend on its accuracy. Our methodology assumes

subsurface velocities to be known, so that calculation of the

traveltimes from the subsurface locations can be performed

properly. Using arrival times as an input automatically leads

to averaging over the velocity model and results in lower

requirements on the high resolution of the velocity model.

This advantage is common for all traveltime-based location

algorithms and the cost of that is the requirement of picked

arrival times. Alternative location algorithms require more

detailed knowledge of the velocities to model full waveforms

(multiply scattered and trapped waves) and hence may result in

large errors where such a model is not available. Recent progress

in automated picking using machine learning (e.g., Wiszniowski

et al. (2013); Zhu and Beroza (2018); Bhandarkar et al. (2019)) as

well as template matching (Ross et al., 2019) represent various

efficient solutions for picking that can be combined with a neural

network location technique based on time of picked arrivals. By

choosing the wave arrival times as an input for ANN, we pre-

select the physically meaningful feature to be trained on.

Therefore, we deliberately exclude the feature selection

essential in training of more sophisticated networks like CNN.

Machine-learning-based methods outperform classical

location algorithms in terms of computational efficiency

because location using a trained network does not depend on

the location grid size and step. Also, neural network provides

natural interpolation of locations between the training grid nodes

as the weights of the NN smooth the output. Classical location

methods, instead, need to utilize probability density functions

(see, e.g., Eisner et al., 2010) to smooth the misfit assuming

Gaussian distribution of the image function. We show that the

developed ML location is potentially more reliable due to high

sensitivity of the estimated hypocenters to errors in picked arrival

times.

In contrast to the published works of Perol et al. (2018),

Kriegerowski et al. (2018) and Tous et al. (2020), we train the

network using a synthetic dataset. This is particularly important

for monitoring of induced seismicity because in most cases there

are no recorded historical earthquakes in the area (before the

purpose-built seismic receiver network). Training on synthetics

does not require labeled earthquake data. Once trained, the

neural network can be used to locate real events using their

observed P-wave arrival times as an input.

We use synthetic data to analyze the factors that may affect

the performance of the neural network. It is important to

emphasize that in our study we consider a typical

microseismic monitoring setting with many stations (usually

several hundred) deployed over a relatively small area (usually

about 5 km by 5 km). However, the methodology in general is not

limited to this type of acquisition geometry. Through numerical

tests, we explore the accuracy of the proposed method as a

function of several parameters, including velocity model

complexity, station network distribution, and the size of the

training data. Finally, we apply the developed machine-learning

methodology to location of microseismicity occurred during real

hydraulic fracturing operations in the Arkoma basin in the

United States of America. The resulting hypocenters are

compared with locations obtained by a conventional

traveltime-based location method (Eisner et al., 2010) based

on the maximum likelihood principle (Anikiev et al., 2014;

Anikiev, 2015). We show that the locations are similar if not

better and the ANN-based methodology is less sensitive to

gridding issues and more sensitive to outliers (false positive

event detections) in data.

2 Methodology

To locate the earthquake hypocenters, we utilize an ANN

trained on pre-processed traveltimes calculated from a grid of

synthetic earthquake locations. The input is provided as a vector

of size defined by the number of P-wave arrival time picks.

2.1 Feed-forward neural networks

A feed-forward neural network is a composition of neurons

organized in layers. Each neuron represents a mathematical

operation, whereby it takes a weighted sum of its inputs plus

a bias term and passes them through an activation function. The

output of a neuron is then passed on to subsequent neurons as

their inputs. Mathematically, the output, ζ, of a neuron is

given as:

ζ � f ∑
i

wi χi + b⎛⎝ ⎞⎠, (1)

where ωi is the weight associated with the input χi, b is the bias

term, and f () represents the activation function (Anikiev et al.,
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2021). A nonlinear activation function is typically used to learn

nonlinear relationships between the input and the output.

Training of a neural network refers to the mechanism of

adjusting the networks’ weights and biases to correctly map

the input to the output provided in the training data.

2.2 Event location using feed-forward
neural networks

For the seismic event location problem, the input layer of the

neural network comprises one neuron per station for the total

number of recording stations in the monitoring network. The

output layer will contain one neuron for each coordinate axis.

Hidden layers of neurons are used to learn nonlinear

relationships between the input and the output.

To locate the hypocenter of a detected seismic event that

was recorded at the stations of an earthquake monitoring

network, we use its registered P-wave arrival times. In order to

get rid of dependence on the origin time, we use the deviation

of arrival times from their mean as the input to the ANN,

that is

Δti � ti − 1
N

∑N
i�1

ti, (2)

where ti denotes the P-wave arrival time registered at the i-th

station. N denotes the total number of the stations. Δti is the

deviation of arrival time relative to the average arrival time. It is

worth noting that even though the event origin time is not

available, Δti is not affected by it due to the subtraction in Eq.

2. The proposed methodology allows us to locate events from

P-wave arrival times only (or S-wave arrival times only). The

generalization to combinations of P- and S-waves or more

complex arrivals is discussed later.

Based on our experience in training an ANN model, we

found the training to be often slow while directly using the input

consisting of Δti. Therefore, we scale the input Δti to the range [0,
1] to accelerate the training process by using the following

normalization:

τi � Δti − Δtmin

Δtmax − Δtmin
, (3)

where Δtmin and Δtmax denote the minimum and maximum of all

Δti values in the whole training data, respectively. It must be

noted that for consistency Δtmin and Δtmax are used not only for

training but also while evaluating the trained ANN model for

predictions.

The training data for our network are generated synthetically.

For a given velocity model that is discretized into regular grids,

we define a number of potential source positions inside an

identified seismic zone of interest and calculate the

corresponding traveltimes using the factored fast sweeping

method (Fomel et al., 2009). We define the arrival time as the

time of observed arrival of a seismic wave (P-wave in our case),

while traveltime is the synthetic time of the seismic wave

propagation between a source and a receiver. Using Eq. 2, we

compute the deviations of traveltimes for a set of training

sources, and then scale them using Eq. 3 to obtain the scaled

traveltime deviations which are then fed as input to the ANN

model. The outputs of the ANN are the predicted coordinates of a

source.

To build and train the feed-forward ANN, we use Keras

API (Chollet, 2015)—an open-source neural network library

that runs on top of Tensorflow (Abadi et al., 2015). We use the

rectified linear unit as activation function for the hidden

layers while the output layer uses a linear activation function.

The loss function for training the ANN model is chosen to be

the averaged squared L2-norm of residuals between the

predicted location and the associated label from the

training set:

J � 1
L
∑L
l�1

‖x l( )
ANN − x l( )

Syn‖22, (4)

where L is used to denote the total number of synthetic

sources, while xANN and xSyn denote the coordinate vectors

for the predicted source location and true source location,

respectively.

Then training the neural network amounts to being an

optimization problem of minimizing the loss function given in

Eq. 4. To do so, we use the Adam optimizer (Kingma and Ba,

2014) with mini-batch training. The training of the network

terminates when the network’s weights and biases are adjusted,

misfit between the input and the output (defined by the loss

function 4) is below a certain threshold. While increasing the

hidden layers and/or the number of neurons in each hidden layer

may result in improved performance on the training set, beyond

a certain point, it leads to the problem of over-fitting, causing

poor performance on test data. Hence, we deliberately designed

the neural network architecture through trial and error (Hao

et al., 2020).

2.3 Event location in case of missing data

In field data, it is often the case that some stations do not

record a seismic event, or the records are too noisy leading to the

inability to pick a wave arrival. Due to a fixed architecture, the

ANN model expects input for all stations that it has been trained

on. This makes the application of the proposed approach tricky

in the case of field data. To overcome this problem, one approach

is to retrain the ANN model only for the stations that have the

observed P-wave arrival picks. However, it is time consuming to

train the ANN each time from beginning, and, therefore, we

propose to use fine tuning instead. Fine tuning is a machine
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learning technique where model parameters (weights, biases)

trained for one task are reused as initial model parameters for

another similar task (Anikiev et al. (2021) use a more broad term

“transfer learning”, but “fine tuning” is more appropriate in this

case).

In this study, the network parameters obtained after

training of the original neural network with all available

receivers as input are used as starting weights for training

of a new neural network with the reduced input. In other

words, for each new seismic event, we re-train a reduced ANN

that is limited to the distribution of stations on which this

event has picked arrivals only. To make this re-training faster

we use parameters initialized using those from the originally

trained ANN with all available stations as input. We show that

such re-training is fast and allows near-realtime location. The

relevant weights and biases can be easily copied from the

original trained neural network model with all available

receivers given that the order of stations in the input layer

is defined and is consistent between the models. Location

using fine tuning significantly reduces the computational

overhead without compromising on the accuracy of the

predictions.

2.4 Origin time determination

Last but not least, apart from coordinates of a seismic source

location algorithms usually provide also the origin time of event.

In the proposed method, the origin time t0 can be estimated by

minimizing the least squares misfit F (t0) between the actual

picked arrival times ti and the traveltimes tci computed for the

corresponding receivers for the determined event location (x0, y0,

z0) shifted by t0:

F t0( ) � ∑N
i�1

ti − tci x0, y0, z0( ) + t0( )( )2.

3 Synthetic data examples

To explore the sensitivity of the proposed methodology on

different factors that affect the location accuracy, we design a set

of simple 2-D synthetic numerical experiments. Figure 1 shows

the P-wave velocity model considered for the tests. The model

spans 6 km in horizontal direction and is 2.5 km in depth with a

grid step of 10 m in both directions. The rectangular box (in

cyan) shows the zone of interest (2000 m in x by 500 m in z at an

average depth of 1750 m) where we model the synthetic

earthquakes. The P-wave velocity distribution in the model is

represented by a vertical gradient from 2.6 km/s to 4.35 km/s. In

total 121 stations are evenly distributed on the surface (top of the

model) with a 50 m interval (blue triangles in Figure 1). This

ensures a minimum offset-to-depth ratio of 1:1.

The architecture of the feed-forward neural network is shown

in Figure 2. The network consists of three hidden layers with

40 neurons (M = 40 in Figure 2) in each layer (Hao et al., 2020).

The number of neurons in the input layer equals the number of

stations (N = 121 in Figure 2), while two neurons in the output

layer correspond to the two coordinate axes (D = 2 in Figure 2).

The activation function for the hidden layer is the rectified linear

unit (ReLU), a piecewise linear function, while the final layer has

the linear activation function. ReLU is the default activation

function for modern deep learning networks (e.g., Glorot et al.

(2011)). The source code showing implementation of the

described neural network model in Python is available in the

Supplemental Material.

FIGURE 1
The 2-D P-wave velocity model considered for the tests. The cyan rectangular box shows the zone of interest with expected seismicity. Green
dots represent 451 source positions used for training. Blue triangles on the top of themodel denote 121 seismic stations. Themodel is taken fromHao
et al. (2020).
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To train the network, we use synthetic data generated for a set

of artificial sources placed on a regular grid in the zone of interest

(the green dots and the rectangular box in Figure 1). Having

trained the network on these sources, we test the method by

feeding synthetic arrival times from 100 test sources randomly

placed in the zone of interest. The traveltimes are calculated by

the fast sweeping method (FSM, Zhao (2005)) at various station

positions on the surface.

Following Hao et al. (2020), we present a systematic study of

the different factors affecting the accuracy of the location with the

ANN method. We used 1000 epochs to train the ANN in each

numerical test, whereas the number of stations and the number

of training grid points during these tests were varied (see

Table 1). The result show that the accuracy of the located

events slightly decreases with the number of training sources

while training time is still very short.

3.1 Effect of noise in test data

To measure the sensitivity of the ANN to potential errors in

picking P-wave arrival times, we test the network by feeding in

traveltimes (of test events) contaminated by Gaussian noise. We

train the network using traveltime data from 451 training sources

located inside the rectangular box shown in Figure 1 and spaced

at an interval of 50 m along both x and z axes. The times of wave

arrivals are modelled at the 121 stations on the surface (see

Figure 1). Assuming no systematic bias in picking, we consider

that picking errors result from random errors (noise). We

consider two noise levels by adding to the arrival times a

random Gaussian noise with zero mean (μ) and standard

deviations (σ) of 10 ms and 20 ms.

Figure 3 shows examples of arrival times of a single test

event after subtracting the mean value (see Eq. 2),

FIGURE 2
Network graph for a 3-layer perceptron withN input units andD output units, where N is a number of seismic stations with picked wave arrivals
and D is a number of spatial dimensions. Each hidden layer contains M hidden units.

TABLE 1 Training time and standard deviation of location errors for different number of training sources and stations.

Number
of training sources

Number of stations Std. dev. Of x
error (m)

Std. dev. Of z
error (m)

Training time (s)

451 121 16.3 19.1 50.1

451 31 29.3 30.0 44.8

126 121 15.8 25.0 13.3

126 31 44.3 46.5 12.9

27 121 41.1 124.8 4.9

27 31 57.3 133.2 4.7
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contaminated with Gaussian noise of two levels,

corresponding to σ = 10 ms (Figure 3A) and σ = 20 ms

(Figure 3B). Figures 4A,B show distribution of location

error in x and z coordinates of the source locations for the

two noise levels (true locations were subtracted from

predicted). We observe that location errors increase as the

noise in the arrival times increases. However, even for higher

noise contamination in time picks, the maximum location

error does not exceed 100 m. Generally the error distributions

fit to the Gaussian as seen from the black curves in Figures

4A,B. Parameters of the resulting fitting distribution in each

case are shown in the legends of Figures 4A,B.

3.2 Effect of the number of stations

Next, we study the effect of the number of stations (receivers)

on location errors. The tested model is the same as in Figure 1,

but the number of stations is reduced to 31 stations spaced at an

interval of 200 m. Figure 4C shows location errors for test data

from the same 100 sources with a Gaussian noise corresponding

to σ = 10 ms. By comparing Figures 4A,C, we observe

considerable reduction in location accuracy when the number

of stations is reduced. We observe that the standard deviation of

location errors considerably increases (almost twice).

Figure 4D shows location error histograms for the arrival

time noise level of σ = 20 ms. We observe, similar to the previous

case, that increased noise worsens the location accuracy (in

agreement with Hao et al., 2020). However, when the number

of stations in the monitoring array is reduced, the reduction in

accuracy is greater, indicating increased sensitivity to noise. Since

the monitoring array is horizontal and we are using P-wave

traveltimes, the vertical location is less constrained, and therefore

the vertical location errors increase more than the horizontal

errors. However, even in the worst considered scenario, the

maximum location error observed is around 150 m, which is

about three steps of the training grid (50 m).

3.3 Effect of the number of training
sources

Finally, we study the effect of the number of sources used to

train the network. Table 1 shows the training times and standard

deviations of x and z location errors for the neural network

trained using 451, 126, and 27 sources, corresponding to regular

intervals of 50 m, 100 m, and 250 m, and for different station

distributions: with 31 and 121 stations. The test data in all cases

were contaminated by Gaussian noise with σ = 10 ms.

Computations were performed on a laptop with NVIDIA

GeForce MX150 graphics card.

It is obvious that the training time reduces as the number of

training sources decreases, but the reduction in accuracy is

significant. The training time is also slightly less if fewer stations

are used. This observation suggests using a higher number of sources

will improve the location accuracy. It is worth noting that a smaller

training grid but a denser station array gives higher horizontal

accuracy than a larger training grid but a coarser station array. This

is not always true for vertical accuracy, which seems to be more

sensitive to the number of training nodes.

4 Real data examples

To test the ANN method on real data, we apply the

methodology to the field microseismic monitoring dataset

gathered on the Woodford shale reservoir (Figure 5) in

Oklahoma, United States.

4.1 Real seismic monitoring setting

Figure 5 show the 3-D inhomogeneous isotropic P-wave

velocity model (Figure 5A) and the microseismic data

acquisition geometry (Figure 5B). The original grid spacing of

the velocity model in x-, y- and z-directions is uniform and equal

FIGURE 3
Illustration of synthetic arrival times for a test event after subtracting their mean (black curves). The arrival times contaminated with noise are
shown with blue dots. (A) Arrival times contaminated with zero-mean Gaussian noise with noise level σ =10 ms. (B) Arrival times contaminated with
zero-mean Gaussian noise with noise level σ =20 ms.
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to 22.86 m (75 ft). Geophones recording vertical displacement

component are distributed in the form of a star-like array with

10 arms (Figure 5B), comprising 911 seismic stations in total.

The same microseismic monitoring setting and dataset was

used by Anikiev et al. (2014) to benchmark the diffraction

stacking location technique (see also Anikiev (2015)). The

velocity model was derived from the processing of active

source data or sonic logs and calibrated with sources at

known positions (Anikiev et al., 2014). In this paper we

benchmark the ANN methodology by comparing it with the

traveltime maximum likelihood (TML) method (Eisner et al.,

2010), following Anikiev et al. (2014).

The TML algorithm minimizes the misfit between manually

picked arrival times and synthetic traveltimes calculated for a

reference velocity model (Anikiev et al., 2021). Hypocenter

locations then are obtained from a resulting probability

density function. Therefore, the TML: (i) uses the same input

data as the ANN and (ii) is also based on residual minimization

(Anikiev et al., 2021). This makes both ANN and TML methods

suitable for comparison with the TML method used as a

benchmark.

4.2 Preliminary synthetic ANN test for the
real monitoring setting

Similar to a 2-D synthetic numerical study, for the 3-D case

study we also design the feed-forward artificial neural network

with three hidden layers (see Figure 2). Provided that synthetic

data do not have gaps, the input layer consists of 911 neurons

(N = 911 in Figure 2), each of which represents an arrival time

deviation (Eq. 2) at the appropriate station. Each of the three

hidden layers has 250 neurons (M = 250 in Figure 2). The array of

seismic stations in this real example is larger than the one used in

the 2-D study, leading to a larger amount of neurons in the

hidden layers. The output layer now consists of 3 neurons (D = 3

FIGURE 4
Location errors in x and z directions for 100 test sources with arrival times measured on 121 equispaced stations (A and B) and 31 equispaced
stations (C and D), and contaminated by noise with Gaussian distribution and σ =10 ms (A and C) and σ =20 ms (B and D).
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in Figure 2), which represent the predicted x-, y- and z-

coordinates of the event hypocenter.

Location grid for TML is represented by an array of 5184 grid

nodes consisting of 24 × 24 nodes in 9 vertical planes (Figure 5).

The grid nodes are regularly distributed over the zone of interest

(cyan rectangular block in Figure 5A) around lateral parts of the

four wells (Figure 5B), so that the resulting grid spacing of the

location grid is 91.44 m (300 ft) in all directions. For consistency,

the same grid was used to produce the training data, i.e.

5184 training sources were placed to the positions of the

location grid nodes, forming a training grid (see also Anikiev

et al., 2021).

For each training source, we applied the 3-D factored FSM

algorithm (Fomel et al., 2009) to obtain the synthetic

traveltimes at all the stations. The factored FSM

significantly reduces the location error, especially in depth,

due to much higher accuracy of computed traveltimes at far

offsets (Alexandrov et al., 2021). The computed traveltimes,

after removing the mean (Eq. 2) and scaling (Eq. 3), are used

as an input for the ANN, which is then trained until its output

matches the coordinates of the training sources by minimizing

the loss function 4.

In order to evaluate the performance of the ANN by using the

synthetic data, we randomly generated 100 test sources inside the

zone of interest (Figure 5) and computed the corresponding

traveltimes from these sources to the seismic stations with the

factored FSM using the known velocity model. Figure 6 shows the

error distributions of the predicted source coordinates (true

locations were subtracted from predicted). The maximum

errors in the x- and y-coordinates do not exceed 10 m, and

the maximum error in the z-coordinate is less than 20 m, which is

close to the grid spacing interval of the velocity model (22.86 m)

and much smaller than the training grid spacing (91.44 m). The

mean values of the observed error distributions are close to zero.

The forms of these distributions are similar to Gaussian,

implying that the locations should be correct as long as the

input arrival times are correct.

4.3 Benchmarking on real data

For benchmarking we selected 75 independent seismic events

strong enough to be picked on majority of stations without

stacking. Figure 7 shows deviation times (see Eq. 2) obtained

from manual P-wave arrival time picking for all 75 events on

911 stations. White gaps correspond to the stations for which the

picking was not possible or not reliable (Anikiev et al., 2021). The

seismic events are sorted by the number of missing arrival time

picks. This number varies from 41 for the best picked event

(event 1, Figure 7) to 503 for the worst picked event (event 75,

Figure 7). Figure 7 shows that even the most distinct event (event

1) has clear P-wave arrivals only on 870 stations out of 911.

Event 39 has different picking pattern due to an unusual

distinctive moveout and apex point of the traveltime curve,

indicating a unique epicenter position. Event 74 (second last)

was incorrectly picked at several stations at the far offset of the 6-

th arm (see Figure 5B). These picking errors result in the set of big

negative deviations of arrival time (see Figure 7). We kept this

incorrectly picked event to compare the sensitivity of the two

methods to a real case scenario where either a human or a picking

FIGURE 5
Microseismicmonitoring setting at theWoodford shale reservoir in Oklahoma, United States: (A) P-wave velocitymodel and (B) data acquisition
geometry. (A) 3-D view of the P-wave velocity model. The colorbar displays the color-coded P-wave velocities in m/s. The blue dots on the surface
are seismic stations. The cyan rectangular box shows the zone of interest around lateral parts of the four wells (black lines). The zone ranges from
1303.02 m (4275 ft) to 3406.14 m (11175 ft) along the x (easting) and y (northing) axes, and from 1546.86 m (5075 ft) to 2278.38 m (7475 ft)
along the z (depth) axis. (B) Map view of the data acquisition geometry: the star-like seismic station array with 10 arms (numbers) and 911 stations
(blue dots), the 24 x 24 x 9 location grid with 5184 nodes (green squares show only 576 upper grid nodes), distributed over the zone of interest (cyan
square), resulting in the grid spacing of 91.44 m (300 ft).

Frontiers in Earth Science frontiersin.org09

Anikiev et al. 10.3389/feart.2022.1046258

42

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1046258


algorithm wrongly identifies the P-wave arrival. We observe that

the ANN algorithm results in a similar location anomaly as the

TML. Classical traveltime-based location methods like TML are

flexible to missing data. In contrast to that, data gaps introduce a

serious fundamental complexity for feed-forward ANNs, which

require regular input.

As a proof of concept for real data, following Anikiev et al.

(2021), we first tested a “brute-force” approach by training the

ANN from scratch for each real event separately, taking into

account only stations with available time picks. This means that

we re-trained the neural network for each picked event using only

the stations with available picks. In the data application of

Anikiev et al. (2021) a fixed number of training epochs (4000)

and an initial learning rate of 10–4 were used. This could result in

an overfitting, especially when the validation set (100 random

sources) has a similar distribution to the training data.

Overfitting is a common problem in ML which occurs when

the ANN fits the training data too well. In order to avoid

overfitting we follow a different approach. We first split the

training data and use 15% of initial dataset for validation and

then implemented early stopping (e.g., Chollet, 2015), i.e.

tracking the validation loss and stopping the training before

overfitting occurs. This has also reduced the overall time cost of

the training. We used a patience parameter of 100 as a stopping

criteria in each case. The patience parameter is a number of

epochs with no improvement after which training will be stopped

(see Keras API documentation (Chollet, 2015). Moreover, we set

a loss function value threshold of 391.9 m2 as an additional

criterion. If loss function goes lower than this threshold, the

training stops. The threshold value was estimated from the

velocity model grid step of 22.86 m: 3 × (22.86/2)2 = 391.9.

This means that if the misfit is corresponding to one-half of the

velocity model grid step (used also for traveltime computation),

the training already reaches the reasonable accuracy level,

although some other multiples of the grid step might be also

acceptable. Application of these two criteria provides the

compromise between the accuracy and computation time of

training with its numerical stability and helps to avoid over-

fitting, thus making the training flexible.

Figure 8 shows comparison of the TML locations (blue

circles) with the ANN locations (orange circles) for all

75 events. To produce this result for each event, we

performed re-training of the ANN from scratch. As seen

from Table 2, the number of epochs until stopping varied

from 674 to 1943 with an average of about 1214. Event 74,

which was picked with several errors, is located by the ANN

method at an extremely large depth of around 4500 m,

outside of the training grid (green dots in Figure 8),

whereas the TML locates it close to the lower bound of the

grid. This indicates that the ANN is more sensitive to data

with large uncertainty (outliers, e. g, false positive detections)

than the TML. Such deviations can be used in quality control

as indicators of input data errors. Location misfit for the event

74 in lateral direction is smaller, so the true epicenter is

expected to be to the north from the wells. Event 39, which

has the aforementioned dissimilar arrival time pattern

FIGURE 6
Location errors in three directions: x (left), y (middle) and z (right) for 100 test sources (without noise). Black curve in each panel show result of
Gaussian distribution fit, corresponding parameters are listed in the panel legend.

FIGURE 7
Deviation times obtained from manual P-wave arrival time
picking for 75 real microseismic events recorded with 911 seismic
stations. Blue horizontal dashes show number of missing (out of
911) time picks (right axis) for each event.
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(Figure 7), is predictably located by both methods to the

south-southwest from the wells and the cluster of the

remaining events.

If we take a closer look into the locations of the 74 reliably

picked events (excluding the event 74), as displayed by Figure 9,

we see that horizontal misfit between the locations by TML and

FIGURE 8
Comparison of TML locations (blue circles) with ANN locations (orange circles) obtained with re-training for all 75 events: map view (top panel),
view from the south (left bottom panel), view from the east (right bottom panel). Two locations for the same event are connected with a black line.
Green dots represent the grid nodes for the TML, also used as training sources for the ANN. Wells are shown with black lines.
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ANN does not exceed the spacing of the location (training) grid

even for the distant event 39 (southwestern corner on the map

view in Figure 9). Vertical misfit is generally larger but is

comparable to the grid spacing as well (in agreement with

Anikiev et al., 2021).

To avoid the time-consuming re-training from beginning, we

propose to use fine tuning (transfer learning in Anikiev et al.

(2021), i.e., make use of the weights of a pre-trained network to

speed up adaptation to the new input pattern. Technically, fine

tuning consists of unfreezing the initially trained model and

further additional training on the new data with a lower learning

rate. The neural network is first pre-trained on the complete

array of stations with the same stopping criteria mentioned

before. The trained weights and biases are then transferred

into the corresponding layer of a new neural network that is

designed for each event with its own input layer dimension

according to the pattern of available P-wave arrival time picks.

Finally, this newly set network is shortly trained (fine-tuned) with

a patience of 5 and the last used learning rate taken from the pre-

training.

Figure 10 shows the TML locations of the same 74 reliably

picked events compared to the ANN location obtained with fine

tuning. We observe that the locations obtained using fine tuning

are similar to those obtained with the entirely re-trained neural

network, but they are achieved much faster. The average misfit of

locations obtained with fine tuning with TML locations is lower

(see Table 2). At the same time fine tuning significantly reduces

the amount of required training epochs and time cost. The

average time cost with fine tuning is roughly 25 times lower.

The pre-training stopped at 1027 epochs, which took less than

8 min (Table 2), while an average of 39 epochs in terms of fine

tuning per each event provide sufficient accuracy in tens of

seconds (Table 2, Figure 10). All computations were

performed on the same machine as in the synthetic data case.

Figure 11, Figure 12 show histograms of misfit in x-, y- and z-

directions together with absolute misfits for ANN with re-

training and ANN with fine tuning, respectively. The lateral

misfits in case of ANN with fine tuning do not exceed 40 m,

which is twice as less than the training grid spacing of 91.44 m

(Figure 12). The vertical misfits are predictably larger, especially

in case of ANN with re-training, where it reaches 120 m

(Figure 11). The standard deviations of the misfit distributions

in lateral direction are similar for both results. In contrast, the

standard deviation of the vertical misfit is smaller for locations in

Figure 12 obtained with fine tuning. The distribution of the

absolute misfits (square root of the sum of squared misfits in x-,

y- and z-directions) in both cases fits well to the non-central χ

distribution with 3 degrees of freedom. The latter is

mathematically consistent with the distribution of the absolute

value (square root of sum of squares) of the three independent

normally distributed quantities with non-zero mean (e.g.,

Bhattacharya and Burman (2016). The distribution is

described by the non-centrality parameter, reflecting the

characteristic difference between the two results. Statistical

distributions for both cases (ANN with re-training and with

fine tuning) can be described with non-centrality parameter

much smaller than the training grid step. The maximum

absolute misfit for fine tuning (Figure 11) is less than 80 m, so

it does not exceed the training grid step, whereas for ANN with

re-training it exceeds it with values over 120 m.

Comparison of Figure 9 with Figure 10 and Figure 11 with

Figure 12 shows that the proposed ANN methodology extended

with fine tuning provides sufficient location accuracy without

time consuming computations, as illustrated by Table 2.

5 Discussion

In the proposed ANN method the neural network is trained

only with synthetic data, i.e., no existing seismic data are needed

(although the method does not exclude the ability to use existing

catalog locations), and so the training can be done before the

TABLE 2 Computation time costs for the ANN training and location of 75 events, and location misfits when compared with the TML.

Operation parameter Training
for all stations

Location with re-training Location
with fine tuning

Max. limit of training epochs 4000 4000 per event 100 per event

Min. number of epochs to stop 1027 674 17

Av. number of epochs to stop 1027 1214 39

Max. number of epochs to stop 1027 1943 71

Early stopping patience 100 100 5

Time cost (s) 472.6 40632.2 1610.4

Av. time cost per event (s) - 541.8 21.5

Min. abs. misfit (m) - 8.7 9.0

Av. abs. misfit (m) - 35.5 32.1

Max. abs. misfit (m) - 121.9 72.5
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monitoring starts. However, if enough seismic events in the area

are observed previously, it can be trained using P-wave arrivals

and locations of these real events. Obviously, the accuracy of the

network trained with real events depends on number of events

FIGURE 9
Comparison TML locations (blue circles) with ANN locations (orange circles) obtained with re-training for 74 reliably picked events: map view
(top panel), view from the south (middle panel), view from the east (bottom panel). Two locations for the same event are connected with a black line.
Green dots represent the grid nodes for the TML, also used as training sources for the ANN. Wells are shown with black lines.
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and spatial distribution of their locations. Training with synthetic

data is more time consuming and computationally expensive but

the accuracy of resulting ANN locations is higher. The time

needed to locate a single event stays the same once the network is

FIGURE 10
Comparison of TML locations (blue circles) with ANN locations (orange circles) obtained with fine tuning for 74 reliably picked events: map view
(top panel), view from the south (middle panel), view from the east (bottom panel). Two locations for the same event are connected with a black line.
Green dots represent the grid nodes for the TML, also used as training sources for the ANN. Wells are shown with black lines.
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pre-trained, no matter whether the training is done with

synthetic or real data.

A typical workflow for deployment of the proposed

method for microseismic monitoring is represented in

Figure 13. The most time consuming parts: computation of

the traveltime lookup table and training of the ANN are

performed before the monitoring starts. Real-time detection

stage can also be implemented with the help of ML (out of the

FIGURE 11
Histograms of misfits between TML locations and ANN locations obtained with re-training for 74 reliably picked events. Black curve in each
panel shows the result of distribution fit with the corresponding parameters listed in the panel legend.

FIGURE 12
Histograms of misfits between TML locations and ANN locations obtained with fine tuning for 74 reliably picked events. Black curve in each
panel shows the result of distribution fit with the corresponding parameters listed in the panel legend.
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scope of this paper). The essential part of detection stage is to

provide the P-wave arrival times for a certain subset of

stations (picking depends on the quality of the record and

often cannot be done reliably on all stations). Real-time

location then requires inexpensive fine tuning of the

initially trained NN for the provided set of stations. The

fine-tuned network model is stored and re-used for further

events with the same subset of stations, thus reducing the

processing time. We suggest to use the 3-layer perceptron

architecture of the NN explained by Figure 2, whereM = 250 is

optimal for number of recording seismic stations N

around 1000.

In real-time monitoring applications, time to deliver the

source locations is important. We have shown that combining

fine-tuning with early stopping and additional loss function

threshold gives a compromise between the location accuracy

and computation time required for additional training. The

fine tuning step is done in seconds on a mobile mid-range

GPU and won’t be a bottleneck in real-time implementations

on more performant GPU systems.

As we show on synthetic examples, the developed ANN

method suffers from the same known limitations as all the other

location methods when monitoring with surface array. The

average location uncertainty in vertical direction is typically

higher than in horizontal directions when only P-wave arrival

times are input. If data quality allows, methods can be usually

extended with S-wave arrivals and location accuracy improves.

Location quality decreases with higher uncertainty of picks

(related to SNR of arrivals in real data) and with coarser

training grid. However, in our case, the latter can be easily

eliminated as the ANN can be pre-trained with synthetic

events in an arbitrarily dense training grid.

FIGURE 13
The flowchart showing a typical implementation of ANN-based location in real-time microseismic monitoring setting. Time consuming blocks
in the blue zone belong to a pre-processing stage performed prior to the monitoring, while blocks in the reddish zones are in real time. Blue blocks
represent input data, yellow blocks correspond to processes, green ellipses show intermediate products and deep-green diamonds show the
output: arrival time picks and predicted hypocenter coordinates. Gray block denotes that fine tuning requires only the list of relevant stations,
arrival time picks from raw seismograms are used for NN evaluation only.
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Location uncertainty estimates are highly dependent on

the accuracy of the velocity model, which is always different.

We have tested the accuracy of location based on synthetic

tests and provided estimates of the standard deviation in each

case. We consider this to be a fair representation of the

potential location error. Integration of the dedicated

uncertainty estimates into the ML prediction is a more

sophisticated task which is out of the scope of the present

manuscript. It is certainly one of the directions for further

advanced studies.

In real data, signal-to-noise ratio varies for each event and

consequently number of input stations with available picks

changes, leading to gaps in the input data. In order to solve

this problem we initially considered several options.

First, one can use interpolation of the data at the stations

with missing time picks. Interpolation methods for uniform

grids are not applicable in this case, as the stations are usually

distributed irregularly. The kriging method (Stein, 1999)

models the interpolated data through a Gaussian process

governed by prior covariances, and it is applicable to

irregular grids. The kriging algorithm performs well for

small local gaps, e.g., when few stations with missing picks

are surrounded by the stations with available time arrivals.

However, it can introduce a significant bias in the case when

the missing picks occur on the stations at the edge of the

network or along a certain direction due to the radiation

pattern defined by the source mechanism of an earthquake.

Such a situation is typical when using star-like geometries

(Anikiev et al., 2014; Staněk et al., 2015). Besides, any

interpolation method is likely to introduce a non-physical

distortion to the set of traveltimes in the case of a coarse

network of stations.

The benchmark comparison with the TML method shows

that the proposed location algorithm is as good as any other

arrival time based location technique. It provides good

location if the velocity model is good and arrival times are

correctly picked. Velocity model errors are perhaps the most

significant source of location biases in both surface and

downhole monitoring (Eisner et al., 2010). Very much the

same as for any other arrival time based method (e.g., for the

mentioned TML method), the errors in velocity model in the

proposed ANN approach influence only the traveltime

computation. Therefore, we consider the accuracy of the

velocity model to be a more general problem that has

already been covered in literature. For instance, Eisner

et al. (2009) presented an extensive study of the effect of

errors in the velocity model on locations derived from arrival

time picks by simulating uncertainties for frequently used

borehole and surface acquisition receiver geometries and

assuming a homogeneous medium.

Another option for benchmarking would be to use any

other conventional location method to calculate the

traveltimes based on the estimated location. This means

that prior to the prediction of location by the ANN, the

real traveltimes are “regularized” using the modeled ones.

For such an approach, the TML methodology suits the best, as

it is based on the maximum likelihood of traveltimes, which is

consistent with the chosen cost function in our algorithm.

However, there is an obvious disadvantage of this

approach–for each event, it requires an additional step of

location, therefore making the ANN-based location

computationally less attractive.

Finally, in order to be independent of the missing data, one

could pre-train many ANNs for different sets of available

stations. Every possible combination of stations requires 2N

trainings with N being a number of seismic stations. It

possible for very small N and is out of question for large N.

Alternatively, we may consider training only for a certain set of

“backbone” stations where all events are picked, and throwing

away all other picks on the remaining stations.

After testing the aforementioned methods, we decided to

use fine tuning to overcome the issue of missing picks. Fine

tuning is an effective method taking advantage of weights of

ANN obtained after training with full array of stations

acquiring data. With a limited number of epochs, we are

able to quickly train ANN specific for each individual event

picked on a specific subset of stations. The other methods

seem not to be as robust and accurate as the fine-tuning

approach.

A ML location method that is flexible to the number of

seismic stations was proposed by van den Ende and Ampuero

(2020), who developed a graph neural network (GNN)

approach which is also invariant to the order in which the

stations are arranged. First, authors suggest to analyze the

waveforms on each station using a CNN which extracts certain

features, and then the location of stations is appended to form

a feature vector that serves as an input for the second

multilayer perceptron (MLP) component. After performing

the operation on every station, the results are combined into a

graph feature vector. So far we have considered to adapt this

approach for traveltime-based location, where the selected

feature at each station is the picked arrival time. GNN might

result in potential improvement, but the challenge is in

enforcing the feature to be the arrival time.

6 Conclusion

A machine learning methodology proposed earlier was

extended in this paper into a practical technique capable of

locating real microseismic events in a typical microseismic

monitoring setting. This extension represents a non-trivial

task which was not anticipated earlier.

The location method is based on P-wave arrival picks input

and artificial neural network trained on a set of known locations.

Its main advantage is a possibility to train the system only with
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synthetic data, i.e., no existing seismic data are needed before its

application. Therefore, the training can be successfully done even

in areas where any prior seismicity has not been observed, and it

can be done in advance, before the actual seismic monitoring

starts.

The training dataset is computed with known velocity

model, monitoring array, and a set grid of training

locations in the subsurface. The ANN must be trained with

the same (sub-)set of stations as the data of real event are from.

However, in reality, a subset of stations with available picks for

each event changes due to various reasons (variable SNR,

missing stations, etc.). To overcome this problem, we use fine

tuning: the weights of ANN obtained after training using full

array of seismic stations are used as initial values and a new

ANN can be quickly trained for each individual event picked

on a specific subset of stations. In order to prevent overfitting

we further investigated the use of early stopping by reserving

part of the training data for validation and tracking the

validation loss.

The extended methodology was tested on 2D and 3D

synthetic examples that allowed us to determine optimal

neural network parameters and estimate location errors. We

showed that accuracy of resulting locations increases with

density of training location grid, number of available seismic

stations and quality of input data, which is in agreement with

the behavior of classical location methods. The ANN method

was benchmarked against a commonly used TML method on a

real dataset acquired during hydraulic fracturing. We

demonstrated that locations from both methods are

comparable and the location misfit is similar to the training

grid spacing when a reliable velocity model is used. However,

the ANN-based location is less sensitive to gridding, more

sensitive to data outliers, and implies simple and straight-

forward training. Use of the early stopping criterion

presented in this study helped to significantly reduce the

computation time both for initial training using the full set

of seismic stations and for the fine-tuning training step.

Analysis of real data application results show that the

proposed approach is efficient and can be applied during real-

time monitoring when combined with reliable automatic event

detection and arrival time picking algorithms. We proposed a

workflow for implementation of the method in the real-time

monitoring setting.
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The hypocenters of microseismic events induced by hydraulic fracturing are

conventionally located with an initial model established from well logs or

perforation shots. In most geological settings, the arrival times are

insufficiently explained without accounting for the velocity changes

introduced by the reservoir stimulation process. The model parameters and

source locations should be inverted simultaneously with arrival time

information. Therefore, the joint inversion of event locations and velocity

model requires the information of anisotropy parameters, which leads to the

problem of the selection of degree of symmetry of anisotropic media in the

inversion process. Since it is not possible to retrieve all elastic moduli from

limited passive seismic data, the joint inversion is constrained to layered vertical

transversely isotropic (VTI) media. Various methods have been proposed to

invert the velocity model and source locations from the arrival times in

anisotropic media, but the number of retrievable parameters in different

parametrization types and acquisition scenarios have not been decisively

discussed. We analyze the sensitivities for event locations and anisotropic

parameters by the singular value decomposition (SVD) of the Fréchet

derivatives in a layered anisotropic medium with vertical axis of symmetry.

The singular values and eigenvectors obtained from SVD can be used to predict

which unknown parameters are better constrained by the available traveltimes.

The comparison of different parametrizations and monitoring array

configurations allows to design a better inversion strategy to provide

microseismic event locations and anisotropic parameters.

KEYWORDS

microseismic, source location, anisotropic parameter inversion, sensitivity analysis,
layered VTI media
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1 Introduction

Microseismic monitoring is an important diagnostic tool for

hydraulic fracturing stimulation in unconventional reservoirs

(Grechka, 2010; Maxwell et al., 2010; Li et al., 2019b; Pan

et al., 2022). Locating induced microseismic events is the

primary task in such monitoring, which requires the accurate

velocity model (Eisner et al., 2009; Zimmer et al., 2009; Li et al.,

2020). Traditionally, the velocity models are derived from sonic

logs and perforation shots (Pei et al., 2009; Bardainne and

Gaucher, 2010). As the perforation shots illuminate limited

subsurface, the locations are prone to errors due to the

unreliable velocity information (Grechka et al., 2011; Li et al.,

2013; Li et al., 2019a). Additionally, the hydraulic stimulation and

fractured shales in the reservoir may change the velocity model.

The estimated velocity models may be updated based on the

information supplied by the microseismic events, which is

similar to the passive seismic tomography in global

seismology (Thurber, 1986; Zhang and Thureber, 2003).

As the anisotropy commonly exists in shale (Eisner et al., 2011;

Tsvankin, 2012) and shear wave splitting is commonly observed

(Grechka and Yaskevich, 2014; Grechka, 2015), the isotropic

velocity models are most likely insufficient to explain the

recorded traveltimes in the estimation of velocity simultaneously

with event locations. For example, Grechka et al. (2011) show that

event locations lead to lower residuals when anisotropy is taken into

account. Grechka andDuchkov (2011) propose that isotropicmodel

is inadequate and develop methodology to estimate elements of

elastic moduli from traveltimes observed in downhole geophones.

The challenge of the inversion is that the phase and group velocities

are represented in narrow angular apertures for typical downhole

geometries. Grechka et al. (2011) estimated the anisotropy

simultaneously with events locations in a single-well geometry.

The analysis is based on stiffness tensor and only the downhole

case is discussed. Li et al. (2013) proposed to use differential arrival

times and differential azimuths for event location and anisotropic

tomography, which is also discussed in a single well geometry.

Grechka and Yaskevich (2014) used the traveltimes and

polarizations to invert event locations and parameters for layer

triclinic media using downhole microseismic data with wide

aperture. Michel and Tsvankin (2016) developed an elastic

waveform inversion algorithm to estimate the anisotropic

parameter and source information in the layered vertical

transversely isotropic (VTI) media. In this study, we do not use

full waveforms as the amplitude is often contaminated by noise and

compromised by receiver coupling in downhole monitoring. The

arrival times of the direct P- and S- waves sometimes are more

reliable than the waveforms in the source location.

In the above discussed studies, the downhole geophones in a

single vertical monitoring well are usually assumed and the elastic

stiffness tensor is used to delineate the anisotropic properties.

Alternatively, surface or near-surface arrays are also used in

monitoring hydraulic fracturing (Duncan and Eisner, 2010). In

such geometry most of the rays travel through overburden which

can be characterized as vertical transversely isotropic media (VTI),

and it is enough to describe the observed direct arrival times in field

data (Gei et al., 2011).

In this study, we derive the analytical sensitivities for the elastic

moduli and Thomsen-type parameters (Thomsen, 1986) in the

joint inversion of event locations, source origin times and

anisotropic properties with layered anisotropy assumption. We

investigate the sensitivities of the direct P- and S- arrival time

inversion to source location and anisotropic parameters by using

singular value decomposition (SVD). We compare the sensitivity

matrices derived from microseismic data for downhole geometry

and establish the methodology to judge the effectiveness and limits

of using the traveltimes to invert the unknown parameters.

2 Methodology

2.1 Joint inversion of microseismic
location and anisotropic parameters

The objective function in the joint inversion of the source

location, origin times and anisotropic tomography is the

traveltime differences between the observed arrival time and

the corresponding modelled arrival time. The sensitivities of the

arrival time with respect to the hypocenter xi, the origin times τi,

the anisotropic parametersm and the layer thickness lj are given

by the Fréchet derivativest

F � [ztQ
zm

,
ztQ
zxi

,
ztQ
zτ i

,
ztQ
zlj

], (1)

where tQ is the arrival time and Q is used to denote the wave

types, which can be quasi-P (qP), quasi-SV (qSV) or SH waves

in the anisotropic media (Grechka and Duchkov, 2011). ztQzm are

the derivatives of arrival times with respect to anisotropic

parameters. Different parametrizations have been suggested to

represent the anisotropic properties in homogeneous VTI

medium. The first one is the combinaton of five elastic

modulus, c11, c33, c55, c66, and c13. Alternatively, Thomsen-

type parameters can be used to define a VTI medium. Then m
includes the vertical P- and S-wave velocities, VP0 and VS0, and

the anisotropic coefficients, ε, γ and δ. The derivatives can be

calculated by the chain rule

ztQ
zm

� ztQ
zgQ

zgQ

zm
� − tQ

gQ

zgQ

zm
, (2)

where gQ represents group velocities. The derivation of these

derivatives for qP, qSV and SH is given in Supplementary

Appendix S1.

The second part on the right side of Eq. 1 is the derivatives of

traveltime tQ with respect to source location coordinates

x � {x1, x2, x3}. The location can be expressed by the event
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azimuth α, radial distance r and depth difference h in a

cylindrical coordinate system with the origin at the receiver.

x � {x1, x2, x3} � {rcosα, rsinα, h}. (3)

In our joint inversion approach, the event azimuth is

assumed to be known as they are independently measured

from particle polarization, from the work of Eisner et al.,

2009. The sensitivity of arrival times with respect to

hypocenter can be expressed as

ztQ
zx

� ztQ
z{r, h} � −{pQ

r , p
Q
h }, (4)

where pQ
r and pQ

h are the radial and vertical slowness, which

are associated with anisotropic parameters and propagation

angle.

The third part on the right side of Eq. 1 is the derivatives of

arrival time tQ with respect to the origin times τi. In the

inversion, microseismic events are independently evaluated

and the arrival time is only relevant with its own origin time.

If the number of microseismic events is n, ztQzτi
is the n × n identity

matrix. It’s equal to Iij for the j-th event.

The last part is the sensitivity with respect to the layer

thickness. This problem has been discussed by Li et al. (2013).

The sensitivity expression is

ztQ
zlj

� pQ
r (tanφ2 − tanφ1) + 1

cosφ1g
Q
1

− 1

cosφ2g
Q
2

, (5)

To specify the case to calculate the derivatives in the equations,

here we assume the ray travels downwards, the terms should be

adjusted in upward cases. φ1 and φ2 are the group angles in the

first and second layer, respectively. gQ
1 and gQ

2 represent the

corresponding group velocities.

As the derivatives {ztQzm,
ztQ
zxi
, ztQzτi

, ztQzlj } have different unit

dimensions, they should be scaled by factors to balance the

contributions from different unknowns (Grechka et al., 2011).

Here the factors we choose are the mean source-receiver distance

f(x) � mean(|x|), the mean arrival times f(τ) � mean(|tQ|)
and the mean layer thickness f(l) � mean(|l|). The matrix used

in sensitivity analysis can be expressed as

F � [(f(x)
f(τ))

2{ztQ
zc

}, f(x) ztQ
zxi

, f(τ) ztQ
zτ i

, f(l) ztQ
zlj

], or
F � [f(x)

f(τ) { ztQ
zVP0

,
ztQ
zVS0

}, {ztQ
zε,

,
ztQ
zγ

,
ztQ
δ
}, f(x) ztQ

zxi
, f(τ) ztQ

zτi
, f(l) ztQ

zlj
].
(6)

2.2 Singular value decomposition

Singular Value Decomposition (SVD) of a matrix is a

factorization into three parts. It indicates the algebraic

properties and provides important geometrical insights of the

original matrix. The quantitative assessment of the joint

inversion can be obtained by applying singular value

decomposition to the Fréchet derivatives (Grechka et al., 2011;

Kazei and Alkhalifah, 2018)

F � u s wT , (7)

where u is an orthogonal matrix and consists of eigenvectors

of FFT , s is a diagonal matrix with singular values on the

diagonal, w is an orthogonal eigenvector matrix and consists

of eigenvectors of FTF , and wT is the conjugate transpose of

w. The absolute magnitude of the diagonal elements of s show
how perturbations in the corresponding eigenvectors shift the

arrival times. And the values of the elements in each

eigenvector show the relative weight of the parameters in

FIGURE 1
The layered anisotropic model used in synthetic tests. There
are 11 receivers (green triangles) located in themonitoring well and
two fracture systems in the third layer, which is associated with five
microseismic events (red stars and red dots).

TABLE 1 The anisotropic parameters of the four layers.

Layer 1 2 3 4

c11 (km/s)2 20.0111 22.8211 18.4782 23.7995

c33 (km/s)2 16.4025 18.4041 13.1987 19.1932

c55 (km/s)2 5.5885 6.4009 5.1984 7.1985

c66 (km/s)2 7.1533 7.9371 7.2778 8.3502

c13 (km/s)2 7.1810 7.9494 5.6091 8.4593

VP0 (km/s) 4.050 4.290 3.633 4.381

VS0 (km/s) 2.364 2.530 2.280 2.683

ε 0.11 0.12 0.20 0.12

γ 0.14 0.12 0.20 0.08

δ 0.13 0.14 0.25 0.22
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joint inversion. The number of non-zero values on the

diagonal of matrix s indicates the invertible linear

combinations of parameters. If it is less than the number of

parameters, some trade-offs between the parameters exist in

the inversion. As the eigenvectors are unit vectors and

orthogonal to each other, the ideal parametrization is that

each eigenvector has only one non-zero element. Then we

could invert the parameter one by one, from the eigenvector

with large singular value to small. Usually the eigenvectors

have multiple non-zero elements and the crosstalk issues are

introduced. Then, the rough inversion strategy is that we

could sort the eigenvectors based on its corresponding

singular values and invert the dominant diagonal elements

sequentially.

FIGURE 2
(A) The sensitivity analysis of the joint inversion using qP arrival times in the downhole array. The anisotropic is represented by cij
parametrization. (B) the rows of eigenvector matrix are sorted to make it diagonally dominant as possible. The horizontal axis shows the index of
eigenvectors, the vertical axis on the left shows the corresponding normalized singular values, and the vertical axis on the right shows the
represented parameters. The blue solid dotted line in (B) indicates the suggestion inversion sequence of the unknowns. The singular values
close to zero means the parameters on the right do not contribute to the observed data.
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3 Synthetic examples

To illustrate the sensitivity analysis in the joint inversion, we

use a model with four layers. It is shown in Figure 1. The

anisotropic parameters (density-normalized stiffness matrix in

Voigt notation) used in the synthetic tests are shown in Table 1

(Li et al., 2013; Huang et al., 2019). In the third layer, which is

assumed to be the reservoir, there are ten events divided into two

fracture systems. The arrival times of the microseismic events are

calculated analytically.

As the data in microseismic is often not sufficient to pick

all three waves (qP, qSV and SH), we discuss two cases that

only the arrival times of P-wave are used or the arrival times of

three wave types are all used in the joint inversion. For the

application of field data, the initial guess of the anisotropic

parameters is derived from the polarization analysis of the

FIGURE 3
(A) The sensitivity analysis of the joint inversion using qP arrival times in the downhole array. The anisotropic is represented by Thomesen
parametrization. (B) the rows of eigenvectormatrix are sorted tomake it diagonally dominant as possible. The singular values close to zeromeans the
parameters on the right do not contribute to the observed data.
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seismic data (Grechka et al., 2011). A least-squares objective

function is constructed to invert the anisotropic model with a

local isotropic assumption (Grechka and Mateeva, 2007). As

we are only focusing on the sensitivity analysis in this study,

the parameters of mentioned above are directly used with 5%

randomly perturbation. In the analysis of specific cases, firstly

the Fréchet derivatives (Eq. 6) is calculated and used as the

input for SVD. Then the eigenvectors are sorted by their

corresponding singular values. Then the element in the

column are automatically sequenced by the maximum value

and formed the suggested inversion strategy. With less

parameter with singular values close to zero, the inversion

process is better constrained.

First, we use the qP arrival times of ten microseismic event

recorded by all receivers in sensitivity analysis. When the

elastic moduli are used to represent the anisotropic media,

the results are shown in Figure 2. The singular values close to

zero indicates there are four parameters that can not be

FIGURE 4
(A) The sensitivity analysis of the joint inversion using the arrival times of qP wave and two S- waves. The anisotropic is represented by cij
parametrization. (B) the rows of eigenvector matrix are sorted to make it diagonally dominant as possible. The absence of singular values close to
zero means all the parameters on the right contribute to the observed data.
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inverted. By resorting the rows to make it with best diagonal

dominance, we can find that the smallest singular values

correspond to c66. They are poorly constrained as the

arrival times of S- waves are not used.

When the initial model is close to the true solution,

Figure 2B shows the methodology to invert the parameters

in the downhole geometry shown in Figure 1. When only the

arrival times of P- waves are used, the arrival times are

strongly related with c66, c11, the radial distance r and the

vertical distance h. The values of layer thickness l and the

origin times τ have lower sensitivity to the arrival times. The

value of c13 is least constrained in the joint inversion. When

only the arrival times of P-wave are available, the columns that

have non-zero singular values have off-diagonal elements with

high values. It indicates the crosstalk between the parameters

are introduced and some trade-off exist. The parameter array

FIGURE 5
(A) The sensitivity analysis of the joint inversion using the arrival times of qPwave and two S-waves. The anisotropic is represented by Thomsen-
type parametrization. (B) the rows of eigenvector matrix are sorted to make it diagonally dominant as possible. The absence of singular values close
to zero means all the parameters on the right contribute to the observed data.
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on the right in Figure 2B shows the possible inversion

sequence, from the best constrained parameter to the worst.

Figure 3 shows the result when the anisotropic media are

represented by Thomsen-type parameters. In this case, the

sensitivity analysis provided the relation sequence: VP0, ε, r, h, δ,

l andVS0. It has four near-zero singular values corresponding to γ in

the four layers, which means they can not be inverted in the joint

inversion.

When the arrival times of three wave types are used, the

anisotropic parameters are better constrained in the inversion.

Figures 4, 5 show the result. Figure 4B indicates that c55, c66, c13
and c11 have the highest possibility to be inverted from the

inversion. The second group is the radial and vertical distance

r, h, and c33. The similar colors of r and h in each column

indicate that the two parameters trade-off with each other. The

third group is the excitation time of ten events and the layer

thickness. Figure 5B shows that the relation

sequence becomes VS0, VP0, ε, γ, δ, r, h. The parameters

that are not well constrained in the

joint inversion are still the excitation times and layer

thickness.

We used the downhole array to illustrate the proposed

method, and it is also applicable to surface geometries or more

mircoseismic events. The difference is the traveltimes

calculation for the relative locations between receiver and

microseismic sources. In the specific cases, the analysis

process should be performed respectively and the terms in

the derivatives need to be adjusted accordingly. The inferred

inversion strategy highly depends on the locations of the

events and receivers, but the main procedures are quite

similar and not included here.

4 Conclusion

The sensitivity analysis of the joint inversion are obtained

by the SVD of the Fréchet derivative matrix. As the monitoring

arrays affect the measured quantities, this analysis should be

done for each specific monitoring array. We use elastic moduli

and Thomsen-type parametrization to describe the VTI media

as the horizontal shale layers often have vertical axis of

symmetry.

We derive the derivative of group velocity with respect to

the elastic moduli and Thomsen-type parameters. We

demonstrate how to establish the Fréchet derivative matrix

in the joint inversion of anisotropic parameters and source

locations. We show how to perform the sensitivity analysis to

the monitoring array. It gives the tool to judge the constrain on

the unknows in the joint inversion when limited data are

obtained.
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Velocity changes after the
2021 MS 6.4 Yangbi earthquake
based on passive image
interferometry

Cong Zhou1,2*, Lei Fu3, Kexu Shi2, Xiangzhi Zeng4 and
Pei Zhang2

1Institute of Geophysics, China Earthquake Administration, Beijing, China, 2The SecondMonitoring and
Application Center, China Earthquake Administration, Xi’an, China, 3School of Geophysics and
Geomatics, China University of Geosciences, Wuhan, China, 4Jiangsu Donghai Continental Deep Hole
Crustal Activity, National Observation and Research Station, Lianyungang, China

An MS 6.4 earthquake occurred in Yangbi, Yunan Province, China, on 21 May

2021. The epicenter was on the blind branch fault in the west of the

Weixi–Qiaohou–Weishan fault, but no surface rupture was obvious. In the

present study, the continuous vertical component of waveforms that were

recorded in six nearby permanent stations was collected and the noise cross-

correlation and autocorrelation techniques were utilized to investigate velocity

changes that were induced by the Yangbi Earthquake. Velocity changes based

on the single-station autocorrelation method reveal mainly coseismic declines,

and a maximum of .09% was recorded in the EYA station. Results from the

cross-correlation technique show both positive and negative velocity changes,

and these lasted for approximately 3 months. The volumetric strain that was

generated by the Yangbi Earthquake at a depth of 5 kmexhibits an obvious four-

quadrant distribution. Station pairs in the dilatation region (e.g., EYA–HEQ)

mainly display a decrease in velocity, whereas those in the contraction region

(e.g., BAS–TUS, TUS–YUL, and LUS–TUS) show an increase in velocity. Based on

the depth sensitivity of scattered waves, velocity changes that were obtained

using the noise cross-correlation involve the highest weight coefficients near

the related two stations. Regarding stations of one station pair in different stress

loading regions, the static stress of the station that is nearest to the epicenter

exerted a greater impact on the velocity change. The observed velocity changes

are likely attributed to a combination of near-surface physical damage and

static stress changes. The validation of clock errors with magnitudes of seconds

that were obtained using the noise cross-correlation and effects of these errors

on measured velocity changes are also discussed.

KEYWORDS

noise cross-correlation, autocorrelation, coda wave interferometry, the Yangbi
earthquake, velocity change, clock error
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1 Introduction

The state of stress and properties of the medium in a fault

zone can change significantly during the nucleation and

occurrence of an earthquake (Kanamori, 1994; Liu et al.,

2014). Therefore, studies on changes in the medium are useful

to understand the evolution and healing of faults, as well as the

evolution of earthquake risk analysis. Seismologists have

proposed the use of repeated earthquake data to characterize

velocity perturbations in the crust because earthquakes, which

originated from deep underground locations, reveal significant

information of the source area (Poupinet et al., 1984; Peng and

Ben-Zion, 2006). However, repeated earthquakes are

spatiotemporally limited, and these are often associated with

regions of high seismic activity. Artificial sources that produce

similar waveforms are also useful for the monitoring of temporal

changes in such media (Reasenberg and Aki, 1974; Vidale and Li,

2003; Wang et al., 2008). Su et al. (2022) reported coseismic

velocity variations of .08%–.12% near the fault zone of the

2021 MS 6.4 Yangbi Earthquake based on seismic wave signals

that were generated using Binchuan Airgun. In the past decade,

the passive monitoring of seismic velocity using interferometry

increased significantly. This was utilized to monitor fault systems

and landslides (Brenguier et al., 2008a; Liu et al., 2014; Liu et al.,

2018; Boschelli et al., 2021; Huang et al., 2021; Le Breton et al.,

2021), predict volcanic intrusions (Brenguier et al., 2008b; Liu

et al., 2022), and explore changes in shallow groundwater

(Clements and Denolle, 2018; Mao et al., 2022). These studies

generally assumed that the coda part of noise cross-correlation

functions travels a longer path that broadly samples the medium

compared to direct waves, and is therefore more sensitive to small

perturbations in the medium (Snieder et al., 2002; Sheng et al.,

2021).

Themethods that can be used to calculate the travel time shift

δt between earthquake doublets can be divided into three

categories: 1) Time-domain methods such as windowed cross

correlation (Snieder et al., 2002), trace stretching (Sens-

Schönfelder and Wegler, 2006; Obermann et al., 2016), and

dynamic time warping (Meier et al., 2010); 2) Frequency-

domain methods such as moving window cross spectrum

(MWCS) (Poupinet et al., 1984; Liu et al., 2018); and 3)

Wavelet-domain methods such as wavelet cross spectrum

(Mao et al., 2020) and wavelet trace stretching (Yuan et al.,

2021). Liu et al. (2010) compared and analyzed the advantages

and disadvantages of four common methods and concluded that

the MWCS performed better due to small measurement errors.

Moreover, MWCS separates amplitude spectrum and phase

spectrum before measurement, so it is less affected by the

frequency of ambient noise (Zhan et al., 2013).

Mechanisms of velocity changes induced by earthquakes,

such as static stress and pore pressure variations, as well as near-

surface and fault zone physical damage remain controversial

(Poupinet et al., 1984; Rubinstein and Beroza, 2004; Wegler et al.,

2009; Sheng et al., 2021). On 21 May 2021, anMS 6.4 earthquake

(epicenter at 25.67°N and 99.87°E) occurred in Yangbi County in

the west of Yunan province, China. The epicenter of the

earthquake was on the blind branch fault in the west of the

Weixi–Qiaohou–Weishan fault, and surveys revealed no obvious

surface rupture (Li et al., 2021; Zhu et al., 2022). This was the

strongest shallow earthquake in Yunnan in the past decade

following the MS 6.5 Ludian and MS 6.6 Jinggu earthquakes

(Zhang et al., 2021).

In the present study, continuous data that were recorded in

six nearby permanent stations was collected and both the

ambient noise cross-correlation and autocorrelation methods

were utilized to characterize velocity changes induced by the

Yangbi Earthquake. Unlike many previous cases, both positive

and negative velocity changes were obtained by using cross-

correlation method. Mechanisms involved in the velocity

changes were then examined based on the distributions of

sensitivity associated with scattered waves and the static stress

field. We also found clock errors of up to 1 year and up to 1 s in

the data recorded at the EYA and LUS stations, respectively.

Effects of the clock errors on measured of velocity changes were

then analyzed.

FIGURE 1
The tectonic background of the Yangbi earthquake
sequence. Six broadband stations are located in the black circle
area, which within approximately 100 km of the epicenter.
F1 denotes the Weixi-Qiaohou-Weishan fault. The
abbreviations denote the tectonic units. NYGFB, Northwest
Yunnan geosynclinal fold belt; YTP, Yangtze Paraplatform; CDB,
Chuandian Block; QTB, Qiangtang Block; SCB, South China Block;
INB, Indian Block. The inset denotes the location of the research
area. The red dot denotes the mainshock in both the main figure
and the inset.
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2 Data and method

2.1 Data

TheMS 6.4 Yangbi earthquake is located in western Yunnan,

which is located in the southeast margin of Tibet Plateau

(Figure 1). It is the Yangtze paraplatform and northwest

Yunnan geosynclinals fold belt junction area, which has

strong characteristics of structural tension since the

Quaternary period (Huang et al., 2014). In the present study,

the vertical component of continuous waveforms (100 Hz) that

were recorded in six broadband stations that are located within

approximately 100 km of the epicenter of the Yangbi Earthquake

between January 2019 and December 2021 was utilized

(Figure 1). The area hosting the hypocenter was adequately

covered by ten station pairs, and the minimum, maximum,

and average distances between these stations pairs are 52, 143,

and 97 km, respectively.

2.2 Green’s function retrieval

The data preprocessing procedure that was utilized in the

present study was described in Liu et al. (2014). Raw seismic data

were partitioned into 1-day intervals and the vertical component

data were then resampled at 10 Hz to improve computational

efficiency. Temporal normalization and spectrum whitening in

the 1–20 s range were applied to each segment to minimize

earthquakes effects. Reference cross-correlation functions

(CCFs) for station pairs were obtained via the stacking of

CCFs covering the period from 1 January 2019, to 21 April

2021 (a month preceding the Yangbi Earthquake). To improve

the signal-to-noise ratio of daily CCFs, these were derived

through the stacking of CCFs for 61 d, which included

30 d before and after a target day. To prevent mixing of pre-

and post-seismic signals, daily CCFs that were calculated for

periods before and after the Yangbi Earthquake were stacked

separately (Liu et al., 2014; Liu et al., 2022). For example, the daily

CCF on 28May 2021 is obtained from stacking only post-seismic

daily CCFs from 22May 2021 to 28 June 2021. Thus, the stacking

days of daily CCFs is smaller than 61 d within amonth before and

after the main shock. Daily CCFs for the EYA–YUL station pair

in the period band of 1–10 s from January 2019 to December

2021 are shown in Figure 2A, and clear surface and stable coda

wave signals are obvious. Owing to the decrease of the coda wave

coherence as the timelapse increases, the lapse window for the

positive portion of CCFs was determined as 30–130 s after the

arrival of Rayleigh waves in this period band (Supplementary

Figure S1). The windows in the negative portion were

symmetrical to that in the positive portion.

To supplement station pairs near the epicenter, the single-

station autocorrelation approach was also considered.

Autocorrelation functions mainly reflect changes in the

shallow crust near a station, and the associated flow

processing is similar to that for the cross-correlation of a

station pair. Figure 2B shows the autocorrelation functions for

the EYA station using 1–3 s band-pass filter from January 2019 to

December 2021. The lapse windows for the autocorrelation were

determined as the fixed windows with range of ±(5–55) s.

2.3 Velocity change measurement using
coda wave interferometry

Large to medium velocity perturbations can be directly

obtained by measuring the relative traveltimes of the direct

FIGURE 2
Daily CCFs for (A) EYA-YUL station pair in the period band of 1–10 s and (B) single station (EYA) in the period band of 1–3 s from January 2019 to
December 2021. Waveforms in black represent reference CCFs, and red and blue correspondingly denote positive and negative.
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waves. Studies on the detection of small–medium changes as a

function of time have focused on seismic coda waves. Coda

waves, which are also known as multiply scattered waves, usually

arrive later than direct waves. The later the arrival of scattered

wave phases at the receiver, the longer the associated propagation

paths and the higher the sensitivity to minor perturbations in a

medium (Snieder et al., 2002).

Assuming that the change of relative seismic wave velocity

(δv/v) is spatially homogeneous, the travel time shift δt
between CCFs is proportional to the lapse time t and can

be calculated as δv/v = −δt/t (Poupinet et al., 1984; Snieder
et al., 2002). Therefore, the measurement of the travel time

shift δt is very important for coda wave interferometry. In the

present study, the MWCS method was utilized to measure the

relative time shift between a reference CCFs that corresponds

to the initial state, and a current CCFs that has encountered a

velocity change in the medium. With the MWCS method, a

series of overlapping time windows are defined in the coda

wave, and the time shifts in these windows are estimated by

means of the cross-spectrum method. The cross-spectrum

X(f) between the reference CCFs and current CCFs is

calculated as follows (Clarke et al., 2011):

X f( ) � Fref f( ) · Fcur
* f( ) (1)

where Fref and Fcur are the Fourier-transformed segments of the

reference and current CCFs. The asterisk denotes the complex

conjugation and f is the frequency. X(f) can also be expressed by
its amplitude |X(f)| and phase eiϕ(f). If the time-shift is constant

in each window segment, ϕ is linearly proportional to f:

ϕ f( ) � 2πδtf (2)

The time shift for each window segment is the slope and the

associated error em is caulcuated as

em �

������������������������
∑

j

wjvj∑iwiv2i
( )2∑j ϕj −mvj( )2

N − 1

√√
(3)

where w are weights, m is the slope of ϕ, and v are 2πf.

After all time shifts δt are measured in the window segments

in an interest range of lapse time, the relative time shift δt/t is
estimated by a weighted linear regression passing through zero,

and then δv/v can be obtained by −δt/t (Poupinet et al., 1984;
Clarke et al., 2011). To evaluate the reliability and accuracy of the

method, waveform modeling data that were reported in Yuan

et al. (2021) were used, and the +.1% velocity perturbation that

was determined in the model was correctly measured

(Supplementary Figure S2).

Figure 3 shows an example of the relative time shift

estimation using CCFs for the EYA–TUS station pair.

Compared with the theoretical waveform in Supplementary

Figure S2, CCFs of the EYA–TUS station pair produced a

lower coherence and preserved the acausal signal. Regarding a

1–10 s period band and a station pair with distance of 62 km, the

timelapse window is between 53 and 153 s and window segments

are 18 s with a step of 1 s. Time shifts (δt) between reference and

daily CCFs can be measured in each window segments by using

the MWCS, and the slope (δt/t) can then be estimated via a

weighted linear regression of the time shifts.

FIGURE 3
Example of a relative time shift (δt/t) that was estimated from CCFs in the period band of 1–10 s for the EYA–TUS station pair showing (A)
waveforms of reference CCFs (blue) and daily CCFs for 1 April 2021 (yellow). The curve in red denotes the correlation coefficient. (B) The relative time
shift (δt/t) for 1 April 2021. Circles containing error bars represent time shifts that were calculated in sliding windows, whereas the slope of the dash
line in black was estimated using a weighted linear regression of all red time shifts.
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3 Velocity changes caused by the
Yangbi earthquake

Figure 4 shows continuous seismic velocity changes for the eight

station pairs that cover the area of the epicenter of the Yangbi

Earthquake. Coseismic velocity changes are observed inmost station

pairs, but unlike in many previous studies, velocity declines are

evident in just three station pairs. Velocity changes of station pairs

BAS-EYA, BAS-TUS, EYA-TUS, and LUS-TUS are relative stable

and around the zero line before the main shock. The largest

coseismic decrease is .06% for pair BAS-EYA, whereas the largest

increasing is .14% for pair LUS–TUS that involves a path through

the epicenter. These coseismic velocities are usually underestimated

because of the long stacking days for the daily CCFs. Regardless of an

increase or decrease in the coseismic velocity, the influence of the

Yangbi Earthquake is evident for station pairs that display relatively

stable results, such as the BAS–EYA, BAS–TUS, and LUS–TUS, and

the influence last for approximately 3 months. Errors associated

with the calculation of velocity changes are relatively high during the

1-month periods before and after the earthquake. These large errors

are attributed to the reduction of stacking days because of the

separation of stacking procedures of daily CCFs into those before

and after the earthquake. Another reason is that because the Yangbi

Earthquake is a typical foreshock–mainshock–aftershock type

(Chen et al., 2022), the abundant foreshock and aftershock

activities affect the stability of the empirical Green’s functions.

Considering the average dv/v for the 2-month period

preceding the earthquake as the reference value and that of

the corresponding period after the earthquake minus the

reference as the coseismic velocity change, a spatial

distribution of coseismic velocity changes was obtained

(Figure 5). Evidently, the Yangbi Earthquake mainly increased

velocities in the study area. Station pairs of BAS-EYA, BAS-TUS,

and EYA-TUS enclose the seismogenic fault and aftershock area.

Coseismic velocity changes of pairs BAS-EYA and BAS-TUS,

which across the fault zone, are −.07% and +.05%, whereas that of

EYA-TUS on the east of the fault is +.06%. The relative velocity of

the LUS–TUS station pair that involves a path through the

epicenter increase by approximately .08%, but that of the

TUS-YUL with a similar path increase slightly. Station pairs

related to the TUS or YUL stations, which are in the near-field,

are mainly characterized by an increase in velocity, whereas those

involving the EYA station exhibit a decline.

Field surveys revealed that no obvious surface rupture was

caused by the earthquake (Li et al., 2021; Zhu et al., 2022).

According to simulations of strong ground motions, the peak

ground acceleration exhibits a circular shape around the

epicenter, and the ground motions beyond 60 km decay

FIGURE 4
Continuous velocity changes obtained via the cross-correlation technique near the epicenter of the Yangbi Earthquake. The vertical dashed line
in blue denotes the times of the earthquake, whereas the two thick dashed lines in black represent average values during the 2-month periods before
and after the earthquake. The thin dashed line in black marks the zero levels, whereas dot colors highlight measurement errors, and the error scale is
depicted.
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rapidly (Zhou et al., 2021). To evaluate perturbations of the

Yangbi Earthquake on the shallow crust in the near-field, the

single-station autocorrelation method was used to obtain the

continuous velocity changes for single stations in the period band

of 1–3 s (Figure 6). The results show that, excluding the LUS

station, which is farthest from the epicenter, the other five

stations exhibit a decline in the coseismic velocity. The

highest decline of .09% was obtained from the EYA station,

and these effects of the earthquake lasted for approximately

2–3 months. Data for coseismic velocity changes that were

obtained using the noise cross-correlation and autocorrelation

techniques are presented in Table 1.

4 Discussion

There are four different mechanisms for velocity changes

caused by earthquakes (Poupinet et al., 1984; Rubinstein and

Beroza, 2004; Wegler et al., 2009; Boschelli et al., 2021; Sheng

et al., 2021): 1) the change of the static stress results in

positive and negative velocity changes; 2) the change of fluid

content and pore pressure variations affects velocity; 3) the

physical damage caused by fault motion; 4) near-surface

physical damage caused by strong ground motion. Owing

to the Yangbi Earthquake, excluding the LUS station

(~104 km from the epicenter), which showed a slight

increase in velocity, autocorrelation analysis results for

the other five stations revealed declines in the coseismic

velocity. These decreases in velocities are mainly attributed

to near-surface physical damage caused by the strong ground

motion. Conversely, results from the noise cross-correlation

analysis are difficult to explain. But first and foremost, the

clock error or instrumental time shift is needed to be

considered in using passive image interferometry (Liu

et al., 2010).

4.1 Clock errors and their effects on
velocity changes

Variations in spatial distributions of noise sources and the

instrumental clock errors can independently affect the

measurement of the travel time shift (Stehly et al., 2007).

Clock errors can produce an overall shift in the entire cross-

correlation time, thereby increasing traveltimes in the positive

portion and decreasing traveltimes in the negative portion, and

vice versa. Comparatively to the measurement of velocity changes

in a medium, a direct arrival surface wave was used instead of a

coda wave to measure instrumental clock errors. Clock errors

that was measured from the surface wave using the noise cross-

correlation technique can be expressed as follows (Stehly et al.,

2007):

δτ t( ) + δτ −t( )
2

� D t( ) + ε t( ) + ε −t( )
2

(4)

where δτ(t) denotes the variation in the traveltime of the surface

wave that is measured in the positive or negative portion. D(t) is
the time shift caused by instrumental clock errors, and ε(t) is the
time shift associated with the spatial variation of noise sources.

Therefore, clock errors can be estimated using Eq. 4 by assuming

that D(t) is greater than ε(t)+ε(−t)
2 .

Following approaches that were advanced in Section 2.2 and

Section 2.3, only the coda wave window was replaced with a

surface wave window, that is, it starts 30 s before the surface wave

time and ends 40 s after. Supplementary Figure S3 shows an

example of clock errors that were estimated using data from the

LUS–YUL station pair. The clock errors that were obtained on

August 1 and October 20, for example, are .42 and −.04 s,

respectively. The clock error on October 20 is less than one

sampling rate, and thus, it can be considered as zero. Clock errors

for these stations were evaluated for the period from 2019 to

2021, and results for station pairs with possible large clock errors

are shown in Figure 7. The EYA station displays a clock drift of

approximately −0.2 s throughout 2019, whereas LUS station

exhibits a clock drift of −.6 s between July and August 2021.

Considering that daily CCFs were obtained by stacking CCFs of

61 days, the estimated clock drifts are likely underestimated, in

particular, the clock drifts from the LUS station may reach

seconds.

FIGURE 5
Spatial distribution of mean coseismic velocity changes. The
mean coseismic velocity change is the difference between
average velocity changes during the 2-month periods before and
after the earthquake. Lines in blue indicate positive values,
whereas those in red depict negative values.
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Two groups of teleseismic earthquakes that occurred in the

Alaska Peninsula and the Philippines are selected to validate the

clock drifts (Supplementary Tables S1, S2; Supplementary Figure

S4). Differences in traveltimes of the phases between stations

should essentially stable over time for nearby teleseismic

earthquakes. But the reference arrivals of earthquakes on July

29 and 14 August 2021, were relatively early at the LUS station

compared to that of other three earthquakes (Supplementary

Figure S5). If the linear trend in Supplementary Figure S5B is

eliminated, more intuitive reference arrivals relative to the

distance from the epicenter can be obtained. Supplementary

Figure S6A demonstrates that arrivals of earthquakes on July

29 and 14 August 2021, at the LUS station significantly differ

from those of the other three earthquakes, and the drift is −1 s.

Arrivals of all earthquakes at the other four stations do not show

any obvious drift between 22 July 2020, and 11 October 2021. In

addition, arrivals of earthquakes at the EYA station in

2019 slightly differ from those of the other three events, and

the drift is −.3 s (Supplementary Figure S6B).

Considering the LUS–YUL station pair as an example, the

velocity change that was calculated using the least squares fitting

MWCS method is less than .02% for a clock error of 1 s

(Figure 8). This minimal impact is probably because the slope

of dt/t based on the MWCS method is unaffected by such an

overall time drift of the cross-correlation time. However, a large

clock error reduces the correlation between the reference and

daily CCFs, and this affects subsequent calculations.

4.2 Static stress changes caused by the
Yangbi earthquake

Positive and negative velocities linked to earthquakes may

correspond to regions of increased and decreased stress,

respectively (Rubinstein and Beroza, 2004). To explain

observations from the noise cross-correlation, static stress changes

caused by the earthquake were calculated using Coulomb 3.0 (Lin and

Stein, 2004). The static slip distribution of the Yangbi Earthquake

provided by Xu Zhang was utilized (https://www.cea.igp.ac.cn/kydt/

278248.html, see Supplementary Figure S7), whereas the Poisson’s

ratio and shear modulus were set to .25 and 32 GPa, respectively. The

calculated volumetric strains caused by fault slips at a depth of 5 km

exhibit an obvious four-quadrant distribution (Figure 9). The EYA

and HEQ stations are in the dilatation region, where a decrease in

velocity is anticipated, in fact, the velocity changes for the EYA–HEQ

station pair decreased by .02%. The other four stations fall within the

contraction region, where a velocity increase is expected, in fact,

velocity changes for the BAS–TUS, TUS–YUL, and LUS–TUS station

FIGURE 6
Continuous velocity changes near the epicenter of the Yangbi Earthquake that were derived using the autocorrelation technique. The vertical
dashed line in blue denotes the time of the Yangbi Earthquake, whereas the two thick dashed lines in black are averages for the 2-month periods
before and after the earthquake. The thin dashed line in black represents zero levels, whereas dot colors depict measurement errors, and the error
scale is shown.
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pairs corresponding increased by .05%, .04%, and .08%. However,

how to decide if two stations are in different strain regions. For

example, the velocity changes for the EYA–TUS station pair increased

by .06%, whereas that for the EYA-YUL pair decreased by .03%.

Therefore, an analysis of the spatial sensitivity distribution of coda

waves is necessary.

TABLE 1 Velocity changes caused by the Yangbi earthquake.

Station pairs Cross-correlation (1–10 s)/autocorrelation (1–3 s) Trend Strain at 0 km

dv/v (%) before earthquake dv/v (%) after earthquake Coseismic change (%)

BAS-EYA .0267 −.0443 −.0710 ↓ ——

BAS-TUS .0180 .0700 .0519 ↑ ——

BAS-YUL −.0449 .0166 .0615 ↑ ——

EYA-HEQ .0144 −.0058 −.0202 ↓ ——

EYA-TUS −.0023 .0572 .0595 ↑ ——

EYA-YUL .0767 .0432 −.0335 ↓ ——

HEQ-TUS .0110 −.0218 −.0328 ↑ ——

HEQ-YUL .0098 .0746 .0648 ↑ ——

LUS-TUS −.0446 .0359 .0805 ↑ ——

TUS-YUL −.0086 .0306 .0393 ↑ ——

TUS-TUS −.0011 −.0343 −.0331 ↓ −1.3 × 10−7

EYA- EYA .0180 −.0763 −.0943 ↓ 6.5 × 10−8

YUL-YUL .0040 −.0448 −.0488 ↓ −4.0 × 10−8

LUS-LUS −.0309 −.0209 .0100 ↑ −1.1 × 10−8

HEQ-HEQ −.0009 −.0354 −.0345 ↓ 9.5 × 10−9

BAS-BAS .0298 −.0090 −.0387 ↓ −2.7 × 10−9

FIGURE 7
Clock errors for different station pairs between 2019 and 2021. The area shaded in gray represents the standard deviation, and this was used to
highlight the calculation error. The vertical dashed line in blue denotes the time of the Yangbi Earthquake.
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4.3 Depth sensitivity of coda waves

Based on numerical simulations of seismic waves in 2D and

3D heterogeneous elastic media, Obermann et al. (2013)

suggested that the sensitivity of coda waves can be modeled as

a linear combination of the sensitivities of body and surface

waves. They indicated that early coda waves are dominated by

fundamental surface waves, which mainly reflect shallow

perturbations, whereas later coda waves are dominated by

body waves. In the present study, the timelapse windows for

CCFs were determined as 30–130 s after the arrivals of Rayleigh

waves, and this contained sufficiently long signals. The sensitivity

kernel that is expressed as follows can be used (Pacheco and

Snieder, 2005):

K S,R, r0, t( ) � 1
p S,R, t( )∫

t

0
p S, r0, t′( )p r0,R, t − t′( )dt′ (5)

where S and R are the positions of the source and receiver,

respectively; r0 is the position of the local velocity variation; t is

the center timelapse for doublet analysis; and p (s, r, t) is the

probability that the wave has traveled from s to r during t. This

probability can be approximated using the full-space solution of

the diffusion equation, which is expressed as follows (Mao et al.,

2019):

p s, r, t( ) � 1

(4πDt)3/2e
−‖s−r‖2
4Dt (6)

where D is the diffusion constant. The multiply scattered waves

that propagate in 3 dimensions can be described by D:

D � CEplp

3
(7)

where CE is the energy velocity and l* is the scattering mean free

path. Considering that S waves account for most of the energy in

coda waves, a ratio of 9:1 was used to calculate CE: 1
CE

� 0.89
Vs + 0.11

Vp

(Obermann et al., 2016). Therefore, the key to determine the

sensitivity kernel is to estimate the scattering mean free path l*. In

general, at a larger scale (e.g., crustal) the mean free path is fairly

constant relative to the frequency, but this may not be applicable

at local scales. Chaput et al. (2015) estimated that the scattering

mean free path for the Erebus volcano in Antarctica at 1.5 Hz is

~2 km, and values slowly decreased as the frequency increased.

Data for the scattering mean free path for the Yangbi area are

scant, but theoretically values that involve 5%–10% heterogeneity

are in the range of 2–10 km (Obermann et al., 2013). Here, l* =

5 km was considered in the period band of 1–10 s for analysis. If

the distance between two stations is 60 km and the center time of

coda wave window is 100 s, the normalized depth sensitivity of

the scattering waves can be obtained based on Eq. 5 (Figure 10).

FIGURE 8
Velocity change measurements involving (A) no clock error correction and (B) with a clock error correction.

FIGURE 9
Volumetric strain changes caused by the Yangbi Earthquake
at a depth of 5 km. The region of positive strain is dilatation and
shown in red. Blue areas denote contraction. Lines connecting two
stations correspond to the noise cross-correlation between
the stations, and their values are presented in Table 1.
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The sensitivity of scattered waves is high near the source and

receiving points and relatively low in the middle portion. It

decays with increasing depth, and at ~12 km it reduces to 10% of

the value at surface. The depth sensitivity for station pair

LUS–TUS with path crossing through the fault zone shows

that the epicenter of the Yangbi earthquake (marked by the

red star in Supplementary Figure S8) is located in the weak

sensitivity zone (smaller than 10%). The scatter waves for the

existing station pairs may not be able to sample themajor rupture

area of the Yangbi earthquake. Velocity changes obtained using

the noise cross-correlation technique can be considered

weighting effects along propagation paths, and the largest

weight coefficient is obtained near the related two stations.

Considering that the static stress rapidly decays as the

distance from the epicenter increases, if two stations of a

station pair are in different stress-loading regions, the static

stress of the station closer to the epicenter exerts a greater

impact on the velocity change. For example, the velocity

changes for the EYA–TUS, EYA–YUL, BAS–EYA, and

HEQ–YUL station pairs were attributed mainly to static stress

of the stations closer to the epicenter. According to the

meteorological observation data of the Dali Center of the

China Earthquake Science Experiment Field, there is no

obvious change in the rainfall before and after the main shock

(Su et al., 2022). These results suggest that velocity changes are

likely linked to a combination of near-surface physical damage

and static stress changes. This also explains the inconspicuous

drop in the coseismic velocity that was obtained using the

autocorrelation for the TUS station, which is closest to the

epicenter, compared to those of other nearby stations.

5 Conclusion

In the present study, temporal and spatial coseismic velocity

changes were determined for the Yangbi Earthquake using the

ambient noise cross-correlation and autocorrelation techniques.

The mechanism involved in these velocity changes and effects of

clock errors on the measurements were examined. The main

conclusions are summarized as follows:

(1) Excluding the LUS station, which is farthest from the epicenter,

velocity changes obtained using the single-station

autocorrelation indicated declines in the period band of

1–3 s. In contrast, the noise cross-correlation produced both

positive and negative velocity changes for 1–10-s period band,

and the impact of the Yangbi Earthquake on these velocities

lasted for approximately 3 months.

(2) Based on the depth sensitivity of scatteringwaves, velocity changes

that were obtained using the noise cross-correlation produced the

largest weight coefficients around the related stations. The static

stress of the station closer to the epicenter exerted a greater impact

on the velocity change. These observations demonstrated that

velocity changes due to a combination of the near-surface physical

damage and static stress changes.

(3) Clock errors were obtained in the EYA station, and the time

shift for most of 2019 was ~−.3 s, whereas that for the LUS

station between July and August 2021 was ~−1 s. These time

shifts were validated using traveltimes of two groups of nearby

teleseismic earthquakes. Clock errors of a few seconds

minimally affected velocity measurements using the MWCS

method, which estimated a change through linear regression.

FIGURE 10
Normalized depth sensitivity of scattering waves.
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back-azimuth estimation for
downhole microseismic
monitoring using a probabilistic
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Microseismic event back-azimuth is an indispensable parameter for source

localization in downholemicroseismicmonitoring, and the accurate orientation

of horizontal components of downhole seismic receivers is vital for reliably

determining the event back-azimuth. Variation in the monitoring data quality

may jeopardize the accuracy of receiver orientation which will further affect the

event back-azimuth estimation. To mitigate this issue, we proposed a new

probabilistic method based on P-wave polarization analysis for receiver

orientation and event back-azimuth estimation. The algorithm constructs

the von Mises distribution function using the polarization angle and

corresponding rectilinearity of the P-wave, then determines the target angle

using the maximum of the probability function. The receiver having the highest

rectilinearity from the active-source event is used to quantify a reliable absolute

orientation angle, and the relative orientation angles are calculated by the

probability distributions based on the measurement angle differences and the

associated averages of rectilinearity from all events. After receiver orientation,

the P-wave polarization angles with different rectilinearity values are applied to

construct the probability distribution functions to estimate the event back-

azimuths. By using high-quality events and multi-receiver recordings, our

methodology can greatly reduce the unintentional error in receiver

orientation and increase event back-azimuth accuracy. We investigate the

feasibility and reliability of the proposed method using both synthetic and

field data. The synthetic data results demonstrate that, compared to the

conventional methods, the proposed method can minimize the variance of

the receiver orientation angle and back-azimuth estimation. The weighted

standard deviation analysis demonstrates that the proposed method can

reduce the orientation error and improve the event back-azimuth accuracy

in the field dataset.
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Introduction

Microseismic monitoring technique is an efficient tool for

evaluating the hydraulic fracture stimulation of unconventional

reservoirs through recording and analyzing seismic signals caused

by rock ruptures and/or fault reactivation (Maxwell, 2014; Grechka

and Heigl, 2017; Li et al., 2019; Atkinson et al., 2020; Schultz et al.,

2020). Downhole array is one of the common observatory systems for

microseismic monitoring. It can provide higher quality data than

surface/subsurface arrays due to its proximity to the fractured zone

(Maxwell et al., 2010, 2012; Drew et al., 2012; Meng et al., 2018). For

downhole microseismic monitoring, the determination of

microseismic event back-azimuth is an important step in the data

processing (Maxwell, 2014; Akram, 2020), and the accuracy of event

back-azimuth has a significant impact on subsequent source location

and fracture interpretation (Cipolla et al., 2011). Due to the influence

of azimuth uncertainties, there is always error in the microseismic

source location. Thus, it is critical to obtain accurate event back-

azimuths to reduce the location errors to the utmost extent.

Three-component (3-C) geophones are normally placed in the

vertical or deviated wells to record microseismic signals in mutually

orthogonal directions. Because of rotation of the wireline during

deployment, the orientation of the horizontal components of the

receivers is unknown and usually random, which requires a receiver

orientation correction approach to adjust them to the designated

direction (for example, along the alignment between the calibration

shot andmonitoringwell). By assuming that the polarizationdirection

of the P-wave of themicroseismic event coincideswith its propagation

direction, receiver orientation can be accomplished by performing

polarization analysis using available calibration shots (e.g., perforation

shots, string shots, ball-drop events, or vibroseis sources at the surface)

to derive P-wave propagation direction, which can then be utilized to

FIGURE 1
(A) Sketch of a vertical borehole with a linear array of receivers. (B) Illustration of the relationship among three angles: the event back-azimuth,
the receiver orientation angle, and the polarization angle of the P-wave. (C) Schematic hodogram of particle motion. (D) Illustration of the relative
angle between receivers.
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rotate the horizontal components to the correct direction (Nakamura

et al., 1987; Menanno et al., 2013; Lagos and Velis, 2019; Huo et al.,

2021). In addition to P-waves, Rayleigh waves have also been

employed for receiver orientation (Niu and Li, 2011; Zha et al.,

2013; Wang et al., 2016; Xu et al., 2018; Ensing and van Wijk, 2019;

Takagi et al., 2019; Son et al., 2022; Yang et al., 2022). Receiver

misorientations are defined as the deviations between the empirical

and true back azimuths, and the relative-angle method by measuring

the relative azimuth angle between receiver pairs is another strategy

(Zeng andMcMechan, 2006; Grigoli et al., 2012; Zhu et al., 2018; Ojo

et al., 2019; Huo et al., 2021). The microseismic event back-azimuth

can be obtained through statistical analysis of the P-wave polarization

angles after receiver orientation (Chen et al., 2017; Meng et al., 2018;

Tan et al., 2018). When the data quality of the P-wave is poor, the

S-wave can also be applied for event azimuth estimation (Eisner et al.,

2009; Yuan and Li, 2017).

Affected by the focal mechanism and background noise,

the signal-to-noise ratio (S/N) of microseismic signals on

different receivers is usually varied, which can also be

reflected by the rectilinearity of the P-wave (Drew et al.,

2008). Conventional methods of obtaining the receiver

orientation angle from a single or several active-source

events may contain unintended errors, which can be

further transported to the event azimuth estimation.

Additionally, after receiver orientation, the event back-

azimuth estimation is also muddled because of the

differences in the recording data quality among receivers.

Apparently, more high-quality data may minimize the

uncertainties in the azimuth results and the systematic

deviation produced by a single dataset. For example, Huo

et al. (2021) incorporate high-S/N microseismic events with

unknown back-azimuths into the receiver orientation process

to improve the accuracy of the relative orientation angles

among all receivers.

In this study, by calculating the relative rotation angles

between receivers, we develop a new receiver orientation and

event back-azimuth estimation method for reducing the

orientation error and enhancing the event back-azimuth

accuracy. Firstly, we introduce the relationship between

receiver orientation and event azimuth angles. Next, we

calculate the probability density function (i.e., von Mises

distribution function) using the polarization angle and

corresponding rectilinearity of the P-wave to determine

the relative orientation angles and then the event back-

azimuths. Finally, we demonstrate the efficiency of the

proposed method through synthetic and field data tests.

Methods

In this section, we first introduce the relationship among

the event back-azimuth, the receiver orientation angle, and

the polarization angle of the P-wave, as well as the definition

of the relative orientation angle between receivers and

potential back-azimuth angles on multi-level receivers.

Then, we construct the probability density functions by

using the polarization angle and rectilinearity of the

P-wave to determine the relative orientation angle and

event back-azimuth. Finally, we establish the processing

workflow for receiver orientation and event back-azimuth

estimation.

Receiver orientation and event back-
azimuth

If the monitoring well is vertical (Figure 1A), we can assume

that the horizontal components of the receivers are in a plane

parallel to the surface. As shown in Figure 1B, we also assume

that the ‘North’ component is misorientated by degrees defined

clockwise from north. Table 1 summarizes the meaning of the

adopted symbols in Figure 1 and following text.

TABLE 1 Symbols representing the angles.

Symbol Definition Detail description

ϕ Event back-azimuth 1) ϕA and ϕE represent the back-azimuths of active-source event and microseismic event, respectively

2) ϕi(k)represent the calculated potential back-azimuth on the ith receiver of the kth event

3) ϕ′(k) represent the calculated back-azimuth of the kth event

α P-wave polarization angle 1) αA represents the P-wave polarization angle of active-source event

2) αi(k) represent the P-wave polarization angle on the ith receiver of the kth event

β Receiver orientation angle 1) βi represents the receiver orientation angle on the ith receiver. 2) β
′
irepresents the receiver orientation angle

on the ith receiver by the proposed method

Δβij Relative orientation angle between ith and jth
receivers

1)Δβij(k) represents the angle differences of the kth event

2) Δβij′ represents the calculated relative orientation angle between ith and jth receivers
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For an incoming P-wave of an active-source event with a

known location, the event back-azimuth ϕA can be determined

directly using the horizontal coordinates of the source and

receiver. Once the P-wave polarization angle αA is obtained

(Figure 1C), we can determine the receiver orientation angle β by

β � ϕA − αA. (1)

On the other hand, for a microseismic event whose location is

unknown, we can calculate the event back-azimuth ϕE by using

the estimated receiver orientation angle β and the P-wave

polarization angle αE,

ϕE � αE + β. (2)

In general, the receiver orientation angles at different

receivers are determined individually based on P-wave

polarization analysis of active-source events. However, the

data S/N may vary on different receivers and events and this

will introduce additional errors in the estimation of the receiver

orientation angles. This kind of error is difficult to avoid when

only a single or a small number of active-source events are

available.

In fact, because the back-azimuth angles on different

receivers in a vertical well are the same for every event

(Figure 1D), the relative orientation angle between any two

receivers is defined as

Δβij(k) � αj(k) − αi(k). (3)

where Δβij(k) is the relative orientation angle between the ith

and jth receivers in kth event, αi(k) and αj(k)are the P-wave

polarization angle on ith and jth receivers of kth event,

respectively. In real situations, the calculated relative angles

are never the same due to the difference in data quality

between events, but the relative angles from all events are

focused on the true angles.

If a valid relative orientation angle can be acquired, a reliable

absolute orientation angle and the relative angles can be used to

drive the receiver angle, which is expressed as

β′i � βl + Δβil′. (4)

where l denotes the reference receiver with the highest

rectilinearity or S/N of P-wave, Δβil′ is the obtained relative

orientation angle between the ith and the reference receivers.

The relative orientation angle can be obtained using the highest-

quality event in the case of a small number of events, or can be

obtained by statistical analysis of all events in the case of plenty

events.

Once the receiver orientation angle β′i is determined, the

potential back-azimuths on different receivers for a microseismic

event can be calculated as follow,

ϕi(k) � αi(k) + β′i . (5)

where ϕi(k) is the potential back-azimuth (relative to the

north) on the ith receiver of the kth microseismic event,

αi(k) and αj(k) are the polarization angle on ith and jth

receiver of kth event, respectively. For multiple receivers,

the final event back-azimuth can be determined by the

averaging ϕi(k) or choosing the one with the highest

rectilinearity value.

Measurement of the P-wave polarization
parameters

The polarization parameters of P-wave can be determined by

calculating the eigenvalues and eigenvectors of a covariance

matrix constructed using windowed waveforms around the

P-wave arrival. The covariance matrix C for the two

horizontal components is written as

C � 1
N

[ nTn nTe
eTn eTe

]. (6)

We solve the eigenproblem and obtain the eigenvalues λ1 and

λ2 (λ1 > λ2) and corresponding eigenvectors (u1, u2), in which

u1 � [ux, uy] is the eigenvector associated with λ1. According to

Flinn (1965), the rectilinearity L and the polarization angle α for

two component data can be calculated using the following

equations,

L � 1 − λ2
λ1
. (7)

α � tan−1(uy

ux
). (8)

The value of L lies in the range of 0–1, where L=0 indicates

circular polarization trajectory and L =1 indicates linear

trajectory. L characterize the linearity of the particle motion

and can also affect the reliability of α.

Von Mises distribution

The von Mises distribution is a circular normal distribution

and has been widely used to model circular data (Lark et al.,

2014). It consists of two parameters which are the mean direction

and concentration parameters. When the concentration

parameter is zero, the distribution represents a uniform

distribution over the unit circle (Lark et al., 2014). The

expression of the von Mises distribution is

f(θ; μ, κ) � eκ cos(θ−μ)
2πI0(κ) . (9)

where I0(κ) is the modified Bessel function of the first kind and

order zero, which is defined as
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I0(κ) � 1
2π

∫2π
0

eκ cos θdθ. (10)

where μ is the mean direction and κ is the concentration

parameter (Mardia and Jupp, 2000). The probability of

deviations is the same on either side of the mean direction

and decreases with increasing distance from the mean direction.

Figure 2 displays the examples of the von Mises distribution

functions computed using μ=30° and different concentration

parameters. We can see that as κ decreases, the shape of the

distribution function becomes circular. In this study, we calculate

the von Mises distribution function using L and α.

In practice, this von Mises distribution function is computed

for each event and receiver, and then summed up to formulate

one global function.

F(θ) � ∑M
m�1

fm(θ). (11)

where,M is the number of angles involved in the calculation. The

maximum of this global function is taken as the optimal estimate

of the target angle.

The proposed method

According to Eq. 3, we utilize all recorded microseismic

events to compute relative orientation angles between receiver

pairs. After rotating by these relative angles, all receivers will be

orientated in the same direction with respect to an absolute

azimuth. This absolute azimuth can be obtained by comparing

the polarization angle of a reference receiver with the geometry

angle of the active-source event. After removing the influence of

receiver misorientation, we can determine all microseismic event

back-azimuths using Eq. 5. We construct the von Mises

distribution functions to determine the relative orientation

angles by using all events and then the event back-azimuths

by using multi-level recordings. The proposed method for

receiver orientation and event back-azimuth estimation can be

described as follow:

1) The polarization angle αi(k) and the rectilinearity Li(k) are
calculated using the P-wave waveforms on different receivers

for all microseismic events.

2) Preliminary orientation angles βi (i is the receiver number)

are obtained from the active-source event, and the receiver

having the highest rectilinearity in the active-source event is

used to determine a reliable absolute orientation angle βl.

3) The relative orientation angles Δβil are determined using the

von Mises distribution functions constructed based on the

polarization angle difference μ � αi(k) − αl(k) and the

average rectilinearity κ � [Li(k) + Ll(k)]/2 of all events

recorded on ith and lth receivers. It should be noted that

during the calculation of the relative orientation angles in all

events, the relative orientation angles obtained from active-

source event in step 2 can be used to resolve the 180°

ambiguity.

4) After receiver orientation (Eq. 5), the potential angles

μ � ϕi(k)with different P-wave rectilinearity κ � Li(k) are

applied to construct the von Mises distribution functions to

estimate the kth event back-azimuth ϕ′(k). It should be noted
that the microseismic event is generally closer to fracturing

stage can be used to resolve the 180°ambiguity in the event

back-azimuth.

Numerical examples

In this section, we utilize synthetic data test to demonstrate

the reliability of the proposed method. A 30 Hz Ricker wavelet is

used as the synthetic source wavelet. Random waveform

amplitudes and Gaussian noises are applied to generate the

synthetic recordings with varying S/N. We ignore the arrival

time differences (i.e., moveouts) at different receivers in the

simulation because it has a very limited effect on determining

the event back-azimuth. The results of the proposed method are

compared with those of two other commonly used approaches,

which determine the receiver orientation angle and event back-

azimuth using the average value of the calculated angles and the

angle corresponding to the maximum rectilinearity, respectively.

The first synthetic data example illustrates the accuracy in

calculating the relative receiver orientation angle using the

FIGURE 2
Probability density function f(θ) of a von Mises distribution
with μ= 30° and three different values for κ.
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probability distribution function. 50 microseismic events at

different locations are used to generate synthetic recordings at

two receivers, and a predefined rotation angle (i.e., 30°) is adopted

to rotate the synthetic waveforms on the second receiver to

simulate the actual situation of different receiver orientation

directions in a vertical well. Figure 3A shows the waveforms

of two horizontal components of the P wave from the

50 synthetic microseismic events. We calculate the

polarization angle and the rectilinearity of the P-wave of each

event (i.e., each trace in Figure 3A) using Eqs 7, 8. The

polarization angle differences between two receivers and the

average rectilinearity values are applied to construct von

Mises distribution functions, which are then summed up to

formulate one global function (Eq. 11). Figure 3B shows the

distribution of the angle differences and the rectilinearity values

of these 50 events (the gray dots), and the polar radius coordinate

denotes the average rectilinearity of the P-wave. We calculate the

von Mises distribution functions of each event and obtained the

normalized probability distribution function (the black curve).

Note that the range of the probability density is 0–1. In this case,

the angle corresponding to the maximum (equal to 1, denoted by

the red cross) of the global function is 29.7°, which is only 0.3°

away from the true value. Without loss of generality, the above

test is repeated 100 times using synthetic data with different S/N

(i.e., 0–40 dB) to verify the stability of the proposed method. We

maintained the source locations and the predefined rotation

angle consistent in the simulations. Figure 3C shows the

results of the proposed method (the red crosses), the average

relative orientation angles at different receivers (the green

crosses), and the angles corresponding to the receivers having

the maximum rectilinearity (the blue crosses). The standard

deviations of the results of the three approaches are 0.42°,

2.65°, and 0.96°, respectively. This clearly indicates that our

method can obtain more accurate relative orientation angles.

The second synthetic data example illustrates the accuracy in

determining the event back-azimuth by the probability

distribution function. Note that different from Figure 3A,

Figure 4A shows the two horizontal components of the

P-wave of one synthetic microseismic event recorded on ten

receivers. The true back-azimuth of this event is set to 45°.

Figure 4B shows the normalized probability distribution of the

event back-azimuth. In this case, the angle corresponding to the

FIGURE 3
Comparisons of the relative orientation angle calculated by the proposed method and the conventional approaches. (A) Waveforms of the
P-wave of 50 microseismic events recorded by 2 receivers. (B) The distribution of the polarization angle differences and the corresponding
rectilinearity (the gray dots), and the normalized global probability distribution function (the black curve). The red cross indicates the angle
corresponding to themaximum probability density. (C) The results of 100 groups of synthetic recordings with different random noises. The red,
green, and blue crosses represent the results of the proposed method, the average values of the orientation angles at different receivers, and the
angles corresponding to the receiver having the maximum rectilinearity, respectively. The size of the dots denotes the P-wave rectilinearity.
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maximum (equal to 1, denoted by the red cross) of the global

function is 44.5°, which is 0.5° away from the true value. Similar to

the first synthetic test, we also repeat this test 100 times and the

results are shown in Figure 4C. It is shown that the results of the

proposed method (the red crosses) are more accurate than the

average values of the azimuths determined for all receivers (the

green crosses) and the angles corresponding to the maximum

rectilinearity (the blue crosses). The standard deviations of these

three sets of results are 0.83°, 1.04°, and 1.59°, respectively,

indicating that our method can also obtain more accurate

event back-azimuth.

Field data application

In this section, we demonstrate the performance of the

proposed method on real dataset. The real dataset was

acquired from a fractured tight reservoir in the Shengli oil

field of eastern China. A downhole array composed of

15 levels of 3-C geophones is deployed in a vertical

monitoring well at depths from 2443 to 2673 m. The duration

of the monitoring data is more than 27 h and the sampling

interval is 0.5 ms. A perforation shot is fired in a third well

located approximately 920 m northwest of the monitoring well

before the hydraulic fracturing stimulation begins. Figure 5

shows the survey geometry of the real case. A total of

521 microseismic events are detected in the monitoring data,

including 11 ball-drop events with known locations (Figure 5C).

The P-wave arrival times of the microseismic events are

determined using the joint STA/LTA-polarization-AIC

method (Tan and He, 2016), and then refined by the global

optimization method based on iterative cross-correlation (Leng

et al., 2022).

Normally, all active-source events with known locations (e.g.,

the perforation shot or ball-drop event) should be utilized for

receiver orientation. However, as shown in Figure 6, there are

clearly discrepancies in the quality of real data. To show how data

quality affects receiver orientation results, we perform receiver

orientation using two independent events with known locations,

which are the perforation shot and the first ball-drop event

(Figure 5). Figure 7 shows P-wave waveforms after moveout

correction of the perforation shot event and a microseismic

FIGURE 4
Comparisons of the event back-azimuth estimated by the proposedmethod and the conventional approaches. (A)Waveforms of the P-wave of
one microseismic event recorded by 10 receivers. (B) The distribution of the polarization angles and corresponding rectilinearity (the gray dots), and
the normalized global probability distribution function (the black curve). The red cross indicates the angle corresponding to themaximumprobability
density. (C) The result of 100 groups of synthetic event recordings with different random noises. The red, green, and blue crosses represent the
results of the proposedmethod, the average values of the angles, and the angles corresponding to themaximum rectilinearity, respectively. The size
of the dots reflects the P-wave rectilinearity.
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event, while Figure 8 shows the hodograms of two horizontal

components of these events, as well as the calculated polarization

angles and rectilinearity values at all receivers.

The receiver orientation results obtained from above two

events are listed in Table 2. Because the P-wave of perforation

shots on the 6th receiver in Figure 6 generally has the maximum

rectilinearity, we choose the 6th receiver as the reference to

calculate the relative orientation angles of other receivers. The

relative angle differences and the average rectilinearity values

from all recorded events are then utilized to construct the von

Mises distribution functions and formulate the global functions.

The relative orientation angles obtained from the perforation

shot are used to correct the calculation of the relative orientation

angles in all events for resolving the 180° ambiguity. Figure 9

depicts the polar diagrams of the relative angle differences and

the average rectilinearity values from all events at those receivers.

The relative receiver orientation angles can be obtained by

calculating the maximum values of the probability density

functions (denoted by the red crosses in Figure 9).

The results of the proposed method are compared with those

of the conventional methods which only use one active-source

event, as shown in Table 2. Conventional methods applied to two

independent active source events provide various results,

reflecting that the receiver orientation is greatly affected by

the quality of event recordings. From Table 2, it can be seen

that the maximum difference between the results obtained by the

proposed method and the conventional method using the

perforation shot is 12.2°, which can influence the accuracy of

the estimated event back-azimuth. Thus, we adopt the event

back-azimuths on different receivers after receiver orientation to

analyze the accuracy of the receiver orientation results. Figure 10

depicts the angles on all receivers acquired by the three

approaches using one ball-drop event and one microseismic

event as examples. The figure demonstrates that, when

compared with the conventional methods, the angles obtained

by the proposed method are more concentrated, suggesting that

the proposed method can more reliably determine the receiver

orientations and hence the event back-azimuth.

The azimuths of the microseismic events can be calculated by

using the von Mises distribution functions based on the angles

after receiver orientation and corresponding rectilinearities, as

shown in Figure 10. We calculate the back-azimuths of all

521 events using the proposed method, and the results are

shown in Figure 11A. We adopt a principle that the event is

closer to the perforation to resolve the 180°ambiguity in the event

back-azimuth. The variation of the event azimuth reflects the

sequencing of hydraulic fracturing stages in the horizontal well,

which is overall consistent with the azimuth trend of the ball-

drop events. Figure 11B shows the distribution of the highest

rectilinearity value of the events. The azimuth distribution of

FIGURE 5
Survey geometry of the real data case. (A) 3D view; (B) depth view; (C) planar view. The triangles represent the receivers. The stars represent the
fracturing stages. The asterisk represents the perforation shot. The blue circles represent the ball-drop locations.

FIGURE 6
P-wave rectilinearity on different receivers from the
12 active-source events. The first event is the perforation shot and
the others are ball-drop events. The blue circles represent the 6th

receiver.
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events from stages 3–7 (outlined by the blue box in Figure 11A)

diverges, this may be due to the event data quality, the generation

of the induced events around the former fracturing stages, or the

extension of the fractures to larger distances. Microseismic events

are located using the P- and S-wave arrival times and the velocity

model between treatment and monitoring wells, and then the

FIGURE 7
P wave after moveout correction. (A) P wave of the perforation shot event. (B) P wave of a microseismic event. Blue, green and red lines
represent H1-, H2-, and vertical components respectively.

FIGURE 8
Hodograms of two horizontal components from two events shown in Figure 7. Black and red lines represent the perforation shot event and a
microseismic event, respectively.
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TABLE 2 Comparison between orientation angles obtained with the conventional methods and our proposed method.

Receiver number Conventional methods (°) Method 3***(°) Result differences (°)

Method 1* Method 2** Methods 1&2 Methods 3&1 Methods 3&2

1 143.61 348.59 342.88 −4.98 −0.73 −5.71

2 326.85 338.51 325.29 −4.98 −0.73 −5.71

3 297.63 301.39 305.07 −11.66 −1.56 −13.22

4 329.41 333.91 329.76 −3.76 7.43 3.68

5 173.14 180.08 174.65 −4.50 0.35 −4.15

6 177.07 184.32 177.07 −6.95 1.52 −5.43

7 45.10 43.58 42.58 −7.25 0.00 −7.25

8 106.27 119.47 104.35 1.52 −2.51 −0.99

9 30.23 25.48 30.09 −13.20 −1.92 −15.12

10 259.35 264.52 271.55 4.75 −0.14 4.61

11 181.76 180.46 181.42 −5.17 12.20 7.03

12 115.95 127.61 111.11 1.30 −0.34 0.96

13 109.97 114.08 110.37 −11.66 −4.84 −16.50

14 171.44 178.07 171.16 −4.11 0.40 −3.71

15 153.31 163.71 162.50 −6.63 −0.28 −6.92

*Method 1: receiver orientation by the perforation shot.

**Method 2: receiver orientation by the 1st ball-drop event.

***Method 3: the proposed method.

FIGURE 9
Diagram of relative orientation angle calculation. The grey dots represent the distribution of the polarization angle differences and the
corresponding rectilinearity average, and the blue curve represents the normalized global probability distribution function. The red cross indicates
the angle corresponding to the maximum probability density. The radius coordinate denotes both rectilinearity average of the P-waves and the
normalized probability density.
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hypocentral parameters in the Cartesian coordinate system are

calculated using the event back-azimuths. We employ the

comparison of source locations by the conventional method

and the proposed method to introduce the effect of the back-

azimuth error, as shown in Figure 11C. In the conventional

method, the perforation shot event is used to correct the receiver

orientation, and the average of the P-wave polarization angle

after receiver orientation is obtained as the event back-azimuth.

We adopt a weighted standard deviation measurement of

the azimuth results to illustrate the improvement of the

proposed method for receiver orientation and event back-

azimuth estimation. The weighted standard deviation is

defined by

W(k) � 1
M

∑M
i�1
[(ϕ′(k) − ϕi(k))Li(k)⎤⎦. (12)

FIGURE 10
Distributions of the event potential back-azimuths on the 15 receivers by three approaches. (A) The back-azimuths of the 3rd ball-drop event.
The black asterisk in Figure 10A represents the true ball-drop event azimuth. (B) The back-azimuths of the microseismic event (as shown in
Figure 7A). The gray, blue, and red circles represent the results of those three methods in Table 2. The radius coordinate denotes the rectilinearity of
the P-wave. The red curve represents the normalized global probability distribution function by using the back-azimuths from the proposed
method.

FIGURE 11
(A) Distributions of the 521 microseismic event back-azimuths. The gray dots represent the distribution of the potential back-azimuth angles
after receiver orientation. The size of the dots reflects the P-wave rectilinearity. Red crosses represent the event back-azimuths calculated by the
proposed method. The blue asterisks represent the ball-drop events. (B) Distributions of the P-wave rectilinearity average values of the
521 microseismic events. (C) Comparison of the source locations of the microseismic events by the conventional method and the proposed
method.
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whereM is the receiver number, and ϕ′(k) is the calculated event
back-azimuth. ϕi(k) and Li(k) are the potential azimuth angle

after receiver orientation and the P-wave rectilinearity on the ith

receiver, respectively. If W is reduced, the calculated azimuth

becomes more dependable.

We firstly discuss the improvement of the proposed

method in receiver orientation. The orientation angles

acquired by the three methods (listed in Table 2) are used

to obtain the potential event back-azimuths on different

receivers, and the final event azimuths are also determined

using the probability density distribution. The weighted

standard deviations are then computed using the final

event azimuths, and the comparisons are displayed in

Figure 12A. It reveals that the quality of active-source

events effects the receiver orientation results, with high-

quality active-source event producing more accurate results.

Furthermore, even when employing high-quality active source

events, receiver orientation may still have unexpected and

non-negligible errors on individual receivers, as shown in

Figure 12B. When the signal-to-noise ratio of active-source

FIGURE 12
Comparisons of the azimuth results after receiver orientation using the conventional methods and the proposed method. (A) The weighted
standard deviations. The size of the dots reflects the average value of P-wave rectilinearities in each microseismic event. (B) The back-azimuth
difference. The red and blue circles represent receiver orientation angles calculated by the method 1 and 2 in Table 2, respectively.

FIGURE 13
Comparisons of the azimuth results using the conventional methods and the proposedmethod. (A) Theweighted standard deviations. The size
of the dots reflects the average value of P-wave rectilinearities in eachmicroseismic event. (B) The back-azimuth difference. The red and blue circles
represent the results determined by the average angle and the angle corresponding to the maximum of P-wave rectilinearity, respectively.
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event is poor, the average azimuth deviation may approach

4.20°, therefore, this error should not be ignored. The weighted

standard deviation distribution and the back-azimuth

differences indicate that it can reduce the influence of a

single active-source event in microseismic event back-

azimuth estimation by using events with variable qualities.

We also illustrate the improvement of the proposed

method in event back-azimuth estimation. We obtain the

event back-azimuths using three strategies, including the

average angle, the angle corresponding to the maximum

rectilinearity, and the angle corresponding to the maximum

value of the probability density in the proposed method. The

weighted standard deviations are then computed

correspondingly and compared in Figure 13A. The

weighted standard deviation distribution indicates that it

can reduce the influence of low-quality data in event back-

azimuth estimation by integrating the angle information from

multi-level receivers. By comparing the azimuth differences

produced by the conventional method with the method

presented in this study (as shown in Figure 13B), it is

shown that using high signal-to-noise ratio recordings can

increase back-azimuth accuracy.

Conclusion

In this study, we have developed a new probabilistic

method for microseismic receiver orientation and event

back-azimuth estimation. The von Mises distribution

function, which serves as the probability density function

in the new method, is constructed using the polarization

angle and rectilinearity of the P-wave and applied in the

estimation of the receiver orientation angles and event back-

azimuths. The numerical examples have demonstrated that

the proposed method has the advantage of minimizing the

unintentional error in receiver orientation by employing

high-quality events and increasing event back-azimuth

accuracy by integrating the azimuths from multi-level

receivers. We have also applied the proposed method to

the field dataset. The results show that, compared with the

conventional methods which generally utilize a single active-

source event, our proposed method can increase the accuracy

of the receiver orientation angles and microseismic event

back-azimuths.
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Current extensive seismicity in southern Sichuan Basin is ascribed to the

reactivation of pre-existing faults, as a result of prolonged fluid injection for

salt mining and shale gas development, respectively. However, the structural

framework of the region remains poorly understood. Here, we apply Vp/Vs

consistency-constrained double-difference seismic tomography to high quality

phase data from 36,314 earthquakes jointly recorded by our local array and a

regional seismic network to determine high-resolution velocity models.

Earthquake relocations reveal shallow hypocenters for the

Ms>5.0 earthquakes and two distinct seismogenic zones corresponding to

the salt mine and shale gas regions, with most induced seismic events

forming widespread lineaments some of which extend to the basement and

are remarkably similar to the fault and fracture trends interpreted on reflection

seismic and outcrops, respectively. Our 3-D crustal velocity analyses show that

seismicity beneath the Changing salt mining area is associated with a

combination of relatively low Vp/Vs (1.6–1.74) and high Vp/Vs (1.75–1.86)

expressions, while most of small earthquakes within the Xingwen shale gas

block are associated with relatively high Vp/Vs values (1.77–1.87), indicating the

earthquakes in these two areas are caused by unique inducingmechanisms. The

two moderately strong 2018 Xingwen Ms5.7 and 2019 Gongxian

Ms5.3 earthquakes in the Xingwen shale gas block are located around low

Vp/Vs. zones, suggesting they could be structurally controlled. In comparison,

the 2019 Changning Ms6.0 earthquake in the Changning salt mining area is

associated with high Vp/Vs. expression, suggesting its occurrence is related to

fluid injections. In addition, top of the crystalline early Neoproterozoic (pre-

Sinian) Sichuan basement is characterized by the 6.5 km/s Vp contour, which is
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new for earthquake tomographic studies in the region. Combined with outcrop

analysis, we are able to construct a structural framework for induced seismicity

in southern Sichuan basin, which unravels the structural architecture of induced

seismicity.

KEYWORDS

induced-seismicity, trigger-mechanism, double-difference, seismic tomography,
basement characterization, fluid injection

1 Introduction

Induced seismicity resulting from subsurface fluid injection

activities has been documented globally (Ellsworth, 2013; Lei

et al., 2020), including waste water disposal in midcontinental

United States, shale gas hydraulic fracturing in western

Canada, and shale gas development in southern Sichuan

basin. As the second largest unconventional shale gas

production area in the world, the Sichuan basin has

experienced abrupt increase in earthquake activity since the

mass production of shale gas began in 2014 (Lei et al., 2020). In

southern Sichuan basin, there are mainly three shale gas

production fields, including the Changning-Zhaotong field,

the Weiyuan field, and the Fuling field (Lei et al., 2020).

To the north of the Changning-Zhaotong shale gas field,

there is a salt mining field. In both Changning shale gas

field and salt mining field on the Jianwu syncline and the

Changning-Shuanghe anticline system (Figure 1) respectively,

a few devastating earthquakes coupled with a considerable

number of seismic events of Ms>3.0 (felt seismicity) have

been induced by both prolonged and temporary subsurface

fluid injections (Ruan et al., 2008; Sun et al., 2017; Lei et al.,

2019b; Tan et al., 2020), respectively. Prolonged injections are

mainly related to wastewater disposal and salt mining

operations and last for a couple of years to some decades

(Lei et al., 2008; Zhang et al., 2012; Lei et al., 2013). In

contrast, temporary injections are characteristic of hydraulic

fracturing at designated well pads for shale gas exploitation and

are typically carried out for only a few months (Lei et al., 2017;

Lei et al., 2019a; Meng et al., 2019; Tan et al., 2020). In the shale

gas hydraulic fracturing region, the concentration of induced

seismicity was only on a handful of hydraulic fracturing sites

(Lei et al., 2020), similar to the observation of Atkinson et al.

(2016) on other zones.

A swarm of induced earthquakes with magnitudes reaching

Ms6.0 battered Changning and the neighboring towns (Lei et al.,

2019b; Yi et al., 2019; Liu and Zahradník, 2020) after the

2018 Xingwen Ms5.7 main shock that was interpreted to have

resulted from hydraulic fracturing for shale gas production (Lei

et al., 2019a). This rise in the magnitude and frequency of

induced seismicity has aroused increasing concern of potential

risks in shale gas exploitation and salt mining operations in this

region. Therefore, further investigation of the source

mechanisms, source locations and subsurface velocity

architecture are imperative to understand induced seismicity

in the Changning-Xingwen region.

Neoproterozoic Sichuan basement rocks constitute

portions of the Precambrian Igneous complex, which

controls structural deformation and spans the entire Sichuan

Basin with outcrop equivalents that bound the edges of the

basin (Liu et al., 2021). Therefore, to better understand the

cause of earthquake activity in southern Sichuan basin, it is

important to have detailed comprehension of seismicity

induced by fluid injection and improved understanding of

the structural morphology of the characteristic down-to-

basement faults. Previous research works by Lei et al. (2017),

Lei et al. (2019a), Meng et al. (2019) and Tan et al. (2020) were

primarily focused on earthquake location and focal mechanism

determination. Lei et al. (2017), Lei et al. (2019a) and Yi et al.

(2019) mainly utilized the conventional cut-and-paste (CAP)

inversion method to calculate the centroid depths and focal

mechanisms of some moderate to strong earthquakes.

However, while centroid depths and focal mechanisms are

helpful for understanding the relationship between induced

seismicity and fluid injection activity, they do not provide the

accurate structural framework for the occurrence of induced

seismicity. InSAR data have been used to infer that the

Changning anticline is characterized by a single seismogenic

fault (Wang S. et al., 2020), which is highly unlikely given the

several faults that deform the anticline (Figure 1C). Recently,

Wang et al. (2022) applied InSAR inversions to define three

seismogenic faults beneath the Jianwu syncline, however, they

could only achieve resolution accurate to 10 by 10 km, which is

lower than the 5 by 5 km resolution achieved by the earthquake

tomographic inversion of this study.

In general, accurate characterization of the structural

framework controlling seismicity beneath a seismogenic zone

results from detailed interpretation of seismogenic faults from

reflection seismic profiles, tomographic velocity models and

accurately relocated earthquake lineaments. Unfortunately,

only very few seismic reflection profiles are publicly available

(e.g., Liu et al., 2021). There exist, however, quite a number of

tomographic studies that investigate parts of or the entire

Sichuan basin. Wang et al. (2013) utilized ambient noise

tomography to obtain S-wave velocity model beneath the

entire Sichuan basin with spatial resolution only as good as

~50 km by 50 km within our study area. At this resolution, only

regional scale velocity features are imaged, with detailed reservoir
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scale features essentially muted out. Up to now, the most

prominent study that covers the entire Sichuan basin is the

study by Wang et al. (2016), which incorporated a suite of

geological and geophysical data to obtain three-dimensional

seismic velocity structure beneath the Sichuan basin. At this

resolution, basin-scale geologic features are imaged including the

structure of the crystalline Sichuan basement. However, detailed

field or reservoir scale structural imaging is lacking in most parts

of the basin due to the poor coverage of sparsely distributed

seismic reflection profiles and seismic events.

FIGURE 1
(A) Topographic map of Sichuan basin showing area studied and prominent thrust structures. (B) Distribution of relocated epicenters (dots),
seismic stations (triangles), and shale gas hydraulic fracturing well pads (diamonds) within the target study area. Beachballs with red and blue tension
quadrants represent focal mechanisms of Ms>5.0 earthquakes after Wang et al. (2020) and Lei et al. (2019b) within the salt mine and shale gas regions
respectively. Red squares denote outcrop locations while blue circles represent zones of co-seismic surface deformations. (C) Tectonic and
geological settings map of southern Sichuan basin, modified from Zuo et al. (2020). Red lines with outward pointing arrows are anticlines, blue lines
with inward pointing arrows are synclines, black lines are mapped seismic-scale faults and black dashed lines are previously unmapped faults. (D)
Cross-section showing the structural architecture of the Xingwen shale gas and Changning salt mining zones corresponding to Jianwu synclinal
region and Changning-Shuanghe anticlinal system respectively, modified from Wang S. et al. (2020). (E) Vertical view of relocated earthquakes. (F)
Magnitude distribution with depth. (G) Magnitude distribution with time.
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In the southern Sichuan basin, there has been continuous

influx of body wave arrival time data, derived from continuous

monitoring of natural earthquakes and induced seismicity with

different networks of seismic stations. This continuous flow of

data has led to several seismic studies within the region, many of

which focused on seismicity location and focal mechanism

determination. A couple of researchers have recently utilized

varying portions of this data flow to determine velocity models at

these scales (Long et al., 2020; Zhang et al., 2020; Zuo et al., 2020).

Pioneering seismic tomographic study of the region is that of

Long et al. (2020), which used 5,252 events recorded on relatively

sparse seismic stations and 1-D initial velocity model developed

from large-scale tomographic results of Zhao and Zhang (1987).

They only obtained Vp (P-wave velocity) and Vs (S-wave

velocity) models with spatial resolution of 10 km by 10 km in

the longitude and latitude directions, which showed that

generally seismicity in this region is predominantly situated in

high Vp and high Vs zones, suggesting them to be structurally

controlled. Later work by Zhang et al. (2020) utilized a dataset of

8,818 seismic events, which were recorded by a local array of

39 seismic stations between the first of December 2018 and the

fourth of July 2019 to determine the velocity structure of the

region with similar resolution as Long et al. (2020). They

obtained similar Vp and Vs results with Long et al. (2020)

with the exception of characterization of low Vp associated

with high Vs and low Vp/Vs expressions beneath the southern

part of the studied region that correlates with the Jianwu syncline

from 4 to 16 km depths. These low Vp zones were inferred as

evidence of presence of deep fluids (Zhang et al., 2020), thereby

suggesting fluid induced mechanism for these earthquakes.

However, this inference is highly skeptical without

commensurate low Vs expression, which corresponds to high

Vp/Vs ratio. Given that the region has undergone extensive fluid

injection involving over 200 wells (Figure 1B) since 2014, it is

imperative that the Vs model should reflect features related to

fluid distribution. Recently, Zuo et al. (2020) used a more

complete version of the regional data set made up of

24,640 earthquakes, recorded by an array of 86 seismic

stations to determine the crustal velocity structure of the

region up to 5 km by 5 km resolution in the longitude and

latitude directions. Their results show obvious high Vs and

low Vp/Vs ratio features for seismicity within the region,

suggesting no fluid influence on seismicity. Even though these

studies imaged the subsurface at this important seismogenic

environment, they could not resolve structures clearly

representative of fluid influence and their resolvability of local

geologic features is also limited due to sparse catalog travel time

data utilized in the tomography and the 1-D initial velocity

models that were derived from poorly resolved travel time

tomography (Zhao and Zhang, 1987) and ambient noise

tomography (Lei et al., 2017) results, which are not as

accurate as vertical seismic profiles or reflection seismic

velocities. We posit that velocity structure beneath this region

can be improved by utilizing a more precise 1-D starting velocity

model and incorporating denser local catalog data, in the absence

of adequate well and seismic data that is essential for the

construction of a reliable 3D velocity model.

In this study, we aim at enhancing earthquake locations and

consequently better constrain velocity models to improve

understanding of the structural framework for induced

seismicity in the Changning region, southern Sichuan basin

by incorporating local temporary seismic stations. Basically, we

combined earthquake catalog data of Zuo et al. (2020) and

arrival times recorded by temporary local stations in Tan et al.

(2020). More accurate relocations of induced seismicity and

crustal velocity structure are determined by Vp/Vs consistency-

constrained double-difference seismic tomography (Guo et al.,

2018). In addition, we describe the fault and fracture patterns of

the Paleozoic sedimentary strata exposed in southwestern

Sichuan Basin. These investigations combine to provide

better understanding of the controlling structural framework

for induced seismicity in the Changning region. This study also

supplies the first map of basement structure of southern

Sichuan basin from the inverted velocity model, and

provides direct indication of linkage between basement

structure and induced earthquakes, as well as reveals likely

avenues for the migration of injected fluids upward into the

overlying siliceous quartz-rich Tertiary rocks resulting in the

shallow initiation point of the main shock, and downward to

the basement complex from the injection intervals, which are

an indispensable tool for rapid generation of induced

seismicity.

2 Tectonic and geologic setting

2.1 Basin evolution

The Sichuan Basin is a large intracontinental basin in

western China, which has undergone various structural

transformations in the vicinity of the Tibetan Plateau (Liu

et al., 2012). It is situated on the western edge of the south

China craton (Figure 1A), which is bounded in the northwest by

the Yangtze platform and in the southeast by the Cathaysia

block (Liu et al., 2012; Liu et al., 2017; Liu et al., 2021). Recently,

the basin has gone through a transformation from a

comparatively stable craton stage to an unstable stage that is

marked by convoluted deformation (Wang, 1989). The late

Paleozoic to middle Mesozoic Qinling Orogenic belt detached

the basin from the North China craton (Meng and Zhang, 2000;

Dong et al., 2011), while the fold and thrust belts of

Longmenshan-Daliangshan separated it from the Mesozoic-

Cenozoic eastern Tibetan Plateau (Roger et al., 2010; Liu et al.,

2013). According to Meng and Zhang (2000), the Qinling

orogenic belt underwent an extensive tectonic past and is

thought to have experienced collision along the Shangdan
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suture area of middle Paleozoic and the Mianlue suture area of

middle to late Triassic periods. The subsequent two-phase

collision of the North and South China cratons along the

Mianlue suture area applied serious effect on the

development of the Sichuan Basin (Liu et al., 2005) and

entire Yangtze terrace (Liu et al., 2021).

Following the Early Triassic, two major tectonic periods were

responsible for the structural configuration of the eastern Tibetan

Plateau: Late Triassic thrusting that is composed of sinistral

strike-slip motions (Chen and Wilson, 1996; Deng et al., 2012;

Yan et al., 2018) and Cenozoic fault reactivations under E-W

compression (Burchfiel et al., 1995), which grew into prevailing

deformation that involved the crystalline basement beneath the

southern part of Longmenshan and Daliangshan (Deng et al.,

2018; Tian et al., 2018). Wilson et al. (2006) and Royden et al.

(2008) described the reactivation of preexisting structures as the

product of late Cenozoic eastward or southeastward thrust of the

Tibetan Plateau. Slip on these preexisting structures is believed to

be the source of frequent microearthquakes (Ms<3) and several

moderate-to-major (Ms>3) earthquakes in the Sichuan basin.

FIGURE 2
Comparison of stratigraphic sections of the Changning anticline and Jianwu syncline, modified from He et al. (2019). Note: red solid line
represents cross-section profile, while blue circles denote wellhead positions.
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Therefore, the tectonostratigraphic configuration of the Sichuan

basin is believed to be mainly controlled by thrust belts

that circumscribe the basin, which comprises the

Longmenshan belt to the west, the Dabashan to the north, the

Eastern Sichuan belt to the east, and the Kangdian belt to

the south (Wang et al., 2016) (Figure 1A). Within the basin,

however, structural deformation is mainly characterized by a

complex array of thrust and normal faults, with some strike-slip

counterparts (Liu et al., 2021).

2.2 Stratigraphy

The Sichuan basin was developed from Sinian to Late Triassic

period, during which a tenuous, deficient sequence of marine and

non-marine debris accumulated (Burchfiel et al., 1995; Jia et al.,

2006). The basin transformed to completely non-marine in the

course of the Late Triassic Indosinian orogeny, as a result of the

closing of the Paleo-Tethys (Chen andWilson, 1996). During the

orogenic deformation, the Sichuan foreland basin was formed by

the thrusting of the Longmenshan toward the basin (Burchfiel

et al., 1995; Li et al., 2003; Jia et al., 2006). The areal extent of the

resultant Sichuan basin is approximately 190,000 km2 and it

contains Sinian to Quaternary sediments with thickness

ranging from 5 to 12 km (Zhai, 1992; Li et al., 2005). Strata

overlying Cretaceous rocks in the southwestern part of the

Sichuan basin mostly consists of Early Tertiary sediments that

are composed of fluvial lacustrine red siltstones and sandstones

(Burchfiel et al., 1995; Chen and Wilson, 1996; Zhou et al., 2002;

Jia et al., 2006), which are highly rich in quartz and silica content.

Situated to the west, however, is a thin foreland basin exclusively

composed of Quaternary sediments (Burchfiel et al., 1995;

Hubbard and Shaw, 2009; Hubbard et al., 2010), which

developed in the Late Cenozoic as a result of rapid uplift of

the Longmenshan area (Kirby et al., 2002). Most outcrop

occurrences of sedimentary strata within the basin are of

Mesozoic to Cenozoic age (Wang et al., 2016). Figure 2 shows

the stratigraphic column of three wells Ning 201 and 203 drilled

within the Shale gas block in the Jianwu syncline and Ning 2,

which was drilled on the salt mine block in the Changning

anticline. These stratigraphic sections reveal younger formations

that correspond to low Vp and Vs values in the Jianwu area, in

contrast to the older formations associated with high Vp and Vs

values that characterize the Changning anticline area, thus,

buttressing the effect of complex tectonic deformations on

strata within the southern Sichuan basin. At the base of the

Sichuan sedimentary sequence is the faulted crystalline

Neoproterozoic basement complex that developed during the

complex magmatic tectonic evolution known as the Yanshanian

orogeny (Li and Li, 2003; Yan et al., 2003). Outcrop equivalents of

these crystalline basement rocks can be seen at the outskirts of the

basin, and reveal the characteristic fault framework of the

basement.

2.3 Seismic activity

The southwestern Sichuan Basin (our study area) is

bounded on the west by Qinghai-Tibet block, and on the

south by the mountain transition range of the Yungui Plateau

(Figure 1A). The most prominent structural feature is the

Changning-Shuanghe compound anticlinal system that trends

in the NWW to SEE direction, and primarily consists of

Baixiangyan-Yutan, Shuanghe, Changning and Tenglong

anticlines (Figures 1C,D). The Changning Ms6.0 earthquake

of June 2019 occurred on the Changning anticline within our

study area (Figures 1B,C). Higher (steeper) limb dips

characterize the northern part of the Changning-Shuanghe

anticlinal system, as opposed to lower (gentle) limb dips

observed in the southern part (Zuo et al., 2020), and

Cambrian strata are revealed with in the core. Axial

direction of the maximum horizontal principal stress was

determined by Lei et al. (2019a) to be 77o within the

Changning-Shuanghe anticlinal system. The foreshocks and

aftershocks of Ms6.0 Changning earthquake mostly occur

along the Changning anticlinal axis. The extended source

region of southwestern Sichuan basin is believed to be

bounded by the northeast-southwest trending active major

Huayingshan fault, which is characterized by thrust and

dextral strike-slip movements (Deng et al., 2003). The

crestal and limb regions of the Changning-Shuanghe

anticlinal systems are believed to be predominantly

characterized by several mini high-angle thrust and normal

faults (Wang et al., 2016; Liu et al., 2021). On the other hand,

focal mechanisms determined by Lei et al. (2017) show the

shale gas region within the Jianwu syncline, as having

maximum horizontal principal stress direction of

approximately N100oE to N115oE, which conforms to

results gotten from in-situ rock stress measurements by

Wang et al. (2016). The Jianwu and Luochang synclines are

large with gentle intrasynclinal structural morphology and

Jurassic aged topmost layer (Zuo et al., 2020). Nevertheless,

two major earthquakes—2018 Xingwen Ms5.7 and

2019 Gongxian Ms5.3 shocks occurred on the Jianwu

syncline (Figures 1B,C), whose seismogenic structures were

well constrained by InSAR inversions (Wang et al., 2022).

These synclines are mostly characterized by high-angle large

scale tectonic faults and fractures that are well developed and

trend mainly in the EW, NE and NNW directions (Shi et al.,

2019; Wang et al., 2022).

3 Data and methodology

3.1 Data availability

We utilize combined seismic phase arrivals from 86 regional

stations of Zuo et al. (2020) and 10 local stations (Figure 3). The
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regional stations recorded phase arrivals of about

34,296 individual seismic events within our study area from

the first of January 2015 to the 31st of August 2019 (Zuo et al.,

2020). Our local stations on the other hand, recorded seismic

phase arrivals of about 15,126 earthquakes from the 19th of

January 2019 to the 10th of December 2019.

Epicentral distances to be considered during data selection

was set to be below 150 km, similar to Zuo et al. (2020), and data

with substantial deviations from the time-distance curves were

effectively removed (Figure 4A). The earthquakes are determined

based on the requirement of at least 8 phase arrivals, both for the

regional and local arrays. Analogous to the regional data from

Zuo et al. (2020), the distance between any given event pair was

set under 10 km for calculating the event-pair differential times,

with a maximum number of neighbors of 20. Overall, phase data

of 36,314 (24,640 regional array and 11,674 local array)

earthquakes with high signal-to-noise-ratio were selected for

seismic tomography. The chosen regional array seismic events

consisted of 161276P-wave absolute, 161515S-wave absolute,

148818S-P absolute, 1575384P-wave relative, 1569036S-wave

relative and 1447388S-P relative arrival data, while those of

the local array included 83577P-wave absolute, 74724S-wave

absolute, 65546S-P absolute, 2196834P-wave relative,

1988838 S-wave relative and 1916632S-P relative arrival data.

Detailed explanation of the meaning of the data and inversion

terminologies utilized in this section can be found in the manual

for TomoDD (Zhang and Thurber, 2003; Zhang et al., 2009). We

utilized an initial one-dimensional (1-D) velocity model that was

developed as an average based on vertical seismic profile (VSP)

from a well located about 40 km northwest of our study area and

modelled reflection seismic P-wave velocity data within our study

area from Wang et al. (2016), see Figure 4B. Average velocity

values were utilized for depths shallower than 5 km, while the

velocity values of the deeper levels were determined solely from

the results of the modelled reflection seismic P-wave velocity

data. This initial velocity model was preferred to the 1-D initial

velocity model used by Zuo et al. (2020) (Figure 4B), which was

proposed by Lei et al. (2017) based on results of seismic ambient

noise tomography, because VSP and reflection seismic velocities

are superior and more accurately express the geology of the area.

As expected, the initial residuals are smaller and better

distributed around 0 s, with an improved approximate

Gaussian distribution (Supplementary Figure S1). By adopting

a fixed Vp/Vs of 1.73, which is an average crustal Vp/Vs estimated

for the Sichuan basin by Lei et al. (2017), we derive the initial one-

dimensional Vs model. This Vs model was preferred to the Vs

from the VSP in order to ensure that fluid changes resulting from

widespread injection in the region are better constrained, without

the introduction of velocity artifacts, which would have arisen

from the sole use of the Vs fromVSP. Generally, P-wave velocities

FIGURE 3
Coverage of seismic ray paths involved in the joint inversion. Black dots represent seismic events recorded by the combined array. Black
triangles represent regional array stations used in Zuo et al. (2020), and white triangles represent our local stations, respectively, while red lines
represent ray paths.
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are less affected by injected fluids, which significantly alter

S-wave velocities. Therefore, Vp is more suitable for regional

velocity estimation than the Vs.

3.2 Seismic tomography method and
model resolution analysis

To carry out seismic tomography, we use a recently updated

version of the original double difference seismic tomography

(TomoDD) method developed by Zhang and Thurber (2003),

Zhang and Thurber (2006). The tomoDD method inverts the

three-dimensional Vp, Vs models and earthquake locations using

both absolute and relative arrival times, which can improve

earthquake locations and velocity structure in the source area.

Zhang et al. (2009) improved the TomoDD method by expanding

it to include inversion of Vp/Vs with S-P (Ts-Tp, where Ts is the

arrival time of S-wave and Tp is the arrival time of P-wave)

differential data. Due to the relative paucity of S-P data, the

recovered Vp/Vs model, though reliable, lacked good resolution

(Guo et al., 2018). On the other hand, dividing inverted Vp model

by the corresponding Vs model can also yield a Vp/Vs model.

Unfortunately, Vp/Vs model inverted in this manner is highly

unreliable, even though it typically shows higher resolution,

making the resultant model very challenging for any

meaningful geologic interpretation (Eberhart-Phillips, 1990;

Huang et al., 2014). This issue is resolved by the Vp/Vs model

consistency-constrained double-difference seismic tomography

(TomoDDMC) by Guo et al. (2018). TomoDDMC utilizes

P-wave, S-wave and S-P data to obtain reliable Vp/Vs model

with enhanced resolution, as well as generate accurate Vp and

Vs models and earthquake relocations. Therefore, we employ

TomoDDMC to carry out joint inversion of the 3-D Vp, Vs

and Vp/Vs models in the southern Sichuan basin.

Taking into consideration the distribution of stations and

recorded seismicity, we set the coordinate origin at 104.8oE and

28.3oN, which corresponds to the center of our study area. The

X-axis is oriented to the east while the Y-axis is oriented to the

north. Along the X-axis and Y-axis, grid nodes were situated

at −300, −60, −45, −30, −20, −15, −10, −5, 0, 5, 10, 15, 20, 30, 45,

60, 300 km, similar to Zuo et al. (2020). The grid nodes for the

Z-axis in the downward vertical direction were densely situated

at −100, −2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 30, 200 km depths below the mean sea level (MSL).

Coverage of seismic ray paths are displayed in Figure 3.

TomoDDMC applies two major constraints—damping, which

constrains model slowness and earthquake relocations, as well as

smoothing that only constrains the model slowness. The L-curve

method for establishing trade-offs for model solution norm and

data residual norm, developed by Eberhart-Phillips (1986) was

applied to obtain the optimal damping and smoothing

parameters for the joint inversion. Figure 5 shows the

determined optimal damping and smoothing parameters for

inversion to be 800 and 80, respectively.

The reliability and quality of tomographic inversion models

are typically estimated from checkerboard resolution test, which

FIGURE 4
(A) Time–distance curves of P-wave phase data in red and S-wave phase data in blue. Black lines represent the linear fitting of travel time against
hypocentral distance, and the green lines denote tolerance limits for data with large deviations. Sg and Pg denote direct S- and P-wave arrivals,
respectively. (B) Initial 1D P-wave velocity model. Blue line denotes the model used in this study, while red line denotes that used in Zuo et al. (2020).
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was originally developed by Humphreys and Clayton (1988), as

well as from restoration test developed by Zhao and Hasegawa

(1993). First, we constructed a synthetic checkerboard velocity

model that comprised of alternating perturbations to the initial 3-

D Vp and Vp/Vs models of ±5% and ±10% respectively. The

corresponding alternating perturbations of the synthetic Vs

checkerboard model were computed from the synthetic Vp

and Vp/Vs models to be approximately +5.5% and −4.5%.

Then, we applied the pseudo-bending ray tracing algorithm by

Um and Thurber (1987) to calculate the synthetic phase arrivals,

using our checkerboard model and the same distribution of

seismicity (catalog data) and stations within the study area.

The final step involved inversion of the synthetic input dataset

with identical inversion parameters as were utilized in the

inversion of the real data. On the other hand, the restoration

test was similar to the checkerboard test but synthetic travel times

are calculated using the seismicity relocations and Vp, Vs and Vp/

Vs models inverted with TomoDDMC. The checkerboard

resolution test and restoration test results are displayed in

Figure 6 and Supplementary Figure S2, respectively. It is clear

that our inversion is of high resolution (5 km by 5 km) and

reliability from 0 to ~13 km, with the exception of some

peripheral areas. Supplementary Figure S3 shows that

resolution deteriorates with finer horizontal grid spacing of

2.5 km by 2.5 km, therefore, confirming that the best

obtainable resolution with the current dataset is 5 km by 5 km

in the horizontal directions. The final root-mean-square (RMS)

travel time residuals are well minimized from 1.5 s to 0.2 s after

inversion, with the comprehensive initial and final RMS values

for all travel time data being 0.944 s and 0.056 s, respectively. The

residuals are roughly distributed around 0 s and have an

approximate Gaussian distribution, indicating that the final

models can fit the data (Figure 7).

We employ the bootstrapping uncertainty analysis (Efron

and Gong, 1983; Efron and Tibshirani 1991), which is based on

data resampling to estimate the uncertainties associated with our

relocated earthquakes. In this study, we randomly resample our

catalog phase arrival data 50 times, and subsequently utilize

TomoDDMC to invert the 50 sets of resampled data and obtain

their corresponding seismicity relocations. This is followed by

computation of the uncertainties of the relocated seismicity in

longitude, latitude and vertical directions. We also examined the

spatiotemporal location uncertainties associated with the sparse

stations of the 2015–2017 events and the dense stations of the

2018–2019 events. The histograms of the estimated location

uncertainties in different directions and periods for the

relocated seismicity in this study are presented in Figure 8

and Supplementary Figures S4, S5.

4 Results

4.1 Seismicity relocation and focal
mechanisms

Application of TomoDDMC resulted in the relocation of a

total of 35,039 earthquakes. The relocated seismicity is

distributed into clusters both in plan and vertical views, as

seen in Figures 1B,E and the subsequent profiles, indicating

improved relative event locations. Likewise, incorporation of

FIGURE 5
Trade-off curves. (A) L-curve for selection of damping parameter. (B) L-curve for selection of smoothing parameter. Optimal parameters
selected are enclosed within the red ovals.
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FIGURE 6
Inverted Vp, Vs and Vp/Vs checkerboard resolution for (A) 1–4 kmdepth slices. (B) 7, 10, 13 and 16 kmdepth slices. The checkerboard size is 5 km
by 5 km in the horizontal; directions.
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FIGURE 7
Histograms of travel time residuals before and after inversion. Note that white and blue bars denote residuals before and after inversion
respectively. (A) Full P-wave. (B) Full S-wave. (C) P-wave residuals for the seven major earthquakes. (D) S-wave residuals for the same major
earthquakes in c.
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absolute arrival times of new additional data in the seismic

tomography resulted in well resolved absolute seismic

locations, with RMS relocation uncertainties estimated from

bootstrapping method as low as 0.102, 0.119 and 0.274 km in

longitude, latitude and vertical directions. Based on Guo and

Zhang (2017), the location uncertainties estimated in this way

mostly refer to relative event locations. Further examination

shows location uncertainties as low as 0.085 km (longitude),

0.09 km (latitude) and 0.217 km (vertical) for

2018–2019 events, and 0.152 km (longitude), 0.179 km

(latitude) and 0.349 km (vertical) for 2015–2017 events. It is

clear that 2015–2017 events have larger location errors in

comparison with the comprehensive data, while the

2018–2019 events have smaller location errors, suggesting that

the uncertainties obtained with the complete data set can be

interpreted as a tradeoff result. It is also important to note that

location uncertainties for the 2015–2017 events are comparable

to the complete data set, suggesting that the effect from the

sparsely recorded events of 2015–2017 can be ignored.

Enhanced seismic relocations delineate very clear planar

features of traces of active preexisting faults that characterize

the Changning salt mine and shale gas regions, many of which

are believed to be sub-seismic. Based on the combined data

from our local array and the regional array, seven major

induced earthquakes (Ms>5) within the study area are

accurately relocated (Figure 1B). The relocation results of the

Changning Ms6.0 main shock that is said to be fluid induced

(Ruan et al., 2008; Zeng et al., 2014; Zhu and He, 2014; Sun

et al., 2017; Lei et al., 2019b; Yi et al., 2019; Liu and Zahradnik,

2020), the associated Ms > 5 aftershocks situated within the

Changning salt mining area and the Ms5.3 Gongxian and

Ms5.7 Xingwen earthquakes that occurred within the shale

gas block are listed in Supplementary Table S1. Given the

consistency in the centroid depth, spatial orientation and

rupture distribution of the source faults of the 27 January

2017 Ms5.1 Xingwen earthquake, 16 December

2018 Ms5.7 Xingwen earthquake and the 3 January

2019 Ms5.3 Gongxian earthquake, determined from centroid

moment solutions (Lei et al., 2017; Lei et al., 2019b; Yi et al.,

2019) and recent InSAR inversions (Wang et al., 2022), we

utilize their results in comparatively assessing the uncertainties

of our results (Supplementary Table S2). We find that the focal

depth results determined by our study agree with the shallower

centroid depths obtained for these major earthquakes with

thrust, strike-slip and thrust focal mechanisms, respectively.

This buttresses the enhanced resolution and location accuracy

achieved in this study, which is also supported by the trivial

relative location errors computed as a result of utilizing a robust

data set and seismic tomographic method of 5 by 5 km higher

resolution. The spatio-temporal distribution of earthquake

magnitude in Figures 1F,G show that majority of seismicity

beneath the study area have Ms<3.0 and are spread between

0 and 27 km, while the events with Ms>3.0 occur shallower

between 0 and 9 km.

4.2 3-D Vp, Vs and Vp/Vs models

4.2.1 Depth slices
We show depth slices of Vp, Vs and Vp/Vs models and

earthquakes plotted within 1 km above and below the depth

slices in Figure 9. The tomographic results reveal crustal

structures characterized by pronounced velocity

heterogeneities within 0–10 km depth range, which correlate

with the background regional geology. The 1-km depth slice

shows a high velocity region beneath the Changning-Shuanghe

anticlinal system. This is flanked by low velocity regions that can

be related to mini basinal areas with younger sediments in the

NE, NNW and NW, which correspond to the Xiangling, Fujiang

and Luochang synclines, respectively. The Vs structure at this

depth generally shows similar trends beneath the anticlinal and

synclinal regions as described for Vp structure. The high Vp trend

continues beneath the Shuanghe anticline up to 6 km depth

(Figure 9 and Supplementary Figure S6), beyond which, a

southwest trending low Vp expression appears (Supplementary

Figure S6). This low Vp expression is bounded to the east and

FIGURE 8
Comprehensive seismicity relocation uncertainties in different directions estimated by the bootstrapping method. (A) X (Longitude). (B) Y
(Latitude). (C) Z (Vertical).
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west by high Vp expressions. Similarly, the anticlinal region is

mainly characterized by high Vs expression up to 7 km depth

(Figure 9). Below 7 km, relatively homogeneous Vs structure that

is characterized by sparse seismicity is observed (Supplementary

Figure S7). Structural result of Vp/Vs shows segmentation at 1 km

depth slice, with low Vp/Vs and high Vp/Vs expressions on the

eastern and western parts of the Changning-Shuanghe anticline,

respectively (Figure 9). This segment-style Vp/Vs expression is

observed up to 2 km (Supplementary Figure S8). At 4 km slice,

low Vp/Vs expression covers the Changning-Shuanghe anticlinal

region up to 7 km depth. Below 7 km, the Vp/Vs structure

becomes less heterogeneous and predominantly characterized

by low Vp/Vs expression (Supplementary Figure S8).

Within the Jianwu synclinal region (shale gas region), low Vp

and Vs expressions are revealed at 1 km depth slice (Figure 9).

Predominantly, rocks of high Vp expressions are revealed

beneath the Yuhe anticline up to 16 km, while beneath the

Jianwu syncline rocks with typically low Vp expressions in

comparison with Vp expression of rocks at the same depth

level beneath the Changning anticlinal system are mostly

revealed up to 4 km (Figure 9 and Supplementary Figure S6).

On the other hand, low Vs expression is revealed within the

Jianwu syncline (shale gas region) up to 4 km depth, beyond

which Vs is mostly high (Supplementary Figure S7). The

resultant Vp/Vs model reveals low (~1.6) to moderately high

Vp/Vs expressions (~1.75) within the region at 1 km depth slice.

Also, very high Vp/Vs expression (~1.76–~1.88) is revealed at

3 km (Supplementary Figure S8) and 4 km (Figure 9) depth

slices. Below 4 km depth, low Vp/Vs feature dominates in the

east, while the west is characterized by high Vp/Vs (Figure 9 and

Supplementary Figure S8). This Vp/Vs trend continues up to

13 km depth slice, which reveals an east to west trending high Vp/

Vs expression in the eastern part of the Jianwu syncline

(Supplementary Figure S8).

4.2.2 Vertical cross sections
Ten vertical cross-sections along strategic profiles outlined

on Figure 1B are presented in this section. The corresponding

FIGURE 9
Depth slices of Vp, Vs and Vp/Vs models at 1, 3, 5 and 7 km. Black dots represent the vertical projection of earthquakes within 1.0 km on both
sides of horizontal section, while blue circles on Vp/Vs slice at 1 km depth are zones of co-seismic surface deformations. The projected epicenters of
the Ms6.0 earthquake and its Ms>5.0 aftershocks, Gongxian Ms5.3 earthquake and Xingwen Ms5.7 earthquake are denoted by stars with colors
matching the legend in Figure 1B, while their respective focal mechanisms are displayed on the sides.
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surface topography of each profile is also shown. The profiles

show systematic structural velocity changes that are consistent

with Wang et al. (2016), Long et al. (2020), but differ in

several ways from Zhang et al. (2020) and Zuo et al. (2020),

as well as imaged deeper than the 10 km threshold of Long et al.

(2020).

Along profile AA’ (Figure 10A), we observe low Vp and Vs

features up to ~3 km depth. The relatively flat morphology of the

FIGURE 10
Cross-sections of Vp, Vs and Vp/Vs models along different vertical profiles within Changning salt mining region. (A) AA’. (B) BB’. (C) CC’. (D) DD’.
(E) EE’. (F) FF’. Black dots are horizontal projections of seismic events within 2.5 km on both sides of the profile. The green, purple, yellow and blue
stars on profile AA′ represent the aftershocks with Ms > 5, while the red star behind the blue star represents the Ms 6.0 Changning main shock. The
corresponding focal mechanisms for the Ms>5.0 earthquakes are also represented. See Figure 1B for profile directions.
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northwest to southeast trending Changning anticline is visible on

the Vp expression of this profile.We observe layers of low and high

seismic velocities (Vp andVs) below 3 km depth. It can also be seen

that the earthquakes correlate with moderately high to high Vp,

high Vs and very low Vp/Vs zone. This zone shallows upward from

about 10 km depth in the northwestern part (A) to about 2 km

depth in the southeastern part (A’). The Changning Ms6.0 main

shock is situated at the transition zone between highVp/Vs and low

Vp/Vs expressions. It obviously occurs in a contrasting structural

environment, similar to the Ms>5.0 aftershocks.

Profiles BB′, CC′, DD′, EE′ and FF′ that run in the southwest

(SSW) to northeast (NNE) direction, perpendicular to AA′ are
evenly spaced by ~4 km and are displayed in Figures 10B–F. These

results evidently show that the seismic events are predominantly

situated within zones characterized by high Vp andVs, or along the

edge of low Vp and Vs expressions, which are associated with low

Vp/Vs zones. The earthquakes displayed on profile BB′ clearly
show earthquake clusters that extend up to about 5 km depth, with

the source zone of the Changning mainshock and associated

Ms5.3 aftershock characterized by low Vs and high Vp/Vs

expressions. Profile CC′ shows earthquakes that form two

separate lineaments that dip towards the northeast (Figure 10).

On the other hand, profile DD′ shows earthquakes that form two

separate lineaments, one of which is densely populated with

seismic events and the other that is characterized by sparse

seismicity. Both clusters have varying dips that are similar to

the lineaments on profile EE’ (Figure 10). Along profile EE′, the
relocated earthquakes evidently form two lineaments similar to

profile DD′, with the lineament with more seismic events dipping

to the south at very high angles (~85o), while the other dips to the

north at lower angles (~40o). In addition, the Ms5.1 and

Ms5.4 aftershocks of the Changning mainshock align with the

northeast dipping lineament of relocated earthquake clusters. On

profile FF’, the relocated earthquakes are distributed along two

nearly vertical lineaments. The profile also shows that the

southernmost lineament is wider than the northernmost

lineament. In general, the anticlinal morphology of the

Changning anticline is clearly visible on the Vp models along

these five profiles, to the extent that the steeper NNE structure is

evident.

Profile KK′ extracted within the Changning shale gas block,

shows earthquake clusters that are generally situated within

moderately low Vp and Vs zones, which typically correlate to

low Vp/Vs zones (Figure 11A). MM′ profile reveals a western part

with earthquake distributions and velocity structure of similar

characteristics to those of KK′ described above (Figure 11B). On

the other hand, profile NN′ and eastern part of MM’ show

earthquake clusters that are characterized by moderately

lowered Vp and low Vs expressions, which correspond to

moderately high Vp/Vs expression (Figures 11B,C). However, a

few planar seismic clusters are situated within and around low Vp/

Vs zones at the distal flanks of the moderately high Vp/Vs

expression. These profiles show that lineaments of relocated

earthquakes with varying dips and strikes are clearly resolved

by seismic tomography.

5 Discussions

Several upper crustal-scale earthquake relocation and

tomographic studies, which utilized P- and S-wave phase

arrival data have been executed for Sichuan Basin (Chen

et al., 2017; Improta et al., 2017; Chen et al., 2018; Wang and

Kao, 2019; Long et al., 2020; Tan et al., 2020; Zhang et al., 2020;

Zuo et al., 2020). These analyses were carried out with distinct

data sets, different methods and varying model resolutions. The

high-resolution crustal velocity structure obtained from this

study with good model resolution up to 16 km depth, revealed

accurate velocity characteristics of the structural controls on

induced seismicity within the southern Sichuan Basin. The

results show low Vp and Vs expressions beneath the mini

basinal and synclinal areas up to 1 km depth (Figure 9),

which are believed to be composed of younger sedimentary

rocks (Figure 1C). These mini basinal areas include the

Xiangling, Fujiang, Luochang and Jianwu synclines

(Figure 1C). In contrast, higher Vp and Vs expressions are

revealed beneath the Changning-Shuanghe anticline system

and Yuhe anticline up to 1 km depth, as a result of the older

more consolidated rocks elevated to this level by compression. To

our understanding, this is the first study that incorporates

additional catalog arrival data from local stations with very

short epicentral distances (4–40 km) to the Changning

Ms6.0 main shock and aftershocks compared to previous

studies, to obtain high resolution velocity structure beneath

the southern Sichuan basin and accurately relocate the highly

destructive Ms6.0 Changning earthquake, associated aftershocks

and general seismicity beneath the studied region. The estimation

of in situ Vp/Vs ratios using the Wadati diagram (Wadati, 1933)

and the method by Lin and Shearer (2007) that is based on

differential times of cross-correlated waveforms, yielded low and

high Vp/Vs ratios for selected clusters within the salt mining field

on the Changning-Shuanghe anticline system (Supplementary

Figure S9) and the shale gas field on the Jianwu syncline

(Supplementary Figure S10), respectively, which correlate with

the Vp/Vs expressions resolved by seismic tomography, thereby

validate our inverted velocity models and relocated earthquakes.

Compared to velocity models of Zuo et al. (2020), overall, our

Vp and Vs models are relatively lower above ~5 km depth and

higher below ~5 km depth (Supplementary Figure S10, 11). This is

mainly because the two studies use different initial velocity models

(Figure 4B). For the same regional dataset, the RMS travel time

residual for the initial 1-D models used in Zuo et al. (2020) is

0.7391 s, while it is 0.3297 s for the initial 1-D models used in this

study. This indicates that the 1-D initial models used in this study

are more appropriate for the area in the absence of reliable 3-D

model, which is preferable, given its robustness.
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Next, we interpret the resultant velocity models and discuss

the characteristic connection between structural deformations,

relocated seismicity and prolonged fluid injection beneath the

southern Sichuan Basin. Our principal conclusions are described

in detail based on geologic, tomographic, outcrop, induced

seismicity and reflection seismic observations.

5.1 Earthquake locations for large induced
earthquakes in southwestern Sichuan
basin

Due to the usage of local stations, our study yielded enhanced

earthquake relocation results. The Changning Ms6.0 earthquake

was relocated at hypocenter of 1.6 km, with aftershocks of

moderate to major magnitudes that span 1.7 km–9.1 km

(Figure 10). The focal depth of this main shock is obviously

shallower than the corresponding centroid depth of 3 km

computed by Yi et al. (2019) using the cut-and-paste method.

The hypocenter estimated from TomoDDMC represents the

rupture initiation point using P- and S-wave first arrivals, while

the centroid depth represents the average depth of the rupture area

of the earthquake. Therefore, a hypocenter relocated at 1.6 km for

the Changning main shock is consistent with deeper centroid

depth. Display of the relocated epicenters of the Changning

Ms6.0 earthquake and associated Ms>5.0 aftershock sequence

on the Changning geologic map (Figure 1C) reveals alignment

with some previously interpreted faults, thereby suggesting that the

sequence ruptured several faults in an interchanging style

following the mainshock. Previous InSAR inversions show that

the Changning Ms6.0 mainshock initiated at depth shallower than

3 km, with the sequence rupturing a single seismogenic fault in the

SE-NW direction (Wang S. et al., 2020), which is extremely

improbable, given that several faults segment the Changning

anticline (Liu et al., 2021). However, our interpretation of

geometry comprising of multiple faults is further supported by

the postulation of rupture geometry involving a previously

mapped major fault and slip on a shallow blind fault for the

Changning mainshock by Yang et al. (2020).

Similarly, the obtained centroid depths of 3 km and 1.8 km for

the Xingwen Ms5.7 and Gongxian Ms5.3 respectively, using the

generalized cut-and-paste method (Lei et al., 2019b), validates the

corresponding deeper hypocenters of 5.6 km and 5.9 km from this

study, respectively (Figure 11A). Likewise, our results are

consistent with the 1.0 km and 1.6 km centroid depths obtained

from InSAR inversions by Wang et al. (2022). In order to further

validate our earthquake relocation results, we compared the arrival

times predicted by our velocity model with the picked arrival times

on individual waveforms, and great matching is observed

(Supplementary Figure S11).

5.2 Structural velocity relationship with
relocated seismicity in Changning salt
mining zone

From the depth slices and vertical cross-sections of Vp, Vs and

Vp/Vs images, our results show that the Changning Ms6.0 main

shock occurred at the transitional area from low-Vs region to high-

Vs region that is characterized by moderately high Vp/Vs

FIGURE 11
Cross-sections of Vp, Vs and Vp/Vs models along different vertical profiles within Xingwen shale gas exploitation region. (A) KK’. (B)MM’. (C)NN’.
Black dots are horizontal projections of seismic events within 2.5 km on both sides of the profile. The lemon green and pink stars on profile KK′
represent the Ms 5.3 Gongixan and Ms 5.7 Xingwen earthquakes, respectively. See Figure 1B for profile directions.
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expression (Figure 10). The depth slice at 1 km through our

velocity model remarkably outlines two zones marked by low

Vs that corresponds to high Vp/Vs expression and high Vs that

corresponds to low Vp/Vs expression, which correlate with the

Yutan anticline and the Changning-Shuanghe anticline

respectively. The characteristic high Vp/Vs expression beneath

the Yutan anticline at this level could be due to considerably

lowered Vs, possibly resulting from accumulation of severe water

loss resulting from long term injection of fluids by salt mining

operation in the region. In addition, given that the Yutan and the

Changning-Shuanghe anticlines dip towards the northwest, it is

highly likely for injected fluids to migrate to the northwestern

Yutan anticline, thus significantly lowering Vs. On the other hand,

the high Vs expression beneath the Changning-Shuanghe anticline

that corresponds to low Vp/Vs expression is believed to be

representative of the highly brittle Cambrian to Ordovician

aged formations beneath the regions, which have not been

influenced by injected fluids due to segmentation by northeast-

southwest trending Changning faults and northwestern fluid

migration. Our result is partly consistent with the preceding

research by Zuo et al. (2020), which found that the Changning

Ms6.0 earthquake is situated at the edge of a high velocity

expression (see Supplementary Figures S10, S11 for the

differences), and agrees with extreme water loss reported to be

associated with decades long dissolution salt mining in the region

(Ruan et al., 2008; Sun et al., 2017; Lei et al., 2019b; Yi et al., 2019;

Liu and Zahradnik, 2020). Similarly, while studying the

significance of tomographic edge zones for large earthquakes in

Taiwan, Wang and Kao (2019) reached the conclusion that major

earthquakes are located within the transition zone from highVp/Vs

to low Vp/Vs expression. Likewise, the Changning

M>5 aftershocks are also located within structural velocity area

that is analogous to the Changning Ms6.0 main shock (Figure 10).

Generally, seismicity beneath the Changning-Shuanghe anticlinal

system in the Changning salt mining region is associated with

zones of relatively high Vp and high Vs expressions that mainly

correspond to a dipping significantly low Vp/Vs area (Figure 10).

The high Vs and low Vp/Vs expressions correspond to zones that

are predominantly composed of highly fractured brittle Cambrian

to Ordovician aged formations, which can more easily accumulate

stresses and thus favor induced seismicity (Lei et al., 2020). This

scenario is similar to the tomography study in the San Jacinto fault

zone of southern California, where seismicity is clearly associated

with low Vp/Vs expressions (Fang et al., 2019). This dipping low

Vp/Vs area determined from TomoDDMC is further corroborated

by estimated Vp/Vs value of 1.62 fromWadati diagram and in-situ

Vp/Vs value of 1.62 estimated by the method of Lin and Shearer

(2007) using the clustered events located in the low Vp/Vs area

(Supplementary Figure S9).

In addition, our results show a high Vp/Vs area that correlates

with moderately high Vp and low Vs zones that extends up to

~4 km depth (see depth slices at 1–4 km in Supplementary Figures

S6–S8 and Figure 9, as well as cross-sections in Figure 10A), and is

relatively centralized on profile AA′, but occurs to the northeastern
part of the profiles taken perpendicular to AA’ (Figure 10). This

zone suggests possible evidence of formations that have been

influenced by migrated fresh water resulting from severe water

loss due to extensive prolonged injection through several deep

wells, within 2.7–3 km interval for salt mining (Lei et al., 2020).

Thurber et al. (1995) and Chiarabba and Amato (2003) postulated

that shear forces diminish abruptly towards the uppermost end of

a fault that terminates within a zone characterized by significant

Vp/Vs increase, resulting in upward cut-off of rupture. Similarly,

Doi et al. (2013) concluded that an environment characterized by

low Vs and relatively high Vp/Vs would significantly inhibit the

progress of earthquake ruptures. Figure 10A shows low Vp/Vs

expression to the southeast of the Changningmain shock and high

Vp/Vs zone to the northwest of the main shock that extends from

roughly 10 km–25 km along profile AA’. The northwestern high

Vp/Vs zone correlates with zones of co-seismic InSAR observations

and slipmodels documented byWang S. et al. (2020), which found

that the Changning Ms6.0 main shock resulted in major

deformations from surface to ~3 km depth. Similarly, zones of

co-seismic surface deformations of the Changning Ms6.0 main

shock determined from field mapping by Jiang et al. (2020),

correspond to the edges of the northwesterly high Vp/Vs

expression. Figure 1B shows location of the areas that

experienced co-seismic surface deformations after Jiang et al.

(2020), which are also projected on the Vp/Vs values at 1 km

depth slice and are associated with edges of high Vp/Vs

expressions, directly above the mainshock and the

Ms5.4 aftershock. We observe that this very high Vp/Vs zone

that extends up to about 11 km in the northwestern direction is

mostly without co-seismic surface deformations, except at its edges

directly above the mainshock and the Ms5.4 aftershock, where a

few closely spaced co-seismic surface deformations occur (Blue

circles in Figure 1B andVp/Vs at Z=1 km in Figure 9). Considering

the clear correlation between the high Vp/Vs expression associated

with the Changning Ms6.0 mainshock (This study) and the

distribution of co-seismic surface deformations of the

Changning Ms6.0 earthquake (Jiang et al., 2020; Wang S. et al.,

2020), we infer the rupture associated with the Changning

Ms6.0 earthquake to be mostly confined within the low Vp/Vs

zone dipping in the northwest direction, which coincides with the

northwestward rupture direction determined by Li et al. (2020),

with the exception of the zones directly above the mainshock and

the Ms5.4 aftershock that are characterized by major faults. The

shallow hypocenter of the Changning main shock, associated slip

and presence of these major faults are believed to have contributed

to the localization of co-seismic surface deformations only in these

two zones. Therefore, we posit that the high Vp/Vs zone

predominantly acts as an effective upward terminator of

rupture, thereby yielding no co-seismic surface deformations,

except for regions characterized by seismically active faults.
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5.3 Structural velocity relationship with
relocated seismicity in Xingwen shale gas
block

Within the Changning shale gas block, high-resolution

velocity models and seismic relocations reveal the

characteristic connections between small seismic events and

variations in velocity structure. In general, the relocated

earthquakes are profoundly distributed into various clusters,

many of which are linear in nature (Figure 11). In general,

the seismic events occur as lineaments with high dip angles

that substantially agree with the high angle fractures and faults

previously interpreted in the region. However, several lineaments

of the relocated earthquakes show varying strikes, in comparison

with the prior interpreted faults. Therefore, we suggest them to be

sub-seismic faults or fractures.

In Figure 11, most small seismic events appear to be

situated in low Vs zones and are associated with relatively

high Vp/Vs expressions in the central part of the Xingwen

shale gas block around latitude 28.1° and longitude 104.9o,

likely indicating that they are induced by the high fluid

pressures caused by fluid injections for hydraulic fracturing

within the zones (Figure 9 and Supplementary Figure S8).

From in-situ Vp/Vs estimation by the method of Lin and

Shearer (2007), high Vp/Vs zone imaged from TomoDDMC

also shows relatively higher Vp/Vs (Supplementary Figure S8),

supporting the association of seismicity and high Vp/Vs

expressions, thereby strengthening the interpretation of

these earthquakes as fluid induced. However, we notice that

some events are located in relatively low Vp/Vs areas around

this high Vp/Vs zone (Figure 9 and Supplementary Figure S8),

For example, in the zone around latitude 28.15° and longitude

105.0°, the seismicity is associated with relatively low Vp/Vs

values, similar to the results over a small area covering two

hydraulic fracturing well pads in Tan et al. (2020). It is also

noticed that the Ms5.3 Gongixan and Ms5.7 Xingwen

earthquakes are associated with relatively low Vp/Vs

expressions (Figure 11). This suggests that low Vp/Vs areas

in the depths around 5 km represent zones that could act as

asperities for moderately strong earthquakes induced by

hydraulic fracturing.

Similarly, Chen et al. (2017), Chen et al. (2018) and Zuo

et al. (2020) suggested that the existence of fluid-filled fractures

could yield low velocity expressions around hydraulic

fracturing zones. Our results largely agree with previous Vp

and Vs models obtained by Long et al. (2020), as well as those of

Zuo et al. (2020), but with some notable differences. For

example, in contrast to the velocity models by Long et al.

(2020), Zhang et al. (2020) and Zuo et al. (2020), the

shallow subsurface (up to ~4 km depth) in our model is

evidently characterized by low Vp and Vs expressions that

correlate with low velocity sedimentary strata within this

zone. In addition, inverted 3D subsurface magnetic

susceptibility model by Wang J. et al. (2020) found evidence

of intrusion of the Neoproterozoic basement rock only at about

15 km depth, not at shallow regions as imaged in Long et al.

(2020), Zhang et al. (2020) and Zuo et al. (2020).

5.4 Inferred subsurface structural
architecture and Sichuan basement
characterization

We carried out field work that focused on

characterization of the fracture and fault systems in

sedimentary outcrops of the Mesozoic to Cenozoic aged

formations within the southern part of the studied region

(see the red squares in Figure 1B for location of outcrops).

FIGURE 12
Mesozoic to Cenozoic sedimentary outcrops within the
Xingwen shale gas region with numerous high-angle fractures of
dips that are predominantly >40o, interpreted to be surface
equivalents of the deeper well developed thrust and oblique
fault zones. (A) Outcrop location 1. (B) Outcrop location 2.
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The exposures reveal numerous high angle fracture networks,

many of which exhibit brittle shear features (Figure 12).

These brittle shear indicators are prevalent in shear zones

characterized by intense rotational tectonic deformation,

such as the Sichuan basin (Wang et al., 2016; Lei et al.,

2020), which includes our study area. Analysis of the

fractures showed thrust and oblique reverse faults to be

predominant with a few oblique normal faults that have

slight displacements of 2–21 cm.

Even though majority of the fractures are broadly

distributed, we discovered various distinct zones of severe

deformation with numerous cramped fractures. However,

both damage zones predominantly exhibit conjugate shear

fracture sets, orderly increment of fracture frequency as the

center is approached, dense arrangement of several parallel

and bifurcating fractures with miniature local gouges,

mineralized fractures and hierarchical fracturing with

reverse slip components (Figure 12). Therefore, we

interpret these deformation zones as the outcrop

equivalents of the deep-seated thrust, normal and strike-

slip faults within the Sichuan sedimentary column, and

thus posit that the Sinian Dengying Formation (target for

salt mining) and Silurian Longmaxi Formation (target for

shale gas exploitation), as well as the Tertiary formations (cap

rocks) overlying them are highly fractured and faulted. Our

interpretation stems from previous works that correlate

subsurface faults with their analyzed outcrop counterparts

(Segall and Pollard, 1983; Kolawole et al., 2019). It is evident

FIGURE 13
Characterization of Sichuan Basement and subsurface fault structures. (A) Cross-section of Vp, Vs and Vp/Vs models along PP′ profile showing
basement structure with 6.5 km/s Vp contour. Black dots are horizontal projections of seismic events within 2.5 km on both sides of the profile. (B)
Seismic interpretation of reflection seismic profile alone PP′, modified from He et al. (2019). Thick black lines represent interpreted seismic faults,
while blue thin lines represent inferred sub-seismic faults illuminated by the earthquake lineaments.
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from surface (outcrop) and subsurface characterizations of

faults and fractures that fracture density and intensity of

deformation are maximal at the center, but reduces away

from the fracture or fault core (Barton and Zoback, 1992;

Sagy et al., 2001).

Our newly obtained high-resolution earthquake locations

and Vp, Vs and Vp/Vs models can also be used to characterize

the subsurface fault and basement structures beneath the

seismically active regions that cover a 4,900 km2 area,

which includes the Changning salt mining and Xingwen

shale gas zones. As mentioned, the high-resolution

relocated earthquake epicenters are spatially distributed as

clusters that form numerous obvious lineaments, some of

which align with previously interpreted fault traces. Similar

lineament features that no doubt align with some faults

interpreted on reflection seismic profile are displayed by

the jointly inverted hypocenters (Figures 13A,B).

Therefore, interpretation of these lineaments as traces of

seismically active faults is reasonable (e.g., Kolawole et al.,

2019). This interpretation is further buttressed by the trivial

spatial and temporal location uncertainties determined for

the 2018 to 2019 seismic events and also for the 2015 to

2017 events, which represent the majority of the down-to-

basement lineament clusters. On that note, we interpret the

unaligned lineaments as sub-seismic fault traces that are

newly illuminated by our relocated hypocenters.

Given the growing induced seismicity beneath the Sichuan

Basin, and knowing that slip on basement penetrating faults

potentially result in large magnitude earthquakes (Lu et al.,

2021), delineation of the basement architecture is of utmost

importance. In this study, we estimate the top of the Sichuan

basement with the 6.5 km/s P-wave velocity contour

(Figure 13A), which was inferred from integrated 3D

reflection seismic and well data assisted velocity model by

Wang et al. (2016). We went further to extract the depth

values of the 6.5 km/s Vp contour along the grid lines and

performed enhanced contouring on them to generate the depth

structure map of top of basement rocks beneath the

southwestern Sichuan Basin (Figure 14). The

basement structural map shows superb agreement with

existing large scale geologic features in the basin, such as the

Changning-Shuanghe anticlinal system, Jianwu syncline,

Xiangling syncline, Tenglong anticline, Luochang syncline

and Yuhe-Junlian anticlinal system (Figure 1), which are

respectively underlain by high, low, low, high, low and high

basement morphologies (Figure 14). Overall, the

crystalline basement shows P-wave speeds between 6.5 and

7.3 km/s and an undulating top structure with depths ranging

FIGURE 14
Depth structure map of top of basement rocks beneath our study area showing induced seismicity associated with the basement, as well as
structural high and low areas that significantly agree with local geology.
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from 10.2 km in the shallow parts to 13 km in the deeper zones.

It can be clearly seen that the earthquakes have been induced

within the basement and along some basement faults, most of

which are concentrated in the Yuhe-Junlian anticlinal system

(Figure 14). The deep basement characterization presented here

corresponds to the sedimentary foredeeps of the western

Longmenshan thrust belt that are composed of Late Triassic

to Cretaceous terrigeneous clastics (Wang et al., 2016), and are

consistent with their result of top of basement structure depth

ranging from 9 to 12 km within southwestern Sichuan basin.

Our results are likewise supported by the 3D subsurface

magnetic susceptibility model by Wang J. et al. (2020),

which found that the southwestern Sichuan Basin is covered

by 10–14 km thick non-magnetic sedimentary rocks of

Neoproterozoic to Cenozoic period that overly the magnetic

pre-Sinian (early Neoproterozoic) Sichuan basement, and are

relatively in agreement with the 8 km and 10 km top of

basement depth derived from the velocity structure inverted

from receiver function of seismic stations ROC and PAL

respectively, situated between 100 and 120 km northeast of

our study area near Chongqing in the Sichuan basin (Wang

et al., 2012). Superimposition of the structural morphology of

the top of the basement on the corresponding Vs and Vp/Vs

models along profile PP’ reveal obvious high Vs and relatively

high Vp/Vs characteristics of the Sichuan basement in this

region. The enhanced characterization of the Vp, Vs, Vp/Vs

and depth structure of the Sichuan basement presented in this

study is new for earthquake tomographic studies in the region

at remarkably high-resolution of 5 by 5 km in longitude and

latitude directions, and we posit that dense seismicity data

significantly contributes to improved imaging resolution in

earthquake tomography.

6 Conclusion

In this study we present new high-resolution induced

seismicity relocations, Vp, Vs and Vp/Vs structures of the

upper crust down to 16 km beneath the southern Sichuan

basin, using the Vp/Vs consistency-constrained double

difference seismic tomography method and extensive high-

quality combined phase data of 36,314 earthquakes from our

local array and the regional array. These data sets were used

to unravel the structural velocity control on induced

seismicity beneath the Changning salt mining and

Xingwen shale gas regions in the basin. The Changning

Ms6.0 main shock and the Changning Ms5.3 aftershock are

relocated within the shallow subsurface, above the target

Dengying Formation (salt rock), at the transitional area

from low-velocity to high-velocity structure that is

characterized by moderately high Vp/Vs expression, while

the other three major aftershocks of Ms5.1, Ms5.4 and

Ms5.6 that likewise occurred on the Changning-Shuanghe

anticlinal system are characterized by low Vp/Vs expressions.

Generally, seismicity beneath the Changning-Shuanghe

anticlinal system in the Changning salt mining region is

associated with zones of relatively high Vp and Vs

expressions that mainly correspond to an inclined

significantly low Vp/Vs area. Within the Xingwen shale gas

exploitation area, the Xingwen Ms5.7 main shock and

Gongxian Ms5.3 main shock are located around low Vp/Vs

expressions, indicating that moderately strong earthquakes

in this region could be structurally controlled. For most of the

small earthquakes in the Xingwen shale gas block, they are

associated with relatively high Vp/Vs expressions, which

may indicate regions where seismicity is induced by excess

pore fluid pressure due to hydraulic fracturing. In general, the

relocated earthquakes are profoundly distributed into various

lineaments with dips and strike directions that partly align

with previously interpreted faults, suggesting illumination

of previously unrecognized pre-existing and potentially sub-

seismic faults.

Our results also reveal a crystalline basement complex at the

bottom of sedimentary strata, which shows P-wave speeds

between 6.5 and 7.3 km/s and has an undulating top

structure that conforms with local geology and ranges from

10.2 km in the shallow parts to 13 km in the deeper zones

(Figure 14). Detailed structural architecture of the early

Neoproterozoic (pre-Sinian) Sichuan basement beneath the

Sichuan basin has not been previously resolved by

earthquake tomographic studies. A noteworthy observation

from this integrated structural evaluation is the clear

characterization of down-to-basement lineaments, which are

reasonably interpreted as reactivated fault traces beneath the

Xingwen hydraulic fracturing area (Figures 10, 11, 13). This

serves as a direct indication of the linkage between the Silurian

shale, which is the target formation for hydraulic fracturing for

shale gas production, and the basal Sichuan basement

structures. Where such fluid migration pathways exist, they

can promote seismicity generation by prolonged fluid injection.

Therefore, we speculate that the Sichuan basement could be

susceptible to extensive earthquake occurrence resulting from

the reactivation of pre-existing and potentially sub-seismic

basement faults and/or fractures.
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A modern digital seismic network, with many stations optimally distributed on the
earthquake causative seismic zone, enables detection of very low magnitude
earthquakes and determination of their source parameters. It is essential to
associate to such kind of networks procedures to analyze the huge amount of
continuously recorded data for monitoring the space-time-magnitude evolution
of natural and/or induced seismicity. Hence, the demand for near-real-time,
automated data collection and analysis procedures for assisting seismic
network operators in carrying out microearthquake monitoring is growing. In
response to this need, we designed a computational software platform, TREMOR,
for fast and reliable detection and characterization of seismicity recorded by a
dense local seismic network. TREMOR integrates different open-source
seismological algorithms for earthquake signal detection, location, and source
characterizations in a fully automatic workflow. We applied the platform in play-
back mode to the continuous waveform data recorded during 1 month at the
Japanese Hi-net seismic network in the Nagano region (Japan) and compared the
resulting catalog with the Japan Meteorological Agency bulletin in terms of
number of detections, location pattern and magnitudes. The results show that
the completeness magnitude of the new seismic catalog decreased by 0.35 units
of the local magnitude scale and consequently the number of events increased by
about 60% with respect to the available catalog. Moreover, the fault plane
solutions resulted coherent with the stress regime of the region, and the Vp/Vs
ratio well delineated the main structural features of the area. According to our
results, TREMOR has shown to be a valid tool for investigating and studying
earthquakes, especially to identify and monitor natural or induced micro-
seismicity.

KEYWORDS

seismic monitoring, micro-seismicity, earthquake detection and location, source
parameter, seismic network, computational platform, Nagano, Japan
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1 Introduction

Automatic detection, location, and source characterization of
small magnitude events are challenging tasks for seismic
monitoring, both in active fault zones and in areas of
underground resources exploitation. A reliable and fast
characterization of natural and/or induced seismicity is indeed
crucial for seismic hazard analyses, and an a priori condition for
correctly managing field operations in exploitation areas (Oye and
Roth, 2003; Tomic et al., 2009; Goertz-Allmann et al., 2011;
Yukutake et al., 2011; Zollo et al., 2014; Grigoli et al., 2017; Li
et al., 2019; Lomax and Savvaidis, 2019; Verdon et al., 2019). Given
recent technological developments, the availability of real-time and
continuous data from local, dense networks has significantly
increased, allowing detection of ultra and micro earthquakes
(M ≤ 0) and building of complete seismic catalogs with
magnitude down to very low, even negative, values (Poiata et al.,
2016; De Landro et al., 2019). The comprehensive study of micro-
seismicity can provide a valuable description of the geological
medium properties and earthquake related processes in the
investigated crustal volumes, such as for instance the
identification and geometrical characterization of active fault
structures (Shearer, 2002; Hauksson and Shearer, 2005; Lin et al.,
2007; De Landro et al., 2015; Adinolfi et al., 2019; Battimelli et al.,
2019; Adinolfi et al., 2022), the study of the regional stress field (De
Matteis et al., 2012; Terakawa, 2017; Maeda et al., 2020; De Matteis
et al., 2021), the small-scale variability of faulting style, stress and
strength (Prieto et al., 2004; Hardebeck, 2006; Syracuse et al., 2010;
Adinolfi et al., 2015; Stabile et al., 2012; Festa et al., 2021), and the
assessment of seismic hazard (Schorlemmer and Wiemer, 2005;
Bernard et al., 2006; Emolo et al., 2011). Such achievements have led
to an increasing demand for managing and analyzing large amounts
of seismic data, mostly consisting of small-magnitude seismic events
with signals comparable to or even below the noise level, for which
analysts’ manual operations are unfeasible (Yoon et al., 2015; Perol
et al., 2018; Mousavi et al., 2019; Scafidi et al., 2019; Scala et al.,
2022). Seismic monitoring is moving towards the development of
fully automated and robust processing approaches, able to exploit
the nowadays available huge amount of continuous data and to
speed up seismic analyses, which are important for seismic risk
assessment and reduction practices (Spallarossa et al., 2021a).

In this work, we present a novel AuTomatic, iteRativE, Modular
computational platform for mOnitoring micRo-seismicity
(i.e., TREMOR1), and its application to the Nagano microseismicity.
TREMOR integrates different open-source seismological algorithms for
detecting, locating and characterizing very small earthquakes in a fully
automatic way (Figure 1). Innovatively, TREMOR provides, together
with the standard estimates of earthquake locations, the local, moment,
and energy magnitudes, fault plane solutions and the VP/VS ratio at
each recording station, as a function of space and time with the aim of
monitoring the medium properties.

We applied the platform to the continuous waveforms recorded
during May 2011 at 25 stations of the Japanese Hi-net seismic
network (https://doi.org/10.17598/NIED.0003) (Obara et al., 2005)
located in an area of about 70 km × 75 km in the Nagano region.
This area was selected considering: 1) the high station density, with
mean station spacing of about 10 km; 2) the high rate of micro-
seismicity (more than 100 events per month); and 3) the high quality
of waveform recording (since most stations are in boreholes). The
platform performance is evaluated by comparing its results with
respect to the Japan Meteorological Agency (JMA, https://www.jma.
go.jp/jma/indexe.html) catalog obtained with the same network.

2 Automatic monitoring platform

The computational platform TREMOR is designed using a
Python modular architecture (version 3.6.9), in which each step
of the data processing is performed by a specific module. The
software block diagram is shown in Figure 1. The main outputs
of the analysis are: 1) an earthquake catalog, which contains the
time, location, and magnitudes of earthquakes, together with
auxiliary information such as phase readings, fault plane
solutions and strong motion parameters; and 2) a catalog of
earthquake waveforms which contains the seismic traces,
windowed around the origin time, of the seismic events plus
other information including the seismic station coordinates and
the earthquake time, location, magnitude, and phase readings.

The innovations of TREMOR are represented by the estimation
of: 1) the earthquake source parameters, 2) the ground motion and
3) the medium properties. In fact, unlike other software used for
seismic monitoring, TREMOR calculates energy and moment
magnitudes and focal mechanism automatically. The estimation
of these parameters for micro-seismicity represents a significant
advance towards a complete characterization of the seismic source.
Moreover, TREMOR provides ground motion estimates in terms of
peak ground velocity (PGV) and acceleration (PGA) with the aim to
give more accurate metrics relevant in earthquake engineering and
seismic hazard studies. Finally, TREMOR calculates the Vp/Vs ratios
to gather information on the physical properties of the medium,
which are very useful for studying the influence of fluids in
generating earthquakes.

In the following we present a brief description of the methods
used in the different platform modules, especially the innovative
ones of TREMOR. More details on the platform architecture and
moduli interactions can be found in the Supplementary Material.

2.1 Earthquake detection

Earthquake detection is carried out following the coherence-
based approach proposed by Adinolfi et al. (2020). The detection
module performs a time-shifting and stacking of characteristic
functions computed on seismic traces recorded at different
stations, aiming to identify and preliminarily locate earthquakes
inside a pre-defined spatial grid of potential source locations. In this
module, only the S-wave arrivals are used for the detection. Then,
the module classifies detected seismic events as real or false based on
the presence of a minimum number of triggered stations, their

1 TREMOR is the advanced version of AMEDASC, the Automatic Micro-
Earthquake Detection And Source Characterization software platform,
developed as part of a research project funded by ENI-UNINA
(Copyright © 2019-2021 ENI-UNINA). The modules of focal mechanism
and Vp/Vs ratio computation are not provided in AMEDASC.
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distances from the epicenter, and the coherence of their arrival times
(see Heimann et al., 2017; Adinolfi et al., 2019).

2.2 Phase picking

The picking of P- and S-wave arrival times is based on the
algorithm of Ross and Ben-Zion (2014) using the triggered stations
from the Earthquake Detection Module. Specifically, the P-pick is
performed by requiring the exceedance of a threshold of the STA/
LTA characteristic function around the theoretical P-wave arrival
time. The S-pick is performed by searching the maximum point of
the kurtosis derivative function.

2.3 Probabilistic earthquake location

This module implements the procedure proposed by Zollo et al.
(2021) for event locations following a probabilistic approach based on
the P- and S-phase picks and the travel-time grids generated by the
NLLoc software (Lomax et al., 2000; http://alomax.free.fr/nlloc). The
module gives as output the earthquake location and a map of the PDF
distribution with the maximum likelihood hypocenter. The location
errors are defined by considering the 31% and 68% significance levels of
the probability density function (PDF), which corresponds to ±1σ.

2.4 Energy magnitude

This module exploits an approach proposed by Picozzi et al.
(2017) for earthquake early warning purposes and extended to
monitoring applications by Picozzi et al. (2018, 2019), and
Spallarossa et al. (2021b). For each record, it obtains an estimate
of the apparent energy by integrating the S-transform instantaneous
spectrum, after correcting it for the geometrical spreading. Then, the
event radiated energy is computed as the average among single
station estimates. The corrective factor for geometrical spreading is
set in the configuration file. In addition, this module measures peak
ground velocity (PGV) and acceleration (PGA) for the three
component recordings.

2.5 Moment magnitude

With the aim of determining the seismic moment (M0) and
the moment magnitude (Mw) of an earthquake, this module
exploits the time evolution of the P-wave amplitude as proposed
by Colombelli et al. (2014, 2015), and Nazeri et al. (2019). The
logarithm of the P-wave peak (acceleration and velocity)
amplitude is measured on the vertical component of
recorded waveforms, in expanding time windows after the
P-wave arrival, and after correction of the amplitude for the

FIGURE 1
Workflow of the processing scheme implemented in the computational earthquake monitoring platform. Computational modules inside the
program are shown.
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FIGURE 2
Location map of the study area (A, B) and epicentral map of the JMA earthquakes used as reference catalog in this study (C). (A) Location of the area
of interest, Nagano prefecture, along the ISTL line. The yellow contoured area is the location of the area plotted in the (B) and (C) panels (modified after
Panayotopoulos et al., 2016). (B) The blue rectangle (70 km × 75 km) shows the location of the volumetric grid of potential hypocenters investigated in
this work, the red rectangle delineates the target area (40 km × 40 km) used for the final selection of events. (C) Circles depict micro-seismicity
recorded by the Japanese seismographic network Hi-net (yellow triangles) during May 2011 occurred within the target area [red square in (B)]. This area is
the region best covered by the selected seismic network stations. The earthquake locations are from the JMA catalog. The sizes and colors of the circles
are coded according to the magnitude and depth of the earthquakes, respectively.
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geometrical spreading. Corrective factors are set in a
configuration file.

2.6 Focal mechanism

This module inverts the observed, absolute initial P-wave peak
amplitudes, corrected for the geometrical attenuation effect, and the
P- polarities to estimate focal mechanisms in a Bayesian framework
(Tarantino et al., 2019). Data for the focal mechanism estimation are
selected using an SNR threshold, which is set in the configuration file
along with the minimum number of readings to perform the
estimation.

2.7 VP/VS ratio

This module evaluates the average VP/VS ratio along the ray
paths to each seismic station from observations of the difference
between P- and S- arrival times divided by the P-wave travel time

from the source to the station (Wadati and Oki, 1933; Kisslinger and
Engdahl, 1973; Lucente et al., 2010; Chiarabba et al., 2009). The
temporal evolution of the VP/VS ratio for a set of stations can enable
identification of both spatial and temporal changes in the medium
properties (Amoroso et al., 2018; De Landro et al., 2022).

3 Application to Nagano region (Japan)

3.1 Data pre-processing

We validated the TREMOR platform by applying it to a
dataset of continuous waveforms from the Northern Nagano
region (Japan) that was recorded by the Japanese High Sensitivity
Seismograph Network (Hi-net, https://www.hinet.bosai.go.jp/),
operated by the National Research Institute for Earth Science and
Disaster Prevention (National Research Institute for Earth
Science and Disaster Resilience, 2019). We selected the
Nagano area in Honshu, Japan, for two reasons: 1) its high
seismogenic potential and seismicity due to the presence of

FIGURE 3
Example of arrival-time coherence detection for anMV 2.5 earthquake on 16/05/2011 at 13:25:04 (JST). (A)Waveforms used for detections sorted by
epicentral distance. (B) Characteristic functions (normalized amplitude) calculated for each station. They are corrected according to the S-wave velocity
(red lines) for the travel time and stacked to obtain the final global image function in (D). The markers indicate the best fit arrival times for the P- and S-
phases. The black markers indicate the time window over which the characteristic function amplitude is considered for the definition of triggered or
not-triggered stations. (C) Stack of the coherencemap for the search region with available seismic stations (black triangles) and the event detected (white
star at 0 s). The color bar shows coherence values. (D)Global image functions corresponding to the best fit of the source position along a processing time
window centered on the origin time of the detected earthquake. Thewhite star indicates the detected event above a fixed threshold value (black line). The
white star on the right, at 75 s, is a second event, which was subsequently detected.
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the Itoigawa–Shizuoka Tectonic Line (ISTL), which cuts the
Island of Honshu and extends for ~150 km from Itoigawa City
on the Sea of Japan to Shizuoka City on the Pacific Ocean
(Figure 2A); and 2) the high station density in this area, with
an average inter-station distance of about 10 km over a maximum
aperture of 70 km.

The ISTL strikes NNE–SSW to NNW–SSE and is one of the
most active faults in Japan, since it forms one arm of the triple
junction of the Eurasian, North American, and Philippine Sea plates.
The northernmost segment of the ISTL, the Kamishiro fault, has
been shown to be an active thrust fault (Sato et al., 2004; Takeda
et al., 2004). On the other hand, the Otari–Nakayama fault, which
runs parallel to the Kamishiro and East Matsumoto Basin faults,
shows no geomorphological evidence of late Quaternary activity
(Matsuta et al., 2004; Ueki, 2008).

We selected a study area of about 40 km × 40 km (blue rectangle
in Figure 2B) internal to the larger area covered by the network and
collected continuous three-component velocity recordings from
25 borehole stations of Hi-net network in and near this area,
(yellow triangles in Figure 2C) with a sampling rate of 100 Hz.
Continuous waveform data were downloaded from NIED Hi-net
website (https://www.hinet.bosai.go.jp/). We considered the period
from the 1st to the 31st of May 2011, for which the Japan
Meteorological Agency (JMA) reported 101 earthquakes with
magnitudes ranging between −0.6 and 2.6 and depths up to
15 km (Figure 2C, circles). The JMA catalog magnitude of
completeness estimated for this time period is 0.2.

Before running the code, we formatted the data in mseed format,
organized it in files of one-hour length, and wrote input files with all
necessary information (e.g., seismic network, velocity model).

FIGURE 4
Example of P- and S- phase-picking for the MV 2.5 earthquake on 16/05/2011 at 13:25:04 (JST) in the Nagano region. (A) (From the top): 1) the 3-C
velocity waveforms, 2) the STA/LTA characteristic functions for the P- (vertical) and S- waves (horizontal) polarized components, and 3) the kurtosis
characteristic function calculated for the S-polarized horizontal components. The red and blue vertical lines show the P- and S-wave picks, respectively.
(B) Seismic sections for vertical and (C) horizontal components of the stations for which a P-pick (red vertical line) and S-pick are available.

FIGURE 5
Example of probabilistic earthquake location for the Mv 2.5 earthquake which occurred on 16/05/2011 at 13:25:04 (JST) in the Nagano region. The
earthquake location in the horizontal and vertical planes, with uncertainties (dotted lines), is marked by a yellow star. The normalized probability density
function is shown along N-S and E-W directions and along a vertical section.
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Moreover, we modified each control file for TREMORmodules with
a set of parameters properly tuned for the characteristics of Nagano
seismicity to be analyzed (for more details see Supplementary Tables
S1–S6).

3.2 Earthquake detection

For the earthquake detection, we defined a 3D grid of
potential source locations with a size of 70 km × 75 km ×
20 km, with spacing equal to 1.5 km and centered on the
barycenter of the seismic network used (blue rectangle in

Figure 2B). For the parameter tuning, a specific analysis on a
10-day training dataset was carried out by modifying the
parameters and optimizing them based on the number of real
and false detections. After a visual inspection of the waveforms,
we compared the preliminary results of this analysis with
seismicity data from the JMA catalog. The chosen detection
parameters are: coherence greater than 700, a signal-to-noise
ratio greater than or equal to 3, which is used for the definition of
triggered stations (with 10 s of signal, 3 s of noise), and three
triggered stations among the 10 closest stations to the epicenter.
Figure 3 shows an example of the detection module application
for an MV 2.5 earthquake (velocity magnitude as calculated by

FIGURE 6
Results of TREMOR application to Nagano seismicity occurred during May 2011, in terms of location quality (A) and earthquake spatial distribution
(B). (A) Histograms for numbers of P- and S- readings, RMS of travel time residuals, and horizontal and vertical errors for the earthquake locations. For
each histogram, themean and standard deviation values are reported. (B) Earthquake epicenters located by the platform inside the target area (red square
in Figure 2B) for the Nagano region during the time period analyzed. Symbols and colors are the same as in Figure 2C.

Frontiers in Earth Science frontiersin.org07

Adinolfi et al. 10.3389/feart.2023.1073684

119

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1073684


JMA), which occurred on 16/05/2011 at 13:25:04 (JST) in the
study area. Waveforms (Figure 3A) and characteristic functions
(Figure 3B, normalized amplitudes) are calculated for each
station to evaluate the vertical stack of the coherence map for
the search region (Figure 3C) and global image functions
corresponding to the best fit source time (Figure 3D).

Despite this positive performance, it is worth noting that the
TREMOR event detection algorithm missed 5 earthquakes which are
in the JMA catalog, with Mv < 0, while other six events that were
external to the seismic network and target areawhichweremislocated at
the border of the location grid. These cases can occur when very small
magnitude events (Mv < 0) are not detected or are detected with low
SNR, resulting in mis-location inside the target area or at the border of
the grid due to too few and/or incorrect phase readings.

3.3 Earthquake location

To properly set the parameters that guide the picking procedure,
we performed an optimization analysis based on comparisons
between manual and automatic P-wave arrival time identifications
on a sub-set of Nagano events. We explored a wide range of possible
parameters and selected as the “best” configuration the one that
minimizes the average differences between manual and automatic
picks, for all source-station pairs and for both the vertical and
horizontal components (average on the order of 0.05 s). In the
optimization procedure, we also tried to minimize the number of
missed picks (less than 15% for the “best” parameters). The picking
parameters that we selected are listed in the Supplementary Table S4.

For the earthquake locations, we used the same 1D velocity models
that JMA uses for locating Japanese seismicity (Ueno, 2002). We
parameterized the crustal structure using a 3D grid with spacing
0.5 km and size of 70 km × 75 km × 20 km. The theoretical travel
times from the grid nodes to the seismic stations were calculated using
the Eikonal finite-difference scheme of (Podvin and Lecomte, 1991), as
implemented by the Non LinLoc software (Lomax et al., 2000) for
absolute earthquake locations in 3D velocity media. We used the same
3D grid for both location steps during the analysis. We located
earthquakes with at least 2 P- and 2 S-phase picks, after discarding

arrival times with residuals for P- and S-waves higher than 0.5 s and
1 s, respectively. Although it is common practice to use a higher
minimumnumber of phases, we have chosen to use only four phases to
maximize the number of micro-earthquake locations.

Figure 4 shows an example of the picking module application for
an MV 2.5 earthquake which occurred on 16/05/2011 at 13:25:04
(JST) in the study area. The characteristic functions (Figure 4A) and
the phase picking on the vertical (Figure 4B) and horizontal
(Figure 4C) velocity records are shown.

Figure 5 shows the probabilistic location for the same event.
After the first run of data processing with the defined spatial grid,
406 earthquakes were detected by the platform of which 339 were
effectively located. Based on their location, pick number, and
location quality, 157 earthquakes were identified as located
within the smaller target grid (red rectangle in Figure 2B). Of the
157 events, 96 are also in the JMA catalog. Five events in the JMA
catalog (with M ≤ 0) were missed by TREMOR, while it provided
61 new detections. After visual inspection, we confirmed that all of
the new detected events are real earthquakes, with no false
detections.

For the 157 detected and located events in the study area, TREMOR
provided 1286 P-wave picks and 1216 S-wave picks in the two steps of
phase picking. To evaluate the quality and robustness of the automatic
picking, we manually picked a subset of 100 events among the final
catalog, selected in order to be representative in terms of location and
magnitude of the entire seismicity, and we compared the automatic and
manual P and S picks (see Supplementary Material). The mean values of
the time differences betweenmanual and automatic P- and S-wave onsets
are equal to −0.06 and 0.08 s, respectively, with standard deviations of
0.29 and 0.31 (Supplementary Figure S1). These mean values, along with
the histograms in Supplementary Figure S1, indicate that the automatic
arrival time picks tend to be slightly later than the manual picks.

In the first step of the locations, the events were located with mean
errors of 1.2, 2.0, and 2.0 km for the NS, EW and vertical directions,
respectively, with an average root-mean-square (RMS) of 0.5 s and amean
of 5 P- and 5 S- phases. The final earthquake locations, shown in Figure 6,
have mean location errors equal to 1.1, 1.9, 2.0 km along the NS, and EW
horizontal and vertical directions, respectively, a mean RMS (weighted) of
0.2 s, and a mean of 8 P- and 8 S-phases per event (Figure 6A).

FIGURE 7
Magnitude estimates for the earthquakes identified by TREMOR in the Nagano region. From left to right, calculated Mv (A), ME (B) and Mw (C) are
plotted versus MJMA. MJMA stands for velocity magnitude calculated by JMA.
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The seismicity pattern delineated by the 157 located events
correlates well with the main seismicity features of the area
(Figure 6B; Supplementary Figure S2). The seismicity appears
mainly aligned along the two segments of the ISTL, the Kamishiro
and the Otari–Nakayama faults, down to a depth of 15 km, under the
currently dominant east–west compressional stress field (Ando et al.,
2017; Panayotopoulos et al., 2014; Panayotopoulos et al., 2016). The
hypocenters of the 157 events show the same features of the
earthquakes clustered mainly along Otari–Nakayama fault and its
NE branch fault, in the southern and eastern part ofMatsumoto basin,
defining in depth an E-dipping plane (Supplementary Figure S2).

3.4 Earthquake characterization

The JMA assigns earthquakes a velocity magnitude (MJMA),
determined from the maximum amplitudes of velocity seismograms
(Funasaki and Earthquake Prediction Information Division, 2004).
Unfortunately, we could not use the Mv relation directly because the
distance and depth corrections are not accessible from JMA web
service. So, to better compare our results with those of the JMA
catalog, we calculated a velocity magnitude (Mv) based on a linear
regression between the maximum horizontal velocities at selected
seismic stations and JMA catalog magnitudes. Looking at Figure 7, a

FIGURE 8
Example of fault plane solution computed for the MV 2.5 earthquake on 16/05/2011 at 13:25:04 (JST) in the Nagano region. (A) On the left: focal
mechanism solution with the largest probability. The open circles correspond to automatic negative polarities; the crosses are for automatic positive
polarities. Station names are labeled in red. On the right: Kagan angle distribution between the best solution and all solutions up to 95% of themaximumof
the probability. (B)Map of epicenter location and seismic stations used for focal mechanism calculus. The color-bar refers to the residual between
the observed and predicted P-wave amplitude at the available stations.
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good agreement exists between the magnitude estimates of
TREMOR and the JMA magnitude values. Approximately linear
scaling relations with MJMA are evident for Mv, Me and Mw, with
mean differences of 0.09, −0.34, −0.55 and standard deviations of
0.17, 0.17, 0.39, respectively.

Fault plane solutions range from reverse to strike-slip (Figures 8,
9A), in accordance with the complex stress regime of this region. We
found 57 focal mechanism solutions with an average RMS equal to
0.18 and a mean mismatch on polarity equal to 0.21 (see

Supplementary Material). Matsumoto basin is characterized by
the interaction of the Kamishiro fault with dip 30°–45° SE and
the Otari-Nakayama fault that dips more steeply, at 50°–65° SE.
According to Panayotopoulos et al. (2016), focal mechanism
solutions for aftershocks of the 2014, M 6.7 Northern Nagano
earthquake exhibit both reverse and left-lateral components, with
a large strike-slip component distributed along a branch fault with a
steep dip-angle (i.e., Otari-Nakayama), consistent with the fault
plane solutions estimated by TREMOR.

FIGURE 9
(A) On the left: plot of our focal mechanism solutions for the Nagano region with at least six P-wave readings. On the right: histograms of the
magnitude distribution and of the P-wave amplitudemisfits for the computed fault plane solutions. (B) Spatial distribution of the VP/VS ratio in the Nagano
region. The ratios, computed at each seismic station (triangles) and interpolated, are indicated by the contour lines and colors.
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In order to validate the VP/VS values obtained by the automatic
module application, we compared our results with the tomographic results
from the work of Panayotopoulos et al. (2014) (Figures 6C, 8). First, we
calculated a VP/VS ratio value for each station by averaging the values
obtained for the entire month (Supplementary Figure S3). Then, we
interpolated the VP/VS ratios at the stations to obtain a map that can be
compared to the tomographic image. The VP/VSmap shown in Figure 9B
agreeswith the results byPanayotopoulos et al. (2014)). Indeed, they found
a range of VP/VS ratio between 1.5 and 1.9, high VP/VS anomalies along
the ISTL fault and a mean VP/VS value of about 1.73 for the other areas.

Figure 10 compares the frequency-magnitude distributions
(Gutenberg and Richter, 1942; Aki, 1965; Wiemer, 2001) for the
TREMOR and JMA catalogs for the same area and time period. We
observe that the TREMOR catalog hasmore small-magnitude events than
the JMA catalog and a lowermagnitude of completeness,Mc, ofMv−0.12.
In comparison, the JMA catalogue is complete for Mv 0.20 and larger.

4 Discussion and conclusion

We have presented a software platform for microearthquake
monitoring, TREMOR, which combines a series of open-software and
newly developed algorithms useful for monitoring and studying of
natural or induced seismicity. Through TREMOR, a complete and
detailed analysis of seismicity can be performed. After an appropriate
tuning of a set of input parameters, the continuous seismic waveforms are
automatically analyzed to obtain a high-resolution catalog of seismicity
which occurred within a target area in a defined time period.

As a consequence of the rapid development of dense seismic networks
and the need for reliable catalogs for monitoring purposes, in recent years
the research in thisfield has gradually shifted from the traditional standard
processing workflow where each event is identified and characterized by
analysts to advanced automatic processing and interpretation techniques.
TREMOR includes algorithms for detecting weak seismic signals and

characterizing each event in terms of local magnitude, moment
magnitude, seismic energy, and focal mechanism, with the goal of
producing an informative seismic catalog that is potentially complete
to very small magnitudes. TREMOR provides a detailed analysis of
earthquake source by computing Me and Mw, offering a clearer
picture of the seismicity and the physics of the rupture process.
Although representing a challenge for small earthquakes, one of the
most innovative tasks of TREMOR is the focal mechanism computation.
This information has become a routine analysis by seismological agencies
only for earthquakes of M ≥ 4. As evidenced by the Nagano application,
TREMOR can reliably calculate fault plane solutions even for small
magnitude earthquakes, when recorded by a dense seismic network.
The information on the geometry of the rupture provided by the focal
mechanisms is essential for identifying the fracture patterns or activated
fault segments for seismotectonic studies or formonitoring the space-time
evolution of seismicity during the underground industrial operations.
Moreover, peak ground motion parameters computed by TREMOR for
small magnitude events represent a novelty, very useful to have a robust
metric of the ground shaking or to compute detailed maps of temporal/
spatial variability of ground-motions. In addition to the seismic source
characterization, amodule for the near-real-timemonitoring of the VP/VS

ratio is also included.Although the limitation of the calculatedVP/VS ratio,
as the assumption that this is constant along the ray-path, the obtained
values can be used as first order estimates. The latter quantity is directly
correlatedwith the presence of fluidswithin the crust (Thurber et al., 1995;
De Landro et al., 2020) and the analysis of its spatio-temporal variations
allows for the 4D imaging of large-scale medium properties (Amoroso
et al., 2018; De Landro et al., 2022).

The main advantages of the computation platform can be
summarized as follows.

1. Full-automatic processing. After the parameter tuning and the setting
of control files, continuous waveform data are analyzed from
earthquake detection to source parameter determination without

FIGURE 10
Gutenberg-Richter cumulative frequency-magnitude plots for (A) the JMA catalog and (B) the catalog retrieved in this study by the computational
platform. Data are for the seismicity in the Nagano region (target area) during May 2011. The magnitudes are velocity magnitude, Mv. The completeness
magnitude Mc for both catalogs is indicated with dashed lines.
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anymanual effort by an operator. Furthermore, by selecting near-real-
time processing (batch-mode), the data analysis could be
programmed in time according to raw-data timeslot. Once
configured, the platform automatically: 1) searches the waveform
data availability recursively, makes the conversion of the data into the
necessary format (mseed), runs the processing for the time slots of raw
data, and deletes the data already processed to save disk space.

2. Complete and detailed seismic analysis. TREMOR enables study of
seismicity starting with the identification of events from continuous
waveform data to their characterization in terms of the magnitudes
ML, Mw and Me, peak ground motion parameters, and fault plane
solutions. In addition, through the analysis of VP/VS ratios, the
platform provides information about the medium properties of an
area. This analysis represents the main innovation brought by
TREMOR which, unlike the common softwares used for seismic
monitoring, offers an in-depth characterization of the seismic
source, even in the case of micro-seismicity, in terms of
momentum and energy magnitude and fault kinematics.

3. Iterative, refining earthquake location. TREMOR is designed to
perform two-step of processing for phase picking and earthquake
location in order to: 1) reduce location errors by refining the phase
picks, guided by predicted arrival times for a preliminary location; 2)
obtainmore robust solutions by addingmore arrival time picks; and 3)
reduce the number of false detections that can occur if a settable
minimum number of spurious or unrelated phase readings is
identified on the seismic recordings.

4. Modular architecture. The platform involves separating the data
processing into independent building blocks or modules, each
containing all of the parts needed to execute a single step of the
analysis.Moreover, in post-earthquake processing, eachmodule can be
activated or dis-activated to run modules separately. This functionality
can be very useful for focusing on specific seismological analyses,
repeating analyses when necessary, or parameter tuning of the
platform module. Moreover, the modularity allows users to quickly
update the platform with new modules that carry out new processing
functions or analyses, or to quickly modify those already present.

As demonstrated for our test case in the Nagano region, TREMOR
can very successfully monitor micro-seismicity recorded by local dense
seismic networks and can be a valid tool for investigating and studying
natural or induced earthquakes by seismological agencies or laboratories
at local scales. Future tests of TREMOR will focus on seismic sequences
of moderate magnitude (M > 5) earthquakes and multiple earthquakes
repeated over time as in the case of a swarm or seismic sequence.
Furthermore, we want to expand the use of TREMOR to seismic
networks at regional scales (>100 km). Such large-scale applications
with large numbers of seismic stations requires optimization of PC
memory demand and reduction of computational times.
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The large-scale faulting and earthquake activities that developed extensively in the
Yunnan area are associated with the collision of India and Eurasia. The fine crustal
structure can provide a better understanding of the crustal deformation,
seismogenic environment, and rupture processes. We performed a new 3-
dimensional (3D) P wave velocity structure and seismic relocation using
double-difference tomography based on seismic observations. The
tomography images show that large-scale low-velocity anomalies spread
around the margin of the south Chuan–Dian Block, Xiaojiang fault (XJF), and
the Lijiang–Xiaojinhe fault (LJ-XJHF) in the middle and lower crust. There is an
obvious high-speed anomaly in the Emeishan large igneous province (ELIP). We
infer that the low-velocity anomaly under the LJ-XJHF zone may be derived from
the lower crustal flowextruded from the central Tibetan plateau and obstructed by
the ELIP, while the velocity anomalies around the XJF might be caused by shear
heating, which is associated with the large-deep strike–slip fault and the
transmission of stress in the southeast direction. The inversion results also
show that the Yangbi earthquake occurred at the NW–SE boundary of high
and low velocity from the upper crust to the lower crust, which coincides well
with the location of the Yangbi earthquake sequence and the Weixi–Qiaohou
fault. Meanwhile, the earthquake relocations show that the aftershocks are mainly
distributed at low velocities. All the aforementioned research results indicate that
the Yangbi earthquakemight be attributed to the intrusion of the soft material flow
along the Weixi–Qiaohou fault in the NW–SE direction. These low-viscosity
crustal materials would cause brittle fractures and result in NW–SE sinistral
strike–slip faults.

KEYWORDS

double-difference tomography, earthquake relocation, Yunnan area, Yangbi earthquake,
strike–slip fault

1 Introduction

The collision between India and Eurasia and the resistance of the Yangtze plate resulted
in a regional high-stress environment and many destructive earthquakes in the Southeast
margin of the Tibetan Plateau (SE Tibet) (Xu et al., 2013; Wang and Burchfiel, 2000; Zhang
et al., 2004). The northeast extrusion of the Indian continent into the Eurasian continent has
led to the vertical thickening of the crust under the Tibetan Plateau, as well as the crustal flow
andmigration of deep materials. The stress is not only transferred within the plateau but also
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transferred to themargin of the plateau, forming a series of Cenozoic
structures and landforms, accompanied by seismic activities and
environmental evolution (Wang and Burchfiel, 2000; Zhang et al.,
2004; Xu et al., 2013). SE Tibet was, therefore, demonstrated to have
undergone intense deformation and a sudden thickening of the crust
and surface uplift (Figure 1A). Two representative models have been
put forward to simulate the process of crustal deformation and the
uplift of SE Tibet. The first model is the rigid block extrusion along
the large deep fault with coherent deformation of the crust and
upper mantle lithosphere (Tapponnier and Molnar, 1976;
Tapponnier et al., 1982). The second model is the general model
of lower crustal flow (Royden et al., 1997; Clark and Royden, 2000),
which considers the lower crust as the weakmaterial channel that led
to decoupled deformation of the lithosphere mantle and crust since
no substantial stress transfers from the low-viscosity materials. Both
models suggest that the material of the Tibetan Plateau has extruded
into SE Tibet from the lower crust under the compressive stress of
the uplift of the Tibetan Plateau. However, the specific extrusion
model has not been confirmed.

Yunnan has bred a series of unique deep fault zones, mainly
including the Nujiang fault, Lancang River fault, and XJF in the N–S
direction; Red River fault (RRF) in the NW–SE direction; and LJ-
XJHF in the NE–SW direction (Zhang et al., 2004). Yunnan is
different from the northern Chuan–Dian Block and other steep
plateau boundaries. Its terrain is relatively flat, and the surface
gradient is small. In the process of surface uplift and crustal
thickening, there is no obvious large-scale shortening in the crust
in this region (Figure 1). However, the current GPS observation
shows that there is a large-scale surface movement in this area, and
the plateau materials flow from the southeast edge to the
east–southeast direction (Cheng et al., 2012). Although previous
studies have provided many different perspectives and helped study
the deformation mechanism of the crust in this region, the specific
distributions of these lower-velocity anomalies are always
heterogeneous (Yao et al., 2006). The existence and distribution
of the crustal channel flow have also been questioned by various

scientists in some new studies (Bai et al., 2010; Bao et al., 2020; Dai
et al., 2020). Moreover, the relationship between seismic activities
and lower crustal flow is also unclear.

On the other hand, in the past 30 years, hundreds of earthquakes
with a magnitude above 6.0 have occurred in this area, such as the
recent Yangbi earthquake withMs 6.4 (Long et al., 2021; Zhang et al.,
2021) in 2021, the Ludian earthquake with Ms 6.5 in 2014 (Xie et al.,
2015), and the Ya’an earthquake with Ms 7.0 (Zhang et al., 2021). It
is one of the areas with the strongest crustal deformation and the
most frequent seismic activities in China (Xie et al., 2015; Long et al.,
2021; Zhang et al., 2021). Most earthquakes occur along the large
deep faults and the main tectonic line, such as the RRF,
Longmenshan Fault, LJ-XJHF, and XJF. Moreover, the
seismogenic mechanism of these earthquakes might be related to
the low-velocity region of the crust below the source area, which
indicates that the low-velocity region influences the preparation for
large earthquakes (Wei et al., 2013; Wei et al., 2019; Wang et al.,
2021).

The current stress field state obtained from the GPS observation,
combined with the dynamic process of the seismogenic stage,
indicates that the earthquake occurrence rate is higher in
southwest Yunnan (Kong et al., 2022). The measurement of the
stress accumulation of the coseismic, post-earthquake, and inter-
earthquake shows that the stress accumulation of the RRF zone, XJF
zone, and LJ-XJHF zone is relatively high (Sun et al., 2014; Bao et al.,
2020). Recent geophysical studies show that there are two zones of
low velocities around the XJF and LJ-XJHF zones (Li et al., 2008; Sun
et al., 2014). A GNSS velocity field shows that the XJF zone has a
high degree of fault locking and lateral left slip loss rate, which
increases the risk of earthquakes (Zhang et al., 2022). Yunnan as the
southern part of SE Tibet is the passage zone of the lower crustal
material from the center of Tibet to SE Tibet and is an important
area to clarify the lithosphere deformation and the seismogenic
mechanism for these strong earthquakes. The study of the fine
crustal structure and earthquake relocations can reflect available
geophysical evidence for the geodynamic model of surface uplift and

FIGURE 1
(A) Tectonic blocks around the Tibetan plateau. (B) Topographic map showing the China Earthquake Administration (CEA) and temporary stations in
the southern Chuan–Dian block and its surrounding areas. The red triangle in (B) represents the data of the stations of the CEA, and the yellow triangle
represents broadband seismic stations installed by Central South University. S-CDB: southern Sichuan–Yunnan block; CXB: Chuxiong Basin; EHS: East
Himalayan Block; Yangtze Block: Yangtze plate; SMR: Simao Block; JSJF: Jinshajiang fault zone; LJF: Lijiang fault; ZMHF: Zemuhe fault zone; XJF:
Xiaojiang fault zone; RRF: Red River fault zone.
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the deep seismogenic environment and mechanism under Yunnan
and its surroundings.

Seismic tomography plays an important role in obtaining
detailed crustal structure information (Rawlinson et al., 2010; Xin
et al., 2019). Many seismic studies have shown and provided
valuable geophysical information for the crustal structure and the
geodynamic model for surface uplift around SE Tibet (Sun et al.,
2012; Lv et al., 2022). However, the distribution of low-velocity
anomalies and the relationship between these lower crustal materials
and the seismogenic mechanism are still unclear. In this study, we
collected a high-quality dataset recorded by the China Earthquake
Administration’s (CEA) network and a 2-year mobile seismic
observation installed by Central South University. We used the
collected data to build a new 3DVpmodel of the crust of the Yunnan
area using the double-difference tomography method (Figure 1B;
Waldhauser, 2001; Zhang and Thurber, 2003). The inversion results
can give significant information for further understanding the crust
structure and the mid-lower crust channel flow and analyzing the
deep seismogenic environment and geological structure of the
Yangbi area.

2 Data and methods

2.1 Data

We chose 82 seismic stations located in the study region between
98° and 106° in longitude and 22°–28° in latitude recorded by the
CEA’s network (Zheng et al., 2010) and 22 broadband seismic
stations observed for 2 years from 2018 to 2020, which were
installed by Central South University. We collected the data of
P-wave arrival times from 37,431 earthquakes with magnitudes
greater than 1.0 that occurred in Yunnan and its surroundings
recorded between January 2009 and December 2020 (https://data.
earthquake.cn). Since the first arrival phase was used in the

double-difference analysis to invert the crustal structure, we
selected the first P-wave arrival time with the smallest travel time
and then manually checked the seismograms. The outliers of the
P-wave arrival time were further deleted to improve the resolution of
the double-difference tomography following two criteria: 1) selecting
the phase data with uncertainties smaller than ±9 s, relative to the
fitted curve of the major trend of travel time curves for P-wave
(Figure 2); 2) the events should be recorded in at least more than eight
stations, and the distance between two stations should be larger than
10 km. The number of seismic events was then reduced from 37,431 to
13,590. The number of first P-wave arrivals is 1,743,279. A total of
244,445 differential event pairs were also constructed based on these
catalog arrival times. All these P-wave arrivals and the event pairs
provide good ray coverage and cross-correlation for reliable double-
difference tomography (Figure 3).

2.2 Method

We apply the regional-scale double-difference tomography
technique (Zhang and Thurber, 2003) to simultaneously perform
seismic tomography and earthquake relocation (Aki and Lee, 1976;
Waldhauser and Ellsworth, 2000). Since the travel time between
events and stations is calculated in this spherical coordinate system
using the finite-difference travel-time algorithm (Aki and Lee, 1976),
the double-difference method can produce a more accurate
regional-scale seismic velocity structure than the larger-scale
seismic velocity structure. Moreover, both the absolute travel
time and the relative travel time data are combined to solve the
3D seismic wave velocity of the earthquake source and its
surrounding region (Lv et al., 2022).

We first calculate the body-wave travel-time T from an event i to
a seismic station k using the ray theory based on the integration
along the ray path (Zhang and Thurber, 2003):

τi + ∫ k

i
uds � Ti

k, (1)

FIGURE 2
Travel time–distance curve of a P wave before selection (A) and
after selection (B). The data outside the green lines are removed to
ensure data quality.

FIGURE 3
Seismic wave ray coverage map; the red triangles represent the
data of theCEA, and the yellow triangles represent the data installed by
Central South University.
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where u is the slowness, ds is the differential of ray path length,
and τi is the original time of the event i. Since the relation
between the travel time and earthquake event is non-linear,
the residual travel-time r can be obtained based on Taylor
expansion from Eq. 1. Then, the relation between source
parameters and slowness of earthquake event I can be rewritten
on each station k:

ztik
zm

Δmi + ∫ k

i
δuds � rik, (2)

where Δmi � (Δxi,Δyi,Δzi,Δτi) represents the perturbation
of source parameters, δu is the perturbation of slowness, and rik �
(tobs − tcal)ik is the residual time between the observed differential
arrival time and the predicted arrival time, which is the
desired perturbation to the hypocenter and velocity structure
parameters.

However, the cross-correlation method is used to measure the
residual time between different events using the formula
(rik − rjk)obs. We subtract a similar equation for event j measured
from station k. The residual time between two events (i and j) at the
same station k can be written as follows (Zhang and Thurber, 2003):

ztik
zm

Δmi + ∫ k

i
δuds − ztjk

zm
Δmj − ∫ k

j
δuds � rik − rjk, (3)

where Δmij � (Δdxij,Δdyij,Δdzij,Δdτij) is the perturbation of two
sources, and the equation can also be simplified as

drijk � rik − rjk � Ti
k − Tj

k( )obs − Ti
k − Tj

k( )cal . (4)

drijk is the double difference. (Ti
k − Tj

k)obs is the observed
differential travel time between events i and j, and (Ti

k − Tj
k)cal is

the calculated differential travel time. When the distance between
seismic event pairs is less than the distance between the event and
station, the ray path from the earthquake to the station can be
approximately regarded as consistent, that is, ∫k

i
δuds � ∫k

j
δuds. Eq.

3 can be written as Eq. 5:

ztik
zm

Δmi − ztjk
zm

Δmj � rik − rjk � drijk . (5)

We give an appropriate weight parameter between the
differential and the absolute travel time at different stages of
inversion (Waldhauser and Ellsworth, 2000).

2.3 Model construction and parameter
selection

The inversion formula is obtained by combining the relationship
between all seismic event pairs (i, j=1, 2, 3, . . ., N) and all the seismic
stations (k=1, 2, 3, . . . ):

WGm � Wd, (6)
where G represents a size of an M × 4N matrix containing partial
derivatives (M is the number of double-difference observations and
N is the number of seismic events); d is the data vector; m is the
source parameters determined by Δmi � [Δxi,Δyi,Δzi,Δτi]T with a
dimension of 4N; and W is a diagonal matrix weighted for each
equation.

The inversion results largely depend on the initial model. Since
the crustal structure of the Yunnan area has strong heterogeneity in
both vertical and horizontal directions, a one-dimensional initial
velocity model cannot invert the accurate result. We then consider
the 3D seismic wave velocity model of SWChinaCVM-1.0 observed
by the adjoint inversion from body wave and surface wave (Liu et al.,
2019; Lv et al., 2022) as the initial model for double-difference
tomography in this study (Figure 4). Based on the model resolution
and regional seismic ray distribution density, we finally set the node
spacing to 0.5° and 1° in our study area and on the edge of the study
area, respectively. The vertical grid nodes are set at −5, 0, 1, 5, 10, 15,
20, 25, 30, 35, 40, 50, 60, and 70 km (Figure 5).

To balance the trade-off analysis between data residual variance
and model variances, as well as the model smoothness, the L-curve
method (Hansen, 1992) is used to obtain the best damping and
smoothing factors in inversion. In this study, we choose the best
damping factor, 300, and the best smoothing factor, 30 (Figure 6).

2.4 Checkboard test

To estimate the resolution of velocity models and adequacy of
the ray path coverage, the checkboard resolution test was used to
evaluate the inversion (Zhao et al., 1992). We first add the positive
and negative perturbation of 5% to the initial P-wave model and
form the input model. The synthetic travel times are then calculated
with the same distribution of events and stations as those in real
data. The checkboard test is shown in Figure 7, which shows that the
velocity anomalies will be well-recovered by travel times from 0 km
to 50 km in the study area with good data coverage.

3 Results

3.1 Earthquake distribution after relocation

The seismic event distribution after the relocation is generally
consistent with that before relocation. However, the number of seismic
relocations is reduced from 23,299 to 19,558. The main reason is
attributed to the few data on the arrival time of some seismic events in
the inversion process and the lack of good coverage for seismic stations,
which lead to the depth of earthquake relocation exceeding the set
elevation and locate in the air layer. At the same time, we have deleted
the residuals of travel time that are greater than the standard deviation
in the inversion. The aforementioned two issues will reduce the number
of relocated earthquake events. Moreover, the P-wave residual misfit
after the inversion has a smaller range than that before the inversion
(Figure 8). The residuals after inversion are concentrated
between −2 and 2 s, indicating that the final velocity model is better
than the initial model in fitting the actual observation time.

We have drawn the distribution of seismic earthquakes in the
horizontal and vertical directions (Figure 9). Vertical cross images
along the longitude and latitude after inversion (Figures 9C, D) show
that the earthquakes are mainly distributed in the depth of 0–20 km,
with less or even no events below 20 km. It also shows that the
earthquakes mainly spread in a strip shape in the vertical direction. It
indicates that the relocated earthquakes (Figures 9C, D) are more
accurate in the vertical direction than those before relocation
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(Figures 9B, E). The number of relocated earthquakes in the shallow
depth (0–5 km) increases significantly, relative to that before
earthquake relocation (Figure 10). Comparing earthquake locations

after inversion and before inversion, we found that the relocated
earthquake events mainly spread around the fault zone, especially at
the south end of the XJHF, XJF zone, and the north section of the RRF
zone (Figure 9A).

3.2 Velocity anomalies

The horizontal slices of the 3DVpmodels in the depths of 5, 10, 15,
20, 25, 35, 40, and 50 km are shown in Figure 11, which suggest strong
lateral heterogeneities in the crust. The vertical profiles of the Vp
images along the four lines (AA’, BB’, CC’, and DD’) are shown in
Figure 12. At shallow depths of 0–15 km, Vp images show that the low-
velocity anomaly is widely distributed around the LJ-XJHF, northern
RRF, and Zemuhe fault. Meanwhile, the distribution of anomalies is
relatively scattered. It indicates that the velocity anomaly area is largely
associated with the geological structure at the shallow depth. For the
depth of 15–35 km, the extensive low-velocity anomalies extend to the
southwest along the LJ-XJHF zone with a belt shape, while the low-
velocity anomaly zone along the XJF also appears on the western
margin of the Yangtze Craton, which is consistent with the three-
dimensional S-wave inversion (Long et al., 2021). We also found that
the high-velocity anomalies extend from the surface to 30 km near the
center of the southern Chuan–Dian block, which is consistent with the
location of the Emeishan large igneous province. For a depth of
20–35 km, our inversion also shows that the high-velocity
anomalies are distributed in the Simao Block and Baoshan Block.
The vertical image of 103oE shows that the low-velocity anomalies
mainly spread in the longitude of 102–105oE (Figures 12AA’–CC’)
within the depth of 15–35 km (Figure 12DD’), and this low-velocity

FIGURE 4
3D initial velocity model referred to Lv et al. (2022) and Liu et al. (2019).

FIGURE 5
3D mesh grid for horizontal (A) and E–W vertical cross-section (B).
Red crosses represent grid nodes in both horizontal and vertical sections.
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anomaly is continuous from the Zemuhe fault to the intersection of the
XJF and RRF. For the vertical seismic profiles of 26 and 25oN, a
significant high-velocity anomaly is located around the center of the
southern Chuan–Dian block at about 102oE, which separates the low-
velocity region into two parts (Figure 12BB’). The vertical P-wave
seismic profiles along 26°N, 25°N, 24° N, and 103°E also show that there
are obvious low-velocity anomalies in the middle and lower crusts of
the XJF and the RRF zones and relatively high-velocity anomalies in the
central region of the Chuan–Dian block (Figure 12).

4 Discussion

4.1 Lower crustal flow

Previous studies have generally found that the obvious low-
velocity anomalies are widely spread in SE Tibet, especially under
the surface of the Chuan-Dian Block (Wei et al., 2013; Bao et al.,

2015; Yang et al., 2020). However, the distribution and connection
of the low-velocity anomalies in the subsurface, as well as the
geodynamics of their deformation, are still unclear.

The horizontal images of the seismic velocity (Figure 11)
show a large distribution of low-velocity anomalies at 15–35 km
depth below the XJF, LJ-XJHF, and northern RRF zones. The
25-km depth slicing map shows that the low-velocity anomaly is
a north–south strip under the Zemuhe fault zone, while it
rotates to the southwest along the LJ-XJHF and northern
RRF. The distributions of two significant low-Vp anomalies
are generally in good agreement with previous research results,
including the surface wave tomography (Yao et al., 2010; Bao
et al., 2015; Lun et al., 2023) and body wave images (Huang
et al., 2019; Deng et al., 2020). Lv et al. (2022) also showed two
low-Vp anomaly belts in our study area based on double-
difference tomography. The western one distributes from the
northwest of the Chuan–Dian block to the LJ-XJH fault and the
north part of the RRF, another low-velocity zone around the

FIGURE 6
L-curve curve, damping factor curve (A) and smoothing factor curve (B).

FIGURE 7
Checkboard test for P-wave velocity anomalies at depths of 5, 10, 15,20, 25, 35, 40, and 50 km, respectively.
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FIGURE 8
Histogram of travel time residuals before (A) and after (B) relocation for the P-wave.

FIGURE 9
Distribution of seismic events in the horizontal profile (A), (B) and (E) represent seismic events along the longitude and latitude profiles before
inversion, respectively. (C) and (D) represent the relocation of seismic events along the longitude and latitude profiles after inversion, respectively. Red
and green dots in (A) represent earthquake locations before and after inversion, respectively. Yellow dots represent earthquake locations in the range of
0–10 km, blue dots represent earthquakes in the range of 10–20 km, and purple dots represent earthquakes below 20 km.
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XJF, which are consistent with our results that show significant
low velocity at the middle and lower crust in this region.
However, the depths of these low-velocity anomalies in this
study are 15–35 km, which is relatively less compared to that
(20–35 km) found in Lv et al. (2022) and Deng et al. (2020), but
similar to that (15–30 km) found in Yang et al. (2020) and
Zhang et al. (2020) in the shallow depth. As we know, different
data types yield different constraints on the velocity structure.
We attribute this difference to the seismic stations that we
added, 22 permanent stations around the intersection of the XJF
and RRF, which provide good seismic ray coverage and improve
the resolution of this area.

Magnetotelluric results (Bai et al., 2010) also show that there
are two high-conductivity and low-resistance channels at a depth
of 20–40 km. One distributes along the eastern Himalayan syntaxis

(EHS) and the other spreads along the Xianshuihe fault zone and
XJF zone, which are consistent with the low-velocity zone below
the XJF zone in this study. Geochemical data show that the high
conductivity of the crust may be caused by thermal, soft material
fluid, and partial melting (Liu et al., 2020). Geothermal data
(Hedlund et al., 2012) show that the heat flow value in this
region reaches 110 mW/m2, which is far more than the average
value of 61 mW/m2 in Mainland China. The crustal Q-value
images (Zhou et al., 2009) also show the low Q-value located
near the XJF zone and LJ-XJHF zone. The low Q-value reflects the
high attenuation property of the medium in this area, indicating
the inelastic property and soft medium associated with
temperature change. Seismic wave anisotropy (Sun et al., 2012)
shows that the fast wave direction of Ps splitting near the XJF zone
is approximate to the N–S direction, indicating that the material

FIGURE 10
Distribution of seismic events in the depth before inversion (A) and after inversion (B).

FIGURE 11
Depth slices of P-wave velocity. SMB: Simao Block; S-CDB: South Chuan–Dian Block; RRF: Red River fault; XJF: Xiaojiang fault; ZMHF: Zemuhe fault;
LJ-XJHF: Lijiang–Xiaojinhe fault; EHS: East Himalayan Block; SMR: Simao Block; CXB: Chuxiong Basin.
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flow direction is approximately in the N–S direction, while it is in
the SW direction near the LJ-XJHF zone, suggesting that the
material flow direction is near to southwest direction. The
aforementioned results are consistent with those of the low-
velocity anomaly distribution area in this paper, inferring that
the low-velocity anomaly material under the XJF and LJ-XJHF
zones may be the crustal flow from the Tibetan Plateau. However,
the inversion results show that the low-velocity anomaly is not
widely distributed in the southeast margin of the Tibetan Plateau,
mainly distributed along the XJF, LJ-XJHF, and north RRF zone.

P-wave velocity images show a relatively higher-velocity region
between two low-velocity regions, which is consistent with the
location of the ELIP. It is a volcanic province recognized by the
international academic community in China, which is widely
distributed in Yunnan, Guizhou, and Sichuan provinces (He
et al., 2003). At present, it is generally believed that a large-
scale eruption of Emeishan basalt occurred in the center of the
Chuan–Dian Block during the late Paleozoic at 256–259 Ma. The
analysis of the temporal and spatial distribution of basalt and the
geochemical properties of the original magma show that the center
of the mantle plume is located west of the Emeishan area (Ma et al.,
1993; Xu and Zhong, 2001). The study of peridotite phenocrysts
and intrusive bodies confirmed the high magnesium content
(MgO>16%) of the original magma in the ELIP (Xu and
Zhong, 2001). The seismic exploration profiles (Chen et al.,
2022) indicate that the mafic and ultramafic rocks have high
P-wave velocities. Then, the high Vp velocity might relate to
the intrusion of basic and ultrabasic mantle source materials
formed by the activity of mantle plumes into the crust during
the Permian period. The lower crustal flow would be blocked by
this ultrabasic mantle source material when it extrudes from the
north of the Chuan-Dian block to the south, resulting in the lower
crustal flow converging near the relatively weak region, such as the
XJF and LJ-XJHF and the north RRF.

SE Tibet has always been a seismically active region, with
destructive earthquakes having occurred here frequently in recent
years. Figure 12 shows that a large number of earthquakes are
distributed in the middle–upper crust, and the location of
earthquakes has a good relationship with the major faults,
especially near the boundary of high- and low-velocity
anomalies around the XJF and LJ-XJHF zones (Figure 12). This
good relation suggests that the mechanical properties of these
regions are weak, and there may be a flow of lower crustal material
(Clark and Royden, 2000). Our results are also consistent with
those of previous studies that show that the Ludian Ms
6.5 earthquake (Xie et al., 2015) and the 2008 Wenchuan Ms
8.0 earthquake (Lei and Zhao, 2009), and the Changning Ms
6.0 earthquake (Lv et al., 2022) occurred in the boundary of
high- and low-velocity anomalies. The good correspondence of
the aforementioned characteristics indicates that the large deep
fault has a significant effect on the regional seismicity and tectonic
evolution process.

4.2 Yangbi earthquake

The Yangbi earthquake occurred on the NW-trending
Weixi–Qiaohou fault in 2021 with a magnitude of Ms 6.4 (Long
et al., 2021; Lv et al., 2022). The Weixi–Qiaohou fault is located on
the western part of the RRF, with dextral strike–slip movement and
obvious seismic activity on the Weixi–Qiaohou fault since the Late
Quaternary (Sun et al., 2022). Meanwhile, the Weihe–Qiaohou fault
has controlled the Weishan Quaternary Basin. Due to the collision
between the Indian and Eurasian plateaus and obstruction by the
Yangtze Craton, this area has suffered eastward extrusion of the
Tibetan Plateau and compression in the east and west directions
(Wang et al., 2017). In addition, the Chuan–Dian Block is the
junction of the Indian plate subducting to the Burmese plate, and

FIGURE 12
P-wave velocity profiles along the latitude of 26°N, 25°N, and 24° N and longitude of 103°E along the (AA’, BB’, CC’, andDD’) shown in Figure 1B. CDB:
Chuan–Dian Block; RRF: Red River fault; XJF: Xiaojiang fault; YZB: Yangzi Block; EHS: Eastern Himalayan syntaxis. Block dots represent the earthquake
relocations.
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a large-scale fault and extreme seismic activities have developed in
this area (Hu et al., 2021).

We enlarged the seismic wave velocity structure in the Yangbi
area and drew the three layers and two vertical cross profiles of
P-wave velocity (Figures 13A–C, 14A, B). Our results show that
there is a clear high- and low-velocity boundary in the Yangbi area,
and the velocity anomaly distributes in the NW–SE direction at a
depth of 5–15 km (Figures 13A–C, 14). With the increase in depth,
the low-velocity anomaly extends to the southeast. Figure 13 shows
that the center of the Yangbi earthquake is located in the boundary
of high- and low-Vp anomalies, which is consistent with the result of
Lv et al. (2022) and Hu et al. (2021). The relocation of the Ms
6.4 Yangbi earthquake sequence shows that the sequence is about
3–13 km away from the nearest known Weixi–Qiaohou fault
(Figure 13D), (Li et al., 2022; Lu et al., 2022), indicating that the
Yangbi earthquake occurred in the shallow area of the upper crust
(Long et al., 2021). Meanwhile, the stress transmitted into the
surrounding tectonics caused by the Yangbi earthquake affects
the magnitude of Coulomb stress in the southeastern section of
the Weixi–Qiaohou fault, significantly increasing the stress in this
fracture zone.

The relocation of the earthquake sequence also suggests that the
aftershocks of the main earthquake along the northwest segment of the

FIGURE 13
Horizontal slice of P-wave velocity and earthquake sequence diagram in the Yangbi earthquake area. (A–C) represent the Pwave velocity at depth of
5, 10, and 15 km, respectively. The star indicates the location of the Yangbi earthquake. WX-QHF: Weixi–Qiaohou fault; RRF: Red River fault zone. The
figure in the lower right region is the earthquake sequence map. (D) Referred by Hu et al. (2021)

FIGURE 14
P-wave velocity vertical profiles across the Yangbi earthquake
with 25 km depth along the EE’ and FF’ in Figure 13A, which is zoomed
in from Figure 11. (A,B) represent the profiles of EE’ and FF’. The star
indicates the location of the Yangbi earthquake. WXF: Weixi fault;
RRF: Red River fault zone.
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Weixi–Qiaohou fault are relatively shallow and dense, while those in the
southeast part are deeper and dispersed. The seismic cross-sections from
the main shock and layer profiles (Figure 14) show that the P-wave low-
velocity anomalies extend SE in the deep region and NW in the shallow
region. The domain tectonic stress field observed from the focal
mechanism solution of the earthquake sequence shows that the
seismogenic structure is an NW–SE-trending right-lateral strike–slip
movement near the horizontal principal compressive stress. The
dislocation type of the main seismogenic fault is generally consistent
with that of the Weixi–Qiaohou fault. In addition, the direction of the
regional tectonic stress field in the northern segment of the RRF ismainly
NNW–SSE (Long et al., 2021). The obvious low-Vp anomalies were
distributed around the northern part of the RRF in the upper crust with a
depth of 0–15 km, which was interpreted as the weak material flow. The
recent ambient noise tomography shows that the lower crustal flow is
divided into two ranges in the southernChuan–Dian block, one along the
XJF and the other extending from the LJ-XJHF to the RRF (Liu et al.,
2019). Due to the southeast extrusion along the RRF and the clockwise
rotation of the southwest Chuan–Dian Block (Long et al., 2021), the
extension stress may continue to be transferred southeast along the RRF.

Moreover, the inversion of the b-value shows that the main
Yangbi earthquake occurred near the peak values of tidal body strain
and Coulomb stress (Hu et al., 2021; Li et al., 2022; Zhang et al.,
2022), which reflects the seismic activity of the Yangbi earthquake
might be affected by fluid migration (Sun et al., 2022). The high-
resolution seismic images of the Yangbi earthquake sequence based
on deep learning suggest that a long and narrow strip structure
around this area can be analyzed as a channel for material fluid
migration (Jin et al., 2019). Geothermal data for regions near the
Yangbi earthquake area show that a large number of
medium–higher heat flows distribute on the Red River and
Weishan–Qiaohou faults (Hu et al., 2000). The observed large
low-velocity anomalies around the west of the Yangbi earthquake
source have a good correspondence with the low Poisson’s ratio and
high heat flow (Hu et al., 2000; Liu et al., 2021). The coincidence of
these observations implies that the crust here is relatively weak,
which might represent the crustal material flow. The studies of
earthquake sequences and seismic wave images show that most
continual earthquakes occur at the boundary of high- and low-
velocity regions (Huang and Zhao, 2004; Mooney et al., 2012), where
the large stress and strain energies are easily accumulated (Yang
et al., 2021). Combined with the stress, earthquake sequence
distribution, and geothermal activity, we infer that cracks were
caused by the main Yangbi earthquake around the fault zone.
Due to the extrusion of middle and lower crustal flow upwelling
along these cracks, the crustal flow further accelerated the fracture of
the cracks, resulting in a series of aftershocks.

5 Conclusion

In this study, we construct 3D P-wave velocity images and
seismic relocation in the Yunnan region (22°–28°N, 98°–106°E)
using the double-difference tomography method, based on the
P-wave travel time data recorded by 82 seismic stations in the
region from 1 January 2009 to 31 December 2020, and 22 temporary
stations installed by Central South University from 2018 to 2020.
These results provide some new geophysical evidence for the

seismogenic environments of regional earthquakes and the
crustal deformation under Yunnan and its surroundings.

(1) The seismic images show that there are two obvious low-
velocity zones at a depth of 15–35 km. The east belt
distributes along the XJF in the N–S direction, while the
west belt extrudes from the LJ-XJHF and rotates to the north
RRF. These observations have good correspondence with the
high Vp ratio, significant crustal anisotropy, and high heat
flow. The coincidence of the aforementioned geophysical
observation indicates the existence of two belts of middle-
to-lower crustal flow around our study area. The high-
seismic velocity region in the central part of the
Chuan–Dian Block is located between two low-seismic
velocity regions, which is consistent with the distribution
of the ELIP.

(2) The seismic images also show that the Yangbi area has an obvious
boundary of low and high velocity within the depth of 5–15 km,
which is NW–SE-trending and extends to the southeast with the
depth. This is consistent with the distribution of aftershock
sequences of the Yangbi earthquake and the trend of the WX-
QHF zone, indicating that the seismogenesis of the Yangbi
earthquake might be related to the regional tectonic stress.
Meanwhile, the observed low-velocity anomalies are
widespread around the northern RRF, east of the Yangbi area,
which was expressed as the lower crustal flow, indicating that the
stress continues to be transferred southward along the RRF. The
soft materials in the middle and lower crust would drag the upper
brittle crust and lead to sinistral strike-slip earthquakes.
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Strain fields of
Ms >6.0 earthquakes in Menyuan,
Qinghai, China

Guofu Luo*, Fenghe Ding, Yingcai Xu, Hengzhi Luo andWenjun Li

Seismological Bureau of Ningxia Hui Autonomous Region, Yinchuan, China

In predicting earthquakes, it is a major challenge to capture the time factor and
spatial isoline anomalies, and understand their physical processes, of the seismic
strain field before a strong earthquake. In this study, the seismic strain field was
used as representative of seismic activity. The natural orthogonal function
expansion method was used to calculate the seismic strain field before the
Menyuan Ms 6.4 earthquakes in 1986 and 2016, and the Ms 6.9 earthquake in
2022. Time factor and spatial isoline anomaly of the strain field before each
earthquake was extracted. We also compared the evolution of the strain field with
numerical simulation results under the tectonic stress system at the source. The
results showed that the time factor before the earthquakes had high or low value
anomalies, exceeding the mean square error of the stable background. The
anomalies were concentrated in the first four typical fields of the strain field,
which hasmultiple components. The abnormal contribution rate of the first typical
field is the largest (accounting for 42%–49% of the total field). The long- and
medium-term anomalies appear 3-4, and 1-2 years before the earthquake,
respectively. There were no short or immediate-term anomalies within
3 months of the earthquake. In addition, during the evolution of the strain field,
the abnormal area of the spatial isoline changed with the change in time. Usually,
the intersection area of the two isoseismic lines of strain accumulation and strain
release becomes a potential location for strong earthquakes. Finally, we found that
the high strain field values of the 1986 and 2016Ms 6.4 earthquakes were
equivalent to the numerical simulation results, while the high strain field values
of the 2022 Menyuan Ms 6.9 earthquakes were slightly different, but within the
accepted error range. These results indicate that the two methods are consistent.
We have shown that the natural orgthagonal method can be used to obtain the
spatiotemporal anomaly information of strain field preceding strong earthquakes.

KEYWORDS

Menyuan region China, Ms >6.0 earthquakes, seismic strain field, spatiotemporal
anomalies, natural orthogonal function expansion method

1 Introduction

The Menyuan region is located in the middle of the eastern region of the Qilian
Mountains block on the northeastern boundary of the Tibetan Plateau in China. This
orogenic belt has strong tectonic deformation, relatively large topographic gradient
variations, and strong movements (Gaudemer et al., 1995; Jiang et al., 2017; Li et al.,
2021). The area has long been pushed by the Indian plate, leading to the northeastern
expansion of the Tibetan Plateau and the resisting force of the Alxa block (Pan et al., 2022;
Yuan et al., 2023). The region has a complex internal geological structure, and the active
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Lenglongling and Tuolaishan fault zones that developed mainly
during the Holocene belong to the strongly active Qilian-Haiyuan
fault zone branch (Zheng et al., 2013). Historically, the following
earthquake events were located in areas known for strong
earthquake activity (Yuan et al., 2023; Zuo et al., 2023): the
1927 Gansu Gulang Ms 8 (Zheng et al., 2004; Liu et al., 2007;
Guo et al., 2020), 1986MenyuanMs 6.4 (Yan et al., 1987; Dang et al.,
1988; He et al., 2019), 2016 Menyuan Ms 6.4 (Hu et al., 2016; Xu
et al., 2016; Guo et al., 2017; Liang et al., 2017; Liu et al., 2019; Zhao
et al., 2019; Qu et al., 2021), and 2022 Menyuan Ms 6.9 (Fan et al.,
2022; Sun et al., 2022; Xu et al., 2022). Recently, several detailed
studies have investigated the activity pattern, seismogenic
environment and earthquake triggering capacity of the
Lenglongling fault zone (Guo et al., 2017; Liu et al., 2018; Zhao
et al., 2019). ThreeMs >6.0 earthquakes in Menyuan are believed to
have been associated, predominantly, with the Lenglongling fault,
although the 2022 Menyuan Ms 6.9 earthquake resulted from the
combined activity of the Tuolaishan and Lenglongling faults (Fan
et al., 2022; Zhao et al., 2022; Yuan et al., 2023), with ruptures
occurring on both sides (Xu, 2022). The 2022 Menyuan Ms
6.9 earthquake significantly affected the Jinqianghe and
Laohushan faults situated at the eastern side of the Lenglongling
fault, increasing the seismic stress and, the probability of strong
earthquakes in future (Pan et al., 2022; Yuan et al., 2023).

In recent years, strong seismic activity in the Menyuan area has
elicited abundant research, with detailed local and international
studies being conducted on the cause, velocity structure, coseismic
deformation, and surface rupture of strong earthquakes in the area.
Zuo and Chen (2018) and Wang et al. (2022) investigated the three-
dimensional body wave velocity structure and seismic relocation of
the crust in the Menyuan region, contending that the heterogeneity
of the velocity structure showed strong congruity with the two
Menyuan Ms 6.4 earthquakes. Zhang et al. (2020) found that the
2016 MenyuanMs 6.4 earthquake resulted from the delayed rupture
deep in the focus of the 1986 earthquake. Gai et al. (2022), Han et al.
(2022), Liang et al. (2022), Li Z et al. (2022), and Pan et al. (2022)
studied the distribution of the surface rupture and seismogenic
structures of the 2022 Menyuan Ms 6.9 earthquake. Yang et al.
(2022), Huang et al. (2022), Li Y et al. (2022), and Bao et al. (2022),
employing Interferometric Synthetic Aperture Radar (InSAR) data,
determined the coseismic deformation of the Menyuan Ms
6.9 earthquake. These authors conducted slip inversion of the
earthquake, demonstrating that the surface rupture process was a
consequence of the combined actions of the Lenglongling and
Tuolaishan faults.

The application of field theory to study anomalies before strong
earthquakes is relatively new. In China, the orthogonal function
expansion method is used to calculate the energy field (Yang and
Zhao, 2004), frequency field (Luo et al., 2023) and strain field (Yang
et al., 2017; Luo et al., 2018; Luo et al., 2019) before strong
earthquakes. This method analyze the relationship to between
spatiotemporal anomalies and strong earthquakes. In Japan, India,
Europe and the United States, the empirical orthogonal function
method is used to calculate deformation fields before and after strong
earthquakes (Chang and Chao, 2011; Chao and Liau, 2019; Neha and
Pasari, 2022). This method analyzes the co-seismic deformation and
gives the motion direction of 3-dimensional deformation.

In this study, we used the natural orthogonal function expansion
method to analyze the strain field before 3 Ms >6.0 earthquakes in
the Menyuan region. We aimed to understand the spatial and
temporal anomalies that occur before strong earthquakes, analyze
the evolution characteristics of spatial anomalies of the strain field
over time, and give the physical interpretation of spatial anomalies
and strong earthquake locations. In addition, this is the first time the
results of numerical simulation under the tectonic stress system and
strain field evolution have been compared.

2 Methodology

Seismic strain was considered a random variable and was broken
into temporal and spatial functions using the natural orthogonal
function expansion method, also known as the seismic strain field S
(Yang et al., 2017; Luo et al., 2018). Using the grid method, the strain
field was constructed for a particular study region according to the level
of seismic activity in the region. A time interval Δt was selected, the
observation time was divided into different m periods
ti � Δt × i(i � 1, 2, ...m); and the area was separated into n equal-
area elements ΔS � Δx ×Δy, with center coordinates of
(xj, yj)(j � 1, 2, ...n). The observed values in each area element in
each time-period Sij were calculated and used as the field function value
representing the spatiotemporal coordinates (xi, yi, tj)(i, j � 1, 2, ...n).

The seismic energy release was represented by E, Considering
that the square root of seismic energy is proportional to the seismic
strain, i.e.,

��
E

√ � cε (c is the focal-related parameter of the
earthquake in the study region, and ε is the seismic focal region
cumulative strain parameter), where both parameters reflect strain
field changes in the focal region. After assessing the region, the strain
field function was established through S � ∑

i

��
Ei

√
, expressed in a

matrix form:

S �
S11 S12 / S1n
S21 S22 / S2n
..
. ..

. ..
. ..

.

Sm1 Sm2 / Smn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

The Menyuan region has similar seismic blocks, and seismic
focal-related parameter c is approximately constant. The field
function S � ∑

i

��
Ei

√
is also known as the seismic strain field,

where Sij (i � 1, 2, ...m, j � 1, 2, ...n) is the j th grid and i th time-
period of the cumulative seismic strain value. The energy agrees with
the formula LogE � 4.8 + 1.5M (E is the energy unit in joules, M is
magnitude). We conducted the natural orthogonal function
expansion, which involved breaking down matrix S into the sum
of the product of orthogonal spatial function x and orthogonal
temporal function T:

Sij � ∑n
p�1

TipXpj
i � 1, 2,/, m
j � 1, 2,/, n

{ (2)

The orthogonality and normalization conditions were satisfied,
as follows:

∑n
j�1
xkjxlj � 0

1
{ k ≠ l

k � l
(3)
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∑m
i�1
TikTil � 0

λk
{ k ≠ l

k � l
(4)

The characteristic equation of the corresponding covariance
matrix R � S′S was solved, as follows:

R11 R12 / R1n

R21 R22 / R2n

/ / / /
Rn1 Rn2 / Rnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x1

x2

/
xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � λ

x1

x2

/
xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

The eigenvectors �xk and eigenvalues λk ( k � 1, 2...n) were
obtained. The temporal factor (i.e., weight coefficient sequence) is
expressed as:

T
.

k � Sx
.

k k � 1, 2,/n (6)

The eigenvectors �xk (strain fields) represent the spatial
distribution of seismic strain in the different fields constituting
the field, and the temporal factor �Tk represents temporal changes
in strain fields �xk, reflecting the dynamic characteristics of the strain
fields at different times. The eigenvectors corresponding to the first
few eigenvalues (in order of large to small) in matrix R satisfied the
accuracy of fitting of the total strain field, indicating that the
superposition of the first few eigenvectors (strain field)
approximated the total strain field. Accordingly, the changes of
the first few main strain fields we studied represented the
spatiotemporal characteristics of the strain field in the study
region. Assuming that the sum of all n eigenvalues was b0, using
the previous typical field l, the accuracy of fitting of the total field
rl was:

rl � ∑l
p�1

λp/b0 (7)

where λp represents the p th characteristic root.
The natural orthogonal function expansion method was

employed to extract the strain fields corresponding to the largest
eigenvalues, which is equivalent to encapsulating the main
information of the strain fields in the region. The focus was on
the anomalies of the highest strain fields and any strain fields
without anomalies or that had a small correlation with strong
earthquakes were excluded.

3 Data

3.1 Catalog and calculated parameters

The earthquake data used in this study was derived from the
official national earthquake catalog of the China Earthquake
Networks Center (CENC). A b-value test was performed on the
seismic data in the study region from January 1975 to December
2022, with the lower limit of the smallest complete magnitude of the
earthquake being set to ML 2.7. The probability of moderate and
strong earthquakes occurring in the study region is quite small, and
the release of strain energy has a significant effect on this region.
Therefore, earthquakes with intensities greater than moderate were
not considered to belong to the normal seismic activity in our study
region, and the upper magnitude limit was set to Ms 5.0. We

employed the K-K theory (Luo et al., 2019) to remove the
aftershocks of Ms >5.0 earthquakes. A grid of 0.5° × 0.5°(Yang
et al., 2017) was used for the study region, and the time-sliding
algorithm was adopted, with a time interval of 12 months, sliding
span of 1 month, and the data were discretized. Seismic strain release
matrix S was constructed in accordance with Eq. 1, and natural
orthogonal function expansion analysis was conducted. Covariance
matrix R was solved to obtain the eigenvalues of the field and the
main strain fields corresponding to these eigenvalues. The temporal
factors corresponding to the eigenvalues of the main fields were
obtained, along with the spatial isolines of different study regions.

3.2 Tectonic and geological settings

The study region is located at (100.5°–103.5° E, 35.5°–38.5° N) in
the Qilian Mountain block area on the northeastern boundary of the
Tibetan Plateau, where a series of approximately parallel faults has
developed, that is, inclined toward the NWW, as shown in Figure 1.
These parallel faults include the Xunhua Nanshan, Dabanshan,
Tuolaishan, Lenglongling, Jinqianghe, Qilian Mountain northern
boundary, and Changma–Ebo faults. Moreover, several other
NNW-trending faults are present, such as the Wuwei–Tianzhu,
Zhuanglanghe, and Riyueshan faults, along with numerous
secondary faults. Accordingly, this fault system is an important
and active system on the northeastern edge of the Tibetan Plateau
(Figure 1A). Over the past 40 years, three consecutive
Ms >6.0 earthquakes have occurred in the Menyuan region
(Figure 1B), with the Lenglongling fault being the seismogenic
origin of the 1986 and 2016Ms 6.4 thrust earthquakes (He et al.,
2019; Qu et al., 2021). The seismogenic origin of the 2022 strike-slip
Ms 6.9 earthquake inMenyuan was a combination of the Tuolaishan
and Lenglongling faults (Pan et al., 2022; Yuan et al., 2023). The
seismic activity ofMs >6.0 earthquakes in theMenyuan region could
indicate that the earthquakes have accumulated a relatively high
strain field capable of triggering strong earthquakes whenever the
main active faults slide and rupture (Zuo et al., 2023).

4 Results

4.1 Strain field time factor

We used the natural orthogonal function expansion method to
study the spatiotemporal characteristics of the seismic strain fields in
the Menyuan region in the 10 years prior to the occurrence of the
1986 and 2016Ms 6.4 earthquakes and the2022 Ms 6.9 earthquake.
The results are shown in Table 1.

The parameters included the calculation grid and time-period,
temporal factors, and time of anomaly of the first four strain fields as
well as anomaly types, mean square error, and accuracy of the
previous four strain fields. The accuracy of the first four strain fields
was above 89%, whereas that of the 2022Ms 6.9 earthquake was
above 99 Figure 2 shows the characteristics of strain field changes
over time, before the threeMs >6.0 earthquakes. In our study, the
analyzed the temporal factor of the strain field that exceeded the
mean square error as the criterion for anomalies. The anomalies
(Luo et al., 2023) were classified based on timing before the
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earthquake as: long-term (10 years), medium-term (1-2 years),
short-term (3 months), and imminent (tens of days).

One or several anomalies of the four strain field factors appeared
every time before a strong earthquake. Whether the magnitude of
the anomaly exceeded the absolute value of the mean square error

was used as the criterion for determining whether there was an
anomaly. More than two medium-term anomalies appeared before
the 1986 and 2016 earthquakes, and one medium-term anomaly
appeared before the 2022 earthquake. Two long-term anomalies and
no short-term anomalies were detected (Table 1), and the first two

FIGURE 1
(A) Study area of the northeasternmargin of the Tibetan Plateau. Black lines showmajor faults. The red rectangle represents the location of the study
area. (B) The northeast direction of the red rectangle is the Hexi Corridor, and the south is the Menyuan basin. Regional seismic setting of the 1986, 2016,
and 2022 Menyuan earthquakes. The epicenters of the earthquakes are indicated by stars in accordance with data derived from the China Earthquake
Networks Center (CENC). The focal mechanism of the 1986 MenyuanMs 6.4 earthquake derives from the United States Geological Survey (USGS),
that of the 2016 Menyuan Ms 6.4 earthquake is from Yin et al. (2018), and that of the 2022 Menyuan Ms 6.9 earthquake is from Xu et al. (2022).

TABLE 1 Strain field temporal factors.

No. Earthquake Grids
(n,m)

Time span of
the data

Temporal
factor

Time of anomaly
(year-month)

Mean square
error

Type of
anomaly

Accuracy
r

1 1986-8-26 (36,137) 1975-01–1986-08 T1 1984-10–12 ±1.2055 medium term 0.8966

T2 1980-01–03 ±1.0913 Long and
medium term

1985-04–06

Ms 6.4 T3 1982-04–06 ±0.5318 Long term

T4 1982-02–04 ±0.4491 Long term

2 2016-1-21 (36,118) 2006-01–2016-01 T1 2008-01–03 ±3.0313 Long term 0.9720

2012-05–07

T2 2014-10–12 ±2.0792 medium term

Ms 6.4 T3 2007-07–09 ±1.9303 medium and long
term

2014-10–12

T4 2014-01–03 ±1.2192 medium term

3 2022-1-8 (36,118) 2012-01–2022-01 T1 2019-07–09 ±3.0583 Long term 0.9932

2012-03–05

T2 2014-01–03 ±1.2645 Long term

Ms 6.9 T3 2019-08–2020-02 ±0.1960 medium term

T4 2018-06–08 ±0.1610 Long term

n, number of grids; m, time interval. Tk is the kth (1 to 4) strain-field time factor.
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temporal anomalies were related to the 2016 earthquake. Generally,
the overall changes in the four strain field temporal factor curves
were stable before the three Ms >6.0 earthquakes. Relatively few
anomalies exceeded the threshold (the mean square error, indicated
by the red line in Figure 2).

4.2 Strain field spatial evolution

In our study of the seismic strain field spatial isoline evolution
patterns in the study region before and after strong earthquakes, the
environs of the isoline values (or absolute values) greater than 0.05 ×
105 were usually defined as danger zones (Luo et al., 2018). The
positive values of the isolines represented seismic strain field release
and the negative values represented seismic strain field accumulation.
The danger zone in the intersection between strain field release and

accumulation usually corresponded to the location of the main shock.
Combined with the geological structure in the region, the strain field
accumulation and release regions of the active faults could be
considered the seismogenic location of future strong earthquakes
(Yang et al., 2017; Luo et al., 2019). Figure 3 shows the spatial
distribution of the strain fields in the region before and after the
August 1986 earthquake. From January to March 1986, two types of
large area seismic danger zones—Strain field accumulation and
release—Occurred in the middle of the eastern region of the Qilian
Mountain. From April to June 1986, the number of anomalies in the
seismic danger zone increased, and these were divided into multiple
anomalies. From July to September 1986, the area of the two
anomalous zones increased, and the earthquake occurred around
the two danger zones of the Lenglongling fault. From October to
December 1986, the danger zones of the strain field isolines gradually
increased in size, before finally slowly disintegrating.

FIGURE 2
Temporal factors of the first four strain fields of threeMs ≥6.0 earthquakes. (A) August 26, 1986 Menyuan CountyMs 6.4 earthquake; (B) January 21,
2016 Menyuan CountyMs 6.4 earthquake; (C) January 8, 2022Menyuan CountyMs 6.9 earthquake. The blue dotted line represents the anomaly, the red
line is the mean square error, and the black arrow represents the magnitude of the Ms ≥6.0 earthquake.
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FIGURE 3
Spatial distribution of the strain field before and after the 1986 earthquake. Strain field from (A) January toMarch 1986; (B) April to June 1986; (C) July
to September 1986; (D)October to December 1986. The gray and black lines are the fault and strain field contour, respectively. A negative value indicates
accumulated strain, and a positive value indicates released strain. Isoline value 0.1 represents 0.1 × 105. The yellow stars represents the epicenter of the
Menyuan Ms 6.4 earthquake on 26 August 1986.

FIGURE 4
Spatial distribution of the strain field before and after the 2016 earthquake. Strain field from (A) July to September 2015; (B) October to December
2015; (C) January to March 2016; (D) April to June 2016. The gray and black lines are the fault and strain field contour, respectively. A negative value
indicates accumulated strain, and a positive value indicates released strain. Isoline value 0.1 represents 0.1 × 105. The yellow stars represents the epicenter
of the Menyuan Ms 6.4 earthquake on 21 January 2016.
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Figure 4 shows the spatial distribution of the strain fields in the
region before and after the earthquake in January 2016. A strain-
field accumulation danger zone appeared in the middle of the
eastern area of the Qilian Mountain from July to September
2015. The area of the strain-field danger zone remained
unchanged from October to December 2015, although a strain
field release danger zone appeared in the northeast of the study
region. From January to March 2016, the two large areas of strain
field accumulation and release seismic danger zone anomalies
appeared to converge and split into multiple anomalies. Here, at
the same time, the earthquake occurred in the center of the
anomalous zone. However, no main shock occurred at the
intersection of the danger zone. From April to June 2016, the
strain-field isoline danger zone gradually enlarged and,
ultimately, slowly disintegrated.

Figure 5 shows the spatial distribution of the strain fields in the
region before and after earthquake in January 2022, where a strain
field accumulation danger zone surfaced in the middle eastern
Qilian Mountain from July to September 2021. From October to
December 2015, the strain-field danger zone area decreased, and a
strain-field release danger zone simultaneously appeared in the
north- and southwest of the danger zone, forming an anomalous
intersection of these strain field accumulation and release danger
zone areas. From January to March 2016, strain field accumulation
and release anomalous danger zones formed along the intersection
of the Tuolai Mountain fault and the Lenglongling fault zone and, at
the same time, the earthquake occurred at the intersection of the
danger zone. From April to June 2022, the strain-field isoline danger
zones gradually increased before finally slowly disintegrating.

A comparison of Figures 3–5 indicated differences in the strain
field isoline anomaly evolution patterns before and after the
earthquakes. There were also similarities in that the anomalies in
strain accumulation and release first appeared in the study region,
followed by several anomalous areas appearing. Additionally, the
danger zone increased in size before slowly disappearing after the
main earthquake. These findings explained the inference (Zhang
et al., 2020) that the 2016MenyuanMs 6.4 earthquake was the result
of delayed rupture deep in the focus of the 1986 Menyuan Ms
6.4 earthquake. Moreover, our findings were consistent with those of
He et al. (2019) that the 2016 Menyuan Ms 6.4 earthquake was a
repeating earthquake of the 1986 Menyuan Ms 6.4 event.

4.3 Relationship between spatial anomalies
and strong earthquakes

The study region has long been subjected to the northeasterly
pushing of the Tibetan Plateau and resistance from the Alxa block,
which has led to the gradual deformation of the Haiyuan-Qilian
Mountain fault zone, as well as accumulation of considerable seismic
strain that has formed a locked seismogenic unit. The high
concentration of stress and strain in the environs of the locked
zone has led to earthquakes or fault branches in the Haiyuan-
Qilianshan fault zone. Such events have triggered changes in the
accumulation of stress and strain, which, in turn, has altered the
spatial distribution of the seismic strain field. Accordingly,
seismogenic information on the 1986 Menyuan Ms 6.4,
2016 Menyuan Ms 6.4, and 2022 Menyuan Ms 6.9 earthquakes

FIGURE 5
Spatial distribution of the strain field before and after 2022 earthquake. Strain field from (A) July to September 2021; (B)October to December 2021;
(C) January to March 2022; (D) April to June 2022. The gray and black lines are the fault and strain field contour, respectively. A negative value indicates
accumulated strain, and a positive value indicates released strain. Isoline value 0.1 represents 0.1 × 105. The yellow stars represents the epicenter of the
Menyuan Ms 6.9 earthquake on 8 January 2022.
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was included in this study of the seismic strain field in the Menyuan
region, where the dynamic processes of strong earthquakes are
reflected.

Figure 6A shows the spatial distribution of the seismic strain
field from 1 February 2016 to 7 January 2022. The seismic strain
anomalies were concentrated mainly in the Lenglongling and
Sunan–Qilian faults in a hexagonal distribution and a northeast
direction. The center of the anomalies was located on the
Lenglongling fault, with a value of approximately 4.3 × 105;
however, 2022 earthquake occurred on the boundary of the strain
field anomaly with a value of approximately 2.5 × 105. Figure 6B shows
that the seismic strain field anomalies from 1 January 2006 to
20 January 2016 were concentrated around the Lenglongling fault
and followed a hexagonal distribution in a northeast direction, with a
larger area of anomalies. The 2016 earthquake occurred near the high
anomalous value area (4.5 × 105). Figure 6B shows that the seismic
strain field anomalous area was larger from 1 January 1975 to
25 August 1986, was moving in an easterly direction, and was
concentrated mainly around the Gulang and Huangcheng-Shuangta
faults. The 1986 earthquake occurred at the boundary of the anomaly,
with a value of approximately 2.8 × 105. Figure 6C shows two high-
value areas that appeared in the seismic strain field anomalies from
1 January 1975 to 31 December 2022. The high-value northeastward-
trending hexagonal anomalous area was centered on the Lenglongling
fault and corresponded to all three earthquakes. Another high strain

field anomalous value in Tianzhu County, Gansu Province could
indicate a seismogenic unit of future strong earthquakes. A
comparison between Figures 6A–C showed that the seismic strain
field high anomalous values were concentrated predominantly around
the Lenglongling fault, with the environs of the high anomalous value
area corresponding mainly to the three MenyuanMs >6.0 earthquakes
east of the Lenglongling fault. The vicinity of the Tianzhu fault could be
a seismogenic unit of future strong earthquakes. These areas predicted
as sites for potential future strong earthquakes were consistent with the
strong earthquake danger zones proposed by Xu et al. (2022), Fan et al.
(2022), and Yuan et al. (2023).

5 Discussion

5.1 Comparison between seismic strain field
and tectonic stress

This study aimed to understand the strain field factors that
contributed to three earthquakes in the Menyuan region in 1986,
2016 and 2022. These factors determined the outcome of the relative
shear stress produced by the two focal mechanism solution nodal
planes of the 2022 Menyuan Ms 6.9, 2016 Menyuan Ms 6.4, and
1986 Menyuan Ms 6.4 earthquakes (Figure 7). The outcomes of the
focal mechanism solutions of the three earthquakes were consistent

FIGURE 6
Spatial distribution of the seismic strain in the study area from 1975 to 2022. Spatial distribution of the seismic strain field from (A) 1 February 2016 to
7 January 2022; (B) 1 January 2006 to 20 January 2016; (C) 1 January 1975 to 25 August 1986; (D) 1 January 1975 to 31 December 2022. The white line is
the fault, the yellow stars represents the epicenter of theMs ≥6.0 earthquake and the black point is the epicenter ofMs 3–5 foreshocks. The area enclosed
by sky blue, yellow, and red is the abnormal area of the seismic strain field.
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with the results shown in Figure 1. Figure 7 shows that the relative
shear stress generated by the stress tensor on the 2022 MenyuanMs
6.9 earthquake focal mechanism solution (Xu et al., 2022) nodal
plane I (strike 290°, dip angle 81°) was 0.64, and the relative shear
stress generated on nodal plane II (strike 197°, dip angle 74°) was
0.52. The relative shear stress generated by the stress tensor on the
2016MenyuanMs 6.4 earthquake focal mechanism (Yin et al., 2018)
nodal plane I (strike 143°, dip angle 40°) was 0.99; whereas the
relative stress generated on nodal plane II (strike 347°, dip angle 53°)
was 0.83. The relative shear stress generated by the stress tensor on
the 1986Ms 6.4 earthquake focal mechanism [United States

Geological Survey (USGS)] nodal plane I (strike 125°, dip angle
37°) was 0.98, and the relative shear stress generated on nodal plane
II (strike 346°, dip angle 60°) was 0.81. These values indicated that
the relative shear stress of the two Menyuan Ms 6.4 earthquakes in
2016 and 1986 reached a maximum (the maximum shear stress was
1), i.e., the accumulated stress was released completely, with a
relatively significant effect on the environs of the earthquake
focus. The relative shear stress of the 2022 Menyuan Ms
6.9 earthquake only exceeded the average value, and the complete
release of the accumulated stress in the tectonic area had negligible
effect on the environs of the earthquake focus. The strain field results

FIGURE 7
Simulated focal mechanisms and relative shear stress of the stress system in the Menyuan region. The abscissa is the strike of the focal mechanism,
and the ordinate is the dip angle. NS represents the positive fault-and-strike slip type, SS represents the strike-slip type, NF represents the positive fault-
and-strike slip type, TS represents the reverse fault-and-strike slip type, TF represents the reverse fault-and-strike type, and U represents uncertain focal
mechanism solutions. Theoretical simulation results are compared with the source mechanism solutions of three actual source Menyuan
earthquakes, with magnitudes 6 or above (using the source mechanism solution results in Figure 1). The red characters represent the Ms 6.9 Menyuan
earthquake in 2022, white characters represent the Ms 6.4 Menyuan earthquake in 2016, and the gray characters represent the Ms 6.4 Menyuan
earthquake in 1986. Grid squares represent shear stress from low (blue) to high (red).

TABLE 2 Relationship between temporal and spatial anomalies of the strain field and foreshock activity.

No. Earthquake Foreshock Foreshock
location (°N,°E)

Foreshock
magnitude

(Ms)

Temporal
factor

Relationship between
foreshock and isoline

anomaly

Distance between
foreshock and
earthquake (km)

1 1986-8-26 1982-6-8 37.67, 102.57 4.0 T3、T4 Isoline anomaly edge 43

Menyuan 1984-12-7 37.23, 102.68 4.7 T1 Isoline anomaly cente 88

Ms 6.4 1985-7-14 37.83, 101.82 4.1 T2 Isoline anomaly edge 110

2 2016-1-21 2012-5-11 37.75, 102.00 4.9 T1 Isoline anomaly edge 32

Menyuan 2014-3-12 37.62, 102.27 3.6 T4 Isoline anomaly edge 55

Ms 6.4 2014-9-20 37.73, 101.53 5.0 T2、T3 Isoline anomaly cente 12

3 2022-1-8 2018-8-26 37.70, 102.23 3.7 T4 Isoline anomaly edge 86

Menyuan 2019-7-27 37.82, 100.98 3.1 T1 Isoline anomaly edge 24

Ms 6.9 2019-8-9 37.70, 101.58 4.9 T1、T3 Isoline anomaly cente 30

2019-8-22 37.23, 101.82 3.3 T1、T3 Isoline anomaly cente 78
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were consistent with the numerical simulation results under the
tectonic stress system for the 1986 and 2016 earthquakes. The results
for the 2022 earthquake were slightly different, but still within the
acceptable error range.

5.2 Factors affecting strain field anomalies

We found that the main factors affecting the temporal and
spatial anomalies of the seismic strain field are the occurrence of
magnitude-4-5 foreshocks or clusters and the intensity and
frequency of foreshock activity (Table 2). The largest foreshocks
or clusters were usually located in the center of a spatial anomaly and
the first time factor anomaly. The activity level of foreshocks
increased significantly before the three earthquakes, which was
mainly characterized by high intensity and high frequency
foreshocks. In 1986 and 2016, there were several foreshocks of
magnitude 4-5 in the region 4 years prior to the earthquakes.
Additionally, a Ms 4.9 earthquake cluster occurred in the region
3 years prior to the 2022 earthquake. The strongest foreshock or
cluster is usually located in the center of spatial anomaly and
distributed in the first time factor anomaly of the strain field.

By comparing the difference between the seismic strain field
method and the seismic frequency field method (Luo et al., 2023),
the method chosen to study the temporal and spatial anomaly
characteristics around strong earthquakes mainly determines the
level of foreshock activity around the source. If the frequency of
foreshocks around the source increases significantly, and the
intensity of the earthquake is magnitude 3-4, the seismic
frequency field method is preferred. If the foreshock frequency
around the source increases, it is mainly caused by earthquakes
of magnitude 4-5, the seismic strain field method is more suitable. If
the foreshock activity around the source is of high frequency and
high intensity, either method may be used. Usually, a comparative
study of both methods is more reliable conclusions.

5.3 Application of orthogonal function
method in earthquake prediction

Many groups consider the spatiotemporal empirical orthogonal
function method to be a state-of-the-art toolkit in the study of
prediction, evaluation, and detection of small-scale and, short-term
and long-term variation in data sets (Dawson, 2016; Chao and Liau,
2019; Neha and Pasari, 2022). Therefore, in this study, the natural
orthogonal function method was used to extract the temporal and
spatial anomalies of the seismic strain field, analyze the relationship
between the anomalies and strong earthquakes, and predict the
likelihood of an earthquake occurring. Prediction of earthquakes has
always been a controversial scientific issue, but has been carried out
systematically in China. In recent years, significant progress has
been made in short-and medium-term prediction techniques based
on seismicity (Huang et al., 2017). These are generally divided into a
physical process-based model and smooth seismic activity model
(Tiampo and Sihchernakov, 2012) with 7 newmethods in the former
and 10 in the latter. The natural orthogonal function expansion
method used in this study is the 11th method of the smooth seismic
activity model, and the latest development in the field of statistical

seismology. It provides more spatiotemporal information for
earthquake prediction than other methods.

6 Conclusion

This study investigated the spatiotemporal anomalies of the
seismic strain field before and after threeMs >6.0 earthquakes in the
Menyuan region. We found that there were long- and medium-term
anomalies before the earthquakes in the first four strain fields.
Additionally, the more abnormal the anomalies were, the higher
their predictive ability became. We found that the intersection
region of strain accumulation and strain release became the
potential location for strong earthquakes and the danger region
gradually disappeared −3–6 months after the event. Seismic strain
field results were consistent with numerical simulation results for the
1986 and 2016 earthquakes but less reliable for the 2022 earthquake.

Due to the relatively short time that the seismic catalog has been
available, longer seismic observation data will be needed in the
future to evaluate and revise the feasibility and effectiveness of the
method used in this study.
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Strain-based forward modeling
and inversion of seismic moment
tensors using distributed acoustic
sensing (DAS) observations

Jean Lecoulant*, Yuanyuan Ma, Jan Dettmer and David Eaton

Department of Geosciences, University of Calgary, Calgary, AB, Canada

This study used a waveform inversion of distributed acoustic sensing (DAS)
data, acquired in two horizontal monitoring wells, to estimate the moment
tensor (MT) of two induced microearthquakes. An analytical forward model was
developed to simulate far-field tangential strain generated by an MT source
in a homogeneous and anisotropic medium, averaged over the gauge length
along a fiber of arbitrary orientation. To prepare the data for inversion, secondary
scattered waves were removed from the field observations, using f-k filtering
and time-windowing. The modeled and observed primary arrivals were aligned
using a cut-and-paste approach. The MT parameters were inverted via a least-
squares approach, and their uncertainties were determined through bootstrap
analysis. Using simulated data with additive noise derived from the field data
and the same fiber configuration as the monitoring wells, the inversion method
adequately resolved the MT. Despite the assumption of Gaussian noise, which
underlies the least-squares inversion approach, the method was robust in the
presence of heavy-tailed noise observed in field data. When the inversion was
applied to field data, independent inversion results using P-waves, S-waves, and
bothwaves together yielded results that were consistent between the two events
and for different wave types. The agreement of the inversion results for two
events resulting from the same stress field illustrated the reliability of themethod.
The uncertainties of theMT parameters were small enough tomake the inversion
method useful for geophysical interpretation. The variance reduction obtained
from the data predicted for the most probable MT was satisfying, even though
the polarity of the P-waves was not always correctly reproduced.

KEYWORDS

distributed acoustic sensing, moment tensor inversion, strain, forward modeling,
bootstrap analysis, uncertainties, magnitude, induced seismicity

1 Introduction

Anthropogenic earthquakes are a worldwide phenomenon associated with oil and
gas production, geothermal projects, carbon capture and storage, and other industrial
processes (Ellsworth, 2013; Atkinson et al., 2016). In Canada, induced earthquakes have
been associated with a small fraction of hydraulic fracturing operations, including those in
the Duvernay and Montney plays. In the Montney of northern British Columbia, significant
numbers and magnitudes (Mw) of events have been observed, including an Mw > 4
earthquake sequence in 2018. The occurrence of these events has caused many challenges
to regulators, operators, and residents in the area. Nonetheless, the physical processes that
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lead to the activation of existing faults due to hydraulic fracturing
remain poorly understood in this area.This lack of knowledgemakes
it difficult to implement a meaningful regulatory framework.

Distributed acoustic sensing (DAS) systems consist of optical
fiber connected to an interrogator unit, which emits a laser
pulse into the fiber and records Rayleigh-backscattered light on
a photonic sensor (Parker et al., 2014). Changes in phase due
to the fiber undergoing deformation under seismic strain make
this strain measurable. Thus, DAS gives access to a different
observable quantity to characterize the seismic wavefield compared
to displacement or particle velocity provided by more traditional
methods. It also offers an almost continuous sampling in space
and time, measuring strain over kilometers with a resolution of
a few meters and with a large frequency band, from ∼1 Hz
to ∼10 kHz (Daley et al., 2013). In addition, the sensor only
consists in a commercial optic fiber, making it cost-effective
and easy to deploy without modifying existing boreholes and
taking advantage of previous installations. All these advantages
have led to a large variety of applications, including CO2
storage surveys (Daley et al., 2013), ambient noise interferometry
(Dou et al., 2017), regional seismometry (Lindsey et al., 2017),
microseismics (Karrenbach et al., 2017), and induced seismicity
(Lellouch et al., 2021). In the last context, DAS deployed near
the injection well provides closer proximity to the source than
surface geophones. The main limitation of DAS is that instead
of providing a three-component measurement, as seismometers,
it only measures strain coaxial to the optic fiber, which is one
component.

The seismic source can be described as a dislocation propagating
at a finite speed over an extended surface (e.g., Burridge and
Knopoff, 1964). However, in the far field, the source can be
approximated by a point whose energy is released by six force-
couples following an unknown function of time. This source
parametrization is known as the centroid moment tensor (CMT)
and can be simplified into the moment tensor (MT) if the position
and depth of the point source are assumed to be known. The
inversion of the MT is a linear problem that can be solved using
a linear least-squares approach in either the time or in frequency
domains (Jost and Herrmann, 1989). Once the position of the
source and the MT are separately inverted, they can be used
as initial solutions that are perturbated together in an iterative
procedure to solve the non-linear problem of the CMT inversion
(Dziewonski et al., 1981). This method has been automated and is
routinely used to create the Global CMT catalog (Ekström et al.,
2012). The non-linear problem of CMT inversion can also be solved
using Bayesian inference (Wéber, 2006; Stähler and Sigloch, 2014),
which is an efficient way to obtain the uncertainty of the inverted
parameters and the covariance of the data. This method has led
to the development of the ISOLA software (Vackář et al., 2017),
based on waveform inversion, and BEAT (Vasyura-Bathke et al.,
2020), which can take advantage of seismic and geodetic
data.

Although the measurement of a single component of strain
(rate) rather than 3C particle velocity or displacement introduces
some complications, progress has been made toward full MT
inversion of DAS data. With field data from a single linear fiber,
a microseismic source cannot be localized with a unique position;
nevertheless, a classification based on amplitude analysis and

polarity can be applied to obtain information on the nodal planes
(Cole et al., 2018). Using simulated data produced by an analytical
model, the resolvability of the MT for compressional waves (P-
waves), shear waves (S-waves), and a variable number of non-
coplanar wells has been studied (Vera Rodriguez and Wuestefeld,
2020). In simulated data produced by ray tracing, the characteristics
of S-waves measured by a single fiber provide additional constraints
on the position of the source, whereas the polarity reversals in
P- and S-waves help constrain the fault plans (Baird et al., 2020).
In data produced by a one-component sensor in a laboratory
experiment, machine learning and waveform fitting MT solutions
showed discrepancies mainly localized in the azimuthal direction
(Vera Rodriguez and Myklebust, 2022), which cannot be resolved
with only one fiber.Most of these studies focused on the information
that could be extracted from a single fiber. This is probably
the most widely applicable case in an industrial context, since
operational constraints do not necessarily allow for multiple fibers;
however, a full inversion of the MT is not achievable in this
configuration.

This paper illustrated the fullMT inversion of field data acquired
by twoDAS fibers deployed in theMontney Formation. Ourmethod
was applied to two induced seismic events that occurred within 1 h
and 100 m away from each other. For the calculation of the Green
functions used in the inversion, while avoiding the inaccuracies
linked to the conversion of strain data into displacement data,
and those associated with the spatial differentiation of simulated
displacement to obtain strain, we designed an analytical forward
model to predict the far-field terms of the strain generated in
a homogeneous isotropic medium by an MT along a fiber of
arbitrary geometry (Section 2.1). The field data were filtered
to remove reflections and time-windowed to remove secondary
arrivals (Section 2.3). Only the first arrivals of the P- and S-
waves were kept, as they best compared with the arrivals predicted
by the forward model, with very simplified assumptions. The
difference in arrival times between field data and simulated data
was measured using cross-correlation, and the latter was time-
shifted to the arrival time of the field data. This procedure was
applied to produce the Green functions for the six independent
components of the MT, for the two centroid solutions for the two
events of interest. With the assumption of no volume change, the
least-squares solution provided the linear combination of Green
functions that best approximated the field data. The uncertainties of
the inverted parameterswere determined through bootstrap analysis
(Section 2.4). This method was first validated using synthetic data
produced with the forward model. It is possible to resolve the MT,
even if the data are polluted with the non-Gaussian noise observed
in field data. The MT error increased with the decreasing signal-to-
noise ratio (SNR) but remained reasonable for the SNR of the events
of interest.

The inversion method was then applied to the field data.
Small differences were observed between the inversion of P-
waves and the inversion of S-waves, with the inversion of both
P- and S-waves almost identical to the last. The three types
of inversion, however, remained in relatively good agreement.
The important similarity between the MT inverted for the two
events of interest justified our confidence in the method. The
uncertainties were small enough to encourage future geological
interpretation.
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FIGURE 1
Geometry of wells H (blue), J (green), and M (cyan) and the position of the source of Events 1 (red) and 2 (black). The channels of wells H and J used in
the inversion are emphasized (thick lines).

2 Materials and methods

2.1 Forward modeling of strain

The far-field terms (i.e., terms with an amplitude that decays
as 1/r) of the displacement generated along the direction i in an
isotropic homogeneous medium of density ρ, P-wave velocity α,
an S-wave velocity β, at a distance r from a seismic point source
characterized by moment tensor M, is given at any time t by uPj for
P-waves and uSj for S-waves (Aki and Richards, 2009):

uPi =
1

4πρα3

mγi
r

st (t− r/α) ,

and uSj = −
1

4πρβ3

mγi − γ
′
i

r
st (t− r/β) ,

(1)

where st is the far-field source time function, γi is the ith component
of the unit vector pointing from the source to the point where
strain is measured,m = γpMpqγq, and γ′i = γpMpi. Note that Einstein
summation over p and q is applied.

Equation 1 is used to derive the far-field terms of the strain
generated by a seismic source in a homogeneous medium (Eaid,
2022). The contribution of P-waves to the strain exerted over
direction i by direction j is

ϵPij = −
1

4πρ

mγiγj
α4r
̇st (t− r/α) . (2)

Similarly, the contribution ϵSij for S-waves is

ϵSij =
1

4πρ

mγiγj − Γij
β4r
̇st (t− r/β) , (3)

where Γij = (γiγ
′
j + γ
′
i γj)/2. Once the components ϵij of the strain

tensor are obtained by summing the contributions of P- and S-
waves, the tangential strain ϵtt(s) measured by DAS along a fiber at
an arclength s can be derived as follows. Assuming a constant strain

over the gauge length GL (Eaid, 2022) gives

ϵtt (s) =
1
GL
(ϵxx∫

GL/2

−GL/2
Tx(u)

2du+ 2ϵxy∫
GL/2

−GL/2
Tx × (u)Ty (u)du

+ 2ϵxz∫
GL/2

−GL/2
Tx (u)Tz (u)du+ ϵyy∫

GL/2

−GL/2
Ty(u)

2du

+ 2ϵyz∫
GL/2

−GL/2
Ty (u)Tz (u)du +ϵzz∫

GL/2

−GL/2
Tz(u)

2du), (4)

where Tx, Ty, and Tz are the three components of the unit vector T̂
tangential to the fiber. A fiber whose position is known with finite
precision can be approximated by multiple linear segments. If the
lengths of these segments are larger than half the gauge length, it is
convenient to break the integrals in Equation (4) into twohalves: one
between −GL/2 and 0 and one between 0 and GL/2. Over these two
halves, T̂ can be considered constant, and for the strain ϵitt measured
at the ith point along the fiber, Equation 4 simplifies to

ϵitt =
1
2
[(T2

i−1,x +T
2
i,x) ϵxx + (T

2
i−1,y +T

2
i,y) ϵyy +(T

2
i−1,z +T

2
i,z) ϵzz]

+ (Ti−1,xTi−1,y +Ti,xTi,y) ϵxy + (Ti−1,xTi−1,z +Ti,xTi,z) ϵxz
+ (Ti−1,yTi−1,z +Ti,yTi,z) ϵyz, (5)

where Ti,x, Ti,y, and Ti,z are the three components of the unit vector
pointing from the ith to the (i+ 1)th point of the fiber.

To calculate the strain at the ith point of the fiber, Equations 2,
3 are applied to obtain the six components of the strain field. By
means of the vector pointing from the ith to the (i+ 1)th point of
the fiber and of the vector pointing from the (i− 1)th to the ith point
of the fiber, the six components of the strain field can be projected
to create the tangential strain at the ith point of the fiber, according
to Equation 5.

2.2 Data provenance

The DAS data considered in this study were acquired on three
fibers with a 4 m gauge length and a 2000 Hz sampling frequency
located in two horizontal wells (referred to as H and J) and one
vertical well (referred to as M) within the Montney Formation,
British Columbia, Canada. The three wells are shown in Figure 1,
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FIGURE 2
Strain measured during Event 1 along well H: pre-processed data (A), data after filtering in the wavenumber–frequency domain (B), and data after
time-windowing and muting of channels with poor SNR (C).

in addition to the location of the two events of interest, Event 1
and Event 2. These microseismic events occurred at 1 h intervals
within a radius of ∼100 m after stimulation in an adjacent well (not
shown). The sources are located based on the DAS data, ray tracing,
and grid search (Ma et al., 2023). A downhole three-component
geophone array in well H, operating concurrently with the DAS
acquisition system was utilized to estimate magnitudes based on
the Brune model (Brune, 1970). The estimated moment magnitudes
were −0.8 (Event 1) and −0.5 (Event 2). Data from the three wells
were used to locate the source with an uncertainty of ±20 m, but
only data from the two horizontal wells H and J were used in MT
inversion. It would have been impossible to approximate the data
from a vertical well with a forward model assuming a homogeneous
medium.

2.3 Data processing

The simple forward model presented in Section 2.1 can
only predict strain propagating in isotropic homogeneous media.
However, the Montney Formation shows numerous reflections
from lithographic boundaries and fractures (Ma et al., 2022).
Therefore, we applied data processing to select the direct arrivals
of the P- and S-waves, enabling the quantitative comparison
between observed and predicted data, which is crucial for the
inversion.

After conversion from phase to strain, we removed constant
bias, spikes, and system noise. Then, data were bandpass-filtered
between 10 and 150 Hz. Figure 2A shows the strain measured
for Event 1 along well H after this pre-processing. The successive
arrivals of the P- and S-waves are clearly visible but are followed
by secondary arrivals due to reflections from the horizontal layers
of the Montney Formation (Karrenbach et al., 2017). In addition,
where the primary and secondary arrivals cross fault planes, they
generate reflected waves that propagate in a direction opposite
to that of the direct waves, which makes them noticeable in a
time–distance diagram (Ma et al., 2022; Staněk et al., 2022). To the
right of the apex, the first arrivals propagated rightward and leftward
to the left of the apex. Hence, it was straightforward to remove

reflected waves by using filtering in the wavenumber–frequency
domain to filter out waves propagating leftward on the right of the
apex and rightward on the left of the apex. In this process, the
position of the apex was defined manually. Noise with wavelengths
<24 m was also filtered out. Figure 2B shows the data after filtering
in the wavenumber–frequency domain. Secondary arrivals were
removed by time-windowing, zero-padding the data above and
below hyperbolas parallel to the direct arrivals. Finally, channels
with a poor SNR, particularly around and at a large distance from
the apex, were muted. Figure 2C shows the final data used for
inversion.

To illustrate the ability of the forward model to predict useful
data, we simulated the strain generated along wells H, in a medium
with a density ρ = 2,650 kg m−3, P-wave velocity α = 5.1 km s−1,
and S-wave velocity β = 3.5 km s−1 by a source at the location
predicted for Event 1. The environmental parameters were based on
observations in the Montney Formation at the depth of the wells.
The source is characterized by a double-couple moment tensor

M = 1
√2
(

−M0 0 0

0 M0 0

0 0 0

), (6)

with M0 = 7.08× 107 Nm to mimic the moment magnitude of Mw
= −0.8 for Event 1. To match the observed data, we used the first
derivative of a Gaussian as a far-field source time function

̇st (t− r/c) = (t− r/c)e
−π2 f2(t−r/c)2 , (7)

where c = α or β, depending on the consideration of P- or S-
waves, and f is the dominant frequency of the signal. We used
this source time function for the remainder of the present study.
The frequency f was chosen for each event, well, and type of wave
by generating simulated data for various frequencies between 75
and 115 Hz. In the frequency–wavenumber domain, the simulated
data were then summed along the wavenumber axis to create
an aggregated spectrum. The coefficient of determination for this
aggregated spectrum and the coefficient of determination created
fromobserved datawere finally computed (Figure 3).The frequency
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FIGURE 3
Coefficients of determination of the regression between the aggregated spectra of the observed and simulated data for various frequencies. Blue:
P-waves; red: S-waves.

TABLE 1 Frequencies used to calculate the simulated data for two seismic
events, two wells, and P- and S-waves.

Well H Well J

P-wave S-wave P-wave S-wave

Event 1 93 92 97 80

Event 2 111 99 108 90

with the highest coefficient of determination for each event, well, and
type of wave was kept as the frequency for producing simulated data
thereafter (Table 1).The chosen frequencies were higher for P-waves
than for S-waves, which may reflect higher inelastic attenuation on
S-waves than on P-waves. For this first example, f = 100 Hz.

Figure 4A shows the strain simulated along well H with the
forward model using the previous environmental parameters. The
first obvious difference compared to the observed data (Figure 2) is
the polarity of the signals. The double-couple source in equation 6
likely differs from the actual moment tensor, but only inversion
can provide a better approximation. Another difference is that the
strain amplitudes were up to 3.70× 10−10 for the predicted data,
but only 1.51× 10−10 for the observed data. This result indicated
that the magnitude estimated from geophone data was likely too
high. Despite these differences in polarity and amplitudes, the
predicted data correctly represented the direct arrivals of the P- and
S-waves as two successive parabolas and their general appearance
in the time–distance diagram. However, small differences
remained in the arrival times, which are likely due to errors in
the source position, inhomogeneity, and/or anisotropy in the
medium.

These arrival-time differences can cause erroneous inversion
results. To overcome this issue, we shifted the predicted traces
(Figure 4A) based on the maximum cross-correlation between the
absolute values of the predicted and the processed observed data,
where only primary arrivals of the P- and S-waves were conserved
(Figure 2A). The lags used in this procedure are shown in Figure 5
for the two events and two wells. This approach was similar to
the well-known cut-and-paste method used in waveform inversion
(Zhu andHelmberger, 1996). Its advantage is that it makes inversion
insensitive to inaccuracies in arrival times when applying a forward
model with homogeneous velocities to the multi-layered Montney
Formation. Previously muted channels were also muted in the
predicted data.

FIGURE 4
Strain along well H simulated for Event 1 using the forward model:
output of the simulation (A) and after time-shift to match the observed
arrivals (B). The color scale is saturated to help visualize the P-waves.

2.4 Inversion method

Herein, we present the results for the inversion of the
strain data measured along wells H and J for moment
tensors of the two events. The forward model (Section 2.1)
generated the six independent Green functions for the
inversion. The Green functions were calculated in the same way
as the predicted data in Section 2.3 with identical environmental
parameters and source time function. However, the six independent
components of the moment tensor were chosen instead of the
moment tensor shown in Equation 6. In addition, the centroids were
the two event locations. Run on one core of an AMD Ryzen 7 5800X
8-Core 4.4 GHz processor, the calculation of the six Green functions
along onewell required 0.37 s to complete.TheGreen functionswere
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FIGURE 5
Lags between the arrivals of simulated and observed P-waves (blue) and S-waves (red).

time-shifted according to Section 2.3. Our hypothesis was that the
simplified forward model presented in Section 2.1 could correctly
predict the polarity and amplitude of the primary arrivals of the P-
and S-waves, although it was unable to reproduce their arrival times
or the complex secondary arrivals. This approach also supposed
that the paths between the seismic sources and the fibers were short
enough for ignoring the effects of inelastic attenuation and wave
dispersion.

Once the Green functions are computed, themoment tensor can
be inverted, taking the least-squares solution of the linear matrix
equation Am = d, where d is a vector of observation data of length
N, A is a 6×N matrix that contains the Green functions, and m is a
vector of length 6 containing the moment tensor parameters.

To quantify parameter uncertainties, we applied the bootstrap
method (Efron and Tibshirani, 1986; Tichelaar and Ruff, 1989).
For this purpose, 225 of the 300 channels available after data
processing were selected randomly, and the least-squares solution
was computed. This process was repeated 10,000 times through a
sampling scheme with replacement where each of the 300 channels
had the same probability of being sampled. Taking statistical
inferences from the 10,000 samples provided uncertainty estimates.
Run on one core of an AMD Ryzen 7 5800X 8-Core 4.4 GHz
processor, the bootstrap analysis required 150 s to complete.

We present the results in terms of the moment tensor
parametrization proposed by Tape and Tape (2012). In this
Lune representation, the moment tensor of unit magnitude is
characterized by the five parameters of strike angle, slip angle, dip
angle, latitude u that gives the amount of volume change, and
longitude v that describes the mechanism on a scale from double-
couple to positive or negative compensated linear vector dipole
(CLVD). A pure isotropic explosion yields u = 0, and an absence of
volume change corresponds to u = 3π/8 ≃ 1.178. The longitude v is
equal to 0 for a pure double-couple, equal to −1/3 for a pure negative
CLVD, and equal to +1/3 for a pure positive CLVD.

3 Results

3.1 Results for the simulated data

First, we present inversion results for noisy simulated data
generated using the forward model and a known moment tensor.
The noise was taken from DAS observations in the two wells
during a period of relative quiescence. The observed distribution

of the absolute value of the seismic noise along well H is shown in
Figure 6A. It is clearly heavy-tailed, as the best fit obtained with a
Gaussian distribution underestimates the probability of the largest
events. A heavier-tailed distribution is the Student’s t-distribution

f (x) =
Γ ((ν+ 1)/2)
√πνΓ (ν/2)

(1+ (x/b)2/ν)−(ν+1)/2, (8)

where Γ is the gamma function, ν is the number of degrees
of freedom, and b is the scale parameter. We obtained a better
agreement between the noise and the Student’s t distribution
with parameters ν = 6.54 and b = 5.1× 10−11 than for a Gaussian
distribution. For a sample of the length used for the inversion (0.5 s
long, sampled at 2000 Hz, and for 300 channels, resulting in 3× 105

data), the Kolmogorov–Smirnov test with a threshold p-value of 0.05
failed to reject the Student’s t-distribution (p = 0.833). The p-value
started dropping below 0.05 for samples >6× 106 data points. For a
sample of 3.6× 107 data points (1 of data), the observed distribution
appeared less heavy-tailed than the best t-Student’s fit (Figure 6B).
Nonetheless, the Student’s t-distribution was a closer match than a
Gaussian distribution.

The noise distribution was not the same along the two wells,
nor was it stable over time. The latter explains why Event 1, despite
causing strain one order of magnitude lower than that for Event
2, still showed a similar SNR. The best fits with a Student’s t for
the last 0.5 s of noise before each event occurred showed the same
one order of magnitude difference in the b parameter. For Event
1, we obtained {ν = 6.89,b = 3.49× 10−12,p = 0.051} along well H,
and {ν = 10.83,b = 4.46× 10−12,p = 0.550} along well J. For Event
2, we obtained {ν = 6.45,b = 5.23× 10−11,p = 0.542} along well H,
and {ν = 9.88,b = 6.70× 10−11,p = 0.881} alongwell J. ν looked stable
over time but the scale parameter b was 15 times larger before Event
2 that before Event 1, which explains the similar SNR between both
events, despite the observed strain being ten times larger in Event 2
than in Event 1. This lack of stability over time can account for the
difficulty in fitting a long noise sample with a Student’s t.

The moment tensor used for generating the simulated data can
be expressed in the Lune representation as u = 3π/8, v = −0.2, with
a strike of 105°, a slip of 40°, a dip of 12°, and an amplitude of
M0 = 7.08× 10

8 Nm. The simulated data were contaminated with
noise for various SNRs ranging from 0.1 to 10 (two orders of
magnitude). The SNR was defined as the ratio of the maximum
amplitude of the signal over the maximum amplitude of the noise.
The noise was normalized to obtain the same SNR in the data
acquired along the two wells, even if the seismic source was located
at different distances from the wells.
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FIGURE 6
(A) Distribution of the absolute value of the seismic noise along well H for 3× 105 data points (gray histogram) where no events were present. The best
fits with a Student t-distribution (black) and a Gaussian distribution (black dash line) are shown. (B) Distribution of the seismic noise for 3.6× 107 data
points and best fits. (C) Normalized errors versus SNR when inverted from P-waves (blue), S-waves (red), or both P- and S-waves (black). Results with
identical SNR along the two wells are shown as dots and results with the observed SNR (different along each well) are given by pluses for Event 1 and
crosses for Event 2. The black dashed line is the e−1 threshold of the acceptable error.

Another case was considered with the SNR measured for the
observed data. For Event 1, the SNR was 0.59 for the P-waves and
3.52 for the S-waves along well H, and 0.83 for the P-waves and 5.24
for the S-waves along well J. For Event 2, the SNR was 0.55 for the P-
waves and 5.3 for the S-waves along well H, and 0.70 for the P-waves
and 2.92 for the S-waves along well J. In a manner similar to that of
Eaton and Forouhideh (2011), the inversion method was applied to
the noisy simulated data, and the normalized error was computed as

follows:

E = 1
9
[

3

∑
i=1

3

∑
j=1
(M̂ij −Mij)]

1/2

, (9)

whereMij are the elements of themoment tensor used for generating
simulated data and M̂ij are the elements of the inverted moment
tensor. Both moment tensors were normalized to unity to compute
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FIGURE 7
Histograms of the distributions of the source parameters for Event 1 (A) and Event 2 (B) sampled by bootstrapping and inverted using S-waves (red),
P-waves (blue), and both P- and S-waves (black). From left to right, the vertical lines show the lower bound of the 95% uncertainty, the most probable
value, and the upper bound of the 95% uncertainty for source parameters inverted using S-waves (dotted line), P-waves (dash line), and both P- and
S-waves (solid line).

the normalized error. Consequently, the normalized error did not
account for the error in the inversion of the magnitude.

Figure 6C shows the normalized errors versus SNR, when
inverting using different types of waves.When the SNRwas the same
along both wells, and at a given SNR, inversion of the P-waves gave
the smallest normalized errors. Inversion of only the S-waves and
inversion of both P- and S-waves gave similar errors.Thenormalized
errors decreased with increasing SNR, following a logarithmic
trend.

The threshold of acceptable errors of e−1 (∼0.3679)was exceeded
for SNR ≤0.23 for the inversion of the S-waves and the inversion of
both P- and S-waves. Similarly, for an SNR of ≤0.1 for the inversion
of P-waves.When the SNR values based on observed data were used,
the lower SNR for P-waves resulted in the inversions of the different

types of waves not having significantly different normalized errors.
For Event 1, the normalized errors were 0.022 for P-waves, 0.013 for
S-waves, and 0.013 for the joint inversion of the P- and S-waves.
For Event 2, the normalized errors were 0.031 for P-waves, 0.022
for S-waves, and 0.025 for the joint inversion of the P- and S-waves.
In Figure 6C, these normalized errors appear consistent with the
others when plotted with the SNR of the well with the lower SNR.

These results showed that in a case with no theoretical error,
our method produced reliable results, even for non-Gaussian noise.
This is important since the least-squares method makes assumes
Gaussian-distributed noise in the data. With the SNR measured
from the observed data, the inversion of the P- and S-waves appeared
to be as reliable as the inversion of S-waves alone and the largest error
appeared in the inversion of the P-waves.
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TABLE 2 Most probable values with the bounds of the 95% uncertainty of
the source parameters inverted using S-waves, P-waves, and both P- and
S-waves.

P-waves S-waves P- and S-waves

Event 1

u 0.996 1.178 1.19

[+0.008,−0.016] ±0 [+0.17,−0.06]

v −0.10 −0.29 −0.29

[+0.01,−0.03] [+0.06,−0.03] [+0.03,−0.07]

Strike (°) −20.1 8 7

[+1.3,−0.5] [+29,−11] [+30,−11]

Slip (°) −87.8 −60 −62

[+0.5,−0.3] [+52,−14] [+54,−13]

Dip (°) 31.8 40 40

[+0.8,−0.5] [+36,−6] [+37,−6]

Mw −0.30 −1.0 −1.0

[+0.09,−0.16] [+0.1,−0.2] [+0.1,−0.2]

Event 2

u 0.932 1.178 0.962

±0.002 ±0 [+0.035,−0.007]

v −0.098 −0.21 −0.19

[+0.001,−0.002] [+0.003,−0.002] [+0.01,−0.03]

Strike (°) −21.66 159.2 157.8

[+0.07,−0.05] [+0.6,−1.4] [+1.3,−0.3]

Slip (°) −88.19 −87.8 −89.3

[+0.08,−0.05] ±1 [+1.5,−0.7]

Dip (°) 36.81 51.7 52.0

±0.05 [+0.3,−0.4] [+0.2,−0.6]

Mw 0.82 0.07 0.13

±0.02 [+0.09,−0.04] [+0.04,−0.08]

3.2 Results for the observed data from
wells J and H

This section presents the inversion results for the field
observations made on two wells (J and H). We carried out three
types of inversions and compared the results for these cases: S-waves
only, P-waves only, and the joint inversion of P- and S-waves. The
uncertainty estimates for the inverted source parameters, obtained
by bootstrapping are shown in Figure 7. Table 2 gives the most
probable values of the inverted parameters and the bounds of the
95% uncertainty interval.

The three types of inversion exhibited unimodal distributions
for both events. The inversion of the u parameter using S-
waves naturally gave the theoretical value for no volume change:
u = 3π/8 ≃ 1.178. The inversion of this parameter using P-waves
points toward a small positive isotropic component. The inversion
using P- and S-waves was consistent with an absence of a volume

change for Event 1 and suggested a small positive isotropic
component for Event 2. The inverted explosive component was not
necessarily linked to fluid injection. It can, in fact, account for the
complexity of the source; for example, if the rupture propagates
along a curved fault plane.

For the five other parameters, the inversion results obtained
from S-waves alone were nearly identical to those for both P- and
S-waves together. Both of these types of inversion point toward
a large negative CLVD component for Event 1 (v = −0.29) and
a slightly smaller one for Event 2 (v = −0.21 from S-waves and
v = −0.19 from P- and S-waves). By contrast, the inversion of the
P-waves appears more biased toward a smaller CLVD component,
with v ≃ 0.1 for both events. The inversion of P-waves also exhibited
smaller uncertainties for the v parameter. A CLVD component is not
unexpected for an induced earthquake resulting from fluid injection
(Baig and Urbancic, 2010).

For the three angle parameters, the inversion of the P-waves
always yielded the smallest uncertainties. This probably occurred
due to the polarity reversal visible in the P-wave data, but not in
the S-wave data, which helped to resolve the nodal planes. The three
inversion types gave close values for Event 1, even if the uncertainties
did not overlap.The uncertainties obtained by the inversion of the S-
waves or P- and S-waves were large, several tens of degrees, while the
uncertainties for the inversion of P-waves were below 2°. For Event
2, a difference of 180° was observed between the strikes inverted
using P-waves and S-waves or P- and S-waves, corresponding
to a classical ambiguity of the employed parametrization. The
inversion of the dip also gave two disjoint values, with a difference
of 18°, whereas the uncertainties of the slip values given by
the three inversion types overlapped. All the uncertainties were
below 2°.

For both events, the inversion of P-waves yielded the largest
magnitude. For Event 1, the magnitude estimate from geophone
data (Mw = −0.8) was within the uncertainties of the magnitude
derived from the S-waves or P- and S-waves (Mw = −1.0). For
Event 2, the magnitude estimate from geophone data (Mw = −0.5)
was well below the value inverted from S-waves (Mw = −0.07),
P- and S-waves (Mw = −0.13), and P-waves (Mw = 0.82). The
different values obtained from the different waves can reflect
differences in the transmission coefficients between the layers
of the Montney Formation. This effect is expected to be more
noticeable for Event 2 than for Event 1, since its sources are buried
deeper.

Figure 8 presents the results in terms of lower-hemisphere
projections of the moment tensor, often referred to as beachballs,
and using the north-west-up coordinate system. To visualize
the uncertainty of the moment-tensor parameters, we use fuzzy
beachballs, where the gray-scale represents the uncertainty (the
probability density of the ensemble of solutions from bootstrapping
in the lower-hemisphere projection). Magnitudes are ignored in
Figure 8.

The inverted mechanisms were generally consistent between the
two events and the three types of inversion. For both events, the
moment tensors inversions of S-waves and of both P- and S-waves
gave very similar results. Event 2 showed a difference in the greater
closeness between the black areas of the fuzzy beachball for the
moment tensor inverted from P- and S-waves, which illustrated
its greater similarity to a double-couple. With v = 0, the two black
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FIGURE 8
Fuzzy beachballs showing the moment tensors and their uncertainties inverted for Event 1 (A) and Event 2 (B) using, from left to right: S-waves;
P-waves; both P- and S-waves. The red lines show the most probable moment tensor for each case. The scatter plot shows the projection on the
beachballs of the 300 channels of well H (magenta) and well J (green) used in the inversion. Channels that are not muted in the P-wave data are
magnified.

areas indeed intersected at the two poles of the beachball. The
similarity between the moment tensors inverted using S-waves and
both P- and S-waves was mainly due to the significantly larger
amplitude of S-waves compared to P-waves in the data. Their
agreement should not necessarily lead to the conclusion that their
results are more reliable than the one obtained using P-waves
only.

Themost probablemoment tensor inverted based on S-waves, P-
waves, and both P- and S-waves was used to generate simulated data
using a linear combination of the Green functions. The agreement
of these simulated data with field data made it possible to evaluate
the accuracy of our inversion method. A first qualitative assessment
can be carried out by comparing the time–distance diagrams of
simulated and field data (Figure 9). For both events, the polarity
of the S-wave arrival was correctly reproduced in simulated data,
with a negative strain followed by a positive strain. The polarity
of the P-wave arrival was also correctly reproduced along well
J. Along well H, the P-wave on the right of the apex showed
a polarity reversed with respect to the left of the apex. In the
simulated data, only the channels closest to the apex showed the
correct positive polarity while a polarity reversal appeared further
on the right. In the simulated data based on the inversion of the
P-waves, a significant number of channels showed correct polarity;
however, in simulated data based on the inversion of both P-
and S-waves, only a few channels showed positive polarity. The
amplitude of the strain measured for Event 1 along well H was
correctly reproduced in simulated data; however, the simulated
strain was almost twice as weak as the observed strain in all the

other cases, which suggested that the magnitude of both events was
undervalued.

For a quantitative evaluation of the data fit of the inversions, we
used variance reduction

VR = 1−
(xi − di)

2

d2
i
, (10)

where i is the channel, xi is the simulated strain, and di is the
observed strain. The variance reduction takes the value 1 when
the simulated and observed strains are identical. Along with this
variance reduction, Figure 10 gives the variance reduction obtained
when the observed and simulated data were normalized to their
maximums, which removed the effect of the amplitude of the strain
for focusing on its polarity and the shape of the signal. Note that for
noisy data, a variance reduction of unity implies over-fitting of the
data.

In both events, the best variance reductions occurred relatively
close to the apex and decreased far from the apex. This could
be due to the inelastic attenuation not being considered in the
forward model, especially since the decreased variance reduction
was moderated when looking at normalized signals. The paths
between the seismic sources were indeed shorter close to the apex.
Another possible explanation is the limited azimuthal coverage
of the DAS. The difficulty in reproducing the polarity of the P-
waves along well H was responsible for a clear drop in the variance
reduction, which did not appear when the two types of waves were
taken together, due to the larger amplitude of S-waves. For Event
2, the variance reduction for S-waves dropped below 0.5 along
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FIGURE 9
Simulated data for Event 1 (rows 1 and 2) and Event 2 (rows 3 and 4) at wells H (rows 1 and 3) and J (rows 2 and 4) based on the most probable moment
tensors inverted using S-waves (column 1), P-waves (column 2), and both P- and S-waves (column 3). Field data are given for comparison (column 4).
The color scale is saturated to help visualize the P-waves.

well J for channels 218 to 299 (x ≳ 1.7 km, Figure 10A, right), which
was linked to a sudden drop in the measured strain in the observed
data (Figure 2). This was probably a path effect, perhaps due to a
region of the ground with higher inelastic attenuation. In any case,
the polarity of the strain or the shape of the signal were unaffected,
and the variance reduction calculated for data normalized to their
maximum was, therefore, quite good (>0.5).

The difference between field data and the simulated data based
on the most probable moment tensors and the signification of
the variance reduction could be better understood using direct
comparisons of signals (Figure 11). Despite the relatively good
variance reductions (VR > 0.5) obtained on channel 191 of well
H for both events, the two problems already described are made
very clear: the polarity of the P-waves was not correctly reproduced
when inverting from both P- and S-waves and the amplitude of
the simulated data was smaller than the amplitude of the field
data. Unexpectedly, for Event 1, the difference in amplitude was
slightly smaller when inverted from both P- and S-waves, which
probably explains the better variance reduction than when inverting
from S-waves alone, despite the incorrect polarity predicted for the
P-waves.

4 Discussion

The inversion of geophysical data relies on fast and accurate
forward modeling, used for generating the predicted data that
are compared to observed data. In this study, we choose a

forward model able to simulate strain, which avoids the sources
of uncertainty linked to the conversion of the observed strain
data into displacement data. We did not retain the possibility of
employing a state-of-the-art forward model written for predicting
displacement before applying spatial differentiation to approximate
the strain, which may introduce artifacts in the simulated data.
Therefore, the strain was obtained by analytically calculating the far-
field components of the strain in a homogeneous and anisotropic
medium before projecting those components on the fiber of interest
and averaging the tangential strain on the gauge length of the DAS
sensor.

The field data acquired in the Montney Formation showed
secondary arrivals and numerous reflections from lithographic
boundaries and fractures and must be prepared for inversion. The
reflections were removed using f-k filtering, and only the primary
arrivals were kept using time-windowing.The channels with too low
an SNR were muted. The simulated data were shifted to the arrival
times of the observed primary arrivals, using cross-correlation
of both signals at each channel, in an approach similar to the
cut-and-paste method. The method was made insensitive to the
inaccuracies in the prediction of the arrival times. However, our
inversion method expected that the polarity and amplitude of the
first arrivals of the P- and S-waves were correctly predicted by the
forward model. Thus, we supposed that the amplitude was mainly
affected by geometrical attenuation. Indeed, our method does not
account for inelastic attenuation or the effects of heterogeneities,
such as layers with different velocities and transmission coefficients
in the Montney Formation. For the two events of interest, the short
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FIGURE 10
Variance reduction for Event 1 (A) and Event 2 (B) with the simulated data (columns 1 and 3) and normalized simulated data (columns 2 and 4) at well H
(columns 1 and 2) and well J (columns 3 and 4), based on the most probable moment tensors inverted using S-waves (red), P-waves (blue), and both P-
and S-waves (black). The value VR =0 is arbitrarily assigned to channels with no data.

FIGURE 11
Field (black) and simulated (red) data from channel 191 of well H for Event 1 (A) and Event 2 (B). Simulated data are based on the most probable
moment tensors inverted using S-waves (left), P-waves (center), and both P- and S-waves (right).

distances between the sources and the fibers (180 m for Event 1 and
210 m for Event 2) made these assumptions reasonable.

The linear problem of MT inversion (six dimensions) was
solved with the least-squares method, using the processed data
and the Green functions calculated by the forward model and
time-shifted to the arrival times of the field data. However, the
least-squares inversion relied on the assumption of Gaussian noise,
and the observed noise was better approximated by a heavy-
tailed Student’s t distribution. The uncertainties in the inverted
parameters were provided by bootstrap analysis. We checked the
robustness of our inversion method under heavy-tailed noise by
applying it to data predicted by the forward model and polluted

with different levels of real noise. Measured by normalized errors,
the performances of the inversion method for this case without
theoretical error appeared satisfying with the SNR found in real
data.

The inversionmethod was applied to field data from two seismic
events that occurred within 1 h with sources located approximately
100 m from each other. Magnitude aside, the inversion results
were consistent between the two events for a given type of wave,
which was expected since they both resulted from the same stress
field. For a given event, the inversion results were consistent
between the three types of inversion: using P-waves alone, S-
waves alone, and both P- and S-waves together. The uncertainties
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in the inverted parameters were small enough to make possible
future geological interpretations. The accuracy of the inversion
method was evaluated by comparing the observed data to the
data predicted for the most probable MT. The polarity of the S-
waves was correctly reproduced for both fibers and both events;
however, a polarity change in the P-waves along well H did not
appear in predicted data for the joint inversion of the P- and S-
waves. Thus, our assumption of no path effect on the polarity
may be incorrect for P-waves. The evaluation can be refined using
variance reduction. This shows the possible effect of inelastic
attenuation on the amplitude of the measured strain. Comparisons
of the observed and predicted signals for a single location
highlighted a possible underestimation of the magnitudes for both
events.

This paper provides encouraging results supporting a new
method for inverting MT from DAS data. However, this method
should be validated by comparison to a state-of-the-art inversion
method, for example, in a dataset where both DAS data and
abundant seismometer data are available. Then, the inversion
method must be systematized and applied to a large number
of events to improve our understanding of the local geology
and fault activation under hydraulic fracturing in the Montney
Formation. The forward model must be improved to reduce
the theoretical errors that arise from simplifying assumptions.
While keeping the hypothesis of a homogeneous and isotropic
medium, the terms of the intermediate and near field could easily
be considered, which is expected to improve the resolvability of
the MT in events where the source is close enough to the wells
(e.g.,Vera Rodriguez and Wuestefeld, 2020). The resolvability of
the moment tensor using strain-simulated and field data was
studied by Luo et al. (2021). It would be crucial to work with
a forward model able to consider more complex environments,
such as layered or anisotropic mediums. Finally, the inversion
procedure itself should be improved to invert for source
location, source time function, or more complex parametrizations
of the source, which would force the use of non-linear
methods.
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