About this Research Topic
An example of the Bayesian brain hypothesis is the free energy principle that explains self-organizing activities in the brain by virtue of its predictive capabilities associated with selective sampling of sensory inputs directed towards minimizing variational free energy in the samples. Another approach traces brain self-organization to the second law of thermodynamics expressed as a principle of free energy consumption in the least time. Still another proposal associates self-organization with phase transition in the neuronal substrate resulting in the formation of neuronal assemblies and suggests that minimization of thermodynamic free energy in the phase-separation surface underlies minimization of variational free energy.
This research topic encourages analysis of self-organization processes in the brain, seeking a productive reconciliation between thermodynamic and informational definitions of the underlying biophysical mechanisms. The objective is to elucidate relations between predictive capabilities of the brain and b) self-organization processes in the substrate. Analysis of such relations will help identifying biophysical roots of intelligence and inform the design of artifacts capable of autonomous performance. The discussion includes but is not limited to the following issues:
1. Synthesis of thermodynamic and informational theories of self-organization processes in the brain.
2. Experimental assessment of self-organization processes in the brain.
3. Brain self-organization and predictive capabilities.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.