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This special issue reviews state-of-the-art approaches to the biophysical roots of cognition. 
These approaches appeal to the notion that cognitive capacities serve to optimize responses to 
changing external conditions. Crucially, this optimisation rests on the ability to predict changes 
in the environment, thus allowing organisms to respond pre-emptively to changes before their 
onset. The biophysical mechanisms that underwrite these cognitive capacities remain largely 
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unknown; although a number of hypotheses has been advanced in systems neuroscience, bio-
physics and other disciplines. These hypotheses converge on the intersection of thermodynamic 
and information-theoretic formulations of self-organization in the brain. The latter perspective 
emerged when Shannon’s theory of message transmission in communication systems was used to 
characterise message passing between neurons. In its subsequent incarnations, the information 
theory approach has been integrated into computational neuroscience and the Bayesian brain 
framework. The thermodynamic formulation rests on a view of the brain as an aggregation of 
stochastic microprocessors (neurons), with subsequent appeal to the constructs of statistical 
mechanics and thermodynamics. In particular, the use of ensemble dynamics to elucidate the 
relationship between micro-scale parameters and those of the macro-scale aggregation (the 
brain). In general, the thermodynamic approach treats the brain as a dissipative system and seeks 
to represent the development and functioning of cognitive mechanisms as collective capacities 
that emerge in the course of self-organization. Its explicanda include energy efficiency; enabling 
progressively more complex cognitive operations such as long-term prediction and anticipa-
tory planning. A cardinal example of the Bayesian brain approach is the free energy principle 
that explains self-organizing dynamics in the brain in terms of its predictive capabilities – and 
selective sampling of sensory inputs that optimise variational free energy as a proxy for Bayesian 
model evidence. An example of thermodynamically grounded proposals, in this issue, associates 
self-organization with phase transitions in neuronal state-spaces; resulting in the formation of 
bounded neuronal assemblies (neuronal packets). This special issue seeks a discourse between 
thermodynamic and informational formulations of the self-organising and self-evidencing brain. 
For example, could minimization of thermodynamic free energy during the formation of neu-
ronal packets underlie minimization of variational free energy?

Citation: Yufik, Y. M., Sengupta, B., Friston, K., eds. (2017). Self-Organization in the Nervous System. 
Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-340-5

https://www.frontiersin.org/research-topics/4050/self-organization-in-the-nervous-system
https://www.frontiersin.org/journals/systems-neuroscience


4 November 2017 | Self-Organization in the Nervous SystemFrontiers in Systems Neuroscience

Table of Contents

05 Editorial: Self-Organization in the Nervous System
Yan M. Yufik, Biswa Sengupta and Karl Friston

09 On the Character of Consciousness
Arto Annila

24 Neurobiology as Information Physics
Sterling Street

32 On the Evolution of the Mammalian Brain
John S. Torday and William B. Miller Jr.

41 Universal Darwinism As a Process of Bayesian Inference
John O. Campbell

49 Cinematic Operation of the Cerebral Cortex Interpreted via Critical Transitions in 
Self-Organized Dynamic Systems
Robert Kozma and Walter J. Freeman

59 Neural Cross-Frequency Coupling Functions
Tomislav Stankovski, Valentina Ticcinelli, Peter V. E. McClintock and Aneta Stefanovska

72 Brief Mental Training Reorganizes Large-Scale Brain Networks
Yi-Yuan Tang, Yan Tang, Rongxiang Tang and Jarrod A. Lewis-Peacock

80 Regular Cycles of Forward and Backward Signal Propagation in Prefrontal 
Cortex and in Consciousness
Paul J. Werbos and Joshua J. J. Davis

92 Physics of the Mind
Leonid I. Perlovsky

104 Understanding and Self-Organization
Natika W. Newton

113 Life and Understanding: The Origins of “Understanding” in Self-Organizing 
Nervous Systems
Yan M. Yufik and Karl Friston

https://www.frontiersin.org/research-topics/4050/self-organization-in-the-nervous-system
https://www.frontiersin.org/journals/systems-neuroscience


EDITORIAL
published: 26 September 2017
doi: 10.3389/fnsys.2017.00069

Frontiers in Systems Neuroscience | www.frontiersin.org September 2017 | Volume 11 | Article 69 |

Edited and reviewed by:

Maria V. Sanchez-Vives,

Consorci Institut D’Investigacions

Biomediques August Pi I Sunyer,

Spain

*Correspondence:

Biswa Sengupta

b.sengupta@imperial.ac.uk

Received: 21 June 2017

Accepted: 11 September 2017

Published: 26 September 2017

Citation:

Yufik YM, Sengupta B and Friston K

(2017) Editorial: Self-Organization in

the Nervous System.

Front. Syst. Neurosci. 11:69.

doi: 10.3389/fnsys.2017.00069

Editorial: Self-Organization in the
Nervous System

Yan M. Yufik 1, Biswa Sengupta 2* and Karl Friston 3

1 Virtual Structures Research Inc., Potomac, MD, United States, 2Department of Bioengineering, Imperial College London,

London, United Kingdom, 3 Institute of Neurology, Wellcome Trust Centre for Neuroimaging, London, United Kingdom

Keywords: self-organization, neural circuits, variational inference, bayesian inference, dynamical systems theory

Editorial on the Research Topic

Self-Organization in the Nervous System

“Self-organization is the spontaneous—often seemingly purposeful—formation of spatial,
temporal, spatiotemporal structures, or functions in systems composed of few or many
components. In physics, chemistry and biology self-organization occurs in open systems driven
away from thermal equilibrium” (Haken, Scholarpedia). The contributions in this special issue
aim to elucidate the role of self-organization in shaping the cognitive processes in the course of
development and throughout evolution, or “from paramecia to Einstein” (Torday and Miller). The
central question is: what self-organizing mechanisms in the human nervous system are common to
all forms of life, and what mechanisms (if any) are unique to the human species?

Over the last several decades, the problem of self-organization has been at the forefront of
research in biological and machine intelligence (Kohonen, 1989; Kauffman, 1993; Pribram, 1994,
1996, 1998; Kelso, 1997; Camazine et al., 2003; Zanette et al., 2004; Haken, 2010, 2012, and others).
The articles collected in this issue present recent findings (and ideas) from diverse perspectives
and address different facets of the problem. Two features of this collection might be of particular
interest to the reader: (i) the scope of discussion is broad, stretching from general thermodynamic
and information-theoretic principles to the expression of these principles in human cognition,
consciousness and understanding and (ii) many of the ideas speak to a unifying perspective outlined
below. In what follows, we will preview the collection of papers in this special issue and frame them
in terms of a unified approach to self organization—leaving the reader to judge the degree to which
subsequent articles are consistent with or contradict this framework.

Living organisms must regulate flows of energy and matter through their boundary surfaces
to underwrite their survival. Cognitive development is the product of progressive fine-tuning
(optimization) of regulatory mechanisms, under the dual criteria of minimizing surprise (Friston,
2010; Sengupta et al., 2013, 2016; Sengupta and Friston, 2017) and maximizing thermodynamic
efficiency (Yufik, 2002, 2013). The former implies reducing the likelihood of encountering
conditions impervious to regulation (e.g., inability to block inflows of destructive substances);
the latter implies maintaining net energy intakes above some survival thresholds. Energy is
expended in regulatory processes formed in the course of self-organization and predicated on
lowering thermodynamic entropy “on the inside” and transporting excessive entropy (heat) “to
the outside.” Efficient regulation requires mechanisms that necessarily incorporate models of the
system and its relation to environment (Conant and Ashby, 1970). Primitive animals possess small
repertoires of genetically fixed, rigidmodels, while—inmore advanced animals—the repertoires are
larger and their models become more flexible; i.e., amenable to experience-driven modifications.
Both the evolutionary and experience-driven modifications are forms of statistical learning:
models are sculpted by external feedback conveying statistical properties of the environment.
Human learning mechanisms, although built on the foundation of statistical learning, depart

5
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radically from conventional (e.g., machine) learning: the implicit
models become amenable to self-directed composition and
modification based on interoceptive, as opposed (or in addition)
to exteroceptive, feedback (Yufik, 1998). Interoceptive feedback
underlies the feeling of grasp, or understanding that accompanies
the organization of disparate “representations” into cohesive
structures amenable to further operations (mental modeling).
The work of mental modeling requires energy; consciousness is
co-extensive with deliberate (attentive, focused) application of
energy (“cognitive effort”) in carrying out that work. Learning
with understanding departs from statistical (machine) learning
in three ways: (i) mental models anticipate experiences, as
opposed to be shaped by them (e.g., the theory of relativity
originated in gedanken experiments); (ii) feedback conveys
properties of implicit models (coherence, simplicity, validation
opportunities the models afford, etc.) and (iii) manipulating
(executing or inverting) models enables efficient exchange
with the environment, under conditions with no precedents
(and thus no learnable statistical representation) (Yufik, 2013).
Regulation of this sort—based on statistical learning—faces a
challenging complexity. As the number of regulated variables
grows; energy demands can quickly become unsustainable. Using
self-organization to implement the process of “understanding”
(i.e., composing more general models) has the triple benefit of
minimizing surprise, while averting complexity and advancing
thermodynamic efficiency of regulatory processes into the
vicinity of theoretical limits.

Annila argues that the most fundamental function performed
by the nervous system is shared by all open systems and entails a
generation of entropy, by extracting high-grade free energy from
the environment and returning low-grade energy. As dictated
by the second law of thermodynamics, cognitive processes seek
out opportunities (paths) for consuming free energy in the least
time. Evolution obtains progressively more efficient mechanisms
for detecting and exploiting free energy deposits, culminating in
consciousness that emerges in systems pertaining to the ability to
“integrate various neural networks for coherent consumption of
free energy...” (Annila, this issue).

Street reviews discussions in the literature that examine
the tension between—and synthesis of—information-theoretic
and thermodynamics-motivated conceptualizations of brain
processes. Tensions are rooted in the theory of information,
designed to allow analysis of information transfer, irrespective
of the physical processes that mediate transfer. Synthesis
is necessitated by considerations of energy costs incurred
in neuronal signaling. A consensus is anticipated, within a
theoretical framework that views cognitive development as
self-organization in the nervous system—seeking to minimize
surprise, while incurring minimum energy costs.

Torday and Miller discuss the conceptual framework
needed for tracing evolution of the mammalian brain “from
paramecia to Einstein.” The framework encompasses three key
notions: (i) complex multicellular organisms share fundamental
organizational properties, with precursors in unicellular forms
of life, (ii) the most basic property is the ability to extract
energy from the environment and dissipate heat in a manner
enabling homeostasis and processing of information and (iii)

evolutionary improvements in homeostasis, self-maintenance
and information processing derive from increased cellular
collaboration (coherence). Within this framework, “life is
cognition at every scope and scale” and “any cognitive action
as a form of cellular coherence can be better understood as
both an information exchange and reciprocally then, as energy
conversion and transfer” (Torday and Miller).

Campbell argues that Darwinian evolution can be expressed
as a process of Bayesian updating. Conventionally, the ability to
draw inferences and update Bayesian models has been attributed
exclusively to (human) reasoning. The range of attribution
can be expanded to include all organisms, by assuming that
genotypes carry latent models of the environment receiving
varying expressions in the phenotype. On that view, genetically
transmitted models are the source of hypotheses (phenotype
variations) subjected to confirmation (survival) or rejection
(extinction) by the environment. Changes in the phenotype over
somatic time and the genotype over evolutionary time minimize
surprise thus increasing the likelihood of survival of individuals
and the species.

Kozma and Freeman analyze alternations between highly
organized (low entropy) and disorganized (high entropy)
neuronal activities induced by visual stimuli. In rabbits implanted
with ECoG arrays of electrodes fixed over the visual cortex,
presentations of stimuli were accompanied by metastable
patterns of synchronized activity—collapsing quickly into the
background activity upon cessation of the stimuli. The authors
define alternations betweenmetastable patterns and disorganized
firings as phase transitions and propose a “cinematic” theory of
perception; treating alternations that spread across the cortex
as successions of “frames” combined into perceptual units
(percepts). Synchronized neuronal populations are identified
with Hebbian assemblies, acting in a self-catalytic fashion:
Interactions between assemblies maintain the cortex in the
critical state, conducive to the emergence of organized (low
entropy) structures, such as Hebbian assemblies.

Stankovski et al. present novel findings concerning the
coherence of neuronal assemblies. Assemblies oscillate within
characteristic frequency intervals, with cross-frequency coupling
serving to integrate assemblies into functional networks that
span distant regions in the brain. In this study, cross-frequency
coupling functions were reconstructed from EEG recordings
from human subjects in the state of rest, with the eyes either open
or closed. They review early evidence that closing the eyes triggers
an increase in coupling strength. A novel method of analysis
then allows them to determine variations in coupling strength
across frequency ranges: crucially, they find that increases in
the strength of inter-assembly coupling are accompanied by
narrowing variation envelopes.

Tang et al. recorded experience-induced changes in the
connectivity of large-scale brain networks. Subjects were
resting in a state of “mindfulness,” under minimal exposure
to external stimuli. A comprehensive array of mathematical
analyses was applied to the fMRI data. The analyses reveal
statistically significant increases in connectivity between different
brain areas. Many earlier studies have demonstrated increased
connectivity in brain networks under external stimuli; however,
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according to this study, similar increases can be produced in the
course of internally-induced, restful states.

Werbos and Davis review progress to date in modeling
cognitive functions, focusing on the neural net model of learning
employing back-propagation algorithms. Neural nets represent
learning as the acquisition of desired mappings between input
vectors (environmental conditions) and output vectors (desired
responses), via iterative reduction of mapping errors. The
model posits successions of calculations propagating forward and
backward in the neuronal system, orchestrated by some global
clock. Empirical substantiations of this model have been scarce—
but new experimental findings and analysis are presented that
speak to its biological plausibility.

Perlovsky’s “physics in the mind” research program tries
to define the principles of cognition in a rigorous way (a la
Newtonian mechanics). Some principles are suggested including
mental modeling, vague representations, knowledge instinct,
dynamic logic and dual hierarchy. A mental model is the
basic functional unit of cognition, models are vague (lacking
detail), while sensory inputs are crisp (rich in detail). Acquiring
knowledge involves reconciling models and inputs in a process
driven by knowledge instinct and employing mechanisms of
dynamic logic. Model hierarchy has a counterpart in linguistic
hierarchy (hence, the dual hierarchy).

Newton analyzes composition of understanding and identifies
three constituents: (i) imagery, (ii) the state of mental tension
(surprise) caused by a novel situation and (iii) the state of
tension resolution, provided by having worked out responses
afforded by the situation. The feeling of having reached
understanding (Aha!) precedes response execution and thus
depends on factors other than external feedback (although
failures can restore tension). Execution involves some forms
of bodily activities; so “understanding” is anchored in the
mechanisms that control such activities. Understanding can then
expand via mapping new situations onto those that are already
understood.

Yufik and Friston suggest that the same self-organization
principle manifests in both the emergence of life and evolution
of regulatory mechanisms sustaining life: Regions (subnets)
in networks of interacting units (molecules, neurons) fold
into bounded structures stabilized by boundary processes.

Evolution expanded regulation mechanisms from conditioning
to anticipatory planning—that is accomplished via self-directed
composition and execution ofmental models. Hebbian assemblies
stabilized by boundary energy barriers (neuronal packets) are
produced by folding and phase transition in neuronal networks
and represent (model) persistent constellations of stimuli
(objects). Variations in packet responses (changes in the
composition of responding groups and the order of their
firing inside the packet) represent behavior. “Understanding”
accompanies the composition of models representing
behavior coordination (inter-object relations), as bi-directional
(reversible) mapping between packets. Such reversible mapping
underlies behavior prediction and explanation (retrodiction).
Coordination establishes thermodynamic equilibrium in the
volume of a model thus minimizing dissipation (costs) and
enabling reversible execution. Expanding models and exploring
new inputs necessary moves the system away from equilibrium.
Regulation via anticipation and explanation is a uniquely
human form of surprise minimization. The regulatory process
is supported by verbalization and imagery but is driven by
modeling. Arguably, mental modeling, i.e., coordination of
packets (mental objects) in the mental space builds on the
neuronal machinery engaged in coordinating limbs and objects
in the physical space.

This concludes our brief survey of the articles offered in
the special issue. To an outside observer, cars might appear to
have the purpose of seeking out gas stations and converting fuel
into heat and exhaust. A closer inspection will reveal intelligent
regulators inside the cars (i.e., you and me) concerned with
having enough fuel to reach the next station—and averting the
“surprise” of finding the fuel tank empty. Other concerns—that
contextualize this regulation—are the cost of fuel and the desire
to keep the car running for the greatest distance possible. In
the process, cars must maneuver in coordination with other
cars, traffic rules and terrain. Such self-motivated, self-evidencing
and self-regulated cars might be a plausible metaphor for minds
embedded in a self-organizing nervous system.
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The human brain is a particularly demanding system to infer its nature from observations.

Thus, there is on one hand plenty of room for theorizing and on the other hand a

pressing need for a rigorous theory. We apply statistical mechanics of open systems to

describe the brain as a hierarchical system in consuming free energy in least time. This

holistic tenet accounts for cellular metabolism, neuronal signaling, cognitive processes all

together, or any other process by a formal equation of motion that extends down to the

ultimate precision of one quantum of action. According to this general thermodynamic

theory cognitive processes are no different by their operational and organizational

principle from other natural processes. Cognition too will emerge and evolve along

path-dependent and non-determinate trajectories by consuming free energy in least

time to attain thermodynamic balance within the nervous system itself and with its

surrounding systems. Specifically, consciousness can be ascribed to a natural process

that integrates various neural networks for coherent consumption of free energy, i.e., for

meaningful deeds. The whole hierarchy of integrated systems can be formally summed

up to thermodynamic entropy. The holistic tenet provides insight to the character of

consciousness also by acknowledging awareness in other systems at other levels of

nature’s hierarchy.

Keywords: causality, cognition, free energy, non-determinism, the principle of least action, the second law of

thermodynamics

INTRODUCTION

Cognition is an ability that one has inherited from the evolutionary course of human species and
its ancestors as well as accumulated in the course of one’s own life from numerous experiences
and incidences during diverse developmental and maturation processes. To perceive cognition in
this way as a product of various processes raises a profound question: What is a change? Namely,
an event, development or evolution as a whole ultimately consists of changes from one state to
another. The decimation of any process to a series is familiar from physics but the conceptualization
is not remote to neuroscience either (Fingelkurts and Fingelkurts, 2001; John, 2002; Perlovsky and
Kozma, 2007; Freeman and Vitiello, 2009; Fingelkurts et al., 2010a, 2013). Moreover, cognition
is not only one’s arsenal from the past, but a present process for one to target toward future.
Consequently we think that the concept of change is pivotal in comprehending cognition in general
and its consciousness character in particular.

We are further motivated to make sense of cognition using the universal notion of change
because the human brain, as the primary premise of cognition, displays in its structures
and functions the same patterns as numerous other systems throughout nature (Linkenkaer-
Hansen et al., 2001; Eguíluz et al., 2005; Mäkelä and Annila, 2010; He et al., 2013). For
example, neural activity is no different from seismic activity, both comply with power
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laws (Touboul and Destexhe, 2010). A neuronal network, just
as the World Wide Web, has a skewed distribution of nodes’
degrees (van den Heuvel et al., 2008). Neural activity exhibits
waves, oscillations, spiraling sequences and at times chaotic
behavior just like economic activity displays cycles, trends
and occasionally tumultuous conducts (Schroeder, 1991; Huang
et al., 2010; Friedman and Landsberg, 2013).No question, the
ubiquitous patterns have been recognized in diverse disciplines
including neuroscience (Chialvo, 2010), but the main point
remains unappreciated: The common characteristics result from
natural processes, that is, from series of changes.

Evolution of any kind, when broken down to a succession
of changes, can be given by an equation of motion. In this
way the thermodynamic theory explains the recurrent patterns
to result from least-time free energy consumption (Sharma
and Annila, 2007). In other words, the skewed distributions
are energetically optimal, and hence their cumulative sigmoid
growth and decline curves are also optimal in energetic
terms. The power laws, in turn, are ubiquitous by being
central approximations of the sigmoid curves. The evolutionary
equation asserts that natural systems evolve in non-deterministic
and path-dependent manner (Annila and Salthe, 2010a). Also
cognitive processes, unmistakably learning and decision making,
share these universal attributes (Arthur, 1994; Bassanini and
Dosi, 2001; Anttila and Annila, 2011). For these reasons we
are motivated to employ the general theory to make sense
of cognition and especially of its seemingly elusive conscious
character.

Disciplines have branched far from their common stem in
natural philosophy, and hence holism is today an unconventional
tenet. Thus, our assertion that the human brain is no different
by its operational and organizational principle from any other
system in nature may appear odd and groundless at first
sight. To justify our reasoning we will begin by outlining
the thermodynamic theory (Chapter 2) and thereafter work
insight to consciousness by relating the holistic perspective to
various puzzles, phenomena, and well-known stances (Chapter
3). Finally, we summarize conclusions of the thermodynamic
tenet to further debate and discourse (Chapter 4). As it will
become apparent, our study does not yield groundbreaking
resolutions, rather it substantiates common sense by a firm
formalism.

THERMODYNAMICS OF OPEN SYSTEMS

We reason that the human brain is no different from other
systems in nature because its structures and functions display the
ubiquitous patterns, i.e., distributions that sum up along sigmoid
curves which, in turn, mostly follow power laws. Hence, the brain
ought to be described and comprehended in the same way as any
other system.

To this end the general principle of nature is known, in fact by
many names, most notably as the second law of thermodynamics,
the principle of least action and Newton’s second law of motion.
These three laws appear as if they were distinct from one
and other when erroneously expressed in their determinate,

i.e., calculable forms. For example, textbooks tend to present
Newton’s second law of motion so that force F = ma equals
mass m times acceleration a = dtv, i.e., the change in velocity v.
However, Newton himself wrote that the force F = dtp equals a
change in momentum p, which yields by the definition p = mv
not one but two terms F = mdtv + vdtm. The change in mass
relates via dm= dE/c2 to dissipation of photons ultimately to the
cold space. Dissipation is inherent in any change, and hence it is
also integral to cognition.

Likewise, the principle of least action in its original
form due to Maupertuis includes dissipation in contrast to
the familiar constant-energy, hence deterministic Lagrangian
(De Maupertuis, 1746; Tuisku et al., 2009). Furthermore,
statistical mechanics, as the probabilistic many-body theory
underlying thermodynamics, can be formulated for open
dissipative systems. However, when imposing the constant-
energy condition, statistical mechanics limits to stationary
systems (Kondepudi and Prigogine, 1998).

Dissipation, despite being an integral component of any
change, may still appear as a downright secondary byproduct of
neural activity. Yet, when a systems theory misses even a single
and seemingly insignificant photon, such a theory does obviously
not account for everything and leaves room for unaccounted
effects, surmise and speculation. Of course, when probing neural
activity in practice, knowledge of numerous factors will remain
imperfect, but all the more the theory’s bookkeeping of causes
and effects, i.e., forces and ensuing motions, ought to be perfect.

The Physical Basis
Today, when complex systems are more often modeled and
simulated than described and explained, our ambition to account
for everything with accuracy and precision extending down to a
single photon might seem as an exceptional, perhaps even as an
unattainable and abstract attempt. Therefore, it is worth stressing
that for us an explanation is genuine only when it relates to
everyday experience. For instance, the well-known conjecture
that quantum mechanics could underlie consciousness (Bohm,
2002; Pylkkänen, 2014) does not qualify for us as an explanation,
because entangled and superposed states do not make sense to
us. The legendary illustration of a microscopic system being
in two states at the same time by a cat being alive and dead
at the same time simply does not seem sensible to us. The
observed indeterminism implies to us that we just do not know
the state of cat that goes missing. Likewise, we refute the idea
in statistical mechanics that an observable state would sum up
from a probability distribution of microscopic configurations,
because the microstate (Mandl, 1971), in contrast to the state, is a
theoretical concept without a discernable counterpart. In practice
one microstate cannot be distinguished from another.

Surely, our stance can be argued against by claiming that not
everything is necessarily tangible to the human being, but then
again no observation is either free from some interpretation.
Mere numbers mean nothing. Thus, mere agreement with
recordings is no guarantee that non-determinism and purported
non-localism as well as emergence could not be explained
without conceptual conundrums (Annila and Kallio-Tamminen,
2012). It is worth noting that Schrödinger equation is devoid
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of dissipation (Griffiths, 2004), and hence it does not comply
with observations that all changes are dissipative. Likewise, the
textbook statistical mechanics accounts for the system when at
thermodynamic equilibrium, not when in dissipative evolution
from one state to another (Gibbs, 1902).

We think that the theory of cognition ought to be given in
the form of an equation because mathematical notation leaves
less room for ambiguity than natural language. By the same
token, Darwin’s theory, as the corner stone of biology, is not a
theory by standards of physics but a narrative, albeit a conceivable
one. Then again, an equation alone is no theory. Namely, when
variables of a mathematical model fail to correspond to causes
and effects, there is no enlightenment.

Traditionally rules and regularities have been deduced
from meticulous measurements. Kepler’s laws are examples of
formalized observations. In neuroscience this approach is hardly
an option. Recordings do not reproduce precisely enough to infer
an equation of motion. Instead mathematical models, such as
Markov chains that mimic data, more or less, are fashionable
in providing predictions, at least trends (Laing and Lord, 2009).
However, the model parameters do not map one-to-one with
causes and effects. The introduced statistical indeterminism,
i.e., randomness without reason, is not a substitute for non-
determinism. It follows from the path-dependence of natural
processes.

To obtain an equation by starting from an axiom is yet
another possibility. For example, the axiom that inertia is
distinguishable from gravity, known as equivalence principle,
underlies general relativity (Misner et al., 1973). In neuroscience
this approach for finding axioms does not appear amenable
either. Recordings hardly display invariants to get hold of
the foundation. Nonetheless, one may construct the theory by
inferring or postulating self-evident axioms and challenge only
ensuing conclusions (Tononi, 2008; Tononi and Koch, 2015).
However, we would prefer axioms that are directly verifiable
in terms of physics, but then neuroscience cannot stand out
as a distinct discipline, its concepts cannot be chosen self-
sufficiently, and its objects of study cannot be singled out as
unique phenomena.

We find the ancient atomism (Berryman, 2011) as a sound
and solid stance. It claims that everything comprises indivisible
basic building blocks. Since the atom, as a chemical element,
turned out to be divisible, the most elementary constituent was
renamed as the quantum of action. The quantum of light is its
most familiar embodiment. The human eye can register even a
single photon and our skin is sensitive to photon influxes and
effluxes that are sensed as hot and cold. Thus, the photons are
real by everyday experience, and hence the quantum of action
qualifies for us as a tangible entity. The quantum-embodied
atomism is further motivated because every chemical reaction
will either emit or absorb at least one photon. Also annihilation
of matter with antimatter yields only photons. Also other
observations substantiate the axiom that everything, and hence
also cognition, is ultimately embodied by the quantized actions
(Annila, 2010, 2012; Varpula et al., 2013). The atomism is not
new to neurosciences either. It has been formulated in at least
in neurophysiological context (Fingelkurts et al., 2009, 2010a).

The quantum of action has energy E and time t as its attributes,
or equivalently momentum p and wavelength x, so that their
product is invariant known as Planck’s constant

h = Et = p · x. (1)

In other words, energy and time do not exist as such. They are
characteristics of the quanta (Annila, 2016). Surely, Equation (1)
is mathematically equivalent to the textbook form E = hf, where
frequency f = 1/t, but then it is not evident that h is the quantum’s
measure. The invariance means, for example, that the wavelength
will change along with changing momentum but the photon
itself remains intact. Consequently, we find virtual photons as an
abstract theoretical construct without correspondence to reality
(Peskin and Schroeder, 1995).

A system changes from one state to another by acquiring
quanta from its surroundings or by losing quanta to its
surroundings. Thus, the change in energy is, according to
Equation (1), invariably accompanied with the change of time.
This is common sense. For example, a chemical reaction will
progress in the course of time by acquiring or expelling quanta
that carry energy as heat until a stationary state has been attained.
Many a biological system is recurrently subject to changes due to
its changing surroundings. Therefore, animate will hardly ever
attain and reside in thermodynamic steady states. Specifically,
the central nervous system is incessantly receiving and sending
impulses to its surroundings comprising the body and beyond.

In practice there is hardly a way to keep track of all quanta
embodying even a microscopic system, but formally the system
can be described with the precision of one quantum. This
is not only a remarkable but consequential resolution. Not
only is the neural network no different from any other energy
transduction system, but the atomistic axiom excludes other
factors. Put differently, if one were to argue that consciousness
is not embodied by quanta, the stance would violate causality by
introducing some other constituents from nothing. That is to say,
a cause of any kind is ultimately nothing but an energy difference,
i.e., some form of free energy. Its ensuing effect is nothing but a
quantized flow of energy. Thus, causal power, as a characteristic
of consciousness (Kim, 1992), is inherent in the thermodynamic
description.

Our approach to account for the entirety in terms of quanta
undoubtedly resembles reductionism. The idea that the system is
nothing but the sum of its parts has been refuted, for instance, by
referring to emergent characteristics of consciousness. Likewise,
properties of a molecule cannot be inferred from properties of
its constituent atoms. However, the molecule does not form
only from atoms, but also from the photons that couple from
surroundings to the synthesis (Pernu and Annila, 2012). If
these quanta are not included in the description, obviously the
molecular characteristics remain unaccounted. Conversely, no
new property will appear from mere permutations of systemic
constituents. Instead a novel characteristic will appear along with
the flux of quanta from the surroundings to the system or vice
versa. In other words, the monistic account (Stoljar, 2015) is in
fact complete when every quantum of action is included. This
essential role of surroundings in emergence has been pointed
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also in neuroscience (Rudrauf et al., 2003; Revonsuo, 2006;
Fingelkurts et al., 2010b).

We realize that our physicalism does not immediately
enlighten, for instance, subjective conscious experience, i.e.,
qualia, which is the contested concept about the ways things
seem to us (Dennett, 1988; Chalmers, 1995). True enough, one
does adhere meanings beyond mere perception. For instance, the
sensation of red color is not only about registering corresponding
energy of the photons at the retina, but the influx will trigger
processes that involve more. What exactly is implicated may not
be easily exposed in practice, but in any case we maintain that
the supervening processes can be formally described with the
exactness of one quantum.

The Systems Description
The above preliminaries pave the way for the formal description
of a system. Since all entities are understood to comprise of the
basic building blocks, any entity can be related to any other in
energetic terms. So, all those entities that one chooses to refer to
as the system can be placed on an energy level diagram (Figure 1).
This description can be formalizedmathematically irrespective of
complexity (Mäkelä and Annila, 2010).

According to the general theory of many-body systems the
state can be expressed concisely and completely in terms of
probability P. It is the measure of what it takes to have,
for example, a pool of certain neurotransmitter molecules in
a synaptic vesicle. Undoubtedly, it will take a lot of things.
Precursors are needed for syntheses of transmitters as well as
energy-rich chemicals are required to power the production.
Moreover, machinery for the syntheses and molecular transport
is necessary. In practice we do not know all factors that are
involved in attaining the particular state of synaptic vesicle.

Nonetheless, we may formally denote the probability Pj for the
pool of neurotransmitters, in numbers Nj, by accounting for all
those vital ingredients, each in numbers Nk, using the product
form Pk. It ensures that if any one of the vital ingredients is
missing altogether, not a single neurotransmitter molecule will
be found in the vesicle. Of course, it is not the mere number Nk

of substrates that matters but also the substrate’s energy attribute
Gk. Specifically, Pj depends on the difference between energy
Nkexp(Gk/kBT) that is bound in the substrates and energy that
is bound in the product exp(Gj/kBT) as well as on the difference
in energy that couples from surroundings via flux of photons to
the synthesis of the j-entities from k-entities, i.e., exp(1Qjk/kBT).
Formally this dependence of Pj on energetics is given by

Pj =

[

∏

k= 1

Nke
−1Gjk/kBT e+i1Qjk/kBT

]Nj

/Nj! (2)

for the population of Nj products. All energy terms are relative to
the average energy of the system per particle, denoted by kBT for
historical reasons. The division by factorialNj! takes into account
energetically equivalent permutations. It is worth emphasizing
that these configurations, that the system cannot distinguish
energetically, populate the same state. This is of course common
sense. If one cannot distinguish one entity from another, one
claims that they are identical. One’s ability or any other system’s
ability to make a distinction requires ultimately recognition of
some difference in energy. For the sake of clarity, imaginary part
i in Equation (2) distinguishes energy in radiation, known as the
vector potential, from quantizedmaterial forms of energy, known
as the scalar potential (Figure 1). The probability of any other
population can be denoted in the same way as Pj. Then the total

FIGURE 1 | System is portrayed in terms of an energy level diagram along its evolutionary path at three states (A–C). Each diagram pictures various

populations Nk of entities, each with energy attribute Gk . Vertical arrows indicate paths of transformations, i.e., changes from k-entities in the population Nk to

j-entities in the population Nj . Horizontal wavy arrows denote influx and efflux of photons that invariably couple to these transformations. Horizontal bow arrows, in

turn, mean inconsequential exchange of indistinguishable entities. The system evolves, step-by-step, via absorptive and emissive jk-transformations from one state to

another toward ever more probable partitions, denoted by P =
∏

Pj , eventually arriving at a stationary-state balance where its average energy kBT equals energy

density in the system’s surroundings. The outlined skewed partition accumulates along a sigmoid curve (dotted) which follows mostly a straight line on a log-log scale

(insert) for entropy S = kB lnP vs. [chemical] potential energy µ.
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probability P of the whole system is simply the product

P =

∏

j= 1

Pj. (3)

Although the status of a system is accurately and precisely given
by the product form (Equation 3), one would prefer an additive
measure to make comparisons. In statistical mechanics entropy
S is the additive measure of a system’s status. It is obtained from
the logarithm of P

S = kB ln P =
1

T

∑

j= 1

Nj

[

kBT +

∑

k= 1

(

µk − µj + i1Qjk

)

]

(4)

by multiplying with kB for historical reasons. The shorthand
notation µk = kBTlnNk + Gk, known as chemical potential for
the logarithm of density in energy Nkexp(Gk/kBT) is expedient
(Gibbs, 1902). Also Stirling’s approximation lnNj! ≈ NjlnNj – Nj

is convenient. It holds the better the largerNj. For instance, when
Nj > 100, the error relative to lnNj! < 1%. In the Equation 4 the
first term sums all energy that is bound in the system’s entities,
including, for example, the pool of neurotransmitter molecules.
The second term sums all energy differences, i.e., free energy
terms that reside within the system as well as between the system
and its surrounding systems, including, for instance, differences
in electrochemical potentials across the vesicle’s membrane.
All these forces drive the system and its surroundings toward
thermodynamic balance. The resulting change in entropy is
obtained from the time differential

dS

dt
=

1

T

∑

j= 1

dS

dNj

dNj

dt
=

1

T

∑

j= 1

dNj

dt

∑

k= 1

(

µk − µj + i1Qjk

)

(5)
Where dNj/dt denotes the change in Nj that result from
consumption of free energy6µjk – µj + i∆Qjk. For example, the
accumulation rate of transmitter molecules in the synaptic vesicle

dNj

dt
=

1

kBT

∑

k= 1

σjk
(

µk − µj + i1Qjk

)

(6)

is proportional to free energy by rate parameters σ jk > 0. Each
parameter is associated with a transformation mechanism, such
as an enzyme, that consumes free energy in the form of chemical
energy. An energy transducer of any kind is according to the
scale-free theory a system of its own. Hence, it is subject to
changes too. For example, a mutation in a gene may lead to an
altered catalytic activity, and hence affecting the flow rate from
the substrates to the products and vice versa.

Although we do not know the details of how the system
evolves from one state to another, the formal scale-free
expressions (Equations 1–6) include every detail down to the
precision of one quantum. In other words, the numerous flows of
energy in a complex system are all formally included in Equation
(5). Since there is no option to create the quanta from nothing
or to destroy the quanta for nothing, the flows will have to
direct along the least-time paths of free energy consumption. In
biological terms evolution from one state to another will naturally

select those means and mechanisms that facilitate survival. The
scale-free patterns are consequences of this least-time imperative
(Mäkelä and Annila, 2010).

When inserting Equation (6) to Equation (5), the quadratic
form proves the second law of thermodynamics, i.e., dS ≥ 0
both for 6µk – µj + i1Qjk > 0 and < 0. The thermodynamic
entropy cannot ever decrease. For example, the neurotransmitter
population will increase dNj > 0 when there are resources 6µk

– µj + i1Qjk > 0 for its production. Conversely, the population
will decline dNj < 0 when 6µk – µj + i1Qjk < 0. Thus, their
product in Equation (5) is always non-negative.

It is worth stressing that entropy by Equation (4) is a measure
of bound and free energy, not of disorder or the number of
microstates. Although the definition of P by Equation (3) differs
from the one referred to by the free-energy principle (Nicolis and
Prigogine, 1977; Haken, 1983; Friston et al., 2006; Friston, 2010),
the idea is the same: Evolution of any kind directs toward a free
energy minimum state. The least-time principle parallels also of
the principle of least effort (Zipf, 1949).

According to the holistic tenet any system is at the mercy
of its surroundings. Therefore, changes in surroundings will
manifest themselves as activity that will move the system
in quest of regaining balance. For instance, when a neuron
reverts its polarity, the synaptic vesicle will respond by
releasing neurotransmitters. Conversely, during repolarization
the transmitter population will recover, provided that there is
chemical potential available for the restoration. Note, irrespective
of which way the energy gradient lies between the system and its
surroundings, free energy can only decrease, and hence entropy
can only increase. At the maximum entropy state all forms of free
energy have been consumed, and accordingly all energy is bound
in the stationary populations. Then there are no net forces that
would drive the system away from the thermodynamic balance.
Many a living system hardly ever resides in thermodynamic
balance because its surroundings keeps changing, but formally
Equations (2–6) do express the path-dependent, and hence
intractable evolution toward balance as well as complex dynamics
at the balance.

It is worth underscoring that entropy by Equation (4) does
not convey any additional information about the system than
what is given in energetic terms, i.e., by multiplying S with T.
Thus, the least-time free energy consumptionmeans that entropy
will not only increase but it will increase at the maximal rate.
Importantly, S does not relate to disorder, i.e., incoherence. Order
or disorder is no end in itself but a mere consequence of free
energy consumption. Organization, just like disorder, follows
from the quest of consuming free energy. The widespread but
unwarranted association of entropy with disorder dates back
to the derivation of entropy for closed systems by Boltzmann.
Obviously, when the system is defined as invariant in energy,
nothing can change per definition. However, life is all about
changes, and for that matter, in the expanding Universe no
stationary motion will last forever either.

A Neural Network as a Thermodynamic
System
Thermodynamic terms are commonly used in metabolism, but
seldom applied in the context of cognition. However, there is

Frontiers in Systems Neuroscience | www.frontiersin.org March 2016 | Volume 10 | Article 27 | 13

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Annila On the Character of Consciousness

no principal difference. Electromagnetic potentials of nerve cells
arise from chemical potentials, and hence neuronal signaling can
be expressed alike, in terms of the scalar potential U =

∫

µdN
due to bound quanta and in terms of the vector potential
Q=

∫

∆QdN due to absorbed or emitted quanta. Since Equations
(1–6) apply also for electromagnetism (Tuisku et al., 2009), a
network of neurons engaged in cognition is by thermodynamic
principle no different from a reaction network of chemical
compounds involved in metabolism. The neural network also
evolves, just as the chemical reaction mixture, by consuming free
energy in least time (Hartonen and Annila, 2012). For example,
evolution of a neural network from one state to another is about
accumulating products, e.g., physically embodied representations
of experiences and memories. Likewise, lapses and larger losses
of memories or mental skills invariably involve changes in the
neural network. However, we make no attempt to specify what
these changes are in detail, say in diagnostic terms, we only claim
that whatever they are, they all are formally contained in the
systems theory.

In concord with naturalistic consent we reason that all
cognitive processes, for example, learning is ultimately embodied
in neuronal systems or in some other systems. The chosen
definition of a system is inconsequential because all systems
amidst surrounding systems are perceived to evolve, develop and
mature, that is, to change from one state to another in one way
or another by consuming free energy in least time. Therefore,
irrespective of how one chooses to demark the system from its
surrounding, the bookkeeping of quanta in the system and of the
quantized influxes and effluxes across the interface is perfect.

The freedom for one to define a system does not mean that the
classification would be meaningless. Namely, a natural interface
is there where strengths of interactions change significantly.
For example, neurons in the central nervous system (CNS)
are more strongly connected to each other than to rest of the
body. Accordingly, the brain and spinal cord are recognized
as subsystems of CNS, and, in turn, medulla, pons, thalamus,
hypothalamus, cerebellum, hippocampus, basal ganglia, etc., can
be recognized as subsystems of brain by their high internal
connectivity. The natural interfaces are not impermeable, only
fluxes across them are less intense than fluxes within the system.

Connectivity as the natural determinant of a system manifest
itself, for instance, when connections across callosum are
progressively reduced. The split-brain condition, where the two
lobes behave as distinct systems, does not emerge gradually but
abruptly (Tononi and Koch, 2015).We claim that the threshold is
reached when the free energy consumption via inter-hemisphere
connectivity falls significantly below the free energy consumption
via the intra-hemisphere connectivity. The underlying principle
is the same when two persons grow apart, they will at some stage
speak out the split. Likewise, when two populations in a country
grow more and more apart from each other, they will at some
point declare themselves as two independent nations.

It is worth stressing that the least-time imperative does not
specify any particular outcome, e.g., a split or union. This
means, for instance, that a memory circuit has evolved to
consume free energy by making an “appropriate” recollection,
not by recollecting an event exactly as it actually took place.

This energetically optimal conduct is customarily referred to as
survival. One may easily imagine circumstances where a frank,
yet unfaithful recollection will be vital, and scenarios where an
exact recollection would be fatal. The same conclusion has been
expressed in terms of utility in the context of vision (Purves
et al., 2015). Indeed, it is no new thought to think of cognition
as a means of survival, but still some might find it unusual
to speak about the fittest in thermodynamic terms without
making any distinction between animate and inanimate. It is this
universality of thermodynamics from which we draw insight to
consciousness.

CONSCIOUSNESS BY THE
THERMODYNAMIC TENET

According to thermodynamics there is nothing extraordinary
about consciousness; why it exists, what it does and how
it arises. On the contrary, its existence, functions and
arousal follow from the universal imperative. The Equations
(1–6) express in quantitative forms the general biological
position that consciousness is a result of evolution, among
all other characteristics. Thermodynamically speaking flows of
energy will naturally select those characteristic paths that will
level off energy differences in least time. According to this
perspective, consciousness integrates sensory and other inputs
with recollections and representations from the past for coherent
responses to consume energy gradients more effectively than by
unconscious deeds. In concord with common sense a conscious
person acts in a more meaningful way than an unconscious one.
The augmented consumption of free energy means enhanced
survival. In the following we will examine by the least-time free
energy perspective some well-known questions and established
stances about consciousness to enlighten its character.

On the Definition
One hand definitions serve to organize diversity of nature. On the
other hand a dividing line creates a problem because everything
depends on everything else. The border between one category
and another is practical but in the end ambiguous when things
change from one to the other. Ultimately one quantum of action
is enough to make a change from one category to the other. Most
notably it is hard to make a clear-cut distinction between living
and non-living, although the notions of animate and inanimate
themselves are practical. Similarly, it is unclear what exactly is
meant by an economy. For example, is a bee hive part of an
economic or an ecological system? Similarly, distinction between
consciousness and unconsciousness is useful but ambiguous. The
scope of awareness, wakefulness and sentience is wide and vague.
Also the range of subjectivity and the sense of selfhood are broad
and obscure. Capacity to experience and feel varies from one
individual to another as well as from one moment to another in
an individual.

Consciousness defies categorization precisely because it is
functional. The change is the very characteristic of a conscious
system. By the same token, a steady state does not display
causal relationships, i.e., irreversibility. A mere exchange of
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quanta without a net flow of energy between the system and its
surroundings does not drive the system from one state to another.

Despite these arguments one could perhaps imagine of
defining consciousness exactly by taking a snapshot of it. The still
frame, however, would not represent any changes, so it would be
devoid of the principle characteristic of consciousness. One could
eventually think of enclosing the conscious system by a fictitious
border, but only in a stationary system quantized trajectories are
closed, i.e., bounded. Put differently, evolving and invariant, just
as indefinable and definite, are mutually exclusive attributes.

It is no wonder that philosophers since Descartes and Locke
have struggled to pin down essential properties of consciousness,
because the definition depends on both the content and context
of what is deemed as essential, in fact, functional. For example,
search for neural, psychological and behavioral correlates is not
free from a preset idea of what consciousness is. Physically
speaking, the free energy consumption, i.e., functioning is
proportional to the changes in energy, not to some absolute
and invariant values of energy, i.e., stationarity. Therefore, the
search for a set of neural events and structures implies as if
consciousness was bounded by a definition rather than being an
open operational notion.

It worth emphasizing that not only consciousness but
also many other definitions are ambiguous by depending on
the subjective choice of key characteristics. For example, the
definition of an ecological community depends on what will
be listed as its characteristic organisms. Likewise, the definition
of a multi-cellular organism is dictated by the list of its cells.
The cell, in turn, is defined by its molecules, and so on. The
thermodynamic theory claims that definitions are ambiguous
when the change is the principal characteristic.

Obviously our account of consciousness by the universal
notation of physics encompassing everything reminds of
panpsychism, the philosophy that the mind is not only present in
humans but in all things (Seager and Allen-Hermanson, 2015).
We see this thought to emerge from the correct comprehension
that it is impossible to single out anyone evolving system,
specifically consciousness, from its surroundings as well as from
the accurate observations that all systems behave in the same way,
that is, consume free energy in least time. Then again, there is
hardly a point in equating the specific notion of mind with the
general notion of an evolving system. Thus, we refer to mind
merely as a practical term for what the brain does. Likewise, we
choose to speak about consciousness merely as an attribute for an
integrated system that is consuming free energy coherently.

Still, one might regard consciousness as an umbrella term, for
example, in analogy to furniture which, as a term, includes tables,
chairs, beds, etc. Since furniture refers to movable objects that
support various human activities such as seating and sleeping,
one should ask: What functions does consciousness support?
Only to realize that the list will remain open. Thus, there is no
closed definition for consciousness.

All in all, the trouble in defining consciousness appears to
us as contrived. Problems stem from attempts either to single
out or to separate consciousness from its surroundings or to
attribute consciousness with some unique rather than universal
characteristic. The renowned Cartesian dualism appears to us

an unfortunate misinterpretation that res cogitans, i.e., the realm
of thought would mean an immaterial domain and that res
extensa, i.e., the realm of extension, would mean the domain of
material things. Isn’t Descartes only naming the system capable of
interoception and exteroception as consciousness and referring
to the rest as its surroundings so that their interactions convene
in the brain? In our mind the purported qualitative distinction
between material and immaterial is not his message. Thus,
the mind–body problem of how non-physically labeled beliefs,
actions and thinking, etc., relate to the physically embodied
human being, appears to us utterly artificial.

On the Quantification
Although consciousness defies a closed definition, it is still
quantifiable in terms of entropy (Equation 4). The irrevocable
increase in entropy dtS ≥ 0 (Equation 5) implies somewhat
paradoxically the state of consciousness, measured by S, can
only increase. This is true when consciousness is understood
as the attribute of an integrated system that consumes free
energy relative to its surroundings, not relative to some absolute
invariant reference.

Despite the relativeness of entropy, one may easily imagine
in some absolute terms that the degree of consciousness has
been increasing over eons when humans have been consuming
energy differences relative to their energy-rich surroundings.
Consciousness will flourish when supplies are rich and versatile.
Conversely, when the surrounding resources narrow down so
that the subject faces hunger, sleep deprivation, stress, etc.,
consciousness will decrease relative to the arbitrary absolute
reference. However, the absolute value of entropy, high, or low
is only imaginary because entropy is in relation to resources,
i.e., a function of free energy (Equation 4). In biological
terms the cognitive capacity will adapt to circumstances. In
thermodynamic terms the cognitive system will regain balance
with its surroundings either by acquiring or abandoning some
subsystems and paths of energy transduction. Thus, a high level
of consciousness is no end in itself but consciousness, as any
other attribute of a system, develops and evolves to attain the
entropy maximum, i.e., the free energy minimum state in a given
circumstances. This is, of course, common sense. In poverty a
high level of awareness is simply unaffordable.

In practice there is hardly a way to sum up numerous bound
and free forms of energy to quantify consciousness. Above all it
is difficult to gauge all forms of free energy that are represented
in one’s neural network. These energy differences reside between
the system, known as the conscious self, and its surroundings.
For one thing, one’s perception of its surroundings is dynamic.
For the other thing, one’s identity, i.e., the system itself is an
ambiguous and dynamic notion that prevents from defining it as
distinct from its surrounding systems. For example, the problems
of altruism and tragedy of commons resolve by identifying one’s
identity (Annila and Salthe, 2009; Anttila and Annila, 2011).

Although exact quantification of consciousness remains
illusory its characteristics can be recognized from the
determinants of entropy and its change (Equations 4 and
5). Entropy, as the measure of state, increases with increasing
connectivity, not only by an increasing number of nodes,
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such as neurons, but also by an increasing capacity and rates
of mutual interactions (Figure 1). Thus, it is no coincidence
that the brain with the fastest processing capacity and highest
connectivity among all organs is the primary premise of
consciousness. Conversely, the conscious capacity will degrade
when connections and central nodes disintegrate but remains
largely untroubled by solitary losses. Still, it is worth emphasizing
that the comparison in absolute terms of entropy has no real
meaning because any state of consciousness is in relation to its
resources. High holism remains only imaginary when there are
no resources and no means to attain it.

On the Subjectivity
The subjective nature of consciousness is inherent in the
thermodynamic account (Figure 1 and Equations 1–6). Namely,
the system is the subject. The system is unique via its interactions
with its surroundings. A flow of quanta from the surroundings to
the system is not shared by any other system. For example, the
photon that one’s retina happens to absorb cannot be absorbed
by anyone else. Accordingly, there is no objective way of defining
or measuring any system because any observation will ultimately
embody a unique flow of energy from the target to the specific
observer. Thermodynamics of open systems acknowledges this
uniqueness, i.e., the subjective character of nature. The theory
works even when the system is defined at will, because it
keeps track of all quanta that move between the system and its
surroundings.

All meanings presented in various forms of free energy are
subjective. The way things appear to one depend on who one
is, that is to say, on evolutionary courses of human species and
its ancestors as well as on one’s own developmental processes
and experiences. Common sensations imply the same origin
and ordinary experiences where singular sensations indicate
diversification. Since no objective account can be given, it is best
to realize consequences of subjectivity. For example, one may
begin by defining gamma waves as a necessary, yet insufficient
characteristic of consciousness (Aru et al., 2002), and proceed
by including other characteristics. When completed with one’s
list, one may label consciousness as impaired or disrupted when
anyone of the predefined characteristics is missing or misplaced.

Neuronal and behavioral correlates of consciousness are
undoubtedly needed for medical diagnoses and other purposes,
but they are neither comprehensive nor objective. For instance,
alcohol and other drugs, or spiritual and meditative techniques
will alter the state of consciousness. This is sensed by the
subject itself and other subjects, but differently since flows of
energy are different. In turn, denial of impairment is a striking
example where the subject’s view of consciousness is deemed
by others as disturbed (Hirstein, 2005). The subjective character
of consciousness manifest itself pronouncedly when a patient,
who has become blind, claims to see normally and continues to
maintain the view despite all evidence to the contrary. This is
perplexing, yet ordinary in another context. Isn’t it only common
that despite all evidence to the contrary, many an individual
retains unrealistic thoughts about himself? Also, it is not unusual
that one assures of recalling an event which never happened.
Consciousness is not and it does not even aim to be a faithful, say

objective or inter-subjective representation of reality. It is one’s
response to reality.

According to thermodynamics a conscious system forms
from its constituent systems, like any other integrated hierarchy,
The conscious system will consume free energy along the
least-time paths, irrespective of how irrational these paths
are judged “objectively” by other systems. For example, the
changed meaning of a percept demonstrates how a tapered
connection will redirect signals, i.e., flows of energy, from a
sensory system to an “incorrect” locus at the cortical system.
It is odd but still understandable that one may sense the
sound of trumpet as “scarlet” (Krohn, 1892). The erroneous
outcome is no different from a train arriving on a wrong
platform because of a misplaced switch along the track. Put
differently, the curious complications are not normal but natural
according to the scale-free thermodynamic imperative. Our
viewpoint of subjectivity as a natural characteristic complies
with monistic consent that consciousness is a real subjective
experience embodied by physical processes in the brain. This
view is compatible with so-called biological realism at the
interface between neural and mental phenomena (Revonsuo,
2006; Freeman, 2007; Fingelkurts et al., 2009, 2010a, 2013).

On the Hierarchy
The scale-free thermodynamic theory pictures the conscious
system as comprising of systems (Salthe, 1985; Chialvo et al.,
2007; Fingelkurts et al., 2013; Werner, 2013). Consciousness
supervenes via least-time energy transduction from lower-level
systems, say neuronal networks that represent sensations,
coordination, memories, etc. In other words, knowing
with oneself integrates existing systems with inputs from
surroundings. This is to say, consciousness emerges in a form
that best serves the least-time imperative rather than being a
comprehensive report of either the state of mind or the state
of surroundings. This conclusion about consciousness, as an
integrated hierarchal construct, agrees with the impression that
consciousness is the opinion or internal feeling that one has from
what one does. Also that consciousness is deemed as unitary we
understand as the coherent outcome of integration, not that it
would mean a monolithic entity.

The view of consciousness supervening lower-level processes
parallels the proposition of various narrative fragments,
“drafts,” coming together the way a coherent behavior of an
individual calls for (Dennett, 1991; Chafe, 1994; Varela, 1999;
Freeman, 2007; Fingelkurts et al., 2010a, 2013). The need in
thermodynamic terms is a force that will expire by the least-time
free energy consumption. In view of that it is natural that new
aspects about oneself will surface to one’s mind first when one
senses corresponding driving forces. As long as one has no
mechanisms to sense such forces, it makes no difference if
someone else is aware of them. The blind is unaware of her
beautiful face, but when learning about it from others, may make
all the difference. In general, when sensory outputs from the
surroundings are deprived by and large, it will become difficult
to maintain a focused state of consciousness. The loss of external
energy gradients results in a peculiar state of consciousness
where theta waves prevail (Ballard, 1986). These low-frequency
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oscillations disperse farther away than gamma waves. The
extended scale of coherence underlines that consciousness is
at its brightest as a focused construct. Yet, consciousness does
not reside at any distinct locus in the neuronal network but
integrates functional loci to an attentive response (Baars, 1988;
Seth et al., 2005; Revonsuo, 2006; Tononi, 2008; Fingelkurts
et al., 2010a, 2013; Marchetti, 2012; De Sousa, 2013). Then again,
holism is emphasized when an optimal reaction recruits a broad
range of processes, including also unconscious functions.

Moreover, consciousness embodying to-and-fro flows of
energy (Figure 1) is consistent with observations that activity
in primary sensory areas alone is insufficient for consciousness
(Koch, 2004). Higher brain areas, especially the prefrontal cortex
is involved in a range of cognitive functions, so that executive
functions sum up from frontal cortex inputs and also so that
neural activity propagates down to sensory areas (Crick and
Koch, 2003). These up-and-down flows, so to speak upward and
downward causation (Kim, 1984; Meyering, 2003), are consistent
with a conscious system resulting from integration systems for
the least-time free energy consumption (Figure 1).

On the Hard Problem
The so-called hard problem of consciousness is about how a
physical process in the brain gives rise to subjective experience
(Chalmers, 1995). The eminent claim is that even complete
knowledge of the brain would not yield complete knowledge of
conscious experience. The assertion means, for example, that
even if one knew everything about how the brain processes colors,
one would not know what it is like to see them.

According to thermodynamics subjectivity is the characteristic
of any system. It is the only option. Subjectivity is not only
associated with experience, but equally so with information
processing such as reasoning, reporting, focusing attention,
etc. Since many immediate stages of information processing at
sensory organs are known in quite some detail, it may seem as
if there were nothing subjective in the elementary processes, e.g.,
following the photon absorption at retina. But there are subtle
differences among the involved entities. One retinal molecule, as
a system of atoms, may seem identical to another one, but each
setting is unique. The energy differences, say electromagnetic
fields, about the molecule are dictated by everything else, e.g.,
by other molecules, whose coordination is not identical, i.e.,
symmetrical for anyone molecule. When the surroundings is
unique, also the system is unique, which manifests itself, for
instance, as a unique molecular conformation. Undoubtedly it
would be very difficult to resolve these subtle differences, e.g.,
fine structure of electronic orbitals imposed by the surrounding
fields. This degree of subjectivity, i.e., energy differences between
various retinal molecules, is much smaller than that higher up
in hierarchy. Using a powerful microscope there is no difficulty
to resolve differences in cells that house those seemingly similar
retinal molecules. Unmistakably the cells are subjects. Further
up along the line of information processing there are more and
more diversity, i.e., energy differences among representations.
Therefore, we claim that there is no qualitative difference between
the elementary percept of a color that is defined by the photon
wavelength and the color-induced subjective experience that

is represented uniquely by numerous energy attributes of a
neuronal network. The degree of subjectivity is ultimately gauged
in energetic terms, and hence the subjective experience does not
single out from other phenomena.

The specific experience, i.e., the particular series of changes
in one’s neural system, depends on one’s history. The past
processes dictate what paths are available as well as what forms
of free energy are at disposal to open up new paths or to close
down existing paths to represent the experience. Therefore, what
exactly one will experience beyond mere perception of light
depends on these diverse assets that one has accumulated during
life and inherited from ancestors as well as on forces that are
imposed by the surroundings. For example, the experience will be
moderated when the visual stimulus is accompanied with sound
or sense of touch (Witten and Knudsen, 2005).

No question, the mere perception of color is a simpler and
more predictable process than the full experience, simply because
changes in energy are smaller and less dispersed at the retinal
molecules than those associated with the experience of color at
cortical levels. Still, we see no evidence that the two processes
would be qualitatively different from each other. Put differently,
we cannot see that introspection, as knowing about one’s mental
life, and phenomenality, as having experience about something it
is like, would be qualitatively distinct from each other. For the
same reason, not all of that what is conscious can be categorized
simply as introspective or phenomenal. A finer classification
beyond introspection and phenomenality is conceivable (Lycan,
1996), but to us the reductionist approach when missing the
integrated character of consciousness, does not seem particularly
insightful.

Undoubtedly certain aspects of cognition are more accessible
for one to report verbally, reason and to control than others
such as experiences of sounds, sensations, emotions, feelings,
and others coined as qualia. Nevertheless, we see no line
of demarcation between introspection and phenomenality.
Isn’t it exactly about a fine line between introspection and
phenomenality why one admires an artist who is able to portray
something one cannot quite picture and spokesman who is able
voice something what one cannot quite express?

We do not deny that there are various aspects about
consciousness, but their categorization is ambiguous, subjective
and circumstantial. For example, there are numerous reports
from battlefields when pain is not experienced (Morrison and
Bennett, 2006). The subject recognizes the loss of a leg and
even reasons its immediate consequences pretty much the same
way as his comrades, by shouting “bring a stretcher”. The tense
circumstances call for vital activities that suppress experiencing
the loss thoroughly. Cognition focuses for survival, that is,
for the least-time free energy consumption. Only later, when
circumstances allow, the meaning of loss, something it is like,
will be sensed beyond a verbal account. No words will say it all,
because walking is distinct from speaking. No images will expose
it all either, because walking is distinct from seeing. For one thing,
pain is experienced because touch with the leg is lost. For the
other thing, agony is experienced because one’s identity is at stake.
The leg is an integral part of oneself. Sorrow gauges the loss of
one’s compromised future possibilities as a disabled. One is in for
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a major restructuring of neuronal representations of oneself to
match the new state of affairs. Yet, all what is experienced due
to the loss of a leg is ultimately commensurable in terms of free
energy. Loss of a toe as a less devastating experience would entail
a smaller revision in one’s free energy spectrum.

It is common that music, say a certain melody, will trigger a
strong subjective experience, when one associates a whole lot with
the piece. Similarly, a familiar scene or a memorable scent might
move one from one state of consciousness to another. Curiously,
many a scientist has described the moment of a discovery as
an elation (Birney, 2013). Apparently mere introspection is not
enough to construct the full meaning of a sensational discovery.
Only the experience by integrating a whole lot more does do the
full justice.

Consciousness as an integrative process is best comprehended
in holistic terms. In a sense consciousness amplifies, or more
accurately inflates, an elementary sensory signal to an experience
by integrating various assets from the past. Also Locke’s portrayal
of consciousness as the perception of what passes in a man’s
own mind we like to read so that consciousness is an inflated
perception. Likewise, the idea that consciousness is about
broadcasting information around the brain from one’s memory
bank (Baars, 1988), we like take to mean that consciousness
emerges principally from the existing assets whereas the primary
trigger makes only a minor component in the final product.
The Latin phrase conscius sibi, literally as knowing with oneself,
provides yet a complementary perspective on the system of
systems by emphasizing that consciousness is about sharing the
present impulse with representations of the past.

On the Binding Problem
The least-time imperative provides perspective also on how brain
creates from sensory inputs coherent perceptual experience. This
binding problem (Revonsuo and Newman, 1999; Singer, 2001)
comprises both the problem of how the brain segregates elements
in an input pattern to discrete entities and the problem of how
the brain constructs a phenomenological object from the entities.
This formulation parallels the metastability concept (Kelso, 1995,
2012; Bressler and Kelso, 2001; Fingelkurts and Fingelkurts, 2004;
Fingelkurts et al., 2009).

It is a common experience when listening to a foreign
language, that one has a hard time to distinguish individual
words. The separation of words is impaired because one’s
analyzer is not yet tuned to recognize contrasts, i.e., energy
differences among sounds. Undoubtedly one’s ear is capable of
consuming energy differences in the changes of pitch, but in
successive stages of neuronal processing the input fails to recruit
one’s memory to amplify the unacquainted input to meanings.
The unfamiliar input does not trigger further consumption of
free energy to produce meanings. Likewise, when facing an
unusual view, perhaps after being knocked down all of a sudden,
one struggles to discern objects in sight because the familiar
reference, as the source of meanings, is tilted. Therefore, we argue
that elements in sensory inputs are segregated by consuming
free energy in least time. This involves mechanisms that have
been established in the course of one’s life as well as inherited
from the course of evolution. Thus, the outcome of segregation is

subjective and context-dependent. One looks for meanings every
day, yet practically every textbook of biology shuns the idea that
there are meanings and purposes, physically speaking forces, in
nature.

Consistently, the construction of an object from the segregated
elements is guided by the least-time free energy consumption.
The brain is equippedwithmechanisms from the past to assemble
an object from the segregated ingredients as well as from those
ingredients that are available in memory for the integration
process. It is not unusual to jump into conclusions which
demonstrates that the construction is not and does not even aim
to be faithful and consistent. It is biased by prior expectations,
physically speaking, by energy gradients. One’s conclusion is
motivated by gradients in the evolving energy landscape that
one’s neuronal network is representing.

Admittedly, the thermodynamic tenet clarifies only the
principle of how experiences are constructed, not mechanistic
details of the processes, for instance, in terms of neuronal
correlates. Yet, thermodynamics indicates that familiar stimuli
will invoke more rapid, intense and wide-spread responses than
unfamiliar stimuli, simply because “familiar” associates with what
is already present. Put differently, when a lot of free energy is
consumed, things make a lot of sense, and conversely nothing is
consumed by non-sense. This may well appear as differentiation
of brain states during meaningful stimuli vs. non-meaningful
stimuli (Boly et al., 2015).

On the Intractability
It is in place to make few remarks on the integration process
itself. The evolutionary equation (Equation 5) reveals that
motions consume their driving forces which, in turn, affect the
motions, and so on. Mathematically speaking the equation is
inseparable, and hence it cannot be solved. Thus, there is no
algorithm for consciousness. This point is familiar from the
Chinese room argument (Searle, 1980). Consciousness emerges
in a non-deterministic manner. Yet, supervenience is not a
random, i.e., indeterminate, but a path-dependent process. In
other words, one does not know exactly what one will think
before thinking and one does not know exactly what one
will experience before experiencing. We reason that due to
intractability certain neural and behavior responses correlate
with consciousness at times while at other times they appear
as uncorrelated. Therefore, inability to make precise predictions
about cognition are ultimately not due to complexity of the
process but due to its path-dependent character.

From the thermodynamic perspective probabilistic inference
models, most notably Bayesian models (Knill and Pouget, 2004;
Bielza and Larrañaga, 2014) including prior knowledge, mimic
natural processes, but the modeled probabilities are not faithful
representations of energetics (Equation 3), only parameters.
Moreover, the original Markov chain does not carry memory of
past events, but only the current state determines the probability
distribution of the next state. Even when the future state is
modeled to depend on a sequence of the past states (Camproux
et al., 1996; Seidemann et al., 1996), the ensuing projection, i.e.,
a trend does not parallel the actual energy gradient because in
reality the force is affected by the motion itself.
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On the Intentionality
To be directed toward a goal or thing is an apparent characteristic
of consciousness (Evans, 1970). By the free energy perspective
an intention means a force, that is, an energy gradient. A
conscious mind gazes for various forms of free energy and
exploits opportunities to consume them. The intention is fulfilled
when associated free energy is fully consumed.

Since these driving forces are sensed by oneself, intentions are
subjective. Ambivalent intensions imply that one has difficulties
in constructing the resultant force. Also ambiguity about oneself
may trouble the process. For example, one might commit a crime
intentionally, only to realize later that the act in fact hurts oneself.
In other words, one’s identity was at the critical moment so
narrow that only immediate forces manifested themselves.

In addition to conscious intentions there are also other
forms of free energy that one is unconscious about, that is, are
not integrated for coherence responses. Subliminal stimuli, e.g.,
presented as flashes, are too short substrates for the construction
of consciousness. Nevertheless, these flows of energy will suffice
to prime or bias one for an intended action (Loftus and
Klinger, 1992). Thermodynamically speaking, the subliminal
stimuli shape the energy landscape of one’s mind to channel more
readily a more comprehensive flow of energy later. In terms of
neuroscience the subliminal stimuli lead to construction of some
connections but apparently not enough to pave the full way to
consciousness.

The thermodynamic tenet gives also a practical meaning to
the philosophical concept of free will (O’Connor, 2014). Free will
equates with free energy in one’s disposal (Annila and Salthe,
2010b). One may execute at most as much as one has free energy
in command. Non-determinism means that when one invests
free energy to pursue along a path then some other paths are
no longer affordable. This is to say, one is responsible as much
as one is in capacity to consume free energy. For example, when
in captivity, one is limited to act or even to express oneself, and
hence free energy only in metabolic form powers free thinking.
When deprived from free energy altogether, one has no choices
whatsoever to respond by moving from one state to another, i.e.,
one is no longer responsive.

On the Rate
Why does the experience of oneself reel at a particular rate,
at about one “frame” per 100ms (Potter et al., 2014)? The
coherence calls for synchrony (Singer and Gray, 1995). However,
consciousness cannot cohere at the maximal firing rate of
individual neurons because inputs must exist before they can
integrate to the high-level construct. The common experience of
escaping from danger by a reflex reaction demonstrates that more
time is consumed in integrating awareness than that it takes for
subsystems to act. This emphasizes that the notion of self is not a
monolith but a composed union.

The reflex reaction demonstrates also that synchrony,
e.g., gamma waves of reticular activating system, alone is
insufficient indicator of consciousness. For example, visual
information can control behavior without producing a conscious
sensation. Fluent functions, i.e., automated sequences remain
unconsciously generated until a change away from the ordinary

happens. This implies that consciousness is a response, physically
speaking a reaction to consume free energy, not in an algorithmic
fashion, but in a non-determinate way.

Sleep by displaying a wide range of frequencies gives
insight to wakefulness. After a daily dose of high-frequency
stimulation the sleep, as a natural process, serves to revise the
brain’s connectivity spectrum toward a free energy minimum
partition. In particular, long wavelengths of deep sleep amend
long-range connectivity. Sleeping on a problem, exemplifies the
value of balancing neuronal network by adjusting connections,
i.e., making new thoughts (Bos et al., 2011). In turn, short
wavelengths of sleep, characterized by rapid eye movement
(REM), tweak the short-range connectivity, but without the
objective of conscious free energy consumption. Therefore, vivid
dreams do not necessarily make sense, i.e., cohere. The fact
that most muscles are paralyzed during sleep, also implies that
sleep, by its broadband iterative choreography, consumes in a
path-dependent manner a whole range of imbalances in the
brain’s connectivity spectrum. In contrast, consciousness, by its
high-band coherent activity, consumes various forms of free
energy in the subject’s spectrum of surroundings.

On the Problem of Other Minds
The question whether animals and organisms in general are
conscious or not, is according to the thermodynamic tenet,
like many other queries, troubled by ambiguity in defining
consciousness. Nonetheless, it is possible to assess the degree of
consciousness by the free energy consumption. Of course, one
can still imagine a system that is conscious but not responsive,
as in a lock-in syndrome (Nordgren et al., 1971), but it is
inconceivable that a high-degree consciousness as the integrated
response would emerge in the first place via minimal interactions
with its surroundings.

The thermodynamic tenet asserts that consciousness is
subjective in the spirit of the influential essay (Nagel, 1974)What
is it like to be a bat? The writing argues that an organism is
conscious if and only if there is something that it is like to be
that organism—something it is like for the organism. A dog can
be conscious about those forms of free energy that it can access,
say, in the form of food and shelter. Its consciousness manifests
itself as behavioral correlates, for example, defending its master.
A bacterium is likewise consciousness of its free energy sources,
say, in the form of sugar, by displaying chemotaxis as its coherent
behavioral correlate. An ion is consciousness about its driving
forces, say, in the form of electromagnetic fields by responding
to them by motion and deformation.

So, what is it like to be a dog, bat or a bacterium? One
may relate to another system as much as one shares the
same means and mechanisms to consume the same forms of
free energy. Apparently the human being shares with the dog
some means of companionship, and hence one experiences
collaborative behavior associated consumption of free energy
somewhat similar to the dog. For one to know, what it is like
to be piloting as a bat does, is possible only as much as one is
able to navigate solely by hearing echoes. Still, if one were blind,
one would value this skill as much as one is able to benefit from
it. For one to know, what it is like to be a bacterium, is possible
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up to the degree that one shares the same metabolic machinery.
Of course for one it means hardly anything to digest few sugar
molecules. In this respect it is not much of anything to be a
bacterium. Though, something when the intake of sugar leads
to the integrated function of chemotaxis. Obviously the question
about other minds is not only about how much one shares with
diverse animate and inanimate the samemachinery of free energy
consumption but more relevantly about how much shares with
other human beings. Indeed, peer support is highly valuable.

The scale-free thermodynamics recognizes consciousness on
other levels of natural hierarchy. For example, awareness of a
nation accumulates from numerous activities, such as surveys,
polls, and compilation of statistics on various things as well
as from foreign sources by diverse means. To compare these
activities with those that construct consciousness in a human
being is, of course, nothing new. Already Hobbes wrote that
Where two, or more men, know of one and the same fact, they are
said to be conscious of it one to another (Hobbes, 1651). Also the
Latin word conscius by literally meaning knowing together implies
the scale-free character of consciousness. Specifically, when we
claim that a society is consciousness too, we do not exactly
mean Durkheim’s collective conscience of beliefs and sentiments
among members of a society (Durkheim, 1893) but refer to the
natural processes that integrate the society for the coherent free
energy consumption. These integrated actions, i.e., culture as a
whole (Annila and Salthe, 2010b), can be regarded as meaningful
or responsible, i.e., conscious. It is not about analogy between a
consciousness society and a consciousness individual, it is about
equality because the theory describes both systems exactly the
same way.

The scale-free stance is of a practical value. Namely, it is
much easier to observe how the society acquires and integrates
information to act in an orchestrated manner and how the
society cultivates its identity than it is to obtain data and
relate recordings from the human brain to responses and
development of the self. For example, certain structures, say,
claustrum in the brain and a central hub in the computer
network are alike critical for the construction of consciousness
and situational picture of the nation (Crick and Koch, 2005).
Consciousness is unable to manifest itself when claustrum
is disturbed, and similarly the government cannot command
when the central hub is out of power. However, not any
one vital mechanism is the locus of consciousness. Instead
consciousness integrates subsystems to a hierarchal construct
in a path-dependent manner. This portrayal resembles the
model for spotting meanings in percepts that integrates sensory
information to virtual associative networks (Yufik, 1998). The
thermodynamic theory bears also a clear resemblance to the
integrated information theory of consciousness (Tononi, 2008).
The universality in the laws of physics has been recognized earlier
to underlie characteristics of consciousness such as criticality,
self-organization and emergence (Fingelkurts et al., 2013). All
in all, we have not put forward a more acute account on
consciousness but merely related the prior comprehension to the
profound and universal physical basis.

The universality of thermodynamics implicates also artificial
consciousness (Russell and Norvig, 2009). Machine’s ability to

exhibit intelligent behavior equivalent to or indistinguishable
from that of a human being is not an issue, because
thermodynamics does not make such a classification.
Accordingly, a functionally equivalent but non-conscious
organism, i.e., a philosophical zombie (Kirk, 2009) cannot
possibly have the same survival advantage, i.e., capacity to
consume free energy, as the conscious organism. Consciousness
is not an epiphenomenon, but a reaction to forces. From this
perspective realization of cognitive robotics is not an algorithmic
problem, i.e., not a task of automating versatile and fine motor
skills. Consciousness entails embedding evolutionary history
and life experience, i.e., a long series of changes, to the machine.
Without extensive free energy perspective the machine, just like
a human being, will be small-minded. In other words such a
creature will not have many processes to integrate for a coherent
response. According to Equation (1) it will take time to acquire
comprehensive cognitive capacity.

CONCLUSIONS

The least-time free energy consumption is hardly a new
perspective on consciousness. Our interpretations and
conclusions about consciousness are not original either.
The main point is holistic. We regard consciousness, like any
other phenomenon, as a manifestation of the natural law.
Therefore, the proposed percept is falsifiable, not only by
measurements of consciousness, but also by observations on
anything else that will disprove the axiomatic basis, namely that
quantized actions embody everything. Then again, due to our
narrow knowledge and lack of expertize we might have reasoned
incorrectly or imprecisely how the mind displays the universal
principle in some cases, but such lapses do not jeopardize the
theory itself, but call for a revision. Unquestionably our account
of consciousness is far from being exhaustive, but hopefully it
would be exemplary enough to motivate counterarguments and
to provoke discourse.

The notion of information, so central in neuroscience,
is conspicuous by its absence. To correct for this shortage
we maintain that quanta embody also information in one
form or another. Accordingly, information is subject to the
universal imperative and its manifestation (Karnani et al.,
2009). Specifically, information equates with free energy that
is consumed by its receiver. In other words, the meaning of
a message is subjective. This definition of information in the
tangible terms of physics differs from that given by the abstract
information entropy (Shannon, 1948).

Obviously there are other consciousness-associated notions
besides information which we have not addressed. Just for
curiosity we demonstrate the power of considering everything
in terms of quanta by inspecting the association of mass with
consciousness that was proposed in the popular thriller The Lost
Symbol (Brown, 2009). The suggestion makes sense, because any
change of state, say from conscious to unconscious, invariably
involves either emission of quanta from the system to the
surroundings or vice versa. The dissipated quanta carry energy
E ultimately to the vacuum characterized by the squared speed of
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light c2. The ensuing change in energy dE relates to the change
in mass by dE = dmc2. The familiar relationship is pronounced
in nuclear reactions, but discernable in chemical reactions, and
inferable from gravitational changes.

Finally, one might ask: What a conclusion drawn from
the least-time imperative stands out as the most insightful?
Reminding of the subjective character of consciousness, it may
be that only we find it somewhat surprising that consciousness
is mostly generated from archives of mind and comparatively
little from momentary inputs. On second thought in this

way one will generate integrated responses in least time.
This revelation allows us to understand also that it is only
natural, not belligerent that an unconventional but profound
perception hardly finds any place to take root in an established
mind.
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Neurobiology as Information Physics
Sterling Street*
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This article reviews thermodynamic relationships in the brain in an attempt to consolidate
current research in systems neuroscience. The present synthesis supports proposals
that thermodynamic information in the brain can be quantified to an appreciable degree
of objectivity, that many qualitative properties of information in systems of the brain can
be inferred by observing changes in thermodynamic quantities, and that many features
of the brain’s anatomy and architecture illustrate relatively simple information-energy
relationships. The brain may provide a unique window into the relationship between
energy and information.

Keywords: information thermodynamics, Landauer limit, free energy principle, optimization, Bekenstein bound

INTRODUCTION

That information is physical has been suggested by evidence since the founding of classical
thermodynamics (Lloyd, 2006; Gleick, 2011). In recent years, Landauer’s principle (Landauer,
1996; Bennett, 2003), which relates information-theoretic entropy to thermodynamic information,
has been confirmed (Parrondo et al., 2015), and the experimental demonstration of a form of
information-energy equivalence (Alfonso-Faus, 2013) has verified that Maxwell’s demon cannot
violate any known laws of thermodynamics (Maruyama et al., 2009). The theoretical finding
that entropy is conserved as event horizon area is leading to the resolution of the black hole
information paradox (Davies, 2010; Moskowitz, 2015), and there is a fundamental relationship
between information and the geometry of spacetime itself (Bousso, 2002; Eling et al., 2006). Current
formulations of quantum theory are revealing properties of physical information (Wheeler, 1986;
Brukner and Zeilinger, 2003; Lloyd, 2006; Vedral, 2010), and information-interpretive attempts to
show that gravity is quantized (Smolin, 2001; Lee et al., 2013) could even lead to the unification
of quantum mechanics and the theories of relativity. Although similar approaches are increasingly
influential in biology (Schneider and Sagan, 2005; England, 2013; Flack, 2014), “a formalization of
the relationship between information and energy is currently lacking in neuroscience” (Collell and
Fauquet, 2015). The purpose of this article is to explore a few different sides of this relationship
and, along the way, to suggest that many hypotheses and theories in neuroscience can be unified
by the physics of information.

INFORMATION BOUNDS

“How can the events in space and time which take place within the spatial boundary of a living organism
be accounted for by physics and chemistry?” – (Schrödinger, 1944, from Friston, 2013).

As a fundamental physical entity (Lloyd, 2015), information is not fully understood, and
there is currently a significant amount of disagreement over different definitions of information
and entropy in the literature (Poirier, 2014; Ben-Naim, 2015). In thermodynamics, however,
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information can be defined as a negation of thermodynamic
entropy (Beck, 2009):

I ≡ −S

A bit of thermodynamic entropy represents the distinction
between two alternative states in a physical system (Stone,
2015). As a result, the total thermodynamic entropy of a
system is proportional to the total number of distinguishable
states contained in the system (Bekenstein, 2001, 2007). Because
thermodynamic entropy is potential information relative to an
observer (Lloyd, 2006), and an observer in a physical system is a
component of the system itself, the total thermodynamic entropy
of a system includes the portion of entropy that is accessible to the
observer as relative thermodynamic information (Wheeler, 1989;
Collell and Fauquet, 2015):

Irelative = Stotal − Srelative

Since entropy in any physical system is finite (Lloyd, 2006;
Rovelli, 2015), the total thermodynamic entropy of any system of
the brain can be quantified by applying the traditional form of the
universal (Bekenstein, 1981, 1984, 2001, 2004, 2007) information-
entropy bound:

Ssys = ζ
AEk
h̄c

where A is area, E is energy including matter, h̄ is the reduced
Planck constant, c is the speed of light, k is Boltzmann’s constant,
and ζ is a factor such that 0 ≤ ζ ≤ 1.

Setting this factor to 1 in order to quantify the total
thermodynamic entropy of a system at a certain level of structure
now allows us to quantify thermodynamic information by
partitioning the factor into a relative information component
(ζI=1−ζs ) and a relative entropy component (ζs=1−ζI ),

Isys = ζI
AEk
h̄c
= (1− ζs)

AEk
h̄c

Because a maximal level of energy corresponds to a maximal level
of thermodynamic information, and a minimal level of energy
corresponds to a minimal level of thermodynamic information
(Duncan and Semura, 2004), any transitions between energy
levels occur as transitions between informational extrema. So, in
the event that information enters a system of the brain,

1Isys =
1Esys

kT
= 1ζI

where T is temperature. And, in the case that information exits a
system,

−1Isys =
1Esurr

kT
= 1ζs

Various forms of these relationships, including information-
entropy bounds, have been applied in neuroscience (Friston,
2010; Sengupta et al., 2013a,c, 2016; Collell and Fauquet, 2015;
Sterling and Laughlin, 2015). The contribution of this review
is simply to show that these relationships can be united into a
common theoretical framework.

NEUROBIOLOGY

“. . . classical thermodynamics. . . is the only physical theory of
universal content which I am convinced, that within the framework
of applicability of its basic concepts, will never be overthrown.” –
(Einstein, 1949, from Bekenstein, 2001).

This section reviews thermodynamic relationships in systems
neuroscience with a focus on information and energy. Beginning
with neurons, moving to neural networks, and concluding at the
level of the brain as a whole, I discuss the energetics of processes
such as learning and memory, excitation and inhibition, and the
production of noise in neurobiological systems.

The central role of energy in determining the activity of
neurons exposes the close connection between information and
thermodynamics at the level of the cell. For instance, the process
of depolarization, which occurs as a transition to Emax from
a resting state Emin, clearly shows that cellular information
content is correlated with energy levels. In this respect, the
resemblance between ion concentration gradients in neurons and
temperature gradients in thermodynamic demons (i.e., agents
that use information from their surroundings to decrease their
thermodynamic entropy) is not a coincidence – in order to
acquire information, neurons must expend energy to establish
proper membrane potentials. Recall that Landauer’s principle
(Plenio and Vitelli, 2001; Parrondo et al., 2015) places a lower
bound on the quantity of energy released into the surroundings
with the removal of information from a system. Thus,
reestablishing membrane potentials after depolarization – the
neuronal equivalent of resetting a demon’s memory – dissipates
energy. Because Landauer’s principle applies to all levels of
structure, and cells process large quantities of information,
neurons use energy efficiently despite operating at several orders
of magnitude above the nominal limit. Parameters including
membrane area, spiking frequency, and axon length have all
been optimized over the course of evolution to allow neurons
to process information efficiently (Sterling and Laughlin, 2015).
Examining the energetics of information processing in neurons
reinforces the notion that, while it is often convenient to imagine
the neuron to be a simple binary element, these cells are intricate
computational structures that process more than one bit of
information.

Relationships between information and energy can also be
seen at the level of neural networks. Attractor networks naturally
stabilize by seeking energy minima, and the relative positions of
basins of attraction define the geometry of an energy landscape
(Amit, 1992). As a result, the transition into an active attractor
state occurs as a transition into an information-energy maximum.
These transitions correspond to the generation of informational
entities such as memories, decisions, and perceptual events (Rolls,
2012). In this way, the energy basins of attractor networks may be
analogous to lower-level cellular and molecular energy gradients;
a transition between any number of distinguishable energy
levels follows the passage of a finite quantity of information.
Since processing information requires the expenditure of energy,
competitive network features also underscore the need to
minimize unnecessary information processing. Lateral inhibition
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at this level may optimize thermodynamic efficiency by reducing
metabolic expenses associated with networks responding less
robustly to entering signals. Another interesting thermodynamic
property of networks concerns macrostates: the functional
states of large-scale neural networks rest emergently on the
states of neuronal assemblies (Yuste, 2015). As a result, new
computational properties may arise with the addition of new
layers of network structure. Finally, the energetic cost of
information has influenced network connectivity by imposing
selective pressures to save energy by minimizing path length
between network nodes (Bullmore and Sporns, 2009).

Again, in accordance with Landauer’s principle, the
displacement of information from any system releases energy
into the surroundings (Plenio and Vitelli, 2001; Duncan
and Semura, 2004). This principle can be understood by
imagining an idealized memory device, such as the brain of
a thermodynamic demon. Since information is conserved
(Susskind and Hrabovsky, 2014), and clearing a memory erases
information, the thermodynamic entropy of the surroundings
must increase when a demon refreshes its memory to update
information. This fundamental connection between information,
entropy, and energy appears in many areas of the neurobiology
of learning. For example, adjusting a firing threshold in order to
change the probability that a system will respond to a conditioned
stimulus (Takeuchi et al., 2014; Choe, 2015) optimizes engram
fitness by minimizing the quantity of energy needed for its
activation (Still et al., 2012). Recurrent collateral connections
further increase engram efficiency by enabling a minimal nodal
stimulus to elicit its full energetic activation (Rolls, 2012).
Experimental evidence also shows that restricting synaptic
energy supply impairs the formation of stable engrams (Harris
et al., 2012). Because the formation and disassembly of engrams
during learning and forgetting optimizes the growth and pruning
of networks in response to external conditions, the process of
learning is itself a mechanism for minimizing entropy in the
brain (Friston, 2003).

As another example of a multiscale process integrated
across many levels by thermodynamics, consider the active
balance between excitation and inhibition in neurobiological
systems. Maintaining proper membrane potentials and adequate
concentrations of signaling molecules requires the expenditure of
energy, so it is advantageous for systems of the brain to minimize
the processing of unnecessary information – to “send only what
is needed” (Sterling and Laughlin, 2015). Balancing excitation
and inhibition is therefore a crucial mechanism for saving
energy. Theoretical evidence that this balancing maximizes the
thermodynamic efficiency of processing Shannon information
(Sengupta et al., 2013b) is consistent with experimental findings
in several areas of research on inhibition. For instance, constant
inhibitory modulation is needed to stabilize internal states, and
hyperexcitation (e.g., in epilepsy, intoxication syndromes, or
trauma) can decrease relative information by reducing levels
of consciousness (Haider et al., 2006; Lehmann et al., 2012).
Likewise, selective attention is mediated by the activation of
inhibitory interneurons (Houghton and Tipper, 1996), and
sensory inhibition appears to sharpen internal perceptual states
(Isaacson and Scanziani, 2011). The need to balance excitation

and inhibition at all levels of structure highlights the energetic
cost of information.

A final example worth discussing is the relationship between
thermodynamics and the production of noise in neurobiological
systems. Noise is present in every system of the brain, and
influences all aspects of the organ’s function (Faisal et al.,
2008; Rolls and Deco, 2010; Destexhe and Rudolph-Lilith,
2012). Even in the absence of any potential forms of classical
stochastic resonance, the noise-driven exploration of different
states may optimize thermodynamic efficiency by allowing a
system to randomly sample different accessible configurations.
Theoretical arguments suggest indeed that noise enables neural
networks to respond more quickly to detected signals (Rolls,
2012), and empirical evidence implicates noise as a beneficial
means of optimizing the performance of diverse neurobiological
processes (McDonnell and Ward, 2011). For example, noise
in the form of neuronal DNA breaking (Guo et al., 2011;
Herrup et al., 2013; Tognini et al., 2015) could enhance
plasticity, since any stochastically optimized configuration would
be more likely to survive over time as, in this case, a
strengthened connection in a modifiable network. Because noise
is a form of relative entropy, optimizing the signal-to-noise
ratio in any neurobiological system promotes the efficient use of
energy.

At the level of the brain as a whole, the connection
between information and thermodynamics is readily apparent
in the organ’s functional reliance on energy (Magistretti and
Allaman, 2015), its seemingly disproportionate consumption
of oxygen and energy substrates (e.g., ATP, glucose, ketones,
etc.; Raichle and Gusnard, 2002; Herculano-Houzel, 2011), its
vulnerability to hypoxic-ischemic damage (Lutz et al., 2003;
Dreier et al., 2013) and in the reduction of consciousness
often conferred by the onset of energy restrictions (Shulman
et al., 2009; Stender et al., 2016). All fMRI, PET, and EEG
interpretation rests on the foundational assumption that changes
in the information content of neurobiological systems can be
inferred by observing energy changes (Attwell and Iadecola,
2002; Collell and Fauquet, 2015), and it is well known
that the information processing capacities of neurobiological
systems are limited by energy supply (Howarth et al., 2012;
Fox, 2015). Overall, these relationships are consistent with
the form of information-energy equivalence predicted by
Landauer’s principle and information-entropy bounds. The
living brain appears to maintain a state of thermodynamic
optimization.

CONSCIOUSNESS AND FREE WILL

“. . . science appears completely to lose from sight the large and
general questions; but all the more splendid is the success when,
groping in the thicket of special questions, we suddenly find a small
opening that allows a hitherto undreamt of outlook on the whole.” –
(Boltzmann, 1892, from Von Baeyer, 1999).

Although neuroscience has yet to explain consciousness or
free will at any satisfactory level of detail, relationships between
information and energy seem to be recognizable even at this level
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of analysis. This section reviews attempts to conceptualize major
properties of consciousness (unity, continuity, complexity, and
self-awareness) as features of information processing in the brain,
and concludes with a discussion of free will.

At any given moment, awareness is experienced as a unified
whole. Physical information is the substrate of consciousness
(Annila, 2016), and the law of conservation of information
requires any minimal unit of information to be transferred
into a thermodynamic system as a temporally unitary quantity.
As a result, it is possible that the passage of perceptual
time itself occurs secondarily to the transfer of information,
and that the information present in any integrated system
of the brain at any observed time is necessarily cohesive
and temporally unified. In this framework, the passage of
time would vary in proportion to a system’s rate of energy
dissipation. Although it is possible that physical systems in
general exchange information in temporally unitary quantities,
it is likely that many of the familiar features of the perceptual
unity of consciousness require the structure and activity of
neural networks in the brain. The biological basis of this
unity may be the active temporal consolidation of observed
events by integrated higher-order networks (Revonsuo, 1999;
Varela et al., 2001; Greenfield and Collins, 2005; Dehaene
and Changeux, 2011). An informational structure generated
by the claustrum has been speculated to contribute to this
experiential unity (Crick and Koch, 2005; Koubeissi et al.,
2014), but it has also been reported that complete unilateral
resection of the system performed in patients with neoplastic
lesions of the region produces no externally observable
changes in subjective awareness (Duffau et al., 2007). Overall,
it appears unlikely that the presence of information in
any isolated or compartmentalized network of the brain is
responsible for generating the unified nature of conscious
experience.

While perceptual time is likely the product of a collection of
related informational processes rather than a single, globalized
function mediated by any one specific system of the brain, some
of the perceptual continuity of consciousness may result from
the effectively continuous flow of thermodynamic information
into and out of integrated systems of the brain. In this
framework, the quantum (Prokopenko and Lizier, 2014) of
perceptual time would be the minimal acquisition of information,
and the entrance of information into neurobiological systems
would occur alongside the entrance of energy. This relationship
is implicit in the simple observation that the transition of
a large-scale attractor network is progressively less discrete
and smoother in time than the activation of a small-scale
engram, the propagation of a cellular potential, the docking
of a vesicle, the release of an ion, and so forth. Likewise,
electroencephalography shows that the summation of a large
number of discrete cellular potentials can accumulate into
an effectively continuous wave as a network field potential
(Nunez and Srinivasan, 2006), disruptions of which are often
correlated with decreases in levels of consciousness (Blumenfeld
and Taylor, 2003). It is also well known that higher frequency
network oscillations tend to indicate states of wakefulness
and active awareness, while lower frequency oscillations tend

to be associated with internal states of lesser passage of
perceptual time, such as dreamless sleep or unconsciousness.
The possibility that the experiential arrow of time and the
thermodynamic arrow of time share a common origin in the
flow of information is supported both by general models of
time in neuroscience and the physical interpretation of time
as an entropy gradient (Stoica, 2008; Mlodinow and Brun,
2014).

The subjective complexity of consciousness may show
that extensive network integration is needed for maximizing
the mutual thermodynamic information and internal energy
content of systems of the brain (Torday and Miller, 2016).
An exemplary structure enabling such experience, likely one
of many that together account for the subjective complexity
of consciousness, is the thalamocortical complex (Calabrò
et al., 2015; Hannawi et al., 2015). The functional architecture
of such a network may show that, at any given moment
in the internal model of a living brain, a wide range of
integrated systems are sharing mutual sources of thermodynamic
information. This pattern of structure may reveal that the
perceptual depth and complexity of conscious experience
is a direct product of recognizable features of the physical
brain. However, it also seems that extensive local cortical
processing of information is necessary for producing a refined
and coherent sensorium within a system, and that both the
thalamocortical complex and the brain stem are involved
in generating the subjective complexity of consciousness
(Edelman et al., 2011; Ward, 2011). The dynamics of attractor
networks at higher levels of network structure may show
that quantities of complex internal information can be
observed as changes in cortical energy landscapes (Rolls,
2012), with a transition between attractor states following the
transfer of information. The degree of subjective complexity
of information enclosed by such a transition would be
proportional to the degree of structural integration of underlying
networks.

Self-awareness likely arose as a survival necessity rather
than as an accident of evolution (Fabbro et al., 2015), and
rudimentary forms of self-awareness likely began to appear
early in the course of brain evolution as various forms of
perceptual self-environment separation. As a simple example,
consider the tickle response (Linden, 2007), which requires the
ability to differentiate self-produced tactile sensations from those
produced by external systems. The early need to distinguish
between self-produced tactile states and those produced by more
threatening non-self sources may be reflected by the observation
that this recognition process is mediated to a great extent by
the cerebellum (Blakemore et al., 2000). While it is possible
that other similar developments began occurring very early
on, the evolutionary acquisition of the refined syntactical and
conceptual self present in the modern brain likely required the
merging of pre-existing self networks with higher-level cortical
systems. The eventual integration of language and self-awareness
would have been advantageous for coordinating social groups
(Graziano, 2013), since experiencing self-referential thought as
inner speech facilitates verbal communication. Likewise, the
coupling of self-awareness to internal sensory, cognitive, and
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motor states (Metzinger, 2004; Northoff et al., 2006) may
be advantageous for maximizing information between systems
within an individual brain. Neuropsychological conditions
involving different forms of agnosia, neglect, and self-awareness
deficits do show that a reduced awareness of self-ownership
of motor skills, body parts, or perceptual states can result in
significant disability (Parton et al., 2004; Morin, 2006; Orfei
et al., 2007; Prigatano, 2009; Tsakiris, 2010; Overgaard, 2011;
Fabbro et al., 2015; Chokron et al., 2016). Since experiencing
self-awareness optimizes levels of mutual information between
the external world and the brain’s internal model (Apps and
Tsakiris, 2014), and this activity decreases thermodynamic
entropy (Torday and Miller, 2016), self-awareness may be
a mechanism for optimizing the brain’s consumption of
energy.

Thermodynamic information is also interesting to consider
in the context of free will. The brain is predictable within
reason, and the performance of an action can be predicted
before a decision is reported to have been made (Haggard,
2008). Entities such as ideas, feelings, and beliefs seem to exist
as effectively deterministic evaluations of information processed
in the brain. Whether or not the flow of information is
subject to the brain’s volitional alteration, neuroscience also
shows that information can be internally real to a system
of the brain, even if this information is inconsistent with
an external reality. That the brain can generate an externally
inconsistent internal reality is demonstrated by phenomena such
as confabulation, agnosia, blindsight, neglect, commissurotomy
and hemispherectomy effects, placebo and nocebo effects,
reality monitoring deficits, hallucinations, prediction errors,
the suspension of disbelief during dreaming, the function of
communication in minimizing divergence between internal
realities, the quality of many kinds of realistic drug-induced
experiences, and the effects of many neuropsychological
conditions. The apparent fact that subjective reality is an active
construction of the physical brain has even led to the proposal
of model-dependent realism (Hawking and Mlodinow, 2011)
as a philosophical paradigm in the search for a unified theory
of physics. In any case, it is likely that beliefs, including
those in free will, exist as information, and that their internal
reality is a restatement of its frequently observer-dependent
nature.

EMPIRICAL OUTLOOK

Before concluding, it is worth reviewing a few notable
experiments in greater detail. While considerable advances have
been made in discovering how neurobiological systems operate
according to principles of thermodynamic efficiency (Sterling and
Laughlin, 2015), relationships between information and energy
in the brain are only beginning to be understood. The following
studies are examples of elegant and insightful experiments that
should inspire future research.

Several recent brain imaging studies support the proposal
(Annila, 2016) that thermodynamics is able to explain a number
of mysteries involving consciousness. For example, Stender

et al. (2016) used PET to measure global resting state energy
consumption in 131 brain injury patients with impairments
of consciousness as defined by the revised Coma Recovery
Scale (CRS-R). The preservation of consciousness was found
to require a minimal global metabolic rate of ≈ 40% of the
average rate of controls; global energy consumption above
this level was reported to predict the presence or recovery of
consciousness with over 90% sensitivity. These results must
be replicated and studied in closer detail before their specific
theoretical implications are clear, but it is now established that
levels of consciousness are correlated with energetic metrics
of brain activity. To what extent there exists a well-defined
“minimal energetic requirement for the presence of conscious
awareness” (Stender et al., 2016) remains an open question.
However, the empirical confirmation of a connection between
consciousness and thermodynamics introduces the possibility
of developing new experimental methods in consciousness
research.

Neurobiological systems, and biological systems in general
(Von Baeyer, 1999; Schneider and Sagan, 2005), can be
considered thermodynamic demons in the sense that they
are agents using information to decrease their thermodynamic
entropy. Landauer’s principle requires that, in order not to
violate any known laws of thermodynamics, such agents dissipate
heat when erasing information from their memory storage
devices. In an experimental test of this principle, reviewed
along with similar experiments in Parrondo et al. (2015) and
Bérut et al. (2012) studied heat dissipation in a simple memory
device created by placing a glass bead in an optical double-well
potential. Intuitively, this memory stored a bit of information
by retaining the bead on one side of the potential rather than
on the alternative. By manipulating the height of the optical
barrier between wells, researchers moved the bead to one side
of the memory without determining its previous location in
the potential. This process was therefore logically irreversible,
requiring the erasure of prior information from the memory
device. Landauer’s principle predicts that, since information is
conserved, the entropy of the memory’s surroundings must
increase when this occurs. Bérut et al. (2012) have verified that
energy is emitted when a memory is cleared. As noted by the
authors, “this limit is independent of the actual device, circuit or
material used to implement the irreversible operation.” It would
be interesting to study the erasure principle in the context of
neuroscience.

Experimental applications of information theory in cell
biology have already led to the discovery of general principles
of brain organization related to thermodynamics (Sterling and
Laughlin, 2015). In one particularly interesting study, Niven
et al. (2007) measured the energetic efficiency of information
coding in retinal neurons. Intracellular recordings of membrane
potential and input resistance were used to calculate rates
of ATP consumption in response to different background
light intensities. These rates of energy consumption were then
compared with rates of Shannon information transmission
in order to determine metabolic performance. It was found
that metabolic demands increase non-linearly with respect
to increases in information processing rate: thermodynamics
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appears to impose a “law of diminishing returns” on systems
of the brain. The authors interpret these results as evidence
that nature has selected for neurons that minimize unnecessary
information processing. Studying how thermodynamics has
influenced cellular parameters over the course of evolution is
likely to raise many new empirically addressable questions.

CONCLUSION

This article has reviewed information-energy relationships
in the hope that they may eventually provide a general
framework for uniting theory and experiment in neuroscience.
The physical nature of information and its status as a finite,
measurable resource are emphasized to connect neurobiology
and thermodynamics. As a scientific paradigm, the information
movement currently underway in physics promises profound
advances in our understanding of the relationship between
energy, information, and the physical brain.
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Hobson and Friston have hypothesized that the brain must actively dissipate heat in

order to process information (Hobson et al., 2014). This physiologic trait is functionally

homologous with the first instantation of life formed by lipids suspended in water

forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents

the Second Law of Thermodynamics permitting the transfer of information between living

entities, enabling them to perpetually glean information from the environment, that is

felt by many to correspond to evolution per se. The next evolutionary milestone was

the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes,

facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate

evolution. Lipids were key to homeostatic regulation of calcium, forming calcium

channels. Cell membrane cholesterol also fostered metazoan evolution by forming

lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system.

The eukaryotic cell membrane exapted to all complex physiologic traits, including the

lung and brain, which are molecularly homologous through the function of neuregulin,

mediating both lung development and myelinization of neurons. That cooption later

exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being

the functional homolog for brain heat dissipation and conscious/mindful information

processing. The skin and brain similarly share molecular homologies through the

“skin-brain” hypothesis, giving insight to the cellular-molecular “arc” of consciousness

from its unicellular origins to integrated physiology. This perspective on the evolution of

the central nervous system clarifies self-organization, reconciling thermodynamic and

informational definitions of the underlying biophysical mechanisms, thereby elucidating

relations between the predictive capabilities of the brain and self-organizational

processes.

Keywords: evolution, brain, entropy, lipids, endothermy, skin-brain, exaptation, self-organization

INTRODUCTION

The origins of consciousness and the evolution of physiologic pathways in mammalian brain
are arguably among the most challenging of all evolutionary puzzles. It is becoming increasingly
evident that the proper point of initiation of any understanding of these phenomena channels
through a fuller understanding of the capacities of individual and networked cells and even
more particularly, a reassessment of the significance of the unicellular zygotic phase of all
eukaryotes (Minami et al., 2007; Ikeda et al., 2010). If considered from within that cellular frame,
the development of any higher level of consciousness must relate to an enabling continuum
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of physiologic evolution that begins from that unicellular
form through which all sentient eukaryotes must recapitulate.
Furthermore, such a path would necessarily extend beyond any
prior assumptions of multicellular physiological development
as a simple progression forward from unicellular life. Instead,
eukaryotic physiology must be evaluated through the unfamiliar
perspective that all the consequential processes that have
antecedents from within the unicellular form retain a consistent
and inherent anchor within that origin throughout development.
Further too, those same initiating factors remain foundational
throughout organic development not only at the level of any
individual organism, but also throughout any evolutionary
narrative.

This perspective is underscored by two significant biological
principles. First, life is cognition at every scope and scale
(Baluška and Mancuso, 2009; Shapiro, 2011; Miller, 2013;
Lyon, 2015). And second, and conditional upon the first, all
complex physiologic traits have evolved from the unicellular
state as derivative exaptations of the complex cellular cytoskeletal
elements and cell membrane as well as the crucial genetic
material that is generally accredited as the centrality of that
process (Torday, 2013, 2015a). All of these cellular constituents
consistently inter-react to create any functioning cell. And
since all cells have cognitive capacity, then, physiology is best
understood as both a continuous enactment of cellular “self ” and
the biologic means by which that cellular “self ” is maintained and
advanced within cellular boundaries throughout all eukaryotic
biology.

If the reality that life depends upon cognition is embraced,
then in turn, any such cognition is naturally a property that
must have devolved from a pre-existing physical state and
the conditions that preceded that faculty. Therefore, life must
adhere to basic physics, and then too, cognition must as well.
Accumulating evidence supports that an appropriate frame
for understanding the evolution of cognition lies within an
inferential understanding of physics in a quantum informational
framework as expressed in biological terms. Indeed, recent
research is demonstrating that quantum processes are essential
to life (Aerts et al., 2011; Wang et al., 2013). Awareness
is both content and the awareness of that content which
then, through quantum inference, participates in the settling
of cognitive ambiguities (Conte et al., 2009). It has been
proposed that many elements of the cytoskelton are crucial to
the process of consciousness, particularly microtubules that
demonstrate coordinated vibrational beat frequencies that
may produce quantum coherences that permit the collapse
of the superimposition of possibilities inherent to quantum
phenomena (Hameroff and Penrose, 2014). Additional research
has implicated other intracellular participants in information
transfer and cognition in partnership with microtubules, such as
actin filaments and collagen (Friesen et al., 2015). Similar types of
quantum signal propagation have been observed within tubulin
subunit proteins that comprise microtubules, particularly in the
chromophores in light harvesting photosynthetic complexes
(Craddock et al., 2014). Similar quantum phenomena have also
been ascribed to non-polar protein interiors and membrane
lipid peroxidation processes that interact either directly with

microtubules or indirectly through serotonin production
(Tonello et al., 2015).

With that as precursor, it can be maintained that in direct
terms, any system of cognition that might eventually be
embodied in the mammalian brain must be based upon quantum
processes that are similar to those that produce an exchange
of information between elemental receptive entities (Nurse,
2008; Walker and Davies, 2013). It is a necessary conclusion
then, that physiology supports this preconditioning state in
eukaryotes (Torday, 2015a). However, on a thermodynamic basis,
this necessary exchange of information is also a transfer of
energy linked to heat production. Therefore, any cognitive action
as a form of cellular coherence can be better understood as
both an information exchange and reciprocally then, as energy
conversion and transfer (Adolphs and Renger, 2006; Dahlberg
et al., 2015).

When this is our consideration, then “self ” is best considered
as a function of both energy and information transfer whose
targets need not be identical. Since these latter two faculties
are amply demonstrated within unicellular life, then “elf ” is
also invested at that scale. Even within that scope, when
communication is accomplished, and information is transmitted
as communication between a sender and a receiver, then both
independent entities are now linked through that process (De
Loof, 2015). It would seem evident then that self-awareness arises
as a derivative of physical processes, based upon coordinate and
reicprocating functions that understand its context within the
larger organism. In multicellular organisms then, self-awareness
becomes a function of cellular constituencies that both compete
and collaborate.

Therefore, in a cellular frame, self-awareness as a cognitive
function must be dependent upon the discrimination of cellular
status through active cell homeostasis as the basis upon which
physiology is constructed (Takada and Jameson, 2009). That
faculty of discrimination of biologic status as opposed to the
external environment as assessed through differential cellular
physiological function thereby becomes the basis for self-
awareness. “Self ” is therefore cognitive awareness of homeostatic
flux as maintained within cellular boundaries. Since homeostatic
flux is itself dependent upon continuous physiologic activity,
then “self ” even as its own property must then be interpreted
through physiological mechanisms.

Within any quantum biologic frame, dissipation of energy
as generated heat can be viewed in terms of disappearance and
emergence of coherence within and between cells (Engel et al.,
2007; Larson, 2014). This parallel process is best understood
as based upon cellular properties effectuated in support of
the imperative of cellular homeostasis to maintain self. Such
coherence can properly be construed as the ability of biologic
organisms to resolve ambiguities toward survival in preferred
states. Yet, in biologically active systems, all such actions have a
thermodynamic (energy) cost, producing the need for active heat
exchange with the environment.

In biological terms, this thermodynamic gradient is enacted
as a series of downhill thermodynamic paths balancing energy
usage and output with energy (heat) dissipation (Aledo and del
Valle, 2004). It can be presumed then that this is best achieved
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in the multicellular form. Therefore, multicellular physiology
is a mechanistic solution for the utilization of energy and
heat dissipation in order to control local homeostasis upon
which “self ” is dependent. It is this process in series that
yields multicellular entities directed toward that same end that
are appraised by us in biologic terms as evidence of “self-
organization.”

Any such reiterative process must always represent a
continuum from basic thermodynamic principles brought
forward as varied biologic manifestations based upon energy
utilization and information transfer. Although there are
crucial transitions within biologic phenomena by which free
energy in thermodynamic terms must be differentiated from
variational minimal free energy in biologic information space,
the dissipation of heat inherent to all life forms can be considered
as active suppression of free energy toward its minimum, a
process that has been directly linked to how the brain acts to
limit prediction errors (Friston et al., 2006). In this manner,
any agent tends toward self-organization by minimizing free
energy and thereby lowering any probablility of surprise. It
proceeds in that direction through reciprocating interaction
with its environment that rests upon Bayesian inferences about
its context (Friston, 2009). In a cellular-based dynamic for
cognition such as is being proposed, each cell is recognized
as a discrete cognitive entity that acts both individually and
collectively. Therefore, the statistical power of Markov blankets
is pertinent as a descriptor of the manner in which cellular
membranes uphold their intracellular matrix and separate
from extracellular influences. Within the general conditions
of that frame, Bayesian inferences are based upon random
dynamical systems as features of variational free energy and
local coupling (Friston et al., 2014). However, in a system based
upon self-referential cognition as a thermodynamically-derived
state function, there are direct biological limits placed upon the
bounded dispersion of sensed states by which cells experience
epiphenomena and the outward environment (Friston, 2013).
Therefore, in quantum biological circumstances, these critical
models can be subject to modification within the proscriptions
of self-awareness and the constraining physiologic processes that
are enacted to sustain it. The inevitability of self-organization as
a form of active Bayesian inference within the spatial boundary
conditions of any living organism therefore remains valid but
becomes empowered. Biological uncertainties are resolved
through reciprocal biological signaling in which inputs are not
necessarily random, and via coupling in quantum systems that
are subject to both local and non-local correlations (Al-Khalili
and McFadden, 2014). Therefore, the ability of biological
organisms to settle ambiguities within expanded inferential
terms extends beyond typical statistical informational matrices,
and thereby becomes a definitional crux of biological action. In
multicellular entities then, any instrinsic drive toward a mandate
to minimize variational free energy places each cell not merely
as “in” its environment, but as a reciprocating organic entity
that is “of” its external milieu at the same time. In this way, it
becomes a specific embodiment of the “good regulator system”
(Conant and Ross Ashby, 1970). It is continually isomorphic
through self-assessment of its internal milieu as opposed

to its external environment, of which it is a both quantum
observer and participant. This consistent reciprocation becomes
the specific basis for its homeostatic regulatory mechanism,
both minimizing variational free energy, and underscoring its
self-referential appraisal of conditional status.

Importantly, the “self ” that exists within all living entities
is itself a state function. Consciousness as awareness of an
external environment is present in every form of life that is
differentiated from the inanimate (Giuditta, 2010; Trewavas
and Baluška, 2011). As such, it must be considered as a basic
property of biology as a quantum system. Similar to energy and
enthalpy, that state function may have differing values but is
independent of the exact number of steps that were required
to create its exact moment. Therefore, entropy, enthalpy,
and self are linked, yet separable variables as state functions
that are all directed toward maintaining homeostatic balance
against environmental stresses. Although homeostatic status is
dependent upon physiologic processes to efficiently utilize energy
and dissipate heat, this process still must be co-aligned with
thosemajor state functions. Therefore, it can properly be imputed
that physiologic pathways maintain cellular homeostasis as the
means by which biologic substrates are utilized and purposed to
sustain “self,” as a basic property of living systems. Therefore,
physiology becomes more than a series of interrelated processes
but represents a further enactment of “self ” as a state function as
it is achieved through multicellular networks through achievable
thermodynamic states. Physiology can then be viewed as more
than a means of maintaining protective cellular homeostasis,
but further, as an active agency that both permits and sustains
“self.” This is accomplished through cell-cell communication as
the exchange of information that underscores self-identity. This
activity is an energy-intensive process. Multicellular organisms
might then be assumed to represent that form that best utilizes
energy transformation for information sharing, and thereby, self-
organization can now be best understood in a biologic context
as a series of linked processes by which thermodynamically
advantaged solutions to environmental stresses are achieved
through form.

Although not obvious, multicellularity need not have been a
necessary evolutionary outcome. Intracellular engineering might
have led to enormously large, efficient and capable single cells.
There is an analogy in the viral realm to support this case. The
giant mimiviruses are larger in size than some bacteria, and have
larger genomes (Moreira and Brochier-Armanet, 2008; Raoult
and Forterre, 2008). However, in the cellular realm, this has not
been our known biologic outcome. A salient question within
biology might be “why didn’t evolution lead to single extremely
large and efficient cells as the dominant biologic players?”

That answer lies within physiologic mechanisms that extend
forward from unicellular roots. These are based upon stable
principles of evolutionary development that can be traced
from those unicellular origins as thermodynamically effective
outcomes for the maintenance of cellular identities and cellular
homeostasis directed by a sustaining “self.”

So we know where consciousness/mind originated from, and
how it appears in its fully formed state, but how did it transition
from paramecia to Einstein? The key to such an analytic approach
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to the evolution of mind through paths of complex physiology is
the realization that any given physiologic trait is the permutations
and combinations of pre-existing unicellular mechanisms and
physiologic traits (Torday, 2015b). This does not proceed in
a linear, arithmetic fashion, but as Boolean contingencies on
previous events in the history of the organism. Knowing the
molecular “parts list” and the contexts in which they have existed
in previous iterations and persist as current physiology and
metabolism provides important clues to how and why they are
relevant to brain evolution.

One important contextual clue is the water-land transition
that occurred some 300 million years ago due to the CO2

“greenhouse effect” (Ward et al., 2006), drying up lakes, rivers,
and ponds (Romer, 1949). That precipitated several specific gene
duplications in vertebrates due to the existential stress of having
to adapt to land (Torday, 2013), providing insights to pivotal
physiologic changes in vertebrate physiology- the lung, kidney,
skeleton, skin. This paper is predicated on the hypothesis that
like those visceral organs, the brain also evolved under selection
pressure, as first proposed by Hughlings-Jackson (Franz and
Gillett, 2011), and reinforced by Gottlieb (2007), who pointed
out the norms of reaction in brain structure/function. Thereby,
it can be advanced that there is an underlying cellular apparatus
that appraises self through boundaries and proscriptions, thereby
purposing “self ” toward common cellular solutions to maintain
homeostasis in reaction to environmental stresses that affect all
the cellular constituencies of macro-organisms. This is achieved
through physiological/metabolic pathways.

GENETIC CHANGES ASSOCIATED WITH

THE WATER-LAND TRANSITION

FACILITATE VERTEBRATE EVOLUTION

The initiating factor for vertebrate evolution was the insertion
of cholesterol into the phospholipid bilayer (Miao et al., 2002),
rendering the membrane more compliant by thinning it out
and making it more permeable for gas exchange (Torday and
Rehan, 2012). This is the fundament of vertebrate evolution that
enabled endo/exocytosis, increased metabolism, and facilitated
locomotion (Perry and Carrier, 2006).

The beginnings of the evolution of the visceral organs in
vertebrates is the adaptation of water-based life forms to a
primary existence on land. In support of this, there were
two gene duplications for the Parathyroid Hormone-related
Protein Receptor (PTHrPR) (Pinheiro et al., 2012) and the
Beta Adrenergic Receptor (βAR) (Aris-Brosou et al., 2009),
accompanied by two gene mutations, for the Glucocorticoid
Receptor (GR) (Bridgham et al., 2006) and type IV collagen
(MacDonald et al., 2006). The first three of these genetic changes
were critically important in the evolution of land adaptive
visceral organ changes. The best known is the PTHrP signaling
mechanism, which is necessary for the formation of lung alveoli
(Rubin et al., 1994), the primary mechanism for lung evolution
(Torday and Rehan, 2007)—deletion of PTHrP results in failed
alveolar formation (Rubin et al., 1994). It also affects bone
(Karaplis and Goltzman, 2000), skin (Wysolmerski et al., 1998),

kidney (Hochane et al., 2013), and brain (Liu et al., 2013), though
not as profoundly as the lung-mice lacking the PTHrP gene die at
birth of pulmonary insufficiency (Karaplis et al., 1994). The βAR
was necessary for the earlier stages of lung evolution, increased
βAR density in the pulmonary microcirculation allowing for
blood pressure regulation independent of the systemic circulation
(West and Mathieu-Costello, 1999). This adaptation was critical
for the increase in gas exchange surface area of the lung, without
which, every time there was a physiologic reaction to stress the
microcirculation of the nascent lung would have been damaged.
The GR evolved from the Mineralocorticoid Receptor (MR)
(Bridgham et al., 2006), likely due to the elevated blood pressure
on land vs. water (Volkmann and Baluska, 2006). The addition
of two amino acids to the MR resulted in the evolution of the
GR (Bridgham et al., 2006); the other positive selection for the
GR during the water-land transition was its molecular induction
by activation of βARs (Maier et al., 1989), effectively reducing
blood pressure under stress conditions. The type IV collagen
mutation that causes Goodpasture’s Syndrome was adaptive for
both the alveolus and glomerulus because it is hydrophobic
(MacDonald et al., 2006), forming a barrier against the loss of
fluid and electrolytes from the lung and kidney on land. However,
people expressing this isomer of type IV collagen can develop
autoantibodies to it, inhibiting gas exchange in the alveolus and
blood filtration in the glomerulus, eventually resulting in death
(Greco et al., 2015).

There is an interesting fundamental mechanistic difference
between the PTHrP and βAR receptor gene duplications and
the GR mutation, and that of the type IV collagen matrix
protein, all of which were responses to physiologic stress caused
by increased blood pressure, generating oxygen radicals in the
microcirculation (De Nigris et al., 2001). In the case of the
receptors, their expression was constrained by their previously
evolved down-stream signaling pathways (Jordan et al., 2000),
referred to in conventional evolutionary biology as terminal
addition (Jacobs et al., 2005), whereas the type IV collagen
mutation had no such specific servo-regulatory constraints,
explaining why the consequent disease.

ON THE EVOLUTION OF ENDOTHERMY

Given the described step-wise empiric adaptation to land, there
were undoubtedly stages in this process at which the lung
was inefficient for gas exchange, resulting in hypoxia, the most
potent physiologic stressor known. Such stress conditions would
have resulted in spates of catecholamine production by the
adrenal gland, alleviating the constraint of an inefficient lung
by stimulating surfactant production by the alveoli (Lawson
et al., 1978), acutely increasing alveolar distensibility and thus
oxygenation. Over time, such episodes of over-distension of the
alveoli would have culminated in the formation of additional
alveoli, PTHrP acting to form more alveolar units (Rubin
et al., 1994), accommodating oxygen deficiency constitutively.
In tandem, catecholamines would have stimulated fatty acid
secretion by fat cells in the periphery (Lawson et al., 1978),
increasing metabolism and body heat (Lee et al., 2015). Again,
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over time this mechanism would have given rise to a constitutive
increase in body temperature, or endothermy. As evidence for
this mechanism of evolution, PTHrP signaling appears in the
pituitaries of mammals (Mamillapalli and Wysolmerski, 2010)
and birds (Nakayama et al., 2011), and stimulates corticosteroid
production by the adrenal cortex (Mazzocchi et al., 2001) in
association with increased microvascularization of the adrenal
medulla (Wurtman, 2002). Consequently, in the pituitary PTHrP
amplifies ACTH (Mamillapalli and Wysolmerski, 2010), and in
the adrenal cortex it stimulates corticoid production (Kawashima
et al., 2005). The associated increase in angiogenesis within
the adrenal medulla amplifies corticosteroid stimulation of the
rate-limiting step in catecholamine synthesis, Catecholamine-
O-Methyltransferase (Nic a’ Bháird et al., 1990). The enhanced
microcirculation within the medulla was likely due to the
increased production of PTHrP within the adrenal cortex passing
through the adrenal medulla since PTHrP is angiogenic (Isowa
et al., 2010). The other consequence of increased catecholamine
production elevating body temperature was the evolution of
lung surfactant in adaptation to endothermy (Torday, 2015a).
The composition of the surfactant phospholipid changes to
dipalmitoylphosphatidylcholine (Suri et al., 2012), which has
a phase transition temperature of 41◦C, rendering it 3-times
more active than it is at 25◦C (Lau and Keough, 1981). In
support of this hypothetical interrelationship, catecholamines
have an adaptive effect on peripheral cellular oxygenation,
increasing the amount of unsaturated phospholipid in the cell
membrane, making it more gas permeable (Ward et al., 2006).
In contrast to this, under hibernation conditions when oxygen
utilization and stress are at a minimum, there is decreased
unsaturated phospholipid in the peripheral cell membranes (Lau
and Keough, 1981), decreasing cellular oxygen uptake, and lung
surfactant phospholipid composition reverts to its cold-blooded
composition (Suri et al., 2013). Experimental support for this
integrated mechanism comes from study of MAP turtles reared
at different ambient temperatures, altering the composition of
their lung surfactant consistent with the previously described
evolutionary changes (Lau and Keough, 1981).

ON THE EVOLUTION OF THE BRAIN IN

ENDOTHERMS

The evolution of endothermy/homeothermy is a milestone in
vertebrate evolution shared by mammals and birds (Grigg et al.,
2004).What else do these organisms share in common that might
give insight to evolution? It may be of evolutionary relevance
that mammals and birds are both bipedal. That trait may have
been contingent on the evolution of endothermy since being
warm blooded rendered metabolism much more efficient. Cold-
blooded poikilotherms require multiple isoforms of the same
metabolic enzyme to function efficiently at different ambient
temperatures (Duarte et al., 2007). Bipedalism requires much
more energy than being quadrupedal (Rodman and McHenry,
1980). Another trait held in common by mammals and birds
that may be a consequence of endothermy and bipedalism is the

freeing of the forelimbs for such adaptations as flight in birds, and
manual manipulation in Man.

There are clues within this narrative toward the evolution of
the central nervous system in the context of the convergence
of thermodynamic, self-organizational and informational
characteristics. Importantly, there are exaptive traits that
fostered the higher consciousness of mammals and birds. The
role of thermoregulation has been alluded to by Hobson et al.
(2014), invoking the need to cool the brain during Rapid Eye
Movement sleep. As for the self-organizational aspect, the
evolution of lipid metabolism converged in endothermy and
pulmonary alveolar respiration (Torday, 2015a), perhaps acting
as positive selection for neuregulin, an intermediary in the
Epidermal Growth Factor signaling pathway that mediates both
alveolar and neuronal lipid utility. In the alveolus, neuregulin
promotes surfactant phospholipid synthesis (Fiaturi et al., 2014),
whereas in the brain it is the only known mechanism that
mediates myelinization of axons by Schwann Cells (Li, 2015).
As previously described, the co-evolution of the pulmonary
and neuroendocrine systems via PTHrP signaling is more
evident, and may have been the forerunner of the neuregulin
exaptation. Neuregulin mediates Schwann cell myelinization of
neurons in the skin (McKenzie et al., 2006), the latter bearing a
strong homology with the lung and brain. Neuregulin’ role in
myelinization is consistent with the informational phenotype
proffered by Shannon’s Communication Theory (Shannon and
Weaver, 1949). And the evolution of the forelimb reinforced
such co-evolved mechanisms at multiple levels, referring all the
way back to the advent of cholesterol in the cell membrane of
unicellular eukaryotes promoting locomotion, respiration and
metabolism (Perry and Carrier, 2006).

Another co-evolved molecular mechanism common to the
lung, adipose tissue and brain is leptin, which is secreted
by both fat cells (Adamczak and Wiecek, 2013) and the
lipofibroblasts of the alveolar wall (Torday et al., 2002). The role
of leptin in endothermy/homeothermy has been demonstrated
by the experimental treatment of cold-blooded Fence Lizards
with leptin, increasing their basal metabolic rate and body
temperature (Niewiarowski et al., 2000). In the brain, leptin
stimulates the arborization of the neurons (Moult and Harvey,
2008), increasing informational processing properties in the
brain.

Thus, the arc of vertebrate physiologic evolution is better
understood as a continuum emanating from the water-
land transition (Torday, 2013, 2015a), through only a few
crucial pleiotropic gene duplications and mutations that
occurred in that era—the Parathyroid Hormone-related Protein
(PTHrP) Receptor, the βAdrenergic Receptor (βAR), and the
Glucocorticoid Receptor (GR). The PTHrPR in particular
fostered the evolution of a number of key terrestrial adaptations,
most importantly the lung alveolus. The βAR was similarly
critical in adaptation to air breathing since its regulation of blood
pressure in both the systemic and pulmonary circulations was
a constraint on the expansion of the surface area of the gas
exchanger (West and Mathieu-Costello, 1999).

The evolution of the vertebrate lung from the fish swim
bladder (Zheng et al., 2011) was principally due to the progressive
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reduction in the air space formed initially by the swim bladder of
fish, resulting in the increase in the gas exchange surface area-to-
vascular blood supply ratio (Torday and Rehan, 2012). In order
for that to occur, the alveolar epithelial type II cells lining the air
space/alveolus had to increase the efficiency of surfactant surface
tension reducing capacity to counter the increasing surface
tension due to the reduction in the alveolar diameter- the surface
tension of a sphere being inversely proportional to its diameter
(Law of Laplace). It is this dynamic interplay of epithelial-
mesenchymal interactions mediated by soluble paracrine growth
factors and their cognate receptors (Torday and Rehan, 2012)
that orchestrated the evolution of air breathing, from the swim
bladder of fish to the lungs of amphibians, reptiles, mammals and
birds.

It is through understanding these sorts of biophysical
mechanisms that the evolution of the brain, particularly as
it relates to self-organizational processes, can be explored
as a productive reconciliation between thermodynamic
necessities and informational requirements. At each
moment, organizational problems secondary to system wide
epiphenomena are being solved. It has been hypothesized that
the interaction between the evolving lung and neuroendocrine
system gave rise to endothermy in a series of steps. Intermittent
periods of hypoxia during the water-land transition would
have caused physiologic stress, hypoxia being the most potent
physiologic stressor known in vertebrates. The stress would
have been alleviated by the production of catecholamines by the
adrenal medulla, relieving the initial constraint on gas exchange
by stimulating the alveolar secretion of surfactant, rendering the
evolving alveoli more distensible, acutely increasing their surface
area for gas exchange. Over the long haul, these bouts with
hypoxia would have fostered more alveoli since the distension of
the alveoli stimulates PTHrP signaling, fostering more alveoli. In
tandem with the stimulation of lung evolution, catecholamines
would have stimulated the secretion of fatty acids from fat cells,
in turn leading to increased metabolism and body temperature.
Consequently, endothermy evolves over time in adaptation to
terrestrial life, as a thermodynamically efficient solution to the
chain of informational transfer that supports life and upon which
“self ” is based. In support of this hypothesis, PTHrP signaling for
ACTH appears in the mammalian and avian pituitaries and in
the adrenal cortex in association with increased microvasculature
in the adrenal medulla. These physiologic changes would have
enhanced catecholamine production in response to stress,
synergizing the evolution of both the alveoli and endothermy.
Systematically, the physiologic effect of catecholamines
on the gas permeability of the cell membrane promotes
oxygenation- the catecholamines promote the population of
the cell membrane by unsaturated phospholipids, rendering
it more fluid and therefore more permeable to gas exchange.
This property is likely causal since the opposite effect is seen
during hibernation and torpor, regarding both the composition
of the cell membrane phospholipids, and that of the lung
surfactant.

Therefore, factors that seem separable on an evolutionary
basis are in fact united. They extend through demonstrable
evolutionary paths that must remain adherent to those basic
principles that underscore all such connections. This then
provides for neuregulin mediation of both lung development
and axonal myelinization, or the skin-brain connection, with
their joint embryological connections (Foster, 2012). The
Friston-Hobson (Hobson et al., 2014) theory of brain cooling
coalesces with endothermy as both become implicit with regard
to physical requirements in support of information systems.
Therefore, the suspension of thermoregulation during Rapid
Eye Movement sleep infers a “reverse evolution” reflecting that
endothermy evolved from poikilothermy, and “Brain Cooling”
becomes functionally homologous with the implementation of
catecholamines for thermoregulation within the brain.

Complex physiology emerged as exaptations from the
unicellular realm (Torday, 2015a). Therefore, self-organization
can be understood as a direct means of protecting cellular
physiological homeostasis that in turn sustains self-identity
within consonant thermodynamic roots. At every scope and
scale, self-aware cells enact solutions to environmental stresses
according to thermodynamically efficient paths. “Self ” exists
within those thermodynamic necessities at the cellular level
and then proceeds through multicellular reiterative physiological
mechanisms to become, in an eventual series, our human brain.
This accounts for a mammalian brain that is, in thermodynamic
terms, an open system on an entropic basis and is energetically
dissipative (Freeman and Vitello, 2011; Varpula et al., 2013).

Therefore, the distributive nature of mammalian cognition
across widely separated cellular networks can be concluded
to be derivative of both cellular-based cognition and also
physiological mechanisms permitting energy dissipation
in a manner that yields neurohumoral coherence across
space-time. Physiological mechanisms both permit and
support cellular “self ” as a state function that emanates from
unicellular origins and perpetually exists within that frame.
That resultant network of cellular self-identity is always
adherent to thermodynamic limits and is further delimited by
cellular homeostasis that is itself dependent upon physiological
pathways extending forward from their unicellular origins.
Multicellular networks reiterate toward mammalian cognition
by purposing self-organization as responsiveness to cellular self-
identification, ever dependent upon the maintenance of cellular
homeostatic flux boundaries, and sustained and advanced by
cellular physiologic mechanisms in continual adaptation to
epiphenomena.

AUTHOR CONTRIBUTIONS

JT contributed 50%; WM contributed 50%.

FUNDING

JT has been supported by NIH Grant HL055268

Frontiers in Systems Neuroscience | www.frontiersin.org April 2016 | Volume 10 | Article 31  | 37

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Torday and Miller Brain Evolution

REFERENCES

Adamczak, M., and Wiecek, A. (2013). The adipose tissue as an endocrine

organ. Semin. Nephrol. 33, 2–13. doi: 10.1016/j.semnephrol.2012.

12.008

Adolphs, J., and Renger, T. (2006). How proteins trigger excitation energy transfer

in the FMO complex of green sulfur bacteria. Biophys. J. 91, 2778–2797. doi:

10.1529/biophysj.105.079483

Aerts, D., Broekaert, J., and Gabora, L. (2011). A case for applying an abstracted

quantum formalism to cognition. New Ideas Psychol. 29, 136–146. doi:

10.1016/j.newideapsych.2010.06.002

Aledo, J. C., and del Valle, A. E. (2004). The ATP paradox is the expression

of an economizing fuel mechanism. J. Biol. Chem. 279, 55372–55375. doi:

10.1074/jbc.M410479200

Al-Khalili, J., and McFadden, J. (2014). Life on the Edge. The Coming of Age of

Quantum Biology. London: Bantam Press.

Aris-Brosou, S., Chen, X., Perry, S. F., and Moon, T. W. (2009). Timing of

the functional diversification of alpha- and beta-adrenoceptors in fish and

other vertebrates. Ann. N.Y. Acad. Sci. 1163, 343–347. doi: 10.1111/j.1749-

6632.2009.04451.x

Baluška, F., and Mancuso, S. (2009). Deep evolutionary origins of neurobiology:

turning the essence of ‘neural’ upside-down. Commun. Integr. Biol. 2, 60–65.

doi: 10.4161/cib.2.1.7620

Bridgham, J. T., Carroll, S. M., and Thornton, J. W. (2006). Evolution of hormone-

receptor complexity by molecular exploitation. Science 312, 97–101. doi:

10.1126/science.1123348

Conte, E., Khrennikov, A. Y., Todarello, O., Federici, A., Mendolicchio, L., and

Zbilut, J. P. (2009). Mental states follow quantummechanics during perception

and cognition of ambiguous figures. Open Syst. Inf. Dyn. 16, 85–100. doi:

10.1142/S1230161209000074

Conant, R. C., and Ross Ashby, W. (1970). Every good regulator of a

system must be a model of that system. Int. J. Syst. Sci. 1, 89–97. doi:

10.1080/00207727008920220

Craddock, T. J. A., Friesen, D., Mane, J., Hameroff, S., and Tuszynski, J. A. (2014).

The feasibility of coherent energy transfer in microtubules. J. R. Soc. Interface

11:20140677. doi: 10.1098/rsif.2014.0677

Dahlberg, P. D., Norris, G. J., Wang, C., Viswanathan, S., Singh, V. P., and Engel,

G. S. (2015). Communication: coherences observed in vivo in photosynthetic

bacteria using two-dimensional electronic spectroscopy. J. Chem. Phys. 143,

101101. doi: 10.1063/1.4930539

De Loof, A. (2015). Organic and cultural evolution can be seamlessly

integrated using the principles of communication and problem-solving: the

foundations for an extended evolutionary synthesis (EES) as outlined in

the Mega-Evolution concept. Life Exc. Biol. 2, 247–269. doi: 10.9784/leb2(4)

deloof.01

De Nigris, F., Lerman, L. O., Condorelli, M., Lerman, A., and Napoli,

C. (2001). Oxidation-sensitive transcription factors and molecular

mechanisms in the arterial wall. Antioxid. Redox Signal. 3, 1119–1130.

doi: 10.1089/152308601317203620

Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D.,

et al. (2007). Global reconstruction of the human metabolic network based on

genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A. 104, 1777–1782. doi:

10.1073/pnas.0610772104

Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mančal, T., Cheng, Y.
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Many of the mathematical frameworks describing natural selection are equivalent

to Bayes’ Theorem, also known as Bayesian updating. By definition, a process of

Bayesian Inference is one which involves a Bayesian update, so we may conclude

that these frameworks describe natural selection as a process of Bayesian inference.

Thus, natural selection serves as a counter example to a widely-held interpretation that

restricts Bayesian Inference to human mental processes (including the endeavors of

statisticians). As Bayesian inference can always be cast in terms of (variational) free

energy minimization, natural selection can be viewed as comprising two components:

a generative model of an “experiment” in the external world environment, and the

results of that “experiment” or the “surprise” entailed by predicted and actual outcomes

of the “experiment.” Minimization of free energy implies that the implicit measure of

“surprise” experienced serves to update the generative model in a Bayesian manner.

This description closely accords with the mechanisms of generalized Darwinian process

proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in

terms of inferential systems. Bayesian inference is an algorithm for the accumulation of

evidence-based knowledge. This algorithm is now seen to operate over a wide range of

evolutionary processes, including natural selection, the evolution of mental models and

cultural evolutionary processes, notably including science itself. The variational principle

of free energy minimization may thus serve as a unifying mathematical framework for

universal Darwinism, the study of evolutionary processes operating throughout nature.

Keywords: free energy, natural selection, information, Bayesian inference, Universal Darwinism

INTRODUCTION

Although Darwin must be counted amongst history’s greatest scientific geniuses, he had very little
talent for mathematics. His theory of natural selection was presented in remarkable detail, with
many compelling examples but without a formal or mathematical framework (Darwin, 1872).
Darwin did not think in mathematical terms; he found mathematics repugnant and it comprised
only a small part of his Cambridge education (Darwin, 1958).

Generally, mathematics is an aid to scientific theories because a theory whose basics are
described through mathematical relationships can be expanded into a larger network of predictive
implications and the entirety of the expanded theory subjected to the test of evidence. As a bonus,
any interpretation of the theory must also conform to this larger network of implications to ensure
some consistency.

Natural selection describes the change in frequency or probability of biological traits over
succeeding generations. One might suppose that a mathematical description—complete with
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an insightful interpretation—would be straightforward, but
even today this remains elusive. The current impasse involves
conceptual difficulties arising from one of mathematics’ bitterest
interpretational controversies.

That controversy is between the Bayesian and Frequentist
interpretations of probability theory. Frequentists assume
probability or frequency to be a natural propensity of nature.
For instance, the fact that each face of a dice will land with
1/6 probability is understood by frequentists to be a physical
property of the dice. On the other hand, Bayesians understand
that humans assign probabilities to hypotheses on the basis of
the knowledge they have (and the hypotheses they can entertain);
thus the probability of each side of a dice is 1/6 because the
observer has no knowledge that would favor one face over the
other; the only way that no face is favored is for each hypothesis
to be assigned the same probability. Furthermore, the value 1/6 is
conditioned upon the assumption that there are only six possible
outcomes. This means that probabilities are an attribute of a
hypothesis or model space—not of the world that is modeled.

The Bayesian framework is arguably more comprehensive and
has been developed into the mathematics of Bayesian inference,
at the heart of which is Bayes’ theorem, which describes how
probabilistic models gain knowledge and learn from evidence.
In my opinion, the major drawback of the Bayesian approach is
an anthropomorphic reliance on human agency, the assumption
that inference is an algorithm performed only by humans
that possess (probabilistic) beliefs. Despite this interpretational
dispute there has been some progress in uniting Bayesian and
frequentist mathematics (Bayarri and Berger, 2004).

Despite the lack of mathematics in Darwin’s initial
formulation it was not long before researchers began developing
a mathematical framework describing natural selection. It
is an historical curiosity that most of these frameworks
involved Bayesian mathematics, yet no interpretations were
offered, proposing natural selection as a process of Bayesian
inference.

The first step in developing this mathematics was taken during
Darwin’s lifetime by his cousin, Francis Galton. Galton developed
numerous probabilistic techniques for describing the variance
in natural traits—as well as for natural selection in general.
His conception of natural selection was intriguingly Bayesian;
although he may never have heard of Bayes’ theorem. Evidence
of his Bayesian bent is provided by a visual aid that he built for
a lecture on heredity and natural selection given to the Royal
Society (Galton, 1877).

He used this device (see Figure 1 below) to explain natural
selection in probabilistic terms. It contains three compartments:
a top compartment representing the frequency of traits in the
parent population, a middle one representing the application of
“relative fitness” to the child generation and a third representing
the normalization of the resulting distribution in the child
generation. Beads are loaded in the top compartment to represent
the distribution in the parent generation and then are allowed
to fall into the second compartment. The trick is in the second
compartment, which contains a vertical division, in the shape of
the relative fitness distribution. Some of the beads fall behind this
division and are “wasted”; they do not survive and are removed

FIGURE 1 | A device constructed by Francis Galton as an aide in an

1877 talk he gave to the RoyalSociety. It is meant to illustrate generational

change in the distribution of a population’s characteristics due to natural

selection.

from sight. The remaining beads represent the distribution of the
“survivors” in the child generation.

Galton’s device has recently been rediscovered and employed
by Stephan Stigler and others in the statistics community as
a visual aid, not for natural selection, but for Bayes’ theorem.
The top compartment represents the prior distribution, the
middle one represents the application of the likelihood to the
prior, and the third represents the normalization of the resulting
distribution. The change between the initial distribution and the
final one is the Bayesian update.

Fisher further developed the mathematics describing natural
selection during the 1920s and 1930s. He applied statistical
methods to the analysis of natural selection via Mendelian
genetics and arrived at the fundamental theorem of natural
selection which states (Fisher, 1930):

The rate of increase in fitness of any organism at any time is equal

to its genetic variance in fitness at that time.

Although Fisher was a fierce critic of the Bayesian interpretation
(which he considered subjective) he pioneered—and made many
advances with—the frequentist interpretation.

The next major development in the mathematics of natural
selection came in 1970 with the publication of the Price equation,
which built on the fundamental theorem of natural selection
(Harper, 2010; Frank, 2012a). Although the Price equation fully
describes evolutionary change, its meaning has only recently
begun to be unraveled, notably by Steven A. Frank in a series of
papers spanning the last couple of decades. Frank’s insights into
the meaning of the Price equation culminated in a 2012 paper
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(Frank, 2012b) which derives a description of natural selection
using the mathematics of information theory.

In my opinion, this paper represents a significant advance
in the understanding of evolutionary change as it shifts
the interpretation from the objective statistical description
of frequentist probability to an interpretation in terms of
Bayesian inference. Unfortunately, Frank does not share my
appreciation of his accomplishment. While he understands that
his mathematics are very close to those of Bayesian inference
he does not endorse a Bayesian interpretation but prefers an
interpretation in terms of information theory.

INFORMATION AND BAYESIAN
INFERENCE

However, the mathematics of information theory and Bayesian
probability are joined at the hip, as their basic definitions are in
terms of one another. Information theory begins with a definition
of information in terms of probability:

I
(

hi|m
)

= −log
(

P
(

hi|m
))

Here, we may view hi as the i
th hypothesis or event in a mutually

exclusive and exhaustive family of n competing hypotheses
comprising a model m. I

(

hi|m
)

is the information gained, under
the model, on learning that hypothesis hi is true. P

(

hi|m
)

is the
probability that had previously been assigned by the model that
the hypothesis hi is true. Thus, information is “surprise”; the less
likely a model initially considers a hypothesis that turns out to
be the case, the more surprise it experiences, and thus the more
information it receives.

Information theory, starting with the very definition of
information, is aligned with the Bayesian interpretation of
probability; information is “surprise” or the gap between an
existing state of knowledge and a new state of knowledge gained
through receiving new information or evidence.

The model itself, composed of the distribution of the p(hi),
may also be said to have an expectation. The information which
the model “expects” is the weighted average of the information
expected by the n individual p(hi), which is called the model’s
entropy.

S (H|m) =

n
∑

1

p
(

hi|m
) (

−log (p
(

hi|m
))

Entropy is the amount of information that separates a model’s
current state of knowledge from certainty.

Bayes’ theorem follows directly from the axioms of probability
theory and may be understood as the implication that new
evidence or information holds for the model described by the
distribution of the p(hi). This theorem states that on the reception
of new information (I) by the model (m) the probability of
each component hypothesis (hi) making up the model updates
according to:

P
(

hi
∣

∣ I,m
)

= P
(

hi
∣

∣ m
) P

(

I
∣

∣ him
)

P (I | m)

Bayesian inference is commonly understood as any process
which employs Bayes’ theorem to accumulate evidence based
knowledge (Wikipedia1): the quantity P (I | m) is called
(Bayesian) model evidence and corresponds to the probability
of observing some new information, under a particular model,
averaged over all hypotheses. This is a crucial quantity in practice
and can be used to adjudicate between good and bad models
in statistical analysis. It is also the quantity approximated by
(variational) free energy—as we will see below. Effectively,
this equation provides the formal basis for Bayesian belief
updating: in which prior beliefs about the hypotheses P

(

hi | m
)

are transformed into posterior beliefsP
(

hi | I,m
)

, which are
informed by new information. This updating rests upon
the likelihood model; namely the likelihood of observing
new information given the i-th hypothesis P

(

I | him
)

. This
formalism highlights the information theoretic nature of
Bayesian updating—and the key role of a (likelihood) model in
accumulating evidence.

We may conclude from this short overview of the relationship
between information and Bayesian inference that information
has little meaning outside a Bayesian context. Information
depends upon a model that assigns probabilities to outcomes and
which is updated on the reception of new information. In short,
there is no information unless there is something that can be
informed. This something is a model.

Thus, we see that, contrary to Frank’s view, Bayesian inference
and information theory have the same logical structure. However,
it is instructive to follow Frank’s development of the mathematics
of evolutionary change in terms of information theory, while
keeping in mind his denial of its relationship to Bayesian
inference. Frank begins his unpacking of the Price equation by
describing the “simple model” he will develop:

A simple model starts with n different types of individuals. The

frequency of each type is qi. Each type has wi offspring, where

w expresses fitness. In the simplest case, each type is a clone

producing wi copies of itself in each round of reproduction. The

frequency of each type after selection is

q,i = qi
wi

w
(1)

Where w =
∑n

1 qiwi is the average fitness of the trait in the

population. The summation is over all of the n different types

indexed by the i subscripts.

Equation (1) is clearly an instance of Bayes’ theorem, where the
new evidence or information is given in terms of relative fitness
and thus Frank’s development of this simple model is in terms of
Bayesian inference.

While Frank acknowledges an isomorphism between Bayes’
theorem and his simple model, he does not find this useful and
prefers to describe the relationship as an analogy. He makes the
somewhat dismissive remark:

1Wikipedia. Bayesian Inference. Available online at: https://en.wikipedia.org/wiki/

Bayesian_inference (Accessed 26 September, 2015).
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I am sure this Bayesian analogy has been noted many times.

But it has never developed into a coherent framework that has

contributed significantly to understanding selection.

On the contrary, I would suggest that Frank’s paper itself develops
a coherent framework for natural selection in terms of Bayesian
inference. In particular, he highlights the formal relationships
between the Price equation (or replicator equation) and Bayesian
belief updating (e.g., Kalman Filtering). This is potentially
interesting because many results in evolutionary theory can now
be mapped to standard results in statistics, machine learning
and control theory. Although we will not go into technical
details, a nice example here is that Fisher’s fundamental theorem
corresponds to the increase in Kalman gain induced by random
fluctuations (this variational principle is well-known in control
theory and volatility theory in economics). Despite this, Frank
dismisses Bayesian formulations because they do not appear to
bring much to the table. This is understandable in the sense that
the mathematics traditionally used to describe natural selection
already has a Bayesian form and merely acknowledging this fact
does not lead to a new formalism. However, this conclusion
might change dramatically if biological evolution was itself
a special case of a Universal Darwinism that was inherently
Bayesian in its nature. In what follows, we pursue this line of
argument by appealing to the variational principle of least free
energy.

FREE ENERGY MINIMIZATION PRINCIPLE

Baez and Pollard have recently demonstrated the similarities of
a number of information-theoretic formulations, including the
Bayesian replicator equation, evolutionary game theory, Markov
processes and chemical reaction networks, that are applicable
to biological systems as they approach equilibrium (Baez and
Pollard, 2016). In general, any process of Bayesian inference may
be cast in terms of (variational) free energyminimization (Roweis
and Ghahramani, 1999; Friston, 2010) and—in this form—
some important interpretative issues gain clarity. This approach
has been used by Hinton, Friston, and others to describe the
evolution of mental states as well as to describe pattern formation
and general evolutionary processes. In its most general form, the
free energy principle suggests that any weakly-mixing ergodic
random dynamical system must be describable in terms of
Bayesian inference. This means that the equivalence between
classical formulations of evolution and Bayesian updating are
both emergent properties of any random dynamical system that
sustains measurable characteristics over time (i.e., is ergodic;
Friston, 2013). This is quite important because it means that
evolution is itself an emergent property of any such systems.
Although conceptually intriguing, there may be other advantages
to treating evolution in terms of minimizing variational free
energy. In what follows, I will try to demonstrate this may be true.

In 1970 Ashby and Conant (Conant and Ashby, 1970) proved
a theorem that any regulating mechanism for a complex system
that is both successful and simple must be isomorphic with
the system being regulated. In other words, it must contain
a model of the system being regulated. As no model can be
exactly isomorphic to its subject without being a clone and

therefore exactly as complex as its subject, this theorem suggests
a variational approach may be useful, one which optimizes the
difference between the accuracy and the complexity of the model.

This is exactly a form in which the free energy minimization
principle may be cast (Moran et al., 2014):

F (s, u) = DKL

[

q (ψ |µ) || p (ψ |m)
]

− Eq
[

log p (s|ψ,m)
]

Free Energy= Complexity-Accuracy
Where ψ are hidden states of the world or environment, s are

their sensory consequences or samples (that can depend upon
action), µ are internal states and m is the generative model.
The distribution q is the current predictions of the states of
the environment, the distribution p is the true states of the
environment and the KL divergence is a measure of the distance
between them. Crucially, free energy can also be expressed in
terms of the surprise of sampled consequences:

F (s, u) = DKL

[

q (ψ |µ) ||p (ψ |s,m)
]

− logp (s|m)

Free Energy= relative entropy+surprise
This formulation of evolutionary change may appear quite

different from that of Bayesian inference as it has a focus on
model quality rather than fitness. However, a sustained decrease
in free energy (or increase in log model evidence) is equivalent
to a decrease in model entropy and therefore contravenes the
spirit, if not the letter, of the second law. The letter of that
law allows a decrease in entropy for dynamic systems only if
an environmental swap is conducted where low entropy inputs
are exchanged for high entropy outputs. In short, the second
law forbids the existence or survival of low entropy dynamic
systems lacking such an ability—an ability that mandates a model
of the environment and Bayesian inference under that model.
This provides a focus for the model’s knowledge accumulation;
it must entail knowledge of its environment as well as a strategy
to perform the required entropy swaps within that environment.
Thus, the drive to fitness, which is explicit in the Bayesian
formulation, is also implicit in the free energy formulation.

As descriptions of evolutionary processes in terms of free
energy minimization have great general applicability it may be
useful to consider some specific examples. In biological evolution
we can associate the model (m) with a genotype. This means
the genotype corresponds to the sufficient statistics of the prior
beliefs a phenotype is equipped with on entering the world.
Keeping in mind that organisms may sense their environments
through both chemical and neural means, we may associate
sensory exchanges with the environment (s) with adaptive states.
Finally, the sufficient statistics of the posterior (mµ) can be
associated with a phenotype. In other words, the phenotype
embodies probabilistic beliefs about states of its external milieu.
This formulation tells us several fundamental things:

(i) everything that can change will change to minimize free
energy. Here, the only things that can change are the
sufficient statistics; namely, the genotype and phenotype.
This means there are two optimizations in play: adaptive
changes in the phenotype over somatic time (i.e., changes
in mµ) and adaptive changes in the genotype over
evolutionary time (i.e., changes inm).
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(ii) somatic changes will be subject to two forces: first, a
maximization of accuracy that simply maximizes the
probability of occupying adaptive states, and second,
a minimization of complexity. This minimization
corresponds to reducing the divergence between the
beliefs about, or model of (hidden) environmental states
(ψ) implicit in the phenotype and the prior beliefs implicit
in the genotype. In other words, a good genotype will
enable the minimization of free energy by equipping the
phenotype with prior beliefs that are sufficient to maintain
accuracy or a higher probability of adaptive states. Thus,
the phenotype may be thought of as a type of experiment,
which gathers evidence to test prior beliefs; i.e., gathers
evidence for its own existence.

(iii) changes in the genotype correspond to Bayesian model
selection (c.f., natural selection). This simply means
selecting models or genotypes that have a low free energy or
high Bayesian model evidence. Because the Bayesian model
evidence is the probability of an adaptive state given amodel
or genotype (p(s|m)), natural selection’s negative variational
free energy becomes (free) fitness. At this level of free energy
minimization, evolution is in the game of orchestrating
multiple (phenotypic) experiments to optimize models of
the (local) environment.

Another specific example of the general ability of the free energy
minimization principle to describe evolutionary change is in
neuroscience where it is fairly easy to demonstrate the centrality
of this principle in explaining evolutionary, developmental and
perceptual processes in a wide range of mental functions (Friston,
2010). The brain produces mental models which combine
sensory information concerning the state of the environment,
with possible actions with which the organism may intervene.
The initiation of an action is a kind of experiment in the
outside world testing the current beliefs about its hidden
states. The overall drive of the free energy principle is to
reduce the model complexity, while maximizing its accuracy in
achieving the predicted outcome. Crucially, the ensuing self-
organization can be seen at multiple levels of organization; from
dendritic processes that form part of the single neuron—to
entire brains. The principles are exactly the same, the only thing
that changes is the way that the model is encoded (e.g., with
intracellular concentrations of various substrates—or neuronal
activity and connectivity in distributed brain systems). This
sort of formulation has also been applied to self-organization
and pattern formation when multiple systems jointly minimize
their free energy (for example, in multi-agent games and
morphogenesis at the cellular level).

Clearly, the application of variational (Bayesian) principles to
ecological and cellular systems means we have to abandon the
notion that only humans can make inferences. We will take up
this theme below and see how freeing oneself from the tyranny of
anthropomorphism leads us back to a universal Darwinism.

The free energy minimization principle may also be applied
to processes of cultural evolution. A compelling example here is
the evolution of scientific understanding itself. Science develops
hypotheses or theoretical models of natural phenomena. These

models are used to design experiments in the real world and
the results of the experiment are used to update the probability
of each hypothesis composing the model according to Bayes’
theorem. In the process free energy is minimized through a
balance which reduces the model’s complexity (Occam’s razor)
while increasing the model’s predictive accuracy and explanatory
scope.

The evolutionary interaction between models and the systems
they model, as described by the free energy minimization

principle, may be applicable to additional natural phenomena
beyond the examples above. Several attempts have been made to
describe universal Darwinism in such terms. We have previously
noted the wide range of scientific subject matter that has been

identified within the literature as Darwinian processes—and
have offered an interpretation in terms of inferential systems
(Campbell, 2014); an interpretation closely related to that of

the free energy minimization principle. Richard Dawkins offered
a description of biological evolution in terms of replicators

and vehicles (Dawkins, 1982), a description which Blackmore
and Dennett have generalized to interpret universal Darwinism
(Dennett, 1996; Blackmore, 1999). That description may also be

understood as an interplay between internal models (replicators)
and the experience of the “experiments” (vehicles) which they
model in the external world.

The Price equation describing evolutionary change may be
cast in a form which distinguishes between change due to
selection and transmission. Changes due to selection tend to
decrease model variation whereas changes due to transmission
or copying of the model serve to increase variation. The
transmission changes of biological models are often in the form
of genetic mutations (Frank, 2011). From the perspective of
universal Darwinism, we might expect a mechanism capable of
increasing model variation within non-biological evolutionary
processes that is analogous to biological mutation. As an example
wemight consider the process of evolutionary change in scientific
models during transmission. These may appear less clear; there is
less consensus on how new and sometimes improved scientific
models are generated. It may seem this process has little in
common with the somewhat random and undirected process of
biological mutation.

The mental process by which researchers arrives at innovative
models is largely hidden and might be considered closer
to an art form than algorithmic but the development of
inferential/Darwinian evolutionary computational processes
have demonstrated a strong ability to discover innovative models
in agreement with the evidence(Holland, 1975; Ibáñez et al.,
2015). In some instances, these evolutionary approaches have
inferred successful models for systems which have long eluded
researchers (Lobo and Levin, 2015).

THE ARENA OF BAYESIAN INFERENCE

The reluctance of many researchers to endorse a Bayesian
interpretation of evolutionary change may be somewhat
puzzling. One reason for this is a peculiarity, and I would
suggest a flaw, in the usual Bayesian interpretation of inference
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that renders it unfit as a description of generalized evolutionary
change. The consensus Bayesian position is that probability
theory only describes inferences made by humans. As Jaynes put
it (Jaynes, 1988):

it is...the job of probability theory to describe human inferences at

the level of epistemology.

Epistemology is the branch of philosophy that studies the nature
and scope of knowledge. Since Plato the accepted definition of
knowledge within epistemology has been “justified true beliefs”
held by humans. In the Bayesian interpretation “justified” means
justified by the evidence. “True belief” is the degree of belief in
a given hypothesis which is justified by the evidence; it is the
probability that the hypothesis is true within the terms of the
model. Thus, knowledge is the probability, based on the evidence,
that a given belief or model is true. I have proposed a technical
definition of knowledge as 2−S where S is the entropy of the
model (Campbell, 2014).

A perhaps interesting interpretation of this definition is that
knowledge occurs within the confines of entropy or ignorance.
For example, in a model composed of a family of 64 competing
hypotheses, where no evidence is available to decide amongst
them, we would assign a probability of 1/64 to each hypothesis.
The model has an entropy of six bits and has knowledge of
2−6

= 1/64. Let’s say some evidence becomes available and the
model’s entropy or ignorance is reduced to three bits. Then the
knowledge of the updated model is 1/8, equivalent to the entropy
of a model composed of only eight competing hypotheses that is
maximally ignorant, which has no available evidence. The effect
which evidence has on the model is to increase its knowledge by
reducing the scope of its ignorance.

It is unfortunate that both Bayesian and Frequentist
interpretations deny the existence of knowledge outside of the
human realm because it forbids the application of Bayesian
inference to phenomena other than models conceived by
humans, it denies that knowledge may be accumulated in natural
processes unconnected to human agency and it acts as a barrier
in realizing our close relationship to the rest of nature. Thus,
even though natural selection is clearly described in terms of
the mathematics of Bayesian inference, neither Bayesians such as
Jaynes nor frequentists such as Frank can acknowledge this fact
due to another hard fact: natural selection is not dependent upon
human agency. In both their views this may rule out a Bayesian
interpretation.

I believe that the correct way out of this conundrum is to
simply acknowledge that in many cases inference is performed
by non-human agents as in the case of natural selection and
that inference is an algorithm which we share with much of
nature. The genome may for instance be understood as an
example of a non-human conceived model involving families of
competing hypotheses in the form of competing alleles within the
population. Such models are capable of accumulating evidence-
based knowledge in a Bayesian manner. The evidence involved
is simply the proportion of traits in ancestral generations which
make it into succeeding generations. In other words, we just
need to broaden Jaynes’ definition of probability to include

non-human agency in order to view natural selection in terms
of Bayesian inference.

In this view the accumulation of knowledge is a preoccupation
we share with the rest of nature. It allows us to view
nature as possessing some characteristics, such as surprise and
expectations, previously thought by many as unique to humans
or at least to animals. For instance, all organisms “expect” to find
themselves in the type of environment for which they have been
adapted and are “surprised” if they don’t.

UNIVERSAL DARWINISM

Bayesian probability, epistemology and science in general tend
to draw a false distinction between the human and non-human
realms of nature. In this view the human realm is replete with
knowledge and thus, infused with meaning, purpose and goals,
and Bayesian inference may be used to describe its knowledge-
accumulating attributes. On the other hand, the non-human
realm is viewed as devoid of these attributes and thus Bayesian
inference is considered inapplicable.

However, if we recognize expanded instances, such as
natural selection, in which nature accumulates knowledge then
we may also recognize that Bayesian inference, as well as
equivalent mathematical forms, provides a suitable mathematical
description in both realms. Evolutionary processes, as described
by the mathematics of Bayesian inference, are those which
accumulate knowledge for a specific purpose, knowledge
required for increased fitness, for increased chances of continued
existence. Thus, the mathematics implies purpose, meaning and
goals, and provides legitimacy for Daniel Dennett’s interpretation
of natural selection in those terms (Dennett, 1996). If we allow an
expanded scope for Bayesian inference, we may view Dennett’s
poetic interpretation of Darwinian processes as having support
from its most powerful mathematical formulations.

An important aspect of these mathematics is that they
apply not only to natural selection but also to any generalized
evolutionary processes where inherited traits change in
frequencies between generations. As noted in a cosmological
context by Gardner and Conlon (2013):

Specifically, Price’s equation of evolutionary genetics has

generalized the concept of selection acting upon any substrate

and, in principle, can be used to formalize the selection of

universes as readily as the selection of biological organisms.

At the core of Bayesian inference, underlying both the Price
equation and the principle of free energy minimization we find
an extremely simple mathematical expression: Bayes’ theorem:

q,i = qi
wi

w

Simply put this equality says that the probabilities assigned to
the hypotheses of a probabilistic model are updated by new
data or experience according to a ratio, that of the probability
of having the experience given that the specific hypothesis is
correct to the average probability assigned by the model to
having that experience. Those hypotheses supported by the data,
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those that assign greater than average probability to having
the actual experience, will be updated to greater values and
those hypotheses not supported by the data will be updated to
lesser values. This simple equation describes the accumulation of
evidence-based knowledge concerning fitness.

When Bayes’ theorem is used to describe an evolutionary
process the ratio involved is one of relative fitness, the ratio of
the fitness of a specific form of a trait to the average fitness of
all forms of that trait. It is thus extremely general in describing
any entity able to increase its chances of survival or to increase its
adaptiveness. When cast in terms of the principle of free energy
minimization some further implications of this simple equation
are revealed (see above).

In a biological evolutionary context, the Price equation is
traditionally understood as the mathematics of evolutionary
change. However, the Price equation may be derived from a
form of Bayes’ theorem (Gardner, 2008; Shalizi, 2009; Frank,
2012b) which means it describes a process of Bayesian inference,
a very general form of Bayesian inference which according to
Gardner (Gardner, 2008) applies to any group of entities that
undergo transformations in terms of a change in probabilities
between generations or iterations. Even with this great generality
it provides a useful model as it partitions evolutionary change in
terms of selection and transmission (Frank, 2012a).

There are numerous examples of these equivalent
mathematical forms used in the literature to describe
evolutionary change across a wide scope of scientific subject
matter, specifically evolutionary change in biology (Gardner,
2008; Frank, 2012b), neuroscience (Friston, 2010; Fernando
et al., 2012) and culture (Hull, 1988; Jaynes, 2003; Mesoudi et al.,
2006; Gintis, 2007).

It is interesting to speculate on the similarity of these
mathematical forms to those which may be used to describe
quantum physics. Quantum physics is also based upon
probabilistic models which are updated by information received
through interactions with other entities in the world. Wojciech
Zurek, the founder of the theory of quantum Darwinism
(Zurek, 2009), notes that the update of quantum states may
be understood in terms of ratios acting to update probabilistic
models (Zurek, 2005).

Using this connection, we then infer probabilities of possible

outcomes of measurements on S from the analogue of the

Laplacian ‘ratio of favorable events to the total number of

equiprobable events’, which we shall see in Section V is a good

definition of quantum probabilities for events associated with

effectively classical records kept in pointer states.

Unfortunately, many who have attempted to interpret
quantum theory in terms of Bayesian inference, such as
Caves, Fuchs, and Schack (Fuchs, 2010), have endorsed a

common anthropomorphic Bayesian flaw and conclude that the
probabilities involved with quantum phenomena are a “personal
judgment” (Fuchs et al., 2015), and thus that the inferences
involved take place within a human brain. A conceptual shift
acknowledging that inference is a natural algorithm which may
be performed in processes outside of the human brain may go

some way to allowing quantum Darwinism to be understood as
a process of Bayesian inference conducted at the quantum level
(Campbell, 2010).

A vast array of phenomena is subject to evolutionary change
and describable by the equivalent mathematical forms discussed
here. These forms interpret evolutionary change as based on the
accumulation of evidence-based knowledge. Conversely, many
instances of evidence-based knowledge found in nature are
describable using this mathematics. We might speculate that
all forms of knowledge accumulation found in nature may
eventually find accommodation within this paradigm. Certainly,
the theorem proved by Cox (1946) identifies Bayesian inference
as the unique method by which models may be updated with
evidence.

It is somewhat ironic that in 1935 Fisher wrote (Fisher, 1937):

Inductive inference is the only process known to us by which

essentially new knowledge comes into the world.

Of course he was referring to experimental design and
considered it unnecessary to specify that he was referring only
to human knowledge. Probably he assumed that no other
repositories of knowledge exist. The stage may now be set
for us to understand his assertion as literally true in its full
generality.

Ultimately the scope and interpretation of universal
Darwinism, the study of phenomena which undergoes
evolutionary change, will depend on the mathematical
model underlying it. Those phenomena which are accurately
and economically described by the mathematics must be
judged to be within the scope of universal Darwinism.
Given the great generality and substrate independence of
current mathematical models, a unification of a wide range of
scientific subject matters within this single paradigm may be
possible.
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Measurements of local field potentials over the cortical surface and the scalp of animals
and human subjects reveal intermittent bursts of beta and gamma oscillations. During
the bursts, narrow-band metastable amplitude modulation (AM) patters emerge for a
fraction of a second and ultimately dissolve to the broad-band random background
activity. The burst process depends on previously learnt conditioned stimuli (CS), thus
different AM patterns may emerge in response to different CS. This observation leads to
our cinematic theory of cognition when perception happens in discrete steps manifested
in the sequence of AM patterns. Our article summarizes findings in the past decades
on experimental evidence of cinematic theory of cognition and relevant mathematical
models. We treat cortices as dissipative systems that self-organize themselves near a
critical level of activity that is a non-equilibrium metastable state. Criticality is arguably
a key aspect of brains in their rapid adaptation, reconfiguration, high storage capacity,
and sensitive response to external stimuli. Self-organized criticality (SOC) became an
important concept to describe neural systems. We argue that transitions from one AM
pattern to the other require the concept of phase transitions, extending beyond the
dynamics described by SOC. We employ random graph theory (RGT) and percolation
dynamics as fundamental mathematical approaches to model fluctuations in the cortical
tissue. Our results indicate that perceptions are formed through a phase transition from
a disorganized (high entropy) to a well-organized (low entropy) state, which explains the
swiftness of the emergence of the perceptual experience in response to learned stimuli.

Keywords: cinematic theory of cognition, AM pattern, criticality, phase transition, Freeman K set, Hebbian
assembly, graph theory, neuropercolation

INTRODUCTION

It is now commonplace to regard cerebral cortex as an organ maintaining itself in a dynamic
state at the edge of criticality (de Arcangelis et al., 2014; Plenz and Niebur, 2014). Criticality
in mathematics and physics relates to a point of sudden transition from one state to another.
In thermodynamics, the term denotes a point on the phase boundary between solid, liquid and
gas phases. Near the critical point, the state of the system changes drastically with the variation
of some control parameter, which behavior has been observed in the operation of the cortex
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(Freeman, 2008; Fraiman and Chialvo, 2012; Freeman et al.,
2012). Metastability is a related fundamental behavior employed
in characterizing brain dynamics and cognition (Bressler and
Kelso, 2001; Freeman and Holmes, 2005; Tognoli and Kelso,
2014). Metastability indicates a continuous interplay between
phase synchrony and phase scattering in a system with many
interacting components (van Straaten and Stam, 2013; Zalesky
et al., 2014; Freeman, 2015).

How does the cortex maintain a critical state? Nuclear
physicists use the concept of criticality to denote the threshold,
at which nuclear fission reaction is maintained. The critical
state of the fission chain reaction is achieved by a delicate
balance between the material composition of the reactor and
its geometrical properties. The criticality condition is expressed
as the identity of geometrical curvature (buckling) and material
curvature. Critical processes in nuclear reactors are designed in
a way to satisfy strictly linear operational regimes, in order to
guarantee stability of the underlying coupled reactor dynamic
process (Upadhyaya et al., 1980; Kozma, 1985; March-Leuba and
Rey, 1993). In brains, however, nonlinear feedback effects are
of primary importance in sustaining complex cortical dynamics
(Kozma and Freeman, 2001; Tagliazucchi and Chialvo, 2012).
Our answer to the question on the origin of sustained critical
state in brains is that mutual excitation between populations of
cortical neurons maintains criticality, in combination with the
refractory period that prevents exponential grow, thus stabilizes
the dynamics (Freeman, 1975, 2004a).

In the past decade, neuroscientists successfully employed the
concept of self-organized criticality (SOC) to neural processes
(Beggs, 2008; Friston et al., 2012; Fingelkurts et al., 2013; Palva
et al., 2013; Plenz and Niebur, 2014). These and many other
studies point to scale-free dynamics in the cortex resembling
cascades of sand piles duringmetastable states (Bak, 1996; Jensen,
1998; Petermann et al., 2009). SOC, however, cannot describe
the existence of robust critical regions with sustained metastable
dynamics, neither the rapid transitions from one metastable
state to the other (Tognoli and Kelso, 2014). Bonachela et al.
(2010) describe brains as ‘‘pseudo-critical’’ and suggest that
we should ‘‘. . . look for more elaborate (adaptive/evolutionary)
explanations, beyond simple self-organization.’’ Reinforcement
learning (RL) is crucial in producing rapid transitions from
one metastable state to the other (Freeman, 1979). RL sensitizes
the cortex selectively and creates spatially extended Hebbian
cell assemblies (HCAs). Once HCAs are formed, they respond
collectively to conditional stimuli. Stimulating any part of the
assembly triggers a rapid increase in synaptic gain, leading to
the explosive increase in the activity, until the activation density
reaches saturation (Freeman, 2015). HCAs manifest emergent
neural packets facilitating the understanding of perceptual
experiences (Yufik and Friston, 2016).

Synchronized bursts of neural activity have been observed
and analyzed extensively in the literature. This includes the
description of spike bursts in interacting excitatory-inhibitory
neural populations (see, e.g., Hindmarsh and Rose, 1984;
Izhikevich, 2000; Coombes and Bressloff, 2005; Srinivasan
et al., 2013). Mathematical models based on chaos theory have
been proved to be useful to describe these bursts patterns

(Hansel and Sompolinsky, 1992; Tsuda, 2001; Kozma, 2003).
Recent breakthroughs include the comprehensive description
of sharp wave ripples representing episodic memory effects
(Buzsáki, 2015) and systematic analysis of spike bursts (Werbos
and Davis, 2016). Our work addresses experimental and
theoretical findings of transient synchronization in mesoscopic
neural populations and their interpretation based on the concept
of phase transitions in random graph theory (RGT) and statistical
physics.

Since the early 2000s, phase transition in RGT has been
employed as a useful mathematical concept to model the
dynamics of the cortical tissue (Kozma et al., 2001). The random
graph description of the cortex, called ‘‘neuropercolation,’’
implements a hierarchy of cortical models (Kozma et al., 2005).
Non-local interactions between neural populations via long
axonal projections are crucial in describing cortical dynamics.
There are extensive studies to model small-world effects (Watts
and Strogatz, 1998) in structural and functional brain networks
tuned to criticality (Bullmore and Sporns, 2009, 2012; Turova,
2012; Haimovici et al., 2013; Sporns, 2013; Alagapan et al., 2016).
The level of system noise, the ratio of non-local connections
corresponding to long axons, and the strength of inhibitory
effects are key variables that allow controlling the transitions
between opposite phases (Kozma and Puljic, 2015). In the
absence of non-local connections, diffusion-like effects dominate
the spatio-temporal dynamics, which fall short of producing the
required rapid cortical transitions. With the help of non-local
connections, we were able to generate and maintain phase
transitions exhibiting rapid transitions between synchronized
and desynchronized phases (Puljic and Kozma, 2008, 2010;
Kozma and Puljic, 2015).

Phase transitions between disordered and ordered neural
states provide key insights to understand and interpret
the observed cortical space-time neurodynamics. Disordered
states are characterized by random dispersion of active and
inactive sites, while the emergence of metastable amplitude
modulation (AM) patterns signify more ordered states. In
the disorganized phase, the individual microscopic neurons
are loosely coupled, which facilitates them processing sensory
information individually. In the organized phase, the neurons
are strongly coupled into populations producing metastable
macroscopic AM patterns (Freeman, 2014). Transitions from
one AM pattern to the other produce a sequence of metastable
cortical states, which can be viewed as neural correlates of
cognitive activity in the framework of the cinematic theory of
cognition (Freeman, 2006, 2007; Kozma and Freeman, 2016).
The cinematic theory of cognition is related to the concept of
perception occurring in discrete epochs (Crick and Koch, 2003),
and to the model of pulsating consciousness manifested via
neuronal activity packages (Yufik, 2013).

This essay summarizes our decades-long experimental and
theoretical studies supporting the concept of the cinematic theory
of cognition. We review the theory of criticality in the cerebral
cortex based on self-organized dynamics of neural populations,
manifested in the form of sequential phase transitions between
metastable AM patterns. In our interpretation, phase transitions
are responsible for the rapid responses to sensory stimuli
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observed in cognitive processing and for the emergence of our
perceptual experiences according to the cinematic theory of
cognition.

CONSTRUCTING THE SELF-ORGANIZED
PERCEPTION CYCLE

Metastable AM Patterns Manifest the
Organized Phase of Cortical Dynamics
From the variety of the available brain monitoring techniques,
here we focus on recordings EEG and ECoG potentials.
Intracranial experiments with electrode arrays over the cortex
have been conducted in various laboratories, providing a
window on the electrophysiological processes underlying brain
functions (Freeman, 1975; Skarda and Freeman, 1987; Canolty
et al., 2010; Panagiotides et al., 2011; Buzsáki et al., 2012). A
state-of-art overview of brain imaging using EEG and ECoG
monitoring techniques is given by Freeman and Quian-Quiroga
(2013), including single trial experiments, high-density arrays,
and spatio-temporal spectral analysis. More traditional Fourier
analysis is often supplemented by Hilbert transform, which is
especially beneficial in the characterization of rapidly changing,
metastable activity patterns.

We illustrate the experimental results concerning the
presence of highly organized metastable AM patterns and their
intermittent collapse to a disorganized state using the example of
rabbits, conducted in the Freeman neurophysiology laboratory
at UC Berkeley (Freeman and Barrie, 2000). Rabbits were
implanted with intracranial electrode arrays over their sensory
cortices and trained using the well established, RL paradigm.
In the experiment displayed in Figure 1, an ECoG array of
8 × 8 electrodes is fixed over the visual cortex of the rabbit.
The measurement is 6 s long with a visual stimulus presented
to the animal at time instant t = 3 s; thus there is a 3 s
pre-stimulus and a 3 s post-stimulus period. Figure 1, upper
plot, shows the 64 ECoG traces filtered in the gamma band
30–36 Hz (Davis et al., 2013). There is a base level of background
activity during the 3 s expectancy state without stimulus. During
the ∼1 s interval following the stimulus several gamma bursts
appear. Finally, after about 1 s following the stimulus (at time

instants >4 s), the activity returns to the background state. The
novelty of the results lies in the development of quantitative
measures to characterize the sequence of metastable states, using
various pragmatic information indices (Freeman, 2004a; Davis
et al., 2013).

Using Hilbert transform for each of the 64 ECoG signals,
complex valued analytic signals are obtained with amplitude and
phase components. The analytic amplitude represents the power
of the ECoG signal, while the phase can be used to monitor
synchronization effects. In Figure 1, lower plot, the amplitudes
of the 64 analytic signals are shown. In the pre-stimulus period,
the amplitudes fluctuate at a low level, indicating a sustained,
disorganized background activity. There are several beats during
the ∼1 s period following the stimulus, which demonstrate
intermittent bursts of power in the gamma band. These bursts
signify the emergence of metastable AM patterns (for details, see
Freeman, 1975, 2004a, 2014).

The existence of an AM pattern indicates that the cortical
dynamics is constrained to a narrow attractor basin in response
to a given stimulus. This is a highly structured (organized) state
with significant coordination between the 64 ECoG channels. In
spite of the individual differences between the ECoG channels,
they have significant commonality in their behaviors; namely,
they rise, reach a maximum, and decrease in synchrony. This
means that the AM pattern is largely time-invariant during the
100–200 ms of its existence, although its overall intensity varies
in time. The relevance of AM patterns in defining the cognitive
state of the animal has been demonstrated by using AM patterns
as classification tools to discriminate between stimuli (Freeman,
1979; Kozma and Freeman, 2001). The AM patterns provide us
with an observation window to monitor the cognitive process
using ECoG/EEG techniques. When the input is removed, the
cortical dynamics is released from its constrained state, the AM
pattern disappears, and the cortex returns to the disorganized,
background state.

The AM patterns do not represent the input stimuli in any
practical sense; rather they correspond to the meaning of the
input. They continuously change during the life of the animal
through a learning process, as a result of past experiences, present
state and future goals of the subject. If a new stimulus does not
match a previously learnt experience, the response of the cortex

FIGURE 1 | Rabbit ECoG data measured over the visual cortex using an 8 × 8 array of electrodes. The duration of the experiment is 6 s, with a visual
stimulus (light flash) presented to the animal at t = 3 s; the signals were filtered over the gamma band (30–36 Hz). The subplots show 64 curves corresponding to the
ECoG signals (top) and the analytic signals (bottom), respectively. The analytic signals have been calculated using Hilbert transform, from Davis et al. (2013).

Frontiers in Systems Neuroscience | www.frontiersin.org March 2017 | Volume 11 | Article 10 | 51

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Kozma and Freeman Cinematic Theory of Cognition

is a rapidly decaying oscillation. If the stimulus is presented again
and again to the animal, the connections between excitatory
neurons are strengthened in a process called Hebbian learning.
As the result, the response decays less and less, which ultimately
leads to sustained narrow-band oscillations due to the formation
of a HCAs. The emergence of narrow-band oscillations is crucial
for the efficient memory readout based on metastable AM
patterns. The role of Hebbian reinforcement of connections
between co-activated neurons has been demonstrated in large
neuron populations, including the hippocampus, sensorimotor
and speech areas (Buzsáki, 2005; Pulvermüller and Fadiga, 2010;
Lopes-dos-Santos et al., 2013). In the computational domain,
Hebbian RL has been implemented in various neural network
models (see, e.g., Amit, 1995; Wennekers and Palm, 2009).

The example of the olfactory system with convergent-
divergent connections is illustrated in Figure 2 (Freeman, 1979).
Input is transmitted via the primary olfactory nerve (PON) to
the olfactory bulb, where the HCA is shown by black dots. By
stimulating any subset of the HCA, the whole HCA is activated
and produces narrow-band oscillations, thus exhibits the key
property of generalization over the category of the sensory
stimulus. Activations from the bulb are projected to the olfactory
cortex through the lateral olfactory tract (LOT). The increased
strengths of mutual excitatory connections (Kee) in the Hebbian
assembly strongly enhance gamma oscillations in response to
learned stimuli (Baird et al., 1991; Kozma and Freeman, 2001).
In the context of the present work it is to be emphasized that
he formation of HCAs and their rapid activation in response
to learned stimuli are important conditions of cortical phase
transitions (Freeman, 2015).

Background Activity and “Null Spikes”
The low overall magnitudes of the ECoG and analytic signals in
Figure 1 before the stimulus onset (t < 3 s) indicate that the

FIGURE 2 | Illustration of the topographic mapping that characterizes
the olfactory input pathway. (A) Input is transmitted via the primary
olfactory nerve (PON) to the olfactory bulb having excitatory (upper) and
inhibitory (lower) layers, where the Hebbian assembly is shown (black dots).
The Hebbian assembly is ignited with the stimulation of any of its subsets and
leads to a phase transition from broad-band background activity to
narrow-band oscillations, which are projected to the olfactory cortex through
the lateral olfactory tract (LOT). (B) The increased strengths of mutual
excitatory connections (Kee) in the Hebbian assembly strongly enhance
gamma oscillations in response to learnt stimuli (Freeman, 1979).

background activity is a state of relatively low energy as compared
to the high-energy burst of the AM patterns. Moreover, the
energy of the background oscillations is distributed over a wide
range of frequencies as opposed to the narrow-band (gamma)
oscillations contributing the formation of AM patterns. In fact,
the background conforms to power-law dynamics with a power
exponent ranging between −2 and −4 (Freeman and Zhai,
2009). It is generated by mutual excitation among populations of
cortical excitatory neurons, which activity places great demand
on bodily metabolism even in brains at rest, sometimes referred
to as ‘‘dark energy’’ (Raichle, 2006).

The background activity is characterized by weak correlation
and strong desynchronization between individual channels. The
overall low background activity level may briefly drop to near
zero for some channels, which phenomenon is called ‘‘null spike’’
(Freeman, 2008; Kozma and Freeman, 2008). During null spikes,
the analytic phase of the background exhibits sudden changes,
jumps, discontinuities; the channels have significant dispersion
in their analytic phases. If the background is described as a
disordered phase compared to the ordered phase with metastable
AM patterns, then the null spikes clearly represent extreme
disorder, which we characterize as singularity. The singularity
is embedded in the background activity. At the singularity, we
observe that the analytic amplitude diminishes and the analytic
phase dispersion increases explosively. The very low power
of the null spike means that the interactions between neural
populations are suppressed. This provides favorable conditions
for inputs to have a significant impact on the behavior of
neural populations, especially through igniting relevant Hebbian
assemblies, which facilitate a consequent rapid propagation of
activities.

Null spikes are interpreted as the sites of nucleation initiating
a phase transition, following the analogy of crystallization or
condensation. For example, when a liquid is converted to a solid
phase, the solidification starts as a specific point on the surface,
and expands from that point rapidly as the liquid to solid phase
transition progresses. Similarly, condensation of steam into the
liquid phase starts at a point on the surface; the incipient drop
grows from that location by expanding the boundary between the
liquid and vapor phases. Following these examples, the initiation
of null spike on the cortex may signify the start of the phase
transition in the brain dynamics from disorganized phase to
organized phase. In brains, the organized phase appears in the
form of an emergent AM pattern with increasing power at the
frequency of the carrier wave (gamma power).

The synchronized pattern emerges at the wake of a phase
gradient rapidly propagating over the surface of the cortex. This
phase gradient has the form of a cone and it is called ‘‘phase
cone’’ (Freeman, 2004b). Note that there are many phase cones
that appear and disappear all the time, however, those phase
cones are mostly small (microscopic), and do not grow to the
macroscopic size characteristic of a phase transition. Only when
the drop of the analytic power coincides with the presence of a
suitable stimulus, can we observe the rapid growth of a phase
cone to sizes covering large cortical areas. The location of the
apex of the cone varies randomly from each burst to the next
and has no relation to the stimulus. The conic apex is in itself
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a singularity, and there is some preliminary evidence that its
location may correspond to the location of the preceding null
spike (Freeman, 2015).

The Collapse of AM Patterns
AM patterns represent highly organized states of the cortex,
which ultimately dissolve through gradual erosion under
continual bombardment by sensory stimuli. The collapse of AM
patterns can be viewed as a phase transitions from a synchronized
to a disorganized state. In physics, such a conversion is
described as evaporation of a liquid, or melting of a solid
substance. This phase transition requires energy transferred to
the system.

AM patterns are synchronized bursts of the activities of large
masses of neurons, which emerge through phase transitions
initiated by null spikes and exists for a fraction of a second (theta
rates). There is a characteristic frequency of the burst in the
gamma band due to the interaction of excitatory and inhibitory
populations, but there is a marked distribution of frequencies
of the myriads of individual feedback loops that contribute to
the formation of the AM pattern (Kozma and Freeman, 2008).
It is inevitable that variations in these frequencies produce
oscillations that become less and less synchronized, thus the
collective order of the neural populations decreases. As a result,
the overall power of the oscillations diminishes and the AM
patterns collapse (Freeman, 2014).

The elimination of the AM pattern drives the dynamics
back to the background level, which will produce another AM
pattern and the whole cycle starts again. The presence of the
continual cycle of the emergence and destruction of metastable
AM patterns is an important property of cortical dynamics,
which is a lifelong process. In the next section, this cycle is
discussed in the context of the cinematic theory of cognition,
while energy considerations are described afterwards.

CINEMATIC MODEL OF PERCEPTION AS
A SEQUENCE OF PHASE TRANSITIONS

ECoG measurements with intermittent transitions between
synchronized and desynchronized brain states are interpreted in
the framework of the cinematic theory of cognition (Freeman,
2007; Kozma and Freeman, 2016). Accordingly, neocortex
processes information in frames like a cinema. Metastable AM
patterns manifest the ‘‘frames,’’ and the phase transitions provide
the ‘‘shutter’’ from one frame to the next. Moving from one
metastable pattern to the other corresponds to successive images
in a movie, which we interpret using the synergetic approach
to information processing (Haken, 1983). Haken proposed that
state transitions are essential for information transfer between
hierarchical levels, by which a collection of particles create an
order parameter and in circular causality enslaves the activity of
the particles. Cortical AM patterns are the manifestations of the
enslavement of individual neural oscillations by collective EEG
dynamics (Freeman, 2007).

Figure 3 illustrates the sequential processing in the cinematic
model of cognition; the top two diagrams show the superimposed
64 ECoG signals (pass band: 20–28 Hz) and the corresponding

curves of the analytic power, respectively. The time evolution
displays a sequence of beats having relatively high power,
separated by periods with diminishing analytic power (marked
by blue vertical bars). The duration of a beat is about
100–200 ms, and a metastable AM pattern is sustained during
this period. The blue bars correspond to brief time periods of
transition from one beat to the other. During the transition,
the AM patterns collapse to a singularity (null spike), when the
synchrony disappears and the phase relationships exhibit high
dispersion.

The cinematic theory employs two main components of
cortical dynamics that occur sequentially, namely, the movie
frame and the shutter.

• The frames are defined by the metastable AM patterns,
which describe a phase with synchronous activity and
macroscopic order. The metastable AM patterns represent
a transmission mode of operation, i.e., they convey the
knowledge contained in the meaning of the stimulus that
gave rise to AM patterns. At the ordered phase, the cortex
ignores the impact of the irrelevant input stimuli, until the
AM pattern finally erodes and leads to the disorganized phase
(shutter).

• The shutter is brief (∼20 ms) and it corresponds to the
collapse of order due to the desynchronization of the neural
activity. This is the receiving phase of the perception cycle,
when the analytic power drops near zero and the dynamics
becomes susceptible to input stimuli. Once a relevant stimulus
is selected, it activates a HCA and induces rapid growth
of a large phase cone, which extends over distant cortical
areas.

The cinematic theory describes two types of phase transitions,
one with the emergence of order from disorder in the form of
AM patterns, and the other is the collapse of order manifested in
the dissolution of the AM patterns.

• Transition from disorder to order: AM patterns emerge
rapidly following the initiation by a null spike under the
influence of a relevant stimulus. The large cones are initiated
and maintained by corresponding HCAs. These large-scale
phase cones enslave the cortical dynamics and lead to the
emergence of order in the form of AM patterns. Without
activating a HCA, the incipient phase cones cannot grow to
macroscopic level, rather they remain localized, and the impact
of the input stimuli rapidly fades away.

• Transitions from order to disorder: the degradation of the
AM patterns is gradual, under the constant impact of input
stimuli. At first, AM patterns are highly synchronized and
resist to perturbations in the form of the emergence and
collapse of small phase cones during the metastable state.
Ultimately, however, the synchrony erodes, the power of the
population activity decreases, and the dynamics returns to the
disorganized background phase.

The existence of metastable AM patterns and their ultimate
collapse can be interpreted in the context of SOC. There are
incipient, smaller phase cones during themetastable AMpatterns
(Freeman, 2004b), which resemble avalanches of various sizes
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FIGURE 3 | Illustration of the self-organized perception cycle based on the cinematic theory of cognition. (A) Superimposed band-pass filtered ECoG
signals. (B) The 64 analytic amplitudes show beats with high amplitudes, interrupted with periods of reduced power, marked by blue bars (null spikes). The high
amplitudes between the blue bars correspond to metastable amplitude modulation (AM) patterns carrying the cognitive content (frames). The null spikes are
singularities localized in space and time, with high dispersion of the phases (shutter). (C) Following the singularity, large phase cones emerge, which manifest
transition from microscopic disorder to macroscopic order (illustration by Chris Gralapp), from Kozma and Freeman (2016).

that maintain the state of SOC (Bak, 1996; Jensen, 1998; Beggs
and Plenz, 2003). The power law distribution of avalanche sizes
suggests that the neural tissue is in the dynamic state of criticality.
These incipient phase cones manifest the dissipation of energy
in weak bursts. Such incipient cones may manifest the SOC
metastable state, however, they are different from the large-
scale phase cones emerging during the phase transitions. SOC
cannot describe the sequence of transient patterns observed in
the perception cycle and described here in the context of the
cinematic theory of cognition. Neuropercolation is a suitable
mathematical tool to describe cortical phase transitions, as
summarized next (Kozma and Puljic, 2015).

DISCUSSION ON GRAPH THEORY
INTERPRETATION OF CORTICAL PHASE
TRANSITIONS

The perception cycle is a sequence of transitions between
synchronized and desynchronized states. EEG and ECoG
measurements provide a window of observation into this cycle
by monitoring synchronization properties of the AM patterns.

A prominent example of synchronization-desynchronization
transitions in the cortex is depicted in Figure 4, where
the analytical phase difference is shown in the vertical
axis, against time and space (x and y axes). Uniformly
distributed phase differences indicate synchrony across the array,
while highly variable phase differences mark the presence of
desynchronization. The upper segment of Figure 4 is based on
the 8× 8 array of electrodes with rabbits, while the lower segment
is based on intracranial measurements of the EEG of human
volunteers using a linear array of 64 electrodes (Freeman, 2004b).
One can see extended periods of global synchrony indicated
by dominant blue colors, i.e., uniformly low values of phase
differences. The periods of synchrony are interrupted by brief
desynchronization events shown by a range of colors due to the
large spread of the phase differences.

A family of hierarchical models of cortical dynamics has been
developed originally for the olfactory system (Freeman, 1979),
which is called now Freeman K (Katchalsky) sets. Freeman K sets
have been applied as a general neural network model to describe
chaotic dynamic memories using encoding of external data in
a sequence of spatial oscillatory patterns, mimicking cortical
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FIGURE 4 | Synchronization-desynchronization effects seen in EEG
measurements with humans (lower part) and ECoG with rabbits (upper
part); there are extended periods with low phase differences across
space (blue color), interrupted by short periods with large phase
differences (variable colors). The window of the 8 × 8 array was
5.6 × 5.6 mm for the rabbit data (upper half), while a 1 × 64 curvilinear array
(189 mm long) was used over the scalp of normal human volunteers (lower
half; Freeman, 2004b).

AM patterns. The original mathematical formulation of the
model was based on a set of second-order ordinary differential
equations (ODEs) with distributed parameters (for an overview,
see Kozma and Freeman, 2001). Freeman K sets have been used
in the past decades for pattern recognition, time series prediction,
autonomous navigation and control, and clustering in cyber-
security domains (Harter and Kozma, 2005; Kozma et al., 2007;
Freeman and Kozma, 2010; Rosa and Piazentin, 2016).

An alternative implementation of Freeman K sets uses
RGT instead of ODEs and it is called ‘‘neuropercolation’’
(Kozma et al., 2001, 2005; Kozma, 2007). Neuropercolation
is based on a mathematical approach combining cellular
automata on lattices and random graphs. Neuropercolation
considers the interconnected network of neural populations
as large-scale random graphs, which exhibit phase transitions
near some well-defined critical states. Neuropercolation
includes sparse rewiring of connections creating small-
world effects (Watts and Strogatz, 1998), as well as the
interaction of excitatory and inhibitory populations (Puljic
and Kozma, 2008). It has clear advantages as compared
to ODEs in characterizing rapid transients and phase
transitions, due to the inherent flexibility of the graph theory
framework (Kozma and Puljic, 2013, 2015; Janson et al.,
2016).

FIGURE 5 | Illustration of the results obtained by the neuropercolation model of Freeman K sets with excitatory and inhibitory neural populations.
Phase lags (vertical axis) are depicted for individual channels across time (x axis) and space (y axis). In the model we use the noise level (p) as a control parameter,
which allows tuning the system to criticality. The supercritical state (A) has highly variable phase differences without synchrony, corresponding to p = 0.13. Criticality
is obtained in plot (B) with probability value p = 0.15, which drives the system to spontaneous, intermittent synchronization across the array (Kozma and Puljic, 2013).
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Figure 5 illustrates the results obtained by the
neuropercolation model using Freeman K sets with excitatory
and inhibitory populations. Figure 5A shows the supercritical
state with highly variable phase differences (no synchrony),
while Figure 5B is an example of the near critical state with
intermittent synchronization-desynchronization transitions.
The criticality of the system is controlled by the overall noise
level (p); p = 0.13 belongs to a supercritical state (no synchrony),
while p = 0.15 results in critical state with synchronization-
desynchronization transitions; from Kozma and Puljic (2013).
Note that the calculated synchronization-desynchronization
transitions across space and time resemble the dynamics
observed in measurements with ECoG/EEG arrays. This result
supports the hypothesis that the transitions between organized
and disorganized phases in the cortex may be the consequence
of the cortex residing in a metastable state near criticality.

CONCLUSIONS

Brains constitute only 2% of the human body but they use
disproportionately high amount of energy (over 20%), which
shows that creating intelligence requires a large amount of
metabolic energy. Therefore, energy considerations are very
important to understand the nature of biological intelligence in
our brains, as well as in attempting to create artificial intelligence
in machines.

The cortical energy cycle is summarized as follows, starting
from a disordered background state of high entropy and
low analytic amplitude. Upon the activation of a HCA by
a meaningful stimulus, the synchronized activity of neural
populations rapidly propagates across the cortex and creates
highly structured AM patterns with low entropy states oscillating
in a narrow frequency band (gamma). The formation of AM
patterns can be viewed as a condensation process that leads to
the dissipation of excess energy in the form of heat that is carried
away in the blood stream.

The AM pattern is maintained for some time in a metastable
dynamic state that seems to conform to SOC. Synchronized
activity of extended neural populations is clearly documented

through low phase dispersion between ECoG/EEG channels.
Some disturbances in the analytic phase of the cortical tissue
appear in the form of small-scale phase cones, which disappear
soon after they are formed, obeying the rules of self-similar
dynamics of sand piles. The energy released during the formation
of the AM pattern is replenished through the metabolism, thus
the oxygen debt is repaid (Freeman et al., 2012; Freeman, 2014).

The synchrony represented in the AM pattern is under
constant threat by the bombardment of input stimuli and
it leads to a degradation of the structure, which can be
viewed as an evaporation process. Consequently, the neurons
uncouple their dynamics as they are released from the binding
represented by the structure. Ultimately, the AM pattern
disintegrates, the overall level of firing activity decreases, and the
analytic amplitude diminishes. The system returns to a chaotic
background state and the cycle is completed (for a detailed
description of the cycle, see Kozma and Freeman, 2016).

EEG/ECoG techniques provide insight on the perception
cycle in the cortex. Synchronization-desynchronization
transitions can be measured by noninvasive scalp EEG (Ruiz
et al., 2010; Panagiotides et al., 2011), which allows monitoring
the cognitive activity of normal subjects during routine daily
activities (Freeman and Quian-Quiroga, 2013). This creates the
opportunity to develop various brain-computer interfaces to
improve the quality of life of the healthy human population and
people with disabilities.
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Although neural interactions are usually characterized only by their coupling strength

and directionality, there is often a need to go beyond this by establishing the functional

mechanisms of the interaction. We introduce the use of dynamical Bayesian inference

for estimation of the coupling functions of neural oscillations in the presence of noise.

By grouping the partial functional contributions, the coupling is decomposed into its

functional components and its most important characteristics—strength and form—are

quantified. The method is applied to characterize the δ-to-α phase-to-phase neural

coupling functions from electroencephalographic (EEG) data of the human resting state,

and the differences that arise when the eyes are either open (EO) or closed (EC) are

evaluated. The δ-to-α phase-to-phase coupling functions were reconstructed, quantified,

compared, and followed as they evolved in time. Using phase-shuffled surrogates to

test for significance, we show how the strength of the direct coupling, and the similarity

and variability of the coupling functions, characterize the EO and EC states for different

regions of the brain. We confirm an earlier observation that the direct coupling is stronger

during EC, and we show for the first time that the coupling function is significantly less

variable. Given the current understanding of the effects of e.g., aging and dementia on

δ-waves, as well as the effect of cognitive and emotional tasks on α-waves, one may

expect that new insights into the neural mechanisms underlying certain diseases will be

obtained from studies of coupling functions. In principle, any pair of coupled oscillations

could be studied in the same way as those shown here.

Keywords: coupling function, cross-frequency coupling, dynamical Bayesian inference, effective connectivity,

EEG, neural oscillations, resting brain, eyes-open

1. INTRODUCTION

The complexity of the human brain makes its function exceptionally challenging to analyse
and understand. Its electrophysiological activity emanates from the dynamics of large-scale cell
ensembles (Traub et al., 1996; Klausberger et al., 2003; Breakspear et al., 2010) which oscillate
synchronously within characteristic frequency intervals. The ensembles communicate with each
other to integrate their local information flows into a common brain network. Arguably, one of
the most promising ways of describing communication of that kind is through cross-frequency
coupling, and there has been a large number of such studies in recent years to elucidate the
functional activity of the brain underlying e.g., cognition, attention, learning and working memory
(Jensen and Colgin, 2007; Musizza et al., 2007; Stam et al., 2009; Axmacher et al., 2010; Belluscio
et al., 2012; Jirsa and Müller, 2013; Purdon et al., 2013; van Wijk et al., 2013; Blain-Moraes et al.,
2015; Sotero, 2016).
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The different types of cross-frequency coupling (Jensen and
Colgin, 2007; Canolty and Knight, 2010; Voytek et al., 2010; Jirsa
and Müller, 2013) depend on the dynamical properties of the
oscillating systems that are coupled, e.g., phase, amplitude/power
and frequency. The most studied to date in brain dynamics
have been the phase-to-phase (Varela et al., 2001) and phase-
to-power (Canolty et al., 2006) cross-frequency couplings.
The θ-γ coupling has attracted considerable attention and its
neurophysiological correlates, especially those related to the
working memory (Axmacher et al., 2010; Belluscio et al., 2012),
have been largely understood; there are relatively fewer studies
of the coupling between δ and α waves (Jirsa and Müller, 2013).
These types of investigation are usually based on the statistics of
the cross-frequency relationship e.g., in terms of correlation or
phase-locking, or on a quantification of the coupling amplitude.
Not much has yet been done, however, to assess systematically,
in vivo, the coupling functions that describe the functional
forms of individual cross-frequency interactions between neural
oscillations.

Coupling functions describe in great detail the physical rule
specifying how the interactions occur and manifest themselves.
The coupling function as a whole can be described in terms
of its strength and form. It is the functional form that has
provided the new dimension and perspective on which we
focus below. It probes directly the functional mechanisms of the
interactions. In this way the coupling function can determine
the possibility of qualitative transitions between states of the
composite system e.g., routes into and out of synchronization,
thus playing an active role in the possible self-organization of the
systems. Decomposition of a coupling function can also facilitate
a description of the functional contributions from each separate
subsystem within the coupling relationship.

Recent progress directed toward the extraction and
reconstruction of the coupling functions between interacting
oscillatory processes has led to a diversity of applications.
These include chemical interactions (Kiss et al., 2005; Miyazaki
and Kinoshita, 2006; Tokuda et al., 2007), cardiorespiratory
interactions (Stankovski et al., 2012; Iatsenko et al., 2013;
Kralemann et al., 2013), mechanical interactions (Kralemann
et al., 2008), social sciences (Ranganathan et al., 2014) and
secure communications (Stankovski et al., 2014b). The study
of coupling functions is a very active and expanding field of
research (Stankovski et al., 2017). In this paper we evaluate
coupling functions between brain waves. We focus on δ-to-α
phase-to-phase interactions during eyes opened and closed and
illustrate the underlying methodology. Moreover, we clearly
show the difference in form of the coupling function between
these two states, thereby paving the way to further applications
and advancing the understanding of brain function.

2. MATERIALS AND METHODS

2.1. Wavelet Spectral Analysis
We computed the wavelet transform (WT) (Kaiser, 1994;
Bračič and Stefanovska, 1998; Stefanovska et al., 1999) in order
to evaluate the power content within the 0.8–40 Hz range,

converting the signals s(t) to the time-frequency domain:

WT(ω, t) =

∫

∞

0
ψ(ω(u− t))s(u)ωdu, (1)

whereω denotes angular frequency, t is time, andψ(u) = 1/(2π)

(e(i2π f0u) − e(2π f0)
2/2)e−u2/2 (with

∫

ψ(t)dt = 0) with central
frequency f0 = 1. The power within each frequency interval
was assessed by averaging the spectra over the corresponding
frequency ranges.

2.2. Model of Phase Dynamics
Amplitude dynamics in living systems is often multidimensional,
which can create complications in analysis. In contrast, the
phase dynamics of a periodic process in such systems is
describable in terms of a single-dimensional observable, which
is usually much easier to detect and extract from data. It is
well known that brain activity carries the signatures of several
distinct neural oscillations that manifest themselves within
characteristic frequency intervals (Buzsáki and Draguhn, 2004).
The signals extracted from these intervals are periodic, enabling
the underlying oscillatory processes and their interactions to be
studied effectively through phase dynamics (Kuramoto, 1984),
and leading to extraction of phase-to-phase cross-frequency
couplings (Jensen and Colgin, 2007; Jirsa and Müller, 2013). The
cross-frequency phase couplings coexist in a multivariate and
multidimensional space, so we will consider a network model of
N coupled phase oscillators, each described by

φ̇i(t) = ωi(t)+ qi(φi,φj,φk, . . . ,φN , t)+ ξi(t)

= ωi(t)+
∑

n

q
(1)
i (φn, t)+

∑

nm

q
(2)
i (φn,φm, t)

+

∑

nml

q
(3)
i (φn,φm,φl, t)+ . . .+ ξi(t),

(2)

for all l,m, n, . . ., where φ̇i(t) is the time derivative of the phase
(i.e., the instantaneous frequency), ωi(t) is the natural frequency
and the external stochastic dynamics ξi(t) is treated as Gaussian
white noise 〈ξi(t)ξj(τ )ξk(τ )...〉 = δ(t − τ )Dijk..., where D is
the matrix of noise diffusion and Di,j,k.. gives the noise strength
for the particular i, j, k... element. Although we will discuss the
inference of neural coupling functions from phase dynamics, the
method that we will describe is in principle also applicable to their
inference from amplitude dynamics (Stankovski et al., 2014b).

The coupling functions q
(κ)
i describe the dynamics in terms

of the phases of κ interacting oscillators. As can be seen from
Equation (2), the coupling functions qi act in such a way as to
modify the natural frequency ωi(t): in physical terms, a positive
coupling coefficient will accelerate the oscillation in question (by
increasing its instantaneous frequency φ̇i(t)), whilst a negative
coupling coefficient will decelerate it (by decreasing φ̇i(t)). Thus
a coupling function is able to describe in detail, within a single
cycle, how one oscillator is accelerated or decelerated as a result
of the influence from the other oscillators. This carries important
implications for the interpretation of the mechanisms underlying
the coupling functions, as will be discussed below. Each function
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q
(κ)
i is periodic, for κ ≥ 2 on the κ-dimensional torus, and
can be decomposed into a sum of κ-dimensional Fourier series
of trigonometric functions. In practice it is assumed that the
dynamics can be well-described by a finite number K of Fourier
terms (Kralemann et al., 2011; Duggento et al., 2012): φ̇i =
∑K

k=−K c
(i)
k
8i,k(φ1,φ2, . . . ,φN)+ ξ i =

∑K
k=−K c

(i)
k

exp[i(k1φ1+
k2φ2 + . . . + kNφN)] + ξi, where i = 1, . . . ,N, 8i,0 = 1

so that c
(l)
0 = ωl, and the rest of 8i,k, scaled by c

(i)
k
, are

the k most important Fourier components. Such Fourier series
8i,k(φ1,φ2, . . . ,φN) act as base functions for the dynamical
inference method.

2.3. Dynamical Inference
Our aim is to reconstruct a dynamical model describing the
interactions through the analysis of data, so that the model
can then be used for extraction of the coupling functions. Our
approach is based on the method of dynamical inference, often
referred to as dynamical modeling or dynamical filtering (Kalman,
1960; Sanjeev Arulampalam et al., 2002; Friston et al., 2003; Voss
et al., 2004; von Toussaint, 2011).

Note that inference of cross-frequency couplings from the
statistics of the coupled signals, e.g., through correlation,
(bi-)coherence and Granger causality measures (Geweke, 1982;
Baccala and Sameshima, 2001; Kamiński et al., 2001), yields
the functional connectivity but it provides no information about
the mechanisms of causality. These latter methods are designed
to infer statistical effects rather than dynamical mechanisms
(Barrett and Barnett, 2013). In what follows, however, with the
aid of dynamical inference we discuss how the mechanisms of
the associated causality can be inferred from data, thus yielding
an effective connectivity (Friston, 2011).

In particular, coupling functions represent one type of
dynamical mechanism and their inference yields the effective
connectivity. More specifically, the form of the coupling function
defines the functional law under which some input of the
interactions (i.e., the mutual influence between the oscillations) is
translated into an appropriate output. This is related, not only to
the quantitative parameters of the net coupling strength i.e., net
information flow, but also to how this information is functionally
structured to give an effective mechanism. For example, as we
will see below, the interactions can be such that the form of
the coupling function varies in time (see e.g., Section 3.3.2 and
Stankovski et al., 2012). This dynamical change can cause a
qualitative transition (like synchronization), irrespectively of the
value and the variations of the net coupling strength. This is an
example of a case where functional connectivity methods (e.g.,
Granger causality) will detect only the net coupling strength
and not the possible reason for a qualitative transition, unlike
coupling functions analysis which can do so (see below).

A number of different techniques are available for estimating a
model from data, based on different procedures and theories, and
resulting in slightly different properties and characteristics. They
include e.g., least-squares and kernel smoothing fits (Rosenblum
and Pikovsky, 2001; Kralemann et al., 2013), dynamical Bayesian
inference (Smelyanskiy et al., 2005; Stankovski et al., 2012),
maximum likelihood (multiple-shooting) methods (Voss et al.,

2004; Tokuda et al., 2007), and dynamic causal modeling (Friston
et al., 2003).

In what follows we use the dynamical Bayesian inference
technique (Smelyanskiy et al., 2005; Stankovski et al., 2012).
Briefly, the method applies Bayesian probability theory to the
multidimensional time-series to infer the dynamical model in
terms of stochastic differential equations. Assuming a normal
multivariate distribution for the prior of the scale parameters,
by the use of the model base functions,the method constructs
a log-likelihood function which also ensures that the posterior
probability is normally distributed. Evaluation of the current
distribution relies on the evaluation of the previous block of
data in the sequence, i.e., informative priors are used and
the current prior depends on the previous posterior. For
the first time window, in the absence of an earlier block,
we set the initial prior to a flat (zero) distribution; which
might effect the precision with which the initial coupling
function is inferred for that window. To account for the
time-variability of the interacting dynamics, the covariance
matrix of the next prior is the convolution of the current
posterior with the current diffusion matrix which describes
how much the parameters can change. Further details of
the method can be found in the Supplementary Material, in
Smelyanskiy et al. (2005), Stankovski et al. (2012), Duggento
et al. (2012), and Stankovski et al. (2014a) and in the references
therein.

2.4. Coupling Quantifications and
Decomposition
Using the inferred parameters we can calculate the coupling
quantities and characteristics. The coupling functions
qi(φi,φj,φk, . . . ,φN) acting on the oscillator from each of the i
phases are evaluated on a 2π × 2π × . . . × 2π grid by selecting
the relevant base functions, i.e., Fourier components scaled by
the corresponding inferred coupling parameters. The coupling
strength is calculated as the Euclidean norm ‖qi‖ = 〈qiqi〉

1/2 of
the inferred parameters for a particular coupling, and therefore
carries the same unit of measure as the natural frequency
(Hz). The correlation ρi(qi, qj) = 〈q̃iq̃j〉/(‖q̃i‖ ‖q̃j‖), of two
coupling functions where q̃i are the deviations from the mean,
q̃i = qi − 〈qi〉, gives the similarity of their forms, irrespectively
of their amplitudes (Kralemann et al., 2013). Here, we propose a
further extension of this index. By calculating the correlation of
a coupling function q with a sequence of numerically-generated
forms Q having specific shape features, taken from a bank, one
can determine which of those features is dominant in q. The
numerical set simulates the shape of a direct coupling from
the slower oscillation to the faster, phase-shifted by an angle ϑ
along the 2π axes. Thus, the numerical form Qϑ generating the
highest ρ carries dual information: the extent of the similarity
(described by ρ itself) and the corresponding phase, given by ϑ .
See Figure 1 and the animation video 1 in the Supplementary
Material. A natural way of presenting this information is by
plotting it on the complex plane to provide a polar representation
of the similarity index Pq = ρqe

iϑ .
In neuroscience, the cross-frequency analyses reported to date

have mostly focused on the net coupling. In contrast, coupling
functions enable one to study the functional dependences of
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FIGURE 1 | The meaning of the polar similarity index. Two examples of coupling functions, plotted in blue, are compared with numerically-generated sinusoidal

functions, plotted in red. The latter have been selected for being as similar as possible to the coupling functions: the only degree of freedom in the selection was the

shift in phase (marked by the red dashed lines). The arrows in the polar planes in the top right corners have moduli equal to the similarity indices, and point to the

corresponding phase values for: (A) a coupling function with high similarity (ρ = 0.82) and (B) one with a low value (ρ = 0.23). A complementary 2D color-contour plot

of the coupling function is given in the bottom right-hand corner of each panel.

the distinct contributions from the individual oscillations. This
procedure, referred to as coupling decomposition, separates a
net pairwise coupling qi(φi,φj) into its partial self-coupling
q̄i(φi), direct-coupling q̄i(φj), and common (or indirect) q̄i(φi,φj)
coupling components (Iatsenko et al., 2013; Stankovski et al.,
2016). The inference of both net and partial coupling has
been validated numerically (Stankovski et al., 2015). The direct-
coupling q̄i(φj) describes the influence of the direct unidirectional
driving exerted by one oscillator on the other. Arguably, this
is the most observed interaction in physiology, often linked
to modulation mechanisms; it dominates in a number of the
coupling functions discussed below. Similarly, for a triplet
coupling function qi(φi,φj,φk) one can decompose the self,
direct, and common components depending on either one or two
phase variables. Additionally, one can have the direct component
q̄i(φj,φk) from two phase variables exerting a joint influence, and
the common component between all three phases q̄i(φi,φj,φk).
Generalization to higher κ-dimensional couplings is implicit.
These couplings in a κ-dimensional network could reflect a joint
functional influence from a cluster subnetwork.

2.5. EEG Recordings and Signal Processing
The multichannel EEG recordings analyzed in this work were
downloaded from the Neurophysiological Biomarker Toolbox
(NBT) dataset (O’Gorman et al., 2013; Poil et al., 2013). The
signals were recorded for a group of 16 subjects (of which 10
were female, median age 27 years, range 21–48) in the resting
state for 8min, with a sampling frequency of 200Hz. During the
first 4min, subjects were asked to keep their eyes open, and in
the following 4min to keep them closed. Signals from 19 EEG
electrodes corresponding to the international 10–20 system were
selected from the dataset for the analysis.

The cross-frequency intervals were extracted by a standard
(FIR and no-phase-shift) filtering procedure. The boundaries for
the conventional frequency intervals were: delta δ = 0.8–4Hz,
theta θ = 4–7.5Hz, alpha α = 7.5–14Hz, beta β = 14–22Hz,
and gamma γ = 22–40Hz. Special care was taken tominimize

cardiac components and powerline interference (Lehnertz et al.,
2014; Iatsenko et al., 2015). The phases of the filtered δ and α
were estimated by use of the Hilbert transform, followed by the
protophase-phase transformation (Kralemann et al., 2008).

2.6. Eyes-Open and Eyes-Closed States
The extensive changes that the simple closing of the eyes
triggers in the brain caught the attention of the very first
electroencephalographers (Berger, 1933). It is now known that
exclusion of visual input from the central system causes the
power of brain activity to increase instantaneously across all
the conventional frequency ranges (Barry et al., 2007). The
most striking change occurs within the α rhythm, and it has
its strongest effect on the occipital part of the scalp, over the
visual cortex area. It has been argued that, with eyes open,
the desynchronization of α, resulting in a lower power, might
occur in order to give way to a more sophisticated pattern of
information processing (Klimesch, 1999).

2.7. The δ-to-α Coupling Functions
The δ-to-α interaction reflects how δ activity, associated with
deep dreamless sleep (Feinberg et al., 1987), influences the α
oscillations related to information processing (Pfurtscheller and
Lopes da Silva, 1999). Other findings have also suggested that
the δ-to-α coupling is mostly located within the frontal regions,
that it is stronger during the eyes-closed resting state (Deco et al.,
2010; Jirsa and Müller, 2013), and that a strong δ-to-α link exists
during non-REM sleep (Bashan et al., 2012).

Cross-frequency interactions are usually mediated by the
slower oscillations modulating the faster ones (Brunel andWang,
2003; Lakatos et al., 2005; Händel and Haarmeier, 2009). In
particular, task-based studies suggest that slow oscillations, which
are extended across the scalp, modulate the spatial extent of the
faster oscillations, which are more localized (Palva et al., 2005;
Isler et al., 2008; Canolty and Knight, 2010).

In the light of this, and because of the crucial role that the
α oscillation (Klimesch et al., 2007; Eidelman-Rothman et al.,
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2016) plays in the eyes open (EO) and eyes closed (EC) states,
we focused on the analysis of δ-to-α coupling functions. In doing
so, we are able to assess, quantify, and describe in detail the
functional mechanisms that define the interaction in question.

Moreover, the multichannel recordings allowed us to
investigate couplings between δ and α oscillations extracted
from different probes, and hence to create connectivity maps
illustrating how the δ-to-α modulation differs in the EO and
EC states. The coupling strength was first quantified. Note that,
in earlier work (Musizza et al., 2007; Jirsa and Müller, 2013;
Lehnertz et al., 2014) the use of the terms “coupling causality”
and “directionality” refers to the net coupling strength.

2.8. Surrogate Testing
When applying non-linear analysis techniques, one should
bear in mind that the linear properties of the signals, like
autocorrelation or spectral features, are likely to affect the
measure. To discriminate the genuine results from the ones
happened by chance, one can apply surrogate testing (Theiler
et al., 1992; Schreiber and Schmitz, 1996, 2000; Paluš and Hoyer,
1998; Kreuz et al., 2004). The idea behind this technique is to
apply the non-linear method in question to independent time
series that have the same, or as close as possible, statistical
properties as the original time signals, while randomizing the
expressions of the non-linear property being measured. This
procedure allows one to define a threshold beneath which any
result is considered spurious.

In practice, when inferring couplings even from very weakly-
coupled (or completely uncoupled) systems, the methods always
detect some non-zero values of apparent coupling strength.
Surrogate testing can then be used to establish the “zero-level” of
apparent coupling corresponding to uncoupled signals. In order
not to bias the threshold with effects due to inter-subject or
inter-probe variability, we applied the surrogate techniques to the
same signals for which the coupling was to be measured, and we
therefore define different thresholds for different subjects, pairs
of probes and states.

We generated the necessary surrogates by use of the phase-
shuffling (PS) method (Schreiber and Schmitz, 2000; Jirsa and
Müller, 2013). This acts on the time evolution of the phase
of an oscillation, wrapped between 0 and 2π , by randomizing
the sequence of full phase-periods that it contains. With this
technique, the linear structures of the signals are preserved
but the nonlinear properties are changed. Non-stationarities
appearing within each period of the oscillations are preserved.
The method was applied for each subject, state, and pair of
probes, thereby providing pairs of surrogate phases (δ and α).
These pairs were used as input for the Bayesian inference to
compute the surrogate coupling. The significance thresholds,
calculated independently for each subject and combination of
probes, were then set as the mean+2 standard deviations of the
resultant distributions.

2.9. Statistical Analysis
The surrogate populations were tested for normality with the
Shapiro-Wilk test, with the null hypothesis that the data come
from a normal distribution of unknown mean and variance.

The test rejected the null hypothesis at the 5% significance
level in only 3% of the surrogates, and we therefore accepted
the assumption of a normal distribution. Hence, we could test
the coupling from the original signal by comparison with the
significance threshold.

The non-parametric Wilcoxon paired test was used to
determine the significance of differences between the EO and EC
distributions for each frequency within the power spectra, for the
averaged power within each frequency interval, for the coupling
strength and for the similarity of coupling functions.

3. RESULTS

3.1. Spectral Analysis
Figure 2A shows the difference in spectral power between the
EO (blue) and EC (red) states, for spectra averaged across all the
probes. The shaded significance area coincides closely with the
α band, indicating an increase of power in that interval for EC
compared to EO. This increase was independent of scalp location.
Figure 2B shows the statistical distributions of the averaged
power within each frequency band, with a pairwise probe-by-
probe statistical approach. The statistical analysis confirmed the
increase of amplitude across all the frequency intervals when
comparing EC with EO.

3.2. Coupling Analysis
3.2.1. Significance against Surrogate Data
Figure 3 shows the results of applying PS surrogate technique for
the states of EO (in blue, Figure 3A) and EC (in red, Figure 3B).
Only couplings whose δ-to-α direct-coupling strength was higher
than the mean+2STD surrogate thresholds (gray shades) are
indicated by dots. The average values of the surrogates and of the
validated couplings (horizontal lines) are inversely proportional
to the power trend, with both values for the EC being below the
EO average surrogate level. For EO, however, a smaller number of
probe pairs generated a coupling strength which was significant
against surrogates (767 over 5,776 possible connections for EO
against 1,323 over 5,776 for EC). The inter-subject variability
is evident in Figure 3, where the different width of the x-axes
portion for each subject corresponds to different number of
significant connections detected.

3.2.2. Inter-Subject Variability
In order to evaluate the spatial patterns of significant coupling,
the dots shown in Figure 3 have been converted into the
corresponding connections over a head-shaped map (Figure 4).
The directionality of each connection is shown with an arrow
starting from the probe where the δ oscillation was extracted,
and ending on the corresponding location of the probe for the
α oscillation.

The color-scale in Figure 4 represents the number of
recurrences of significant direct coupling strength among the
subjects for EO (in blue, Figure 4A) and for EC (in red,
Figure 4B). For clarity of visualization, arrows corresponding
to less than 4 subjects for EO (for which 767 couplings were
detected as non-surrogates) and 6 for EC (for which 1,323
couplings were detected as non-surrogates) are not shown. The

Frontiers in Systems Neuroscience | www.frontiersin.org June 2017 | Volume 11 | Article 33 | 63

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Stankovski et al. Neural Coupling Functions

FIGURE 2 | Spectral comparison between signals recorded during the eyes open (EO, red) and eyes closed (EC, blue) conditions, for all the probes from all the

subjects. (A) Paired statistical comparison between the inter-probe average power spectra from each subject in EO and EC, respectively. The lines show inter-subject

medians, and the ranges of significance are shaded pink for p<0.05, orange for p <0.01 and yellow for p<0.001. (B) Boxplots for the average power within the five

frequency intervals. Diagonal lines symbolize statistical analyses pairing corresponding values for every probe and subject, and follow the changes in the medians. The

p-value is indicated in each case. Note that the significance of the power in (A) corresponds closely to the boundaries of the α interval, and that the power in (B)

increases significantly between EO and EC for every frequency band.

FIGURE 3 | Strengths of the couplings for (A) EO (blue) and (B) EC (red) for all the subjects, shown as consecutive intervals on the x-axes. Only values higher than the

corresponding PS surrogate threshold are shown. Couplings are selected when their strengths are higher than the mean+2STD of the corresponding surrogate

distribution (gray shading). Horizontal lines indicate the average values of the surrogates and of the validated couplings (color-scheme as explained above).
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FIGURE 4 | Spatial distribution of the validated coupling strengths. The color codes indicates the number of subjects with a higher direct-coupling strength than the

corresponding surrogate threshold for (A) EO and (B) EC. Note the different scalings of the two color-bars, used for clarity.

more intense colors correspond to larger numbers of subjects
exhibiting significant coupling strength for a specific arrow for
each state, e.g., 7 for EO and 12 for EC.

The figure shows how, for EO, two inter-hemispheric
occipital-to-frontal δ-to-α couplings were exhibited by 5 subjects
and one inter-hemispheric temporal long range connection,
plus two intra-hemispheric, were detected in groups of 6
or 7 subjects. For EC, besides being in higher number, the
significant connections were detected especially from temporal
to occipital locations, and from temporal to the parietal Pz
(for groups of 10–12 subjects). A clear pattern of temporal-
to-frontal coupling was also detected, for smaller groups (8–9
subjects).

3.3. Coupling Functions Analysis
3.3.1. Form of the Coupling Function
To complement the coupling strength analysis, we now focus
on the coupling functions themselves and discuss their unique
properties. The results are summarized in Figure 5. The panels
show the coupling functions corresponding to the links having
the highest and lowest similarity indices for the intersubject
average, for EO and EC. First, we describe in detail the δ-to-α
coupling function as a 3D surface characterizing the EO state,
as shown in Figure 5A. The form of this function indicates
that much of the δ-to-α coupling is attributable to the direct
contribution of the δ oscillation. It has a sine-like waveform
along the φδ-axis, but is mostly constant along the φα-axis.
This reveals the underlying functional mechanism i.e., shows
that, when δ oscillations are between π and 2π , the sine-wave
coupling function is higher and the δ activity accelerates the α
oscillations; similarly, when the δ oscillations are between 0 and
π , the coupling function is decreased and δ decelerates the α
oscillations. The highest acceleration i.e., the ridge of the 3D
function plot is around 3π/2. The form of the coupling function
of Figure 5C for the EC state is similar to the one for EO, but
it is shifted with the highest acceleration being between 0 and
π . In contrast to these two, the coupling functions shown in

Figure 5B for EO and Figure 5D for EC, have uncharacteristic
and undefined rippled form of lower amplitude.

These qualitative observations can be quantified and
presented in terms of the polar similarity index. In Figure 5

these are shown as a circle-map in the top-right corner of each
plot. For the polar similarity index of EO (Figure 5A) one can
note that the values for individual subjects (the dots in the
circle-map), are distributed around a certain direction, and that
the arrow for the average similarity index has the quite high
value of 0.93. Also, the direction of the average arrow has an
angle of about 3π/2, which is the ridge of the average coupling
function for the highest acceleration of α oscillations (compare
the 3D plot in Figure 5A). The polar similarity index for the EC
state (Figure 5C) shows a similar trend, with a high index of
0.91, but a different arrow direction. For the least-similar forms
(Figures 5B,D) the similarity indices are very low with moduli
close to zero (the dots are distributed sparsely), leading to almost
unnoticeably small arrows at the center of the circle. Because
these coupling functions come from inter-subject averages, it
can be seen how the plot of polar similarity indices explains not
only their morphology, but also their origin and the inter-subject
variability.

3.3.2. Time-Variability of Neural Coupling Functions
Physiological systems and processes, including neural
oscillations, do not exist in isolation. They can be affected
by a variety of external influences making their dynamics,
to a greater or lesser extent, time-varying. In such cases, one
can use the dynamical Bayesian method to infer time-varying
neural dynamics, as demonstrated in Figure 6. The coupling
functions for the EC state in Figure 6 (top), inferred at four
different times, show that not only the strength but also
the form of the coupling functions can vary in time. This
time-variability is a representative example and it was not
correlated with the coupling function time-variability of other
subjects’ EEG signals. It is more pronounced for the four EO
coupling functions in Figure 6 (bottom), which vary even
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FIGURE 5 | Examples of inter-subject averages of coupling functions between particular pairs of probes. They have been selected for generating (A,C) the highest

and (B,D) the lowest similarity indices, as shown. The arrows in the polar plots in the top right corners of each panel indicate the similarity indices for the averaged

coupling functions, while the dots indicate the similarity indices for individuals. Note that in B and D the arrows are of negligible dimension. A complementary 2D

color-contour plot of the coupling function is given in the bottom right-hand corner of each panel.

FIGURE 6 | Time-evolution of the δ-to-α coupling functions in the resting state. Middle panel: Time-evolution of the similarity index ρα (δ,α) for the EO and EC states of

a single representative subject. Top panel: The δ-to-α coupling functions for EC inferred at four particular moments in time, as indicated by the arrows. Bottom panel:

The δ-to-α coupling functions for EO inferred at four particular moments in time. Complementary 2D color-contour plots of the coupling functions are given in the top

right-hand corner of their respective panels.

more. Consequently, the similarity index Figure 6 (middle)
which quantifies the effect is also time-varying, with higher
values for the EC state resulting in more-similar forms of
coupling function—compare for example the last two coupling
functions in Figure 6 (top). This time-variability and the
evolution of the resting state δ-to-α coupling functions can
be appreciated even better through the animation video 2 in

the Supplementary Material, generated for each of the times in
Figure 6.

3.4. Quantitative Group Analysis
To investigate the quantitative statistics of each group of subjects
we calculated the average values of the significant coupling
strengths, with the corresponding surrogates’ value subtracted,
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and the moduli of the polar similarity indices for the coupling
functions of all the links for each subject. Then we compared
statistically the distributions of these values for the two groups
of subjects. To present the differences between the distributions
visually, we use standard boxplots which refer to the descriptive
statistics (median, quartiles, maximum and minimum).

The results in Figure 7 show that there were statistically
significant differences for both the coupling strengths and the
similarity of coupling functions between the EO and EC states.
Figure 7A shows that the coupling strengths detected for the EC
is significantly higher than the EO. Similarly, Figure 7B shows
that the similarity index for δ-to-α coupling functions for the EC
were significantly higher than for the EO. The latter also means
that there was larger variability of the coupling functions for the
EO state, compared to the EC state. Overall, the similarity of
coupling functions for the EO and EC states was not very high
(in the interval of [0,1]), indicating that there is relatively high
variability of coupling functions for both of the resting states.

4. DISCUSSION

4.1. The EO and EC Resting States
Much has already been done, mostly through fMRI and
EEG analysis, to demonstrate the existence of resting state
interactions, including the formation and dissolution of
resting state functional network configurations around a stable
anatomical connectivity (Berger, 1933; Barry et al., 2007; Deco
et al., 2010; Jirsa and Müller, 2013; O’Gorman et al., 2013). Our
application of coupling functions to the resting state revealed
the underlying mechanisms of interaction and has identified a
number of differences between the EO and the EC states.

As there were more significant couplings in the EC than in
the EO state (Figure 3), it is obvious that there will be more
coupling links for the EC than for the EO state when presented
spatially (Figure 4). What is interesting is that, for EC, different
subjects seem to have a preferential pattern of directions, with
the δ oscillation from the anterior temporal lobes (probes T3
and T4) acting as “hubs,” influencing the phase of α in both the
frontal and occipital directions. The occipital probes O1 and O2
are the most susceptible to the difference in α power (Figure 2)
as they are placed over the visual area of the cortex. In EO, they
act as a starting point for δ modulating long range connections
toward the frontal cortex, which existed in five subjects, and then
disappeared in EC. In contrast, for EC these probes receive the
influence in their α rhythm from temporal and central probes.

The δ-to-α coupling functions had a specific shape, showing
that the coupling is predominantly like a direct sine wave due
to the δ influence, which accelerates and decelerates the α
oscillations. Importantly, the form was similar for the EO and
EC states (Figure 5), with distinctive variations and shifts along
the δ oscillation. This similarity implies that the same underlying
interaction mechanism exists in the EO and EC states, and that
the difference between these two resting states corresponds to
increasing and decreasing some of the connection strengths (or
to switching them on-off).

Because we reconstructed the form of the coupling functions,
we were able to observe what they look like for both individual

FIGURE 7 | Differences in the δ-to-α coupling strength above surrogates (A)

and in the similarity of form of the δ-to-α coupling functions (B) for the two

groups of subjects with EO and EC. The p-values indicated within each panel

represent the statistical differences between the EO and EC states. Whiskers

indicate ±2.7 standard deviations of the distribution.

and averaged connections and subjects. Even though we found
relatively similar forms of function, we also observed a certain
degree of variability, both inter-subject variability (Figure 5) and
time variability (Figure 6) of the form. These should be taken into
account when average values are used, for example in making
multi-subject statistics.

Finally, for the comparison of the EO and EC states (Barry
et al., 2007) our analysis confirmed that the spectral power of
the α oscillations in EC is significantly larger than that of EO
(Klimesch, 1999). It also showed that there are a larger number of
real (i.e., validated by surrogate testing) δ-to-α couplings for the
EC state (Jirsa and Müller, 2013), that the form of the coupling
functions was similar for EO and EC, that the coupling functions
were somewhat less variable for EC than for EO, and that this
dominance of the EC state in the interactions was confirmed
also by the quantitative boxplot statistics for the whole groups
of subjects.

4.2. Methodological Aspects and
Generalizations
The assessment of neural coupling functions through the phase
dynamics of interacting neural oscillations enables us to study
their acceleration/deceleration, i.e., timing and coordination. The
generalization to amplitude coupling functions is implicit. In
such cases, one should be able to determine a plausible state
model in relation to the dimensionality of the signals. Amplitude
neural coupling functions can reveal the mechanism through
which the strength and power of one neural oscillation are
affected by the influence of the other oscillations.

Earlier effective connectivity methods for the inference
of neural interactions have in principle contained coupling
functions within their models of the interacting dynamical
systems. The question we address here, in addition to presenting
an efficient Bayesian method for determination of coupling
functions, is that of how to assess the neural coupling functions.
We have shown how to unify a functional unit which can be
quantified and compared with other such units, and whose
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evolution can be followed in time. The key characteristic that
distinguishes this assessment is the form of the neural coupling
functions. A unified and effective coupling function analysis can
provide insights that go far beyond just knowing that neural
interactions exist.

The pairwise investigation can further be generalized to
higher degrees of network complexity (Kralemann et al., 2014;
Stankovski et al., 2015). One might, for example, study the
coupling functions between the brain and other physiological
oscillations, forming a physiological network (Musizza et al.,
2007; Stefanovska, 2007; Bashan et al., 2012; Stankovski et al.,
2016). The brain is a heavily connected network (Park and
Friston, 2013) and coupling functions could be applied to reveal
the functional mechanisms operative at different levels and
sublevels of the interactions. In network topology with nodes
and edges (Albert and Barabási, 2002) this would mean that, not
only could the existence, strength and direction of the edge be
studied, but also the underlying functional mechanism giving rise
to the edge. The multivariate coupling function assessment can
then be linked to hypergraphs (Karypis and Kumar, 2000; Zass
and Shashua, 2008), though it was argued recently that, for larger
networks (N > 10), there is no significant benefit from using
multivariate inference of coupling (functions) and partialization
(Rings and Lehnertz, 2016).

The time-varying form of the coupling functions (Figure 6)
can be a cause of self-organization transitions, like the emergence
of network clustering, or of the systems going into-and-out-of
synchronization (Stefanovska et al., 2000; Varela et al., 2001),
even for an invariant net coupling strength (Stankovski, 2017).
More importantly, having detected and characterized a neural
coupling function, one can then use this knowledge to detect,
or even to predict, the onset of phase synchronization (Kiss
et al., 2005). In such cases, the key feature is the known
form of the coupling function which, depending on parameters
like frequency, coupling strength, or polar similarity index,
can predict the synchronization transition. This could have
important implications for the prediction of epileptic seizures
(Lehnertz and Elger, 1998; Fell et al., 2001) which occur or
disappear as synchronous activity in the brain.

4.2.1. Limitations
The limitations of themethod should also be borne inmind. First,
the whole analysis starts with the extraction of one-dimensional
vectors of phases from data which probably have a non-trivial
distribution of spectral content. Especially when the coupling
mode is extracted from a single signal, the filtering must be done
with extreme care: spillage between different frequency intervals,
as well as splitting of one mode into two intervals, will result in
an artificial “common” coupling. Whenever bandpass-filtering is
involved, one should exclude the possibility of investigating high-
to-low frequency coupling, because any modulation of the lower
frequency due to the phase of the higher one will probably be
erased from the filtered mode. In any case, these couplings will
usually turn out to be insignificant compared to surrogates later
in the analysis.

The windowed nature of dynamical Bayesian inference carries
its own limitations, too, as the length of the window is fixed for

every computation. This parameter must be chosen with care,
and should be adjusted so as to include a sufficient number of
periods of the lower frequency involved. We found that 6–10
periods is a reasonable lower limit for this number. Due to the
uninformative flat prior used for the initial window, the resultant
inference of the first window should be interpreted with care.
Moreover, the signals’ own particular features must also be taken
into account: a high degree of time-variability would need a
correspondingly shorter window for the dynamical inference to
follow the evolution correctly. If the method is to be generalized
for use other than with a phase dynamics model, one should be
careful not to infer dynamics due to non-specific, non-stationary,
processes instead of genuine coupling.

4.3. Conclusion
In conclusion, coupling functions bring a novel perspective
to neuroscience that is unique in that it provides access to
the functional form of a coupling. The polar similarity index
that we have introduced allows one to describe the form in
quantitative detail. The comparisons of δ-to-α phase-to-phase
coupling functions in the EO and EC resting states demonstrate
how neural coupling functions can be reconstructed from
spatially distributed sources, and what benefits and possibilities
are introduced by their assessment. We have confirmed the
previous result that the direct coupling is stronger during EC,
and we have shown for the first time that the coupling function
is significantly less variable in that state. The EO/EC states
were taken as an example on which to base a discussion of
methodological issues and, in so doing, to point to the wider
implications and possibilities of the method itself. One may hope
to gain new insights into the neuronal mechanisms underlying
certain diseases from studies of coupling functions. In principle,
the method can equally be applied to the time series created by
any pair of coupled oscillatory processes.
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Emerging evidences have shown that one form of mental training—mindfulness
meditation, can improve attention, emotion regulation and cognitive performance
through changing brain activity and structural connectivity. However, whether and
how the short-term mindfulness meditation alters large-scale brain networks are not
well understood. Here, we applied a novel data-driven technique, the multivariate
pattern analysis (MVPA) to resting-state fMRI (rsfMRI) data to identify changes in brain
activity patterns and assess the neural mechanisms induced by a brief mindfulness
training—integrative body–mind training (IBMT), which was previously reported in our
series of randomized studies. Whole brain rsfMRI was performed on an undergraduate
group who received 2 weeks of IBMT with 30 min per session (5 h training in total).
Classifiers were trained on measures of functional connectivity in this fMRI data, and they
were able to reliably differentiate (with 72% accuracy) patterns of connectivity from before
vs. after the IBMT training. After training, an increase in positive functional connections
(60 connections) were detected, primarily involving bilateral superior/middle occipital
gyrus, bilateral frontale operculum, bilateral superior temporal gyrus, right superior
temporal pole, bilateral insula, caudate and cerebellum. These results suggest that brief
mental training alters the functional connectivity of large-scale brain networks at rest that
may involve a portion of the neural circuitry supporting attention, cognitive and affective
processing, awareness and sensory integration and reward processing.

Keywords: integrative body–mind training (IBMT), multivariate pattern analysis (MVPA), resting-state fMRI,
functional connectivity, large-scale brain networks

INTRODUCTION

Mindfulness meditation is one form of mental training methods including several key components,
such as body relaxation, breathing practice, mental imagery and mindfulness practice (Tang
et al., 2015a; Acevedo et al., 2016), and has been reported to reduce stress, improve attention,
emotion regulation and cognitive performance (Tang et al., 2007). The integrative body–mind
training (IBMT; or simply integrative meditation) is one form of mindfulness meditation
originated from ancient eastern contemplative traditions and includes techniques of body
relaxation, mental imagery and mindfulness guided by an IBMT coach. Cooperation between
the body and the mind is emphasized in facilitating and achieving a meditative state. The
trainees concentrated on achieving a balanced state of body and mind. The method stresses
no effort to control thoughts, but instead a state of restful alertness that allows a high
degree of awareness of body, mind, and external instructions (Tang et al., 2007, 2010, 2012).
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Our previous randomized studies have shown that
short-term IBMT can improve attention, emotion regulation
and cognitive performance through changing brain
activity and white matter structural connectivity (Tang
et al., 2007, 2009, 2010, 2012, 2013, 2015a,b). However,
whether and how IBMT alters large-scale brain networks
remains unknown.

The resting-state fMRI (rsfMRI) measures spontaneous
neuronal activity of the brain and has been proven as an
effective method for measuring large-scale functional networks
in neuropsychology conditions. Therefore rsfMRImay be helpful
for exploring the network alterations induced by short-term
IBMT (Fox and Raichle, 2007; Tang et al., 2009, 2013).

Multivariate pattern analysis (MVPA) is a novel data-driven
technique (Haynes and Rees, 2006; Norman et al., 2006; Pereira
et al., 2009; Tong and Pratte, 2012; Lewis-Peacock and Norman,
2013, 2014) and has been paid increasing attention in rsfMRI
analysis (De Martino et al., 2008; Haxby, 2012). MVPA has
been applied in cognitive processing, brain aging, and mental
disorders such as depression, antisocial personality disorder,
attention-deficit disorder and schizophrenia (Dosenbach
et al., 2010; Shen et al., 2010; Lewis-Peacock et al., 2012;
Zeng et al., 2012). Studies suggested that MVPA could
potentially detect spatially distributed information to further
highlight the neural mechanisms underlying the behavioral
symptoms (Zeng et al., 2012). Furthermore, MVPA based
on whole-brain rsfMRI data can complement seed-based
analyses. The whole-brain functional connectivity, unlike
those analyzing several predefined regions or networks
of interest, can ensure the optimal use of the wealth of
information present in the brain imaging data (Zeng et al.,
2012).

Hence, by using MVPA, our study employed whole-brain
rsfMRI data to investigate the significant training-induced
brain pattern changes in an undergraduate group who received
2 weeks of IBMT with 30 min per session for 10 sessions (5 h
training in total). We hypothesize that the altered functional
connections will be observed in the large-scale whole-brain
resting-state networks including areas associated with attention,
cognitive and emotional processing, awareness and sensory
integration, and reward processing (Tang et al., 2007, 2009,
2010, 2012, 2013, 2015a,b; Acevedo et al., 2016). This exploration
will be helpful in further discovering the neural mechanisms
underlying the altered brain states, and may offer additional
information for advancing our understanding of meditation
training.

MATERIALS AND METHODS

Participants
Twenty-five (13 males, 21 ± 1.6 years old) healthy
undergraduates at Dalian University of Technology (DUT)
without any meditation experience were recruited and
completed 2 weeks of IBMT training with 30 min per session
for 10 sessions (5 h training in total). This study was carried out
in accordance with the recommendations of DUT Institutional
Review committee. All subjects gave written informed

consent in accordance with the Declaration of Helsinki.
The protocol was approved by the DUT Institutional Review
committee.

Data Acquisition
Imaging data collection was performedwith a Philips-Achieva 3T
scanner (Eindhoven, Netherlands) at Dalian Municipal Central
Hospital. During the experiments, the subjects were instructed to
relax, and lie still with eyes focused on a central white cross on a
black screen during the resting scan. Foam pads with a standard
birdcage head coil were used to fix the subject’s head (Tang et al.,
2013). Functional images were acquired using a gradient-echo
EPI sequence (TR = 2000 ms, TE = 30 ms, flip angle = 80◦).
Whole-brain volumes were acquired with 36 contiguous 4-mm-
thick transverse slices without gap. Functional resting-state
session lasted 6 min and 10 s, and 180 volumes were obtained.
For each subject, we collected the data before and after
training.

Preprocessing
All resting-state images were pre-processed using the
SPM8 package (Wellcome Trust Center for Neuroimaging,
University College London, London, UK1) and Data Processing
Assistant for Resting-State fMRI (DPARSF)2. For each subject,
the first five volumes of the scanned data were discarded due
to magnetic saturation. The remaining volumes were corrected
for within-scan acquisition time differences between slices,
and realigned to the first volume to correct for inter-scan
head motions. All subjects in this study had less than
1.5 mm translation in the x, y, or z-axes and less than 1.5◦

of rotation in each axis. Next, the volumes were normalized
to a standard echo planar imaging template in the Montreal
Neurological Institute (MNI) space. Then, smoothing and
filtering were performed using a Gaussian filter of 8 mm
full-width half-maximum kernel and a Chebyshev band-pass
filter (0.01–0.08 Hz) respectively. Considering several potential
sources of physiological noise in the functional connectivity
analysis, nuisance covariates including head motion parameters,
global mean signals, white matter signals and cerebrospinal fluid
signals were regressed out from the image (Dosenbach et al.,
2010).

The processed images were divided into 116 regions
according to the automated anatomical labeling (AAL) atlas
(Schmahmann et al., 1999). Regional mean time series were
obtained for each subject by averaging the fMRI time series
over all the voxels in each of the 116 regions (Shen et al.,
2010). Pearson’s correlation coefficients were used to evaluate
functional connectivity between each pair of regions and we
obtained a resting-state functional network that was expressed as
a 116× 116 symmetrical matrix for each subject. By removing the
116 diagonal elements, the 6670 upper triangular elements of the
functional connectivity matrix were normalized using Fisher’s
z-transform, and were then used as the features in the subsequent
MVPA.

1www.fil.ion.ucl.ac.uk/spm
2http://www.restfmri.net
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Features with High Discriminative Power
Reducing the number of features in a pattern classification
problem can diminish noise, reduce overfitting and accelerate
computation. In our analysis, feature selection reconstructs
the feature space for classification by retaining the most
discriminating functional connections and eliminating the rest.
The discriminative power of a feature can be quantitatively
measured by its relevance to classification (Guyon and
Elisseeff, 2003). Therefore, the highly discriminating functional
connections principally represented the alterative resting-state
functional connectivity patterns. We can use these connections,
rather than the full set of 6670 functional connections, to classify
different brain states in the rsfMRI data before vs. after IBMT
training.

In this study, we used the Kendall tau rank correlation
coefficient (Kendall and Gibbons, 1990; Shen et al., 2010;
Zeng et al., 2012), which provides a distribution-free test of
independence between two variables to measure the relevance of
each feature for classification. Suppose that there are n samples
in the subjects after 2 weeks of IBMT. Let xij denotes the
functional connectivity feature i of the jth sample and yj denotes
the class label of this sample (+1 for ‘‘post-training’’ and −1 for
‘‘pre-training’’). The Kendall tau correlation coefficient of the
functional connectivity feature i can be defined as:

τi =
nc − nd

n2
(1)

Where nc and nd are the number of concordant and discordant
pairs, respectively. Because we do not consider the relationship
of two samples, the total number of sample pairs is n2. For a pair
of observation datasets {xijyj} and {xikyk}, it is a concordant pair
when

sgn(xij − xik) = sgn(yj − yk) (2)

Correspondingly, it is a discordant pair when

sgn(xij − xik) = −sgn(yj − yk) (3)

Thus, a positive correlation coefficient τi represents the ith
functional connectivity feature that exhibits a significant increase
after IBMT training, while a negative correlation coefficient
τi represents the ith functional connectivity feature that
exhibits a significant decrease after training. We defined the
‘‘discriminative power’’ of a given feature as the absolute
value of its Kendall tau correlation coefficient. When the
absolute value of τi was larger, the discriminative power was
stronger. We ranked every τi according to its discriminative
power and then selected those features with scores above a
certain threshold as the final feature set for classification.
Because a leave-one-out cross-validation strategy was used to
test the generalizability of the classifier (Figure 1), the final
feature sets differed slightly across iterations of the classification
procedure. Cross-validation ensures that the classifier is trained
on tested on independent data, thus avoiding concerns
of double-dipping or circularity in the classification results
(Kriegeskorte et al., 2009). Next, we defined the ‘‘consensus
functional connectivity’’ as the functional connectivity features
that appeared (i.e., showed sufficiently strong discriminative

power) in every cross-validation iteration (Dosenbach et al.,
2010; Zeng et al., 2012). Finally, we calculated the ‘‘region
weight’’ of each feature by counting the number of times that
feature appeared in the consensus functional connections in
this study. Region weights represented the relative contribution
of each feature to the classifier’s discrimination of functional
connectivity patterns in the rsfMRI data before vs. after IBMT
training.

Support Vector Classification and
Permutation Tests
After obtaining the data set of features with high discriminative
power, we used support vector machines (SVM) with radial basis
kernel function to perform the classification. The kernel function
we used was:

k(xi, xj) = exp
(
−

∥∥xi − xj
∥∥2

2σ 2

)
(4)

Here, sigma equaled 2. Due to our limited number of samples,
we used a leave-one-out cross-validation strategy to estimate
the performance of our classifier. Classification performance
can be quantified using the generalization rate (GR), sensitivity
and specificity based on the results of cross-validation. Note
that the sensitivity represents the proportion of ‘‘post-training’’
samples correctly identified, while the specificity represents
the proportion of ‘‘pre-training’’ samples correctly identified.
The overall proportion of samples correctly predicted defines
the GR.

Permutation tests were conducted to assess the performance
of the classifier. In this study, the GRwas chosen as the statistic to
estimate the statistical significance of the classifier’s performance.
For each classification iteration, we randomly permuted 1000×
the class labels (‘‘pre-training’’ or ‘‘post-training’’) of the data
being used to train the classifier. Importantly, the entire
classification operation, including the feature selection and SVM,
was carried out on every set of randomized class labels. We
defined the GR as the performance of the classifier trained on
permuted class labels, and we defined GR0 as the performance
of the classifier trained on valid class labels. The p-values
reported for classifier performance represent the probability of
GR being no less than GR0. Therefore, when p< 0.05, this would
indicate that the classifier could reliably decode whether the
functional connectivity data was a pre-training or post-training
sample.

Reliability of the Algorithm
Recent attention has focused on the possibility for systematic bias
in fMRI scans resulting from in-scanner motion (Satterthwaite
et al., 2013). As the optimal procedures for removing motion
artifacts are still an ongoing area of research, and it is
unclear exactly how different methods impact downstream
analyses, we chose to test our main hypotheses on motion-
corrected (‘‘scrubbed’’) data. We implemented a scrubbing
procedure as part of fMRI preprocessing. An estimate of
motion at each time point was calculated as the frame-wise
displacement (FD), using the three translational and three
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FIGURE 1 | Flow chart of the multivariate pattern analysis (MVPA) algorithm.

rotational displacements from rigid body motion correction
procedure. Rotational displacements were converted from
degrees to millimeters by calculating displacement on the
surface of a sphere of radius 50 mm. Any frame i with

FDi > 0.5 mm was linearly interpolated. We found there
was no material difference in the results obtained from
scrubbed vs. unscrubbed data, confirming the reliability of our
algorithm.
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RESULTS

Classification Results
To estimate the effect of the selected parameters on the
performance of the classifier, the cross-validation calculation
was explored using different parameters. We repeated this
calculation with a varying number of different features (from
40 to 300) in the feature selection and found that the
classifier’s best performance was achieved at 160 features
(Figure 2) Therefore, we selected 160 as the optimal size
of the final feature space for the classification analysis
(i.e., the threshold was set at 160). We used this threshold
value because many studies have used the same method
for establishing the threshold (Corbetta and Shulman, 2002;
Dosenbach et al., 2010; Shen et al., 2010; Zeng et al., 2012).
In addition, this procedure was also used to choose the
optimal value for the parameter C for the SVM algorithm.
We repeated this calculation with a range of different values
(dimension: 2–20 and C: 0.005:0.05:2). Then, we identified
the values when the classifier achieved the maximum GR.
We identified the optimal C as 0.01, which is consistent
with previous studies (Besga et al., 2012; Zeng et al., 2012).
When using 160 features in the feature selection (Figure 2A)
and C = 0.01 for the SVM, the classifier achieved maximum
performance (GR: 72%; sensitivity: 76%; specificity: 68%;

FIGURE 2 | (A) The curve of the generalization rate (GR) to the number of
features. The horizontal axis represents the number of selected features and
the vertical axis represents the GR. (B) The discriminative scores of all
subjects. The first 25 samples represented subjects before training (blue bar).
The remaining samples represented corresponding subjects after training (red
bar).

Figure 2B). Permutation tests revealed that the classifier
successfully learned the relationship between the resting-state
functional connectivity data and the pre-training/post-training
class labels (p< 0.0001).

Altered Resting-State Functional
Connections after Training
Although 160 features were selected during a leave-one-out
cross-validation iteration, the functional connectivity feature
set selected in each iteration was slightly different (Dosenbach
et al., 2010). In this investigation, 105 consensus functional
connections were identified across the 50 (25 + 25 = 50)
iterations of the cross-validation procedure (Dosenbach et al.,
2010; Zeng et al., 2012). According to the Kendall tau rank
correlation coefficient above, a positive correlation coefficient
τi represents the ith functional connectivity feature that
exhibits a significant increase after IBMT training, while a
negative correlation coefficient τi represents the ith functional
connectivity feature that exhibits a significant decrease after
training. Comparing the consensus functional connectivity
in subjects post-training vs. pre-training, we found more
positive functional connections (60 connections) than negative
connections (45 connections). This result indicates there are
more increased functional connections after IBMT training.
When analyzing the brain regions underlying this increase
in functional connectivity, we found that occipital cortex
(primarily including the superior and middle occipital gyrus)
was functionally connected to many regions (Figure 3).
Obviously, a large number of increased connections were
encompassed between the occipital and temporal cortex (mainly
comprising the superior temporal gyrus and its pole, and
the insula), and between the occipital and the frontal cortex
(mainly comprising frontal operculum). In addition, increased
consensus functional connections between cerebellum and
caudate were also detected (all P < 0.05). But we did not
find significant lateralization differences among these bilateral
areas.

DISCUSSIONS

Short-term mindfulness training induces a brain state that
requires communication between multiple brain regions
that collectively mediate the encoding and maintenance of
sensory information (Tang et al., 2007, 2009, 2010, 2012,
2013, 2015a,b; Tang and Posner, 2014; Acevedo et al.,
2016). Our results showed that 2 weeks of IBMT (5 h in
total) reorganized the functional connectivity of large-scale
brain networks involved in attention, cognitive and affective
processing, awareness and sensory integration, and reward
processing (e.g., the bilateral superior occipital/middle gyrus,
bilateral frontal operculum, bilateral superior temporal gyrus,
right superior temporal pole, bilateral insula, caudate and
cerebellum.

Visual inputs contribute to over 90% of the total information
(from all sensors) entering the brain. In literature, increased
activity and connectivity in visual cortex are reported following
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FIGURE 3 | Sixty consensus increased functional connections. Regions are color-coded by category. The line colors represent the relative consensus
functional connections. (A) Region weights and the distribution of consensus increased functional connections in a circle graph. (B) Consensus increased functional
connections demonstrated in left sagittal, and top axial view. The colors represent structural categories of brain regions and the size of circles represent region
weights.

short- and long-term mindfulness meditation (Tang et al., 2009,
2015a; Kilpatrick et al., 2011; Xu et al., 2014; Berkovich-Ohana
et al., 2016). However, the underlying mechanism of visual
cortex involvement during mindfulness remains unclear. One
possibility might be that whenmeditators close eyes and focus on
the inside world, the sensory processes are amplified. When they
continuously observe the inner thoughts entwined with mental
images, the mental processes of visual areas are heavily involved
in. Another possibility might be the relaxation effect following
meditation because the activity and functional connectivity of
the visual cortex is also increased during light sleep, sedation and
alcohol consumption (Kiviniemi et al., 2005; Horovitz et al., 2008;
Esposito et al., 2010).

IBMT includes components of body relaxation, mental
imagery and mindfulness (maintaining a high degree of
awareness of body, mind and external instructions guided by an
IBMT coach). One of our studies also detected greater activity in
visual cortex following only five sessions of IBMT (Tang et al.,
2009). It makes sense that the component of body relaxation

and mental imagery could induce greater activity in visual
areas, consistent with previous reports (Tang et al., 2009, 2015a;
Kilpatrick et al., 2011; Xu et al., 2014; Berkovich-Ohana et al.,
2016). However, mindfulness is different from sleep or sedation
state with low level of arousal, and it requires to maintain
high level of vigilance state for meditators. This is in line with
our results that a large number of increased connections were
encompassed between the occipital and temporal cortex (mainly
comprising the superior temporal gyrus and its pole), and
between the occipital and the frontal cortex (mainly comprising
frontal operculum and insula).

Recent studies indicated that meditation modified subsystems
of attention (Jha et al., 2007; Tang et al., 2007). It is worth
mentioning that the frontal cortex participates both dorsal
and ventral attention network (Petersen and Posner, 2012;
Schmidt et al., 2013; Tang et al., 2015a). This network is
believed to modulate externally directed attention by amplifying
or attenuating the saliency of relevant and irrelevant cues
(Corbetta and Shulman, 2002). It has been shown in the
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monkey that the combined actions of frontal eye fields
and the occipital gyrus improved cross-area communication
with attention (Gregoriou et al., 2009), and enhanced visual
short-term memory performance (Liebe et al., 2012). In
previous studies, we found that IBMT improves executive
and altering attention networks compared to a well-controlled
relaxation training (Tang et al., 2007, 2012, 2015a). Hence, we
speculate that the long-range coupling between the occipital
gyrus and frontal gyrus may improve and optimize global
information processing helpful for the maintenance of a
meditative state (Tang et al., 2007, 2015a; Tang and Posner,
2014).

Furthermore, we also found increased functional connectivity
in adjacent occipital-temporal regions. These regions are often
implicated in associative and item-recognition memory, a
semantic network for both words and pictures, and self-cognition
and awareness (Menon and Uddin, 2010). It might be possible
that meditation training increases connections of temporal
and occipital regions to allocate cognitive resources in order
to improve performance. This idea is consistent with prior
results showing that meditation improves attention and working
memory performance (Tang et al., 2012, 2015a; Tang and
Posner, 2014). The increased functional connectivity within
temporal cortex is often associated with mood regulation and
affective processing. Superior temporal sulcus was active in
loving-kindness-compassion meditation (Lutz et al., 2008) and
light modulation (Vandewalle et al., 2010). Insula was involved
in interoceptive awareness, emotional responses and high-level
attentional processes (Landtblom et al., 2011), consistent with
our previous report that IBMT improves insula activity (Tang
et al., 2009, 2015a). Importantly, using the Profile of Mood State
and Attention Network Test, we found that IBMT improves
attention and emotion regulation (Tang et al., 2007). The
present results may indicate that IBMT improves emotion
regulation through increased functional connectivity within
temporal cortex.

In addition, increased consensus functional connections
between cerebellum and caudate were also detected. Previous

studies showed that the caudate nucleus plays a vital role in
reward and learning, and the cerebellum may contribute to
emotion and cognitive processing (Tang et al., 2009; Bostan et al.,
2010; Ding et al., 2015, 2014). A recent study also showed that
the basal ganglia and cerebellum may be linked together to form
an integrated functional network that influences cognitive and
affective processing (Bostan et al., 2010), and may support the
brain state associated with meditation.

Taken together, our study indicates that MVPA of functional
connectivity patterns in rsfMRI data effectively discriminates
the different brain states in individuals before vs. after
short-termmeditation training.We found significantly increased
functional connectivity between occipital, temporal and frontal
regions, which may suggest that meditation training mainly
improves attention, emotional, cognitive and reward processing.
Our results provide new insights into the underlying neural
mechanisms of mental training such as mindfulness, identifying
complex changes in resting-state functional integration across
the brain as a result of brief mindfulness training. It
should be noted that we are aware of the potential issue
of reverse inference when interpreting results (Poldrack,
2006). This is a legitimate first step in attempting to
understand the significance of the observed changes in functional
connectivity patterns following mindfulness training, and these
results can be strengthened by future work focused on the
functional selectivity and specificity of these changes in neural
connectivity.
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This paper addresses two fundamental questions: (1) Is it possible to develop

mathematical neural network models which can explain and replicate the way in

which higher-order capabilities like intelligence, consciousness, optimization, and

prediction emerge from the process of learning (Werbos, 1994, 2016a; National Science

Foundation, 2008)? and (2) How can we use and test such models in a practical way,

to track, to analyze and to model high-frequency (≥ 500 hz) many-channel data from

recording the brain, just as econometrics sometimes uses models grounded in the

theory of efficient markets to track real-world time-series data (Werbos, 1990)? This

paper first reviews some of the prior work addressing question (1), and then reports

new work performed in MATLAB analyzing spike-sorted and burst-sorted data on the

prefrontal cortex from the Buzsaki lab (Fujisawa et al., 2008, 2015) which is consistent

with a regular clock cycle of about 153.4 ms and with regular alternation between a

forward pass of network calculations and a backwards pass, as in the general form of

the backpropagation algorithm which one of us first developed in the period 1968–1974

(Werbos, 1994, 2006; Anderson and Rosenfeld, 1998). In business and finance, it is well

known that adjustments for cycles of the year are essential to accurate prediction of

time-series data (Box and Jenkins, 1970); in a similar way, methods for identifying and

using regular clock cycles offer large new opportunities in neural time-series analysis.

This paper demonstrates a few initial footprints on the large “continent” of this type of

neural time-series analysis, and discusses a few of the many further possibilities opened

up by this new approach to “decoding” the neural code (Heller et al., 1995).

Keywords: backpropagation, synchronization, prefrontal cortex (PFC), consciousness, spike sorting, neural codes,

bursts, alpha rhythm

ALTERNATE NEURAL NETWORK MODELS TO
EXPLAIN/REPLICATE CONSCIOUSNESS (QUESTION 1)

Mathematical neural network models actually fall into two categories: (1) models of mature
(fixed) neural circuits, such as elaborate models by Grossberg articulating what was learned by
neuroscientists like Van Essen in deciphering specific visual pathways as they appear in visual cortex
of a mature adult; (2) models of the more fundamental and universal learning capabilities of the
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brain, which aim to replicate competence in vision,
decision-making, prediction, and other tasks as the emergent
outcome of the learning process. This paper focuses exclusively
on the second type of neural network model. That type of
neural network model is itself a very large and diverse set. There
have been efforts to combine the two types of neural network
modeling (as in some efforts by Grossberg), but those are beyond
the scope of this paper.

The effort to develop mathematical neural network models
of intelligence and learning started from the seminal work of
two groups: (1) the “cyberneticians” (Rav, 2002), such as Von
Neumann, Wiener, and McCulloch, who developed the concept
of neural networks as an approach to artificial intelligence; and
(2) Donald Hebb, the neuropsychologist, whose book (Hebb,
1949) served as a manifesto to the new field of neural networks.
Before Hebb, efforts to understand the dynamics of the cerebral
cortex usually focused on very specialized attempts to understand
the different functions of different Broca areas, in typical mature
brains. Hebb called us to pay more attention to the experiments
by Lashley on “mass action,” showing how any one area of
the cortex can take over functions which are usually found in
another area, when the latter is destroyed and when the required
connections still exist. Walter Freeman, one of the important
followers of Lashley, played a pivotal role in expanding our
understanding of mass action in the brain (Freeman, 1975/2004);
Karl Pribram and Jerry Lettvin, among others, also performed
important experiments on that topic. In effect, Hebb challenged
us to try to answer question (1) above, and many of us have tried
to rise to this challenge.

In his final great work, Walter Freeman (with Robert Kozma)
challenged a group of experimental neuroscientists and relevant
theorists to submit chapters to a book addressing a key question
(Kozma and Freeman, 2016): are the mathematical models now
used in computational neuroscience powerful enough to answer
question (1), and, if not, what changes are needed?

As part of that book, Freeman and Kozma ask whether neural
network models would have to be extended, to account for field
effects over three dimensions or even over quantum mechanical
effects (Werbos and Dolmatova, 2016), in order to explain or
construct the highest levels of intelligence or consciousness. Even
if we focus for now on trying to understand the level of general
intelligence which we see in individual brains of mice or rats
(Werbos, 2014), it is possible that field effectswithin neurons give
them a level of computational power beyond what traditional
neural network models allow (National Science Foundation,
2008). Those extensions are important topics for research, but
this paper will focus on simpler extensions, already an important
part of the neural network field.

In the 1960’s, neural network models inspired by digital
computers (Rav, 2002) generally assumed that the brain itself
must be like a digital computer, and hence that the “neural code”
would consist of ones and zeroes, encoded simply as the presence
or absence of spikes. Even today, many of the models used in
computational neuroscience continue that tradition, by assuming
that the neural code consists of spikes or pulses propagating and
integrated in an asynchronous way, without any kind of master
clock of the sort one would find in a modern computer.

Unfortunately, it was very difficult to find learning models
capable of training such networks to perform even very
simple tasks, let alone the more complex tasks which mammal
brains can handle (Minsky and Papert, 1969). The neural
network field languished and became even disreputable within
artificial intelligence and engineering, until the field learned
to accept a new type of learning model which required a
different kind of neural code. The simplest version of the
new type of learning model was renamed “backpropagation”
(originally the name of a different algorithm by Rosenblatt),
and simplified and popularized very widely (Rumelhart et al.,
1986). Backpropagation involved two major new elements: (1)
use of a continuous-variable neural code, instead of 1’s and 0’s;
(2) use in learning of the derivatives of some error measure,
calculated by signals propagating backwards in the network, with
or without scaling enroute, justified by the general chain rule
for ordered derivatives proven in 1974 for feedforward networks
with or without time-delayed recurrence (Werbos, 1994) and
generalized in 1980 to all types of recurrent network (Werbos,
2006). This kind of adaptation requires alternating cycles of
forward calculation and backward calculation, which in turn
requires a kind of master clock.

When this concept was presented to Minsky himself circa
1970, he objected that people in the modeling field know that
there are no clocks in the brain, and know that all neurons use
a code which is strictly binary, strictly defined by presence or
absence of a spike. In reply, he was shown patch clamp recordings
from higher centers of the brain, taken from Rosenblith, which
demonstrated a sequence of volleys or bursts (Rosenblith, 1961)
with regular timing; the volleys can be viewed as a set of spikes
“on top of each other,” but the overall intensity of the bursts varied
in a continuous way, from small bursts to large bursts. Thus,
instead of viewing the data as a sequence of spikes at different
times, one would view them as a continuous measure of intensity
xk(t) for neuron k, where t takes on discrete integer values,
relative to some kind of system-wide clock. Bursts continue to
appear in the output of giant pyramid cells (Bear et al., 2007), cells
which serve as the backbone and final output path of all parts of
the cerebral cortex.

The rebirth of neural networks in the 1980s was based
primarily on backpropagation, on learning models which assume
a continuous neural code and an alternation of a forward pass
to do computational work and a backwards pass for effective
learning in the face of complex tasks. Also very important was
a third class of neural network model (Grossberg, 1971), which
we think of as the ODE type (ordinary differential equations),
assuming a continuous neural code but, like the spiking models,
asynchronous, and defined over continuous time.

It should be emphasized that the original, general form of
“backpropagation” is a learning algorithm or a stream of local
calculations implementing that algorithm. It is not the specific
type of neural network topology, the Multilayer Perceptron
(MLP), which was used most often in popularized books and
simple applications. Backwards flows of calculation are needed
for the efficient calculation of derivatives in general, whether
scaled and modulated or unscaled (Werbos, 2006). The most
powerful computational methods suitable for complex, general
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nonlinear tasks do require the calculation and use of derivatives.
The topology proposed in our theory (Werbos, 2009) is more
complex and powerful than the simple MLP.

This gives us three general families of neural network learning
model in use today: (1) spiking; (2) the backpropagation family
as defined here; and (3) ODE. Spiking and ODE models are
very popular in computational neuroscience, and have been
used in the analysis of real-time data from brains. Models of
the backpropagation family have been much more widespread
in engineering and computer science, where they have led to
major breakthroughs in intelligent control (Lewis and Derong,
2012; Werbos, 2014) and in pattern recognition with “deep
learning” (National Science Foundation, 2008; Ng et al, 2008;
Schmidhuber, 2015). The main purpose of this paper is to discuss
and illustrate howmodels in the backpropagation family can also
be engaged and tested on multielectrode array data, and to show
that the data available so far do not rule them out.

In this paper, we do not argue that models of the
backpropagation family are sufficient to answer question (1), or
to replicate the full range of higher-level capabilities we see in
the brains of rodents. Rather, we would envision a kind of hybrid
model, in which giant pyramid cells of neocortex receive clock
pulses from the nonspecific thalamus at a key junction on the
apical dendrite (Werbos, 2009), and output bursts under the
control of that clock, while a complex network of interneurons
provide Supplementary capabilities like associative memory,
influenced by their inputs from the pyramid cells but not directly
governed by a global clock. This is part of a more general theory
of intelligence in the mammal brain (Werbos, 2009), grounded in
general mathematical principles derived from analyzing what is
required to achieve functional brain-like capabilities in tasks like
decision-making and prediction of the environment (Werbos,
2010).

Many modelers correctly observed years ago that models
based on the simplified popularized versions of backpropagation
(like the MLP) would not be plausible as models of biological
neural networks (BNN). However, deeper work on systems
neuroscience has already revealed flows of information and types
of synaptic connection supporting the idea that backward passes
(as in the more general family of backpropagation designs) do
exist in the brain (Smirnova et al., 1993; Buzsáki et al., 2012).
A thorough review of learning and rhythms in the hippocampus
(Kahana et al., 2001) shows that the mechanisms of learning do
appear to vary as a function of the time of stimuli within the
theta clock cycle, even though the origins of the theta clock in
the hippocampus remain controversial. This paper focuses on the
cerebral cortex, in part because the fibers from the nonspecific
thalamus to the apical dendrites of giant pyramid cells have been
well-established for decades, and in part because of the intrinsic
importance of the cerebral cortex. It would be possible to model
the oscillations in the nonspecific thalamus with ODE, but it is
not really necessary at this stage, because they are so regular, and
because they are essentially a hard-wired feature of the brain, not
the kind of feature which emerges in detail from learning.

There is also an important connection between the theory of
brain functioning presented in (Werbos, 2009) and the “Global
Workspace” theory of consciousness developed by Bernie Baars,
one of the top leaders in consciousness research (Baars, 2016).

Baars argues that the information in our “conscious awareness”
is basically just the current image of reality reconstructed in
the cerebral cortex, by the “working memory” mechanisms
described in wet neuroscience work by Goldman-Rakic and
Legothetis, among others. Those researchers have observed that
recurrent neural networks, with the kind of reverberations
necessary for short-term memory, play a central role in this
kind of consciousness. From mathematical work on functional
requirements and training of recurrent networks (White and
Sofge, 1992), we understand that a different kind of recurrence
and training is required in order to produce this kind of short-
term memory or “nonlinear state estimation,” compared with the
kinds required for longer-term associative memory or “settling
down” in image processing. Neither we nor Baars would say
that recurrence in the brain is only of the time-delayed kind,
but clocks and backwards passes turn out to be necessary for
that kind, and for hybrid systems which include that kind of
capability.

More concretely, the theory in Werbos (2009) proposes that
the global workspace can be represented as the vector R(t)
made up of the final axon burst outputs Rk(t) of giant pyramid
neurons k at clock time t, and that the cortico-thalamic system
learns to build up this filtered image of reality and to predict
inputs from the specific thalamus X(t) by a robust variation of
the Stochastic Encoder/Decoder/Predictor (SEDP) model (White
and Sofge, 1992). Simplified special cases of that model (like the
Ford software for Time-Lagged Recurrent Networks) have won
many recent time-series prediction competitions, but of course
we expect the brain to have more powerful functional capabilities
which include but surpass the simple TLRN. This is simply one
way to translate the Baars theory into something we can test in a
more fine-grained way on real-time brain data.

This theory of cortical function can also be seen as a way
of implementing Llinas’ theory of the brain as a prediction
system (Llinas and Roy, 2009). Llinas’ earlier work demonstrating
highly precise synchronized clocks in the motor system of the
brain is also relevant to the approach (Sugihara et al., 1993). In
conversation at a workshop organized by Karl Pribram, Nicolelis
reported that their important work on the cortico-thalamic
system (Nicolelis et al., 1995) showed how cells in the thalamus
which were initially good advance predictors of their neighbors
[cells in x(t)] would relearn this prediction ability after it was
destroyed by a lesion.

Strictly speaking, the theory in Werbos (2009) asserts that
giant pyramid cells are adapted based on backwards error signals
which are the sum of signals based on prediction error in the
cerebro-thalamic circuit and on signals based on error signals
from the basal ganglia and the limbic system, reflecting additional
ways in which the brain can assess the quality of the outputs
produced by the cerebral cortex. It asserts that the limbic system
implements some variant of reinforcement learning (Lewis and
Derong, 2012) which requires a global clock cycle twice as long
(θ) as the clock cycle (α) required for prediction. It does not
specify what drives the theta rhythm in the limbic system, but
it allows for the possibility that the primary clock is the alpha
clock in the nonspecific thalamus and cortex, and that the theta
rhythms are somehow synchronized with that one. In any case,
this paper focuses more on the cerebral cortex.
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SELECTION OF REAL-TIME
MULTIELECTRODE DATA TO TEST FOR
CLOCK CYCLES AND BACKWARDS
PASSES

The new work reported in this paper was initially inspired by
(unpublished) comments by Barry Richmond of NIH, enroute to
a meeting at the Dana Foundation. In his data on the neural code,
he said that he saw a regular alternation between a short quiet
period (on the order of 10–20 ms), a kind of “normal window”
of signals flowing in the usual expected direction from inputs to
outputs, on the order of 40–50ms, and then a puzzling backwards
window of 40–50 ms in which information seemed to go in the
opposite direction. “I am not sure what to make of that second
window, but I would guess that it has something to do with
adaptation, somehow.” Given the prior work on neural network
modeling, reviewed in the previous section, we found this to be
very exciting, but we were unable to obtain more details, other
than Richmond’s published papers. The goal of this newwork was
essentially to reconstruct the details, by use of new data sets.

The new theory of cortical dynamics does not require the
presence of a quiet period, but Richmond’s observation suggested
that it should be there. If so, it would be an excellent starting point
for looking for a forward pass and a backwards pass. Thus, the
first stage of our work was to look for that kind of regular quiet
period.

Initially, we scanned the real-time Ecog data collected by
Walter Freeman (Heck et al, 2016) to see whether it could be a
basis for identifying quiet periods. Unfortunately, because this
was data on field potentials at the outer surface of the cortex,
the times of zero potential reflected a cancelation of positive and
negative inputs to the neurons, rather than low activity as such. It
seemed logical to expect that the “quiet periods” are best defined
as periods when the outputs of the cortical pyramid cells (either
zero or bursts, a monotonic output) were near to zero. Thus, we
looked for real-time data from deeper in the brain, where they
would reflect spikes or bursts output by neurons. (Unfortunately,
we did not have access at that time to the spike-sorted parts of the
Freeman data).

Note that simple Fourier analysis or wavelet analysis would
not be a proper way to look for such regular quiet periods,
because the activity in the brain at times which are not quiet
depends a great deal on inputs which vary as a function of the
experience of the rat or the mouse, and would show oscillations
related to that experience (Heck et al, 2016; Kozma et al., 2012).
The new theory does not question the existence of such important
oscillations and activity, but it does require new methods of
analysis in order to track the specific type of hardwired clock
assumed here.

The next step was to thank Professor Jennie Si of Arizona
State University for access to her extracellular data collected from
deep in the brains of experimental rats (Yuan et al., 2015), data
collected under NSF funding under a data management plan
which promised public access to the data. Si warned us, however,
that her real-time 16-channel data collected at 24 khz leaves open
important and difficult questions about how to do spike sorting.
In fact, when we looked for regular quiet periods in her raw

data, we did not really find it. We found a mix of positive and
negative signs as overwhelming as what we saw in the raw data
from Freeman. There were a few hints of regular timing in plots
in Excel of the high-pass filtered version of her data, at times of
maximum activity in her experiments, but we decided to look for
more monotonic data, more representative of the actual outputs
of neurons, based on the current best state of the art in spike
sorting, which we then studied in some detail (Harris et al., 2000;
Buzsáki et al., 2012; Rossant et al., 2016).

All of the work reported here was performed using the
database pfc-2 (Fujisawa et al., 2008, 2015) taken from the
repository at crncs.org. All but some test and exploratory runs
were based on two versions of the MATLAB file EE188_example,
kindly emailed to us by Prof. Fujisawa of Riken. One version,
about 3 megabytes in size, was identical to the file discussed in
Fujisawa et al. (2008), underlying all its major reported results
and Figures concerning local circuits and learning in prefrontal
cortex. An expanded version, about 5 megabytes, included spike
sorted data from an additional 32-channel silicon probe inserted
into the CA1 region of hippocampus, from which real-time data
were also collected on the same time scale (20 khz) in the same
long sequence of sessions.

One of the great benefits of the pfc-2 database is that
it includes a sorting of the pfc-neurons into three groups—
confirmed pyramid cells, confirmed interneurons and confirmed
others. This made it possible to estimate the location of quiet
periods (start and end of each clock cycle) based on the spike
sorted data from the pyramid cells only, and then use those
estimates to analyze data from all of the pfc neurons. Because data
was also available from CA1, we also performed a few analyses
of CA1 data, but for reasons of time we used this data only
for phase one of this work, the initial exploration of possible
clock cycles. The greatest part of this work involved developing
practical nonparametric analysis methods, and debugging and
testing their use in MATLAB and in Octave.

The main part of these MATLAB files was a collection of six
variables, of which we only used two:

(1) spiket(j), which gives the clock time at which spike number
j was detected; and (2) spikeind(j), which contains a numerical
ID (in the range from 1 to 400) for the neuron at which spike
number j occurred. Of course, we also used the file containing
the table of neuron types, identifying which was a pyramid cell
and which was something else. We also used Excel to inspect
the original spike sorted files, like EE188.res.1 and clu and fet,
which contained the original version of the spike sorted data, and
verified the simple exactmapping from those raw files to themore
compact MATLAB files. Using that correspondence, it would be
possible to repeat this analysis for all the sessions in the pfc-2
database, and evaluate the stability of the clock time over time,
and with respect to sleep and wake states.

These two MATLAB files represented the best data we could
find on the actual outputs of cortical neurons at the present time.
However, the spike-sorting which was used to generate this data
was all based on the concept of spike-based neural networks.
It is only natural that the computational work on spike sorting
has largely been inspired by the neural network models which
are currently most popular, but this leaves open many questions
about how well the spike-sorted data represents the actual output
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of the neurons, and about how to test models in which pyramid
cells output bursts more than spikes. From the review in Harris
et al. (2000), it is clear that regular behavior in brains may be
more visible when we focus on bursts rather than spikes, but the
full methodology of burst-sorting given in Harris et al. (2000)
was beyond the time and resources available for this initial work.
In consequence, we used a very simple routine for burst-sorting,
based on the easy half of the procedure described in Harris et al.
(2000): we filtered all the spikes in the MATLAB file down to a
smaller file, in which we simply threw out all spikes which were
not accompanied by other spikes from the same neuron within
6 ms of the same time. We found that the burst-filtered version
of the pfc2 database was only about 1/3 less than the size of the
original database, and that all of the measures of pattern which
we looked for were stronger on the burst-filtered version of the
database.

We did consider trying to use the fet files in the pfc-2 database
to perform the additional filtering used in Harris et al. (2000).
However, some of the features in that file seemed to call for
the use of distance measures based on distance, while others
appeared to be more like measures of intensity, calling for the use
of measures like inner product. Clearly it will be an important
research task for the future to sort out these kinds of issues, to
organize the development of burst sorting and measurement in a
more systematic way, and to apply them to databases like pfc-2.

COMPUTATIONAL METHODS AND
RESULTS USED TO PROBE FOR CLOCK
CYCLES AND DIRECTION OF SIGNAL
FLOW

Effective and robust dynamic modeling of complex systems
like the cerebral cortex generally requires that we start with a
phase of exploratory data analysis, in order to avoid missing
major patterns and being limited by initial assumptions (Hoaglin

et al., 1983). The measures used here were developed in order
to be as simple and direct as possible, for this early stage,
while—most importantly—articulating or estimating the key
hypotheses under study (Werbos, 1990). The issue of robustness
is very tricky, in a situation where the raw data includes only
about 100 variables which are part of a very information rich
highly nonlinear system containing billions of neurons evolved
over millions of years to handle the maximum throughput of
information (Macke et al., 2011). We strongly hope that future
research will probe these theoretical issues in more detail. Here
we will simply report what the exploratory measures are which
we used, and leave the refinements to the future.

We developed and used four sets of computational measures
here. All four required us (the user) to specify a candidate clock
cycle time, and another parameter K, to be discussed further
below. All four call out for some combination of simulation
studies (like those used in Werbos, 1994) to assess the robustness
of competing statistical methods) and mathematical analysis to
developmore formal measures of statistical significance—though
the main results in Table 2 and Figure 1 are large enough to be
clear already.

Summary of Methods and Findings
For phase one of this work, we developed “quiet time” measures,
to tell us whether there exists an interval of 10 ms, at the same
phase of every clock cycle, over K clock cycles, which regularly
experiences fewer spikes than other times in that clock cycle. We
applied these measures to the four most active neurons in the
entire database individually, to the pyramidal cells, and to larger
sets of neurons, with or without burst filtering, for all possible
clock times which were integer multiples of 0.1 ms between 100
and 200 ms. The four most active neurons included three cells
in the hippocampus (neurons number 329, 349, and 373), and
an interneuron in the cerebral cortex (120). The interneuron and
neuron 349 did not show regular quiet periods, but neurons 329,
373 and the pyramidal cells in prefrontal cortex as a group all

FIGURE 1 | Plot of scaled unweighted e↓ and e↑ vs. assumed clock time from Table 2.
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showed regular quiet periods, at similar ranges of time intervals,
with K = 100, K = 1000, and even K = 10,000. The strongest
range of possible clock cycle times (the range with the quietest
quiet periods) was 154 ± 1 ms, but 145 ± 1 and 134 ± 2
seemed plausible enough to warrant further investigation. It was
striking that the same clock periods seemed to be best for all
three data sets, with all three choices for K. However, it was also
disappointing that we could not be sure what the best estimate of
clock time would be, within those ranges, for the available data
using this measure.

In phases two and three of this work, we mainly focused on
using the quiet time results to identify clock cycles, and to test
whether the sequence of firing in the later half of a clock cycle
(“PM”) is more like a repetition of the sequence in the first half
(“AM”) or like a reversed sequence, or mirror image. We also
hoped that further analysis would give us more accuracy and
certainty in knowing what the clock time is; that hope worked
out for phase three, but not for the simpler work in phase two.

Before starting this work, we dreamed of studying neurons
arranged in a network, such that we could actually see the “lights”
(firing) moving from back to front in a forward pass (“AM”) and
then from front back in a backwards pass (“PM”). However, spike
sorting provided only neuron IDs, not physical location. Fujisawa
et al. (2008) provided what may be the best identification of
neural networks from spike sorting available in the literature, but
the identification did not covermost of the neurons in the dataset,
and it was based on a cross-correlogram methodology which
raises questions about robustness and possible systematic error.
Thus, for phase two we looked at simple measures which describe
the sequence of firing of individual neurons within a clock cycle,
while for phase three we looked at which neurons fire in what
order or sequence. The phase three results look more interesting,
but for completeness we will also describe the phase two results.
Both in phase two and phase three, the error in assuming mirror-
image signal propagation was about 1/3 less than the error in
assuming repetition of the same sequence, across all candidate
clock cycle times, and K of 20, 100, and 1000 (the three choices
we considered). In retrospect, we suspect that there might also
be a useful way to exploit the information in the pfc-2 database
about which neuron belongs to which of the twelve shanks, which
does give some information about locations.

In phase 3, we also calculated three measures of “inertia,” of
the tendency for the same list of neurons to fire from one clock
cycle to the next, in the same sequence in AM or PM. This
generally sharpened and validated our estimate that 153.4 ms is
the correct clock cycle time all across this data (session 188 for
the rat identified as EE). We looked a bit for evidence of phase
drift or cycle time drift from one span of data to another (where a
“span” is K time cycles), but did not find any within this session.

Details of Phase One Methods and Results
and Continued Quiet Time Analysis
For phase one, we developed and debugged a sequence of
MATLAB functions to input recorded data from the brain,
and report back how quiet the quietest phase of the proposed
clock cycle time was. More precisely, we ultimately developed a

function, Find_clock_in_spiket, for which the user would supply
three input arguments: (1) delta, an integer, the proposed clock
cycle time in the same units of time assumed in the spiket data;
(2) K, number of clock cycles per span of data to be analyzed;
and (3) spiket(j), an array simply containing the time at which
a spike was observed, for all spikes j recorded (in order) in the
dataset being analyzed. We also developed a simpler variation,
find_clock_in_power, to analyze data of the form xpower(t),
representing the time series of a nonnegative measure of signal
power, tested on the Si data (Yuan et al., 2015).

To visualize the algorithm and the mathematical issues, it may
help to consider a clock cycle of the brain by analogy to the 24-
h cycle of a clock. If K = 100, we organize the spike data into
the hours of 100 days. We calculate a histogram of what time
of day the spikes occurred, in each span of 100 days. If activity
was quietest, say, between 2 P.M. and 3 P.M. across all 100 days,
then we measure “quiet power” for that interval as the sum of
activity during that hour, summed over all days in the span, and
we compare that later to the average activity across all hours.
(Instead of an hour here, we actually looked for a quiet 10 ms
interval, and considered all possible intervals starting from the
beginning of the cycle, starting from 2ms after the start of a cycle,
and so on). The overall quiet time score for the entire dataset is
simply the sum of the quiet time scores for each span of data in
that dataset. (The function calculates the number of spans simply
as the length of times in the database divided by the time length
per span. The length of times in the database is simply the highest
and last value of spiket(j), minus the starting time, spiket(1). “Left
over” spikes, beyond the last whole span of time, are simply not
used in the analysis. The final version of this function handled
left-over spikes in a cleaner manner, and changed a few numbers
slightly, but all qualitative results were similar to those with the
early versions).

Now: what would happen if one applied such an algorithm
with the wrong measure of the length of a day? For example,
if one were to aggregate hourly electricity consumption data
assuming a 25-h day, after about 30 “days” one would expect the
measurements to be hopelessly out of synchronization, and the
histograms would be flat. For this reason, we initially hoped that
use of the quiet time measure would give a very sharp indication
of what the clock time is, for those cells which actually are
governed by a very regular clock. This would allow us to analyze
issues like forward vs. backward signal propagation, in phases two
and three, by simply using the precise clock estimates from phase
one. A fuzzy estimate of clock time reduces the accuracy of any
phase two and phase three analyses which depend on them.

However, the quiet time analysis by itself proved useful only
as a screening method. As discussed in Section Summary of
methods and findings, it identified four reasonable ranges of
possible clock time, each 2 ms wide. Thus, for phases 2 and 3,
we performed more intensive analysis of all possible clock times
in those four ranges, for all multiples of 0.05 ms, measuring
not only quiet power but additional measures. Table 1 illustrates
the final results of phase one, giving the quiet power (number
of spikes across proposed quiet periods) for 21 possible choices
of clock cycle time in the most promising of the four ranges
considered, for the choices K = 1000 and K = 10,000. Notice

Frontiers in Systems Neuroscience | www.frontiersin.org November 2016 | Volume 10 | Article 97 | 85

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Werbos and Davis Forward/Backward Cycles in Cortex

that the row of Table 1 next to the bottom gives the total number
of spikes counted in each analysis, and the bottom line gives the
average number of spikes one would expect in a random 10ms
interval.

Note that the spikes in the quiet time are quite a bit less than
what one would expect in a random “hour of the day,” most
notably for clock times of 153.4 and 154.5ms, withK = 1000. The
actual score of 127 is much less than the null expected score of
313. If the true clock time were, say, 153.35 ms, after 1000 cycles,
one would expect missynchronization of 0.05∗1000= 50ms from
the start of the span to the end; thus, when we only know the
clock time to within 0.05 ms, it is quite remarkable to have such a
degree of quiet power with K as high as 1000. (It is possible only
because the actual quiet time interval may be a bit wider than
10 ms, as Richmond initially suggested, and because a K = 1000
implies that the cycles considered within each span are not more
than 500 cycles away from the middle of the span). On the other
hand, it is clear that these results do not tell us very clearly what
the best candidate time is within this 2 ms window. Quiet power
was of course higher, relative to the null expectation, in other time
ranges.

The MATLAB function Find_quiet_time_in_spiket reports
out the quiet power as described above, the total number of spikes
actually considered in each quiet time analysis, and the number
of complete spans found in the data. (If the user proposes a K
too large for the dataset, the function was designed to consider
the entire database as one span; however, we never actually tested

that feature). It also provides an output array, wherebin, which
can be used in debugging, in analysis, and in support for other
MATLAB functions as in phase 2 and phase 3. For each of the
spans identified in the data, it tells us “at what hour” the quietest
period was, how many spikes were found in quiet periods in
that span, and how many spikes in total were counted in that
span. For example, with K = 10000, we only had seven spans
in the EE188 data! If the location of the quiet period drifted
systematically up or down in the wherebin data, this would
suggest that a more refined estimate of the clock time would
improve results; however, in our initial exploration of those
diagnostics, we found no indications of such systematic drift.
Note that we used underbars in the names of all of our MATLAB
functions, simply because of how MATLAB works.

Finally, we note that the arithmetic of this analysis was
simplified by the fact that the “spiket” variable in the pfc-2
database was based on a recording rate of 20,000 measurements
per second (Fujisawa et al., 2008), such that the allowed values
of “delta” represented multiples of 0.05 ms. It would have been
possible to consider clock times with even more temporal detail,
simply by multiplying the entire array “spiket” by 10, so that any
clock time which is a multiple of 0.005 ms could be evaluated.
That is one of the many variations and extensions which could be
considered in future work.

Another extension would be to study whether the clock cycle
time is or is not the same for the rat called EE in all the different
sessions recorded in the original data (Fujisawa et al., 2008, 2015).

TABLE 1 | Quiet power vs. possible clock time in milliseconds.

K = 1000 K = 10000

Proposed clock time in ms Neuron 329 Neuron 373 All pyramids in pfc Neuron 329 Neuron 373 All pyramids in pfc

153 4111 1038 141 3160 711 149

153.1 4225 991 133 3215 740 158

153.2 4231 983 145 3254 732 149

153.3 4398 1067 141 3340 762 165

153.4 4452 999 127 3307 741 147

153.5 4437 1007 143 3351 747 149

153.6 4507 1036 150 3372 753 155

153.7 4527 1031 154 3320 765 144

153.8 4551 1067 136 3421 751 159

153.9 4666 1072 129 3423 745 137

154 5323 1142 137 3404 754 149

154.1 4755 1084 143 2831 648 141

154.2 4953 1076 131 2934 695 155

154.3 4898 1101 135 2922 653 141

154.4 4938 1070 159 2911 615 141

154.5 5096 1128 127 2987 704 141

154.6 5059 1100 129 3056 697 137

154.7 5069 1096 140 2975 701 157

154.8 5182 1118 133 3146 716 159

154.9 5121 1129 145 3146 714 149

155 4145 983 153 3176 738 159

Nspikes 92117 22432 4820 54658 12524 2908

Null 5981.623 1456.623 312.987 3549.221 813.2468 188.8312

Frontiers in Systems Neuroscience | www.frontiersin.org November 2016 | Volume 10 | Article 97 | 86

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Werbos and Davis Forward/Backward Cycles in Cortex

The underlying theory [Section Alternate neural network models
to explain/replicate consciousness (question 1)] suggests that it
might be, but experiments with other large shifts in global brain
parameters (as with hormones or alcohol) suggest that brains
may be able to learn to be robust with respect to them, and hence
that natural selection may have permitted them.

Phase 2 Methods, Analysis and Results
Phase 2 and phase 3 both addressed the question: is the real-
time data available here consistent with what Richmond said
about alternating forward and backward passes in the cortex,
as the backpropagation family of neural network models would
predict?

The backpropagation family of models does not predict that
the sequence of firing in the backwards pass is a perfect mirror
image of the sequence in the forwards pass, with a cycle of
brain operation. It may be more or less of a mirror image,
depending on the degree of fast recurrence in the interneurons,
the impact of long-term memories, and the structure of the
tasks currently faced by the organism; the importance of current
tasks in bringing out different aspects of network structure is
illustrated very vividly in (Fujisawa et al., 2008). Nevertheless,
the backpropagation models would predict that the backwards
pass looks more like a mirror image of the forward task than
like a repetition of the forward pass. If calculations were always
running forward, both in the first half of a brain cycle and in the
second half, one would expect the opposite result: the second half
would look more like a repetition than like a mirror image.

The main goal of phases 2 and 3 was to find out which
of these two possibilities better fits the data. Phase 2 took a
minimal approach, trying to compare the two hypotheses (mirror
vs. repetition) without making any assumptions at all about
the relations and connections between different neurons. Phase
3 made use of the neuron ID information, and in our view,
is much more conclusive and robust. Nevertheless, both types
of measure strongly favored the mirror hypothesis over the
repetition hypothesis.

Of course, to compare the events in the first half of
a brain clock cycle with those in the second half, one
must identify the time interval for all of the brain cycles
to be analyzed. The phase 2 analysis was performed by a
MATLAB function, Test_hypotheses, which started out by calling
Find_clock_in_spiket (discussed in Section Details of phase one
methods and results and continued quiet time analysis above) to
identify the quiet intervals (10 ms wide) in each of the formal
clock cycles.

The formal clock cycles which Find_clock_in_spiket starts
from are different from the actual brain cycles it locates. In any
span of data, Find_clock_in_spiket analyzes K intervals of time,
formal clock cycles, and it calculates where the quiet interval
is relative to the start of the formal cycle. In Test_hypotheses,
a brain cycle is defined as the interval of time stretching from
the middle of the quiet period in one formal cycle, to the next
quiet period in the next formal cycle. Since there are K formal
clock cycles in any span of data, this yields K-1 brain cycles. For
each brain cycle, we may define t− as the start time of the cycle,
t+ as the end time of the cycle, and t0 as the exact mid-point

between the two. We define the “AM” period of the brain cycle
as the interval between t− and t0. We define the “PM” period as
the interval between t0 and t+. Both in phase 2 and in phase 3,
our goal was to answer the question: “Is the sequence of neurons
firing in the PM period more like a mirror image of the sequence
in the AM period, or like a repetition, over the entire dataset?”

In phase 2, we calculated two measures of error for each of the
two hypotheses (mirror vs. repetition), for every neuron which
fired at least once both in the AM part of the brain cycle and in
the PMpart of the brain cycle..We calculated these fourmeasures
for each of the identified brain cycles, and simply added up
total error over all brain cycles to generate the final error scores.
We weighted the error by the number of spikes, because this
reflects the greater importance of neurons and times of greater
activity. As in phase one, we used the burst-filtered data from
the pyramid cells to establish the clock intervals, but all of the
remaining analysis used the entire burst-filtered dataset of all
recorded neurons in the prefrontal cortex.

For each active neuron, in each clock cycle, we began by find
out tAM

+, the time of the last spike in the AM period, and tAM
−,

the time of the earliest spike in the AM period, and then tPM
−

and tPM
+. We also calculated N, the total number of spikes for

that neuron in the AM and PM periods.
The first two measures of error tested whether the interval

between first and last spike for that neuron in the PM matches
a mirror image (through t0) of the first and last spike in the AM,
or whether it matches a repetition. We calculated the error in the
mirror hypothesis as:

e ↓= N∗(|(t0−tAM
+)−(tPM

−
−t0)|+|(t0−tAM

−)−(tPM
+
−t0)|)

(1)
We calculated the error in the repetition hypothesis as:

e ↑= N∗(|(t0−tAM
+)−(t+−tPM

+)|+|(t0−tAM
−)−(t+−tPM

−)|)
(2)

The next two measures were essentially the same, except that
we compared the midpoints of the AM and PM intervals.

We ran the Test_hypotheses function using all four of the
intervals discussed above for the possible clock time, with K =

1000. For the most plausible interval, from 153 to 155 ms, we
also tried K = 100. We divided the error scores by 1,000,000 and
rounded to the nearest integer, so as to provide a nice table, for
each of the 41 clock times considered in each interval, giving a
new estimate of quiet power, and results on each of the four error
measures.

For the interval between 153 and 155 ms, every choice of
clock cycle gave a score of 27 or 28 for e↓, and every choice of
clock cycle gave a score of 36,37 or 38 for e↑, with K = 100
and with K = 1000. In other words, the mirror hypothesis was
notably preferred over the repetition hypothesis for all choices
of clock time and both choices of K. The mirror hypothesis was
also preferred in a uniform way in the other three intervals: for
134–136ms, e↓ was 23 or 24, vs. e↑ of 31, 32, or 33; for 144–146
ms, it was 25,26, or 27 vs. 33, 34, or 35; for 132–134 ms, it was 23
or 24 vs. 31 or 32. Likewise, for the midpoint error measure, in
the 153–155ms interval, it was 12 vs. 17 (with only two cases of
16 and 17). The corresponding quiet time error with K = 1000
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was 134 at 153.4 ms, lower than the quiet time error at other
candidates in that interval, and notably lower than the quiet time
error in any of the other three intervals.

In summary, the phase two measures of hypothesis error did
favor the mirror hypothesis over the repetition hypothesis, for
all choices of possible clock time. 153.4 ms emerged a bit more
clearly as the best estimate of the underlying clock time. We
believe that the results from phase three are more robust and
more convincing than those of phase two, but it is even more
notable that two entirely different ways of evaluating the clock
time and the mirror hypothesis led to the same conclusions.

Phase 3 Methods and Results
The phase 3 analysis was performed using a MATLAB
function, Test_sequence_and_inertia, which provides three sets
of statistical measures for each user-supplied choice of clock
cycle time and K. First, it calls Find_clock_in_spiket, exactly
as Test_hypotheses does, and outputs a quiet power measure,
exactly the same as the quiet time measure calculated by
Test_hypotheses. It also provides four new measures of error
for the mirror hypothesis and the repetition hypothesis. Finally,
it provides three useful measures of inertia or autocorrelation,
which provide another way to evaluate whether the proposed
clock cycle time is the correct one.

As in phase two, the four measures of error are calculated for
each brain cycle, and added across all brain cycles and scaled,
to get the total measures of error for the mirror hypothesis e↓
and for the repetition hypothesis e↑. Within each brain cycle,
we first create a list of active neurons—neurons which fired both
in the AM and in the PM. If there was only one active neuron,
or none, this brain cycle is skipped, because there are no AM
and PM sequences to be compared. Next, for each active neuron,
we calculate the two simple averages, (tAM−+ tAM+)/2 and
(tPM−+ tPM+)/2, which indicate when this neuron fired, both
in AM and PM. We sort the neurons according to when they
fired in the AM and when they fired in the PM. The unweighted
measure used for e↑ is simply the inversion number comparing
these two permutations; the inversion number (Foata, 1968) is
a widely used standard measure for comparing the similarity of
two permutations. The unweighted measure used for e↓ is the
inversion number comparing the AM sequence and the reverse
of the PM sequence. The weighted versions in each brain cycle
are equal to the unweighted versions multiplied by the product of
the total number of spikes in all active neurons in the AM and the
total number in the PM.

The results of this analysis for the most important case are
shown in Table 2 and in Figure 1.

To understand the meaning of the e↓ and e↑ error measures,
it may help consider two examples where 5 neurons (numbered
N1–N5) fire in the following sequences within a clock cycle, and
where t0 is the mid-point of the time cycle:

case A: N1, N2, N3, N4, N5, t0, N1, N2, N3, N4, N5
case B: N1, N2, N3, N4, N5, t0, N5, N4, N3, N2, N1
In case A, the unscaled value of e↑ is zero, because the

sequence of firing after the mid-time is identical to the sequence
before; however, the unscaled value of e↓ is 10 (4+3+2+1),
because it takes 10 swaps to make the sequence after t0 match

the mirror image of the sequence before. Case B is the opposite.
The four columns on the right of Table 2 are all sums of e↓
or e↑, unweighted or weighted by the level of neuron activity
in the time cycle, scaled by the same factor for convenience in
printing.

The first of the three new inertia measures in Table 2 is simply
the number of neurons which were added or dropped out from
the list of active neurons, from one brain cycle in a span to
the next. The second is the inversion number comparing the
sequence of neurons firing in the AM, for those neurons which
are active both in one brain cycle and the next. The third is the
same, for the PM sequence.

DISCUSSION

Neural network models in the large family of backpropagation-
based models have already performed well in challenging
applications demanding an ability to replicate the kind of
abilities brains have proven possible from pattern recognition to
intelligent control, with a strong foundation in the technology
disciplines which specialize in designs capable of addressing such
tasks in a highly effective manner. There is every reason to
believe that hybrid systems, effectively combing the capability
of backpropagation networks and other types of network more
common in computational neuroscience, could do still better
in allowing us to replicate and understand the higher-order
learning capabilities which drive mass action in the mammal
brain, if we could make contact between the world of functional,
mathematical neural network models and the world of empirical
real-time data in neuroscience.

This work has done a quick initial evaluation of whether two
key ideas in backpropagation might actually fit empirical real-
time data from the brain, using a series of new quantitative
measures which directly capture two of the most important
predictions of that type of model—the prediction of a regular
clock cycle, and of an alternation of forward and backward passes
of calculation. We hope that these new measures inspire more
work to address the many questions which flow from considering
this new class of models of brain functioning.

A few of these questions and opportunities for future research
were already discussed above, but there are many more. For
example, it would be interesting to revisit the work of Fujisawa
et al. (2008), and see what the cross-impacts and networks look
like when the full database is partitioned into AM data and
PM (and leftovers at the boundaries between spans). It would
be interesting to revisit the work on models to predict neural
signals over time, not only in burst-sorted and spike sorted data,
but even in the original raw data, when we have the ability to
partition that data into AM and PM, and to use the clock cycle
here to use seasonal adjustment types of method as in time-
series analysis (Box and Jenkins, 1970); see (Werbos, 1994) and
(Werbos, 2010) for the extension of such time-series analysis
methods to the multivariate and nonlinear cases, respectively.
Because financial market data, like spike data, tend to involve
discrete events and irregular kinds of statistics, it is quite possible
that the approach used in (Werbos, 2010), drawing on Peters
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TABLE 2 | Phase 3 results for 153–155 ms, with K = 1000.

Clock time in ms Measures of clock accuracy Measures of mirror vs. repetition

Quiet power Change of neurons Sequence change Unweighted Weighted

AM PM e↓ e↑ e↓ e↑

153 151 3689 13 11 300 494 20463 29868

153.05 149 3699 19 21 314 502 23197 32001

153.1 141 3671 20 19 296 479 20355 30066

153.15 154 3709 19 11 317 493 21875 28649

153.2 153 3669 19 21 309 491 21129 30163

153.25 135 3590 24 19 315 486 22258 31344

153.3 150 3643 25 18 316 456 22863 28318

153.35 136 3530 19 19 308 463 21739 30052

153.4 134 3620 11 17 292 439 21967 27835

153.45 137 3650 18 14 305 481 22080 30627

153.5 152 3659 16 22 298 515 23334 30109

153.55 143 3628 20 22 321 497 23171 31574

153.6 160 3611 23 20 310 474 23090 28241

153.65 140 3625 26 25 319 487 22364 29398

153.7 164 3673 22 26 311 511 22154 30875

153.75 154 3610 20 22 310 501 22823 30298

153.8 146 3573 14 19 287 461 21342 29518

153.85 153 3648 17 13 296 485 21126 32104

153.9 142 3541 18 19 327 465 23432 28995

153.95 150 3659 17 19 329 498 23760 31858

154 150 3659 22 20 315 511 22280 32133

154.05 143 3620 20 10 296 498 23683 30275

154.1 152 3696 18 19 304 490 23563 29190

154.15 138 3660 23 19 306 460 23271 28663

154.2 141 3567 15 17 284 448 21117 28161

154.25 135 3624 22 19 290 503 22837 29861

154.3 144 3660 27 25 312 478 22404 31269

154.35 151 3603 28 24 294 523 21108 32955

154.4 168 3619 21 22 312 496 20953 32755

154.45 150 3660 19 16 309 520 23933 31771

154.5 135 3635 21 23 297 508 22120 33437

154.55 137 3646 19 17 307 466 21698 29341

154.6 142 3582 18 19 337 477 24138 29713

154.65 156 3597 23 22 303 500 22021 30999

154.7 149 3633 16 16 297 503 21210 32023

154.75 143 3625 20 17 314 479 22250 29081

154.8 142 3665 25 18 321 492 23359 31363

154.85 151 3676 20 18 327 511 25244 30280

154.9 155 3611 14 18 296 460 21002 30199

154.95 160 3639 18 20 312 485 22848 30045

155 159 3602 21 16 309 496 22264 33578

(1996), could yield new insights in this context. And of course,
theseMATLAB functions, developed to be very general in nature,
could be applied to other databases.

The effort to understand the mathematical and computational
principles underlying intelligence in the mammal brain is
perhaps one of the two most important and fundamental
challenges to all of basic science for the coming century. (The

other is the continuing quest to understand the fundamental
laws of physics). It is also a key motivation for society
as a whole to be interested. It is hoped that this work
will inspire new work which fully rises to that grand
challenge.

A reviewer of this paper has raised an interesting question: can
we try to imagine new classes of model, beyond those discussed
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in Section Alternate neural network models to explain/replicate
consciousness (question 1), which would also be functional in
information processing, but would treat time in a different way
and fit our results from a very different basis? In fact, the work
reported in Werbos and Dolmatova (2016); Werbos (2016a,b)
does begin to suggest more radical types of model and technology
which may or may not be relevant to understanding the basic
rodent brain which we see in the laboratory.

Human cultures disagree violently at times about the nature
of human consciousness, beyond the level of what we share with
mice and rats. While we may hold different viewpoints (Werbos,
2012, 2015; Davis, 2016) on that larger question, beyond the reach
of consensus science at present, we hope that we can agree that
better understanding of what we share with mice and rats is an
important steppingstone to understanding how to achieve the
highest potential which we as humans can attain.
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Is it possible to turn psychology into “hard science”? Physics of the mind follows the

fundamental methodology of physics in all areas where physics have been developed.

What is common among Newtonian mechanics, statistical physics, quantum physics,

thermodynamics, theory of relativity, astrophysics... and a theory of superstrings? The

common among all areas of physics is a methodology of physics discussed in the first

few lines of the paper. Is physics of the mind possible? Is it possible to describe the

mind based on the few first principles as physics does? The mind with its variabilities

and uncertainties, the mind from perception and elementary cognition to emotions and

abstract ideas, to high cognition. Is it possible to turn psychology and neuroscience

into “hard” sciences? The paper discusses established first principles of the mind, their

mathematical formulations, and amathematical model of themind derived from these first

principles, mechanisms of concepts, emotions, instincts, behavior, language, cognition,

intuitions, conscious and unconscious, abilities for symbols, functions of the beautiful and

musical emotions in cognition and evolution. Some of the theoretical predictions have

been experimentally confirmed. This research won national and international awards.

In addition to summarizing existing results the paper describes new development

theoretical and experimental. The paper discusses unsolved theoretical problems as well

as experimental challenges for future research.

Keywords: physics of the mind, neuroscience, cognition, dynamic logic, knowledge instinct, aesthetic emotions,

consciousness, beautiful

WHAT IS PHYSICS OF THE MIND?

The common to all areas of physics is a methodology that first, concentrates on finding few
fundamental laws and their mathematical formulations; second, a mathematical theory developed
from these few “first principles” that explains a vast area of knowledge without contradicting known
facts; third, makes unexpected theoretical predictions, which could be verified experimentally, and
actual experimental verifications which confirm or disconfirm the theory.

This paper briefly summarizes previously developed aspects of the physical theory of the mind
and presents new developments. It discusses the first principles identified by a number of leading
neuroscientists, mathematical methods suitable for their modeling, perception and cognition
mechanisms based on these principles, the mechanisms of an approximate mental hierarchy. The
physics of the mind and the related mathematical theory are extended toward the dual hierarchy of
interactions between cognition and language, high cognition including emotions of the beautiful, a
controversial idea of the meaning of life, as well as functions of these high principles in cognition.
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It is further extended toward emotional prosody of speech
as well as cognitive functions and the reasons for evolution
of musical emotions from animal cries to Bach and Justin
Bieber.

This theory does not contradict existing knowledge, explains
psychological facts that have been poorly understood previously,
and has made a number of unexpected experimentally verifiable
predictions. The paper discusses theoretical predictions that
have been experimentally confirmed (or tentatively confirmed).
Among these confirmed predictions are mechanisms of
perception and cognition, mathematical model of the mind
that overcomes computational complexity, interaction between
cognition and language, the nature and mechanisms of the
beautiful and the meaning of life, as well as the cognitive
functions and reasons for origin and evolution of musical
emotions. Computational complexity interfered with modeling
the mind, artificial intelligence and machine learning since
the 1960s, a mathematical theory overcoming this difficulty
is described. The paper presents physics of the mind that
mathematically models psychological mechanisms at the
functional level. Self-organization processes are related to
thermodynamics and informational theories. The functional
theory has been partly related to neural mechanisms, and some
of these relations have been experimentally confirmed. The
paper discusses predictions, which open vast areas for future
research.

FUNDAMENTAL PRINCIPLES OF THE
MIND-BRAIN

This section describes several fundamental principles of the
mind-brain, later the paper describes mathematical models for
some of them.

Concepts are a mechanism of understanding objects, events,
and abstract ideas. Their contents are stored in neural
representations. In the processes of perception concepts project
their contents to the visual cortex to match sensory projections.
Concepts are also called mental models of events and objects. In
a simple case a concept is memory. The analogy with models is
literal and neural representations are also called mental models.
Mathematical models of concept mechanisms is discussed in
(Perlovsky et al., 1997, 2011; Perlovsky, 2006a). Proof of detailed
theoretical predictions of the mechanism in experimental neuro-
imaging, including detailed descriptions of the brain regions
involved was obtained by Bar et al. (2006) and Kveraga et al.
(2007). The moment of perception is a match of these images.

Instincts are ancient mechanisms of survival. This paper
follows Grossberg and Levine (1987) theory, which has been
modeled mathematically and is appropriate for developing
physics of the mind. This theory considers the instinct
mechanism resembling “neural sensors that measure vital
parameters important for functioning and survival” (Grossberg
and Levine, 1987; Perlovsky, 2006a). For example, a low blood
glucose level specifies an instinctual need for food.Measurements
of glucose level sensors and the requirement to keep glucose level
within bounds is a mechanism of instinct.

Emotions designate various mechanisms which are surveyed
in a number of publications. Following Grossberg and Levine
(1987) theory of drives and emotions the mechanism of emotions
are neural signals connecting instinctual and conceptual brain
regions. Emotions, emotional neural signals, related states
and feelings communicate instinctual needs to conceptual
recognition-understanding mechanisms. Their function
is to motivate behavioral and conceptual representation-
models, which correspond to objects or events that can
potentially satisfy instinctual needs, so that these models receive
preferential attention and processing resources within the brain.
Thus emotions evaluate concepts for the purpose of instinct
satisfaction. Emotional signals and related states of the mind are
felt as emotional feelings.

Psychological research of emotions is usually limited to basic
emotions, which are related to satisfaction of bodily instinctual
needs, named by specific words, and limited in number to a
few different emotions. There are only few basic emotions; they
are a small part of our emotional abilities, the most ancient
and noticeable ones. Our higher cognitive abilities involve
many “continuous” emotions, which include aesthetic emotions
discussed later, related to knowledge, including processes of
learning, emotions in the voice prosody, emotions of cognitive
dissonances, as well as musical emotions described later.

Behaviour is governed by several mechanisms. The most
interesting for the initial development of physics of the mind
is the mechanism of behavioral concepts; it is similar to the
mechanism of cognitive concepts discussed above with the
difference that behavioral concepts govern behavior. Most of
human behavior occurs in the mind, it is directed at improving
concepts, understanding, and knowledge.

Cognitive hierarchy is an approximately hierarchical structure
(Kosslyn, 1980; Grossberg, 1988) of mental models and
aesthetic emotions (discussed later) extending from sensory-
motor representations at the bottom of the hierarchy, higher up
to concepts of objects, contexts, situations, and many levels of
abstract concepts, to the top of the hierarchy, which content will
be elucidated in the paper. This description is not quite accurate,
especially for neural mechanisms below objects; one can look
for details e.g., in Grossberg publications, but it is adequate for
higher levels. The hierarchy is functional, it is not organized from
the bottom to the top along a specific geometric axis. Processes
of understanding involve interactions among models at lower
and higher levels. In these interactions higher level models are
improved for better correspondence to lower level models; a
higher level model unify lower level ones for creating a more
abstract and general concept. The interaction is two-way: lower
level models are also improved for better match to the details of
the situation (lower level models) and for better matching the top
level one. Neural signals involved in these interactions are called
bottom-up, BU, and top-down, TD, signals.

The knowledge instinct, KI, is a special instinctual mechanism
related to knowledge acquisition and improvement of concept-
models (Perlovsky, 2001, 2006a, 2007b, 2008b; Perlovsky et al.,
2011). Its model is an extension of Grossberg and Levine
(1987) theory of bodily instincts to cognition. KI is similar to
other instincts, it involves sensor-like neural mechanisms that
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measures similarities between patterns in sensor data and mental
models, or more generally between BU and TD signals. As
discussed later, in humans and other higher animals mental
models are vague, and matching them to objects and situations
requires adapting them to BU signals. KI drives this adaptation.
No perception or cognition would be possible without KI. For
this reason KI is a most important instinct. KI is not related to
bodily needs but to “higher” needs for cognition and in this sense
it can be termed a higher instinct.

Aesthetic emotions are related to satisfaction of KI and they
are modeled mathematically by changes in KI. This theoretical
prediction have been experimentally confirmed (Perlovsky et al.,
2010; Schoeller and Perlovsky, 2015, 2016). Relation of aesthetic
emotions to knowledge was established by Kant (1790), although
he could not formulate his thoughts withmathematical precision,
the adequate mathematics did not exist at the time. His thoughts
have not been understood by his followers. Aesthetic emotions
are related to learning and understanding at every level of the
mental hierarchy, understanding is pleasant (Perlovsky, 2001,
2006a; Perlovsky et al., 2011; Schoeller and Perlovsky, 2015,
2016). But we do not relate understanding at lower levels to the
beautiful. Later this paper connects aesthetic emotions to the
emotions of the beautiful.

Perception of objects refers to recognition of more or less
familiar objects, and sometimes to noticing unfamiliar objects.
Visual perception involves neural projections of retinal images
to the visual cortex (BU). At the same time existing models
(of expected objects) project TD signals to the visual cortex
(TD). Driven by KI (or in other words, motivated by aesthetic
emotions) TD and BU projections of models on the visual cortex
are modified to match each other. When match is successful,
perception occurs (Grossberg, 1988). This process is modeled
mathematically (Perlovsky et al., 2011), and detailed predictions
of this model are experimentally confirmed (Bar et al., 2006;
Kveraga et al., 2007).

The above principles describe self-organization of conceptual
and emotional mechanisms of perception and cognition. They
encompass the mechanisms of imagination, intuition, planning,
conscious, unconscious, and others, including higher abilities
and aesthetic emotions (Perlovsky, 2001, 2006a, 2010d; Perlovsky
et al., 2011). Most brain operations are unconscious, for example,
individual neuronal firings usually can never be accessed by
consciousness. This paper refers to the brain-mind neural
processes that are not accessible to consciousness as being
unconscious, and there are various degrees of unconsciousness.
Some processes could never become conscious; others can
be accessed by consciousness with significant mental effort,
as in creative processes; still others become conscious under
changing circumstances without special effort. Many theoretical
predictions have been confirmed in experiments (Kosslyn, 1980;
Grossberg, 1988; Perlovsky et al., 2010; Schoeller and Perlovsky,
2015, 2016).

Vague Representations.Mental models are not crisp like visual
perceptions. A simple experiment can prove this. Look at an
object in front of you and then recollect this object with closed
eyes. This visual imagination is vague, one cannot recollect even a
simple everyday object in all details with closed eyes. Imagination

is a TD neural projection from memory to the visual cortex.
Vagueness of imaginations is a consequence of vagueness of
mental models (Perlovsky, 2016b).

This property of models is fundamental for perception. The
reason is that an object would never appear exactly same as
during previous perceptions; angles, lightings, surrounding
objects would always be different. Therefore previously
remembered objects would not match new object projections
from retina to visual cortex. Attempts in artificial intelligence
(AI) to recognize objects by matching sensory images to previous
images took many years and resulted in failures. The number
of possible modifications of previous images to match a new
image, are combinatorially large. This number is larger than
all interactions of all elementary particles in the Universe,
therefore the resulting complexity is unsolvable. The problem is
called combinatorial complexity, CC (Perlovsky, 1998). Vague
models avoid a need to consider combinations. The vague-to-
crisp process is fundamental for self-organization, perception
and cognition; vague representations and processes are not
conscious, possibly for this reason vagueness of representations
has not been appreciated by psychologists and mathematicians
modeling the mind, and this is the reason why mind processes
have not been mathematically modeled and understood in
artificial intelligence (Perlovsky, 2001; Russell and Norvig,
2010).

Dynamic logic, DL, is a mathematical technique modeling
the brain-mind mechanism of matching vague models to crisp
projections from the retina (Perlovsky, 2001, 2006a, 2013c;
Perlovsky et al., 2011). Adequacy of DL vague-to-crisp process
has been experimentally proven in (Bar et al., 2006; Kveraga
et al., 2007). M. Bar and colleagues proved that the initial state
of models is vague. The process “from vague to crisp” until
models match retinal projections take approximately 150ms.
These includes many neuronal operations: about 10ms per
firing of a neuron, while tens of thousands of neurons are
participating in parallel. The initial part of this process cannot be
accessed by consciousness, vague models and processes are not
accessible to consciousness. Conscious perceptions occur only at
the moment of model-projections matching object-projections
from the retina.

DL is a process-logic, it avoids logical states until the very
end of the DL-process (Perlovsky, 2006a, 2013c). This is essential
because CC has been shown to be equivalent to Gödelian
incompleteness of logic when applied to finite systems, such
as computers or brains (Perlovsky, 2013d). It is interesting
to note that the founder of logic, Aristotle explained to his
students that logic is needed to argue what has been already
understood, but not for understanding of new phenomena, and
logic should not be used for understanding working of the mind.
Aristotelian theory of the mind is similar to DL, the mind
understand the world by using forms that today we call models
or representations. Initial states of the forms are potentialities,
which are not logical. In the process of “the mind meeting
matter”, which today we call interactions of TD and BU signals,
forms become actualities, which are logical states.

This section summarizes several fundamental principles of
the mind: instincts, emotions, concepts, cognitive hierarchy,
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the knowledge instinct, aesthetic emotions, perceptions,
vague model-representations, dynamic logic. Not all of these
principles are independent, e.g., KI and aesthetic emotions
are extensions of general principles of instincts and emotions,
vague representations are a part of dynamic logic; this repetition
is justified by importance of the correspondence principles.
Perception is a mechanism explained from fundamental
principles. Mathematical foundations of these principles have
been discussed, mathematical details will be presented later as
well as few other fundamental principles. Identification of few
fundamental principles is a first step toward developing physics
of the mind.

THE BEAUTIFUL AND MEANING OF LIFE

The mind mechanisms are organized into an approximate
hierarchy of concepts and aesthetic emotions. Cognitive
hierarchy is illustrated in Figure 1.

The hierarchical organization of cognition and related brain
structures are reviewed in (Badre, 2008). The hierarchy evolved
for the purpose of developing more abstract and general
concept-models (Perlovsky, 2006a). Consider a perception-
cognition process of an everyday situation, e.g., a professor
office. The knowledge instinct first drives the mind to perceive
and understand objects in the office: chairs, computers desks,
shelves, books... Animals also understand individual objects.
Next, the knowledge instinct drives us to understand the
concept “office” as a unity of objects. A mathematical model
of this process was developed in (Ilin and Perlovsky, 2010;
Perlovsky and Ilin, 2010a,b). The higher level abstract concepts
we understand due to corresponding concept-models, such as
“office.” Similarly, we understand a “concert hall,” and other
situations by using higher-level concepts that our mind evolved
for this purpose.

I will repeat the word purpose; every higher-level concept and
its mechanisms evolved in individual learning as well as in genetic
and cultural evolution with a purpose to be able to transform
many lower-level concepts into a unified meaning. In this
understanding lower-level concept-models acquire higher-level
meanings and develop amore abstract understanding than lower-
level meanings. This way our understanding of the surrounding
world evolves from a “book” to an “office,” to a “university”,
to an “educational system,” and so on... to models near the top
of our mental hierarchy. These “top” models “attempt to make
sense, to understand the meaning of our entire experience. We
understand-perceive-feel them as related to the meaning and
purpose of our lives” (Perlovsky, 2006a, 2010c).

Models at every level unify lower level models, for example a
situation-model symphony hall unifies lower level object-models:
chairs, listeners, scene, etc. Continuing this argument to the
top of the hierarchy, one concludes that models at the top
unify the entire life experience. These top representations are
understood as themeaning and purpose of life. As discussed, even
lower level concepts are vague. Abstract concepts built on top of
many levels of vague models are even vaguer (Perlovsky, 2011c),
therefore the meaning and purpose of life are not finite exactly

defined ideas like objects perceived with opened eyes. The next
section discusses why sometimes it may seem that we can crisply
formulate these ideas.

Learning of models at every level is driven by KI operated
at that level, or in other words is motivated by aesthetic
emotions at this level. At lower levels aesthetic emotions could
be below consciousness. At the top of the hierarchy the highest
aesthetic emotions are emotions of the beautiful, sometimes these
emotions could be strong and even produce physiological effects,
aesthetic chills (Perlovsky, 2002, 2006a, 2007c, 2008a, 2010b,c;
Mayorga and Perlovsky, 2008; Schoeller and Perlovsky, 2015,
2016).

Let me emphasize that defining emotions of the beautiful as
the highest aesthetic emotions (that is aesthetic emotions near
the top of the mental hierarchy) corresponds to a well-accepted
human intuition. Kant (1790) has been the first who related

FIGURE 1 | The hierarchy of cognition. Cognition is organized into an

approximate hierarchy of concepts from objects to abstract concepts and

higher up to the highest cognitive concepts of the meaning and purpose.

Aesthetic emotions function as motivators of learning concepts at every level,

at the top of the hierarchy these are the emotions of the beautiful.
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beautiful to the meaning and purpose of human life, yet
his intuitions have been well ahead of understandings of his
contemporaries. The only widely known Kantian idea about the
beautiful is that it is “aimless purposiveness,” often with emphasis
on aimless, because the purposiveness of the beautiful is not
understood even in contemporar y aesthetics. This is clearly seen
when visiting museums of contemporary art.

While progress in understanding of the purpose of human
life can be seen in art evolution from cave art to the 19th
century, in the 20th century art the exploration of purposiveness
has been disappearing. In rare pieces of contemporary art the
meaning and purpose of life is explored. This ignoring Kantian
intuitions in contemporary art is likely to be closely related to
the fact that the idea of “science” become important in cultural
life (without understanding of what science is). Existing science
does not understand what is beautiful. For example, G. Dickie,
an influential philosopher of art, a president of the American
Society for Aesthetics, and author of popular textbooks developed
an “institutional theory of aesthetics” which defines beautiful as
what has been accepted as beautiful by respected art institutions;
it is still widely accepted as a state of the art in understanding
of the beauty. In wide culture beautiful is understood as more
related to sex than to the meaning of life. In university courses
on aesthetics beauty is related to shapes, colors, forms, and
progressive social uses of art, rather than to the purposiveness of
life. So, I would again emphasize that the theoretically predicted
properties of the emotions of the beautiful, their relations to the
meaning of life are unexpected in contemporary aesthetics and
contradictory to accepted views. Nevertheless these theoretical
predictions have been experimentally tested and confirmed
(Schoeller and Perlovsky, 2015, 2016), which is the fundamental
property of the science of physics of the mind.

This section gives an example of complicated cognitive
mechanisms explained from the first principles, and making
theoretical predictions that have been tested in experiments.

THE DUAL HIERARCHY, LANGUAGE, AND
COGNITION

The recognition that language and cognition are not the
same, that these abilities are served by different mechanisms
of the mind, began a revolution in 20th century linguistics
initiated by N. Chomsky (1957). Many psycholinguists and
evolutionary linguists today disagree with Chomsky’s complete
separation of language from cognition (Cangelosi and Parisi,
2002; Christiansen and Kirby, 2003; Steels, 2011), yet many
questions remained unanswered. What is the difference between
cognition and language? Language is so important for thinking
that it is difficult to comprehend what cognition would be
without language. How does cognition interact with language?
Do we think with words, or only use words as labels when a
chunk of a thinking process is complete? There is virtually infinite
number of possible associations between words and objects, so
how is it possible that every child learns correct associations?
Why children learn language by the age of 5 or 7, but do not
think like adults until much later? What exactly are the changes

in neural mechanisms? Do adults really understand what they
say, and what does it mean to really understand? Some people are
good at speaking language, while not equally good in discussing
with other people, or understanding the real world. Opposite
examples could be found. The science needs to understand the
mechanisms of language and cognition interactions; why they
are so interdependent, and so separate?What neural mechanisms
animals need to learn language?

These questions and many more can be explored with
adding one fundamental principle to those previously discussed.
Dual model (Perlovsky, 2004, 2006a, 2007a,b, 2009a, 2013b)
is a fundamental principle of the mind modeling interaction
between language and cognition. According to the dual model,
every mental model has a cognitive and language parts.
Their initial states are vague. In a newborn brain most of
cognitive and language models are placeholders without specific
contents.

Adding dual models to the cognitive hierarchy in Figure 1

leads to two parallel hierarchies of language and cognition
shown in Figure 2 (Perlovsky, 2006a, 2009a, 2013b). In childhood
language representations are learned fast and become crisp and
conscious. This is possible because language acquisition relies
on language spoken around, in which contents of language
models, words, phrases, are “ready-made” for learning. But
many cognitive models remain vague until much later; cognitive
learning is much more difficult, because cognitive models do not
exist in the world “ready for learning.” At an early age, everyone
can talk about good guys and bad guys, but nobody even at 40

FIGURE 2 | The dual hierarchy model (see Perlovsky, 2006a). Language

and cognition are organized into approximate dual hierarchy. Every

representation has two parts, cognitive and language. Learning language is

grounded in the surrounding language throughout the hierarchy. Cognitive

hierarchy is grounded in experience only at the very “bottom”; the cognitive

hierarchy is constructed from experience guided by language.
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or 80, can use these concepts without errors in real life. Ideas of
good and evil have been discussed for millennia.

Throughout the hierarchy, linguistic parts of representations
are crisp and conscious in every mind at an early age, but equally
crisp and conscious cognitive models my never be understood.
Representations of objects are acquired early, alongside with
language, because we see objects ready-made for cognitive
learning. But contents of abstract concepts do not exist in
the world “ready-made.” Not every combination of objects or
events is worth learning as a separate abstract concept, only
few combinations are important for understanding. Therefore
learning abstract concepts require experience guided by language.
If a concept does not exist in language, it is likely that it does not
exist in cognition, and corresponding events are not even noticed.
Many people speak words without full cognitive understanding
of what these words designate in real life. These aspects of
language-cognition have not been duly noticed or explained; the
mechanism of the dual model explains them. Language models
refer to facts of language, and not directly to events in the world.
Cognitive models combine language with experience and refer to
events in the world.

The dual model hypothesis is tentatively supported by
experimental data (Franklin et al., 2008). These authors describe
that certain representations based in the right brain hemisphere
in pre-linguistic infants are rewired to the left hemisphere as
language is acquired. Brain modules and neural connections
involved in the dual models and knowledge instinct were
discussed in (Levine and Perlovsky, 2008a,b).

The dual model has been fundamentally important for the
emergence of the hierarchy of the mind. Learning should be
grounded in experience (Cangelosi and Riga, 2006; Tikhanoff
et al., 2006; Coventry et al., 2010). But concept-models of
cognition are grounded in experience only at the lower levels
of concrete objects; at this level human abilities are not much
different from that of pre-human animals’ (Spelke and Kinzler,
2007). Understanding situations and abstract concepts cannot be
based on experience alone. The referenced publications discuss
in detail why this is mathematically impossible: there are simply
too many combinations of objects and events (more then all
elementary interactions in the life of the Universe). No life’s
experience would ever be sufficient to learn which combinations
are important for noticing them and learning as separate abstract
concepts.

The dual hierarchy model offers a resolution of an old
problem of sign and symbol (Perlovsky, 2007a). “Symbol is the
most misused word in our culture” (Deacon, 1989). “Symbol”
is used in simple cases referring to traffic signs, or axiomatic
mathematical notations, and in the most profound cases of
cultural and religious symbols. The dual model explains that a
sign corresponds to a language part of the dual model (even
if it is a part of a special sign system, such as notations in
chess or mathematics). Symbols can be used profoundly to
denote processes of sign interpretation, connecting language and
cognitive parts of the model in DL processes from vague to crisp.

The dual model answers questions formulated at the
beginning of this section; it explains how cognition interacts with
language: a cognitive process proceeds using both cognitive and

language representations. This enables thinking to be grounded
in the real world to the extent available to the thinker, and
still proceed using language whenever understanding of the real
world is insufficient. Similarly both representations are used
when speaking, depending on one’s abilities and preferences;
language or cognitive models receive preference in the speaker’s
mind. People of “speaking type” can shift between cognitive
and language models automatically and without notice, while
“cognitive types” may concentrate on cognition.

Associations between words and objects or events are learned
among virtual infinity of possible association by every child
through the process “from vague to crisp” modeled by DL. The
reason language is learned first and cognition is learned later
because language representations exist “ready for learning” in the
surrounding language, while learning cognitive representations
requires experience and guidance by language. Adults are
different from children in that a larger percentage of their
cognitive models are crisp. Still a significant part of what most
people are saying is understood only in terms of language, but
not necessarily in terms of real world entities. Animals cannot
learn language no cognitive hierarchy because they are missing a
neural mechanism of the dual language-cognitive model.

To summarize, cognitive models at higher levels are learned
based on both, life experience and language models. In this
process language guides cognition: language identifies for
cognition, which combinations of lower level concepts are
meaningful for learning as a higher level concept. Language
hierarchy is learned “ready-made” from the surrounding
language at an early age. During the rest of an individual’s life
the knowledge instinct drives the mind to learn the cognitive
hierarchy from life experience in correspondence with the
language hierarchy. If a certain idea does not exist in a language,
this idea does not exist in cognition, and corresponding events
would not even be noticed. Cognitive models are grounded
in language. Many theoretical predictions of the dual model
hierarchy in this section have not yet been experimentally proven,
they should be considered as hypotheses and their experimental
verifications are topics for future research.

This section, as the previous one, gives an example of a vast
field of complicated cognitive mechanisms explained from the
first principles, and making theoretical predictions that can be
tested in experiments; few of these predictions have been tested
experimentally. It answers many questions that could not even
have been formulated previously. Detailed mathematical models
are discussed in given references. The theory discussed in this
section is a part of physics of the mind, it is a step toward making
psychology a “hard” science.

EMOTIONALITY OF LANGUAGES AND
CULTURES

In non-human animals voice muscles are controlled from ancient
involuntary emotional centers. For this reason animal voicing
is mostly inseparable from emotions. “Voluntary control of
vocalization is limited” (Deacon, 1989; Schulz et al., 2005;
Perlovsky, 2009b; Simonyan and Horwitz, 2011). Evolution
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of language, semantically loaded voice, required to free voice
mechanisms from involuntary emotional control. For this
purpose in the course of language evolution human brain evolve
recent laryngeal control centers in cortex, which make possible
voluntary control of voice muscles.

Involuntary emotionality of voice has been significantly
reduced. With evolution of language an ability for strongly
emotional voice has mostly evolved into a separate ability
for song and music (Perlovsky, 2012c). But unconscious
emotionality of voice could not completely disappear. This
everyday low emotional prosody performs a highly important
cognitive function: it motivates connecting sounds of words
with their cognitive meanings (Perlovsky, 2011b, 2012a). Let me
emphasize this possibly non-obvious point. Language and its
main way of functioning, speech, can only function if sounds of
words are perceived emotionally. If a word sounds produce no
emotions and no motivations, this word has no meaning. I dwell
on this point because it contradicts accepted understanding.
“Emotional speech” often is used as a synonym of meaningless or
at least devoid of deep meaning, which could be true, especially
if emotionality is high and emotions overtake the reason.
Here I emphasize the opposite point: no emotionality indicates
absence of any interest, and therefore convey no meaning.
Proper emotionality is essential (Perlovsky, 2009b, 2011a). Low
emotional prosody, which is below the level of consciousness has
not been studied. This is an important area for future research.

The following part of this section makes theoretical
predictions that follow from the few basic principles formulated
above, mathematical models have been presented in given
references, and the theoretical predictions are experimentally
testable and will be tested in the near future. Emotional prosody
of human voice, even if unnoticed, affects the entire psyche and
even culture. In pre-human animals conceptual and emotional
systems (understanding and evaluation) are less differentiated
than in humans. Animal cries engage their psyche as a whole,
rather than conceptual and emotional mechanisms separately.
For example consider calls of vervet monkeys (Seyfarth and
Cheney, 2003). The calls designate types of predators around;
still “understanding of a situation (concept of danger), evaluation
(emotion of fear), and behavior (cry and jump on a tree) are not
differentiated, each call is a part of a single concept-emotion-
behavior-vocalization psychic state with very little differentiated
voluntary control” (Perlovsky, 2006a).

Humans on the opposite have separate mechanisms
of emotions, concepts, and behavior. Differentiation of
psychological states with voluntary control over each part
must have evolved contemporaneously with evolution of
language and rewiring of the brain.

It follows that language, while contributing to developing
detailed ability for concepts, also contributed to separating and
perfecting functions of concepts, emotions, and behavior. This
differentiation destroyed the unity of psyche inherited from the
pre-human past. Language evolution also led to losing unity of
psyche, started losing wholeness. While in pre-human animals
every element of knowledge is tightly connected to emotional
evaluation of a situation, and to appropriate behavior satisfying
instinctual needs, this is not so for humans. A significant part

of cultural knowledge formulated in language is not emotionally
connected to human instinctual needs. This is tremendously
advantageous for development of conceptual culture, for science,
and technology. Humans can deliberately discuss ideas.

But this freedom of deliberate conversation and clear
conceptual thinking exerts a price on human psyche. Human
psyche is not necessarily unified. Language is not directly
linked to instinctual mechanisms. Often knowledge developed
in culture does not fit with instinctual requirements that remain
our inseparable part. In addition some elements of knowledge
often contradict other elements. Human psyche must be unified
by the highest models of the meaning and purpose evolved
for this purpose at the top of the hierarchy of the mind
(Perlovsky, 2007b, 2009b, 2013b). Therefore contradictions in
the system of knowledge, a disconnect between knowledge and
instincts, the lost synthesis, lead to internal crises and may
cause clinical depressions. When psychic states missing synthesis
preoccupy majority of population, knowledge loses its value,
including knowledge of social organization, cultural calamities
occur, wars and destructions (Diamond, 1997; Perlovsky, 2006a,
2007b, 2012d). Evolution of culture requires a balance between
differentiation and synthesis. Differentiation is the very essence
of cultural evolution. But it may lead to emotional disconnect
between conceptual knowledge and instinctual needs, to the lost
feeling of the meaning and purpose, including the purpose of any
cultural knowledge, and to cultural destruction.

There is much evidence that languages differ in their
emotional and conceptual contents (Guttfreund, 1990; Buchanan
et al., 2000; Harris et al., 2003; Perlovsky, 2007a,b, 2009b,
2012d). While all contemporary languages lost involuntary
connections between sounds and emotions characterizing animal
vocalizations, this “hardwired” connections between voice and
emotions has been replaced by habitual connections. As long as
sounds of a language remain unchanged, the language maintains
historical connections between word sounds and associated
emotions. But if sounds of a language change fast, this historical
connections might be lost.

A significant mechanism affecting a speed of language
sound change and therefore emotionality of the language is
word morphology, such as inflections expressing grammatical
cases, voices, aspects, genders, numbers, tenses, and other
constructs. A strongly inflected language may have dozens or
even many dozens of inflections expressed by affixes and other
grammatical devices. Every child hears these affixes every day,
therefore knows how to pronounce them, even if does not
know which grammatical category it expresses and when it
should be used. In inflectional languages, like most European
languages, pronunciation of affixes is to some extent fused with
pronunciation of the word roots. Therefore positions of laryngeal
muscles for pronouncing word roots should be concordant with
pronouncing affixes. Sounds of affixes control to some extent
sounds of roots. Affixes are “tale that wag the dog,” like anchors
keeping the word sounds, and therefore historical emotions.
Languages with many affixes tend to keep their sounds changes
slow.

For example, Middle English, similar to other Germanic
languages, had a number of inflections. About 500 years ago
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during transition to Modern English most of inflections have
been lost (remaining inflections include “ed” for the past tense
and “s” for plurals). English lost anchors for its sounds, and
sounds of English started changing fast (Lerer, 2007). English
sounds significantly change in each generation. e.g., a well know
change is the Great Vowel Shift. Much less research have been
devoted to losing historical connections between word semantic
meanings and corresponding emotions. This has led to low
emotionality of contemporary English.

This low emotionality makes English a powerful tool of
semantic thinking. Ancient emotions determined by language
sounds and unrelated to semantic contents do not interfere
with the thought train. English is very good for science and
engineering (Perlovsky, 2013c, 2016a). The other side of low
emotionality is that English is losing historical connections
of value words to cultural values evolving over millennia.
Recent generations change cultural values according to current
fads; a lot of people think that this is possible because today
people are smarter than in the old days, and therefore are
not bound by meaningless traditions. It is not appreciated that
this freedom from traditional values (good or bad) is due to
the fact that English language sound are changing fast and
for this reason English is literally “losing anchors,” which is
not a guarantee that current fads are better than millennial
traditions.

On the “other side” of language emotionality is Arabic
language. It is a fusional language, in which inflections are
strongly fused with word roots. It follows that sounds of Arabic
change slowly (if at all). Semantic meanings of Arabic words are
strongly connected to historically ancient emotions. Arabic may
not be flexible for scientific thinking. But Arabic moral values are
strongly rooted in history. Many Arabic people therefore are sure
about theirmoral values. It is important to appreciate that current
contradictions between Arabic and English speaking cultures do
not depend on specific political leaders, but are rooted in the very
sounds of Arabic and English languages (Perlovsky, 2009b, 2011a,
2012d).

Again, this section gives an example of a vast field of
complicated cognitive and language mechanisms as well as
their affects on cultures. A vast field of knowledge is explained
from the first principles; a theory makes predictions that can
be tested in experiments; few of these predictions have been
tested experimentally, these are directions for future research.
It answers many questions that could not even have been
formulated previously. Mathematical models are discussed in
given references. The theory discussed in this section is a part
of physics of the mind, it is a step toward making psychology a
“hard” science.

COGNITIVE FUNCTIONS OF MUSIC

Cognitive functions of music, the reasons for its evolution
from pre-human vocalizations to Beethoven, Chopin, and Justin
Bieber could not have been understood. Aristotle (1995) asked
“why music being just sounds reminds the states of soul?” Kant
could not understand the role of music in cognition Kant (1790).

Darwin (1871) thought that music is the “greatest mystery.” And
contemporary musicologists could not find an answer (Editorial,
2008; Honing et al., 2015).

An explanation of music cognitive functions have been
derived from the dual model (Perlovsky, 2006a, 2010a, 2012b,c,
2013a, 2014, 2015a,b). Evolution of language led to explosion of
knowledge and a number of concepts. Concepts contradict other
concepts to some extent. These contradictions among concepts
dissatisfy the knowledge instinct and produce unpleasant
emotions, cognitive dissonances (Festinger, 1957). Cognitive
dissonances are immediately resolved: the new contradictory
knowledge is discarded fast and usually without reaching
consciousness (Jarcho et al., 2011). It follows that evolution
of language, cognition, and culture required a cognitive
mechanism for overcoming cognitive dissonances without
rejecting knowledge.

This mechanism had to act fast and to be related to language.
And this mechanism existed since the beginning of language
evolution, it is language prosody. Low-emotional prosody is
overcoming minute cognitive dissonances present in everyday
choices. Overcoming stronger cognitive dissonances, which
appeared with evolution of language and culture, dissonances
related to unrequited love, betrayals by friends and loved one,
required stronger emotions. These stronger emotions appeared
in songs, an ability which eventually evolved into music
(Perlovsky, 2006c, 2016a,b,c).

This theory which relates music evolution to cognitive
dissonances explains why many people enjoy listening to sad
music. Some music is so sad it cannot be listened without tears.
Listeners of the BBC’s Today program in 2004 voted Barber’s
Adagio for Strings the “saddest classical” work ever. It is among
the highest-selling classical music piece. The physical theory of
the mind described here explains a mysterious power of music
over us as well as Biblical statement: “in much wisdom is much
grief” (Ecc. 1:18). For we leave in the sea of cognitive dissonances,
in the sea of grief.Music helps us overcome the grief of knowledge
and to continue developing the culture.

The theoretical prediction, resolving the millennial mystery
of music by relating it to cognitive dissonances have been
confirmed experimentally (Masataka and Perlovsky, 2012a,b,
2013; Cabanac et al., 2013; Perlovsky et al., 2013). This theory
opens a vast field for future research, including experimental
measurements of musical emotion, e.g., what is the emotional
distance between a musical phrase from Beethoven and another
musical phrase from Chopin. How many musical emotions
exist?

DYNAMIC LOGIC, DL

DL is a mathematical technique modeling the knowledge
instinct, or more specifically, the brain-mind mechanism of
matching vague top-down signals to bottom-up signals without
computational complexity (Perlovsky and McManus, 1991;
Perlovsky, 2001, 2006a,b; Perlovsky et al., 2011; Vityaev et al.,
2011; Kovalerchuk et al., 2012; Perlovsky and Shevchenko, 2014).
It is a mathematical foundation of the physics of the mind and all
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results discussed in this paper. It is a fundamental principle of the
mind describing the process from vague to crisp representations.

The mathematical description, following (Perlovsky et al.,
2011) is given below. An index m numbers top representations;
an index n numbers bottom representations; an index i numbers
BU signals making up the n-th representation. Parameters xni
measure the strength of association of the BU signal i with bottom
representation n, and pmi measure the strength of association
of the BU signal i with top representation m. Values of these
parameter are limited between 0 and 1. Associations between top
and bottom representations are modeled by

f(m|n) = r(m) (n|m)/
∑

m′∈M

r(m′) (n|m′). (1)

(n|m) =

∏

i=1

pxnimi (1− pmi)
(1−xni) (2)

Here (n |m) are pdf-like measures, and f(m|n) are probabilities-
like measures, similar to a posteriori Bayes probabilities. Under
certain conditions, these variables indeed can be interpreted
as probabilistic measures. For preserving these probabilistic
interpretations (n |m) is defined so that integration over x
yields 1. And parameters r(m) are used to model the proportion
of signals m in top-down representations. These representations
model a single level in the hierarchical mental structure; at the
lowest level of the hierarchy xni represent sensor signals: if a
feature i is present in object or event n, xni = 1, otherwise 0.

Learning in DL processes constitutes adapting parameters
pmi and r(m) so that top representations m correspond to
patterns in bottom representations xni. This process maximizes
a total similarity measure between all bottom patterns and top
representations,

L({n}, {m}) =
∏

n∈N

∑

m∈M

r(m) (n|m). (3)

Maximizing this similarity is a model of KI.
The learning process maximizing KI (Perlovsky et al., 2011)

can be specified iteratively,

pit+1
mi = pitmi + dt

∑

n

f(m|n)[ ln (n|m)/ pmi]
it, (4)

fit+1(m|n) = [r(m) (n|m)/
∑

m′∈M

r(m′) (n|m′)]it, (5)

rit+1(m) = [(1/N)/
∑

n

f(m|n)]it, (6)

In equation (4) a parameter dt is an increment of the internal
time t of the DL iterations. A fundamental aspect of the DL
learning is an initial vague state, which is achieved by specifying
the unknown parameter values pmi near 0.5. This value of
pmi corresponds to maximal variances of (n|m) and vague
representations f(m|n). This state corresponds to the Aristotelian
potentiality. In the process of perception, “mind meets matter,”

FIGURE 3 | Perception of “smile” and “frown” patterns in noise, an example of dynamic logic “from vague-to-crisp” process: (A) true “smile” and “frown”

patterns are shown without noise; (B) actual image available for recognition (signals are below noise, signal-to-noise ratio is about 1/3); (C) an initial vague

concept-model; (D) through (H) show improved concept-models at various iteration stages (total of 21 iterations). Between stages (D) and (E) DL tries to fit the data

with more than one model and decided, that it needs three models to “understand” the content of the data. Until stage (G) the DL “thought” in terms of simple blob

models, at (G) and beyond, the algorithm decided that it needs more complex parabolic models to describe the data. Iterations stopped at (H), when similarity (3)

stopped increasing.
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TD and BU signals interact and representations reach crisp states
corresponding to the Aristotelian actualities. We show in an
example below that this process converges fast.

In this example, Figure 3. illustrates the DL perception of
“smile” and “frown” patterns in noise. Patterns without noise are
shown in A; with noise, as actually measured they are shown in B.

When models come close to the true shape, iteration 17,
Figure 3G, there is sufficient sensitivity to determine that
parabolic shapes better match signals, three parabolic shapes are
activated. At iteration 21, Figure 3H, iterations stop, because
similarity (3) stopped increasing with iterations. The number
of computer operations in this example was about 109. Thus,
a problem that was not solvable due to CC becomes solvable
using DL.

To summarize this example, during DL learning initial vague
and uncertain models (Aristotelian potentialities) are associated
with structures in the input signals (Aristotelian forms interact
with matter), and vague models become more definite and crisp
with successive iterations. In the image available for recognition,
Figure 3B, signal is below noise, signal-to-noise ratio is about
0.3. This is a significant improvement over other state-of-the-
art practically working algorithms; a standard required signal-to-
noise ratio is more than 30. The achieved improvement is about
100 times.

The above formulation of DL includes dual models as
well as the dual hierarchy. Some xni and pmi correspond to
cognitive representations and other correspond to language
representations. Language representations exist in surrounding
language and are learned early in life. Cognitive representations
are learned from experience under guidance of existing language
representations. Existing preliminary simulations of systems
with cognitive and language data indicate that interactions of
cognition and language can self-organize by association of both
types of representations in a single model. This process could
be speeded up if certain associations among vague models are
inborn. Understanding inborn associations is a future research
direction.

Adequacy of DL for modeling neural mechanisms of
perception has been experimentally proven in (Bar et al., 2006;
Kveraga et al., 2007).

CONCLUSION

This paper establishes a new area of science, physics of the mind.
Physics of the mind, let’s repeat is methodologically similar to all
areas of physics in identifying few fundamental principles and
their mathematical models, a general mathematical model built
from these few principles, describing a vast area of knowledge,
and making experimentally testable predictions. Experimental
tests of these predictions confirm or disconfirm the theory.

Physicists know that the very first test of a scientific theory is
its elegance and beauty; these include Einstein (see McAllister,
1999), Poincare (2001), Dirac (1982). The beauty of a scientific
theory is its ability to describe a vast area of knowledge
from few basic principles, and to make experimentally testable
predictions. The actual experimental tests are the final proof of
the theory. Currently a number of theoretical prediction have

been experimentally confirmed, even so they are unexpected and
go against accepted views.

Still a number of predictions remain to be confirmed, a vast
area of theoretical and experimental development is opened
for future research. Traditional psychology is a “soft” science
that does not develop mathematical models of the mind self-
organization based on few principles, describing vast areas of
knowledge, and making experimentally verifiable predictions. A
new area of science physics of the mind extends psychology
toward “hard” sciences.

Opportunities for unified areas of research arise in place of
former misunderstandings and contradictions.
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How dowemanage to understand a completely novel state of affairs, such as the sudden

effects of an unexpected earthquake, or the arrival of a total stranger instead of the sister

we were waiting for? In each case, for a moment we might be stunned, but we are able

quite quickly to fit these events into our overall framework for understanding the world.

However, terrified and despairing we feel, we know what earthquakes are and this event

fits that schema; in the case of the stranger we know that this kind of thing happens, and

that we must ask the stranger “Who are you, and where is my sister?” This paper asks

about the mechanisms by which we rapidly achieve an understanding of our world, both

the unexpected changes we may experience, and the ongoing comfortable familiarity

we normally have with our surroundings. We attempt a solution by means of examining

fundamental questions:

• What is it to understand something?

• What sorts of things do we try to understand?

• Is there a conscious EXPERIENCE of understanding?

• Does understanding involve conscious mental images?

• What is self-organization?

I will argue that these questions revolve around the need of a living organism to take

action, and that understanding anything involves knowing how we might act relative

to that thing in our environment. The experience of understanding is a feeling that the

action affordances of a situation are clear and available. Action (as opposed to reaction)

includes imagery, particularly motor imagery, which can be used in the guidance of

action. Understanding requires a conscious process involving motor imagery of action

affordances, and action can be understood only in self-organizational terms. I explain

how self-organization can ground the kinds of action affordance experience needed for

conscious understanding. The paper concludes that our day-to-day understanding of

our environment is the result of a self-organizing process.

Keywords: understanding, self-organization, consciousness, representation, recursion, emergence

WHAT IS IT TO UNDERSTAND SOMETHING?

Answering this question requires distinguishing two ways it can be taken. One way is as a “success”
term, with the assumption that there can be correct and incorrect understanding. Thus, we can
say of someone that she thinks she understands the term “water” if she views water as any clear
liquid that quenches thirst, but that she does not really understand it, being ignorant of the
molecular composition of water. The other way of taking the concept of understanding is purely
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as a mental state of a subject, in which she finds for herself a way
of interpreting something (word, sentence, object, or event) that
allows her to use her interpretation to think about or act upon her
interpretation in a way that satisfies her. We can call this “having
AN understanding” of something. Having an understanding in
this sense does not involve success or failure, as long as the subject
herself is satisfied.

In this paper we are concerned with the second sense of
understanding. The former sense is the subject of philosophy of
language, while the latter sense concerns only what is going on in
the subject’s head—i.e., her nervous system. Reaching a state of
having an understanding is independent of “correct” definitions,
or of knowing the correct meaning in a given language, and
is concerned solely with the subject’s experience. While the
interpretation does not necessarily map onto the objective world,
it allows the subject to use her interpretation to incorporate it
into existing schemas and to create new models consistent with
it. If what she understands in this way is incompatible with the
objective world, she will sooner or later discover this, and will
have to revise her understanding or abandon it for one more
compatible in objective terms. She still has an understanding of
the object or situation, which is again not necessarily accurate,
but which allows her to act on this revised interpretation.

For example, suppose Susan is rude to her friend Tom, who
consequently is hurt and interprets Susan’s behavior as evidence
that she no longer likes him. His understanding of her behavior
satisfies him intellectually, although of course he is disturbed,
and his interpretation allows him to decide to snub her at their
next encounter. But when he does so she bursts into tears, while
his friends tell him that she has been under a great strain and
is seriously depressed. Then Tom will no longer interpret her
rudeness as a sigh of rejection of him personally. Once again, his
new interpretation may be objectively inaccurate, but it provides
an understanding that allows him to interact with Susan in a way
that is intellectually comfortable.

Finally, we can be even more precise by looking at a clear
lack of understanding, in the well-known example of the Chinese
Room (Searle, 1984, discussed at greater length below). Searle
imagines himself going through all the motions of a computer
with a translation function, which receives questions in Chinese
and delivers answers, still in Chinese. Someone on the outside
might well-believe that the computer understands Chinese. But
Searle, as the computer inside the room, knows that he does not
understand, and we can certainly take his word for it.

WHAT SORTS OF THINGS DO WE

UNDERSTAND?

Most commonly, we think of understanding language. But in fact
we must have an understanding of every aspect of our lives—
every object we encounter, every event we are involved in or
witness, everything that is part of our environment. Without this
understanding, we are at a loss as to what to do next. It may sound
strange to speak of understanding an object. But in the case of
any object we need to know what it is for, how we may use it or
avoid it, what actions it affords. Even a meaningless rock lying in

a field can be picked up, thrown, taken home as an ornament,
etc. We might be mistaken in our particular understanding of
an object if we think a rock is a mushroom and try to bite into
it; in that sort of situation we search for a different, we may
say more successful understanding. Leaving some aspect of our
environment not understood is a worry; we have to figure it out
so as to know what to do with it or expect from it. We seek an
understanding of events, such as two people whispering at the
faculty meeting. What can they be whispering about? We are
then able to interpret their whispering as an attempt to locate the
memo referred to by the speaker, and we then can go on to the
next issue in our general attempt to understanding the meeting
as a whole. The unspoken premise here is that being alive is for
us a process in which we are always acting in relation to our
environment, however minimally (Ellis and Newton, 2010). Lack
of understanding obstructs the process of acting, and hence is felt
as a problem.

IS THERE A CONSCIOUS EXPERIENCE OF

UNDERSTANDING?

There must be conscious experience, at least in the initial
encounters with a thing, because having an understanding puts
us at ease, enabling us to feel that we can make use of what is
understood, or incorporate it into our global experience. In other
words, the above is what it is like to have an understanding.
Lacking any understanding leads to puzzlement and a feeling
of insecurity or discomfort: what are we supposed to do in this
situation? If we are in an apathetic state because of depression or
if we are sufficiently distracted by something else, we may not try
to understand (This experience can also be common when we do
not care whether we understand or not, as during a murky movie
when we have given up and stay only because of politeness).
But if we are called upon to DO something about the thing, or
perform some actions in light of it, we must attempt to arrive at
an understanding, to incorporate the thing into the rest of our
current situation.

The discomfort of lacking an understanding—“What’s going
on?”—leads to attempts to arrive at an understanding, and when
we are successful there is the well-known “Ah-ha!” experience.
This is normally a positive experience—the discomfort is eased—
unless understanding reveals the object to be scary, dangerous
or sad. Even then, we are better off for knowing how to react.
As we grow accustomed to our familiar environment we take the
understanding for granted; if someone brings me coffee while I
am working I need not go through a moment of puzzlement,
unless this offer of coffee is not at all typical of the normal
behavior of this person. Then I might ask some questions. The
upshot is that normally, when we have an understanding, we are
comfortable in our surroundings, without much thought, and we
are unpleasantly aware when we lack it. So we may speak of the
“A-hah!” experience, and the “What’s going on?” experience, as
what it is like to have or lack an understanding.

It should be clearly noted that we have access to our state of
understanding—we may say “privileged access”—we know when
we understand something and when we do not. It can be argued
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that we have no special access to our mental states, which are
determined in part by the environment. But this objection applies
to the first sense of understanding discussed above, which we are
not concerned with in this paper. Here, having an understanding
is a state of which the subject is fully aware. “Accuracy” of
understanding does not apply. In some situations I might pretend
to understand what’s going on, when I really do not. No one else
may notice, but I know the difference. This situation can lead to
social complexities and confusion, but I myself am usually aware
of my role in the awkwardness.

John Searle’s “The Chinese Room” is rich in examples. Searle
argues that the computational theory of mind—the theory
that thinking is manipulating symbols, meaningless themselves,
that we have learned correspond to objects and events in the
environment—is not accurate. His main argument, that syntax
does not yield semantics, uses the well-known example of a
person inside a closed room, manipulating Chinese symbols in
response to input, matching input with output by following
rules in a book. According to computationalism, Searle says,
correct manipulation—syntax—should be equivalent to knowing
Chinese. But in that case, Searle said, the person handling the
symbols should understand Chinese. Searle, imagining himself
as the person in the room KNOWS that he does not understand
Chinese. So the computational theory is false.

Not only does he know that he doesn’t understand Chinese,
he knows how to read and obey the instructions in the English
manual. His knowledge is made clear, to us and to him, by the
fact that he obeys the instructions with no difficulty. To provide a
personal anecdote: I was once playing a word game with another
person, who for a while seemed to be keeping up with the rules.
But she claimed not to understand what she was doing, but was
just lucky; when I explained the rules to her, she repeated that
she had not understood how the game was played, but that now
she did. She clearly described states of not understanding, and
of understanding; it seems to follow that those states yielded
conscious, reportable experiences (This example is discussed in
Newton, 1996).

DOES UNDERSTANDING INVOLVE

CONSCIOUS MENTAL IMAGERY?

Mental images have traditionally been thought of as primarily
visual—a picture of something is often called an image while
a 3-D representation of a structure is a model; an annoying,
persistent memory of a tune is “a tune in one’s head.” But tunes
in one’s head are no different from pictures in one’s head in their
central function: they are imagined reproductions of past audio-
visual stimuli that we have experienced and now remember. We
can recall flavors—taste images; pains—pain images; extreme
temperatures—heat or cold images. There seem to be no sensory
experiences that cannot be reproduced as mental images: they are
like the actual experiences, but are no longer objectively present
(Pearson and Kosslyn, 2015).

We can also have proprioceptive images, images of events
in our bodies, such as hunger pangs, or motor images, which
reproduce the sensations of moving parts of our bodies. Motor

images have received much attention in recent years for their role
in generating overt bodily movements (Sacks, 1984). According
to Jeannerod (1988), movements of our limbs begin with imagery
of the movement in the motor cortex; this imagery is activated
by allowed to proceed to the sending of nerve impulses to the
muscles, which execute the movement. The action can also be
prevented prior execution by inhibitory signals in the cortex.
Proponents of free will argue that while arm movements can be
predicted prior to execution by activation of the motor image,
there is still time for the action to be inhibited at the last minute;
during this short time the subject can choose inhibition or not
(Libet, 1985, p. 143). Whether or not this account is successful
will not be discussed in this short paper.

We have seen that having an understanding of something
means knowing how one might use or interact with the object
or event to be understood. If, as we have argued, there is a
feeling of understanding that is conscious, then this feeling must
consist in the experience of representations or imagery of some
of the possible interactions. For example, suppose you enter an
unfamiliar gym and see a novel type of equipment. You can ask
how one uses it, or you can simply look at it and try to figure out
where the feet go, where the arms go, what types of motion the
equipment allows. You are trying to understand the equipment,
and the attempt entails sensorimotor imagery of interacting with
the machine, imaging what the motions will feel like to execute,
etc. You can do all this while passively observing the machine.

Is there any other way of coming to understand the machine?
Suppose you ask the attendant to explain it; can’t you understand
and apply his verbal information (“you step on the foot pedals
and hold on to those bars”) without producing motor images in
your head? No; the images let you know if you can do what he
says. Don’t we do that kind of thing all the time? That question
takes us back to the discussion of conscious understanding. It
was argued that having an understanding of something means
knowing how one might interact with it, use it, participate with
it in some way. Often this kind of knowing is non-verbal. For
example, you know how to keep your balance on a bicycle while
riding it, and you can imagine doing so. But if you are asked
to verbalize this knowledge you may be at a loss. When riding,
you tighten and flex muscles, and shift your body weight around,
in ways that feel automatic, that you can image clearly through
proprioceptive and motor imagery. Confronting a bicycle with
understanding, we might say, means generating an image of how
you would ride it (And if you cannot generate such an image you
will feel, or protest, that you don’t know how to ride it). Thus of
the two apparently possible ways of having an understanding of
riding a bicycle, only the way involving imagery will be satisfying
to you. Hearing the explanation without knowing what it would
be like for you to ride it does not help you understand, if you do
not understand the elements of the explanation. And knowing
what it would be like for you to ride is being able to generate
imagery of your body in the act of riding. Thus, having an
understanding of something involves conscious mental imagery.
The only exception will be in cases where you have performed the
act so often that you feel sure, without mental rehearsal, that you
are familiar with the object or event. But even in those cases, your
feeling of confidence can be an “image,” in an attenuated sense of
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image, of traces of the “Aha” feeling that you achieved when you
originally developed an understanding.

Try an experiment: suppose you are asked if you are able to
reach the vase on top of the bookcase. How do you decide? If
you aren’t sure, try introspection. Do you not imagine standing
in front of the bookcase and reaching up? Perhaps you have a
motor image of standing on your toes and straining to touch the
vase. If that image leaves you undecided, you can walk over and
try to reach the vase, and get the right answer.

It can be objected that if you know quantitatively the height of
the bookcase, and your own height with your arm length added,
you could find the answer with no imagery necessary. And the
objection is correct, in that you can now find the answer by
simple addition. But that fact leads to another case of conscious
or semi-conscious motor imagery: the dependence of arithmetic
on representation of basic action patterns. Let us look in detail
at the most abstract way we use action imagery. I have been
defending the claim that understanding, in the sense that once
has AN understanding of something, is a process that maps novel
stimuli or experiences onto an original structure that is already
understood. The novel material, thus mapped, is understood as
well as the original material, in that it has become part of the
subject’s repertoire of usable structures, or mental models.

For example, suppose we call an original structure “reach,
grasp, pull.” This structure emerged, let us say, when the infant
first saw a desirable toy and grabbed it. The structure of that act
is the act itself; it is understood because it is created by the infant
in response to her own desire. It is the means of satisfying that
desire. Now that she has that movement pattern in her repertoire
she can use it at will to obtain other desirable things. She is also
now ready to use that pattern in other circumstances, to interpret
concepts or environmental input that goes beyond immediate
satisfaction of a desire for an object. Suppose she is now older
and is told she will be taken to a store to buy new shoes. She can
understand that prospect easily once she can see it as another
instance of “reach, grasp, pull;” going to the store is reaching,
selecting, holding, and buying the shoes is grasping, and wearing
the shoes home is pulling.

What about the novel qualitative and quantitative properties
that are structured by the familiar pattern? How are they
understood? It seems correct to say that they are experienced
as properties of the fundamental pattern, and are not viewed
as distinct from that pattern, but as features of experience that
merge with the pattern. If they are purely qualitative, they can be
experienced but not described except in terms of a pattern. In
describing quantitative properties of the shoes, other recursive
patterns will be applied to the details of buying the shoes, the
trip, the transaction, etc. E.g., the car is a thing that you get
into, and that moves you from point A–B. The red color of
the shoes, on the other hand, cannot be described but only
experienced and named. Sensory qualities like the smell of the
leather, the smoothness, the heft of the shoe are unanalyzable,
but as properties of the object are subject to the object’s handling
and do not need sensorimotor patterns of their own. In general,
qualia are presented to us as bound to objects and events
we understand through motor imagery, and do not present
philosophical difficulties in ordinary circumstances.

We can abandon sensory qualities in purely abstract contexts
likemathematics. Now imagine that a child is learning how to add
three digit numbers, and must understand what it is to “carry” a
numeral. The “reach, grasp, pull” pattern can be applied in an
attenuated form here: when we add 123–789, for example, we
must “carry” the one from the rightmost column to the middle
one, where it is incorporated into the sum of 8 and 2. The
term “carry” is clearly metaphorical and derived from physical
operations: “add” can be understood in terms of placing one
object into a collection of others, “divide” in terms of separating
n sets of objects from a larger collection, etc. Note that the “reach,
grasp, pull” structure is only one of many metaphors based on
bodily movements in space: into and out of are derived from
experience with containers in which we can put things or find
ourselves inside of; and they can structure metaphors in vastly
different contexts—e.g., “the voters put him in office”; or “three
goes into nine three times.”

The basic point here is very simple: we understand our
bodies in being able to move them and use them to satisfy
our wants and needs. Understanding anything has its roots in
this ability. Our bodies are our tools for achieving our goals,
and there is nothing more to having an understanding of them
than intentionally moving them. Because our essence as agents
is expressed in conscious, voluntary bodily activity, then having
an understanding of our own voluntary actions is itself nothing
more than being intentionally able to engage in bodily activity or
imaging it (knowing what it is like). We understand ourselves,
moreover, as voluntary agents. Being self-aware is being aware of
our bodies, not as something we, as disembodied subjects, have,
but as what we are.

Understanding anything, in the sense we are using it, involves
situating it into contexts or structures with which we are already
familiar. As a person grows and acquires new experiences,
the original sensorimotor structures of early life stretch to
accommodate these experiences in ways that he can “make sense”
of, in light of the earlier experiential structures. It is hard to
imagine how one could develop any understanding of novelties
except by connecting them with prior experience. An example
from academia is the teaching of Plato’s Theory of the Forms.
The instructor is helpless to explain what a Form is unless she
can find something in students’ experience to relate it to. She
can try beginning, for example, by explaining that Plato’s realm
of Forms is to the world of concrete objects as, in Christianity,
Heaven is to Earth. The success of this move depends upon the
students’ understanding of Christianity, and that understanding
depends, in turn, in part on spatial metaphors such as “above,”
for Heaven, and “below” for Earth. In other words, trying to
explain a complex new concept in terms pertaining only to that
concept, with no terms from the hearer’s experience to ground the
explanation, is useless. The hearer can learn which new words to
use with which other new words, but, like Searle in the Chinese
Room, will have no grounded understanding of the concept
that she can use to think about it in a satisfying and possibly
creative way.

Yufik and Friston propose a theory of understanding (this
issue) that is highly compatible with that of this paper,
except that their theory focuses on neuronal events underlying
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understanding, while this one is more concerned with mental
acts on a conscious level. One might say that their theory is
more “bottom up,” mine more “top down.” Importantly, both
theories exemplify enactivism—the view that cognition is a mode
of human activity, and both theories emphasize the role of action
representations, or mental models:

Notice the two key themes of this formulation are an emphasis

on active inference or volitional sampling of the world—of

the sort that characterizes enactivist or situation approaches to

cognition. Second, the progressive elaboration of internalized (“as

if ”) stimulus-response links induces conditional dependencies

between the sensory input and internal models of how those

predictions were caused—through active sampling (Yufik and

Friston, 2016).

In summary: Understanding is tightly coupled with the need
of a living organism to take action. Understanding involves
knowing how we might perform goal-directed actions relative to
the environment. The experience of understanding is a feeling
that the action affordances of a situation are not entirely unclear.
Action (as opposed to reaction) requires imagery, including
motor imagery, that can be used in the guidance of action.

SELF-ORGANIZATION

With this sketch of a theory of understanding, we will attempt
to see it as a self-organizing process. To do that requires that we
first consider it as a recursive process. Not all cases of recursion
are biological, like our theory of understanding. Just as many
writers view intentionality as a property of natural language,
logic, mathematics, and language provide instances of recursion:
the application of a function to its own values to generate an
infinite sequence of values. “Recursion occurs when a thing is
defined in terms of itself or of its type” (Wikipedia, Recursion).

In what follows we examine the concept of self-organization
particularly as it takes place in an organism—self-organization
as a biological property. The much broader research project
originated in applications to dynamical systems theory (Ashby,
1947), followed by physics, chemistry, computer science, and
more recently to human behavior. A major influence was
the work of I. Prigogine on self-organization in irreversible
thermodynamic systems, for which he won the Nobel Prize for
Chemistry in 1977 (Prigogine and Nicolis, 1977). Among other
central thinkers is Hermann Haken who finds highly important
examples of self-organization in brain function (Haken, 2008;
Karsenti, 2008).

Below we look at two properties central to self-organization
in any type of system, including the brain and human cognitive
functions in general.

RECURSION

Language is recursive when a type of clause in a sentence is used
to make a new sentence. For example “Bobby went to the store”
can become a new sentence “Bobby went to the store and to the
pharmacy,” and “Bobby went to the store and to the pharmacy,

and to the movies.” The prepositional phrase “to the store” is
a grammatical function within the sentence, and that function
can be infinitely repeated to make new sentences. Mathematics
is recursive when a number series n is extended by “n+1” and
“n+1+1.”

Recursion is part of a complete definition of language and
mathematics, and the concept has been used to deny language
ability to intelligent non-human animals. Recursion also occurs
naturally in non-living entities such as crystals (e.g., snowflakes
and blocks of quartz), and it frequently results in emergent
properties, such as the symmetry of crystals, the shapes of flocks
of flying birds, or traffic patterns, which maintain their overall
shapes as their sizes change.

Metaphors are essential tools in understanding, both linguistic
and otherwise. We understand something by being able to see
it in terms of something we already understand. That fact may
help to explain our inability to articulate a definition of sensory
properties like color; red itself has no articulable components that
can be compared to or mapped onto anything else (Lakoff and
Johnson, 1987).

The examples of recursion we have been examining include
both inanimate, fixed structures like language and mathematics,
events like presidential elections, and animate biological
processes. We have argued that understanding is a biological
process, based on recursive iteration of action structures, or
action images. The importance of recursion in our theory of
understanding is that, through recursive processes in which
structures are extended to new data, the new material is
understood simply by being incorporated into a wider context
already fully understood.

We are now ready to understand how forming an
understanding of elements in our environment involves
emergent properties.

EMERGENT PROPERTIES

Emergent properties are properties of the patterns resulting from
self-organizing processes that are not present in, or predictable
from, the individual components that have been organized. A
well-known example is traffic patterns: “In the case of a traffic
jam, what appears is an entity whose properties need not have
anything in common with the properties of its constituent units
(cars). In particular, one may have a stationery or even moving
back traffic jam while all cars are moving forward. This higher
level structure, whose equations ofmotion are not easily derivable
from those of cars, emerges from the interactions between the
cars” (Bonabeau et al., 1995). Because the properties are not
properties of the individual “agents” but only of the organized
whole, these properties are “emergent;” meaning that they did
not exist previously in nature, and could not have been predicted
from the properties of the “agents.” They are more than, and
different from, a mere aggregate of the agents that make it up
(Anderson, 2011).

Another important feature of emergent properties is that they
have causal powers not found in the individual entities making
them up. Traffic patterns, when they cause tie-ups in the traffic
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flow, cause not only traffic jams but also extreme irritation on
the part of the drivers involved. But the traffic jams and the
irritation are not caused by individual cars, because even if a
single car is driving too slowly for the comfort of other drivers,
they are not forced to stay behind it, but can move around it
freely, as they could not in the case of a traffic jam (Kerner,
1998). Other properties of collections of individuals, such as
electorates that exist at a higher level of organization than the
parts, are not in themselves emergent properties, since electoral
powers are as true of a mere aggregate of the individuals as of
an overall electorate, whose causal properties are reducible to the
aggregate of causal powers of individual voters (Ellis, 2012). One
might say that the “emergent” causal powers exist because the
individuals are arranged in a particular pattern, and that property
is true of the individuals as aggregated. It is true that a particular
arrangement of individuals has led to the “emergent” properties.
These properties, however, are previously unseen in nature, and
were not predictable from knowledge of possible aggregates of
individuals. They appear, moreover, spontaneously out of chaotic
states of individuals, and are not composed by external intelligent
agents. Thus, these patterns with their novel properties can be
said to emerge from chaotic states because of causal powers of
their own.

The concept of emergent properties is now so well-established
that it has tempted some to apply the term in cases where the
“agents” are not well-understood: for example, consciousness has
been called an emergent property in humans and some non-
human animals. This would be an appealing way to solve the
hard problem of consciousness, if the “agents” that would self-
organize to produce it are known. They are presumably states
of the brain, but unlike individual cars in the traffic pattern case
they have never been observed to create the emergent property of
consciousness in which they could be found. Emergent properties
are properties of groups of entities that can be observed as part
of the final form, not losing their material nature. In the case
of consciousness, it seems that no individual entities, or agents,
are in any way observable or detectable in conscious experience,
which manifests a unity for the conscious agent.

Understanding, however, as we have been using the term, is
an emergent property of biological processes. The entities that
lead to forming an understanding of something are detectable,
and can be analyzed out of the experience of understanding. An
experience of understanding contains, at least, motor imagery
of familiar action patterns, a mental state of puzzlement or
tension followed by a relaxing of the mind into the structure
and affordances of what is understood, and confidence in the
planning of future actions related to the entities or situations now
understood. The state of understanding as a whole, moreover,
has causal powers (in a given situation) that its components,
representations of action patterns, do not have. A satisfying
feeling of understanding, such as the “Aha” experience is
accompanied by images or representations of action patterns,
which the subject uses metaphorically to interpret the novel state
of affairs—object or event. These representations may not be the
most prominent aspects of the experience, in which attention
would be focused on the newly-understood state of affairs. But
they are introspectively available. In themselves, these action
representations do not constitute understanding of the novel

situation, but together with representations of the current stimuli
do combine to form a whole scenario that is understood.Without
the emergence of understanding, as it is presented here, normal
human life would be impossible; one would literally never know
what to do. The components of understanding must unite for any
functioning in the world to occur.

One source of evidence for the role of action representations
is the work of McNeill (1992), who studies the role of gesture in
expressing such representations:

For example, consider a speaker who says, “I was holding a big

box” and produces a gesture that mimes holding a big box. In

this case, both modalities express the same idea, so the degree

of redundancy between gesture and speech is high. The gesture

also expresses additional nuances ofmeaning, such as information

about the position of the hands as they hold the box, but the

semantic information expressed in the two modalities is largely

overlapping. At the other end of the continuum are cases in

which there is little or no semantic overlap between the two

modalities. In one often-cited example, a speaker describing a

scene from a Sylvester and Tweety cartoon said, “she chases him

out again” while swinging her arm as if wielding a weapon. In

fact, the speaker was describing a scene in which Granny chases

Sylvester while swinging an umbrella. In this example, the speaker

expresses an aspect of the scene in gesture (swinging the umbrella)

that she does not express at all in speech. Thus, in this case, the

degree of redundancy between gesture and speech is low (Alibalia

et al., 2009).

On this account the speakers are expressing in gestures the motor
imagery they are using to describe a scene. The use of gestures
indicate that the speaker is thinking of action patterns that she
uses to understand and describe the scene. In the second example,
the speaker is thinking of a component of the scene that she does
not express in words, indicating that she understands the scene
herself in terms of her prior experience of swinging an object in
her hand.

To summarize this section: understanding is a state of mind
that emerges from the blending of other mental states, driven
ultimately by the emotion of wanting to be comfortable in one’s
environment. The mental states of experiencing motor imagery
of action patterns and sensory input from the environment, and
relating these metaphorically to basic action patterns learned
by experience in infancy, create an emergent state of confident
action planning which would be impossible if these components
were not united by the emotional drive to be “at home” in the
world.

SELF-ORGANIZED UNDERSTANDING

What elements are self-organized in the case of understanding?
The basic constituents are the simple bodily movements
themselves. After mastering the reach-grasp-pull pattern, an
infant soon finds that the pattern can be extended in various
ways, such as grasping two small things at once between reach
and pull. We can say that the larger pattern (reach-grasp-grasp-
pull) is self-organized if a) the change was not conceived by the
infant in advance, but was a spontaneous extra-grasp addition to
the original pattern—in other words, the repeated grasp creates
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a higher order pattern reach-GRASP-pull, with the intervening
GRASP now encompassing two smaller iterations.; and b) the
process is recursive, in that components of the original pattern
are used to construct an emergent pattern within the same
structure. We assume here that the infant is not thinking out this
plan in advance, but is responding to a motivation—to obtain the
toys—in a somewhat automatic way.

Let us look at higher-level processes of understanding.
Take Searle’s example of a person in the Chinese Room.
His instructions are to take the input, consisting of Chinese
characters, look them up in a book, and return the prescribed
different set of characters through the output slot. Certainly
he doesn’t understand the characters. But he does have a clear
understanding of what he is supposed to do. Not only can he
express them in English (as he does in his article), he understands
them in terms of our basic pattern of reach-grasp-pull. He reaches
for them as they come in the input slot, grasps them, and pulls
them to him and looks at them. This case of understanding is,
of course, very simple, and probably minimally conscious. The
notion that reach-grasp-pull clearly applies here, and can be
clearly extended to apply to any abstract cognitive tasks in the
“grasp” mode.

I have described the application of pre-learned sensorimotor
patterns to examples of simple tasks to make clear the recursive
activities involved in a range of cases of emergent understanding.
One more aspect of understanding, seen as a recursive activity
built upon basic patterns, is the motivation that leads the
understanding subject to apply the patterns, with growing
sophistication, to the constantly arriving new states of affairs that
must be incorporated into the subject’s world view. How do we
know to keep applying the same basic patterns to novel input?
We need a concept to express the growing facility with which we
incorporate novel states of affairs into our world-view. Why do
we not struggle for understanding in the case of radically novel
input, not to mention the constantly changing environment with
which we are confronted moment by moment? Not only is there
normally no struggle, but the basis for understanding a novel
state of affairs is in place before we can puzzle over the scene. The
general schema for understanding our world allows an even flow
from one scene to another, seamlessly, because we are motivated
to “look for” such a framework before the event of new sensory
input.

The recursive building activity that lets us feel at home in the
familiar but changing world is known as stigmergy. As Camazine
et al. (2001) explains, referring to stigmergy:

[a] process of decentralized coordination ... where individuals

respond to stimuli provided by the emerging structure itself can

be a rich source of information for the individual. In other words,

information from the local environment and work-in-progress

can guide [and motivate through positive feedback] further

activity. As a structure such as a termite mound develops, the state

of the building process continually provide[s] new information

for the builders (p. 23).

The preceding quotation applied in the original to termites, but it
can apply equally well to cognitive understanding in an intelligent

individual. As we grow in the world, novel conditions inspire
more use of sensorimotor patterns to understand them. Like
a growing termite mound, our growing understanding of the
world, via stigmergy, supplies a conscious sense of satisfaction
and guards against confusion at first encountering the new
situation. The individual termites have innate instructions that
lead each one to coordinate its activities with the others, while
being unaware of the activities of the others and focusing on its
own tasks. In the case of us humans, we need more conscious
motivators; our pattern-use is not a result of blind innate drives.
Our motivators, as mentioned earlier, are conscious feelings of
satisfaction and discomfort. We are normally uncomfortable
when confused, and seek understanding. When we have achieved
that, we are satisfied; our work at building our extended world
is completed. We seek to be at home in the world, not at a loss.
When at home, we know what we can do next. We can simply say
that the more we understand the better we feel.

So far I have discussed the use of sensorimotor patterns to
incorporate novel situations into a given cognitive framework.
Sometimes, more rarely, there appear cases of true novelty,
structure-breaking events that require almost complete re-
evaluation in terms of the subject’s previous system of
understanding. All of a sudden all the lights go out. It is pitch-
dark outside my open window, and surrounding me inside.
Nothing has prepared me for this. It is as though I have gone
blind in an instant. There are no clues as to what I should, or
even can, do. What next?

My own physical body is my sole remaining anchor. I can
take stock of where my limbs are and what objects I can touch.
Two new interpretations are available to me: I am totally blind,
or something has happened to the light sources outside me. The
latter seems a more hopeful option; I try to construct plausible
scenarios, and finally find one involving unnoticed growing
lateness of the hour (the outside darkness), and a major electrical
fuse blowing (the inside darkness). That works.

In true novelty, when I would not have even my body to
anchor me, there might be no plausible scenario. In such an
extreme case, with no familiar structures to turn to, I could
only search my cognitive repertoire for some logically possible
explanation, in terms of what I am acquainted with. If that search
failed, as it would with no proprioceptive input whatever, I can
suppose that only blind panic would take over. That state is
unimaginable to a normally embodied subject (like this author).
A brave attempt to imagine it can be found in the novel “Zero
K” (DeLillo, 2016, p.155ff) when a newly disembodied subject
first awakens to her situation). The conclusion I draw is that the
body is foundational for any self-aware cognition with which to
construct some degree of understanding. With the body I can
tell some sort of story; without the body, there is nothing—even
memories of embodiment would not locate me now. Truly novel
situations are possible only against a background of minimal
familiarity; take that away, and subjective cognitive activity
must cease. But with some element of familiarity, which must
include some degree of embodiment, a possible world might
be constructed to fit my experience. Understanding requires
embodiment, and thus any understanding will be structured by
actual or possible bodily actions (Boden, 1990).
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Returning to the subject of self-organization, one might argue
that the preceding is not an explanation of self-organization,
since we, the subjects, consciously monitor the construction
of understanding, which means that the successive states of
applyingmotor patterns to our environment are not independent
of “intervention by external directing influences.” And it is true
that the subject of the understanding is consciously trying to
understand, motivated by a need, and that she therefore accepts
or rejects candidate patterns with which to organize the new data.
Nevertheless, she selects or rejects by means of her conscious
feelings only, and not by an independent standard of fitness of
the pattern with what has gone before. She need not know that
the successful pattern is a metaphor for the basic patterns of
movement that she has carried with her from infancy (and as I
have discovered, may well deny it when it is suggested to her!).
Here is a personal example: I was trying to convince a colleague
that his memory of a bad experience at a party was structured
by a sensorimotor pattern from earlier experiences, and that his
memory of the party was composed of representations of those
experiences, and not of purely linguistic representations such as
“I had a bad time at the party.” He denied it, so I asked “when you
think of the party, is there any bodily reaction that you are aware
of?” and he answered “I wince.” That convinced him (at least
partially) that such memories are not independent of personal
patterns of reactions to unpleasantness.

The point is that the unpleasant experiences used to structure
the memory of the party, and motivate the wincing, were in
place before my colleague reacted to them. The feelings of
satisfaction that arise when we find a pattern with which to
interpret anything new are automatic, and we can then proceed
to use our understanding with confidence, knowing that we have
successfully expanded our experienced world. And, as we see with
the example of sudden, complete sensory deprivation, motivation
to construct a pattern would be baseless, and could not begin.
To be a self is, necessarily, to be located with respect to an
environment. If that is gone, nothing remains.

CONCLUSION: UNDERSTANDING AS A

SELF-ORGANIZING PROCESS

Imagine what it would be like if all minute-to-minute attempts
at understanding of our experienced environment were fully
conscious and deliberate. There would be no comfortable feeling
of being “at home” in the world. Instead, there would be constant
confusion and uncertainty, at worst a deep fear of the immediate

future as something we cannot, but must, prepare for. In Being

and Time, Heidegger describes the state of humans, Dasein, as
Being-in-the-World:

In the projecting of understanding, entities are disclosed in

their possibility. The character of the possibility corresponds,

on each occasion, with the kind of Being of the entity which

is understood. Entities within the world generally are projected

upon the world—that is, upon a whole of significance, to whose

reference relations concern, as Being-in-the-world, has been tied

up in advance. When entities within-the-world are discovered

along with the Being of Dasein—that is, when they have come

to be understood—we say that they have meaning [Sinn]. But

that which is understood, taken strictly, is not the meaning but

the entity, or alternatively, Being. Meaning is that wherein the

intelligibility of something maintains itself (Heidegger, 1927).

In Heidegger’s terms, lacking an understanding of the kind
of Being of an encountered entity is lacking a knowledge
of one’s possibility in this novel situation. But awareness of
one’s possibilities of acting is precisely what makes a situation
comfortable; we are “at home” in the world when we know what
we can do next. Not knowing that would be a condition of fear
and hopelessness; our environment would be meaningless. As the
quoted passage implies, the significance of our world has been
“set up in advance,” meaning that as we move through time we
bring with us the structures through which we can understand
novel entities. Thus, finding a structure for interpreting newly-
encountered entities is not a constant anxiety-ridden necessity
but, we may say, a self-organized process that can guarantee our
unbroken comfort in our world. This means that the process
must be self-organizing, for otherwise we would have no time for
acting upon possibilities, but would be in constant destabilizing
fear. The conditions for understanding, the “significance of
our world” are essential for the existence of possibilities. If
dependent upon our conscious organizing powers, each new
present moment would be a new cause for alienation and anxiety.
That we are not, as a rule, constantly in that state of extreme
anxiety, seems to be strong evidence that understanding is a
self-organizing process.

Many of the arguments in Sections (a) through (c) are given
fuller treatment in Newton (1996).

AUTHOR CONTRIBUTIONS

NN is the sole author and responsible for all research in the paper.

REFERENCES

Alibalia, M., Evans, J., Hostetterc, A., and Ryana, K. (2009). Gesture-speech

integration in narrative: are children less redundant than adults? Gesture 9,

290–311. doi: 10.1075/gest.9.3.02ali

Anderson, P.W. (2011).More and Different: Notes from a Thoughtful Curmudgeon.

Hackensack, NJ: World Scientific.

Ashby, W. R. (1947). Principles of the self-organizing dynamic system. J. Gen.

Psychol. 37, 125–128. doi: 10.1080/00221309.1947.9918144

Boden, M. (1990). “Implications of language studies for human nature,” in

Language, Mind and Brain, eds T. W. Simon and R. J. Scholes (Hillsdale, NJ:

Lawrence Erlbaum), 129–143.

Bonabeau, E., Dessalles, J.-L., and Grumback, A. (1995). Characterizing emergent

phenomena: a critical review. Rev. Int. Syst. 9, 327–346.

Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulaz, G., and

Bonabeau, E. (2001). Self-Organization in Biological Systems. Princeton, NJ:

Princeton University Press.

DeLillo, D. (2016). Zero K. New York, NY: Scribner Publishers.

Ellis, R. (2012). “Reduction versus emergence,” in The Encyclopedia of Clinical

Psychology, eds R. Cautin and S. Lilianfeld (Wiley Online Library).

Ellis, R., and Newton, N. (2010). How the Mind Uses the Brain. Chicago, IL: Open

Court Press.

Haken, H. (2008). Self-organization of brain function. Scholarpedia 3:2555.

doi: 10.4249/scholarpedia.2555

Frontiers in Systems Neuroscience | www.frontiersin.org March 2017 | Volume 11 | Article 8 | 111

https://doi.org/10.1075/gest.9.3.02ali
https://doi.org/10.1080/00221309.1947.9918144
https://doi.org/10.4249/scholarpedia.2555
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Newton Understanding and Self-Organization

Heidegger,M. (1927).Being and Time. NewYork, NY:Harper and Brothers. Transl.

by J. Macquarrie, and E. Robinson (1962).

Jeannerod, M. (1988). The Neural and Behavioral Organization of Goal-Directed

Movements. Oxford: Clarendon Press.

Karsenti, E. (2008). Self-organization in cell biology: a brief history. Nat. Rev. Mol.

Cell Biol. 9, 255–262. doi: 10.1038/nrm2357

Kerner, B. S. (1998). Experimental features of self-organization in traffic flow. Phys.

Rev. Lett. 81, 3797–3800. doi: 10.1103/PhysRevLett.81.3797

Lakoff, G., and Johnson, M. (1987).Metaphors We Live By. Chicago, IL: University

of Chicago Press.

Libet, B. (1985). Unconscious cerebral initiative and the role of

conscious will in voluntary action. Behav. Brain Sci. 8, 529–566.

doi: 10.1017/S0140525X00044903

McNeill, D. (1992). Hand and Mind: What Gestures Reveal about Thought.

Chicago, IL: University of Chicago Press.

Newton, N. (1996). Foundations of Understanding. Amsterdam: John Benjamins

Publishing Company.

Pearson, J., and Kosslyn, S. (2015). The heterogeneity of mental representation:

ending the imagery debate. Proc. Natl. Acad. Sci. U.S.A. 112, 10089–10092.

doi: 10.1073/pnas.1504933112

Prigogine, I., andNicolis, G. (1977). Self-Organization in Non-Equilibrium Systems.

New York, NY: John Wiley and Sons.

Sacks, O. (1984). A Leg to Stand on.New York, NY: HarperCollins Publishers, Inc.;

Simon and Schuster, Inc.

Searle, J. (1984).Minds, Brains and Science. Cambridge: Harvard University Press.

Yufik, Y. M., and Friston, K. (2016). Life and Understanding:

the origins of “understanding” in self-organizing nervous

systems. Front. Syst. Neurosci. 10:98. doi: 10.3389/fnsys.2016.

00098

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Newton. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org March 2017 | Volume 11 | Article 8 | 112

https://doi.org/10.1038/nrm2357
https://doi.org/10.1103/PhysRevLett.81.3797
https://doi.org/10.1017/S0140525X00044903
https://doi.org/10.1073/pnas.1504933112
https://doi.org/10.3389/fnsys.2016.00098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


HYPOTHESIS AND THEORY
published: 09 December 2016

doi: 10.3389/fnsys.2016.00098

Life and Understanding: The Origins
of “Understanding” in
Self-Organizing Nervous Systems
Yan M. Yufik 1* and Karl Friston 2

1Virtual Structures Research, Inc., Potomac, MD, USA, 2 Wellcome Trust Centre for Neuroimaging at UCL, London, UK

Edited by:
Jonathan B. Fritz,

University of Maryland, College Park,
USA

Reviewed by:
Hal S. Greenwald,

The MITRE Corporation, USA
Steven L. Bressler,

Florida Atlantic University, USA
Robinson E. Pino,

Air Force Research Laboratory, USA
Simon Berkovich,

George Washington University, USA
Alessandro Sarti,

CNRS-EHESS, France

*Correspondence:
Yan M. Yufik

imc.yufik@att.net

Received: 20 April 2016
Accepted: 08 November 2016
Published: 09 December 2016

Citation:
Yufik YM and Friston K (2016) Life

and Understanding: The Origins of
“Understanding” in Self-Organizing

Nervous Systems.
Front. Syst. Neurosci. 10:98.

doi: 10.3389/fnsys.2016.00098

This article is motivated by a formulation of biotic self-organization in Friston (2013),
where the emergence of “life” in coupled material entities (e.g., macromolecules) was
predicated on bounded subsets that maintain a degree of statistical independence
from the rest of the network. Boundary elements in such systems constitute a Markov
blanket; separating the internal states of a system from its surrounding states. In
this article, we ask whether Markov blankets operate in the nervous system and
underlie the development of intelligence, enabling a progression from the ability to
sense the environment to the ability to understand it. Markov blankets have been
previously hypothesized to form in neuronal networks as a result of phase transitions
that cause network subsets to fold into bounded assemblies, or packets (Yufik and
Sheridan, 1997; Yufik, 1998a). The ensuing neuronal packets hypothesis builds on
the notion of neuronal assemblies (Hebb, 1949, 1980), treating such assemblies as
flexible but stable biophysical structures capable of withstanding entropic erosion.
In other words, structures that maintain their integrity under changing conditions. In
this treatment, neuronal packets give rise to perception of “objects”; i.e., quasi-stable
(stimulus bound) feature groupings that are conserved over multiple presentations
(e.g., the experience of perceiving “apple” can be interrupted and resumed many
times). Monitoring the variations in such groups enables the apprehension of behavior;
i.e., attributing to objects the ability to undergo changes without loss of self-identity.
Ultimately, “understanding” involves self-directed composition and manipulation
of the ensuing “mental models” that are constituted by neuronal packets, whose
dynamics capture relationships among objects: that is, dependencies in the behavior
of objects under varying conditions. For example, movement is known to involve
rotation of population vectors in the motor cortex (Georgopoulos et al., 1988, 1993).
The neuronal packet hypothesis associates “understanding” with the ability to detect
and generate coordinated rotation of population vectors—in neuronal packets—in
associative cortex and other regions in the brain. The ability to coordinate vector
representations in this way is assumed to have developed in conjunction with the ability
to postpone overt motor expression of implicit movement, thus creating a mechanism
for prediction and behavioral optimization via mental modeling that is unique to
higher species. This article advances the notion that Markov blankets—necessary for
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the emergence of life—have been subsequently exploited by evolution and thus ground
the ways that living organisms adapt to their environment, culminating in their ability to
understand it.

Keywords: understanding, consciousness, neuronal packets, variational free energy, thermodynamic free energy

INTRODUCTION

This article offers a synthesis of recent developments in
theoretical neurobiology and systems neuroscience that may
frame a theory of understanding. We suggest that cognitive
capacities, in particular understanding, are an emergent property
of neuronal systems that possess conditional independencies.
In this view, cognition is predicated on associative neuronal
groups—or assemblies—that form bounded structures (neuronal
packets) whose Markov blankets maintain a degree of statistical
independence from each other. Such quasi-stable, quasi-
independent structures capture regularities in the sensorium,
giving rise to the perception of ‘‘objects’’; namely, the external
causes of sensations. These neuronal packets are context-
sensitive but maintain their structural integrity. They are
composed to form mental (generative) models that reflect the
coordinated dynamics of ‘‘objects’’ in the world that cause
sensory inputs.

Our basic thesis is that conditional independencies in the
causal structure of the world necessarily induce neuronal
packets with a similar statistical structure. In effect, the brain
‘‘carves nature at its joints’’ using statistics—to capture the
interaction among the factors or causes of sensory data. The
implicit factorization of probabilistic representations provides
an incredibly efficient process to infer states of the world
(and respond adaptively). In physics, this carving into marginal
probability distributions (i.e., factors) is known as a mean
field assumption. Here, we suggest that many aspects of
the brain can be understood in terms of a mean field
assumption; from the principle of functional segregation,
through to the dynamic and context-sensitive maintenance of
neuronal packets, groups or cell assemblies. The ensuing theory
casts the interaction between the brain and the environment
as an allocation of (representational) resources; serving to
minimize free energy and thereby maintain homoeostasis (and
allostasis).

Variational free energy will figure recurrently in our
arguments. Variational free energy is a statistical construct that
provides a mathematical bound on surprise or self information
(i.e., the improbability of some sensory data, under a generative
model of those data). Crucially, free energy is a functional
of a (posterior) probability distribution or ‘‘belief’’ about the
causes of sensory data—as opposed to a (surprise) function of
sensory data per se. This means that when a system minimizes
its free energy, it is implicitly optimizing its ‘‘belief’’ about the
objects that are causing sensory input—based upon an internal
or generative model of how that input was caused. Free energy
is the difference between accuracy and complexity. This means
that minimizing free energy provides an accurate explanation
for input that is as simple as possible (where complexity can

be construed as a cost function). This complexity reducing
aspect of free energy minimization will be important in what
follows.

From the point of view of a phenotype, success rests on
a deep ‘‘understanding’’ or modeling of the environment. In
other words, phenotypes that anticipate and avoid surprising
(high free energy) exchanges with their environment possess
a generalized form of homoeostasis and implicitly minimize
surprise and uncertainty. ‘‘Understanding’’ can therefore be
construed as a resolution of surprise and uncertainty about
causal structure and relationships in the environment—and
in particular the relationship of self to the environment
(and others). Differences in adaptive efficiency—between
humans and other species—may be determined by formal
differences in the generative models used to predict and
understand environmental changes over different temporal
scales: for example, deep models with hierarchically organized
representations vs. shallow models that preclude context-
sensitive repertoires of behavior.

This article starts with an overview, followed by four sections:
section I reviews theories of understanding in the literature,
section II outlines our theoretical proposal, section III presents
some empirical findings and examines the correspondence,
or absence of such, between our theory and other proposals,
section IV re-visits our main suggestions, placing them at
the intersection of thermodynamics, information and control
theories in systems neuroscience. Our focus in this section is
on reconciling the variational (free energy) principles (based
upon statistical formulations) with the thermodynamic and
homoeostatic imperatives of living organisms—and how these
imperatives may furnish a theory of understanding.

Overview
We pose the following questions:

1. What is ‘‘understanding’’?
2. What does ‘‘understanding’’ contribute to the overall

function performed by the nervous system?
3. What are the underlying mechanisms?
4. How do mechanisms—that can be described in terms of

physical processes or information processes (abstracted from
physics)—reconcile in a theory of understanding?

5. How does the theory reconcile current views concerning the
anatomy and functional architecture of the nervous system?

6. How can one express the theory in a tractable formalism?
7. What is the difference between learning (without

understanding) and (learning with) understanding?
8. If the formalism is tractable, what would it entail?
9. What is the key proposal that follows from these

considerations?
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The article claims no complete answers but suggests where
useful answers could be sought. Our framework is system-
theoretic, focusing on the general principles of operation in the
nervous system. We call on eleven notions: Markov blankets,
neuronal packets, self-adaptive optimization, folding, enfolding,
unfolding, virtual associative networks, mental modeling,
negentropy generation, surface tension and cognitive effort.
These and other notions have been elaborated previously (Yufik,
1998a, 2002, 2013; Friston, 2013). For convenience, they are
rehearsed briefly in a glossary (please see ‘‘Glossary of Terms’’
below) and will be unpacked as necessary throughout the article.

Glossary of Terms
A Markov blanket is a set of nodes in a network forming an
interface between the nodes that are external and internal to
the blanket. The conditional dependencies among the nodes
endow internal and external nodes a degree of statistical
independence within the network: i.e., they are conditionally
independent given the states of the nodes in the Markov
blanket.

Neuronal packets are bounded assemblies (subnetworks)
forming spontaneously in associative networks and possessing
boundary energy barriers that separate them from their
surrounds. Neuronal packets are physical instantiations of
Hebbian assemblies, as opposed to information processing
abstractions, leading to the conclusion that free energy
barriers must exist at the assembly boundary (Yufik,
1998a). This notion predates recent formulations of memory
systems as physical devices, as opposed to circuit theory
abstractions, and suggests that free energy barriers must
exist to ‘‘protect’’ memory states from dissipation (dubbed
‘‘stochastic catastrophe’’; Di Ventra and Pershin, 2013). Hebbian
assemblies devoid of protective energy barriers are subject to
‘‘stochastic catastrophe’’ and dissipate quickly: hence, neuronal
packets.

Self-adaptive resource optimization is taken to be a principle of
operation in the nervous system: the neuronal packet hypothesis
views cognitive processes and cognitive development as an
optimization of neuronal resources, and considers spontaneous
aggregation of neurons into packets as the key mechanism.
Thermodynamic energy efficiency is the optimization criteria:
the system seeks to maximize extraction of free energy from the
environment while minimizing internal energy costs incurred
in mobilizing and firing neurons (Yufik, 2002). Resource
optimization implies adaptation to changes in the environment
as well as to those occurring inside the system (hence, the
self-adaptation). The notion that spontaneous aggregations
(assemblies) of neurons constitute functional units in the
nervous system was originated by Hebb, and continues to
play a prominent role in theories of neuronal dynamics that
focus on the mechanisms of coordination, segregation and
integration (e.g., Bressler and Kelso, 2001; Razi and Friston,
2016).

Folding denotes the spontaneous formation of regions in
networks of interacting units acquiring a degree of statistical
independence from their surrounds (i.e., formation of Markov

blankets at the boundary). We assume that life emerges in
networks that are amenable to folding; thereby regulating
material and energy flows across the boundary. This article offers
a unifying theoretical framework and explanatory principle for
life (and intelligence) that rests on the formation of Markov
blankets. The synthesis may reconcile thermodynamic and
information-theoretic accounts of intelligence.

Enfolding and unfolding denote cognitive (deliberate, self-
directed) operations on packets: unfolding operates on the
internal states of a packet while enfolding treats packets as
functional units. Mathematically, enfolding involves computing
packet response vectors (the sum of neuronal response vectors),
while unfolding reverts to the constituent response vectors.
Cognitive processes alternate between enfolding and unfolding;
namely, alternating between integrative and focused processing
modes. For example, alternations between groups of units
(‘‘situations’’ comprising interacting ‘‘objects’’) and a focus
on particular features of such units (‘‘objects’’) and their
changes as the situation unfolds. Computationally, the process
alternates between matching packet response vector to the
input and matching neuronal response vectors. Perceptually,
the process manifests, e.g., in grouping visual targets into
units, or ‘‘virtual objects’’ and tracking the units, alternating
with focusing on and tracking individual targets (Yantis,
1992).

Virtual associative networks denote associative networks
undergoing self-partitioning (folding) into packets.
Mathematically, packets are obtained as minimum-weight
cutsets (Luccio-Sami, or LS-cutsets) in networks where nodes
are neurons and link weights are determined by the relative
frequency of their co-firing (Hebb’s co-firing rule). LS-cutsets
‘‘carve out’’ subsets (packets), such that internal nodes are
connected more strongly to each other than to external nodes.
In this way, self-partitioning into packets produces a coarse
representation of statistical regularities in the environment.
Statistically, the nodes of a packet—from which the LS links
emanate—constitute its Markov blanket. In other words,
they form a boundary, engendering a degree of statistical
independence between the packet and its surrounds. Physically,
the independence is maintained by energy barriers. The
process is similar to structure acquisition in unsupervised
learning, except that the quality of learning is adjudicated by
thermodynamic constraints. Figuratively, neuronal packets
can be viewed as Hebbian assemblies ‘‘wrapped’’ in Markov
blankets.

Mental modeling denotes self-directed (deliberative,
attentive) composition of packets into groups (mental
models) such that mutual constraints in the packets’ responses
can be explored in search of a best fit between implicit
models of stimuli. Attaining a good enough fit underlies
the experience of reaching, grasp, or understanding. The
process improves on and fine-tunes the results of spontaneous
packet formation. Mental modeling allows anticipation and
simulation of future conditions, and initiating preparations
before their onset (anticipatory mobilization of neuronal
resources), thus providing a mechanism of neuronal resource
optimization.
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Understanding is a form (component) of intelligence.
Intelligence denotes the ability of a living organism to vary
its responses to external conditions (stimuli) in a manner that
underwrites its survival; e.g., a sunflower following the sun is a
manifestation of ‘‘plant intelligence’’ (Trevawas, 2002). Learning
is a form of intelligence involving memory and subsequent
reproduction of condition-response associations. On the present
theory, understanding denotes the ability to compose and
manipulate mental models representing persistent stimuli
groupings, or ‘‘objects’’, their behavior under varying conditions,
and different forms of behavior coordination (i.e., relations
between objects). Understanding overcomes the inertia of prior
learning and enables construction of adequate responses under
novel and unfamiliar circumstances.

Negentropy generation denotes production of information and
increases in the order of a system as a result of internal processes.
The distribution of weights in associative networks is the
result of information intake from the environment (negentropy
extraction). Self-directed composition of packets into models
increases internal order, without further information intake and
without impacting the weights; hence, negentropy generation.
Mental modeling amounts to endogenous production of
information requiring energy expenditure, the payoff is an
increase in adaptive efficiency; i.e., the ability to extract energy
from the environment under an expanding range of itinerant
conditions. This mechanism enables productive thinking that
is sustained by information inflows but is not limited by
them.

Surface tension is a general thermodynamic parameter
defining the thermodynamically favored direction of
self-organization in a system. Surface tension corresponds
to the amount of free energy in the surface. The neuronal packet
hypothesis attributes formation of packets in virtual associative
networks to phase transitions (Haken, 1983, 1993; Fuchs et al.,
1992; Freeman and Holmes, 2005; Kozma et al., 2005) and
accumulation of thermodynamic free energy across boundaries.
Boundary free energy barriers are responsible for a packet’s
resilience; i.e., the ability to persist as cohesive units—resisting
dissipation under fluctuating conditions and entropic erosion.

Cognitive efficiency denotes the ratio of free energy extraction
(from the environment) and internal energy costs incurred in
sustaining energy inflows. The higher the ratio, the higher the
efficiency. Mental modeling involves expending free energy to
increase internal order (generate negentropy), which entails a
more efficient (robust under a wide range of circumstances)
energy extraction.

Cognitive effort denotes expenditure of thermodynamic
free energy incurred in mental modeling. Our theory of
understanding associates consciousness with the process—and
subjective experience—of exerting cognitive effort. Exerting
effort alternates with (relatively) effortless release of genetically
supplied and/or experientially acquired (learned) automatisms.
Consciousness accompanies the work of suppressing the
inertia of prior learning, adjusting learned responses to
the current conditions, and composing new responses to
anticipate environmental fluctuations. In short, the experience
of consciousness is rooted in a high-level mechanism of

self-organization and self-adaptive resource optimization in
the nervous system. This article focuses on the mechanisms
of understanding, postponing a detailed discussion of
consciousness for the future.
With these notions in place, the answers to the questions above
can be framed as follows:

1. Understanding rests on mental (generative) models
representing objects, their behavior and behavioral
coordination (i.e., mutual constraints on the behavior of
objects).

2. Generative models serve to optimize an organism’s control of
its own behavior in a changing environment in the interests
of survival (i.e., enduring preservation of structural integrity).
The advent of the capacity to understand offered a quantum
leap in control efficiency.

3. Control optimization in a changing environment
requires anticipatory mobilization of neuronal resources;
i.e., progressively improving the ability to select and arrange
neuronal representations before the onset of stimuli.
Conditioning is the most basic anticipatory mechanism
that is shared by all species. The evolution of conditioning
to understanding may have proceeded in three stages,
predicated on the packet mechanism: Packets capture
recurring stimuli groupings. As a result, control efficiency
(as compared to conditioning) improved in two ways—by
increasing the probability of successful representation and
by reducing the cost (i.e., complexity) of internal processing.
The formation of packets underlies the perception of objects;
i.e., bounded stimulus-bound groupings distinct from the
sensory background. In the next evolutionary step, the ability
to optimize packet allocations (selectively inhibit/amplify
neuronal activity within packets) emerged. This ability
underlies the apprehension of behavior; i.e., changes that
objects can sustain without losing their self-identity. Finally,
the ability to orchestrate the allocation of packets emerges,
giving rise to the apprehension of relations; i.e., different
forms of behavioral coordination among groups of objects.
Apprehending relations requires abstraction from the sensory
contents (enfolding): e.g., the relationship of the type ‘‘A rests
on B’’ defines how the behavior of A coordinates with the
behavior of B and vice versa, regardless of how A and B look,
smell, sound, etc. Inducing coordinated variations in packet
arrangements constitutes mental modeling. This capacity
supports anticipation into the indefinite future, accounting
for large (perhaps, indefinitely large) sets of environmental
contingencies.

4. Neuronal firing expends energy. Survival (free energy
minimization) is predicated onminimizing the computational
cost or complexity of adaptive processing that enables
accurate matching of neuronal representations to objects
in the environment. In other words, thermodynamic
and informational imperatives cannot rely on transitory
fluctuations in the system. Instead, a mechanism is needed
which produces neuronal structures that withstand entropic
erosion and are implicitly available for reuse. It has been
suggested previously that neuronal packets are produced
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by phase transitions in associative networks—and are
maintained by ‘‘tension’’ in the surface separating the phases.
From an information-theoretic standpoint, mobilizing a
packet corresponds to inducing a neuronal hypothesis that a
particular neuronal packet will provide the best explanation
for upcoming sensory input. Accordingly, thermodynamic
and information-theoretic approaches converge: the principle
of thermodynamic free energy minimization on the packet
surface corresponds to the principle of variational free energy
minimization in probabilistic inference (Friston et al., 2006;
Friston, 2010), both principles referring to the same neuronal
mechanism that transcends thermodynamic and variational
principles.

5. In what follows, packet variations (selective
inhibition/amplification) will be represented as rotation
of (population) vectors computed over the internal neuronal
states of a packet. On that notion, mental modeling
involves the coordinated rotation of packet vectors. For
example, motor control is known to entail coordinated
rotation of population vectors in the motor cortex. It is not
unreasonable to assume that rapid evolution of intelligence
in humans expanded the elaborate apparatus of sensorimotor
coordination in hominids—to allow packet coordination in
the associative cortex and other regions in the brain.

6. The formalism of packet vector coordination for control
optimization (self-adaptive allocation of neuronal resources)
appears to be tractable.

7. Learning without understanding confines performance
to situational envelopes narrowly constrained by past
exposures. Understanding expands the envelope indefinitely,
enabling counterfactual (‘‘what if’’) modeling, simulation
of the future—and an implicit ability to ‘‘anticipate’’ the
consequences of action.

8. Developing the formalism may help design artifacts to
progressively improve their ability to carry out complex tasks,
under unfamiliar conditions and unforeseen circumstances.

9. A formal theory appears to be within reach, centered on
the notion of Markov blankets, offering a parsimonious
account of intelligence that encompasses the transition from
inanimate matter to organismal self organization—and from
simply sensing the environment to understanding it.

In summarizing, an example may help bring together
the perspective on offer: one learns to play chess by first
learning to recognize pieces. Learning proceeds by associating
different behavioral rules with chess pieces and culminates
in the ability to apprehend behavioral constraints (e.g.,
this black pawn blocks diagonal movement of that white
Bishop). Understanding chess involves the ability to apprehend
constraints across a composition of pieces—and to determine
the possibilities for coordinated maneuvers the composition
affords (e.g., ‘‘attack on the left flank’’). Apprehending
behavior coordination requires abstraction (e.g., pin is a
form of coordination where the pinned piece shields a more
valuable piece behind it). The variety of positions affording
this type of coordination is practically infinite. ‘‘Chess
intuition’’ collapses its combinatorial space into ‘‘lines of

play’’ (Beim, 2012), thus enabling analysis (e.g., 15 moves
look-ahead analysis by chess masters (Kasparov, 2007) can be
compared to tracing a hair-thin line in combinatorial Pacific
Ocean).

THEORIES OF UNDERSTANDING

Aristotle’s Metaphysics (350 BC) opens with a statement
traditionally translated as ‘‘All men by nature desire to
know.’’ Contrary to traditional interpretations, recent analysis
(Lear, 1988) suggests that the statement permits a dual
interpretation—‘‘to know’’ and ‘‘to understand’’; with the
latter interpretation being closer to the original intention.
Cognition grows out of the capacity to experience puzzlement,
accompanied by the feeling of discontentment and desire to
resolve it. This capacity to resolve uncertainty is shared by
many animals. But only in humans is the desire to resolve
uncertainty not fully discharged until a complete understanding
is attained (Lear, 1988). Aristotle observed that ‘‘animals other
than man live by appearances and memories but little of
connected experience. . .’’ and attributed to men the ability to
form connections, i.e., organize disparate data into connected
structures. ‘‘Wisdom’’ is attained when such structures reveal
causes:

‘‘. . .men of experience know that the thing is so but do not know
the why, while the others know the ‘‘why’’ and the cause’’

—(Metaphysics, book 1).

What progress has been made since Aristotle in uncovering the
inner workings of understanding? The problem remained largely
unaddressed for over two millennia but became prominent in
philosophical discourse in the XVIII—XIX centuries (Hume,
Spinoza, Berkeley, Kant, Descartes, et al). However, it was not
until the middle of the last century that the scope of discourse
was radically expanded; largely in response to challenges
faced in scientific enquiry, where rapidly accumulating data
resisted traditional modes of understanding and explanation
(e.g., Bunge, 1979; Cushing, 1994; Sloman, 2005). Philosophy
was joined by psychology and cognitive science and, more
recently, by what could be defined as physics of the mind—an
emergent discipline combining statistical physics, information
theory and neuroscience to elucidate neuronal underpinnings
of cognition (Penrose, 1989, 1994, 1997; Friston et al., 2006;
Friston, 2010, 2013). The physics of mind framework is
consistent with the ‘‘enactive’’ view, deriving cognition from
an interplay between external conditions and self-organization
in the nervous system. In other words, (non-radical) forms
of enactivism enable prediction to guide action on the
environment that ensures survival (e.g., Thompson and Varela,
2001). Self-organization places the nervous system in the
domain of dissipative systems that are thermodynamically
open to the environment. Our proposal for a theory of
understanding is thus formulated within the physics of the mind
framework.
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Research areas relevant for understanding include the study
of language, consciousness, intentionality, explanation, causality
and prediction, logic and reasoning, inference, attention, etc.
A detailed review of the relevant research is impossible
and is not intended here. What follows is a summary of
findings that address some key aspects of the function of
‘‘understanding’’.

Webster’s Ninth New Collegiate Dictionary defines
understanding as comprehension or ‘‘mental grasp, the
capacity to apprehend general relations of particulars’’.
This suggests that ‘‘understanding’’ requires a (generative)
model that embodies general relationships of particulars;
i.e., model that can generate particular consequences from
general causes (Craik, 1943; Gentner and Stevens, 1983;
Johnson-Laird, 1983, 1989, 2003; Sanford, 1987). Theories
of understanding can be roughly organized in five groups,
focusing on the different roles of generative models in
understanding: (a) volitional (self-directed, deliberate) activity;
(b) simulation; (c) need satisfaction and optimization; (d)
unification, explanation and prediction; and (e) problem
solving. We will reference exemplar theories in each of these
groups,—and attempt to relate them to the physics in the mind
approach.

Understanding Results from Volitional
Operations Targeting Inputs from the
Outside and Representations on the Inside
The ‘‘foundational theory of understanding’’ (Newton, 1996)
asserts that understanding results from volitional (deliberate,
self-guided) actions that involve directing one’s attention to
sensory inflows and reconciling current sensations with memory
structures in a manner consistent with the current intentions,
or goals.

The volitional aspect of cognition is emphasized in the
theory of mind-body relationships in Humphrey (2000, 2006).
This theory traces volitional activities to their evolutionary
origins, as follows. A primitive organism senses physical
conditions, or stimuli occurring at its boundary surface and
generates commands targeting locations on the surface where the
conditionswere sensed. Commands are said to generate ‘‘wiggles’’
on the surface, the substrates of sensing are not the conditions but
the type of ‘‘wiggles’’ produced by the organism adapting to those
conditions (e.g., sensing ‘‘red’’ is produced by ‘‘wiggling redly, ’’
sensing ‘‘salt’’ is produced by ‘‘wriggling saltily’’; i.e., selecting
and emitting a response appropriate for the occasion of salt
arriving at the surface. Gradually, evolution shifted ‘‘response
targeting’’ from surface sites to the efferent, or ‘‘sensory nerves’’
emanating from sites along the surface. Shifting response targets
further upstream culminated in the emergence of mechanisms
confining responses to internal loops—comprised of efferent
and afferent links. In such loops, afferent signals become
‘‘as-if commands’’ (i.e., models): they would have produced
appropriate behavior had they been carried all the way to the
sensorimotor periphery (Humphrey, 2000, p. 17).

Central to this formulation is the notion of ‘‘targeting’’;
i.e., self-directed mobilization (or recruitment, Shastri, 2001) and

focused allocation of neuronal resources. On that notion, an
organism is not just registering the flow of sensory impressions
but engages in targeted probing and composition of responses
fine-tuned to the data returned by sensory samples (consistent
with Noe, 2004; Friston et al., 2014). The notion resonates
with the sensorimotor contingency, or ‘‘action-in-perception’’
theory (Noe, 2004) and other theories centered on the idea of
the ‘‘volitional brain’’ (Libet et al., 2000; Nunez and Freeman,
2014).

Notice the two key themes of this formulation are an
emphasis on active inference or volitional sampling of the
world—of the sort that characterizes enactivist or situated
approaches to cognition. Second, the progressive elaboration
of internalized (‘‘as if’’) stimulus-response links induces
conditional dependencies between the sensory input and
internal models of how those predictions were caused—through
active sampling.

Understanding Involves Simulation which
is Effortful (Work-Consuming)
Two key characteristics are generally attributed to generative
models: models are ‘‘structural analogs of the world’’ (Johnson-
Laird, 1983), and models allow simulation of processes and
events in the world (Chart, 2000). These characteristics are
mutually supportive: if two systems (the world and the model)
are formally homologous, one can manipulate and observe
the behavior of one system (an internal model) in order to
predict and postdict the behavior of the other (an external
world). In Chart (2000), simulation is taken to be the essence
of understanding, enabling one to both anticipate events and
to cope with the unanticipated outcomes. Simulation engages
‘‘mutors’’ i.e., physical mechanisms effecting transformations in
the models. The simulation system is hierarchical, including
‘‘effectors’’ responsible for combining ‘‘mutors’’ into groups and
attributing meaning and values to the groups, and ‘‘simulors’’
responsible for grouping ‘‘effectors.’’ Crucially, all stages of
grouping involve work. An important insight here is that
understanding requires the investment of work performed on or
by internal representations.

The notion of understanding via simulation can be traced
to Craik (1943), who hypothesized the existence of physical
mechanisms in the brain functioning as (generative) models
of the environment. The theory of understanding in Chart
(2000) substantiates this early hypothesis, bringing to the fore
a crucial aspect of mental modeling—the necessity to invest
work. This was investigated in detail in Kauffman (2000), who
postulated that the ability to perform work is the determining
factor in perpetuating life and developing capacities that enable
an organism to sustain life in a changing environment, while
maintaining relative autonomy from it (the emphasis on
performing work in the course of mental operations resonates
with Freeman et al. (2012) using generalized Carnot cycle to
describe process in the cortex). As formulated in Kauffman
(2000).

‘‘. . .an autonomous agent is a self-reproducing system able to
perform at least one thermodynamic work cycle. . .work itself is
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often used to construct constraints on the release of energy that
then constitutes further work. Work constructs constraints, yet
constraints on the release of energy are required for work to be
done’’

—(Kauffman, 2000, p. 4.).

We see here a close connection between (variational) free energy
formulations of the imperatives for life that we will return to
in the next section. In brief, having a formal physics of mind
provides a clear link between understanding (minimization of
surprise or variational free energy), a concomitant minimization
of thermodynamic free energy and the implicit exchange of work
and entropy of a system’s internal representations (by physical
states) and the external world to which it is thermodynamically
open.

Understanding Entails Optimization
Generative models improve one’s ability to satisfy homoeostatic
needs, when navigating an inconstant and capricious
environment—and facing predictable changes as well as
the unpredicted (Chart, 2000). Adaptive exchange with the
environment is thought of as a measure of need satisfaction
(Margenau, 1959; Werbos, 1994, 1998; MacLennan, 1998;
Pribram, 1998). Under all circumstances, the activity an agent is
engaged in is the best attempt at the time to satisfy the current
need (hence, the optimization; Glasser, 1984; Werbos, 1998).

The key insight afforded by this perspective is that one
can cast all adaptive or intelligent behavior as a process of
optimizing some value or need function. In physics, this function
is variously known as the Lyapunov function or Lagrangian.
The existence of this function means that intelligent behavior
or understanding can be reduced to ‘‘approximate constrained
optimization’’ (Werbos, 1994, p. 40). Again, we see a convergence
on optimization orminimization imperatives offered by a physics
of mind. In the present context, the objective function is
(variational) free energy, where biological imperatives or needs
are encoded in prior beliefs about the states a particular agent
should occupy. These prior beliefs constrain active sampling of
the environment to minimize surprise—and thereby search out
preferred states.

Interestingly, the minimization of variational free energy
in machine learning is also known as approximate Bayesian
inference. In other words, the form of internal modeling that we
engage in is quintessentially approximate by virtue of minimizing
free energy, as opposed to surprise per se. This approximate
aspect will become particularly important when we appeal to
another ubiquitous device in statistical physics; namely the
mean field approximation that provides a clear example of
partitioning and functional specialization that may be a crucial
aspect of generative models in the brain. We will later suggest
that the mental modeling—with mean field approximations in
humans—obtains a degree of optimization unavailable to other
species.

Understanding Entails Explanation
According to the Deductive–Nomological (DN) theory of
understanding, phenomenon B is understood if particular

conditions A are identified along with some appropriate laws
such that, given A, the occurrence of phenomenon B is to be
expected (Hempel, 1962, 1965). The DN theory was subsequently
augmented to account for unification (rendering phenomenon
B dependent on phenomenon A must take place in a broader
framework, where the number of independent phenomena
is reduced), simplification (Kitcher, 1981) or compression
(comprehension is compression) and representation of causality
(explanation, von Wright, 1971). Establishing causality involves
partitioning of A and re-formulating the question ‘‘why B?’’, as
follows:

‘‘Why does this x which is a member of A have the property B?’’ The
answer to such a question consists of a partition of the reference
class A into a number of subclasses, all of which are homogeneous
with respect to B, along with the probabilities of B within each of
these subclasses. In addition, we must say which of the members of
the partition contains our particular x’’

—(Salmon, 1970, p. 76).

This account of explanation entails an explicit Bayesian
formalism (subclasses are hypotheses, encountering B provides
evidence) but adds a crucial insight: Explanation is predicated
on partitioning heterogeneous A into homogeneous groups,
or subclasses. That is, A is a mixed bag, before using the
contents for explaining B (and submitting them to Bayesian
procedure), they must be sorted into groups that are different
(have some features by which they can be told apart) and,
at the same time, homogeneous with respect to B. Crucially,
partitioning heterogeneous A into homogeneous subclasses is
accompanied by production of information and thus requires
work. In general, A can admit multiple partitions. Following
Carnap (1962), Salmon (1970, 1984, 1989) suggests that
the quality of a partition is determined by some utility
maximization function imposed at the outset and motivating
the investment of work. In this way, Salmon (1970) reveals
intimate connections between inference, causality and goal
satisfaction.

Establishing causality involves deep inference, or reduction
to deeper representation levels (as in seeking the neuronal
underpinnings of psychological conditions) as well as
determination of intra-level relations (e.g., relating psychological
conditions to psychologically traumatic events). Descent to
deeper levels in constructing a model (theory) serves to expand
the range of surface-level phenomena explained by the model
(Dieks and de Regt, 1998). The interplay of the reduction,
compression and expansion criteria in constructing models was
succinctly defined by Einstein:

‘‘conceptual systems. . .are bound by the aim to permit the most
nearly possible certain (intuitive) and complete co-ordination with
the totality of sense-experiences; secondly they aim at greatest
possible sparsity of their logically independent elements. . .’’

—(Einstein, 1949, p. 13).

From the perspective of minimizing variational free energy,
the implicit many to one mapping between consequences and
causes is captured in the notion of minimizing complexity
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(simplification). Complexity corresponds to the degrees of
freedom used to explain data accurately (technically, it is
the Kullback-Leibler divergence between a posterior and prior
belief). This means that an explanation (to the best inference) is
one that maximizes model evidence and minimizes complexity
by accounting for a diversity of outcomes (consequences) with
the smallest number of plausible explanations (partition of
causes).

Understanding Enables Problem Solving
Arguably, the most extensive and influential body of
psychological research on the role of understanding in
problem solving was accumulated by Piaget and his school
(Piaget, 1950, 1954, 1976, 1977, 1978, Piaget and Inhelder,
1969). Experiments were conducted with young children,
which rendered their findings particularly revealing: the
problems studied were elementary and their solutions were
uncontaminated by prior experience and associations. The
main conclusions boil down to the following: problem
solving requires establishing relations between ‘‘all the
multifarious data and successive data’’ bringing the relations
into ‘‘co-instantaneous mental co-ordination’’ within a
simultaneous whole (i.e., generative model; Piaget, 1978,
p. 219).

The notion that problem solving involves ‘‘co-instantaneous
co-ordination’’ in generative models, thereby imposing simple
explanations for ‘‘all the multifarious data and successive data’’
extends from elementary problems solved by children to the
highest reaches of theoretical abstraction:

‘‘The general theory of relativity proceeds from the following
principle: Natural laws are to be expressed by equations which
are co-variant under the group of continuous co-ordinate
transformations. . . .The eminent heuristic significance of the
general principles of relativity lies in the fact that it leads to us to
the search for those systems of equations which are in their general
covariant formulation the simplest ones possible. . .’’

—(Einstein, 1949, p. 69).

Mathematical equations are expressions of relations between
variables; similarly, systems of equations express co-ordination
between groups of such relations (Sierpinska, 1994). Accordingly,
understanding mathematical formalisms boils down to grasping
the relations they entail:

‘‘. . .if we have a way of knowing what should happen in given
circumstances without actually solving the equations, then we
‘‘understand’’ the equation’’

—(Feynman et al., 1964, cited in Dieks and de Regt, 1998,
p. 52).

Visualization plays a role in problem solving and scientific
understanding (van Fraasen, 1980) albeit a limited one.
According to self-reports by a number of prominent scientists,
the role of verbalization is even less significant (Einstein,
1949; Poincare, 1952; Hadamard, 1954; Penrose, 1989). For
example, in his often quoted letter from to Hadamard, Einstein
asserts that words hardly participate in his thinking, which

consists of ‘‘combinatorial play with entities of visual and
muscular type. . .words have to be sought for laboriously
only in the secondary stage’’ (Hadamard, 1954, p. 148).
Such self-reports are consistent with experimental findings
indicating that verbalization does not facilitate problem solving
and can, in fact, interfere with the process (Schooler et al.,
1993). They also accord with the analysis of causality placing
strong emphasis on the notion that mind establishes causal
relations based on mental events, as opposed to verbal
accounts that are subsequently formulated (Davidson, 1970,
1993).

Summary
If not through words and images, then what is the medium
of understanding? The perspectives reviewed in this section
implicate complexity reduction through factorization and
partitioning to explain heterogeneous data. Accordingly, the
cardinal aspects of understanding can be formally summarized
in terms of minimizing surprise (or free energy) that necessarily
entails a generative model of coordination and relations—a
model that provides an accurate (unsurprising) and minimally
complex explanation for past sensory inputs and predicts
forthcoming experiences, including the likely consequences of
one’s own actions. We now turn to the mechanisms responsible
for such modeling.

TOWARDS A THEORY OF
UNDERSTANDING

Following Johnson-Laird (1983), one can distinguish three
cognitive mechanisms—symbol processing, image processing
and mental modeling: with the latter denoting connected
representations and operations on these representations. Our
theory is confined to internal modeling, and refers to the process
and outcome of such modeling as situational understanding
(or situated cognition). Cognitive operations underlying the
development and exercise of understanding are different
from—and do not reduce to—those involved in learning via
pattern recognition. The following examples help to appreciate
the distinctions.

Fishes can be trained to recognize geometric shapes; e.g.,
circles (Siebeck et al., 2009). Humans can recognize shapes,
name them and, ultimately, define them (e.g., circle is a set of
all points in a plane equidistant from the center), which does
not yet amount to understanding. A true generative model of a
circle comprises representations and operations that enable one
to create or manipulate a circle—in practice or ‘‘in mind’’ and at
will. For example, the model should account for experiences like
handling a circular object, following a circular path, performing
circular movements, etc. Having examined a circular object with
the eyes closed (e.g., passing a hoop between the palms), one
can conjure up an image of a circle; situational understanding
manifests, for example, in expecting (not being surprised by)
the sensation of a circular edge on palpitating a coin, visually
or haptically. These abilities require a generative model; they
are distinct from simply recognizing objects or associating
symbol strings (names, formulae, descriptions, definitions, etc.)
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with such objects. In short, understanding is quintessentially
enactive and ‘‘embodied’’ (Lakoff, 2003), requiring one to actively
engage with the causes of sensations. In the setting of enactive
cognition, this means that understanding requires generative
models that define affordances for action offered by sensory
cues.

Generative models produce meaning; the meaning of ‘‘circle’’
rests on a model that enables one to do ‘‘circling’’ in the
mind (stated differently, the meaning resides in the ability
to ‘‘wiggle roundly’’ as the meaning of ‘‘red’’ resides in the
ability to ‘‘wiggle redly’’ (Humphrey, 2000)). When fishes are
trained to recognize shapes, these shapes acquire significance
(predict feeding) but not meaning, fishes form connections but
make no sense of them. To appreciate the distinction, note
that the definition of ‘‘circle’’ resists visualization (the set of
all points in a plane equidistant from one point), while the
image in your mind is by no means suggestive of the definition.
What is then the connection between the definition and the
image, what is holding them together? Consider the problem in
Figure 1.

Group A1 is not a ‘‘circle-like’’ pattern that can be
‘‘recognized’’ in A, nor group A2 can be ‘‘recognized’’ as a
‘‘point-like’’ pattern in A, and neither group would be likely
to emerge in A had the task been different. Grouping is
imputed to A, as opposed to being recognized in—or somehow
extracted from—it. The emergence of groups is concomitant
with their ‘‘co-instantaneous co-variation.’’ Groups A1 and A2
are homogeneous with respect to the ‘‘go round’’ variation;
the activities of grouping and co-variation in the context of
the task yield understanding and determine visualization and
verbalization of the solution they produce. To summarize,
understanding is yielded by generative models representing
objects, behaviors and behavioral constraints. How do such
models form and operate in the nervous system?

Representing Objects
Within the theory of neuronal packets, distinct and bounded
entities or objects are recovered from sensory streams as a
result of folding in associative networks producing bounded
subnetworks (neuronal packets). Associative links form
between co-firing neurons, where firing is orchestrated by
optimization (free energy minimizing) processes allocating

FIGURE 1 | The arrangement of coins A needs to be inverted in a
minimal number of moves. The solution is obtained by partitioning
arrangement A into groups A1 and A2 allowing their co-instantaneous
co-variation: A1 “goes round” A2. The mental act of “going round” is the
medium and the gist of the concept “circle.”

neuronal activity to the stream of stimuli. In this view,
free energy is the underlying universal currency in the
organism-environment exchange: neuronal firing expends
and dissipates energy, while successful neuronal activity
extracts energy from the environment. The expending-
extracting cycle in the formation of links is illustrated in
Figure 2.

Note the dual nature of the process in Figure 2: on the
one hand, the process is a thermodynamic cycle, where energy
is received and expended in performing work. On the other
hand, mobilizing xj amounts to forming a hypothesis—entailed
by xi—about the identity of the stimulus, with subsequent
validation. The two thermodynamic and information-theoretic
perspectives are united by the fact that validation comes in
the form of a thermodynamic reward and invalidation entails
unrecoverable energy consumption. Associative links decay
but are reinforced with every subsequent co-firing of linked
neurons. Due to response field overlap, across the neuronal
system, a connected associative network gradually forms with
the distribution of link weights reflecting statistical regularities
in the sensory stream (i.e., repetitive co-occurrence of the
stimuli). It has been hypothesized (drawing on the principles
of Synergetics (Haken, 1983, 1993)) that the development of
the network is punctuated by phase transitions, occurring in
tightly coupled subnetworks and causing their folding into
bounded aggregations (neuronal packets; Yufik, 1998a,b) Packets
are internally cohesive and weakly coupled to (have a degree
of statistical independence from) the rest of the network. That
is, folding induces Markov blankets in the neuronal pool, as
illustrated in Figure 3.

Again, firing of any neuron within a packet mobilizes
the entire packet, amounting to the neuronal hypothesis that
subsequent stimuli are likely to come in a cluster represented
by the neuronal group within the packet. Packet boundaries

FIGURE 2 | Development of associative links. µikdenotes probability that
neuron xi fires in the presence of condition zk . (A) Firing of neuron xi initiates
mobilization of neuron xj having response field overlapping with that of xi (both
neurons respond to condition zk). (B) Mobilization involves adjustments in
xj—the overlap component (xjk) is amplified and the non-overlap one (xjn)
inhibited. The adjustment amounts to rotating a neuron’s response vector rj
(changing from r1

j to r2
j ). (C) Firing of xj (sending a “zk wiggle”) triggers release

of energy ∆ Ejk invested, in part, in producing synaptic modifications
establishing an associative link yij of strength wij. Mobilization and firing of xj

consume energy δ Ejk (other energy expenditures are not represented).
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FIGURE 3 | Induction of Markov blankets and formation of neuronal
packets. (A) Packets are internally cohesive and weakly externally coupled
neuronal groups forming in associative networks as a result of a phase
transition. Surface tension in the phase-separating surface causes groups to
fold into bounded cohesive units capable of withstanding entropic erosion
(Yufik, 1998a, 2013). Folding induces Markov blankets at the packet
boundaries, that is, makes packets statistically independent (to a degree) from
their surrounds. (B) The mechanism recovers persistent stimuli groupings A,
B,...interspersed within the stream; thus giving rise to perception of bounded
entities, or objects persisting though (re-emerging in) multiple episodes.

circumscribe a reference set for the hypothesis, i.e., confine
validation probes to the packet internals. Boundary energy
barriers discourage but do not prohibit switching reference sets,
because unsuccessful probing causes the process to transit to
another packet. The packet mechanism is thermodynamically-
motivated: energy intakes over time are increased while
losses are reduced. If the environment changes, causing
diminishing intakes and mounting losses, packets dissolve and
are re-constituted.

Representing Behavior
In this formulation, cohesive and bounded neuronal packets act
as functional units in the inference process. Stated formally,
packet vectors (population vectors) are established on the
collectives comprising response vectors of the constituent
neurons PA = (rk, rh,. . ., rg), here PA is population vector
established on packet A. Allocating packets entails their adaptive
adjustments, via selective inhibition and amplification of the
constituent responses. The persistence of packets establishes
an invariant (slowly varying) core in the setting of a variable
periphery, which amounts to formation of a hyperplane in the
packet’s response space; thereby confining rotation of the packet
vector. Figure 4 illustrates representation of behavior via packet
vector rotation (ripening apple changes from green and sour to
red and sweet).

The rotation of a packet vector does not violate the object’s
self-identity established by the packet or the ability to induce
rotation at will, including reversal (e.g., the green and sour object
I experienced earlier and the red and sweet object I experience
now are one and the same object, which is established, in part,
by my ability to revert to the earlier experience and follow its

FIGURE 4 | Packet representation of a round, smooth, hard and cold
object changing from green and sour in the time period t1 to sweet
and green in the period t2 (persisting no longer because the object
was eaten). The subset of neurons in the fringe admits different transition
trajectories between the initial and final condition obtained by selective
inhibition-amplification of the constituent neurons. The {green, sour} → {red,
sweet} transition (behavior) amounts to rotation of packet vector PA in the
hyper plane determined by the fringe subset. Behavior of the object over time
is represented by the P1

A to P2
A rotation.

transformation into the present). Reversibility is a determining
characteristic of cognitive mechanisms that enables reasoning
(no reasoning is possible if, having initiated a thought, one can’t
return to the starting point) and apprehending causality (Piaget,
1978).

Representing Coordination
In the present setting, the term ‘‘relationship’’ is taken to denote a
form of coordination in the behavior of related objects. Imputing
a particular form of coordination to changing (behaving) objects
affords a model of the causal dependencies generating sensory
data. Establishing coordination in the behavior of objects
A and B involves the creation of a bi-directional mapping
between the varying subsets (fringe subsets) in the corresponding
packets—entailing a coordination of the rotation of packet
vectors. Figure 5 illustrates this notion using a task employed
in Piaget, to examine development of understanding in young
children: discovering how to use a toy catapult (a plank balancing
on support) to hit target objects with a plastic ball. Performing
the task requires one to understand that pushing down one
side causes the other side to go up. That is, ‘‘co-instantaneous
coordination’’ needs to be established (Piaget, 1978).

Three important observations are in order here. First,
coordinating objects essentially constrains their behavior;
i.e., reduces their degrees of freedom or complexity. Establishing
coordination between objects in the course of some inference
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FIGURE 5 | The behavior of objects A and B (e.g., toy balance) is
observed to be coordinated (moving A down is accompanied by B
going up, etc.) Different movements correspond to (are represented by)
different successions of firing in the fringes of packets A and B (e.g., neurons
x1

A and x2
A represent different positions of A respective the vertical axis,

successions x1
A → x2

A and x1
A → x2

A represent downward and upward
movement, respectively). Bi-directional mapping between the fringe subsets in
two packets establishes “co-instantaneous coordination” in the movement of
packet vectors, PA PB (symbol denotes “co-instantaneous coordination”
in the movement of packet vectors).

requires representations of the objects and their behavior
(situated cognition) but does not reduce to simple recognition.
That is, unlike objects and behaviors, coordination cannot be
observed but has to be imputed, resulting in a compositional
representation (iterative model), such that operations on one
part of the composition produce particular changes in the
other. For example, when thinking of pushing down one side
of a catapult, one cannot help thinking that the other side
will go up. The underlying mechanism is neither an image

(although some visual predictions might be generated by the
model) nor a linguistic expression, such as a rule (although some
linguistic predictions might come to mind) but a forceful (energy
consuming) mental activity directed at performing a particular
work on a representation (vector rotation). Figure 6 illustrates
this notion.

In the absence of coordination, packets A and B are
experienced as unrelated objects displaying mutually
independent behavior patterns. Establishing coordination
in the movement of packet vectors produces a generative
model; that is, a coherent representative structure (model) and
constrained operations on that structure (mental modeling),
giving rise to the experience of a unified construct that combines
objects in a meaningful relationship.

Figuratively, population vectors can be taken to represent
the ‘‘consensus view’’ of the population, while vector rotation
expresses changes in neuronal responses in the course of
‘‘settling on’’ a ‘‘consensus’’. According to the current proposal,
understanding involves coordinated neuronal activities (Bressler
and Kelso, 2001, 2016), in particular, coordinated rotation
of population vectors comprising in a mental model, with
the form of such coordination reflecting the form of mutual
constraints (dependencies, relations) in the behavior of the
entities represented by the populations. Consistent with that
proposal, the experience of ‘‘grasp’’ accompanies the concluding
stage in the modeling process that ‘‘settles’’ onto a consensus
regarding relations among the participating entities. In short,
settling onto the ‘‘consensus view’’ in a model corresponds
to obtaining mutually coordinated vector rotations across the
model representing a coherent account of the situation as it
unfolds.

Second, exerting cognitive effort is hypothesized to be
a correlate of consciousness (Yufik, 2013). Associative links
and their spontaneous groupings (packets) are the product of
learning; i.e., they condition the organism to emit recurring
responses under recurring circumstances. Effortful composition
of packets into mental models and model manipulations (e.g.,
coordinated rotation of packet vectors) serve to overcome
the inertia of prior learning, when encountering and/or

FIGURE 6 | Establishing behavioral coordination. (A) Rotation of packet vectors (selective inhibition-amplification of neuronal responses in the fringe subset) is
analogous to rotating a shaft in a mechanism, e.g., a dc motor: it requires effort to produce movement (effort δf per unit angular displacement). (B) Establishing
behavioral coordination creates a unified compositional structure such that vector rotations in one part of the composition produce (enforce) rotations in the other
parts (e.g., visualizing one side of a catapult going down brings about, irresistibly, the image of the other side going up, or thinking of holding an object in the hand
and releasing the hold brings about the image of a falling object, etc.).

Frontiers in Systems Neuroscience | www.frontiersin.org December 2016 | Volume 10 | Article 98 | 123

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Yufik and Friston Life and Understanding

anticipating unfamiliar conditions. Learning capabilities are
common, to a varying degree, to all animal species, a superior
adaptive efficiency in humans may be due to mechanisms
allowing effortful suppression of the automatisms acquired in
learning and/or adjusting their execution—depending on the
circumstances at hand.

Third, coherent neuronal structures are thermodynamically
beneficial; i.e., resisting decomposition and/or reorganization.
For example, young children fail to understand that, when the
target is moved away from the catapult, the ball’s position
on the plank needs to be shifted in the opposite direction.
Failure is caused by the previously established basic coordination
(reaching an object requires movement towards it, not away
from it) precluding the requisite adjustments (children are
incapable of a focused cognitive effort demanded by the
adjustment).

Formally, coordination of packets defines an objective
function over a vector space. In the nervous system, the
function is implemented in a structure that is analogous
(within limits) to Shannon’s Differential Analyzer (DA; Shannon,
1941). The DA machine is composed of shafts connected by
movement conveying devices such as gear boxes. When a shaft
representing an independent variable is turned, all other shafts
are constrained to turn accordingly. The implications of this
analogy will be examined elsewhere, excepting the following
observations.

(a) The objective function seeks maximization of energy
efficiency, that is, vector (shaft) rotations are sought that
maximize energy inflows at the expense of minimal rotation
effort.
(b) A coherent model (tightly coordinated packets) collapses
combinatorial complexity of the task and thus allows
‘‘intuitive’’ navigation of large combinatorial spaces, as in
chess:

‘‘Intuition is the ability to assess a situation, and without
reasoning or logical analysis, immediately take the correct
action. An intuitive decision can arise either as the result of long
thought about the answer to the question, or without it’’

—(Beim, 2012, p. 10).

The experience of ‘‘intuition’’ is produced by the ability to
relate, via sufficiently tight coordinations, particular moves to
the global objective (winning the game)—amove is ‘‘sensed’’ to
improve or degrade the overall position (in the chess literature,
this ability has been compared to a GPS in the player’s mind
showing whether moves take one towards or away from
the goal (Palatnik and Khodarkovsky, 2014)). Such guiding
intuition is not confined to chess but is a universal attribute
of complex analysis and problem solving that is informed by
coherent models.

‘‘The mass of insufficiently connected experimental data was
overwhelming. . .however, I soon learned to scent out that which
was able to lead to fundamentals and to turn aside from
everything else, from the multitude of things which clutter the
mind and divert it from the essential’’

—(Einstein, 1949, p. 17).

FIGURE 7 | Thinking “apple is ripening” involves rotating “apple”
packet vector from the (sour-green) to (sweet-red) terminal positions
via some intermediate angular positions. Neuron x1 responds to co-firing
of “sour” and “green” neurons, xM responds to co-firing of “red” and “sweet,”
etc. Neuron xM responds to the firing succession x1 → x2 → . . . →xm formed
of diagonal elements in the color-taste matrix. Thinking “apple is rotting”
engages different elements residing in different rotation trajectories. In a
simulation, firings can be associated with different values, contracting the
matrix attributes and assigning value to the “ripening” trajectory; namely, the
sum of values in the x1 → x2 → . . . →xm firing succession (spur of the matrix).

Navigating and connecting massive sensory data requires
a model that guides subsequent probes and enables
determination (however approximate) of whether the
data lies within the range of variation afforded by the model,
or falls outside the range and invalidates the model. As per
Figure 1, probabilistic prediction and inference are at the
foundation of the modeling process.
(c) Coordinations in systems of nested packets can be
expressed as optimization operations in vector spaces (Dorny,
1975) and as functions over tensors or multi-vectors
(Clifford vectors) of geometric algebra (Hestenes and Sobczyk,
1999; Doran and Lasenby, 2003). Complexity reduction
in such systems can involve rank reduction and tensor
contractions.
(d) In the nervous system, complexity reduction can involve
neurons responding to trajectories of packet vectors; that
is, particular successions of their angular positions. In other
words, such neurons respond to particular thinking patterns,
as illustrated in Figure 7.

Summary
This section outlined a parsimonious theory of understanding
where foundational ideas in systems neuroscience (Hebbian
assembly) and probabilistic learning theory (variational
free energy minimization) converge on the notion of a
neuronal packet—a neuronal assembly ‘‘wrapped’’ in Markov
blanket. Cognitive processes are defined as operations on
neuronal packets providing a unifying formalism to express
the function of understanding as well as phylogenetic and
ontogenetic development of intelligence culminating in that
function: allocating neurons—allocating cohesive neuronal
groupings—adjusting groupings—apprehending coordinated
adjustments—combining and coordinating groups (mental
modeling). Psychologically, the process encompasses the
progression from sensing, to perceiving, to understanding.
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Mathematically, this formalism suggests operations on vector
spaces (via a geometric calculus).

The ensuing theory grounds cognitive development in
thermodynamics, suggesting a straightforward relationship
between self-organization and evolution (packets are
thermodynamically sculpted and operations evolve). Evolution
engages an interplay between the internal (packet manipulations
demand energy) and external processes (where the environment
supplies energy), propelled by the need to improve energy
efficiency. Organism-environment coupling is probabilistic,
allowing a dual account: doing work to extract energy
manifests as sampling and information gathering. The energy-
saving tendency to maintain cohesive and stable packets
is motivated by the minimization of surface tension in the
packet boundary surface. Surface tension is a fundamental
parameter expressing the thermodynamically favored direction
of internal processes in any system. In a neuronal system,
favored processes include increasing cohesion (reducing
interface area in individual packets) and merging (reducing
the total interface across the packet set). Minimization of
surface tension entails minimization of a thermodynamic
free energy in packet surfaces and equates to avoiding
surprise (minimizing variational free energy in probabilistic
inference). On that theory, packets are the substrate of
inference.

One might ask whether the solutions that minimize
variational free energy are stable and—from a technical
perspective—are these functionals convex. By virtue of
the dynamic and itinerant nature of biological systems
(especially in the context of a circular causality implicit
in self organization), it is highly unlikely that the energy
functionals describing behavior are convex. Heuristically, this
means that there will be many minima—or solutions. The
implicit multi-stability provides a nice mathematical image
of speciation—and indeed variants within any phenotype.
In other words, there is no unique free energy minimum,
in the same sense that there is no unique phenotype;
each system adapts to its own econiche—finding its own
solution.

The notion that quasi-stable neuronal packets—and their
manipulation—underlie perception resonates with theories that
associate perceptual units with quasi-stable solutions in mean
field models; for example, neural field models that account for
the neurogeometry of the cortex and the impact of visual input
(e.g., Sarti and Citti, 2015). According to Sarti and Citti (2015), in
the absence of visual input, quasi-stable solutions correspond to
hallucinatory patterns. Notwithstanding the possibility of quasi-
stable neuronal clusters engendering hallucinatory experiences,
our theory predicates mental modeling on the formation of
quasi-stable packets that maintain their integrity throughout
episodes of absent and/or varying input. Such quasi-stable
units allow the experience of continuing, self-identical objects
that arise from (i.e., are superposed upon) discontinuous and
varying sensory streams. More generally, the neuronal packet
model is compatible with the mean field models that furnish a
dynamics of neuronal systems from metastability and symmetry
breaking—and associating system behavior under stimulation

with quasi-stable states and active transient responses (Wilson
and Cowan, 1972, 1973; Bressloff et al., 2002). Examining
conceptual commonalities and reconciling differences between
these models may help overcome their inherent limitations
(e.g., Destexhe and Sejnowski, 2009) and offer synthetic
perspectives.

ANALYSIS

This section compares the proposal in the preceding section
to other theories described in ‘‘Theories of Understanding’’.
Since our proposal rests on the notion of neuronal packets, we
discuss how the idea conforms to the principles of neuroscience
and present some recent data concerning the properties of
neuronal structures consistent with those attributed to neuronal
packets. Finally, we consider an approaches to understanding
motivated by complementary ideas based on ‘‘intuitive physics
engines’’.

Comparing Theories
The theories in ‘‘Theories of Understanding’’ complement our
formulation. Moreover, they appear to reflect different facets
of understanding, as conceptualized above. The ‘‘foundational
theory of understanding’’ (Newton, 1996), which grounds
understanding in self-directed (volitional, attentive) activities
reconciling sensory inflows with memory structures and current
goals, is consistent with our theory that associates understanding
with goal satisfaction via self-directed allocation of neuronal
resources. The idea that evolution has gradually shifted response
targets away from the sensory periphery, producing internal
efferent-afferent loops that can be decoupled from the motor
output (Humphrey, 2000, 2006) is formally expressed in the
model of self-adaptive resource allocation.

The key insights in the theory of understanding by Chart
(2000) appear to be formally expressed and substantiated by our
treatment. Chart (2000) derives understanding from simulations
involving effortful (work- consuming) operations on mental
models built of ‘‘mutors’’:

‘‘Mutors are both the building blocks and the motors of mental
models. . .mutors are active: they actually do the work on the input,
and produce the output. They are not rules by which the input can
be transformed into the output; rather, they are machines which
effect the transformation’’

—(Chart, 2000, p. 47).

These intuitive notions correlate closely with the idea of effortful
vector rotation and other ideas (see Figure 6; note similarities
between Chart’s theory and Shannon’s DA. The theories also
differ in that one is centered on the work requirement and the
other is oblivious to it).

The doing work requirement in Kauffman (2000), predicating
intelligence on the ability to invest energy in performing
thermodynamic work cycles directed, in part, on erecting
constraints for the subsequent energy releases, appears to be
fully upheld in our theory (e.g., boundary energy barriers
constrain composition and movement of packet vectors
thus constraining energy release in vector rotation which,
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in turn, constrains condition at the boundary). The idea
of associating intelligence with ‘‘approximate constrained
optimization’’ in the service of need satisfaction (Glasser, 1984;
Werbos, 1996, 1998) is inherent in the notion of probabilistic
resource optimization. Our proposal ascertains a reciprocal
and complementary relationship between probabilistic resource
optimization via resource grouping, statistical explanation
(Salmon, 1970) and probabilistic inference, as discussed
above.

Simplification (Kitcher, 1981) and compression—postulated
to be the definitive characteristic of explanation
(‘‘comprehension is compression’’, Chaitin, 2006)—are the
product of enfolding, collapsing multiple resources into
a single unit. In essence, alternating enfolding–unfolding
serve to break large combinatorial problems into sets of
much smaller ones, yielding profound complexity reduction.
Furthermore, simplification is isomorphic with complexity
minimization inherent in minimizing variational free energy
and, by implication, thermodynamic complexity costs.

Finally, our theory gives operational expression to some of
the central claims in the psychological theory of understanding.
Developmental psychology predicates development of a capacity
to understand, from infancy to maturity, on the growing
ability to conduct ‘‘co-instantaneous mental coordinations’’ and
thus apprehend relations abstracted from the current sensory
input:

‘‘. . .to coordinate data yielded by his own actions the child must
appeal to unobservable, deductive relations which transcend his
actions’’

—(Piaget, 1978, p. 12).

Our proposal defines processes underlying ‘‘mental
coordinations’’ and makes them responsible for all levels of
understanding, from handling toys to formulating abstract
theories. From the resource optimization standpoint,
coordinating packets in nested packet groupings provides a
scalable mechanism for compression and complexity reduction.
From the psychological standpoint, coordination combines
disparate and unrelated entities into ‘‘situations’’ imbued with
meaning. That is, meaning is imputed by relations.

Neuronal Packets
A ‘‘neuronal packet’’ is a system-theoretic idea derived from
conceptualizing the nervous system as a probabilistic resource
optimization system with self-adaptive capabilities (Yufik,
1998b). The starting point was attempting to formulate Hebbian
assemblies (Hebb, 1949, 1980) as material entities: what
makes assemblies distinct, how does the system ‘‘know’’ where
one assembly ends and another begins? Once formed, why
wouldn’t assemblies succumb to entropic erosion and dissolve
momentarily? Drawing on Haken (1983, 1993), packets were
hypothesized to be formed by phase transitions in associative
networks and sculpted by an interplay between thermodynamic
forces (reduction of thermal free energy in the inter-phase
surface) favoring coalescence and forces of lateral inhibition
resisting coalescence. This interplay dynamically optimizes

responses: through lateral inhibition, packets capture regularities
in the sensory stream.

Arguably, the existence of boundary mechanisms was implicit
in the notion of assembly, the consequences (structure variation,
induction of meaning, etc.) were fully anticipated by Hebb:

‘‘. . .we have come to a classical problem. . .the meaning of
‘‘meaning’’.. . . a concept is not unitary. Its contents may vary from
one time to another, except for a central core whose activity may
dominate in arousing the system as a whole. To this dominant core,
in man, a verbal tag can be attached; but the tag is not essential.
The concept can function without it, and when there is a tag it may
be only a part of the ‘‘fringe’’. The conceptual activity that can be
aroused with a limited stimulation must have its organizing core,
but it may also have a fringe content, or meaning, that varies with
the circumstances of arousal’’

—(Hebb, 1949, p. 133; see Figure 5).

The notion of intrinsic organization of cortical activity ‘‘that
is so called because it is opposed to the organization imposed
by sensory events’’ (p. 121), the necessity for assemblies to be
sustained over time (p. 121), the possibility of forming ‘‘latent’’
associations between stimuli that have never co-occurred in
the past (p. 132), the ‘‘coalescence’’ of assemblies (p. 132), and
numerous other ideas in Hebb (1949) place the packet concept
within Hebb’s framework.

The concept of a ‘‘neuronal packet’’ is consistent with other
system-level theories of cognition. The theory of neuronal group
selection (TNGS; Edelman, 1992, 1993; Edelman and Tononi,
2000) associates cognitive functions with the formation of
‘‘neuronal groups’’ and establishment of ‘‘re-entrant mappings’’
between groups (Edelman and Gally, 2013; see Figure 6). In
Gestalt psychology, packets manifest in the notion of ‘‘gestalt
bubbles’’ (Lehar, 2003a,b), or ‘‘segregated wholes’’ that enable
meaning (‘‘. . . meaning follows the lines drawn by natural
organization; it enters into segregated wholes’’ (Köhler, 1947,
p. 82)). Significantly, ‘‘segregated wholes’’ were subject to
forceful manipulation (the idea organizing ‘‘force fields’’ in
the brain that ‘‘extend from the processes corresponding to
the self to those corresponding to the object’’ (Köhler, 1947,
p. 177; 1948)). The idea of ‘‘forceful’’ interactions was later
associated with the activity of consciousness: in the brain,
consciousness is ‘‘put to work’’ exerting a controlling influence
on the stimuli-triggered and volitional (self-generated) motor
responses (Sperry, 1969). Interestingly, the notion of force fields
as underlying perception has been revisited in the context of
gauge theories for the brain using variational free energy as the
underlying Lagrangian (Sengupta et al., 2016). Formally, this is
closely related to the autopoietic destruction of (free energy)
gradients in synergetic formulations of brain function (Tschacher
and Haken, 2007).

A ‘‘neuronal packet’’ is a speculative concept—the implicit
packets (or assemblies) are not amenable to direct observation
but have to be inferred in terms of their functional connectivity
and underlying conditional independence. However, recent
empirical data appears to uphold the concept. Packets are
thermodynamically plausible because their [re]use minimizes
energy expenditure. That is, the possibility of re-use is inherent
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in the packet idea. Reusable neuronal groups (‘‘bubbles’’)
were discovered in the hippocampus of awake, free-moving
animals (mice; Lin et al., 2005, 2006; Tsien, 2007). Empirical
verification was enabled by recent technical advances allowing
simultaneous recording of activity of 260 neurons: recordings
were made in the CA1 region in animals subjected to
different perturbations (shaking, elevator drops, air puffs)
and in the resting state. Multiple discriminant analysis
(MDA) was carried out over half-second sliding windows
in recordings accumulated over several hours, revealing the
formation of distinct ‘‘bubbles’’, Or groupings of neuronal
activity that were well separated in the functional 3-D
space (contracted by MDA from the 520-D space). The
ensuing bubbles represented ‘‘integrated information about
perceptual, emotional and factual aspects of the events’’ (Tsien,
2007, p. 55). After the ‘‘bubbles’’ were formed, subsequent
responses could be characterized in different compositions, e.g.,
an ‘‘earthquake’’ type situation begins in the ‘‘resting bubble’’,
transits to the ‘‘earthquake bubble’’ and returns to the ‘‘resting
bubble’’—thus following a distinct trajectory in the functional
space.

The possibility of resource tuning (changing resource
characteristics depending on those of the task) is inherent
in the concept of resource allocation (see Figure 2).
Task-dependent changes in the receptive fields of individual
neurons (see rotation of neuronal response vectors) have
been demonstrated in a broad range of tasks and conditions
including different stimulation modalities (auditory, visual)
and durations of exposure (Fritz et al., 2003, 2007; Kohn
and Movshon, 2004; Elhilali et al., 2007). For example,
recordings of individual neurons in A1 in ferrets performing
tone-discrimination tasks revealed distinct and predictable
changes in spectro-temporal receptive fields (‘‘task-specific
signatures’’; Fritz et al., 2007). In the earlier experiments,
neurons in the prestriate area V4—in monkeys attending
to visual stimuli—demonstrated robust attentional gating of
their receptive fields: a neuron having two stimuli within its
receptive field selectively suppressed its responses to one or the
other stimulus depending on the task (Moran and Desimone,
1985).

Task-dependent changes in the responses of neuronal
populations (rotation of population, or packet vectors) were
demonstrated by Georgopoulos and his group in studies of
neuronal correlates of target reaching in monkeys. Neurons
in M1 are broadly tuned to the direction of movement, with
each neuron exhibiting a preferred direction—defining the
orientation and the magnitude of the neuronal response vector.
It was shown that population response vectors—obtained as
the vector sum of weighted neuronal response vectors over the
population of responding motor neurons—track the direction
of the hand movement (Georgopoulos et al., 1988, 1993).
In a similar fashion, weighted sums of neuronal responses
over populations of sensory neurons were shown to align
closely with the overt characteristics of sensory processing
(Jazayeri and Movshon, 2006). Furthermore, it was shown
recently that population responses adapt to task variations,
involving subsets of neurons particularly relevant to the current

task (‘‘high-precision neurons’’; Purushotaman and Bradley,
2005).

The overall approach of conceptualizing cognitive
processes as optimization of neuronal resources has received
experimental support and theoretical emphasis in the recent
studies of visual perception (Gepshtein et al., 2013) and
the analysis of candidate mechanisms in the brain capable
of anticipation and long-term planning (‘‘prospective
optimization’’; Sejnowski et al., 2014). Perhaps, the most
compelling argument in favor of the present theory can be
garnered from the work reported by Ito (1993, 2008), Salman
(2002), Baillieux et al. (2008); Ellis and Newton (2010),
Murdoch (2010), and Rosenbloom et al. (2012) suggesting
a possibility that mental activities are controlled by internal
models in the cerebellum (Ito, 2008), with movement and
thought engaging identical control mechanisms (Ito, 1993).
On the theory that understanding boils down to packet
coordination, pieces of the understanding puzzle seem to
be falling in place. That is, the critical function of packet
coordination hypothesized in Figure 6 may be evident in the
cerebellum.

Key components of ‘‘understanding’’ include value-
assignment (reward likelihood attribution), packet mobilization
and effortful, context-sensitive variation, packet coordination,
output suppression and response selection. These components
map, under a gross simplification, onto a functional
neuroanatomy comprising prefrontal cortex (PC), subcortical
structures; including the basal ganglia, thalamus, and cerebellum,
and the limbic system (Rosenbloom et al., 2012). The
orbitofrontal, anterior cingulate and dorsolateral regions
in PC interact with each other and the limbic system
and subcortical structures. In particular, the orbitofrontal
cortex and limbic system participate in reward-attribution,
while the dorsolateral and anterior cingulate regions
‘‘facilitate intellectually effortful decisions’’ (Rosenbloom
et al., 2012, p. 256). Frontal areas are involved in response
suppression, while the cerebellum mediates a key mechanism of
understanding: packet coordination. Via the cerebellum, precise
timing—necessary for sensorimotor coordination (Salman,
2002)—becomes an integral part of situational understanding
that is manifest in the ability to not only compose, in the mind,
coordinated activities fine-tuned to the current situation but
also to identify proper moments for releasing and terminating
them.

Energy barriers play a crucial role in coordinated timing. On
the present theory, folding into packets creates a continuous
energy landscape in associative networks (peaks and valleys form
energy barriers that separate pools of neurons endowing them
with a conditional independence that create Markov blankets).
The implicit barriers may be regulated by the limbic system
(regulation of the ‘‘cortical tone’’ (Luria, 1973)), via the classical
ascending neuromodulatory systems. For example, down
regulation (stress, fear, low motivation) raises energy barriers,
while up regulation (joy, arousal, high motivation) lowers
them. This sort of regulation or (neuromodulatory) arousal,
directly affects cognitive performance as follows. Optimal
performance requires optimal ‘‘cortical tone’’ (underlying the
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Yerkes—Dodson law of optimal performance (Eysenck and
Keane, 1995)). Excessive down regulation blocks attentive access
to packet internals (as in suddenly forgetting a familiar name)
or arrests attention within a packet (vacillation, inability to
escape from recurring thoughts). By contrast, excessive up
regulation precludes sustained focus and predisposes to spurious
associations. In pathological extremes, the landscape is either
flattened, turning sensory inflow into undifferentiated flux
(e.g., Alzheimer’s disease), or loses integrity and decomposes
into pockets of narrowly constrained skills (e.g., autism).
When a packet dissolves, the contents are not forgotten but
irrevocably lost. We shall re-visit this point briefly in the
discussion.

The mechanism of mental modeling is ubiquitous across
species. For example, sensing a prey initiates hunting behavior
in a snake. If the prey suddenly disappears, the snake starts
searching for it but only in the vicinity of the location where
the prey was last sensed. By contrast, a dog chasing a prey that
goes out of sight (e.g., a rabbit disappearing behind bushes)
can initiate an interception maneuver; i.e., running towards a
location where the prey is likely to re-emerge (Sjölander, 1995).
Figuratively, the snake’s hunting model contains one packet
whose boundaries are statistically determined and genetically
fixed (the radius and duration of search are consistent with
the behavior of animals typically consumed by snakes—thus
yielding adaptive fitness). Dogs and other higher animals possess
repertoires of specialized packets amenable to situation-sensitive
variations (a prey’s velocity, distances, etc.). Chimpanzees can
combine some genetically available activities (reaching with a
stick, piling up objects and climbing to obtain a reward reflect
their genetic repertoire) but coordinating such activities appears
to be approaching the limits afforded by their nervous system.
Human modeling capabilities in infancy are rudimentary (e.g., at
6 months, infants search for a toy after it was covered but, if the
toy is removed and placed (in full view) under a different cover,
they keep searching for it where it was first perceived (Bower,
1974)). Human capabilities develop rapidly, from coordinating
a few variables in handling toys (e.g., ball placement in a toy
catapult, given the distance to the target) to coordinating deeply
nested variable structures in the creation of abstract theories.
We propose that the formalism of neuronal packets and packet
coordination characterizes essential features of the underlying
mechanism at all stages of cognitive development.

So far, understanding and mental modeling have been
discussed in the context of problem solving and prediction
(Toulmin, 1961), without addressing the impact of emotion
on these cognitive activities. The thermodynamic framework
suggests a natural expression of that impact (Yufik, 1998a),
by identifying emotional control with thermoregulation and
temperature with the level of arousal (it is interesting to
note that Aristotle attributed to the brain the function of
thermoregulation, Gross (1995)). In particular, the neuronal
packet model represents boundary free energy (the height
of packet energy barrier) U as a function of temperature
approximated as U(T) = σ – Tdσ/dT where σ is a stability
coefficient computed as the ratio of the summary strength of the
internal vs. external associative links in the packet (σ > 1: such

that the packet disintegrates when σ approaches unity, bringing
U(T) in to the vicinity of kT, where k is the Boltzmann constant).
Increasing T lowers the barriers while decreasing T (stress,
fear, anxiety) results in their elevation. Low barriers enable
easy (low energy cost) transitions between packets (expansive,
compositional thinking) while elevated barriers hamper the
transitions.

Temperature variations can be local (focused thinking) or
global (diffuse). Diffuse temperature increases lower energy
barriers and ‘‘shake up’’ the system, entailing re-distribution
of neurons among packets, followed by focused (selective)
manipulations in the resulting structures (the term ‘‘cognition’’
derives from the Latin ‘‘cogito’’ meaning ‘‘to shake together’’,
‘‘intelligence’’ derives from the Latin ‘‘intelligo’’ meaning ‘‘to
select among’’, Koestler, 1964, p. 120). As noted earlier,
the overall temperature dependency of the packet system
approximates the Yerkes-Dodson law of performance (optimal
levels of arousal yield optimal cognitive performance). More
generally, temperature regulation engages global self-regulatory
loops allowing the organism to reconcile conditions in the
outside with those inside and thus maintain a form of
homeostasis. Arguably, thermal regulation transcends the
hierarchy of functional levels in the organism—from changes
in the cell membrane permeability and neurotransmitter flow
(e.g., changes in the release, reuptake and repriming of synaptic
vesicles; the micro level) to changes in packet composition (the
mesa level), and further to emotional shifts entailing changes
in overt macro responses (advance or retreat; the macro level).
These views are generally consistent with those formulated in
Damasio and Carvalho (2013) andDamasio andDamasio (2016).

Alternative Theories
A recent theory of cognitive mechanisms involved in the
understanding of physical scenes (e.g., a determining whether
a stack of blocks is going to hold or to topple) derives
understanding from the operation of an ‘‘intuitive physics
engine’’ (IPE) combining simulation of interaction between
objects with probabilistic inference, by treating simulation
runs as statistical samples (Battaglia et al., 2013). Simulating
interactions is the crux of the matter, how is this accomplished
in IPE? To demonstrate human-like performance, IPE employs
open dynamics engine (ODE1) offering a library of routines
(equations, methods and algorithms) to simulate rigid body
dynamics. If IPE succeeds in emulating humans, what would this
tell about the mechanisms of scene understanding in the brain?
Stated differently, what makes IPE brain-like?

Three constraints in employing the ODE library are claimed
to qualify IPE as a theory of scene understanding: only
elementary rules of physics are selected in ODE, Monte
Carlo procedures inject probabilities into simulation runs, and
inference calculations are carried out to a crude approximation.
Consider applying these constraints in a toy catapult problem
(e.g., balancing two objects on a plank): w1L1 = w2L2 is the
most elementary rule, simulation varies the values of L1 and
L2, probability distributions are associated with variation ranges

1http://www.ode.org
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L1 and L2, and all calculations discard small terms and round
the results. If that is what underlies understanding, the question
remains: how is the rule w1L1 = w2L2 obtained, represented
and exercised? The probabilistic inference and approximation
components in IPE only postpone the inescapable conclusion
that understanding boils down, literally, to mental arithmetic.
With that, any human-like behavior can be readily imitated and
explained (e.g., a child failing to understand that ball needs
to be moved away from the center of the catapult when the
distance to the target increases, has her Monte Carlo flip the sign,
i.e., computes L2 −∆L2, instead of L2 + ∆L2,).

In short, results in Battaglia et al. (2013) appear to
demonstrate that combining methods of analytical mechanics
with probabilistic inference allows rough and quick assessment
of interaction dynamics in simple mechanical systems. Whether
these results have anything to do with human understanding
or intuition is open for debate. In lieu of entering the debate,
this article has outlined a complementary approach to the
issue.

DISCUSSION AND SUGGESTIONS FOR
FURTHER RESEARCH

Brain is complex, dynamic self-organizing system (Bressler,
1994; Singer, 2009). Self-organization requires a flow of
thermodynamic energy through a system acting as a conduit
between an energy source and energy sink. At equilibrium,
energy transfer by thermodynamic forces is accompanied
by generation of entropy. Deviations from equilibrium is
accompanied by a decrease in the rate of entropy production,
eventually producing conditions where stable structures emerge
in the form of spatial (e.g., Bérnard cells), temporal (e.g.,
Belousov-Zhabotinsky reaction) or spatiotemporal structures
(Glansdorff and Prigogine, 1971; Prigogine and Stengers,
1984, 1997; Prigogine, 1994; Bak, 1996; Jensen, 1998). The
brain belongs in the continuum of self-organizing systems
(Bressler, 1994; Kelso, 1995; Camazine et al., 2001). Sustained
self-organization in far-from-equilibrium systems is contingent
on the existence of internal mechanisms capable of removing
entropy from the volume occupied by the system and depositing
it outside the volume (Morowitz, 1978, 1979; England, 2013;
Prokopenko et al., 2014). The development of intelligence implies
a reduction of entropy within the brain’s volume—to levels
allowing emergence of stable structures that can both amplify
energy inflows and direct the investment of a growing portion
of that inflow towards creating more entropy reducing structure.
In a sense, a self-organizing (self-adaptive) system keeps folding
upon itself, producing increasing degrees of internal order.
Human intelligence requires a degree of order, engendering
stable but flexible structures (neuronal packets) and reproducible
internal processes (thinking). This combination gives rise to the
experience of interacting with an orderly environment amenable
to understanding, as follows.

The requirements of facilitating energy import from the
outside—and structure generation of the inside—converge when
structures are flexible (but stable) and reflect regularities in
the external conditions. With that, reciprocity is established

between internal ‘‘objects’’ and environment. A self-organizing
system becomes aware of the ‘‘objects’’— including itself as
an object; i.e., when objects become amenable to internal
manipulation, establishing relations between objects expressing
higher-order regularities in the environment. The availability
of such manipulations rests on having reduced the rate of
entropy production, down to levels that allowing reversibility
of thinking. That is, no thinking is possible if one cannot:
(1) dwell on object A; (2) switch from object A to object
B and return to B; and (3) keep all the objects intact
in the course of 1 and 2. Reversibility endows quasi-
stable objects with self-identity, thus rendering thought
possible and making the environment (the universe of
persevering, self-identical objects) understandable. The
relationship between reversibility and understanding is
manifest in the foundational principles of psychology, logic
and mathematics.

In psychology, this relationship was first articulated in the last
century by Piaget, in the form of a reversibility principle and
the notion that cognitive structures—and operations on those
structures—in mature adults acquire the property of algebraic
groups. In logic, the relation underlies The Law of Identity
formulated by Aristotle as the key axiom from which reasoning
derives. The Law of Identity (A ≡ A) (and the corollary of
non-contradiction and excluded middle) asserts preservation of
self-identity in things despite changes. Things neither appear
nor disappear spuriously, they remain self-identical over time
and do not change without a cause. Finally, in mathematics,
the relation is expressed in the foundational principle of set
induction and cardinality attribution formulated by Cantor
(1915/1955):

‘‘We will call by the name ‘‘power’’ or ‘‘cardinal number’’ of M the
general concept which, by means of our active faculty of thought,
arises from the aggregate M when we make abstraction fromm and
the order in which they are given’’

—(Cantor, 1915/1955, see Tiles, 1989,
p. 99).

In short, set is induced on a group by the ‘‘active faculty of
thought’’ that treats the group, reversibly and alternatively, either
as a manifold or as a unit abstracted from the manifold.

The criteria of causality are hard to explicate (e.g., leading
to the recent notion of ‘‘graded causation’’ (Fitelson and
Hitchcock, 2011; Halpern and Hitchcock, 2015)) but, nuances
aside, causality concerns a relation between some A and B:
changes in A are (or are not) the cause of changes in (B). By
contrast, the set operation dwells on A. The operation underlies
mathematics (and abstractive thinking in general) and enables
compositionality; i.e., combining A and B into a new unit A, B
→ (AB) amenable to reversible decomposition (AB)→A, B, and
so on, indefinitely.

According to the theory of neuronal packets, the above
principles are rooted in (and express) packet unfolding/enfolding
and inter-packet coordination (causality). Unfolding gives
access to the packet’s sensory contents, while enfolding
abstracts from them. Alternating between enfolding and
unfolding can be visualized as moving up and down a
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cone; with the sensory data at the base. On the way
up, the sensory component is reduced—and is completely
removed (abstracted away) at the apex. Symbolic labels
that could be attached at the apex (e.g., labels ‘‘apple’’
and ‘‘Apple computer’’) have no sensory overlaps with the
corresponding objects. The essence of thinking is effortful
packet manipulation, with the process alternating sporadically
between imagining and reasoning (syntactic manipulation of
labels). Crucially, the process is different from—and does not
reduce to—pattern recognition. This contention will be discussed
elsewhere.

The development of order in self-organizing systems implies
the emergence of Markov blankets; i.e., encountering a
confluence of conditions that allows the system to self-segregate,
or fold into components that remain coupled to the system
but acquire conditional independence. In living organisms,
mechanisms start to form that regulate the ‘‘permeability’’ of the
blankets, i.e., facilitating inflow of energy and matter necessary
for sustaining independence and integrity at the level consistent
with survival. One might imagine that further development
creates higher-order regulatory mechanisms comprised of nested
components ‘‘wrapped’’ in Markov blankets.

When analyzing the thermodynamic underpinnings of life,
Schrodinger introduced the notion of negentropy extraction:
‘‘the device by which an organism maintains itself at a
fairly high level of orderliness (low level of entropy) really
consists in continually sucking orderliness from its environment’’
(Schrodinger, 2006, p. 73). Negentropy extraction involves active
sampling and harvesting of information from the environment.
The induction of Markov blankets and increase of order via
partitioning of associative networks into nearly homogeneous
subsets (neuronal packets) equates to internal generation of
information (Salmon, 1970). Thermodynamic free energy is
therefore diverted from dissipating organismal structure and
is stored in ATP molecules at the packet surface, to be
released in the work of composing and re-shaping packets
for further free energy minimizing inference. Our theory
defines the increase of order via constructing models as
negentropy generation (orderliness is manufactured inside the
system).

Minimization of boundary free energy can drive
self-organization and self-assembly in microstructures (Syms
et al., 2003) and influence first-order phase transitions, inducing
critical phenomena (surface-induced order and disorder
(Lipowsky, 1984)). The coexistences of phases in a first-order
transition is described by Landau-Lifsitz potential with several
minima, with spontaneous symmetry breaking (e.g., packet
formation) on obtaining one of the minima (producing order
and the disordered phase characterized by a vanishing order
parameter (Lipowsky, 1984)). In general, identifying the
thermodynamic variable with the surface area of a packet offers
a hypothetical Lagrangian or Lyapunov function that poses some
interesting analytic and practical questions. From a technical
point of view, it motivates a formal analysis of the relationship
between the surface area (thermodynamic free energy) and
variational free energy. From a practical point of view, the
surface area can be treated as an order parameter, which is either

minimized or conserved—in accord with Hamilton’s principle
of stationary or least action.

Transition from negentropy extraction to negentropy
generation encompasses a continuum of intelligent processes,
from rudimentary (plant intelligence, e.g., Trevawas, 2002;
Marder, 2013) to the most elaborate (human intelligence).
In the latter, a spectrum of mechanisms can be involved
operating in conjunction with neuronal mechanisms; e.g.,
from limbic neuromodulation to glial cell function (Chung
et al., 2015); from synaptic processes to microtubules (Penrose,
1997). All such mechanisms exploit thermodynamic forces
to optimize energy extraction and utilization in the interest
of survival (e.g., sunflowers tracking the sun). Accordingly,
the formalism of self-adaptive resource optimization applies
across the continuum of biological intelligence. Emulating
biological intelligence in artifacts would require a range of
designs, including analog (super-Turing network (Siegelmann,
1999; Cabessa and Siegelmann, 2011)), digital and digital-analog
hybrids.

Our proposal associates self-organization in the physical
substrate with minimization of free energy, and asserts
isomorphism between variational and thermodynamic
expressions of free energy. Under both expressions, the
process involves self-partitioning in the substrate yielding
internally cohesive and externally weakly coupled (statistically
quasi-independent) components. As astutely noted by a
reviewer, the concept of energy minimization resonates with
some classical techniques in pattern analysis (e.g., energy
minimization in Hopfield networks) and image processing. In
general, minimization of an ‘‘energy functional’’ is used to obtain
image segmentation into ‘‘meaningful’’ regions (‘‘objects’’)
having uniform feature intensity and separated by non-uniform,
low-intensity patches. Minimization can be sought of some local
energy-like expression (Lucas and Kanade, 1981) or a global
energy functional (Horn and Schunck, 1981; Bruhn et al., 2005).
In the former case, the ‘‘energy functional’’ takes the form E(u,
B) → min where u is the smoothed image and B is a curve
segmenting the image (i.e., the union of ‘‘object’’ boundaries;
Mumford and Shah, 1989; Shah, 1992).

Mathematical ideas motivating boundary detection by
minimizing energy functionals (Mumford and Shah, 1985)
appear to be converging on our proposal postulating free energy
minimization in the interface or boundary separating neuronal
packets from the surrounding structure, thus providing further
support to the hypothesis that packets underlie perception of
‘‘objects.’’ Note that our overall proposal deals with models
of input (rather than percepts) and thus calls for expanding
the conceptual basis and the corresponding mathematical
apparatus, as compared to those employed in image processing.
In particular, the free energy minimization requirement is
associated not only with segmenting images into packets
(‘‘objects’’) but, crucially, with the subsequent operations on
packets, such as coordinated rotation of packet vectors. In
other words, the energy functional needs to be extended to
include minimization over two variables: the boundary energy
and the action. We believe that examining relations between
energy-like function minimization in image processing and
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variational and thermodynamic energy minimization in mental
modeling is likely to yield informative and practically useful
results, presenting a challenge for further research.

It is interesting to note that the vector manipulation
formalism adopted in the present theory overlaps, to a degree,
with the theory of morphogenesis in Thom (1975). In particular,
the theory expresses morphogenesis (change of form) in a system
M in terms of a vector field X on M determining the system’s
macroscopic dynamics. However, the overlap is limited since the
intent was to ‘‘construct an abstract, purely geometrical theory,
independent of the substrate of forms and the nature of the forces
that create them’’ (Thom, 1975, p. 8). Similar attempts can be
found in other system-theoretic studies of complex structures
(e.g., Casti, 1979). Most system theories, including Thom (1975),
focus on the general conditions of stability and resilience; i.e., the
system’s ability to absorb external disturbances without dramatic
consequences for its steady-state and transient behavior. By
contrast with system-theoretic proposals, the present proposal
resonates with the objective reinstating the primacy of action and
bodily grounded experiences in the theory of intelligence (Nunez
and Freeman, 2014) and is interested in the physical properties of
the substrate and the forces, seeking to relate them to resilience
and adaptive changes. Nonetheless, system theories offer a rich
mathematical apparatus and key insights (e.g., concerning the
role of topological factors in biological morphogenesis (Thom,
1975)), that may contribute to a comprehensive theory of
cognition.

Summary
Life emerges in networks of interacting material entities under
a confluence of conditions that allow regions in the network
to fold into bounded units statistically independent from the
environment. Sustaining life requires regulating the flow of
energy and matter through the boundary. The dual requirement
of maintaining independence from the environment, while
extracting sustenance from it, is resolved in progressively
improving regulatory mechanisms ascending from the boundary
to the internals. The progress is enabled by folding in
neuronal networks and culminates in mental modeling involving
manipulation of folded units (packets).

A detailed examination of the above hypothesis suggests
a metaphor of brain function that comprises Bayesian and
Aristotelian components, as follows. The interaction between
an organism and its environment is probabilistic (no action
is guaranteed to yield the expected outcome), necessitating
Bayesian inference to predict and prepare for counterfactual
outcomes before their onset; i.e., the cybernetic or Bayesian
brain (Conant and Ashby, 1970; Knill and Pouget, 2004; Seth,
2014). Self-organization creates structures and operations in the
system allowing logical inference; i.e., the Aristotelian brain.
The Aristotelian brain builds on the foundation of the Bayesian
brain in the course of self-adaptive resource optimization. The
need to invest work in operating on structures equilibrates the
Aristotelian-Bayesian system in the brain: self-partitioning into
packets establishes both reference sets for Bayesian inference and
a trade-off between the amount of cognitive work the system can
invest and the amount of surprise it can tolerate.

The self-adaptive resource optimization framework (Yufik,
1998b, 2002; Yufik and Malhotra, 1999; Yufik and Sheridan,
2002) offers a simple account of cognitive processes, highlighting
the crucial role ofMarkov blanket induction in neuronal systems,
as a pivotal optimization mechanism.

From the perspective of Bayesian inference, induction
equates to dynamic partitioning of large inference problems
into a hierarchical succession of simpler problems, minimizing
complexity (through dimension reduction) with the least loss of
accuracy. Anticipatory inference (e.g., counterfactual prediction)
is integral to optimization. This formalism is consistent with
the functional organization of memory, distinguishing long-term
(model parameters) and short-term (postdictive) components: in
this (Bayesian) setting structure learning and inference can be
expressed as optimization on vector constructs, such as Clifford
vectors or tensors (e.g., Dorny, 1975; Smolensky, 1990; Doran
and Lasenby, 2003).

From the perspective of physics, abductive reasoning equates
to placing associative networks into regulated variational free
energy landscapes where cohesive subnetworks (‘‘bubbles’’)
reside in valleys separated by energy barriers. This (variational
and thermodynamic free) energy landscape defines expenditures
(energy consumption and dissipation) in terms of the
computational complexity—accuracy trade-offs and motivates
optimization (Sengupta et al., 2013). From the perspective of
psychology, induction underlies the unparalleled efficacy of
human reasoning, by enabling transition from sensation to
perception and from perception to understanding.

From the perspective of systems neuroscience, the function
of understanding appears to be mediated by the Aristotelian-
Bayesian brain via collaborative engagement of the thalamo-
cortical system (associative network), the limbic systems
(emotive thermoregulation) and the cerebellum (coordination).
The theoretical perspective offered in this article is based on
a fundamental, cornerstone of systems neuroscience (Hebbian
assembly), by attributing biophysical properties to the assemblies
that, arguably, are implicit in—and have been anticipated
by—the original concept.

Finally, from the perspective of technology, implementation
of the optimization and induction mechanisms speaks to a
transition from machine learning to machine understanding.
Advances in machine intelligence over the last half century
have been associated primarily with perfecting techniques for
computing weight distributions in fixed topology (perceptron-
type) networks yielding a mapping between the input and
output vectors (learning, pattern recognition). The store
of algebraic ideas that have been employed in the task is
rich, going back to Tichonov’s regularization and iterative
error reduction methods by Gauss, but finite and appearing,
despite the recent strides (e.g., deep learning), to be nearing
exhaustion. Simulation of understanding involves networks
of varying topology and operations on dynamic vector
structures, with the weights intact. Implementing such
simulations could exploit algebraic ideas that have been
largely untapped, promising advances in autonomous systems
and other critical applications that, arguably, are not accessible
via the methods of machine learning. These distinct but
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complementary perspectives indicate possible avenues for
further investigation.
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